2009-03-12 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29
30 #include "elf/x86-64.h"
31
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
34
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table[] =
39 {
40 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
41 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
42 FALSE),
43 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
45 FALSE),
46 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
48 TRUE),
49 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
51 FALSE),
52 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
53 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
54 TRUE),
55 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
57 FALSE),
58 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
65 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
66 MINUS_ONE, FALSE),
67 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
69 0xffffffff, TRUE),
70 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
71 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
74 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
78 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
80 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
82 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
83 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
84 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
92 MINUS_ONE, FALSE),
93 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
97 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
98 0xffffffff, TRUE),
99 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
101 0xffffffff, FALSE),
102 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
104 0xffffffff, TRUE),
105 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
106 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
107 0xffffffff, FALSE),
108 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
110 TRUE),
111 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
112 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
113 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
114 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
116 FALSE, 0xffffffff, 0xffffffff, TRUE),
117 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
119 FALSE),
120 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
122 MINUS_ONE, TRUE),
123 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
125 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
126 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
127 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
128 MINUS_ONE, FALSE),
129 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
131 MINUS_ONE, FALSE),
132 EMPTY_HOWTO (32),
133 EMPTY_HOWTO (33),
134 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
135 complain_overflow_bitfield, bfd_elf_generic_reloc,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE, 0xffffffff, 0xffffffff, TRUE),
138 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
139 complain_overflow_dont, bfd_elf_generic_reloc,
140 "R_X86_64_TLSDESC_CALL",
141 FALSE, 0, 0, FALSE),
142 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
143 complain_overflow_bitfield, bfd_elf_generic_reloc,
144 "R_X86_64_TLSDESC",
145 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
146
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
153
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
156 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
157
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
160 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
161 FALSE)
162 };
163
164 /* Map BFD relocs to the x86_64 elf relocs. */
165 struct elf_reloc_map
166 {
167 bfd_reloc_code_real_type bfd_reloc_val;
168 unsigned char elf_reloc_val;
169 };
170
171 static const struct elf_reloc_map x86_64_reloc_map[] =
172 {
173 { BFD_RELOC_NONE, R_X86_64_NONE, },
174 { BFD_RELOC_64, R_X86_64_64, },
175 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
176 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
177 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
178 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
179 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
180 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
181 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
182 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
183 { BFD_RELOC_32, R_X86_64_32, },
184 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
185 { BFD_RELOC_16, R_X86_64_16, },
186 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
187 { BFD_RELOC_8, R_X86_64_8, },
188 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
189 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
190 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
191 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
192 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
193 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
194 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
195 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
196 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
197 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
198 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
199 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
200 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
201 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
202 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
203 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
204 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
207 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
208 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
209 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
210 };
211
212 static reloc_howto_type *
213 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
214 {
215 unsigned i;
216
217 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type >= (unsigned int) R_X86_64_max)
219 {
220 if (r_type >= (unsigned int) R_X86_64_standard)
221 {
222 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
223 abfd, (int) r_type);
224 r_type = R_X86_64_NONE;
225 }
226 i = r_type;
227 }
228 else
229 i = r_type - (unsigned int) R_X86_64_vt_offset;
230 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
231 return &x86_64_elf_howto_table[i];
232 }
233
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type *
236 elf64_x86_64_reloc_type_lookup (bfd *abfd,
237 bfd_reloc_code_real_type code)
238 {
239 unsigned int i;
240
241 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
242 i++)
243 {
244 if (x86_64_reloc_map[i].bfd_reloc_val == code)
245 return elf64_x86_64_rtype_to_howto (abfd,
246 x86_64_reloc_map[i].elf_reloc_val);
247 }
248 return 0;
249 }
250
251 static reloc_howto_type *
252 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
253 const char *r_name)
254 {
255 unsigned int i;
256
257 for (i = 0;
258 i < (sizeof (x86_64_elf_howto_table)
259 / sizeof (x86_64_elf_howto_table[0]));
260 i++)
261 if (x86_64_elf_howto_table[i].name != NULL
262 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
263 return &x86_64_elf_howto_table[i];
264
265 return NULL;
266 }
267
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
269
270 static void
271 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
272 Elf_Internal_Rela *dst)
273 {
274 unsigned r_type;
275
276 r_type = ELF64_R_TYPE (dst->r_info);
277 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
278 BFD_ASSERT (r_type == cache_ptr->howto->type);
279 }
280 \f
281 /* Support for core dump NOTE sections. */
282 static bfd_boolean
283 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
284 {
285 int offset;
286 size_t size;
287
288 switch (note->descsz)
289 {
290 default:
291 return FALSE;
292
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
294 /* pr_cursig */
295 elf_tdata (abfd)->core_signal
296 = bfd_get_16 (abfd, note->descdata + 12);
297
298 /* pr_pid */
299 elf_tdata (abfd)->core_pid
300 = bfd_get_32 (abfd, note->descdata + 32);
301
302 /* pr_reg */
303 offset = 112;
304 size = 216;
305
306 break;
307 }
308
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
311 size, note->descpos + offset);
312 }
313
314 static bfd_boolean
315 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
316 {
317 switch (note->descsz)
318 {
319 default:
320 return FALSE;
321
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd)->core_program
324 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
325 elf_tdata (abfd)->core_command
326 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
327 }
328
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
332
333 {
334 char *command = elf_tdata (abfd)->core_command;
335 int n = strlen (command);
336
337 if (0 < n && command[n - 1] == ' ')
338 command[n - 1] = '\0';
339 }
340
341 return TRUE;
342 }
343 \f
344 /* Functions for the x86-64 ELF linker. */
345
346 /* The name of the dynamic interpreter. This is put in the .interp
347 section. */
348
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
350
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
354 shared lib. */
355 #define ELIMINATE_COPY_RELOCS 1
356
357 /* The size in bytes of an entry in the global offset table. */
358
359 #define GOT_ENTRY_SIZE 8
360
361 /* The size in bytes of an entry in the procedure linkage table. */
362
363 #define PLT_ENTRY_SIZE 16
364
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
367
368 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
369 {
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
373 };
374
375 /* Subsequent entries in a procedure linkage table look like this. */
376
377 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
378 {
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
385 };
386
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
392
393 struct elf64_x86_64_dyn_relocs
394 {
395 /* Next section. */
396 struct elf64_x86_64_dyn_relocs *next;
397
398 /* The input section of the reloc. */
399 asection *sec;
400
401 /* Total number of relocs copied for the input section. */
402 bfd_size_type count;
403
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count;
406 };
407
408 /* x86-64 ELF linker hash entry. */
409
410 struct elf64_x86_64_link_hash_entry
411 {
412 struct elf_link_hash_entry elf;
413
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs *dyn_relocs;
416
417 #define GOT_UNKNOWN 0
418 #define GOT_NORMAL 1
419 #define GOT_TLS_GD 2
420 #define GOT_TLS_IE 3
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type;
431
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
434 bfd_vma tlsdesc_got;
435 };
436
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
439
440 struct elf64_x86_64_obj_tdata
441 {
442 struct elf_obj_tdata root;
443
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type;
446
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma *local_tlsdesc_gotent;
449 };
450
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
453
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
456
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
459
460 #define is_x86_64_elf(bfd) \
461 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
462 && elf_tdata (bfd) != NULL \
463 && elf_object_id (bfd) == X86_64_ELF_TDATA)
464
465 static bfd_boolean
466 elf64_x86_64_mkobject (bfd *abfd)
467 {
468 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
469 X86_64_ELF_TDATA);
470 }
471
472 /* x86-64 ELF linker hash table. */
473
474 struct elf64_x86_64_link_hash_table
475 {
476 struct elf_link_hash_table elf;
477
478 /* Short-cuts to get to dynamic linker sections. */
479 asection *sgot;
480 asection *sgotplt;
481 asection *srelgot;
482 asection *splt;
483 asection *srelplt;
484 asection *sdynbss;
485 asection *srelbss;
486
487 /* The offset into splt of the PLT entry for the TLS descriptor
488 resolver. Special values are 0, if not necessary (or not found
489 to be necessary yet), and -1 if needed but not determined
490 yet. */
491 bfd_vma tlsdesc_plt;
492 /* The offset into sgot of the GOT entry used by the PLT entry
493 above. */
494 bfd_vma tlsdesc_got;
495
496 union {
497 bfd_signed_vma refcount;
498 bfd_vma offset;
499 } tls_ld_got;
500
501 /* The amount of space used by the jump slots in the GOT. */
502 bfd_vma sgotplt_jump_table_size;
503
504 /* Small local sym to section mapping cache. */
505 struct sym_sec_cache sym_sec;
506
507 /* _TLS_MODULE_BASE_ symbol. */
508 struct bfd_link_hash_entry *tls_module_base;
509 };
510
511 /* Get the x86-64 ELF linker hash table from a link_info structure. */
512
513 #define elf64_x86_64_hash_table(p) \
514 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
515
516 #define elf64_x86_64_compute_jump_table_size(htab) \
517 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
518
519 /* Create an entry in an x86-64 ELF linker hash table. */
520
521 static struct bfd_hash_entry *
522 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
523 const char *string)
524 {
525 /* Allocate the structure if it has not already been allocated by a
526 subclass. */
527 if (entry == NULL)
528 {
529 entry = bfd_hash_allocate (table,
530 sizeof (struct elf64_x86_64_link_hash_entry));
531 if (entry == NULL)
532 return entry;
533 }
534
535 /* Call the allocation method of the superclass. */
536 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
537 if (entry != NULL)
538 {
539 struct elf64_x86_64_link_hash_entry *eh;
540
541 eh = (struct elf64_x86_64_link_hash_entry *) entry;
542 eh->dyn_relocs = NULL;
543 eh->tls_type = GOT_UNKNOWN;
544 eh->tlsdesc_got = (bfd_vma) -1;
545 }
546
547 return entry;
548 }
549
550 /* Create an X86-64 ELF linker hash table. */
551
552 static struct bfd_link_hash_table *
553 elf64_x86_64_link_hash_table_create (bfd *abfd)
554 {
555 struct elf64_x86_64_link_hash_table *ret;
556 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
557
558 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
559 if (ret == NULL)
560 return NULL;
561
562 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
563 sizeof (struct elf64_x86_64_link_hash_entry)))
564 {
565 free (ret);
566 return NULL;
567 }
568
569 ret->sgot = NULL;
570 ret->sgotplt = NULL;
571 ret->srelgot = NULL;
572 ret->splt = NULL;
573 ret->srelplt = NULL;
574 ret->sdynbss = NULL;
575 ret->srelbss = NULL;
576 ret->sym_sec.abfd = NULL;
577 ret->tlsdesc_plt = 0;
578 ret->tlsdesc_got = 0;
579 ret->tls_ld_got.refcount = 0;
580 ret->sgotplt_jump_table_size = 0;
581 ret->tls_module_base = NULL;
582
583 return &ret->elf.root;
584 }
585
586 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
587 shortcuts to them in our hash table. */
588
589 static bfd_boolean
590 create_got_section (bfd *dynobj, struct bfd_link_info *info)
591 {
592 struct elf64_x86_64_link_hash_table *htab;
593
594 if (! _bfd_elf_create_got_section (dynobj, info))
595 return FALSE;
596
597 htab = elf64_x86_64_hash_table (info);
598 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
599 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
600 if (!htab->sgot || !htab->sgotplt)
601 abort ();
602
603 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
604 (SEC_ALLOC | SEC_LOAD
605 | SEC_HAS_CONTENTS
606 | SEC_IN_MEMORY
607 | SEC_LINKER_CREATED
608 | SEC_READONLY));
609 if (htab->srelgot == NULL
610 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
611 return FALSE;
612 return TRUE;
613 }
614
615 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
616 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
617 hash table. */
618
619 static bfd_boolean
620 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
621 {
622 struct elf64_x86_64_link_hash_table *htab;
623
624 htab = elf64_x86_64_hash_table (info);
625 if (!htab->sgot && !create_got_section (dynobj, info))
626 return FALSE;
627
628 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
629 return FALSE;
630
631 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
632 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
633 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
634 if (!info->shared)
635 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
636
637 if (!htab->splt || !htab->srelplt || !htab->sdynbss
638 || (!info->shared && !htab->srelbss))
639 abort ();
640
641 return TRUE;
642 }
643
644 /* Copy the extra info we tack onto an elf_link_hash_entry. */
645
646 static void
647 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
648 struct elf_link_hash_entry *dir,
649 struct elf_link_hash_entry *ind)
650 {
651 struct elf64_x86_64_link_hash_entry *edir, *eind;
652
653 edir = (struct elf64_x86_64_link_hash_entry *) dir;
654 eind = (struct elf64_x86_64_link_hash_entry *) ind;
655
656 if (eind->dyn_relocs != NULL)
657 {
658 if (edir->dyn_relocs != NULL)
659 {
660 struct elf64_x86_64_dyn_relocs **pp;
661 struct elf64_x86_64_dyn_relocs *p;
662
663 /* Add reloc counts against the indirect sym to the direct sym
664 list. Merge any entries against the same section. */
665 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
666 {
667 struct elf64_x86_64_dyn_relocs *q;
668
669 for (q = edir->dyn_relocs; q != NULL; q = q->next)
670 if (q->sec == p->sec)
671 {
672 q->pc_count += p->pc_count;
673 q->count += p->count;
674 *pp = p->next;
675 break;
676 }
677 if (q == NULL)
678 pp = &p->next;
679 }
680 *pp = edir->dyn_relocs;
681 }
682
683 edir->dyn_relocs = eind->dyn_relocs;
684 eind->dyn_relocs = NULL;
685 }
686
687 if (ind->root.type == bfd_link_hash_indirect
688 && dir->got.refcount <= 0)
689 {
690 edir->tls_type = eind->tls_type;
691 eind->tls_type = GOT_UNKNOWN;
692 }
693
694 if (ELIMINATE_COPY_RELOCS
695 && ind->root.type != bfd_link_hash_indirect
696 && dir->dynamic_adjusted)
697 {
698 /* If called to transfer flags for a weakdef during processing
699 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
700 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
701 dir->ref_dynamic |= ind->ref_dynamic;
702 dir->ref_regular |= ind->ref_regular;
703 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
704 dir->needs_plt |= ind->needs_plt;
705 dir->pointer_equality_needed |= ind->pointer_equality_needed;
706 }
707 else
708 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
709 }
710
711 static bfd_boolean
712 elf64_x86_64_elf_object_p (bfd *abfd)
713 {
714 /* Set the right machine number for an x86-64 elf64 file. */
715 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
716 return TRUE;
717 }
718
719 typedef union
720 {
721 unsigned char c[2];
722 uint16_t i;
723 }
724 x86_64_opcode16;
725
726 typedef union
727 {
728 unsigned char c[4];
729 uint32_t i;
730 }
731 x86_64_opcode32;
732
733 /* Return TRUE if the TLS access code sequence support transition
734 from R_TYPE. */
735
736 static bfd_boolean
737 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
738 bfd_byte *contents,
739 Elf_Internal_Shdr *symtab_hdr,
740 struct elf_link_hash_entry **sym_hashes,
741 unsigned int r_type,
742 const Elf_Internal_Rela *rel,
743 const Elf_Internal_Rela *relend)
744 {
745 unsigned int val;
746 unsigned long r_symndx;
747 struct elf_link_hash_entry *h;
748 bfd_vma offset;
749
750 /* Get the section contents. */
751 if (contents == NULL)
752 {
753 if (elf_section_data (sec)->this_hdr.contents != NULL)
754 contents = elf_section_data (sec)->this_hdr.contents;
755 else
756 {
757 /* FIXME: How to better handle error condition? */
758 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
759 return FALSE;
760
761 /* Cache the section contents for elf_link_input_bfd. */
762 elf_section_data (sec)->this_hdr.contents = contents;
763 }
764 }
765
766 offset = rel->r_offset;
767 switch (r_type)
768 {
769 case R_X86_64_TLSGD:
770 case R_X86_64_TLSLD:
771 if ((rel + 1) >= relend)
772 return FALSE;
773
774 if (r_type == R_X86_64_TLSGD)
775 {
776 /* Check transition from GD access model. Only
777 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
778 .word 0x6666; rex64; call __tls_get_addr
779 can transit to different access model. */
780
781 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
782 call = { { 0x66, 0x66, 0x48, 0xe8 } };
783 if (offset < 4
784 || (offset + 12) > sec->size
785 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
786 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
787 return FALSE;
788 }
789 else
790 {
791 /* Check transition from LD access model. Only
792 leaq foo@tlsld(%rip), %rdi;
793 call __tls_get_addr
794 can transit to different access model. */
795
796 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
797 x86_64_opcode32 op;
798
799 if (offset < 3 || (offset + 9) > sec->size)
800 return FALSE;
801
802 op.i = bfd_get_32 (abfd, contents + offset - 3);
803 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
804 if (op.i != ld.i)
805 return FALSE;
806 }
807
808 r_symndx = ELF64_R_SYM (rel[1].r_info);
809 if (r_symndx < symtab_hdr->sh_info)
810 return FALSE;
811
812 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
813 /* Use strncmp to check __tls_get_addr since __tls_get_addr
814 may be versioned. */
815 return (h != NULL
816 && h->root.root.string != NULL
817 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
818 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
819 && (strncmp (h->root.root.string,
820 "__tls_get_addr", 14) == 0));
821
822 case R_X86_64_GOTTPOFF:
823 /* Check transition from IE access model:
824 movq foo@gottpoff(%rip), %reg
825 addq foo@gottpoff(%rip), %reg
826 */
827
828 if (offset < 3 || (offset + 4) > sec->size)
829 return FALSE;
830
831 val = bfd_get_8 (abfd, contents + offset - 3);
832 if (val != 0x48 && val != 0x4c)
833 return FALSE;
834
835 val = bfd_get_8 (abfd, contents + offset - 2);
836 if (val != 0x8b && val != 0x03)
837 return FALSE;
838
839 val = bfd_get_8 (abfd, contents + offset - 1);
840 return (val & 0xc7) == 5;
841
842 case R_X86_64_GOTPC32_TLSDESC:
843 /* Check transition from GDesc access model:
844 leaq x@tlsdesc(%rip), %rax
845
846 Make sure it's a leaq adding rip to a 32-bit offset
847 into any register, although it's probably almost always
848 going to be rax. */
849
850 if (offset < 3 || (offset + 4) > sec->size)
851 return FALSE;
852
853 val = bfd_get_8 (abfd, contents + offset - 3);
854 if ((val & 0xfb) != 0x48)
855 return FALSE;
856
857 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
858 return FALSE;
859
860 val = bfd_get_8 (abfd, contents + offset - 1);
861 return (val & 0xc7) == 0x05;
862
863 case R_X86_64_TLSDESC_CALL:
864 /* Check transition from GDesc access model:
865 call *x@tlsdesc(%rax)
866 */
867 if (offset + 2 <= sec->size)
868 {
869 /* Make sure that it's a call *x@tlsdesc(%rax). */
870 static x86_64_opcode16 call = { { 0xff, 0x10 } };
871 return bfd_get_16 (abfd, contents + offset) == call.i;
872 }
873
874 return FALSE;
875
876 default:
877 abort ();
878 }
879 }
880
881 /* Return TRUE if the TLS access transition is OK or no transition
882 will be performed. Update R_TYPE if there is a transition. */
883
884 static bfd_boolean
885 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
886 asection *sec, bfd_byte *contents,
887 Elf_Internal_Shdr *symtab_hdr,
888 struct elf_link_hash_entry **sym_hashes,
889 unsigned int *r_type, int tls_type,
890 const Elf_Internal_Rela *rel,
891 const Elf_Internal_Rela *relend,
892 struct elf_link_hash_entry *h)
893 {
894 unsigned int from_type = *r_type;
895 unsigned int to_type = from_type;
896 bfd_boolean check = TRUE;
897
898 switch (from_type)
899 {
900 case R_X86_64_TLSGD:
901 case R_X86_64_GOTPC32_TLSDESC:
902 case R_X86_64_TLSDESC_CALL:
903 case R_X86_64_GOTTPOFF:
904 if (!info->shared)
905 {
906 if (h == NULL)
907 to_type = R_X86_64_TPOFF32;
908 else
909 to_type = R_X86_64_GOTTPOFF;
910 }
911
912 /* When we are called from elf64_x86_64_relocate_section,
913 CONTENTS isn't NULL and there may be additional transitions
914 based on TLS_TYPE. */
915 if (contents != NULL)
916 {
917 unsigned int new_to_type = to_type;
918
919 if (!info->shared
920 && h != NULL
921 && h->dynindx == -1
922 && tls_type == GOT_TLS_IE)
923 new_to_type = R_X86_64_TPOFF32;
924
925 if (to_type == R_X86_64_TLSGD
926 || to_type == R_X86_64_GOTPC32_TLSDESC
927 || to_type == R_X86_64_TLSDESC_CALL)
928 {
929 if (tls_type == GOT_TLS_IE)
930 new_to_type = R_X86_64_GOTTPOFF;
931 }
932
933 /* We checked the transition before when we were called from
934 elf64_x86_64_check_relocs. We only want to check the new
935 transition which hasn't been checked before. */
936 check = new_to_type != to_type && from_type == to_type;
937 to_type = new_to_type;
938 }
939
940 break;
941
942 case R_X86_64_TLSLD:
943 if (!info->shared)
944 to_type = R_X86_64_TPOFF32;
945 break;
946
947 default:
948 return TRUE;
949 }
950
951 /* Return TRUE if there is no transition. */
952 if (from_type == to_type)
953 return TRUE;
954
955 /* Check if the transition can be performed. */
956 if (check
957 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
958 symtab_hdr, sym_hashes,
959 from_type, rel, relend))
960 {
961 reloc_howto_type *from, *to;
962
963 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
964 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
965
966 (*_bfd_error_handler)
967 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
968 "in section `%A' failed"),
969 abfd, sec, from->name, to->name,
970 h ? h->root.root.string : "a local symbol",
971 (unsigned long) rel->r_offset);
972 bfd_set_error (bfd_error_bad_value);
973 return FALSE;
974 }
975
976 *r_type = to_type;
977 return TRUE;
978 }
979
980 /* Look through the relocs for a section during the first phase, and
981 calculate needed space in the global offset table, procedure
982 linkage table, and dynamic reloc sections. */
983
984 static bfd_boolean
985 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
986 asection *sec,
987 const Elf_Internal_Rela *relocs)
988 {
989 struct elf64_x86_64_link_hash_table *htab;
990 Elf_Internal_Shdr *symtab_hdr;
991 struct elf_link_hash_entry **sym_hashes;
992 const Elf_Internal_Rela *rel;
993 const Elf_Internal_Rela *rel_end;
994 asection *sreloc;
995
996 if (info->relocatable)
997 return TRUE;
998
999 BFD_ASSERT (is_x86_64_elf (abfd));
1000
1001 htab = elf64_x86_64_hash_table (info);
1002 symtab_hdr = &elf_symtab_hdr (abfd);
1003 sym_hashes = elf_sym_hashes (abfd);
1004
1005 sreloc = NULL;
1006
1007 rel_end = relocs + sec->reloc_count;
1008 for (rel = relocs; rel < rel_end; rel++)
1009 {
1010 unsigned int r_type;
1011 unsigned long r_symndx;
1012 struct elf_link_hash_entry *h;
1013
1014 r_symndx = ELF64_R_SYM (rel->r_info);
1015 r_type = ELF64_R_TYPE (rel->r_info);
1016
1017 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1018 {
1019 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1020 abfd, r_symndx);
1021 return FALSE;
1022 }
1023
1024 if (r_symndx < symtab_hdr->sh_info)
1025 h = NULL;
1026 else
1027 {
1028 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1029 while (h->root.type == bfd_link_hash_indirect
1030 || h->root.type == bfd_link_hash_warning)
1031 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1032 }
1033
1034 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1035 symtab_hdr, sym_hashes,
1036 &r_type, GOT_UNKNOWN,
1037 rel, rel_end, h))
1038 return FALSE;
1039
1040 switch (r_type)
1041 {
1042 case R_X86_64_TLSLD:
1043 htab->tls_ld_got.refcount += 1;
1044 goto create_got;
1045
1046 case R_X86_64_TPOFF32:
1047 if (info->shared)
1048 {
1049 (*_bfd_error_handler)
1050 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1051 abfd,
1052 x86_64_elf_howto_table[r_type].name,
1053 (h) ? h->root.root.string : "a local symbol");
1054 bfd_set_error (bfd_error_bad_value);
1055 return FALSE;
1056 }
1057 break;
1058
1059 case R_X86_64_GOTTPOFF:
1060 if (info->shared)
1061 info->flags |= DF_STATIC_TLS;
1062 /* Fall through */
1063
1064 case R_X86_64_GOT32:
1065 case R_X86_64_GOTPCREL:
1066 case R_X86_64_TLSGD:
1067 case R_X86_64_GOT64:
1068 case R_X86_64_GOTPCREL64:
1069 case R_X86_64_GOTPLT64:
1070 case R_X86_64_GOTPC32_TLSDESC:
1071 case R_X86_64_TLSDESC_CALL:
1072 /* This symbol requires a global offset table entry. */
1073 {
1074 int tls_type, old_tls_type;
1075
1076 switch (r_type)
1077 {
1078 default: tls_type = GOT_NORMAL; break;
1079 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1080 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1081 case R_X86_64_GOTPC32_TLSDESC:
1082 case R_X86_64_TLSDESC_CALL:
1083 tls_type = GOT_TLS_GDESC; break;
1084 }
1085
1086 if (h != NULL)
1087 {
1088 if (r_type == R_X86_64_GOTPLT64)
1089 {
1090 /* This relocation indicates that we also need
1091 a PLT entry, as this is a function. We don't need
1092 a PLT entry for local symbols. */
1093 h->needs_plt = 1;
1094 h->plt.refcount += 1;
1095 }
1096 h->got.refcount += 1;
1097 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1098 }
1099 else
1100 {
1101 bfd_signed_vma *local_got_refcounts;
1102
1103 /* This is a global offset table entry for a local symbol. */
1104 local_got_refcounts = elf_local_got_refcounts (abfd);
1105 if (local_got_refcounts == NULL)
1106 {
1107 bfd_size_type size;
1108
1109 size = symtab_hdr->sh_info;
1110 size *= sizeof (bfd_signed_vma)
1111 + sizeof (bfd_vma) + sizeof (char);
1112 local_got_refcounts = ((bfd_signed_vma *)
1113 bfd_zalloc (abfd, size));
1114 if (local_got_refcounts == NULL)
1115 return FALSE;
1116 elf_local_got_refcounts (abfd) = local_got_refcounts;
1117 elf64_x86_64_local_tlsdesc_gotent (abfd)
1118 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1119 elf64_x86_64_local_got_tls_type (abfd)
1120 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1121 }
1122 local_got_refcounts[r_symndx] += 1;
1123 old_tls_type
1124 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1125 }
1126
1127 /* If a TLS symbol is accessed using IE at least once,
1128 there is no point to use dynamic model for it. */
1129 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1130 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1131 || tls_type != GOT_TLS_IE))
1132 {
1133 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1134 tls_type = old_tls_type;
1135 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1136 && GOT_TLS_GD_ANY_P (tls_type))
1137 tls_type |= old_tls_type;
1138 else
1139 {
1140 (*_bfd_error_handler)
1141 (_("%B: '%s' accessed both as normal and thread local symbol"),
1142 abfd, h ? h->root.root.string : "<local>");
1143 return FALSE;
1144 }
1145 }
1146
1147 if (old_tls_type != tls_type)
1148 {
1149 if (h != NULL)
1150 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1151 else
1152 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1153 }
1154 }
1155 /* Fall through */
1156
1157 case R_X86_64_GOTOFF64:
1158 case R_X86_64_GOTPC32:
1159 case R_X86_64_GOTPC64:
1160 create_got:
1161 if (htab->sgot == NULL)
1162 {
1163 if (htab->elf.dynobj == NULL)
1164 htab->elf.dynobj = abfd;
1165 if (!create_got_section (htab->elf.dynobj, info))
1166 return FALSE;
1167 }
1168 break;
1169
1170 case R_X86_64_PLT32:
1171 /* This symbol requires a procedure linkage table entry. We
1172 actually build the entry in adjust_dynamic_symbol,
1173 because this might be a case of linking PIC code which is
1174 never referenced by a dynamic object, in which case we
1175 don't need to generate a procedure linkage table entry
1176 after all. */
1177
1178 /* If this is a local symbol, we resolve it directly without
1179 creating a procedure linkage table entry. */
1180 if (h == NULL)
1181 continue;
1182
1183 h->needs_plt = 1;
1184 h->plt.refcount += 1;
1185 break;
1186
1187 case R_X86_64_PLTOFF64:
1188 /* This tries to form the 'address' of a function relative
1189 to GOT. For global symbols we need a PLT entry. */
1190 if (h != NULL)
1191 {
1192 h->needs_plt = 1;
1193 h->plt.refcount += 1;
1194 }
1195 goto create_got;
1196
1197 case R_X86_64_8:
1198 case R_X86_64_16:
1199 case R_X86_64_32:
1200 case R_X86_64_32S:
1201 /* Let's help debug shared library creation. These relocs
1202 cannot be used in shared libs. Don't error out for
1203 sections we don't care about, such as debug sections or
1204 non-constant sections. */
1205 if (info->shared
1206 && (sec->flags & SEC_ALLOC) != 0
1207 && (sec->flags & SEC_READONLY) != 0)
1208 {
1209 (*_bfd_error_handler)
1210 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1211 abfd,
1212 x86_64_elf_howto_table[r_type].name,
1213 (h) ? h->root.root.string : "a local symbol");
1214 bfd_set_error (bfd_error_bad_value);
1215 return FALSE;
1216 }
1217 /* Fall through. */
1218
1219 case R_X86_64_PC8:
1220 case R_X86_64_PC16:
1221 case R_X86_64_PC32:
1222 case R_X86_64_PC64:
1223 case R_X86_64_64:
1224 if (h != NULL && !info->shared)
1225 {
1226 /* If this reloc is in a read-only section, we might
1227 need a copy reloc. We can't check reliably at this
1228 stage whether the section is read-only, as input
1229 sections have not yet been mapped to output sections.
1230 Tentatively set the flag for now, and correct in
1231 adjust_dynamic_symbol. */
1232 h->non_got_ref = 1;
1233
1234 /* We may need a .plt entry if the function this reloc
1235 refers to is in a shared lib. */
1236 h->plt.refcount += 1;
1237 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1238 h->pointer_equality_needed = 1;
1239 }
1240
1241 /* If we are creating a shared library, and this is a reloc
1242 against a global symbol, or a non PC relative reloc
1243 against a local symbol, then we need to copy the reloc
1244 into the shared library. However, if we are linking with
1245 -Bsymbolic, we do not need to copy a reloc against a
1246 global symbol which is defined in an object we are
1247 including in the link (i.e., DEF_REGULAR is set). At
1248 this point we have not seen all the input files, so it is
1249 possible that DEF_REGULAR is not set now but will be set
1250 later (it is never cleared). In case of a weak definition,
1251 DEF_REGULAR may be cleared later by a strong definition in
1252 a shared library. We account for that possibility below by
1253 storing information in the relocs_copied field of the hash
1254 table entry. A similar situation occurs when creating
1255 shared libraries and symbol visibility changes render the
1256 symbol local.
1257
1258 If on the other hand, we are creating an executable, we
1259 may need to keep relocations for symbols satisfied by a
1260 dynamic library if we manage to avoid copy relocs for the
1261 symbol. */
1262
1263 if ((info->shared
1264 && (sec->flags & SEC_ALLOC) != 0
1265 && (((r_type != R_X86_64_PC8)
1266 && (r_type != R_X86_64_PC16)
1267 && (r_type != R_X86_64_PC32)
1268 && (r_type != R_X86_64_PC64))
1269 || (h != NULL
1270 && (! SYMBOLIC_BIND (info, h)
1271 || h->root.type == bfd_link_hash_defweak
1272 || !h->def_regular))))
1273 || (ELIMINATE_COPY_RELOCS
1274 && !info->shared
1275 && (sec->flags & SEC_ALLOC) != 0
1276 && h != NULL
1277 && (h->root.type == bfd_link_hash_defweak
1278 || !h->def_regular)))
1279 {
1280 struct elf64_x86_64_dyn_relocs *p;
1281 struct elf64_x86_64_dyn_relocs **head;
1282
1283 /* We must copy these reloc types into the output file.
1284 Create a reloc section in dynobj and make room for
1285 this reloc. */
1286 if (sreloc == NULL)
1287 {
1288 if (htab->elf.dynobj == NULL)
1289 htab->elf.dynobj = abfd;
1290
1291 sreloc = _bfd_elf_make_dynamic_reloc_section
1292 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1293
1294 if (sreloc == NULL)
1295 return FALSE;
1296 }
1297
1298 /* If this is a global symbol, we count the number of
1299 relocations we need for this symbol. */
1300 if (h != NULL)
1301 {
1302 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1303 }
1304 else
1305 {
1306 void **vpp;
1307 /* Track dynamic relocs needed for local syms too.
1308 We really need local syms available to do this
1309 easily. Oh well. */
1310
1311 asection *s;
1312 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1313 sec, r_symndx);
1314 if (s == NULL)
1315 return FALSE;
1316
1317 /* Beware of type punned pointers vs strict aliasing
1318 rules. */
1319 vpp = &(elf_section_data (s)->local_dynrel);
1320 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1321 }
1322
1323 p = *head;
1324 if (p == NULL || p->sec != sec)
1325 {
1326 bfd_size_type amt = sizeof *p;
1327 p = ((struct elf64_x86_64_dyn_relocs *)
1328 bfd_alloc (htab->elf.dynobj, amt));
1329 if (p == NULL)
1330 return FALSE;
1331 p->next = *head;
1332 *head = p;
1333 p->sec = sec;
1334 p->count = 0;
1335 p->pc_count = 0;
1336 }
1337
1338 p->count += 1;
1339 if (r_type == R_X86_64_PC8
1340 || r_type == R_X86_64_PC16
1341 || r_type == R_X86_64_PC32
1342 || r_type == R_X86_64_PC64)
1343 p->pc_count += 1;
1344 }
1345 break;
1346
1347 /* This relocation describes the C++ object vtable hierarchy.
1348 Reconstruct it for later use during GC. */
1349 case R_X86_64_GNU_VTINHERIT:
1350 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1351 return FALSE;
1352 break;
1353
1354 /* This relocation describes which C++ vtable entries are actually
1355 used. Record for later use during GC. */
1356 case R_X86_64_GNU_VTENTRY:
1357 BFD_ASSERT (h != NULL);
1358 if (h != NULL
1359 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1360 return FALSE;
1361 break;
1362
1363 default:
1364 break;
1365 }
1366 }
1367
1368 return TRUE;
1369 }
1370
1371 /* Return the section that should be marked against GC for a given
1372 relocation. */
1373
1374 static asection *
1375 elf64_x86_64_gc_mark_hook (asection *sec,
1376 struct bfd_link_info *info,
1377 Elf_Internal_Rela *rel,
1378 struct elf_link_hash_entry *h,
1379 Elf_Internal_Sym *sym)
1380 {
1381 if (h != NULL)
1382 switch (ELF64_R_TYPE (rel->r_info))
1383 {
1384 case R_X86_64_GNU_VTINHERIT:
1385 case R_X86_64_GNU_VTENTRY:
1386 return NULL;
1387 }
1388
1389 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1390 }
1391
1392 /* Update the got entry reference counts for the section being removed. */
1393
1394 static bfd_boolean
1395 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1396 asection *sec,
1397 const Elf_Internal_Rela *relocs)
1398 {
1399 Elf_Internal_Shdr *symtab_hdr;
1400 struct elf_link_hash_entry **sym_hashes;
1401 bfd_signed_vma *local_got_refcounts;
1402 const Elf_Internal_Rela *rel, *relend;
1403
1404 if (info->relocatable)
1405 return TRUE;
1406
1407 elf_section_data (sec)->local_dynrel = NULL;
1408
1409 symtab_hdr = &elf_symtab_hdr (abfd);
1410 sym_hashes = elf_sym_hashes (abfd);
1411 local_got_refcounts = elf_local_got_refcounts (abfd);
1412
1413 relend = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < relend; rel++)
1415 {
1416 unsigned long r_symndx;
1417 unsigned int r_type;
1418 struct elf_link_hash_entry *h = NULL;
1419
1420 r_symndx = ELF64_R_SYM (rel->r_info);
1421 if (r_symndx >= symtab_hdr->sh_info)
1422 {
1423 struct elf64_x86_64_link_hash_entry *eh;
1424 struct elf64_x86_64_dyn_relocs **pp;
1425 struct elf64_x86_64_dyn_relocs *p;
1426
1427 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1428 while (h->root.type == bfd_link_hash_indirect
1429 || h->root.type == bfd_link_hash_warning)
1430 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1431 eh = (struct elf64_x86_64_link_hash_entry *) h;
1432
1433 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1434 if (p->sec == sec)
1435 {
1436 /* Everything must go for SEC. */
1437 *pp = p->next;
1438 break;
1439 }
1440 }
1441
1442 r_type = ELF64_R_TYPE (rel->r_info);
1443 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1444 symtab_hdr, sym_hashes,
1445 &r_type, GOT_UNKNOWN,
1446 rel, relend, h))
1447 return FALSE;
1448
1449 switch (r_type)
1450 {
1451 case R_X86_64_TLSLD:
1452 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1453 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1454 break;
1455
1456 case R_X86_64_TLSGD:
1457 case R_X86_64_GOTPC32_TLSDESC:
1458 case R_X86_64_TLSDESC_CALL:
1459 case R_X86_64_GOTTPOFF:
1460 case R_X86_64_GOT32:
1461 case R_X86_64_GOTPCREL:
1462 case R_X86_64_GOT64:
1463 case R_X86_64_GOTPCREL64:
1464 case R_X86_64_GOTPLT64:
1465 if (h != NULL)
1466 {
1467 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1468 h->plt.refcount -= 1;
1469 if (h->got.refcount > 0)
1470 h->got.refcount -= 1;
1471 }
1472 else if (local_got_refcounts != NULL)
1473 {
1474 if (local_got_refcounts[r_symndx] > 0)
1475 local_got_refcounts[r_symndx] -= 1;
1476 }
1477 break;
1478
1479 case R_X86_64_8:
1480 case R_X86_64_16:
1481 case R_X86_64_32:
1482 case R_X86_64_64:
1483 case R_X86_64_32S:
1484 case R_X86_64_PC8:
1485 case R_X86_64_PC16:
1486 case R_X86_64_PC32:
1487 case R_X86_64_PC64:
1488 if (info->shared)
1489 break;
1490 /* Fall thru */
1491
1492 case R_X86_64_PLT32:
1493 case R_X86_64_PLTOFF64:
1494 if (h != NULL)
1495 {
1496 if (h->plt.refcount > 0)
1497 h->plt.refcount -= 1;
1498 }
1499 break;
1500
1501 default:
1502 break;
1503 }
1504 }
1505
1506 return TRUE;
1507 }
1508
1509 /* Adjust a symbol defined by a dynamic object and referenced by a
1510 regular object. The current definition is in some section of the
1511 dynamic object, but we're not including those sections. We have to
1512 change the definition to something the rest of the link can
1513 understand. */
1514
1515 static bfd_boolean
1516 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1517 struct elf_link_hash_entry *h)
1518 {
1519 struct elf64_x86_64_link_hash_table *htab;
1520 asection *s;
1521
1522 /* If this is a function, put it in the procedure linkage table. We
1523 will fill in the contents of the procedure linkage table later,
1524 when we know the address of the .got section. */
1525 if (h->type == STT_FUNC
1526 || h->needs_plt)
1527 {
1528 if (h->plt.refcount <= 0
1529 || SYMBOL_CALLS_LOCAL (info, h)
1530 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1531 && h->root.type == bfd_link_hash_undefweak))
1532 {
1533 /* This case can occur if we saw a PLT32 reloc in an input
1534 file, but the symbol was never referred to by a dynamic
1535 object, or if all references were garbage collected. In
1536 such a case, we don't actually need to build a procedure
1537 linkage table, and we can just do a PC32 reloc instead. */
1538 h->plt.offset = (bfd_vma) -1;
1539 h->needs_plt = 0;
1540 }
1541
1542 return TRUE;
1543 }
1544 else
1545 /* It's possible that we incorrectly decided a .plt reloc was
1546 needed for an R_X86_64_PC32 reloc to a non-function sym in
1547 check_relocs. We can't decide accurately between function and
1548 non-function syms in check-relocs; Objects loaded later in
1549 the link may change h->type. So fix it now. */
1550 h->plt.offset = (bfd_vma) -1;
1551
1552 /* If this is a weak symbol, and there is a real definition, the
1553 processor independent code will have arranged for us to see the
1554 real definition first, and we can just use the same value. */
1555 if (h->u.weakdef != NULL)
1556 {
1557 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1558 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1559 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1560 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1561 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1562 h->non_got_ref = h->u.weakdef->non_got_ref;
1563 return TRUE;
1564 }
1565
1566 /* This is a reference to a symbol defined by a dynamic object which
1567 is not a function. */
1568
1569 /* If we are creating a shared library, we must presume that the
1570 only references to the symbol are via the global offset table.
1571 For such cases we need not do anything here; the relocations will
1572 be handled correctly by relocate_section. */
1573 if (info->shared)
1574 return TRUE;
1575
1576 /* If there are no references to this symbol that do not use the
1577 GOT, we don't need to generate a copy reloc. */
1578 if (!h->non_got_ref)
1579 return TRUE;
1580
1581 /* If -z nocopyreloc was given, we won't generate them either. */
1582 if (info->nocopyreloc)
1583 {
1584 h->non_got_ref = 0;
1585 return TRUE;
1586 }
1587
1588 if (ELIMINATE_COPY_RELOCS)
1589 {
1590 struct elf64_x86_64_link_hash_entry * eh;
1591 struct elf64_x86_64_dyn_relocs *p;
1592
1593 eh = (struct elf64_x86_64_link_hash_entry *) h;
1594 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1595 {
1596 s = p->sec->output_section;
1597 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1598 break;
1599 }
1600
1601 /* If we didn't find any dynamic relocs in read-only sections, then
1602 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1603 if (p == NULL)
1604 {
1605 h->non_got_ref = 0;
1606 return TRUE;
1607 }
1608 }
1609
1610 if (h->size == 0)
1611 {
1612 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1613 h->root.root.string);
1614 return TRUE;
1615 }
1616
1617 /* We must allocate the symbol in our .dynbss section, which will
1618 become part of the .bss section of the executable. There will be
1619 an entry for this symbol in the .dynsym section. The dynamic
1620 object will contain position independent code, so all references
1621 from the dynamic object to this symbol will go through the global
1622 offset table. The dynamic linker will use the .dynsym entry to
1623 determine the address it must put in the global offset table, so
1624 both the dynamic object and the regular object will refer to the
1625 same memory location for the variable. */
1626
1627 htab = elf64_x86_64_hash_table (info);
1628
1629 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1630 to copy the initial value out of the dynamic object and into the
1631 runtime process image. */
1632 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1633 {
1634 htab->srelbss->size += sizeof (Elf64_External_Rela);
1635 h->needs_copy = 1;
1636 }
1637
1638 s = htab->sdynbss;
1639
1640 return _bfd_elf_adjust_dynamic_copy (h, s);
1641 }
1642
1643 /* Allocate space in .plt, .got and associated reloc sections for
1644 dynamic relocs. */
1645
1646 static bfd_boolean
1647 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1648 {
1649 struct bfd_link_info *info;
1650 struct elf64_x86_64_link_hash_table *htab;
1651 struct elf64_x86_64_link_hash_entry *eh;
1652 struct elf64_x86_64_dyn_relocs *p;
1653
1654 if (h->root.type == bfd_link_hash_indirect)
1655 return TRUE;
1656
1657 if (h->root.type == bfd_link_hash_warning)
1658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1659
1660 info = (struct bfd_link_info *) inf;
1661 htab = elf64_x86_64_hash_table (info);
1662
1663 if (htab->elf.dynamic_sections_created
1664 && h->plt.refcount > 0)
1665 {
1666 /* Make sure this symbol is output as a dynamic symbol.
1667 Undefined weak syms won't yet be marked as dynamic. */
1668 if (h->dynindx == -1
1669 && !h->forced_local)
1670 {
1671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1672 return FALSE;
1673 }
1674
1675 if (info->shared
1676 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1677 {
1678 asection *s = htab->splt;
1679
1680 /* If this is the first .plt entry, make room for the special
1681 first entry. */
1682 if (s->size == 0)
1683 s->size += PLT_ENTRY_SIZE;
1684
1685 h->plt.offset = s->size;
1686
1687 /* If this symbol is not defined in a regular file, and we are
1688 not generating a shared library, then set the symbol to this
1689 location in the .plt. This is required to make function
1690 pointers compare as equal between the normal executable and
1691 the shared library. */
1692 if (! info->shared
1693 && !h->def_regular)
1694 {
1695 h->root.u.def.section = s;
1696 h->root.u.def.value = h->plt.offset;
1697 }
1698
1699 /* Make room for this entry. */
1700 s->size += PLT_ENTRY_SIZE;
1701
1702 /* We also need to make an entry in the .got.plt section, which
1703 will be placed in the .got section by the linker script. */
1704 htab->sgotplt->size += GOT_ENTRY_SIZE;
1705
1706 /* We also need to make an entry in the .rela.plt section. */
1707 htab->srelplt->size += sizeof (Elf64_External_Rela);
1708 htab->srelplt->reloc_count++;
1709 }
1710 else
1711 {
1712 h->plt.offset = (bfd_vma) -1;
1713 h->needs_plt = 0;
1714 }
1715 }
1716 else
1717 {
1718 h->plt.offset = (bfd_vma) -1;
1719 h->needs_plt = 0;
1720 }
1721
1722 eh = (struct elf64_x86_64_link_hash_entry *) h;
1723 eh->tlsdesc_got = (bfd_vma) -1;
1724
1725 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1726 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1727 if (h->got.refcount > 0
1728 && !info->shared
1729 && h->dynindx == -1
1730 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1731 h->got.offset = (bfd_vma) -1;
1732 else if (h->got.refcount > 0)
1733 {
1734 asection *s;
1735 bfd_boolean dyn;
1736 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1737
1738 /* Make sure this symbol is output as a dynamic symbol.
1739 Undefined weak syms won't yet be marked as dynamic. */
1740 if (h->dynindx == -1
1741 && !h->forced_local)
1742 {
1743 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1744 return FALSE;
1745 }
1746
1747 if (GOT_TLS_GDESC_P (tls_type))
1748 {
1749 eh->tlsdesc_got = htab->sgotplt->size
1750 - elf64_x86_64_compute_jump_table_size (htab);
1751 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1752 h->got.offset = (bfd_vma) -2;
1753 }
1754 if (! GOT_TLS_GDESC_P (tls_type)
1755 || GOT_TLS_GD_P (tls_type))
1756 {
1757 s = htab->sgot;
1758 h->got.offset = s->size;
1759 s->size += GOT_ENTRY_SIZE;
1760 if (GOT_TLS_GD_P (tls_type))
1761 s->size += GOT_ENTRY_SIZE;
1762 }
1763 dyn = htab->elf.dynamic_sections_created;
1764 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1765 and two if global.
1766 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1767 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1768 || tls_type == GOT_TLS_IE)
1769 htab->srelgot->size += sizeof (Elf64_External_Rela);
1770 else if (GOT_TLS_GD_P (tls_type))
1771 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1772 else if (! GOT_TLS_GDESC_P (tls_type)
1773 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1774 || h->root.type != bfd_link_hash_undefweak)
1775 && (info->shared
1776 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1777 htab->srelgot->size += sizeof (Elf64_External_Rela);
1778 if (GOT_TLS_GDESC_P (tls_type))
1779 {
1780 htab->srelplt->size += sizeof (Elf64_External_Rela);
1781 htab->tlsdesc_plt = (bfd_vma) -1;
1782 }
1783 }
1784 else
1785 h->got.offset = (bfd_vma) -1;
1786
1787 if (eh->dyn_relocs == NULL)
1788 return TRUE;
1789
1790 /* In the shared -Bsymbolic case, discard space allocated for
1791 dynamic pc-relative relocs against symbols which turn out to be
1792 defined in regular objects. For the normal shared case, discard
1793 space for pc-relative relocs that have become local due to symbol
1794 visibility changes. */
1795
1796 if (info->shared)
1797 {
1798 /* Relocs that use pc_count are those that appear on a call
1799 insn, or certain REL relocs that can generated via assembly.
1800 We want calls to protected symbols to resolve directly to the
1801 function rather than going via the plt. If people want
1802 function pointer comparisons to work as expected then they
1803 should avoid writing weird assembly. */
1804 if (SYMBOL_CALLS_LOCAL (info, h))
1805 {
1806 struct elf64_x86_64_dyn_relocs **pp;
1807
1808 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1809 {
1810 p->count -= p->pc_count;
1811 p->pc_count = 0;
1812 if (p->count == 0)
1813 *pp = p->next;
1814 else
1815 pp = &p->next;
1816 }
1817 }
1818
1819 /* Also discard relocs on undefined weak syms with non-default
1820 visibility. */
1821 if (eh->dyn_relocs != NULL
1822 && h->root.type == bfd_link_hash_undefweak)
1823 {
1824 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1825 eh->dyn_relocs = NULL;
1826
1827 /* Make sure undefined weak symbols are output as a dynamic
1828 symbol in PIEs. */
1829 else if (h->dynindx == -1
1830 && !h->forced_local)
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1833 return FALSE;
1834 }
1835 }
1836 }
1837 else if (ELIMINATE_COPY_RELOCS)
1838 {
1839 /* For the non-shared case, discard space for relocs against
1840 symbols which turn out to need copy relocs or are not
1841 dynamic. */
1842
1843 if (!h->non_got_ref
1844 && ((h->def_dynamic
1845 && !h->def_regular)
1846 || (htab->elf.dynamic_sections_created
1847 && (h->root.type == bfd_link_hash_undefweak
1848 || h->root.type == bfd_link_hash_undefined))))
1849 {
1850 /* Make sure this symbol is output as a dynamic symbol.
1851 Undefined weak syms won't yet be marked as dynamic. */
1852 if (h->dynindx == -1
1853 && !h->forced_local)
1854 {
1855 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1856 return FALSE;
1857 }
1858
1859 /* If that succeeded, we know we'll be keeping all the
1860 relocs. */
1861 if (h->dynindx != -1)
1862 goto keep;
1863 }
1864
1865 eh->dyn_relocs = NULL;
1866
1867 keep: ;
1868 }
1869
1870 /* Finally, allocate space. */
1871 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1872 {
1873 asection * sreloc;
1874
1875 sreloc = elf_section_data (p->sec)->sreloc;
1876
1877 BFD_ASSERT (sreloc != NULL);
1878
1879 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1880 }
1881
1882 return TRUE;
1883 }
1884
1885 /* Find any dynamic relocs that apply to read-only sections. */
1886
1887 static bfd_boolean
1888 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1889 {
1890 struct elf64_x86_64_link_hash_entry *eh;
1891 struct elf64_x86_64_dyn_relocs *p;
1892
1893 if (h->root.type == bfd_link_hash_warning)
1894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1895
1896 eh = (struct elf64_x86_64_link_hash_entry *) h;
1897 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1898 {
1899 asection *s = p->sec->output_section;
1900
1901 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1902 {
1903 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1904
1905 info->flags |= DF_TEXTREL;
1906
1907 /* Not an error, just cut short the traversal. */
1908 return FALSE;
1909 }
1910 }
1911 return TRUE;
1912 }
1913
1914 /* Set the sizes of the dynamic sections. */
1915
1916 static bfd_boolean
1917 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1918 struct bfd_link_info *info)
1919 {
1920 struct elf64_x86_64_link_hash_table *htab;
1921 bfd *dynobj;
1922 asection *s;
1923 bfd_boolean relocs;
1924 bfd *ibfd;
1925
1926 htab = elf64_x86_64_hash_table (info);
1927 dynobj = htab->elf.dynobj;
1928 if (dynobj == NULL)
1929 abort ();
1930
1931 if (htab->elf.dynamic_sections_created)
1932 {
1933 /* Set the contents of the .interp section to the interpreter. */
1934 if (info->executable)
1935 {
1936 s = bfd_get_section_by_name (dynobj, ".interp");
1937 if (s == NULL)
1938 abort ();
1939 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1940 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1941 }
1942 }
1943
1944 /* Set up .got offsets for local syms, and space for local dynamic
1945 relocs. */
1946 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1947 {
1948 bfd_signed_vma *local_got;
1949 bfd_signed_vma *end_local_got;
1950 char *local_tls_type;
1951 bfd_vma *local_tlsdesc_gotent;
1952 bfd_size_type locsymcount;
1953 Elf_Internal_Shdr *symtab_hdr;
1954 asection *srel;
1955
1956 if (! is_x86_64_elf (ibfd))
1957 continue;
1958
1959 for (s = ibfd->sections; s != NULL; s = s->next)
1960 {
1961 struct elf64_x86_64_dyn_relocs *p;
1962
1963 for (p = (struct elf64_x86_64_dyn_relocs *)
1964 (elf_section_data (s)->local_dynrel);
1965 p != NULL;
1966 p = p->next)
1967 {
1968 if (!bfd_is_abs_section (p->sec)
1969 && bfd_is_abs_section (p->sec->output_section))
1970 {
1971 /* Input section has been discarded, either because
1972 it is a copy of a linkonce section or due to
1973 linker script /DISCARD/, so we'll be discarding
1974 the relocs too. */
1975 }
1976 else if (p->count != 0)
1977 {
1978 srel = elf_section_data (p->sec)->sreloc;
1979 srel->size += p->count * sizeof (Elf64_External_Rela);
1980 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1981 info->flags |= DF_TEXTREL;
1982 }
1983 }
1984 }
1985
1986 local_got = elf_local_got_refcounts (ibfd);
1987 if (!local_got)
1988 continue;
1989
1990 symtab_hdr = &elf_symtab_hdr (ibfd);
1991 locsymcount = symtab_hdr->sh_info;
1992 end_local_got = local_got + locsymcount;
1993 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1994 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1995 s = htab->sgot;
1996 srel = htab->srelgot;
1997 for (; local_got < end_local_got;
1998 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1999 {
2000 *local_tlsdesc_gotent = (bfd_vma) -1;
2001 if (*local_got > 0)
2002 {
2003 if (GOT_TLS_GDESC_P (*local_tls_type))
2004 {
2005 *local_tlsdesc_gotent = htab->sgotplt->size
2006 - elf64_x86_64_compute_jump_table_size (htab);
2007 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2008 *local_got = (bfd_vma) -2;
2009 }
2010 if (! GOT_TLS_GDESC_P (*local_tls_type)
2011 || GOT_TLS_GD_P (*local_tls_type))
2012 {
2013 *local_got = s->size;
2014 s->size += GOT_ENTRY_SIZE;
2015 if (GOT_TLS_GD_P (*local_tls_type))
2016 s->size += GOT_ENTRY_SIZE;
2017 }
2018 if (info->shared
2019 || GOT_TLS_GD_ANY_P (*local_tls_type)
2020 || *local_tls_type == GOT_TLS_IE)
2021 {
2022 if (GOT_TLS_GDESC_P (*local_tls_type))
2023 {
2024 htab->srelplt->size += sizeof (Elf64_External_Rela);
2025 htab->tlsdesc_plt = (bfd_vma) -1;
2026 }
2027 if (! GOT_TLS_GDESC_P (*local_tls_type)
2028 || GOT_TLS_GD_P (*local_tls_type))
2029 srel->size += sizeof (Elf64_External_Rela);
2030 }
2031 }
2032 else
2033 *local_got = (bfd_vma) -1;
2034 }
2035 }
2036
2037 if (htab->tls_ld_got.refcount > 0)
2038 {
2039 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2040 relocs. */
2041 htab->tls_ld_got.offset = htab->sgot->size;
2042 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2043 htab->srelgot->size += sizeof (Elf64_External_Rela);
2044 }
2045 else
2046 htab->tls_ld_got.offset = -1;
2047
2048 /* Allocate global sym .plt and .got entries, and space for global
2049 sym dynamic relocs. */
2050 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2051
2052 /* For every jump slot reserved in the sgotplt, reloc_count is
2053 incremented. However, when we reserve space for TLS descriptors,
2054 it's not incremented, so in order to compute the space reserved
2055 for them, it suffices to multiply the reloc count by the jump
2056 slot size. */
2057 if (htab->srelplt)
2058 htab->sgotplt_jump_table_size
2059 = elf64_x86_64_compute_jump_table_size (htab);
2060
2061 if (htab->tlsdesc_plt)
2062 {
2063 /* If we're not using lazy TLS relocations, don't generate the
2064 PLT and GOT entries they require. */
2065 if ((info->flags & DF_BIND_NOW))
2066 htab->tlsdesc_plt = 0;
2067 else
2068 {
2069 htab->tlsdesc_got = htab->sgot->size;
2070 htab->sgot->size += GOT_ENTRY_SIZE;
2071 /* Reserve room for the initial entry.
2072 FIXME: we could probably do away with it in this case. */
2073 if (htab->splt->size == 0)
2074 htab->splt->size += PLT_ENTRY_SIZE;
2075 htab->tlsdesc_plt = htab->splt->size;
2076 htab->splt->size += PLT_ENTRY_SIZE;
2077 }
2078 }
2079
2080 /* We now have determined the sizes of the various dynamic sections.
2081 Allocate memory for them. */
2082 relocs = FALSE;
2083 for (s = dynobj->sections; s != NULL; s = s->next)
2084 {
2085 if ((s->flags & SEC_LINKER_CREATED) == 0)
2086 continue;
2087
2088 if (s == htab->splt
2089 || s == htab->sgot
2090 || s == htab->sgotplt
2091 || s == htab->sdynbss)
2092 {
2093 /* Strip this section if we don't need it; see the
2094 comment below. */
2095 }
2096 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2097 {
2098 if (s->size != 0 && s != htab->srelplt)
2099 relocs = TRUE;
2100
2101 /* We use the reloc_count field as a counter if we need
2102 to copy relocs into the output file. */
2103 if (s != htab->srelplt)
2104 s->reloc_count = 0;
2105 }
2106 else
2107 {
2108 /* It's not one of our sections, so don't allocate space. */
2109 continue;
2110 }
2111
2112 if (s->size == 0)
2113 {
2114 /* If we don't need this section, strip it from the
2115 output file. This is mostly to handle .rela.bss and
2116 .rela.plt. We must create both sections in
2117 create_dynamic_sections, because they must be created
2118 before the linker maps input sections to output
2119 sections. The linker does that before
2120 adjust_dynamic_symbol is called, and it is that
2121 function which decides whether anything needs to go
2122 into these sections. */
2123
2124 s->flags |= SEC_EXCLUDE;
2125 continue;
2126 }
2127
2128 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2129 continue;
2130
2131 /* Allocate memory for the section contents. We use bfd_zalloc
2132 here in case unused entries are not reclaimed before the
2133 section's contents are written out. This should not happen,
2134 but this way if it does, we get a R_X86_64_NONE reloc instead
2135 of garbage. */
2136 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2137 if (s->contents == NULL)
2138 return FALSE;
2139 }
2140
2141 if (htab->elf.dynamic_sections_created)
2142 {
2143 /* Add some entries to the .dynamic section. We fill in the
2144 values later, in elf64_x86_64_finish_dynamic_sections, but we
2145 must add the entries now so that we get the correct size for
2146 the .dynamic section. The DT_DEBUG entry is filled in by the
2147 dynamic linker and used by the debugger. */
2148 #define add_dynamic_entry(TAG, VAL) \
2149 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2150
2151 if (info->executable)
2152 {
2153 if (!add_dynamic_entry (DT_DEBUG, 0))
2154 return FALSE;
2155 }
2156
2157 if (htab->splt->size != 0)
2158 {
2159 if (!add_dynamic_entry (DT_PLTGOT, 0)
2160 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2161 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2162 || !add_dynamic_entry (DT_JMPREL, 0))
2163 return FALSE;
2164
2165 if (htab->tlsdesc_plt
2166 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2167 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2168 return FALSE;
2169 }
2170
2171 if (relocs)
2172 {
2173 if (!add_dynamic_entry (DT_RELA, 0)
2174 || !add_dynamic_entry (DT_RELASZ, 0)
2175 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2176 return FALSE;
2177
2178 /* If any dynamic relocs apply to a read-only section,
2179 then we need a DT_TEXTREL entry. */
2180 if ((info->flags & DF_TEXTREL) == 0)
2181 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2182
2183 if ((info->flags & DF_TEXTREL) != 0)
2184 {
2185 if (!add_dynamic_entry (DT_TEXTREL, 0))
2186 return FALSE;
2187 }
2188 }
2189 }
2190 #undef add_dynamic_entry
2191
2192 return TRUE;
2193 }
2194
2195 static bfd_boolean
2196 elf64_x86_64_always_size_sections (bfd *output_bfd,
2197 struct bfd_link_info *info)
2198 {
2199 asection *tls_sec = elf_hash_table (info)->tls_sec;
2200
2201 if (tls_sec)
2202 {
2203 struct elf_link_hash_entry *tlsbase;
2204
2205 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2206 "_TLS_MODULE_BASE_",
2207 FALSE, FALSE, FALSE);
2208
2209 if (tlsbase && tlsbase->type == STT_TLS)
2210 {
2211 struct bfd_link_hash_entry *bh = NULL;
2212 const struct elf_backend_data *bed
2213 = get_elf_backend_data (output_bfd);
2214
2215 if (!(_bfd_generic_link_add_one_symbol
2216 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2217 tls_sec, 0, NULL, FALSE,
2218 bed->collect, &bh)))
2219 return FALSE;
2220
2221 elf64_x86_64_hash_table (info)->tls_module_base = bh;
2222
2223 tlsbase = (struct elf_link_hash_entry *)bh;
2224 tlsbase->def_regular = 1;
2225 tlsbase->other = STV_HIDDEN;
2226 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2227 }
2228 }
2229
2230 return TRUE;
2231 }
2232
2233 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2234 executables. Rather than setting it to the beginning of the TLS
2235 section, we have to set it to the end. This function may be called
2236 multiple times, it is idempotent. */
2237
2238 static void
2239 set_tls_module_base (struct bfd_link_info *info)
2240 {
2241 struct bfd_link_hash_entry *base;
2242
2243 if (!info->executable)
2244 return;
2245
2246 base = elf64_x86_64_hash_table (info)->tls_module_base;
2247
2248 if (!base)
2249 return;
2250
2251 base->u.def.value = elf_hash_table (info)->tls_size;
2252 }
2253
2254 /* Return the base VMA address which should be subtracted from real addresses
2255 when resolving @dtpoff relocation.
2256 This is PT_TLS segment p_vaddr. */
2257
2258 static bfd_vma
2259 dtpoff_base (struct bfd_link_info *info)
2260 {
2261 /* If tls_sec is NULL, we should have signalled an error already. */
2262 if (elf_hash_table (info)->tls_sec == NULL)
2263 return 0;
2264 return elf_hash_table (info)->tls_sec->vma;
2265 }
2266
2267 /* Return the relocation value for @tpoff relocation
2268 if STT_TLS virtual address is ADDRESS. */
2269
2270 static bfd_vma
2271 tpoff (struct bfd_link_info *info, bfd_vma address)
2272 {
2273 struct elf_link_hash_table *htab = elf_hash_table (info);
2274
2275 /* If tls_segment is NULL, we should have signalled an error already. */
2276 if (htab->tls_sec == NULL)
2277 return 0;
2278 return address - htab->tls_size - htab->tls_sec->vma;
2279 }
2280
2281 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2282 branch? */
2283
2284 static bfd_boolean
2285 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2286 {
2287 /* Opcode Instruction
2288 0xe8 call
2289 0xe9 jump
2290 0x0f 0x8x conditional jump */
2291 return ((offset > 0
2292 && (contents [offset - 1] == 0xe8
2293 || contents [offset - 1] == 0xe9))
2294 || (offset > 1
2295 && contents [offset - 2] == 0x0f
2296 && (contents [offset - 1] & 0xf0) == 0x80));
2297 }
2298
2299 /* Relocate an x86_64 ELF section. */
2300
2301 static bfd_boolean
2302 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2303 bfd *input_bfd, asection *input_section,
2304 bfd_byte *contents, Elf_Internal_Rela *relocs,
2305 Elf_Internal_Sym *local_syms,
2306 asection **local_sections)
2307 {
2308 struct elf64_x86_64_link_hash_table *htab;
2309 Elf_Internal_Shdr *symtab_hdr;
2310 struct elf_link_hash_entry **sym_hashes;
2311 bfd_vma *local_got_offsets;
2312 bfd_vma *local_tlsdesc_gotents;
2313 Elf_Internal_Rela *rel;
2314 Elf_Internal_Rela *relend;
2315
2316 BFD_ASSERT (is_x86_64_elf (input_bfd));
2317
2318 htab = elf64_x86_64_hash_table (info);
2319 symtab_hdr = &elf_symtab_hdr (input_bfd);
2320 sym_hashes = elf_sym_hashes (input_bfd);
2321 local_got_offsets = elf_local_got_offsets (input_bfd);
2322 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2323
2324 set_tls_module_base (info);
2325
2326 rel = relocs;
2327 relend = relocs + input_section->reloc_count;
2328 for (; rel < relend; rel++)
2329 {
2330 unsigned int r_type;
2331 reloc_howto_type *howto;
2332 unsigned long r_symndx;
2333 struct elf_link_hash_entry *h;
2334 Elf_Internal_Sym *sym;
2335 asection *sec;
2336 bfd_vma off, offplt;
2337 bfd_vma relocation;
2338 bfd_boolean unresolved_reloc;
2339 bfd_reloc_status_type r;
2340 int tls_type;
2341
2342 r_type = ELF64_R_TYPE (rel->r_info);
2343 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2344 || r_type == (int) R_X86_64_GNU_VTENTRY)
2345 continue;
2346
2347 if (r_type >= R_X86_64_max)
2348 {
2349 bfd_set_error (bfd_error_bad_value);
2350 return FALSE;
2351 }
2352
2353 howto = x86_64_elf_howto_table + r_type;
2354 r_symndx = ELF64_R_SYM (rel->r_info);
2355 h = NULL;
2356 sym = NULL;
2357 sec = NULL;
2358 unresolved_reloc = FALSE;
2359 if (r_symndx < symtab_hdr->sh_info)
2360 {
2361 sym = local_syms + r_symndx;
2362 sec = local_sections[r_symndx];
2363
2364 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2365 }
2366 else
2367 {
2368 bfd_boolean warned;
2369
2370 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2371 r_symndx, symtab_hdr, sym_hashes,
2372 h, sec, relocation,
2373 unresolved_reloc, warned);
2374 }
2375
2376 if (sec != NULL && elf_discarded_section (sec))
2377 {
2378 /* For relocs against symbols from removed linkonce sections,
2379 or sections discarded by a linker script, we just want the
2380 section contents zeroed. Avoid any special processing. */
2381 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2382 rel->r_info = 0;
2383 rel->r_addend = 0;
2384 continue;
2385 }
2386
2387 if (info->relocatable)
2388 continue;
2389
2390 /* When generating a shared object, the relocations handled here are
2391 copied into the output file to be resolved at run time. */
2392 switch (r_type)
2393 {
2394 asection *base_got;
2395 case R_X86_64_GOT32:
2396 case R_X86_64_GOT64:
2397 /* Relocation is to the entry for this symbol in the global
2398 offset table. */
2399 case R_X86_64_GOTPCREL:
2400 case R_X86_64_GOTPCREL64:
2401 /* Use global offset table entry as symbol value. */
2402 case R_X86_64_GOTPLT64:
2403 /* This is the same as GOT64 for relocation purposes, but
2404 indicates the existence of a PLT entry. The difficulty is,
2405 that we must calculate the GOT slot offset from the PLT
2406 offset, if this symbol got a PLT entry (it was global).
2407 Additionally if it's computed from the PLT entry, then that
2408 GOT offset is relative to .got.plt, not to .got. */
2409 base_got = htab->sgot;
2410
2411 if (htab->sgot == NULL)
2412 abort ();
2413
2414 if (h != NULL)
2415 {
2416 bfd_boolean dyn;
2417
2418 off = h->got.offset;
2419 if (h->needs_plt
2420 && h->plt.offset != (bfd_vma)-1
2421 && off == (bfd_vma)-1)
2422 {
2423 /* We can't use h->got.offset here to save
2424 state, or even just remember the offset, as
2425 finish_dynamic_symbol would use that as offset into
2426 .got. */
2427 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2428 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2429 base_got = htab->sgotplt;
2430 }
2431
2432 dyn = htab->elf.dynamic_sections_created;
2433
2434 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2435 || (info->shared
2436 && SYMBOL_REFERENCES_LOCAL (info, h))
2437 || (ELF_ST_VISIBILITY (h->other)
2438 && h->root.type == bfd_link_hash_undefweak))
2439 {
2440 /* This is actually a static link, or it is a -Bsymbolic
2441 link and the symbol is defined locally, or the symbol
2442 was forced to be local because of a version file. We
2443 must initialize this entry in the global offset table.
2444 Since the offset must always be a multiple of 8, we
2445 use the least significant bit to record whether we
2446 have initialized it already.
2447
2448 When doing a dynamic link, we create a .rela.got
2449 relocation entry to initialize the value. This is
2450 done in the finish_dynamic_symbol routine. */
2451 if ((off & 1) != 0)
2452 off &= ~1;
2453 else
2454 {
2455 bfd_put_64 (output_bfd, relocation,
2456 base_got->contents + off);
2457 /* Note that this is harmless for the GOTPLT64 case,
2458 as -1 | 1 still is -1. */
2459 h->got.offset |= 1;
2460 }
2461 }
2462 else
2463 unresolved_reloc = FALSE;
2464 }
2465 else
2466 {
2467 if (local_got_offsets == NULL)
2468 abort ();
2469
2470 off = local_got_offsets[r_symndx];
2471
2472 /* The offset must always be a multiple of 8. We use
2473 the least significant bit to record whether we have
2474 already generated the necessary reloc. */
2475 if ((off & 1) != 0)
2476 off &= ~1;
2477 else
2478 {
2479 bfd_put_64 (output_bfd, relocation,
2480 base_got->contents + off);
2481
2482 if (info->shared)
2483 {
2484 asection *s;
2485 Elf_Internal_Rela outrel;
2486 bfd_byte *loc;
2487
2488 /* We need to generate a R_X86_64_RELATIVE reloc
2489 for the dynamic linker. */
2490 s = htab->srelgot;
2491 if (s == NULL)
2492 abort ();
2493
2494 outrel.r_offset = (base_got->output_section->vma
2495 + base_got->output_offset
2496 + off);
2497 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2498 outrel.r_addend = relocation;
2499 loc = s->contents;
2500 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2501 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2502 }
2503
2504 local_got_offsets[r_symndx] |= 1;
2505 }
2506 }
2507
2508 if (off >= (bfd_vma) -2)
2509 abort ();
2510
2511 relocation = base_got->output_section->vma
2512 + base_got->output_offset + off;
2513 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2514 relocation -= htab->sgotplt->output_section->vma
2515 - htab->sgotplt->output_offset;
2516
2517 break;
2518
2519 case R_X86_64_GOTOFF64:
2520 /* Relocation is relative to the start of the global offset
2521 table. */
2522
2523 /* Check to make sure it isn't a protected function symbol
2524 for shared library since it may not be local when used
2525 as function address. */
2526 if (info->shared
2527 && h
2528 && h->def_regular
2529 && h->type == STT_FUNC
2530 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2531 {
2532 (*_bfd_error_handler)
2533 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2534 input_bfd, h->root.root.string);
2535 bfd_set_error (bfd_error_bad_value);
2536 return FALSE;
2537 }
2538
2539 /* Note that sgot is not involved in this
2540 calculation. We always want the start of .got.plt. If we
2541 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2542 permitted by the ABI, we might have to change this
2543 calculation. */
2544 relocation -= htab->sgotplt->output_section->vma
2545 + htab->sgotplt->output_offset;
2546 break;
2547
2548 case R_X86_64_GOTPC32:
2549 case R_X86_64_GOTPC64:
2550 /* Use global offset table as symbol value. */
2551 relocation = htab->sgotplt->output_section->vma
2552 + htab->sgotplt->output_offset;
2553 unresolved_reloc = FALSE;
2554 break;
2555
2556 case R_X86_64_PLTOFF64:
2557 /* Relocation is PLT entry relative to GOT. For local
2558 symbols it's the symbol itself relative to GOT. */
2559 if (h != NULL
2560 /* See PLT32 handling. */
2561 && h->plt.offset != (bfd_vma) -1
2562 && htab->splt != NULL)
2563 {
2564 relocation = (htab->splt->output_section->vma
2565 + htab->splt->output_offset
2566 + h->plt.offset);
2567 unresolved_reloc = FALSE;
2568 }
2569
2570 relocation -= htab->sgotplt->output_section->vma
2571 + htab->sgotplt->output_offset;
2572 break;
2573
2574 case R_X86_64_PLT32:
2575 /* Relocation is to the entry for this symbol in the
2576 procedure linkage table. */
2577
2578 /* Resolve a PLT32 reloc against a local symbol directly,
2579 without using the procedure linkage table. */
2580 if (h == NULL)
2581 break;
2582
2583 if (h->plt.offset == (bfd_vma) -1
2584 || htab->splt == NULL)
2585 {
2586 /* We didn't make a PLT entry for this symbol. This
2587 happens when statically linking PIC code, or when
2588 using -Bsymbolic. */
2589 break;
2590 }
2591
2592 relocation = (htab->splt->output_section->vma
2593 + htab->splt->output_offset
2594 + h->plt.offset);
2595 unresolved_reloc = FALSE;
2596 break;
2597
2598 case R_X86_64_PC8:
2599 case R_X86_64_PC16:
2600 case R_X86_64_PC32:
2601 if (info->shared
2602 && (input_section->flags & SEC_ALLOC) != 0
2603 && (input_section->flags & SEC_READONLY) != 0
2604 && h != NULL)
2605 {
2606 bfd_boolean fail = FALSE;
2607 bfd_boolean branch
2608 = (r_type == R_X86_64_PC32
2609 && is_32bit_relative_branch (contents, rel->r_offset));
2610
2611 if (SYMBOL_REFERENCES_LOCAL (info, h))
2612 {
2613 /* Symbol is referenced locally. Make sure it is
2614 defined locally or for a branch. */
2615 fail = !h->def_regular && !branch;
2616 }
2617 else
2618 {
2619 /* Symbol isn't referenced locally. We only allow
2620 branch to symbol with non-default visibility. */
2621 fail = (!branch
2622 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
2623 }
2624
2625 if (fail)
2626 {
2627 const char *fmt;
2628 const char *v;
2629 const char *pic = "";
2630
2631 switch (ELF_ST_VISIBILITY (h->other))
2632 {
2633 case STV_HIDDEN:
2634 v = _("hidden symbol");
2635 break;
2636 case STV_INTERNAL:
2637 v = _("internal symbol");
2638 break;
2639 case STV_PROTECTED:
2640 v = _("protected symbol");
2641 break;
2642 default:
2643 v = _("symbol");
2644 pic = _("; recompile with -fPIC");
2645 break;
2646 }
2647
2648 if (h->def_regular)
2649 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
2650 else
2651 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
2652
2653 (*_bfd_error_handler) (fmt, input_bfd,
2654 x86_64_elf_howto_table[r_type].name,
2655 v, h->root.root.string, pic);
2656 bfd_set_error (bfd_error_bad_value);
2657 return FALSE;
2658 }
2659 }
2660 /* Fall through. */
2661
2662 case R_X86_64_8:
2663 case R_X86_64_16:
2664 case R_X86_64_32:
2665 case R_X86_64_PC64:
2666 case R_X86_64_64:
2667 /* FIXME: The ABI says the linker should make sure the value is
2668 the same when it's zeroextended to 64 bit. */
2669
2670 if ((input_section->flags & SEC_ALLOC) == 0)
2671 break;
2672
2673 if ((info->shared
2674 && (h == NULL
2675 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2676 || h->root.type != bfd_link_hash_undefweak)
2677 && ((r_type != R_X86_64_PC8
2678 && r_type != R_X86_64_PC16
2679 && r_type != R_X86_64_PC32
2680 && r_type != R_X86_64_PC64)
2681 || !SYMBOL_CALLS_LOCAL (info, h)))
2682 || (ELIMINATE_COPY_RELOCS
2683 && !info->shared
2684 && h != NULL
2685 && h->dynindx != -1
2686 && !h->non_got_ref
2687 && ((h->def_dynamic
2688 && !h->def_regular)
2689 || h->root.type == bfd_link_hash_undefweak
2690 || h->root.type == bfd_link_hash_undefined)))
2691 {
2692 Elf_Internal_Rela outrel;
2693 bfd_byte *loc;
2694 bfd_boolean skip, relocate;
2695 asection *sreloc;
2696
2697 /* When generating a shared object, these relocations
2698 are copied into the output file to be resolved at run
2699 time. */
2700 skip = FALSE;
2701 relocate = FALSE;
2702
2703 outrel.r_offset =
2704 _bfd_elf_section_offset (output_bfd, info, input_section,
2705 rel->r_offset);
2706 if (outrel.r_offset == (bfd_vma) -1)
2707 skip = TRUE;
2708 else if (outrel.r_offset == (bfd_vma) -2)
2709 skip = TRUE, relocate = TRUE;
2710
2711 outrel.r_offset += (input_section->output_section->vma
2712 + input_section->output_offset);
2713
2714 if (skip)
2715 memset (&outrel, 0, sizeof outrel);
2716
2717 /* h->dynindx may be -1 if this symbol was marked to
2718 become local. */
2719 else if (h != NULL
2720 && h->dynindx != -1
2721 && (r_type == R_X86_64_PC8
2722 || r_type == R_X86_64_PC16
2723 || r_type == R_X86_64_PC32
2724 || r_type == R_X86_64_PC64
2725 || !info->shared
2726 || !SYMBOLIC_BIND (info, h)
2727 || !h->def_regular))
2728 {
2729 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2730 outrel.r_addend = rel->r_addend;
2731 }
2732 else
2733 {
2734 /* This symbol is local, or marked to become local. */
2735 if (r_type == R_X86_64_64)
2736 {
2737 relocate = TRUE;
2738 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2739 outrel.r_addend = relocation + rel->r_addend;
2740 }
2741 else
2742 {
2743 long sindx;
2744
2745 if (bfd_is_abs_section (sec))
2746 sindx = 0;
2747 else if (sec == NULL || sec->owner == NULL)
2748 {
2749 bfd_set_error (bfd_error_bad_value);
2750 return FALSE;
2751 }
2752 else
2753 {
2754 asection *osec;
2755
2756 /* We are turning this relocation into one
2757 against a section symbol. It would be
2758 proper to subtract the symbol's value,
2759 osec->vma, from the emitted reloc addend,
2760 but ld.so expects buggy relocs. */
2761 osec = sec->output_section;
2762 sindx = elf_section_data (osec)->dynindx;
2763 if (sindx == 0)
2764 {
2765 asection *oi = htab->elf.text_index_section;
2766 sindx = elf_section_data (oi)->dynindx;
2767 }
2768 BFD_ASSERT (sindx != 0);
2769 }
2770
2771 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2772 outrel.r_addend = relocation + rel->r_addend;
2773 }
2774 }
2775
2776 sreloc = elf_section_data (input_section)->sreloc;
2777
2778 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
2779
2780 loc = sreloc->contents;
2781 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2782 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2783
2784 /* If this reloc is against an external symbol, we do
2785 not want to fiddle with the addend. Otherwise, we
2786 need to include the symbol value so that it becomes
2787 an addend for the dynamic reloc. */
2788 if (! relocate)
2789 continue;
2790 }
2791
2792 break;
2793
2794 case R_X86_64_TLSGD:
2795 case R_X86_64_GOTPC32_TLSDESC:
2796 case R_X86_64_TLSDESC_CALL:
2797 case R_X86_64_GOTTPOFF:
2798 tls_type = GOT_UNKNOWN;
2799 if (h == NULL && local_got_offsets)
2800 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2801 else if (h != NULL)
2802 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2803
2804 if (! elf64_x86_64_tls_transition (info, input_bfd,
2805 input_section, contents,
2806 symtab_hdr, sym_hashes,
2807 &r_type, tls_type, rel,
2808 relend, h))
2809 return FALSE;
2810
2811 if (r_type == R_X86_64_TPOFF32)
2812 {
2813 bfd_vma roff = rel->r_offset;
2814
2815 BFD_ASSERT (! unresolved_reloc);
2816
2817 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2818 {
2819 /* GD->LE transition.
2820 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2821 .word 0x6666; rex64; call __tls_get_addr
2822 Change it into:
2823 movq %fs:0, %rax
2824 leaq foo@tpoff(%rax), %rax */
2825 memcpy (contents + roff - 4,
2826 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2827 16);
2828 bfd_put_32 (output_bfd, tpoff (info, relocation),
2829 contents + roff + 8);
2830 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2831 rel++;
2832 continue;
2833 }
2834 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2835 {
2836 /* GDesc -> LE transition.
2837 It's originally something like:
2838 leaq x@tlsdesc(%rip), %rax
2839
2840 Change it to:
2841 movl $x@tpoff, %rax
2842 */
2843
2844 unsigned int val, type, type2;
2845
2846 type = bfd_get_8 (input_bfd, contents + roff - 3);
2847 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2848 val = bfd_get_8 (input_bfd, contents + roff - 1);
2849 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2850 contents + roff - 3);
2851 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2852 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2853 contents + roff - 1);
2854 bfd_put_32 (output_bfd, tpoff (info, relocation),
2855 contents + roff);
2856 continue;
2857 }
2858 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2859 {
2860 /* GDesc -> LE transition.
2861 It's originally:
2862 call *(%rax)
2863 Turn it into:
2864 xchg %ax,%ax. */
2865 bfd_put_8 (output_bfd, 0x66, contents + roff);
2866 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2867 continue;
2868 }
2869 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
2870 {
2871 /* IE->LE transition:
2872 Originally it can be one of:
2873 movq foo@gottpoff(%rip), %reg
2874 addq foo@gottpoff(%rip), %reg
2875 We change it into:
2876 movq $foo, %reg
2877 leaq foo(%reg), %reg
2878 addq $foo, %reg. */
2879
2880 unsigned int val, type, reg;
2881
2882 val = bfd_get_8 (input_bfd, contents + roff - 3);
2883 type = bfd_get_8 (input_bfd, contents + roff - 2);
2884 reg = bfd_get_8 (input_bfd, contents + roff - 1);
2885 reg >>= 3;
2886 if (type == 0x8b)
2887 {
2888 /* movq */
2889 if (val == 0x4c)
2890 bfd_put_8 (output_bfd, 0x49,
2891 contents + roff - 3);
2892 bfd_put_8 (output_bfd, 0xc7,
2893 contents + roff - 2);
2894 bfd_put_8 (output_bfd, 0xc0 | reg,
2895 contents + roff - 1);
2896 }
2897 else if (reg == 4)
2898 {
2899 /* addq -> addq - addressing with %rsp/%r12 is
2900 special */
2901 if (val == 0x4c)
2902 bfd_put_8 (output_bfd, 0x49,
2903 contents + roff - 3);
2904 bfd_put_8 (output_bfd, 0x81,
2905 contents + roff - 2);
2906 bfd_put_8 (output_bfd, 0xc0 | reg,
2907 contents + roff - 1);
2908 }
2909 else
2910 {
2911 /* addq -> leaq */
2912 if (val == 0x4c)
2913 bfd_put_8 (output_bfd, 0x4d,
2914 contents + roff - 3);
2915 bfd_put_8 (output_bfd, 0x8d,
2916 contents + roff - 2);
2917 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2918 contents + roff - 1);
2919 }
2920 bfd_put_32 (output_bfd, tpoff (info, relocation),
2921 contents + roff);
2922 continue;
2923 }
2924 else
2925 BFD_ASSERT (FALSE);
2926 }
2927
2928 if (htab->sgot == NULL)
2929 abort ();
2930
2931 if (h != NULL)
2932 {
2933 off = h->got.offset;
2934 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2935 }
2936 else
2937 {
2938 if (local_got_offsets == NULL)
2939 abort ();
2940
2941 off = local_got_offsets[r_symndx];
2942 offplt = local_tlsdesc_gotents[r_symndx];
2943 }
2944
2945 if ((off & 1) != 0)
2946 off &= ~1;
2947 else
2948 {
2949 Elf_Internal_Rela outrel;
2950 bfd_byte *loc;
2951 int dr_type, indx;
2952 asection *sreloc;
2953
2954 if (htab->srelgot == NULL)
2955 abort ();
2956
2957 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2958
2959 if (GOT_TLS_GDESC_P (tls_type))
2960 {
2961 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2962 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2963 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2964 outrel.r_offset = (htab->sgotplt->output_section->vma
2965 + htab->sgotplt->output_offset
2966 + offplt
2967 + htab->sgotplt_jump_table_size);
2968 sreloc = htab->srelplt;
2969 loc = sreloc->contents;
2970 loc += sreloc->reloc_count++
2971 * sizeof (Elf64_External_Rela);
2972 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2973 <= sreloc->contents + sreloc->size);
2974 if (indx == 0)
2975 outrel.r_addend = relocation - dtpoff_base (info);
2976 else
2977 outrel.r_addend = 0;
2978 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2979 }
2980
2981 sreloc = htab->srelgot;
2982
2983 outrel.r_offset = (htab->sgot->output_section->vma
2984 + htab->sgot->output_offset + off);
2985
2986 if (GOT_TLS_GD_P (tls_type))
2987 dr_type = R_X86_64_DTPMOD64;
2988 else if (GOT_TLS_GDESC_P (tls_type))
2989 goto dr_done;
2990 else
2991 dr_type = R_X86_64_TPOFF64;
2992
2993 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2994 outrel.r_addend = 0;
2995 if ((dr_type == R_X86_64_TPOFF64
2996 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2997 outrel.r_addend = relocation - dtpoff_base (info);
2998 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2999
3000 loc = sreloc->contents;
3001 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
3002 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3003 <= sreloc->contents + sreloc->size);
3004 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3005
3006 if (GOT_TLS_GD_P (tls_type))
3007 {
3008 if (indx == 0)
3009 {
3010 BFD_ASSERT (! unresolved_reloc);
3011 bfd_put_64 (output_bfd,
3012 relocation - dtpoff_base (info),
3013 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3014 }
3015 else
3016 {
3017 bfd_put_64 (output_bfd, 0,
3018 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3019 outrel.r_info = ELF64_R_INFO (indx,
3020 R_X86_64_DTPOFF64);
3021 outrel.r_offset += GOT_ENTRY_SIZE;
3022 sreloc->reloc_count++;
3023 loc += sizeof (Elf64_External_Rela);
3024 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
3025 <= sreloc->contents + sreloc->size);
3026 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3027 }
3028 }
3029
3030 dr_done:
3031 if (h != NULL)
3032 h->got.offset |= 1;
3033 else
3034 local_got_offsets[r_symndx] |= 1;
3035 }
3036
3037 if (off >= (bfd_vma) -2
3038 && ! GOT_TLS_GDESC_P (tls_type))
3039 abort ();
3040 if (r_type == ELF64_R_TYPE (rel->r_info))
3041 {
3042 if (r_type == R_X86_64_GOTPC32_TLSDESC
3043 || r_type == R_X86_64_TLSDESC_CALL)
3044 relocation = htab->sgotplt->output_section->vma
3045 + htab->sgotplt->output_offset
3046 + offplt + htab->sgotplt_jump_table_size;
3047 else
3048 relocation = htab->sgot->output_section->vma
3049 + htab->sgot->output_offset + off;
3050 unresolved_reloc = FALSE;
3051 }
3052 else
3053 {
3054 bfd_vma roff = rel->r_offset;
3055
3056 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3057 {
3058 /* GD->IE transition.
3059 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3060 .word 0x6666; rex64; call __tls_get_addr@plt
3061 Change it into:
3062 movq %fs:0, %rax
3063 addq foo@gottpoff(%rip), %rax */
3064 memcpy (contents + roff - 4,
3065 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3066 16);
3067
3068 relocation = (htab->sgot->output_section->vma
3069 + htab->sgot->output_offset + off
3070 - roff
3071 - input_section->output_section->vma
3072 - input_section->output_offset
3073 - 12);
3074 bfd_put_32 (output_bfd, relocation,
3075 contents + roff + 8);
3076 /* Skip R_X86_64_PLT32. */
3077 rel++;
3078 continue;
3079 }
3080 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3081 {
3082 /* GDesc -> IE transition.
3083 It's originally something like:
3084 leaq x@tlsdesc(%rip), %rax
3085
3086 Change it to:
3087 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3088 */
3089
3090 unsigned int val, type, type2;
3091
3092 type = bfd_get_8 (input_bfd, contents + roff - 3);
3093 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3094 val = bfd_get_8 (input_bfd, contents + roff - 1);
3095
3096 /* Now modify the instruction as appropriate. To
3097 turn a leaq into a movq in the form we use it, it
3098 suffices to change the second byte from 0x8d to
3099 0x8b. */
3100 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3101
3102 bfd_put_32 (output_bfd,
3103 htab->sgot->output_section->vma
3104 + htab->sgot->output_offset + off
3105 - rel->r_offset
3106 - input_section->output_section->vma
3107 - input_section->output_offset
3108 - 4,
3109 contents + roff);
3110 continue;
3111 }
3112 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3113 {
3114 /* GDesc -> IE transition.
3115 It's originally:
3116 call *(%rax)
3117
3118 Change it to:
3119 xchg %ax,%ax. */
3120
3121 unsigned int val, type;
3122
3123 type = bfd_get_8 (input_bfd, contents + roff);
3124 val = bfd_get_8 (input_bfd, contents + roff + 1);
3125 bfd_put_8 (output_bfd, 0x66, contents + roff);
3126 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3127 continue;
3128 }
3129 else
3130 BFD_ASSERT (FALSE);
3131 }
3132 break;
3133
3134 case R_X86_64_TLSLD:
3135 if (! elf64_x86_64_tls_transition (info, input_bfd,
3136 input_section, contents,
3137 symtab_hdr, sym_hashes,
3138 &r_type, GOT_UNKNOWN,
3139 rel, relend, h))
3140 return FALSE;
3141
3142 if (r_type != R_X86_64_TLSLD)
3143 {
3144 /* LD->LE transition:
3145 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3146 We change it into:
3147 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3148
3149 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3150 memcpy (contents + rel->r_offset - 3,
3151 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3152 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3153 rel++;
3154 continue;
3155 }
3156
3157 if (htab->sgot == NULL)
3158 abort ();
3159
3160 off = htab->tls_ld_got.offset;
3161 if (off & 1)
3162 off &= ~1;
3163 else
3164 {
3165 Elf_Internal_Rela outrel;
3166 bfd_byte *loc;
3167
3168 if (htab->srelgot == NULL)
3169 abort ();
3170
3171 outrel.r_offset = (htab->sgot->output_section->vma
3172 + htab->sgot->output_offset + off);
3173
3174 bfd_put_64 (output_bfd, 0,
3175 htab->sgot->contents + off);
3176 bfd_put_64 (output_bfd, 0,
3177 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3178 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3179 outrel.r_addend = 0;
3180 loc = htab->srelgot->contents;
3181 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3182 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3183 htab->tls_ld_got.offset |= 1;
3184 }
3185 relocation = htab->sgot->output_section->vma
3186 + htab->sgot->output_offset + off;
3187 unresolved_reloc = FALSE;
3188 break;
3189
3190 case R_X86_64_DTPOFF32:
3191 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3192 relocation -= dtpoff_base (info);
3193 else
3194 relocation = tpoff (info, relocation);
3195 break;
3196
3197 case R_X86_64_TPOFF32:
3198 BFD_ASSERT (! info->shared);
3199 relocation = tpoff (info, relocation);
3200 break;
3201
3202 default:
3203 break;
3204 }
3205
3206 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3207 because such sections are not SEC_ALLOC and thus ld.so will
3208 not process them. */
3209 if (unresolved_reloc
3210 && !((input_section->flags & SEC_DEBUGGING) != 0
3211 && h->def_dynamic))
3212 (*_bfd_error_handler)
3213 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3214 input_bfd,
3215 input_section,
3216 (long) rel->r_offset,
3217 howto->name,
3218 h->root.root.string);
3219
3220 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3221 contents, rel->r_offset,
3222 relocation, rel->r_addend);
3223
3224 if (r != bfd_reloc_ok)
3225 {
3226 const char *name;
3227
3228 if (h != NULL)
3229 name = h->root.root.string;
3230 else
3231 {
3232 name = bfd_elf_string_from_elf_section (input_bfd,
3233 symtab_hdr->sh_link,
3234 sym->st_name);
3235 if (name == NULL)
3236 return FALSE;
3237 if (*name == '\0')
3238 name = bfd_section_name (input_bfd, sec);
3239 }
3240
3241 if (r == bfd_reloc_overflow)
3242 {
3243 if (! ((*info->callbacks->reloc_overflow)
3244 (info, (h ? &h->root : NULL), name, howto->name,
3245 (bfd_vma) 0, input_bfd, input_section,
3246 rel->r_offset)))
3247 return FALSE;
3248 }
3249 else
3250 {
3251 (*_bfd_error_handler)
3252 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3253 input_bfd, input_section,
3254 (long) rel->r_offset, name, (int) r);
3255 return FALSE;
3256 }
3257 }
3258 }
3259
3260 return TRUE;
3261 }
3262
3263 /* Finish up dynamic symbol handling. We set the contents of various
3264 dynamic sections here. */
3265
3266 static bfd_boolean
3267 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3268 struct bfd_link_info *info,
3269 struct elf_link_hash_entry *h,
3270 Elf_Internal_Sym *sym)
3271 {
3272 struct elf64_x86_64_link_hash_table *htab;
3273
3274 htab = elf64_x86_64_hash_table (info);
3275
3276 if (h->plt.offset != (bfd_vma) -1)
3277 {
3278 bfd_vma plt_index;
3279 bfd_vma got_offset;
3280 Elf_Internal_Rela rela;
3281 bfd_byte *loc;
3282
3283 /* This symbol has an entry in the procedure linkage table. Set
3284 it up. */
3285 if (h->dynindx == -1
3286 || htab->splt == NULL
3287 || htab->sgotplt == NULL
3288 || htab->srelplt == NULL)
3289 abort ();
3290
3291 /* Get the index in the procedure linkage table which
3292 corresponds to this symbol. This is the index of this symbol
3293 in all the symbols for which we are making plt entries. The
3294 first entry in the procedure linkage table is reserved. */
3295 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3296
3297 /* Get the offset into the .got table of the entry that
3298 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3299 bytes. The first three are reserved for the dynamic linker. */
3300 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3301
3302 /* Fill in the entry in the procedure linkage table. */
3303 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3304 PLT_ENTRY_SIZE);
3305
3306 /* Insert the relocation positions of the plt section. The magic
3307 numbers at the end of the statements are the positions of the
3308 relocations in the plt section. */
3309 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3310 instruction uses 6 bytes, subtract this value. */
3311 bfd_put_32 (output_bfd,
3312 (htab->sgotplt->output_section->vma
3313 + htab->sgotplt->output_offset
3314 + got_offset
3315 - htab->splt->output_section->vma
3316 - htab->splt->output_offset
3317 - h->plt.offset
3318 - 6),
3319 htab->splt->contents + h->plt.offset + 2);
3320 /* Put relocation index. */
3321 bfd_put_32 (output_bfd, plt_index,
3322 htab->splt->contents + h->plt.offset + 7);
3323 /* Put offset for jmp .PLT0. */
3324 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3325 htab->splt->contents + h->plt.offset + 12);
3326
3327 /* Fill in the entry in the global offset table, initially this
3328 points to the pushq instruction in the PLT which is at offset 6. */
3329 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3330 + htab->splt->output_offset
3331 + h->plt.offset + 6),
3332 htab->sgotplt->contents + got_offset);
3333
3334 /* Fill in the entry in the .rela.plt section. */
3335 rela.r_offset = (htab->sgotplt->output_section->vma
3336 + htab->sgotplt->output_offset
3337 + got_offset);
3338 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3339 rela.r_addend = 0;
3340 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3341 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3342
3343 if (!h->def_regular)
3344 {
3345 /* Mark the symbol as undefined, rather than as defined in
3346 the .plt section. Leave the value if there were any
3347 relocations where pointer equality matters (this is a clue
3348 for the dynamic linker, to make function pointer
3349 comparisons work between an application and shared
3350 library), otherwise set it to zero. If a function is only
3351 called from a binary, there is no need to slow down
3352 shared libraries because of that. */
3353 sym->st_shndx = SHN_UNDEF;
3354 if (!h->pointer_equality_needed)
3355 sym->st_value = 0;
3356 }
3357 }
3358
3359 if (h->got.offset != (bfd_vma) -1
3360 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3361 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3362 {
3363 Elf_Internal_Rela rela;
3364 bfd_byte *loc;
3365
3366 /* This symbol has an entry in the global offset table. Set it
3367 up. */
3368 if (htab->sgot == NULL || htab->srelgot == NULL)
3369 abort ();
3370
3371 rela.r_offset = (htab->sgot->output_section->vma
3372 + htab->sgot->output_offset
3373 + (h->got.offset &~ (bfd_vma) 1));
3374
3375 /* If this is a static link, or it is a -Bsymbolic link and the
3376 symbol is defined locally or was forced to be local because
3377 of a version file, we just want to emit a RELATIVE reloc.
3378 The entry in the global offset table will already have been
3379 initialized in the relocate_section function. */
3380 if (info->shared
3381 && SYMBOL_REFERENCES_LOCAL (info, h))
3382 {
3383 if (!h->def_regular)
3384 return FALSE;
3385 BFD_ASSERT((h->got.offset & 1) != 0);
3386 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3387 rela.r_addend = (h->root.u.def.value
3388 + h->root.u.def.section->output_section->vma
3389 + h->root.u.def.section->output_offset);
3390 }
3391 else
3392 {
3393 BFD_ASSERT((h->got.offset & 1) == 0);
3394 bfd_put_64 (output_bfd, (bfd_vma) 0,
3395 htab->sgot->contents + h->got.offset);
3396 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3397 rela.r_addend = 0;
3398 }
3399
3400 loc = htab->srelgot->contents;
3401 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3402 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3403 }
3404
3405 if (h->needs_copy)
3406 {
3407 Elf_Internal_Rela rela;
3408 bfd_byte *loc;
3409
3410 /* This symbol needs a copy reloc. Set it up. */
3411
3412 if (h->dynindx == -1
3413 || (h->root.type != bfd_link_hash_defined
3414 && h->root.type != bfd_link_hash_defweak)
3415 || htab->srelbss == NULL)
3416 abort ();
3417
3418 rela.r_offset = (h->root.u.def.value
3419 + h->root.u.def.section->output_section->vma
3420 + h->root.u.def.section->output_offset);
3421 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3422 rela.r_addend = 0;
3423 loc = htab->srelbss->contents;
3424 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3425 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3426 }
3427
3428 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3429 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3430 || h == htab->elf.hgot)
3431 sym->st_shndx = SHN_ABS;
3432
3433 return TRUE;
3434 }
3435
3436 /* Used to decide how to sort relocs in an optimal manner for the
3437 dynamic linker, before writing them out. */
3438
3439 static enum elf_reloc_type_class
3440 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3441 {
3442 switch ((int) ELF64_R_TYPE (rela->r_info))
3443 {
3444 case R_X86_64_RELATIVE:
3445 return reloc_class_relative;
3446 case R_X86_64_JUMP_SLOT:
3447 return reloc_class_plt;
3448 case R_X86_64_COPY:
3449 return reloc_class_copy;
3450 default:
3451 return reloc_class_normal;
3452 }
3453 }
3454
3455 /* Finish up the dynamic sections. */
3456
3457 static bfd_boolean
3458 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3459 {
3460 struct elf64_x86_64_link_hash_table *htab;
3461 bfd *dynobj;
3462 asection *sdyn;
3463
3464 htab = elf64_x86_64_hash_table (info);
3465 dynobj = htab->elf.dynobj;
3466 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3467
3468 if (htab->elf.dynamic_sections_created)
3469 {
3470 Elf64_External_Dyn *dyncon, *dynconend;
3471
3472 if (sdyn == NULL || htab->sgot == NULL)
3473 abort ();
3474
3475 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3476 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3477 for (; dyncon < dynconend; dyncon++)
3478 {
3479 Elf_Internal_Dyn dyn;
3480 asection *s;
3481
3482 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3483
3484 switch (dyn.d_tag)
3485 {
3486 default:
3487 continue;
3488
3489 case DT_PLTGOT:
3490 s = htab->sgotplt;
3491 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3492 break;
3493
3494 case DT_JMPREL:
3495 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3496 break;
3497
3498 case DT_PLTRELSZ:
3499 s = htab->srelplt->output_section;
3500 dyn.d_un.d_val = s->size;
3501 break;
3502
3503 case DT_RELASZ:
3504 /* The procedure linkage table relocs (DT_JMPREL) should
3505 not be included in the overall relocs (DT_RELA).
3506 Therefore, we override the DT_RELASZ entry here to
3507 make it not include the JMPREL relocs. Since the
3508 linker script arranges for .rela.plt to follow all
3509 other relocation sections, we don't have to worry
3510 about changing the DT_RELA entry. */
3511 if (htab->srelplt != NULL)
3512 {
3513 s = htab->srelplt->output_section;
3514 dyn.d_un.d_val -= s->size;
3515 }
3516 break;
3517
3518 case DT_TLSDESC_PLT:
3519 s = htab->splt;
3520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3521 + htab->tlsdesc_plt;
3522 break;
3523
3524 case DT_TLSDESC_GOT:
3525 s = htab->sgot;
3526 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3527 + htab->tlsdesc_got;
3528 break;
3529 }
3530
3531 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3532 }
3533
3534 /* Fill in the special first entry in the procedure linkage table. */
3535 if (htab->splt && htab->splt->size > 0)
3536 {
3537 /* Fill in the first entry in the procedure linkage table. */
3538 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3539 PLT_ENTRY_SIZE);
3540 /* Add offset for pushq GOT+8(%rip), since the instruction
3541 uses 6 bytes subtract this value. */
3542 bfd_put_32 (output_bfd,
3543 (htab->sgotplt->output_section->vma
3544 + htab->sgotplt->output_offset
3545 + 8
3546 - htab->splt->output_section->vma
3547 - htab->splt->output_offset
3548 - 6),
3549 htab->splt->contents + 2);
3550 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3551 the end of the instruction. */
3552 bfd_put_32 (output_bfd,
3553 (htab->sgotplt->output_section->vma
3554 + htab->sgotplt->output_offset
3555 + 16
3556 - htab->splt->output_section->vma
3557 - htab->splt->output_offset
3558 - 12),
3559 htab->splt->contents + 8);
3560
3561 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3562 PLT_ENTRY_SIZE;
3563
3564 if (htab->tlsdesc_plt)
3565 {
3566 bfd_put_64 (output_bfd, (bfd_vma) 0,
3567 htab->sgot->contents + htab->tlsdesc_got);
3568
3569 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3570 elf64_x86_64_plt0_entry,
3571 PLT_ENTRY_SIZE);
3572
3573 /* Add offset for pushq GOT+8(%rip), since the
3574 instruction uses 6 bytes subtract this value. */
3575 bfd_put_32 (output_bfd,
3576 (htab->sgotplt->output_section->vma
3577 + htab->sgotplt->output_offset
3578 + 8
3579 - htab->splt->output_section->vma
3580 - htab->splt->output_offset
3581 - htab->tlsdesc_plt
3582 - 6),
3583 htab->splt->contents + htab->tlsdesc_plt + 2);
3584 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3585 htab->tlsdesc_got. The 12 is the offset to the end of
3586 the instruction. */
3587 bfd_put_32 (output_bfd,
3588 (htab->sgot->output_section->vma
3589 + htab->sgot->output_offset
3590 + htab->tlsdesc_got
3591 - htab->splt->output_section->vma
3592 - htab->splt->output_offset
3593 - htab->tlsdesc_plt
3594 - 12),
3595 htab->splt->contents + htab->tlsdesc_plt + 8);
3596 }
3597 }
3598 }
3599
3600 if (htab->sgotplt)
3601 {
3602 /* Fill in the first three entries in the global offset table. */
3603 if (htab->sgotplt->size > 0)
3604 {
3605 /* Set the first entry in the global offset table to the address of
3606 the dynamic section. */
3607 if (sdyn == NULL)
3608 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3609 else
3610 bfd_put_64 (output_bfd,
3611 sdyn->output_section->vma + sdyn->output_offset,
3612 htab->sgotplt->contents);
3613 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3614 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3615 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3616 }
3617
3618 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3619 GOT_ENTRY_SIZE;
3620 }
3621
3622 if (htab->sgot && htab->sgot->size > 0)
3623 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3624 = GOT_ENTRY_SIZE;
3625
3626 return TRUE;
3627 }
3628
3629 /* Return address for Ith PLT stub in section PLT, for relocation REL
3630 or (bfd_vma) -1 if it should not be included. */
3631
3632 static bfd_vma
3633 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3634 const arelent *rel ATTRIBUTE_UNUSED)
3635 {
3636 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3637 }
3638
3639 /* Handle an x86-64 specific section when reading an object file. This
3640 is called when elfcode.h finds a section with an unknown type. */
3641
3642 static bfd_boolean
3643 elf64_x86_64_section_from_shdr (bfd *abfd,
3644 Elf_Internal_Shdr *hdr,
3645 const char *name,
3646 int shindex)
3647 {
3648 if (hdr->sh_type != SHT_X86_64_UNWIND)
3649 return FALSE;
3650
3651 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3652 return FALSE;
3653
3654 return TRUE;
3655 }
3656
3657 /* Hook called by the linker routine which adds symbols from an object
3658 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3659 of .bss. */
3660
3661 static bfd_boolean
3662 elf64_x86_64_add_symbol_hook (bfd *abfd,
3663 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3664 Elf_Internal_Sym *sym,
3665 const char **namep ATTRIBUTE_UNUSED,
3666 flagword *flagsp ATTRIBUTE_UNUSED,
3667 asection **secp, bfd_vma *valp)
3668 {
3669 asection *lcomm;
3670
3671 switch (sym->st_shndx)
3672 {
3673 case SHN_X86_64_LCOMMON:
3674 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3675 if (lcomm == NULL)
3676 {
3677 lcomm = bfd_make_section_with_flags (abfd,
3678 "LARGE_COMMON",
3679 (SEC_ALLOC
3680 | SEC_IS_COMMON
3681 | SEC_LINKER_CREATED));
3682 if (lcomm == NULL)
3683 return FALSE;
3684 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3685 }
3686 *secp = lcomm;
3687 *valp = sym->st_size;
3688 break;
3689 }
3690 return TRUE;
3691 }
3692
3693
3694 /* Given a BFD section, try to locate the corresponding ELF section
3695 index. */
3696
3697 static bfd_boolean
3698 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3699 asection *sec, int *index)
3700 {
3701 if (sec == &_bfd_elf_large_com_section)
3702 {
3703 *index = SHN_X86_64_LCOMMON;
3704 return TRUE;
3705 }
3706 return FALSE;
3707 }
3708
3709 /* Process a symbol. */
3710
3711 static void
3712 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3713 asymbol *asym)
3714 {
3715 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3716
3717 switch (elfsym->internal_elf_sym.st_shndx)
3718 {
3719 case SHN_X86_64_LCOMMON:
3720 asym->section = &_bfd_elf_large_com_section;
3721 asym->value = elfsym->internal_elf_sym.st_size;
3722 /* Common symbol doesn't set BSF_GLOBAL. */
3723 asym->flags &= ~BSF_GLOBAL;
3724 break;
3725 }
3726 }
3727
3728 static bfd_boolean
3729 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3730 {
3731 return (sym->st_shndx == SHN_COMMON
3732 || sym->st_shndx == SHN_X86_64_LCOMMON);
3733 }
3734
3735 static unsigned int
3736 elf64_x86_64_common_section_index (asection *sec)
3737 {
3738 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3739 return SHN_COMMON;
3740 else
3741 return SHN_X86_64_LCOMMON;
3742 }
3743
3744 static asection *
3745 elf64_x86_64_common_section (asection *sec)
3746 {
3747 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3748 return bfd_com_section_ptr;
3749 else
3750 return &_bfd_elf_large_com_section;
3751 }
3752
3753 static bfd_boolean
3754 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3755 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3756 struct elf_link_hash_entry *h,
3757 Elf_Internal_Sym *sym,
3758 asection **psec,
3759 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3760 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3761 bfd_boolean *skip ATTRIBUTE_UNUSED,
3762 bfd_boolean *override ATTRIBUTE_UNUSED,
3763 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3764 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3765 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3766 bfd_boolean *newdyn,
3767 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3768 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3769 bfd *abfd ATTRIBUTE_UNUSED,
3770 asection **sec,
3771 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3772 bfd_boolean *olddyn,
3773 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3774 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3775 bfd *oldbfd,
3776 asection **oldsec)
3777 {
3778 /* A normal common symbol and a large common symbol result in a
3779 normal common symbol. We turn the large common symbol into a
3780 normal one. */
3781 if (!*olddyn
3782 && h->root.type == bfd_link_hash_common
3783 && !*newdyn
3784 && bfd_is_com_section (*sec)
3785 && *oldsec != *sec)
3786 {
3787 if (sym->st_shndx == SHN_COMMON
3788 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3789 {
3790 h->root.u.c.p->section
3791 = bfd_make_section_old_way (oldbfd, "COMMON");
3792 h->root.u.c.p->section->flags = SEC_ALLOC;
3793 }
3794 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3795 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3796 *psec = *sec = bfd_com_section_ptr;
3797 }
3798
3799 return TRUE;
3800 }
3801
3802 static int
3803 elf64_x86_64_additional_program_headers (bfd *abfd,
3804 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3805 {
3806 asection *s;
3807 int count = 0;
3808
3809 /* Check to see if we need a large readonly segment. */
3810 s = bfd_get_section_by_name (abfd, ".lrodata");
3811 if (s && (s->flags & SEC_LOAD))
3812 count++;
3813
3814 /* Check to see if we need a large data segment. Since .lbss sections
3815 is placed right after the .bss section, there should be no need for
3816 a large data segment just because of .lbss. */
3817 s = bfd_get_section_by_name (abfd, ".ldata");
3818 if (s && (s->flags & SEC_LOAD))
3819 count++;
3820
3821 return count;
3822 }
3823
3824 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3825
3826 static bfd_boolean
3827 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3828 {
3829 if (h->plt.offset != (bfd_vma) -1
3830 && !h->def_regular
3831 && !h->pointer_equality_needed)
3832 return FALSE;
3833
3834 return _bfd_elf_hash_symbol (h);
3835 }
3836
3837 static const struct bfd_elf_special_section
3838 elf64_x86_64_special_sections[]=
3839 {
3840 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3841 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3842 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3843 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3844 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3845 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3846 { NULL, 0, 0, 0, 0 }
3847 };
3848
3849 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3850 #define TARGET_LITTLE_NAME "elf64-x86-64"
3851 #define ELF_ARCH bfd_arch_i386
3852 #define ELF_MACHINE_CODE EM_X86_64
3853 #define ELF_MAXPAGESIZE 0x200000
3854 #define ELF_MINPAGESIZE 0x1000
3855 #define ELF_COMMONPAGESIZE 0x1000
3856
3857 #define elf_backend_can_gc_sections 1
3858 #define elf_backend_can_refcount 1
3859 #define elf_backend_want_got_plt 1
3860 #define elf_backend_plt_readonly 1
3861 #define elf_backend_want_plt_sym 0
3862 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3863 #define elf_backend_rela_normal 1
3864
3865 #define elf_info_to_howto elf64_x86_64_info_to_howto
3866
3867 #define bfd_elf64_bfd_link_hash_table_create \
3868 elf64_x86_64_link_hash_table_create
3869 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3870 #define bfd_elf64_bfd_reloc_name_lookup \
3871 elf64_x86_64_reloc_name_lookup
3872
3873 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3874 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
3875 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3876 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3877 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3878 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3879 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3880 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3881 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3882 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3883 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3884 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3885 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3886 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3887 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3888 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3889 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3890 #define elf_backend_object_p elf64_x86_64_elf_object_p
3891 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3892
3893 #define elf_backend_section_from_shdr \
3894 elf64_x86_64_section_from_shdr
3895
3896 #define elf_backend_section_from_bfd_section \
3897 elf64_x86_64_elf_section_from_bfd_section
3898 #define elf_backend_add_symbol_hook \
3899 elf64_x86_64_add_symbol_hook
3900 #define elf_backend_symbol_processing \
3901 elf64_x86_64_symbol_processing
3902 #define elf_backend_common_section_index \
3903 elf64_x86_64_common_section_index
3904 #define elf_backend_common_section \
3905 elf64_x86_64_common_section
3906 #define elf_backend_common_definition \
3907 elf64_x86_64_common_definition
3908 #define elf_backend_merge_symbol \
3909 elf64_x86_64_merge_symbol
3910 #define elf_backend_special_sections \
3911 elf64_x86_64_special_sections
3912 #define elf_backend_additional_program_headers \
3913 elf64_x86_64_additional_program_headers
3914 #define elf_backend_hash_symbol \
3915 elf64_x86_64_hash_symbol
3916
3917 #include "elf64-target.h"
3918
3919 /* FreeBSD support. */
3920
3921 #undef TARGET_LITTLE_SYM
3922 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3923 #undef TARGET_LITTLE_NAME
3924 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3925
3926 #undef ELF_OSABI
3927 #define ELF_OSABI ELFOSABI_FREEBSD
3928
3929 #undef elf_backend_post_process_headers
3930 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3931
3932 #undef elf64_bed
3933 #define elf64_bed elf64_x86_64_fbsd_bed
3934
3935 #include "elf64-target.h"
This page took 0.114808 seconds and 5 git commands to generate.