Replace return FALSE with abort in x86 finish_dynamic_symbol
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
986 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED);
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
990 if (htab->plt_eh_frame == NULL
991 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
992 return FALSE;
993 }
994 return TRUE;
995 }
996
997 /* Copy the extra info we tack onto an elf_link_hash_entry. */
998
999 static void
1000 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1001 struct elf_link_hash_entry *dir,
1002 struct elf_link_hash_entry *ind)
1003 {
1004 struct elf_x86_64_link_hash_entry *edir, *eind;
1005
1006 edir = (struct elf_x86_64_link_hash_entry *) dir;
1007 eind = (struct elf_x86_64_link_hash_entry *) ind;
1008
1009 if (eind->dyn_relocs != NULL)
1010 {
1011 if (edir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **pp;
1014 struct elf_dyn_relocs *p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *q;
1021
1022 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1023 if (q->sec == p->sec)
1024 {
1025 q->pc_count += p->pc_count;
1026 q->count += p->count;
1027 *pp = p->next;
1028 break;
1029 }
1030 if (q == NULL)
1031 pp = &p->next;
1032 }
1033 *pp = edir->dyn_relocs;
1034 }
1035
1036 edir->dyn_relocs = eind->dyn_relocs;
1037 eind->dyn_relocs = NULL;
1038 }
1039
1040 if (ind->root.type == bfd_link_hash_indirect
1041 && dir->got.refcount <= 0)
1042 {
1043 edir->tls_type = eind->tls_type;
1044 eind->tls_type = GOT_UNKNOWN;
1045 }
1046
1047 if (ELIMINATE_COPY_RELOCS
1048 && ind->root.type != bfd_link_hash_indirect
1049 && dir->dynamic_adjusted)
1050 {
1051 /* If called to transfer flags for a weakdef during processing
1052 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1053 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1054 dir->ref_dynamic |= ind->ref_dynamic;
1055 dir->ref_regular |= ind->ref_regular;
1056 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1057 dir->needs_plt |= ind->needs_plt;
1058 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1059 }
1060 else
1061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1062 }
1063
1064 static bfd_boolean
1065 elf64_x86_64_elf_object_p (bfd *abfd)
1066 {
1067 /* Set the right machine number for an x86-64 elf64 file. */
1068 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1069 return TRUE;
1070 }
1071
1072 static bfd_boolean
1073 elf32_x86_64_elf_object_p (bfd *abfd)
1074 {
1075 /* Set the right machine number for an x86-64 elf32 file. */
1076 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if the TLS access code sequence support transition
1081 from R_TYPE. */
1082
1083 static bfd_boolean
1084 elf_x86_64_check_tls_transition (bfd *abfd,
1085 struct bfd_link_info *info,
1086 asection *sec,
1087 bfd_byte *contents,
1088 Elf_Internal_Shdr *symtab_hdr,
1089 struct elf_link_hash_entry **sym_hashes,
1090 unsigned int r_type,
1091 const Elf_Internal_Rela *rel,
1092 const Elf_Internal_Rela *relend)
1093 {
1094 unsigned int val;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 bfd_vma offset;
1098 struct elf_x86_64_link_hash_table *htab;
1099
1100 /* Get the section contents. */
1101 if (contents == NULL)
1102 {
1103 if (elf_section_data (sec)->this_hdr.contents != NULL)
1104 contents = elf_section_data (sec)->this_hdr.contents;
1105 else
1106 {
1107 /* FIXME: How to better handle error condition? */
1108 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1109 return FALSE;
1110
1111 /* Cache the section contents for elf_link_input_bfd. */
1112 elf_section_data (sec)->this_hdr.contents = contents;
1113 }
1114 }
1115
1116 htab = elf_x86_64_hash_table (info);
1117 offset = rel->r_offset;
1118 switch (r_type)
1119 {
1120 case R_X86_64_TLSGD:
1121 case R_X86_64_TLSLD:
1122 if ((rel + 1) >= relend)
1123 return FALSE;
1124
1125 if (r_type == R_X86_64_TLSGD)
1126 {
1127 /* Check transition from GD access model. For 64bit, only
1128 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For 32bit, only
1131 leaq foo@tlsgd(%rip), %rdi
1132 .word 0x6666; rex64; call __tls_get_addr
1133 can transit to different access model. */
1134
1135 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1136 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1137
1138 if ((offset + 12) > sec->size
1139 || memcmp (contents + offset + 4, call, 4) != 0)
1140 return FALSE;
1141
1142 if (ABI_64_P (abfd))
1143 {
1144 if (offset < 4
1145 || memcmp (contents + offset - 4, leaq, 4) != 0)
1146 return FALSE;
1147 }
1148 else
1149 {
1150 if (offset < 3
1151 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1152 return FALSE;
1153 }
1154 }
1155 else
1156 {
1157 /* Check transition from LD access model. Only
1158 leaq foo@tlsld(%rip), %rdi;
1159 call __tls_get_addr
1160 can transit to different access model. */
1161
1162 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1163
1164 if (offset < 3 || (offset + 9) > sec->size)
1165 return FALSE;
1166
1167 if (memcmp (contents + offset - 3, lea, 3) != 0
1168 || 0xe8 != *(contents + offset + 4))
1169 return FALSE;
1170 }
1171
1172 r_symndx = htab->r_sym (rel[1].r_info);
1173 if (r_symndx < symtab_hdr->sh_info)
1174 return FALSE;
1175
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1178 may be versioned. */
1179 return (h != NULL
1180 && h->root.root.string != NULL
1181 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1182 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1183 && (strncmp (h->root.root.string,
1184 "__tls_get_addr", 14) == 0));
1185
1186 case R_X86_64_GOTTPOFF:
1187 /* Check transition from IE access model:
1188 mov foo@gottpoff(%rip), %reg
1189 add foo@gottpoff(%rip), %reg
1190 */
1191
1192 /* Check REX prefix first. */
1193 if (offset >= 3 && (offset + 4) <= sec->size)
1194 {
1195 val = bfd_get_8 (abfd, contents + offset - 3);
1196 if (val != 0x48 && val != 0x4c)
1197 {
1198 /* X32 may have 0x44 REX prefix or no REX prefix. */
1199 if (ABI_64_P (abfd))
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 /* X32 may not have any REX prefix. */
1206 if (ABI_64_P (abfd))
1207 return FALSE;
1208 if (offset < 2 || (offset + 3) > sec->size)
1209 return FALSE;
1210 }
1211
1212 val = bfd_get_8 (abfd, contents + offset - 2);
1213 if (val != 0x8b && val != 0x03)
1214 return FALSE;
1215
1216 val = bfd_get_8 (abfd, contents + offset - 1);
1217 return (val & 0xc7) == 5;
1218
1219 case R_X86_64_GOTPC32_TLSDESC:
1220 /* Check transition from GDesc access model:
1221 leaq x@tlsdesc(%rip), %rax
1222
1223 Make sure it's a leaq adding rip to a 32-bit offset
1224 into any register, although it's probably almost always
1225 going to be rax. */
1226
1227 if (offset < 3 || (offset + 4) > sec->size)
1228 return FALSE;
1229
1230 val = bfd_get_8 (abfd, contents + offset - 3);
1231 if ((val & 0xfb) != 0x48)
1232 return FALSE;
1233
1234 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1235 return FALSE;
1236
1237 val = bfd_get_8 (abfd, contents + offset - 1);
1238 return (val & 0xc7) == 0x05;
1239
1240 case R_X86_64_TLSDESC_CALL:
1241 /* Check transition from GDesc access model:
1242 call *x@tlsdesc(%rax)
1243 */
1244 if (offset + 2 <= sec->size)
1245 {
1246 /* Make sure that it's a call *x@tlsdesc(%rax). */
1247 static const unsigned char call[] = { 0xff, 0x10 };
1248 return memcmp (contents + offset, call, 2) == 0;
1249 }
1250
1251 return FALSE;
1252
1253 default:
1254 abort ();
1255 }
1256 }
1257
1258 /* Return TRUE if the TLS access transition is OK or no transition
1259 will be performed. Update R_TYPE if there is a transition. */
1260
1261 static bfd_boolean
1262 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1263 asection *sec, bfd_byte *contents,
1264 Elf_Internal_Shdr *symtab_hdr,
1265 struct elf_link_hash_entry **sym_hashes,
1266 unsigned int *r_type, int tls_type,
1267 const Elf_Internal_Rela *rel,
1268 const Elf_Internal_Rela *relend,
1269 struct elf_link_hash_entry *h,
1270 unsigned long r_symndx)
1271 {
1272 unsigned int from_type = *r_type;
1273 unsigned int to_type = from_type;
1274 bfd_boolean check = TRUE;
1275
1276 /* Skip TLS transition for functions. */
1277 if (h != NULL
1278 && (h->type == STT_FUNC
1279 || h->type == STT_GNU_IFUNC))
1280 return TRUE;
1281
1282 switch (from_type)
1283 {
1284 case R_X86_64_TLSGD:
1285 case R_X86_64_GOTPC32_TLSDESC:
1286 case R_X86_64_TLSDESC_CALL:
1287 case R_X86_64_GOTTPOFF:
1288 if (info->executable)
1289 {
1290 if (h == NULL)
1291 to_type = R_X86_64_TPOFF32;
1292 else
1293 to_type = R_X86_64_GOTTPOFF;
1294 }
1295
1296 /* When we are called from elf_x86_64_relocate_section,
1297 CONTENTS isn't NULL and there may be additional transitions
1298 based on TLS_TYPE. */
1299 if (contents != NULL)
1300 {
1301 unsigned int new_to_type = to_type;
1302
1303 if (info->executable
1304 && h != NULL
1305 && h->dynindx == -1
1306 && tls_type == GOT_TLS_IE)
1307 new_to_type = R_X86_64_TPOFF32;
1308
1309 if (to_type == R_X86_64_TLSGD
1310 || to_type == R_X86_64_GOTPC32_TLSDESC
1311 || to_type == R_X86_64_TLSDESC_CALL)
1312 {
1313 if (tls_type == GOT_TLS_IE)
1314 new_to_type = R_X86_64_GOTTPOFF;
1315 }
1316
1317 /* We checked the transition before when we were called from
1318 elf_x86_64_check_relocs. We only want to check the new
1319 transition which hasn't been checked before. */
1320 check = new_to_type != to_type && from_type == to_type;
1321 to_type = new_to_type;
1322 }
1323
1324 break;
1325
1326 case R_X86_64_TLSLD:
1327 if (info->executable)
1328 to_type = R_X86_64_TPOFF32;
1329 break;
1330
1331 default:
1332 return TRUE;
1333 }
1334
1335 /* Return TRUE if there is no transition. */
1336 if (from_type == to_type)
1337 return TRUE;
1338
1339 /* Check if the transition can be performed. */
1340 if (check
1341 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1342 symtab_hdr, sym_hashes,
1343 from_type, rel, relend))
1344 {
1345 reloc_howto_type *from, *to;
1346 const char *name;
1347
1348 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1349 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1350
1351 if (h)
1352 name = h->root.root.string;
1353 else
1354 {
1355 struct elf_x86_64_link_hash_table *htab;
1356
1357 htab = elf_x86_64_hash_table (info);
1358 if (htab == NULL)
1359 name = "*unknown*";
1360 else
1361 {
1362 Elf_Internal_Sym *isym;
1363
1364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1365 abfd, r_symndx);
1366 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1367 }
1368 }
1369
1370 (*_bfd_error_handler)
1371 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1372 "in section `%A' failed"),
1373 abfd, sec, from->name, to->name, name,
1374 (unsigned long) rel->r_offset);
1375 bfd_set_error (bfd_error_bad_value);
1376 return FALSE;
1377 }
1378
1379 *r_type = to_type;
1380 return TRUE;
1381 }
1382
1383 /* Look through the relocs for a section during the first phase, and
1384 calculate needed space in the global offset table, procedure
1385 linkage table, and dynamic reloc sections. */
1386
1387 static bfd_boolean
1388 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1389 asection *sec,
1390 const Elf_Internal_Rela *relocs)
1391 {
1392 struct elf_x86_64_link_hash_table *htab;
1393 Elf_Internal_Shdr *symtab_hdr;
1394 struct elf_link_hash_entry **sym_hashes;
1395 const Elf_Internal_Rela *rel;
1396 const Elf_Internal_Rela *rel_end;
1397 asection *sreloc;
1398
1399 if (info->relocatable)
1400 return TRUE;
1401
1402 BFD_ASSERT (is_x86_64_elf (abfd));
1403
1404 htab = elf_x86_64_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1407
1408 symtab_hdr = &elf_symtab_hdr (abfd);
1409 sym_hashes = elf_sym_hashes (abfd);
1410
1411 sreloc = NULL;
1412
1413 rel_end = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < rel_end; rel++)
1415 {
1416 unsigned int r_type;
1417 unsigned long r_symndx;
1418 struct elf_link_hash_entry *h;
1419 Elf_Internal_Sym *isym;
1420 const char *name;
1421
1422 r_symndx = htab->r_sym (rel->r_info);
1423 r_type = ELF32_R_TYPE (rel->r_info);
1424
1425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1426 {
1427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1428 abfd, r_symndx);
1429 return FALSE;
1430 }
1431
1432 if (r_symndx < symtab_hdr->sh_info)
1433 {
1434 /* A local symbol. */
1435 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1436 abfd, r_symndx);
1437 if (isym == NULL)
1438 return FALSE;
1439
1440 /* Check relocation against local STT_GNU_IFUNC symbol. */
1441 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1442 {
1443 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1444 TRUE);
1445 if (h == NULL)
1446 return FALSE;
1447
1448 /* Fake a STT_GNU_IFUNC symbol. */
1449 h->type = STT_GNU_IFUNC;
1450 h->def_regular = 1;
1451 h->ref_regular = 1;
1452 h->forced_local = 1;
1453 h->root.type = bfd_link_hash_defined;
1454 }
1455 else
1456 h = NULL;
1457 }
1458 else
1459 {
1460 isym = NULL;
1461 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465 }
1466
1467 /* Check invalid x32 relocations. */
1468 if (!ABI_64_P (abfd))
1469 switch (r_type)
1470 {
1471 default:
1472 break;
1473
1474 case R_X86_64_DTPOFF64:
1475 case R_X86_64_TPOFF64:
1476 case R_X86_64_PC64:
1477 case R_X86_64_GOTOFF64:
1478 case R_X86_64_GOT64:
1479 case R_X86_64_GOTPCREL64:
1480 case R_X86_64_GOTPC64:
1481 case R_X86_64_GOTPLT64:
1482 case R_X86_64_PLTOFF64:
1483 {
1484 if (h)
1485 name = h->root.root.string;
1486 else
1487 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1488 NULL);
1489 (*_bfd_error_handler)
1490 (_("%B: relocation %s against symbol `%s' isn't "
1491 "supported in x32 mode"), abfd,
1492 x86_64_elf_howto_table[r_type].name, name);
1493 bfd_set_error (bfd_error_bad_value);
1494 return FALSE;
1495 }
1496 break;
1497 }
1498
1499 if (h != NULL)
1500 {
1501 /* Create the ifunc sections for static executables. If we
1502 never see an indirect function symbol nor we are building
1503 a static executable, those sections will be empty and
1504 won't appear in output. */
1505 switch (r_type)
1506 {
1507 default:
1508 break;
1509
1510 case R_X86_64_32S:
1511 case R_X86_64_32:
1512 case R_X86_64_64:
1513 case R_X86_64_PC32:
1514 case R_X86_64_PC64:
1515 case R_X86_64_PLT32:
1516 case R_X86_64_GOTPCREL:
1517 case R_X86_64_GOTPCREL64:
1518 if (htab->elf.dynobj == NULL)
1519 htab->elf.dynobj = abfd;
1520 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1521 return FALSE;
1522 break;
1523 }
1524
1525 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1526 it here if it is defined in a non-shared object. */
1527 if (h->type == STT_GNU_IFUNC
1528 && h->def_regular)
1529 {
1530 /* It is referenced by a non-shared object. */
1531 h->ref_regular = 1;
1532 h->needs_plt = 1;
1533
1534 /* STT_GNU_IFUNC symbol must go through PLT. */
1535 h->plt.refcount += 1;
1536
1537 /* STT_GNU_IFUNC needs dynamic sections. */
1538 if (htab->elf.dynobj == NULL)
1539 htab->elf.dynobj = abfd;
1540
1541 switch (r_type)
1542 {
1543 default:
1544 if (h->root.root.string)
1545 name = h->root.root.string;
1546 else
1547 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1548 NULL);
1549 (*_bfd_error_handler)
1550 (_("%B: relocation %s against STT_GNU_IFUNC "
1551 "symbol `%s' isn't handled by %s"), abfd,
1552 x86_64_elf_howto_table[r_type].name,
1553 name, __FUNCTION__);
1554 bfd_set_error (bfd_error_bad_value);
1555 return FALSE;
1556
1557 case R_X86_64_32:
1558 if (ABI_64_P (abfd))
1559 goto not_pointer;
1560 case R_X86_64_64:
1561 h->non_got_ref = 1;
1562 h->pointer_equality_needed = 1;
1563 if (info->shared)
1564 {
1565 /* We must copy these reloc types into the output
1566 file. Create a reloc section in dynobj and
1567 make room for this reloc. */
1568 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1569 (abfd, info, sec, sreloc,
1570 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1571 if (sreloc == NULL)
1572 return FALSE;
1573 }
1574 break;
1575
1576 case R_X86_64_32S:
1577 case R_X86_64_PC32:
1578 case R_X86_64_PC64:
1579 not_pointer:
1580 h->non_got_ref = 1;
1581 if (r_type != R_X86_64_PC32
1582 && r_type != R_X86_64_PC64)
1583 h->pointer_equality_needed = 1;
1584 break;
1585
1586 case R_X86_64_PLT32:
1587 break;
1588
1589 case R_X86_64_GOTPCREL:
1590 case R_X86_64_GOTPCREL64:
1591 h->got.refcount += 1;
1592 if (htab->elf.sgot == NULL
1593 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1594 info))
1595 return FALSE;
1596 break;
1597 }
1598
1599 continue;
1600 }
1601 }
1602
1603 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1604 symtab_hdr, sym_hashes,
1605 &r_type, GOT_UNKNOWN,
1606 rel, rel_end, h, r_symndx))
1607 return FALSE;
1608
1609 switch (r_type)
1610 {
1611 case R_X86_64_TLSLD:
1612 htab->tls_ld_got.refcount += 1;
1613 goto create_got;
1614
1615 case R_X86_64_TPOFF32:
1616 if (!info->executable && ABI_64_P (abfd))
1617 {
1618 if (h)
1619 name = h->root.root.string;
1620 else
1621 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1622 NULL);
1623 (*_bfd_error_handler)
1624 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1625 abfd,
1626 x86_64_elf_howto_table[r_type].name, name);
1627 bfd_set_error (bfd_error_bad_value);
1628 return FALSE;
1629 }
1630 break;
1631
1632 case R_X86_64_GOTTPOFF:
1633 if (!info->executable)
1634 info->flags |= DF_STATIC_TLS;
1635 /* Fall through */
1636
1637 case R_X86_64_GOT32:
1638 case R_X86_64_GOTPCREL:
1639 case R_X86_64_TLSGD:
1640 case R_X86_64_GOT64:
1641 case R_X86_64_GOTPCREL64:
1642 case R_X86_64_GOTPLT64:
1643 case R_X86_64_GOTPC32_TLSDESC:
1644 case R_X86_64_TLSDESC_CALL:
1645 /* This symbol requires a global offset table entry. */
1646 {
1647 int tls_type, old_tls_type;
1648
1649 switch (r_type)
1650 {
1651 default: tls_type = GOT_NORMAL; break;
1652 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1653 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1654 case R_X86_64_GOTPC32_TLSDESC:
1655 case R_X86_64_TLSDESC_CALL:
1656 tls_type = GOT_TLS_GDESC; break;
1657 }
1658
1659 if (h != NULL)
1660 {
1661 if (r_type == R_X86_64_GOTPLT64)
1662 {
1663 /* This relocation indicates that we also need
1664 a PLT entry, as this is a function. We don't need
1665 a PLT entry for local symbols. */
1666 h->needs_plt = 1;
1667 h->plt.refcount += 1;
1668 }
1669 h->got.refcount += 1;
1670 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1671 }
1672 else
1673 {
1674 bfd_signed_vma *local_got_refcounts;
1675
1676 /* This is a global offset table entry for a local symbol. */
1677 local_got_refcounts = elf_local_got_refcounts (abfd);
1678 if (local_got_refcounts == NULL)
1679 {
1680 bfd_size_type size;
1681
1682 size = symtab_hdr->sh_info;
1683 size *= sizeof (bfd_signed_vma)
1684 + sizeof (bfd_vma) + sizeof (char);
1685 local_got_refcounts = ((bfd_signed_vma *)
1686 bfd_zalloc (abfd, size));
1687 if (local_got_refcounts == NULL)
1688 return FALSE;
1689 elf_local_got_refcounts (abfd) = local_got_refcounts;
1690 elf_x86_64_local_tlsdesc_gotent (abfd)
1691 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1692 elf_x86_64_local_got_tls_type (abfd)
1693 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1694 }
1695 local_got_refcounts[r_symndx] += 1;
1696 old_tls_type
1697 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1698 }
1699
1700 /* If a TLS symbol is accessed using IE at least once,
1701 there is no point to use dynamic model for it. */
1702 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1703 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1704 || tls_type != GOT_TLS_IE))
1705 {
1706 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1707 tls_type = old_tls_type;
1708 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1709 && GOT_TLS_GD_ANY_P (tls_type))
1710 tls_type |= old_tls_type;
1711 else
1712 {
1713 if (h)
1714 name = h->root.root.string;
1715 else
1716 name = bfd_elf_sym_name (abfd, symtab_hdr,
1717 isym, NULL);
1718 (*_bfd_error_handler)
1719 (_("%B: '%s' accessed both as normal and thread local symbol"),
1720 abfd, name);
1721 return FALSE;
1722 }
1723 }
1724
1725 if (old_tls_type != tls_type)
1726 {
1727 if (h != NULL)
1728 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1729 else
1730 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1731 }
1732 }
1733 /* Fall through */
1734
1735 case R_X86_64_GOTOFF64:
1736 case R_X86_64_GOTPC32:
1737 case R_X86_64_GOTPC64:
1738 create_got:
1739 if (htab->elf.sgot == NULL)
1740 {
1741 if (htab->elf.dynobj == NULL)
1742 htab->elf.dynobj = abfd;
1743 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1744 info))
1745 return FALSE;
1746 }
1747 break;
1748
1749 case R_X86_64_PLT32:
1750 /* This symbol requires a procedure linkage table entry. We
1751 actually build the entry in adjust_dynamic_symbol,
1752 because this might be a case of linking PIC code which is
1753 never referenced by a dynamic object, in which case we
1754 don't need to generate a procedure linkage table entry
1755 after all. */
1756
1757 /* If this is a local symbol, we resolve it directly without
1758 creating a procedure linkage table entry. */
1759 if (h == NULL)
1760 continue;
1761
1762 h->needs_plt = 1;
1763 h->plt.refcount += 1;
1764 break;
1765
1766 case R_X86_64_PLTOFF64:
1767 /* This tries to form the 'address' of a function relative
1768 to GOT. For global symbols we need a PLT entry. */
1769 if (h != NULL)
1770 {
1771 h->needs_plt = 1;
1772 h->plt.refcount += 1;
1773 }
1774 goto create_got;
1775
1776 case R_X86_64_32:
1777 if (!ABI_64_P (abfd))
1778 goto pointer;
1779 case R_X86_64_8:
1780 case R_X86_64_16:
1781 case R_X86_64_32S:
1782 /* Let's help debug shared library creation. These relocs
1783 cannot be used in shared libs. Don't error out for
1784 sections we don't care about, such as debug sections or
1785 non-constant sections. */
1786 if (info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && (sec->flags & SEC_READONLY) != 0)
1789 {
1790 if (h)
1791 name = h->root.root.string;
1792 else
1793 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1794 (*_bfd_error_handler)
1795 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1796 abfd, x86_64_elf_howto_table[r_type].name, name);
1797 bfd_set_error (bfd_error_bad_value);
1798 return FALSE;
1799 }
1800 /* Fall through. */
1801
1802 case R_X86_64_PC8:
1803 case R_X86_64_PC16:
1804 case R_X86_64_PC32:
1805 case R_X86_64_PC64:
1806 case R_X86_64_64:
1807 pointer:
1808 if (h != NULL && info->executable)
1809 {
1810 /* If this reloc is in a read-only section, we might
1811 need a copy reloc. We can't check reliably at this
1812 stage whether the section is read-only, as input
1813 sections have not yet been mapped to output sections.
1814 Tentatively set the flag for now, and correct in
1815 adjust_dynamic_symbol. */
1816 h->non_got_ref = 1;
1817
1818 /* We may need a .plt entry if the function this reloc
1819 refers to is in a shared lib. */
1820 h->plt.refcount += 1;
1821 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1822 h->pointer_equality_needed = 1;
1823 }
1824
1825 /* If we are creating a shared library, and this is a reloc
1826 against a global symbol, or a non PC relative reloc
1827 against a local symbol, then we need to copy the reloc
1828 into the shared library. However, if we are linking with
1829 -Bsymbolic, we do not need to copy a reloc against a
1830 global symbol which is defined in an object we are
1831 including in the link (i.e., DEF_REGULAR is set). At
1832 this point we have not seen all the input files, so it is
1833 possible that DEF_REGULAR is not set now but will be set
1834 later (it is never cleared). In case of a weak definition,
1835 DEF_REGULAR may be cleared later by a strong definition in
1836 a shared library. We account for that possibility below by
1837 storing information in the relocs_copied field of the hash
1838 table entry. A similar situation occurs when creating
1839 shared libraries and symbol visibility changes render the
1840 symbol local.
1841
1842 If on the other hand, we are creating an executable, we
1843 may need to keep relocations for symbols satisfied by a
1844 dynamic library if we manage to avoid copy relocs for the
1845 symbol. */
1846 if ((info->shared
1847 && (sec->flags & SEC_ALLOC) != 0
1848 && (! IS_X86_64_PCREL_TYPE (r_type)
1849 || (h != NULL
1850 && (! SYMBOLIC_BIND (info, h)
1851 || h->root.type == bfd_link_hash_defweak
1852 || !h->def_regular))))
1853 || (ELIMINATE_COPY_RELOCS
1854 && !info->shared
1855 && (sec->flags & SEC_ALLOC) != 0
1856 && h != NULL
1857 && (h->root.type == bfd_link_hash_defweak
1858 || !h->def_regular)))
1859 {
1860 struct elf_dyn_relocs *p;
1861 struct elf_dyn_relocs **head;
1862
1863 /* We must copy these reloc types into the output file.
1864 Create a reloc section in dynobj and make room for
1865 this reloc. */
1866 if (sreloc == NULL)
1867 {
1868 if (htab->elf.dynobj == NULL)
1869 htab->elf.dynobj = abfd;
1870
1871 sreloc = _bfd_elf_make_dynamic_reloc_section
1872 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1873 abfd, /*rela?*/ TRUE);
1874
1875 if (sreloc == NULL)
1876 return FALSE;
1877 }
1878
1879 /* If this is a global symbol, we count the number of
1880 relocations we need for this symbol. */
1881 if (h != NULL)
1882 {
1883 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1884 }
1885 else
1886 {
1887 /* Track dynamic relocs needed for local syms too.
1888 We really need local syms available to do this
1889 easily. Oh well. */
1890 asection *s;
1891 void **vpp;
1892
1893 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1894 abfd, r_symndx);
1895 if (isym == NULL)
1896 return FALSE;
1897
1898 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1899 if (s == NULL)
1900 s = sec;
1901
1902 /* Beware of type punned pointers vs strict aliasing
1903 rules. */
1904 vpp = &(elf_section_data (s)->local_dynrel);
1905 head = (struct elf_dyn_relocs **)vpp;
1906 }
1907
1908 p = *head;
1909 if (p == NULL || p->sec != sec)
1910 {
1911 bfd_size_type amt = sizeof *p;
1912
1913 p = ((struct elf_dyn_relocs *)
1914 bfd_alloc (htab->elf.dynobj, amt));
1915 if (p == NULL)
1916 return FALSE;
1917 p->next = *head;
1918 *head = p;
1919 p->sec = sec;
1920 p->count = 0;
1921 p->pc_count = 0;
1922 }
1923
1924 p->count += 1;
1925 if (IS_X86_64_PCREL_TYPE (r_type))
1926 p->pc_count += 1;
1927 }
1928 break;
1929
1930 /* This relocation describes the C++ object vtable hierarchy.
1931 Reconstruct it for later use during GC. */
1932 case R_X86_64_GNU_VTINHERIT:
1933 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1934 return FALSE;
1935 break;
1936
1937 /* This relocation describes which C++ vtable entries are actually
1938 used. Record for later use during GC. */
1939 case R_X86_64_GNU_VTENTRY:
1940 BFD_ASSERT (h != NULL);
1941 if (h != NULL
1942 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1943 return FALSE;
1944 break;
1945
1946 default:
1947 break;
1948 }
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Return the section that should be marked against GC for a given
1955 relocation. */
1956
1957 static asection *
1958 elf_x86_64_gc_mark_hook (asection *sec,
1959 struct bfd_link_info *info,
1960 Elf_Internal_Rela *rel,
1961 struct elf_link_hash_entry *h,
1962 Elf_Internal_Sym *sym)
1963 {
1964 if (h != NULL)
1965 switch (ELF32_R_TYPE (rel->r_info))
1966 {
1967 case R_X86_64_GNU_VTINHERIT:
1968 case R_X86_64_GNU_VTENTRY:
1969 return NULL;
1970 }
1971
1972 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1973 }
1974
1975 /* Update the got entry reference counts for the section being removed. */
1976
1977 static bfd_boolean
1978 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1979 asection *sec,
1980 const Elf_Internal_Rela *relocs)
1981 {
1982 struct elf_x86_64_link_hash_table *htab;
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 bfd_signed_vma *local_got_refcounts;
1986 const Elf_Internal_Rela *rel, *relend;
1987
1988 if (info->relocatable)
1989 return TRUE;
1990
1991 htab = elf_x86_64_hash_table (info);
1992 if (htab == NULL)
1993 return FALSE;
1994
1995 elf_section_data (sec)->local_dynrel = NULL;
1996
1997 symtab_hdr = &elf_symtab_hdr (abfd);
1998 sym_hashes = elf_sym_hashes (abfd);
1999 local_got_refcounts = elf_local_got_refcounts (abfd);
2000
2001 htab = elf_x86_64_hash_table (info);
2002 relend = relocs + sec->reloc_count;
2003 for (rel = relocs; rel < relend; rel++)
2004 {
2005 unsigned long r_symndx;
2006 unsigned int r_type;
2007 struct elf_link_hash_entry *h = NULL;
2008
2009 r_symndx = htab->r_sym (rel->r_info);
2010 if (r_symndx >= symtab_hdr->sh_info)
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2016 }
2017 else
2018 {
2019 /* A local symbol. */
2020 Elf_Internal_Sym *isym;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024
2025 /* Check relocation against local STT_GNU_IFUNC symbol. */
2026 if (isym != NULL
2027 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2028 {
2029 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2030 if (h == NULL)
2031 abort ();
2032 }
2033 }
2034
2035 if (h)
2036 {
2037 struct elf_x86_64_link_hash_entry *eh;
2038 struct elf_dyn_relocs **pp;
2039 struct elf_dyn_relocs *p;
2040
2041 eh = (struct elf_x86_64_link_hash_entry *) h;
2042
2043 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2044 if (p->sec == sec)
2045 {
2046 /* Everything must go for SEC. */
2047 *pp = p->next;
2048 break;
2049 }
2050 }
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2054 symtab_hdr, sym_hashes,
2055 &r_type, GOT_UNKNOWN,
2056 rel, relend, h, r_symndx))
2057 return FALSE;
2058
2059 switch (r_type)
2060 {
2061 case R_X86_64_TLSLD:
2062 if (htab->tls_ld_got.refcount > 0)
2063 htab->tls_ld_got.refcount -= 1;
2064 break;
2065
2066 case R_X86_64_TLSGD:
2067 case R_X86_64_GOTPC32_TLSDESC:
2068 case R_X86_64_TLSDESC_CALL:
2069 case R_X86_64_GOTTPOFF:
2070 case R_X86_64_GOT32:
2071 case R_X86_64_GOTPCREL:
2072 case R_X86_64_GOT64:
2073 case R_X86_64_GOTPCREL64:
2074 case R_X86_64_GOTPLT64:
2075 if (h != NULL)
2076 {
2077 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2078 h->plt.refcount -= 1;
2079 if (h->got.refcount > 0)
2080 h->got.refcount -= 1;
2081 if (h->type == STT_GNU_IFUNC)
2082 {
2083 if (h->plt.refcount > 0)
2084 h->plt.refcount -= 1;
2085 }
2086 }
2087 else if (local_got_refcounts != NULL)
2088 {
2089 if (local_got_refcounts[r_symndx] > 0)
2090 local_got_refcounts[r_symndx] -= 1;
2091 }
2092 break;
2093
2094 case R_X86_64_8:
2095 case R_X86_64_16:
2096 case R_X86_64_32:
2097 case R_X86_64_64:
2098 case R_X86_64_32S:
2099 case R_X86_64_PC8:
2100 case R_X86_64_PC16:
2101 case R_X86_64_PC32:
2102 case R_X86_64_PC64:
2103 if (info->shared
2104 && (h == NULL || h->type != STT_GNU_IFUNC))
2105 break;
2106 /* Fall thru */
2107
2108 case R_X86_64_PLT32:
2109 case R_X86_64_PLTOFF64:
2110 if (h != NULL)
2111 {
2112 if (h->plt.refcount > 0)
2113 h->plt.refcount -= 1;
2114 }
2115 break;
2116
2117 default:
2118 break;
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Adjust a symbol defined by a dynamic object and referenced by a
2126 regular object. The current definition is in some section of the
2127 dynamic object, but we're not including those sections. We have to
2128 change the definition to something the rest of the link can
2129 understand. */
2130
2131 static bfd_boolean
2132 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2133 struct elf_link_hash_entry *h)
2134 {
2135 struct elf_x86_64_link_hash_table *htab;
2136 asection *s;
2137
2138 /* STT_GNU_IFUNC symbol must go through PLT. */
2139 if (h->type == STT_GNU_IFUNC)
2140 {
2141 if (h->plt.refcount <= 0)
2142 {
2143 h->plt.offset = (bfd_vma) -1;
2144 h->needs_plt = 0;
2145 }
2146 return TRUE;
2147 }
2148
2149 /* If this is a function, put it in the procedure linkage table. We
2150 will fill in the contents of the procedure linkage table later,
2151 when we know the address of the .got section. */
2152 if (h->type == STT_FUNC
2153 || h->needs_plt)
2154 {
2155 if (h->plt.refcount <= 0
2156 || SYMBOL_CALLS_LOCAL (info, h)
2157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2158 && h->root.type == bfd_link_hash_undefweak))
2159 {
2160 /* This case can occur if we saw a PLT32 reloc in an input
2161 file, but the symbol was never referred to by a dynamic
2162 object, or if all references were garbage collected. In
2163 such a case, we don't actually need to build a procedure
2164 linkage table, and we can just do a PC32 reloc instead. */
2165 h->plt.offset = (bfd_vma) -1;
2166 h->needs_plt = 0;
2167 }
2168
2169 return TRUE;
2170 }
2171 else
2172 /* It's possible that we incorrectly decided a .plt reloc was
2173 needed for an R_X86_64_PC32 reloc to a non-function sym in
2174 check_relocs. We can't decide accurately between function and
2175 non-function syms in check-relocs; Objects loaded later in
2176 the link may change h->type. So fix it now. */
2177 h->plt.offset = (bfd_vma) -1;
2178
2179 /* If this is a weak symbol, and there is a real definition, the
2180 processor independent code will have arranged for us to see the
2181 real definition first, and we can just use the same value. */
2182 if (h->u.weakdef != NULL)
2183 {
2184 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2185 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2186 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2187 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2188 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2189 h->non_got_ref = h->u.weakdef->non_got_ref;
2190 return TRUE;
2191 }
2192
2193 /* This is a reference to a symbol defined by a dynamic object which
2194 is not a function. */
2195
2196 /* If we are creating a shared library, we must presume that the
2197 only references to the symbol are via the global offset table.
2198 For such cases we need not do anything here; the relocations will
2199 be handled correctly by relocate_section. */
2200 if (info->shared)
2201 return TRUE;
2202
2203 /* If there are no references to this symbol that do not use the
2204 GOT, we don't need to generate a copy reloc. */
2205 if (!h->non_got_ref)
2206 return TRUE;
2207
2208 /* If -z nocopyreloc was given, we won't generate them either. */
2209 if (info->nocopyreloc)
2210 {
2211 h->non_got_ref = 0;
2212 return TRUE;
2213 }
2214
2215 if (ELIMINATE_COPY_RELOCS)
2216 {
2217 struct elf_x86_64_link_hash_entry * eh;
2218 struct elf_dyn_relocs *p;
2219
2220 eh = (struct elf_x86_64_link_hash_entry *) h;
2221 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2222 {
2223 s = p->sec->output_section;
2224 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2225 break;
2226 }
2227
2228 /* If we didn't find any dynamic relocs in read-only sections, then
2229 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2230 if (p == NULL)
2231 {
2232 h->non_got_ref = 0;
2233 return TRUE;
2234 }
2235 }
2236
2237 /* We must allocate the symbol in our .dynbss section, which will
2238 become part of the .bss section of the executable. There will be
2239 an entry for this symbol in the .dynsym section. The dynamic
2240 object will contain position independent code, so all references
2241 from the dynamic object to this symbol will go through the global
2242 offset table. The dynamic linker will use the .dynsym entry to
2243 determine the address it must put in the global offset table, so
2244 both the dynamic object and the regular object will refer to the
2245 same memory location for the variable. */
2246
2247 htab = elf_x86_64_hash_table (info);
2248 if (htab == NULL)
2249 return FALSE;
2250
2251 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2252 to copy the initial value out of the dynamic object and into the
2253 runtime process image. */
2254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2255 {
2256 const struct elf_backend_data *bed;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 htab->srelbss->size += bed->s->sizeof_rela;
2259 h->needs_copy = 1;
2260 }
2261
2262 s = htab->sdynbss;
2263
2264 return _bfd_elf_adjust_dynamic_copy (h, s);
2265 }
2266
2267 /* Allocate space in .plt, .got and associated reloc sections for
2268 dynamic relocs. */
2269
2270 static bfd_boolean
2271 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2272 {
2273 struct bfd_link_info *info;
2274 struct elf_x86_64_link_hash_table *htab;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277 const struct elf_backend_data *bed;
2278 unsigned int plt_entry_size;
2279
2280 if (h->root.type == bfd_link_hash_indirect)
2281 return TRUE;
2282
2283 eh = (struct elf_x86_64_link_hash_entry *) h;
2284
2285 info = (struct bfd_link_info *) inf;
2286 htab = elf_x86_64_hash_table (info);
2287 if (htab == NULL)
2288 return FALSE;
2289 bed = get_elf_backend_data (info->output_bfd);
2290 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2291
2292 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2293 here if it is defined and referenced in a non-shared object. */
2294 if (h->type == STT_GNU_IFUNC
2295 && h->def_regular)
2296 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2297 &eh->dyn_relocs,
2298 plt_entry_size,
2299 GOT_ENTRY_SIZE);
2300 else if (htab->elf.dynamic_sections_created
2301 && h->plt.refcount > 0)
2302 {
2303 /* Make sure this symbol is output as a dynamic symbol.
2304 Undefined weak syms won't yet be marked as dynamic. */
2305 if (h->dynindx == -1
2306 && !h->forced_local)
2307 {
2308 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2309 return FALSE;
2310 }
2311
2312 if (info->shared
2313 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2314 {
2315 asection *s = htab->elf.splt;
2316
2317 /* If this is the first .plt entry, make room for the special
2318 first entry. */
2319 if (s->size == 0)
2320 s->size += plt_entry_size;
2321
2322 h->plt.offset = s->size;
2323
2324 /* If this symbol is not defined in a regular file, and we are
2325 not generating a shared library, then set the symbol to this
2326 location in the .plt. This is required to make function
2327 pointers compare as equal between the normal executable and
2328 the shared library. */
2329 if (! info->shared
2330 && !h->def_regular)
2331 {
2332 h->root.u.def.section = s;
2333 h->root.u.def.value = h->plt.offset;
2334 }
2335
2336 /* Make room for this entry. */
2337 s->size += plt_entry_size;
2338
2339 /* We also need to make an entry in the .got.plt section, which
2340 will be placed in the .got section by the linker script. */
2341 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2342
2343 /* We also need to make an entry in the .rela.plt section. */
2344 htab->elf.srelplt->size += bed->s->sizeof_rela;
2345 htab->elf.srelplt->reloc_count++;
2346 }
2347 else
2348 {
2349 h->plt.offset = (bfd_vma) -1;
2350 h->needs_plt = 0;
2351 }
2352 }
2353 else
2354 {
2355 h->plt.offset = (bfd_vma) -1;
2356 h->needs_plt = 0;
2357 }
2358
2359 eh->tlsdesc_got = (bfd_vma) -1;
2360
2361 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2362 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2363 if (h->got.refcount > 0
2364 && info->executable
2365 && h->dynindx == -1
2366 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2367 {
2368 h->got.offset = (bfd_vma) -1;
2369 }
2370 else if (h->got.refcount > 0)
2371 {
2372 asection *s;
2373 bfd_boolean dyn;
2374 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2375
2376 /* Make sure this symbol is output as a dynamic symbol.
2377 Undefined weak syms won't yet be marked as dynamic. */
2378 if (h->dynindx == -1
2379 && !h->forced_local)
2380 {
2381 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2382 return FALSE;
2383 }
2384
2385 if (GOT_TLS_GDESC_P (tls_type))
2386 {
2387 eh->tlsdesc_got = htab->elf.sgotplt->size
2388 - elf_x86_64_compute_jump_table_size (htab);
2389 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2390 h->got.offset = (bfd_vma) -2;
2391 }
2392 if (! GOT_TLS_GDESC_P (tls_type)
2393 || GOT_TLS_GD_P (tls_type))
2394 {
2395 s = htab->elf.sgot;
2396 h->got.offset = s->size;
2397 s->size += GOT_ENTRY_SIZE;
2398 if (GOT_TLS_GD_P (tls_type))
2399 s->size += GOT_ENTRY_SIZE;
2400 }
2401 dyn = htab->elf.dynamic_sections_created;
2402 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2403 and two if global.
2404 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2405 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2406 || tls_type == GOT_TLS_IE)
2407 htab->elf.srelgot->size += bed->s->sizeof_rela;
2408 else if (GOT_TLS_GD_P (tls_type))
2409 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2410 else if (! GOT_TLS_GDESC_P (tls_type)
2411 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2412 || h->root.type != bfd_link_hash_undefweak)
2413 && (info->shared
2414 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2415 htab->elf.srelgot->size += bed->s->sizeof_rela;
2416 if (GOT_TLS_GDESC_P (tls_type))
2417 {
2418 htab->elf.srelplt->size += bed->s->sizeof_rela;
2419 htab->tlsdesc_plt = (bfd_vma) -1;
2420 }
2421 }
2422 else
2423 h->got.offset = (bfd_vma) -1;
2424
2425 if (eh->dyn_relocs == NULL)
2426 return TRUE;
2427
2428 /* In the shared -Bsymbolic case, discard space allocated for
2429 dynamic pc-relative relocs against symbols which turn out to be
2430 defined in regular objects. For the normal shared case, discard
2431 space for pc-relative relocs that have become local due to symbol
2432 visibility changes. */
2433
2434 if (info->shared)
2435 {
2436 /* Relocs that use pc_count are those that appear on a call
2437 insn, or certain REL relocs that can generated via assembly.
2438 We want calls to protected symbols to resolve directly to the
2439 function rather than going via the plt. If people want
2440 function pointer comparisons to work as expected then they
2441 should avoid writing weird assembly. */
2442 if (SYMBOL_CALLS_LOCAL (info, h))
2443 {
2444 struct elf_dyn_relocs **pp;
2445
2446 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2447 {
2448 p->count -= p->pc_count;
2449 p->pc_count = 0;
2450 if (p->count == 0)
2451 *pp = p->next;
2452 else
2453 pp = &p->next;
2454 }
2455 }
2456
2457 /* Also discard relocs on undefined weak syms with non-default
2458 visibility. */
2459 if (eh->dyn_relocs != NULL
2460 && h->root.type == bfd_link_hash_undefweak)
2461 {
2462 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2463 eh->dyn_relocs = NULL;
2464
2465 /* Make sure undefined weak symbols are output as a dynamic
2466 symbol in PIEs. */
2467 else if (h->dynindx == -1
2468 && ! h->forced_local
2469 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2470 return FALSE;
2471 }
2472
2473 }
2474 else if (ELIMINATE_COPY_RELOCS)
2475 {
2476 /* For the non-shared case, discard space for relocs against
2477 symbols which turn out to need copy relocs or are not
2478 dynamic. */
2479
2480 if (!h->non_got_ref
2481 && ((h->def_dynamic
2482 && !h->def_regular)
2483 || (htab->elf.dynamic_sections_created
2484 && (h->root.type == bfd_link_hash_undefweak
2485 || h->root.type == bfd_link_hash_undefined))))
2486 {
2487 /* Make sure this symbol is output as a dynamic symbol.
2488 Undefined weak syms won't yet be marked as dynamic. */
2489 if (h->dynindx == -1
2490 && ! h->forced_local
2491 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2492 return FALSE;
2493
2494 /* If that succeeded, we know we'll be keeping all the
2495 relocs. */
2496 if (h->dynindx != -1)
2497 goto keep;
2498 }
2499
2500 eh->dyn_relocs = NULL;
2501
2502 keep: ;
2503 }
2504
2505 /* Finally, allocate space. */
2506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2507 {
2508 asection * sreloc;
2509
2510 sreloc = elf_section_data (p->sec)->sreloc;
2511
2512 BFD_ASSERT (sreloc != NULL);
2513
2514 sreloc->size += p->count * bed->s->sizeof_rela;
2515 }
2516
2517 return TRUE;
2518 }
2519
2520 /* Allocate space in .plt, .got and associated reloc sections for
2521 local dynamic relocs. */
2522
2523 static bfd_boolean
2524 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2525 {
2526 struct elf_link_hash_entry *h
2527 = (struct elf_link_hash_entry *) *slot;
2528
2529 if (h->type != STT_GNU_IFUNC
2530 || !h->def_regular
2531 || !h->ref_regular
2532 || !h->forced_local
2533 || h->root.type != bfd_link_hash_defined)
2534 abort ();
2535
2536 return elf_x86_64_allocate_dynrelocs (h, inf);
2537 }
2538
2539 /* Find any dynamic relocs that apply to read-only sections. */
2540
2541 static bfd_boolean
2542 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2543 void * inf)
2544 {
2545 struct elf_x86_64_link_hash_entry *eh;
2546 struct elf_dyn_relocs *p;
2547
2548 /* Skip local IFUNC symbols. */
2549 if (h->forced_local && h->type == STT_GNU_IFUNC)
2550 return TRUE;
2551
2552 eh = (struct elf_x86_64_link_hash_entry *) h;
2553 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2554 {
2555 asection *s = p->sec->output_section;
2556
2557 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2558 {
2559 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2560
2561 info->flags |= DF_TEXTREL;
2562
2563 if (info->warn_shared_textrel && info->shared)
2564 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2565 p->sec->owner, h->root.root.string,
2566 p->sec);
2567
2568 /* Not an error, just cut short the traversal. */
2569 return FALSE;
2570 }
2571 }
2572 return TRUE;
2573 }
2574
2575 /* Convert
2576 mov foo@GOTPCREL(%rip), %reg
2577 to
2578 lea foo(%rip), %reg
2579 with the local symbol, foo. */
2580
2581 static bfd_boolean
2582 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2583 struct bfd_link_info *link_info)
2584 {
2585 Elf_Internal_Shdr *symtab_hdr;
2586 Elf_Internal_Rela *internal_relocs;
2587 Elf_Internal_Rela *irel, *irelend;
2588 bfd_byte *contents;
2589 struct elf_x86_64_link_hash_table *htab;
2590 bfd_boolean changed_contents;
2591 bfd_boolean changed_relocs;
2592 bfd_signed_vma *local_got_refcounts;
2593
2594 /* Don't even try to convert non-ELF outputs. */
2595 if (!is_elf_hash_table (link_info->hash))
2596 return FALSE;
2597
2598 /* Nothing to do if there are no codes or no relocations. */
2599 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2600 || sec->reloc_count == 0)
2601 return TRUE;
2602
2603 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2604
2605 /* Load the relocations for this section. */
2606 internal_relocs = (_bfd_elf_link_read_relocs
2607 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2608 link_info->keep_memory));
2609 if (internal_relocs == NULL)
2610 return FALSE;
2611
2612 htab = elf_x86_64_hash_table (link_info);
2613 changed_contents = FALSE;
2614 changed_relocs = FALSE;
2615 local_got_refcounts = elf_local_got_refcounts (abfd);
2616
2617 /* Get the section contents. */
2618 if (elf_section_data (sec)->this_hdr.contents != NULL)
2619 contents = elf_section_data (sec)->this_hdr.contents;
2620 else
2621 {
2622 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2623 goto error_return;
2624 }
2625
2626 irelend = internal_relocs + sec->reloc_count;
2627 for (irel = internal_relocs; irel < irelend; irel++)
2628 {
2629 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2630 unsigned int r_symndx = htab->r_sym (irel->r_info);
2631 unsigned int indx;
2632 struct elf_link_hash_entry *h;
2633
2634 if (r_type != R_X86_64_GOTPCREL)
2635 continue;
2636
2637 /* Get the symbol referred to by the reloc. */
2638 if (r_symndx < symtab_hdr->sh_info)
2639 {
2640 Elf_Internal_Sym *isym;
2641
2642 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2643 abfd, r_symndx);
2644
2645 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2646 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2647 && bfd_get_8 (input_bfd,
2648 contents + irel->r_offset - 2) == 0x8b)
2649 {
2650 bfd_put_8 (output_bfd, 0x8d,
2651 contents + irel->r_offset - 2);
2652 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2653 if (local_got_refcounts != NULL
2654 && local_got_refcounts[r_symndx] > 0)
2655 local_got_refcounts[r_symndx] -= 1;
2656 changed_contents = TRUE;
2657 changed_relocs = TRUE;
2658 }
2659 continue;
2660 }
2661
2662 indx = r_symndx - symtab_hdr->sh_info;
2663 h = elf_sym_hashes (abfd)[indx];
2664 BFD_ASSERT (h != NULL);
2665
2666 while (h->root.type == bfd_link_hash_indirect
2667 || h->root.type == bfd_link_hash_warning)
2668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2669
2670 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2671 avoid optimizing _DYNAMIC since ld.so may use its link-time
2672 address. */
2673 if (h->def_regular
2674 && h->type != STT_GNU_IFUNC
2675 && h != htab->elf.hdynamic
2676 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2677 && bfd_get_8 (input_bfd,
2678 contents + irel->r_offset - 2) == 0x8b)
2679 {
2680 bfd_put_8 (output_bfd, 0x8d,
2681 contents + irel->r_offset - 2);
2682 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2683 if (h->got.refcount > 0)
2684 h->got.refcount -= 1;
2685 changed_contents = TRUE;
2686 changed_relocs = TRUE;
2687 }
2688 }
2689
2690 if (contents != NULL
2691 && elf_section_data (sec)->this_hdr.contents != contents)
2692 {
2693 if (!changed_contents && !link_info->keep_memory)
2694 free (contents);
2695 else
2696 {
2697 /* Cache the section contents for elf_link_input_bfd. */
2698 elf_section_data (sec)->this_hdr.contents = contents;
2699 }
2700 }
2701
2702 if (elf_section_data (sec)->relocs != internal_relocs)
2703 {
2704 if (!changed_relocs)
2705 free (internal_relocs);
2706 else
2707 elf_section_data (sec)->relocs = internal_relocs;
2708 }
2709
2710 return TRUE;
2711
2712 error_return:
2713 if (contents != NULL
2714 && elf_section_data (sec)->this_hdr.contents != contents)
2715 free (contents);
2716 if (internal_relocs != NULL
2717 && elf_section_data (sec)->relocs != internal_relocs)
2718 free (internal_relocs);
2719 return FALSE;
2720 }
2721
2722 /* Set the sizes of the dynamic sections. */
2723
2724 static bfd_boolean
2725 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2726 struct bfd_link_info *info)
2727 {
2728 struct elf_x86_64_link_hash_table *htab;
2729 bfd *dynobj;
2730 asection *s;
2731 bfd_boolean relocs;
2732 bfd *ibfd;
2733 const struct elf_backend_data *bed;
2734
2735 htab = elf_x86_64_hash_table (info);
2736 if (htab == NULL)
2737 return FALSE;
2738 bed = get_elf_backend_data (output_bfd);
2739
2740 dynobj = htab->elf.dynobj;
2741 if (dynobj == NULL)
2742 abort ();
2743
2744 if (htab->elf.dynamic_sections_created)
2745 {
2746 /* Set the contents of the .interp section to the interpreter. */
2747 if (info->executable)
2748 {
2749 s = bfd_get_linker_section (dynobj, ".interp");
2750 if (s == NULL)
2751 abort ();
2752 s->size = htab->dynamic_interpreter_size;
2753 s->contents = (unsigned char *) htab->dynamic_interpreter;
2754 }
2755 }
2756
2757 /* Set up .got offsets for local syms, and space for local dynamic
2758 relocs. */
2759 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2760 {
2761 bfd_signed_vma *local_got;
2762 bfd_signed_vma *end_local_got;
2763 char *local_tls_type;
2764 bfd_vma *local_tlsdesc_gotent;
2765 bfd_size_type locsymcount;
2766 Elf_Internal_Shdr *symtab_hdr;
2767 asection *srel;
2768
2769 if (! is_x86_64_elf (ibfd))
2770 continue;
2771
2772 for (s = ibfd->sections; s != NULL; s = s->next)
2773 {
2774 struct elf_dyn_relocs *p;
2775
2776 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2777 return FALSE;
2778
2779 for (p = (struct elf_dyn_relocs *)
2780 (elf_section_data (s)->local_dynrel);
2781 p != NULL;
2782 p = p->next)
2783 {
2784 if (!bfd_is_abs_section (p->sec)
2785 && bfd_is_abs_section (p->sec->output_section))
2786 {
2787 /* Input section has been discarded, either because
2788 it is a copy of a linkonce section or due to
2789 linker script /DISCARD/, so we'll be discarding
2790 the relocs too. */
2791 }
2792 else if (p->count != 0)
2793 {
2794 srel = elf_section_data (p->sec)->sreloc;
2795 srel->size += p->count * bed->s->sizeof_rela;
2796 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2797 && (info->flags & DF_TEXTREL) == 0)
2798 {
2799 info->flags |= DF_TEXTREL;
2800 if (info->warn_shared_textrel && info->shared)
2801 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2802 p->sec->owner, p->sec);
2803 }
2804 }
2805 }
2806 }
2807
2808 local_got = elf_local_got_refcounts (ibfd);
2809 if (!local_got)
2810 continue;
2811
2812 symtab_hdr = &elf_symtab_hdr (ibfd);
2813 locsymcount = symtab_hdr->sh_info;
2814 end_local_got = local_got + locsymcount;
2815 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2816 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2817 s = htab->elf.sgot;
2818 srel = htab->elf.srelgot;
2819 for (; local_got < end_local_got;
2820 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2821 {
2822 *local_tlsdesc_gotent = (bfd_vma) -1;
2823 if (*local_got > 0)
2824 {
2825 if (GOT_TLS_GDESC_P (*local_tls_type))
2826 {
2827 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2828 - elf_x86_64_compute_jump_table_size (htab);
2829 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2830 *local_got = (bfd_vma) -2;
2831 }
2832 if (! GOT_TLS_GDESC_P (*local_tls_type)
2833 || GOT_TLS_GD_P (*local_tls_type))
2834 {
2835 *local_got = s->size;
2836 s->size += GOT_ENTRY_SIZE;
2837 if (GOT_TLS_GD_P (*local_tls_type))
2838 s->size += GOT_ENTRY_SIZE;
2839 }
2840 if (info->shared
2841 || GOT_TLS_GD_ANY_P (*local_tls_type)
2842 || *local_tls_type == GOT_TLS_IE)
2843 {
2844 if (GOT_TLS_GDESC_P (*local_tls_type))
2845 {
2846 htab->elf.srelplt->size
2847 += bed->s->sizeof_rela;
2848 htab->tlsdesc_plt = (bfd_vma) -1;
2849 }
2850 if (! GOT_TLS_GDESC_P (*local_tls_type)
2851 || GOT_TLS_GD_P (*local_tls_type))
2852 srel->size += bed->s->sizeof_rela;
2853 }
2854 }
2855 else
2856 *local_got = (bfd_vma) -1;
2857 }
2858 }
2859
2860 if (htab->tls_ld_got.refcount > 0)
2861 {
2862 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2863 relocs. */
2864 htab->tls_ld_got.offset = htab->elf.sgot->size;
2865 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2866 htab->elf.srelgot->size += bed->s->sizeof_rela;
2867 }
2868 else
2869 htab->tls_ld_got.offset = -1;
2870
2871 /* Allocate global sym .plt and .got entries, and space for global
2872 sym dynamic relocs. */
2873 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2874 info);
2875
2876 /* Allocate .plt and .got entries, and space for local symbols. */
2877 htab_traverse (htab->loc_hash_table,
2878 elf_x86_64_allocate_local_dynrelocs,
2879 info);
2880
2881 /* For every jump slot reserved in the sgotplt, reloc_count is
2882 incremented. However, when we reserve space for TLS descriptors,
2883 it's not incremented, so in order to compute the space reserved
2884 for them, it suffices to multiply the reloc count by the jump
2885 slot size.
2886
2887 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2888 so that R_X86_64_IRELATIVE entries come last. */
2889 if (htab->elf.srelplt)
2890 {
2891 htab->sgotplt_jump_table_size
2892 = elf_x86_64_compute_jump_table_size (htab);
2893 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2894 }
2895 else if (htab->elf.irelplt)
2896 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2897
2898 if (htab->tlsdesc_plt)
2899 {
2900 /* If we're not using lazy TLS relocations, don't generate the
2901 PLT and GOT entries they require. */
2902 if ((info->flags & DF_BIND_NOW))
2903 htab->tlsdesc_plt = 0;
2904 else
2905 {
2906 htab->tlsdesc_got = htab->elf.sgot->size;
2907 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2908 /* Reserve room for the initial entry.
2909 FIXME: we could probably do away with it in this case. */
2910 if (htab->elf.splt->size == 0)
2911 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2912 htab->tlsdesc_plt = htab->elf.splt->size;
2913 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2914 }
2915 }
2916
2917 if (htab->elf.sgotplt)
2918 {
2919 struct elf_link_hash_entry *got;
2920 got = elf_link_hash_lookup (elf_hash_table (info),
2921 "_GLOBAL_OFFSET_TABLE_",
2922 FALSE, FALSE, FALSE);
2923
2924 /* Don't allocate .got.plt section if there are no GOT nor PLT
2925 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2926 if ((got == NULL
2927 || !got->ref_regular_nonweak)
2928 && (htab->elf.sgotplt->size
2929 == get_elf_backend_data (output_bfd)->got_header_size)
2930 && (htab->elf.splt == NULL
2931 || htab->elf.splt->size == 0)
2932 && (htab->elf.sgot == NULL
2933 || htab->elf.sgot->size == 0)
2934 && (htab->elf.iplt == NULL
2935 || htab->elf.iplt->size == 0)
2936 && (htab->elf.igotplt == NULL
2937 || htab->elf.igotplt->size == 0))
2938 htab->elf.sgotplt->size = 0;
2939 }
2940
2941 if (htab->plt_eh_frame != NULL
2942 && htab->elf.splt != NULL
2943 && htab->elf.splt->size != 0
2944 && !bfd_is_abs_section (htab->elf.splt->output_section)
2945 && _bfd_elf_eh_frame_present (info))
2946 {
2947 const struct elf_x86_64_backend_data *arch_data
2948 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2949 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2950 }
2951
2952 /* We now have determined the sizes of the various dynamic sections.
2953 Allocate memory for them. */
2954 relocs = FALSE;
2955 for (s = dynobj->sections; s != NULL; s = s->next)
2956 {
2957 if ((s->flags & SEC_LINKER_CREATED) == 0)
2958 continue;
2959
2960 if (s == htab->elf.splt
2961 || s == htab->elf.sgot
2962 || s == htab->elf.sgotplt
2963 || s == htab->elf.iplt
2964 || s == htab->elf.igotplt
2965 || s == htab->plt_eh_frame
2966 || s == htab->sdynbss)
2967 {
2968 /* Strip this section if we don't need it; see the
2969 comment below. */
2970 }
2971 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2972 {
2973 if (s->size != 0 && s != htab->elf.srelplt)
2974 relocs = TRUE;
2975
2976 /* We use the reloc_count field as a counter if we need
2977 to copy relocs into the output file. */
2978 if (s != htab->elf.srelplt)
2979 s->reloc_count = 0;
2980 }
2981 else
2982 {
2983 /* It's not one of our sections, so don't allocate space. */
2984 continue;
2985 }
2986
2987 if (s->size == 0)
2988 {
2989 /* If we don't need this section, strip it from the
2990 output file. This is mostly to handle .rela.bss and
2991 .rela.plt. We must create both sections in
2992 create_dynamic_sections, because they must be created
2993 before the linker maps input sections to output
2994 sections. The linker does that before
2995 adjust_dynamic_symbol is called, and it is that
2996 function which decides whether anything needs to go
2997 into these sections. */
2998
2999 s->flags |= SEC_EXCLUDE;
3000 continue;
3001 }
3002
3003 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3004 continue;
3005
3006 /* Allocate memory for the section contents. We use bfd_zalloc
3007 here in case unused entries are not reclaimed before the
3008 section's contents are written out. This should not happen,
3009 but this way if it does, we get a R_X86_64_NONE reloc instead
3010 of garbage. */
3011 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3012 if (s->contents == NULL)
3013 return FALSE;
3014 }
3015
3016 if (htab->plt_eh_frame != NULL
3017 && htab->plt_eh_frame->contents != NULL)
3018 {
3019 const struct elf_x86_64_backend_data *arch_data
3020 = (const struct elf_x86_64_backend_data *) bed->arch_data;
3021
3022 memcpy (htab->plt_eh_frame->contents,
3023 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3024 bfd_put_32 (dynobj, htab->elf.splt->size,
3025 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3026 }
3027
3028 if (htab->elf.dynamic_sections_created)
3029 {
3030 /* Add some entries to the .dynamic section. We fill in the
3031 values later, in elf_x86_64_finish_dynamic_sections, but we
3032 must add the entries now so that we get the correct size for
3033 the .dynamic section. The DT_DEBUG entry is filled in by the
3034 dynamic linker and used by the debugger. */
3035 #define add_dynamic_entry(TAG, VAL) \
3036 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3037
3038 if (info->executable)
3039 {
3040 if (!add_dynamic_entry (DT_DEBUG, 0))
3041 return FALSE;
3042 }
3043
3044 if (htab->elf.splt->size != 0)
3045 {
3046 if (!add_dynamic_entry (DT_PLTGOT, 0)
3047 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3048 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3049 || !add_dynamic_entry (DT_JMPREL, 0))
3050 return FALSE;
3051
3052 if (htab->tlsdesc_plt
3053 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3054 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3055 return FALSE;
3056 }
3057
3058 if (relocs)
3059 {
3060 if (!add_dynamic_entry (DT_RELA, 0)
3061 || !add_dynamic_entry (DT_RELASZ, 0)
3062 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3063 return FALSE;
3064
3065 /* If any dynamic relocs apply to a read-only section,
3066 then we need a DT_TEXTREL entry. */
3067 if ((info->flags & DF_TEXTREL) == 0)
3068 elf_link_hash_traverse (&htab->elf,
3069 elf_x86_64_readonly_dynrelocs,
3070 info);
3071
3072 if ((info->flags & DF_TEXTREL) != 0)
3073 {
3074 if (!add_dynamic_entry (DT_TEXTREL, 0))
3075 return FALSE;
3076 }
3077 }
3078 }
3079 #undef add_dynamic_entry
3080
3081 return TRUE;
3082 }
3083
3084 static bfd_boolean
3085 elf_x86_64_always_size_sections (bfd *output_bfd,
3086 struct bfd_link_info *info)
3087 {
3088 asection *tls_sec = elf_hash_table (info)->tls_sec;
3089
3090 if (tls_sec)
3091 {
3092 struct elf_link_hash_entry *tlsbase;
3093
3094 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3095 "_TLS_MODULE_BASE_",
3096 FALSE, FALSE, FALSE);
3097
3098 if (tlsbase && tlsbase->type == STT_TLS)
3099 {
3100 struct elf_x86_64_link_hash_table *htab;
3101 struct bfd_link_hash_entry *bh = NULL;
3102 const struct elf_backend_data *bed
3103 = get_elf_backend_data (output_bfd);
3104
3105 htab = elf_x86_64_hash_table (info);
3106 if (htab == NULL)
3107 return FALSE;
3108
3109 if (!(_bfd_generic_link_add_one_symbol
3110 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3111 tls_sec, 0, NULL, FALSE,
3112 bed->collect, &bh)))
3113 return FALSE;
3114
3115 htab->tls_module_base = bh;
3116
3117 tlsbase = (struct elf_link_hash_entry *)bh;
3118 tlsbase->def_regular = 1;
3119 tlsbase->other = STV_HIDDEN;
3120 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3121 }
3122 }
3123
3124 return TRUE;
3125 }
3126
3127 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3128 executables. Rather than setting it to the beginning of the TLS
3129 section, we have to set it to the end. This function may be called
3130 multiple times, it is idempotent. */
3131
3132 static void
3133 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3134 {
3135 struct elf_x86_64_link_hash_table *htab;
3136 struct bfd_link_hash_entry *base;
3137
3138 if (!info->executable)
3139 return;
3140
3141 htab = elf_x86_64_hash_table (info);
3142 if (htab == NULL)
3143 return;
3144
3145 base = htab->tls_module_base;
3146 if (base == NULL)
3147 return;
3148
3149 base->u.def.value = htab->elf.tls_size;
3150 }
3151
3152 /* Return the base VMA address which should be subtracted from real addresses
3153 when resolving @dtpoff relocation.
3154 This is PT_TLS segment p_vaddr. */
3155
3156 static bfd_vma
3157 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3158 {
3159 /* If tls_sec is NULL, we should have signalled an error already. */
3160 if (elf_hash_table (info)->tls_sec == NULL)
3161 return 0;
3162 return elf_hash_table (info)->tls_sec->vma;
3163 }
3164
3165 /* Return the relocation value for @tpoff relocation
3166 if STT_TLS virtual address is ADDRESS. */
3167
3168 static bfd_vma
3169 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3170 {
3171 struct elf_link_hash_table *htab = elf_hash_table (info);
3172 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3173 bfd_vma static_tls_size;
3174
3175 /* If tls_segment is NULL, we should have signalled an error already. */
3176 if (htab->tls_sec == NULL)
3177 return 0;
3178
3179 /* Consider special static TLS alignment requirements. */
3180 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3181 return address - static_tls_size - htab->tls_sec->vma;
3182 }
3183
3184 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3185 branch? */
3186
3187 static bfd_boolean
3188 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3189 {
3190 /* Opcode Instruction
3191 0xe8 call
3192 0xe9 jump
3193 0x0f 0x8x conditional jump */
3194 return ((offset > 0
3195 && (contents [offset - 1] == 0xe8
3196 || contents [offset - 1] == 0xe9))
3197 || (offset > 1
3198 && contents [offset - 2] == 0x0f
3199 && (contents [offset - 1] & 0xf0) == 0x80));
3200 }
3201
3202 /* Relocate an x86_64 ELF section. */
3203
3204 static bfd_boolean
3205 elf_x86_64_relocate_section (bfd *output_bfd,
3206 struct bfd_link_info *info,
3207 bfd *input_bfd,
3208 asection *input_section,
3209 bfd_byte *contents,
3210 Elf_Internal_Rela *relocs,
3211 Elf_Internal_Sym *local_syms,
3212 asection **local_sections)
3213 {
3214 struct elf_x86_64_link_hash_table *htab;
3215 Elf_Internal_Shdr *symtab_hdr;
3216 struct elf_link_hash_entry **sym_hashes;
3217 bfd_vma *local_got_offsets;
3218 bfd_vma *local_tlsdesc_gotents;
3219 Elf_Internal_Rela *rel;
3220 Elf_Internal_Rela *relend;
3221 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3222
3223 BFD_ASSERT (is_x86_64_elf (input_bfd));
3224
3225 htab = elf_x86_64_hash_table (info);
3226 if (htab == NULL)
3227 return FALSE;
3228 symtab_hdr = &elf_symtab_hdr (input_bfd);
3229 sym_hashes = elf_sym_hashes (input_bfd);
3230 local_got_offsets = elf_local_got_offsets (input_bfd);
3231 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3232
3233 elf_x86_64_set_tls_module_base (info);
3234
3235 rel = relocs;
3236 relend = relocs + input_section->reloc_count;
3237 for (; rel < relend; rel++)
3238 {
3239 unsigned int r_type;
3240 reloc_howto_type *howto;
3241 unsigned long r_symndx;
3242 struct elf_link_hash_entry *h;
3243 Elf_Internal_Sym *sym;
3244 asection *sec;
3245 bfd_vma off, offplt;
3246 bfd_vma relocation;
3247 bfd_boolean unresolved_reloc;
3248 bfd_reloc_status_type r;
3249 int tls_type;
3250 asection *base_got;
3251
3252 r_type = ELF32_R_TYPE (rel->r_info);
3253 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3254 || r_type == (int) R_X86_64_GNU_VTENTRY)
3255 continue;
3256
3257 if (r_type >= R_X86_64_max)
3258 {
3259 bfd_set_error (bfd_error_bad_value);
3260 return FALSE;
3261 }
3262
3263 if (r_type != (int) R_X86_64_32
3264 || ABI_64_P (output_bfd))
3265 howto = x86_64_elf_howto_table + r_type;
3266 else
3267 howto = (x86_64_elf_howto_table
3268 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3269 r_symndx = htab->r_sym (rel->r_info);
3270 h = NULL;
3271 sym = NULL;
3272 sec = NULL;
3273 unresolved_reloc = FALSE;
3274 if (r_symndx < symtab_hdr->sh_info)
3275 {
3276 sym = local_syms + r_symndx;
3277 sec = local_sections[r_symndx];
3278
3279 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3280 &sec, rel);
3281
3282 /* Relocate against local STT_GNU_IFUNC symbol. */
3283 if (!info->relocatable
3284 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3285 {
3286 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3287 rel, FALSE);
3288 if (h == NULL)
3289 abort ();
3290
3291 /* Set STT_GNU_IFUNC symbol value. */
3292 h->root.u.def.value = sym->st_value;
3293 h->root.u.def.section = sec;
3294 }
3295 }
3296 else
3297 {
3298 bfd_boolean warned ATTRIBUTE_UNUSED;
3299
3300 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3301 r_symndx, symtab_hdr, sym_hashes,
3302 h, sec, relocation,
3303 unresolved_reloc, warned);
3304 }
3305
3306 if (sec != NULL && discarded_section (sec))
3307 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3308 rel, 1, relend, howto, 0, contents);
3309
3310 if (info->relocatable)
3311 continue;
3312
3313 if (rel->r_addend == 0
3314 && r_type == R_X86_64_64
3315 && !ABI_64_P (output_bfd))
3316 {
3317 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3318 it to 64bit if addend is zero. */
3319 r_type = R_X86_64_32;
3320 memset (contents + rel->r_offset + 4, 0, 4);
3321 }
3322
3323 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3324 it here if it is defined in a non-shared object. */
3325 if (h != NULL
3326 && h->type == STT_GNU_IFUNC
3327 && h->def_regular)
3328 {
3329 asection *plt;
3330 bfd_vma plt_index;
3331 const char *name;
3332
3333 if ((input_section->flags & SEC_ALLOC) == 0
3334 || h->plt.offset == (bfd_vma) -1)
3335 abort ();
3336
3337 /* STT_GNU_IFUNC symbol must go through PLT. */
3338 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3339 relocation = (plt->output_section->vma
3340 + plt->output_offset + h->plt.offset);
3341
3342 switch (r_type)
3343 {
3344 default:
3345 if (h->root.root.string)
3346 name = h->root.root.string;
3347 else
3348 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3349 NULL);
3350 (*_bfd_error_handler)
3351 (_("%B: relocation %s against STT_GNU_IFUNC "
3352 "symbol `%s' isn't handled by %s"), input_bfd,
3353 x86_64_elf_howto_table[r_type].name,
3354 name, __FUNCTION__);
3355 bfd_set_error (bfd_error_bad_value);
3356 return FALSE;
3357
3358 case R_X86_64_32S:
3359 if (info->shared)
3360 abort ();
3361 goto do_relocation;
3362
3363 case R_X86_64_32:
3364 if (ABI_64_P (output_bfd))
3365 goto do_relocation;
3366 /* FALLTHROUGH */
3367 case R_X86_64_64:
3368 if (rel->r_addend != 0)
3369 {
3370 if (h->root.root.string)
3371 name = h->root.root.string;
3372 else
3373 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3374 sym, NULL);
3375 (*_bfd_error_handler)
3376 (_("%B: relocation %s against STT_GNU_IFUNC "
3377 "symbol `%s' has non-zero addend: %d"),
3378 input_bfd, x86_64_elf_howto_table[r_type].name,
3379 name, rel->r_addend);
3380 bfd_set_error (bfd_error_bad_value);
3381 return FALSE;
3382 }
3383
3384 /* Generate dynamic relcoation only when there is a
3385 non-GOT reference in a shared object. */
3386 if (info->shared && h->non_got_ref)
3387 {
3388 Elf_Internal_Rela outrel;
3389 asection *sreloc;
3390
3391 /* Need a dynamic relocation to get the real function
3392 address. */
3393 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3394 info,
3395 input_section,
3396 rel->r_offset);
3397 if (outrel.r_offset == (bfd_vma) -1
3398 || outrel.r_offset == (bfd_vma) -2)
3399 abort ();
3400
3401 outrel.r_offset += (input_section->output_section->vma
3402 + input_section->output_offset);
3403
3404 if (h->dynindx == -1
3405 || h->forced_local
3406 || info->executable)
3407 {
3408 /* This symbol is resolved locally. */
3409 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3410 outrel.r_addend = (h->root.u.def.value
3411 + h->root.u.def.section->output_section->vma
3412 + h->root.u.def.section->output_offset);
3413 }
3414 else
3415 {
3416 outrel.r_info = htab->r_info (h->dynindx, r_type);
3417 outrel.r_addend = 0;
3418 }
3419
3420 sreloc = htab->elf.irelifunc;
3421 elf_append_rela (output_bfd, sreloc, &outrel);
3422
3423 /* If this reloc is against an external symbol, we
3424 do not want to fiddle with the addend. Otherwise,
3425 we need to include the symbol value so that it
3426 becomes an addend for the dynamic reloc. For an
3427 internal symbol, we have updated addend. */
3428 continue;
3429 }
3430 /* FALLTHROUGH */
3431 case R_X86_64_PC32:
3432 case R_X86_64_PC64:
3433 case R_X86_64_PLT32:
3434 goto do_relocation;
3435
3436 case R_X86_64_GOTPCREL:
3437 case R_X86_64_GOTPCREL64:
3438 base_got = htab->elf.sgot;
3439 off = h->got.offset;
3440
3441 if (base_got == NULL)
3442 abort ();
3443
3444 if (off == (bfd_vma) -1)
3445 {
3446 /* We can't use h->got.offset here to save state, or
3447 even just remember the offset, as finish_dynamic_symbol
3448 would use that as offset into .got. */
3449
3450 if (htab->elf.splt != NULL)
3451 {
3452 plt_index = h->plt.offset / plt_entry_size - 1;
3453 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3454 base_got = htab->elf.sgotplt;
3455 }
3456 else
3457 {
3458 plt_index = h->plt.offset / plt_entry_size;
3459 off = plt_index * GOT_ENTRY_SIZE;
3460 base_got = htab->elf.igotplt;
3461 }
3462
3463 if (h->dynindx == -1
3464 || h->forced_local
3465 || info->symbolic)
3466 {
3467 /* This references the local defitionion. We must
3468 initialize this entry in the global offset table.
3469 Since the offset must always be a multiple of 8,
3470 we use the least significant bit to record
3471 whether we have initialized it already.
3472
3473 When doing a dynamic link, we create a .rela.got
3474 relocation entry to initialize the value. This
3475 is done in the finish_dynamic_symbol routine. */
3476 if ((off & 1) != 0)
3477 off &= ~1;
3478 else
3479 {
3480 bfd_put_64 (output_bfd, relocation,
3481 base_got->contents + off);
3482 /* Note that this is harmless for the GOTPLT64
3483 case, as -1 | 1 still is -1. */
3484 h->got.offset |= 1;
3485 }
3486 }
3487 }
3488
3489 relocation = (base_got->output_section->vma
3490 + base_got->output_offset + off);
3491
3492 goto do_relocation;
3493 }
3494 }
3495
3496 /* When generating a shared object, the relocations handled here are
3497 copied into the output file to be resolved at run time. */
3498 switch (r_type)
3499 {
3500 case R_X86_64_GOT32:
3501 case R_X86_64_GOT64:
3502 /* Relocation is to the entry for this symbol in the global
3503 offset table. */
3504 case R_X86_64_GOTPCREL:
3505 case R_X86_64_GOTPCREL64:
3506 /* Use global offset table entry as symbol value. */
3507 case R_X86_64_GOTPLT64:
3508 /* This is the same as GOT64 for relocation purposes, but
3509 indicates the existence of a PLT entry. The difficulty is,
3510 that we must calculate the GOT slot offset from the PLT
3511 offset, if this symbol got a PLT entry (it was global).
3512 Additionally if it's computed from the PLT entry, then that
3513 GOT offset is relative to .got.plt, not to .got. */
3514 base_got = htab->elf.sgot;
3515
3516 if (htab->elf.sgot == NULL)
3517 abort ();
3518
3519 if (h != NULL)
3520 {
3521 bfd_boolean dyn;
3522
3523 off = h->got.offset;
3524 if (h->needs_plt
3525 && h->plt.offset != (bfd_vma)-1
3526 && off == (bfd_vma)-1)
3527 {
3528 /* We can't use h->got.offset here to save
3529 state, or even just remember the offset, as
3530 finish_dynamic_symbol would use that as offset into
3531 .got. */
3532 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3533 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3534 base_got = htab->elf.sgotplt;
3535 }
3536
3537 dyn = htab->elf.dynamic_sections_created;
3538
3539 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3540 || (info->shared
3541 && SYMBOL_REFERENCES_LOCAL (info, h))
3542 || (ELF_ST_VISIBILITY (h->other)
3543 && h->root.type == bfd_link_hash_undefweak))
3544 {
3545 /* This is actually a static link, or it is a -Bsymbolic
3546 link and the symbol is defined locally, or the symbol
3547 was forced to be local because of a version file. We
3548 must initialize this entry in the global offset table.
3549 Since the offset must always be a multiple of 8, we
3550 use the least significant bit to record whether we
3551 have initialized it already.
3552
3553 When doing a dynamic link, we create a .rela.got
3554 relocation entry to initialize the value. This is
3555 done in the finish_dynamic_symbol routine. */
3556 if ((off & 1) != 0)
3557 off &= ~1;
3558 else
3559 {
3560 bfd_put_64 (output_bfd, relocation,
3561 base_got->contents + off);
3562 /* Note that this is harmless for the GOTPLT64 case,
3563 as -1 | 1 still is -1. */
3564 h->got.offset |= 1;
3565 }
3566 }
3567 else
3568 unresolved_reloc = FALSE;
3569 }
3570 else
3571 {
3572 if (local_got_offsets == NULL)
3573 abort ();
3574
3575 off = local_got_offsets[r_symndx];
3576
3577 /* The offset must always be a multiple of 8. We use
3578 the least significant bit to record whether we have
3579 already generated the necessary reloc. */
3580 if ((off & 1) != 0)
3581 off &= ~1;
3582 else
3583 {
3584 bfd_put_64 (output_bfd, relocation,
3585 base_got->contents + off);
3586
3587 if (info->shared)
3588 {
3589 asection *s;
3590 Elf_Internal_Rela outrel;
3591
3592 /* We need to generate a R_X86_64_RELATIVE reloc
3593 for the dynamic linker. */
3594 s = htab->elf.srelgot;
3595 if (s == NULL)
3596 abort ();
3597
3598 outrel.r_offset = (base_got->output_section->vma
3599 + base_got->output_offset
3600 + off);
3601 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3602 outrel.r_addend = relocation;
3603 elf_append_rela (output_bfd, s, &outrel);
3604 }
3605
3606 local_got_offsets[r_symndx] |= 1;
3607 }
3608 }
3609
3610 if (off >= (bfd_vma) -2)
3611 abort ();
3612
3613 relocation = base_got->output_section->vma
3614 + base_got->output_offset + off;
3615 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3616 relocation -= htab->elf.sgotplt->output_section->vma
3617 - htab->elf.sgotplt->output_offset;
3618
3619 break;
3620
3621 case R_X86_64_GOTOFF64:
3622 /* Relocation is relative to the start of the global offset
3623 table. */
3624
3625 /* Check to make sure it isn't a protected function symbol
3626 for shared library since it may not be local when used
3627 as function address. */
3628 if (!info->executable
3629 && h
3630 && !SYMBOLIC_BIND (info, h)
3631 && h->def_regular
3632 && h->type == STT_FUNC
3633 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3634 {
3635 (*_bfd_error_handler)
3636 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3637 input_bfd, h->root.root.string);
3638 bfd_set_error (bfd_error_bad_value);
3639 return FALSE;
3640 }
3641
3642 /* Note that sgot is not involved in this
3643 calculation. We always want the start of .got.plt. If we
3644 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3645 permitted by the ABI, we might have to change this
3646 calculation. */
3647 relocation -= htab->elf.sgotplt->output_section->vma
3648 + htab->elf.sgotplt->output_offset;
3649 break;
3650
3651 case R_X86_64_GOTPC32:
3652 case R_X86_64_GOTPC64:
3653 /* Use global offset table as symbol value. */
3654 relocation = htab->elf.sgotplt->output_section->vma
3655 + htab->elf.sgotplt->output_offset;
3656 unresolved_reloc = FALSE;
3657 break;
3658
3659 case R_X86_64_PLTOFF64:
3660 /* Relocation is PLT entry relative to GOT. For local
3661 symbols it's the symbol itself relative to GOT. */
3662 if (h != NULL
3663 /* See PLT32 handling. */
3664 && h->plt.offset != (bfd_vma) -1
3665 && htab->elf.splt != NULL)
3666 {
3667 relocation = (htab->elf.splt->output_section->vma
3668 + htab->elf.splt->output_offset
3669 + h->plt.offset);
3670 unresolved_reloc = FALSE;
3671 }
3672
3673 relocation -= htab->elf.sgotplt->output_section->vma
3674 + htab->elf.sgotplt->output_offset;
3675 break;
3676
3677 case R_X86_64_PLT32:
3678 /* Relocation is to the entry for this symbol in the
3679 procedure linkage table. */
3680
3681 /* Resolve a PLT32 reloc against a local symbol directly,
3682 without using the procedure linkage table. */
3683 if (h == NULL)
3684 break;
3685
3686 if (h->plt.offset == (bfd_vma) -1
3687 || htab->elf.splt == NULL)
3688 {
3689 /* We didn't make a PLT entry for this symbol. This
3690 happens when statically linking PIC code, or when
3691 using -Bsymbolic. */
3692 break;
3693 }
3694
3695 relocation = (htab->elf.splt->output_section->vma
3696 + htab->elf.splt->output_offset
3697 + h->plt.offset);
3698 unresolved_reloc = FALSE;
3699 break;
3700
3701 case R_X86_64_PC8:
3702 case R_X86_64_PC16:
3703 case R_X86_64_PC32:
3704 if (info->shared
3705 && (input_section->flags & SEC_ALLOC) != 0
3706 && (input_section->flags & SEC_READONLY) != 0
3707 && h != NULL)
3708 {
3709 bfd_boolean fail = FALSE;
3710 bfd_boolean branch
3711 = (r_type == R_X86_64_PC32
3712 && is_32bit_relative_branch (contents, rel->r_offset));
3713
3714 if (SYMBOL_REFERENCES_LOCAL (info, h))
3715 {
3716 /* Symbol is referenced locally. Make sure it is
3717 defined locally or for a branch. */
3718 fail = !h->def_regular && !branch;
3719 }
3720 else
3721 {
3722 /* Symbol isn't referenced locally. We only allow
3723 branch to symbol with non-default visibility. */
3724 fail = (!branch
3725 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3726 }
3727
3728 if (fail)
3729 {
3730 const char *fmt;
3731 const char *v;
3732 const char *pic = "";
3733
3734 switch (ELF_ST_VISIBILITY (h->other))
3735 {
3736 case STV_HIDDEN:
3737 v = _("hidden symbol");
3738 break;
3739 case STV_INTERNAL:
3740 v = _("internal symbol");
3741 break;
3742 case STV_PROTECTED:
3743 v = _("protected symbol");
3744 break;
3745 default:
3746 v = _("symbol");
3747 pic = _("; recompile with -fPIC");
3748 break;
3749 }
3750
3751 if (h->def_regular)
3752 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3753 else
3754 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3755
3756 (*_bfd_error_handler) (fmt, input_bfd,
3757 x86_64_elf_howto_table[r_type].name,
3758 v, h->root.root.string, pic);
3759 bfd_set_error (bfd_error_bad_value);
3760 return FALSE;
3761 }
3762 }
3763 /* Fall through. */
3764
3765 case R_X86_64_8:
3766 case R_X86_64_16:
3767 case R_X86_64_32:
3768 case R_X86_64_PC64:
3769 case R_X86_64_64:
3770 /* FIXME: The ABI says the linker should make sure the value is
3771 the same when it's zeroextended to 64 bit. */
3772
3773 if ((input_section->flags & SEC_ALLOC) == 0)
3774 break;
3775
3776 if ((info->shared
3777 && (h == NULL
3778 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3779 || h->root.type != bfd_link_hash_undefweak)
3780 && (! IS_X86_64_PCREL_TYPE (r_type)
3781 || ! SYMBOL_CALLS_LOCAL (info, h)))
3782 || (ELIMINATE_COPY_RELOCS
3783 && !info->shared
3784 && h != NULL
3785 && h->dynindx != -1
3786 && !h->non_got_ref
3787 && ((h->def_dynamic
3788 && !h->def_regular)
3789 || h->root.type == bfd_link_hash_undefweak
3790 || h->root.type == bfd_link_hash_undefined)))
3791 {
3792 Elf_Internal_Rela outrel;
3793 bfd_boolean skip, relocate;
3794 asection *sreloc;
3795
3796 /* When generating a shared object, these relocations
3797 are copied into the output file to be resolved at run
3798 time. */
3799 skip = FALSE;
3800 relocate = FALSE;
3801
3802 outrel.r_offset =
3803 _bfd_elf_section_offset (output_bfd, info, input_section,
3804 rel->r_offset);
3805 if (outrel.r_offset == (bfd_vma) -1)
3806 skip = TRUE;
3807 else if (outrel.r_offset == (bfd_vma) -2)
3808 skip = TRUE, relocate = TRUE;
3809
3810 outrel.r_offset += (input_section->output_section->vma
3811 + input_section->output_offset);
3812
3813 if (skip)
3814 memset (&outrel, 0, sizeof outrel);
3815
3816 /* h->dynindx may be -1 if this symbol was marked to
3817 become local. */
3818 else if (h != NULL
3819 && h->dynindx != -1
3820 && (IS_X86_64_PCREL_TYPE (r_type)
3821 || ! info->shared
3822 || ! SYMBOLIC_BIND (info, h)
3823 || ! h->def_regular))
3824 {
3825 outrel.r_info = htab->r_info (h->dynindx, r_type);
3826 outrel.r_addend = rel->r_addend;
3827 }
3828 else
3829 {
3830 /* This symbol is local, or marked to become local. */
3831 if (r_type == htab->pointer_r_type)
3832 {
3833 relocate = TRUE;
3834 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3835 outrel.r_addend = relocation + rel->r_addend;
3836 }
3837 else if (r_type == R_X86_64_64
3838 && !ABI_64_P (output_bfd))
3839 {
3840 relocate = TRUE;
3841 outrel.r_info = htab->r_info (0,
3842 R_X86_64_RELATIVE64);
3843 outrel.r_addend = relocation + rel->r_addend;
3844 /* Check addend overflow. */
3845 if ((outrel.r_addend & 0x80000000)
3846 != (rel->r_addend & 0x80000000))
3847 {
3848 const char *name;
3849 int addend = rel->r_addend;
3850 if (h && h->root.root.string)
3851 name = h->root.root.string;
3852 else
3853 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3854 sym, NULL);
3855 if (addend < 0)
3856 (*_bfd_error_handler)
3857 (_("%B: addend -0x%x in relocation %s against "
3858 "symbol `%s' at 0x%lx in section `%A' is "
3859 "out of range"),
3860 input_bfd, input_section, addend,
3861 x86_64_elf_howto_table[r_type].name,
3862 name, (unsigned long) rel->r_offset);
3863 else
3864 (*_bfd_error_handler)
3865 (_("%B: addend 0x%x in relocation %s against "
3866 "symbol `%s' at 0x%lx in section `%A' is "
3867 "out of range"),
3868 input_bfd, input_section, addend,
3869 x86_64_elf_howto_table[r_type].name,
3870 name, (unsigned long) rel->r_offset);
3871 bfd_set_error (bfd_error_bad_value);
3872 return FALSE;
3873 }
3874 }
3875 else
3876 {
3877 long sindx;
3878
3879 if (bfd_is_abs_section (sec))
3880 sindx = 0;
3881 else if (sec == NULL || sec->owner == NULL)
3882 {
3883 bfd_set_error (bfd_error_bad_value);
3884 return FALSE;
3885 }
3886 else
3887 {
3888 asection *osec;
3889
3890 /* We are turning this relocation into one
3891 against a section symbol. It would be
3892 proper to subtract the symbol's value,
3893 osec->vma, from the emitted reloc addend,
3894 but ld.so expects buggy relocs. */
3895 osec = sec->output_section;
3896 sindx = elf_section_data (osec)->dynindx;
3897 if (sindx == 0)
3898 {
3899 asection *oi = htab->elf.text_index_section;
3900 sindx = elf_section_data (oi)->dynindx;
3901 }
3902 BFD_ASSERT (sindx != 0);
3903 }
3904
3905 outrel.r_info = htab->r_info (sindx, r_type);
3906 outrel.r_addend = relocation + rel->r_addend;
3907 }
3908 }
3909
3910 sreloc = elf_section_data (input_section)->sreloc;
3911
3912 if (sreloc == NULL || sreloc->contents == NULL)
3913 {
3914 r = bfd_reloc_notsupported;
3915 goto check_relocation_error;
3916 }
3917
3918 elf_append_rela (output_bfd, sreloc, &outrel);
3919
3920 /* If this reloc is against an external symbol, we do
3921 not want to fiddle with the addend. Otherwise, we
3922 need to include the symbol value so that it becomes
3923 an addend for the dynamic reloc. */
3924 if (! relocate)
3925 continue;
3926 }
3927
3928 break;
3929
3930 case R_X86_64_TLSGD:
3931 case R_X86_64_GOTPC32_TLSDESC:
3932 case R_X86_64_TLSDESC_CALL:
3933 case R_X86_64_GOTTPOFF:
3934 tls_type = GOT_UNKNOWN;
3935 if (h == NULL && local_got_offsets)
3936 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3937 else if (h != NULL)
3938 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3939
3940 if (! elf_x86_64_tls_transition (info, input_bfd,
3941 input_section, contents,
3942 symtab_hdr, sym_hashes,
3943 &r_type, tls_type, rel,
3944 relend, h, r_symndx))
3945 return FALSE;
3946
3947 if (r_type == R_X86_64_TPOFF32)
3948 {
3949 bfd_vma roff = rel->r_offset;
3950
3951 BFD_ASSERT (! unresolved_reloc);
3952
3953 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3954 {
3955 /* GD->LE transition. For 64bit, change
3956 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3957 .word 0x6666; rex64; call __tls_get_addr
3958 into:
3959 movq %fs:0, %rax
3960 leaq foo@tpoff(%rax), %rax
3961 For 32bit, change
3962 leaq foo@tlsgd(%rip), %rdi
3963 .word 0x6666; rex64; call __tls_get_addr
3964 into:
3965 movl %fs:0, %eax
3966 leaq foo@tpoff(%rax), %rax */
3967 if (ABI_64_P (output_bfd))
3968 memcpy (contents + roff - 4,
3969 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3970 16);
3971 else
3972 memcpy (contents + roff - 3,
3973 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3974 15);
3975 bfd_put_32 (output_bfd,
3976 elf_x86_64_tpoff (info, relocation),
3977 contents + roff + 8);
3978 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3979 rel++;
3980 continue;
3981 }
3982 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3983 {
3984 /* GDesc -> LE transition.
3985 It's originally something like:
3986 leaq x@tlsdesc(%rip), %rax
3987
3988 Change it to:
3989 movl $x@tpoff, %rax. */
3990
3991 unsigned int val, type;
3992
3993 type = bfd_get_8 (input_bfd, contents + roff - 3);
3994 val = bfd_get_8 (input_bfd, contents + roff - 1);
3995 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3996 contents + roff - 3);
3997 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3998 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3999 contents + roff - 1);
4000 bfd_put_32 (output_bfd,
4001 elf_x86_64_tpoff (info, relocation),
4002 contents + roff);
4003 continue;
4004 }
4005 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4006 {
4007 /* GDesc -> LE transition.
4008 It's originally:
4009 call *(%rax)
4010 Turn it into:
4011 xchg %ax,%ax. */
4012 bfd_put_8 (output_bfd, 0x66, contents + roff);
4013 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4014 continue;
4015 }
4016 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4017 {
4018 /* IE->LE transition:
4019 Originally it can be one of:
4020 movq foo@gottpoff(%rip), %reg
4021 addq foo@gottpoff(%rip), %reg
4022 We change it into:
4023 movq $foo, %reg
4024 leaq foo(%reg), %reg
4025 addq $foo, %reg. */
4026
4027 unsigned int val, type, reg;
4028
4029 val = bfd_get_8 (input_bfd, contents + roff - 3);
4030 type = bfd_get_8 (input_bfd, contents + roff - 2);
4031 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4032 reg >>= 3;
4033 if (type == 0x8b)
4034 {
4035 /* movq */
4036 if (val == 0x4c)
4037 bfd_put_8 (output_bfd, 0x49,
4038 contents + roff - 3);
4039 else if (!ABI_64_P (output_bfd) && val == 0x44)
4040 bfd_put_8 (output_bfd, 0x41,
4041 contents + roff - 3);
4042 bfd_put_8 (output_bfd, 0xc7,
4043 contents + roff - 2);
4044 bfd_put_8 (output_bfd, 0xc0 | reg,
4045 contents + roff - 1);
4046 }
4047 else if (reg == 4)
4048 {
4049 /* addq -> addq - addressing with %rsp/%r12 is
4050 special */
4051 if (val == 0x4c)
4052 bfd_put_8 (output_bfd, 0x49,
4053 contents + roff - 3);
4054 else if (!ABI_64_P (output_bfd) && val == 0x44)
4055 bfd_put_8 (output_bfd, 0x41,
4056 contents + roff - 3);
4057 bfd_put_8 (output_bfd, 0x81,
4058 contents + roff - 2);
4059 bfd_put_8 (output_bfd, 0xc0 | reg,
4060 contents + roff - 1);
4061 }
4062 else
4063 {
4064 /* addq -> leaq */
4065 if (val == 0x4c)
4066 bfd_put_8 (output_bfd, 0x4d,
4067 contents + roff - 3);
4068 else if (!ABI_64_P (output_bfd) && val == 0x44)
4069 bfd_put_8 (output_bfd, 0x45,
4070 contents + roff - 3);
4071 bfd_put_8 (output_bfd, 0x8d,
4072 contents + roff - 2);
4073 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4074 contents + roff - 1);
4075 }
4076 bfd_put_32 (output_bfd,
4077 elf_x86_64_tpoff (info, relocation),
4078 contents + roff);
4079 continue;
4080 }
4081 else
4082 BFD_ASSERT (FALSE);
4083 }
4084
4085 if (htab->elf.sgot == NULL)
4086 abort ();
4087
4088 if (h != NULL)
4089 {
4090 off = h->got.offset;
4091 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4092 }
4093 else
4094 {
4095 if (local_got_offsets == NULL)
4096 abort ();
4097
4098 off = local_got_offsets[r_symndx];
4099 offplt = local_tlsdesc_gotents[r_symndx];
4100 }
4101
4102 if ((off & 1) != 0)
4103 off &= ~1;
4104 else
4105 {
4106 Elf_Internal_Rela outrel;
4107 int dr_type, indx;
4108 asection *sreloc;
4109
4110 if (htab->elf.srelgot == NULL)
4111 abort ();
4112
4113 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4114
4115 if (GOT_TLS_GDESC_P (tls_type))
4116 {
4117 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4118 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4119 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4120 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4121 + htab->elf.sgotplt->output_offset
4122 + offplt
4123 + htab->sgotplt_jump_table_size);
4124 sreloc = htab->elf.srelplt;
4125 if (indx == 0)
4126 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4127 else
4128 outrel.r_addend = 0;
4129 elf_append_rela (output_bfd, sreloc, &outrel);
4130 }
4131
4132 sreloc = htab->elf.srelgot;
4133
4134 outrel.r_offset = (htab->elf.sgot->output_section->vma
4135 + htab->elf.sgot->output_offset + off);
4136
4137 if (GOT_TLS_GD_P (tls_type))
4138 dr_type = R_X86_64_DTPMOD64;
4139 else if (GOT_TLS_GDESC_P (tls_type))
4140 goto dr_done;
4141 else
4142 dr_type = R_X86_64_TPOFF64;
4143
4144 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4145 outrel.r_addend = 0;
4146 if ((dr_type == R_X86_64_TPOFF64
4147 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4148 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4149 outrel.r_info = htab->r_info (indx, dr_type);
4150
4151 elf_append_rela (output_bfd, sreloc, &outrel);
4152
4153 if (GOT_TLS_GD_P (tls_type))
4154 {
4155 if (indx == 0)
4156 {
4157 BFD_ASSERT (! unresolved_reloc);
4158 bfd_put_64 (output_bfd,
4159 relocation - elf_x86_64_dtpoff_base (info),
4160 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4161 }
4162 else
4163 {
4164 bfd_put_64 (output_bfd, 0,
4165 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4166 outrel.r_info = htab->r_info (indx,
4167 R_X86_64_DTPOFF64);
4168 outrel.r_offset += GOT_ENTRY_SIZE;
4169 elf_append_rela (output_bfd, sreloc,
4170 &outrel);
4171 }
4172 }
4173
4174 dr_done:
4175 if (h != NULL)
4176 h->got.offset |= 1;
4177 else
4178 local_got_offsets[r_symndx] |= 1;
4179 }
4180
4181 if (off >= (bfd_vma) -2
4182 && ! GOT_TLS_GDESC_P (tls_type))
4183 abort ();
4184 if (r_type == ELF32_R_TYPE (rel->r_info))
4185 {
4186 if (r_type == R_X86_64_GOTPC32_TLSDESC
4187 || r_type == R_X86_64_TLSDESC_CALL)
4188 relocation = htab->elf.sgotplt->output_section->vma
4189 + htab->elf.sgotplt->output_offset
4190 + offplt + htab->sgotplt_jump_table_size;
4191 else
4192 relocation = htab->elf.sgot->output_section->vma
4193 + htab->elf.sgot->output_offset + off;
4194 unresolved_reloc = FALSE;
4195 }
4196 else
4197 {
4198 bfd_vma roff = rel->r_offset;
4199
4200 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4201 {
4202 /* GD->IE transition. For 64bit, change
4203 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4204 .word 0x6666; rex64; call __tls_get_addr@plt
4205 into:
4206 movq %fs:0, %rax
4207 addq foo@gottpoff(%rip), %rax
4208 For 32bit, change
4209 leaq foo@tlsgd(%rip), %rdi
4210 .word 0x6666; rex64; call __tls_get_addr@plt
4211 into:
4212 movl %fs:0, %eax
4213 addq foo@gottpoff(%rip), %rax */
4214 if (ABI_64_P (output_bfd))
4215 memcpy (contents + roff - 4,
4216 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4217 16);
4218 else
4219 memcpy (contents + roff - 3,
4220 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4221 15);
4222
4223 relocation = (htab->elf.sgot->output_section->vma
4224 + htab->elf.sgot->output_offset + off
4225 - roff
4226 - input_section->output_section->vma
4227 - input_section->output_offset
4228 - 12);
4229 bfd_put_32 (output_bfd, relocation,
4230 contents + roff + 8);
4231 /* Skip R_X86_64_PLT32. */
4232 rel++;
4233 continue;
4234 }
4235 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4236 {
4237 /* GDesc -> IE transition.
4238 It's originally something like:
4239 leaq x@tlsdesc(%rip), %rax
4240
4241 Change it to:
4242 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4243
4244 /* Now modify the instruction as appropriate. To
4245 turn a leaq into a movq in the form we use it, it
4246 suffices to change the second byte from 0x8d to
4247 0x8b. */
4248 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4249
4250 bfd_put_32 (output_bfd,
4251 htab->elf.sgot->output_section->vma
4252 + htab->elf.sgot->output_offset + off
4253 - rel->r_offset
4254 - input_section->output_section->vma
4255 - input_section->output_offset
4256 - 4,
4257 contents + roff);
4258 continue;
4259 }
4260 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4261 {
4262 /* GDesc -> IE transition.
4263 It's originally:
4264 call *(%rax)
4265
4266 Change it to:
4267 xchg %ax, %ax. */
4268
4269 bfd_put_8 (output_bfd, 0x66, contents + roff);
4270 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4271 continue;
4272 }
4273 else
4274 BFD_ASSERT (FALSE);
4275 }
4276 break;
4277
4278 case R_X86_64_TLSLD:
4279 if (! elf_x86_64_tls_transition (info, input_bfd,
4280 input_section, contents,
4281 symtab_hdr, sym_hashes,
4282 &r_type, GOT_UNKNOWN,
4283 rel, relend, h, r_symndx))
4284 return FALSE;
4285
4286 if (r_type != R_X86_64_TLSLD)
4287 {
4288 /* LD->LE transition:
4289 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4290 For 64bit, we change it into:
4291 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4292 For 32bit, we change it into:
4293 nopl 0x0(%rax); movl %fs:0, %eax. */
4294
4295 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4296 if (ABI_64_P (output_bfd))
4297 memcpy (contents + rel->r_offset - 3,
4298 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4299 else
4300 memcpy (contents + rel->r_offset - 3,
4301 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4302 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4303 rel++;
4304 continue;
4305 }
4306
4307 if (htab->elf.sgot == NULL)
4308 abort ();
4309
4310 off = htab->tls_ld_got.offset;
4311 if (off & 1)
4312 off &= ~1;
4313 else
4314 {
4315 Elf_Internal_Rela outrel;
4316
4317 if (htab->elf.srelgot == NULL)
4318 abort ();
4319
4320 outrel.r_offset = (htab->elf.sgot->output_section->vma
4321 + htab->elf.sgot->output_offset + off);
4322
4323 bfd_put_64 (output_bfd, 0,
4324 htab->elf.sgot->contents + off);
4325 bfd_put_64 (output_bfd, 0,
4326 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4327 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4328 outrel.r_addend = 0;
4329 elf_append_rela (output_bfd, htab->elf.srelgot,
4330 &outrel);
4331 htab->tls_ld_got.offset |= 1;
4332 }
4333 relocation = htab->elf.sgot->output_section->vma
4334 + htab->elf.sgot->output_offset + off;
4335 unresolved_reloc = FALSE;
4336 break;
4337
4338 case R_X86_64_DTPOFF32:
4339 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4340 relocation -= elf_x86_64_dtpoff_base (info);
4341 else
4342 relocation = elf_x86_64_tpoff (info, relocation);
4343 break;
4344
4345 case R_X86_64_TPOFF32:
4346 case R_X86_64_TPOFF64:
4347 BFD_ASSERT (info->executable);
4348 relocation = elf_x86_64_tpoff (info, relocation);
4349 break;
4350
4351 default:
4352 break;
4353 }
4354
4355 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4356 because such sections are not SEC_ALLOC and thus ld.so will
4357 not process them. */
4358 if (unresolved_reloc
4359 && !((input_section->flags & SEC_DEBUGGING) != 0
4360 && h->def_dynamic)
4361 && _bfd_elf_section_offset (output_bfd, info, input_section,
4362 rel->r_offset) != (bfd_vma) -1)
4363 {
4364 (*_bfd_error_handler)
4365 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4366 input_bfd,
4367 input_section,
4368 (long) rel->r_offset,
4369 howto->name,
4370 h->root.root.string);
4371 return FALSE;
4372 }
4373
4374 do_relocation:
4375 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4376 contents, rel->r_offset,
4377 relocation, rel->r_addend);
4378
4379 check_relocation_error:
4380 if (r != bfd_reloc_ok)
4381 {
4382 const char *name;
4383
4384 if (h != NULL)
4385 name = h->root.root.string;
4386 else
4387 {
4388 name = bfd_elf_string_from_elf_section (input_bfd,
4389 symtab_hdr->sh_link,
4390 sym->st_name);
4391 if (name == NULL)
4392 return FALSE;
4393 if (*name == '\0')
4394 name = bfd_section_name (input_bfd, sec);
4395 }
4396
4397 if (r == bfd_reloc_overflow)
4398 {
4399 if (! ((*info->callbacks->reloc_overflow)
4400 (info, (h ? &h->root : NULL), name, howto->name,
4401 (bfd_vma) 0, input_bfd, input_section,
4402 rel->r_offset)))
4403 return FALSE;
4404 }
4405 else
4406 {
4407 (*_bfd_error_handler)
4408 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4409 input_bfd, input_section,
4410 (long) rel->r_offset, name, (int) r);
4411 return FALSE;
4412 }
4413 }
4414 }
4415
4416 return TRUE;
4417 }
4418
4419 /* Finish up dynamic symbol handling. We set the contents of various
4420 dynamic sections here. */
4421
4422 static bfd_boolean
4423 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4424 struct bfd_link_info *info,
4425 struct elf_link_hash_entry *h,
4426 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4427 {
4428 struct elf_x86_64_link_hash_table *htab;
4429 const struct elf_x86_64_backend_data *const abed
4430 = get_elf_x86_64_backend_data (output_bfd);
4431
4432 htab = elf_x86_64_hash_table (info);
4433 if (htab == NULL)
4434 return FALSE;
4435
4436 if (h->plt.offset != (bfd_vma) -1)
4437 {
4438 bfd_vma plt_index;
4439 bfd_vma got_offset;
4440 Elf_Internal_Rela rela;
4441 bfd_byte *loc;
4442 asection *plt, *gotplt, *relplt;
4443 const struct elf_backend_data *bed;
4444
4445 /* When building a static executable, use .iplt, .igot.plt and
4446 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4447 if (htab->elf.splt != NULL)
4448 {
4449 plt = htab->elf.splt;
4450 gotplt = htab->elf.sgotplt;
4451 relplt = htab->elf.srelplt;
4452 }
4453 else
4454 {
4455 plt = htab->elf.iplt;
4456 gotplt = htab->elf.igotplt;
4457 relplt = htab->elf.irelplt;
4458 }
4459
4460 /* This symbol has an entry in the procedure linkage table. Set
4461 it up. */
4462 if ((h->dynindx == -1
4463 && !((h->forced_local || info->executable)
4464 && h->def_regular
4465 && h->type == STT_GNU_IFUNC))
4466 || plt == NULL
4467 || gotplt == NULL
4468 || relplt == NULL)
4469 abort ();
4470
4471 /* Get the index in the procedure linkage table which
4472 corresponds to this symbol. This is the index of this symbol
4473 in all the symbols for which we are making plt entries. The
4474 first entry in the procedure linkage table is reserved.
4475
4476 Get the offset into the .got table of the entry that
4477 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4478 bytes. The first three are reserved for the dynamic linker.
4479
4480 For static executables, we don't reserve anything. */
4481
4482 if (plt == htab->elf.splt)
4483 {
4484 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4485 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4486 }
4487 else
4488 {
4489 got_offset = h->plt.offset / abed->plt_entry_size;
4490 got_offset = got_offset * GOT_ENTRY_SIZE;
4491 }
4492
4493 /* Fill in the entry in the procedure linkage table. */
4494 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4495 abed->plt_entry_size);
4496
4497 /* Insert the relocation positions of the plt section. */
4498
4499 /* Put offset the PC-relative instruction referring to the GOT entry,
4500 subtracting the size of that instruction. */
4501 bfd_put_32 (output_bfd,
4502 (gotplt->output_section->vma
4503 + gotplt->output_offset
4504 + got_offset
4505 - plt->output_section->vma
4506 - plt->output_offset
4507 - h->plt.offset
4508 - abed->plt_got_insn_size),
4509 plt->contents + h->plt.offset + abed->plt_got_offset);
4510
4511 /* Fill in the entry in the global offset table, initially this
4512 points to the second part of the PLT entry. */
4513 bfd_put_64 (output_bfd, (plt->output_section->vma
4514 + plt->output_offset
4515 + h->plt.offset + abed->plt_lazy_offset),
4516 gotplt->contents + got_offset);
4517
4518 /* Fill in the entry in the .rela.plt section. */
4519 rela.r_offset = (gotplt->output_section->vma
4520 + gotplt->output_offset
4521 + got_offset);
4522 if (h->dynindx == -1
4523 || ((info->executable
4524 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4525 && h->def_regular
4526 && h->type == STT_GNU_IFUNC))
4527 {
4528 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4529 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4530 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4531 rela.r_addend = (h->root.u.def.value
4532 + h->root.u.def.section->output_section->vma
4533 + h->root.u.def.section->output_offset);
4534 /* R_X86_64_IRELATIVE comes last. */
4535 plt_index = htab->next_irelative_index--;
4536 }
4537 else
4538 {
4539 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4540 rela.r_addend = 0;
4541 plt_index = htab->next_jump_slot_index++;
4542 }
4543
4544 /* Don't fill PLT entry for static executables. */
4545 if (plt == htab->elf.splt)
4546 {
4547 /* Put relocation index. */
4548 bfd_put_32 (output_bfd, plt_index,
4549 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4550 /* Put offset for jmp .PLT0. */
4551 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4552 plt->contents + h->plt.offset + abed->plt_plt_offset);
4553 }
4554
4555 bed = get_elf_backend_data (output_bfd);
4556 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4557 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4558
4559 if (!h->def_regular)
4560 {
4561 /* Mark the symbol as undefined, rather than as defined in
4562 the .plt section. Leave the value if there were any
4563 relocations where pointer equality matters (this is a clue
4564 for the dynamic linker, to make function pointer
4565 comparisons work between an application and shared
4566 library), otherwise set it to zero. If a function is only
4567 called from a binary, there is no need to slow down
4568 shared libraries because of that. */
4569 sym->st_shndx = SHN_UNDEF;
4570 if (!h->pointer_equality_needed)
4571 sym->st_value = 0;
4572 }
4573 }
4574
4575 if (h->got.offset != (bfd_vma) -1
4576 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4577 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4578 {
4579 Elf_Internal_Rela rela;
4580
4581 /* This symbol has an entry in the global offset table. Set it
4582 up. */
4583 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4584 abort ();
4585
4586 rela.r_offset = (htab->elf.sgot->output_section->vma
4587 + htab->elf.sgot->output_offset
4588 + (h->got.offset &~ (bfd_vma) 1));
4589
4590 /* If this is a static link, or it is a -Bsymbolic link and the
4591 symbol is defined locally or was forced to be local because
4592 of a version file, we just want to emit a RELATIVE reloc.
4593 The entry in the global offset table will already have been
4594 initialized in the relocate_section function. */
4595 if (h->def_regular
4596 && h->type == STT_GNU_IFUNC)
4597 {
4598 if (info->shared)
4599 {
4600 /* Generate R_X86_64_GLOB_DAT. */
4601 goto do_glob_dat;
4602 }
4603 else
4604 {
4605 asection *plt;
4606
4607 if (!h->pointer_equality_needed)
4608 abort ();
4609
4610 /* For non-shared object, we can't use .got.plt, which
4611 contains the real function addres if we need pointer
4612 equality. We load the GOT entry with the PLT entry. */
4613 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4614 bfd_put_64 (output_bfd, (plt->output_section->vma
4615 + plt->output_offset
4616 + h->plt.offset),
4617 htab->elf.sgot->contents + h->got.offset);
4618 return TRUE;
4619 }
4620 }
4621 else if (info->shared
4622 && SYMBOL_REFERENCES_LOCAL (info, h))
4623 {
4624 if (!h->def_regular)
4625 return FALSE;
4626 BFD_ASSERT((h->got.offset & 1) != 0);
4627 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4628 rela.r_addend = (h->root.u.def.value
4629 + h->root.u.def.section->output_section->vma
4630 + h->root.u.def.section->output_offset);
4631 }
4632 else
4633 {
4634 BFD_ASSERT((h->got.offset & 1) == 0);
4635 do_glob_dat:
4636 bfd_put_64 (output_bfd, (bfd_vma) 0,
4637 htab->elf.sgot->contents + h->got.offset);
4638 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4639 rela.r_addend = 0;
4640 }
4641
4642 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4643 }
4644
4645 if (h->needs_copy)
4646 {
4647 Elf_Internal_Rela rela;
4648
4649 /* This symbol needs a copy reloc. Set it up. */
4650
4651 if (h->dynindx == -1
4652 || (h->root.type != bfd_link_hash_defined
4653 && h->root.type != bfd_link_hash_defweak)
4654 || htab->srelbss == NULL)
4655 abort ();
4656
4657 rela.r_offset = (h->root.u.def.value
4658 + h->root.u.def.section->output_section->vma
4659 + h->root.u.def.section->output_offset);
4660 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4661 rela.r_addend = 0;
4662 elf_append_rela (output_bfd, htab->srelbss, &rela);
4663 }
4664
4665 return TRUE;
4666 }
4667
4668 /* Finish up local dynamic symbol handling. We set the contents of
4669 various dynamic sections here. */
4670
4671 static bfd_boolean
4672 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4673 {
4674 struct elf_link_hash_entry *h
4675 = (struct elf_link_hash_entry *) *slot;
4676 struct bfd_link_info *info
4677 = (struct bfd_link_info *) inf;
4678
4679 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4680 info, h, NULL);
4681 }
4682
4683 /* Used to decide how to sort relocs in an optimal manner for the
4684 dynamic linker, before writing them out. */
4685
4686 static enum elf_reloc_type_class
4687 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4688 {
4689 switch ((int) ELF32_R_TYPE (rela->r_info))
4690 {
4691 case R_X86_64_RELATIVE:
4692 case R_X86_64_RELATIVE64:
4693 return reloc_class_relative;
4694 case R_X86_64_JUMP_SLOT:
4695 return reloc_class_plt;
4696 case R_X86_64_COPY:
4697 return reloc_class_copy;
4698 default:
4699 return reloc_class_normal;
4700 }
4701 }
4702
4703 /* Finish up the dynamic sections. */
4704
4705 static bfd_boolean
4706 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4707 struct bfd_link_info *info)
4708 {
4709 struct elf_x86_64_link_hash_table *htab;
4710 bfd *dynobj;
4711 asection *sdyn;
4712 const struct elf_x86_64_backend_data *const abed
4713 = get_elf_x86_64_backend_data (output_bfd);
4714
4715 htab = elf_x86_64_hash_table (info);
4716 if (htab == NULL)
4717 return FALSE;
4718
4719 dynobj = htab->elf.dynobj;
4720 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4721
4722 if (htab->elf.dynamic_sections_created)
4723 {
4724 bfd_byte *dyncon, *dynconend;
4725 const struct elf_backend_data *bed;
4726 bfd_size_type sizeof_dyn;
4727
4728 if (sdyn == NULL || htab->elf.sgot == NULL)
4729 abort ();
4730
4731 bed = get_elf_backend_data (dynobj);
4732 sizeof_dyn = bed->s->sizeof_dyn;
4733 dyncon = sdyn->contents;
4734 dynconend = sdyn->contents + sdyn->size;
4735 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4736 {
4737 Elf_Internal_Dyn dyn;
4738 asection *s;
4739
4740 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4741
4742 switch (dyn.d_tag)
4743 {
4744 default:
4745 continue;
4746
4747 case DT_PLTGOT:
4748 s = htab->elf.sgotplt;
4749 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4750 break;
4751
4752 case DT_JMPREL:
4753 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4754 break;
4755
4756 case DT_PLTRELSZ:
4757 s = htab->elf.srelplt->output_section;
4758 dyn.d_un.d_val = s->size;
4759 break;
4760
4761 case DT_RELASZ:
4762 /* The procedure linkage table relocs (DT_JMPREL) should
4763 not be included in the overall relocs (DT_RELA).
4764 Therefore, we override the DT_RELASZ entry here to
4765 make it not include the JMPREL relocs. Since the
4766 linker script arranges for .rela.plt to follow all
4767 other relocation sections, we don't have to worry
4768 about changing the DT_RELA entry. */
4769 if (htab->elf.srelplt != NULL)
4770 {
4771 s = htab->elf.srelplt->output_section;
4772 dyn.d_un.d_val -= s->size;
4773 }
4774 break;
4775
4776 case DT_TLSDESC_PLT:
4777 s = htab->elf.splt;
4778 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4779 + htab->tlsdesc_plt;
4780 break;
4781
4782 case DT_TLSDESC_GOT:
4783 s = htab->elf.sgot;
4784 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4785 + htab->tlsdesc_got;
4786 break;
4787 }
4788
4789 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4790 }
4791
4792 /* Fill in the special first entry in the procedure linkage table. */
4793 if (htab->elf.splt && htab->elf.splt->size > 0)
4794 {
4795 /* Fill in the first entry in the procedure linkage table. */
4796 memcpy (htab->elf.splt->contents,
4797 abed->plt0_entry, abed->plt_entry_size);
4798 /* Add offset for pushq GOT+8(%rip), since the instruction
4799 uses 6 bytes subtract this value. */
4800 bfd_put_32 (output_bfd,
4801 (htab->elf.sgotplt->output_section->vma
4802 + htab->elf.sgotplt->output_offset
4803 + 8
4804 - htab->elf.splt->output_section->vma
4805 - htab->elf.splt->output_offset
4806 - 6),
4807 htab->elf.splt->contents + abed->plt0_got1_offset);
4808 /* Add offset for the PC-relative instruction accessing GOT+16,
4809 subtracting the offset to the end of that instruction. */
4810 bfd_put_32 (output_bfd,
4811 (htab->elf.sgotplt->output_section->vma
4812 + htab->elf.sgotplt->output_offset
4813 + 16
4814 - htab->elf.splt->output_section->vma
4815 - htab->elf.splt->output_offset
4816 - abed->plt0_got2_insn_end),
4817 htab->elf.splt->contents + abed->plt0_got2_offset);
4818
4819 elf_section_data (htab->elf.splt->output_section)
4820 ->this_hdr.sh_entsize = abed->plt_entry_size;
4821
4822 if (htab->tlsdesc_plt)
4823 {
4824 bfd_put_64 (output_bfd, (bfd_vma) 0,
4825 htab->elf.sgot->contents + htab->tlsdesc_got);
4826
4827 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4828 abed->plt0_entry, abed->plt_entry_size);
4829
4830 /* Add offset for pushq GOT+8(%rip), since the
4831 instruction uses 6 bytes subtract this value. */
4832 bfd_put_32 (output_bfd,
4833 (htab->elf.sgotplt->output_section->vma
4834 + htab->elf.sgotplt->output_offset
4835 + 8
4836 - htab->elf.splt->output_section->vma
4837 - htab->elf.splt->output_offset
4838 - htab->tlsdesc_plt
4839 - 6),
4840 htab->elf.splt->contents
4841 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4842 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4843 where TGD stands for htab->tlsdesc_got, subtracting the offset
4844 to the end of that instruction. */
4845 bfd_put_32 (output_bfd,
4846 (htab->elf.sgot->output_section->vma
4847 + htab->elf.sgot->output_offset
4848 + htab->tlsdesc_got
4849 - htab->elf.splt->output_section->vma
4850 - htab->elf.splt->output_offset
4851 - htab->tlsdesc_plt
4852 - abed->plt0_got2_insn_end),
4853 htab->elf.splt->contents
4854 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4855 }
4856 }
4857 }
4858
4859 if (htab->elf.sgotplt)
4860 {
4861 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4862 {
4863 (*_bfd_error_handler)
4864 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4865 return FALSE;
4866 }
4867
4868 /* Fill in the first three entries in the global offset table. */
4869 if (htab->elf.sgotplt->size > 0)
4870 {
4871 /* Set the first entry in the global offset table to the address of
4872 the dynamic section. */
4873 if (sdyn == NULL)
4874 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4875 else
4876 bfd_put_64 (output_bfd,
4877 sdyn->output_section->vma + sdyn->output_offset,
4878 htab->elf.sgotplt->contents);
4879 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4880 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4881 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4882 }
4883
4884 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4885 GOT_ENTRY_SIZE;
4886 }
4887
4888 /* Adjust .eh_frame for .plt section. */
4889 if (htab->plt_eh_frame != NULL
4890 && htab->plt_eh_frame->contents != NULL)
4891 {
4892 if (htab->elf.splt != NULL
4893 && htab->elf.splt->size != 0
4894 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4895 && htab->elf.splt->output_section != NULL
4896 && htab->plt_eh_frame->output_section != NULL)
4897 {
4898 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4899 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4900 + htab->plt_eh_frame->output_offset
4901 + PLT_FDE_START_OFFSET;
4902 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4903 htab->plt_eh_frame->contents
4904 + PLT_FDE_START_OFFSET);
4905 }
4906 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4907 {
4908 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4909 htab->plt_eh_frame,
4910 htab->plt_eh_frame->contents))
4911 return FALSE;
4912 }
4913 }
4914
4915 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4916 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4917 = GOT_ENTRY_SIZE;
4918
4919 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4920 htab_traverse (htab->loc_hash_table,
4921 elf_x86_64_finish_local_dynamic_symbol,
4922 info);
4923
4924 return TRUE;
4925 }
4926
4927 /* Return address for Ith PLT stub in section PLT, for relocation REL
4928 or (bfd_vma) -1 if it should not be included. */
4929
4930 static bfd_vma
4931 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4932 const arelent *rel ATTRIBUTE_UNUSED)
4933 {
4934 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4935 }
4936
4937 /* Handle an x86-64 specific section when reading an object file. This
4938 is called when elfcode.h finds a section with an unknown type. */
4939
4940 static bfd_boolean
4941 elf_x86_64_section_from_shdr (bfd *abfd,
4942 Elf_Internal_Shdr *hdr,
4943 const char *name,
4944 int shindex)
4945 {
4946 if (hdr->sh_type != SHT_X86_64_UNWIND)
4947 return FALSE;
4948
4949 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4950 return FALSE;
4951
4952 return TRUE;
4953 }
4954
4955 /* Hook called by the linker routine which adds symbols from an object
4956 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4957 of .bss. */
4958
4959 static bfd_boolean
4960 elf_x86_64_add_symbol_hook (bfd *abfd,
4961 struct bfd_link_info *info,
4962 Elf_Internal_Sym *sym,
4963 const char **namep ATTRIBUTE_UNUSED,
4964 flagword *flagsp ATTRIBUTE_UNUSED,
4965 asection **secp,
4966 bfd_vma *valp)
4967 {
4968 asection *lcomm;
4969
4970 switch (sym->st_shndx)
4971 {
4972 case SHN_X86_64_LCOMMON:
4973 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4974 if (lcomm == NULL)
4975 {
4976 lcomm = bfd_make_section_with_flags (abfd,
4977 "LARGE_COMMON",
4978 (SEC_ALLOC
4979 | SEC_IS_COMMON
4980 | SEC_LINKER_CREATED));
4981 if (lcomm == NULL)
4982 return FALSE;
4983 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4984 }
4985 *secp = lcomm;
4986 *valp = sym->st_size;
4987 return TRUE;
4988 }
4989
4990 if ((abfd->flags & DYNAMIC) == 0
4991 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4992 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4993 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4994
4995 return TRUE;
4996 }
4997
4998
4999 /* Given a BFD section, try to locate the corresponding ELF section
5000 index. */
5001
5002 static bfd_boolean
5003 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5004 asection *sec, int *index_return)
5005 {
5006 if (sec == &_bfd_elf_large_com_section)
5007 {
5008 *index_return = SHN_X86_64_LCOMMON;
5009 return TRUE;
5010 }
5011 return FALSE;
5012 }
5013
5014 /* Process a symbol. */
5015
5016 static void
5017 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5018 asymbol *asym)
5019 {
5020 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5021
5022 switch (elfsym->internal_elf_sym.st_shndx)
5023 {
5024 case SHN_X86_64_LCOMMON:
5025 asym->section = &_bfd_elf_large_com_section;
5026 asym->value = elfsym->internal_elf_sym.st_size;
5027 /* Common symbol doesn't set BSF_GLOBAL. */
5028 asym->flags &= ~BSF_GLOBAL;
5029 break;
5030 }
5031 }
5032
5033 static bfd_boolean
5034 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5035 {
5036 return (sym->st_shndx == SHN_COMMON
5037 || sym->st_shndx == SHN_X86_64_LCOMMON);
5038 }
5039
5040 static unsigned int
5041 elf_x86_64_common_section_index (asection *sec)
5042 {
5043 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5044 return SHN_COMMON;
5045 else
5046 return SHN_X86_64_LCOMMON;
5047 }
5048
5049 static asection *
5050 elf_x86_64_common_section (asection *sec)
5051 {
5052 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5053 return bfd_com_section_ptr;
5054 else
5055 return &_bfd_elf_large_com_section;
5056 }
5057
5058 static bfd_boolean
5059 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5060 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
5061 struct elf_link_hash_entry *h,
5062 Elf_Internal_Sym *sym,
5063 asection **psec,
5064 bfd_vma *pvalue ATTRIBUTE_UNUSED,
5065 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
5066 bfd_boolean *skip ATTRIBUTE_UNUSED,
5067 bfd_boolean *override ATTRIBUTE_UNUSED,
5068 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
5069 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
5070 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
5071 bfd_boolean *newdef,
5072 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
5073 bfd_boolean *newweak ATTRIBUTE_UNUSED,
5074 bfd *abfd ATTRIBUTE_UNUSED,
5075 asection **sec,
5076 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
5077 bfd_boolean *olddef,
5078 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
5079 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
5080 bfd *oldbfd,
5081 asection **oldsec)
5082 {
5083 /* A normal common symbol and a large common symbol result in a
5084 normal common symbol. We turn the large common symbol into a
5085 normal one. */
5086 if (!*olddef
5087 && h->root.type == bfd_link_hash_common
5088 && !*newdef
5089 && bfd_is_com_section (*sec)
5090 && *oldsec != *sec)
5091 {
5092 if (sym->st_shndx == SHN_COMMON
5093 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
5094 {
5095 h->root.u.c.p->section
5096 = bfd_make_section_old_way (oldbfd, "COMMON");
5097 h->root.u.c.p->section->flags = SEC_ALLOC;
5098 }
5099 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5100 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
5101 *psec = *sec = bfd_com_section_ptr;
5102 }
5103
5104 return TRUE;
5105 }
5106
5107 static int
5108 elf_x86_64_additional_program_headers (bfd *abfd,
5109 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5110 {
5111 asection *s;
5112 int count = 0;
5113
5114 /* Check to see if we need a large readonly segment. */
5115 s = bfd_get_section_by_name (abfd, ".lrodata");
5116 if (s && (s->flags & SEC_LOAD))
5117 count++;
5118
5119 /* Check to see if we need a large data segment. Since .lbss sections
5120 is placed right after the .bss section, there should be no need for
5121 a large data segment just because of .lbss. */
5122 s = bfd_get_section_by_name (abfd, ".ldata");
5123 if (s && (s->flags & SEC_LOAD))
5124 count++;
5125
5126 return count;
5127 }
5128
5129 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5130
5131 static bfd_boolean
5132 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5133 {
5134 if (h->plt.offset != (bfd_vma) -1
5135 && !h->def_regular
5136 && !h->pointer_equality_needed)
5137 return FALSE;
5138
5139 return _bfd_elf_hash_symbol (h);
5140 }
5141
5142 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5143
5144 static bfd_boolean
5145 elf_x86_64_relocs_compatible (const bfd_target *input,
5146 const bfd_target *output)
5147 {
5148 return ((xvec_get_elf_backend_data (input)->s->elfclass
5149 == xvec_get_elf_backend_data (output)->s->elfclass)
5150 && _bfd_elf_relocs_compatible (input, output));
5151 }
5152
5153 static const struct bfd_elf_special_section
5154 elf_x86_64_special_sections[]=
5155 {
5156 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5157 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5158 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5159 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5160 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5161 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5162 { NULL, 0, 0, 0, 0 }
5163 };
5164
5165 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5166 #define TARGET_LITTLE_NAME "elf64-x86-64"
5167 #define ELF_ARCH bfd_arch_i386
5168 #define ELF_TARGET_ID X86_64_ELF_DATA
5169 #define ELF_MACHINE_CODE EM_X86_64
5170 #define ELF_MAXPAGESIZE 0x200000
5171 #define ELF_MINPAGESIZE 0x1000
5172 #define ELF_COMMONPAGESIZE 0x1000
5173
5174 #define elf_backend_can_gc_sections 1
5175 #define elf_backend_can_refcount 1
5176 #define elf_backend_want_got_plt 1
5177 #define elf_backend_plt_readonly 1
5178 #define elf_backend_want_plt_sym 0
5179 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5180 #define elf_backend_rela_normal 1
5181 #define elf_backend_plt_alignment 4
5182
5183 #define elf_info_to_howto elf_x86_64_info_to_howto
5184
5185 #define bfd_elf64_bfd_link_hash_table_create \
5186 elf_x86_64_link_hash_table_create
5187 #define bfd_elf64_bfd_link_hash_table_free \
5188 elf_x86_64_link_hash_table_free
5189 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5190 #define bfd_elf64_bfd_reloc_name_lookup \
5191 elf_x86_64_reloc_name_lookup
5192
5193 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5194 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5195 #define elf_backend_check_relocs elf_x86_64_check_relocs
5196 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5197 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5198 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5199 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5200 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5201 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5202 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5203 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5204 #ifdef CORE_HEADER
5205 #define elf_backend_write_core_note elf_x86_64_write_core_note
5206 #endif
5207 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5208 #define elf_backend_relocate_section elf_x86_64_relocate_section
5209 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5210 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5211 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5212 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5213 #define elf_backend_object_p elf64_x86_64_elf_object_p
5214 #define bfd_elf64_mkobject elf_x86_64_mkobject
5215
5216 #define elf_backend_section_from_shdr \
5217 elf_x86_64_section_from_shdr
5218
5219 #define elf_backend_section_from_bfd_section \
5220 elf_x86_64_elf_section_from_bfd_section
5221 #define elf_backend_add_symbol_hook \
5222 elf_x86_64_add_symbol_hook
5223 #define elf_backend_symbol_processing \
5224 elf_x86_64_symbol_processing
5225 #define elf_backend_common_section_index \
5226 elf_x86_64_common_section_index
5227 #define elf_backend_common_section \
5228 elf_x86_64_common_section
5229 #define elf_backend_common_definition \
5230 elf_x86_64_common_definition
5231 #define elf_backend_merge_symbol \
5232 elf_x86_64_merge_symbol
5233 #define elf_backend_special_sections \
5234 elf_x86_64_special_sections
5235 #define elf_backend_additional_program_headers \
5236 elf_x86_64_additional_program_headers
5237 #define elf_backend_hash_symbol \
5238 elf_x86_64_hash_symbol
5239
5240 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5241
5242 #include "elf64-target.h"
5243
5244 /* FreeBSD support. */
5245
5246 #undef TARGET_LITTLE_SYM
5247 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5248 #undef TARGET_LITTLE_NAME
5249 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5250
5251 #undef ELF_OSABI
5252 #define ELF_OSABI ELFOSABI_FREEBSD
5253
5254 #undef elf64_bed
5255 #define elf64_bed elf64_x86_64_fbsd_bed
5256
5257 #include "elf64-target.h"
5258
5259 /* Solaris 2 support. */
5260
5261 #undef TARGET_LITTLE_SYM
5262 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5263 #undef TARGET_LITTLE_NAME
5264 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5265
5266 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5267 objects won't be recognized. */
5268 #undef ELF_OSABI
5269
5270 #undef elf64_bed
5271 #define elf64_bed elf64_x86_64_sol2_bed
5272
5273 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5274 boundary. */
5275 #undef elf_backend_static_tls_alignment
5276 #define elf_backend_static_tls_alignment 16
5277
5278 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5279
5280 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5281 File, p.63. */
5282 #undef elf_backend_want_plt_sym
5283 #define elf_backend_want_plt_sym 1
5284
5285 #include "elf64-target.h"
5286
5287 /* Native Client support. */
5288
5289 #undef TARGET_LITTLE_SYM
5290 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5291 #undef TARGET_LITTLE_NAME
5292 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5293 #undef elf64_bed
5294 #define elf64_bed elf64_x86_64_nacl_bed
5295
5296 #undef ELF_MAXPAGESIZE
5297 #undef ELF_MINPAGESIZE
5298 #undef ELF_COMMONPAGESIZE
5299 #define ELF_MAXPAGESIZE 0x10000
5300 #define ELF_MINPAGESIZE 0x10000
5301 #define ELF_COMMONPAGESIZE 0x10000
5302
5303 /* Restore defaults. */
5304 #undef ELF_OSABI
5305 #undef elf_backend_static_tls_alignment
5306 #undef elf_backend_want_plt_sym
5307 #define elf_backend_want_plt_sym 0
5308
5309 /* NaCl uses substantially different PLT entries for the same effects. */
5310
5311 #undef elf_backend_plt_alignment
5312 #define elf_backend_plt_alignment 5
5313 #define NACL_PLT_ENTRY_SIZE 64
5314 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5315
5316 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5317 {
5318 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5319 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5320 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5321 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5322 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5323
5324 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5325 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5326
5327 /* 32 bytes of nop to pad out to the standard size. */
5328 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5329 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5330 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5331 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5332 0x66, /* excess data32 prefix */
5333 0x90 /* nop */
5334 };
5335
5336 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5337 {
5338 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5339 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5340 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5341 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5342
5343 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5344 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5345 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5346
5347 /* Lazy GOT entries point here (32-byte aligned). */
5348 0x68, /* pushq immediate */
5349 0, 0, 0, 0, /* replaced with index into relocation table. */
5350 0xe9, /* jmp relative */
5351 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5352
5353 /* 22 bytes of nop to pad out to the standard size. */
5354 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5355 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5356 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5357 };
5358
5359 /* .eh_frame covering the .plt section. */
5360
5361 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5362 {
5363 #if (PLT_CIE_LENGTH != 20 \
5364 || PLT_FDE_LENGTH != 36 \
5365 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5366 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5367 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5368 #endif
5369 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5370 0, 0, 0, 0, /* CIE ID */
5371 1, /* CIE version */
5372 'z', 'R', 0, /* Augmentation string */
5373 1, /* Code alignment factor */
5374 0x78, /* Data alignment factor */
5375 16, /* Return address column */
5376 1, /* Augmentation size */
5377 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5378 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5379 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5380 DW_CFA_nop, DW_CFA_nop,
5381
5382 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5383 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5384 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5385 0, 0, 0, 0, /* .plt size goes here */
5386 0, /* Augmentation size */
5387 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5388 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5389 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5390 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5391 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5392 13, /* Block length */
5393 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5394 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5395 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5396 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5397 DW_CFA_nop, DW_CFA_nop
5398 };
5399
5400 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5401 {
5402 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5403 elf_x86_64_nacl_plt_entry, /* plt_entry */
5404 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5405 2, /* plt0_got1_offset */
5406 9, /* plt0_got2_offset */
5407 13, /* plt0_got2_insn_end */
5408 3, /* plt_got_offset */
5409 33, /* plt_reloc_offset */
5410 38, /* plt_plt_offset */
5411 7, /* plt_got_insn_size */
5412 42, /* plt_plt_insn_end */
5413 32, /* plt_lazy_offset */
5414 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5415 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5416 };
5417
5418 #undef elf_backend_arch_data
5419 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5420
5421 #undef elf_backend_modify_segment_map
5422 #define elf_backend_modify_segment_map nacl_modify_segment_map
5423 #undef elf_backend_modify_program_headers
5424 #define elf_backend_modify_program_headers nacl_modify_program_headers
5425
5426 #include "elf64-target.h"
5427
5428 /* Native Client x32 support. */
5429
5430 #undef TARGET_LITTLE_SYM
5431 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5432 #undef TARGET_LITTLE_NAME
5433 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5434 #undef elf32_bed
5435 #define elf32_bed elf32_x86_64_nacl_bed
5436
5437 #define bfd_elf32_bfd_link_hash_table_create \
5438 elf_x86_64_link_hash_table_create
5439 #define bfd_elf32_bfd_link_hash_table_free \
5440 elf_x86_64_link_hash_table_free
5441 #define bfd_elf32_bfd_reloc_type_lookup \
5442 elf_x86_64_reloc_type_lookup
5443 #define bfd_elf32_bfd_reloc_name_lookup \
5444 elf_x86_64_reloc_name_lookup
5445 #define bfd_elf32_mkobject \
5446 elf_x86_64_mkobject
5447
5448 #undef elf_backend_object_p
5449 #define elf_backend_object_p \
5450 elf32_x86_64_elf_object_p
5451
5452 #undef elf_backend_bfd_from_remote_memory
5453 #define elf_backend_bfd_from_remote_memory \
5454 _bfd_elf32_bfd_from_remote_memory
5455
5456 #undef elf_backend_size_info
5457 #define elf_backend_size_info \
5458 _bfd_elf32_size_info
5459
5460 #include "elf32-target.h"
5461
5462 /* Restore defaults. */
5463 #undef elf_backend_object_p
5464 #define elf_backend_object_p elf64_x86_64_elf_object_p
5465 #undef elf_backend_bfd_from_remote_memory
5466 #undef elf_backend_size_info
5467 #undef elf_backend_modify_segment_map
5468 #undef elf_backend_modify_program_headers
5469
5470 /* Intel L1OM support. */
5471
5472 static bfd_boolean
5473 elf64_l1om_elf_object_p (bfd *abfd)
5474 {
5475 /* Set the right machine number for an L1OM elf64 file. */
5476 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5477 return TRUE;
5478 }
5479
5480 #undef TARGET_LITTLE_SYM
5481 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5482 #undef TARGET_LITTLE_NAME
5483 #define TARGET_LITTLE_NAME "elf64-l1om"
5484 #undef ELF_ARCH
5485 #define ELF_ARCH bfd_arch_l1om
5486
5487 #undef ELF_MACHINE_CODE
5488 #define ELF_MACHINE_CODE EM_L1OM
5489
5490 #undef ELF_OSABI
5491
5492 #undef elf64_bed
5493 #define elf64_bed elf64_l1om_bed
5494
5495 #undef elf_backend_object_p
5496 #define elf_backend_object_p elf64_l1om_elf_object_p
5497
5498 /* Restore defaults. */
5499 #undef ELF_MAXPAGESIZE
5500 #undef ELF_MINPAGESIZE
5501 #undef ELF_COMMONPAGESIZE
5502 #define ELF_MAXPAGESIZE 0x200000
5503 #define ELF_MINPAGESIZE 0x1000
5504 #define ELF_COMMONPAGESIZE 0x1000
5505 #undef elf_backend_plt_alignment
5506 #define elf_backend_plt_alignment 4
5507 #undef elf_backend_arch_data
5508 #define elf_backend_arch_data &elf_x86_64_arch_bed
5509
5510 #include "elf64-target.h"
5511
5512 /* FreeBSD L1OM support. */
5513
5514 #undef TARGET_LITTLE_SYM
5515 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5516 #undef TARGET_LITTLE_NAME
5517 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5518
5519 #undef ELF_OSABI
5520 #define ELF_OSABI ELFOSABI_FREEBSD
5521
5522 #undef elf64_bed
5523 #define elf64_bed elf64_l1om_fbsd_bed
5524
5525 #include "elf64-target.h"
5526
5527 /* Intel K1OM support. */
5528
5529 static bfd_boolean
5530 elf64_k1om_elf_object_p (bfd *abfd)
5531 {
5532 /* Set the right machine number for an K1OM elf64 file. */
5533 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5534 return TRUE;
5535 }
5536
5537 #undef TARGET_LITTLE_SYM
5538 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5539 #undef TARGET_LITTLE_NAME
5540 #define TARGET_LITTLE_NAME "elf64-k1om"
5541 #undef ELF_ARCH
5542 #define ELF_ARCH bfd_arch_k1om
5543
5544 #undef ELF_MACHINE_CODE
5545 #define ELF_MACHINE_CODE EM_K1OM
5546
5547 #undef ELF_OSABI
5548
5549 #undef elf64_bed
5550 #define elf64_bed elf64_k1om_bed
5551
5552 #undef elf_backend_object_p
5553 #define elf_backend_object_p elf64_k1om_elf_object_p
5554
5555 #undef elf_backend_static_tls_alignment
5556
5557 #undef elf_backend_want_plt_sym
5558 #define elf_backend_want_plt_sym 0
5559
5560 #include "elf64-target.h"
5561
5562 /* FreeBSD K1OM support. */
5563
5564 #undef TARGET_LITTLE_SYM
5565 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5566 #undef TARGET_LITTLE_NAME
5567 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5568
5569 #undef ELF_OSABI
5570 #define ELF_OSABI ELFOSABI_FREEBSD
5571
5572 #undef elf64_bed
5573 #define elf64_bed elf64_k1om_fbsd_bed
5574
5575 #include "elf64-target.h"
5576
5577 /* 32bit x86-64 support. */
5578
5579 #undef TARGET_LITTLE_SYM
5580 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5581 #undef TARGET_LITTLE_NAME
5582 #define TARGET_LITTLE_NAME "elf32-x86-64"
5583 #undef elf32_bed
5584
5585 #undef ELF_ARCH
5586 #define ELF_ARCH bfd_arch_i386
5587
5588 #undef ELF_MACHINE_CODE
5589 #define ELF_MACHINE_CODE EM_X86_64
5590
5591 #undef ELF_OSABI
5592
5593 #undef elf_backend_object_p
5594 #define elf_backend_object_p \
5595 elf32_x86_64_elf_object_p
5596
5597 #undef elf_backend_bfd_from_remote_memory
5598 #define elf_backend_bfd_from_remote_memory \
5599 _bfd_elf32_bfd_from_remote_memory
5600
5601 #undef elf_backend_size_info
5602 #define elf_backend_size_info \
5603 _bfd_elf32_size_info
5604
5605 #include "elf32-target.h"
This page took 0.139845 seconds and 5 git commands to generate.