* libelf.h (struct elf_backend_data): Change second argument of
[deliverable/binutils-gdb.git] / bfd / elfcode.h
1 /* ELF executable support for BFD.
2 Copyright 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Written by Fred Fish @ Cygnus Support, from information published
5 in "UNIX System V Release 4, Programmers Guide: ANSI C and
6 Programming Support Tools". Sufficient support for gdb.
7
8 Rewritten by Mark Eichin @ Cygnus Support, from information
9 published in "System V Application Binary Interface", chapters 4
10 and 5, as well as the various "Processor Supplement" documents
11 derived from it. Added support for assembler and other object file
12 utilities. Further work done by Ken Raeburn (Cygnus Support), Michael
13 Meissner (Open Software Foundation), and Peter Hoogenboom (University
14 of Utah) to finish and extend this.
15
16 This file is part of BFD, the Binary File Descriptor library.
17
18 This program is free software; you can redistribute it and/or modify
19 it under the terms of the GNU General Public License as published by
20 the Free Software Foundation; either version 2 of the License, or
21 (at your option) any later version.
22
23 This program is distributed in the hope that it will be useful,
24 but WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 GNU General Public License for more details.
27
28 You should have received a copy of the GNU General Public License
29 along with this program; if not, write to the Free Software
30 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
31
32 /* Problems and other issues to resolve.
33
34 (1) BFD expects there to be some fixed number of "sections" in
35 the object file. I.E. there is a "section_count" variable in the
36 bfd structure which contains the number of sections. However, ELF
37 supports multiple "views" of a file. In particular, with current
38 implementations, executable files typically have two tables, a
39 program header table and a section header table, both of which
40 partition the executable.
41
42 In ELF-speak, the "linking view" of the file uses the section header
43 table to access "sections" within the file, and the "execution view"
44 uses the program header table to access "segments" within the file.
45 "Segments" typically may contain all the data from one or more
46 "sections".
47
48 Note that the section header table is optional in ELF executables,
49 but it is this information that is most useful to gdb. If the
50 section header table is missing, then gdb should probably try
51 to make do with the program header table. (FIXME)
52
53 (2) The code in this file is compiled twice, once in 32-bit mode and
54 once in 64-bit mode. More of it should be made size-independent
55 and moved into elf.c.
56
57 (3) ELF section symbols are handled rather sloppily now. This should
58 be cleaned up, and ELF section symbols reconciled with BFD section
59 symbols.
60
61 (4) We need a published spec for 64-bit ELF. We've got some stuff here
62 that we're using for SPARC V9 64-bit chips, but don't assume that
63 it's cast in stone.
64 */
65
66 #include <string.h> /* For strrchr and friends */
67 #include "bfd.h"
68 #include "sysdep.h"
69 #include "bfdlink.h"
70 #include "libbfd.h"
71 #include "libelf.h"
72
73 /* Renaming structures, typedefs, macros and functions to be size-specific. */
74 #define Elf_External_Ehdr NAME(Elf,External_Ehdr)
75 #define Elf_External_Sym NAME(Elf,External_Sym)
76 #define Elf_External_Shdr NAME(Elf,External_Shdr)
77 #define Elf_External_Phdr NAME(Elf,External_Phdr)
78 #define Elf_External_Rel NAME(Elf,External_Rel)
79 #define Elf_External_Rela NAME(Elf,External_Rela)
80 #define Elf_External_Dyn NAME(Elf,External_Dyn)
81
82 #define elf_core_file_failing_command NAME(bfd_elf,core_file_failing_command)
83 #define elf_core_file_failing_signal NAME(bfd_elf,core_file_failing_signal)
84 #define elf_core_file_matches_executable_p \
85 NAME(bfd_elf,core_file_matches_executable_p)
86 #define elf_object_p NAME(bfd_elf,object_p)
87 #define elf_core_file_p NAME(bfd_elf,core_file_p)
88 #define elf_get_symtab_upper_bound NAME(bfd_elf,get_symtab_upper_bound)
89 #define elf_get_dynamic_symtab_upper_bound \
90 NAME(bfd_elf,get_dynamic_symtab_upper_bound)
91 #define elf_swap_reloc_in NAME(bfd_elf,swap_reloc_in)
92 #define elf_swap_reloca_in NAME(bfd_elf,swap_reloca_in)
93 #define elf_swap_reloc_out NAME(bfd_elf,swap_reloc_out)
94 #define elf_swap_reloca_out NAME(bfd_elf,swap_reloca_out)
95 #define elf_swap_symbol_in NAME(bfd_elf,swap_symbol_in)
96 #define elf_swap_symbol_out NAME(bfd_elf,swap_symbol_out)
97 #define elf_swap_dyn_in NAME(bfd_elf,swap_dyn_in)
98 #define elf_swap_dyn_out NAME(bfd_elf,swap_dyn_out)
99 #define elf_get_reloc_upper_bound NAME(bfd_elf,get_reloc_upper_bound)
100 #define elf_canonicalize_reloc NAME(bfd_elf,canonicalize_reloc)
101 #define elf_get_symtab NAME(bfd_elf,get_symtab)
102 #define elf_canonicalize_dynamic_symtab \
103 NAME(bfd_elf,canonicalize_dynamic_symtab)
104 #define elf_make_empty_symbol NAME(bfd_elf,make_empty_symbol)
105 #define elf_get_symbol_info NAME(bfd_elf,get_symbol_info)
106 #define elf_print_symbol NAME(bfd_elf,print_symbol)
107 #define elf_get_lineno NAME(bfd_elf,get_lineno)
108 #define elf_set_arch_mach NAME(bfd_elf,set_arch_mach)
109 #define elf_find_nearest_line NAME(bfd_elf,find_nearest_line)
110 #define elf_sizeof_headers NAME(bfd_elf,sizeof_headers)
111 #define elf_set_section_contents NAME(bfd_elf,set_section_contents)
112 #define elf_no_info_to_howto NAME(bfd_elf,no_info_to_howto)
113 #define elf_no_info_to_howto_rel NAME(bfd_elf,no_info_to_howto_rel)
114 #define elf_new_section_hook NAME(bfd_elf,new_section_hook)
115 #define write_relocs NAME(bfd_elf,_write_relocs)
116 #define elf_find_section NAME(bfd_elf,find_section)
117 #define elf_bfd_link_add_symbols NAME(bfd_elf,bfd_link_add_symbols)
118 #define elf_add_dynamic_entry NAME(bfd_elf,add_dynamic_entry)
119 #define elf_link_create_dynamic_sections \
120 NAME(bfd_elf,link_create_dynamic_sections)
121 #define elf_link_record_dynamic_symbol \
122 NAME(bfd_elf,link_record_dynamic_symbol)
123 #define elf_bfd_final_link NAME(bfd_elf,bfd_final_link)
124
125 #if ARCH_SIZE == 64
126 #define ELF_R_INFO(X,Y) ELF64_R_INFO(X,Y)
127 #define ELF_R_SYM(X) ELF64_R_SYM(X)
128 #define ELF_R_TYPE(X) ELF64_R_TYPE(X)
129 #define ELFCLASS ELFCLASS64
130 #define FILE_ALIGN 8
131 #define LOG_FILE_ALIGN 3
132 #endif
133 #if ARCH_SIZE == 32
134 #define ELF_R_INFO(X,Y) ELF32_R_INFO(X,Y)
135 #define ELF_R_SYM(X) ELF32_R_SYM(X)
136 #define ELF_R_TYPE(X) ELF32_R_TYPE(X)
137 #define ELFCLASS ELFCLASS32
138 #define FILE_ALIGN 4
139 #define LOG_FILE_ALIGN 2
140 #endif
141
142 /* Forward declarations of static functions */
143
144 static unsigned long bfd_add_to_strtab
145 PARAMS ((bfd *, struct strtab *, const char *));
146 static asection *section_from_elf_index PARAMS ((bfd *, unsigned int));
147
148 static int elf_section_from_bfd_section PARAMS ((bfd *, struct sec *));
149
150 static long elf_slurp_symbol_table PARAMS ((bfd *, asymbol **, boolean));
151
152 static boolean elf_slurp_reloc_table PARAMS ((bfd *, asection *, asymbol **));
153
154 static int elf_symbol_from_bfd_symbol PARAMS ((bfd *,
155 struct symbol_cache_entry **));
156
157 static boolean elf_compute_section_file_positions
158 PARAMS ((bfd *, struct bfd_link_info *));
159 static boolean prep_headers PARAMS ((bfd *));
160 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
161 static boolean assign_section_numbers PARAMS ((bfd *));
162 static file_ptr align_file_position PARAMS ((file_ptr));
163 static file_ptr assign_file_position_for_section
164 PARAMS ((Elf_Internal_Shdr *, file_ptr, boolean));
165 static boolean assign_file_positions_except_relocs PARAMS ((bfd *, boolean));
166 static void assign_file_positions_for_relocs PARAMS ((bfd *));
167 static bfd_size_type get_program_header_size PARAMS ((bfd *));
168 static file_ptr map_program_segments
169 PARAMS ((bfd *, file_ptr, Elf_Internal_Shdr *, bfd_size_type));
170
171 static boolean elf_map_symbols PARAMS ((bfd *));
172 static boolean swap_out_syms PARAMS ((bfd *));
173
174 static boolean bfd_section_from_shdr PARAMS ((bfd *, unsigned int shindex));
175
176 #ifdef DEBUG
177 static void elf_debug_section PARAMS ((char *, int, Elf_Internal_Shdr *));
178 static void elf_debug_file PARAMS ((Elf_Internal_Ehdr *));
179 #endif
180
181 #define elf_string_from_elf_strtab(abfd,strindex) \
182 elf_string_from_elf_section(abfd,elf_elfheader(abfd)->e_shstrndx,strindex)
183 \f
184
185 /* Structure swapping routines */
186
187 /* Should perhaps use put_offset, put_word, etc. For now, the two versions
188 can be handled by explicitly specifying 32 bits or "the long type". */
189 #if ARCH_SIZE == 64
190 #define put_word bfd_h_put_64
191 #define get_word bfd_h_get_64
192 #endif
193 #if ARCH_SIZE == 32
194 #define put_word bfd_h_put_32
195 #define get_word bfd_h_get_32
196 #endif
197
198 /* Translate an ELF symbol in external format into an ELF symbol in internal
199 format. */
200
201 void
202 elf_swap_symbol_in (abfd, src, dst)
203 bfd *abfd;
204 Elf_External_Sym *src;
205 Elf_Internal_Sym *dst;
206 {
207 dst->st_name = bfd_h_get_32 (abfd, (bfd_byte *) src->st_name);
208 dst->st_value = get_word (abfd, (bfd_byte *) src->st_value);
209 dst->st_size = get_word (abfd, (bfd_byte *) src->st_size);
210 dst->st_info = bfd_h_get_8 (abfd, (bfd_byte *) src->st_info);
211 dst->st_other = bfd_h_get_8 (abfd, (bfd_byte *) src->st_other);
212 dst->st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src->st_shndx);
213 }
214
215 /* Translate an ELF symbol in internal format into an ELF symbol in external
216 format. */
217
218 void
219 elf_swap_symbol_out (abfd, src, dst)
220 bfd *abfd;
221 Elf_Internal_Sym *src;
222 Elf_External_Sym *dst;
223 {
224 bfd_h_put_32 (abfd, src->st_name, dst->st_name);
225 put_word (abfd, src->st_value, dst->st_value);
226 put_word (abfd, src->st_size, dst->st_size);
227 bfd_h_put_8 (abfd, src->st_info, dst->st_info);
228 bfd_h_put_8 (abfd, src->st_other, dst->st_other);
229 bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx);
230 }
231
232
233 /* Translate an ELF file header in external format into an ELF file header in
234 internal format. */
235
236 static void
237 elf_swap_ehdr_in (abfd, src, dst)
238 bfd *abfd;
239 Elf_External_Ehdr *src;
240 Elf_Internal_Ehdr *dst;
241 {
242 memcpy (dst->e_ident, src->e_ident, EI_NIDENT);
243 dst->e_type = bfd_h_get_16 (abfd, (bfd_byte *) src->e_type);
244 dst->e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src->e_machine);
245 dst->e_version = bfd_h_get_32 (abfd, (bfd_byte *) src->e_version);
246 dst->e_entry = get_word (abfd, (bfd_byte *) src->e_entry);
247 dst->e_phoff = get_word (abfd, (bfd_byte *) src->e_phoff);
248 dst->e_shoff = get_word (abfd, (bfd_byte *) src->e_shoff);
249 dst->e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->e_flags);
250 dst->e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_ehsize);
251 dst->e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phentsize);
252 dst->e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_phnum);
253 dst->e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shentsize);
254 dst->e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shnum);
255 dst->e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src->e_shstrndx);
256 }
257
258 /* Translate an ELF file header in internal format into an ELF file header in
259 external format. */
260
261 static void
262 elf_swap_ehdr_out (abfd, src, dst)
263 bfd *abfd;
264 Elf_Internal_Ehdr *src;
265 Elf_External_Ehdr *dst;
266 {
267 memcpy (dst->e_ident, src->e_ident, EI_NIDENT);
268 /* note that all elements of dst are *arrays of unsigned char* already... */
269 bfd_h_put_16 (abfd, src->e_type, dst->e_type);
270 bfd_h_put_16 (abfd, src->e_machine, dst->e_machine);
271 bfd_h_put_32 (abfd, src->e_version, dst->e_version);
272 put_word (abfd, src->e_entry, dst->e_entry);
273 put_word (abfd, src->e_phoff, dst->e_phoff);
274 put_word (abfd, src->e_shoff, dst->e_shoff);
275 bfd_h_put_32 (abfd, src->e_flags, dst->e_flags);
276 bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize);
277 bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize);
278 bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum);
279 bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize);
280 bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum);
281 bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx);
282 }
283
284
285 /* Translate an ELF section header table entry in external format into an
286 ELF section header table entry in internal format. */
287
288 static void
289 elf_swap_shdr_in (abfd, src, dst)
290 bfd *abfd;
291 Elf_External_Shdr *src;
292 Elf_Internal_Shdr *dst;
293 {
294 dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name);
295 dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type);
296 dst->sh_flags = get_word (abfd, (bfd_byte *) src->sh_flags);
297 dst->sh_addr = get_word (abfd, (bfd_byte *) src->sh_addr);
298 dst->sh_offset = get_word (abfd, (bfd_byte *) src->sh_offset);
299 dst->sh_size = get_word (abfd, (bfd_byte *) src->sh_size);
300 dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link);
301 dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info);
302 dst->sh_addralign = get_word (abfd, (bfd_byte *) src->sh_addralign);
303 dst->sh_entsize = get_word (abfd, (bfd_byte *) src->sh_entsize);
304 /* we haven't done any processing on it yet, so... */
305 dst->rawdata = (void *) 0;
306 }
307
308 /* Translate an ELF section header table entry in internal format into an
309 ELF section header table entry in external format. */
310
311 static void
312 elf_swap_shdr_out (abfd, src, dst)
313 bfd *abfd;
314 Elf_Internal_Shdr *src;
315 Elf_External_Shdr *dst;
316 {
317 /* note that all elements of dst are *arrays of unsigned char* already... */
318 bfd_h_put_32 (abfd, src->sh_name, dst->sh_name);
319 bfd_h_put_32 (abfd, src->sh_type, dst->sh_type);
320 put_word (abfd, src->sh_flags, dst->sh_flags);
321 put_word (abfd, src->sh_addr, dst->sh_addr);
322 put_word (abfd, src->sh_offset, dst->sh_offset);
323 put_word (abfd, src->sh_size, dst->sh_size);
324 bfd_h_put_32 (abfd, src->sh_link, dst->sh_link);
325 bfd_h_put_32 (abfd, src->sh_info, dst->sh_info);
326 put_word (abfd, src->sh_addralign, dst->sh_addralign);
327 put_word (abfd, src->sh_entsize, dst->sh_entsize);
328 }
329
330
331 /* Translate an ELF program header table entry in external format into an
332 ELF program header table entry in internal format. */
333
334 static void
335 elf_swap_phdr_in (abfd, src, dst)
336 bfd *abfd;
337 Elf_External_Phdr *src;
338 Elf_Internal_Phdr *dst;
339 {
340 dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type);
341 dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags);
342 dst->p_offset = get_word (abfd, (bfd_byte *) src->p_offset);
343 dst->p_vaddr = get_word (abfd, (bfd_byte *) src->p_vaddr);
344 dst->p_paddr = get_word (abfd, (bfd_byte *) src->p_paddr);
345 dst->p_filesz = get_word (abfd, (bfd_byte *) src->p_filesz);
346 dst->p_memsz = get_word (abfd, (bfd_byte *) src->p_memsz);
347 dst->p_align = get_word (abfd, (bfd_byte *) src->p_align);
348 }
349
350 static void
351 elf_swap_phdr_out (abfd, src, dst)
352 bfd *abfd;
353 Elf_Internal_Phdr *src;
354 Elf_External_Phdr *dst;
355 {
356 /* note that all elements of dst are *arrays of unsigned char* already... */
357 bfd_h_put_32 (abfd, src->p_type, dst->p_type);
358 put_word (abfd, src->p_offset, dst->p_offset);
359 put_word (abfd, src->p_vaddr, dst->p_vaddr);
360 put_word (abfd, src->p_paddr, dst->p_paddr);
361 put_word (abfd, src->p_filesz, dst->p_filesz);
362 put_word (abfd, src->p_memsz, dst->p_memsz);
363 bfd_h_put_32 (abfd, src->p_flags, dst->p_flags);
364 put_word (abfd, src->p_align, dst->p_align);
365 }
366
367 /* Translate an ELF reloc from external format to internal format. */
368 INLINE void
369 elf_swap_reloc_in (abfd, src, dst)
370 bfd *abfd;
371 Elf_External_Rel *src;
372 Elf_Internal_Rel *dst;
373 {
374 dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset);
375 dst->r_info = get_word (abfd, (bfd_byte *) src->r_info);
376 }
377
378 INLINE void
379 elf_swap_reloca_in (abfd, src, dst)
380 bfd *abfd;
381 Elf_External_Rela *src;
382 Elf_Internal_Rela *dst;
383 {
384 dst->r_offset = get_word (abfd, (bfd_byte *) src->r_offset);
385 dst->r_info = get_word (abfd, (bfd_byte *) src->r_info);
386 dst->r_addend = get_word (abfd, (bfd_byte *) src->r_addend);
387 }
388
389 /* Translate an ELF reloc from internal format to external format. */
390 INLINE void
391 elf_swap_reloc_out (abfd, src, dst)
392 bfd *abfd;
393 Elf_Internal_Rel *src;
394 Elf_External_Rel *dst;
395 {
396 put_word (abfd, src->r_offset, dst->r_offset);
397 put_word (abfd, src->r_info, dst->r_info);
398 }
399
400 INLINE void
401 elf_swap_reloca_out (abfd, src, dst)
402 bfd *abfd;
403 Elf_Internal_Rela *src;
404 Elf_External_Rela *dst;
405 {
406 put_word (abfd, src->r_offset, dst->r_offset);
407 put_word (abfd, src->r_info, dst->r_info);
408 put_word (abfd, src->r_addend, dst->r_addend);
409 }
410
411 INLINE void
412 elf_swap_dyn_in (abfd, src, dst)
413 bfd *abfd;
414 const Elf_External_Dyn *src;
415 Elf_Internal_Dyn *dst;
416 {
417 dst->d_tag = get_word (abfd, src->d_tag);
418 dst->d_un.d_val = get_word (abfd, src->d_un.d_val);
419 }
420
421 INLINE void
422 elf_swap_dyn_out (abfd, src, dst)
423 bfd *abfd;
424 const Elf_Internal_Dyn *src;
425 Elf_External_Dyn *dst;
426 {
427 put_word (abfd, src->d_tag, dst->d_tag);
428 put_word (abfd, src->d_un.d_val, dst->d_un.d_val);
429 }
430 \f
431 /* String table creation/manipulation routines */
432
433 static struct strtab *
434 bfd_new_strtab (abfd)
435 bfd *abfd;
436 {
437 struct strtab *ss;
438
439 ss = (struct strtab *) malloc (sizeof (struct strtab));
440 if (!ss)
441 {
442 bfd_set_error (bfd_error_no_memory);
443 return NULL;
444 }
445 ss->tab = malloc (1);
446 if (!ss->tab)
447 {
448 bfd_set_error (bfd_error_no_memory);
449 return NULL;
450 }
451 *ss->tab = 0;
452 ss->nentries = 0;
453 ss->length = 1;
454
455 return ss;
456 }
457
458 static unsigned long
459 bfd_add_to_strtab (abfd, ss, str)
460 bfd *abfd;
461 struct strtab *ss;
462 const char *str;
463 {
464 /* should search first, but for now: */
465 /* include the trailing NUL */
466 int ln = strlen (str) + 1;
467
468 /* FIXME: This is slow. Also, we could combine this with the a.out
469 string table building and use a hash table, although it might not
470 be worth it since ELF symbols don't include debugging information
471 and thus have much less overlap. */
472 ss->tab = realloc (ss->tab, ss->length + ln);
473 if (ss->tab == NULL)
474 {
475 bfd_set_error (bfd_error_no_memory);
476 return (unsigned long) -1;
477 }
478
479 strcpy (ss->tab + ss->length, str);
480 ss->nentries++;
481 ss->length += ln;
482
483 return ss->length - ln;
484 }
485
486 static int
487 bfd_add_2_to_strtab (abfd, ss, str, str2)
488 bfd *abfd;
489 struct strtab *ss;
490 char *str;
491 CONST char *str2;
492 {
493 /* should search first, but for now: */
494 /* include the trailing NUL */
495 int ln = strlen (str) + strlen (str2) + 1;
496
497 /* should this be using obstacks? */
498 if (ss->length)
499 ss->tab = realloc (ss->tab, ss->length + ln);
500 else
501 ss->tab = malloc (ln);
502
503 BFD_ASSERT (ss->tab != 0); /* FIXME */
504 strcpy (ss->tab + ss->length, str);
505 strcpy (ss->tab + ss->length + strlen (str), str2);
506 ss->nentries++;
507 ss->length += ln;
508
509 return ss->length - ln;
510 }
511 \f
512 /* ELF .o/exec file reading */
513
514 /* Create a new bfd section from an ELF section header. */
515
516 static boolean
517 bfd_section_from_shdr (abfd, shindex)
518 bfd *abfd;
519 unsigned int shindex;
520 {
521 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
522 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
523 char *name;
524
525 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
526
527 switch (hdr->sh_type)
528 {
529 case SHT_NULL:
530 /* Inactive section. Throw it away. */
531 return true;
532
533 case SHT_PROGBITS: /* Normal section with contents. */
534 case SHT_DYNAMIC: /* Dynamic linking information. */
535 case SHT_NOBITS: /* .bss section. */
536 case SHT_HASH: /* .hash section. */
537 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
538
539 case SHT_SYMTAB: /* A symbol table */
540 if (elf_onesymtab (abfd) == shindex)
541 return true;
542
543 BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym));
544 BFD_ASSERT (elf_onesymtab (abfd) == 0);
545 elf_onesymtab (abfd) = shindex;
546 elf_tdata (abfd)->symtab_hdr = *hdr;
547 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_hdr;
548 abfd->flags |= HAS_SYMS;
549
550 /* Sometimes a shared object will map in the symbol table. If
551 SHF_ALLOC is set, and this is a shared object, then we also
552 treat this section as a BFD section. We can not base the
553 decision purely on SHF_ALLOC, because that flag is sometimes
554 set in a relocateable object file, which would confuse the
555 linker. */
556 if ((hdr->sh_flags & SHF_ALLOC) != 0
557 && (abfd->flags & DYNAMIC) != 0
558 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
559 return false;
560
561 return true;
562
563 case SHT_DYNSYM: /* A dynamic symbol table */
564 if (elf_dynsymtab (abfd) == shindex)
565 return true;
566
567 BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym));
568 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
569 elf_dynsymtab (abfd) = shindex;
570 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
571 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->dynsymtab_hdr;
572 abfd->flags |= HAS_SYMS;
573
574 /* Besides being a symbol table, we also treat this as a regular
575 section, so that objcopy can handle it. */
576 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
577
578 case SHT_STRTAB: /* A string table */
579 if (hdr->rawdata != NULL)
580 return true;
581 if (ehdr->e_shstrndx == shindex)
582 {
583 elf_tdata (abfd)->shstrtab_hdr = *hdr;
584 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
585 hdr->rawdata = (PTR) & elf_tdata (abfd)->shstrtab_hdr;
586 return true;
587 }
588 {
589 unsigned int i;
590
591 for (i = 1; i < ehdr->e_shnum; i++)
592 {
593 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
594 if (hdr2->sh_link == shindex)
595 {
596 if (! bfd_section_from_shdr (abfd, i))
597 return false;
598 if (elf_onesymtab (abfd) == i)
599 {
600 elf_tdata (abfd)->strtab_hdr = *hdr;
601 elf_elfsections (abfd)[shindex] =
602 &elf_tdata (abfd)->strtab_hdr;
603 return true;
604 }
605 if (elf_dynsymtab (abfd) == i)
606 {
607 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
608 elf_elfsections (abfd)[shindex] =
609 &elf_tdata (abfd)->dynstrtab_hdr;
610 /* We also treat this as a regular section, so
611 that objcopy can handle it. */
612 break;
613 }
614 #if 0 /* Not handling other string tables specially right now. */
615 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
616 /* We have a strtab for some random other section. */
617 newsect = (asection *) hdr2->rawdata;
618 if (!newsect)
619 break;
620 hdr->rawdata = (PTR) newsect;
621 hdr2 = &elf_section_data (newsect)->str_hdr;
622 *hdr2 = *hdr;
623 elf_elfsections (abfd)[shindex] = hdr2;
624 #endif
625 }
626 }
627 }
628
629 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
630
631 case SHT_REL:
632 case SHT_RELA:
633 /* *These* do a lot of work -- but build no sections! */
634 {
635 asection *target_sect;
636 Elf_Internal_Shdr *hdr2;
637 int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
638
639 /* Get the symbol table. */
640 if (! bfd_section_from_shdr (abfd, hdr->sh_link))
641 return false;
642
643 /* If this reloc section does not use the main symbol table we
644 don't treat it as a reloc section. BFD can't adequately
645 represent such a section, so at least for now, we don't
646 try. We just present it as a normal section. */
647 if (hdr->sh_link != elf_onesymtab (abfd))
648 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
649
650 /* Don't allow REL relocations on a machine that uses RELA and
651 vice versa. */
652 /* @@ Actually, the generic ABI does suggest that both might be
653 used in one file. But the four ABI Processor Supplements I
654 have access to right now all specify that only one is used on
655 each of those architectures. It's conceivable that, e.g., a
656 bunch of absolute 32-bit relocs might be more compact in REL
657 form even on a RELA machine... */
658 BFD_ASSERT (use_rela_p
659 ? (hdr->sh_type == SHT_RELA
660 && hdr->sh_entsize == sizeof (Elf_External_Rela))
661 : (hdr->sh_type == SHT_REL
662 && hdr->sh_entsize == sizeof (Elf_External_Rel)));
663
664 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
665 return false;
666 target_sect = section_from_elf_index (abfd, hdr->sh_info);
667 if (target_sect == NULL
668 || elf_section_data (target_sect) == NULL)
669 return false;
670
671 hdr2 = &elf_section_data (target_sect)->rel_hdr;
672 *hdr2 = *hdr;
673 elf_elfsections (abfd)[shindex] = hdr2;
674 target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize;
675 target_sect->flags |= SEC_RELOC;
676 target_sect->relocation = NULL;
677 target_sect->rel_filepos = hdr->sh_offset;
678 abfd->flags |= HAS_RELOC;
679 return true;
680 }
681 break;
682
683 case SHT_NOTE:
684 #if 0
685 fprintf (stderr, "Note Sections not yet supported.\n");
686 BFD_FAIL ();
687 #endif
688 break;
689
690 case SHT_SHLIB:
691 #if 0
692 fprintf (stderr, "SHLIB Sections not supported (and non conforming.)\n");
693 #endif
694 return true;
695
696 default:
697 /* Check for any processor-specific section types. */
698 {
699 struct elf_backend_data *bed = get_elf_backend_data (abfd);
700
701 if (bed->elf_backend_section_from_shdr)
702 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
703 }
704 break;
705 }
706
707 return true;
708 }
709
710 boolean
711 elf_new_section_hook (abfd, sec)
712 bfd *abfd
713 ;
714 asection *sec;
715 {
716 struct bfd_elf_section_data *sdata;
717
718 sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata));
719 if (!sdata)
720 {
721 bfd_set_error (bfd_error_no_memory);
722 return false;
723 }
724 sec->used_by_bfd = (PTR) sdata;
725 memset (sdata, 0, sizeof (*sdata));
726 return true;
727 }
728
729 /* Create a new bfd section from an ELF program header.
730
731 Since program segments have no names, we generate a synthetic name
732 of the form segment<NUM>, where NUM is generally the index in the
733 program header table. For segments that are split (see below) we
734 generate the names segment<NUM>a and segment<NUM>b.
735
736 Note that some program segments may have a file size that is different than
737 (less than) the memory size. All this means is that at execution the
738 system must allocate the amount of memory specified by the memory size,
739 but only initialize it with the first "file size" bytes read from the
740 file. This would occur for example, with program segments consisting
741 of combined data+bss.
742
743 To handle the above situation, this routine generates TWO bfd sections
744 for the single program segment. The first has the length specified by
745 the file size of the segment, and the second has the length specified
746 by the difference between the two sizes. In effect, the segment is split
747 into it's initialized and uninitialized parts.
748
749 */
750
751 static boolean
752 bfd_section_from_phdr (abfd, hdr, index)
753 bfd *abfd;
754 Elf_Internal_Phdr *hdr;
755 int index;
756 {
757 asection *newsect;
758 char *name;
759 char namebuf[64];
760 int split;
761
762 split = ((hdr->p_memsz > 0) &&
763 (hdr->p_filesz > 0) &&
764 (hdr->p_memsz > hdr->p_filesz));
765 sprintf (namebuf, split ? "segment%da" : "segment%d", index);
766 name = bfd_alloc (abfd, strlen (namebuf) + 1);
767 if (!name)
768 {
769 bfd_set_error (bfd_error_no_memory);
770 return false;
771 }
772 strcpy (name, namebuf);
773 newsect = bfd_make_section (abfd, name);
774 if (newsect == NULL)
775 return false;
776 newsect->vma = hdr->p_vaddr;
777 newsect->_raw_size = hdr->p_filesz;
778 newsect->filepos = hdr->p_offset;
779 newsect->flags |= SEC_HAS_CONTENTS;
780 if (hdr->p_type == PT_LOAD)
781 {
782 newsect->flags |= SEC_ALLOC;
783 newsect->flags |= SEC_LOAD;
784 if (hdr->p_flags & PF_X)
785 {
786 /* FIXME: all we known is that it has execute PERMISSION,
787 may be data. */
788 newsect->flags |= SEC_CODE;
789 }
790 }
791 if (!(hdr->p_flags & PF_W))
792 {
793 newsect->flags |= SEC_READONLY;
794 }
795
796 if (split)
797 {
798 sprintf (namebuf, "segment%db", index);
799 name = bfd_alloc (abfd, strlen (namebuf) + 1);
800 if (!name)
801 {
802 bfd_set_error (bfd_error_no_memory);
803 return false;
804 }
805 strcpy (name, namebuf);
806 newsect = bfd_make_section (abfd, name);
807 if (newsect == NULL)
808 return false;
809 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
810 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
811 if (hdr->p_type == PT_LOAD)
812 {
813 newsect->flags |= SEC_ALLOC;
814 if (hdr->p_flags & PF_X)
815 newsect->flags |= SEC_CODE;
816 }
817 if (!(hdr->p_flags & PF_W))
818 newsect->flags |= SEC_READONLY;
819 }
820
821 return true;
822 }
823
824 /* Begin processing a given object.
825
826 First we validate the file by reading in the ELF header and checking
827 the magic number. */
828
829 static INLINE boolean
830 elf_file_p (x_ehdrp)
831 Elf_External_Ehdr *x_ehdrp;
832 {
833 return ((x_ehdrp->e_ident[EI_MAG0] == ELFMAG0)
834 && (x_ehdrp->e_ident[EI_MAG1] == ELFMAG1)
835 && (x_ehdrp->e_ident[EI_MAG2] == ELFMAG2)
836 && (x_ehdrp->e_ident[EI_MAG3] == ELFMAG3));
837 }
838
839 /* Check to see if the file associated with ABFD matches the target vector
840 that ABFD points to.
841
842 Note that we may be called several times with the same ABFD, but different
843 target vectors, most of which will not match. We have to avoid leaving
844 any side effects in ABFD, or any data it points to (like tdata), if the
845 file does not match the target vector. */
846
847 const bfd_target *
848 elf_object_p (abfd)
849 bfd *abfd;
850 {
851 Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
852 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
853 Elf_External_Shdr x_shdr; /* Section header table entry, external form */
854 Elf_Internal_Shdr *i_shdrp = NULL; /* Section header table, internal form */
855 unsigned int shindex;
856 char *shstrtab; /* Internal copy of section header stringtab */
857 struct elf_backend_data *ebd;
858 struct elf_obj_tdata *preserved_tdata = elf_tdata (abfd);
859 struct elf_obj_tdata *new_tdata = NULL;
860
861 /* Read in the ELF header in external format. */
862
863 if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
864 {
865 if (bfd_get_error () != bfd_error_system_call)
866 goto got_wrong_format_error;
867 else
868 goto got_no_match;
869 }
870
871 /* Now check to see if we have a valid ELF file, and one that BFD can
872 make use of. The magic number must match, the address size ('class')
873 and byte-swapping must match our XVEC entry, and it must have a
874 section header table (FIXME: See comments re sections at top of this
875 file). */
876
877 if ((elf_file_p (&x_ehdr) == false) ||
878 (x_ehdr.e_ident[EI_VERSION] != EV_CURRENT) ||
879 (x_ehdr.e_ident[EI_CLASS] != ELFCLASS))
880 goto got_wrong_format_error;
881
882 /* Check that file's byte order matches xvec's */
883 switch (x_ehdr.e_ident[EI_DATA])
884 {
885 case ELFDATA2MSB: /* Big-endian */
886 if (!abfd->xvec->header_byteorder_big_p)
887 goto got_wrong_format_error;
888 break;
889 case ELFDATA2LSB: /* Little-endian */
890 if (abfd->xvec->header_byteorder_big_p)
891 goto got_wrong_format_error;
892 break;
893 case ELFDATANONE: /* No data encoding specified */
894 default: /* Unknown data encoding specified */
895 goto got_wrong_format_error;
896 }
897
898 /* Allocate an instance of the elf_obj_tdata structure and hook it up to
899 the tdata pointer in the bfd. */
900
901 new_tdata = ((struct elf_obj_tdata *)
902 bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)));
903 if (new_tdata == NULL)
904 goto got_no_memory_error;
905 elf_tdata (abfd) = new_tdata;
906
907 /* Now that we know the byte order, swap in the rest of the header */
908 i_ehdrp = elf_elfheader (abfd);
909 elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
910 #if DEBUG & 1
911 elf_debug_file (i_ehdrp);
912 #endif
913
914 /* If there is no section header table, we're hosed. */
915 if (i_ehdrp->e_shoff == 0)
916 goto got_wrong_format_error;
917
918 /* As a simple sanity check, verify that the what BFD thinks is the
919 size of each section header table entry actually matches the size
920 recorded in the file. */
921 if (i_ehdrp->e_shentsize != sizeof (x_shdr))
922 goto got_wrong_format_error;
923
924 ebd = get_elf_backend_data (abfd);
925
926 /* Check that the ELF e_machine field matches what this particular
927 BFD format expects. */
928 if (ebd->elf_machine_code != i_ehdrp->e_machine)
929 {
930 const bfd_target * const *target_ptr;
931
932 if (ebd->elf_machine_code != EM_NONE)
933 goto got_wrong_format_error;
934
935 /* This is the generic ELF target. Let it match any ELF target
936 for which we do not have a specific backend. */
937 for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++)
938 {
939 struct elf_backend_data *back;
940
941 if ((*target_ptr)->flavour != bfd_target_elf_flavour)
942 continue;
943 back = (struct elf_backend_data *) (*target_ptr)->backend_data;
944 if (back->elf_machine_code == i_ehdrp->e_machine)
945 {
946 /* target_ptr is an ELF backend which matches this
947 object file, so reject the generic ELF target. */
948 goto got_wrong_format_error;
949 }
950 }
951 }
952
953 if (i_ehdrp->e_type == ET_EXEC)
954 abfd->flags |= EXEC_P;
955 else if (i_ehdrp->e_type == ET_DYN)
956 abfd->flags |= DYNAMIC;
957
958 if (i_ehdrp->e_phnum > 0)
959 abfd->flags |= D_PAGED;
960
961 if (! bfd_default_set_arch_mach (abfd, ebd->arch, 0))
962 goto got_no_match;
963
964 /* Remember the entry point specified in the ELF file header. */
965 bfd_get_start_address (abfd) = i_ehdrp->e_entry;
966
967 /* Allocate space for a copy of the section header table in
968 internal form, seek to the section header table in the file,
969 read it in, and convert it to internal form. */
970 i_shdrp = ((Elf_Internal_Shdr *)
971 bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum));
972 elf_elfsections (abfd) = ((Elf_Internal_Shdr **)
973 bfd_alloc (abfd,
974 sizeof (i_shdrp) * i_ehdrp->e_shnum));
975 if (!i_shdrp || !elf_elfsections (abfd))
976 goto got_no_memory_error;
977 if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) != 0)
978 goto got_no_match;
979 for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++)
980 {
981 if (bfd_read ((PTR) & x_shdr, sizeof x_shdr, 1, abfd) != sizeof (x_shdr))
982 goto got_no_match;
983 elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex);
984 elf_elfsections (abfd)[shindex] = i_shdrp + shindex;
985 }
986 if (i_ehdrp->e_shstrndx)
987 {
988 if (! bfd_section_from_shdr (abfd, i_ehdrp->e_shstrndx))
989 goto got_no_match;
990 }
991
992 /* Read in the string table containing the names of the sections. We
993 will need the base pointer to this table later. */
994 /* We read this inline now, so that we don't have to go through
995 bfd_section_from_shdr with it (since this particular strtab is
996 used to find all of the ELF section names.) */
997
998 shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx);
999 if (!shstrtab)
1000 goto got_no_match;
1001
1002 /* Once all of the section headers have been read and converted, we
1003 can start processing them. Note that the first section header is
1004 a dummy placeholder entry, so we ignore it. */
1005
1006 for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++)
1007 {
1008 if (! bfd_section_from_shdr (abfd, shindex))
1009 goto got_no_match;
1010 }
1011
1012 /* Let the backend double check the format and override global
1013 information. */
1014 if (ebd->elf_backend_object_p)
1015 {
1016 if ((*ebd->elf_backend_object_p) (abfd) == false)
1017 goto got_wrong_format_error;
1018 }
1019
1020 return (abfd->xvec);
1021
1022 got_wrong_format_error:
1023 bfd_set_error (bfd_error_wrong_format);
1024 goto got_no_match;
1025 got_no_memory_error:
1026 bfd_set_error (bfd_error_no_memory);
1027 goto got_no_match;
1028 got_no_match:
1029 if (new_tdata != NULL
1030 && new_tdata->elf_sect_ptr != NULL)
1031 bfd_release (abfd, new_tdata->elf_sect_ptr);
1032 if (i_shdrp != NULL)
1033 bfd_release (abfd, i_shdrp);
1034 if (new_tdata != NULL)
1035 bfd_release (abfd, new_tdata);
1036 elf_tdata (abfd) = preserved_tdata;
1037 return (NULL);
1038 }
1039 \f
1040
1041 /* ELF .o/exec file writing */
1042
1043 /* Takes a bfd and a symbol, returns a pointer to the elf specific area
1044 of the symbol if there is one. */
1045 static INLINE elf_symbol_type *
1046 elf_symbol_from (ignore_abfd, symbol)
1047 bfd *ignore_abfd;
1048 asymbol *symbol;
1049 {
1050 if (symbol->the_bfd->xvec->flavour != bfd_target_elf_flavour)
1051 return 0;
1052
1053 if (symbol->the_bfd->tdata.elf_obj_data == (struct elf_obj_tdata *) NULL)
1054 return 0;
1055
1056 return (elf_symbol_type *) symbol;
1057 }
1058
1059 void
1060 write_relocs (abfd, sec, xxx)
1061 bfd *abfd;
1062 asection *sec;
1063 PTR xxx;
1064 {
1065 Elf_Internal_Shdr *rela_hdr;
1066 Elf_External_Rela *outbound_relocas;
1067 Elf_External_Rel *outbound_relocs;
1068 int idx;
1069 int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
1070 asymbol *last_sym = 0;
1071 int last_sym_idx = 9999999; /* should always be written before use */
1072
1073 if ((sec->flags & SEC_RELOC) == 0)
1074 return;
1075
1076 /* The linker backend writes the relocs out itself, and sets the
1077 reloc_count field to zero to inhibit writing them here. Also,
1078 sometimes the SEC_RELOC flag gets set even when there aren't any
1079 relocs. */
1080 if (sec->reloc_count == 0)
1081 return;
1082
1083 rela_hdr = &elf_section_data (sec)->rel_hdr;
1084
1085 rela_hdr->sh_size = rela_hdr->sh_entsize * sec->reloc_count;
1086 rela_hdr->contents = (void *) bfd_alloc (abfd, rela_hdr->sh_size);
1087 if (!rela_hdr->contents)
1088 {
1089 bfd_set_error (bfd_error_no_memory);
1090 abort (); /* FIXME */
1091 }
1092
1093 /* orelocation has the data, reloc_count has the count... */
1094 if (use_rela_p)
1095 {
1096 outbound_relocas = (Elf_External_Rela *) rela_hdr->contents;
1097
1098 for (idx = 0; idx < sec->reloc_count; idx++)
1099 {
1100 Elf_Internal_Rela dst_rela;
1101 Elf_External_Rela *src_rela;
1102 arelent *ptr;
1103 asymbol *sym;
1104 int n;
1105
1106 ptr = sec->orelocation[idx];
1107 src_rela = outbound_relocas + idx;
1108 if (!(abfd->flags & EXEC_P))
1109 dst_rela.r_offset = ptr->address - sec->vma;
1110 else
1111 dst_rela.r_offset = ptr->address;
1112
1113 sym = *ptr->sym_ptr_ptr;
1114 if (sym == last_sym)
1115 n = last_sym_idx;
1116 else
1117 {
1118 last_sym = sym;
1119 last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym);
1120 }
1121 dst_rela.r_info = ELF_R_INFO (n, ptr->howto->type);
1122
1123 dst_rela.r_addend = ptr->addend;
1124 elf_swap_reloca_out (abfd, &dst_rela, src_rela);
1125 }
1126 }
1127 else
1128 /* REL relocations */
1129 {
1130 outbound_relocs = (Elf_External_Rel *) rela_hdr->contents;
1131
1132 for (idx = 0; idx < sec->reloc_count; idx++)
1133 {
1134 Elf_Internal_Rel dst_rel;
1135 Elf_External_Rel *src_rel;
1136 arelent *ptr;
1137 int n;
1138 asymbol *sym;
1139
1140 ptr = sec->orelocation[idx];
1141 sym = *ptr->sym_ptr_ptr;
1142 src_rel = outbound_relocs + idx;
1143 if (!(abfd->flags & EXEC_P))
1144 dst_rel.r_offset = ptr->address - sec->vma;
1145 else
1146 dst_rel.r_offset = ptr->address;
1147
1148 if (sym == last_sym)
1149 n = last_sym_idx;
1150 else
1151 {
1152 last_sym = sym;
1153 last_sym_idx = n = elf_symbol_from_bfd_symbol (abfd, &sym);
1154 }
1155 dst_rel.r_info = ELF_R_INFO (n, ptr->howto->type);
1156
1157 elf_swap_reloc_out (abfd, &dst_rel, src_rel);
1158 }
1159 }
1160 }
1161
1162 /* Set up an ELF internal section header for a section. */
1163
1164 /*ARGSUSED*/
1165 static void
1166 elf_fake_sections (abfd, asect, ignore)
1167 bfd *abfd;
1168 asection *asect;
1169 PTR ignore;
1170 {
1171 Elf_Internal_Shdr *this_hdr;
1172
1173 this_hdr = &elf_section_data (asect)->this_hdr;
1174
1175 this_hdr->sh_name = bfd_add_to_strtab (abfd, elf_shstrtab (abfd),
1176 asect->name);
1177 if (this_hdr->sh_name == (unsigned long) -1)
1178 abort (); /* FIXME */
1179
1180 this_hdr->sh_flags = 0;
1181 if ((asect->flags & SEC_ALLOC) != 0)
1182 this_hdr->sh_addr = asect->vma;
1183 else
1184 this_hdr->sh_addr = 0;
1185 this_hdr->sh_offset = 0;
1186 this_hdr->sh_size = asect->_raw_size;
1187 this_hdr->sh_link = 0;
1188 this_hdr->sh_info = 0;
1189 this_hdr->sh_addralign = 1 << asect->alignment_power;
1190 this_hdr->sh_entsize = 0;
1191
1192 this_hdr->rawdata = (PTR) asect;
1193 this_hdr->contents = NULL;
1194 this_hdr->size = 0;
1195
1196 /* FIXME: This should not be based on section names. */
1197 if (strcmp (asect->name, ".dynstr") == 0)
1198 this_hdr->sh_type = SHT_STRTAB;
1199 else if (strcmp (asect->name, ".hash") == 0)
1200 {
1201 this_hdr->sh_type = SHT_HASH;
1202 this_hdr->sh_entsize = ARCH_SIZE / 8;
1203 }
1204 else if (strcmp (asect->name, ".dynsym") == 0)
1205 {
1206 this_hdr->sh_type = SHT_DYNSYM;
1207 this_hdr->sh_entsize = sizeof (Elf_External_Sym);
1208 }
1209 else if (strcmp (asect->name, ".dynamic") == 0)
1210 {
1211 this_hdr->sh_type = SHT_DYNAMIC;
1212 this_hdr->sh_entsize = sizeof (Elf_External_Dyn);
1213 }
1214 else if (strncmp (asect->name, ".rela", 5) == 0
1215 && get_elf_backend_data (abfd)->use_rela_p)
1216 {
1217 this_hdr->sh_type = SHT_RELA;
1218 this_hdr->sh_entsize = sizeof (Elf_External_Rela);
1219 }
1220 else if (strncmp (asect->name, ".rel", 4) == 0
1221 && ! get_elf_backend_data (abfd)->use_rela_p)
1222 {
1223 this_hdr->sh_type = SHT_REL;
1224 this_hdr->sh_entsize = sizeof (Elf_External_Rel);
1225 }
1226 else if (strcmp (asect->name, ".note") == 0)
1227 this_hdr->sh_type = SHT_NOTE;
1228 else if (strncmp (asect->name, ".stab", 5) == 0
1229 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
1230 this_hdr->sh_type = SHT_STRTAB;
1231 else if ((asect->flags & SEC_ALLOC) != 0
1232 && (asect->flags & SEC_LOAD) != 0)
1233 this_hdr->sh_type = SHT_PROGBITS;
1234 else if ((asect->flags & SEC_ALLOC) != 0
1235 && ((asect->flags & SEC_LOAD) == 0))
1236 {
1237 BFD_ASSERT (strcmp (asect->name, ".bss") == 0
1238 || strcmp (asect->name, ".sbss") == 0);
1239 this_hdr->sh_type = SHT_NOBITS;
1240 }
1241 else
1242 {
1243 /* Who knows? */
1244 this_hdr->sh_type = SHT_PROGBITS;
1245 }
1246
1247 if ((asect->flags & SEC_ALLOC) != 0)
1248 this_hdr->sh_flags |= SHF_ALLOC;
1249 if ((asect->flags & SEC_READONLY) == 0)
1250 this_hdr->sh_flags |= SHF_WRITE;
1251 if ((asect->flags & SEC_CODE) != 0)
1252 this_hdr->sh_flags |= SHF_EXECINSTR;
1253
1254 /* Check for processor-specific section types. */
1255 {
1256 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1257
1258 if (bed->elf_backend_fake_sections)
1259 (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect);
1260 }
1261
1262 /* If the section has relocs, set up a section header for the
1263 SHT_REL[A] section. */
1264 if ((asect->flags & SEC_RELOC) != 0)
1265 {
1266 Elf_Internal_Shdr *rela_hdr;
1267 int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
1268
1269 rela_hdr = &elf_section_data (asect)->rel_hdr;
1270 rela_hdr->sh_name =
1271 bfd_add_2_to_strtab (abfd, elf_shstrtab (abfd),
1272 use_rela_p ? ".rela" : ".rel",
1273 asect->name);
1274 rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
1275 rela_hdr->sh_entsize = (use_rela_p
1276 ? sizeof (Elf_External_Rela)
1277 : sizeof (Elf_External_Rel));
1278 rela_hdr->sh_addralign = FILE_ALIGN;
1279 rela_hdr->sh_flags = 0;
1280 rela_hdr->sh_addr = 0;
1281 rela_hdr->sh_size = 0;
1282 rela_hdr->sh_offset = 0;
1283 rela_hdr->size = 0;
1284 }
1285 }
1286
1287 /* Assign all ELF section numbers. The dummy first section is handled here
1288 too. The link/info pointers for the standard section types are filled
1289 in here too, while we're at it. */
1290
1291 static boolean
1292 assign_section_numbers (abfd)
1293 bfd *abfd;
1294 {
1295 struct elf_obj_tdata *t = elf_tdata (abfd);
1296 asection *sec;
1297 unsigned int section_number;
1298 Elf_Internal_Shdr **i_shdrp;
1299
1300 section_number = 1;
1301
1302 for (sec = abfd->sections; sec; sec = sec->next)
1303 {
1304 struct bfd_elf_section_data *d = elf_section_data (sec);
1305
1306 d->this_idx = section_number++;
1307 if ((sec->flags & SEC_RELOC) == 0)
1308 d->rel_idx = 0;
1309 else
1310 d->rel_idx = section_number++;
1311 }
1312
1313 t->shstrtab_section = section_number++;
1314 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
1315 t->shstrtab_hdr.sh_size = elf_shstrtab (abfd)->length;
1316 t->shstrtab_hdr.contents = (PTR) elf_shstrtab (abfd)->tab;
1317
1318 if (abfd->symcount > 0)
1319 {
1320 t->symtab_section = section_number++;
1321 t->strtab_section = section_number++;
1322 }
1323
1324 elf_elfheader (abfd)->e_shnum = section_number;
1325
1326 /* Set up the list of section header pointers, in agreement with the
1327 indices. */
1328 i_shdrp = ((Elf_Internal_Shdr **)
1329 bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *)));
1330 if (i_shdrp == NULL)
1331 {
1332 bfd_set_error (bfd_error_no_memory);
1333 return false;
1334 }
1335
1336 i_shdrp[0] = ((Elf_Internal_Shdr *)
1337 bfd_alloc (abfd, sizeof (Elf_Internal_Shdr)));
1338 if (i_shdrp[0] == NULL)
1339 {
1340 bfd_release (abfd, i_shdrp);
1341 bfd_set_error (bfd_error_no_memory);
1342 return false;
1343 }
1344 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
1345
1346 elf_elfsections (abfd) = i_shdrp;
1347
1348 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
1349 if (abfd->symcount > 0)
1350 {
1351 i_shdrp[t->symtab_section] = &t->symtab_hdr;
1352 i_shdrp[t->strtab_section] = &t->strtab_hdr;
1353 t->symtab_hdr.sh_link = t->strtab_section;
1354 }
1355 for (sec = abfd->sections; sec; sec = sec->next)
1356 {
1357 struct bfd_elf_section_data *d = elf_section_data (sec);
1358 asection *s;
1359 const char *name;
1360
1361 i_shdrp[d->this_idx] = &d->this_hdr;
1362 if (d->rel_idx != 0)
1363 i_shdrp[d->rel_idx] = &d->rel_hdr;
1364
1365 /* Fill in the sh_link and sh_info fields while we're at it. */
1366
1367 /* sh_link of a reloc section is the section index of the symbol
1368 table. sh_info is the section index of the section to which
1369 the relocation entries apply. */
1370 if (d->rel_idx != 0)
1371 {
1372 d->rel_hdr.sh_link = t->symtab_section;
1373 d->rel_hdr.sh_info = d->this_idx;
1374 }
1375
1376 switch (d->this_hdr.sh_type)
1377 {
1378 case SHT_REL:
1379 case SHT_RELA:
1380 /* A reloc section which we are treating as a normal BFD
1381 section. sh_link is the section index of the symbol
1382 table. sh_info is the section index of the section to
1383 which the relocation entries apply. We assume that an
1384 allocated reloc section uses the dynamic symbol table.
1385 FIXME: How can we be sure? */
1386 s = bfd_get_section_by_name (abfd, ".dynsym");
1387 if (s != NULL)
1388 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1389
1390 /* We look up the section the relocs apply to by name. */
1391 name = sec->name;
1392 if (d->this_hdr.sh_type == SHT_REL)
1393 name += 4;
1394 else
1395 name += 5;
1396 s = bfd_get_section_by_name (abfd, name);
1397 if (s != NULL)
1398 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
1399 break;
1400
1401 case SHT_STRTAB:
1402 /* We assume that a section named .stab*str is a stabs
1403 string section. We look for a section with the same name
1404 but without the trailing ``str'', and set its sh_link
1405 field to point to this section. */
1406 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
1407 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
1408 {
1409 size_t len;
1410 char *alc;
1411
1412 len = strlen (sec->name);
1413 alc = (char *) malloc (len - 2);
1414 if (alc == NULL)
1415 {
1416 bfd_set_error (bfd_error_no_memory);
1417 return false;
1418 }
1419 strncpy (alc, sec->name, len - 3);
1420 alc[len - 3] = '\0';
1421 s = bfd_get_section_by_name (abfd, alc);
1422 free (alc);
1423 if (s != NULL)
1424 {
1425 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
1426
1427 /* This is a .stab section. */
1428 elf_section_data (s)->this_hdr.sh_entsize =
1429 4 + 2 * (ARCH_SIZE / 8);
1430 }
1431 }
1432 break;
1433
1434 case SHT_DYNAMIC:
1435 case SHT_DYNSYM:
1436 /* sh_link is the section header index of the string table
1437 used for the dynamic entries or symbol table. */
1438 s = bfd_get_section_by_name (abfd, ".dynstr");
1439 if (s != NULL)
1440 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1441 break;
1442
1443 case SHT_HASH:
1444 /* sh_link is the section header index of the symbol table
1445 this hash table is for. */
1446 s = bfd_get_section_by_name (abfd, ".dynsym");
1447 if (s != NULL)
1448 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
1449 break;
1450 }
1451 }
1452
1453 return true;
1454 }
1455
1456 /* Map symbol from it's internal number to the external number, moving
1457 all local symbols to be at the head of the list. */
1458
1459 static INLINE int
1460 sym_is_global (abfd, sym)
1461 bfd *abfd;
1462 asymbol *sym;
1463 {
1464 /* If the backend has a special mapping, use it. */
1465 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
1466 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
1467 (abfd, sym));
1468
1469 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
1470 {
1471 if (sym->flags & BSF_LOCAL)
1472 abort ();
1473 return 1;
1474 }
1475 if (sym->section == 0)
1476 {
1477 /* Is this valid? */
1478 abort ();
1479
1480 return 1;
1481 }
1482 if (bfd_is_und_section (sym->section))
1483 return 1;
1484 if (bfd_is_com_section (sym->section))
1485 return 1;
1486 if (sym->flags & (BSF_LOCAL | BSF_SECTION_SYM | BSF_FILE))
1487 return 0;
1488 return 0;
1489 }
1490
1491 static boolean
1492 elf_map_symbols (abfd)
1493 bfd *abfd;
1494 {
1495 int symcount = bfd_get_symcount (abfd);
1496 asymbol **syms = bfd_get_outsymbols (abfd);
1497 asymbol **sect_syms;
1498 int num_locals = 0;
1499 int num_globals = 0;
1500 int num_locals2 = 0;
1501 int num_globals2 = 0;
1502 int max_index = 0;
1503 int num_sections = 0;
1504 Elf_Sym_Extra *sym_extra;
1505 int idx;
1506 asection *asect;
1507
1508 #ifdef DEBUG
1509 fprintf (stderr, "elf_map_symbols\n");
1510 fflush (stderr);
1511 #endif
1512
1513 /* Add local symbols for each section for which there are relocs.
1514 FIXME: How can we tell which sections have relocs at this point?
1515 Will reloc_count always be accurate? Actually, I think most ELF
1516 targets create section symbols for all sections anyhow. */
1517 for (asect = abfd->sections; asect; asect = asect->next)
1518 {
1519 if (max_index < asect->index)
1520 max_index = asect->index;
1521 }
1522
1523 max_index++;
1524 elf_num_section_syms (abfd) = max_index;
1525 sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *));
1526 elf_section_syms (abfd) = sect_syms;
1527
1528 if (sect_syms == 0)
1529 {
1530 bfd_set_error (bfd_error_no_memory);
1531 return false;
1532 }
1533
1534 for (asect = abfd->sections; asect; asect = asect->next)
1535 {
1536 asymbol *sym = bfd_make_empty_symbol (abfd);
1537 if (!sym)
1538 {
1539 bfd_set_error (bfd_error_no_memory);
1540 return false;
1541 }
1542 sym->the_bfd = abfd;
1543 sym->name = asect->name;
1544 sym->value = asect->vma;
1545 sym->flags = BSF_SECTION_SYM;
1546 sym->section = asect;
1547 sect_syms[asect->index] = sym;
1548 num_sections++;
1549 #ifdef DEBUG
1550 fprintf (stderr,
1551 "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n",
1552 asect->name, (long) asect->vma, asect->index, (long) asect);
1553 #endif
1554 }
1555
1556 if (num_sections)
1557 {
1558 if (syms)
1559 syms = (asymbol **) bfd_realloc (abfd, syms,
1560 ((symcount + num_sections + 1)
1561 * sizeof (asymbol *)));
1562 else
1563 syms = (asymbol **) bfd_alloc (abfd,
1564 (num_sections + 1) * sizeof (asymbol *));
1565 if (!syms)
1566 {
1567 bfd_set_error (bfd_error_no_memory);
1568 return false;
1569 }
1570
1571 for (asect = abfd->sections; asect; asect = asect->next)
1572 {
1573 if (sect_syms[asect->index])
1574 syms[symcount++] = sect_syms[asect->index];
1575 }
1576
1577 syms[symcount] = (asymbol *) 0;
1578 bfd_set_symtab (abfd, syms, symcount);
1579 }
1580
1581 elf_sym_extra (abfd) = sym_extra
1582 = (Elf_Sym_Extra *) bfd_alloc (abfd, symcount * sizeof (Elf_Sym_Extra));
1583 if (!sym_extra)
1584 {
1585 bfd_set_error (bfd_error_no_memory);
1586 return false;
1587 }
1588
1589 /* Identify and classify all of the symbols. */
1590 for (idx = 0; idx < symcount; idx++)
1591 {
1592 if (!sym_is_global (abfd, syms[idx]))
1593 num_locals++;
1594 else
1595 num_globals++;
1596 }
1597
1598 /* Now provide mapping information. Add +1 for skipping over the
1599 dummy symbol. */
1600 for (idx = 0; idx < symcount; idx++)
1601 {
1602 syms[idx]->udata = (PTR) & sym_extra[idx];
1603 if (!sym_is_global (abfd, syms[idx]))
1604 sym_extra[idx].elf_sym_num = 1 + num_locals2++;
1605 else
1606 sym_extra[idx].elf_sym_num = 1 + num_locals + num_globals2++;
1607 }
1608
1609 elf_num_locals (abfd) = num_locals;
1610 elf_num_globals (abfd) = num_globals;
1611 return true;
1612 }
1613
1614 /* Compute the file positions we are going to put the sections at, and
1615 otherwise prepare to begin writing out the ELF file. If LINK_INFO
1616 is not NULL, this is being called by the ELF backend linker. */
1617
1618 static boolean
1619 elf_compute_section_file_positions (abfd, link_info)
1620 bfd *abfd;
1621 struct bfd_link_info *link_info;
1622 {
1623 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1624 Elf_Internal_Shdr *shstrtab_hdr;
1625
1626 if (abfd->output_has_begun)
1627 return true;
1628
1629 /* Do any elf backend specific processing first. */
1630 if (bed->elf_backend_begin_write_processing)
1631 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
1632
1633 if (! prep_headers (abfd))
1634 return false;
1635
1636 bfd_map_over_sections (abfd, elf_fake_sections, 0);
1637
1638 if (!assign_section_numbers (abfd))
1639 return false;
1640
1641 /* The backend linker builds symbol table information itself. */
1642 if (link_info == NULL)
1643 {
1644 if (! swap_out_syms (abfd))
1645 return false;
1646 }
1647
1648 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
1649 /* sh_name was set in prep_headers. */
1650 shstrtab_hdr->sh_type = SHT_STRTAB;
1651 shstrtab_hdr->sh_flags = 0;
1652 shstrtab_hdr->sh_addr = 0;
1653 shstrtab_hdr->sh_size = elf_shstrtab (abfd)->length;
1654 shstrtab_hdr->sh_entsize = 0;
1655 shstrtab_hdr->sh_link = 0;
1656 shstrtab_hdr->sh_info = 0;
1657 /* sh_offset is set in assign_file_positions_for_symtabs_and_strtabs. */
1658 shstrtab_hdr->sh_addralign = 1;
1659 shstrtab_hdr->contents = (PTR) elf_shstrtab (abfd)->tab;
1660
1661 if (!assign_file_positions_except_relocs (abfd,
1662 link_info == NULL ? true : false))
1663 return false;
1664
1665 abfd->output_has_begun = true;
1666
1667 return true;
1668 }
1669
1670
1671 /* Align to the maximum file alignment that could be required for any
1672 ELF data structure. */
1673
1674 static INLINE file_ptr
1675 align_file_position (off)
1676 file_ptr off;
1677 {
1678 return (off + FILE_ALIGN - 1) & ~(FILE_ALIGN - 1);
1679 }
1680
1681 /* Assign a file position to a section, optionally aligning to the
1682 required section alignment. */
1683
1684 static INLINE file_ptr
1685 assign_file_position_for_section (i_shdrp, offset, align)
1686 Elf_Internal_Shdr *i_shdrp;
1687 file_ptr offset;
1688 boolean align;
1689 {
1690 if (align)
1691 {
1692 unsigned int al;
1693
1694 al = i_shdrp->sh_addralign;
1695 if (al > 1)
1696 offset = BFD_ALIGN (offset, al);
1697 }
1698 i_shdrp->sh_offset = offset;
1699 if (i_shdrp->rawdata != NULL)
1700 ((asection *) i_shdrp->rawdata)->filepos = offset;
1701 if (i_shdrp->sh_type != SHT_NOBITS)
1702 offset += i_shdrp->sh_size;
1703 return offset;
1704 }
1705
1706 /* Get the size of the program header. This is called by the linker
1707 before any of the section VMA's are set, so it can't calculate the
1708 correct value for a strange memory layout. */
1709
1710 static bfd_size_type
1711 get_program_header_size (abfd)
1712 bfd *abfd;
1713 {
1714 size_t segs;
1715 asection *s;
1716
1717 /* Assume we will need exactly two PT_LOAD segments: one for text
1718 and one for data. */
1719 segs = 2;
1720
1721 s = bfd_get_section_by_name (abfd, ".interp");
1722 if (s != NULL && (s->flags & SEC_LOAD) != 0)
1723 {
1724 /* If we have a loadable interpreter section, we need a
1725 PT_INTERP segment. In this case, assume we also need a
1726 PT_PHDR segment, although that may not be true for all
1727 targets. */
1728 segs += 2;
1729 }
1730
1731 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
1732 {
1733 /* We need a PT_DYNAMIC segment. */
1734 ++segs;
1735 }
1736
1737 return segs * sizeof (Elf_External_Phdr);
1738 }
1739
1740 /* Create the program header. OFF is the file offset where the
1741 program header should be written. FIRST is the first loadable ELF
1742 section. PHDR_SIZE is the size of the program header as returned
1743 by get_program_header_size. */
1744
1745 static file_ptr
1746 map_program_segments (abfd, off, first, phdr_size)
1747 bfd *abfd;
1748 file_ptr off;
1749 Elf_Internal_Shdr *first;
1750 bfd_size_type phdr_size;
1751 {
1752 Elf_Internal_Phdr phdrs[10];
1753 unsigned int phdr_count;
1754 Elf_Internal_Phdr *phdr;
1755 int phdr_size_adjust;
1756 unsigned int i;
1757 Elf_Internal_Shdr **hdrpp;
1758 asection *sinterp, *sdyn;
1759 unsigned int last_type;
1760 Elf_Internal_Ehdr *i_ehdrp;
1761
1762 BFD_ASSERT ((abfd->flags & (EXEC_P | DYNAMIC)) != 0);
1763 BFD_ASSERT (phdr_size / sizeof (Elf_Internal_Phdr)
1764 <= sizeof phdrs / sizeof (phdrs[0]));
1765
1766 phdr_count = 0;
1767 phdr = phdrs;
1768
1769 phdr_size_adjust = 0;
1770
1771 /* If we have a loadable .interp section, we must create a PT_INTERP
1772 segment which must precede all PT_LOAD segments. We assume that
1773 we must also create a PT_PHDR segment, although that may not be
1774 true for all targets. */
1775 sinterp = bfd_get_section_by_name (abfd, ".interp");
1776 if (sinterp != NULL && (sinterp->flags & SEC_LOAD) != 0)
1777 {
1778 BFD_ASSERT (first != NULL);
1779
1780 phdr->p_type = PT_PHDR;
1781
1782 phdr->p_offset = off;
1783
1784 /* Account for any adjustment made because of the alignment of
1785 the first loadable section. */
1786 phdr_size_adjust = (first->sh_offset - phdr_size) - off;
1787 BFD_ASSERT (phdr_size_adjust >= 0 && phdr_size_adjust < 128);
1788
1789 /* The program header precedes all loadable sections. This lets
1790 us compute its loadable address. This depends on the linker
1791 script. */
1792 phdr->p_vaddr = first->sh_addr - (phdr_size + phdr_size_adjust);
1793
1794 phdr->p_paddr = 0;
1795 phdr->p_filesz = phdr_size;
1796 phdr->p_memsz = phdr_size;
1797
1798 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
1799 phdr->p_flags = PF_R | PF_X;
1800
1801 phdr->p_align = FILE_ALIGN;
1802 BFD_ASSERT ((phdr->p_vaddr - phdr->p_offset) % FILE_ALIGN == 0);
1803
1804 /* Include the ELF header in the first loadable segment. */
1805 phdr_size_adjust += off;
1806
1807 ++phdr_count;
1808 ++phdr;
1809
1810 phdr->p_type = PT_INTERP;
1811 phdr->p_offset = sinterp->filepos;
1812 phdr->p_vaddr = sinterp->vma;
1813 phdr->p_paddr = 0;
1814 phdr->p_filesz = sinterp->_raw_size;
1815 phdr->p_memsz = sinterp->_raw_size;
1816 phdr->p_flags = PF_R;
1817 phdr->p_align = 1 << bfd_get_section_alignment (abfd, sinterp);
1818
1819 ++phdr_count;
1820 ++phdr;
1821 }
1822
1823 /* Look through the sections to see how they will be divided into
1824 program segments. The sections must be arranged in order by
1825 sh_addr for this to work correctly. */
1826 phdr->p_type = PT_NULL;
1827 last_type = SHT_PROGBITS;
1828 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
1829 i < elf_elfheader (abfd)->e_shnum;
1830 i++, hdrpp++)
1831 {
1832 Elf_Internal_Shdr *hdr;
1833
1834 hdr = *hdrpp;
1835
1836 /* Ignore any section which will not be part of the process
1837 image. */
1838 if ((hdr->sh_flags & SHF_ALLOC) == 0)
1839 continue;
1840
1841 /* If this section fits in the segment we are constructing, add
1842 it in. */
1843 if (phdr->p_type != PT_NULL
1844 && (hdr->sh_offset - (phdr->p_offset + phdr->p_memsz)
1845 == hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz))
1846 && (last_type != SHT_NOBITS || hdr->sh_type == SHT_NOBITS))
1847 {
1848 bfd_size_type adjust;
1849
1850 adjust = hdr->sh_addr - (phdr->p_vaddr + phdr->p_memsz);
1851 phdr->p_memsz += hdr->sh_size + adjust;
1852 if (hdr->sh_type != SHT_NOBITS)
1853 phdr->p_filesz += hdr->sh_size + adjust;
1854 if ((hdr->sh_flags & SHF_WRITE) != 0)
1855 phdr->p_flags |= PF_W;
1856 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1857 phdr->p_flags |= PF_X;
1858 last_type = hdr->sh_type;
1859 continue;
1860 }
1861
1862 /* If we have a segment, move to the next one. */
1863 if (phdr->p_type != PT_NULL)
1864 {
1865 ++phdr;
1866 ++phdr_count;
1867 }
1868
1869 /* Start a new segment. */
1870 phdr->p_type = PT_LOAD;
1871 phdr->p_offset = hdr->sh_offset;
1872 phdr->p_vaddr = hdr->sh_addr;
1873 phdr->p_paddr = 0;
1874 if (hdr->sh_type == SHT_NOBITS)
1875 phdr->p_filesz = 0;
1876 else
1877 phdr->p_filesz = hdr->sh_size;
1878 phdr->p_memsz = hdr->sh_size;
1879 phdr->p_flags = PF_R;
1880 if ((hdr->sh_flags & SHF_WRITE) != 0)
1881 phdr->p_flags |= PF_W;
1882 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1883 phdr->p_flags |= PF_X;
1884 phdr->p_align = get_elf_backend_data (abfd)->maxpagesize;
1885
1886 if (hdr == first
1887 && sinterp != NULL
1888 && (sinterp->flags & SEC_LOAD) != 0)
1889 {
1890 phdr->p_offset -= phdr_size + phdr_size_adjust;
1891 phdr->p_vaddr -= phdr_size + phdr_size_adjust;
1892 phdr->p_filesz += phdr_size + phdr_size_adjust;
1893 phdr->p_memsz += phdr_size + phdr_size_adjust;
1894 }
1895
1896 last_type = hdr->sh_type;
1897 }
1898
1899 if (phdr->p_type != PT_NULL)
1900 {
1901 ++phdr;
1902 ++phdr_count;
1903 }
1904
1905 /* If we have a .dynamic section, create a PT_DYNAMIC segment. */
1906 sdyn = bfd_get_section_by_name (abfd, ".dynamic");
1907 if (sdyn != NULL && (sdyn->flags & SEC_LOAD) != 0)
1908 {
1909 phdr->p_type = PT_DYNAMIC;
1910 phdr->p_offset = sdyn->filepos;
1911 phdr->p_vaddr = sdyn->vma;
1912 phdr->p_paddr = 0;
1913 phdr->p_filesz = sdyn->_raw_size;
1914 phdr->p_memsz = sdyn->_raw_size;
1915 phdr->p_flags = PF_R;
1916 if ((sdyn->flags & SEC_READONLY) == 0)
1917 phdr->p_flags |= PF_W;
1918 if ((sdyn->flags & SEC_CODE) != 0)
1919 phdr->p_flags |= PF_X;
1920 phdr->p_align = 1 << bfd_get_section_alignment (abfd, sdyn);
1921
1922 ++phdr;
1923 ++phdr_count;
1924 }
1925
1926 /* Make sure the return value from get_program_header_size matches
1927 what we computed here. */
1928 if (phdr_count != phdr_size / sizeof (Elf_External_Phdr))
1929 abort ();
1930
1931 /* Set up program header information. */
1932 i_ehdrp = elf_elfheader (abfd);
1933 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
1934 i_ehdrp->e_phoff = off;
1935 i_ehdrp->e_phnum = phdr_count;
1936
1937 /* Save the program headers away. I don't think anybody uses this
1938 information right now. */
1939 elf_tdata (abfd)->phdr = ((Elf_Internal_Phdr *)
1940 bfd_alloc (abfd,
1941 (phdr_count
1942 * sizeof (Elf_Internal_Phdr))));
1943 if (elf_tdata (abfd)->phdr == NULL && phdr_count != 0)
1944 {
1945 bfd_set_error (bfd_error_no_memory);
1946 return (file_ptr) -1;
1947 }
1948 memcpy (elf_tdata (abfd)->phdr, phdrs,
1949 phdr_count * sizeof (Elf_Internal_Phdr));
1950
1951 /* Write out the program headers. */
1952 if (bfd_seek (abfd, off, SEEK_SET) != 0)
1953 return (file_ptr) -1;
1954
1955 for (i = 0, phdr = phdrs; i < phdr_count; i++, phdr++)
1956 {
1957 Elf_External_Phdr extphdr;
1958
1959 elf_swap_phdr_out (abfd, phdr, &extphdr);
1960 if (bfd_write (&extphdr, sizeof (Elf_External_Phdr), 1, abfd)
1961 != sizeof (Elf_External_Phdr))
1962 return (file_ptr) -1;
1963 }
1964
1965 return off + phdr_count * sizeof (Elf_External_Phdr);
1966 }
1967
1968 /* Work out the file positions of all the sections. This is called by
1969 elf_compute_section_file_positions. All the section sizes and VMAs
1970 must be known before this is called.
1971
1972 We do not consider reloc sections at this point, unless they form
1973 part of the loadable image. Reloc sections are assigned file
1974 positions in assign_file_positions_for_relocs, which is called by
1975 write_object_contents and final_link.
1976
1977 If DOSYMS is false, we do not assign file positions for the symbol
1978 table or the string table. */
1979
1980 static boolean
1981 assign_file_positions_except_relocs (abfd, dosyms)
1982 bfd *abfd;
1983 boolean dosyms;
1984 {
1985 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
1986 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
1987 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
1988 file_ptr off;
1989
1990 /* Start after the ELF header. */
1991 off = i_ehdrp->e_ehsize;
1992
1993 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
1994 {
1995 Elf_Internal_Shdr **hdrpp;
1996 unsigned int i;
1997
1998 /* We are not creating an executable, which means that we are
1999 not creating a program header, and that the actual order of
2000 the sections in the file is unimportant. */
2001 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
2002 {
2003 Elf_Internal_Shdr *hdr;
2004
2005 hdr = *hdrpp;
2006 if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
2007 {
2008 hdr->sh_offset = -1;
2009 continue;
2010 }
2011 if (! dosyms
2012 && (i == tdata->symtab_section
2013 || i == tdata->strtab_section))
2014 {
2015 hdr->sh_offset = -1;
2016 continue;
2017 }
2018
2019 off = assign_file_position_for_section (hdr, off, true);
2020 }
2021 }
2022 else
2023 {
2024 file_ptr phdr_off;
2025 bfd_size_type phdr_size;
2026 bfd_vma maxpagesize;
2027 Elf_Internal_Shdr **hdrpp;
2028 unsigned int i;
2029 Elf_Internal_Shdr *first;
2030 file_ptr phdr_map;
2031
2032 /* We are creating an executable. We must create a program
2033 header. We can't actually create the program header until we
2034 have set the file positions for the sections, but we can
2035 figure out how big it is going to be. */
2036 off = align_file_position (off);
2037 phdr_size = get_program_header_size (abfd);
2038 if (phdr_size == (file_ptr) -1)
2039 return false;
2040 phdr_off = off;
2041 off += phdr_size;
2042
2043 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
2044 if (maxpagesize == 0)
2045 maxpagesize = 1;
2046
2047 /* FIXME: We might want to sort the sections on the sh_addr
2048 field here. For now, we just assume that the linker will
2049 create the sections in an appropriate order. */
2050
2051 /* Assign file positions in two passes. In the first pass, we
2052 assign a file position to every section which forms part of
2053 the executable image. */
2054 first = NULL;
2055 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
2056 {
2057 Elf_Internal_Shdr *hdr;
2058
2059 hdr = *hdrpp;
2060 if ((hdr->sh_flags & SHF_ALLOC) == 0)
2061 continue;
2062
2063 if (first == NULL)
2064 first = hdr;
2065
2066 if ((abfd->flags & D_PAGED) != 0)
2067 {
2068 /* The section VMA must equal the file position modulo
2069 the page size. This is required by the program
2070 header. */
2071 off += (hdr->sh_addr - off) % maxpagesize;
2072 }
2073
2074 off = assign_file_position_for_section (hdr, off, false);
2075 }
2076
2077 /* Assign file positions to all the sections which do not form
2078 part of the loadable image, except for the relocs. */
2079 for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++)
2080 {
2081 Elf_Internal_Shdr *hdr;
2082
2083 hdr = *hdrpp;
2084 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2085 continue;
2086 if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
2087 {
2088 hdr->sh_offset = -1;
2089 continue;
2090 }
2091 if (! dosyms
2092 && (i == tdata->symtab_section
2093 || i == tdata->strtab_section))
2094 {
2095 hdr->sh_offset = -1;
2096 continue;
2097 }
2098
2099 off = assign_file_position_for_section (hdr, off, true);
2100 }
2101
2102 phdr_map = map_program_segments (abfd, phdr_off, first, phdr_size);
2103 if (phdr_map == (file_ptr) -1)
2104 return false;
2105 BFD_ASSERT (phdr_map == phdr_off + phdr_size);
2106 }
2107
2108 /* Place the section headers. */
2109 off = align_file_position (off);
2110 i_ehdrp->e_shoff = off;
2111 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
2112
2113 elf_tdata (abfd)->next_file_pos = off;
2114
2115 return true;
2116 }
2117
2118 static boolean
2119 prep_headers (abfd)
2120 bfd *abfd;
2121 {
2122 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
2123 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
2124 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
2125 int count;
2126 struct strtab *shstrtab;
2127
2128 i_ehdrp = elf_elfheader (abfd);
2129 i_shdrp = elf_elfsections (abfd);
2130
2131 shstrtab = bfd_new_strtab (abfd);
2132 if (!shstrtab)
2133 return false;
2134
2135 elf_shstrtab (abfd) = shstrtab;
2136
2137 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
2138 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
2139 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
2140 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
2141
2142 i_ehdrp->e_ident[EI_CLASS] = ELFCLASS;
2143 i_ehdrp->e_ident[EI_DATA] =
2144 abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB;
2145 i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT;
2146
2147 for (count = EI_PAD; count < EI_NIDENT; count++)
2148 i_ehdrp->e_ident[count] = 0;
2149
2150 if ((abfd->flags & DYNAMIC) != 0)
2151 i_ehdrp->e_type = ET_DYN;
2152 else if ((abfd->flags & EXEC_P) != 0)
2153 i_ehdrp->e_type = ET_EXEC;
2154 else
2155 i_ehdrp->e_type = ET_REL;
2156
2157 switch (bfd_get_arch (abfd))
2158 {
2159 case bfd_arch_unknown:
2160 i_ehdrp->e_machine = EM_NONE;
2161 break;
2162 case bfd_arch_sparc:
2163 #if ARCH_SIZE == 64
2164 i_ehdrp->e_machine = EM_SPARC64;
2165 #else
2166 i_ehdrp->e_machine = EM_SPARC;
2167 #endif
2168 break;
2169 case bfd_arch_i386:
2170 i_ehdrp->e_machine = EM_386;
2171 break;
2172 case bfd_arch_m68k:
2173 i_ehdrp->e_machine = EM_68K;
2174 break;
2175 case bfd_arch_m88k:
2176 i_ehdrp->e_machine = EM_88K;
2177 break;
2178 case bfd_arch_i860:
2179 i_ehdrp->e_machine = EM_860;
2180 break;
2181 case bfd_arch_mips: /* MIPS Rxxxx */
2182 i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
2183 break;
2184 case bfd_arch_hppa:
2185 i_ehdrp->e_machine = EM_PARISC;
2186 break;
2187 case bfd_arch_powerpc:
2188 i_ehdrp->e_machine = EM_CYGNUS_POWERPC;
2189 break;
2190 /* also note that EM_M32, AT&T WE32100 is unknown to bfd */
2191 default:
2192 i_ehdrp->e_machine = EM_NONE;
2193 }
2194 i_ehdrp->e_version = EV_CURRENT;
2195 i_ehdrp->e_ehsize = sizeof (Elf_External_Ehdr);
2196
2197 /* no program header, for now. */
2198 i_ehdrp->e_phoff = 0;
2199 i_ehdrp->e_phentsize = 0;
2200 i_ehdrp->e_phnum = 0;
2201
2202 /* each bfd section is section header entry */
2203 i_ehdrp->e_entry = bfd_get_start_address (abfd);
2204 i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr);
2205
2206 /* if we're building an executable, we'll need a program header table */
2207 if (abfd->flags & EXEC_P)
2208 {
2209 /* it all happens later */
2210 #if 0
2211 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
2212
2213 /* elf_build_phdrs() returns a (NULL-terminated) array of
2214 Elf_Internal_Phdrs */
2215 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
2216 i_ehdrp->e_phoff = outbase;
2217 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
2218 #endif
2219 }
2220 else
2221 {
2222 i_ehdrp->e_phentsize = 0;
2223 i_phdrp = 0;
2224 i_ehdrp->e_phoff = 0;
2225 }
2226
2227 elf_tdata (abfd)->symtab_hdr.sh_name = bfd_add_to_strtab (abfd, shstrtab,
2228 ".symtab");
2229 elf_tdata (abfd)->strtab_hdr.sh_name = bfd_add_to_strtab (abfd, shstrtab,
2230 ".strtab");
2231 elf_tdata (abfd)->shstrtab_hdr.sh_name = bfd_add_to_strtab (abfd, shstrtab,
2232 ".shstrtab");
2233 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
2234 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
2235 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
2236 return false;
2237
2238 return true;
2239 }
2240
2241 static boolean
2242 swap_out_syms (abfd)
2243 bfd *abfd;
2244 {
2245 if (!elf_map_symbols (abfd))
2246 return false;
2247
2248 /* Dump out the symtabs. */
2249 {
2250 int symcount = bfd_get_symcount (abfd);
2251 asymbol **syms = bfd_get_outsymbols (abfd);
2252 struct strtab *stt = bfd_new_strtab (abfd);
2253 Elf_Internal_Shdr *symtab_hdr;
2254 Elf_Internal_Shdr *symstrtab_hdr;
2255 Elf_External_Sym *outbound_syms;
2256 int idx;
2257
2258 if (!stt)
2259 return false;
2260 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2261 symtab_hdr->sh_type = SHT_SYMTAB;
2262 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
2263 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
2264 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
2265 symtab_hdr->sh_addralign = FILE_ALIGN;
2266
2267 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
2268 symstrtab_hdr->sh_type = SHT_STRTAB;
2269
2270 outbound_syms = (Elf_External_Sym *)
2271 bfd_alloc (abfd, (1 + symcount) * sizeof (Elf_External_Sym));
2272 if (!outbound_syms)
2273 {
2274 bfd_set_error (bfd_error_no_memory);
2275 return false;
2276 }
2277 /* now generate the data (for "contents") */
2278 {
2279 /* Fill in zeroth symbol and swap it out. */
2280 Elf_Internal_Sym sym;
2281 sym.st_name = 0;
2282 sym.st_value = 0;
2283 sym.st_size = 0;
2284 sym.st_info = 0;
2285 sym.st_other = 0;
2286 sym.st_shndx = SHN_UNDEF;
2287 elf_swap_symbol_out (abfd, &sym, outbound_syms);
2288 }
2289 for (idx = 0; idx < symcount; idx++)
2290 {
2291 Elf_Internal_Sym sym;
2292 bfd_vma value = syms[idx]->value;
2293 elf_symbol_type *type_ptr;
2294
2295 if (syms[idx]->flags & BSF_SECTION_SYM)
2296 /* Section symbols have no names. */
2297 sym.st_name = 0;
2298 else
2299 {
2300 sym.st_name = bfd_add_to_strtab (abfd, stt, syms[idx]->name);
2301 if (sym.st_name == (unsigned long) -1)
2302 return false;
2303 }
2304
2305 type_ptr = elf_symbol_from (abfd, syms[idx]);
2306
2307 if (bfd_is_com_section (syms[idx]->section))
2308 {
2309 /* ELF common symbols put the alignment into the `value' field,
2310 and the size into the `size' field. This is backwards from
2311 how BFD handles it, so reverse it here. */
2312 sym.st_size = value;
2313 sym.st_value = type_ptr ? type_ptr->internal_elf_sym.st_value : 16;
2314 sym.st_shndx = elf_section_from_bfd_section (abfd,
2315 syms[idx]->section);
2316 }
2317 else
2318 {
2319 asection *sec = syms[idx]->section;
2320 int shndx;
2321
2322 if (sec->output_section)
2323 {
2324 value += sec->output_offset;
2325 sec = sec->output_section;
2326 }
2327 value += sec->vma;
2328 sym.st_value = value;
2329 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
2330 sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec);
2331 if (shndx == -1)
2332 {
2333 asection *sec2;
2334 /* Writing this would be a hell of a lot easier if we had
2335 some decent documentation on bfd, and knew what to expect
2336 of the library, and what to demand of applications. For
2337 example, it appears that `objcopy' might not set the
2338 section of a symbol to be a section that is actually in
2339 the output file. */
2340 sec2 = bfd_get_section_by_name (abfd, sec->name);
2341 BFD_ASSERT (sec2 != 0);
2342 sym.st_shndx = shndx = elf_section_from_bfd_section (abfd, sec2);
2343 BFD_ASSERT (shndx != -1);
2344 }
2345 }
2346
2347 if (bfd_is_com_section (syms[idx]->section))
2348 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_OBJECT);
2349 else if (bfd_is_und_section (syms[idx]->section))
2350 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_NOTYPE);
2351 else if (syms[idx]->flags & BSF_SECTION_SYM)
2352 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
2353 else if (syms[idx]->flags & BSF_FILE)
2354 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
2355 else
2356 {
2357 int bind = STB_LOCAL;
2358 int type = STT_OBJECT;
2359 unsigned int flags = syms[idx]->flags;
2360
2361 if (flags & BSF_LOCAL)
2362 bind = STB_LOCAL;
2363 else if (flags & BSF_WEAK)
2364 bind = STB_WEAK;
2365 else if (flags & BSF_GLOBAL)
2366 bind = STB_GLOBAL;
2367
2368 if (flags & BSF_FUNCTION)
2369 type = STT_FUNC;
2370
2371 sym.st_info = ELF_ST_INFO (bind, type);
2372 }
2373
2374 sym.st_other = 0;
2375 elf_swap_symbol_out (abfd, &sym,
2376 (outbound_syms
2377 + elf_sym_extra (abfd)[idx].elf_sym_num));
2378 }
2379
2380 symtab_hdr->contents = (PTR) outbound_syms;
2381 symstrtab_hdr->contents = (PTR) stt->tab;
2382 symstrtab_hdr->sh_size = stt->length;
2383 symstrtab_hdr->sh_type = SHT_STRTAB;
2384
2385 symstrtab_hdr->sh_flags = 0;
2386 symstrtab_hdr->sh_addr = 0;
2387 symstrtab_hdr->sh_entsize = 0;
2388 symstrtab_hdr->sh_link = 0;
2389 symstrtab_hdr->sh_info = 0;
2390 symstrtab_hdr->sh_addralign = 1;
2391 symstrtab_hdr->size = 0;
2392 }
2393
2394 return true;
2395 }
2396
2397 static boolean
2398 write_shdrs_and_ehdr (abfd)
2399 bfd *abfd;
2400 {
2401 Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
2402 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
2403 Elf_External_Shdr *x_shdrp; /* Section header table, external form */
2404 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
2405 unsigned int count;
2406 struct strtab *shstrtab;
2407
2408 i_ehdrp = elf_elfheader (abfd);
2409 i_shdrp = elf_elfsections (abfd);
2410 shstrtab = elf_shstrtab (abfd);
2411
2412 /* swap the header before spitting it out... */
2413
2414 #if DEBUG & 1
2415 elf_debug_file (i_ehdrp);
2416 #endif
2417 elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr);
2418 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
2419 || (bfd_write ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd)
2420 != sizeof (x_ehdr)))
2421 return false;
2422
2423 /* at this point we've concocted all the ELF sections... */
2424 x_shdrp = (Elf_External_Shdr *)
2425 bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum));
2426 if (!x_shdrp)
2427 {
2428 bfd_set_error (bfd_error_no_memory);
2429 return false;
2430 }
2431
2432 for (count = 0; count < i_ehdrp->e_shnum; count++)
2433 {
2434 #if DEBUG & 2
2435 elf_debug_section (shstrtab->tab + i_shdrp[count]->sh_name, count,
2436 i_shdrp[count]);
2437 #endif
2438 elf_swap_shdr_out (abfd, i_shdrp[count], x_shdrp + count);
2439 }
2440 if (bfd_seek (abfd, (file_ptr) i_ehdrp->e_shoff, SEEK_SET) != 0
2441 || (bfd_write ((PTR) x_shdrp, sizeof (*x_shdrp), i_ehdrp->e_shnum, abfd)
2442 != sizeof (*x_shdrp) * i_ehdrp->e_shnum))
2443 return false;
2444
2445 /* need to dump the string table too... */
2446
2447 return true;
2448 }
2449
2450 /* Assign file positions for all the reloc sections which are not part
2451 of the loadable file image. */
2452
2453 static void
2454 assign_file_positions_for_relocs (abfd)
2455 bfd *abfd;
2456 {
2457 file_ptr off;
2458 unsigned int i;
2459 Elf_Internal_Shdr **shdrpp;
2460
2461 off = elf_tdata (abfd)->next_file_pos;
2462
2463 for (i = 1, shdrpp = elf_elfsections (abfd) + 1;
2464 i < elf_elfheader (abfd)->e_shnum;
2465 i++, shdrpp++)
2466 {
2467 Elf_Internal_Shdr *shdrp;
2468
2469 shdrp = *shdrpp;
2470 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
2471 && shdrp->sh_offset == -1)
2472 off = assign_file_position_for_section (shdrp, off, true);
2473 }
2474
2475 elf_tdata (abfd)->next_file_pos = off;
2476 }
2477
2478 boolean
2479 NAME(bfd_elf,write_object_contents) (abfd)
2480 bfd *abfd;
2481 {
2482 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2483 Elf_Internal_Ehdr *i_ehdrp;
2484 Elf_Internal_Shdr **i_shdrp;
2485 unsigned int count;
2486
2487 if (! abfd->output_has_begun
2488 && ! elf_compute_section_file_positions (abfd,
2489 (struct bfd_link_info *) NULL))
2490 return false;
2491
2492 i_shdrp = elf_elfsections (abfd);
2493 i_ehdrp = elf_elfheader (abfd);
2494
2495 bfd_map_over_sections (abfd, write_relocs, (PTR) 0);
2496 assign_file_positions_for_relocs (abfd);
2497
2498 /* After writing the headers, we need to write the sections too... */
2499 for (count = 1; count < i_ehdrp->e_shnum; count++)
2500 {
2501 if (bed->elf_backend_section_processing)
2502 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
2503 if (i_shdrp[count]->contents)
2504 {
2505 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
2506 || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size,
2507 1, abfd)
2508 != i_shdrp[count]->sh_size))
2509 return false;
2510 }
2511 }
2512
2513 if (bed->elf_backend_final_write_processing)
2514 (*bed->elf_backend_final_write_processing) (abfd, NULL);
2515
2516 return write_shdrs_and_ehdr (abfd);
2517 }
2518
2519 /* Given an index of a section, retrieve a pointer to it. Note
2520 that for our purposes, sections are indexed by {1, 2, ...} with
2521 0 being an illegal index. */
2522
2523 /* In the original, each ELF section went into exactly one BFD
2524 section. This doesn't really make sense, so we need a real mapping.
2525 The mapping has to hide in the Elf_Internal_Shdr since asection
2526 doesn't have anything like a tdata field... */
2527
2528 static asection *
2529 section_from_elf_index (abfd, index)
2530 bfd *abfd;
2531 unsigned int index;
2532 {
2533 /* @@ Is bfd_com_section_ptr really correct in all the places it could
2534 be returned from this routine? */
2535
2536 if (index == SHN_ABS)
2537 return bfd_com_section_ptr; /* not abs? */
2538 if (index == SHN_COMMON)
2539 return bfd_com_section_ptr;
2540
2541 if (index >= elf_elfheader (abfd)->e_shnum)
2542 return NULL;
2543
2544 {
2545 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[index];
2546
2547 switch (hdr->sh_type)
2548 {
2549 /* ELF sections that map to BFD sections */
2550 case SHT_PROGBITS:
2551 case SHT_NOBITS:
2552 case SHT_HASH:
2553 case SHT_DYNAMIC:
2554 if (hdr->rawdata == NULL)
2555 {
2556 if (! bfd_section_from_shdr (abfd, index))
2557 return NULL;
2558 }
2559 return (struct sec *) hdr->rawdata;
2560
2561 default:
2562 return bfd_abs_section_ptr;
2563 }
2564 }
2565 }
2566
2567 /* given a section, search the header to find them... */
2568 static int
2569 elf_section_from_bfd_section (abfd, asect)
2570 bfd *abfd;
2571 struct sec *asect;
2572 {
2573 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
2574 int index;
2575 Elf_Internal_Shdr *hdr;
2576 int maxindex = elf_elfheader (abfd)->e_shnum;
2577
2578 if (asect->owner == NULL)
2579 {
2580 if (bfd_is_abs_section (asect))
2581 return SHN_ABS;
2582 if (bfd_is_com_section (asect))
2583 return SHN_COMMON;
2584 if (bfd_is_und_section (asect))
2585 return SHN_UNDEF;
2586 return -1;
2587 }
2588
2589 BFD_ASSERT (asect->owner == abfd);
2590
2591 for (index = 0; index < maxindex; index++)
2592 {
2593 hdr = i_shdrp[index];
2594 switch (hdr->sh_type)
2595 {
2596 /* ELF sections that map to BFD sections */
2597 case SHT_PROGBITS:
2598 case SHT_NOBITS:
2599 case SHT_NOTE:
2600 case SHT_HASH:
2601 case SHT_DYNAMIC:
2602 case SHT_DYNSYM:
2603 case SHT_SYMTAB:
2604 if (hdr->rawdata)
2605 {
2606 if (((struct sec *) (hdr->rawdata)) == asect)
2607 return index;
2608 }
2609 break;
2610
2611 case SHT_REL:
2612 case SHT_RELA:
2613 /* We sometimes map a reloc section to a BFD section. */
2614 if (hdr->sh_link != elf_onesymtab (abfd)
2615 && (asection *) hdr->rawdata == asect)
2616 return index;
2617 break;
2618
2619 case SHT_STRTAB:
2620 /* We map most string tables to BFD sections. */
2621 if (index != elf_elfheader (abfd)->e_shstrndx
2622 && index != elf_onesymtab (abfd)
2623 && (asection *) hdr->rawdata == asect)
2624 return index;
2625
2626 /* FALL THROUGH */
2627 default:
2628 {
2629 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2630
2631 if (bed->elf_backend_section_from_bfd_section)
2632 {
2633 int retval;
2634
2635 retval = index;
2636 if ((*bed->elf_backend_section_from_bfd_section)
2637 (abfd, hdr, asect, &retval))
2638 return retval;
2639 }
2640 }
2641 break;
2642 }
2643 }
2644 return -1;
2645 }
2646
2647 /* given a symbol, return the bfd index for that symbol. */
2648 static int
2649 elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
2650 bfd *abfd;
2651 struct symbol_cache_entry **asym_ptr_ptr;
2652 {
2653 struct symbol_cache_entry *asym_ptr = *asym_ptr_ptr;
2654 int idx;
2655 flagword flags = asym_ptr->flags;
2656
2657 /* When gas creates relocations against local labels, it creates its
2658 own symbol for the section, but does put the symbol into the
2659 symbol chain, so udata is 0. When the linker is generating
2660 relocatable output, this section symbol may be for one of the
2661 input sections rather than the output section. */
2662 if (asym_ptr->udata == (PTR) 0
2663 && (flags & BSF_SECTION_SYM)
2664 && asym_ptr->section)
2665 {
2666 int indx;
2667
2668 if (asym_ptr->section->output_section != NULL)
2669 indx = asym_ptr->section->output_section->index;
2670 else
2671 indx = asym_ptr->section->index;
2672 if (elf_section_syms (abfd)[indx])
2673 asym_ptr->udata = elf_section_syms (abfd)[indx]->udata;
2674 }
2675
2676 if (asym_ptr->udata)
2677 idx = ((Elf_Sym_Extra *) asym_ptr->udata)->elf_sym_num;
2678 else
2679 {
2680 abort ();
2681 }
2682
2683 #if DEBUG & 4
2684 {
2685
2686 fprintf (stderr,
2687 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx %s\n",
2688 (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags));
2689 fflush (stderr);
2690 }
2691 #endif
2692
2693 return idx;
2694 }
2695
2696 static long
2697 elf_slurp_symbol_table (abfd, symptrs, dynamic)
2698 bfd *abfd;
2699 asymbol **symptrs; /* Buffer for generated bfd symbols */
2700 boolean dynamic;
2701 {
2702 Elf_Internal_Shdr *hdr;
2703 long symcount; /* Number of external ELF symbols */
2704 elf_symbol_type *sym; /* Pointer to current bfd symbol */
2705 elf_symbol_type *symbase; /* Buffer for generated bfd symbols */
2706 Elf_Internal_Sym i_sym;
2707 Elf_External_Sym *x_symp = NULL;
2708
2709 /* Read each raw ELF symbol, converting from external ELF form to
2710 internal ELF form, and then using the information to create a
2711 canonical bfd symbol table entry.
2712
2713 Note that we allocate the initial bfd canonical symbol buffer
2714 based on a one-to-one mapping of the ELF symbols to canonical
2715 symbols. We actually use all the ELF symbols, so there will be no
2716 space left over at the end. When we have all the symbols, we
2717 build the caller's pointer vector. */
2718
2719 if (dynamic)
2720 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2721 else
2722 hdr = &elf_tdata (abfd)->symtab_hdr;
2723 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1)
2724 return -1;
2725
2726 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
2727
2728 if (symcount == 0)
2729 sym = symbase = NULL;
2730 else
2731 {
2732 long i;
2733
2734 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1)
2735 return -1;
2736
2737 symbase = ((elf_symbol_type *)
2738 bfd_zalloc (abfd, symcount * sizeof (elf_symbol_type)));
2739 if (symbase == (elf_symbol_type *) NULL)
2740 {
2741 bfd_set_error (bfd_error_no_memory);
2742 return -1;
2743 }
2744 sym = symbase;
2745
2746 /* Temporarily allocate room for the raw ELF symbols. */
2747 x_symp = ((Elf_External_Sym *)
2748 malloc (symcount * sizeof (Elf_External_Sym)));
2749 if (x_symp == NULL && symcount != 0)
2750 {
2751 bfd_set_error (bfd_error_no_memory);
2752 goto error_return;
2753 }
2754
2755 if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd)
2756 != symcount * sizeof (Elf_External_Sym))
2757 goto error_return;
2758 /* Skip first symbol, which is a null dummy. */
2759 for (i = 1; i < symcount; i++)
2760 {
2761 elf_swap_symbol_in (abfd, x_symp + i, &i_sym);
2762 memcpy (&sym->internal_elf_sym, &i_sym, sizeof (Elf_Internal_Sym));
2763 #ifdef ELF_KEEP_EXTSYM
2764 memcpy (&sym->native_elf_sym, x_symp + i, sizeof (Elf_External_Sym));
2765 #endif
2766 sym->symbol.the_bfd = abfd;
2767
2768 sym->symbol.name = elf_string_from_elf_section (abfd, hdr->sh_link,
2769 i_sym.st_name);
2770
2771 sym->symbol.value = i_sym.st_value;
2772
2773 if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERVE)
2774 {
2775 sym->symbol.section = section_from_elf_index (abfd,
2776 i_sym.st_shndx);
2777 if (sym->symbol.section == NULL)
2778 {
2779 /* This symbol is in a section for which we did not
2780 create a BFD section. Just use bfd_abs_section,
2781 although it is wrong. FIXME. */
2782 sym->symbol.section = bfd_abs_section_ptr;
2783 }
2784 }
2785 else if (i_sym.st_shndx == SHN_ABS)
2786 {
2787 sym->symbol.section = bfd_abs_section_ptr;
2788 }
2789 else if (i_sym.st_shndx == SHN_COMMON)
2790 {
2791 sym->symbol.section = bfd_com_section_ptr;
2792 /* Elf puts the alignment into the `value' field, and
2793 the size into the `size' field. BFD wants to see the
2794 size in the value field, and doesn't care (at the
2795 moment) about the alignment. */
2796 sym->symbol.value = i_sym.st_size;
2797 }
2798 else if (i_sym.st_shndx == SHN_UNDEF)
2799 {
2800 sym->symbol.section = bfd_und_section_ptr;
2801 }
2802 else
2803 sym->symbol.section = bfd_abs_section_ptr;
2804
2805 sym->symbol.value -= sym->symbol.section->vma;
2806
2807 switch (ELF_ST_BIND (i_sym.st_info))
2808 {
2809 case STB_LOCAL:
2810 sym->symbol.flags |= BSF_LOCAL;
2811 break;
2812 case STB_GLOBAL:
2813 sym->symbol.flags |= BSF_GLOBAL;
2814 break;
2815 case STB_WEAK:
2816 sym->symbol.flags |= BSF_WEAK;
2817 break;
2818 }
2819
2820 switch (ELF_ST_TYPE (i_sym.st_info))
2821 {
2822 case STT_SECTION:
2823 sym->symbol.flags |= BSF_SECTION_SYM | BSF_DEBUGGING;
2824 break;
2825 case STT_FILE:
2826 sym->symbol.flags |= BSF_FILE | BSF_DEBUGGING;
2827 break;
2828 case STT_FUNC:
2829 sym->symbol.flags |= BSF_FUNCTION;
2830 break;
2831 }
2832
2833 if (dynamic)
2834 sym->symbol.flags |= BSF_DYNAMIC;
2835
2836 /* Do some backend-specific processing on this symbol. */
2837 {
2838 struct elf_backend_data *ebd = get_elf_backend_data (abfd);
2839 if (ebd->elf_backend_symbol_processing)
2840 (*ebd->elf_backend_symbol_processing) (abfd, &sym->symbol);
2841 }
2842
2843 sym++;
2844 }
2845 }
2846
2847 /* Do some backend-specific processing on this symbol table. */
2848 {
2849 struct elf_backend_data *ebd = get_elf_backend_data (abfd);
2850 if (ebd->elf_backend_symbol_table_processing)
2851 (*ebd->elf_backend_symbol_table_processing) (abfd, symbase, symcount);
2852 }
2853
2854 /* We rely on the zalloc to clear out the final symbol entry. */
2855
2856 symcount = sym - symbase;
2857
2858 /* Fill in the user's symbol pointer vector if needed. */
2859 if (symptrs)
2860 {
2861 long l = symcount;
2862
2863 sym = symbase;
2864 while (l-- > 0)
2865 {
2866 *symptrs++ = &sym->symbol;
2867 sym++;
2868 }
2869 *symptrs = 0; /* Final null pointer */
2870 }
2871
2872 if (x_symp != NULL)
2873 free (x_symp);
2874 return symcount;
2875 error_return:
2876 if (x_symp != NULL)
2877 free (x_symp);
2878 return -1;
2879 }
2880
2881 /* Return the number of bytes required to hold the symtab vector.
2882
2883 Note that we base it on the count plus 1, since we will null terminate
2884 the vector allocated based on this size. However, the ELF symbol table
2885 always has a dummy entry as symbol #0, so it ends up even. */
2886
2887 long
2888 elf_get_symtab_upper_bound (abfd)
2889 bfd *abfd;
2890 {
2891 long symcount;
2892 long symtab_size;
2893 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
2894
2895 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
2896 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
2897
2898 return symtab_size;
2899 }
2900
2901 long
2902 elf_get_dynamic_symtab_upper_bound (abfd)
2903 bfd *abfd;
2904 {
2905 long symcount;
2906 long symtab_size;
2907 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2908
2909 if (elf_dynsymtab (abfd) == 0)
2910 {
2911 bfd_set_error (bfd_error_invalid_operation);
2912 return -1;
2913 }
2914
2915 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
2916 symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *));
2917
2918 return symtab_size;
2919 }
2920
2921 long
2922 elf_get_reloc_upper_bound (abfd, asect)
2923 bfd *abfd;
2924 sec_ptr asect;
2925 {
2926 return (asect->reloc_count + 1) * sizeof (arelent *);
2927 }
2928
2929 /* Read in and swap the external relocs. */
2930
2931 static boolean
2932 elf_slurp_reloc_table (abfd, asect, symbols)
2933 bfd *abfd;
2934 asection *asect;
2935 asymbol **symbols;
2936 {
2937 struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
2938 struct bfd_elf_section_data * const d = elf_section_data (asect);
2939 PTR allocated = NULL;
2940 bfd_byte *native_relocs;
2941 arelent *relents;
2942 arelent *relent;
2943 unsigned int i;
2944 int entsize;
2945
2946 if (asect->relocation != NULL
2947 || (asect->flags & SEC_RELOC) == 0
2948 || asect->reloc_count == 0)
2949 return true;
2950
2951 BFD_ASSERT (asect->rel_filepos == d->rel_hdr.sh_offset
2952 && (asect->reloc_count
2953 == d->rel_hdr.sh_size / d->rel_hdr.sh_entsize));
2954
2955 allocated = (PTR) malloc (d->rel_hdr.sh_size);
2956 if (allocated == NULL)
2957 {
2958 bfd_set_error (bfd_error_no_memory);
2959 goto error_return;
2960 }
2961
2962 if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0
2963 || (bfd_read (allocated, 1, d->rel_hdr.sh_size, abfd)
2964 != d->rel_hdr.sh_size))
2965 goto error_return;
2966
2967 native_relocs = (bfd_byte *) allocated;
2968
2969 relents = ((arelent *)
2970 bfd_alloc (abfd, asect->reloc_count * sizeof (arelent)));
2971 if (relents == NULL)
2972 {
2973 bfd_set_error (bfd_error_no_memory);
2974 goto error_return;
2975 }
2976
2977 entsize = d->rel_hdr.sh_entsize;
2978 BFD_ASSERT (entsize == sizeof (Elf_External_Rel)
2979 || entsize == sizeof (Elf_External_Rela));
2980
2981 for (i = 0, relent = relents;
2982 i < asect->reloc_count;
2983 i++, relent++, native_relocs += entsize)
2984 {
2985 Elf_Internal_Rela rela;
2986 Elf_Internal_Rel rel;
2987
2988 if (entsize == sizeof (Elf_External_Rela))
2989 elf_swap_reloca_in (abfd, (Elf_External_Rela *) native_relocs, &rela);
2990 else
2991 {
2992 elf_swap_reloc_in (abfd, (Elf_External_Rel *) native_relocs, &rel);
2993 rela.r_offset = rel.r_offset;
2994 rela.r_info = rel.r_info;
2995 rela.r_addend = 0;
2996 }
2997
2998 /* The address of an ELF reloc is section relative for an object
2999 file, and absolute for an executable file or shared library.
3000 The address of a BFD reloc is always section relative. */
3001 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
3002 relent->address = rela.r_offset;
3003 else
3004 relent->address = rela.r_offset - asect->vma;
3005
3006 if (ELF_R_SYM (rela.r_info) == 0)
3007 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
3008 else
3009 {
3010 asymbol **ps, *s;
3011
3012 ps = symbols + ELF_R_SYM (rela.r_info) - 1;
3013 s = *ps;
3014
3015 /* Canonicalize ELF section symbols. FIXME: Why? */
3016 if ((s->flags & BSF_SECTION_SYM) == 0)
3017 relent->sym_ptr_ptr = ps;
3018 else
3019 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
3020 }
3021
3022 relent->addend = rela.r_addend;
3023
3024 if (entsize == sizeof (Elf_External_Rela))
3025 (*ebd->elf_info_to_howto) (abfd, relent, &rela);
3026 else
3027 (*ebd->elf_info_to_howto_rel) (abfd, relent, &rel);
3028 }
3029
3030 asect->relocation = relents;
3031
3032 if (allocated != NULL)
3033 free (allocated);
3034
3035 return true;
3036
3037 error_return:
3038 if (allocated != NULL)
3039 free (allocated);
3040 return false;
3041 }
3042
3043 #ifdef DEBUG
3044 static void
3045 elf_debug_section (str, num, hdr)
3046 char *str;
3047 int num;
3048 Elf_Internal_Shdr *hdr;
3049 {
3050 fprintf (stderr, "\nSection#%d '%s' 0x%.8lx\n", num, str, (long) hdr);
3051 fprintf (stderr,
3052 "sh_name = %ld\tsh_type = %ld\tsh_flags = %ld\n",
3053 (long) hdr->sh_name,
3054 (long) hdr->sh_type,
3055 (long) hdr->sh_flags);
3056 fprintf (stderr,
3057 "sh_addr = %ld\tsh_offset = %ld\tsh_size = %ld\n",
3058 (long) hdr->sh_addr,
3059 (long) hdr->sh_offset,
3060 (long) hdr->sh_size);
3061 fprintf (stderr,
3062 "sh_link = %ld\tsh_info = %ld\tsh_addralign = %ld\n",
3063 (long) hdr->sh_link,
3064 (long) hdr->sh_info,
3065 (long) hdr->sh_addralign);
3066 fprintf (stderr, "sh_entsize = %ld\n",
3067 (long) hdr->sh_entsize);
3068 fprintf (stderr, "rawdata = 0x%.8lx\n", (long) hdr->rawdata);
3069 fprintf (stderr, "contents = 0x%.8lx\n", (long) hdr->contents);
3070 fprintf (stderr, "size = %ld\n", (long) hdr->size);
3071 fflush (stderr);
3072 }
3073
3074 static void
3075 elf_debug_file (ehdrp)
3076 Elf_Internal_Ehdr *ehdrp;
3077 {
3078 fprintf (stderr, "e_entry = 0x%.8lx\n", (long) ehdrp->e_entry);
3079 fprintf (stderr, "e_phoff = %ld\n", (long) ehdrp->e_phoff);
3080 fprintf (stderr, "e_phnum = %ld\n", (long) ehdrp->e_phnum);
3081 fprintf (stderr, "e_phentsize = %ld\n", (long) ehdrp->e_phentsize);
3082 fprintf (stderr, "e_shoff = %ld\n", (long) ehdrp->e_shoff);
3083 fprintf (stderr, "e_shnum = %ld\n", (long) ehdrp->e_shnum);
3084 fprintf (stderr, "e_shentsize = %ld\n", (long) ehdrp->e_shentsize);
3085 }
3086 #endif
3087
3088 /* Canonicalize the relocs. */
3089
3090 long
3091 elf_canonicalize_reloc (abfd, section, relptr, symbols)
3092 bfd *abfd;
3093 sec_ptr section;
3094 arelent **relptr;
3095 asymbol **symbols;
3096 {
3097 arelent *tblptr;
3098 unsigned int i;
3099
3100 if (! elf_slurp_reloc_table (abfd, section, symbols))
3101 return -1;
3102
3103 tblptr = section->relocation;
3104 for (i = 0; i < section->reloc_count; i++)
3105 *relptr++ = tblptr++;
3106
3107 *relptr = NULL;
3108
3109 return section->reloc_count;
3110 }
3111
3112 long
3113 elf_get_symtab (abfd, alocation)
3114 bfd *abfd;
3115 asymbol **alocation;
3116 {
3117 long symcount = elf_slurp_symbol_table (abfd, alocation, false);
3118
3119 if (symcount >= 0)
3120 bfd_get_symcount (abfd) = symcount;
3121 return symcount;
3122 }
3123
3124 long
3125 elf_canonicalize_dynamic_symtab (abfd, alocation)
3126 bfd *abfd;
3127 asymbol **alocation;
3128 {
3129 return elf_slurp_symbol_table (abfd, alocation, true);
3130 }
3131
3132 asymbol *
3133 elf_make_empty_symbol (abfd)
3134 bfd *abfd;
3135 {
3136 elf_symbol_type *newsym;
3137
3138 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
3139 if (!newsym)
3140 {
3141 bfd_set_error (bfd_error_no_memory);
3142 return NULL;
3143 }
3144 else
3145 {
3146 newsym->symbol.the_bfd = abfd;
3147 return &newsym->symbol;
3148 }
3149 }
3150
3151 void
3152 elf_get_symbol_info (ignore_abfd, symbol, ret)
3153 bfd *ignore_abfd;
3154 asymbol *symbol;
3155 symbol_info *ret;
3156 {
3157 bfd_symbol_info (symbol, ret);
3158 }
3159
3160 void
3161 elf_print_symbol (ignore_abfd, filep, symbol, how)
3162 bfd *ignore_abfd;
3163 PTR filep;
3164 asymbol *symbol;
3165 bfd_print_symbol_type how;
3166 {
3167 FILE *file = (FILE *) filep;
3168 switch (how)
3169 {
3170 case bfd_print_symbol_name:
3171 fprintf (file, "%s", symbol->name);
3172 break;
3173 case bfd_print_symbol_more:
3174 fprintf (file, "elf ");
3175 fprintf_vma (file, symbol->value);
3176 fprintf (file, " %lx", (long) symbol->flags);
3177 break;
3178 case bfd_print_symbol_all:
3179 {
3180 CONST char *section_name;
3181 section_name = symbol->section ? symbol->section->name : "(*none*)";
3182 bfd_print_symbol_vandf ((PTR) file, symbol);
3183 fprintf (file, " %s\t%s",
3184 section_name,
3185 symbol->name);
3186 }
3187 break;
3188 }
3189
3190 }
3191
3192 alent *
3193 elf_get_lineno (ignore_abfd, symbol)
3194 bfd *ignore_abfd;
3195 asymbol *symbol;
3196 {
3197 fprintf (stderr, "elf_get_lineno unimplemented\n");
3198 fflush (stderr);
3199 BFD_FAIL ();
3200 return NULL;
3201 }
3202
3203 boolean
3204 elf_set_arch_mach (abfd, arch, machine)
3205 bfd *abfd;
3206 enum bfd_architecture arch;
3207 unsigned long machine;
3208 {
3209 /* If this isn't the right architecture for this backend, and this
3210 isn't the generic backend, fail. */
3211 if (arch != get_elf_backend_data (abfd)->arch
3212 && arch != bfd_arch_unknown
3213 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
3214 return false;
3215
3216 return bfd_default_set_arch_mach (abfd, arch, machine);
3217 }
3218
3219 boolean
3220 elf_find_nearest_line (abfd,
3221 section,
3222 symbols,
3223 offset,
3224 filename_ptr,
3225 functionname_ptr,
3226 line_ptr)
3227 bfd *abfd;
3228 asection *section;
3229 asymbol **symbols;
3230 bfd_vma offset;
3231 CONST char **filename_ptr;
3232 CONST char **functionname_ptr;
3233 unsigned int *line_ptr;
3234 {
3235 return false;
3236 }
3237
3238 int
3239 elf_sizeof_headers (abfd, reloc)
3240 bfd *abfd;
3241 boolean reloc;
3242 {
3243 int ret;
3244
3245 ret = sizeof (Elf_External_Ehdr);
3246 if (! reloc)
3247 ret += get_program_header_size (abfd);
3248 return ret;
3249 }
3250
3251 boolean
3252 elf_set_section_contents (abfd, section, location, offset, count)
3253 bfd *abfd;
3254 sec_ptr section;
3255 PTR location;
3256 file_ptr offset;
3257 bfd_size_type count;
3258 {
3259 Elf_Internal_Shdr *hdr;
3260
3261 if (! abfd->output_has_begun
3262 && ! elf_compute_section_file_positions (abfd,
3263 (struct bfd_link_info *) NULL))
3264 return false;
3265
3266 hdr = &elf_section_data (section)->this_hdr;
3267
3268 if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1)
3269 return false;
3270 if (bfd_write (location, 1, count, abfd) != count)
3271 return false;
3272
3273 return true;
3274 }
3275
3276 void
3277 elf_no_info_to_howto (abfd, cache_ptr, dst)
3278 bfd *abfd;
3279 arelent *cache_ptr;
3280 Elf_Internal_Rela *dst;
3281 {
3282 fprintf (stderr, "elf RELA relocation support for target machine unimplemented\n");
3283 fflush (stderr);
3284 BFD_FAIL ();
3285 }
3286
3287 void
3288 elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
3289 bfd *abfd;
3290 arelent *cache_ptr;
3291 Elf_Internal_Rel *dst;
3292 {
3293 fprintf (stderr, "elf REL relocation support for target machine unimplemented\n");
3294 fflush (stderr);
3295 BFD_FAIL ();
3296 }
3297 \f
3298
3299 /* Core file support */
3300
3301 #ifdef HAVE_PROCFS /* Some core file support requires host /proc files */
3302 #include <sys/procfs.h>
3303 #else
3304 #define bfd_prstatus(abfd, descdata, descsz, filepos) true
3305 #define bfd_fpregset(abfd, descdata, descsz, filepos) true
3306 #define bfd_prpsinfo(abfd, descdata, descsz, filepos) true
3307 #endif
3308
3309 #ifdef HAVE_PROCFS
3310
3311 static boolean
3312 bfd_prstatus (abfd, descdata, descsz, filepos)
3313 bfd *abfd;
3314 char *descdata;
3315 int descsz;
3316 long filepos;
3317 {
3318 asection *newsect;
3319 prstatus_t *status = (prstatus_t *) 0;
3320
3321 if (descsz == sizeof (prstatus_t))
3322 {
3323 newsect = bfd_make_section (abfd, ".reg");
3324 if (newsect == NULL)
3325 return false;
3326 newsect->_raw_size = sizeof (status->pr_reg);
3327 newsect->filepos = filepos + (long) &status->pr_reg;
3328 newsect->flags = SEC_HAS_CONTENTS;
3329 newsect->alignment_power = 2;
3330 if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL)
3331 {
3332 memcpy (core_prstatus (abfd), descdata, descsz);
3333 }
3334 }
3335 return true;
3336 }
3337
3338 /* Stash a copy of the prpsinfo structure away for future use. */
3339
3340 static boolean
3341 bfd_prpsinfo (abfd, descdata, descsz, filepos)
3342 bfd *abfd;
3343 char *descdata;
3344 int descsz;
3345 long filepos;
3346 {
3347 if (descsz == sizeof (prpsinfo_t))
3348 {
3349 if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) == NULL)
3350 {
3351 bfd_set_error (bfd_error_no_memory);
3352 return false;
3353 }
3354 memcpy (core_prpsinfo (abfd), descdata, descsz);
3355 }
3356 return true;
3357 }
3358
3359 static boolean
3360 bfd_fpregset (abfd, descdata, descsz, filepos)
3361 bfd *abfd;
3362 char *descdata;
3363 int descsz;
3364 long filepos;
3365 {
3366 asection *newsect;
3367
3368 newsect = bfd_make_section (abfd, ".reg2");
3369 if (newsect == NULL)
3370 return false;
3371 newsect->_raw_size = descsz;
3372 newsect->filepos = filepos;
3373 newsect->flags = SEC_HAS_CONTENTS;
3374 newsect->alignment_power = 2;
3375 return true;
3376 }
3377
3378 #endif /* HAVE_PROCFS */
3379
3380 /* Return a pointer to the args (including the command name) that were
3381 seen by the program that generated the core dump. Note that for
3382 some reason, a spurious space is tacked onto the end of the args
3383 in some (at least one anyway) implementations, so strip it off if
3384 it exists. */
3385
3386 char *
3387 elf_core_file_failing_command (abfd)
3388 bfd *abfd;
3389 {
3390 #ifdef HAVE_PROCFS
3391 if (core_prpsinfo (abfd))
3392 {
3393 prpsinfo_t *p = core_prpsinfo (abfd);
3394 char *scan = p->pr_psargs;
3395 while (*scan++)
3396 {;
3397 }
3398 scan -= 2;
3399 if ((scan > p->pr_psargs) && (*scan == ' '))
3400 {
3401 *scan = '\000';
3402 }
3403 return p->pr_psargs;
3404 }
3405 #endif
3406 return NULL;
3407 }
3408
3409 /* Return the number of the signal that caused the core dump. Presumably,
3410 since we have a core file, we got a signal of some kind, so don't bother
3411 checking the other process status fields, just return the signal number.
3412 */
3413
3414 int
3415 elf_core_file_failing_signal (abfd)
3416 bfd *abfd;
3417 {
3418 #ifdef HAVE_PROCFS
3419 if (core_prstatus (abfd))
3420 {
3421 return ((prstatus_t *) (core_prstatus (abfd)))->pr_cursig;
3422 }
3423 #endif
3424 return -1;
3425 }
3426
3427 /* Check to see if the core file could reasonably be expected to have
3428 come for the current executable file. Note that by default we return
3429 true unless we find something that indicates that there might be a
3430 problem.
3431 */
3432
3433 boolean
3434 elf_core_file_matches_executable_p (core_bfd, exec_bfd)
3435 bfd *core_bfd;
3436 bfd *exec_bfd;
3437 {
3438 #ifdef HAVE_PROCFS
3439 char *corename;
3440 char *execname;
3441 #endif
3442
3443 /* First, xvecs must match since both are ELF files for the same target. */
3444
3445 if (core_bfd->xvec != exec_bfd->xvec)
3446 {
3447 bfd_set_error (bfd_error_system_call);
3448 return false;
3449 }
3450
3451 #ifdef HAVE_PROCFS
3452
3453 /* If no prpsinfo, just return true. Otherwise, grab the last component
3454 of the exec'd pathname from the prpsinfo. */
3455
3456 if (core_prpsinfo (core_bfd))
3457 {
3458 corename = (((struct prpsinfo *) core_prpsinfo (core_bfd))->pr_fname);
3459 }
3460 else
3461 {
3462 return true;
3463 }
3464
3465 /* Find the last component of the executable pathname. */
3466
3467 if ((execname = strrchr (exec_bfd->filename, '/')) != NULL)
3468 {
3469 execname++;
3470 }
3471 else
3472 {
3473 execname = (char *) exec_bfd->filename;
3474 }
3475
3476 /* See if they match */
3477
3478 return strcmp (execname, corename) ? false : true;
3479
3480 #else
3481
3482 return true;
3483
3484 #endif /* HAVE_PROCFS */
3485 }
3486
3487 /* ELF core files contain a segment of type PT_NOTE, that holds much of
3488 the information that would normally be available from the /proc interface
3489 for the process, at the time the process dumped core. Currently this
3490 includes copies of the prstatus, prpsinfo, and fpregset structures.
3491
3492 Since these structures are potentially machine dependent in size and
3493 ordering, bfd provides two levels of support for them. The first level,
3494 available on all machines since it does not require that the host
3495 have /proc support or the relevant include files, is to create a bfd
3496 section for each of the prstatus, prpsinfo, and fpregset structures,
3497 without any interpretation of their contents. With just this support,
3498 the bfd client will have to interpret the structures itself. Even with
3499 /proc support, it might want these full structures for it's own reasons.
3500
3501 In the second level of support, where HAVE_PROCFS is defined, bfd will
3502 pick apart the structures to gather some additional information that
3503 clients may want, such as the general register set, the name of the
3504 exec'ed file and its arguments, the signal (if any) that caused the
3505 core dump, etc.
3506
3507 */
3508
3509 static boolean
3510 elf_corefile_note (abfd, hdr)
3511 bfd *abfd;
3512 Elf_Internal_Phdr *hdr;
3513 {
3514 Elf_External_Note *x_note_p; /* Elf note, external form */
3515 Elf_Internal_Note i_note; /* Elf note, internal form */
3516 char *buf = NULL; /* Entire note segment contents */
3517 char *namedata; /* Name portion of the note */
3518 char *descdata; /* Descriptor portion of the note */
3519 char *sectname; /* Name to use for new section */
3520 long filepos; /* File offset to descriptor data */
3521 asection *newsect;
3522
3523 if (hdr->p_filesz > 0
3524 && (buf = (char *) malloc (hdr->p_filesz)) != NULL
3525 && bfd_seek (abfd, hdr->p_offset, SEEK_SET) != -1
3526 && bfd_read ((PTR) buf, hdr->p_filesz, 1, abfd) == hdr->p_filesz)
3527 {
3528 x_note_p = (Elf_External_Note *) buf;
3529 while ((char *) x_note_p < (buf + hdr->p_filesz))
3530 {
3531 i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->namesz);
3532 i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->descsz);
3533 i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p->type);
3534 namedata = x_note_p->name;
3535 descdata = namedata + BFD_ALIGN (i_note.namesz, 4);
3536 filepos = hdr->p_offset + (descdata - buf);
3537 switch (i_note.type)
3538 {
3539 case NT_PRSTATUS:
3540 /* process descdata as prstatus info */
3541 if (! bfd_prstatus (abfd, descdata, i_note.descsz, filepos))
3542 return false;
3543 sectname = ".prstatus";
3544 break;
3545 case NT_FPREGSET:
3546 /* process descdata as fpregset info */
3547 if (! bfd_fpregset (abfd, descdata, i_note.descsz, filepos))
3548 return false;
3549 sectname = ".fpregset";
3550 break;
3551 case NT_PRPSINFO:
3552 /* process descdata as prpsinfo */
3553 if (! bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos))
3554 return false;
3555 sectname = ".prpsinfo";
3556 break;
3557 default:
3558 /* Unknown descriptor, just ignore it. */
3559 sectname = NULL;
3560 break;
3561 }
3562 if (sectname != NULL)
3563 {
3564 newsect = bfd_make_section (abfd, sectname);
3565 if (newsect == NULL)
3566 return false;
3567 newsect->_raw_size = i_note.descsz;
3568 newsect->filepos = filepos;
3569 newsect->flags = SEC_ALLOC | SEC_HAS_CONTENTS;
3570 newsect->alignment_power = 2;
3571 }
3572 x_note_p = (Elf_External_Note *)
3573 (descdata + BFD_ALIGN (i_note.descsz, 4));
3574 }
3575 }
3576 if (buf != NULL)
3577 {
3578 free (buf);
3579 }
3580 else if (hdr->p_filesz > 0)
3581 {
3582 bfd_set_error (bfd_error_no_memory);
3583 return false;
3584 }
3585 return true;
3586
3587 }
3588
3589 /* Core files are simply standard ELF formatted files that partition
3590 the file using the execution view of the file (program header table)
3591 rather than the linking view. In fact, there is no section header
3592 table in a core file.
3593
3594 The process status information (including the contents of the general
3595 register set) and the floating point register set are stored in a
3596 segment of type PT_NOTE. We handcraft a couple of extra bfd sections
3597 that allow standard bfd access to the general registers (.reg) and the
3598 floating point registers (.reg2).
3599
3600 */
3601
3602 const bfd_target *
3603 elf_core_file_p (abfd)
3604 bfd *abfd;
3605 {
3606 Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
3607 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
3608 Elf_External_Phdr x_phdr; /* Program header table entry, external form */
3609 Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */
3610 unsigned int phindex;
3611 struct elf_backend_data *ebd;
3612
3613 /* Read in the ELF header in external format. */
3614
3615 if (bfd_read ((PTR) & x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
3616 {
3617 if (bfd_get_error () != bfd_error_system_call)
3618 bfd_set_error (bfd_error_wrong_format);
3619 return NULL;
3620 }
3621
3622 /* Now check to see if we have a valid ELF file, and one that BFD can
3623 make use of. The magic number must match, the address size ('class')
3624 and byte-swapping must match our XVEC entry, and it must have a
3625 program header table (FIXME: See comments re segments at top of this
3626 file). */
3627
3628 if (elf_file_p (&x_ehdr) == false)
3629 {
3630 wrong:
3631 bfd_set_error (bfd_error_wrong_format);
3632 return NULL;
3633 }
3634
3635 /* FIXME, Check EI_VERSION here ! */
3636
3637 {
3638 #if ARCH_SIZE == 32
3639 int desired_address_size = ELFCLASS32;
3640 #endif
3641 #if ARCH_SIZE == 64
3642 int desired_address_size = ELFCLASS64;
3643 #endif
3644
3645 if (x_ehdr.e_ident[EI_CLASS] != desired_address_size)
3646 goto wrong;
3647 }
3648
3649 /* Switch xvec to match the specified byte order. */
3650 switch (x_ehdr.e_ident[EI_DATA])
3651 {
3652 case ELFDATA2MSB: /* Big-endian */
3653 if (abfd->xvec->byteorder_big_p == false)
3654 goto wrong;
3655 break;
3656 case ELFDATA2LSB: /* Little-endian */
3657 if (abfd->xvec->byteorder_big_p == true)
3658 goto wrong;
3659 break;
3660 case ELFDATANONE: /* No data encoding specified */
3661 default: /* Unknown data encoding specified */
3662 goto wrong;
3663 }
3664
3665 /* Allocate an instance of the elf_obj_tdata structure and hook it up to
3666 the tdata pointer in the bfd. */
3667
3668 elf_tdata (abfd) =
3669 (struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
3670 if (elf_tdata (abfd) == NULL)
3671 {
3672 bfd_set_error (bfd_error_no_memory);
3673 return NULL;
3674 }
3675
3676 /* FIXME, `wrong' returns from this point onward, leak memory. */
3677
3678 /* Now that we know the byte order, swap in the rest of the header */
3679 i_ehdrp = elf_elfheader (abfd);
3680 elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
3681 #if DEBUG & 1
3682 elf_debug_file (i_ehdrp);
3683 #endif
3684
3685 ebd = get_elf_backend_data (abfd);
3686
3687 /* Check that the ELF e_machine field matches what this particular
3688 BFD format expects. */
3689 if (ebd->elf_machine_code != i_ehdrp->e_machine)
3690 {
3691 const bfd_target * const *target_ptr;
3692
3693 if (ebd->elf_machine_code != EM_NONE)
3694 goto wrong;
3695
3696 /* This is the generic ELF target. Let it match any ELF target
3697 for which we do not have a specific backend. */
3698 for (target_ptr = bfd_target_vector; *target_ptr != NULL; target_ptr++)
3699 {
3700 struct elf_backend_data *back;
3701
3702 if ((*target_ptr)->flavour != bfd_target_elf_flavour)
3703 continue;
3704 back = (struct elf_backend_data *) (*target_ptr)->backend_data;
3705 if (back->elf_machine_code == i_ehdrp->e_machine)
3706 {
3707 /* target_ptr is an ELF backend which matches this
3708 object file, so reject the generic ELF target. */
3709 goto wrong;
3710 }
3711 }
3712 }
3713
3714 /* If there is no program header, or the type is not a core file, then
3715 we are hosed. */
3716 if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE)
3717 goto wrong;
3718
3719 /* Allocate space for a copy of the program header table in
3720 internal form, seek to the program header table in the file,
3721 read it in, and convert it to internal form. As a simple sanity
3722 check, verify that the what BFD thinks is the size of each program
3723 header table entry actually matches the size recorded in the file. */
3724
3725 if (i_ehdrp->e_phentsize != sizeof (x_phdr))
3726 goto wrong;
3727 i_phdrp = (Elf_Internal_Phdr *)
3728 bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum);
3729 if (!i_phdrp)
3730 {
3731 bfd_set_error (bfd_error_no_memory);
3732 return NULL;
3733 }
3734 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1)
3735 return NULL;
3736 for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
3737 {
3738 if (bfd_read ((PTR) & x_phdr, sizeof (x_phdr), 1, abfd)
3739 != sizeof (x_phdr))
3740 return NULL;
3741 elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex);
3742 }
3743
3744 /* Once all of the program headers have been read and converted, we
3745 can start processing them. */
3746
3747 for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
3748 {
3749 bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex);
3750 if ((i_phdrp + phindex)->p_type == PT_NOTE)
3751 {
3752 if (! elf_corefile_note (abfd, i_phdrp + phindex))
3753 return NULL;
3754 }
3755 }
3756
3757 /* Remember the entry point specified in the ELF file header. */
3758
3759 bfd_get_start_address (abfd) = i_ehdrp->e_entry;
3760
3761 return abfd->xvec;
3762 }
3763 \f
3764 /* ELF linker code. */
3765
3766 static boolean elf_link_add_object_symbols
3767 PARAMS ((bfd *, struct bfd_link_info *));
3768 static boolean elf_link_add_archive_symbols
3769 PARAMS ((bfd *, struct bfd_link_info *));
3770 static Elf_Internal_Rela *elf_link_read_relocs
3771 PARAMS ((bfd *, asection *, PTR, Elf_Internal_Rela *, boolean));
3772 static boolean elf_adjust_dynamic_symbol
3773 PARAMS ((struct elf_link_hash_entry *, PTR));
3774
3775 /* Given an ELF BFD, add symbols to the global hash table as
3776 appropriate. */
3777
3778 boolean
3779 elf_bfd_link_add_symbols (abfd, info)
3780 bfd *abfd;
3781 struct bfd_link_info *info;
3782 {
3783 switch (bfd_get_format (abfd))
3784 {
3785 case bfd_object:
3786 return elf_link_add_object_symbols (abfd, info);
3787 case bfd_archive:
3788 return elf_link_add_archive_symbols (abfd, info);
3789 default:
3790 bfd_set_error (bfd_error_wrong_format);
3791 return false;
3792 }
3793 }
3794
3795 /* Add symbols from an ELF archive file to the linker hash table. We
3796 don't use _bfd_generic_link_add_archive_symbols because of a
3797 problem which arises on UnixWare. The UnixWare libc.so is an
3798 archive which includes an entry libc.so.1 which defines a bunch of
3799 symbols. The libc.so archive also includes a number of other
3800 object files, which also define symbols, some of which are the same
3801 as those defined in libc.so.1. Correct linking requires that we
3802 consider each object file in turn, and include it if it defines any
3803 symbols we need. _bfd_generic_link_add_archive_symbols does not do
3804 this; it looks through the list of undefined symbols, and includes
3805 any object file which defines them. When this algorithm is used on
3806 UnixWare, it winds up pulling in libc.so.1 early and defining a
3807 bunch of symbols. This means that some of the other objects in the
3808 archive are not included in the link, which is incorrect since they
3809 precede libc.so.1 in the archive.
3810
3811 Fortunately, ELF archive handling is simpler than that done by
3812 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
3813 oddities. In ELF, if we find a symbol in the archive map, and the
3814 symbol is currently undefined, we know that we must pull in that
3815 object file.
3816
3817 Unfortunately, we do have to make multiple passes over the symbol
3818 table until nothing further is resolved. */
3819
3820 static boolean
3821 elf_link_add_archive_symbols (abfd, info)
3822 bfd *abfd;
3823 struct bfd_link_info *info;
3824 {
3825 symindex c;
3826 boolean *defined = NULL;
3827 boolean *included = NULL;
3828 carsym *symdefs;
3829 boolean loop;
3830
3831 if (! bfd_has_map (abfd))
3832 {
3833 bfd_set_error (bfd_error_no_symbols);
3834 return false;
3835 }
3836
3837 /* Keep track of all symbols we know to be already defined, and all
3838 files we know to be already included. This is to speed up the
3839 second and subsequent passes. */
3840 c = bfd_ardata (abfd)->symdef_count;
3841 if (c == 0)
3842 return true;
3843 defined = (boolean *) malloc (c * sizeof (boolean));
3844 included = (boolean *) malloc (c * sizeof (boolean));
3845 if (defined == (boolean *) NULL || included == (boolean *) NULL)
3846 {
3847 bfd_set_error (bfd_error_no_memory);
3848 goto error_return;
3849 }
3850 memset (defined, 0, c * sizeof (boolean));
3851 memset (included, 0, c * sizeof (boolean));
3852
3853 symdefs = bfd_ardata (abfd)->symdefs;
3854
3855 do
3856 {
3857 file_ptr last;
3858 symindex i;
3859 carsym *symdef;
3860 carsym *symdefend;
3861
3862 loop = false;
3863 last = -1;
3864
3865 symdef = symdefs;
3866 symdefend = symdef + c;
3867 for (i = 0; symdef < symdefend; symdef++, i++)
3868 {
3869 struct elf_link_hash_entry *h;
3870 bfd *element;
3871 struct bfd_link_hash_entry *undefs_tail;
3872 symindex mark;
3873
3874 if (defined[i] || included[i])
3875 continue;
3876 if (symdef->file_offset == last)
3877 {
3878 included[i] = true;
3879 continue;
3880 }
3881
3882 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
3883 false, false, false);
3884 if (h == (struct elf_link_hash_entry *) NULL)
3885 continue;
3886 if (h->root.type != bfd_link_hash_undefined)
3887 {
3888 defined[i] = true;
3889 continue;
3890 }
3891
3892 /* We need to include this archive member. */
3893
3894 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3895 if (element == (bfd *) NULL)
3896 goto error_return;
3897
3898 if (! bfd_check_format (element, bfd_object))
3899 goto error_return;
3900
3901 /* Doublecheck that we have not included this object
3902 already--it should be impossible, but there may be
3903 something wrong with the archive. */
3904 if (element->archive_pass != 0)
3905 {
3906 bfd_set_error (bfd_error_bad_value);
3907 goto error_return;
3908 }
3909 element->archive_pass = 1;
3910
3911 undefs_tail = info->hash->undefs_tail;
3912
3913 if (! (*info->callbacks->add_archive_element) (info, element,
3914 symdef->name))
3915 goto error_return;
3916 if (! elf_link_add_object_symbols (element, info))
3917 goto error_return;
3918
3919 /* If there are any new undefined symbols, we need to make
3920 another pass through the archive in order to see whether
3921 they can be defined. FIXME: This isn't perfect, because
3922 common symbols wind up on undefs_tail and because an
3923 undefined symbol which is defined later on in this pass
3924 does not require another pass. This isn't a bug, but it
3925 does make the code less efficient than it could be. */
3926 if (undefs_tail != info->hash->undefs_tail)
3927 loop = true;
3928
3929 /* Look backward to mark all symbols from this object file
3930 which we have already seen in this pass. */
3931 mark = i;
3932 do
3933 {
3934 included[mark] = true;
3935 if (mark == 0)
3936 break;
3937 --mark;
3938 }
3939 while (symdefs[mark].file_offset == symdef->file_offset);
3940
3941 /* We mark subsequent symbols from this object file as we go
3942 on through the loop. */
3943 last = symdef->file_offset;
3944 }
3945 }
3946 while (loop);
3947
3948 free (defined);
3949 free (included);
3950
3951 return true;
3952
3953 error_return:
3954 if (defined != (boolean *) NULL)
3955 free (defined);
3956 if (included != (boolean *) NULL)
3957 free (included);
3958 return false;
3959 }
3960
3961 /* Record a new dynamic symbol. We record the dynamic symbols as we
3962 read the input files, since we need to have a list of all of them
3963 before we can determine the final sizes of the output sections. */
3964
3965 INLINE boolean
3966 elf_link_record_dynamic_symbol (info, h)
3967 struct bfd_link_info *info;
3968 struct elf_link_hash_entry *h;
3969 {
3970 if (h->dynindx == -1)
3971 {
3972 h->dynindx = elf_hash_table (info)->dynsymcount;
3973 ++elf_hash_table (info)->dynsymcount;
3974 h->dynstr_index = bfd_add_to_strtab (elf_hash_table (info)->dynobj,
3975 elf_hash_table (info)->dynstr,
3976 h->root.root.string);
3977 if (h->dynstr_index == (unsigned long) -1)
3978 return false;
3979 }
3980
3981 return true;
3982 }
3983
3984 /* Add symbols from an ELF object file to the linker hash table. */
3985
3986 static boolean
3987 elf_link_add_object_symbols (abfd, info)
3988 bfd *abfd;
3989 struct bfd_link_info *info;
3990 {
3991 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
3992 const Elf_Internal_Sym *,
3993 const char **, flagword *,
3994 asection **, bfd_vma *));
3995 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
3996 asection *, const Elf_Internal_Rela *));
3997 boolean collect;
3998 Elf_Internal_Shdr *hdr;
3999 size_t symcount;
4000 size_t extsymcount;
4001 size_t extsymoff;
4002 Elf_External_Sym *buf = NULL;
4003 struct elf_link_hash_entry **sym_hash;
4004 boolean dynamic;
4005 Elf_External_Dyn *dynbuf = NULL;
4006 struct elf_link_hash_entry *weaks;
4007 Elf_External_Sym *esym;
4008 Elf_External_Sym *esymend;
4009
4010 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
4011 collect = get_elf_backend_data (abfd)->collect;
4012
4013 /* A stripped shared library might only have a dynamic symbol table,
4014 not a regular symbol table. In that case we can still go ahead
4015 and link using the dynamic symbol table. */
4016 if (elf_onesymtab (abfd) == 0
4017 && elf_dynsymtab (abfd) != 0)
4018 {
4019 elf_onesymtab (abfd) = elf_dynsymtab (abfd);
4020 elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
4021 }
4022
4023 hdr = &elf_tdata (abfd)->symtab_hdr;
4024 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
4025
4026 /* The sh_info field of the symtab header tells us where the
4027 external symbols start. We don't care about the local symbols at
4028 this point. */
4029 if (elf_bad_symtab (abfd))
4030 {
4031 extsymcount = symcount;
4032 extsymoff = 0;
4033 }
4034 else
4035 {
4036 extsymcount = symcount - hdr->sh_info;
4037 extsymoff = hdr->sh_info;
4038 }
4039
4040 buf = (Elf_External_Sym *) malloc (extsymcount * sizeof (Elf_External_Sym));
4041 if (buf == NULL && extsymcount != 0)
4042 {
4043 bfd_set_error (bfd_error_no_memory);
4044 goto error_return;
4045 }
4046
4047 /* We store a pointer to the hash table entry for each external
4048 symbol. */
4049 sym_hash = ((struct elf_link_hash_entry **)
4050 bfd_alloc (abfd,
4051 extsymcount * sizeof (struct elf_link_hash_entry *)));
4052 if (sym_hash == NULL)
4053 {
4054 bfd_set_error (bfd_error_no_memory);
4055 goto error_return;
4056 }
4057 elf_sym_hashes (abfd) = sym_hash;
4058
4059 if (elf_elfheader (abfd)->e_type != ET_DYN)
4060 {
4061 dynamic = false;
4062
4063 /* If we are creating a shared library, create all the dynamic
4064 sections immediately. We need to attach them to something,
4065 so we attach them to this BFD, provided it is the right
4066 format. FIXME: If there are no input BFD's of the same
4067 format as the output, we can't make a shared library. */
4068 if (info->shared
4069 && elf_hash_table (info)->dynobj == NULL
4070 && abfd->xvec == info->hash->creator)
4071 {
4072 if (! elf_link_create_dynamic_sections (abfd, info))
4073 goto error_return;
4074 elf_hash_table (info)->dynobj = abfd;
4075 }
4076 }
4077 else
4078 {
4079 asection *s;
4080 const char *name;
4081 unsigned long strindex;
4082
4083 dynamic = true;
4084
4085 /* You can't use -r against a dynamic object. Also, there's no
4086 hope of using a dynamic object which does not exactly match
4087 the format of the output file. */
4088 if (info->relocateable
4089 || info->hash->creator != abfd->xvec)
4090 {
4091 bfd_set_error (bfd_error_invalid_operation);
4092 goto error_return;
4093 }
4094
4095 /* Find the name to use in a DT_NEEDED entry that refers to this
4096 object. If the object has a DT_SONAME entry, we use it.
4097 Otherwise, if the generic linker stuck something in
4098 elf_dt_needed_name, we use that. Otherwise, we just use the
4099 file name. */
4100 name = bfd_get_filename (abfd);
4101 if (elf_dt_needed_name (abfd) != NULL)
4102 name = elf_dt_needed_name (abfd);
4103 s = bfd_get_section_by_name (abfd, ".dynamic");
4104 if (s != NULL)
4105 {
4106 Elf_External_Dyn *extdyn;
4107 Elf_External_Dyn *extdynend;
4108
4109 dynbuf = (Elf_External_Dyn *) malloc (s->_raw_size);
4110 if (dynbuf == NULL)
4111 {
4112 bfd_set_error (bfd_error_no_memory);
4113 goto error_return;
4114 }
4115
4116 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
4117 (file_ptr) 0, s->_raw_size))
4118 goto error_return;
4119
4120 extdyn = dynbuf;
4121 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
4122 for (; extdyn < extdynend; extdyn++)
4123 {
4124 Elf_Internal_Dyn dyn;
4125
4126 elf_swap_dyn_in (abfd, extdyn, &dyn);
4127 if (dyn.d_tag == DT_SONAME)
4128 {
4129 int elfsec;
4130 unsigned long link;
4131
4132 elfsec = elf_section_from_bfd_section (abfd, s);
4133 if (elfsec == -1)
4134 goto error_return;
4135 link = elf_elfsections (abfd)[elfsec]->sh_link;
4136 name = elf_string_from_elf_section (abfd, link,
4137 dyn.d_un.d_val);
4138 if (name == NULL)
4139 goto error_return;
4140
4141 break;
4142 }
4143 }
4144
4145 free (dynbuf);
4146 dynbuf = NULL;
4147 }
4148
4149 /* We do not want to include any of the sections in a dynamic
4150 object in the output file. We hack by simply clobbering the
4151 list of sections in the BFD. This could be handled more
4152 cleanly by, say, a new section flag; the existing
4153 SEC_NEVER_LOAD flag is not the one we want, because that one
4154 still implies that the section takes up space in the output
4155 file. */
4156 abfd->sections = NULL;
4157
4158 /* If this is the first dynamic object found in the link, create
4159 the special sections required for dynamic linking. We need
4160 to put them somewhere, and attaching them to the first
4161 dynamic object is as good place as any. */
4162 if (elf_hash_table (info)->dynobj == NULL)
4163 {
4164 if (! elf_link_create_dynamic_sections (abfd, info))
4165 goto error_return;
4166 elf_hash_table (info)->dynobj = abfd;
4167 }
4168
4169 /* Add a DT_NEEDED entry for this dynamic object. */
4170 strindex = bfd_add_to_strtab (abfd,
4171 elf_hash_table (info)->dynstr,
4172 name);
4173 if (strindex == (unsigned long) -1)
4174 goto error_return;
4175 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
4176 goto error_return;
4177 }
4178
4179 if (bfd_seek (abfd,
4180 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
4181 SEEK_SET) != 0
4182 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
4183 != extsymcount * sizeof (Elf_External_Sym)))
4184 goto error_return;
4185
4186 weaks = NULL;
4187
4188 esymend = buf + extsymcount;
4189 for (esym = buf; esym < esymend; esym++, sym_hash++)
4190 {
4191 Elf_Internal_Sym sym;
4192 int bind;
4193 bfd_vma value;
4194 asection *sec;
4195 flagword flags;
4196 const char *name;
4197 struct elf_link_hash_entry *h = NULL;
4198 boolean definition;
4199
4200 elf_swap_symbol_in (abfd, esym, &sym);
4201
4202 flags = BSF_NO_FLAGS;
4203 sec = NULL;
4204 value = sym.st_value;
4205 *sym_hash = NULL;
4206
4207 bind = ELF_ST_BIND (sym.st_info);
4208 if (bind == STB_LOCAL)
4209 {
4210 /* This should be impossible, since ELF requires that all
4211 global symbols follow all local symbols, and that sh_info
4212 point to the first global symbol. Unfortunatealy, Irix 5
4213 screws this up. */
4214 continue;
4215 }
4216 else if (bind == STB_GLOBAL)
4217 flags = BSF_GLOBAL;
4218 else if (bind == STB_WEAK)
4219 flags = BSF_WEAK;
4220 else
4221 {
4222 /* Leave it up to the processor backend. */
4223 }
4224
4225 if (sym.st_shndx == SHN_UNDEF)
4226 sec = bfd_und_section_ptr;
4227 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
4228 {
4229 sec = section_from_elf_index (abfd, sym.st_shndx);
4230 if (sec == NULL)
4231 goto error_return;
4232 value -= sec->vma;
4233 }
4234 else if (sym.st_shndx == SHN_ABS)
4235 sec = bfd_abs_section_ptr;
4236 else if (sym.st_shndx == SHN_COMMON)
4237 {
4238 sec = bfd_com_section_ptr;
4239 /* What ELF calls the size we call the value. What ELF
4240 calls the value we call the alignment. */
4241 value = sym.st_size;
4242 }
4243 else
4244 {
4245 /* Leave it up to the processor backend. */
4246 }
4247
4248 name = elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
4249 if (name == (const char *) NULL)
4250 goto error_return;
4251
4252 if (add_symbol_hook)
4253 {
4254 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
4255 &value))
4256 goto error_return;
4257
4258 /* The hook function sets the name to NULL if this symbol
4259 should be skipped for some reason. */
4260 if (name == (const char *) NULL)
4261 continue;
4262 }
4263
4264 /* Sanity check that all possibilities were handled. */
4265 if (flags == BSF_NO_FLAGS || sec == (asection *) NULL)
4266 {
4267 bfd_set_error (bfd_error_bad_value);
4268 goto error_return;
4269 }
4270
4271 if (bfd_is_und_section (sec)
4272 || bfd_is_com_section (sec))
4273 definition = false;
4274 else
4275 definition = true;
4276
4277 if (info->hash->creator->flavour == bfd_target_elf_flavour)
4278 {
4279 /* We need to look up the symbol now in order to get some of
4280 the dynamic object handling right. We pass the hash
4281 table entry in to _bfd_generic_link_add_one_symbol so
4282 that it does not have to look it up again. */
4283 h = elf_link_hash_lookup (elf_hash_table (info), name,
4284 true, false, false);
4285 if (h == NULL)
4286 goto error_return;
4287 *sym_hash = h;
4288
4289 /* If we are looking at a dynamic object, and this is a
4290 definition, we need to see if it has already been defined
4291 by some other object. If it has, we want to use the
4292 existing definition, and we do not want to report a
4293 multiple symbol definition error; we do this by
4294 clobbering sec to be bfd_und_section_ptr. */
4295 if (dynamic && definition)
4296 {
4297 if (h->root.type == bfd_link_hash_defined)
4298 sec = bfd_und_section_ptr;
4299 }
4300
4301 /* Similarly, if we are not looking at a dynamic object, and
4302 we have a definition, we want to override any definition
4303 we may have from a dynamic object. Symbols from regular
4304 files always take precedence over symbols from dynamic
4305 objects, even if they are defined after the dynamic
4306 object in the link. */
4307 if (! dynamic
4308 && definition
4309 && h->root.type == bfd_link_hash_defined
4310 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4311 && (bfd_get_flavour (h->root.u.def.section->owner)
4312 == bfd_target_elf_flavour)
4313 && (elf_elfheader (h->root.u.def.section->owner)->e_type
4314 == ET_DYN))
4315 {
4316 /* Change the hash table entry to undefined, and let
4317 _bfd_generic_link_add_one_symbol do the right thing
4318 with the new definition. */
4319 h->root.type = bfd_link_hash_undefined;
4320 h->root.u.undef.abfd = h->root.u.def.section->owner;
4321 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEFINED_WEAK;
4322 }
4323
4324 /* If this is a weak definition which we are going to use,
4325 and the symbol is currently undefined, record that the
4326 definition is weak. */
4327 if (definition
4328 && (flags & BSF_WEAK) != 0
4329 && ! bfd_is_und_section (sec)
4330 && (h->root.type == bfd_link_hash_new
4331 || h->root.type == bfd_link_hash_undefined
4332 || h->root.type == bfd_link_hash_weak))
4333 h->elf_link_hash_flags |= ELF_LINK_HASH_DEFINED_WEAK;
4334 }
4335
4336 if (! (_bfd_generic_link_add_one_symbol
4337 (info, abfd, name, flags, sec, value, (const char *) NULL,
4338 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
4339 goto error_return;
4340
4341 if (dynamic
4342 && definition
4343 && (flags & BSF_WEAK) != 0
4344 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
4345 && (*sym_hash)->weakdef == NULL)
4346 {
4347 /* Keep a list of all weak defined non function symbols from
4348 a dynamic object, using the weakdef field. Later in this
4349 function we will set the weakdef field to the correct
4350 value. We only put non-function symbols from dynamic
4351 objects on this list, because that happens to be the only
4352 time we need to know the normal symbol corresponding to a
4353 weak symbol, and the information is time consuming to
4354 figure out. If the weakdef field is not already NULL,
4355 then this symbol was already defined by some previous
4356 dynamic object, and we will be using that previous
4357 definition anyhow. */
4358
4359 (*sym_hash)->weakdef = weaks;
4360 weaks = *sym_hash;
4361 }
4362
4363 /* Get the alignment of a common symbol. */
4364 if (sym.st_shndx == SHN_COMMON
4365 && h->root.type == bfd_link_hash_common)
4366 h->root.u.c.alignment_power = bfd_log2 (sym.st_value);
4367
4368 if (info->hash->creator->flavour == bfd_target_elf_flavour)
4369 {
4370 int old_flags;
4371 boolean dynsym;
4372 int new_flag;
4373
4374 /* Remember the symbol size and type. */
4375 if (sym.st_size != 0)
4376 {
4377 /* FIXME: We should probably somehow give a warning if
4378 the symbol size changes. */
4379 h->size = sym.st_size;
4380 }
4381 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE)
4382 {
4383 /* FIXME: We should probably somehow give a warning if
4384 the symbol type changes. */
4385 h->type = ELF_ST_TYPE (sym.st_info);
4386 }
4387
4388 /* Set a flag in the hash table entry indicating the type of
4389 reference or definition we just found. Keep a count of
4390 the number of dynamic symbols we find. A dynamic symbol
4391 is one which is referenced or defined by both a regular
4392 object and a shared object, or one which is referenced or
4393 defined by more than one shared object. */
4394 old_flags = h->elf_link_hash_flags;
4395 dynsym = false;
4396 if (! dynamic)
4397 {
4398 if (! definition)
4399 new_flag = ELF_LINK_HASH_REF_REGULAR;
4400 else
4401 new_flag = ELF_LINK_HASH_DEF_REGULAR;
4402 if (info->shared
4403 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
4404 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
4405 dynsym = true;
4406 }
4407 else
4408 {
4409 if (! definition)
4410 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
4411 else
4412 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
4413 if ((old_flags & new_flag) != 0
4414 || (old_flags & (ELF_LINK_HASH_DEF_REGULAR
4415 | ELF_LINK_HASH_REF_REGULAR)) != 0)
4416 dynsym = true;
4417 }
4418
4419 h->elf_link_hash_flags |= new_flag;
4420 if (dynsym && h->dynindx == -1)
4421 {
4422 if (! elf_link_record_dynamic_symbol (info, h))
4423 goto error_return;
4424 }
4425 }
4426 }
4427
4428 /* Now set the weakdefs field correctly for all the weak defined
4429 symbols we found. The only way to do this is to search all the
4430 symbols. Since we only need the information for non functions in
4431 dynamic objects, that's the only time we actually put anything on
4432 the list WEAKS. We need this information so that if a regular
4433 object refers to a symbol defined weakly in a dynamic object, the
4434 real symbol in the dynamic object is also put in the dynamic
4435 symbols; we also must arrange for both symbols to point to the
4436 same memory location. We could handle the general case of symbol
4437 aliasing, but a general symbol alias can only be generated in
4438 assembler code, handling it correctly would be very time
4439 consuming, and other ELF linkers don't handle general aliasing
4440 either. */
4441 while (weaks != NULL)
4442 {
4443 struct elf_link_hash_entry *hlook;
4444 asection *slook;
4445 bfd_vma vlook;
4446 struct elf_link_hash_entry **hpp;
4447 struct elf_link_hash_entry **hppend;
4448
4449 hlook = weaks;
4450 weaks = hlook->weakdef;
4451 hlook->weakdef = NULL;
4452
4453 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined);
4454 slook = hlook->root.u.def.section;
4455 vlook = hlook->root.u.def.value;
4456
4457 hpp = elf_sym_hashes (abfd);
4458 hppend = hpp + extsymcount;
4459 for (; hpp < hppend; hpp++)
4460 {
4461 struct elf_link_hash_entry *h;
4462
4463 h = *hpp;
4464 if (h != hlook
4465 && h->root.type == bfd_link_hash_defined
4466 && h->root.u.def.section == slook
4467 && h->root.u.def.value == vlook)
4468 {
4469 hlook->weakdef = h;
4470
4471 /* If the weak definition is in the list of dynamic
4472 symbols, make sure the real definition is put there
4473 as well. */
4474 if (hlook->dynindx != -1
4475 && h->dynindx == -1)
4476 {
4477 if (! elf_link_record_dynamic_symbol (info, h))
4478 goto error_return;
4479 }
4480
4481 break;
4482 }
4483 }
4484 }
4485
4486 if (buf != NULL)
4487 {
4488 free (buf);
4489 buf = NULL;
4490 }
4491
4492 /* If this object is the same format as the output object, and it is
4493 not a shared library, then let the backend look through the
4494 relocs.
4495
4496 This is required to build global offset table entries and to
4497 arrange for dynamic relocs. It is not required for the
4498 particular common case of linking non PIC code, even when linking
4499 against shared libraries, but unfortunately there is no way of
4500 knowing whether an object file has been compiled PIC or not.
4501 Looking through the relocs is not particularly time consuming.
4502 The problem is that we must either (1) keep the relocs in memory,
4503 which causes the linker to require additional runtime memory or
4504 (2) read the relocs twice from the input file, which wastes time.
4505 This would be a good case for using mmap.
4506
4507 I have no idea how to handle linking PIC code into a file of a
4508 different format. It probably can't be done. */
4509 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4510 if (! dynamic
4511 && abfd->xvec == info->hash->creator
4512 && check_relocs != NULL)
4513 {
4514 asection *o;
4515
4516 for (o = abfd->sections; o != NULL; o = o->next)
4517 {
4518 Elf_Internal_Rela *internal_relocs;
4519 boolean ok;
4520
4521 if ((o->flags & SEC_RELOC) == 0
4522 || o->reloc_count == 0)
4523 continue;
4524
4525 /* I believe we can ignore the relocs for any section which
4526 does not form part of the final process image, such as a
4527 debugging section. */
4528 if ((o->flags & SEC_ALLOC) == 0)
4529 continue;
4530
4531 internal_relocs = elf_link_read_relocs (abfd, o, (PTR) NULL,
4532 (Elf_Internal_Rela *) NULL,
4533 info->keep_memory);
4534 if (internal_relocs == NULL)
4535 goto error_return;
4536
4537 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4538
4539 if (! info->keep_memory)
4540 free (internal_relocs);
4541
4542 if (! ok)
4543 goto error_return;
4544 }
4545 }
4546
4547 return true;
4548
4549 error_return:
4550 if (buf != NULL)
4551 free (buf);
4552 if (dynbuf != NULL)
4553 free (dynbuf);
4554 return false;
4555 }
4556
4557 /* Create some sections which will be filled in with dynamic linking
4558 information. The ABFD argument is an input file which is a dynamic
4559 object. The dynamic sections take up virtual memory space when the
4560 final executable is run, so we need to create them before addresses
4561 are assigned to the output sections. We work out the actual
4562 contents and size of these sections later. */
4563
4564 boolean
4565 elf_link_create_dynamic_sections (abfd, info)
4566 bfd *abfd;
4567 struct bfd_link_info *info;
4568 {
4569 flagword flags;
4570 register asection *s;
4571 struct elf_link_hash_entry *h;
4572 struct elf_backend_data *bed;
4573
4574 /* Note that we set the SEC_IN_MEMORY flag for all of these
4575 sections. */
4576 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
4577
4578 /* A dynamically linked executable has a .interp section, but a
4579 shared library does not. */
4580 if (! info->shared)
4581 {
4582 s = bfd_make_section (abfd, ".interp");
4583 if (s == NULL
4584 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
4585 return false;
4586 }
4587
4588 s = bfd_make_section (abfd, ".dynsym");
4589 if (s == NULL
4590 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
4591 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
4592 return false;
4593
4594 /* The first .dynsym symbol is a dummy. */
4595 elf_hash_table (info)->dynsymcount = 1;
4596
4597 s = bfd_make_section (abfd, ".dynstr");
4598 if (s == NULL
4599 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
4600 return false;
4601
4602 /* Create a strtab to hold the dynamic symbol names. */
4603 elf_hash_table (info)->dynstr = bfd_new_strtab (abfd);
4604 if (elf_hash_table (info)->dynstr == NULL)
4605 return false;
4606
4607 s = bfd_make_section (abfd, ".dynamic");
4608 if (s == NULL
4609 || ! bfd_set_section_flags (abfd, s, flags)
4610 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
4611 return false;
4612
4613 /* The special symbol _DYNAMIC is always set to the start of the
4614 .dynamic section. This call occurs before we have processed the
4615 symbols for any dynamic object, so we don't have to worry about
4616 overriding a dynamic definition. We could set _DYNAMIC in a
4617 linker script, but we only want to define it if we are, in fact,
4618 creating a .dynamic section. We don't want to define it if there
4619 is no .dynamic section, since on some ELF platforms the start up
4620 code examines it to decide how to initialize the process. */
4621 h = NULL;
4622 if (! (_bfd_generic_link_add_one_symbol
4623 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
4624 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
4625 (struct bfd_link_hash_entry **) &h)))
4626 return false;
4627 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4628 h->type = STT_OBJECT;
4629
4630 if (info->shared
4631 && ! elf_link_record_dynamic_symbol (info, h))
4632 return false;
4633
4634 s = bfd_make_section (abfd, ".hash");
4635 if (s == NULL
4636 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
4637 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
4638 return false;
4639
4640 /* Let the backend create the rest of the sections. This lets the
4641 backend set the right flags. The backend will normally create
4642 the .got and .plt sections. */
4643 bed = get_elf_backend_data (abfd);
4644 return (*bed->elf_backend_create_dynamic_sections) (abfd, info);
4645 }
4646
4647 /* Add an entry to the .dynamic table. */
4648
4649 boolean
4650 elf_add_dynamic_entry (info, tag, val)
4651 struct bfd_link_info *info;
4652 bfd_vma tag;
4653 bfd_vma val;
4654 {
4655 Elf_Internal_Dyn dyn;
4656 bfd *dynobj;
4657 asection *s;
4658 size_t newsize;
4659 bfd_byte *newcontents;
4660
4661 dynobj = elf_hash_table (info)->dynobj;
4662
4663 s = bfd_get_section_by_name (dynobj, ".dynamic");
4664 BFD_ASSERT (s != NULL);
4665
4666 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
4667 if (s->contents == NULL)
4668 newcontents = (bfd_byte *) malloc (newsize);
4669 else
4670 newcontents = (bfd_byte *) realloc (s->contents, newsize);
4671 if (newcontents == NULL)
4672 {
4673 bfd_set_error (bfd_error_no_memory);
4674 return false;
4675 }
4676
4677 dyn.d_tag = tag;
4678 dyn.d_un.d_val = val;
4679 elf_swap_dyn_out (dynobj, &dyn,
4680 (Elf_External_Dyn *) (newcontents + s->_raw_size));
4681
4682 s->_raw_size = newsize;
4683 s->contents = newcontents;
4684
4685 return true;
4686 }
4687
4688 /* Read and swap the relocs for a section. They may have been cached.
4689 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
4690 they are used as buffers to read into. They are known to be large
4691 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
4692 value is allocated using either malloc or bfd_alloc, according to
4693 the KEEP_MEMORY argument. */
4694
4695 static Elf_Internal_Rela *
4696 elf_link_read_relocs (abfd, o, external_relocs, internal_relocs, keep_memory)
4697 bfd *abfd;
4698 asection *o;
4699 PTR external_relocs;
4700 Elf_Internal_Rela *internal_relocs;
4701 boolean keep_memory;
4702 {
4703 Elf_Internal_Shdr *rel_hdr;
4704 PTR alloc1 = NULL;
4705 Elf_Internal_Rela *alloc2 = NULL;
4706
4707 if (elf_section_data (o)->relocs != NULL)
4708 return elf_section_data (o)->relocs;
4709
4710 if (o->reloc_count == 0)
4711 return NULL;
4712
4713 rel_hdr = &elf_section_data (o)->rel_hdr;
4714
4715 if (internal_relocs == NULL)
4716 {
4717 size_t size;
4718
4719 size = o->reloc_count * sizeof (Elf_Internal_Rela);
4720 if (keep_memory)
4721 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
4722 else
4723 internal_relocs = alloc2 = (Elf_Internal_Rela *) malloc (size);
4724 if (internal_relocs == NULL)
4725 {
4726 bfd_set_error (bfd_error_no_memory);
4727 goto error_return;
4728 }
4729 }
4730
4731 if (external_relocs == NULL)
4732 {
4733 alloc1 = (PTR) malloc (rel_hdr->sh_size);
4734 if (alloc1 == NULL)
4735 {
4736 bfd_set_error (bfd_error_no_memory);
4737 goto error_return;
4738 }
4739 external_relocs = alloc1;
4740 }
4741
4742 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
4743 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
4744 != rel_hdr->sh_size))
4745 goto error_return;
4746
4747 /* Swap in the relocs. For convenience, we always produce an
4748 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
4749 to 0. */
4750 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4751 {
4752 Elf_External_Rel *erel;
4753 Elf_External_Rel *erelend;
4754 Elf_Internal_Rela *irela;
4755
4756 erel = (Elf_External_Rel *) external_relocs;
4757 erelend = erel + o->reloc_count;
4758 irela = internal_relocs;
4759 for (; erel < erelend; erel++, irela++)
4760 {
4761 Elf_Internal_Rel irel;
4762
4763 elf_swap_reloc_in (abfd, erel, &irel);
4764 irela->r_offset = irel.r_offset;
4765 irela->r_info = irel.r_info;
4766 irela->r_addend = 0;
4767 }
4768 }
4769 else
4770 {
4771 Elf_External_Rela *erela;
4772 Elf_External_Rela *erelaend;
4773 Elf_Internal_Rela *irela;
4774
4775 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
4776
4777 erela = (Elf_External_Rela *) external_relocs;
4778 erelaend = erela + o->reloc_count;
4779 irela = internal_relocs;
4780 for (; erela < erelaend; erela++, irela++)
4781 elf_swap_reloca_in (abfd, erela, irela);
4782 }
4783
4784 /* Cache the results for next time, if we can. */
4785 if (keep_memory)
4786 elf_section_data (o)->relocs = internal_relocs;
4787
4788 if (alloc1 != NULL)
4789 free (alloc1);
4790
4791 /* Don't free alloc2, since if it was allocated we are passing it
4792 back (under the name of internal_relocs). */
4793
4794 return internal_relocs;
4795
4796 error_return:
4797 if (alloc1 != NULL)
4798 free (alloc1);
4799 if (alloc2 != NULL)
4800 free (alloc2);
4801 return NULL;
4802 }
4803
4804 /* Record an assignment to a symbol made by a linker script. We need
4805 this in case some dynamic object refers to this symbol. */
4806
4807 /*ARGSUSED*/
4808 boolean
4809 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name)
4810 bfd *output_bfd;
4811 struct bfd_link_info *info;
4812 const char *name;
4813 {
4814 struct elf_link_hash_entry *h;
4815
4816 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
4817 if (h == NULL)
4818 return false;
4819
4820 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4821 h->type = STT_OBJECT;
4822
4823 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
4824 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
4825 || info->shared)
4826 && h->dynindx == -1)
4827 {
4828 if (! elf_link_record_dynamic_symbol (info, h))
4829 return false;
4830
4831 /* If this is a weak defined symbol, and we know a corresponding
4832 real symbol from the same dynamic object, make sure the real
4833 symbol is also made into a dynamic symbol. */
4834 if (h->weakdef != NULL
4835 && h->weakdef->dynindx == -1)
4836 {
4837 if (! elf_link_record_dynamic_symbol (info, h->weakdef))
4838 return false;
4839 }
4840 }
4841
4842 return true;
4843 }
4844
4845 /* Array used to determine the number of hash table buckets to use
4846 based on the number of symbols there are. If there are fewer than
4847 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4848 fewer than 37 we use 17 buckets, and so forth. We never use more
4849 than 521 buckets. */
4850
4851 static const size_t elf_buckets[] =
4852 {
4853 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 0
4854 };
4855
4856 /* Set up the sizes and contents of the ELF dynamic sections. This is
4857 called by the ELF linker emulation before_allocation routine. We
4858 must set the sizes of the sections before the linker sets the
4859 addresses of the various sections. */
4860
4861 boolean
4862 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, info,
4863 sinterpptr)
4864 bfd *output_bfd;
4865 const char *soname;
4866 const char *rpath;
4867 struct bfd_link_info *info;
4868 asection **sinterpptr;
4869 {
4870 bfd *dynobj;
4871 size_t dynsymcount;
4872 asection *s;
4873 Elf_Internal_Sym isym;
4874 size_t i;
4875 size_t bucketcount;
4876 struct elf_backend_data *bed;
4877
4878 *sinterpptr = NULL;
4879
4880 dynobj = elf_hash_table (info)->dynobj;
4881 dynsymcount = elf_hash_table (info)->dynsymcount;
4882
4883 /* If there were no dynamic objects in the link, there is nothing to
4884 do here. */
4885 if (dynobj == NULL)
4886 return true;
4887
4888 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4889 BFD_ASSERT (*sinterpptr != NULL || info->shared);
4890
4891 /* Set the size of the .dynsym and .hash sections. We counted the
4892 number of dynamic symbols in elf_link_add_object_symbols. We
4893 will build the contents of .dynsym and .hash when we build the
4894 final symbol table, because until then we do not know the correct
4895 value to give the symbols. We built the .dynstr section as we
4896 went along in elf_link_add_object_symbols. */
4897 s = bfd_get_section_by_name (dynobj, ".dynsym");
4898 BFD_ASSERT (s != NULL);
4899 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
4900 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
4901 if (s->contents == NULL && s->_raw_size != 0)
4902 {
4903 bfd_set_error (bfd_error_no_memory);
4904 return false;
4905 }
4906
4907 /* The first entry in .dynsym is a dummy symbol. */
4908 isym.st_value = 0;
4909 isym.st_size = 0;
4910 isym.st_name = 0;
4911 isym.st_info = 0;
4912 isym.st_other = 0;
4913 isym.st_shndx = 0;
4914 elf_swap_symbol_out (output_bfd, &isym,
4915 (Elf_External_Sym *) s->contents);
4916
4917 for (i = 0; elf_buckets[i] != 0; i++)
4918 {
4919 bucketcount = elf_buckets[i];
4920 if (dynsymcount < elf_buckets[i + 1])
4921 break;
4922 }
4923
4924 s = bfd_get_section_by_name (dynobj, ".hash");
4925 BFD_ASSERT (s != NULL);
4926 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
4927 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
4928 if (s->contents == NULL)
4929 {
4930 bfd_set_error (bfd_error_no_memory);
4931 return false;
4932 }
4933 memset (s->contents, 0, s->_raw_size);
4934
4935 put_word (output_bfd, bucketcount, s->contents);
4936 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
4937
4938 elf_hash_table (info)->bucketcount = bucketcount;
4939
4940 if (soname != NULL)
4941 {
4942 unsigned long indx;
4943
4944 indx = bfd_add_to_strtab (dynobj, elf_hash_table (info)->dynstr, soname);
4945 if (indx == (unsigned long) -1
4946 || ! elf_add_dynamic_entry (info, DT_SONAME, indx))
4947 return false;
4948 }
4949
4950 if (rpath != NULL)
4951 {
4952 unsigned long indx;
4953
4954 indx = bfd_add_to_strtab (dynobj, elf_hash_table (info)->dynstr, rpath);
4955 if (indx == (unsigned long) -1
4956 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
4957 return false;
4958 }
4959
4960 s = bfd_get_section_by_name (dynobj, ".dynstr");
4961 BFD_ASSERT (s != NULL);
4962 s->_raw_size = elf_hash_table (info)->dynstr->length;
4963 s->contents = (unsigned char *) elf_hash_table (info)->dynstr->tab;
4964
4965 /* Find all symbols which were defined in a dynamic object and make
4966 the backend pick a reasonable value for them. */
4967 elf_link_hash_traverse (elf_hash_table (info),
4968 elf_adjust_dynamic_symbol,
4969 (PTR) info);
4970
4971 /* Add some entries to the .dynamic section. We fill in some of the
4972 values later, in elf_bfd_final_link, but we must add the entries
4973 now so that we know the final size of the .dynamic section. */
4974 if (bfd_get_section_by_name (output_bfd, ".init") != NULL)
4975 {
4976 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
4977 return false;
4978 }
4979 if (bfd_get_section_by_name (output_bfd, ".fini") != NULL)
4980 {
4981 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
4982 return false;
4983 }
4984 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
4985 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
4986 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4987 || ! elf_add_dynamic_entry (info, DT_STRSZ,
4988 elf_hash_table (info)->dynstr->length)
4989 || ! elf_add_dynamic_entry (info, DT_SYMENT,
4990 sizeof (Elf_External_Sym)))
4991 return false;
4992
4993 /* The backend must work out the sizes of all the other dynamic
4994 sections. */
4995 bed = get_elf_backend_data (output_bfd);
4996 if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
4997 return false;
4998
4999 return elf_add_dynamic_entry (info, DT_NULL, 0);
5000 }
5001
5002 /* Make the backend pick a good value for a dynamic symbol. This is
5003 called via elf_link_hash_traverse, and also calls itself
5004 recursively. */
5005
5006 static boolean
5007 elf_adjust_dynamic_symbol (h, data)
5008 struct elf_link_hash_entry *h;
5009 PTR data;
5010 {
5011 struct bfd_link_info *info = (struct bfd_link_info *) data;
5012 bfd *dynobj;
5013 struct elf_backend_data *bed;
5014
5015 /* If this symbol is not defined by a dynamic object, or is not
5016 referenced by a regular object, ignore it. FIXME: Do we need to
5017 worry about symbols which are defined by one dynamic object and
5018 referenced by another one? */
5019 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
5020 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
5021 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5022 return true;
5023
5024 /* If we've already adjusted this symbol, don't do it again. This
5025 can happen via a recursive call. */
5026 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
5027 return true;
5028
5029 /* Don't look at this symbol again. Note that we must set this
5030 after checking the above conditions, because we may look at a
5031 symbol once, decide not to do anything, and then get called
5032 recursively later after REF_REGULAR is set below. */
5033 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
5034
5035 /* If this is a weak definition, and we know a real definition, and
5036 the real symbol is not itself defined by a regular object file,
5037 then get a good value for the real definition. We handle the
5038 real symbol first, for the convenience of the backend routine.
5039
5040 Note that there is a confusing case here. If the real definition
5041 is defined by a regular object file, we don't get the real symbol
5042 from the dynamic object, but we do get the weak symbol. If the
5043 processor backend uses a COPY reloc, then if some routine in the
5044 dynamic object changes the real symbol, we will not see that
5045 change in the corresponding weak symbol. This is the way other
5046 ELF linkers work as well, and seems to be a result of the shared
5047 library model.
5048
5049 I will clarify this issue. Most SVR4 shared libraries define the
5050 variable _timezone and define timezone as a weak synonym. The
5051 tzset call changes _timezone. If you write
5052 extern int timezone;
5053 int _timezone = 5;
5054 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
5055 you might expect that, since timezone is a synonym for _timezone,
5056 the same number will print both times. However, if the processor
5057 backend uses a COPY reloc, then actually timezone will be copied
5058 into your process image, and, since you define _timezone
5059 yourself, _timezone will not. Thus timezone and _timezone will
5060 wind up at different memory locations. The tzset call will set
5061 _timezone, leaving timezone unchanged. */
5062
5063 if (h->weakdef != NULL)
5064 {
5065 struct elf_link_hash_entry *weakdef;
5066
5067 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5068 weakdef = h->weakdef;
5069 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined);
5070 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
5071 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
5072 {
5073 /* This symbol is defined by a regular object file, so we
5074 will not do anything special. Clear weakdef for the
5075 convenience of the processor backend. */
5076 h->weakdef = NULL;
5077 }
5078 else
5079 {
5080 /* There is an implicit reference by a regular object file
5081 via the weak symbol. */
5082 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
5083 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) info))
5084 return false;
5085 }
5086 }
5087
5088 dynobj = elf_hash_table (info)->dynobj;
5089 bed = get_elf_backend_data (dynobj);
5090 if (! (*bed->elf_backend_adjust_dynamic_symbol) (info, h))
5091 {
5092 /* FIXME: No way to return error. */
5093 abort ();
5094 }
5095
5096 return true;
5097 }
5098 \f
5099 /* Final phase of ELF linker. */
5100
5101 /* A structure we use to avoid passing large numbers of arguments. */
5102
5103 struct elf_final_link_info
5104 {
5105 /* General link information. */
5106 struct bfd_link_info *info;
5107 /* Output BFD. */
5108 bfd *output_bfd;
5109 /* Symbol string table. */
5110 struct strtab *symstrtab;
5111 /* .dynsym section. */
5112 asection *dynsym_sec;
5113 /* .hash section. */
5114 asection *hash_sec;
5115 /* Buffer large enough to hold contents of any section. */
5116 bfd_byte *contents;
5117 /* Buffer large enough to hold external relocs of any section. */
5118 PTR external_relocs;
5119 /* Buffer large enough to hold internal relocs of any section. */
5120 Elf_Internal_Rela *internal_relocs;
5121 /* Buffer large enough to hold external local symbols of any input
5122 BFD. */
5123 Elf_External_Sym *external_syms;
5124 /* Buffer large enough to hold internal local symbols of any input
5125 BFD. */
5126 Elf_Internal_Sym *internal_syms;
5127 /* Array large enough to hold a symbol index for each local symbol
5128 of any input BFD. */
5129 long *indices;
5130 /* Array large enough to hold a section pointer for each local
5131 symbol of any input BFD. */
5132 asection **sections;
5133 /* Buffer to hold swapped out symbols. */
5134 Elf_External_Sym *symbuf;
5135 /* Number of swapped out symbols in buffer. */
5136 size_t symbuf_count;
5137 /* Number of symbols which fit in symbuf. */
5138 size_t symbuf_size;
5139 };
5140
5141 static boolean elf_link_output_sym
5142 PARAMS ((struct elf_final_link_info *, const char *,
5143 Elf_Internal_Sym *, asection *));
5144 static boolean elf_link_flush_output_syms
5145 PARAMS ((struct elf_final_link_info *));
5146 static boolean elf_link_output_extsym
5147 PARAMS ((struct elf_link_hash_entry *, PTR));
5148 static boolean elf_link_input_bfd
5149 PARAMS ((struct elf_final_link_info *, bfd *));
5150 static boolean elf_reloc_link_order
5151 PARAMS ((bfd *, struct bfd_link_info *, asection *,
5152 struct bfd_link_order *));
5153
5154 /* Do the final step of an ELF link. */
5155
5156 boolean
5157 elf_bfd_final_link (abfd, info)
5158 bfd *abfd;
5159 struct bfd_link_info *info;
5160 {
5161 bfd *dynobj;
5162 struct elf_final_link_info finfo;
5163 register asection *o;
5164 register struct bfd_link_order *p;
5165 register bfd *sub;
5166 size_t max_contents_size;
5167 size_t max_external_reloc_size;
5168 size_t max_internal_reloc_count;
5169 size_t max_sym_count;
5170 file_ptr off;
5171 Elf_Internal_Sym elfsym;
5172 unsigned int i;
5173 Elf_Internal_Shdr *symtab_hdr;
5174 Elf_Internal_Shdr *symstrtab_hdr;
5175 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5176
5177 if (info->shared)
5178 abfd->flags |= DYNAMIC;
5179
5180 dynobj = elf_hash_table (info)->dynobj;
5181
5182 finfo.info = info;
5183 finfo.output_bfd = abfd;
5184 finfo.symstrtab = bfd_new_strtab (abfd);
5185 if (finfo.symstrtab == NULL)
5186 return false;
5187 if (dynobj == NULL)
5188 {
5189 finfo.dynsym_sec = NULL;
5190 finfo.hash_sec = NULL;
5191 }
5192 else
5193 {
5194 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
5195 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
5196 if (finfo.dynsym_sec == NULL
5197 || finfo.hash_sec == NULL)
5198 abort ();
5199 }
5200 finfo.contents = NULL;
5201 finfo.external_relocs = NULL;
5202 finfo.internal_relocs = NULL;
5203 finfo.external_syms = NULL;
5204 finfo.internal_syms = NULL;
5205 finfo.indices = NULL;
5206 finfo.sections = NULL;
5207 finfo.symbuf = NULL;
5208 finfo.symbuf_count = 0;
5209
5210 /* Count up the number of relocations we will output for each output
5211 section, so that we know the sizes of the reloc sections. We
5212 also figure out some maximum sizes. */
5213 max_contents_size = 0;
5214 max_external_reloc_size = 0;
5215 max_internal_reloc_count = 0;
5216 max_sym_count = 0;
5217 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5218 {
5219 o->reloc_count = 0;
5220
5221 for (p = o->link_order_head; p != NULL; p = p->next)
5222 {
5223 if (p->type == bfd_section_reloc_link_order
5224 || p->type == bfd_symbol_reloc_link_order)
5225 ++o->reloc_count;
5226 else if (p->type == bfd_indirect_link_order)
5227 {
5228 asection *sec;
5229
5230 sec = p->u.indirect.section;
5231
5232 if (info->relocateable)
5233 o->reloc_count += sec->reloc_count;
5234
5235 if (sec->_raw_size > max_contents_size)
5236 max_contents_size = sec->_raw_size;
5237 if (sec->_cooked_size > max_contents_size)
5238 max_contents_size = sec->_cooked_size;
5239
5240 /* We are interested in just local symbols, not all
5241 symbols. */
5242 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
5243 {
5244 size_t sym_count;
5245
5246 if (elf_bad_symtab (sec->owner))
5247 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
5248 / sizeof (Elf_External_Sym));
5249 else
5250 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
5251
5252 if (sym_count > max_sym_count)
5253 max_sym_count = sym_count;
5254
5255 if ((sec->flags & SEC_RELOC) != 0)
5256 {
5257 size_t ext_size;
5258
5259 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
5260 if (ext_size > max_external_reloc_size)
5261 max_external_reloc_size = ext_size;
5262 if (sec->reloc_count > max_internal_reloc_count)
5263 max_internal_reloc_count = sec->reloc_count;
5264 }
5265 }
5266 }
5267 }
5268
5269 if (o->reloc_count > 0)
5270 o->flags |= SEC_RELOC;
5271 else
5272 {
5273 /* Explicitly clear the SEC_RELOC flag. The linker tends to
5274 set it (this is probably a bug) and if it is set
5275 assign_section_numbers will create a reloc section. */
5276 o->flags &=~ SEC_RELOC;
5277 }
5278
5279 /* If the SEC_ALLOC flag is not set, force the section VMA to
5280 zero. This is done in elf_fake_sections as well, but forcing
5281 the VMA to 0 here will ensure that relocs against these
5282 sections are handled correctly. */
5283 if ((o->flags & SEC_ALLOC) == 0)
5284 o->vma = 0;
5285 }
5286
5287 /* Figure out the file positions for everything but the symbol table
5288 and the relocs. We set symcount to force assign_section_numbers
5289 to create a symbol table. */
5290 abfd->symcount = info->strip == strip_all ? 0 : 1;
5291 BFD_ASSERT (! abfd->output_has_begun);
5292 if (! elf_compute_section_file_positions (abfd, info))
5293 goto error_return;
5294
5295 /* That created the reloc sections. Set their sizes, and assign
5296 them file positions, and allocate some buffers. */
5297 for (o = abfd->sections; o != NULL; o = o->next)
5298 {
5299 if ((o->flags & SEC_RELOC) != 0)
5300 {
5301 Elf_Internal_Shdr *rel_hdr;
5302 register struct elf_link_hash_entry **p, **pend;
5303
5304 rel_hdr = &elf_section_data (o)->rel_hdr;
5305
5306 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
5307
5308 /* The contents field must last into write_object_contents,
5309 so we allocate it with bfd_alloc rather than malloc. */
5310 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
5311 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
5312 {
5313 bfd_set_error (bfd_error_no_memory);
5314 goto error_return;
5315 }
5316
5317 p = ((struct elf_link_hash_entry **)
5318 malloc (o->reloc_count
5319 * sizeof (struct elf_link_hash_entry *)));
5320 if (p == NULL && o->reloc_count != 0)
5321 {
5322 bfd_set_error (bfd_error_no_memory);
5323 goto error_return;
5324 }
5325 elf_section_data (o)->rel_hashes = p;
5326 pend = p + o->reloc_count;
5327 for (; p < pend; p++)
5328 *p = NULL;
5329
5330 /* Use the reloc_count field as an index when outputting the
5331 relocs. */
5332 o->reloc_count = 0;
5333 }
5334 }
5335
5336 assign_file_positions_for_relocs (abfd);
5337
5338 /* We have now assigned file positions for all the sections except
5339 .symtab and .strtab. We start the .symtab section at the current
5340 file position, and write directly to it. We build the .strtab
5341 section in memory. When we add .dynsym support, we will build
5342 that in memory as well (.dynsym is smaller than .symtab). */
5343 abfd->symcount = 0;
5344 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5345 /* sh_name is set in prep_headers. */
5346 symtab_hdr->sh_type = SHT_SYMTAB;
5347 symtab_hdr->sh_flags = 0;
5348 symtab_hdr->sh_addr = 0;
5349 symtab_hdr->sh_size = 0;
5350 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
5351 /* sh_link is set in assign_section_numbers. */
5352 /* sh_info is set below. */
5353 /* sh_offset is set just below. */
5354 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
5355
5356 off = elf_tdata (abfd)->next_file_pos;
5357 off = assign_file_position_for_section (symtab_hdr, off, true);
5358
5359 /* Note that at this point elf_tdata (abfd)->next_file_pos is
5360 incorrect. We do not yet know the size of the .symtab section.
5361 We correct next_file_pos below, after we do know the size. */
5362
5363 /* Allocate a buffer to hold swapped out symbols. This is to avoid
5364 continuously seeking to the right position in the file. */
5365 if (! info->keep_memory || max_sym_count < 20)
5366 finfo.symbuf_size = 20;
5367 else
5368 finfo.symbuf_size = max_sym_count;
5369 finfo.symbuf = ((Elf_External_Sym *)
5370 malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
5371 if (finfo.symbuf == NULL)
5372 {
5373 bfd_set_error (bfd_error_no_memory);
5374 goto error_return;
5375 }
5376
5377 /* Start writing out the symbol table. The first symbol is always a
5378 dummy symbol. */
5379 elfsym.st_value = 0;
5380 elfsym.st_size = 0;
5381 elfsym.st_info = 0;
5382 elfsym.st_other = 0;
5383 elfsym.st_shndx = SHN_UNDEF;
5384 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5385 &elfsym, bfd_und_section_ptr))
5386 goto error_return;
5387
5388 #if 0
5389 /* Some standard ELF linkers do this, but we don't because it causes
5390 bootstrap comparison failures. */
5391 /* Output a file symbol for the output file as the second symbol.
5392 We output this even if we are discarding local symbols, although
5393 I'm not sure if this is correct. */
5394 elfsym.st_value = 0;
5395 elfsym.st_size = 0;
5396 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5397 elfsym.st_other = 0;
5398 elfsym.st_shndx = SHN_ABS;
5399 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
5400 &elfsym, bfd_abs_section_ptr))
5401 goto error_return;
5402 #endif
5403
5404 /* Output a symbol for each section. We output these even if we are
5405 discarding local symbols, since they are used for relocs. These
5406 symbols have no names. We store the index of each one in the
5407 index field of the section, so that we can find it again when
5408 outputting relocs. */
5409 elfsym.st_value = 0;
5410 elfsym.st_size = 0;
5411 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5412 elfsym.st_other = 0;
5413 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
5414 {
5415 o = section_from_elf_index (abfd, i);
5416 if (! bfd_is_abs_section (o))
5417 o->target_index = abfd->symcount;
5418 elfsym.st_shndx = i;
5419 if (! elf_link_output_sym (&finfo, (const char *) NULL,
5420 &elfsym, o))
5421 goto error_return;
5422 }
5423
5424 /* Allocate some memory to hold information read in from the input
5425 files. */
5426 finfo.contents = (bfd_byte *) malloc (max_contents_size);
5427 finfo.external_relocs = (PTR) malloc (max_external_reloc_size);
5428 finfo.internal_relocs = ((Elf_Internal_Rela *)
5429 malloc (max_internal_reloc_count
5430 * sizeof (Elf_Internal_Rela)));
5431 finfo.external_syms = ((Elf_External_Sym *)
5432 malloc (max_sym_count * sizeof (Elf_External_Sym)));
5433 finfo.internal_syms = ((Elf_Internal_Sym *)
5434 malloc (max_sym_count * sizeof (Elf_Internal_Sym)));
5435 finfo.indices = (long *) malloc (max_sym_count * sizeof (long));
5436 finfo.sections = (asection **) malloc (max_sym_count * sizeof (asection *));
5437 if ((finfo.contents == NULL && max_contents_size != 0)
5438 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
5439 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
5440 || (finfo.external_syms == NULL && max_sym_count != 0)
5441 || (finfo.internal_syms == NULL && max_sym_count != 0)
5442 || (finfo.indices == NULL && max_sym_count != 0)
5443 || (finfo.sections == NULL && max_sym_count != 0))
5444 {
5445 bfd_set_error (bfd_error_no_memory);
5446 goto error_return;
5447 }
5448
5449 /* Since ELF permits relocations to be against local symbols, we
5450 must have the local symbols available when we do the relocations.
5451 Since we would rather only read the local symbols once, and we
5452 would rather not keep them in memory, we handle all the
5453 relocations for a single input file at the same time.
5454
5455 Unfortunately, there is no way to know the total number of local
5456 symbols until we have seen all of them, and the local symbol
5457 indices precede the global symbol indices. This means that when
5458 we are generating relocateable output, and we see a reloc against
5459 a global symbol, we can not know the symbol index until we have
5460 finished examining all the local symbols to see which ones we are
5461 going to output. To deal with this, we keep the relocations in
5462 memory, and don't output them until the end of the link. This is
5463 an unfortunate waste of memory, but I don't see a good way around
5464 it. Fortunately, it only happens when performing a relocateable
5465 link, which is not the common case. FIXME: If keep_memory is set
5466 we could write the relocs out and then read them again; I don't
5467 know how bad the memory loss will be. */
5468
5469 for (sub = info->input_bfds; sub != NULL; sub = sub->next)
5470 sub->output_has_begun = false;
5471 for (o = abfd->sections; o != NULL; o = o->next)
5472 {
5473 for (p = o->link_order_head; p != NULL; p = p->next)
5474 {
5475 if (p->type == bfd_indirect_link_order
5476 && (bfd_get_flavour (p->u.indirect.section->owner)
5477 == bfd_target_elf_flavour))
5478 {
5479 sub = p->u.indirect.section->owner;
5480 if (! sub->output_has_begun)
5481 {
5482 if (! elf_link_input_bfd (&finfo, sub))
5483 goto error_return;
5484 sub->output_has_begun = true;
5485 }
5486 }
5487 else if (p->type == bfd_section_reloc_link_order
5488 || p->type == bfd_symbol_reloc_link_order)
5489 {
5490 if (! elf_reloc_link_order (abfd, info, o, p))
5491 goto error_return;
5492 }
5493 else
5494 {
5495 if (! _bfd_default_link_order (abfd, info, o, p))
5496 goto error_return;
5497 }
5498 }
5499 }
5500
5501 /* That wrote out all the local symbols. Finish up the symbol table
5502 with the global symbols. */
5503
5504 /* The sh_info field records the index of the first non local
5505 symbol. */
5506 symtab_hdr->sh_info = abfd->symcount;
5507 if (dynobj != NULL)
5508 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
5509
5510 /* We get the global symbols from the hash table. */
5511 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
5512 (PTR) &finfo);
5513
5514 /* Flush all symbols to the file. */
5515 if (! elf_link_flush_output_syms (&finfo))
5516 return false;
5517
5518 /* Now we know the size of the symtab section. */
5519 off += symtab_hdr->sh_size;
5520
5521 /* Finish up the symbol string table (.strtab) section. */
5522 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5523 /* sh_name was set in prep_headers. */
5524 symstrtab_hdr->sh_type = SHT_STRTAB;
5525 symstrtab_hdr->sh_flags = 0;
5526 symstrtab_hdr->sh_addr = 0;
5527 symstrtab_hdr->sh_size = finfo.symstrtab->length;
5528 symstrtab_hdr->sh_entsize = 0;
5529 symstrtab_hdr->sh_link = 0;
5530 symstrtab_hdr->sh_info = 0;
5531 /* sh_offset is set just below. */
5532 symstrtab_hdr->sh_addralign = 1;
5533 symstrtab_hdr->contents = (PTR) finfo.symstrtab->tab;
5534
5535 off = assign_file_position_for_section (symstrtab_hdr, off, true);
5536 elf_tdata (abfd)->next_file_pos = off;
5537
5538 /* Adjust the relocs to have the correct symbol indices. */
5539 for (o = abfd->sections; o != NULL; o = o->next)
5540 {
5541 struct elf_link_hash_entry **rel_hash;
5542 Elf_Internal_Shdr *rel_hdr;
5543
5544 if ((o->flags & SEC_RELOC) == 0)
5545 continue;
5546
5547 rel_hash = elf_section_data (o)->rel_hashes;
5548 rel_hdr = &elf_section_data (o)->rel_hdr;
5549 for (i = 0; i < o->reloc_count; i++, rel_hash++)
5550 {
5551 if (*rel_hash == NULL)
5552 continue;
5553
5554 BFD_ASSERT ((*rel_hash)->indx >= 0);
5555
5556 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5557 {
5558 Elf_External_Rel *erel;
5559 Elf_Internal_Rel irel;
5560
5561 erel = (Elf_External_Rel *) rel_hdr->contents + i;
5562 elf_swap_reloc_in (abfd, erel, &irel);
5563 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
5564 ELF_R_TYPE (irel.r_info));
5565 elf_swap_reloc_out (abfd, &irel, erel);
5566 }
5567 else
5568 {
5569 Elf_External_Rela *erela;
5570 Elf_Internal_Rela irela;
5571
5572 BFD_ASSERT (rel_hdr->sh_entsize
5573 == sizeof (Elf_External_Rela));
5574
5575 erela = (Elf_External_Rela *) rel_hdr->contents + i;
5576 elf_swap_reloca_in (abfd, erela, &irela);
5577 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
5578 ELF_R_TYPE (irela.r_info));
5579 elf_swap_reloca_out (abfd, &irela, erela);
5580 }
5581 }
5582
5583 /* Set the reloc_count field to 0 to prevent write_relocs from
5584 trying to swap the relocs out itself. */
5585 o->reloc_count = 0;
5586 }
5587
5588 /* If we are linking against a dynamic object, finish up the dynamic
5589 linking information. */
5590 if (dynobj != NULL)
5591 {
5592 Elf_External_Dyn *dyncon, *dynconend;
5593
5594 /* Fix up .dynamic entries. */
5595 o = bfd_get_section_by_name (dynobj, ".dynamic");
5596 BFD_ASSERT (o != NULL);
5597
5598 dyncon = (Elf_External_Dyn *) o->contents;
5599 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
5600 for (; dyncon < dynconend; dyncon++)
5601 {
5602 Elf_Internal_Dyn dyn;
5603 const char *name;
5604 unsigned int type;
5605
5606 elf_swap_dyn_in (dynobj, dyncon, &dyn);
5607
5608 switch (dyn.d_tag)
5609 {
5610 default:
5611 break;
5612
5613 case DT_INIT:
5614 name = ".init";
5615 goto get_vma;
5616 case DT_FINI:
5617 name = ".fini";
5618 goto get_vma;
5619 case DT_HASH:
5620 name = ".hash";
5621 goto get_vma;
5622 case DT_STRTAB:
5623 name = ".dynstr";
5624 goto get_vma;
5625 case DT_SYMTAB:
5626 name = ".dynsym";
5627 get_vma:
5628 o = bfd_get_section_by_name (abfd, name);
5629 BFD_ASSERT (o != NULL);
5630 dyn.d_un.d_ptr = o->vma;
5631 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5632 break;
5633
5634 case DT_REL:
5635 case DT_RELA:
5636 case DT_RELSZ:
5637 case DT_RELASZ:
5638 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
5639 type = SHT_REL;
5640 else
5641 type = SHT_RELA;
5642 dyn.d_un.d_val = 0;
5643 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
5644 {
5645 Elf_Internal_Shdr *hdr;
5646
5647 hdr = elf_elfsections (abfd)[i];
5648 if (hdr->sh_type == type
5649 && (hdr->sh_flags & SHF_ALLOC) != 0)
5650 {
5651 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
5652 dyn.d_un.d_val += hdr->sh_size;
5653 else
5654 {
5655 if (dyn.d_un.d_val == 0
5656 || hdr->sh_addr < dyn.d_un.d_val)
5657 dyn.d_un.d_val = hdr->sh_addr;
5658 }
5659 }
5660 }
5661 elf_swap_dyn_out (dynobj, &dyn, dyncon);
5662 break;
5663 }
5664 }
5665
5666 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
5667 goto error_return;
5668
5669 for (o = dynobj->sections; o != NULL; o = o->next)
5670 {
5671 if ((o->flags & SEC_HAS_CONTENTS) == 0)
5672 continue;
5673 if ((o->flags & SEC_IN_MEMORY) == 0)
5674 {
5675 BFD_ASSERT (info->shared);
5676 continue;
5677 }
5678 if (! bfd_set_section_contents (abfd, o->output_section,
5679 o->contents, o->output_offset,
5680 o->_raw_size))
5681 goto error_return;
5682 }
5683 }
5684
5685 /* Now backend stuff. */
5686 if (bed->elf_backend_final_write_processing)
5687 (*bed->elf_backend_final_write_processing) (abfd, NULL);
5688
5689 if (finfo.contents != NULL)
5690 free (finfo.contents);
5691 if (finfo.external_relocs != NULL)
5692 free (finfo.external_relocs);
5693 if (finfo.internal_relocs != NULL)
5694 free (finfo.internal_relocs);
5695 if (finfo.external_syms != NULL)
5696 free (finfo.external_syms);
5697 if (finfo.internal_syms != NULL)
5698 free (finfo.internal_syms);
5699 if (finfo.indices != NULL)
5700 free (finfo.indices);
5701 if (finfo.sections != NULL)
5702 free (finfo.sections);
5703 if (finfo.symbuf != NULL)
5704 free (finfo.symbuf);
5705 for (o = abfd->sections; o != NULL; o = o->next)
5706 {
5707 if ((o->flags & SEC_RELOC) != 0
5708 && elf_section_data (o)->rel_hashes != NULL)
5709 free (elf_section_data (o)->rel_hashes);
5710 }
5711
5712 return true;
5713
5714 error_return:
5715 if (finfo.contents != NULL)
5716 free (finfo.contents);
5717 if (finfo.external_relocs != NULL)
5718 free (finfo.external_relocs);
5719 if (finfo.internal_relocs != NULL)
5720 free (finfo.internal_relocs);
5721 if (finfo.external_syms != NULL)
5722 free (finfo.external_syms);
5723 if (finfo.internal_syms != NULL)
5724 free (finfo.internal_syms);
5725 if (finfo.indices != NULL)
5726 free (finfo.indices);
5727 if (finfo.sections != NULL)
5728 free (finfo.sections);
5729 if (finfo.symbuf != NULL)
5730 free (finfo.symbuf);
5731 for (o = abfd->sections; o != NULL; o = o->next)
5732 {
5733 if ((o->flags & SEC_RELOC) != 0
5734 && elf_section_data (o)->rel_hashes != NULL)
5735 free (elf_section_data (o)->rel_hashes);
5736 }
5737
5738 return false;
5739 }
5740
5741 /* Add a symbol to the output symbol table. */
5742
5743 static boolean
5744 elf_link_output_sym (finfo, name, elfsym, input_sec)
5745 struct elf_final_link_info *finfo;
5746 const char *name;
5747 Elf_Internal_Sym *elfsym;
5748 asection *input_sec;
5749 {
5750 boolean (*output_symbol_hook) PARAMS ((bfd *,
5751 struct bfd_link_info *info,
5752 const char *,
5753 Elf_Internal_Sym *,
5754 asection *));
5755
5756 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5757 elf_backend_link_output_symbol_hook;
5758 if (output_symbol_hook != NULL)
5759 {
5760 if (! ((*output_symbol_hook)
5761 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5762 return false;
5763 }
5764
5765 if (name == (const char *) NULL || *name == '\0')
5766 elfsym->st_name = 0;
5767 else
5768 {
5769 elfsym->st_name = bfd_add_to_strtab (finfo->output_bfd,
5770 finfo->symstrtab, name);
5771 if (elfsym->st_name == (unsigned long) -1)
5772 return false;
5773 }
5774
5775 if (finfo->symbuf_count >= finfo->symbuf_size)
5776 {
5777 if (! elf_link_flush_output_syms (finfo))
5778 return false;
5779 }
5780
5781 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5782 finfo->symbuf + finfo->symbuf_count);
5783 ++finfo->symbuf_count;
5784
5785 ++finfo->output_bfd->symcount;
5786
5787 return true;
5788 }
5789
5790 /* Flush the output symbols to the file. */
5791
5792 static boolean
5793 elf_link_flush_output_syms (finfo)
5794 struct elf_final_link_info *finfo;
5795 {
5796 Elf_Internal_Shdr *symtab;
5797
5798 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5799
5800 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5801 SEEK_SET) != 0
5802 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5803 sizeof (Elf_External_Sym), finfo->output_bfd)
5804 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5805 return false;
5806
5807 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5808
5809 finfo->symbuf_count = 0;
5810
5811 return true;
5812 }
5813
5814 /* Add an external symbol to the symbol table. This is called from
5815 the hash table traversal routine. */
5816
5817 static boolean
5818 elf_link_output_extsym (h, data)
5819 struct elf_link_hash_entry *h;
5820 PTR data;
5821 {
5822 struct elf_final_link_info *finfo = (struct elf_final_link_info *) data;
5823 boolean strip;
5824 Elf_Internal_Sym sym;
5825 asection *input_sec;
5826
5827 /* We don't want to output symbols that have never been mentioned by
5828 a regular file, or that we have been told to strip. However, if
5829 h->indx is set to -2, the symbol is used by a reloc and we must
5830 output it. */
5831 if (h->indx == -2)
5832 strip = false;
5833 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5834 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5835 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5836 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5837 strip = true;
5838 else if (finfo->info->strip == strip_all
5839 || (finfo->info->strip == strip_some
5840 && bfd_hash_lookup (finfo->info->keep_hash,
5841 h->root.root.string,
5842 false, false) == NULL))
5843 strip = true;
5844 else
5845 strip = false;
5846
5847 /* If we're stripping it, and it's not a dynamic symbol, there's
5848 nothing else to do. */
5849 if (strip && h->dynindx == -1)
5850 return true;
5851
5852 sym.st_value = 0;
5853 sym.st_size = h->size;
5854 sym.st_other = 0;
5855 if (h->root.type == bfd_link_hash_weak
5856 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEFINED_WEAK) != 0
5857 && ((h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
5858 | ELF_LINK_HASH_REF_DYNAMIC))
5859 == 0)))
5860 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5861 else
5862 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5863
5864 switch (h->root.type)
5865 {
5866 default:
5867 case bfd_link_hash_new:
5868 abort ();
5869 return false;
5870
5871 case bfd_link_hash_undefined:
5872 input_sec = bfd_und_section_ptr;
5873 sym.st_shndx = SHN_UNDEF;
5874 break;
5875
5876 case bfd_link_hash_weak:
5877 input_sec = bfd_und_section_ptr;
5878 sym.st_shndx = SHN_UNDEF;
5879 break;
5880
5881 case bfd_link_hash_defined:
5882 {
5883
5884 input_sec = h->root.u.def.section;
5885 if (input_sec->output_section != NULL)
5886 {
5887 sym.st_shndx = elf_section_from_bfd_section (finfo->output_bfd,
5888 input_sec->output_section);
5889 if (sym.st_shndx == (unsigned short) -1)
5890 {
5891 /* FIXME: No way to handle errors. */
5892 abort ();
5893 }
5894
5895 /* ELF symbols in relocateable files are section relative,
5896 but in nonrelocateable files they are virtual
5897 addresses. */
5898 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5899 if (! finfo->info->relocateable)
5900 sym.st_value += input_sec->output_section->vma;
5901 }
5902 else
5903 {
5904 BFD_ASSERT (bfd_get_flavour (input_sec->owner)
5905 == bfd_target_elf_flavour
5906 && elf_elfheader (input_sec->owner)->e_type == ET_DYN);
5907 sym.st_shndx = SHN_UNDEF;
5908 input_sec = bfd_und_section_ptr;
5909 }
5910 }
5911 break;
5912
5913 case bfd_link_hash_common:
5914 input_sec = bfd_com_section_ptr;
5915 sym.st_shndx = SHN_COMMON;
5916 sym.st_value = 1 << h->root.u.c.alignment_power;
5917 break;
5918
5919 case bfd_link_hash_indirect:
5920 case bfd_link_hash_warning:
5921 /* I have no idea how these should be handled. */
5922 return true;
5923 }
5924
5925 /* If this symbol should be put in the .dynsym section, then put it
5926 there now. We have already know the symbol index. We also fill
5927 in the entry in the .hash section. */
5928 if (h->dynindx != -1)
5929 {
5930 struct elf_backend_data *bed;
5931 size_t bucketcount;
5932 size_t bucket;
5933 bfd_byte *bucketpos;
5934 bfd_vma chain;
5935
5936 sym.st_name = h->dynstr_index;
5937
5938 /* Give the processor backend a chance to tweak the symbol
5939 value, and also to finish up anything that needs to be done
5940 for this symbol. */
5941 bed = get_elf_backend_data (finfo->output_bfd);
5942 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5943 (finfo->output_bfd, finfo->info, h, &sym)))
5944 {
5945 /* FIXME: No way to return error. */
5946 abort ();
5947 }
5948
5949 elf_swap_symbol_out (finfo->output_bfd, &sym,
5950 ((Elf_External_Sym *) finfo->dynsym_sec->contents
5951 + h->dynindx));
5952
5953 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5954 bucket = bfd_elf_hash (h->root.root.string) % bucketcount;
5955 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5956 + (bucket + 2) * (ARCH_SIZE / 8));
5957 chain = get_word (finfo->output_bfd, bucketpos);
5958 put_word (finfo->output_bfd, h->dynindx, bucketpos);
5959 put_word (finfo->output_bfd, chain,
5960 ((bfd_byte *) finfo->hash_sec->contents
5961 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
5962 }
5963
5964 /* If we're stripping it, then it was just a dynamic symbol, and
5965 there's nothing else to do. */
5966 if (strip)
5967 return true;
5968
5969 h->indx = finfo->output_bfd->symcount;
5970
5971 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5972 {
5973 /* FIXME: No way to return error. */
5974 abort ();
5975 }
5976
5977 return true;
5978 }
5979
5980 /* Link an input file into the linker output file. This function
5981 handles all the sections and relocations of the input file at once.
5982 This is so that we only have to read the local symbols once, and
5983 don't have to keep them in memory. */
5984
5985 static boolean
5986 elf_link_input_bfd (finfo, input_bfd)
5987 struct elf_final_link_info *finfo;
5988 bfd *input_bfd;
5989 {
5990 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5991 bfd *, asection *, bfd_byte *,
5992 Elf_Internal_Rela *,
5993 Elf_Internal_Sym *,
5994 asection **, char *));
5995 bfd *output_bfd;
5996 Elf_Internal_Shdr *symtab_hdr;
5997 size_t locsymcount;
5998 size_t extsymoff;
5999 Elf_External_Sym *esym;
6000 Elf_External_Sym *esymend;
6001 Elf_Internal_Sym *isym;
6002 long *pindex;
6003 asection **ppsection;
6004 asection *o;
6005
6006 output_bfd = finfo->output_bfd;
6007 relocate_section =
6008 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
6009
6010 /* If this is a dynamic object, we don't want to do anything here:
6011 we don't want the local symbols, and we don't want the section
6012 contents. */
6013 if (elf_elfheader (input_bfd)->e_type == ET_DYN)
6014 return true;
6015
6016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6017 if (elf_bad_symtab (input_bfd))
6018 {
6019 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6020 extsymoff = 0;
6021 }
6022 else
6023 {
6024 locsymcount = symtab_hdr->sh_info;
6025 extsymoff = symtab_hdr->sh_info;
6026 }
6027
6028 /* Read the local symbols. */
6029 if (locsymcount > 0
6030 && (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6031 || (bfd_read (finfo->external_syms, sizeof (Elf_External_Sym),
6032 locsymcount, input_bfd)
6033 != locsymcount * sizeof (Elf_External_Sym))))
6034 return false;
6035
6036 /* Swap in the local symbols and write out the ones which we know
6037 are going into the output file. */
6038 esym = finfo->external_syms;
6039 esymend = esym + locsymcount;
6040 isym = finfo->internal_syms;
6041 pindex = finfo->indices;
6042 ppsection = finfo->sections;
6043 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
6044 {
6045 asection *isec;
6046 const char *name;
6047 bfd_vma oldval;
6048
6049 elf_swap_symbol_in (input_bfd, esym, isym);
6050 *pindex = -1;
6051
6052 if (elf_bad_symtab (input_bfd))
6053 {
6054 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6055 {
6056 *ppsection = NULL;
6057 continue;
6058 }
6059 }
6060
6061 if (isym->st_shndx == SHN_UNDEF)
6062 isec = bfd_und_section_ptr;
6063 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
6064 {
6065 isec = section_from_elf_index (input_bfd, isym->st_shndx);
6066 if (isec == NULL)
6067 return false;
6068 }
6069 else if (isym->st_shndx == SHN_ABS)
6070 isec = bfd_abs_section_ptr;
6071 else if (isym->st_shndx == SHN_COMMON)
6072 isec = bfd_com_section_ptr;
6073 else
6074 {
6075 /* Who knows? */
6076 isec = NULL;
6077 }
6078
6079 *ppsection = isec;
6080
6081 /* Don't output the first, undefined, symbol. */
6082 if (esym == finfo->external_syms)
6083 continue;
6084
6085 /* If we are stripping all symbols, we don't want to output this
6086 one. */
6087 if (finfo->info->strip == strip_all)
6088 continue;
6089
6090 /* We never output section symbols. Instead, we use the section
6091 symbol of the corresponding section in the output file. */
6092 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6093 continue;
6094
6095 /* If we are discarding all local symbols, we don't want to
6096 output this one. If we are generating a relocateable output
6097 file, then some of the local symbols may be required by
6098 relocs; we output them below as we discover that they are
6099 needed. */
6100 if (finfo->info->discard == discard_all)
6101 continue;
6102
6103 /* Get the name of the symbol. */
6104 name = elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6105 isym->st_name);
6106 if (name == NULL)
6107 return false;
6108
6109 /* See if we are discarding symbols with this name. */
6110 if ((finfo->info->strip == strip_some
6111 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
6112 == NULL))
6113 || (finfo->info->discard == discard_l
6114 && strncmp (name, finfo->info->lprefix,
6115 finfo->info->lprefix_len) == 0))
6116 continue;
6117
6118 /* If we get here, we are going to output this symbol. */
6119
6120 /* Adjust the section index for the output file. */
6121 isym->st_shndx = elf_section_from_bfd_section (output_bfd,
6122 isec->output_section);
6123 if (isym->st_shndx == (unsigned short) -1)
6124 return false;
6125
6126 *pindex = output_bfd->symcount;
6127
6128 /* ELF symbols in relocateable files are section relative, but
6129 in executable files they are virtual addresses. Note that
6130 this code assumes that all ELF sections have an associated
6131 BFD section with a reasonable value for output_offset; below
6132 we assume that they also have a reasonable value for
6133 output_section. Any special sections must be set up to meet
6134 these requirements. */
6135 oldval = isym->st_value;
6136 isym->st_value += isec->output_offset;
6137 if (! finfo->info->relocateable)
6138 isym->st_value += isec->output_section->vma;
6139
6140 if (! elf_link_output_sym (finfo, name, isym, isec))
6141 return false;
6142
6143 /* Restore the old value for reloc handling. */
6144 isym->st_value = oldval;
6145 }
6146
6147 /* Relocate the contents of each section. */
6148 for (o = input_bfd->sections; o != NULL; o = o->next)
6149 {
6150 if ((o->flags & SEC_HAS_CONTENTS) == 0)
6151 continue;
6152
6153 if ((o->flags & SEC_IN_MEMORY) != 0
6154 && input_bfd == elf_hash_table (finfo->info)->dynobj)
6155 {
6156 /* Section was created by elf_link_create_dynamic_sections.
6157 FIXME: This test is fragile. */
6158 continue;
6159 }
6160
6161 /* Read the contents of the section. */
6162 if (! bfd_get_section_contents (input_bfd, o, finfo->contents,
6163 (file_ptr) 0, o->_raw_size))
6164 return false;
6165
6166 if ((o->flags & SEC_RELOC) != 0)
6167 {
6168 Elf_Internal_Rela *internal_relocs;
6169
6170 /* Get the swapped relocs. */
6171 internal_relocs = elf_link_read_relocs (input_bfd, o,
6172 finfo->external_relocs,
6173 finfo->internal_relocs,
6174 false);
6175 if (internal_relocs == NULL
6176 && o->reloc_count > 0)
6177 return false;
6178
6179 /* Relocate the section by invoking a back end routine.
6180
6181 The back end routine is responsible for adjusting the
6182 section contents as necessary, and (if using Rela relocs
6183 and generating a relocateable output file) adjusting the
6184 reloc addend as necessary.
6185
6186 The back end routine does not have to worry about setting
6187 the reloc address or the reloc symbol index.
6188
6189 The back end routine is given a pointer to the swapped in
6190 internal symbols, and can access the hash table entries
6191 for the external symbols via elf_sym_hashes (input_bfd).
6192
6193 When generating relocateable output, the back end routine
6194 must handle STB_LOCAL/STT_SECTION symbols specially. The
6195 output symbol is going to be a section symbol
6196 corresponding to the output section, which will require
6197 the addend to be adjusted. */
6198
6199 if (! (*relocate_section) (output_bfd, finfo->info,
6200 input_bfd, o,
6201 finfo->contents,
6202 internal_relocs,
6203 finfo->internal_syms,
6204 finfo->sections,
6205 finfo->symstrtab->tab))
6206 return false;
6207
6208 if (finfo->info->relocateable)
6209 {
6210 Elf_Internal_Rela *irela;
6211 Elf_Internal_Rela *irelaend;
6212 struct elf_link_hash_entry **rel_hash;
6213 Elf_Internal_Shdr *input_rel_hdr;
6214 Elf_Internal_Shdr *output_rel_hdr;
6215
6216 /* Adjust the reloc addresses and symbol indices. */
6217
6218 irela = internal_relocs;
6219 irelaend = irela + o->reloc_count;
6220 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6221 + o->output_section->reloc_count);
6222 for (; irela < irelaend; irela++, rel_hash++)
6223 {
6224 long r_symndx;
6225 Elf_Internal_Sym *isym;
6226 asection *sec;
6227
6228 irela->r_offset += o->output_offset;
6229
6230 r_symndx = ELF_R_SYM (irela->r_info);
6231
6232 if (r_symndx == 0)
6233 continue;
6234
6235 if (r_symndx >= locsymcount
6236 || (elf_bad_symtab (input_bfd)
6237 && finfo->sections[r_symndx] == NULL))
6238 {
6239 long indx;
6240
6241 /* This is a reloc against a global symbol. We
6242 have not yet output all the local symbols, so
6243 we do not know the symbol index of any global
6244 symbol. We set the rel_hash entry for this
6245 reloc to point to the global hash table entry
6246 for this symbol. The symbol index is then
6247 set at the end of elf_bfd_final_link. */
6248 indx = r_symndx - extsymoff;
6249 *rel_hash = elf_sym_hashes (input_bfd)[indx];
6250
6251 /* Setting the index to -2 tells
6252 elf_link_output_extsym that this symbol is
6253 used by a reloc. */
6254 BFD_ASSERT ((*rel_hash)->indx < 0);
6255 (*rel_hash)->indx = -2;
6256
6257 continue;
6258 }
6259
6260 /* This is a reloc against a local symbol. */
6261
6262 *rel_hash = NULL;
6263 isym = finfo->internal_syms + r_symndx;
6264 sec = finfo->sections[r_symndx];
6265 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6266 {
6267 /* I suppose the backend ought to fill in the
6268 section of any STT_SECTION symbol against a
6269 processor specific section. */
6270 if (sec != NULL && bfd_is_abs_section (sec))
6271 r_symndx = 0;
6272 else if (sec == NULL || sec->owner == NULL)
6273 {
6274 bfd_set_error (bfd_error_bad_value);
6275 return false;
6276 }
6277 else
6278 {
6279 r_symndx = sec->output_section->target_index;
6280 if (r_symndx == 0)
6281 abort ();
6282 }
6283 }
6284 else
6285 {
6286 if (finfo->indices[r_symndx] == -1)
6287 {
6288 unsigned long link;
6289 const char *name;
6290 asection *osec;
6291
6292 if (finfo->info->strip == strip_all)
6293 {
6294 /* You can't do ld -r -s. */
6295 bfd_set_error (bfd_error_invalid_operation);
6296 return false;
6297 }
6298
6299 /* This symbol was skipped earlier, but
6300 since it is needed by a reloc, we
6301 must output it now. */
6302 link = symtab_hdr->sh_link;
6303 name = elf_string_from_elf_section (input_bfd,
6304 link,
6305 isym->st_name);
6306 if (name == NULL)
6307 return false;
6308
6309 osec = sec->output_section;
6310 isym->st_shndx =
6311 elf_section_from_bfd_section (output_bfd,
6312 osec);
6313 if (isym->st_shndx == (unsigned short) -1)
6314 return false;
6315
6316 isym->st_value += sec->output_offset;
6317 if (! finfo->info->relocateable)
6318 isym->st_value += osec->vma;
6319
6320 finfo->indices[r_symndx] = output_bfd->symcount;
6321
6322 if (! elf_link_output_sym (finfo, name, isym, sec))
6323 return false;
6324 }
6325
6326 r_symndx = finfo->indices[r_symndx];
6327 }
6328
6329 irela->r_info = ELF_R_INFO (r_symndx,
6330 ELF_R_TYPE (irela->r_info));
6331 }
6332
6333 /* Swap out the relocs. */
6334 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6335 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
6336 BFD_ASSERT (output_rel_hdr->sh_entsize
6337 == input_rel_hdr->sh_entsize);
6338 irela = internal_relocs;
6339 irelaend = irela + o->reloc_count;
6340 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
6341 {
6342 Elf_External_Rel *erel;
6343
6344 erel = ((Elf_External_Rel *) output_rel_hdr->contents
6345 + o->output_section->reloc_count);
6346 for (; irela < irelaend; irela++, erel++)
6347 {
6348 Elf_Internal_Rel irel;
6349
6350 irel.r_offset = irela->r_offset;
6351 irel.r_info = irela->r_info;
6352 BFD_ASSERT (irela->r_addend == 0);
6353 elf_swap_reloc_out (output_bfd, &irel, erel);
6354 }
6355 }
6356 else
6357 {
6358 Elf_External_Rela *erela;
6359
6360 BFD_ASSERT (input_rel_hdr->sh_entsize
6361 == sizeof (Elf_External_Rela));
6362 erela = ((Elf_External_Rela *) output_rel_hdr->contents
6363 + o->output_section->reloc_count);
6364 for (; irela < irelaend; irela++, erela++)
6365 elf_swap_reloca_out (output_bfd, irela, erela);
6366 }
6367
6368 o->output_section->reloc_count += o->reloc_count;
6369 }
6370 }
6371
6372 /* Write out the modified section contents. */
6373 if (! bfd_set_section_contents (output_bfd, o->output_section,
6374 finfo->contents, o->output_offset,
6375 (o->_cooked_size != 0
6376 ? o->_cooked_size
6377 : o->_raw_size)))
6378 return false;
6379 }
6380
6381 return true;
6382 }
6383
6384 /* Generate a reloc when linking an ELF file. This is a reloc
6385 requested by the linker, and does come from any input file. This
6386 is used to build constructor and destructor tables when linking
6387 with -Ur. */
6388
6389 static boolean
6390 elf_reloc_link_order (output_bfd, info, output_section, link_order)
6391 bfd *output_bfd;
6392 struct bfd_link_info *info;
6393 asection *output_section;
6394 struct bfd_link_order *link_order;
6395 {
6396 const reloc_howto_type *howto;
6397 long indx;
6398 bfd_vma offset;
6399 struct elf_link_hash_entry **rel_hash_ptr;
6400 Elf_Internal_Shdr *rel_hdr;
6401
6402 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6403 if (howto == NULL)
6404 {
6405 bfd_set_error (bfd_error_bad_value);
6406 return false;
6407 }
6408
6409 /* If this is an inplace reloc, we must write the addend into the
6410 object file. */
6411 if (howto->partial_inplace
6412 && link_order->u.reloc.p->addend != 0)
6413 {
6414 bfd_size_type size;
6415 bfd_reloc_status_type rstat;
6416 bfd_byte *buf;
6417 boolean ok;
6418
6419 size = bfd_get_reloc_size (howto);
6420 buf = (bfd_byte *) bfd_zmalloc (size);
6421 if (buf == (bfd_byte *) NULL)
6422 {
6423 bfd_set_error (bfd_error_no_memory);
6424 return false;
6425 }
6426 rstat = _bfd_relocate_contents (howto, output_bfd,
6427 link_order->u.reloc.p->addend, buf);
6428 switch (rstat)
6429 {
6430 case bfd_reloc_ok:
6431 break;
6432 default:
6433 case bfd_reloc_outofrange:
6434 abort ();
6435 case bfd_reloc_overflow:
6436 if (! ((*info->callbacks->reloc_overflow)
6437 (info,
6438 (link_order->type == bfd_section_reloc_link_order
6439 ? bfd_section_name (output_bfd,
6440 link_order->u.reloc.p->u.section)
6441 : link_order->u.reloc.p->u.name),
6442 howto->name, link_order->u.reloc.p->addend,
6443 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
6444 {
6445 free (buf);
6446 return false;
6447 }
6448 break;
6449 }
6450 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6451 (file_ptr) link_order->offset, size);
6452 free (buf);
6453 if (! ok)
6454 return false;
6455 }
6456
6457 /* Figure out the symbol index. */
6458 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6459 + output_section->reloc_count);
6460 if (link_order->type == bfd_section_reloc_link_order)
6461 {
6462 indx = link_order->u.reloc.p->u.section->target_index;
6463 if (indx == 0)
6464 abort ();
6465 *rel_hash_ptr = NULL;
6466 }
6467 else
6468 {
6469 struct elf_link_hash_entry *h;
6470
6471 h = elf_link_hash_lookup (elf_hash_table (info),
6472 link_order->u.reloc.p->u.name,
6473 false, false, true);
6474 if (h != NULL)
6475 {
6476 /* Setting the index to -2 tells elf_link_output_extsym that
6477 this symbol is used by a reloc. */
6478 h->indx = -2;
6479 *rel_hash_ptr = h;
6480 indx = 0;
6481 }
6482 else
6483 {
6484 if (! ((*info->callbacks->unattached_reloc)
6485 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
6486 (asection *) NULL, (bfd_vma) 0)))
6487 return false;
6488 indx = 0;
6489 }
6490 }
6491
6492 /* The address of a reloc is relative to the section in a
6493 relocateable file, and is a virtual address in an executable
6494 file. */
6495 offset = link_order->offset;
6496 if (! info->relocateable)
6497 offset += output_section->vma;
6498
6499 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6500
6501 if (rel_hdr->sh_type == SHT_REL)
6502 {
6503 Elf_Internal_Rel irel;
6504 Elf_External_Rel *erel;
6505
6506 irel.r_offset = offset;
6507 irel.r_info = ELF_R_INFO (indx, howto->type);
6508 erel = ((Elf_External_Rel *) rel_hdr->contents
6509 + output_section->reloc_count);
6510 elf_swap_reloc_out (output_bfd, &irel, erel);
6511 }
6512 else
6513 {
6514 Elf_Internal_Rela irela;
6515 Elf_External_Rela *erela;
6516
6517 irela.r_offset = offset;
6518 irela.r_info = ELF_R_INFO (indx, howto->type);
6519 irela.r_addend = link_order->u.reloc.p->addend;
6520 erela = ((Elf_External_Rela *) rel_hdr->contents
6521 + output_section->reloc_count);
6522 elf_swap_reloca_out (output_bfd, &irela, erela);
6523 }
6524
6525 ++output_section->reloc_count;
6526
6527 return true;
6528 }
This page took 0.165871 seconds and 4 git commands to generate.