Add a new 'info proc files' subcommand of 'info proc'.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (p == htab->tls_sec)
904 return FALSE;
905
906 if (htab->text_index_section != NULL)
907 return p != htab->text_index_section && p != htab->data_index_section;
908
909 return (htab->dynobj != NULL
910 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
911 && ip->output_section == p);
912
913 /* There shouldn't be section relative relocations
914 against any other section. */
915 default:
916 return TRUE;
917 }
918 }
919
920 bfd_boolean
921 _bfd_elf_omit_section_dynsym_all
922 (bfd *output_bfd ATTRIBUTE_UNUSED,
923 struct bfd_link_info *info ATTRIBUTE_UNUSED,
924 asection *p ATTRIBUTE_UNUSED)
925 {
926 return TRUE;
927 }
928
929 /* Assign dynsym indices. In a shared library we generate a section
930 symbol for each output section, which come first. Next come symbols
931 which have been forced to local binding. Then all of the back-end
932 allocated local dynamic syms, followed by the rest of the global
933 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
934 (This prevents the early call before elf_backend_init_index_section
935 and strip_excluded_output_sections setting dynindx for sections
936 that are stripped.) */
937
938 static unsigned long
939 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
940 struct bfd_link_info *info,
941 unsigned long *section_sym_count)
942 {
943 unsigned long dynsymcount = 0;
944 bfd_boolean do_sec = section_sym_count != NULL;
945
946 if (bfd_link_pic (info)
947 || elf_hash_table (info)->is_relocatable_executable)
948 {
949 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
950 asection *p;
951 for (p = output_bfd->sections; p ; p = p->next)
952 if ((p->flags & SEC_EXCLUDE) == 0
953 && (p->flags & SEC_ALLOC) != 0
954 && elf_hash_table (info)->dynamic_relocs
955 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
956 {
957 ++dynsymcount;
958 if (do_sec)
959 elf_section_data (p)->dynindx = dynsymcount;
960 }
961 else if (do_sec)
962 elf_section_data (p)->dynindx = 0;
963 }
964 if (do_sec)
965 *section_sym_count = dynsymcount;
966
967 elf_link_hash_traverse (elf_hash_table (info),
968 elf_link_renumber_local_hash_table_dynsyms,
969 &dynsymcount);
970
971 if (elf_hash_table (info)->dynlocal)
972 {
973 struct elf_link_local_dynamic_entry *p;
974 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
975 p->dynindx = ++dynsymcount;
976 }
977 elf_hash_table (info)->local_dynsymcount = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_hash_table_dynsyms,
981 &dynsymcount);
982
983 /* There is an unused NULL entry at the head of the table which we
984 must account for in our count even if the table is empty since it
985 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
986 .dynamic section. */
987 dynsymcount++;
988
989 elf_hash_table (info)->dynsymcount = dynsymcount;
990 return dynsymcount;
991 }
992
993 /* Merge st_other field. */
994
995 static void
996 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
997 const Elf_Internal_Sym *isym, asection *sec,
998 bfd_boolean definition, bfd_boolean dynamic)
999 {
1000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1001
1002 /* If st_other has a processor-specific meaning, specific
1003 code might be needed here. */
1004 if (bed->elf_backend_merge_symbol_attribute)
1005 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1006 dynamic);
1007
1008 if (!dynamic)
1009 {
1010 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1011 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1012
1013 /* Keep the most constraining visibility. Leave the remainder
1014 of the st_other field to elf_backend_merge_symbol_attribute. */
1015 if (symvis - 1 < hvis - 1)
1016 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1017 }
1018 else if (definition
1019 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1020 && (sec->flags & SEC_READONLY) == 0)
1021 h->protected_def = 1;
1022 }
1023
1024 /* This function is called when we want to merge a new symbol with an
1025 existing symbol. It handles the various cases which arise when we
1026 find a definition in a dynamic object, or when there is already a
1027 definition in a dynamic object. The new symbol is described by
1028 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1029 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1030 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1031 of an old common symbol. We set OVERRIDE if the old symbol is
1032 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1033 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1034 to change. By OK to change, we mean that we shouldn't warn if the
1035 type or size does change. */
1036
1037 static bfd_boolean
1038 _bfd_elf_merge_symbol (bfd *abfd,
1039 struct bfd_link_info *info,
1040 const char *name,
1041 Elf_Internal_Sym *sym,
1042 asection **psec,
1043 bfd_vma *pvalue,
1044 struct elf_link_hash_entry **sym_hash,
1045 bfd **poldbfd,
1046 bfd_boolean *pold_weak,
1047 unsigned int *pold_alignment,
1048 bfd_boolean *skip,
1049 bfd_boolean *override,
1050 bfd_boolean *type_change_ok,
1051 bfd_boolean *size_change_ok,
1052 bfd_boolean *matched)
1053 {
1054 asection *sec, *oldsec;
1055 struct elf_link_hash_entry *h;
1056 struct elf_link_hash_entry *hi;
1057 struct elf_link_hash_entry *flip;
1058 int bind;
1059 bfd *oldbfd;
1060 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1061 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1062 const struct elf_backend_data *bed;
1063 char *new_version;
1064 bfd_boolean default_sym = *matched;
1065
1066 *skip = FALSE;
1067 *override = FALSE;
1068
1069 sec = *psec;
1070 bind = ELF_ST_BIND (sym->st_info);
1071
1072 if (! bfd_is_und_section (sec))
1073 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1074 else
1075 h = ((struct elf_link_hash_entry *)
1076 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1077 if (h == NULL)
1078 return FALSE;
1079 *sym_hash = h;
1080
1081 bed = get_elf_backend_data (abfd);
1082
1083 /* NEW_VERSION is the symbol version of the new symbol. */
1084 if (h->versioned != unversioned)
1085 {
1086 /* Symbol version is unknown or versioned. */
1087 new_version = strrchr (name, ELF_VER_CHR);
1088 if (new_version)
1089 {
1090 if (h->versioned == unknown)
1091 {
1092 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1093 h->versioned = versioned_hidden;
1094 else
1095 h->versioned = versioned;
1096 }
1097 new_version += 1;
1098 if (new_version[0] == '\0')
1099 new_version = NULL;
1100 }
1101 else
1102 h->versioned = unversioned;
1103 }
1104 else
1105 new_version = NULL;
1106
1107 /* For merging, we only care about real symbols. But we need to make
1108 sure that indirect symbol dynamic flags are updated. */
1109 hi = h;
1110 while (h->root.type == bfd_link_hash_indirect
1111 || h->root.type == bfd_link_hash_warning)
1112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1113
1114 if (!*matched)
1115 {
1116 if (hi == h || h->root.type == bfd_link_hash_new)
1117 *matched = TRUE;
1118 else
1119 {
1120 /* OLD_HIDDEN is true if the existing symbol is only visible
1121 to the symbol with the same symbol version. NEW_HIDDEN is
1122 true if the new symbol is only visible to the symbol with
1123 the same symbol version. */
1124 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1125 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1126 if (!old_hidden && !new_hidden)
1127 /* The new symbol matches the existing symbol if both
1128 aren't hidden. */
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_VERSION is the symbol version of the existing
1133 symbol. */
1134 char *old_version;
1135
1136 if (h->versioned >= versioned)
1137 old_version = strrchr (h->root.root.string,
1138 ELF_VER_CHR) + 1;
1139 else
1140 old_version = NULL;
1141
1142 /* The new symbol matches the existing symbol if they
1143 have the same symbol version. */
1144 *matched = (old_version == new_version
1145 || (old_version != NULL
1146 && new_version != NULL
1147 && strcmp (old_version, new_version) == 0));
1148 }
1149 }
1150 }
1151
1152 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1153 existing symbol. */
1154
1155 oldbfd = NULL;
1156 oldsec = NULL;
1157 switch (h->root.type)
1158 {
1159 default:
1160 break;
1161
1162 case bfd_link_hash_undefined:
1163 case bfd_link_hash_undefweak:
1164 oldbfd = h->root.u.undef.abfd;
1165 break;
1166
1167 case bfd_link_hash_defined:
1168 case bfd_link_hash_defweak:
1169 oldbfd = h->root.u.def.section->owner;
1170 oldsec = h->root.u.def.section;
1171 break;
1172
1173 case bfd_link_hash_common:
1174 oldbfd = h->root.u.c.p->section->owner;
1175 oldsec = h->root.u.c.p->section;
1176 if (pold_alignment)
1177 *pold_alignment = h->root.u.c.p->alignment_power;
1178 break;
1179 }
1180 if (poldbfd && *poldbfd == NULL)
1181 *poldbfd = oldbfd;
1182
1183 /* Differentiate strong and weak symbols. */
1184 newweak = bind == STB_WEAK;
1185 oldweak = (h->root.type == bfd_link_hash_defweak
1186 || h->root.type == bfd_link_hash_undefweak);
1187 if (pold_weak)
1188 *pold_weak = oldweak;
1189
1190 /* We have to check it for every instance since the first few may be
1191 references and not all compilers emit symbol type for undefined
1192 symbols. */
1193 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1194
1195 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1196 respectively, is from a dynamic object. */
1197
1198 newdyn = (abfd->flags & DYNAMIC) != 0;
1199
1200 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1201 syms and defined syms in dynamic libraries respectively.
1202 ref_dynamic on the other hand can be set for a symbol defined in
1203 a dynamic library, and def_dynamic may not be set; When the
1204 definition in a dynamic lib is overridden by a definition in the
1205 executable use of the symbol in the dynamic lib becomes a
1206 reference to the executable symbol. */
1207 if (newdyn)
1208 {
1209 if (bfd_is_und_section (sec))
1210 {
1211 if (bind != STB_WEAK)
1212 {
1213 h->ref_dynamic_nonweak = 1;
1214 hi->ref_dynamic_nonweak = 1;
1215 }
1216 }
1217 else
1218 {
1219 /* Update the existing symbol only if they match. */
1220 if (*matched)
1221 h->dynamic_def = 1;
1222 hi->dynamic_def = 1;
1223 }
1224 }
1225
1226 /* If we just created the symbol, mark it as being an ELF symbol.
1227 Other than that, there is nothing to do--there is no merge issue
1228 with a newly defined symbol--so we just return. */
1229
1230 if (h->root.type == bfd_link_hash_new)
1231 {
1232 h->non_elf = 0;
1233 return TRUE;
1234 }
1235
1236 /* In cases involving weak versioned symbols, we may wind up trying
1237 to merge a symbol with itself. Catch that here, to avoid the
1238 confusion that results if we try to override a symbol with
1239 itself. The additional tests catch cases like
1240 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1241 dynamic object, which we do want to handle here. */
1242 if (abfd == oldbfd
1243 && (newweak || oldweak)
1244 && ((abfd->flags & DYNAMIC) == 0
1245 || !h->def_regular))
1246 return TRUE;
1247
1248 olddyn = FALSE;
1249 if (oldbfd != NULL)
1250 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1251 else if (oldsec != NULL)
1252 {
1253 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1254 indices used by MIPS ELF. */
1255 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1256 }
1257
1258 /* Handle a case where plugin_notice won't be called and thus won't
1259 set the non_ir_ref flags on the first pass over symbols. */
1260 if (oldbfd != NULL
1261 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1262 && newdyn != olddyn)
1263 {
1264 h->root.non_ir_ref_dynamic = TRUE;
1265 hi->root.non_ir_ref_dynamic = TRUE;
1266 }
1267
1268 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1269 respectively, appear to be a definition rather than reference. */
1270
1271 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1272
1273 olddef = (h->root.type != bfd_link_hash_undefined
1274 && h->root.type != bfd_link_hash_undefweak
1275 && h->root.type != bfd_link_hash_common);
1276
1277 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1278 respectively, appear to be a function. */
1279
1280 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1281 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1282
1283 oldfunc = (h->type != STT_NOTYPE
1284 && bed->is_function_type (h->type));
1285
1286 if (!(newfunc && oldfunc)
1287 && ELF_ST_TYPE (sym->st_info) != h->type
1288 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1289 && h->type != STT_NOTYPE
1290 && (newdef || bfd_is_com_section (sec))
1291 && (olddef || h->root.type == bfd_link_hash_common))
1292 {
1293 /* If creating a default indirect symbol ("foo" or "foo@") from
1294 a dynamic versioned definition ("foo@@") skip doing so if
1295 there is an existing regular definition with a different
1296 type. We don't want, for example, a "time" variable in the
1297 executable overriding a "time" function in a shared library. */
1298 if (newdyn
1299 && !olddyn)
1300 {
1301 *skip = TRUE;
1302 return TRUE;
1303 }
1304
1305 /* When adding a symbol from a regular object file after we have
1306 created indirect symbols, undo the indirection and any
1307 dynamic state. */
1308 if (hi != h
1309 && !newdyn
1310 && olddyn)
1311 {
1312 h = hi;
1313 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1314 h->forced_local = 0;
1315 h->ref_dynamic = 0;
1316 h->def_dynamic = 0;
1317 h->dynamic_def = 0;
1318 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1319 {
1320 h->root.type = bfd_link_hash_undefined;
1321 h->root.u.undef.abfd = abfd;
1322 }
1323 else
1324 {
1325 h->root.type = bfd_link_hash_new;
1326 h->root.u.undef.abfd = NULL;
1327 }
1328 return TRUE;
1329 }
1330 }
1331
1332 /* Check TLS symbols. We don't check undefined symbols introduced
1333 by "ld -u" which have no type (and oldbfd NULL), and we don't
1334 check symbols from plugins because they also have no type. */
1335 if (oldbfd != NULL
1336 && (oldbfd->flags & BFD_PLUGIN) == 0
1337 && (abfd->flags & BFD_PLUGIN) == 0
1338 && ELF_ST_TYPE (sym->st_info) != h->type
1339 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1340 {
1341 bfd *ntbfd, *tbfd;
1342 bfd_boolean ntdef, tdef;
1343 asection *ntsec, *tsec;
1344
1345 if (h->type == STT_TLS)
1346 {
1347 ntbfd = abfd;
1348 ntsec = sec;
1349 ntdef = newdef;
1350 tbfd = oldbfd;
1351 tsec = oldsec;
1352 tdef = olddef;
1353 }
1354 else
1355 {
1356 ntbfd = oldbfd;
1357 ntsec = oldsec;
1358 ntdef = olddef;
1359 tbfd = abfd;
1360 tsec = sec;
1361 tdef = newdef;
1362 }
1363
1364 if (tdef && ntdef)
1365 _bfd_error_handler
1366 /* xgettext:c-format */
1367 (_("%s: TLS definition in %pB section %pA "
1368 "mismatches non-TLS definition in %pB section %pA"),
1369 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1370 else if (!tdef && !ntdef)
1371 _bfd_error_handler
1372 /* xgettext:c-format */
1373 (_("%s: TLS reference in %pB "
1374 "mismatches non-TLS reference in %pB"),
1375 h->root.root.string, tbfd, ntbfd);
1376 else if (tdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS reference in %pB"),
1381 h->root.root.string, tbfd, tsec, ntbfd);
1382 else
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS definition in %pB section %pA"),
1387 h->root.root.string, tbfd, ntbfd, ntsec);
1388
1389 bfd_set_error (bfd_error_bad_value);
1390 return FALSE;
1391 }
1392
1393 /* If the old symbol has non-default visibility, we ignore the new
1394 definition from a dynamic object. */
1395 if (newdyn
1396 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1397 && !bfd_is_und_section (sec))
1398 {
1399 *skip = TRUE;
1400 /* Make sure this symbol is dynamic. */
1401 h->ref_dynamic = 1;
1402 hi->ref_dynamic = 1;
1403 /* A protected symbol has external availability. Make sure it is
1404 recorded as dynamic.
1405
1406 FIXME: Should we check type and size for protected symbol? */
1407 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1408 return bfd_elf_link_record_dynamic_symbol (info, h);
1409 else
1410 return TRUE;
1411 }
1412 else if (!newdyn
1413 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1414 && h->def_dynamic)
1415 {
1416 /* If the new symbol with non-default visibility comes from a
1417 relocatable file and the old definition comes from a dynamic
1418 object, we remove the old definition. */
1419 if (hi->root.type == bfd_link_hash_indirect)
1420 {
1421 /* Handle the case where the old dynamic definition is
1422 default versioned. We need to copy the symbol info from
1423 the symbol with default version to the normal one if it
1424 was referenced before. */
1425 if (h->ref_regular)
1426 {
1427 hi->root.type = h->root.type;
1428 h->root.type = bfd_link_hash_indirect;
1429 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1430
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1433 {
1434 /* If the new symbol is hidden or internal, completely undo
1435 any dynamic link state. */
1436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1437 h->forced_local = 0;
1438 h->ref_dynamic = 0;
1439 }
1440 else
1441 h->ref_dynamic = 1;
1442
1443 h->def_dynamic = 0;
1444 /* FIXME: Should we check type and size for protected symbol? */
1445 h->size = 0;
1446 h->type = 0;
1447
1448 h = hi;
1449 }
1450 else
1451 h = hi;
1452 }
1453
1454 /* If the old symbol was undefined before, then it will still be
1455 on the undefs list. If the new symbol is undefined or
1456 common, we can't make it bfd_link_hash_new here, because new
1457 undefined or common symbols will be added to the undefs list
1458 by _bfd_generic_link_add_one_symbol. Symbols may not be
1459 added twice to the undefs list. Also, if the new symbol is
1460 undefweak then we don't want to lose the strong undef. */
1461 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1462 {
1463 h->root.type = bfd_link_hash_undefined;
1464 h->root.u.undef.abfd = abfd;
1465 }
1466 else
1467 {
1468 h->root.type = bfd_link_hash_new;
1469 h->root.u.undef.abfd = NULL;
1470 }
1471
1472 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1473 {
1474 /* If the new symbol is hidden or internal, completely undo
1475 any dynamic link state. */
1476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1477 h->forced_local = 0;
1478 h->ref_dynamic = 0;
1479 }
1480 else
1481 h->ref_dynamic = 1;
1482 h->def_dynamic = 0;
1483 /* FIXME: Should we check type and size for protected symbol? */
1484 h->size = 0;
1485 h->type = 0;
1486 return TRUE;
1487 }
1488
1489 /* If a new weak symbol definition comes from a regular file and the
1490 old symbol comes from a dynamic library, we treat the new one as
1491 strong. Similarly, an old weak symbol definition from a regular
1492 file is treated as strong when the new symbol comes from a dynamic
1493 library. Further, an old weak symbol from a dynamic library is
1494 treated as strong if the new symbol is from a dynamic library.
1495 This reflects the way glibc's ld.so works.
1496
1497 Also allow a weak symbol to override a linker script symbol
1498 defined by an early pass over the script. This is done so the
1499 linker knows the symbol is defined in an object file, for the
1500 DEFINED script function.
1501
1502 Do this before setting *type_change_ok or *size_change_ok so that
1503 we warn properly when dynamic library symbols are overridden. */
1504
1505 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1506 newweak = FALSE;
1507 if (olddef && newdyn)
1508 oldweak = FALSE;
1509
1510 /* Allow changes between different types of function symbol. */
1511 if (newfunc && oldfunc)
1512 *type_change_ok = TRUE;
1513
1514 /* It's OK to change the type if either the existing symbol or the
1515 new symbol is weak. A type change is also OK if the old symbol
1516 is undefined and the new symbol is defined. */
1517
1518 if (oldweak
1519 || newweak
1520 || (newdef
1521 && h->root.type == bfd_link_hash_undefined))
1522 *type_change_ok = TRUE;
1523
1524 /* It's OK to change the size if either the existing symbol or the
1525 new symbol is weak, or if the old symbol is undefined. */
1526
1527 if (*type_change_ok
1528 || h->root.type == bfd_link_hash_undefined)
1529 *size_change_ok = TRUE;
1530
1531 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1532 symbol, respectively, appears to be a common symbol in a dynamic
1533 object. If a symbol appears in an uninitialized section, and is
1534 not weak, and is not a function, then it may be a common symbol
1535 which was resolved when the dynamic object was created. We want
1536 to treat such symbols specially, because they raise special
1537 considerations when setting the symbol size: if the symbol
1538 appears as a common symbol in a regular object, and the size in
1539 the regular object is larger, we must make sure that we use the
1540 larger size. This problematic case can always be avoided in C,
1541 but it must be handled correctly when using Fortran shared
1542 libraries.
1543
1544 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1545 likewise for OLDDYNCOMMON and OLDDEF.
1546
1547 Note that this test is just a heuristic, and that it is quite
1548 possible to have an uninitialized symbol in a shared object which
1549 is really a definition, rather than a common symbol. This could
1550 lead to some minor confusion when the symbol really is a common
1551 symbol in some regular object. However, I think it will be
1552 harmless. */
1553
1554 if (newdyn
1555 && newdef
1556 && !newweak
1557 && (sec->flags & SEC_ALLOC) != 0
1558 && (sec->flags & SEC_LOAD) == 0
1559 && sym->st_size > 0
1560 && !newfunc)
1561 newdyncommon = TRUE;
1562 else
1563 newdyncommon = FALSE;
1564
1565 if (olddyn
1566 && olddef
1567 && h->root.type == bfd_link_hash_defined
1568 && h->def_dynamic
1569 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1570 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1571 && h->size > 0
1572 && !oldfunc)
1573 olddyncommon = TRUE;
1574 else
1575 olddyncommon = FALSE;
1576
1577 /* We now know everything about the old and new symbols. We ask the
1578 backend to check if we can merge them. */
1579 if (bed->merge_symbol != NULL)
1580 {
1581 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1582 return FALSE;
1583 sec = *psec;
1584 }
1585
1586 /* There are multiple definitions of a normal symbol. Skip the
1587 default symbol as well as definition from an IR object. */
1588 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1589 && !default_sym && h->def_regular
1590 && !(oldbfd != NULL
1591 && (oldbfd->flags & BFD_PLUGIN) != 0
1592 && (abfd->flags & BFD_PLUGIN) == 0))
1593 {
1594 /* Handle a multiple definition. */
1595 (*info->callbacks->multiple_definition) (info, &h->root,
1596 abfd, sec, *pvalue);
1597 *skip = TRUE;
1598 return TRUE;
1599 }
1600
1601 /* If both the old and the new symbols look like common symbols in a
1602 dynamic object, set the size of the symbol to the larger of the
1603 two. */
1604
1605 if (olddyncommon
1606 && newdyncommon
1607 && sym->st_size != h->size)
1608 {
1609 /* Since we think we have two common symbols, issue a multiple
1610 common warning if desired. Note that we only warn if the
1611 size is different. If the size is the same, we simply let
1612 the old symbol override the new one as normally happens with
1613 symbols defined in dynamic objects. */
1614
1615 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1616 bfd_link_hash_common, sym->st_size);
1617 if (sym->st_size > h->size)
1618 h->size = sym->st_size;
1619
1620 *size_change_ok = TRUE;
1621 }
1622
1623 /* If we are looking at a dynamic object, and we have found a
1624 definition, we need to see if the symbol was already defined by
1625 some other object. If so, we want to use the existing
1626 definition, and we do not want to report a multiple symbol
1627 definition error; we do this by clobbering *PSEC to be
1628 bfd_und_section_ptr.
1629
1630 We treat a common symbol as a definition if the symbol in the
1631 shared library is a function, since common symbols always
1632 represent variables; this can cause confusion in principle, but
1633 any such confusion would seem to indicate an erroneous program or
1634 shared library. We also permit a common symbol in a regular
1635 object to override a weak symbol in a shared object. */
1636
1637 if (newdyn
1638 && newdef
1639 && (olddef
1640 || (h->root.type == bfd_link_hash_common
1641 && (newweak || newfunc))))
1642 {
1643 *override = TRUE;
1644 newdef = FALSE;
1645 newdyncommon = FALSE;
1646
1647 *psec = sec = bfd_und_section_ptr;
1648 *size_change_ok = TRUE;
1649
1650 /* If we get here when the old symbol is a common symbol, then
1651 we are explicitly letting it override a weak symbol or
1652 function in a dynamic object, and we don't want to warn about
1653 a type change. If the old symbol is a defined symbol, a type
1654 change warning may still be appropriate. */
1655
1656 if (h->root.type == bfd_link_hash_common)
1657 *type_change_ok = TRUE;
1658 }
1659
1660 /* Handle the special case of an old common symbol merging with a
1661 new symbol which looks like a common symbol in a shared object.
1662 We change *PSEC and *PVALUE to make the new symbol look like a
1663 common symbol, and let _bfd_generic_link_add_one_symbol do the
1664 right thing. */
1665
1666 if (newdyncommon
1667 && h->root.type == bfd_link_hash_common)
1668 {
1669 *override = TRUE;
1670 newdef = FALSE;
1671 newdyncommon = FALSE;
1672 *pvalue = sym->st_size;
1673 *psec = sec = bed->common_section (oldsec);
1674 *size_change_ok = TRUE;
1675 }
1676
1677 /* Skip weak definitions of symbols that are already defined. */
1678 if (newdef && olddef && newweak)
1679 {
1680 /* Don't skip new non-IR weak syms. */
1681 if (!(oldbfd != NULL
1682 && (oldbfd->flags & BFD_PLUGIN) != 0
1683 && (abfd->flags & BFD_PLUGIN) == 0))
1684 {
1685 newdef = FALSE;
1686 *skip = TRUE;
1687 }
1688
1689 /* Merge st_other. If the symbol already has a dynamic index,
1690 but visibility says it should not be visible, turn it into a
1691 local symbol. */
1692 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1693 if (h->dynindx != -1)
1694 switch (ELF_ST_VISIBILITY (h->other))
1695 {
1696 case STV_INTERNAL:
1697 case STV_HIDDEN:
1698 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1699 break;
1700 }
1701 }
1702
1703 /* If the old symbol is from a dynamic object, and the new symbol is
1704 a definition which is not from a dynamic object, then the new
1705 symbol overrides the old symbol. Symbols from regular files
1706 always take precedence over symbols from dynamic objects, even if
1707 they are defined after the dynamic object in the link.
1708
1709 As above, we again permit a common symbol in a regular object to
1710 override a definition in a shared object if the shared object
1711 symbol is a function or is weak. */
1712
1713 flip = NULL;
1714 if (!newdyn
1715 && (newdef
1716 || (bfd_is_com_section (sec)
1717 && (oldweak || oldfunc)))
1718 && olddyn
1719 && olddef
1720 && h->def_dynamic)
1721 {
1722 /* Change the hash table entry to undefined, and let
1723 _bfd_generic_link_add_one_symbol do the right thing with the
1724 new definition. */
1725
1726 h->root.type = bfd_link_hash_undefined;
1727 h->root.u.undef.abfd = h->root.u.def.section->owner;
1728 *size_change_ok = TRUE;
1729
1730 olddef = FALSE;
1731 olddyncommon = FALSE;
1732
1733 /* We again permit a type change when a common symbol may be
1734 overriding a function. */
1735
1736 if (bfd_is_com_section (sec))
1737 {
1738 if (oldfunc)
1739 {
1740 /* If a common symbol overrides a function, make sure
1741 that it isn't defined dynamically nor has type
1742 function. */
1743 h->def_dynamic = 0;
1744 h->type = STT_NOTYPE;
1745 }
1746 *type_change_ok = TRUE;
1747 }
1748
1749 if (hi->root.type == bfd_link_hash_indirect)
1750 flip = hi;
1751 else
1752 /* This union may have been set to be non-NULL when this symbol
1753 was seen in a dynamic object. We must force the union to be
1754 NULL, so that it is correct for a regular symbol. */
1755 h->verinfo.vertree = NULL;
1756 }
1757
1758 /* Handle the special case of a new common symbol merging with an
1759 old symbol that looks like it might be a common symbol defined in
1760 a shared object. Note that we have already handled the case in
1761 which a new common symbol should simply override the definition
1762 in the shared library. */
1763
1764 if (! newdyn
1765 && bfd_is_com_section (sec)
1766 && olddyncommon)
1767 {
1768 /* It would be best if we could set the hash table entry to a
1769 common symbol, but we don't know what to use for the section
1770 or the alignment. */
1771 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1772 bfd_link_hash_common, sym->st_size);
1773
1774 /* If the presumed common symbol in the dynamic object is
1775 larger, pretend that the new symbol has its size. */
1776
1777 if (h->size > *pvalue)
1778 *pvalue = h->size;
1779
1780 /* We need to remember the alignment required by the symbol
1781 in the dynamic object. */
1782 BFD_ASSERT (pold_alignment);
1783 *pold_alignment = h->root.u.def.section->alignment_power;
1784
1785 olddef = FALSE;
1786 olddyncommon = FALSE;
1787
1788 h->root.type = bfd_link_hash_undefined;
1789 h->root.u.undef.abfd = h->root.u.def.section->owner;
1790
1791 *size_change_ok = TRUE;
1792 *type_change_ok = TRUE;
1793
1794 if (hi->root.type == bfd_link_hash_indirect)
1795 flip = hi;
1796 else
1797 h->verinfo.vertree = NULL;
1798 }
1799
1800 if (flip != NULL)
1801 {
1802 /* Handle the case where we had a versioned symbol in a dynamic
1803 library and now find a definition in a normal object. In this
1804 case, we make the versioned symbol point to the normal one. */
1805 flip->root.type = h->root.type;
1806 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1807 h->root.type = bfd_link_hash_indirect;
1808 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1809 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1810 if (h->def_dynamic)
1811 {
1812 h->def_dynamic = 0;
1813 flip->ref_dynamic = 1;
1814 }
1815 }
1816
1817 return TRUE;
1818 }
1819
1820 /* This function is called to create an indirect symbol from the
1821 default for the symbol with the default version if needed. The
1822 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1823 set DYNSYM if the new indirect symbol is dynamic. */
1824
1825 static bfd_boolean
1826 _bfd_elf_add_default_symbol (bfd *abfd,
1827 struct bfd_link_info *info,
1828 struct elf_link_hash_entry *h,
1829 const char *name,
1830 Elf_Internal_Sym *sym,
1831 asection *sec,
1832 bfd_vma value,
1833 bfd **poldbfd,
1834 bfd_boolean *dynsym)
1835 {
1836 bfd_boolean type_change_ok;
1837 bfd_boolean size_change_ok;
1838 bfd_boolean skip;
1839 char *shortname;
1840 struct elf_link_hash_entry *hi;
1841 struct bfd_link_hash_entry *bh;
1842 const struct elf_backend_data *bed;
1843 bfd_boolean collect;
1844 bfd_boolean dynamic;
1845 bfd_boolean override;
1846 char *p;
1847 size_t len, shortlen;
1848 asection *tmp_sec;
1849 bfd_boolean matched;
1850
1851 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1852 return TRUE;
1853
1854 /* If this symbol has a version, and it is the default version, we
1855 create an indirect symbol from the default name to the fully
1856 decorated name. This will cause external references which do not
1857 specify a version to be bound to this version of the symbol. */
1858 p = strchr (name, ELF_VER_CHR);
1859 if (h->versioned == unknown)
1860 {
1861 if (p == NULL)
1862 {
1863 h->versioned = unversioned;
1864 return TRUE;
1865 }
1866 else
1867 {
1868 if (p[1] != ELF_VER_CHR)
1869 {
1870 h->versioned = versioned_hidden;
1871 return TRUE;
1872 }
1873 else
1874 h->versioned = versioned;
1875 }
1876 }
1877 else
1878 {
1879 /* PR ld/19073: We may see an unversioned definition after the
1880 default version. */
1881 if (p == NULL)
1882 return TRUE;
1883 }
1884
1885 bed = get_elf_backend_data (abfd);
1886 collect = bed->collect;
1887 dynamic = (abfd->flags & DYNAMIC) != 0;
1888
1889 shortlen = p - name;
1890 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1891 if (shortname == NULL)
1892 return FALSE;
1893 memcpy (shortname, name, shortlen);
1894 shortname[shortlen] = '\0';
1895
1896 /* We are going to create a new symbol. Merge it with any existing
1897 symbol with this name. For the purposes of the merge, act as
1898 though we were defining the symbol we just defined, although we
1899 actually going to define an indirect symbol. */
1900 type_change_ok = FALSE;
1901 size_change_ok = FALSE;
1902 matched = TRUE;
1903 tmp_sec = sec;
1904 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1905 &hi, poldbfd, NULL, NULL, &skip, &override,
1906 &type_change_ok, &size_change_ok, &matched))
1907 return FALSE;
1908
1909 if (skip)
1910 goto nondefault;
1911
1912 if (hi->def_regular)
1913 {
1914 /* If the undecorated symbol will have a version added by a
1915 script different to H, then don't indirect to/from the
1916 undecorated symbol. This isn't ideal because we may not yet
1917 have seen symbol versions, if given by a script on the
1918 command line rather than via --version-script. */
1919 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1920 {
1921 bfd_boolean hide;
1922
1923 hi->verinfo.vertree
1924 = bfd_find_version_for_sym (info->version_info,
1925 hi->root.root.string, &hide);
1926 if (hi->verinfo.vertree != NULL && hide)
1927 {
1928 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1929 goto nondefault;
1930 }
1931 }
1932 if (hi->verinfo.vertree != NULL
1933 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1934 goto nondefault;
1935 }
1936
1937 if (! override)
1938 {
1939 /* Add the default symbol if not performing a relocatable link. */
1940 if (! bfd_link_relocatable (info))
1941 {
1942 bh = &hi->root;
1943 if (! (_bfd_generic_link_add_one_symbol
1944 (info, abfd, shortname, BSF_INDIRECT,
1945 bfd_ind_section_ptr,
1946 0, name, FALSE, collect, &bh)))
1947 return FALSE;
1948 hi = (struct elf_link_hash_entry *) bh;
1949 }
1950 }
1951 else
1952 {
1953 /* In this case the symbol named SHORTNAME is overriding the
1954 indirect symbol we want to add. We were planning on making
1955 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1956 is the name without a version. NAME is the fully versioned
1957 name, and it is the default version.
1958
1959 Overriding means that we already saw a definition for the
1960 symbol SHORTNAME in a regular object, and it is overriding
1961 the symbol defined in the dynamic object.
1962
1963 When this happens, we actually want to change NAME, the
1964 symbol we just added, to refer to SHORTNAME. This will cause
1965 references to NAME in the shared object to become references
1966 to SHORTNAME in the regular object. This is what we expect
1967 when we override a function in a shared object: that the
1968 references in the shared object will be mapped to the
1969 definition in the regular object. */
1970
1971 while (hi->root.type == bfd_link_hash_indirect
1972 || hi->root.type == bfd_link_hash_warning)
1973 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1974
1975 h->root.type = bfd_link_hash_indirect;
1976 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1977 if (h->def_dynamic)
1978 {
1979 h->def_dynamic = 0;
1980 hi->ref_dynamic = 1;
1981 if (hi->ref_regular
1982 || hi->def_regular)
1983 {
1984 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1985 return FALSE;
1986 }
1987 }
1988
1989 /* Now set HI to H, so that the following code will set the
1990 other fields correctly. */
1991 hi = h;
1992 }
1993
1994 /* Check if HI is a warning symbol. */
1995 if (hi->root.type == bfd_link_hash_warning)
1996 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1997
1998 /* If there is a duplicate definition somewhere, then HI may not
1999 point to an indirect symbol. We will have reported an error to
2000 the user in that case. */
2001
2002 if (hi->root.type == bfd_link_hash_indirect)
2003 {
2004 struct elf_link_hash_entry *ht;
2005
2006 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2007 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2008
2009 /* A reference to the SHORTNAME symbol from a dynamic library
2010 will be satisfied by the versioned symbol at runtime. In
2011 effect, we have a reference to the versioned symbol. */
2012 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2013 hi->dynamic_def |= ht->dynamic_def;
2014
2015 /* See if the new flags lead us to realize that the symbol must
2016 be dynamic. */
2017 if (! *dynsym)
2018 {
2019 if (! dynamic)
2020 {
2021 if (! bfd_link_executable (info)
2022 || hi->def_dynamic
2023 || hi->ref_dynamic)
2024 *dynsym = TRUE;
2025 }
2026 else
2027 {
2028 if (hi->ref_regular)
2029 *dynsym = TRUE;
2030 }
2031 }
2032 }
2033
2034 /* We also need to define an indirection from the nondefault version
2035 of the symbol. */
2036
2037 nondefault:
2038 len = strlen (name);
2039 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2040 if (shortname == NULL)
2041 return FALSE;
2042 memcpy (shortname, name, shortlen);
2043 memcpy (shortname + shortlen, p + 1, len - shortlen);
2044
2045 /* Once again, merge with any existing symbol. */
2046 type_change_ok = FALSE;
2047 size_change_ok = FALSE;
2048 tmp_sec = sec;
2049 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2050 &hi, poldbfd, NULL, NULL, &skip, &override,
2051 &type_change_ok, &size_change_ok, &matched))
2052 return FALSE;
2053
2054 if (skip)
2055 return TRUE;
2056
2057 if (override)
2058 {
2059 /* Here SHORTNAME is a versioned name, so we don't expect to see
2060 the type of override we do in the case above unless it is
2061 overridden by a versioned definition. */
2062 if (hi->root.type != bfd_link_hash_defined
2063 && hi->root.type != bfd_link_hash_defweak)
2064 _bfd_error_handler
2065 /* xgettext:c-format */
2066 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2067 abfd, shortname);
2068 }
2069 else
2070 {
2071 bh = &hi->root;
2072 if (! (_bfd_generic_link_add_one_symbol
2073 (info, abfd, shortname, BSF_INDIRECT,
2074 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2075 return FALSE;
2076 hi = (struct elf_link_hash_entry *) bh;
2077
2078 /* If there is a duplicate definition somewhere, then HI may not
2079 point to an indirect symbol. We will have reported an error
2080 to the user in that case. */
2081
2082 if (hi->root.type == bfd_link_hash_indirect)
2083 {
2084 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2085 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2086 hi->dynamic_def |= h->dynamic_def;
2087
2088 /* See if the new flags lead us to realize that the symbol
2089 must be dynamic. */
2090 if (! *dynsym)
2091 {
2092 if (! dynamic)
2093 {
2094 if (! bfd_link_executable (info)
2095 || hi->ref_dynamic)
2096 *dynsym = TRUE;
2097 }
2098 else
2099 {
2100 if (hi->ref_regular)
2101 *dynsym = TRUE;
2102 }
2103 }
2104 }
2105 }
2106
2107 return TRUE;
2108 }
2109 \f
2110 /* This routine is used to export all defined symbols into the dynamic
2111 symbol table. It is called via elf_link_hash_traverse. */
2112
2113 static bfd_boolean
2114 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2115 {
2116 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2117
2118 /* Ignore indirect symbols. These are added by the versioning code. */
2119 if (h->root.type == bfd_link_hash_indirect)
2120 return TRUE;
2121
2122 /* Ignore this if we won't export it. */
2123 if (!eif->info->export_dynamic && !h->dynamic)
2124 return TRUE;
2125
2126 if (h->dynindx == -1
2127 && (h->def_regular || h->ref_regular)
2128 && ! bfd_hide_sym_by_version (eif->info->version_info,
2129 h->root.root.string))
2130 {
2131 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2132 {
2133 eif->failed = TRUE;
2134 return FALSE;
2135 }
2136 }
2137
2138 return TRUE;
2139 }
2140 \f
2141 /* Look through the symbols which are defined in other shared
2142 libraries and referenced here. Update the list of version
2143 dependencies. This will be put into the .gnu.version_r section.
2144 This function is called via elf_link_hash_traverse. */
2145
2146 static bfd_boolean
2147 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2148 void *data)
2149 {
2150 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2151 Elf_Internal_Verneed *t;
2152 Elf_Internal_Vernaux *a;
2153 bfd_size_type amt;
2154
2155 /* We only care about symbols defined in shared objects with version
2156 information. */
2157 if (!h->def_dynamic
2158 || h->def_regular
2159 || h->dynindx == -1
2160 || h->verinfo.verdef == NULL
2161 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2162 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2163 return TRUE;
2164
2165 /* See if we already know about this version. */
2166 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2167 t != NULL;
2168 t = t->vn_nextref)
2169 {
2170 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2171 continue;
2172
2173 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2174 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2175 return TRUE;
2176
2177 break;
2178 }
2179
2180 /* This is a new version. Add it to tree we are building. */
2181
2182 if (t == NULL)
2183 {
2184 amt = sizeof *t;
2185 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2186 if (t == NULL)
2187 {
2188 rinfo->failed = TRUE;
2189 return FALSE;
2190 }
2191
2192 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2193 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2194 elf_tdata (rinfo->info->output_bfd)->verref = t;
2195 }
2196
2197 amt = sizeof *a;
2198 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2199 if (a == NULL)
2200 {
2201 rinfo->failed = TRUE;
2202 return FALSE;
2203 }
2204
2205 /* Note that we are copying a string pointer here, and testing it
2206 above. If bfd_elf_string_from_elf_section is ever changed to
2207 discard the string data when low in memory, this will have to be
2208 fixed. */
2209 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2210
2211 a->vna_flags = h->verinfo.verdef->vd_flags;
2212 a->vna_nextptr = t->vn_auxptr;
2213
2214 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2215 ++rinfo->vers;
2216
2217 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2218
2219 t->vn_auxptr = a;
2220
2221 return TRUE;
2222 }
2223
2224 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2225 hidden. Set *T_P to NULL if there is no match. */
2226
2227 static bfd_boolean
2228 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2229 struct elf_link_hash_entry *h,
2230 const char *version_p,
2231 struct bfd_elf_version_tree **t_p,
2232 bfd_boolean *hide)
2233 {
2234 struct bfd_elf_version_tree *t;
2235
2236 /* Look for the version. If we find it, it is no longer weak. */
2237 for (t = info->version_info; t != NULL; t = t->next)
2238 {
2239 if (strcmp (t->name, version_p) == 0)
2240 {
2241 size_t len;
2242 char *alc;
2243 struct bfd_elf_version_expr *d;
2244
2245 len = version_p - h->root.root.string;
2246 alc = (char *) bfd_malloc (len);
2247 if (alc == NULL)
2248 return FALSE;
2249 memcpy (alc, h->root.root.string, len - 1);
2250 alc[len - 1] = '\0';
2251 if (alc[len - 2] == ELF_VER_CHR)
2252 alc[len - 2] = '\0';
2253
2254 h->verinfo.vertree = t;
2255 t->used = TRUE;
2256 d = NULL;
2257
2258 if (t->globals.list != NULL)
2259 d = (*t->match) (&t->globals, NULL, alc);
2260
2261 /* See if there is anything to force this symbol to
2262 local scope. */
2263 if (d == NULL && t->locals.list != NULL)
2264 {
2265 d = (*t->match) (&t->locals, NULL, alc);
2266 if (d != NULL
2267 && h->dynindx != -1
2268 && ! info->export_dynamic)
2269 *hide = TRUE;
2270 }
2271
2272 free (alc);
2273 break;
2274 }
2275 }
2276
2277 *t_p = t;
2278
2279 return TRUE;
2280 }
2281
2282 /* Return TRUE if the symbol H is hidden by version script. */
2283
2284 bfd_boolean
2285 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2286 struct elf_link_hash_entry *h)
2287 {
2288 const char *p;
2289 bfd_boolean hide = FALSE;
2290 const struct elf_backend_data *bed
2291 = get_elf_backend_data (info->output_bfd);
2292
2293 /* Version script only hides symbols defined in regular objects. */
2294 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2295 return TRUE;
2296
2297 p = strchr (h->root.root.string, ELF_VER_CHR);
2298 if (p != NULL && h->verinfo.vertree == NULL)
2299 {
2300 struct bfd_elf_version_tree *t;
2301
2302 ++p;
2303 if (*p == ELF_VER_CHR)
2304 ++p;
2305
2306 if (*p != '\0'
2307 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2308 && hide)
2309 {
2310 if (hide)
2311 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2312 return TRUE;
2313 }
2314 }
2315
2316 /* If we don't have a version for this symbol, see if we can find
2317 something. */
2318 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2319 {
2320 h->verinfo.vertree
2321 = bfd_find_version_for_sym (info->version_info,
2322 h->root.root.string, &hide);
2323 if (h->verinfo.vertree != NULL && hide)
2324 {
2325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2326 return TRUE;
2327 }
2328 }
2329
2330 return FALSE;
2331 }
2332
2333 /* Figure out appropriate versions for all the symbols. We may not
2334 have the version number script until we have read all of the input
2335 files, so until that point we don't know which symbols should be
2336 local. This function is called via elf_link_hash_traverse. */
2337
2338 static bfd_boolean
2339 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2340 {
2341 struct elf_info_failed *sinfo;
2342 struct bfd_link_info *info;
2343 const struct elf_backend_data *bed;
2344 struct elf_info_failed eif;
2345 char *p;
2346 bfd_boolean hide;
2347
2348 sinfo = (struct elf_info_failed *) data;
2349 info = sinfo->info;
2350
2351 /* Fix the symbol flags. */
2352 eif.failed = FALSE;
2353 eif.info = info;
2354 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2355 {
2356 if (eif.failed)
2357 sinfo->failed = TRUE;
2358 return FALSE;
2359 }
2360
2361 /* We only need version numbers for symbols defined in regular
2362 objects. */
2363 if (!h->def_regular)
2364 return TRUE;
2365
2366 hide = FALSE;
2367 bed = get_elf_backend_data (info->output_bfd);
2368 p = strchr (h->root.root.string, ELF_VER_CHR);
2369 if (p != NULL && h->verinfo.vertree == NULL)
2370 {
2371 struct bfd_elf_version_tree *t;
2372
2373 ++p;
2374 if (*p == ELF_VER_CHR)
2375 ++p;
2376
2377 /* If there is no version string, we can just return out. */
2378 if (*p == '\0')
2379 return TRUE;
2380
2381 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2382 {
2383 sinfo->failed = TRUE;
2384 return FALSE;
2385 }
2386
2387 if (hide)
2388 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2389
2390 /* If we are building an application, we need to create a
2391 version node for this version. */
2392 if (t == NULL && bfd_link_executable (info))
2393 {
2394 struct bfd_elf_version_tree **pp;
2395 int version_index;
2396
2397 /* If we aren't going to export this symbol, we don't need
2398 to worry about it. */
2399 if (h->dynindx == -1)
2400 return TRUE;
2401
2402 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2403 sizeof *t);
2404 if (t == NULL)
2405 {
2406 sinfo->failed = TRUE;
2407 return FALSE;
2408 }
2409
2410 t->name = p;
2411 t->name_indx = (unsigned int) -1;
2412 t->used = TRUE;
2413
2414 version_index = 1;
2415 /* Don't count anonymous version tag. */
2416 if (sinfo->info->version_info != NULL
2417 && sinfo->info->version_info->vernum == 0)
2418 version_index = 0;
2419 for (pp = &sinfo->info->version_info;
2420 *pp != NULL;
2421 pp = &(*pp)->next)
2422 ++version_index;
2423 t->vernum = version_index;
2424
2425 *pp = t;
2426
2427 h->verinfo.vertree = t;
2428 }
2429 else if (t == NULL)
2430 {
2431 /* We could not find the version for a symbol when
2432 generating a shared archive. Return an error. */
2433 _bfd_error_handler
2434 /* xgettext:c-format */
2435 (_("%pB: version node not found for symbol %s"),
2436 info->output_bfd, h->root.root.string);
2437 bfd_set_error (bfd_error_bad_value);
2438 sinfo->failed = TRUE;
2439 return FALSE;
2440 }
2441 }
2442
2443 /* If we don't have a version for this symbol, see if we can find
2444 something. */
2445 if (!hide
2446 && h->verinfo.vertree == NULL
2447 && sinfo->info->version_info != NULL)
2448 {
2449 h->verinfo.vertree
2450 = bfd_find_version_for_sym (sinfo->info->version_info,
2451 h->root.root.string, &hide);
2452 if (h->verinfo.vertree != NULL && hide)
2453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2454 }
2455
2456 return TRUE;
2457 }
2458 \f
2459 /* Read and swap the relocs from the section indicated by SHDR. This
2460 may be either a REL or a RELA section. The relocations are
2461 translated into RELA relocations and stored in INTERNAL_RELOCS,
2462 which should have already been allocated to contain enough space.
2463 The EXTERNAL_RELOCS are a buffer where the external form of the
2464 relocations should be stored.
2465
2466 Returns FALSE if something goes wrong. */
2467
2468 static bfd_boolean
2469 elf_link_read_relocs_from_section (bfd *abfd,
2470 asection *sec,
2471 Elf_Internal_Shdr *shdr,
2472 void *external_relocs,
2473 Elf_Internal_Rela *internal_relocs)
2474 {
2475 const struct elf_backend_data *bed;
2476 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2477 const bfd_byte *erela;
2478 const bfd_byte *erelaend;
2479 Elf_Internal_Rela *irela;
2480 Elf_Internal_Shdr *symtab_hdr;
2481 size_t nsyms;
2482
2483 /* Position ourselves at the start of the section. */
2484 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2485 return FALSE;
2486
2487 /* Read the relocations. */
2488 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2489 return FALSE;
2490
2491 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2492 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2493
2494 bed = get_elf_backend_data (abfd);
2495
2496 /* Convert the external relocations to the internal format. */
2497 if (shdr->sh_entsize == bed->s->sizeof_rel)
2498 swap_in = bed->s->swap_reloc_in;
2499 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2500 swap_in = bed->s->swap_reloca_in;
2501 else
2502 {
2503 bfd_set_error (bfd_error_wrong_format);
2504 return FALSE;
2505 }
2506
2507 erela = (const bfd_byte *) external_relocs;
2508 erelaend = erela + shdr->sh_size;
2509 irela = internal_relocs;
2510 while (erela < erelaend)
2511 {
2512 bfd_vma r_symndx;
2513
2514 (*swap_in) (abfd, erela, irela);
2515 r_symndx = ELF32_R_SYM (irela->r_info);
2516 if (bed->s->arch_size == 64)
2517 r_symndx >>= 24;
2518 if (nsyms > 0)
2519 {
2520 if ((size_t) r_symndx >= nsyms)
2521 {
2522 _bfd_error_handler
2523 /* xgettext:c-format */
2524 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2525 " for offset %#" PRIx64 " in section `%pA'"),
2526 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2527 (uint64_t) irela->r_offset, sec);
2528 bfd_set_error (bfd_error_bad_value);
2529 return FALSE;
2530 }
2531 }
2532 else if (r_symndx != STN_UNDEF)
2533 {
2534 _bfd_error_handler
2535 /* xgettext:c-format */
2536 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2537 " for offset %#" PRIx64 " in section `%pA'"
2538 " when the object file has no symbol table"),
2539 abfd, (uint64_t) r_symndx,
2540 (uint64_t) irela->r_offset, sec);
2541 bfd_set_error (bfd_error_bad_value);
2542 return FALSE;
2543 }
2544 irela += bed->s->int_rels_per_ext_rel;
2545 erela += shdr->sh_entsize;
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Read and swap the relocs for a section O. They may have been
2552 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2553 not NULL, they are used as buffers to read into. They are known to
2554 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2555 the return value is allocated using either malloc or bfd_alloc,
2556 according to the KEEP_MEMORY argument. If O has two relocation
2557 sections (both REL and RELA relocations), then the REL_HDR
2558 relocations will appear first in INTERNAL_RELOCS, followed by the
2559 RELA_HDR relocations. */
2560
2561 Elf_Internal_Rela *
2562 _bfd_elf_link_read_relocs (bfd *abfd,
2563 asection *o,
2564 void *external_relocs,
2565 Elf_Internal_Rela *internal_relocs,
2566 bfd_boolean keep_memory)
2567 {
2568 void *alloc1 = NULL;
2569 Elf_Internal_Rela *alloc2 = NULL;
2570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2571 struct bfd_elf_section_data *esdo = elf_section_data (o);
2572 Elf_Internal_Rela *internal_rela_relocs;
2573
2574 if (esdo->relocs != NULL)
2575 return esdo->relocs;
2576
2577 if (o->reloc_count == 0)
2578 return NULL;
2579
2580 if (internal_relocs == NULL)
2581 {
2582 bfd_size_type size;
2583
2584 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2585 if (keep_memory)
2586 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2587 else
2588 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2589 if (internal_relocs == NULL)
2590 goto error_return;
2591 }
2592
2593 if (external_relocs == NULL)
2594 {
2595 bfd_size_type size = 0;
2596
2597 if (esdo->rel.hdr)
2598 size += esdo->rel.hdr->sh_size;
2599 if (esdo->rela.hdr)
2600 size += esdo->rela.hdr->sh_size;
2601
2602 alloc1 = bfd_malloc (size);
2603 if (alloc1 == NULL)
2604 goto error_return;
2605 external_relocs = alloc1;
2606 }
2607
2608 internal_rela_relocs = internal_relocs;
2609 if (esdo->rel.hdr)
2610 {
2611 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2612 external_relocs,
2613 internal_relocs))
2614 goto error_return;
2615 external_relocs = (((bfd_byte *) external_relocs)
2616 + esdo->rel.hdr->sh_size);
2617 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2618 * bed->s->int_rels_per_ext_rel);
2619 }
2620
2621 if (esdo->rela.hdr
2622 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2623 external_relocs,
2624 internal_rela_relocs)))
2625 goto error_return;
2626
2627 /* Cache the results for next time, if we can. */
2628 if (keep_memory)
2629 esdo->relocs = internal_relocs;
2630
2631 if (alloc1 != NULL)
2632 free (alloc1);
2633
2634 /* Don't free alloc2, since if it was allocated we are passing it
2635 back (under the name of internal_relocs). */
2636
2637 return internal_relocs;
2638
2639 error_return:
2640 if (alloc1 != NULL)
2641 free (alloc1);
2642 if (alloc2 != NULL)
2643 {
2644 if (keep_memory)
2645 bfd_release (abfd, alloc2);
2646 else
2647 free (alloc2);
2648 }
2649 return NULL;
2650 }
2651
2652 /* Compute the size of, and allocate space for, REL_HDR which is the
2653 section header for a section containing relocations for O. */
2654
2655 static bfd_boolean
2656 _bfd_elf_link_size_reloc_section (bfd *abfd,
2657 struct bfd_elf_section_reloc_data *reldata)
2658 {
2659 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2660
2661 /* That allows us to calculate the size of the section. */
2662 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2663
2664 /* The contents field must last into write_object_contents, so we
2665 allocate it with bfd_alloc rather than malloc. Also since we
2666 cannot be sure that the contents will actually be filled in,
2667 we zero the allocated space. */
2668 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2669 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2670 return FALSE;
2671
2672 if (reldata->hashes == NULL && reldata->count)
2673 {
2674 struct elf_link_hash_entry **p;
2675
2676 p = ((struct elf_link_hash_entry **)
2677 bfd_zmalloc (reldata->count * sizeof (*p)));
2678 if (p == NULL)
2679 return FALSE;
2680
2681 reldata->hashes = p;
2682 }
2683
2684 return TRUE;
2685 }
2686
2687 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2688 originated from the section given by INPUT_REL_HDR) to the
2689 OUTPUT_BFD. */
2690
2691 bfd_boolean
2692 _bfd_elf_link_output_relocs (bfd *output_bfd,
2693 asection *input_section,
2694 Elf_Internal_Shdr *input_rel_hdr,
2695 Elf_Internal_Rela *internal_relocs,
2696 struct elf_link_hash_entry **rel_hash
2697 ATTRIBUTE_UNUSED)
2698 {
2699 Elf_Internal_Rela *irela;
2700 Elf_Internal_Rela *irelaend;
2701 bfd_byte *erel;
2702 struct bfd_elf_section_reloc_data *output_reldata;
2703 asection *output_section;
2704 const struct elf_backend_data *bed;
2705 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2706 struct bfd_elf_section_data *esdo;
2707
2708 output_section = input_section->output_section;
2709
2710 bed = get_elf_backend_data (output_bfd);
2711 esdo = elf_section_data (output_section);
2712 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2713 {
2714 output_reldata = &esdo->rel;
2715 swap_out = bed->s->swap_reloc_out;
2716 }
2717 else if (esdo->rela.hdr
2718 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2719 {
2720 output_reldata = &esdo->rela;
2721 swap_out = bed->s->swap_reloca_out;
2722 }
2723 else
2724 {
2725 _bfd_error_handler
2726 /* xgettext:c-format */
2727 (_("%pB: relocation size mismatch in %pB section %pA"),
2728 output_bfd, input_section->owner, input_section);
2729 bfd_set_error (bfd_error_wrong_format);
2730 return FALSE;
2731 }
2732
2733 erel = output_reldata->hdr->contents;
2734 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2735 irela = internal_relocs;
2736 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2737 * bed->s->int_rels_per_ext_rel);
2738 while (irela < irelaend)
2739 {
2740 (*swap_out) (output_bfd, irela, erel);
2741 irela += bed->s->int_rels_per_ext_rel;
2742 erel += input_rel_hdr->sh_entsize;
2743 }
2744
2745 /* Bump the counter, so that we know where to add the next set of
2746 relocations. */
2747 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2748
2749 return TRUE;
2750 }
2751 \f
2752 /* Make weak undefined symbols in PIE dynamic. */
2753
2754 bfd_boolean
2755 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2756 struct elf_link_hash_entry *h)
2757 {
2758 if (bfd_link_pie (info)
2759 && h->dynindx == -1
2760 && h->root.type == bfd_link_hash_undefweak)
2761 return bfd_elf_link_record_dynamic_symbol (info, h);
2762
2763 return TRUE;
2764 }
2765
2766 /* Fix up the flags for a symbol. This handles various cases which
2767 can only be fixed after all the input files are seen. This is
2768 currently called by both adjust_dynamic_symbol and
2769 assign_sym_version, which is unnecessary but perhaps more robust in
2770 the face of future changes. */
2771
2772 static bfd_boolean
2773 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2774 struct elf_info_failed *eif)
2775 {
2776 const struct elf_backend_data *bed;
2777
2778 /* If this symbol was mentioned in a non-ELF file, try to set
2779 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2780 permit a non-ELF file to correctly refer to a symbol defined in
2781 an ELF dynamic object. */
2782 if (h->non_elf)
2783 {
2784 while (h->root.type == bfd_link_hash_indirect)
2785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2786
2787 if (h->root.type != bfd_link_hash_defined
2788 && h->root.type != bfd_link_hash_defweak)
2789 {
2790 h->ref_regular = 1;
2791 h->ref_regular_nonweak = 1;
2792 }
2793 else
2794 {
2795 if (h->root.u.def.section->owner != NULL
2796 && (bfd_get_flavour (h->root.u.def.section->owner)
2797 == bfd_target_elf_flavour))
2798 {
2799 h->ref_regular = 1;
2800 h->ref_regular_nonweak = 1;
2801 }
2802 else
2803 h->def_regular = 1;
2804 }
2805
2806 if (h->dynindx == -1
2807 && (h->def_dynamic
2808 || h->ref_dynamic))
2809 {
2810 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2811 {
2812 eif->failed = TRUE;
2813 return FALSE;
2814 }
2815 }
2816 }
2817 else
2818 {
2819 /* Unfortunately, NON_ELF is only correct if the symbol
2820 was first seen in a non-ELF file. Fortunately, if the symbol
2821 was first seen in an ELF file, we're probably OK unless the
2822 symbol was defined in a non-ELF file. Catch that case here.
2823 FIXME: We're still in trouble if the symbol was first seen in
2824 a dynamic object, and then later in a non-ELF regular object. */
2825 if ((h->root.type == bfd_link_hash_defined
2826 || h->root.type == bfd_link_hash_defweak)
2827 && !h->def_regular
2828 && (h->root.u.def.section->owner != NULL
2829 ? (bfd_get_flavour (h->root.u.def.section->owner)
2830 != bfd_target_elf_flavour)
2831 : (bfd_is_abs_section (h->root.u.def.section)
2832 && !h->def_dynamic)))
2833 h->def_regular = 1;
2834 }
2835
2836 /* Backend specific symbol fixup. */
2837 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2838 if (bed->elf_backend_fixup_symbol
2839 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2840 return FALSE;
2841
2842 /* If this is a final link, and the symbol was defined as a common
2843 symbol in a regular object file, and there was no definition in
2844 any dynamic object, then the linker will have allocated space for
2845 the symbol in a common section but the DEF_REGULAR
2846 flag will not have been set. */
2847 if (h->root.type == bfd_link_hash_defined
2848 && !h->def_regular
2849 && h->ref_regular
2850 && !h->def_dynamic
2851 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2852 h->def_regular = 1;
2853
2854 /* Symbols defined in discarded sections shouldn't be dynamic. */
2855 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2856 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2857
2858 /* If a weak undefined symbol has non-default visibility, we also
2859 hide it from the dynamic linker. */
2860 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2861 && h->root.type == bfd_link_hash_undefweak)
2862 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2863
2864 /* A hidden versioned symbol in executable should be forced local if
2865 it is is locally defined, not referenced by shared library and not
2866 exported. */
2867 else if (bfd_link_executable (eif->info)
2868 && h->versioned == versioned_hidden
2869 && !eif->info->export_dynamic
2870 && !h->dynamic
2871 && !h->ref_dynamic
2872 && h->def_regular)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2874
2875 /* If -Bsymbolic was used (which means to bind references to global
2876 symbols to the definition within the shared object), and this
2877 symbol was defined in a regular object, then it actually doesn't
2878 need a PLT entry. Likewise, if the symbol has non-default
2879 visibility. If the symbol has hidden or internal visibility, we
2880 will force it local. */
2881 else if (h->needs_plt
2882 && bfd_link_pic (eif->info)
2883 && is_elf_hash_table (eif->info->hash)
2884 && (SYMBOLIC_BIND (eif->info, h)
2885 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2886 && h->def_regular)
2887 {
2888 bfd_boolean force_local;
2889
2890 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2891 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2892 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2893 }
2894
2895 /* If this is a weak defined symbol in a dynamic object, and we know
2896 the real definition in the dynamic object, copy interesting flags
2897 over to the real definition. */
2898 if (h->is_weakalias)
2899 {
2900 struct elf_link_hash_entry *def = weakdef (h);
2901
2902 /* If the real definition is defined by a regular object file,
2903 don't do anything special. See the longer description in
2904 _bfd_elf_adjust_dynamic_symbol, below. */
2905 if (def->def_regular)
2906 {
2907 h = def;
2908 while ((h = h->u.alias) != def)
2909 h->is_weakalias = 0;
2910 }
2911 else
2912 {
2913 while (h->root.type == bfd_link_hash_indirect)
2914 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2915 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2916 || h->root.type == bfd_link_hash_defweak);
2917 BFD_ASSERT (def->def_dynamic);
2918 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2919 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2920 }
2921 }
2922
2923 return TRUE;
2924 }
2925
2926 /* Make the backend pick a good value for a dynamic symbol. This is
2927 called via elf_link_hash_traverse, and also calls itself
2928 recursively. */
2929
2930 static bfd_boolean
2931 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2932 {
2933 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2934 struct elf_link_hash_table *htab;
2935 const struct elf_backend_data *bed;
2936
2937 if (! is_elf_hash_table (eif->info->hash))
2938 return FALSE;
2939
2940 /* Ignore indirect symbols. These are added by the versioning code. */
2941 if (h->root.type == bfd_link_hash_indirect)
2942 return TRUE;
2943
2944 /* Fix the symbol flags. */
2945 if (! _bfd_elf_fix_symbol_flags (h, eif))
2946 return FALSE;
2947
2948 htab = elf_hash_table (eif->info);
2949 bed = get_elf_backend_data (htab->dynobj);
2950
2951 if (h->root.type == bfd_link_hash_undefweak)
2952 {
2953 if (eif->info->dynamic_undefined_weak == 0)
2954 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2955 else if (eif->info->dynamic_undefined_weak > 0
2956 && h->ref_regular
2957 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2958 && !bfd_hide_sym_by_version (eif->info->version_info,
2959 h->root.root.string))
2960 {
2961 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2962 {
2963 eif->failed = TRUE;
2964 return FALSE;
2965 }
2966 }
2967 }
2968
2969 /* If this symbol does not require a PLT entry, and it is not
2970 defined by a dynamic object, or is not referenced by a regular
2971 object, ignore it. We do have to handle a weak defined symbol,
2972 even if no regular object refers to it, if we decided to add it
2973 to the dynamic symbol table. FIXME: Do we normally need to worry
2974 about symbols which are defined by one dynamic object and
2975 referenced by another one? */
2976 if (!h->needs_plt
2977 && h->type != STT_GNU_IFUNC
2978 && (h->def_regular
2979 || !h->def_dynamic
2980 || (!h->ref_regular
2981 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
2982 {
2983 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2984 return TRUE;
2985 }
2986
2987 /* If we've already adjusted this symbol, don't do it again. This
2988 can happen via a recursive call. */
2989 if (h->dynamic_adjusted)
2990 return TRUE;
2991
2992 /* Don't look at this symbol again. Note that we must set this
2993 after checking the above conditions, because we may look at a
2994 symbol once, decide not to do anything, and then get called
2995 recursively later after REF_REGULAR is set below. */
2996 h->dynamic_adjusted = 1;
2997
2998 /* If this is a weak definition, and we know a real definition, and
2999 the real symbol is not itself defined by a regular object file,
3000 then get a good value for the real definition. We handle the
3001 real symbol first, for the convenience of the backend routine.
3002
3003 Note that there is a confusing case here. If the real definition
3004 is defined by a regular object file, we don't get the real symbol
3005 from the dynamic object, but we do get the weak symbol. If the
3006 processor backend uses a COPY reloc, then if some routine in the
3007 dynamic object changes the real symbol, we will not see that
3008 change in the corresponding weak symbol. This is the way other
3009 ELF linkers work as well, and seems to be a result of the shared
3010 library model.
3011
3012 I will clarify this issue. Most SVR4 shared libraries define the
3013 variable _timezone and define timezone as a weak synonym. The
3014 tzset call changes _timezone. If you write
3015 extern int timezone;
3016 int _timezone = 5;
3017 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3018 you might expect that, since timezone is a synonym for _timezone,
3019 the same number will print both times. However, if the processor
3020 backend uses a COPY reloc, then actually timezone will be copied
3021 into your process image, and, since you define _timezone
3022 yourself, _timezone will not. Thus timezone and _timezone will
3023 wind up at different memory locations. The tzset call will set
3024 _timezone, leaving timezone unchanged. */
3025
3026 if (h->is_weakalias)
3027 {
3028 struct elf_link_hash_entry *def = weakdef (h);
3029
3030 /* If we get to this point, there is an implicit reference to
3031 the alias by a regular object file via the weak symbol H. */
3032 def->ref_regular = 1;
3033
3034 /* Ensure that the backend adjust_dynamic_symbol function sees
3035 the strong alias before H by recursively calling ourselves. */
3036 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3037 return FALSE;
3038 }
3039
3040 /* If a symbol has no type and no size and does not require a PLT
3041 entry, then we are probably about to do the wrong thing here: we
3042 are probably going to create a COPY reloc for an empty object.
3043 This case can arise when a shared object is built with assembly
3044 code, and the assembly code fails to set the symbol type. */
3045 if (h->size == 0
3046 && h->type == STT_NOTYPE
3047 && !h->needs_plt)
3048 _bfd_error_handler
3049 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3050 h->root.root.string);
3051
3052 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3053 {
3054 eif->failed = TRUE;
3055 return FALSE;
3056 }
3057
3058 return TRUE;
3059 }
3060
3061 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3062 DYNBSS. */
3063
3064 bfd_boolean
3065 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3066 struct elf_link_hash_entry *h,
3067 asection *dynbss)
3068 {
3069 unsigned int power_of_two;
3070 bfd_vma mask;
3071 asection *sec = h->root.u.def.section;
3072
3073 /* The section alignment of the definition is the maximum alignment
3074 requirement of symbols defined in the section. Since we don't
3075 know the symbol alignment requirement, we start with the
3076 maximum alignment and check low bits of the symbol address
3077 for the minimum alignment. */
3078 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3079 mask = ((bfd_vma) 1 << power_of_two) - 1;
3080 while ((h->root.u.def.value & mask) != 0)
3081 {
3082 mask >>= 1;
3083 --power_of_two;
3084 }
3085
3086 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3087 dynbss))
3088 {
3089 /* Adjust the section alignment if needed. */
3090 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3091 power_of_two))
3092 return FALSE;
3093 }
3094
3095 /* We make sure that the symbol will be aligned properly. */
3096 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3097
3098 /* Define the symbol as being at this point in DYNBSS. */
3099 h->root.u.def.section = dynbss;
3100 h->root.u.def.value = dynbss->size;
3101
3102 /* Increment the size of DYNBSS to make room for the symbol. */
3103 dynbss->size += h->size;
3104
3105 /* No error if extern_protected_data is true. */
3106 if (h->protected_def
3107 && (!info->extern_protected_data
3108 || (info->extern_protected_data < 0
3109 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3110 info->callbacks->einfo
3111 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3112 h->root.root.string);
3113
3114 return TRUE;
3115 }
3116
3117 /* Adjust all external symbols pointing into SEC_MERGE sections
3118 to reflect the object merging within the sections. */
3119
3120 static bfd_boolean
3121 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3122 {
3123 asection *sec;
3124
3125 if ((h->root.type == bfd_link_hash_defined
3126 || h->root.type == bfd_link_hash_defweak)
3127 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3128 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3129 {
3130 bfd *output_bfd = (bfd *) data;
3131
3132 h->root.u.def.value =
3133 _bfd_merged_section_offset (output_bfd,
3134 &h->root.u.def.section,
3135 elf_section_data (sec)->sec_info,
3136 h->root.u.def.value);
3137 }
3138
3139 return TRUE;
3140 }
3141
3142 /* Returns false if the symbol referred to by H should be considered
3143 to resolve local to the current module, and true if it should be
3144 considered to bind dynamically. */
3145
3146 bfd_boolean
3147 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3148 struct bfd_link_info *info,
3149 bfd_boolean not_local_protected)
3150 {
3151 bfd_boolean binding_stays_local_p;
3152 const struct elf_backend_data *bed;
3153 struct elf_link_hash_table *hash_table;
3154
3155 if (h == NULL)
3156 return FALSE;
3157
3158 while (h->root.type == bfd_link_hash_indirect
3159 || h->root.type == bfd_link_hash_warning)
3160 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3161
3162 /* If it was forced local, then clearly it's not dynamic. */
3163 if (h->dynindx == -1)
3164 return FALSE;
3165 if (h->forced_local)
3166 return FALSE;
3167
3168 /* Identify the cases where name binding rules say that a
3169 visible symbol resolves locally. */
3170 binding_stays_local_p = (bfd_link_executable (info)
3171 || SYMBOLIC_BIND (info, h));
3172
3173 switch (ELF_ST_VISIBILITY (h->other))
3174 {
3175 case STV_INTERNAL:
3176 case STV_HIDDEN:
3177 return FALSE;
3178
3179 case STV_PROTECTED:
3180 hash_table = elf_hash_table (info);
3181 if (!is_elf_hash_table (hash_table))
3182 return FALSE;
3183
3184 bed = get_elf_backend_data (hash_table->dynobj);
3185
3186 /* Proper resolution for function pointer equality may require
3187 that these symbols perhaps be resolved dynamically, even though
3188 we should be resolving them to the current module. */
3189 if (!not_local_protected || !bed->is_function_type (h->type))
3190 binding_stays_local_p = TRUE;
3191 break;
3192
3193 default:
3194 break;
3195 }
3196
3197 /* If it isn't defined locally, then clearly it's dynamic. */
3198 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3199 return TRUE;
3200
3201 /* Otherwise, the symbol is dynamic if binding rules don't tell
3202 us that it remains local. */
3203 return !binding_stays_local_p;
3204 }
3205
3206 /* Return true if the symbol referred to by H should be considered
3207 to resolve local to the current module, and false otherwise. Differs
3208 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3209 undefined symbols. The two functions are virtually identical except
3210 for the place where dynindx == -1 is tested. If that test is true,
3211 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3212 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3213 defined symbols.
3214 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3215 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3216 treatment of undefined weak symbols. For those that do not make
3217 undefined weak symbols dynamic, both functions may return false. */
3218
3219 bfd_boolean
3220 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3221 struct bfd_link_info *info,
3222 bfd_boolean local_protected)
3223 {
3224 const struct elf_backend_data *bed;
3225 struct elf_link_hash_table *hash_table;
3226
3227 /* If it's a local sym, of course we resolve locally. */
3228 if (h == NULL)
3229 return TRUE;
3230
3231 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3232 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3233 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3234 return TRUE;
3235
3236 /* Forced local symbols resolve locally. */
3237 if (h->forced_local)
3238 return TRUE;
3239
3240 /* Common symbols that become definitions don't get the DEF_REGULAR
3241 flag set, so test it first, and don't bail out. */
3242 if (ELF_COMMON_DEF_P (h))
3243 /* Do nothing. */;
3244 /* If we don't have a definition in a regular file, then we can't
3245 resolve locally. The sym is either undefined or dynamic. */
3246 else if (!h->def_regular)
3247 return FALSE;
3248
3249 /* Non-dynamic symbols resolve locally. */
3250 if (h->dynindx == -1)
3251 return TRUE;
3252
3253 /* At this point, we know the symbol is defined and dynamic. In an
3254 executable it must resolve locally, likewise when building symbolic
3255 shared libraries. */
3256 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3257 return TRUE;
3258
3259 /* Now deal with defined dynamic symbols in shared libraries. Ones
3260 with default visibility might not resolve locally. */
3261 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3262 return FALSE;
3263
3264 hash_table = elf_hash_table (info);
3265 if (!is_elf_hash_table (hash_table))
3266 return TRUE;
3267
3268 bed = get_elf_backend_data (hash_table->dynobj);
3269
3270 /* If extern_protected_data is false, STV_PROTECTED non-function
3271 symbols are local. */
3272 if ((!info->extern_protected_data
3273 || (info->extern_protected_data < 0
3274 && !bed->extern_protected_data))
3275 && !bed->is_function_type (h->type))
3276 return TRUE;
3277
3278 /* Function pointer equality tests may require that STV_PROTECTED
3279 symbols be treated as dynamic symbols. If the address of a
3280 function not defined in an executable is set to that function's
3281 plt entry in the executable, then the address of the function in
3282 a shared library must also be the plt entry in the executable. */
3283 return local_protected;
3284 }
3285
3286 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3287 aligned. Returns the first TLS output section. */
3288
3289 struct bfd_section *
3290 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3291 {
3292 struct bfd_section *sec, *tls;
3293 unsigned int align = 0;
3294
3295 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3296 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3297 break;
3298 tls = sec;
3299
3300 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3301 if (sec->alignment_power > align)
3302 align = sec->alignment_power;
3303
3304 elf_hash_table (info)->tls_sec = tls;
3305
3306 /* Ensure the alignment of the first section is the largest alignment,
3307 so that the tls segment starts aligned. */
3308 if (tls != NULL)
3309 tls->alignment_power = align;
3310
3311 return tls;
3312 }
3313
3314 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3315 static bfd_boolean
3316 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3317 Elf_Internal_Sym *sym)
3318 {
3319 const struct elf_backend_data *bed;
3320
3321 /* Local symbols do not count, but target specific ones might. */
3322 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3323 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3324 return FALSE;
3325
3326 bed = get_elf_backend_data (abfd);
3327 /* Function symbols do not count. */
3328 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3329 return FALSE;
3330
3331 /* If the section is undefined, then so is the symbol. */
3332 if (sym->st_shndx == SHN_UNDEF)
3333 return FALSE;
3334
3335 /* If the symbol is defined in the common section, then
3336 it is a common definition and so does not count. */
3337 if (bed->common_definition (sym))
3338 return FALSE;
3339
3340 /* If the symbol is in a target specific section then we
3341 must rely upon the backend to tell us what it is. */
3342 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3343 /* FIXME - this function is not coded yet:
3344
3345 return _bfd_is_global_symbol_definition (abfd, sym);
3346
3347 Instead for now assume that the definition is not global,
3348 Even if this is wrong, at least the linker will behave
3349 in the same way that it used to do. */
3350 return FALSE;
3351
3352 return TRUE;
3353 }
3354
3355 /* Search the symbol table of the archive element of the archive ABFD
3356 whose archive map contains a mention of SYMDEF, and determine if
3357 the symbol is defined in this element. */
3358 static bfd_boolean
3359 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3360 {
3361 Elf_Internal_Shdr * hdr;
3362 size_t symcount;
3363 size_t extsymcount;
3364 size_t extsymoff;
3365 Elf_Internal_Sym *isymbuf;
3366 Elf_Internal_Sym *isym;
3367 Elf_Internal_Sym *isymend;
3368 bfd_boolean result;
3369
3370 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3371 if (abfd == NULL)
3372 return FALSE;
3373
3374 if (! bfd_check_format (abfd, bfd_object))
3375 return FALSE;
3376
3377 /* Select the appropriate symbol table. If we don't know if the
3378 object file is an IR object, give linker LTO plugin a chance to
3379 get the correct symbol table. */
3380 if (abfd->plugin_format == bfd_plugin_yes
3381 #if BFD_SUPPORTS_PLUGINS
3382 || (abfd->plugin_format == bfd_plugin_unknown
3383 && bfd_link_plugin_object_p (abfd))
3384 #endif
3385 )
3386 {
3387 /* Use the IR symbol table if the object has been claimed by
3388 plugin. */
3389 abfd = abfd->plugin_dummy_bfd;
3390 hdr = &elf_tdata (abfd)->symtab_hdr;
3391 }
3392 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3393 hdr = &elf_tdata (abfd)->symtab_hdr;
3394 else
3395 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3396
3397 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3398
3399 /* The sh_info field of the symtab header tells us where the
3400 external symbols start. We don't care about the local symbols. */
3401 if (elf_bad_symtab (abfd))
3402 {
3403 extsymcount = symcount;
3404 extsymoff = 0;
3405 }
3406 else
3407 {
3408 extsymcount = symcount - hdr->sh_info;
3409 extsymoff = hdr->sh_info;
3410 }
3411
3412 if (extsymcount == 0)
3413 return FALSE;
3414
3415 /* Read in the symbol table. */
3416 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3417 NULL, NULL, NULL);
3418 if (isymbuf == NULL)
3419 return FALSE;
3420
3421 /* Scan the symbol table looking for SYMDEF. */
3422 result = FALSE;
3423 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3424 {
3425 const char *name;
3426
3427 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3428 isym->st_name);
3429 if (name == NULL)
3430 break;
3431
3432 if (strcmp (name, symdef->name) == 0)
3433 {
3434 result = is_global_data_symbol_definition (abfd, isym);
3435 break;
3436 }
3437 }
3438
3439 free (isymbuf);
3440
3441 return result;
3442 }
3443 \f
3444 /* Add an entry to the .dynamic table. */
3445
3446 bfd_boolean
3447 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3448 bfd_vma tag,
3449 bfd_vma val)
3450 {
3451 struct elf_link_hash_table *hash_table;
3452 const struct elf_backend_data *bed;
3453 asection *s;
3454 bfd_size_type newsize;
3455 bfd_byte *newcontents;
3456 Elf_Internal_Dyn dyn;
3457
3458 hash_table = elf_hash_table (info);
3459 if (! is_elf_hash_table (hash_table))
3460 return FALSE;
3461
3462 if (tag == DT_RELA || tag == DT_REL)
3463 hash_table->dynamic_relocs = TRUE;
3464
3465 bed = get_elf_backend_data (hash_table->dynobj);
3466 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3467 BFD_ASSERT (s != NULL);
3468
3469 newsize = s->size + bed->s->sizeof_dyn;
3470 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3471 if (newcontents == NULL)
3472 return FALSE;
3473
3474 dyn.d_tag = tag;
3475 dyn.d_un.d_val = val;
3476 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3477
3478 s->size = newsize;
3479 s->contents = newcontents;
3480
3481 return TRUE;
3482 }
3483
3484 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3485 otherwise just check whether one already exists. Returns -1 on error,
3486 1 if a DT_NEEDED tag already exists, and 0 on success. */
3487
3488 static int
3489 elf_add_dt_needed_tag (bfd *abfd,
3490 struct bfd_link_info *info,
3491 const char *soname,
3492 bfd_boolean do_it)
3493 {
3494 struct elf_link_hash_table *hash_table;
3495 size_t strindex;
3496
3497 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3498 return -1;
3499
3500 hash_table = elf_hash_table (info);
3501 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3502 if (strindex == (size_t) -1)
3503 return -1;
3504
3505 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3506 {
3507 asection *sdyn;
3508 const struct elf_backend_data *bed;
3509 bfd_byte *extdyn;
3510
3511 bed = get_elf_backend_data (hash_table->dynobj);
3512 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3513 if (sdyn != NULL)
3514 for (extdyn = sdyn->contents;
3515 extdyn < sdyn->contents + sdyn->size;
3516 extdyn += bed->s->sizeof_dyn)
3517 {
3518 Elf_Internal_Dyn dyn;
3519
3520 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3521 if (dyn.d_tag == DT_NEEDED
3522 && dyn.d_un.d_val == strindex)
3523 {
3524 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3525 return 1;
3526 }
3527 }
3528 }
3529
3530 if (do_it)
3531 {
3532 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3533 return -1;
3534
3535 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3536 return -1;
3537 }
3538 else
3539 /* We were just checking for existence of the tag. */
3540 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3541
3542 return 0;
3543 }
3544
3545 /* Return true if SONAME is on the needed list between NEEDED and STOP
3546 (or the end of list if STOP is NULL), and needed by a library that
3547 will be loaded. */
3548
3549 static bfd_boolean
3550 on_needed_list (const char *soname,
3551 struct bfd_link_needed_list *needed,
3552 struct bfd_link_needed_list *stop)
3553 {
3554 struct bfd_link_needed_list *look;
3555 for (look = needed; look != stop; look = look->next)
3556 if (strcmp (soname, look->name) == 0
3557 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3558 /* If needed by a library that itself is not directly
3559 needed, recursively check whether that library is
3560 indirectly needed. Since we add DT_NEEDED entries to
3561 the end of the list, library dependencies appear after
3562 the library. Therefore search prior to the current
3563 LOOK, preventing possible infinite recursion. */
3564 || on_needed_list (elf_dt_name (look->by), needed, look)))
3565 return TRUE;
3566
3567 return FALSE;
3568 }
3569
3570 /* Sort symbol by value, section, and size. */
3571 static int
3572 elf_sort_symbol (const void *arg1, const void *arg2)
3573 {
3574 const struct elf_link_hash_entry *h1;
3575 const struct elf_link_hash_entry *h2;
3576 bfd_signed_vma vdiff;
3577
3578 h1 = *(const struct elf_link_hash_entry **) arg1;
3579 h2 = *(const struct elf_link_hash_entry **) arg2;
3580 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3581 if (vdiff != 0)
3582 return vdiff > 0 ? 1 : -1;
3583 else
3584 {
3585 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3586 if (sdiff != 0)
3587 return sdiff > 0 ? 1 : -1;
3588 }
3589 vdiff = h1->size - h2->size;
3590 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3591 }
3592
3593 /* This function is used to adjust offsets into .dynstr for
3594 dynamic symbols. This is called via elf_link_hash_traverse. */
3595
3596 static bfd_boolean
3597 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3598 {
3599 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3600
3601 if (h->dynindx != -1)
3602 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3603 return TRUE;
3604 }
3605
3606 /* Assign string offsets in .dynstr, update all structures referencing
3607 them. */
3608
3609 static bfd_boolean
3610 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3611 {
3612 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3613 struct elf_link_local_dynamic_entry *entry;
3614 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3615 bfd *dynobj = hash_table->dynobj;
3616 asection *sdyn;
3617 bfd_size_type size;
3618 const struct elf_backend_data *bed;
3619 bfd_byte *extdyn;
3620
3621 _bfd_elf_strtab_finalize (dynstr);
3622 size = _bfd_elf_strtab_size (dynstr);
3623
3624 bed = get_elf_backend_data (dynobj);
3625 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3626 BFD_ASSERT (sdyn != NULL);
3627
3628 /* Update all .dynamic entries referencing .dynstr strings. */
3629 for (extdyn = sdyn->contents;
3630 extdyn < sdyn->contents + sdyn->size;
3631 extdyn += bed->s->sizeof_dyn)
3632 {
3633 Elf_Internal_Dyn dyn;
3634
3635 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3636 switch (dyn.d_tag)
3637 {
3638 case DT_STRSZ:
3639 dyn.d_un.d_val = size;
3640 break;
3641 case DT_NEEDED:
3642 case DT_SONAME:
3643 case DT_RPATH:
3644 case DT_RUNPATH:
3645 case DT_FILTER:
3646 case DT_AUXILIARY:
3647 case DT_AUDIT:
3648 case DT_DEPAUDIT:
3649 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3650 break;
3651 default:
3652 continue;
3653 }
3654 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3655 }
3656
3657 /* Now update local dynamic symbols. */
3658 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3659 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3660 entry->isym.st_name);
3661
3662 /* And the rest of dynamic symbols. */
3663 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3664
3665 /* Adjust version definitions. */
3666 if (elf_tdata (output_bfd)->cverdefs)
3667 {
3668 asection *s;
3669 bfd_byte *p;
3670 size_t i;
3671 Elf_Internal_Verdef def;
3672 Elf_Internal_Verdaux defaux;
3673
3674 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3675 p = s->contents;
3676 do
3677 {
3678 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3679 &def);
3680 p += sizeof (Elf_External_Verdef);
3681 if (def.vd_aux != sizeof (Elf_External_Verdef))
3682 continue;
3683 for (i = 0; i < def.vd_cnt; ++i)
3684 {
3685 _bfd_elf_swap_verdaux_in (output_bfd,
3686 (Elf_External_Verdaux *) p, &defaux);
3687 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3688 defaux.vda_name);
3689 _bfd_elf_swap_verdaux_out (output_bfd,
3690 &defaux, (Elf_External_Verdaux *) p);
3691 p += sizeof (Elf_External_Verdaux);
3692 }
3693 }
3694 while (def.vd_next);
3695 }
3696
3697 /* Adjust version references. */
3698 if (elf_tdata (output_bfd)->verref)
3699 {
3700 asection *s;
3701 bfd_byte *p;
3702 size_t i;
3703 Elf_Internal_Verneed need;
3704 Elf_Internal_Vernaux needaux;
3705
3706 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3707 p = s->contents;
3708 do
3709 {
3710 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3711 &need);
3712 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3713 _bfd_elf_swap_verneed_out (output_bfd, &need,
3714 (Elf_External_Verneed *) p);
3715 p += sizeof (Elf_External_Verneed);
3716 for (i = 0; i < need.vn_cnt; ++i)
3717 {
3718 _bfd_elf_swap_vernaux_in (output_bfd,
3719 (Elf_External_Vernaux *) p, &needaux);
3720 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3721 needaux.vna_name);
3722 _bfd_elf_swap_vernaux_out (output_bfd,
3723 &needaux,
3724 (Elf_External_Vernaux *) p);
3725 p += sizeof (Elf_External_Vernaux);
3726 }
3727 }
3728 while (need.vn_next);
3729 }
3730
3731 return TRUE;
3732 }
3733 \f
3734 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3735 The default is to only match when the INPUT and OUTPUT are exactly
3736 the same target. */
3737
3738 bfd_boolean
3739 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3740 const bfd_target *output)
3741 {
3742 return input == output;
3743 }
3744
3745 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3746 This version is used when different targets for the same architecture
3747 are virtually identical. */
3748
3749 bfd_boolean
3750 _bfd_elf_relocs_compatible (const bfd_target *input,
3751 const bfd_target *output)
3752 {
3753 const struct elf_backend_data *obed, *ibed;
3754
3755 if (input == output)
3756 return TRUE;
3757
3758 ibed = xvec_get_elf_backend_data (input);
3759 obed = xvec_get_elf_backend_data (output);
3760
3761 if (ibed->arch != obed->arch)
3762 return FALSE;
3763
3764 /* If both backends are using this function, deem them compatible. */
3765 return ibed->relocs_compatible == obed->relocs_compatible;
3766 }
3767
3768 /* Make a special call to the linker "notice" function to tell it that
3769 we are about to handle an as-needed lib, or have finished
3770 processing the lib. */
3771
3772 bfd_boolean
3773 _bfd_elf_notice_as_needed (bfd *ibfd,
3774 struct bfd_link_info *info,
3775 enum notice_asneeded_action act)
3776 {
3777 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3778 }
3779
3780 /* Check relocations an ELF object file. */
3781
3782 bfd_boolean
3783 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3784 {
3785 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3786 struct elf_link_hash_table *htab = elf_hash_table (info);
3787
3788 /* If this object is the same format as the output object, and it is
3789 not a shared library, then let the backend look through the
3790 relocs.
3791
3792 This is required to build global offset table entries and to
3793 arrange for dynamic relocs. It is not required for the
3794 particular common case of linking non PIC code, even when linking
3795 against shared libraries, but unfortunately there is no way of
3796 knowing whether an object file has been compiled PIC or not.
3797 Looking through the relocs is not particularly time consuming.
3798 The problem is that we must either (1) keep the relocs in memory,
3799 which causes the linker to require additional runtime memory or
3800 (2) read the relocs twice from the input file, which wastes time.
3801 This would be a good case for using mmap.
3802
3803 I have no idea how to handle linking PIC code into a file of a
3804 different format. It probably can't be done. */
3805 if ((abfd->flags & DYNAMIC) == 0
3806 && is_elf_hash_table (htab)
3807 && bed->check_relocs != NULL
3808 && elf_object_id (abfd) == elf_hash_table_id (htab)
3809 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3810 {
3811 asection *o;
3812
3813 for (o = abfd->sections; o != NULL; o = o->next)
3814 {
3815 Elf_Internal_Rela *internal_relocs;
3816 bfd_boolean ok;
3817
3818 /* Don't check relocations in excluded sections. */
3819 if ((o->flags & SEC_RELOC) == 0
3820 || (o->flags & SEC_EXCLUDE) != 0
3821 || o->reloc_count == 0
3822 || ((info->strip == strip_all || info->strip == strip_debugger)
3823 && (o->flags & SEC_DEBUGGING) != 0)
3824 || bfd_is_abs_section (o->output_section))
3825 continue;
3826
3827 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3828 info->keep_memory);
3829 if (internal_relocs == NULL)
3830 return FALSE;
3831
3832 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3833
3834 if (elf_section_data (o)->relocs != internal_relocs)
3835 free (internal_relocs);
3836
3837 if (! ok)
3838 return FALSE;
3839 }
3840 }
3841
3842 return TRUE;
3843 }
3844
3845 /* Add symbols from an ELF object file to the linker hash table. */
3846
3847 static bfd_boolean
3848 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3849 {
3850 Elf_Internal_Ehdr *ehdr;
3851 Elf_Internal_Shdr *hdr;
3852 size_t symcount;
3853 size_t extsymcount;
3854 size_t extsymoff;
3855 struct elf_link_hash_entry **sym_hash;
3856 bfd_boolean dynamic;
3857 Elf_External_Versym *extversym = NULL;
3858 Elf_External_Versym *ever;
3859 struct elf_link_hash_entry *weaks;
3860 struct elf_link_hash_entry **nondeflt_vers = NULL;
3861 size_t nondeflt_vers_cnt = 0;
3862 Elf_Internal_Sym *isymbuf = NULL;
3863 Elf_Internal_Sym *isym;
3864 Elf_Internal_Sym *isymend;
3865 const struct elf_backend_data *bed;
3866 bfd_boolean add_needed;
3867 struct elf_link_hash_table *htab;
3868 bfd_size_type amt;
3869 void *alloc_mark = NULL;
3870 struct bfd_hash_entry **old_table = NULL;
3871 unsigned int old_size = 0;
3872 unsigned int old_count = 0;
3873 void *old_tab = NULL;
3874 void *old_ent;
3875 struct bfd_link_hash_entry *old_undefs = NULL;
3876 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3877 void *old_strtab = NULL;
3878 size_t tabsize = 0;
3879 asection *s;
3880 bfd_boolean just_syms;
3881
3882 htab = elf_hash_table (info);
3883 bed = get_elf_backend_data (abfd);
3884
3885 if ((abfd->flags & DYNAMIC) == 0)
3886 dynamic = FALSE;
3887 else
3888 {
3889 dynamic = TRUE;
3890
3891 /* You can't use -r against a dynamic object. Also, there's no
3892 hope of using a dynamic object which does not exactly match
3893 the format of the output file. */
3894 if (bfd_link_relocatable (info)
3895 || !is_elf_hash_table (htab)
3896 || info->output_bfd->xvec != abfd->xvec)
3897 {
3898 if (bfd_link_relocatable (info))
3899 bfd_set_error (bfd_error_invalid_operation);
3900 else
3901 bfd_set_error (bfd_error_wrong_format);
3902 goto error_return;
3903 }
3904 }
3905
3906 ehdr = elf_elfheader (abfd);
3907 if (info->warn_alternate_em
3908 && bed->elf_machine_code != ehdr->e_machine
3909 && ((bed->elf_machine_alt1 != 0
3910 && ehdr->e_machine == bed->elf_machine_alt1)
3911 || (bed->elf_machine_alt2 != 0
3912 && ehdr->e_machine == bed->elf_machine_alt2)))
3913 _bfd_error_handler
3914 /* xgettext:c-format */
3915 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3916 ehdr->e_machine, abfd, bed->elf_machine_code);
3917
3918 /* As a GNU extension, any input sections which are named
3919 .gnu.warning.SYMBOL are treated as warning symbols for the given
3920 symbol. This differs from .gnu.warning sections, which generate
3921 warnings when they are included in an output file. */
3922 /* PR 12761: Also generate this warning when building shared libraries. */
3923 for (s = abfd->sections; s != NULL; s = s->next)
3924 {
3925 const char *name;
3926
3927 name = bfd_get_section_name (abfd, s);
3928 if (CONST_STRNEQ (name, ".gnu.warning."))
3929 {
3930 char *msg;
3931 bfd_size_type sz;
3932
3933 name += sizeof ".gnu.warning." - 1;
3934
3935 /* If this is a shared object, then look up the symbol
3936 in the hash table. If it is there, and it is already
3937 been defined, then we will not be using the entry
3938 from this shared object, so we don't need to warn.
3939 FIXME: If we see the definition in a regular object
3940 later on, we will warn, but we shouldn't. The only
3941 fix is to keep track of what warnings we are supposed
3942 to emit, and then handle them all at the end of the
3943 link. */
3944 if (dynamic)
3945 {
3946 struct elf_link_hash_entry *h;
3947
3948 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3949
3950 /* FIXME: What about bfd_link_hash_common? */
3951 if (h != NULL
3952 && (h->root.type == bfd_link_hash_defined
3953 || h->root.type == bfd_link_hash_defweak))
3954 continue;
3955 }
3956
3957 sz = s->size;
3958 msg = (char *) bfd_alloc (abfd, sz + 1);
3959 if (msg == NULL)
3960 goto error_return;
3961
3962 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3963 goto error_return;
3964
3965 msg[sz] = '\0';
3966
3967 if (! (_bfd_generic_link_add_one_symbol
3968 (info, abfd, name, BSF_WARNING, s, 0, msg,
3969 FALSE, bed->collect, NULL)))
3970 goto error_return;
3971
3972 if (bfd_link_executable (info))
3973 {
3974 /* Clobber the section size so that the warning does
3975 not get copied into the output file. */
3976 s->size = 0;
3977
3978 /* Also set SEC_EXCLUDE, so that symbols defined in
3979 the warning section don't get copied to the output. */
3980 s->flags |= SEC_EXCLUDE;
3981 }
3982 }
3983 }
3984
3985 just_syms = ((s = abfd->sections) != NULL
3986 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3987
3988 add_needed = TRUE;
3989 if (! dynamic)
3990 {
3991 /* If we are creating a shared library, create all the dynamic
3992 sections immediately. We need to attach them to something,
3993 so we attach them to this BFD, provided it is the right
3994 format and is not from ld --just-symbols. Always create the
3995 dynamic sections for -E/--dynamic-list. FIXME: If there
3996 are no input BFD's of the same format as the output, we can't
3997 make a shared library. */
3998 if (!just_syms
3999 && (bfd_link_pic (info)
4000 || (!bfd_link_relocatable (info)
4001 && info->nointerp
4002 && (info->export_dynamic || info->dynamic)))
4003 && is_elf_hash_table (htab)
4004 && info->output_bfd->xvec == abfd->xvec
4005 && !htab->dynamic_sections_created)
4006 {
4007 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4008 goto error_return;
4009 }
4010 }
4011 else if (!is_elf_hash_table (htab))
4012 goto error_return;
4013 else
4014 {
4015 const char *soname = NULL;
4016 char *audit = NULL;
4017 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4018 const Elf_Internal_Phdr *phdr;
4019 int ret;
4020
4021 /* ld --just-symbols and dynamic objects don't mix very well.
4022 ld shouldn't allow it. */
4023 if (just_syms)
4024 abort ();
4025
4026 /* If this dynamic lib was specified on the command line with
4027 --as-needed in effect, then we don't want to add a DT_NEEDED
4028 tag unless the lib is actually used. Similary for libs brought
4029 in by another lib's DT_NEEDED. When --no-add-needed is used
4030 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4031 any dynamic library in DT_NEEDED tags in the dynamic lib at
4032 all. */
4033 add_needed = (elf_dyn_lib_class (abfd)
4034 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4035 | DYN_NO_NEEDED)) == 0;
4036
4037 s = bfd_get_section_by_name (abfd, ".dynamic");
4038 if (s != NULL)
4039 {
4040 bfd_byte *dynbuf;
4041 bfd_byte *extdyn;
4042 unsigned int elfsec;
4043 unsigned long shlink;
4044
4045 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4046 {
4047 error_free_dyn:
4048 free (dynbuf);
4049 goto error_return;
4050 }
4051
4052 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4053 if (elfsec == SHN_BAD)
4054 goto error_free_dyn;
4055 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4056
4057 for (extdyn = dynbuf;
4058 extdyn < dynbuf + s->size;
4059 extdyn += bed->s->sizeof_dyn)
4060 {
4061 Elf_Internal_Dyn dyn;
4062
4063 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4064 if (dyn.d_tag == DT_SONAME)
4065 {
4066 unsigned int tagv = dyn.d_un.d_val;
4067 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4068 if (soname == NULL)
4069 goto error_free_dyn;
4070 }
4071 if (dyn.d_tag == DT_NEEDED)
4072 {
4073 struct bfd_link_needed_list *n, **pn;
4074 char *fnm, *anm;
4075 unsigned int tagv = dyn.d_un.d_val;
4076
4077 amt = sizeof (struct bfd_link_needed_list);
4078 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4079 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4080 if (n == NULL || fnm == NULL)
4081 goto error_free_dyn;
4082 amt = strlen (fnm) + 1;
4083 anm = (char *) bfd_alloc (abfd, amt);
4084 if (anm == NULL)
4085 goto error_free_dyn;
4086 memcpy (anm, fnm, amt);
4087 n->name = anm;
4088 n->by = abfd;
4089 n->next = NULL;
4090 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4091 ;
4092 *pn = n;
4093 }
4094 if (dyn.d_tag == DT_RUNPATH)
4095 {
4096 struct bfd_link_needed_list *n, **pn;
4097 char *fnm, *anm;
4098 unsigned int tagv = dyn.d_un.d_val;
4099
4100 amt = sizeof (struct bfd_link_needed_list);
4101 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4102 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4103 if (n == NULL || fnm == NULL)
4104 goto error_free_dyn;
4105 amt = strlen (fnm) + 1;
4106 anm = (char *) bfd_alloc (abfd, amt);
4107 if (anm == NULL)
4108 goto error_free_dyn;
4109 memcpy (anm, fnm, amt);
4110 n->name = anm;
4111 n->by = abfd;
4112 n->next = NULL;
4113 for (pn = & runpath;
4114 *pn != NULL;
4115 pn = &(*pn)->next)
4116 ;
4117 *pn = n;
4118 }
4119 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4120 if (!runpath && dyn.d_tag == DT_RPATH)
4121 {
4122 struct bfd_link_needed_list *n, **pn;
4123 char *fnm, *anm;
4124 unsigned int tagv = dyn.d_un.d_val;
4125
4126 amt = sizeof (struct bfd_link_needed_list);
4127 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4128 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4129 if (n == NULL || fnm == NULL)
4130 goto error_free_dyn;
4131 amt = strlen (fnm) + 1;
4132 anm = (char *) bfd_alloc (abfd, amt);
4133 if (anm == NULL)
4134 goto error_free_dyn;
4135 memcpy (anm, fnm, amt);
4136 n->name = anm;
4137 n->by = abfd;
4138 n->next = NULL;
4139 for (pn = & rpath;
4140 *pn != NULL;
4141 pn = &(*pn)->next)
4142 ;
4143 *pn = n;
4144 }
4145 if (dyn.d_tag == DT_AUDIT)
4146 {
4147 unsigned int tagv = dyn.d_un.d_val;
4148 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4149 }
4150 }
4151
4152 free (dynbuf);
4153 }
4154
4155 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4156 frees all more recently bfd_alloc'd blocks as well. */
4157 if (runpath)
4158 rpath = runpath;
4159
4160 if (rpath)
4161 {
4162 struct bfd_link_needed_list **pn;
4163 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4164 ;
4165 *pn = rpath;
4166 }
4167
4168 /* If we have a PT_GNU_RELRO program header, mark as read-only
4169 all sections contained fully therein. This makes relro
4170 shared library sections appear as they will at run-time. */
4171 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4172 while (--phdr >= elf_tdata (abfd)->phdr)
4173 if (phdr->p_type == PT_GNU_RELRO)
4174 {
4175 for (s = abfd->sections; s != NULL; s = s->next)
4176 if ((s->flags & SEC_ALLOC) != 0
4177 && s->vma >= phdr->p_vaddr
4178 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4179 s->flags |= SEC_READONLY;
4180 break;
4181 }
4182
4183 /* We do not want to include any of the sections in a dynamic
4184 object in the output file. We hack by simply clobbering the
4185 list of sections in the BFD. This could be handled more
4186 cleanly by, say, a new section flag; the existing
4187 SEC_NEVER_LOAD flag is not the one we want, because that one
4188 still implies that the section takes up space in the output
4189 file. */
4190 bfd_section_list_clear (abfd);
4191
4192 /* Find the name to use in a DT_NEEDED entry that refers to this
4193 object. If the object has a DT_SONAME entry, we use it.
4194 Otherwise, if the generic linker stuck something in
4195 elf_dt_name, we use that. Otherwise, we just use the file
4196 name. */
4197 if (soname == NULL || *soname == '\0')
4198 {
4199 soname = elf_dt_name (abfd);
4200 if (soname == NULL || *soname == '\0')
4201 soname = bfd_get_filename (abfd);
4202 }
4203
4204 /* Save the SONAME because sometimes the linker emulation code
4205 will need to know it. */
4206 elf_dt_name (abfd) = soname;
4207
4208 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4209 if (ret < 0)
4210 goto error_return;
4211
4212 /* If we have already included this dynamic object in the
4213 link, just ignore it. There is no reason to include a
4214 particular dynamic object more than once. */
4215 if (ret > 0)
4216 return TRUE;
4217
4218 /* Save the DT_AUDIT entry for the linker emulation code. */
4219 elf_dt_audit (abfd) = audit;
4220 }
4221
4222 /* If this is a dynamic object, we always link against the .dynsym
4223 symbol table, not the .symtab symbol table. The dynamic linker
4224 will only see the .dynsym symbol table, so there is no reason to
4225 look at .symtab for a dynamic object. */
4226
4227 if (! dynamic || elf_dynsymtab (abfd) == 0)
4228 hdr = &elf_tdata (abfd)->symtab_hdr;
4229 else
4230 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4231
4232 symcount = hdr->sh_size / bed->s->sizeof_sym;
4233
4234 /* The sh_info field of the symtab header tells us where the
4235 external symbols start. We don't care about the local symbols at
4236 this point. */
4237 if (elf_bad_symtab (abfd))
4238 {
4239 extsymcount = symcount;
4240 extsymoff = 0;
4241 }
4242 else
4243 {
4244 extsymcount = symcount - hdr->sh_info;
4245 extsymoff = hdr->sh_info;
4246 }
4247
4248 sym_hash = elf_sym_hashes (abfd);
4249 if (extsymcount != 0)
4250 {
4251 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4252 NULL, NULL, NULL);
4253 if (isymbuf == NULL)
4254 goto error_return;
4255
4256 if (sym_hash == NULL)
4257 {
4258 /* We store a pointer to the hash table entry for each
4259 external symbol. */
4260 amt = extsymcount;
4261 amt *= sizeof (struct elf_link_hash_entry *);
4262 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4263 if (sym_hash == NULL)
4264 goto error_free_sym;
4265 elf_sym_hashes (abfd) = sym_hash;
4266 }
4267 }
4268
4269 if (dynamic)
4270 {
4271 /* Read in any version definitions. */
4272 if (!_bfd_elf_slurp_version_tables (abfd,
4273 info->default_imported_symver))
4274 goto error_free_sym;
4275
4276 /* Read in the symbol versions, but don't bother to convert them
4277 to internal format. */
4278 if (elf_dynversym (abfd) != 0)
4279 {
4280 Elf_Internal_Shdr *versymhdr;
4281
4282 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4283 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4284 if (extversym == NULL)
4285 goto error_free_sym;
4286 amt = versymhdr->sh_size;
4287 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4288 || bfd_bread (extversym, amt, abfd) != amt)
4289 goto error_free_vers;
4290 }
4291 }
4292
4293 /* If we are loading an as-needed shared lib, save the symbol table
4294 state before we start adding symbols. If the lib turns out
4295 to be unneeded, restore the state. */
4296 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4297 {
4298 unsigned int i;
4299 size_t entsize;
4300
4301 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4302 {
4303 struct bfd_hash_entry *p;
4304 struct elf_link_hash_entry *h;
4305
4306 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4307 {
4308 h = (struct elf_link_hash_entry *) p;
4309 entsize += htab->root.table.entsize;
4310 if (h->root.type == bfd_link_hash_warning)
4311 entsize += htab->root.table.entsize;
4312 }
4313 }
4314
4315 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4316 old_tab = bfd_malloc (tabsize + entsize);
4317 if (old_tab == NULL)
4318 goto error_free_vers;
4319
4320 /* Remember the current objalloc pointer, so that all mem for
4321 symbols added can later be reclaimed. */
4322 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4323 if (alloc_mark == NULL)
4324 goto error_free_vers;
4325
4326 /* Make a special call to the linker "notice" function to
4327 tell it that we are about to handle an as-needed lib. */
4328 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4329 goto error_free_vers;
4330
4331 /* Clone the symbol table. Remember some pointers into the
4332 symbol table, and dynamic symbol count. */
4333 old_ent = (char *) old_tab + tabsize;
4334 memcpy (old_tab, htab->root.table.table, tabsize);
4335 old_undefs = htab->root.undefs;
4336 old_undefs_tail = htab->root.undefs_tail;
4337 old_table = htab->root.table.table;
4338 old_size = htab->root.table.size;
4339 old_count = htab->root.table.count;
4340 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4341 if (old_strtab == NULL)
4342 goto error_free_vers;
4343
4344 for (i = 0; i < htab->root.table.size; i++)
4345 {
4346 struct bfd_hash_entry *p;
4347 struct elf_link_hash_entry *h;
4348
4349 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4350 {
4351 memcpy (old_ent, p, htab->root.table.entsize);
4352 old_ent = (char *) old_ent + htab->root.table.entsize;
4353 h = (struct elf_link_hash_entry *) p;
4354 if (h->root.type == bfd_link_hash_warning)
4355 {
4356 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4357 old_ent = (char *) old_ent + htab->root.table.entsize;
4358 }
4359 }
4360 }
4361 }
4362
4363 weaks = NULL;
4364 ever = extversym != NULL ? extversym + extsymoff : NULL;
4365 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4366 isym < isymend;
4367 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4368 {
4369 int bind;
4370 bfd_vma value;
4371 asection *sec, *new_sec;
4372 flagword flags;
4373 const char *name;
4374 struct elf_link_hash_entry *h;
4375 struct elf_link_hash_entry *hi;
4376 bfd_boolean definition;
4377 bfd_boolean size_change_ok;
4378 bfd_boolean type_change_ok;
4379 bfd_boolean new_weak;
4380 bfd_boolean old_weak;
4381 bfd_boolean override;
4382 bfd_boolean common;
4383 bfd_boolean discarded;
4384 unsigned int old_alignment;
4385 bfd *old_bfd;
4386 bfd_boolean matched;
4387
4388 override = FALSE;
4389
4390 flags = BSF_NO_FLAGS;
4391 sec = NULL;
4392 value = isym->st_value;
4393 common = bed->common_definition (isym);
4394 if (common && info->inhibit_common_definition)
4395 {
4396 /* Treat common symbol as undefined for --no-define-common. */
4397 isym->st_shndx = SHN_UNDEF;
4398 common = FALSE;
4399 }
4400 discarded = FALSE;
4401
4402 bind = ELF_ST_BIND (isym->st_info);
4403 switch (bind)
4404 {
4405 case STB_LOCAL:
4406 /* This should be impossible, since ELF requires that all
4407 global symbols follow all local symbols, and that sh_info
4408 point to the first global symbol. Unfortunately, Irix 5
4409 screws this up. */
4410 continue;
4411
4412 case STB_GLOBAL:
4413 if (isym->st_shndx != SHN_UNDEF && !common)
4414 flags = BSF_GLOBAL;
4415 break;
4416
4417 case STB_WEAK:
4418 flags = BSF_WEAK;
4419 break;
4420
4421 case STB_GNU_UNIQUE:
4422 flags = BSF_GNU_UNIQUE;
4423 break;
4424
4425 default:
4426 /* Leave it up to the processor backend. */
4427 break;
4428 }
4429
4430 if (isym->st_shndx == SHN_UNDEF)
4431 sec = bfd_und_section_ptr;
4432 else if (isym->st_shndx == SHN_ABS)
4433 sec = bfd_abs_section_ptr;
4434 else if (isym->st_shndx == SHN_COMMON)
4435 {
4436 sec = bfd_com_section_ptr;
4437 /* What ELF calls the size we call the value. What ELF
4438 calls the value we call the alignment. */
4439 value = isym->st_size;
4440 }
4441 else
4442 {
4443 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4444 if (sec == NULL)
4445 sec = bfd_abs_section_ptr;
4446 else if (discarded_section (sec))
4447 {
4448 /* Symbols from discarded section are undefined. We keep
4449 its visibility. */
4450 sec = bfd_und_section_ptr;
4451 discarded = TRUE;
4452 isym->st_shndx = SHN_UNDEF;
4453 }
4454 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4455 value -= sec->vma;
4456 }
4457
4458 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4459 isym->st_name);
4460 if (name == NULL)
4461 goto error_free_vers;
4462
4463 if (isym->st_shndx == SHN_COMMON
4464 && (abfd->flags & BFD_PLUGIN) != 0)
4465 {
4466 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4467
4468 if (xc == NULL)
4469 {
4470 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4471 | SEC_EXCLUDE);
4472 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4473 if (xc == NULL)
4474 goto error_free_vers;
4475 }
4476 sec = xc;
4477 }
4478 else if (isym->st_shndx == SHN_COMMON
4479 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4480 && !bfd_link_relocatable (info))
4481 {
4482 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4483
4484 if (tcomm == NULL)
4485 {
4486 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4487 | SEC_LINKER_CREATED);
4488 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4489 if (tcomm == NULL)
4490 goto error_free_vers;
4491 }
4492 sec = tcomm;
4493 }
4494 else if (bed->elf_add_symbol_hook)
4495 {
4496 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4497 &sec, &value))
4498 goto error_free_vers;
4499
4500 /* The hook function sets the name to NULL if this symbol
4501 should be skipped for some reason. */
4502 if (name == NULL)
4503 continue;
4504 }
4505
4506 /* Sanity check that all possibilities were handled. */
4507 if (sec == NULL)
4508 {
4509 bfd_set_error (bfd_error_bad_value);
4510 goto error_free_vers;
4511 }
4512
4513 /* Silently discard TLS symbols from --just-syms. There's
4514 no way to combine a static TLS block with a new TLS block
4515 for this executable. */
4516 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4517 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4518 continue;
4519
4520 if (bfd_is_und_section (sec)
4521 || bfd_is_com_section (sec))
4522 definition = FALSE;
4523 else
4524 definition = TRUE;
4525
4526 size_change_ok = FALSE;
4527 type_change_ok = bed->type_change_ok;
4528 old_weak = FALSE;
4529 matched = FALSE;
4530 old_alignment = 0;
4531 old_bfd = NULL;
4532 new_sec = sec;
4533
4534 if (is_elf_hash_table (htab))
4535 {
4536 Elf_Internal_Versym iver;
4537 unsigned int vernum = 0;
4538 bfd_boolean skip;
4539
4540 if (ever == NULL)
4541 {
4542 if (info->default_imported_symver)
4543 /* Use the default symbol version created earlier. */
4544 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4545 else
4546 iver.vs_vers = 0;
4547 }
4548 else
4549 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4550
4551 vernum = iver.vs_vers & VERSYM_VERSION;
4552
4553 /* If this is a hidden symbol, or if it is not version
4554 1, we append the version name to the symbol name.
4555 However, we do not modify a non-hidden absolute symbol
4556 if it is not a function, because it might be the version
4557 symbol itself. FIXME: What if it isn't? */
4558 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4559 || (vernum > 1
4560 && (!bfd_is_abs_section (sec)
4561 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4562 {
4563 const char *verstr;
4564 size_t namelen, verlen, newlen;
4565 char *newname, *p;
4566
4567 if (isym->st_shndx != SHN_UNDEF)
4568 {
4569 if (vernum > elf_tdata (abfd)->cverdefs)
4570 verstr = NULL;
4571 else if (vernum > 1)
4572 verstr =
4573 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4574 else
4575 verstr = "";
4576
4577 if (verstr == NULL)
4578 {
4579 _bfd_error_handler
4580 /* xgettext:c-format */
4581 (_("%pB: %s: invalid version %u (max %d)"),
4582 abfd, name, vernum,
4583 elf_tdata (abfd)->cverdefs);
4584 bfd_set_error (bfd_error_bad_value);
4585 goto error_free_vers;
4586 }
4587 }
4588 else
4589 {
4590 /* We cannot simply test for the number of
4591 entries in the VERNEED section since the
4592 numbers for the needed versions do not start
4593 at 0. */
4594 Elf_Internal_Verneed *t;
4595
4596 verstr = NULL;
4597 for (t = elf_tdata (abfd)->verref;
4598 t != NULL;
4599 t = t->vn_nextref)
4600 {
4601 Elf_Internal_Vernaux *a;
4602
4603 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4604 {
4605 if (a->vna_other == vernum)
4606 {
4607 verstr = a->vna_nodename;
4608 break;
4609 }
4610 }
4611 if (a != NULL)
4612 break;
4613 }
4614 if (verstr == NULL)
4615 {
4616 _bfd_error_handler
4617 /* xgettext:c-format */
4618 (_("%pB: %s: invalid needed version %d"),
4619 abfd, name, vernum);
4620 bfd_set_error (bfd_error_bad_value);
4621 goto error_free_vers;
4622 }
4623 }
4624
4625 namelen = strlen (name);
4626 verlen = strlen (verstr);
4627 newlen = namelen + verlen + 2;
4628 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4629 && isym->st_shndx != SHN_UNDEF)
4630 ++newlen;
4631
4632 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4633 if (newname == NULL)
4634 goto error_free_vers;
4635 memcpy (newname, name, namelen);
4636 p = newname + namelen;
4637 *p++ = ELF_VER_CHR;
4638 /* If this is a defined non-hidden version symbol,
4639 we add another @ to the name. This indicates the
4640 default version of the symbol. */
4641 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4642 && isym->st_shndx != SHN_UNDEF)
4643 *p++ = ELF_VER_CHR;
4644 memcpy (p, verstr, verlen + 1);
4645
4646 name = newname;
4647 }
4648
4649 /* If this symbol has default visibility and the user has
4650 requested we not re-export it, then mark it as hidden. */
4651 if (!bfd_is_und_section (sec)
4652 && !dynamic
4653 && abfd->no_export
4654 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4655 isym->st_other = (STV_HIDDEN
4656 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4657
4658 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4659 sym_hash, &old_bfd, &old_weak,
4660 &old_alignment, &skip, &override,
4661 &type_change_ok, &size_change_ok,
4662 &matched))
4663 goto error_free_vers;
4664
4665 if (skip)
4666 continue;
4667
4668 /* Override a definition only if the new symbol matches the
4669 existing one. */
4670 if (override && matched)
4671 definition = FALSE;
4672
4673 h = *sym_hash;
4674 while (h->root.type == bfd_link_hash_indirect
4675 || h->root.type == bfd_link_hash_warning)
4676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4677
4678 if (elf_tdata (abfd)->verdef != NULL
4679 && vernum > 1
4680 && definition)
4681 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4682 }
4683
4684 if (! (_bfd_generic_link_add_one_symbol
4685 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4686 (struct bfd_link_hash_entry **) sym_hash)))
4687 goto error_free_vers;
4688
4689 if ((abfd->flags & DYNAMIC) == 0
4690 && (bfd_get_flavour (info->output_bfd)
4691 == bfd_target_elf_flavour))
4692 {
4693 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4694 elf_tdata (info->output_bfd)->has_gnu_symbols
4695 |= elf_gnu_symbol_ifunc;
4696 if ((flags & BSF_GNU_UNIQUE))
4697 elf_tdata (info->output_bfd)->has_gnu_symbols
4698 |= elf_gnu_symbol_unique;
4699 }
4700
4701 h = *sym_hash;
4702 /* We need to make sure that indirect symbol dynamic flags are
4703 updated. */
4704 hi = h;
4705 while (h->root.type == bfd_link_hash_indirect
4706 || h->root.type == bfd_link_hash_warning)
4707 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4708
4709 /* Setting the index to -3 tells elf_link_output_extsym that
4710 this symbol is defined in a discarded section. */
4711 if (discarded)
4712 h->indx = -3;
4713
4714 *sym_hash = h;
4715
4716 new_weak = (flags & BSF_WEAK) != 0;
4717 if (dynamic
4718 && definition
4719 && new_weak
4720 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4721 && is_elf_hash_table (htab)
4722 && h->u.alias == NULL)
4723 {
4724 /* Keep a list of all weak defined non function symbols from
4725 a dynamic object, using the alias field. Later in this
4726 function we will set the alias field to the correct
4727 value. We only put non-function symbols from dynamic
4728 objects on this list, because that happens to be the only
4729 time we need to know the normal symbol corresponding to a
4730 weak symbol, and the information is time consuming to
4731 figure out. If the alias field is not already NULL,
4732 then this symbol was already defined by some previous
4733 dynamic object, and we will be using that previous
4734 definition anyhow. */
4735
4736 h->u.alias = weaks;
4737 weaks = h;
4738 }
4739
4740 /* Set the alignment of a common symbol. */
4741 if ((common || bfd_is_com_section (sec))
4742 && h->root.type == bfd_link_hash_common)
4743 {
4744 unsigned int align;
4745
4746 if (common)
4747 align = bfd_log2 (isym->st_value);
4748 else
4749 {
4750 /* The new symbol is a common symbol in a shared object.
4751 We need to get the alignment from the section. */
4752 align = new_sec->alignment_power;
4753 }
4754 if (align > old_alignment)
4755 h->root.u.c.p->alignment_power = align;
4756 else
4757 h->root.u.c.p->alignment_power = old_alignment;
4758 }
4759
4760 if (is_elf_hash_table (htab))
4761 {
4762 /* Set a flag in the hash table entry indicating the type of
4763 reference or definition we just found. A dynamic symbol
4764 is one which is referenced or defined by both a regular
4765 object and a shared object. */
4766 bfd_boolean dynsym = FALSE;
4767
4768 /* Plugin symbols aren't normal. Don't set def_regular or
4769 ref_regular for them, or make them dynamic. */
4770 if ((abfd->flags & BFD_PLUGIN) != 0)
4771 ;
4772 else if (! dynamic)
4773 {
4774 if (! definition)
4775 {
4776 h->ref_regular = 1;
4777 if (bind != STB_WEAK)
4778 h->ref_regular_nonweak = 1;
4779 }
4780 else
4781 {
4782 h->def_regular = 1;
4783 if (h->def_dynamic)
4784 {
4785 h->def_dynamic = 0;
4786 h->ref_dynamic = 1;
4787 }
4788 }
4789
4790 /* If the indirect symbol has been forced local, don't
4791 make the real symbol dynamic. */
4792 if ((h == hi || !hi->forced_local)
4793 && (bfd_link_dll (info)
4794 || h->def_dynamic
4795 || h->ref_dynamic))
4796 dynsym = TRUE;
4797 }
4798 else
4799 {
4800 if (! definition)
4801 {
4802 h->ref_dynamic = 1;
4803 hi->ref_dynamic = 1;
4804 }
4805 else
4806 {
4807 h->def_dynamic = 1;
4808 hi->def_dynamic = 1;
4809 }
4810
4811 /* If the indirect symbol has been forced local, don't
4812 make the real symbol dynamic. */
4813 if ((h == hi || !hi->forced_local)
4814 && (h->def_regular
4815 || h->ref_regular
4816 || (h->is_weakalias
4817 && weakdef (h)->dynindx != -1)))
4818 dynsym = TRUE;
4819 }
4820
4821 /* Check to see if we need to add an indirect symbol for
4822 the default name. */
4823 if (definition
4824 || (!override && h->root.type == bfd_link_hash_common))
4825 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4826 sec, value, &old_bfd, &dynsym))
4827 goto error_free_vers;
4828
4829 /* Check the alignment when a common symbol is involved. This
4830 can change when a common symbol is overridden by a normal
4831 definition or a common symbol is ignored due to the old
4832 normal definition. We need to make sure the maximum
4833 alignment is maintained. */
4834 if ((old_alignment || common)
4835 && h->root.type != bfd_link_hash_common)
4836 {
4837 unsigned int common_align;
4838 unsigned int normal_align;
4839 unsigned int symbol_align;
4840 bfd *normal_bfd;
4841 bfd *common_bfd;
4842
4843 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4844 || h->root.type == bfd_link_hash_defweak);
4845
4846 symbol_align = ffs (h->root.u.def.value) - 1;
4847 if (h->root.u.def.section->owner != NULL
4848 && (h->root.u.def.section->owner->flags
4849 & (DYNAMIC | BFD_PLUGIN)) == 0)
4850 {
4851 normal_align = h->root.u.def.section->alignment_power;
4852 if (normal_align > symbol_align)
4853 normal_align = symbol_align;
4854 }
4855 else
4856 normal_align = symbol_align;
4857
4858 if (old_alignment)
4859 {
4860 common_align = old_alignment;
4861 common_bfd = old_bfd;
4862 normal_bfd = abfd;
4863 }
4864 else
4865 {
4866 common_align = bfd_log2 (isym->st_value);
4867 common_bfd = abfd;
4868 normal_bfd = old_bfd;
4869 }
4870
4871 if (normal_align < common_align)
4872 {
4873 /* PR binutils/2735 */
4874 if (normal_bfd == NULL)
4875 _bfd_error_handler
4876 /* xgettext:c-format */
4877 (_("warning: alignment %u of common symbol `%s' in %pB is"
4878 " greater than the alignment (%u) of its section %pA"),
4879 1 << common_align, name, common_bfd,
4880 1 << normal_align, h->root.u.def.section);
4881 else
4882 _bfd_error_handler
4883 /* xgettext:c-format */
4884 (_("warning: alignment %u of symbol `%s' in %pB"
4885 " is smaller than %u in %pB"),
4886 1 << normal_align, name, normal_bfd,
4887 1 << common_align, common_bfd);
4888 }
4889 }
4890
4891 /* Remember the symbol size if it isn't undefined. */
4892 if (isym->st_size != 0
4893 && isym->st_shndx != SHN_UNDEF
4894 && (definition || h->size == 0))
4895 {
4896 if (h->size != 0
4897 && h->size != isym->st_size
4898 && ! size_change_ok)
4899 _bfd_error_handler
4900 /* xgettext:c-format */
4901 (_("warning: size of symbol `%s' changed"
4902 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4903 name, (uint64_t) h->size, old_bfd,
4904 (uint64_t) isym->st_size, abfd);
4905
4906 h->size = isym->st_size;
4907 }
4908
4909 /* If this is a common symbol, then we always want H->SIZE
4910 to be the size of the common symbol. The code just above
4911 won't fix the size if a common symbol becomes larger. We
4912 don't warn about a size change here, because that is
4913 covered by --warn-common. Allow changes between different
4914 function types. */
4915 if (h->root.type == bfd_link_hash_common)
4916 h->size = h->root.u.c.size;
4917
4918 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4919 && ((definition && !new_weak)
4920 || (old_weak && h->root.type == bfd_link_hash_common)
4921 || h->type == STT_NOTYPE))
4922 {
4923 unsigned int type = ELF_ST_TYPE (isym->st_info);
4924
4925 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4926 symbol. */
4927 if (type == STT_GNU_IFUNC
4928 && (abfd->flags & DYNAMIC) != 0)
4929 type = STT_FUNC;
4930
4931 if (h->type != type)
4932 {
4933 if (h->type != STT_NOTYPE && ! type_change_ok)
4934 /* xgettext:c-format */
4935 _bfd_error_handler
4936 (_("warning: type of symbol `%s' changed"
4937 " from %d to %d in %pB"),
4938 name, h->type, type, abfd);
4939
4940 h->type = type;
4941 }
4942 }
4943
4944 /* Merge st_other field. */
4945 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4946
4947 /* We don't want to make debug symbol dynamic. */
4948 if (definition
4949 && (sec->flags & SEC_DEBUGGING)
4950 && !bfd_link_relocatable (info))
4951 dynsym = FALSE;
4952
4953 /* Nor should we make plugin symbols dynamic. */
4954 if ((abfd->flags & BFD_PLUGIN) != 0)
4955 dynsym = FALSE;
4956
4957 if (definition)
4958 {
4959 h->target_internal = isym->st_target_internal;
4960 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4961 }
4962
4963 if (definition && !dynamic)
4964 {
4965 char *p = strchr (name, ELF_VER_CHR);
4966 if (p != NULL && p[1] != ELF_VER_CHR)
4967 {
4968 /* Queue non-default versions so that .symver x, x@FOO
4969 aliases can be checked. */
4970 if (!nondeflt_vers)
4971 {
4972 amt = ((isymend - isym + 1)
4973 * sizeof (struct elf_link_hash_entry *));
4974 nondeflt_vers
4975 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4976 if (!nondeflt_vers)
4977 goto error_free_vers;
4978 }
4979 nondeflt_vers[nondeflt_vers_cnt++] = h;
4980 }
4981 }
4982
4983 if (dynsym && h->dynindx == -1)
4984 {
4985 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4986 goto error_free_vers;
4987 if (h->is_weakalias
4988 && weakdef (h)->dynindx == -1)
4989 {
4990 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
4991 goto error_free_vers;
4992 }
4993 }
4994 else if (h->dynindx != -1)
4995 /* If the symbol already has a dynamic index, but
4996 visibility says it should not be visible, turn it into
4997 a local symbol. */
4998 switch (ELF_ST_VISIBILITY (h->other))
4999 {
5000 case STV_INTERNAL:
5001 case STV_HIDDEN:
5002 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5003 dynsym = FALSE;
5004 break;
5005 }
5006
5007 /* Don't add DT_NEEDED for references from the dummy bfd nor
5008 for unmatched symbol. */
5009 if (!add_needed
5010 && matched
5011 && definition
5012 && ((dynsym
5013 && h->ref_regular_nonweak
5014 && (old_bfd == NULL
5015 || (old_bfd->flags & BFD_PLUGIN) == 0))
5016 || (h->ref_dynamic_nonweak
5017 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5018 && !on_needed_list (elf_dt_name (abfd),
5019 htab->needed, NULL))))
5020 {
5021 int ret;
5022 const char *soname = elf_dt_name (abfd);
5023
5024 info->callbacks->minfo ("%!", soname, old_bfd,
5025 h->root.root.string);
5026
5027 /* A symbol from a library loaded via DT_NEEDED of some
5028 other library is referenced by a regular object.
5029 Add a DT_NEEDED entry for it. Issue an error if
5030 --no-add-needed is used and the reference was not
5031 a weak one. */
5032 if (old_bfd != NULL
5033 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5034 {
5035 _bfd_error_handler
5036 /* xgettext:c-format */
5037 (_("%pB: undefined reference to symbol '%s'"),
5038 old_bfd, name);
5039 bfd_set_error (bfd_error_missing_dso);
5040 goto error_free_vers;
5041 }
5042
5043 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5044 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5045
5046 add_needed = TRUE;
5047 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5048 if (ret < 0)
5049 goto error_free_vers;
5050
5051 BFD_ASSERT (ret == 0);
5052 }
5053 }
5054 }
5055
5056 if (info->lto_plugin_active
5057 && !bfd_link_relocatable (info)
5058 && (abfd->flags & BFD_PLUGIN) == 0
5059 && !just_syms
5060 && extsymcount)
5061 {
5062 int r_sym_shift;
5063
5064 if (bed->s->arch_size == 32)
5065 r_sym_shift = 8;
5066 else
5067 r_sym_shift = 32;
5068
5069 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5070 referenced in regular objects so that linker plugin will get
5071 the correct symbol resolution. */
5072
5073 sym_hash = elf_sym_hashes (abfd);
5074 for (s = abfd->sections; s != NULL; s = s->next)
5075 {
5076 Elf_Internal_Rela *internal_relocs;
5077 Elf_Internal_Rela *rel, *relend;
5078
5079 /* Don't check relocations in excluded sections. */
5080 if ((s->flags & SEC_RELOC) == 0
5081 || s->reloc_count == 0
5082 || (s->flags & SEC_EXCLUDE) != 0
5083 || ((info->strip == strip_all
5084 || info->strip == strip_debugger)
5085 && (s->flags & SEC_DEBUGGING) != 0))
5086 continue;
5087
5088 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5089 NULL,
5090 info->keep_memory);
5091 if (internal_relocs == NULL)
5092 goto error_free_vers;
5093
5094 rel = internal_relocs;
5095 relend = rel + s->reloc_count;
5096 for ( ; rel < relend; rel++)
5097 {
5098 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5099 struct elf_link_hash_entry *h;
5100
5101 /* Skip local symbols. */
5102 if (r_symndx < extsymoff)
5103 continue;
5104
5105 h = sym_hash[r_symndx - extsymoff];
5106 if (h != NULL)
5107 h->root.non_ir_ref_regular = 1;
5108 }
5109
5110 if (elf_section_data (s)->relocs != internal_relocs)
5111 free (internal_relocs);
5112 }
5113 }
5114
5115 if (extversym != NULL)
5116 {
5117 free (extversym);
5118 extversym = NULL;
5119 }
5120
5121 if (isymbuf != NULL)
5122 {
5123 free (isymbuf);
5124 isymbuf = NULL;
5125 }
5126
5127 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5128 {
5129 unsigned int i;
5130
5131 /* Restore the symbol table. */
5132 old_ent = (char *) old_tab + tabsize;
5133 memset (elf_sym_hashes (abfd), 0,
5134 extsymcount * sizeof (struct elf_link_hash_entry *));
5135 htab->root.table.table = old_table;
5136 htab->root.table.size = old_size;
5137 htab->root.table.count = old_count;
5138 memcpy (htab->root.table.table, old_tab, tabsize);
5139 htab->root.undefs = old_undefs;
5140 htab->root.undefs_tail = old_undefs_tail;
5141 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5142 free (old_strtab);
5143 old_strtab = NULL;
5144 for (i = 0; i < htab->root.table.size; i++)
5145 {
5146 struct bfd_hash_entry *p;
5147 struct elf_link_hash_entry *h;
5148 bfd_size_type size;
5149 unsigned int alignment_power;
5150 unsigned int non_ir_ref_dynamic;
5151
5152 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5153 {
5154 h = (struct elf_link_hash_entry *) p;
5155 if (h->root.type == bfd_link_hash_warning)
5156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5157
5158 /* Preserve the maximum alignment and size for common
5159 symbols even if this dynamic lib isn't on DT_NEEDED
5160 since it can still be loaded at run time by another
5161 dynamic lib. */
5162 if (h->root.type == bfd_link_hash_common)
5163 {
5164 size = h->root.u.c.size;
5165 alignment_power = h->root.u.c.p->alignment_power;
5166 }
5167 else
5168 {
5169 size = 0;
5170 alignment_power = 0;
5171 }
5172 /* Preserve non_ir_ref_dynamic so that this symbol
5173 will be exported when the dynamic lib becomes needed
5174 in the second pass. */
5175 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5176 memcpy (p, old_ent, htab->root.table.entsize);
5177 old_ent = (char *) old_ent + htab->root.table.entsize;
5178 h = (struct elf_link_hash_entry *) p;
5179 if (h->root.type == bfd_link_hash_warning)
5180 {
5181 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5182 old_ent = (char *) old_ent + htab->root.table.entsize;
5183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5184 }
5185 if (h->root.type == bfd_link_hash_common)
5186 {
5187 if (size > h->root.u.c.size)
5188 h->root.u.c.size = size;
5189 if (alignment_power > h->root.u.c.p->alignment_power)
5190 h->root.u.c.p->alignment_power = alignment_power;
5191 }
5192 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5193 }
5194 }
5195
5196 /* Make a special call to the linker "notice" function to
5197 tell it that symbols added for crefs may need to be removed. */
5198 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5199 goto error_free_vers;
5200
5201 free (old_tab);
5202 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5203 alloc_mark);
5204 if (nondeflt_vers != NULL)
5205 free (nondeflt_vers);
5206 return TRUE;
5207 }
5208
5209 if (old_tab != NULL)
5210 {
5211 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5212 goto error_free_vers;
5213 free (old_tab);
5214 old_tab = NULL;
5215 }
5216
5217 /* Now that all the symbols from this input file are created, if
5218 not performing a relocatable link, handle .symver foo, foo@BAR
5219 such that any relocs against foo become foo@BAR. */
5220 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5221 {
5222 size_t cnt, symidx;
5223
5224 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5225 {
5226 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5227 char *shortname, *p;
5228
5229 p = strchr (h->root.root.string, ELF_VER_CHR);
5230 if (p == NULL
5231 || (h->root.type != bfd_link_hash_defined
5232 && h->root.type != bfd_link_hash_defweak))
5233 continue;
5234
5235 amt = p - h->root.root.string;
5236 shortname = (char *) bfd_malloc (amt + 1);
5237 if (!shortname)
5238 goto error_free_vers;
5239 memcpy (shortname, h->root.root.string, amt);
5240 shortname[amt] = '\0';
5241
5242 hi = (struct elf_link_hash_entry *)
5243 bfd_link_hash_lookup (&htab->root, shortname,
5244 FALSE, FALSE, FALSE);
5245 if (hi != NULL
5246 && hi->root.type == h->root.type
5247 && hi->root.u.def.value == h->root.u.def.value
5248 && hi->root.u.def.section == h->root.u.def.section)
5249 {
5250 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5251 hi->root.type = bfd_link_hash_indirect;
5252 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5253 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5254 sym_hash = elf_sym_hashes (abfd);
5255 if (sym_hash)
5256 for (symidx = 0; symidx < extsymcount; ++symidx)
5257 if (sym_hash[symidx] == hi)
5258 {
5259 sym_hash[symidx] = h;
5260 break;
5261 }
5262 }
5263 free (shortname);
5264 }
5265 free (nondeflt_vers);
5266 nondeflt_vers = NULL;
5267 }
5268
5269 /* Now set the alias field correctly for all the weak defined
5270 symbols we found. The only way to do this is to search all the
5271 symbols. Since we only need the information for non functions in
5272 dynamic objects, that's the only time we actually put anything on
5273 the list WEAKS. We need this information so that if a regular
5274 object refers to a symbol defined weakly in a dynamic object, the
5275 real symbol in the dynamic object is also put in the dynamic
5276 symbols; we also must arrange for both symbols to point to the
5277 same memory location. We could handle the general case of symbol
5278 aliasing, but a general symbol alias can only be generated in
5279 assembler code, handling it correctly would be very time
5280 consuming, and other ELF linkers don't handle general aliasing
5281 either. */
5282 if (weaks != NULL)
5283 {
5284 struct elf_link_hash_entry **hpp;
5285 struct elf_link_hash_entry **hppend;
5286 struct elf_link_hash_entry **sorted_sym_hash;
5287 struct elf_link_hash_entry *h;
5288 size_t sym_count;
5289
5290 /* Since we have to search the whole symbol list for each weak
5291 defined symbol, search time for N weak defined symbols will be
5292 O(N^2). Binary search will cut it down to O(NlogN). */
5293 amt = extsymcount;
5294 amt *= sizeof (struct elf_link_hash_entry *);
5295 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5296 if (sorted_sym_hash == NULL)
5297 goto error_return;
5298 sym_hash = sorted_sym_hash;
5299 hpp = elf_sym_hashes (abfd);
5300 hppend = hpp + extsymcount;
5301 sym_count = 0;
5302 for (; hpp < hppend; hpp++)
5303 {
5304 h = *hpp;
5305 if (h != NULL
5306 && h->root.type == bfd_link_hash_defined
5307 && !bed->is_function_type (h->type))
5308 {
5309 *sym_hash = h;
5310 sym_hash++;
5311 sym_count++;
5312 }
5313 }
5314
5315 qsort (sorted_sym_hash, sym_count,
5316 sizeof (struct elf_link_hash_entry *),
5317 elf_sort_symbol);
5318
5319 while (weaks != NULL)
5320 {
5321 struct elf_link_hash_entry *hlook;
5322 asection *slook;
5323 bfd_vma vlook;
5324 size_t i, j, idx = 0;
5325
5326 hlook = weaks;
5327 weaks = hlook->u.alias;
5328 hlook->u.alias = NULL;
5329
5330 if (hlook->root.type != bfd_link_hash_defined
5331 && hlook->root.type != bfd_link_hash_defweak)
5332 continue;
5333
5334 slook = hlook->root.u.def.section;
5335 vlook = hlook->root.u.def.value;
5336
5337 i = 0;
5338 j = sym_count;
5339 while (i != j)
5340 {
5341 bfd_signed_vma vdiff;
5342 idx = (i + j) / 2;
5343 h = sorted_sym_hash[idx];
5344 vdiff = vlook - h->root.u.def.value;
5345 if (vdiff < 0)
5346 j = idx;
5347 else if (vdiff > 0)
5348 i = idx + 1;
5349 else
5350 {
5351 int sdiff = slook->id - h->root.u.def.section->id;
5352 if (sdiff < 0)
5353 j = idx;
5354 else if (sdiff > 0)
5355 i = idx + 1;
5356 else
5357 break;
5358 }
5359 }
5360
5361 /* We didn't find a value/section match. */
5362 if (i == j)
5363 continue;
5364
5365 /* With multiple aliases, or when the weak symbol is already
5366 strongly defined, we have multiple matching symbols and
5367 the binary search above may land on any of them. Step
5368 one past the matching symbol(s). */
5369 while (++idx != j)
5370 {
5371 h = sorted_sym_hash[idx];
5372 if (h->root.u.def.section != slook
5373 || h->root.u.def.value != vlook)
5374 break;
5375 }
5376
5377 /* Now look back over the aliases. Since we sorted by size
5378 as well as value and section, we'll choose the one with
5379 the largest size. */
5380 while (idx-- != i)
5381 {
5382 h = sorted_sym_hash[idx];
5383
5384 /* Stop if value or section doesn't match. */
5385 if (h->root.u.def.section != slook
5386 || h->root.u.def.value != vlook)
5387 break;
5388 else if (h != hlook)
5389 {
5390 struct elf_link_hash_entry *t;
5391
5392 hlook->u.alias = h;
5393 hlook->is_weakalias = 1;
5394 t = h;
5395 if (t->u.alias != NULL)
5396 while (t->u.alias != h)
5397 t = t->u.alias;
5398 t->u.alias = hlook;
5399
5400 /* If the weak definition is in the list of dynamic
5401 symbols, make sure the real definition is put
5402 there as well. */
5403 if (hlook->dynindx != -1 && h->dynindx == -1)
5404 {
5405 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5406 {
5407 err_free_sym_hash:
5408 free (sorted_sym_hash);
5409 goto error_return;
5410 }
5411 }
5412
5413 /* If the real definition is in the list of dynamic
5414 symbols, make sure the weak definition is put
5415 there as well. If we don't do this, then the
5416 dynamic loader might not merge the entries for the
5417 real definition and the weak definition. */
5418 if (h->dynindx != -1 && hlook->dynindx == -1)
5419 {
5420 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5421 goto err_free_sym_hash;
5422 }
5423 break;
5424 }
5425 }
5426 }
5427
5428 free (sorted_sym_hash);
5429 }
5430
5431 if (bed->check_directives
5432 && !(*bed->check_directives) (abfd, info))
5433 return FALSE;
5434
5435 /* If this is a non-traditional link, try to optimize the handling
5436 of the .stab/.stabstr sections. */
5437 if (! dynamic
5438 && ! info->traditional_format
5439 && is_elf_hash_table (htab)
5440 && (info->strip != strip_all && info->strip != strip_debugger))
5441 {
5442 asection *stabstr;
5443
5444 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5445 if (stabstr != NULL)
5446 {
5447 bfd_size_type string_offset = 0;
5448 asection *stab;
5449
5450 for (stab = abfd->sections; stab; stab = stab->next)
5451 if (CONST_STRNEQ (stab->name, ".stab")
5452 && (!stab->name[5] ||
5453 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5454 && (stab->flags & SEC_MERGE) == 0
5455 && !bfd_is_abs_section (stab->output_section))
5456 {
5457 struct bfd_elf_section_data *secdata;
5458
5459 secdata = elf_section_data (stab);
5460 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5461 stabstr, &secdata->sec_info,
5462 &string_offset))
5463 goto error_return;
5464 if (secdata->sec_info)
5465 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5466 }
5467 }
5468 }
5469
5470 if (is_elf_hash_table (htab) && add_needed)
5471 {
5472 /* Add this bfd to the loaded list. */
5473 struct elf_link_loaded_list *n;
5474
5475 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5476 if (n == NULL)
5477 goto error_return;
5478 n->abfd = abfd;
5479 n->next = htab->loaded;
5480 htab->loaded = n;
5481 }
5482
5483 return TRUE;
5484
5485 error_free_vers:
5486 if (old_tab != NULL)
5487 free (old_tab);
5488 if (old_strtab != NULL)
5489 free (old_strtab);
5490 if (nondeflt_vers != NULL)
5491 free (nondeflt_vers);
5492 if (extversym != NULL)
5493 free (extversym);
5494 error_free_sym:
5495 if (isymbuf != NULL)
5496 free (isymbuf);
5497 error_return:
5498 return FALSE;
5499 }
5500
5501 /* Return the linker hash table entry of a symbol that might be
5502 satisfied by an archive symbol. Return -1 on error. */
5503
5504 struct elf_link_hash_entry *
5505 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5506 struct bfd_link_info *info,
5507 const char *name)
5508 {
5509 struct elf_link_hash_entry *h;
5510 char *p, *copy;
5511 size_t len, first;
5512
5513 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5514 if (h != NULL)
5515 return h;
5516
5517 /* If this is a default version (the name contains @@), look up the
5518 symbol again with only one `@' as well as without the version.
5519 The effect is that references to the symbol with and without the
5520 version will be matched by the default symbol in the archive. */
5521
5522 p = strchr (name, ELF_VER_CHR);
5523 if (p == NULL || p[1] != ELF_VER_CHR)
5524 return h;
5525
5526 /* First check with only one `@'. */
5527 len = strlen (name);
5528 copy = (char *) bfd_alloc (abfd, len);
5529 if (copy == NULL)
5530 return (struct elf_link_hash_entry *) -1;
5531
5532 first = p - name + 1;
5533 memcpy (copy, name, first);
5534 memcpy (copy + first, name + first + 1, len - first);
5535
5536 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5537 if (h == NULL)
5538 {
5539 /* We also need to check references to the symbol without the
5540 version. */
5541 copy[first - 1] = '\0';
5542 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5543 FALSE, FALSE, TRUE);
5544 }
5545
5546 bfd_release (abfd, copy);
5547 return h;
5548 }
5549
5550 /* Add symbols from an ELF archive file to the linker hash table. We
5551 don't use _bfd_generic_link_add_archive_symbols because we need to
5552 handle versioned symbols.
5553
5554 Fortunately, ELF archive handling is simpler than that done by
5555 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5556 oddities. In ELF, if we find a symbol in the archive map, and the
5557 symbol is currently undefined, we know that we must pull in that
5558 object file.
5559
5560 Unfortunately, we do have to make multiple passes over the symbol
5561 table until nothing further is resolved. */
5562
5563 static bfd_boolean
5564 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5565 {
5566 symindex c;
5567 unsigned char *included = NULL;
5568 carsym *symdefs;
5569 bfd_boolean loop;
5570 bfd_size_type amt;
5571 const struct elf_backend_data *bed;
5572 struct elf_link_hash_entry * (*archive_symbol_lookup)
5573 (bfd *, struct bfd_link_info *, const char *);
5574
5575 if (! bfd_has_map (abfd))
5576 {
5577 /* An empty archive is a special case. */
5578 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5579 return TRUE;
5580 bfd_set_error (bfd_error_no_armap);
5581 return FALSE;
5582 }
5583
5584 /* Keep track of all symbols we know to be already defined, and all
5585 files we know to be already included. This is to speed up the
5586 second and subsequent passes. */
5587 c = bfd_ardata (abfd)->symdef_count;
5588 if (c == 0)
5589 return TRUE;
5590 amt = c;
5591 amt *= sizeof (*included);
5592 included = (unsigned char *) bfd_zmalloc (amt);
5593 if (included == NULL)
5594 return FALSE;
5595
5596 symdefs = bfd_ardata (abfd)->symdefs;
5597 bed = get_elf_backend_data (abfd);
5598 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5599
5600 do
5601 {
5602 file_ptr last;
5603 symindex i;
5604 carsym *symdef;
5605 carsym *symdefend;
5606
5607 loop = FALSE;
5608 last = -1;
5609
5610 symdef = symdefs;
5611 symdefend = symdef + c;
5612 for (i = 0; symdef < symdefend; symdef++, i++)
5613 {
5614 struct elf_link_hash_entry *h;
5615 bfd *element;
5616 struct bfd_link_hash_entry *undefs_tail;
5617 symindex mark;
5618
5619 if (included[i])
5620 continue;
5621 if (symdef->file_offset == last)
5622 {
5623 included[i] = TRUE;
5624 continue;
5625 }
5626
5627 h = archive_symbol_lookup (abfd, info, symdef->name);
5628 if (h == (struct elf_link_hash_entry *) -1)
5629 goto error_return;
5630
5631 if (h == NULL)
5632 continue;
5633
5634 if (h->root.type == bfd_link_hash_common)
5635 {
5636 /* We currently have a common symbol. The archive map contains
5637 a reference to this symbol, so we may want to include it. We
5638 only want to include it however, if this archive element
5639 contains a definition of the symbol, not just another common
5640 declaration of it.
5641
5642 Unfortunately some archivers (including GNU ar) will put
5643 declarations of common symbols into their archive maps, as
5644 well as real definitions, so we cannot just go by the archive
5645 map alone. Instead we must read in the element's symbol
5646 table and check that to see what kind of symbol definition
5647 this is. */
5648 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5649 continue;
5650 }
5651 else if (h->root.type != bfd_link_hash_undefined)
5652 {
5653 if (h->root.type != bfd_link_hash_undefweak)
5654 /* Symbol must be defined. Don't check it again. */
5655 included[i] = TRUE;
5656 continue;
5657 }
5658
5659 /* We need to include this archive member. */
5660 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5661 if (element == NULL)
5662 goto error_return;
5663
5664 if (! bfd_check_format (element, bfd_object))
5665 goto error_return;
5666
5667 undefs_tail = info->hash->undefs_tail;
5668
5669 if (!(*info->callbacks
5670 ->add_archive_element) (info, element, symdef->name, &element))
5671 continue;
5672 if (!bfd_link_add_symbols (element, info))
5673 goto error_return;
5674
5675 /* If there are any new undefined symbols, we need to make
5676 another pass through the archive in order to see whether
5677 they can be defined. FIXME: This isn't perfect, because
5678 common symbols wind up on undefs_tail and because an
5679 undefined symbol which is defined later on in this pass
5680 does not require another pass. This isn't a bug, but it
5681 does make the code less efficient than it could be. */
5682 if (undefs_tail != info->hash->undefs_tail)
5683 loop = TRUE;
5684
5685 /* Look backward to mark all symbols from this object file
5686 which we have already seen in this pass. */
5687 mark = i;
5688 do
5689 {
5690 included[mark] = TRUE;
5691 if (mark == 0)
5692 break;
5693 --mark;
5694 }
5695 while (symdefs[mark].file_offset == symdef->file_offset);
5696
5697 /* We mark subsequent symbols from this object file as we go
5698 on through the loop. */
5699 last = symdef->file_offset;
5700 }
5701 }
5702 while (loop);
5703
5704 free (included);
5705
5706 return TRUE;
5707
5708 error_return:
5709 if (included != NULL)
5710 free (included);
5711 return FALSE;
5712 }
5713
5714 /* Given an ELF BFD, add symbols to the global hash table as
5715 appropriate. */
5716
5717 bfd_boolean
5718 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5719 {
5720 switch (bfd_get_format (abfd))
5721 {
5722 case bfd_object:
5723 return elf_link_add_object_symbols (abfd, info);
5724 case bfd_archive:
5725 return elf_link_add_archive_symbols (abfd, info);
5726 default:
5727 bfd_set_error (bfd_error_wrong_format);
5728 return FALSE;
5729 }
5730 }
5731 \f
5732 struct hash_codes_info
5733 {
5734 unsigned long *hashcodes;
5735 bfd_boolean error;
5736 };
5737
5738 /* This function will be called though elf_link_hash_traverse to store
5739 all hash value of the exported symbols in an array. */
5740
5741 static bfd_boolean
5742 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5743 {
5744 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5745 const char *name;
5746 unsigned long ha;
5747 char *alc = NULL;
5748
5749 /* Ignore indirect symbols. These are added by the versioning code. */
5750 if (h->dynindx == -1)
5751 return TRUE;
5752
5753 name = h->root.root.string;
5754 if (h->versioned >= versioned)
5755 {
5756 char *p = strchr (name, ELF_VER_CHR);
5757 if (p != NULL)
5758 {
5759 alc = (char *) bfd_malloc (p - name + 1);
5760 if (alc == NULL)
5761 {
5762 inf->error = TRUE;
5763 return FALSE;
5764 }
5765 memcpy (alc, name, p - name);
5766 alc[p - name] = '\0';
5767 name = alc;
5768 }
5769 }
5770
5771 /* Compute the hash value. */
5772 ha = bfd_elf_hash (name);
5773
5774 /* Store the found hash value in the array given as the argument. */
5775 *(inf->hashcodes)++ = ha;
5776
5777 /* And store it in the struct so that we can put it in the hash table
5778 later. */
5779 h->u.elf_hash_value = ha;
5780
5781 if (alc != NULL)
5782 free (alc);
5783
5784 return TRUE;
5785 }
5786
5787 struct collect_gnu_hash_codes
5788 {
5789 bfd *output_bfd;
5790 const struct elf_backend_data *bed;
5791 unsigned long int nsyms;
5792 unsigned long int maskbits;
5793 unsigned long int *hashcodes;
5794 unsigned long int *hashval;
5795 unsigned long int *indx;
5796 unsigned long int *counts;
5797 bfd_vma *bitmask;
5798 bfd_byte *contents;
5799 long int min_dynindx;
5800 unsigned long int bucketcount;
5801 unsigned long int symindx;
5802 long int local_indx;
5803 long int shift1, shift2;
5804 unsigned long int mask;
5805 bfd_boolean error;
5806 };
5807
5808 /* This function will be called though elf_link_hash_traverse to store
5809 all hash value of the exported symbols in an array. */
5810
5811 static bfd_boolean
5812 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5813 {
5814 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5815 const char *name;
5816 unsigned long ha;
5817 char *alc = NULL;
5818
5819 /* Ignore indirect symbols. These are added by the versioning code. */
5820 if (h->dynindx == -1)
5821 return TRUE;
5822
5823 /* Ignore also local symbols and undefined symbols. */
5824 if (! (*s->bed->elf_hash_symbol) (h))
5825 return TRUE;
5826
5827 name = h->root.root.string;
5828 if (h->versioned >= versioned)
5829 {
5830 char *p = strchr (name, ELF_VER_CHR);
5831 if (p != NULL)
5832 {
5833 alc = (char *) bfd_malloc (p - name + 1);
5834 if (alc == NULL)
5835 {
5836 s->error = TRUE;
5837 return FALSE;
5838 }
5839 memcpy (alc, name, p - name);
5840 alc[p - name] = '\0';
5841 name = alc;
5842 }
5843 }
5844
5845 /* Compute the hash value. */
5846 ha = bfd_elf_gnu_hash (name);
5847
5848 /* Store the found hash value in the array for compute_bucket_count,
5849 and also for .dynsym reordering purposes. */
5850 s->hashcodes[s->nsyms] = ha;
5851 s->hashval[h->dynindx] = ha;
5852 ++s->nsyms;
5853 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5854 s->min_dynindx = h->dynindx;
5855
5856 if (alc != NULL)
5857 free (alc);
5858
5859 return TRUE;
5860 }
5861
5862 /* This function will be called though elf_link_hash_traverse to do
5863 final dynaminc symbol renumbering. */
5864
5865 static bfd_boolean
5866 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5867 {
5868 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5869 unsigned long int bucket;
5870 unsigned long int val;
5871
5872 /* Ignore indirect symbols. */
5873 if (h->dynindx == -1)
5874 return TRUE;
5875
5876 /* Ignore also local symbols and undefined symbols. */
5877 if (! (*s->bed->elf_hash_symbol) (h))
5878 {
5879 if (h->dynindx >= s->min_dynindx)
5880 h->dynindx = s->local_indx++;
5881 return TRUE;
5882 }
5883
5884 bucket = s->hashval[h->dynindx] % s->bucketcount;
5885 val = (s->hashval[h->dynindx] >> s->shift1)
5886 & ((s->maskbits >> s->shift1) - 1);
5887 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5888 s->bitmask[val]
5889 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5890 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5891 if (s->counts[bucket] == 1)
5892 /* Last element terminates the chain. */
5893 val |= 1;
5894 bfd_put_32 (s->output_bfd, val,
5895 s->contents + (s->indx[bucket] - s->symindx) * 4);
5896 --s->counts[bucket];
5897 h->dynindx = s->indx[bucket]++;
5898 return TRUE;
5899 }
5900
5901 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5902
5903 bfd_boolean
5904 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5905 {
5906 return !(h->forced_local
5907 || h->root.type == bfd_link_hash_undefined
5908 || h->root.type == bfd_link_hash_undefweak
5909 || ((h->root.type == bfd_link_hash_defined
5910 || h->root.type == bfd_link_hash_defweak)
5911 && h->root.u.def.section->output_section == NULL));
5912 }
5913
5914 /* Array used to determine the number of hash table buckets to use
5915 based on the number of symbols there are. If there are fewer than
5916 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5917 fewer than 37 we use 17 buckets, and so forth. We never use more
5918 than 32771 buckets. */
5919
5920 static const size_t elf_buckets[] =
5921 {
5922 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5923 16411, 32771, 0
5924 };
5925
5926 /* Compute bucket count for hashing table. We do not use a static set
5927 of possible tables sizes anymore. Instead we determine for all
5928 possible reasonable sizes of the table the outcome (i.e., the
5929 number of collisions etc) and choose the best solution. The
5930 weighting functions are not too simple to allow the table to grow
5931 without bounds. Instead one of the weighting factors is the size.
5932 Therefore the result is always a good payoff between few collisions
5933 (= short chain lengths) and table size. */
5934 static size_t
5935 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5936 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5937 unsigned long int nsyms,
5938 int gnu_hash)
5939 {
5940 size_t best_size = 0;
5941 unsigned long int i;
5942
5943 /* We have a problem here. The following code to optimize the table
5944 size requires an integer type with more the 32 bits. If
5945 BFD_HOST_U_64_BIT is set we know about such a type. */
5946 #ifdef BFD_HOST_U_64_BIT
5947 if (info->optimize)
5948 {
5949 size_t minsize;
5950 size_t maxsize;
5951 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5952 bfd *dynobj = elf_hash_table (info)->dynobj;
5953 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5954 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5955 unsigned long int *counts;
5956 bfd_size_type amt;
5957 unsigned int no_improvement_count = 0;
5958
5959 /* Possible optimization parameters: if we have NSYMS symbols we say
5960 that the hashing table must at least have NSYMS/4 and at most
5961 2*NSYMS buckets. */
5962 minsize = nsyms / 4;
5963 if (minsize == 0)
5964 minsize = 1;
5965 best_size = maxsize = nsyms * 2;
5966 if (gnu_hash)
5967 {
5968 if (minsize < 2)
5969 minsize = 2;
5970 if ((best_size & 31) == 0)
5971 ++best_size;
5972 }
5973
5974 /* Create array where we count the collisions in. We must use bfd_malloc
5975 since the size could be large. */
5976 amt = maxsize;
5977 amt *= sizeof (unsigned long int);
5978 counts = (unsigned long int *) bfd_malloc (amt);
5979 if (counts == NULL)
5980 return 0;
5981
5982 /* Compute the "optimal" size for the hash table. The criteria is a
5983 minimal chain length. The minor criteria is (of course) the size
5984 of the table. */
5985 for (i = minsize; i < maxsize; ++i)
5986 {
5987 /* Walk through the array of hashcodes and count the collisions. */
5988 BFD_HOST_U_64_BIT max;
5989 unsigned long int j;
5990 unsigned long int fact;
5991
5992 if (gnu_hash && (i & 31) == 0)
5993 continue;
5994
5995 memset (counts, '\0', i * sizeof (unsigned long int));
5996
5997 /* Determine how often each hash bucket is used. */
5998 for (j = 0; j < nsyms; ++j)
5999 ++counts[hashcodes[j] % i];
6000
6001 /* For the weight function we need some information about the
6002 pagesize on the target. This is information need not be 100%
6003 accurate. Since this information is not available (so far) we
6004 define it here to a reasonable default value. If it is crucial
6005 to have a better value some day simply define this value. */
6006 # ifndef BFD_TARGET_PAGESIZE
6007 # define BFD_TARGET_PAGESIZE (4096)
6008 # endif
6009
6010 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6011 and the chains. */
6012 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6013
6014 # if 1
6015 /* Variant 1: optimize for short chains. We add the squares
6016 of all the chain lengths (which favors many small chain
6017 over a few long chains). */
6018 for (j = 0; j < i; ++j)
6019 max += counts[j] * counts[j];
6020
6021 /* This adds penalties for the overall size of the table. */
6022 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6023 max *= fact * fact;
6024 # else
6025 /* Variant 2: Optimize a lot more for small table. Here we
6026 also add squares of the size but we also add penalties for
6027 empty slots (the +1 term). */
6028 for (j = 0; j < i; ++j)
6029 max += (1 + counts[j]) * (1 + counts[j]);
6030
6031 /* The overall size of the table is considered, but not as
6032 strong as in variant 1, where it is squared. */
6033 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6034 max *= fact;
6035 # endif
6036
6037 /* Compare with current best results. */
6038 if (max < best_chlen)
6039 {
6040 best_chlen = max;
6041 best_size = i;
6042 no_improvement_count = 0;
6043 }
6044 /* PR 11843: Avoid futile long searches for the best bucket size
6045 when there are a large number of symbols. */
6046 else if (++no_improvement_count == 100)
6047 break;
6048 }
6049
6050 free (counts);
6051 }
6052 else
6053 #endif /* defined (BFD_HOST_U_64_BIT) */
6054 {
6055 /* This is the fallback solution if no 64bit type is available or if we
6056 are not supposed to spend much time on optimizations. We select the
6057 bucket count using a fixed set of numbers. */
6058 for (i = 0; elf_buckets[i] != 0; i++)
6059 {
6060 best_size = elf_buckets[i];
6061 if (nsyms < elf_buckets[i + 1])
6062 break;
6063 }
6064 if (gnu_hash && best_size < 2)
6065 best_size = 2;
6066 }
6067
6068 return best_size;
6069 }
6070
6071 /* Size any SHT_GROUP section for ld -r. */
6072
6073 bfd_boolean
6074 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6075 {
6076 bfd *ibfd;
6077 asection *s;
6078
6079 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6080 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6081 && (s = ibfd->sections) != NULL
6082 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6083 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6084 return FALSE;
6085 return TRUE;
6086 }
6087
6088 /* Set a default stack segment size. The value in INFO wins. If it
6089 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6090 undefined it is initialized. */
6091
6092 bfd_boolean
6093 bfd_elf_stack_segment_size (bfd *output_bfd,
6094 struct bfd_link_info *info,
6095 const char *legacy_symbol,
6096 bfd_vma default_size)
6097 {
6098 struct elf_link_hash_entry *h = NULL;
6099
6100 /* Look for legacy symbol. */
6101 if (legacy_symbol)
6102 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6103 FALSE, FALSE, FALSE);
6104 if (h && (h->root.type == bfd_link_hash_defined
6105 || h->root.type == bfd_link_hash_defweak)
6106 && h->def_regular
6107 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6108 {
6109 /* The symbol has no type if specified on the command line. */
6110 h->type = STT_OBJECT;
6111 if (info->stacksize)
6112 /* xgettext:c-format */
6113 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6114 output_bfd, legacy_symbol);
6115 else if (h->root.u.def.section != bfd_abs_section_ptr)
6116 /* xgettext:c-format */
6117 _bfd_error_handler (_("%pB: %s not absolute"),
6118 output_bfd, legacy_symbol);
6119 else
6120 info->stacksize = h->root.u.def.value;
6121 }
6122
6123 if (!info->stacksize)
6124 /* If the user didn't set a size, or explicitly inhibit the
6125 size, set it now. */
6126 info->stacksize = default_size;
6127
6128 /* Provide the legacy symbol, if it is referenced. */
6129 if (h && (h->root.type == bfd_link_hash_undefined
6130 || h->root.type == bfd_link_hash_undefweak))
6131 {
6132 struct bfd_link_hash_entry *bh = NULL;
6133
6134 if (!(_bfd_generic_link_add_one_symbol
6135 (info, output_bfd, legacy_symbol,
6136 BSF_GLOBAL, bfd_abs_section_ptr,
6137 info->stacksize >= 0 ? info->stacksize : 0,
6138 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6139 return FALSE;
6140
6141 h = (struct elf_link_hash_entry *) bh;
6142 h->def_regular = 1;
6143 h->type = STT_OBJECT;
6144 }
6145
6146 return TRUE;
6147 }
6148
6149 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6150
6151 struct elf_gc_sweep_symbol_info
6152 {
6153 struct bfd_link_info *info;
6154 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6155 bfd_boolean);
6156 };
6157
6158 static bfd_boolean
6159 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6160 {
6161 if (!h->mark
6162 && (((h->root.type == bfd_link_hash_defined
6163 || h->root.type == bfd_link_hash_defweak)
6164 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6165 && h->root.u.def.section->gc_mark))
6166 || h->root.type == bfd_link_hash_undefined
6167 || h->root.type == bfd_link_hash_undefweak))
6168 {
6169 struct elf_gc_sweep_symbol_info *inf;
6170
6171 inf = (struct elf_gc_sweep_symbol_info *) data;
6172 (*inf->hide_symbol) (inf->info, h, TRUE);
6173 h->def_regular = 0;
6174 h->ref_regular = 0;
6175 h->ref_regular_nonweak = 0;
6176 }
6177
6178 return TRUE;
6179 }
6180
6181 /* Set up the sizes and contents of the ELF dynamic sections. This is
6182 called by the ELF linker emulation before_allocation routine. We
6183 must set the sizes of the sections before the linker sets the
6184 addresses of the various sections. */
6185
6186 bfd_boolean
6187 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6188 const char *soname,
6189 const char *rpath,
6190 const char *filter_shlib,
6191 const char *audit,
6192 const char *depaudit,
6193 const char * const *auxiliary_filters,
6194 struct bfd_link_info *info,
6195 asection **sinterpptr)
6196 {
6197 bfd *dynobj;
6198 const struct elf_backend_data *bed;
6199
6200 *sinterpptr = NULL;
6201
6202 if (!is_elf_hash_table (info->hash))
6203 return TRUE;
6204
6205 dynobj = elf_hash_table (info)->dynobj;
6206
6207 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6208 {
6209 struct bfd_elf_version_tree *verdefs;
6210 struct elf_info_failed asvinfo;
6211 struct bfd_elf_version_tree *t;
6212 struct bfd_elf_version_expr *d;
6213 asection *s;
6214 size_t soname_indx;
6215
6216 /* If we are supposed to export all symbols into the dynamic symbol
6217 table (this is not the normal case), then do so. */
6218 if (info->export_dynamic
6219 || (bfd_link_executable (info) && info->dynamic))
6220 {
6221 struct elf_info_failed eif;
6222
6223 eif.info = info;
6224 eif.failed = FALSE;
6225 elf_link_hash_traverse (elf_hash_table (info),
6226 _bfd_elf_export_symbol,
6227 &eif);
6228 if (eif.failed)
6229 return FALSE;
6230 }
6231
6232 if (soname != NULL)
6233 {
6234 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6235 soname, TRUE);
6236 if (soname_indx == (size_t) -1
6237 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6238 return FALSE;
6239 }
6240 else
6241 soname_indx = (size_t) -1;
6242
6243 /* Make all global versions with definition. */
6244 for (t = info->version_info; t != NULL; t = t->next)
6245 for (d = t->globals.list; d != NULL; d = d->next)
6246 if (!d->symver && d->literal)
6247 {
6248 const char *verstr, *name;
6249 size_t namelen, verlen, newlen;
6250 char *newname, *p, leading_char;
6251 struct elf_link_hash_entry *newh;
6252
6253 leading_char = bfd_get_symbol_leading_char (output_bfd);
6254 name = d->pattern;
6255 namelen = strlen (name) + (leading_char != '\0');
6256 verstr = t->name;
6257 verlen = strlen (verstr);
6258 newlen = namelen + verlen + 3;
6259
6260 newname = (char *) bfd_malloc (newlen);
6261 if (newname == NULL)
6262 return FALSE;
6263 newname[0] = leading_char;
6264 memcpy (newname + (leading_char != '\0'), name, namelen);
6265
6266 /* Check the hidden versioned definition. */
6267 p = newname + namelen;
6268 *p++ = ELF_VER_CHR;
6269 memcpy (p, verstr, verlen + 1);
6270 newh = elf_link_hash_lookup (elf_hash_table (info),
6271 newname, FALSE, FALSE,
6272 FALSE);
6273 if (newh == NULL
6274 || (newh->root.type != bfd_link_hash_defined
6275 && newh->root.type != bfd_link_hash_defweak))
6276 {
6277 /* Check the default versioned definition. */
6278 *p++ = ELF_VER_CHR;
6279 memcpy (p, verstr, verlen + 1);
6280 newh = elf_link_hash_lookup (elf_hash_table (info),
6281 newname, FALSE, FALSE,
6282 FALSE);
6283 }
6284 free (newname);
6285
6286 /* Mark this version if there is a definition and it is
6287 not defined in a shared object. */
6288 if (newh != NULL
6289 && !newh->def_dynamic
6290 && (newh->root.type == bfd_link_hash_defined
6291 || newh->root.type == bfd_link_hash_defweak))
6292 d->symver = 1;
6293 }
6294
6295 /* Attach all the symbols to their version information. */
6296 asvinfo.info = info;
6297 asvinfo.failed = FALSE;
6298
6299 elf_link_hash_traverse (elf_hash_table (info),
6300 _bfd_elf_link_assign_sym_version,
6301 &asvinfo);
6302 if (asvinfo.failed)
6303 return FALSE;
6304
6305 if (!info->allow_undefined_version)
6306 {
6307 /* Check if all global versions have a definition. */
6308 bfd_boolean all_defined = TRUE;
6309 for (t = info->version_info; t != NULL; t = t->next)
6310 for (d = t->globals.list; d != NULL; d = d->next)
6311 if (d->literal && !d->symver && !d->script)
6312 {
6313 _bfd_error_handler
6314 (_("%s: undefined version: %s"),
6315 d->pattern, t->name);
6316 all_defined = FALSE;
6317 }
6318
6319 if (!all_defined)
6320 {
6321 bfd_set_error (bfd_error_bad_value);
6322 return FALSE;
6323 }
6324 }
6325
6326 /* Set up the version definition section. */
6327 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6328 BFD_ASSERT (s != NULL);
6329
6330 /* We may have created additional version definitions if we are
6331 just linking a regular application. */
6332 verdefs = info->version_info;
6333
6334 /* Skip anonymous version tag. */
6335 if (verdefs != NULL && verdefs->vernum == 0)
6336 verdefs = verdefs->next;
6337
6338 if (verdefs == NULL && !info->create_default_symver)
6339 s->flags |= SEC_EXCLUDE;
6340 else
6341 {
6342 unsigned int cdefs;
6343 bfd_size_type size;
6344 bfd_byte *p;
6345 Elf_Internal_Verdef def;
6346 Elf_Internal_Verdaux defaux;
6347 struct bfd_link_hash_entry *bh;
6348 struct elf_link_hash_entry *h;
6349 const char *name;
6350
6351 cdefs = 0;
6352 size = 0;
6353
6354 /* Make space for the base version. */
6355 size += sizeof (Elf_External_Verdef);
6356 size += sizeof (Elf_External_Verdaux);
6357 ++cdefs;
6358
6359 /* Make space for the default version. */
6360 if (info->create_default_symver)
6361 {
6362 size += sizeof (Elf_External_Verdef);
6363 ++cdefs;
6364 }
6365
6366 for (t = verdefs; t != NULL; t = t->next)
6367 {
6368 struct bfd_elf_version_deps *n;
6369
6370 /* Don't emit base version twice. */
6371 if (t->vernum == 0)
6372 continue;
6373
6374 size += sizeof (Elf_External_Verdef);
6375 size += sizeof (Elf_External_Verdaux);
6376 ++cdefs;
6377
6378 for (n = t->deps; n != NULL; n = n->next)
6379 size += sizeof (Elf_External_Verdaux);
6380 }
6381
6382 s->size = size;
6383 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6384 if (s->contents == NULL && s->size != 0)
6385 return FALSE;
6386
6387 /* Fill in the version definition section. */
6388
6389 p = s->contents;
6390
6391 def.vd_version = VER_DEF_CURRENT;
6392 def.vd_flags = VER_FLG_BASE;
6393 def.vd_ndx = 1;
6394 def.vd_cnt = 1;
6395 if (info->create_default_symver)
6396 {
6397 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6398 def.vd_next = sizeof (Elf_External_Verdef);
6399 }
6400 else
6401 {
6402 def.vd_aux = sizeof (Elf_External_Verdef);
6403 def.vd_next = (sizeof (Elf_External_Verdef)
6404 + sizeof (Elf_External_Verdaux));
6405 }
6406
6407 if (soname_indx != (size_t) -1)
6408 {
6409 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6410 soname_indx);
6411 def.vd_hash = bfd_elf_hash (soname);
6412 defaux.vda_name = soname_indx;
6413 name = soname;
6414 }
6415 else
6416 {
6417 size_t indx;
6418
6419 name = lbasename (output_bfd->filename);
6420 def.vd_hash = bfd_elf_hash (name);
6421 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6422 name, FALSE);
6423 if (indx == (size_t) -1)
6424 return FALSE;
6425 defaux.vda_name = indx;
6426 }
6427 defaux.vda_next = 0;
6428
6429 _bfd_elf_swap_verdef_out (output_bfd, &def,
6430 (Elf_External_Verdef *) p);
6431 p += sizeof (Elf_External_Verdef);
6432 if (info->create_default_symver)
6433 {
6434 /* Add a symbol representing this version. */
6435 bh = NULL;
6436 if (! (_bfd_generic_link_add_one_symbol
6437 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6438 0, NULL, FALSE,
6439 get_elf_backend_data (dynobj)->collect, &bh)))
6440 return FALSE;
6441 h = (struct elf_link_hash_entry *) bh;
6442 h->non_elf = 0;
6443 h->def_regular = 1;
6444 h->type = STT_OBJECT;
6445 h->verinfo.vertree = NULL;
6446
6447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6448 return FALSE;
6449
6450 /* Create a duplicate of the base version with the same
6451 aux block, but different flags. */
6452 def.vd_flags = 0;
6453 def.vd_ndx = 2;
6454 def.vd_aux = sizeof (Elf_External_Verdef);
6455 if (verdefs)
6456 def.vd_next = (sizeof (Elf_External_Verdef)
6457 + sizeof (Elf_External_Verdaux));
6458 else
6459 def.vd_next = 0;
6460 _bfd_elf_swap_verdef_out (output_bfd, &def,
6461 (Elf_External_Verdef *) p);
6462 p += sizeof (Elf_External_Verdef);
6463 }
6464 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6465 (Elf_External_Verdaux *) p);
6466 p += sizeof (Elf_External_Verdaux);
6467
6468 for (t = verdefs; t != NULL; t = t->next)
6469 {
6470 unsigned int cdeps;
6471 struct bfd_elf_version_deps *n;
6472
6473 /* Don't emit the base version twice. */
6474 if (t->vernum == 0)
6475 continue;
6476
6477 cdeps = 0;
6478 for (n = t->deps; n != NULL; n = n->next)
6479 ++cdeps;
6480
6481 /* Add a symbol representing this version. */
6482 bh = NULL;
6483 if (! (_bfd_generic_link_add_one_symbol
6484 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6485 0, NULL, FALSE,
6486 get_elf_backend_data (dynobj)->collect, &bh)))
6487 return FALSE;
6488 h = (struct elf_link_hash_entry *) bh;
6489 h->non_elf = 0;
6490 h->def_regular = 1;
6491 h->type = STT_OBJECT;
6492 h->verinfo.vertree = t;
6493
6494 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6495 return FALSE;
6496
6497 def.vd_version = VER_DEF_CURRENT;
6498 def.vd_flags = 0;
6499 if (t->globals.list == NULL
6500 && t->locals.list == NULL
6501 && ! t->used)
6502 def.vd_flags |= VER_FLG_WEAK;
6503 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6504 def.vd_cnt = cdeps + 1;
6505 def.vd_hash = bfd_elf_hash (t->name);
6506 def.vd_aux = sizeof (Elf_External_Verdef);
6507 def.vd_next = 0;
6508
6509 /* If a basever node is next, it *must* be the last node in
6510 the chain, otherwise Verdef construction breaks. */
6511 if (t->next != NULL && t->next->vernum == 0)
6512 BFD_ASSERT (t->next->next == NULL);
6513
6514 if (t->next != NULL && t->next->vernum != 0)
6515 def.vd_next = (sizeof (Elf_External_Verdef)
6516 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6517
6518 _bfd_elf_swap_verdef_out (output_bfd, &def,
6519 (Elf_External_Verdef *) p);
6520 p += sizeof (Elf_External_Verdef);
6521
6522 defaux.vda_name = h->dynstr_index;
6523 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6524 h->dynstr_index);
6525 defaux.vda_next = 0;
6526 if (t->deps != NULL)
6527 defaux.vda_next = sizeof (Elf_External_Verdaux);
6528 t->name_indx = defaux.vda_name;
6529
6530 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6531 (Elf_External_Verdaux *) p);
6532 p += sizeof (Elf_External_Verdaux);
6533
6534 for (n = t->deps; n != NULL; n = n->next)
6535 {
6536 if (n->version_needed == NULL)
6537 {
6538 /* This can happen if there was an error in the
6539 version script. */
6540 defaux.vda_name = 0;
6541 }
6542 else
6543 {
6544 defaux.vda_name = n->version_needed->name_indx;
6545 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6546 defaux.vda_name);
6547 }
6548 if (n->next == NULL)
6549 defaux.vda_next = 0;
6550 else
6551 defaux.vda_next = sizeof (Elf_External_Verdaux);
6552
6553 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6554 (Elf_External_Verdaux *) p);
6555 p += sizeof (Elf_External_Verdaux);
6556 }
6557 }
6558
6559 elf_tdata (output_bfd)->cverdefs = cdefs;
6560 }
6561 }
6562
6563 bed = get_elf_backend_data (output_bfd);
6564
6565 if (info->gc_sections && bed->can_gc_sections)
6566 {
6567 struct elf_gc_sweep_symbol_info sweep_info;
6568
6569 /* Remove the symbols that were in the swept sections from the
6570 dynamic symbol table. */
6571 sweep_info.info = info;
6572 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6573 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6574 &sweep_info);
6575 }
6576
6577 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6578 {
6579 asection *s;
6580 struct elf_find_verdep_info sinfo;
6581
6582 /* Work out the size of the version reference section. */
6583
6584 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6585 BFD_ASSERT (s != NULL);
6586
6587 sinfo.info = info;
6588 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6589 if (sinfo.vers == 0)
6590 sinfo.vers = 1;
6591 sinfo.failed = FALSE;
6592
6593 elf_link_hash_traverse (elf_hash_table (info),
6594 _bfd_elf_link_find_version_dependencies,
6595 &sinfo);
6596 if (sinfo.failed)
6597 return FALSE;
6598
6599 if (elf_tdata (output_bfd)->verref == NULL)
6600 s->flags |= SEC_EXCLUDE;
6601 else
6602 {
6603 Elf_Internal_Verneed *vn;
6604 unsigned int size;
6605 unsigned int crefs;
6606 bfd_byte *p;
6607
6608 /* Build the version dependency section. */
6609 size = 0;
6610 crefs = 0;
6611 for (vn = elf_tdata (output_bfd)->verref;
6612 vn != NULL;
6613 vn = vn->vn_nextref)
6614 {
6615 Elf_Internal_Vernaux *a;
6616
6617 size += sizeof (Elf_External_Verneed);
6618 ++crefs;
6619 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6620 size += sizeof (Elf_External_Vernaux);
6621 }
6622
6623 s->size = size;
6624 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6625 if (s->contents == NULL)
6626 return FALSE;
6627
6628 p = s->contents;
6629 for (vn = elf_tdata (output_bfd)->verref;
6630 vn != NULL;
6631 vn = vn->vn_nextref)
6632 {
6633 unsigned int caux;
6634 Elf_Internal_Vernaux *a;
6635 size_t indx;
6636
6637 caux = 0;
6638 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6639 ++caux;
6640
6641 vn->vn_version = VER_NEED_CURRENT;
6642 vn->vn_cnt = caux;
6643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6644 elf_dt_name (vn->vn_bfd) != NULL
6645 ? elf_dt_name (vn->vn_bfd)
6646 : lbasename (vn->vn_bfd->filename),
6647 FALSE);
6648 if (indx == (size_t) -1)
6649 return FALSE;
6650 vn->vn_file = indx;
6651 vn->vn_aux = sizeof (Elf_External_Verneed);
6652 if (vn->vn_nextref == NULL)
6653 vn->vn_next = 0;
6654 else
6655 vn->vn_next = (sizeof (Elf_External_Verneed)
6656 + caux * sizeof (Elf_External_Vernaux));
6657
6658 _bfd_elf_swap_verneed_out (output_bfd, vn,
6659 (Elf_External_Verneed *) p);
6660 p += sizeof (Elf_External_Verneed);
6661
6662 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6663 {
6664 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6665 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6666 a->vna_nodename, FALSE);
6667 if (indx == (size_t) -1)
6668 return FALSE;
6669 a->vna_name = indx;
6670 if (a->vna_nextptr == NULL)
6671 a->vna_next = 0;
6672 else
6673 a->vna_next = sizeof (Elf_External_Vernaux);
6674
6675 _bfd_elf_swap_vernaux_out (output_bfd, a,
6676 (Elf_External_Vernaux *) p);
6677 p += sizeof (Elf_External_Vernaux);
6678 }
6679 }
6680
6681 elf_tdata (output_bfd)->cverrefs = crefs;
6682 }
6683 }
6684
6685 /* Any syms created from now on start with -1 in
6686 got.refcount/offset and plt.refcount/offset. */
6687 elf_hash_table (info)->init_got_refcount
6688 = elf_hash_table (info)->init_got_offset;
6689 elf_hash_table (info)->init_plt_refcount
6690 = elf_hash_table (info)->init_plt_offset;
6691
6692 if (bfd_link_relocatable (info)
6693 && !_bfd_elf_size_group_sections (info))
6694 return FALSE;
6695
6696 /* The backend may have to create some sections regardless of whether
6697 we're dynamic or not. */
6698 if (bed->elf_backend_always_size_sections
6699 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6700 return FALSE;
6701
6702 /* Determine any GNU_STACK segment requirements, after the backend
6703 has had a chance to set a default segment size. */
6704 if (info->execstack)
6705 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6706 else if (info->noexecstack)
6707 elf_stack_flags (output_bfd) = PF_R | PF_W;
6708 else
6709 {
6710 bfd *inputobj;
6711 asection *notesec = NULL;
6712 int exec = 0;
6713
6714 for (inputobj = info->input_bfds;
6715 inputobj;
6716 inputobj = inputobj->link.next)
6717 {
6718 asection *s;
6719
6720 if (inputobj->flags
6721 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6722 continue;
6723 s = inputobj->sections;
6724 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6725 continue;
6726
6727 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6728 if (s)
6729 {
6730 if (s->flags & SEC_CODE)
6731 exec = PF_X;
6732 notesec = s;
6733 }
6734 else if (bed->default_execstack)
6735 exec = PF_X;
6736 }
6737 if (notesec || info->stacksize > 0)
6738 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6739 if (notesec && exec && bfd_link_relocatable (info)
6740 && notesec->output_section != bfd_abs_section_ptr)
6741 notesec->output_section->flags |= SEC_CODE;
6742 }
6743
6744 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6745 {
6746 struct elf_info_failed eif;
6747 struct elf_link_hash_entry *h;
6748 asection *dynstr;
6749 asection *s;
6750
6751 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6752 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6753
6754 if (info->symbolic)
6755 {
6756 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6757 return FALSE;
6758 info->flags |= DF_SYMBOLIC;
6759 }
6760
6761 if (rpath != NULL)
6762 {
6763 size_t indx;
6764 bfd_vma tag;
6765
6766 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6767 TRUE);
6768 if (indx == (size_t) -1)
6769 return FALSE;
6770
6771 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6772 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6773 return FALSE;
6774 }
6775
6776 if (filter_shlib != NULL)
6777 {
6778 size_t indx;
6779
6780 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6781 filter_shlib, TRUE);
6782 if (indx == (size_t) -1
6783 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6784 return FALSE;
6785 }
6786
6787 if (auxiliary_filters != NULL)
6788 {
6789 const char * const *p;
6790
6791 for (p = auxiliary_filters; *p != NULL; p++)
6792 {
6793 size_t indx;
6794
6795 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6796 *p, TRUE);
6797 if (indx == (size_t) -1
6798 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6799 return FALSE;
6800 }
6801 }
6802
6803 if (audit != NULL)
6804 {
6805 size_t indx;
6806
6807 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6808 TRUE);
6809 if (indx == (size_t) -1
6810 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6811 return FALSE;
6812 }
6813
6814 if (depaudit != NULL)
6815 {
6816 size_t indx;
6817
6818 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6819 TRUE);
6820 if (indx == (size_t) -1
6821 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6822 return FALSE;
6823 }
6824
6825 eif.info = info;
6826 eif.failed = FALSE;
6827
6828 /* Find all symbols which were defined in a dynamic object and make
6829 the backend pick a reasonable value for them. */
6830 elf_link_hash_traverse (elf_hash_table (info),
6831 _bfd_elf_adjust_dynamic_symbol,
6832 &eif);
6833 if (eif.failed)
6834 return FALSE;
6835
6836 /* Add some entries to the .dynamic section. We fill in some of the
6837 values later, in bfd_elf_final_link, but we must add the entries
6838 now so that we know the final size of the .dynamic section. */
6839
6840 /* If there are initialization and/or finalization functions to
6841 call then add the corresponding DT_INIT/DT_FINI entries. */
6842 h = (info->init_function
6843 ? elf_link_hash_lookup (elf_hash_table (info),
6844 info->init_function, FALSE,
6845 FALSE, FALSE)
6846 : NULL);
6847 if (h != NULL
6848 && (h->ref_regular
6849 || h->def_regular))
6850 {
6851 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6852 return FALSE;
6853 }
6854 h = (info->fini_function
6855 ? elf_link_hash_lookup (elf_hash_table (info),
6856 info->fini_function, FALSE,
6857 FALSE, FALSE)
6858 : NULL);
6859 if (h != NULL
6860 && (h->ref_regular
6861 || h->def_regular))
6862 {
6863 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6864 return FALSE;
6865 }
6866
6867 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6868 if (s != NULL && s->linker_has_input)
6869 {
6870 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6871 if (! bfd_link_executable (info))
6872 {
6873 bfd *sub;
6874 asection *o;
6875
6876 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6877 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6878 && (o = sub->sections) != NULL
6879 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6880 for (o = sub->sections; o != NULL; o = o->next)
6881 if (elf_section_data (o)->this_hdr.sh_type
6882 == SHT_PREINIT_ARRAY)
6883 {
6884 _bfd_error_handler
6885 (_("%pB: .preinit_array section is not allowed in DSO"),
6886 sub);
6887 break;
6888 }
6889
6890 bfd_set_error (bfd_error_nonrepresentable_section);
6891 return FALSE;
6892 }
6893
6894 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6895 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6896 return FALSE;
6897 }
6898 s = bfd_get_section_by_name (output_bfd, ".init_array");
6899 if (s != NULL && s->linker_has_input)
6900 {
6901 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6902 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6903 return FALSE;
6904 }
6905 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6906 if (s != NULL && s->linker_has_input)
6907 {
6908 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6909 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6910 return FALSE;
6911 }
6912
6913 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6914 /* If .dynstr is excluded from the link, we don't want any of
6915 these tags. Strictly, we should be checking each section
6916 individually; This quick check covers for the case where
6917 someone does a /DISCARD/ : { *(*) }. */
6918 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6919 {
6920 bfd_size_type strsize;
6921
6922 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6923 if ((info->emit_hash
6924 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6925 || (info->emit_gnu_hash
6926 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6927 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6928 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6929 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6930 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6931 bed->s->sizeof_sym))
6932 return FALSE;
6933 }
6934 }
6935
6936 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6937 return FALSE;
6938
6939 /* The backend must work out the sizes of all the other dynamic
6940 sections. */
6941 if (dynobj != NULL
6942 && bed->elf_backend_size_dynamic_sections != NULL
6943 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6944 return FALSE;
6945
6946 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6947 {
6948 if (elf_tdata (output_bfd)->cverdefs)
6949 {
6950 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6951
6952 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6953 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6954 return FALSE;
6955 }
6956
6957 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6958 {
6959 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6960 return FALSE;
6961 }
6962 else if (info->flags & DF_BIND_NOW)
6963 {
6964 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6965 return FALSE;
6966 }
6967
6968 if (info->flags_1)
6969 {
6970 if (bfd_link_executable (info))
6971 info->flags_1 &= ~ (DF_1_INITFIRST
6972 | DF_1_NODELETE
6973 | DF_1_NOOPEN);
6974 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6975 return FALSE;
6976 }
6977
6978 if (elf_tdata (output_bfd)->cverrefs)
6979 {
6980 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6981
6982 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6983 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6984 return FALSE;
6985 }
6986
6987 if ((elf_tdata (output_bfd)->cverrefs == 0
6988 && elf_tdata (output_bfd)->cverdefs == 0)
6989 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
6990 {
6991 asection *s;
6992
6993 s = bfd_get_linker_section (dynobj, ".gnu.version");
6994 s->flags |= SEC_EXCLUDE;
6995 }
6996 }
6997 return TRUE;
6998 }
6999
7000 /* Find the first non-excluded output section. We'll use its
7001 section symbol for some emitted relocs. */
7002 void
7003 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7004 {
7005 asection *s;
7006
7007 for (s = output_bfd->sections; s != NULL; s = s->next)
7008 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7009 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7010 {
7011 elf_hash_table (info)->text_index_section = s;
7012 break;
7013 }
7014 }
7015
7016 /* Find two non-excluded output sections, one for code, one for data.
7017 We'll use their section symbols for some emitted relocs. */
7018 void
7019 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7020 {
7021 asection *s;
7022
7023 /* Data first, since setting text_index_section changes
7024 _bfd_elf_omit_section_dynsym_default. */
7025 for (s = output_bfd->sections; s != NULL; s = s->next)
7026 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
7027 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7028 {
7029 elf_hash_table (info)->data_index_section = s;
7030 break;
7031 }
7032
7033 for (s = output_bfd->sections; s != NULL; s = s->next)
7034 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
7035 == (SEC_ALLOC | SEC_READONLY))
7036 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7037 {
7038 elf_hash_table (info)->text_index_section = s;
7039 break;
7040 }
7041
7042 if (elf_hash_table (info)->text_index_section == NULL)
7043 elf_hash_table (info)->text_index_section
7044 = elf_hash_table (info)->data_index_section;
7045 }
7046
7047 bfd_boolean
7048 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7049 {
7050 const struct elf_backend_data *bed;
7051 unsigned long section_sym_count;
7052 bfd_size_type dynsymcount = 0;
7053
7054 if (!is_elf_hash_table (info->hash))
7055 return TRUE;
7056
7057 bed = get_elf_backend_data (output_bfd);
7058 (*bed->elf_backend_init_index_section) (output_bfd, info);
7059
7060 /* Assign dynsym indices. In a shared library we generate a section
7061 symbol for each output section, which come first. Next come all
7062 of the back-end allocated local dynamic syms, followed by the rest
7063 of the global symbols.
7064
7065 This is usually not needed for static binaries, however backends
7066 can request to always do it, e.g. the MIPS backend uses dynamic
7067 symbol counts to lay out GOT, which will be produced in the
7068 presence of GOT relocations even in static binaries (holding fixed
7069 data in that case, to satisfy those relocations). */
7070
7071 if (elf_hash_table (info)->dynamic_sections_created
7072 || bed->always_renumber_dynsyms)
7073 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7074 &section_sym_count);
7075
7076 if (elf_hash_table (info)->dynamic_sections_created)
7077 {
7078 bfd *dynobj;
7079 asection *s;
7080 unsigned int dtagcount;
7081
7082 dynobj = elf_hash_table (info)->dynobj;
7083
7084 /* Work out the size of the symbol version section. */
7085 s = bfd_get_linker_section (dynobj, ".gnu.version");
7086 BFD_ASSERT (s != NULL);
7087 if ((s->flags & SEC_EXCLUDE) == 0)
7088 {
7089 s->size = dynsymcount * sizeof (Elf_External_Versym);
7090 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7091 if (s->contents == NULL)
7092 return FALSE;
7093
7094 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7095 return FALSE;
7096 }
7097
7098 /* Set the size of the .dynsym and .hash sections. We counted
7099 the number of dynamic symbols in elf_link_add_object_symbols.
7100 We will build the contents of .dynsym and .hash when we build
7101 the final symbol table, because until then we do not know the
7102 correct value to give the symbols. We built the .dynstr
7103 section as we went along in elf_link_add_object_symbols. */
7104 s = elf_hash_table (info)->dynsym;
7105 BFD_ASSERT (s != NULL);
7106 s->size = dynsymcount * bed->s->sizeof_sym;
7107
7108 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7109 if (s->contents == NULL)
7110 return FALSE;
7111
7112 /* The first entry in .dynsym is a dummy symbol. Clear all the
7113 section syms, in case we don't output them all. */
7114 ++section_sym_count;
7115 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7116
7117 elf_hash_table (info)->bucketcount = 0;
7118
7119 /* Compute the size of the hashing table. As a side effect this
7120 computes the hash values for all the names we export. */
7121 if (info->emit_hash)
7122 {
7123 unsigned long int *hashcodes;
7124 struct hash_codes_info hashinf;
7125 bfd_size_type amt;
7126 unsigned long int nsyms;
7127 size_t bucketcount;
7128 size_t hash_entry_size;
7129
7130 /* Compute the hash values for all exported symbols. At the same
7131 time store the values in an array so that we could use them for
7132 optimizations. */
7133 amt = dynsymcount * sizeof (unsigned long int);
7134 hashcodes = (unsigned long int *) bfd_malloc (amt);
7135 if (hashcodes == NULL)
7136 return FALSE;
7137 hashinf.hashcodes = hashcodes;
7138 hashinf.error = FALSE;
7139
7140 /* Put all hash values in HASHCODES. */
7141 elf_link_hash_traverse (elf_hash_table (info),
7142 elf_collect_hash_codes, &hashinf);
7143 if (hashinf.error)
7144 {
7145 free (hashcodes);
7146 return FALSE;
7147 }
7148
7149 nsyms = hashinf.hashcodes - hashcodes;
7150 bucketcount
7151 = compute_bucket_count (info, hashcodes, nsyms, 0);
7152 free (hashcodes);
7153
7154 if (bucketcount == 0 && nsyms > 0)
7155 return FALSE;
7156
7157 elf_hash_table (info)->bucketcount = bucketcount;
7158
7159 s = bfd_get_linker_section (dynobj, ".hash");
7160 BFD_ASSERT (s != NULL);
7161 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7162 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7163 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7164 if (s->contents == NULL)
7165 return FALSE;
7166
7167 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7168 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7169 s->contents + hash_entry_size);
7170 }
7171
7172 if (info->emit_gnu_hash)
7173 {
7174 size_t i, cnt;
7175 unsigned char *contents;
7176 struct collect_gnu_hash_codes cinfo;
7177 bfd_size_type amt;
7178 size_t bucketcount;
7179
7180 memset (&cinfo, 0, sizeof (cinfo));
7181
7182 /* Compute the hash values for all exported symbols. At the same
7183 time store the values in an array so that we could use them for
7184 optimizations. */
7185 amt = dynsymcount * 2 * sizeof (unsigned long int);
7186 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7187 if (cinfo.hashcodes == NULL)
7188 return FALSE;
7189
7190 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7191 cinfo.min_dynindx = -1;
7192 cinfo.output_bfd = output_bfd;
7193 cinfo.bed = bed;
7194
7195 /* Put all hash values in HASHCODES. */
7196 elf_link_hash_traverse (elf_hash_table (info),
7197 elf_collect_gnu_hash_codes, &cinfo);
7198 if (cinfo.error)
7199 {
7200 free (cinfo.hashcodes);
7201 return FALSE;
7202 }
7203
7204 bucketcount
7205 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7206
7207 if (bucketcount == 0)
7208 {
7209 free (cinfo.hashcodes);
7210 return FALSE;
7211 }
7212
7213 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7214 BFD_ASSERT (s != NULL);
7215
7216 if (cinfo.nsyms == 0)
7217 {
7218 /* Empty .gnu.hash section is special. */
7219 BFD_ASSERT (cinfo.min_dynindx == -1);
7220 free (cinfo.hashcodes);
7221 s->size = 5 * 4 + bed->s->arch_size / 8;
7222 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7223 if (contents == NULL)
7224 return FALSE;
7225 s->contents = contents;
7226 /* 1 empty bucket. */
7227 bfd_put_32 (output_bfd, 1, contents);
7228 /* SYMIDX above the special symbol 0. */
7229 bfd_put_32 (output_bfd, 1, contents + 4);
7230 /* Just one word for bitmask. */
7231 bfd_put_32 (output_bfd, 1, contents + 8);
7232 /* Only hash fn bloom filter. */
7233 bfd_put_32 (output_bfd, 0, contents + 12);
7234 /* No hashes are valid - empty bitmask. */
7235 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7236 /* No hashes in the only bucket. */
7237 bfd_put_32 (output_bfd, 0,
7238 contents + 16 + bed->s->arch_size / 8);
7239 }
7240 else
7241 {
7242 unsigned long int maskwords, maskbitslog2, x;
7243 BFD_ASSERT (cinfo.min_dynindx != -1);
7244
7245 x = cinfo.nsyms;
7246 maskbitslog2 = 1;
7247 while ((x >>= 1) != 0)
7248 ++maskbitslog2;
7249 if (maskbitslog2 < 3)
7250 maskbitslog2 = 5;
7251 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7252 maskbitslog2 = maskbitslog2 + 3;
7253 else
7254 maskbitslog2 = maskbitslog2 + 2;
7255 if (bed->s->arch_size == 64)
7256 {
7257 if (maskbitslog2 == 5)
7258 maskbitslog2 = 6;
7259 cinfo.shift1 = 6;
7260 }
7261 else
7262 cinfo.shift1 = 5;
7263 cinfo.mask = (1 << cinfo.shift1) - 1;
7264 cinfo.shift2 = maskbitslog2;
7265 cinfo.maskbits = 1 << maskbitslog2;
7266 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7267 amt = bucketcount * sizeof (unsigned long int) * 2;
7268 amt += maskwords * sizeof (bfd_vma);
7269 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7270 if (cinfo.bitmask == NULL)
7271 {
7272 free (cinfo.hashcodes);
7273 return FALSE;
7274 }
7275
7276 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7277 cinfo.indx = cinfo.counts + bucketcount;
7278 cinfo.symindx = dynsymcount - cinfo.nsyms;
7279 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7280
7281 /* Determine how often each hash bucket is used. */
7282 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7283 for (i = 0; i < cinfo.nsyms; ++i)
7284 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7285
7286 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7287 if (cinfo.counts[i] != 0)
7288 {
7289 cinfo.indx[i] = cnt;
7290 cnt += cinfo.counts[i];
7291 }
7292 BFD_ASSERT (cnt == dynsymcount);
7293 cinfo.bucketcount = bucketcount;
7294 cinfo.local_indx = cinfo.min_dynindx;
7295
7296 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7297 s->size += cinfo.maskbits / 8;
7298 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7299 if (contents == NULL)
7300 {
7301 free (cinfo.bitmask);
7302 free (cinfo.hashcodes);
7303 return FALSE;
7304 }
7305
7306 s->contents = contents;
7307 bfd_put_32 (output_bfd, bucketcount, contents);
7308 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7309 bfd_put_32 (output_bfd, maskwords, contents + 8);
7310 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7311 contents += 16 + cinfo.maskbits / 8;
7312
7313 for (i = 0; i < bucketcount; ++i)
7314 {
7315 if (cinfo.counts[i] == 0)
7316 bfd_put_32 (output_bfd, 0, contents);
7317 else
7318 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7319 contents += 4;
7320 }
7321
7322 cinfo.contents = contents;
7323
7324 /* Renumber dynamic symbols, populate .gnu.hash section. */
7325 elf_link_hash_traverse (elf_hash_table (info),
7326 elf_renumber_gnu_hash_syms, &cinfo);
7327
7328 contents = s->contents + 16;
7329 for (i = 0; i < maskwords; ++i)
7330 {
7331 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7332 contents);
7333 contents += bed->s->arch_size / 8;
7334 }
7335
7336 free (cinfo.bitmask);
7337 free (cinfo.hashcodes);
7338 }
7339 }
7340
7341 s = bfd_get_linker_section (dynobj, ".dynstr");
7342 BFD_ASSERT (s != NULL);
7343
7344 elf_finalize_dynstr (output_bfd, info);
7345
7346 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7347
7348 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7349 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7350 return FALSE;
7351 }
7352
7353 return TRUE;
7354 }
7355 \f
7356 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7357
7358 static void
7359 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7360 asection *sec)
7361 {
7362 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7363 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7364 }
7365
7366 /* Finish SHF_MERGE section merging. */
7367
7368 bfd_boolean
7369 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7370 {
7371 bfd *ibfd;
7372 asection *sec;
7373
7374 if (!is_elf_hash_table (info->hash))
7375 return FALSE;
7376
7377 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7378 if ((ibfd->flags & DYNAMIC) == 0
7379 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7380 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7381 == get_elf_backend_data (obfd)->s->elfclass))
7382 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7383 if ((sec->flags & SEC_MERGE) != 0
7384 && !bfd_is_abs_section (sec->output_section))
7385 {
7386 struct bfd_elf_section_data *secdata;
7387
7388 secdata = elf_section_data (sec);
7389 if (! _bfd_add_merge_section (obfd,
7390 &elf_hash_table (info)->merge_info,
7391 sec, &secdata->sec_info))
7392 return FALSE;
7393 else if (secdata->sec_info)
7394 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7395 }
7396
7397 if (elf_hash_table (info)->merge_info != NULL)
7398 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7399 merge_sections_remove_hook);
7400 return TRUE;
7401 }
7402
7403 /* Create an entry in an ELF linker hash table. */
7404
7405 struct bfd_hash_entry *
7406 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7407 struct bfd_hash_table *table,
7408 const char *string)
7409 {
7410 /* Allocate the structure if it has not already been allocated by a
7411 subclass. */
7412 if (entry == NULL)
7413 {
7414 entry = (struct bfd_hash_entry *)
7415 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7416 if (entry == NULL)
7417 return entry;
7418 }
7419
7420 /* Call the allocation method of the superclass. */
7421 entry = _bfd_link_hash_newfunc (entry, table, string);
7422 if (entry != NULL)
7423 {
7424 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7425 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7426
7427 /* Set local fields. */
7428 ret->indx = -1;
7429 ret->dynindx = -1;
7430 ret->got = htab->init_got_refcount;
7431 ret->plt = htab->init_plt_refcount;
7432 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7433 - offsetof (struct elf_link_hash_entry, size)));
7434 /* Assume that we have been called by a non-ELF symbol reader.
7435 This flag is then reset by the code which reads an ELF input
7436 file. This ensures that a symbol created by a non-ELF symbol
7437 reader will have the flag set correctly. */
7438 ret->non_elf = 1;
7439 }
7440
7441 return entry;
7442 }
7443
7444 /* Copy data from an indirect symbol to its direct symbol, hiding the
7445 old indirect symbol. Also used for copying flags to a weakdef. */
7446
7447 void
7448 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7449 struct elf_link_hash_entry *dir,
7450 struct elf_link_hash_entry *ind)
7451 {
7452 struct elf_link_hash_table *htab;
7453
7454 /* Copy down any references that we may have already seen to the
7455 symbol which just became indirect. */
7456
7457 if (dir->versioned != versioned_hidden)
7458 dir->ref_dynamic |= ind->ref_dynamic;
7459 dir->ref_regular |= ind->ref_regular;
7460 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7461 dir->non_got_ref |= ind->non_got_ref;
7462 dir->needs_plt |= ind->needs_plt;
7463 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7464
7465 if (ind->root.type != bfd_link_hash_indirect)
7466 return;
7467
7468 /* Copy over the global and procedure linkage table refcount entries.
7469 These may have been already set up by a check_relocs routine. */
7470 htab = elf_hash_table (info);
7471 if (ind->got.refcount > htab->init_got_refcount.refcount)
7472 {
7473 if (dir->got.refcount < 0)
7474 dir->got.refcount = 0;
7475 dir->got.refcount += ind->got.refcount;
7476 ind->got.refcount = htab->init_got_refcount.refcount;
7477 }
7478
7479 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7480 {
7481 if (dir->plt.refcount < 0)
7482 dir->plt.refcount = 0;
7483 dir->plt.refcount += ind->plt.refcount;
7484 ind->plt.refcount = htab->init_plt_refcount.refcount;
7485 }
7486
7487 if (ind->dynindx != -1)
7488 {
7489 if (dir->dynindx != -1)
7490 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7491 dir->dynindx = ind->dynindx;
7492 dir->dynstr_index = ind->dynstr_index;
7493 ind->dynindx = -1;
7494 ind->dynstr_index = 0;
7495 }
7496 }
7497
7498 void
7499 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7500 struct elf_link_hash_entry *h,
7501 bfd_boolean force_local)
7502 {
7503 /* STT_GNU_IFUNC symbol must go through PLT. */
7504 if (h->type != STT_GNU_IFUNC)
7505 {
7506 h->plt = elf_hash_table (info)->init_plt_offset;
7507 h->needs_plt = 0;
7508 }
7509 if (force_local)
7510 {
7511 h->forced_local = 1;
7512 if (h->dynindx != -1)
7513 {
7514 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7515 h->dynstr_index);
7516 h->dynindx = -1;
7517 h->dynstr_index = 0;
7518 }
7519 }
7520 }
7521
7522 /* Hide a symbol. */
7523
7524 void
7525 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7526 struct bfd_link_info *info,
7527 struct bfd_link_hash_entry *h)
7528 {
7529 if (is_elf_hash_table (info->hash))
7530 {
7531 const struct elf_backend_data *bed
7532 = get_elf_backend_data (output_bfd);
7533 struct elf_link_hash_entry *eh
7534 = (struct elf_link_hash_entry *) h;
7535 bed->elf_backend_hide_symbol (info, eh, TRUE);
7536 eh->def_dynamic = 0;
7537 eh->ref_dynamic = 0;
7538 eh->dynamic_def = 0;
7539 }
7540 }
7541
7542 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7543 caller. */
7544
7545 bfd_boolean
7546 _bfd_elf_link_hash_table_init
7547 (struct elf_link_hash_table *table,
7548 bfd *abfd,
7549 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7550 struct bfd_hash_table *,
7551 const char *),
7552 unsigned int entsize,
7553 enum elf_target_id target_id)
7554 {
7555 bfd_boolean ret;
7556 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7557
7558 table->init_got_refcount.refcount = can_refcount - 1;
7559 table->init_plt_refcount.refcount = can_refcount - 1;
7560 table->init_got_offset.offset = -(bfd_vma) 1;
7561 table->init_plt_offset.offset = -(bfd_vma) 1;
7562 /* The first dynamic symbol is a dummy. */
7563 table->dynsymcount = 1;
7564
7565 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7566
7567 table->root.type = bfd_link_elf_hash_table;
7568 table->hash_table_id = target_id;
7569
7570 return ret;
7571 }
7572
7573 /* Create an ELF linker hash table. */
7574
7575 struct bfd_link_hash_table *
7576 _bfd_elf_link_hash_table_create (bfd *abfd)
7577 {
7578 struct elf_link_hash_table *ret;
7579 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7580
7581 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7582 if (ret == NULL)
7583 return NULL;
7584
7585 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7586 sizeof (struct elf_link_hash_entry),
7587 GENERIC_ELF_DATA))
7588 {
7589 free (ret);
7590 return NULL;
7591 }
7592 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7593
7594 return &ret->root;
7595 }
7596
7597 /* Destroy an ELF linker hash table. */
7598
7599 void
7600 _bfd_elf_link_hash_table_free (bfd *obfd)
7601 {
7602 struct elf_link_hash_table *htab;
7603
7604 htab = (struct elf_link_hash_table *) obfd->link.hash;
7605 if (htab->dynstr != NULL)
7606 _bfd_elf_strtab_free (htab->dynstr);
7607 _bfd_merge_sections_free (htab->merge_info);
7608 _bfd_generic_link_hash_table_free (obfd);
7609 }
7610
7611 /* This is a hook for the ELF emulation code in the generic linker to
7612 tell the backend linker what file name to use for the DT_NEEDED
7613 entry for a dynamic object. */
7614
7615 void
7616 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7617 {
7618 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7619 && bfd_get_format (abfd) == bfd_object)
7620 elf_dt_name (abfd) = name;
7621 }
7622
7623 int
7624 bfd_elf_get_dyn_lib_class (bfd *abfd)
7625 {
7626 int lib_class;
7627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7628 && bfd_get_format (abfd) == bfd_object)
7629 lib_class = elf_dyn_lib_class (abfd);
7630 else
7631 lib_class = 0;
7632 return lib_class;
7633 }
7634
7635 void
7636 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7637 {
7638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7639 && bfd_get_format (abfd) == bfd_object)
7640 elf_dyn_lib_class (abfd) = lib_class;
7641 }
7642
7643 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7644 the linker ELF emulation code. */
7645
7646 struct bfd_link_needed_list *
7647 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7648 struct bfd_link_info *info)
7649 {
7650 if (! is_elf_hash_table (info->hash))
7651 return NULL;
7652 return elf_hash_table (info)->needed;
7653 }
7654
7655 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7656 hook for the linker ELF emulation code. */
7657
7658 struct bfd_link_needed_list *
7659 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7660 struct bfd_link_info *info)
7661 {
7662 if (! is_elf_hash_table (info->hash))
7663 return NULL;
7664 return elf_hash_table (info)->runpath;
7665 }
7666
7667 /* Get the name actually used for a dynamic object for a link. This
7668 is the SONAME entry if there is one. Otherwise, it is the string
7669 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7670
7671 const char *
7672 bfd_elf_get_dt_soname (bfd *abfd)
7673 {
7674 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7675 && bfd_get_format (abfd) == bfd_object)
7676 return elf_dt_name (abfd);
7677 return NULL;
7678 }
7679
7680 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7681 the ELF linker emulation code. */
7682
7683 bfd_boolean
7684 bfd_elf_get_bfd_needed_list (bfd *abfd,
7685 struct bfd_link_needed_list **pneeded)
7686 {
7687 asection *s;
7688 bfd_byte *dynbuf = NULL;
7689 unsigned int elfsec;
7690 unsigned long shlink;
7691 bfd_byte *extdyn, *extdynend;
7692 size_t extdynsize;
7693 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7694
7695 *pneeded = NULL;
7696
7697 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7698 || bfd_get_format (abfd) != bfd_object)
7699 return TRUE;
7700
7701 s = bfd_get_section_by_name (abfd, ".dynamic");
7702 if (s == NULL || s->size == 0)
7703 return TRUE;
7704
7705 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7706 goto error_return;
7707
7708 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7709 if (elfsec == SHN_BAD)
7710 goto error_return;
7711
7712 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7713
7714 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7715 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7716
7717 extdyn = dynbuf;
7718 extdynend = extdyn + s->size;
7719 for (; extdyn < extdynend; extdyn += extdynsize)
7720 {
7721 Elf_Internal_Dyn dyn;
7722
7723 (*swap_dyn_in) (abfd, extdyn, &dyn);
7724
7725 if (dyn.d_tag == DT_NULL)
7726 break;
7727
7728 if (dyn.d_tag == DT_NEEDED)
7729 {
7730 const char *string;
7731 struct bfd_link_needed_list *l;
7732 unsigned int tagv = dyn.d_un.d_val;
7733 bfd_size_type amt;
7734
7735 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7736 if (string == NULL)
7737 goto error_return;
7738
7739 amt = sizeof *l;
7740 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7741 if (l == NULL)
7742 goto error_return;
7743
7744 l->by = abfd;
7745 l->name = string;
7746 l->next = *pneeded;
7747 *pneeded = l;
7748 }
7749 }
7750
7751 free (dynbuf);
7752
7753 return TRUE;
7754
7755 error_return:
7756 if (dynbuf != NULL)
7757 free (dynbuf);
7758 return FALSE;
7759 }
7760
7761 struct elf_symbuf_symbol
7762 {
7763 unsigned long st_name; /* Symbol name, index in string tbl */
7764 unsigned char st_info; /* Type and binding attributes */
7765 unsigned char st_other; /* Visibilty, and target specific */
7766 };
7767
7768 struct elf_symbuf_head
7769 {
7770 struct elf_symbuf_symbol *ssym;
7771 size_t count;
7772 unsigned int st_shndx;
7773 };
7774
7775 struct elf_symbol
7776 {
7777 union
7778 {
7779 Elf_Internal_Sym *isym;
7780 struct elf_symbuf_symbol *ssym;
7781 } u;
7782 const char *name;
7783 };
7784
7785 /* Sort references to symbols by ascending section number. */
7786
7787 static int
7788 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7789 {
7790 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7791 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7792
7793 return s1->st_shndx - s2->st_shndx;
7794 }
7795
7796 static int
7797 elf_sym_name_compare (const void *arg1, const void *arg2)
7798 {
7799 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7800 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7801 return strcmp (s1->name, s2->name);
7802 }
7803
7804 static struct elf_symbuf_head *
7805 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7806 {
7807 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7808 struct elf_symbuf_symbol *ssym;
7809 struct elf_symbuf_head *ssymbuf, *ssymhead;
7810 size_t i, shndx_count, total_size;
7811
7812 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7813 if (indbuf == NULL)
7814 return NULL;
7815
7816 for (ind = indbuf, i = 0; i < symcount; i++)
7817 if (isymbuf[i].st_shndx != SHN_UNDEF)
7818 *ind++ = &isymbuf[i];
7819 indbufend = ind;
7820
7821 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7822 elf_sort_elf_symbol);
7823
7824 shndx_count = 0;
7825 if (indbufend > indbuf)
7826 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7827 if (ind[0]->st_shndx != ind[1]->st_shndx)
7828 shndx_count++;
7829
7830 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7831 + (indbufend - indbuf) * sizeof (*ssym));
7832 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7833 if (ssymbuf == NULL)
7834 {
7835 free (indbuf);
7836 return NULL;
7837 }
7838
7839 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7840 ssymbuf->ssym = NULL;
7841 ssymbuf->count = shndx_count;
7842 ssymbuf->st_shndx = 0;
7843 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7844 {
7845 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7846 {
7847 ssymhead++;
7848 ssymhead->ssym = ssym;
7849 ssymhead->count = 0;
7850 ssymhead->st_shndx = (*ind)->st_shndx;
7851 }
7852 ssym->st_name = (*ind)->st_name;
7853 ssym->st_info = (*ind)->st_info;
7854 ssym->st_other = (*ind)->st_other;
7855 ssymhead->count++;
7856 }
7857 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7858 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7859 == total_size));
7860
7861 free (indbuf);
7862 return ssymbuf;
7863 }
7864
7865 /* Check if 2 sections define the same set of local and global
7866 symbols. */
7867
7868 static bfd_boolean
7869 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7870 struct bfd_link_info *info)
7871 {
7872 bfd *bfd1, *bfd2;
7873 const struct elf_backend_data *bed1, *bed2;
7874 Elf_Internal_Shdr *hdr1, *hdr2;
7875 size_t symcount1, symcount2;
7876 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7877 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7878 Elf_Internal_Sym *isym, *isymend;
7879 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7880 size_t count1, count2, i;
7881 unsigned int shndx1, shndx2;
7882 bfd_boolean result;
7883
7884 bfd1 = sec1->owner;
7885 bfd2 = sec2->owner;
7886
7887 /* Both sections have to be in ELF. */
7888 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7889 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7890 return FALSE;
7891
7892 if (elf_section_type (sec1) != elf_section_type (sec2))
7893 return FALSE;
7894
7895 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7896 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7897 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7898 return FALSE;
7899
7900 bed1 = get_elf_backend_data (bfd1);
7901 bed2 = get_elf_backend_data (bfd2);
7902 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7903 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7904 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7905 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7906
7907 if (symcount1 == 0 || symcount2 == 0)
7908 return FALSE;
7909
7910 result = FALSE;
7911 isymbuf1 = NULL;
7912 isymbuf2 = NULL;
7913 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7914 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7915
7916 if (ssymbuf1 == NULL)
7917 {
7918 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7919 NULL, NULL, NULL);
7920 if (isymbuf1 == NULL)
7921 goto done;
7922
7923 if (!info->reduce_memory_overheads)
7924 elf_tdata (bfd1)->symbuf = ssymbuf1
7925 = elf_create_symbuf (symcount1, isymbuf1);
7926 }
7927
7928 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7929 {
7930 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7931 NULL, NULL, NULL);
7932 if (isymbuf2 == NULL)
7933 goto done;
7934
7935 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7936 elf_tdata (bfd2)->symbuf = ssymbuf2
7937 = elf_create_symbuf (symcount2, isymbuf2);
7938 }
7939
7940 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7941 {
7942 /* Optimized faster version. */
7943 size_t lo, hi, mid;
7944 struct elf_symbol *symp;
7945 struct elf_symbuf_symbol *ssym, *ssymend;
7946
7947 lo = 0;
7948 hi = ssymbuf1->count;
7949 ssymbuf1++;
7950 count1 = 0;
7951 while (lo < hi)
7952 {
7953 mid = (lo + hi) / 2;
7954 if (shndx1 < ssymbuf1[mid].st_shndx)
7955 hi = mid;
7956 else if (shndx1 > ssymbuf1[mid].st_shndx)
7957 lo = mid + 1;
7958 else
7959 {
7960 count1 = ssymbuf1[mid].count;
7961 ssymbuf1 += mid;
7962 break;
7963 }
7964 }
7965
7966 lo = 0;
7967 hi = ssymbuf2->count;
7968 ssymbuf2++;
7969 count2 = 0;
7970 while (lo < hi)
7971 {
7972 mid = (lo + hi) / 2;
7973 if (shndx2 < ssymbuf2[mid].st_shndx)
7974 hi = mid;
7975 else if (shndx2 > ssymbuf2[mid].st_shndx)
7976 lo = mid + 1;
7977 else
7978 {
7979 count2 = ssymbuf2[mid].count;
7980 ssymbuf2 += mid;
7981 break;
7982 }
7983 }
7984
7985 if (count1 == 0 || count2 == 0 || count1 != count2)
7986 goto done;
7987
7988 symtable1
7989 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7990 symtable2
7991 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7992 if (symtable1 == NULL || symtable2 == NULL)
7993 goto done;
7994
7995 symp = symtable1;
7996 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7997 ssym < ssymend; ssym++, symp++)
7998 {
7999 symp->u.ssym = ssym;
8000 symp->name = bfd_elf_string_from_elf_section (bfd1,
8001 hdr1->sh_link,
8002 ssym->st_name);
8003 }
8004
8005 symp = symtable2;
8006 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8007 ssym < ssymend; ssym++, symp++)
8008 {
8009 symp->u.ssym = ssym;
8010 symp->name = bfd_elf_string_from_elf_section (bfd2,
8011 hdr2->sh_link,
8012 ssym->st_name);
8013 }
8014
8015 /* Sort symbol by name. */
8016 qsort (symtable1, count1, sizeof (struct elf_symbol),
8017 elf_sym_name_compare);
8018 qsort (symtable2, count1, sizeof (struct elf_symbol),
8019 elf_sym_name_compare);
8020
8021 for (i = 0; i < count1; i++)
8022 /* Two symbols must have the same binding, type and name. */
8023 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8024 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8025 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8026 goto done;
8027
8028 result = TRUE;
8029 goto done;
8030 }
8031
8032 symtable1 = (struct elf_symbol *)
8033 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8034 symtable2 = (struct elf_symbol *)
8035 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8036 if (symtable1 == NULL || symtable2 == NULL)
8037 goto done;
8038
8039 /* Count definitions in the section. */
8040 count1 = 0;
8041 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8042 if (isym->st_shndx == shndx1)
8043 symtable1[count1++].u.isym = isym;
8044
8045 count2 = 0;
8046 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8047 if (isym->st_shndx == shndx2)
8048 symtable2[count2++].u.isym = isym;
8049
8050 if (count1 == 0 || count2 == 0 || count1 != count2)
8051 goto done;
8052
8053 for (i = 0; i < count1; i++)
8054 symtable1[i].name
8055 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8056 symtable1[i].u.isym->st_name);
8057
8058 for (i = 0; i < count2; i++)
8059 symtable2[i].name
8060 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8061 symtable2[i].u.isym->st_name);
8062
8063 /* Sort symbol by name. */
8064 qsort (symtable1, count1, sizeof (struct elf_symbol),
8065 elf_sym_name_compare);
8066 qsort (symtable2, count1, sizeof (struct elf_symbol),
8067 elf_sym_name_compare);
8068
8069 for (i = 0; i < count1; i++)
8070 /* Two symbols must have the same binding, type and name. */
8071 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8072 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8073 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8074 goto done;
8075
8076 result = TRUE;
8077
8078 done:
8079 if (symtable1)
8080 free (symtable1);
8081 if (symtable2)
8082 free (symtable2);
8083 if (isymbuf1)
8084 free (isymbuf1);
8085 if (isymbuf2)
8086 free (isymbuf2);
8087
8088 return result;
8089 }
8090
8091 /* Return TRUE if 2 section types are compatible. */
8092
8093 bfd_boolean
8094 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8095 bfd *bbfd, const asection *bsec)
8096 {
8097 if (asec == NULL
8098 || bsec == NULL
8099 || abfd->xvec->flavour != bfd_target_elf_flavour
8100 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8101 return TRUE;
8102
8103 return elf_section_type (asec) == elf_section_type (bsec);
8104 }
8105 \f
8106 /* Final phase of ELF linker. */
8107
8108 /* A structure we use to avoid passing large numbers of arguments. */
8109
8110 struct elf_final_link_info
8111 {
8112 /* General link information. */
8113 struct bfd_link_info *info;
8114 /* Output BFD. */
8115 bfd *output_bfd;
8116 /* Symbol string table. */
8117 struct elf_strtab_hash *symstrtab;
8118 /* .hash section. */
8119 asection *hash_sec;
8120 /* symbol version section (.gnu.version). */
8121 asection *symver_sec;
8122 /* Buffer large enough to hold contents of any section. */
8123 bfd_byte *contents;
8124 /* Buffer large enough to hold external relocs of any section. */
8125 void *external_relocs;
8126 /* Buffer large enough to hold internal relocs of any section. */
8127 Elf_Internal_Rela *internal_relocs;
8128 /* Buffer large enough to hold external local symbols of any input
8129 BFD. */
8130 bfd_byte *external_syms;
8131 /* And a buffer for symbol section indices. */
8132 Elf_External_Sym_Shndx *locsym_shndx;
8133 /* Buffer large enough to hold internal local symbols of any input
8134 BFD. */
8135 Elf_Internal_Sym *internal_syms;
8136 /* Array large enough to hold a symbol index for each local symbol
8137 of any input BFD. */
8138 long *indices;
8139 /* Array large enough to hold a section pointer for each local
8140 symbol of any input BFD. */
8141 asection **sections;
8142 /* Buffer for SHT_SYMTAB_SHNDX section. */
8143 Elf_External_Sym_Shndx *symshndxbuf;
8144 /* Number of STT_FILE syms seen. */
8145 size_t filesym_count;
8146 };
8147
8148 /* This struct is used to pass information to elf_link_output_extsym. */
8149
8150 struct elf_outext_info
8151 {
8152 bfd_boolean failed;
8153 bfd_boolean localsyms;
8154 bfd_boolean file_sym_done;
8155 struct elf_final_link_info *flinfo;
8156 };
8157
8158
8159 /* Support for evaluating a complex relocation.
8160
8161 Complex relocations are generalized, self-describing relocations. The
8162 implementation of them consists of two parts: complex symbols, and the
8163 relocations themselves.
8164
8165 The relocations are use a reserved elf-wide relocation type code (R_RELC
8166 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8167 information (start bit, end bit, word width, etc) into the addend. This
8168 information is extracted from CGEN-generated operand tables within gas.
8169
8170 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8171 internal) representing prefix-notation expressions, including but not
8172 limited to those sorts of expressions normally encoded as addends in the
8173 addend field. The symbol mangling format is:
8174
8175 <node> := <literal>
8176 | <unary-operator> ':' <node>
8177 | <binary-operator> ':' <node> ':' <node>
8178 ;
8179
8180 <literal> := 's' <digits=N> ':' <N character symbol name>
8181 | 'S' <digits=N> ':' <N character section name>
8182 | '#' <hexdigits>
8183 ;
8184
8185 <binary-operator> := as in C
8186 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8187
8188 static void
8189 set_symbol_value (bfd *bfd_with_globals,
8190 Elf_Internal_Sym *isymbuf,
8191 size_t locsymcount,
8192 size_t symidx,
8193 bfd_vma val)
8194 {
8195 struct elf_link_hash_entry **sym_hashes;
8196 struct elf_link_hash_entry *h;
8197 size_t extsymoff = locsymcount;
8198
8199 if (symidx < locsymcount)
8200 {
8201 Elf_Internal_Sym *sym;
8202
8203 sym = isymbuf + symidx;
8204 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8205 {
8206 /* It is a local symbol: move it to the
8207 "absolute" section and give it a value. */
8208 sym->st_shndx = SHN_ABS;
8209 sym->st_value = val;
8210 return;
8211 }
8212 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8213 extsymoff = 0;
8214 }
8215
8216 /* It is a global symbol: set its link type
8217 to "defined" and give it a value. */
8218
8219 sym_hashes = elf_sym_hashes (bfd_with_globals);
8220 h = sym_hashes [symidx - extsymoff];
8221 while (h->root.type == bfd_link_hash_indirect
8222 || h->root.type == bfd_link_hash_warning)
8223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8224 h->root.type = bfd_link_hash_defined;
8225 h->root.u.def.value = val;
8226 h->root.u.def.section = bfd_abs_section_ptr;
8227 }
8228
8229 static bfd_boolean
8230 resolve_symbol (const char *name,
8231 bfd *input_bfd,
8232 struct elf_final_link_info *flinfo,
8233 bfd_vma *result,
8234 Elf_Internal_Sym *isymbuf,
8235 size_t locsymcount)
8236 {
8237 Elf_Internal_Sym *sym;
8238 struct bfd_link_hash_entry *global_entry;
8239 const char *candidate = NULL;
8240 Elf_Internal_Shdr *symtab_hdr;
8241 size_t i;
8242
8243 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8244
8245 for (i = 0; i < locsymcount; ++ i)
8246 {
8247 sym = isymbuf + i;
8248
8249 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8250 continue;
8251
8252 candidate = bfd_elf_string_from_elf_section (input_bfd,
8253 symtab_hdr->sh_link,
8254 sym->st_name);
8255 #ifdef DEBUG
8256 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8257 name, candidate, (unsigned long) sym->st_value);
8258 #endif
8259 if (candidate && strcmp (candidate, name) == 0)
8260 {
8261 asection *sec = flinfo->sections [i];
8262
8263 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8264 *result += sec->output_offset + sec->output_section->vma;
8265 #ifdef DEBUG
8266 printf ("Found symbol with value %8.8lx\n",
8267 (unsigned long) *result);
8268 #endif
8269 return TRUE;
8270 }
8271 }
8272
8273 /* Hmm, haven't found it yet. perhaps it is a global. */
8274 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8275 FALSE, FALSE, TRUE);
8276 if (!global_entry)
8277 return FALSE;
8278
8279 if (global_entry->type == bfd_link_hash_defined
8280 || global_entry->type == bfd_link_hash_defweak)
8281 {
8282 *result = (global_entry->u.def.value
8283 + global_entry->u.def.section->output_section->vma
8284 + global_entry->u.def.section->output_offset);
8285 #ifdef DEBUG
8286 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8287 global_entry->root.string, (unsigned long) *result);
8288 #endif
8289 return TRUE;
8290 }
8291
8292 return FALSE;
8293 }
8294
8295 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8296 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8297 names like "foo.end" which is the end address of section "foo". */
8298
8299 static bfd_boolean
8300 resolve_section (const char *name,
8301 asection *sections,
8302 bfd_vma *result,
8303 bfd * abfd)
8304 {
8305 asection *curr;
8306 unsigned int len;
8307
8308 for (curr = sections; curr; curr = curr->next)
8309 if (strcmp (curr->name, name) == 0)
8310 {
8311 *result = curr->vma;
8312 return TRUE;
8313 }
8314
8315 /* Hmm. still haven't found it. try pseudo-section names. */
8316 /* FIXME: This could be coded more efficiently... */
8317 for (curr = sections; curr; curr = curr->next)
8318 {
8319 len = strlen (curr->name);
8320 if (len > strlen (name))
8321 continue;
8322
8323 if (strncmp (curr->name, name, len) == 0)
8324 {
8325 if (strncmp (".end", name + len, 4) == 0)
8326 {
8327 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8328 return TRUE;
8329 }
8330
8331 /* Insert more pseudo-section names here, if you like. */
8332 }
8333 }
8334
8335 return FALSE;
8336 }
8337
8338 static void
8339 undefined_reference (const char *reftype, const char *name)
8340 {
8341 /* xgettext:c-format */
8342 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8343 reftype, name);
8344 }
8345
8346 static bfd_boolean
8347 eval_symbol (bfd_vma *result,
8348 const char **symp,
8349 bfd *input_bfd,
8350 struct elf_final_link_info *flinfo,
8351 bfd_vma dot,
8352 Elf_Internal_Sym *isymbuf,
8353 size_t locsymcount,
8354 int signed_p)
8355 {
8356 size_t len;
8357 size_t symlen;
8358 bfd_vma a;
8359 bfd_vma b;
8360 char symbuf[4096];
8361 const char *sym = *symp;
8362 const char *symend;
8363 bfd_boolean symbol_is_section = FALSE;
8364
8365 len = strlen (sym);
8366 symend = sym + len;
8367
8368 if (len < 1 || len > sizeof (symbuf))
8369 {
8370 bfd_set_error (bfd_error_invalid_operation);
8371 return FALSE;
8372 }
8373
8374 switch (* sym)
8375 {
8376 case '.':
8377 *result = dot;
8378 *symp = sym + 1;
8379 return TRUE;
8380
8381 case '#':
8382 ++sym;
8383 *result = strtoul (sym, (char **) symp, 16);
8384 return TRUE;
8385
8386 case 'S':
8387 symbol_is_section = TRUE;
8388 /* Fall through. */
8389 case 's':
8390 ++sym;
8391 symlen = strtol (sym, (char **) symp, 10);
8392 sym = *symp + 1; /* Skip the trailing ':'. */
8393
8394 if (symend < sym || symlen + 1 > sizeof (symbuf))
8395 {
8396 bfd_set_error (bfd_error_invalid_operation);
8397 return FALSE;
8398 }
8399
8400 memcpy (symbuf, sym, symlen);
8401 symbuf[symlen] = '\0';
8402 *symp = sym + symlen;
8403
8404 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8405 the symbol as a section, or vice-versa. so we're pretty liberal in our
8406 interpretation here; section means "try section first", not "must be a
8407 section", and likewise with symbol. */
8408
8409 if (symbol_is_section)
8410 {
8411 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8412 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8413 isymbuf, locsymcount))
8414 {
8415 undefined_reference ("section", symbuf);
8416 return FALSE;
8417 }
8418 }
8419 else
8420 {
8421 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8422 isymbuf, locsymcount)
8423 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8424 result, input_bfd))
8425 {
8426 undefined_reference ("symbol", symbuf);
8427 return FALSE;
8428 }
8429 }
8430
8431 return TRUE;
8432
8433 /* All that remains are operators. */
8434
8435 #define UNARY_OP(op) \
8436 if (strncmp (sym, #op, strlen (#op)) == 0) \
8437 { \
8438 sym += strlen (#op); \
8439 if (*sym == ':') \
8440 ++sym; \
8441 *symp = sym; \
8442 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8443 isymbuf, locsymcount, signed_p)) \
8444 return FALSE; \
8445 if (signed_p) \
8446 *result = op ((bfd_signed_vma) a); \
8447 else \
8448 *result = op a; \
8449 return TRUE; \
8450 }
8451
8452 #define BINARY_OP(op) \
8453 if (strncmp (sym, #op, strlen (#op)) == 0) \
8454 { \
8455 sym += strlen (#op); \
8456 if (*sym == ':') \
8457 ++sym; \
8458 *symp = sym; \
8459 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8460 isymbuf, locsymcount, signed_p)) \
8461 return FALSE; \
8462 ++*symp; \
8463 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8464 isymbuf, locsymcount, signed_p)) \
8465 return FALSE; \
8466 if (signed_p) \
8467 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8468 else \
8469 *result = a op b; \
8470 return TRUE; \
8471 }
8472
8473 default:
8474 UNARY_OP (0-);
8475 BINARY_OP (<<);
8476 BINARY_OP (>>);
8477 BINARY_OP (==);
8478 BINARY_OP (!=);
8479 BINARY_OP (<=);
8480 BINARY_OP (>=);
8481 BINARY_OP (&&);
8482 BINARY_OP (||);
8483 UNARY_OP (~);
8484 UNARY_OP (!);
8485 BINARY_OP (*);
8486 BINARY_OP (/);
8487 BINARY_OP (%);
8488 BINARY_OP (^);
8489 BINARY_OP (|);
8490 BINARY_OP (&);
8491 BINARY_OP (+);
8492 BINARY_OP (-);
8493 BINARY_OP (<);
8494 BINARY_OP (>);
8495 #undef UNARY_OP
8496 #undef BINARY_OP
8497 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8498 bfd_set_error (bfd_error_invalid_operation);
8499 return FALSE;
8500 }
8501 }
8502
8503 static void
8504 put_value (bfd_vma size,
8505 unsigned long chunksz,
8506 bfd *input_bfd,
8507 bfd_vma x,
8508 bfd_byte *location)
8509 {
8510 location += (size - chunksz);
8511
8512 for (; size; size -= chunksz, location -= chunksz)
8513 {
8514 switch (chunksz)
8515 {
8516 case 1:
8517 bfd_put_8 (input_bfd, x, location);
8518 x >>= 8;
8519 break;
8520 case 2:
8521 bfd_put_16 (input_bfd, x, location);
8522 x >>= 16;
8523 break;
8524 case 4:
8525 bfd_put_32 (input_bfd, x, location);
8526 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8527 x >>= 16;
8528 x >>= 16;
8529 break;
8530 #ifdef BFD64
8531 case 8:
8532 bfd_put_64 (input_bfd, x, location);
8533 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8534 x >>= 32;
8535 x >>= 32;
8536 break;
8537 #endif
8538 default:
8539 abort ();
8540 break;
8541 }
8542 }
8543 }
8544
8545 static bfd_vma
8546 get_value (bfd_vma size,
8547 unsigned long chunksz,
8548 bfd *input_bfd,
8549 bfd_byte *location)
8550 {
8551 int shift;
8552 bfd_vma x = 0;
8553
8554 /* Sanity checks. */
8555 BFD_ASSERT (chunksz <= sizeof (x)
8556 && size >= chunksz
8557 && chunksz != 0
8558 && (size % chunksz) == 0
8559 && input_bfd != NULL
8560 && location != NULL);
8561
8562 if (chunksz == sizeof (x))
8563 {
8564 BFD_ASSERT (size == chunksz);
8565
8566 /* Make sure that we do not perform an undefined shift operation.
8567 We know that size == chunksz so there will only be one iteration
8568 of the loop below. */
8569 shift = 0;
8570 }
8571 else
8572 shift = 8 * chunksz;
8573
8574 for (; size; size -= chunksz, location += chunksz)
8575 {
8576 switch (chunksz)
8577 {
8578 case 1:
8579 x = (x << shift) | bfd_get_8 (input_bfd, location);
8580 break;
8581 case 2:
8582 x = (x << shift) | bfd_get_16 (input_bfd, location);
8583 break;
8584 case 4:
8585 x = (x << shift) | bfd_get_32 (input_bfd, location);
8586 break;
8587 #ifdef BFD64
8588 case 8:
8589 x = (x << shift) | bfd_get_64 (input_bfd, location);
8590 break;
8591 #endif
8592 default:
8593 abort ();
8594 }
8595 }
8596 return x;
8597 }
8598
8599 static void
8600 decode_complex_addend (unsigned long *start, /* in bits */
8601 unsigned long *oplen, /* in bits */
8602 unsigned long *len, /* in bits */
8603 unsigned long *wordsz, /* in bytes */
8604 unsigned long *chunksz, /* in bytes */
8605 unsigned long *lsb0_p,
8606 unsigned long *signed_p,
8607 unsigned long *trunc_p,
8608 unsigned long encoded)
8609 {
8610 * start = encoded & 0x3F;
8611 * len = (encoded >> 6) & 0x3F;
8612 * oplen = (encoded >> 12) & 0x3F;
8613 * wordsz = (encoded >> 18) & 0xF;
8614 * chunksz = (encoded >> 22) & 0xF;
8615 * lsb0_p = (encoded >> 27) & 1;
8616 * signed_p = (encoded >> 28) & 1;
8617 * trunc_p = (encoded >> 29) & 1;
8618 }
8619
8620 bfd_reloc_status_type
8621 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8622 asection *input_section ATTRIBUTE_UNUSED,
8623 bfd_byte *contents,
8624 Elf_Internal_Rela *rel,
8625 bfd_vma relocation)
8626 {
8627 bfd_vma shift, x, mask;
8628 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8629 bfd_reloc_status_type r;
8630
8631 /* Perform this reloc, since it is complex.
8632 (this is not to say that it necessarily refers to a complex
8633 symbol; merely that it is a self-describing CGEN based reloc.
8634 i.e. the addend has the complete reloc information (bit start, end,
8635 word size, etc) encoded within it.). */
8636
8637 decode_complex_addend (&start, &oplen, &len, &wordsz,
8638 &chunksz, &lsb0_p, &signed_p,
8639 &trunc_p, rel->r_addend);
8640
8641 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8642
8643 if (lsb0_p)
8644 shift = (start + 1) - len;
8645 else
8646 shift = (8 * wordsz) - (start + len);
8647
8648 x = get_value (wordsz, chunksz, input_bfd,
8649 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8650
8651 #ifdef DEBUG
8652 printf ("Doing complex reloc: "
8653 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8654 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8655 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8656 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8657 oplen, (unsigned long) x, (unsigned long) mask,
8658 (unsigned long) relocation);
8659 #endif
8660
8661 r = bfd_reloc_ok;
8662 if (! trunc_p)
8663 /* Now do an overflow check. */
8664 r = bfd_check_overflow ((signed_p
8665 ? complain_overflow_signed
8666 : complain_overflow_unsigned),
8667 len, 0, (8 * wordsz),
8668 relocation);
8669
8670 /* Do the deed. */
8671 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8672
8673 #ifdef DEBUG
8674 printf (" relocation: %8.8lx\n"
8675 " shifted mask: %8.8lx\n"
8676 " shifted/masked reloc: %8.8lx\n"
8677 " result: %8.8lx\n",
8678 (unsigned long) relocation, (unsigned long) (mask << shift),
8679 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8680 #endif
8681 put_value (wordsz, chunksz, input_bfd, x,
8682 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8683 return r;
8684 }
8685
8686 /* Functions to read r_offset from external (target order) reloc
8687 entry. Faster than bfd_getl32 et al, because we let the compiler
8688 know the value is aligned. */
8689
8690 static bfd_vma
8691 ext32l_r_offset (const void *p)
8692 {
8693 union aligned32
8694 {
8695 uint32_t v;
8696 unsigned char c[4];
8697 };
8698 const union aligned32 *a
8699 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8700
8701 uint32_t aval = ( (uint32_t) a->c[0]
8702 | (uint32_t) a->c[1] << 8
8703 | (uint32_t) a->c[2] << 16
8704 | (uint32_t) a->c[3] << 24);
8705 return aval;
8706 }
8707
8708 static bfd_vma
8709 ext32b_r_offset (const void *p)
8710 {
8711 union aligned32
8712 {
8713 uint32_t v;
8714 unsigned char c[4];
8715 };
8716 const union aligned32 *a
8717 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8718
8719 uint32_t aval = ( (uint32_t) a->c[0] << 24
8720 | (uint32_t) a->c[1] << 16
8721 | (uint32_t) a->c[2] << 8
8722 | (uint32_t) a->c[3]);
8723 return aval;
8724 }
8725
8726 #ifdef BFD_HOST_64_BIT
8727 static bfd_vma
8728 ext64l_r_offset (const void *p)
8729 {
8730 union aligned64
8731 {
8732 uint64_t v;
8733 unsigned char c[8];
8734 };
8735 const union aligned64 *a
8736 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8737
8738 uint64_t aval = ( (uint64_t) a->c[0]
8739 | (uint64_t) a->c[1] << 8
8740 | (uint64_t) a->c[2] << 16
8741 | (uint64_t) a->c[3] << 24
8742 | (uint64_t) a->c[4] << 32
8743 | (uint64_t) a->c[5] << 40
8744 | (uint64_t) a->c[6] << 48
8745 | (uint64_t) a->c[7] << 56);
8746 return aval;
8747 }
8748
8749 static bfd_vma
8750 ext64b_r_offset (const void *p)
8751 {
8752 union aligned64
8753 {
8754 uint64_t v;
8755 unsigned char c[8];
8756 };
8757 const union aligned64 *a
8758 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8759
8760 uint64_t aval = ( (uint64_t) a->c[0] << 56
8761 | (uint64_t) a->c[1] << 48
8762 | (uint64_t) a->c[2] << 40
8763 | (uint64_t) a->c[3] << 32
8764 | (uint64_t) a->c[4] << 24
8765 | (uint64_t) a->c[5] << 16
8766 | (uint64_t) a->c[6] << 8
8767 | (uint64_t) a->c[7]);
8768 return aval;
8769 }
8770 #endif
8771
8772 /* When performing a relocatable link, the input relocations are
8773 preserved. But, if they reference global symbols, the indices
8774 referenced must be updated. Update all the relocations found in
8775 RELDATA. */
8776
8777 static bfd_boolean
8778 elf_link_adjust_relocs (bfd *abfd,
8779 asection *sec,
8780 struct bfd_elf_section_reloc_data *reldata,
8781 bfd_boolean sort,
8782 struct bfd_link_info *info)
8783 {
8784 unsigned int i;
8785 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8786 bfd_byte *erela;
8787 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8788 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8789 bfd_vma r_type_mask;
8790 int r_sym_shift;
8791 unsigned int count = reldata->count;
8792 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8793
8794 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8795 {
8796 swap_in = bed->s->swap_reloc_in;
8797 swap_out = bed->s->swap_reloc_out;
8798 }
8799 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8800 {
8801 swap_in = bed->s->swap_reloca_in;
8802 swap_out = bed->s->swap_reloca_out;
8803 }
8804 else
8805 abort ();
8806
8807 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8808 abort ();
8809
8810 if (bed->s->arch_size == 32)
8811 {
8812 r_type_mask = 0xff;
8813 r_sym_shift = 8;
8814 }
8815 else
8816 {
8817 r_type_mask = 0xffffffff;
8818 r_sym_shift = 32;
8819 }
8820
8821 erela = reldata->hdr->contents;
8822 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8823 {
8824 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8825 unsigned int j;
8826
8827 if (*rel_hash == NULL)
8828 continue;
8829
8830 if ((*rel_hash)->indx == -2
8831 && info->gc_sections
8832 && ! info->gc_keep_exported)
8833 {
8834 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8835 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8836 abfd, sec,
8837 (*rel_hash)->root.root.string);
8838 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8839 abfd, sec);
8840 bfd_set_error (bfd_error_invalid_operation);
8841 return FALSE;
8842 }
8843 BFD_ASSERT ((*rel_hash)->indx >= 0);
8844
8845 (*swap_in) (abfd, erela, irela);
8846 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8847 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8848 | (irela[j].r_info & r_type_mask));
8849 (*swap_out) (abfd, irela, erela);
8850 }
8851
8852 if (bed->elf_backend_update_relocs)
8853 (*bed->elf_backend_update_relocs) (sec, reldata);
8854
8855 if (sort && count != 0)
8856 {
8857 bfd_vma (*ext_r_off) (const void *);
8858 bfd_vma r_off;
8859 size_t elt_size;
8860 bfd_byte *base, *end, *p, *loc;
8861 bfd_byte *buf = NULL;
8862
8863 if (bed->s->arch_size == 32)
8864 {
8865 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8866 ext_r_off = ext32l_r_offset;
8867 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8868 ext_r_off = ext32b_r_offset;
8869 else
8870 abort ();
8871 }
8872 else
8873 {
8874 #ifdef BFD_HOST_64_BIT
8875 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8876 ext_r_off = ext64l_r_offset;
8877 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8878 ext_r_off = ext64b_r_offset;
8879 else
8880 #endif
8881 abort ();
8882 }
8883
8884 /* Must use a stable sort here. A modified insertion sort,
8885 since the relocs are mostly sorted already. */
8886 elt_size = reldata->hdr->sh_entsize;
8887 base = reldata->hdr->contents;
8888 end = base + count * elt_size;
8889 if (elt_size > sizeof (Elf64_External_Rela))
8890 abort ();
8891
8892 /* Ensure the first element is lowest. This acts as a sentinel,
8893 speeding the main loop below. */
8894 r_off = (*ext_r_off) (base);
8895 for (p = loc = base; (p += elt_size) < end; )
8896 {
8897 bfd_vma r_off2 = (*ext_r_off) (p);
8898 if (r_off > r_off2)
8899 {
8900 r_off = r_off2;
8901 loc = p;
8902 }
8903 }
8904 if (loc != base)
8905 {
8906 /* Don't just swap *base and *loc as that changes the order
8907 of the original base[0] and base[1] if they happen to
8908 have the same r_offset. */
8909 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8910 memcpy (onebuf, loc, elt_size);
8911 memmove (base + elt_size, base, loc - base);
8912 memcpy (base, onebuf, elt_size);
8913 }
8914
8915 for (p = base + elt_size; (p += elt_size) < end; )
8916 {
8917 /* base to p is sorted, *p is next to insert. */
8918 r_off = (*ext_r_off) (p);
8919 /* Search the sorted region for location to insert. */
8920 loc = p - elt_size;
8921 while (r_off < (*ext_r_off) (loc))
8922 loc -= elt_size;
8923 loc += elt_size;
8924 if (loc != p)
8925 {
8926 /* Chances are there is a run of relocs to insert here,
8927 from one of more input files. Files are not always
8928 linked in order due to the way elf_link_input_bfd is
8929 called. See pr17666. */
8930 size_t sortlen = p - loc;
8931 bfd_vma r_off2 = (*ext_r_off) (loc);
8932 size_t runlen = elt_size;
8933 size_t buf_size = 96 * 1024;
8934 while (p + runlen < end
8935 && (sortlen <= buf_size
8936 || runlen + elt_size <= buf_size)
8937 && r_off2 > (*ext_r_off) (p + runlen))
8938 runlen += elt_size;
8939 if (buf == NULL)
8940 {
8941 buf = bfd_malloc (buf_size);
8942 if (buf == NULL)
8943 return FALSE;
8944 }
8945 if (runlen < sortlen)
8946 {
8947 memcpy (buf, p, runlen);
8948 memmove (loc + runlen, loc, sortlen);
8949 memcpy (loc, buf, runlen);
8950 }
8951 else
8952 {
8953 memcpy (buf, loc, sortlen);
8954 memmove (loc, p, runlen);
8955 memcpy (loc + runlen, buf, sortlen);
8956 }
8957 p += runlen - elt_size;
8958 }
8959 }
8960 /* Hashes are no longer valid. */
8961 free (reldata->hashes);
8962 reldata->hashes = NULL;
8963 free (buf);
8964 }
8965 return TRUE;
8966 }
8967
8968 struct elf_link_sort_rela
8969 {
8970 union {
8971 bfd_vma offset;
8972 bfd_vma sym_mask;
8973 } u;
8974 enum elf_reloc_type_class type;
8975 /* We use this as an array of size int_rels_per_ext_rel. */
8976 Elf_Internal_Rela rela[1];
8977 };
8978
8979 static int
8980 elf_link_sort_cmp1 (const void *A, const void *B)
8981 {
8982 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8983 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8984 int relativea, relativeb;
8985
8986 relativea = a->type == reloc_class_relative;
8987 relativeb = b->type == reloc_class_relative;
8988
8989 if (relativea < relativeb)
8990 return 1;
8991 if (relativea > relativeb)
8992 return -1;
8993 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8994 return -1;
8995 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8996 return 1;
8997 if (a->rela->r_offset < b->rela->r_offset)
8998 return -1;
8999 if (a->rela->r_offset > b->rela->r_offset)
9000 return 1;
9001 return 0;
9002 }
9003
9004 static int
9005 elf_link_sort_cmp2 (const void *A, const void *B)
9006 {
9007 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9008 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9009
9010 if (a->type < b->type)
9011 return -1;
9012 if (a->type > b->type)
9013 return 1;
9014 if (a->u.offset < b->u.offset)
9015 return -1;
9016 if (a->u.offset > b->u.offset)
9017 return 1;
9018 if (a->rela->r_offset < b->rela->r_offset)
9019 return -1;
9020 if (a->rela->r_offset > b->rela->r_offset)
9021 return 1;
9022 return 0;
9023 }
9024
9025 static size_t
9026 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9027 {
9028 asection *dynamic_relocs;
9029 asection *rela_dyn;
9030 asection *rel_dyn;
9031 bfd_size_type count, size;
9032 size_t i, ret, sort_elt, ext_size;
9033 bfd_byte *sort, *s_non_relative, *p;
9034 struct elf_link_sort_rela *sq;
9035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9036 int i2e = bed->s->int_rels_per_ext_rel;
9037 unsigned int opb = bfd_octets_per_byte (abfd);
9038 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9039 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9040 struct bfd_link_order *lo;
9041 bfd_vma r_sym_mask;
9042 bfd_boolean use_rela;
9043
9044 /* Find a dynamic reloc section. */
9045 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9046 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9047 if (rela_dyn != NULL && rela_dyn->size > 0
9048 && rel_dyn != NULL && rel_dyn->size > 0)
9049 {
9050 bfd_boolean use_rela_initialised = FALSE;
9051
9052 /* This is just here to stop gcc from complaining.
9053 Its initialization checking code is not perfect. */
9054 use_rela = TRUE;
9055
9056 /* Both sections are present. Examine the sizes
9057 of the indirect sections to help us choose. */
9058 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9059 if (lo->type == bfd_indirect_link_order)
9060 {
9061 asection *o = lo->u.indirect.section;
9062
9063 if ((o->size % bed->s->sizeof_rela) == 0)
9064 {
9065 if ((o->size % bed->s->sizeof_rel) == 0)
9066 /* Section size is divisible by both rel and rela sizes.
9067 It is of no help to us. */
9068 ;
9069 else
9070 {
9071 /* Section size is only divisible by rela. */
9072 if (use_rela_initialised && !use_rela)
9073 {
9074 _bfd_error_handler (_("%pB: unable to sort relocs - "
9075 "they are in more than one size"),
9076 abfd);
9077 bfd_set_error (bfd_error_invalid_operation);
9078 return 0;
9079 }
9080 else
9081 {
9082 use_rela = TRUE;
9083 use_rela_initialised = TRUE;
9084 }
9085 }
9086 }
9087 else if ((o->size % bed->s->sizeof_rel) == 0)
9088 {
9089 /* Section size is only divisible by rel. */
9090 if (use_rela_initialised && use_rela)
9091 {
9092 _bfd_error_handler (_("%pB: unable to sort relocs - "
9093 "they are in more than one size"),
9094 abfd);
9095 bfd_set_error (bfd_error_invalid_operation);
9096 return 0;
9097 }
9098 else
9099 {
9100 use_rela = FALSE;
9101 use_rela_initialised = TRUE;
9102 }
9103 }
9104 else
9105 {
9106 /* The section size is not divisible by either -
9107 something is wrong. */
9108 _bfd_error_handler (_("%pB: unable to sort relocs - "
9109 "they are of an unknown size"), abfd);
9110 bfd_set_error (bfd_error_invalid_operation);
9111 return 0;
9112 }
9113 }
9114
9115 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9116 if (lo->type == bfd_indirect_link_order)
9117 {
9118 asection *o = lo->u.indirect.section;
9119
9120 if ((o->size % bed->s->sizeof_rela) == 0)
9121 {
9122 if ((o->size % bed->s->sizeof_rel) == 0)
9123 /* Section size is divisible by both rel and rela sizes.
9124 It is of no help to us. */
9125 ;
9126 else
9127 {
9128 /* Section size is only divisible by rela. */
9129 if (use_rela_initialised && !use_rela)
9130 {
9131 _bfd_error_handler (_("%pB: unable to sort relocs - "
9132 "they are in more than one size"),
9133 abfd);
9134 bfd_set_error (bfd_error_invalid_operation);
9135 return 0;
9136 }
9137 else
9138 {
9139 use_rela = TRUE;
9140 use_rela_initialised = TRUE;
9141 }
9142 }
9143 }
9144 else if ((o->size % bed->s->sizeof_rel) == 0)
9145 {
9146 /* Section size is only divisible by rel. */
9147 if (use_rela_initialised && use_rela)
9148 {
9149 _bfd_error_handler (_("%pB: unable to sort relocs - "
9150 "they are in more than one size"),
9151 abfd);
9152 bfd_set_error (bfd_error_invalid_operation);
9153 return 0;
9154 }
9155 else
9156 {
9157 use_rela = FALSE;
9158 use_rela_initialised = TRUE;
9159 }
9160 }
9161 else
9162 {
9163 /* The section size is not divisible by either -
9164 something is wrong. */
9165 _bfd_error_handler (_("%pB: unable to sort relocs - "
9166 "they are of an unknown size"), abfd);
9167 bfd_set_error (bfd_error_invalid_operation);
9168 return 0;
9169 }
9170 }
9171
9172 if (! use_rela_initialised)
9173 /* Make a guess. */
9174 use_rela = TRUE;
9175 }
9176 else if (rela_dyn != NULL && rela_dyn->size > 0)
9177 use_rela = TRUE;
9178 else if (rel_dyn != NULL && rel_dyn->size > 0)
9179 use_rela = FALSE;
9180 else
9181 return 0;
9182
9183 if (use_rela)
9184 {
9185 dynamic_relocs = rela_dyn;
9186 ext_size = bed->s->sizeof_rela;
9187 swap_in = bed->s->swap_reloca_in;
9188 swap_out = bed->s->swap_reloca_out;
9189 }
9190 else
9191 {
9192 dynamic_relocs = rel_dyn;
9193 ext_size = bed->s->sizeof_rel;
9194 swap_in = bed->s->swap_reloc_in;
9195 swap_out = bed->s->swap_reloc_out;
9196 }
9197
9198 size = 0;
9199 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9200 if (lo->type == bfd_indirect_link_order)
9201 size += lo->u.indirect.section->size;
9202
9203 if (size != dynamic_relocs->size)
9204 return 0;
9205
9206 sort_elt = (sizeof (struct elf_link_sort_rela)
9207 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9208
9209 count = dynamic_relocs->size / ext_size;
9210 if (count == 0)
9211 return 0;
9212 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9213
9214 if (sort == NULL)
9215 {
9216 (*info->callbacks->warning)
9217 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9218 return 0;
9219 }
9220
9221 if (bed->s->arch_size == 32)
9222 r_sym_mask = ~(bfd_vma) 0xff;
9223 else
9224 r_sym_mask = ~(bfd_vma) 0xffffffff;
9225
9226 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9227 if (lo->type == bfd_indirect_link_order)
9228 {
9229 bfd_byte *erel, *erelend;
9230 asection *o = lo->u.indirect.section;
9231
9232 if (o->contents == NULL && o->size != 0)
9233 {
9234 /* This is a reloc section that is being handled as a normal
9235 section. See bfd_section_from_shdr. We can't combine
9236 relocs in this case. */
9237 free (sort);
9238 return 0;
9239 }
9240 erel = o->contents;
9241 erelend = o->contents + o->size;
9242 p = sort + o->output_offset * opb / ext_size * sort_elt;
9243
9244 while (erel < erelend)
9245 {
9246 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9247
9248 (*swap_in) (abfd, erel, s->rela);
9249 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9250 s->u.sym_mask = r_sym_mask;
9251 p += sort_elt;
9252 erel += ext_size;
9253 }
9254 }
9255
9256 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9257
9258 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9259 {
9260 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9261 if (s->type != reloc_class_relative)
9262 break;
9263 }
9264 ret = i;
9265 s_non_relative = p;
9266
9267 sq = (struct elf_link_sort_rela *) s_non_relative;
9268 for (; i < count; i++, p += sort_elt)
9269 {
9270 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9271 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9272 sq = sp;
9273 sp->u.offset = sq->rela->r_offset;
9274 }
9275
9276 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9277
9278 struct elf_link_hash_table *htab = elf_hash_table (info);
9279 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9280 {
9281 /* We have plt relocs in .rela.dyn. */
9282 sq = (struct elf_link_sort_rela *) sort;
9283 for (i = 0; i < count; i++)
9284 if (sq[count - i - 1].type != reloc_class_plt)
9285 break;
9286 if (i != 0 && htab->srelplt->size == i * ext_size)
9287 {
9288 struct bfd_link_order **plo;
9289 /* Put srelplt link_order last. This is so the output_offset
9290 set in the next loop is correct for DT_JMPREL. */
9291 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9292 if ((*plo)->type == bfd_indirect_link_order
9293 && (*plo)->u.indirect.section == htab->srelplt)
9294 {
9295 lo = *plo;
9296 *plo = lo->next;
9297 }
9298 else
9299 plo = &(*plo)->next;
9300 *plo = lo;
9301 lo->next = NULL;
9302 dynamic_relocs->map_tail.link_order = lo;
9303 }
9304 }
9305
9306 p = sort;
9307 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9308 if (lo->type == bfd_indirect_link_order)
9309 {
9310 bfd_byte *erel, *erelend;
9311 asection *o = lo->u.indirect.section;
9312
9313 erel = o->contents;
9314 erelend = o->contents + o->size;
9315 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9316 while (erel < erelend)
9317 {
9318 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9319 (*swap_out) (abfd, s->rela, erel);
9320 p += sort_elt;
9321 erel += ext_size;
9322 }
9323 }
9324
9325 free (sort);
9326 *psec = dynamic_relocs;
9327 return ret;
9328 }
9329
9330 /* Add a symbol to the output symbol string table. */
9331
9332 static int
9333 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9334 const char *name,
9335 Elf_Internal_Sym *elfsym,
9336 asection *input_sec,
9337 struct elf_link_hash_entry *h)
9338 {
9339 int (*output_symbol_hook)
9340 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9341 struct elf_link_hash_entry *);
9342 struct elf_link_hash_table *hash_table;
9343 const struct elf_backend_data *bed;
9344 bfd_size_type strtabsize;
9345
9346 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9347
9348 bed = get_elf_backend_data (flinfo->output_bfd);
9349 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9350 if (output_symbol_hook != NULL)
9351 {
9352 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9353 if (ret != 1)
9354 return ret;
9355 }
9356
9357 if (name == NULL
9358 || *name == '\0'
9359 || (input_sec->flags & SEC_EXCLUDE))
9360 elfsym->st_name = (unsigned long) -1;
9361 else
9362 {
9363 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9364 to get the final offset for st_name. */
9365 elfsym->st_name
9366 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9367 name, FALSE);
9368 if (elfsym->st_name == (unsigned long) -1)
9369 return 0;
9370 }
9371
9372 hash_table = elf_hash_table (flinfo->info);
9373 strtabsize = hash_table->strtabsize;
9374 if (strtabsize <= hash_table->strtabcount)
9375 {
9376 strtabsize += strtabsize;
9377 hash_table->strtabsize = strtabsize;
9378 strtabsize *= sizeof (*hash_table->strtab);
9379 hash_table->strtab
9380 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9381 strtabsize);
9382 if (hash_table->strtab == NULL)
9383 return 0;
9384 }
9385 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9386 hash_table->strtab[hash_table->strtabcount].dest_index
9387 = hash_table->strtabcount;
9388 hash_table->strtab[hash_table->strtabcount].destshndx_index
9389 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9390
9391 bfd_get_symcount (flinfo->output_bfd) += 1;
9392 hash_table->strtabcount += 1;
9393
9394 return 1;
9395 }
9396
9397 /* Swap symbols out to the symbol table and flush the output symbols to
9398 the file. */
9399
9400 static bfd_boolean
9401 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9402 {
9403 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9404 bfd_size_type amt;
9405 size_t i;
9406 const struct elf_backend_data *bed;
9407 bfd_byte *symbuf;
9408 Elf_Internal_Shdr *hdr;
9409 file_ptr pos;
9410 bfd_boolean ret;
9411
9412 if (!hash_table->strtabcount)
9413 return TRUE;
9414
9415 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9416
9417 bed = get_elf_backend_data (flinfo->output_bfd);
9418
9419 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9420 symbuf = (bfd_byte *) bfd_malloc (amt);
9421 if (symbuf == NULL)
9422 return FALSE;
9423
9424 if (flinfo->symshndxbuf)
9425 {
9426 amt = sizeof (Elf_External_Sym_Shndx);
9427 amt *= bfd_get_symcount (flinfo->output_bfd);
9428 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9429 if (flinfo->symshndxbuf == NULL)
9430 {
9431 free (symbuf);
9432 return FALSE;
9433 }
9434 }
9435
9436 for (i = 0; i < hash_table->strtabcount; i++)
9437 {
9438 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9439 if (elfsym->sym.st_name == (unsigned long) -1)
9440 elfsym->sym.st_name = 0;
9441 else
9442 elfsym->sym.st_name
9443 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9444 elfsym->sym.st_name);
9445 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9446 ((bfd_byte *) symbuf
9447 + (elfsym->dest_index
9448 * bed->s->sizeof_sym)),
9449 (flinfo->symshndxbuf
9450 + elfsym->destshndx_index));
9451 }
9452
9453 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9454 pos = hdr->sh_offset + hdr->sh_size;
9455 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9456 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9457 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9458 {
9459 hdr->sh_size += amt;
9460 ret = TRUE;
9461 }
9462 else
9463 ret = FALSE;
9464
9465 free (symbuf);
9466
9467 free (hash_table->strtab);
9468 hash_table->strtab = NULL;
9469
9470 return ret;
9471 }
9472
9473 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9474
9475 static bfd_boolean
9476 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9477 {
9478 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9479 && sym->st_shndx < SHN_LORESERVE)
9480 {
9481 /* The gABI doesn't support dynamic symbols in output sections
9482 beyond 64k. */
9483 _bfd_error_handler
9484 /* xgettext:c-format */
9485 (_("%pB: too many sections: %d (>= %d)"),
9486 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9487 bfd_set_error (bfd_error_nonrepresentable_section);
9488 return FALSE;
9489 }
9490 return TRUE;
9491 }
9492
9493 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9494 allowing an unsatisfied unversioned symbol in the DSO to match a
9495 versioned symbol that would normally require an explicit version.
9496 We also handle the case that a DSO references a hidden symbol
9497 which may be satisfied by a versioned symbol in another DSO. */
9498
9499 static bfd_boolean
9500 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9501 const struct elf_backend_data *bed,
9502 struct elf_link_hash_entry *h)
9503 {
9504 bfd *abfd;
9505 struct elf_link_loaded_list *loaded;
9506
9507 if (!is_elf_hash_table (info->hash))
9508 return FALSE;
9509
9510 /* Check indirect symbol. */
9511 while (h->root.type == bfd_link_hash_indirect)
9512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9513
9514 switch (h->root.type)
9515 {
9516 default:
9517 abfd = NULL;
9518 break;
9519
9520 case bfd_link_hash_undefined:
9521 case bfd_link_hash_undefweak:
9522 abfd = h->root.u.undef.abfd;
9523 if (abfd == NULL
9524 || (abfd->flags & DYNAMIC) == 0
9525 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9526 return FALSE;
9527 break;
9528
9529 case bfd_link_hash_defined:
9530 case bfd_link_hash_defweak:
9531 abfd = h->root.u.def.section->owner;
9532 break;
9533
9534 case bfd_link_hash_common:
9535 abfd = h->root.u.c.p->section->owner;
9536 break;
9537 }
9538 BFD_ASSERT (abfd != NULL);
9539
9540 for (loaded = elf_hash_table (info)->loaded;
9541 loaded != NULL;
9542 loaded = loaded->next)
9543 {
9544 bfd *input;
9545 Elf_Internal_Shdr *hdr;
9546 size_t symcount;
9547 size_t extsymcount;
9548 size_t extsymoff;
9549 Elf_Internal_Shdr *versymhdr;
9550 Elf_Internal_Sym *isym;
9551 Elf_Internal_Sym *isymend;
9552 Elf_Internal_Sym *isymbuf;
9553 Elf_External_Versym *ever;
9554 Elf_External_Versym *extversym;
9555
9556 input = loaded->abfd;
9557
9558 /* We check each DSO for a possible hidden versioned definition. */
9559 if (input == abfd
9560 || (input->flags & DYNAMIC) == 0
9561 || elf_dynversym (input) == 0)
9562 continue;
9563
9564 hdr = &elf_tdata (input)->dynsymtab_hdr;
9565
9566 symcount = hdr->sh_size / bed->s->sizeof_sym;
9567 if (elf_bad_symtab (input))
9568 {
9569 extsymcount = symcount;
9570 extsymoff = 0;
9571 }
9572 else
9573 {
9574 extsymcount = symcount - hdr->sh_info;
9575 extsymoff = hdr->sh_info;
9576 }
9577
9578 if (extsymcount == 0)
9579 continue;
9580
9581 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9582 NULL, NULL, NULL);
9583 if (isymbuf == NULL)
9584 return FALSE;
9585
9586 /* Read in any version definitions. */
9587 versymhdr = &elf_tdata (input)->dynversym_hdr;
9588 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9589 if (extversym == NULL)
9590 goto error_ret;
9591
9592 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9593 || (bfd_bread (extversym, versymhdr->sh_size, input)
9594 != versymhdr->sh_size))
9595 {
9596 free (extversym);
9597 error_ret:
9598 free (isymbuf);
9599 return FALSE;
9600 }
9601
9602 ever = extversym + extsymoff;
9603 isymend = isymbuf + extsymcount;
9604 for (isym = isymbuf; isym < isymend; isym++, ever++)
9605 {
9606 const char *name;
9607 Elf_Internal_Versym iver;
9608 unsigned short version_index;
9609
9610 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9611 || isym->st_shndx == SHN_UNDEF)
9612 continue;
9613
9614 name = bfd_elf_string_from_elf_section (input,
9615 hdr->sh_link,
9616 isym->st_name);
9617 if (strcmp (name, h->root.root.string) != 0)
9618 continue;
9619
9620 _bfd_elf_swap_versym_in (input, ever, &iver);
9621
9622 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9623 && !(h->def_regular
9624 && h->forced_local))
9625 {
9626 /* If we have a non-hidden versioned sym, then it should
9627 have provided a definition for the undefined sym unless
9628 it is defined in a non-shared object and forced local.
9629 */
9630 abort ();
9631 }
9632
9633 version_index = iver.vs_vers & VERSYM_VERSION;
9634 if (version_index == 1 || version_index == 2)
9635 {
9636 /* This is the base or first version. We can use it. */
9637 free (extversym);
9638 free (isymbuf);
9639 return TRUE;
9640 }
9641 }
9642
9643 free (extversym);
9644 free (isymbuf);
9645 }
9646
9647 return FALSE;
9648 }
9649
9650 /* Convert ELF common symbol TYPE. */
9651
9652 static int
9653 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9654 {
9655 /* Commom symbol can only appear in relocatable link. */
9656 if (!bfd_link_relocatable (info))
9657 abort ();
9658 switch (info->elf_stt_common)
9659 {
9660 case unchanged:
9661 break;
9662 case elf_stt_common:
9663 type = STT_COMMON;
9664 break;
9665 case no_elf_stt_common:
9666 type = STT_OBJECT;
9667 break;
9668 }
9669 return type;
9670 }
9671
9672 /* Add an external symbol to the symbol table. This is called from
9673 the hash table traversal routine. When generating a shared object,
9674 we go through the symbol table twice. The first time we output
9675 anything that might have been forced to local scope in a version
9676 script. The second time we output the symbols that are still
9677 global symbols. */
9678
9679 static bfd_boolean
9680 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9681 {
9682 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9683 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9684 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9685 bfd_boolean strip;
9686 Elf_Internal_Sym sym;
9687 asection *input_sec;
9688 const struct elf_backend_data *bed;
9689 long indx;
9690 int ret;
9691 unsigned int type;
9692
9693 if (h->root.type == bfd_link_hash_warning)
9694 {
9695 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9696 if (h->root.type == bfd_link_hash_new)
9697 return TRUE;
9698 }
9699
9700 /* Decide whether to output this symbol in this pass. */
9701 if (eoinfo->localsyms)
9702 {
9703 if (!h->forced_local)
9704 return TRUE;
9705 }
9706 else
9707 {
9708 if (h->forced_local)
9709 return TRUE;
9710 }
9711
9712 bed = get_elf_backend_data (flinfo->output_bfd);
9713
9714 if (h->root.type == bfd_link_hash_undefined)
9715 {
9716 /* If we have an undefined symbol reference here then it must have
9717 come from a shared library that is being linked in. (Undefined
9718 references in regular files have already been handled unless
9719 they are in unreferenced sections which are removed by garbage
9720 collection). */
9721 bfd_boolean ignore_undef = FALSE;
9722
9723 /* Some symbols may be special in that the fact that they're
9724 undefined can be safely ignored - let backend determine that. */
9725 if (bed->elf_backend_ignore_undef_symbol)
9726 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9727
9728 /* If we are reporting errors for this situation then do so now. */
9729 if (!ignore_undef
9730 && h->ref_dynamic
9731 && (!h->ref_regular || flinfo->info->gc_sections)
9732 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9733 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9734 (*flinfo->info->callbacks->undefined_symbol)
9735 (flinfo->info, h->root.root.string,
9736 h->ref_regular ? NULL : h->root.u.undef.abfd,
9737 NULL, 0,
9738 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9739
9740 /* Strip a global symbol defined in a discarded section. */
9741 if (h->indx == -3)
9742 return TRUE;
9743 }
9744
9745 /* We should also warn if a forced local symbol is referenced from
9746 shared libraries. */
9747 if (bfd_link_executable (flinfo->info)
9748 && h->forced_local
9749 && h->ref_dynamic
9750 && h->def_regular
9751 && !h->dynamic_def
9752 && h->ref_dynamic_nonweak
9753 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9754 {
9755 bfd *def_bfd;
9756 const char *msg;
9757 struct elf_link_hash_entry *hi = h;
9758
9759 /* Check indirect symbol. */
9760 while (hi->root.type == bfd_link_hash_indirect)
9761 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9762
9763 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9764 /* xgettext:c-format */
9765 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9766 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9767 /* xgettext:c-format */
9768 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9769 else
9770 /* xgettext:c-format */
9771 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9772 def_bfd = flinfo->output_bfd;
9773 if (hi->root.u.def.section != bfd_abs_section_ptr)
9774 def_bfd = hi->root.u.def.section->owner;
9775 _bfd_error_handler (msg, flinfo->output_bfd,
9776 h->root.root.string, def_bfd);
9777 bfd_set_error (bfd_error_bad_value);
9778 eoinfo->failed = TRUE;
9779 return FALSE;
9780 }
9781
9782 /* We don't want to output symbols that have never been mentioned by
9783 a regular file, or that we have been told to strip. However, if
9784 h->indx is set to -2, the symbol is used by a reloc and we must
9785 output it. */
9786 strip = FALSE;
9787 if (h->indx == -2)
9788 ;
9789 else if ((h->def_dynamic
9790 || h->ref_dynamic
9791 || h->root.type == bfd_link_hash_new)
9792 && !h->def_regular
9793 && !h->ref_regular)
9794 strip = TRUE;
9795 else if (flinfo->info->strip == strip_all)
9796 strip = TRUE;
9797 else if (flinfo->info->strip == strip_some
9798 && bfd_hash_lookup (flinfo->info->keep_hash,
9799 h->root.root.string, FALSE, FALSE) == NULL)
9800 strip = TRUE;
9801 else if ((h->root.type == bfd_link_hash_defined
9802 || h->root.type == bfd_link_hash_defweak)
9803 && ((flinfo->info->strip_discarded
9804 && discarded_section (h->root.u.def.section))
9805 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9806 && h->root.u.def.section->owner != NULL
9807 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9808 strip = TRUE;
9809 else if ((h->root.type == bfd_link_hash_undefined
9810 || h->root.type == bfd_link_hash_undefweak)
9811 && h->root.u.undef.abfd != NULL
9812 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9813 strip = TRUE;
9814
9815 type = h->type;
9816
9817 /* If we're stripping it, and it's not a dynamic symbol, there's
9818 nothing else to do. However, if it is a forced local symbol or
9819 an ifunc symbol we need to give the backend finish_dynamic_symbol
9820 function a chance to make it dynamic. */
9821 if (strip
9822 && h->dynindx == -1
9823 && type != STT_GNU_IFUNC
9824 && !h->forced_local)
9825 return TRUE;
9826
9827 sym.st_value = 0;
9828 sym.st_size = h->size;
9829 sym.st_other = h->other;
9830 switch (h->root.type)
9831 {
9832 default:
9833 case bfd_link_hash_new:
9834 case bfd_link_hash_warning:
9835 abort ();
9836 return FALSE;
9837
9838 case bfd_link_hash_undefined:
9839 case bfd_link_hash_undefweak:
9840 input_sec = bfd_und_section_ptr;
9841 sym.st_shndx = SHN_UNDEF;
9842 break;
9843
9844 case bfd_link_hash_defined:
9845 case bfd_link_hash_defweak:
9846 {
9847 input_sec = h->root.u.def.section;
9848 if (input_sec->output_section != NULL)
9849 {
9850 sym.st_shndx =
9851 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9852 input_sec->output_section);
9853 if (sym.st_shndx == SHN_BAD)
9854 {
9855 _bfd_error_handler
9856 /* xgettext:c-format */
9857 (_("%pB: could not find output section %pA for input section %pA"),
9858 flinfo->output_bfd, input_sec->output_section, input_sec);
9859 bfd_set_error (bfd_error_nonrepresentable_section);
9860 eoinfo->failed = TRUE;
9861 return FALSE;
9862 }
9863
9864 /* ELF symbols in relocatable files are section relative,
9865 but in nonrelocatable files they are virtual
9866 addresses. */
9867 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9868 if (!bfd_link_relocatable (flinfo->info))
9869 {
9870 sym.st_value += input_sec->output_section->vma;
9871 if (h->type == STT_TLS)
9872 {
9873 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9874 if (tls_sec != NULL)
9875 sym.st_value -= tls_sec->vma;
9876 }
9877 }
9878 }
9879 else
9880 {
9881 BFD_ASSERT (input_sec->owner == NULL
9882 || (input_sec->owner->flags & DYNAMIC) != 0);
9883 sym.st_shndx = SHN_UNDEF;
9884 input_sec = bfd_und_section_ptr;
9885 }
9886 }
9887 break;
9888
9889 case bfd_link_hash_common:
9890 input_sec = h->root.u.c.p->section;
9891 sym.st_shndx = bed->common_section_index (input_sec);
9892 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9893 break;
9894
9895 case bfd_link_hash_indirect:
9896 /* These symbols are created by symbol versioning. They point
9897 to the decorated version of the name. For example, if the
9898 symbol foo@@GNU_1.2 is the default, which should be used when
9899 foo is used with no version, then we add an indirect symbol
9900 foo which points to foo@@GNU_1.2. We ignore these symbols,
9901 since the indirected symbol is already in the hash table. */
9902 return TRUE;
9903 }
9904
9905 if (type == STT_COMMON || type == STT_OBJECT)
9906 switch (h->root.type)
9907 {
9908 case bfd_link_hash_common:
9909 type = elf_link_convert_common_type (flinfo->info, type);
9910 break;
9911 case bfd_link_hash_defined:
9912 case bfd_link_hash_defweak:
9913 if (bed->common_definition (&sym))
9914 type = elf_link_convert_common_type (flinfo->info, type);
9915 else
9916 type = STT_OBJECT;
9917 break;
9918 case bfd_link_hash_undefined:
9919 case bfd_link_hash_undefweak:
9920 break;
9921 default:
9922 abort ();
9923 }
9924
9925 if (h->forced_local)
9926 {
9927 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9928 /* Turn off visibility on local symbol. */
9929 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9930 }
9931 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9932 else if (h->unique_global && h->def_regular)
9933 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9934 else if (h->root.type == bfd_link_hash_undefweak
9935 || h->root.type == bfd_link_hash_defweak)
9936 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9937 else
9938 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9939 sym.st_target_internal = h->target_internal;
9940
9941 /* Give the processor backend a chance to tweak the symbol value,
9942 and also to finish up anything that needs to be done for this
9943 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9944 forced local syms when non-shared is due to a historical quirk.
9945 STT_GNU_IFUNC symbol must go through PLT. */
9946 if ((h->type == STT_GNU_IFUNC
9947 && h->def_regular
9948 && !bfd_link_relocatable (flinfo->info))
9949 || ((h->dynindx != -1
9950 || h->forced_local)
9951 && ((bfd_link_pic (flinfo->info)
9952 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9953 || h->root.type != bfd_link_hash_undefweak))
9954 || !h->forced_local)
9955 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9956 {
9957 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9958 (flinfo->output_bfd, flinfo->info, h, &sym)))
9959 {
9960 eoinfo->failed = TRUE;
9961 return FALSE;
9962 }
9963 }
9964
9965 /* If we are marking the symbol as undefined, and there are no
9966 non-weak references to this symbol from a regular object, then
9967 mark the symbol as weak undefined; if there are non-weak
9968 references, mark the symbol as strong. We can't do this earlier,
9969 because it might not be marked as undefined until the
9970 finish_dynamic_symbol routine gets through with it. */
9971 if (sym.st_shndx == SHN_UNDEF
9972 && h->ref_regular
9973 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9974 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9975 {
9976 int bindtype;
9977 type = ELF_ST_TYPE (sym.st_info);
9978
9979 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9980 if (type == STT_GNU_IFUNC)
9981 type = STT_FUNC;
9982
9983 if (h->ref_regular_nonweak)
9984 bindtype = STB_GLOBAL;
9985 else
9986 bindtype = STB_WEAK;
9987 sym.st_info = ELF_ST_INFO (bindtype, type);
9988 }
9989
9990 /* If this is a symbol defined in a dynamic library, don't use the
9991 symbol size from the dynamic library. Relinking an executable
9992 against a new library may introduce gratuitous changes in the
9993 executable's symbols if we keep the size. */
9994 if (sym.st_shndx == SHN_UNDEF
9995 && !h->def_regular
9996 && h->def_dynamic)
9997 sym.st_size = 0;
9998
9999 /* If a non-weak symbol with non-default visibility is not defined
10000 locally, it is a fatal error. */
10001 if (!bfd_link_relocatable (flinfo->info)
10002 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10003 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10004 && h->root.type == bfd_link_hash_undefined
10005 && !h->def_regular)
10006 {
10007 const char *msg;
10008
10009 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10010 /* xgettext:c-format */
10011 msg = _("%pB: protected symbol `%s' isn't defined");
10012 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10013 /* xgettext:c-format */
10014 msg = _("%pB: internal symbol `%s' isn't defined");
10015 else
10016 /* xgettext:c-format */
10017 msg = _("%pB: hidden symbol `%s' isn't defined");
10018 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10019 bfd_set_error (bfd_error_bad_value);
10020 eoinfo->failed = TRUE;
10021 return FALSE;
10022 }
10023
10024 /* If this symbol should be put in the .dynsym section, then put it
10025 there now. We already know the symbol index. We also fill in
10026 the entry in the .hash section. */
10027 if (elf_hash_table (flinfo->info)->dynsym != NULL
10028 && h->dynindx != -1
10029 && elf_hash_table (flinfo->info)->dynamic_sections_created)
10030 {
10031 bfd_byte *esym;
10032
10033 /* Since there is no version information in the dynamic string,
10034 if there is no version info in symbol version section, we will
10035 have a run-time problem if not linking executable, referenced
10036 by shared library, or not bound locally. */
10037 if (h->verinfo.verdef == NULL
10038 && (!bfd_link_executable (flinfo->info)
10039 || h->ref_dynamic
10040 || !h->def_regular))
10041 {
10042 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10043
10044 if (p && p [1] != '\0')
10045 {
10046 _bfd_error_handler
10047 /* xgettext:c-format */
10048 (_("%pB: no symbol version section for versioned symbol `%s'"),
10049 flinfo->output_bfd, h->root.root.string);
10050 eoinfo->failed = TRUE;
10051 return FALSE;
10052 }
10053 }
10054
10055 sym.st_name = h->dynstr_index;
10056 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10057 + h->dynindx * bed->s->sizeof_sym);
10058 if (!check_dynsym (flinfo->output_bfd, &sym))
10059 {
10060 eoinfo->failed = TRUE;
10061 return FALSE;
10062 }
10063 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10064
10065 if (flinfo->hash_sec != NULL)
10066 {
10067 size_t hash_entry_size;
10068 bfd_byte *bucketpos;
10069 bfd_vma chain;
10070 size_t bucketcount;
10071 size_t bucket;
10072
10073 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10074 bucket = h->u.elf_hash_value % bucketcount;
10075
10076 hash_entry_size
10077 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10078 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10079 + (bucket + 2) * hash_entry_size);
10080 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10081 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10082 bucketpos);
10083 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10084 ((bfd_byte *) flinfo->hash_sec->contents
10085 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10086 }
10087
10088 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10089 {
10090 Elf_Internal_Versym iversym;
10091 Elf_External_Versym *eversym;
10092
10093 if (!h->def_regular)
10094 {
10095 if (h->verinfo.verdef == NULL
10096 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10097 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10098 iversym.vs_vers = 0;
10099 else
10100 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10101 }
10102 else
10103 {
10104 if (h->verinfo.vertree == NULL)
10105 iversym.vs_vers = 1;
10106 else
10107 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10108 if (flinfo->info->create_default_symver)
10109 iversym.vs_vers++;
10110 }
10111
10112 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10113 defined locally. */
10114 if (h->versioned == versioned_hidden && h->def_regular)
10115 iversym.vs_vers |= VERSYM_HIDDEN;
10116
10117 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10118 eversym += h->dynindx;
10119 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10120 }
10121 }
10122
10123 /* If the symbol is undefined, and we didn't output it to .dynsym,
10124 strip it from .symtab too. Obviously we can't do this for
10125 relocatable output or when needed for --emit-relocs. */
10126 else if (input_sec == bfd_und_section_ptr
10127 && h->indx != -2
10128 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10129 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10130 && !bfd_link_relocatable (flinfo->info))
10131 return TRUE;
10132
10133 /* Also strip others that we couldn't earlier due to dynamic symbol
10134 processing. */
10135 if (strip)
10136 return TRUE;
10137 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10138 return TRUE;
10139
10140 /* Output a FILE symbol so that following locals are not associated
10141 with the wrong input file. We need one for forced local symbols
10142 if we've seen more than one FILE symbol or when we have exactly
10143 one FILE symbol but global symbols are present in a file other
10144 than the one with the FILE symbol. We also need one if linker
10145 defined symbols are present. In practice these conditions are
10146 always met, so just emit the FILE symbol unconditionally. */
10147 if (eoinfo->localsyms
10148 && !eoinfo->file_sym_done
10149 && eoinfo->flinfo->filesym_count != 0)
10150 {
10151 Elf_Internal_Sym fsym;
10152
10153 memset (&fsym, 0, sizeof (fsym));
10154 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10155 fsym.st_shndx = SHN_ABS;
10156 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10157 bfd_und_section_ptr, NULL))
10158 return FALSE;
10159
10160 eoinfo->file_sym_done = TRUE;
10161 }
10162
10163 indx = bfd_get_symcount (flinfo->output_bfd);
10164 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10165 input_sec, h);
10166 if (ret == 0)
10167 {
10168 eoinfo->failed = TRUE;
10169 return FALSE;
10170 }
10171 else if (ret == 1)
10172 h->indx = indx;
10173 else if (h->indx == -2)
10174 abort();
10175
10176 return TRUE;
10177 }
10178
10179 /* Return TRUE if special handling is done for relocs in SEC against
10180 symbols defined in discarded sections. */
10181
10182 static bfd_boolean
10183 elf_section_ignore_discarded_relocs (asection *sec)
10184 {
10185 const struct elf_backend_data *bed;
10186
10187 switch (sec->sec_info_type)
10188 {
10189 case SEC_INFO_TYPE_STABS:
10190 case SEC_INFO_TYPE_EH_FRAME:
10191 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10192 return TRUE;
10193 default:
10194 break;
10195 }
10196
10197 bed = get_elf_backend_data (sec->owner);
10198 if (bed->elf_backend_ignore_discarded_relocs != NULL
10199 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10200 return TRUE;
10201
10202 return FALSE;
10203 }
10204
10205 /* Return a mask saying how ld should treat relocations in SEC against
10206 symbols defined in discarded sections. If this function returns
10207 COMPLAIN set, ld will issue a warning message. If this function
10208 returns PRETEND set, and the discarded section was link-once and the
10209 same size as the kept link-once section, ld will pretend that the
10210 symbol was actually defined in the kept section. Otherwise ld will
10211 zero the reloc (at least that is the intent, but some cooperation by
10212 the target dependent code is needed, particularly for REL targets). */
10213
10214 unsigned int
10215 _bfd_elf_default_action_discarded (asection *sec)
10216 {
10217 if (sec->flags & SEC_DEBUGGING)
10218 return PRETEND;
10219
10220 if (strcmp (".eh_frame", sec->name) == 0)
10221 return 0;
10222
10223 if (strcmp (".gcc_except_table", sec->name) == 0)
10224 return 0;
10225
10226 return COMPLAIN | PRETEND;
10227 }
10228
10229 /* Find a match between a section and a member of a section group. */
10230
10231 static asection *
10232 match_group_member (asection *sec, asection *group,
10233 struct bfd_link_info *info)
10234 {
10235 asection *first = elf_next_in_group (group);
10236 asection *s = first;
10237
10238 while (s != NULL)
10239 {
10240 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10241 return s;
10242
10243 s = elf_next_in_group (s);
10244 if (s == first)
10245 break;
10246 }
10247
10248 return NULL;
10249 }
10250
10251 /* Check if the kept section of a discarded section SEC can be used
10252 to replace it. Return the replacement if it is OK. Otherwise return
10253 NULL. */
10254
10255 asection *
10256 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10257 {
10258 asection *kept;
10259
10260 kept = sec->kept_section;
10261 if (kept != NULL)
10262 {
10263 if ((kept->flags & SEC_GROUP) != 0)
10264 kept = match_group_member (sec, kept, info);
10265 if (kept != NULL
10266 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10267 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10268 kept = NULL;
10269 sec->kept_section = kept;
10270 }
10271 return kept;
10272 }
10273
10274 /* Link an input file into the linker output file. This function
10275 handles all the sections and relocations of the input file at once.
10276 This is so that we only have to read the local symbols once, and
10277 don't have to keep them in memory. */
10278
10279 static bfd_boolean
10280 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10281 {
10282 int (*relocate_section)
10283 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10284 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10285 bfd *output_bfd;
10286 Elf_Internal_Shdr *symtab_hdr;
10287 size_t locsymcount;
10288 size_t extsymoff;
10289 Elf_Internal_Sym *isymbuf;
10290 Elf_Internal_Sym *isym;
10291 Elf_Internal_Sym *isymend;
10292 long *pindex;
10293 asection **ppsection;
10294 asection *o;
10295 const struct elf_backend_data *bed;
10296 struct elf_link_hash_entry **sym_hashes;
10297 bfd_size_type address_size;
10298 bfd_vma r_type_mask;
10299 int r_sym_shift;
10300 bfd_boolean have_file_sym = FALSE;
10301
10302 output_bfd = flinfo->output_bfd;
10303 bed = get_elf_backend_data (output_bfd);
10304 relocate_section = bed->elf_backend_relocate_section;
10305
10306 /* If this is a dynamic object, we don't want to do anything here:
10307 we don't want the local symbols, and we don't want the section
10308 contents. */
10309 if ((input_bfd->flags & DYNAMIC) != 0)
10310 return TRUE;
10311
10312 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10313 if (elf_bad_symtab (input_bfd))
10314 {
10315 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10316 extsymoff = 0;
10317 }
10318 else
10319 {
10320 locsymcount = symtab_hdr->sh_info;
10321 extsymoff = symtab_hdr->sh_info;
10322 }
10323
10324 /* Read the local symbols. */
10325 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10326 if (isymbuf == NULL && locsymcount != 0)
10327 {
10328 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10329 flinfo->internal_syms,
10330 flinfo->external_syms,
10331 flinfo->locsym_shndx);
10332 if (isymbuf == NULL)
10333 return FALSE;
10334 }
10335
10336 /* Find local symbol sections and adjust values of symbols in
10337 SEC_MERGE sections. Write out those local symbols we know are
10338 going into the output file. */
10339 isymend = isymbuf + locsymcount;
10340 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10341 isym < isymend;
10342 isym++, pindex++, ppsection++)
10343 {
10344 asection *isec;
10345 const char *name;
10346 Elf_Internal_Sym osym;
10347 long indx;
10348 int ret;
10349
10350 *pindex = -1;
10351
10352 if (elf_bad_symtab (input_bfd))
10353 {
10354 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10355 {
10356 *ppsection = NULL;
10357 continue;
10358 }
10359 }
10360
10361 if (isym->st_shndx == SHN_UNDEF)
10362 isec = bfd_und_section_ptr;
10363 else if (isym->st_shndx == SHN_ABS)
10364 isec = bfd_abs_section_ptr;
10365 else if (isym->st_shndx == SHN_COMMON)
10366 isec = bfd_com_section_ptr;
10367 else
10368 {
10369 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10370 if (isec == NULL)
10371 {
10372 /* Don't attempt to output symbols with st_shnx in the
10373 reserved range other than SHN_ABS and SHN_COMMON. */
10374 *ppsection = NULL;
10375 continue;
10376 }
10377 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10378 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10379 isym->st_value =
10380 _bfd_merged_section_offset (output_bfd, &isec,
10381 elf_section_data (isec)->sec_info,
10382 isym->st_value);
10383 }
10384
10385 *ppsection = isec;
10386
10387 /* Don't output the first, undefined, symbol. In fact, don't
10388 output any undefined local symbol. */
10389 if (isec == bfd_und_section_ptr)
10390 continue;
10391
10392 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10393 {
10394 /* We never output section symbols. Instead, we use the
10395 section symbol of the corresponding section in the output
10396 file. */
10397 continue;
10398 }
10399
10400 /* If we are stripping all symbols, we don't want to output this
10401 one. */
10402 if (flinfo->info->strip == strip_all)
10403 continue;
10404
10405 /* If we are discarding all local symbols, we don't want to
10406 output this one. If we are generating a relocatable output
10407 file, then some of the local symbols may be required by
10408 relocs; we output them below as we discover that they are
10409 needed. */
10410 if (flinfo->info->discard == discard_all)
10411 continue;
10412
10413 /* If this symbol is defined in a section which we are
10414 discarding, we don't need to keep it. */
10415 if (isym->st_shndx != SHN_UNDEF
10416 && isym->st_shndx < SHN_LORESERVE
10417 && bfd_section_removed_from_list (output_bfd,
10418 isec->output_section))
10419 continue;
10420
10421 /* Get the name of the symbol. */
10422 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10423 isym->st_name);
10424 if (name == NULL)
10425 return FALSE;
10426
10427 /* See if we are discarding symbols with this name. */
10428 if ((flinfo->info->strip == strip_some
10429 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10430 == NULL))
10431 || (((flinfo->info->discard == discard_sec_merge
10432 && (isec->flags & SEC_MERGE)
10433 && !bfd_link_relocatable (flinfo->info))
10434 || flinfo->info->discard == discard_l)
10435 && bfd_is_local_label_name (input_bfd, name)))
10436 continue;
10437
10438 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10439 {
10440 if (input_bfd->lto_output)
10441 /* -flto puts a temp file name here. This means builds
10442 are not reproducible. Discard the symbol. */
10443 continue;
10444 have_file_sym = TRUE;
10445 flinfo->filesym_count += 1;
10446 }
10447 if (!have_file_sym)
10448 {
10449 /* In the absence of debug info, bfd_find_nearest_line uses
10450 FILE symbols to determine the source file for local
10451 function symbols. Provide a FILE symbol here if input
10452 files lack such, so that their symbols won't be
10453 associated with a previous input file. It's not the
10454 source file, but the best we can do. */
10455 have_file_sym = TRUE;
10456 flinfo->filesym_count += 1;
10457 memset (&osym, 0, sizeof (osym));
10458 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10459 osym.st_shndx = SHN_ABS;
10460 if (!elf_link_output_symstrtab (flinfo,
10461 (input_bfd->lto_output ? NULL
10462 : input_bfd->filename),
10463 &osym, bfd_abs_section_ptr,
10464 NULL))
10465 return FALSE;
10466 }
10467
10468 osym = *isym;
10469
10470 /* Adjust the section index for the output file. */
10471 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10472 isec->output_section);
10473 if (osym.st_shndx == SHN_BAD)
10474 return FALSE;
10475
10476 /* ELF symbols in relocatable files are section relative, but
10477 in executable files they are virtual addresses. Note that
10478 this code assumes that all ELF sections have an associated
10479 BFD section with a reasonable value for output_offset; below
10480 we assume that they also have a reasonable value for
10481 output_section. Any special sections must be set up to meet
10482 these requirements. */
10483 osym.st_value += isec->output_offset;
10484 if (!bfd_link_relocatable (flinfo->info))
10485 {
10486 osym.st_value += isec->output_section->vma;
10487 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10488 {
10489 /* STT_TLS symbols are relative to PT_TLS segment base. */
10490 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10491 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10492 }
10493 }
10494
10495 indx = bfd_get_symcount (output_bfd);
10496 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10497 if (ret == 0)
10498 return FALSE;
10499 else if (ret == 1)
10500 *pindex = indx;
10501 }
10502
10503 if (bed->s->arch_size == 32)
10504 {
10505 r_type_mask = 0xff;
10506 r_sym_shift = 8;
10507 address_size = 4;
10508 }
10509 else
10510 {
10511 r_type_mask = 0xffffffff;
10512 r_sym_shift = 32;
10513 address_size = 8;
10514 }
10515
10516 /* Relocate the contents of each section. */
10517 sym_hashes = elf_sym_hashes (input_bfd);
10518 for (o = input_bfd->sections; o != NULL; o = o->next)
10519 {
10520 bfd_byte *contents;
10521
10522 if (! o->linker_mark)
10523 {
10524 /* This section was omitted from the link. */
10525 continue;
10526 }
10527
10528 if (!flinfo->info->resolve_section_groups
10529 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10530 {
10531 /* Deal with the group signature symbol. */
10532 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10533 unsigned long symndx = sec_data->this_hdr.sh_info;
10534 asection *osec = o->output_section;
10535
10536 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10537 if (symndx >= locsymcount
10538 || (elf_bad_symtab (input_bfd)
10539 && flinfo->sections[symndx] == NULL))
10540 {
10541 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10542 while (h->root.type == bfd_link_hash_indirect
10543 || h->root.type == bfd_link_hash_warning)
10544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10545 /* Arrange for symbol to be output. */
10546 h->indx = -2;
10547 elf_section_data (osec)->this_hdr.sh_info = -2;
10548 }
10549 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10550 {
10551 /* We'll use the output section target_index. */
10552 asection *sec = flinfo->sections[symndx]->output_section;
10553 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10554 }
10555 else
10556 {
10557 if (flinfo->indices[symndx] == -1)
10558 {
10559 /* Otherwise output the local symbol now. */
10560 Elf_Internal_Sym sym = isymbuf[symndx];
10561 asection *sec = flinfo->sections[symndx]->output_section;
10562 const char *name;
10563 long indx;
10564 int ret;
10565
10566 name = bfd_elf_string_from_elf_section (input_bfd,
10567 symtab_hdr->sh_link,
10568 sym.st_name);
10569 if (name == NULL)
10570 return FALSE;
10571
10572 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10573 sec);
10574 if (sym.st_shndx == SHN_BAD)
10575 return FALSE;
10576
10577 sym.st_value += o->output_offset;
10578
10579 indx = bfd_get_symcount (output_bfd);
10580 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10581 NULL);
10582 if (ret == 0)
10583 return FALSE;
10584 else if (ret == 1)
10585 flinfo->indices[symndx] = indx;
10586 else
10587 abort ();
10588 }
10589 elf_section_data (osec)->this_hdr.sh_info
10590 = flinfo->indices[symndx];
10591 }
10592 }
10593
10594 if ((o->flags & SEC_HAS_CONTENTS) == 0
10595 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10596 continue;
10597
10598 if ((o->flags & SEC_LINKER_CREATED) != 0)
10599 {
10600 /* Section was created by _bfd_elf_link_create_dynamic_sections
10601 or somesuch. */
10602 continue;
10603 }
10604
10605 /* Get the contents of the section. They have been cached by a
10606 relaxation routine. Note that o is a section in an input
10607 file, so the contents field will not have been set by any of
10608 the routines which work on output files. */
10609 if (elf_section_data (o)->this_hdr.contents != NULL)
10610 {
10611 contents = elf_section_data (o)->this_hdr.contents;
10612 if (bed->caches_rawsize
10613 && o->rawsize != 0
10614 && o->rawsize < o->size)
10615 {
10616 memcpy (flinfo->contents, contents, o->rawsize);
10617 contents = flinfo->contents;
10618 }
10619 }
10620 else
10621 {
10622 contents = flinfo->contents;
10623 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10624 return FALSE;
10625 }
10626
10627 if ((o->flags & SEC_RELOC) != 0)
10628 {
10629 Elf_Internal_Rela *internal_relocs;
10630 Elf_Internal_Rela *rel, *relend;
10631 int action_discarded;
10632 int ret;
10633
10634 /* Get the swapped relocs. */
10635 internal_relocs
10636 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10637 flinfo->internal_relocs, FALSE);
10638 if (internal_relocs == NULL
10639 && o->reloc_count > 0)
10640 return FALSE;
10641
10642 /* We need to reverse-copy input .ctors/.dtors sections if
10643 they are placed in .init_array/.finit_array for output. */
10644 if (o->size > address_size
10645 && ((strncmp (o->name, ".ctors", 6) == 0
10646 && strcmp (o->output_section->name,
10647 ".init_array") == 0)
10648 || (strncmp (o->name, ".dtors", 6) == 0
10649 && strcmp (o->output_section->name,
10650 ".fini_array") == 0))
10651 && (o->name[6] == 0 || o->name[6] == '.'))
10652 {
10653 if (o->size * bed->s->int_rels_per_ext_rel
10654 != o->reloc_count * address_size)
10655 {
10656 _bfd_error_handler
10657 /* xgettext:c-format */
10658 (_("error: %pB: size of section %pA is not "
10659 "multiple of address size"),
10660 input_bfd, o);
10661 bfd_set_error (bfd_error_bad_value);
10662 return FALSE;
10663 }
10664 o->flags |= SEC_ELF_REVERSE_COPY;
10665 }
10666
10667 action_discarded = -1;
10668 if (!elf_section_ignore_discarded_relocs (o))
10669 action_discarded = (*bed->action_discarded) (o);
10670
10671 /* Run through the relocs evaluating complex reloc symbols and
10672 looking for relocs against symbols from discarded sections
10673 or section symbols from removed link-once sections.
10674 Complain about relocs against discarded sections. Zero
10675 relocs against removed link-once sections. */
10676
10677 rel = internal_relocs;
10678 relend = rel + o->reloc_count;
10679 for ( ; rel < relend; rel++)
10680 {
10681 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10682 unsigned int s_type;
10683 asection **ps, *sec;
10684 struct elf_link_hash_entry *h = NULL;
10685 const char *sym_name;
10686
10687 if (r_symndx == STN_UNDEF)
10688 continue;
10689
10690 if (r_symndx >= locsymcount
10691 || (elf_bad_symtab (input_bfd)
10692 && flinfo->sections[r_symndx] == NULL))
10693 {
10694 h = sym_hashes[r_symndx - extsymoff];
10695
10696 /* Badly formatted input files can contain relocs that
10697 reference non-existant symbols. Check here so that
10698 we do not seg fault. */
10699 if (h == NULL)
10700 {
10701 _bfd_error_handler
10702 /* xgettext:c-format */
10703 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10704 "that references a non-existent global symbol"),
10705 input_bfd, (uint64_t) rel->r_info, o);
10706 bfd_set_error (bfd_error_bad_value);
10707 return FALSE;
10708 }
10709
10710 while (h->root.type == bfd_link_hash_indirect
10711 || h->root.type == bfd_link_hash_warning)
10712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10713
10714 s_type = h->type;
10715
10716 /* If a plugin symbol is referenced from a non-IR file,
10717 mark the symbol as undefined. Note that the
10718 linker may attach linker created dynamic sections
10719 to the plugin bfd. Symbols defined in linker
10720 created sections are not plugin symbols. */
10721 if ((h->root.non_ir_ref_regular
10722 || h->root.non_ir_ref_dynamic)
10723 && (h->root.type == bfd_link_hash_defined
10724 || h->root.type == bfd_link_hash_defweak)
10725 && (h->root.u.def.section->flags
10726 & SEC_LINKER_CREATED) == 0
10727 && h->root.u.def.section->owner != NULL
10728 && (h->root.u.def.section->owner->flags
10729 & BFD_PLUGIN) != 0)
10730 {
10731 h->root.type = bfd_link_hash_undefined;
10732 h->root.u.undef.abfd = h->root.u.def.section->owner;
10733 }
10734
10735 ps = NULL;
10736 if (h->root.type == bfd_link_hash_defined
10737 || h->root.type == bfd_link_hash_defweak)
10738 ps = &h->root.u.def.section;
10739
10740 sym_name = h->root.root.string;
10741 }
10742 else
10743 {
10744 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10745
10746 s_type = ELF_ST_TYPE (sym->st_info);
10747 ps = &flinfo->sections[r_symndx];
10748 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10749 sym, *ps);
10750 }
10751
10752 if ((s_type == STT_RELC || s_type == STT_SRELC)
10753 && !bfd_link_relocatable (flinfo->info))
10754 {
10755 bfd_vma val;
10756 bfd_vma dot = (rel->r_offset
10757 + o->output_offset + o->output_section->vma);
10758 #ifdef DEBUG
10759 printf ("Encountered a complex symbol!");
10760 printf (" (input_bfd %s, section %s, reloc %ld\n",
10761 input_bfd->filename, o->name,
10762 (long) (rel - internal_relocs));
10763 printf (" symbol: idx %8.8lx, name %s\n",
10764 r_symndx, sym_name);
10765 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10766 (unsigned long) rel->r_info,
10767 (unsigned long) rel->r_offset);
10768 #endif
10769 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10770 isymbuf, locsymcount, s_type == STT_SRELC))
10771 return FALSE;
10772
10773 /* Symbol evaluated OK. Update to absolute value. */
10774 set_symbol_value (input_bfd, isymbuf, locsymcount,
10775 r_symndx, val);
10776 continue;
10777 }
10778
10779 if (action_discarded != -1 && ps != NULL)
10780 {
10781 /* Complain if the definition comes from a
10782 discarded section. */
10783 if ((sec = *ps) != NULL && discarded_section (sec))
10784 {
10785 BFD_ASSERT (r_symndx != STN_UNDEF);
10786 if (action_discarded & COMPLAIN)
10787 (*flinfo->info->callbacks->einfo)
10788 /* xgettext:c-format */
10789 (_("%X`%s' referenced in section `%pA' of %pB: "
10790 "defined in discarded section `%pA' of %pB\n"),
10791 sym_name, o, input_bfd, sec, sec->owner);
10792
10793 /* Try to do the best we can to support buggy old
10794 versions of gcc. Pretend that the symbol is
10795 really defined in the kept linkonce section.
10796 FIXME: This is quite broken. Modifying the
10797 symbol here means we will be changing all later
10798 uses of the symbol, not just in this section. */
10799 if (action_discarded & PRETEND)
10800 {
10801 asection *kept;
10802
10803 kept = _bfd_elf_check_kept_section (sec,
10804 flinfo->info);
10805 if (kept != NULL)
10806 {
10807 *ps = kept;
10808 continue;
10809 }
10810 }
10811 }
10812 }
10813 }
10814
10815 /* Relocate the section by invoking a back end routine.
10816
10817 The back end routine is responsible for adjusting the
10818 section contents as necessary, and (if using Rela relocs
10819 and generating a relocatable output file) adjusting the
10820 reloc addend as necessary.
10821
10822 The back end routine does not have to worry about setting
10823 the reloc address or the reloc symbol index.
10824
10825 The back end routine is given a pointer to the swapped in
10826 internal symbols, and can access the hash table entries
10827 for the external symbols via elf_sym_hashes (input_bfd).
10828
10829 When generating relocatable output, the back end routine
10830 must handle STB_LOCAL/STT_SECTION symbols specially. The
10831 output symbol is going to be a section symbol
10832 corresponding to the output section, which will require
10833 the addend to be adjusted. */
10834
10835 ret = (*relocate_section) (output_bfd, flinfo->info,
10836 input_bfd, o, contents,
10837 internal_relocs,
10838 isymbuf,
10839 flinfo->sections);
10840 if (!ret)
10841 return FALSE;
10842
10843 if (ret == 2
10844 || bfd_link_relocatable (flinfo->info)
10845 || flinfo->info->emitrelocations)
10846 {
10847 Elf_Internal_Rela *irela;
10848 Elf_Internal_Rela *irelaend, *irelamid;
10849 bfd_vma last_offset;
10850 struct elf_link_hash_entry **rel_hash;
10851 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10852 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10853 unsigned int next_erel;
10854 bfd_boolean rela_normal;
10855 struct bfd_elf_section_data *esdi, *esdo;
10856
10857 esdi = elf_section_data (o);
10858 esdo = elf_section_data (o->output_section);
10859 rela_normal = FALSE;
10860
10861 /* Adjust the reloc addresses and symbol indices. */
10862
10863 irela = internal_relocs;
10864 irelaend = irela + o->reloc_count;
10865 rel_hash = esdo->rel.hashes + esdo->rel.count;
10866 /* We start processing the REL relocs, if any. When we reach
10867 IRELAMID in the loop, we switch to the RELA relocs. */
10868 irelamid = irela;
10869 if (esdi->rel.hdr != NULL)
10870 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10871 * bed->s->int_rels_per_ext_rel);
10872 rel_hash_list = rel_hash;
10873 rela_hash_list = NULL;
10874 last_offset = o->output_offset;
10875 if (!bfd_link_relocatable (flinfo->info))
10876 last_offset += o->output_section->vma;
10877 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10878 {
10879 unsigned long r_symndx;
10880 asection *sec;
10881 Elf_Internal_Sym sym;
10882
10883 if (next_erel == bed->s->int_rels_per_ext_rel)
10884 {
10885 rel_hash++;
10886 next_erel = 0;
10887 }
10888
10889 if (irela == irelamid)
10890 {
10891 rel_hash = esdo->rela.hashes + esdo->rela.count;
10892 rela_hash_list = rel_hash;
10893 rela_normal = bed->rela_normal;
10894 }
10895
10896 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10897 flinfo->info, o,
10898 irela->r_offset);
10899 if (irela->r_offset >= (bfd_vma) -2)
10900 {
10901 /* This is a reloc for a deleted entry or somesuch.
10902 Turn it into an R_*_NONE reloc, at the same
10903 offset as the last reloc. elf_eh_frame.c and
10904 bfd_elf_discard_info rely on reloc offsets
10905 being ordered. */
10906 irela->r_offset = last_offset;
10907 irela->r_info = 0;
10908 irela->r_addend = 0;
10909 continue;
10910 }
10911
10912 irela->r_offset += o->output_offset;
10913
10914 /* Relocs in an executable have to be virtual addresses. */
10915 if (!bfd_link_relocatable (flinfo->info))
10916 irela->r_offset += o->output_section->vma;
10917
10918 last_offset = irela->r_offset;
10919
10920 r_symndx = irela->r_info >> r_sym_shift;
10921 if (r_symndx == STN_UNDEF)
10922 continue;
10923
10924 if (r_symndx >= locsymcount
10925 || (elf_bad_symtab (input_bfd)
10926 && flinfo->sections[r_symndx] == NULL))
10927 {
10928 struct elf_link_hash_entry *rh;
10929 unsigned long indx;
10930
10931 /* This is a reloc against a global symbol. We
10932 have not yet output all the local symbols, so
10933 we do not know the symbol index of any global
10934 symbol. We set the rel_hash entry for this
10935 reloc to point to the global hash table entry
10936 for this symbol. The symbol index is then
10937 set at the end of bfd_elf_final_link. */
10938 indx = r_symndx - extsymoff;
10939 rh = elf_sym_hashes (input_bfd)[indx];
10940 while (rh->root.type == bfd_link_hash_indirect
10941 || rh->root.type == bfd_link_hash_warning)
10942 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10943
10944 /* Setting the index to -2 tells
10945 elf_link_output_extsym that this symbol is
10946 used by a reloc. */
10947 BFD_ASSERT (rh->indx < 0);
10948 rh->indx = -2;
10949 *rel_hash = rh;
10950
10951 continue;
10952 }
10953
10954 /* This is a reloc against a local symbol. */
10955
10956 *rel_hash = NULL;
10957 sym = isymbuf[r_symndx];
10958 sec = flinfo->sections[r_symndx];
10959 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10960 {
10961 /* I suppose the backend ought to fill in the
10962 section of any STT_SECTION symbol against a
10963 processor specific section. */
10964 r_symndx = STN_UNDEF;
10965 if (bfd_is_abs_section (sec))
10966 ;
10967 else if (sec == NULL || sec->owner == NULL)
10968 {
10969 bfd_set_error (bfd_error_bad_value);
10970 return FALSE;
10971 }
10972 else
10973 {
10974 asection *osec = sec->output_section;
10975
10976 /* If we have discarded a section, the output
10977 section will be the absolute section. In
10978 case of discarded SEC_MERGE sections, use
10979 the kept section. relocate_section should
10980 have already handled discarded linkonce
10981 sections. */
10982 if (bfd_is_abs_section (osec)
10983 && sec->kept_section != NULL
10984 && sec->kept_section->output_section != NULL)
10985 {
10986 osec = sec->kept_section->output_section;
10987 irela->r_addend -= osec->vma;
10988 }
10989
10990 if (!bfd_is_abs_section (osec))
10991 {
10992 r_symndx = osec->target_index;
10993 if (r_symndx == STN_UNDEF)
10994 {
10995 irela->r_addend += osec->vma;
10996 osec = _bfd_nearby_section (output_bfd, osec,
10997 osec->vma);
10998 irela->r_addend -= osec->vma;
10999 r_symndx = osec->target_index;
11000 }
11001 }
11002 }
11003
11004 /* Adjust the addend according to where the
11005 section winds up in the output section. */
11006 if (rela_normal)
11007 irela->r_addend += sec->output_offset;
11008 }
11009 else
11010 {
11011 if (flinfo->indices[r_symndx] == -1)
11012 {
11013 unsigned long shlink;
11014 const char *name;
11015 asection *osec;
11016 long indx;
11017
11018 if (flinfo->info->strip == strip_all)
11019 {
11020 /* You can't do ld -r -s. */
11021 bfd_set_error (bfd_error_invalid_operation);
11022 return FALSE;
11023 }
11024
11025 /* This symbol was skipped earlier, but
11026 since it is needed by a reloc, we
11027 must output it now. */
11028 shlink = symtab_hdr->sh_link;
11029 name = (bfd_elf_string_from_elf_section
11030 (input_bfd, shlink, sym.st_name));
11031 if (name == NULL)
11032 return FALSE;
11033
11034 osec = sec->output_section;
11035 sym.st_shndx =
11036 _bfd_elf_section_from_bfd_section (output_bfd,
11037 osec);
11038 if (sym.st_shndx == SHN_BAD)
11039 return FALSE;
11040
11041 sym.st_value += sec->output_offset;
11042 if (!bfd_link_relocatable (flinfo->info))
11043 {
11044 sym.st_value += osec->vma;
11045 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11046 {
11047 /* STT_TLS symbols are relative to PT_TLS
11048 segment base. */
11049 BFD_ASSERT (elf_hash_table (flinfo->info)
11050 ->tls_sec != NULL);
11051 sym.st_value -= (elf_hash_table (flinfo->info)
11052 ->tls_sec->vma);
11053 }
11054 }
11055
11056 indx = bfd_get_symcount (output_bfd);
11057 ret = elf_link_output_symstrtab (flinfo, name,
11058 &sym, sec,
11059 NULL);
11060 if (ret == 0)
11061 return FALSE;
11062 else if (ret == 1)
11063 flinfo->indices[r_symndx] = indx;
11064 else
11065 abort ();
11066 }
11067
11068 r_symndx = flinfo->indices[r_symndx];
11069 }
11070
11071 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11072 | (irela->r_info & r_type_mask));
11073 }
11074
11075 /* Swap out the relocs. */
11076 input_rel_hdr = esdi->rel.hdr;
11077 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11078 {
11079 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11080 input_rel_hdr,
11081 internal_relocs,
11082 rel_hash_list))
11083 return FALSE;
11084 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11085 * bed->s->int_rels_per_ext_rel);
11086 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11087 }
11088
11089 input_rela_hdr = esdi->rela.hdr;
11090 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11091 {
11092 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11093 input_rela_hdr,
11094 internal_relocs,
11095 rela_hash_list))
11096 return FALSE;
11097 }
11098 }
11099 }
11100
11101 /* Write out the modified section contents. */
11102 if (bed->elf_backend_write_section
11103 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11104 contents))
11105 {
11106 /* Section written out. */
11107 }
11108 else switch (o->sec_info_type)
11109 {
11110 case SEC_INFO_TYPE_STABS:
11111 if (! (_bfd_write_section_stabs
11112 (output_bfd,
11113 &elf_hash_table (flinfo->info)->stab_info,
11114 o, &elf_section_data (o)->sec_info, contents)))
11115 return FALSE;
11116 break;
11117 case SEC_INFO_TYPE_MERGE:
11118 if (! _bfd_write_merged_section (output_bfd, o,
11119 elf_section_data (o)->sec_info))
11120 return FALSE;
11121 break;
11122 case SEC_INFO_TYPE_EH_FRAME:
11123 {
11124 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11125 o, contents))
11126 return FALSE;
11127 }
11128 break;
11129 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11130 {
11131 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11132 flinfo->info,
11133 o, contents))
11134 return FALSE;
11135 }
11136 break;
11137 default:
11138 {
11139 if (! (o->flags & SEC_EXCLUDE))
11140 {
11141 file_ptr offset = (file_ptr) o->output_offset;
11142 bfd_size_type todo = o->size;
11143
11144 offset *= bfd_octets_per_byte (output_bfd);
11145
11146 if ((o->flags & SEC_ELF_REVERSE_COPY))
11147 {
11148 /* Reverse-copy input section to output. */
11149 do
11150 {
11151 todo -= address_size;
11152 if (! bfd_set_section_contents (output_bfd,
11153 o->output_section,
11154 contents + todo,
11155 offset,
11156 address_size))
11157 return FALSE;
11158 if (todo == 0)
11159 break;
11160 offset += address_size;
11161 }
11162 while (1);
11163 }
11164 else if (! bfd_set_section_contents (output_bfd,
11165 o->output_section,
11166 contents,
11167 offset, todo))
11168 return FALSE;
11169 }
11170 }
11171 break;
11172 }
11173 }
11174
11175 return TRUE;
11176 }
11177
11178 /* Generate a reloc when linking an ELF file. This is a reloc
11179 requested by the linker, and does not come from any input file. This
11180 is used to build constructor and destructor tables when linking
11181 with -Ur. */
11182
11183 static bfd_boolean
11184 elf_reloc_link_order (bfd *output_bfd,
11185 struct bfd_link_info *info,
11186 asection *output_section,
11187 struct bfd_link_order *link_order)
11188 {
11189 reloc_howto_type *howto;
11190 long indx;
11191 bfd_vma offset;
11192 bfd_vma addend;
11193 struct bfd_elf_section_reloc_data *reldata;
11194 struct elf_link_hash_entry **rel_hash_ptr;
11195 Elf_Internal_Shdr *rel_hdr;
11196 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11197 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11198 bfd_byte *erel;
11199 unsigned int i;
11200 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11201
11202 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11203 if (howto == NULL)
11204 {
11205 bfd_set_error (bfd_error_bad_value);
11206 return FALSE;
11207 }
11208
11209 addend = link_order->u.reloc.p->addend;
11210
11211 if (esdo->rel.hdr)
11212 reldata = &esdo->rel;
11213 else if (esdo->rela.hdr)
11214 reldata = &esdo->rela;
11215 else
11216 {
11217 reldata = NULL;
11218 BFD_ASSERT (0);
11219 }
11220
11221 /* Figure out the symbol index. */
11222 rel_hash_ptr = reldata->hashes + reldata->count;
11223 if (link_order->type == bfd_section_reloc_link_order)
11224 {
11225 indx = link_order->u.reloc.p->u.section->target_index;
11226 BFD_ASSERT (indx != 0);
11227 *rel_hash_ptr = NULL;
11228 }
11229 else
11230 {
11231 struct elf_link_hash_entry *h;
11232
11233 /* Treat a reloc against a defined symbol as though it were
11234 actually against the section. */
11235 h = ((struct elf_link_hash_entry *)
11236 bfd_wrapped_link_hash_lookup (output_bfd, info,
11237 link_order->u.reloc.p->u.name,
11238 FALSE, FALSE, TRUE));
11239 if (h != NULL
11240 && (h->root.type == bfd_link_hash_defined
11241 || h->root.type == bfd_link_hash_defweak))
11242 {
11243 asection *section;
11244
11245 section = h->root.u.def.section;
11246 indx = section->output_section->target_index;
11247 *rel_hash_ptr = NULL;
11248 /* It seems that we ought to add the symbol value to the
11249 addend here, but in practice it has already been added
11250 because it was passed to constructor_callback. */
11251 addend += section->output_section->vma + section->output_offset;
11252 }
11253 else if (h != NULL)
11254 {
11255 /* Setting the index to -2 tells elf_link_output_extsym that
11256 this symbol is used by a reloc. */
11257 h->indx = -2;
11258 *rel_hash_ptr = h;
11259 indx = 0;
11260 }
11261 else
11262 {
11263 (*info->callbacks->unattached_reloc)
11264 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11265 indx = 0;
11266 }
11267 }
11268
11269 /* If this is an inplace reloc, we must write the addend into the
11270 object file. */
11271 if (howto->partial_inplace && addend != 0)
11272 {
11273 bfd_size_type size;
11274 bfd_reloc_status_type rstat;
11275 bfd_byte *buf;
11276 bfd_boolean ok;
11277 const char *sym_name;
11278
11279 size = (bfd_size_type) bfd_get_reloc_size (howto);
11280 buf = (bfd_byte *) bfd_zmalloc (size);
11281 if (buf == NULL && size != 0)
11282 return FALSE;
11283 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11284 switch (rstat)
11285 {
11286 case bfd_reloc_ok:
11287 break;
11288
11289 default:
11290 case bfd_reloc_outofrange:
11291 abort ();
11292
11293 case bfd_reloc_overflow:
11294 if (link_order->type == bfd_section_reloc_link_order)
11295 sym_name = bfd_section_name (output_bfd,
11296 link_order->u.reloc.p->u.section);
11297 else
11298 sym_name = link_order->u.reloc.p->u.name;
11299 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11300 howto->name, addend, NULL, NULL,
11301 (bfd_vma) 0);
11302 break;
11303 }
11304
11305 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11306 link_order->offset
11307 * bfd_octets_per_byte (output_bfd),
11308 size);
11309 free (buf);
11310 if (! ok)
11311 return FALSE;
11312 }
11313
11314 /* The address of a reloc is relative to the section in a
11315 relocatable file, and is a virtual address in an executable
11316 file. */
11317 offset = link_order->offset;
11318 if (! bfd_link_relocatable (info))
11319 offset += output_section->vma;
11320
11321 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11322 {
11323 irel[i].r_offset = offset;
11324 irel[i].r_info = 0;
11325 irel[i].r_addend = 0;
11326 }
11327 if (bed->s->arch_size == 32)
11328 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11329 else
11330 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11331
11332 rel_hdr = reldata->hdr;
11333 erel = rel_hdr->contents;
11334 if (rel_hdr->sh_type == SHT_REL)
11335 {
11336 erel += reldata->count * bed->s->sizeof_rel;
11337 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11338 }
11339 else
11340 {
11341 irel[0].r_addend = addend;
11342 erel += reldata->count * bed->s->sizeof_rela;
11343 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11344 }
11345
11346 ++reldata->count;
11347
11348 return TRUE;
11349 }
11350
11351
11352 /* Get the output vma of the section pointed to by the sh_link field. */
11353
11354 static bfd_vma
11355 elf_get_linked_section_vma (struct bfd_link_order *p)
11356 {
11357 Elf_Internal_Shdr **elf_shdrp;
11358 asection *s;
11359 int elfsec;
11360
11361 s = p->u.indirect.section;
11362 elf_shdrp = elf_elfsections (s->owner);
11363 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11364 elfsec = elf_shdrp[elfsec]->sh_link;
11365 /* PR 290:
11366 The Intel C compiler generates SHT_IA_64_UNWIND with
11367 SHF_LINK_ORDER. But it doesn't set the sh_link or
11368 sh_info fields. Hence we could get the situation
11369 where elfsec is 0. */
11370 if (elfsec == 0)
11371 {
11372 const struct elf_backend_data *bed
11373 = get_elf_backend_data (s->owner);
11374 if (bed->link_order_error_handler)
11375 bed->link_order_error_handler
11376 /* xgettext:c-format */
11377 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11378 return 0;
11379 }
11380 else
11381 {
11382 s = elf_shdrp[elfsec]->bfd_section;
11383 return s->output_section->vma + s->output_offset;
11384 }
11385 }
11386
11387
11388 /* Compare two sections based on the locations of the sections they are
11389 linked to. Used by elf_fixup_link_order. */
11390
11391 static int
11392 compare_link_order (const void * a, const void * b)
11393 {
11394 bfd_vma apos;
11395 bfd_vma bpos;
11396
11397 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11398 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11399 if (apos < bpos)
11400 return -1;
11401 return apos > bpos;
11402 }
11403
11404
11405 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11406 order as their linked sections. Returns false if this could not be done
11407 because an output section includes both ordered and unordered
11408 sections. Ideally we'd do this in the linker proper. */
11409
11410 static bfd_boolean
11411 elf_fixup_link_order (bfd *abfd, asection *o)
11412 {
11413 int seen_linkorder;
11414 int seen_other;
11415 int n;
11416 struct bfd_link_order *p;
11417 bfd *sub;
11418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11419 unsigned elfsec;
11420 struct bfd_link_order **sections;
11421 asection *s, *other_sec, *linkorder_sec;
11422 bfd_vma offset;
11423
11424 other_sec = NULL;
11425 linkorder_sec = NULL;
11426 seen_other = 0;
11427 seen_linkorder = 0;
11428 for (p = o->map_head.link_order; p != NULL; p = p->next)
11429 {
11430 if (p->type == bfd_indirect_link_order)
11431 {
11432 s = p->u.indirect.section;
11433 sub = s->owner;
11434 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11435 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11436 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11437 && elfsec < elf_numsections (sub)
11438 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11439 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11440 {
11441 seen_linkorder++;
11442 linkorder_sec = s;
11443 }
11444 else
11445 {
11446 seen_other++;
11447 other_sec = s;
11448 }
11449 }
11450 else
11451 seen_other++;
11452
11453 if (seen_other && seen_linkorder)
11454 {
11455 if (other_sec && linkorder_sec)
11456 _bfd_error_handler
11457 /* xgettext:c-format */
11458 (_("%pA has both ordered [`%pA' in %pB] "
11459 "and unordered [`%pA' in %pB] sections"),
11460 o, linkorder_sec, linkorder_sec->owner,
11461 other_sec, other_sec->owner);
11462 else
11463 _bfd_error_handler
11464 (_("%pA has both ordered and unordered sections"), o);
11465 bfd_set_error (bfd_error_bad_value);
11466 return FALSE;
11467 }
11468 }
11469
11470 if (!seen_linkorder)
11471 return TRUE;
11472
11473 sections = (struct bfd_link_order **)
11474 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11475 if (sections == NULL)
11476 return FALSE;
11477 seen_linkorder = 0;
11478
11479 for (p = o->map_head.link_order; p != NULL; p = p->next)
11480 {
11481 sections[seen_linkorder++] = p;
11482 }
11483 /* Sort the input sections in the order of their linked section. */
11484 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11485 compare_link_order);
11486
11487 /* Change the offsets of the sections. */
11488 offset = 0;
11489 for (n = 0; n < seen_linkorder; n++)
11490 {
11491 s = sections[n]->u.indirect.section;
11492 offset &= ~(bfd_vma) 0 << s->alignment_power;
11493 s->output_offset = offset / bfd_octets_per_byte (abfd);
11494 sections[n]->offset = offset;
11495 offset += sections[n]->size;
11496 }
11497
11498 free (sections);
11499 return TRUE;
11500 }
11501
11502 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11503 Returns TRUE upon success, FALSE otherwise. */
11504
11505 static bfd_boolean
11506 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11507 {
11508 bfd_boolean ret = FALSE;
11509 bfd *implib_bfd;
11510 const struct elf_backend_data *bed;
11511 flagword flags;
11512 enum bfd_architecture arch;
11513 unsigned int mach;
11514 asymbol **sympp = NULL;
11515 long symsize;
11516 long symcount;
11517 long src_count;
11518 elf_symbol_type *osymbuf;
11519
11520 implib_bfd = info->out_implib_bfd;
11521 bed = get_elf_backend_data (abfd);
11522
11523 if (!bfd_set_format (implib_bfd, bfd_object))
11524 return FALSE;
11525
11526 /* Use flag from executable but make it a relocatable object. */
11527 flags = bfd_get_file_flags (abfd);
11528 flags &= ~HAS_RELOC;
11529 if (!bfd_set_start_address (implib_bfd, 0)
11530 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11531 return FALSE;
11532
11533 /* Copy architecture of output file to import library file. */
11534 arch = bfd_get_arch (abfd);
11535 mach = bfd_get_mach (abfd);
11536 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11537 && (abfd->target_defaulted
11538 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11539 return FALSE;
11540
11541 /* Get symbol table size. */
11542 symsize = bfd_get_symtab_upper_bound (abfd);
11543 if (symsize < 0)
11544 return FALSE;
11545
11546 /* Read in the symbol table. */
11547 sympp = (asymbol **) xmalloc (symsize);
11548 symcount = bfd_canonicalize_symtab (abfd, sympp);
11549 if (symcount < 0)
11550 goto free_sym_buf;
11551
11552 /* Allow the BFD backend to copy any private header data it
11553 understands from the output BFD to the import library BFD. */
11554 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11555 goto free_sym_buf;
11556
11557 /* Filter symbols to appear in the import library. */
11558 if (bed->elf_backend_filter_implib_symbols)
11559 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11560 symcount);
11561 else
11562 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11563 if (symcount == 0)
11564 {
11565 bfd_set_error (bfd_error_no_symbols);
11566 _bfd_error_handler (_("%pB: no symbol found for import library"),
11567 implib_bfd);
11568 goto free_sym_buf;
11569 }
11570
11571
11572 /* Make symbols absolute. */
11573 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11574 sizeof (*osymbuf));
11575 for (src_count = 0; src_count < symcount; src_count++)
11576 {
11577 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11578 sizeof (*osymbuf));
11579 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11580 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11581 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11582 osymbuf[src_count].internal_elf_sym.st_value =
11583 osymbuf[src_count].symbol.value;
11584 sympp[src_count] = &osymbuf[src_count].symbol;
11585 }
11586
11587 bfd_set_symtab (implib_bfd, sympp, symcount);
11588
11589 /* Allow the BFD backend to copy any private data it understands
11590 from the output BFD to the import library BFD. This is done last
11591 to permit the routine to look at the filtered symbol table. */
11592 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11593 goto free_sym_buf;
11594
11595 if (!bfd_close (implib_bfd))
11596 goto free_sym_buf;
11597
11598 ret = TRUE;
11599
11600 free_sym_buf:
11601 free (sympp);
11602 return ret;
11603 }
11604
11605 static void
11606 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11607 {
11608 asection *o;
11609
11610 if (flinfo->symstrtab != NULL)
11611 _bfd_elf_strtab_free (flinfo->symstrtab);
11612 if (flinfo->contents != NULL)
11613 free (flinfo->contents);
11614 if (flinfo->external_relocs != NULL)
11615 free (flinfo->external_relocs);
11616 if (flinfo->internal_relocs != NULL)
11617 free (flinfo->internal_relocs);
11618 if (flinfo->external_syms != NULL)
11619 free (flinfo->external_syms);
11620 if (flinfo->locsym_shndx != NULL)
11621 free (flinfo->locsym_shndx);
11622 if (flinfo->internal_syms != NULL)
11623 free (flinfo->internal_syms);
11624 if (flinfo->indices != NULL)
11625 free (flinfo->indices);
11626 if (flinfo->sections != NULL)
11627 free (flinfo->sections);
11628 if (flinfo->symshndxbuf != NULL)
11629 free (flinfo->symshndxbuf);
11630 for (o = obfd->sections; o != NULL; o = o->next)
11631 {
11632 struct bfd_elf_section_data *esdo = elf_section_data (o);
11633 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11634 free (esdo->rel.hashes);
11635 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11636 free (esdo->rela.hashes);
11637 }
11638 }
11639
11640 /* Do the final step of an ELF link. */
11641
11642 bfd_boolean
11643 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11644 {
11645 bfd_boolean dynamic;
11646 bfd_boolean emit_relocs;
11647 bfd *dynobj;
11648 struct elf_final_link_info flinfo;
11649 asection *o;
11650 struct bfd_link_order *p;
11651 bfd *sub;
11652 bfd_size_type max_contents_size;
11653 bfd_size_type max_external_reloc_size;
11654 bfd_size_type max_internal_reloc_count;
11655 bfd_size_type max_sym_count;
11656 bfd_size_type max_sym_shndx_count;
11657 Elf_Internal_Sym elfsym;
11658 unsigned int i;
11659 Elf_Internal_Shdr *symtab_hdr;
11660 Elf_Internal_Shdr *symtab_shndx_hdr;
11661 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11662 struct elf_outext_info eoinfo;
11663 bfd_boolean merged;
11664 size_t relativecount = 0;
11665 asection *reldyn = 0;
11666 bfd_size_type amt;
11667 asection *attr_section = NULL;
11668 bfd_vma attr_size = 0;
11669 const char *std_attrs_section;
11670 struct elf_link_hash_table *htab = elf_hash_table (info);
11671
11672 if (!is_elf_hash_table (htab))
11673 return FALSE;
11674
11675 if (bfd_link_pic (info))
11676 abfd->flags |= DYNAMIC;
11677
11678 dynamic = htab->dynamic_sections_created;
11679 dynobj = htab->dynobj;
11680
11681 emit_relocs = (bfd_link_relocatable (info)
11682 || info->emitrelocations);
11683
11684 flinfo.info = info;
11685 flinfo.output_bfd = abfd;
11686 flinfo.symstrtab = _bfd_elf_strtab_init ();
11687 if (flinfo.symstrtab == NULL)
11688 return FALSE;
11689
11690 if (! dynamic)
11691 {
11692 flinfo.hash_sec = NULL;
11693 flinfo.symver_sec = NULL;
11694 }
11695 else
11696 {
11697 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11698 /* Note that dynsym_sec can be NULL (on VMS). */
11699 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11700 /* Note that it is OK if symver_sec is NULL. */
11701 }
11702
11703 flinfo.contents = NULL;
11704 flinfo.external_relocs = NULL;
11705 flinfo.internal_relocs = NULL;
11706 flinfo.external_syms = NULL;
11707 flinfo.locsym_shndx = NULL;
11708 flinfo.internal_syms = NULL;
11709 flinfo.indices = NULL;
11710 flinfo.sections = NULL;
11711 flinfo.symshndxbuf = NULL;
11712 flinfo.filesym_count = 0;
11713
11714 /* The object attributes have been merged. Remove the input
11715 sections from the link, and set the contents of the output
11716 secton. */
11717 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11718 for (o = abfd->sections; o != NULL; o = o->next)
11719 {
11720 bfd_boolean remove_section = FALSE;
11721
11722 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11723 || strcmp (o->name, ".gnu.attributes") == 0)
11724 {
11725 for (p = o->map_head.link_order; p != NULL; p = p->next)
11726 {
11727 asection *input_section;
11728
11729 if (p->type != bfd_indirect_link_order)
11730 continue;
11731 input_section = p->u.indirect.section;
11732 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11733 elf_link_input_bfd ignores this section. */
11734 input_section->flags &= ~SEC_HAS_CONTENTS;
11735 }
11736
11737 attr_size = bfd_elf_obj_attr_size (abfd);
11738 bfd_set_section_size (abfd, o, attr_size);
11739 /* Skip this section later on. */
11740 o->map_head.link_order = NULL;
11741 if (attr_size)
11742 attr_section = o;
11743 else
11744 remove_section = TRUE;
11745 }
11746 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11747 {
11748 /* Remove empty group section from linker output. */
11749 remove_section = TRUE;
11750 }
11751 if (remove_section)
11752 {
11753 o->flags |= SEC_EXCLUDE;
11754 bfd_section_list_remove (abfd, o);
11755 abfd->section_count--;
11756 }
11757 }
11758
11759 /* Count up the number of relocations we will output for each output
11760 section, so that we know the sizes of the reloc sections. We
11761 also figure out some maximum sizes. */
11762 max_contents_size = 0;
11763 max_external_reloc_size = 0;
11764 max_internal_reloc_count = 0;
11765 max_sym_count = 0;
11766 max_sym_shndx_count = 0;
11767 merged = FALSE;
11768 for (o = abfd->sections; o != NULL; o = o->next)
11769 {
11770 struct bfd_elf_section_data *esdo = elf_section_data (o);
11771 o->reloc_count = 0;
11772
11773 for (p = o->map_head.link_order; p != NULL; p = p->next)
11774 {
11775 unsigned int reloc_count = 0;
11776 unsigned int additional_reloc_count = 0;
11777 struct bfd_elf_section_data *esdi = NULL;
11778
11779 if (p->type == bfd_section_reloc_link_order
11780 || p->type == bfd_symbol_reloc_link_order)
11781 reloc_count = 1;
11782 else if (p->type == bfd_indirect_link_order)
11783 {
11784 asection *sec;
11785
11786 sec = p->u.indirect.section;
11787
11788 /* Mark all sections which are to be included in the
11789 link. This will normally be every section. We need
11790 to do this so that we can identify any sections which
11791 the linker has decided to not include. */
11792 sec->linker_mark = TRUE;
11793
11794 if (sec->flags & SEC_MERGE)
11795 merged = TRUE;
11796
11797 if (sec->rawsize > max_contents_size)
11798 max_contents_size = sec->rawsize;
11799 if (sec->size > max_contents_size)
11800 max_contents_size = sec->size;
11801
11802 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11803 && (sec->owner->flags & DYNAMIC) == 0)
11804 {
11805 size_t sym_count;
11806
11807 /* We are interested in just local symbols, not all
11808 symbols. */
11809 if (elf_bad_symtab (sec->owner))
11810 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11811 / bed->s->sizeof_sym);
11812 else
11813 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11814
11815 if (sym_count > max_sym_count)
11816 max_sym_count = sym_count;
11817
11818 if (sym_count > max_sym_shndx_count
11819 && elf_symtab_shndx_list (sec->owner) != NULL)
11820 max_sym_shndx_count = sym_count;
11821
11822 if (esdo->this_hdr.sh_type == SHT_REL
11823 || esdo->this_hdr.sh_type == SHT_RELA)
11824 /* Some backends use reloc_count in relocation sections
11825 to count particular types of relocs. Of course,
11826 reloc sections themselves can't have relocations. */
11827 ;
11828 else if (emit_relocs)
11829 {
11830 reloc_count = sec->reloc_count;
11831 if (bed->elf_backend_count_additional_relocs)
11832 {
11833 int c;
11834 c = (*bed->elf_backend_count_additional_relocs) (sec);
11835 additional_reloc_count += c;
11836 }
11837 }
11838 else if (bed->elf_backend_count_relocs)
11839 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11840
11841 esdi = elf_section_data (sec);
11842
11843 if ((sec->flags & SEC_RELOC) != 0)
11844 {
11845 size_t ext_size = 0;
11846
11847 if (esdi->rel.hdr != NULL)
11848 ext_size = esdi->rel.hdr->sh_size;
11849 if (esdi->rela.hdr != NULL)
11850 ext_size += esdi->rela.hdr->sh_size;
11851
11852 if (ext_size > max_external_reloc_size)
11853 max_external_reloc_size = ext_size;
11854 if (sec->reloc_count > max_internal_reloc_count)
11855 max_internal_reloc_count = sec->reloc_count;
11856 }
11857 }
11858 }
11859
11860 if (reloc_count == 0)
11861 continue;
11862
11863 reloc_count += additional_reloc_count;
11864 o->reloc_count += reloc_count;
11865
11866 if (p->type == bfd_indirect_link_order && emit_relocs)
11867 {
11868 if (esdi->rel.hdr)
11869 {
11870 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11871 esdo->rel.count += additional_reloc_count;
11872 }
11873 if (esdi->rela.hdr)
11874 {
11875 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11876 esdo->rela.count += additional_reloc_count;
11877 }
11878 }
11879 else
11880 {
11881 if (o->use_rela_p)
11882 esdo->rela.count += reloc_count;
11883 else
11884 esdo->rel.count += reloc_count;
11885 }
11886 }
11887
11888 if (o->reloc_count > 0)
11889 o->flags |= SEC_RELOC;
11890 else
11891 {
11892 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11893 set it (this is probably a bug) and if it is set
11894 assign_section_numbers will create a reloc section. */
11895 o->flags &=~ SEC_RELOC;
11896 }
11897
11898 /* If the SEC_ALLOC flag is not set, force the section VMA to
11899 zero. This is done in elf_fake_sections as well, but forcing
11900 the VMA to 0 here will ensure that relocs against these
11901 sections are handled correctly. */
11902 if ((o->flags & SEC_ALLOC) == 0
11903 && ! o->user_set_vma)
11904 o->vma = 0;
11905 }
11906
11907 if (! bfd_link_relocatable (info) && merged)
11908 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11909
11910 /* Figure out the file positions for everything but the symbol table
11911 and the relocs. We set symcount to force assign_section_numbers
11912 to create a symbol table. */
11913 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11914 BFD_ASSERT (! abfd->output_has_begun);
11915 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11916 goto error_return;
11917
11918 /* Set sizes, and assign file positions for reloc sections. */
11919 for (o = abfd->sections; o != NULL; o = o->next)
11920 {
11921 struct bfd_elf_section_data *esdo = elf_section_data (o);
11922 if ((o->flags & SEC_RELOC) != 0)
11923 {
11924 if (esdo->rel.hdr
11925 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11926 goto error_return;
11927
11928 if (esdo->rela.hdr
11929 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11930 goto error_return;
11931 }
11932
11933 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11934 to count upwards while actually outputting the relocations. */
11935 esdo->rel.count = 0;
11936 esdo->rela.count = 0;
11937
11938 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11939 {
11940 /* Cache the section contents so that they can be compressed
11941 later. Use bfd_malloc since it will be freed by
11942 bfd_compress_section_contents. */
11943 unsigned char *contents = esdo->this_hdr.contents;
11944 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11945 abort ();
11946 contents
11947 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11948 if (contents == NULL)
11949 goto error_return;
11950 esdo->this_hdr.contents = contents;
11951 }
11952 }
11953
11954 /* We have now assigned file positions for all the sections except
11955 .symtab, .strtab, and non-loaded reloc sections. We start the
11956 .symtab section at the current file position, and write directly
11957 to it. We build the .strtab section in memory. */
11958 bfd_get_symcount (abfd) = 0;
11959 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11960 /* sh_name is set in prep_headers. */
11961 symtab_hdr->sh_type = SHT_SYMTAB;
11962 /* sh_flags, sh_addr and sh_size all start off zero. */
11963 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11964 /* sh_link is set in assign_section_numbers. */
11965 /* sh_info is set below. */
11966 /* sh_offset is set just below. */
11967 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11968
11969 if (max_sym_count < 20)
11970 max_sym_count = 20;
11971 htab->strtabsize = max_sym_count;
11972 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11973 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11974 if (htab->strtab == NULL)
11975 goto error_return;
11976 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11977 flinfo.symshndxbuf
11978 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11979 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11980
11981 if (info->strip != strip_all || emit_relocs)
11982 {
11983 file_ptr off = elf_next_file_pos (abfd);
11984
11985 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11986
11987 /* Note that at this point elf_next_file_pos (abfd) is
11988 incorrect. We do not yet know the size of the .symtab section.
11989 We correct next_file_pos below, after we do know the size. */
11990
11991 /* Start writing out the symbol table. The first symbol is always a
11992 dummy symbol. */
11993 elfsym.st_value = 0;
11994 elfsym.st_size = 0;
11995 elfsym.st_info = 0;
11996 elfsym.st_other = 0;
11997 elfsym.st_shndx = SHN_UNDEF;
11998 elfsym.st_target_internal = 0;
11999 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12000 bfd_und_section_ptr, NULL) != 1)
12001 goto error_return;
12002
12003 /* Output a symbol for each section. We output these even if we are
12004 discarding local symbols, since they are used for relocs. These
12005 symbols have no names. We store the index of each one in the
12006 index field of the section, so that we can find it again when
12007 outputting relocs. */
12008
12009 elfsym.st_size = 0;
12010 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12011 elfsym.st_other = 0;
12012 elfsym.st_value = 0;
12013 elfsym.st_target_internal = 0;
12014 for (i = 1; i < elf_numsections (abfd); i++)
12015 {
12016 o = bfd_section_from_elf_index (abfd, i);
12017 if (o != NULL)
12018 {
12019 o->target_index = bfd_get_symcount (abfd);
12020 elfsym.st_shndx = i;
12021 if (!bfd_link_relocatable (info))
12022 elfsym.st_value = o->vma;
12023 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12024 NULL) != 1)
12025 goto error_return;
12026 }
12027 }
12028 }
12029
12030 /* Allocate some memory to hold information read in from the input
12031 files. */
12032 if (max_contents_size != 0)
12033 {
12034 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12035 if (flinfo.contents == NULL)
12036 goto error_return;
12037 }
12038
12039 if (max_external_reloc_size != 0)
12040 {
12041 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12042 if (flinfo.external_relocs == NULL)
12043 goto error_return;
12044 }
12045
12046 if (max_internal_reloc_count != 0)
12047 {
12048 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12049 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12050 if (flinfo.internal_relocs == NULL)
12051 goto error_return;
12052 }
12053
12054 if (max_sym_count != 0)
12055 {
12056 amt = max_sym_count * bed->s->sizeof_sym;
12057 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12058 if (flinfo.external_syms == NULL)
12059 goto error_return;
12060
12061 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12062 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12063 if (flinfo.internal_syms == NULL)
12064 goto error_return;
12065
12066 amt = max_sym_count * sizeof (long);
12067 flinfo.indices = (long int *) bfd_malloc (amt);
12068 if (flinfo.indices == NULL)
12069 goto error_return;
12070
12071 amt = max_sym_count * sizeof (asection *);
12072 flinfo.sections = (asection **) bfd_malloc (amt);
12073 if (flinfo.sections == NULL)
12074 goto error_return;
12075 }
12076
12077 if (max_sym_shndx_count != 0)
12078 {
12079 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12080 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12081 if (flinfo.locsym_shndx == NULL)
12082 goto error_return;
12083 }
12084
12085 if (htab->tls_sec)
12086 {
12087 bfd_vma base, end = 0;
12088 asection *sec;
12089
12090 for (sec = htab->tls_sec;
12091 sec && (sec->flags & SEC_THREAD_LOCAL);
12092 sec = sec->next)
12093 {
12094 bfd_size_type size = sec->size;
12095
12096 if (size == 0
12097 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12098 {
12099 struct bfd_link_order *ord = sec->map_tail.link_order;
12100
12101 if (ord != NULL)
12102 size = ord->offset + ord->size;
12103 }
12104 end = sec->vma + size;
12105 }
12106 base = htab->tls_sec->vma;
12107 /* Only align end of TLS section if static TLS doesn't have special
12108 alignment requirements. */
12109 if (bed->static_tls_alignment == 1)
12110 end = align_power (end, htab->tls_sec->alignment_power);
12111 htab->tls_size = end - base;
12112 }
12113
12114 /* Reorder SHF_LINK_ORDER sections. */
12115 for (o = abfd->sections; o != NULL; o = o->next)
12116 {
12117 if (!elf_fixup_link_order (abfd, o))
12118 return FALSE;
12119 }
12120
12121 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12122 return FALSE;
12123
12124 /* Since ELF permits relocations to be against local symbols, we
12125 must have the local symbols available when we do the relocations.
12126 Since we would rather only read the local symbols once, and we
12127 would rather not keep them in memory, we handle all the
12128 relocations for a single input file at the same time.
12129
12130 Unfortunately, there is no way to know the total number of local
12131 symbols until we have seen all of them, and the local symbol
12132 indices precede the global symbol indices. This means that when
12133 we are generating relocatable output, and we see a reloc against
12134 a global symbol, we can not know the symbol index until we have
12135 finished examining all the local symbols to see which ones we are
12136 going to output. To deal with this, we keep the relocations in
12137 memory, and don't output them until the end of the link. This is
12138 an unfortunate waste of memory, but I don't see a good way around
12139 it. Fortunately, it only happens when performing a relocatable
12140 link, which is not the common case. FIXME: If keep_memory is set
12141 we could write the relocs out and then read them again; I don't
12142 know how bad the memory loss will be. */
12143
12144 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12145 sub->output_has_begun = FALSE;
12146 for (o = abfd->sections; o != NULL; o = o->next)
12147 {
12148 for (p = o->map_head.link_order; p != NULL; p = p->next)
12149 {
12150 if (p->type == bfd_indirect_link_order
12151 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12152 == bfd_target_elf_flavour)
12153 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12154 {
12155 if (! sub->output_has_begun)
12156 {
12157 if (! elf_link_input_bfd (&flinfo, sub))
12158 goto error_return;
12159 sub->output_has_begun = TRUE;
12160 }
12161 }
12162 else if (p->type == bfd_section_reloc_link_order
12163 || p->type == bfd_symbol_reloc_link_order)
12164 {
12165 if (! elf_reloc_link_order (abfd, info, o, p))
12166 goto error_return;
12167 }
12168 else
12169 {
12170 if (! _bfd_default_link_order (abfd, info, o, p))
12171 {
12172 if (p->type == bfd_indirect_link_order
12173 && (bfd_get_flavour (sub)
12174 == bfd_target_elf_flavour)
12175 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12176 != bed->s->elfclass))
12177 {
12178 const char *iclass, *oclass;
12179
12180 switch (bed->s->elfclass)
12181 {
12182 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12183 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12184 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12185 default: abort ();
12186 }
12187
12188 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12189 {
12190 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12191 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12192 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12193 default: abort ();
12194 }
12195
12196 bfd_set_error (bfd_error_wrong_format);
12197 _bfd_error_handler
12198 /* xgettext:c-format */
12199 (_("%pB: file class %s incompatible with %s"),
12200 sub, iclass, oclass);
12201 }
12202
12203 goto error_return;
12204 }
12205 }
12206 }
12207 }
12208
12209 /* Free symbol buffer if needed. */
12210 if (!info->reduce_memory_overheads)
12211 {
12212 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12213 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12214 && elf_tdata (sub)->symbuf)
12215 {
12216 free (elf_tdata (sub)->symbuf);
12217 elf_tdata (sub)->symbuf = NULL;
12218 }
12219 }
12220
12221 /* Output any global symbols that got converted to local in a
12222 version script or due to symbol visibility. We do this in a
12223 separate step since ELF requires all local symbols to appear
12224 prior to any global symbols. FIXME: We should only do this if
12225 some global symbols were, in fact, converted to become local.
12226 FIXME: Will this work correctly with the Irix 5 linker? */
12227 eoinfo.failed = FALSE;
12228 eoinfo.flinfo = &flinfo;
12229 eoinfo.localsyms = TRUE;
12230 eoinfo.file_sym_done = FALSE;
12231 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12232 if (eoinfo.failed)
12233 return FALSE;
12234
12235 /* If backend needs to output some local symbols not present in the hash
12236 table, do it now. */
12237 if (bed->elf_backend_output_arch_local_syms
12238 && (info->strip != strip_all || emit_relocs))
12239 {
12240 typedef int (*out_sym_func)
12241 (void *, const char *, Elf_Internal_Sym *, asection *,
12242 struct elf_link_hash_entry *);
12243
12244 if (! ((*bed->elf_backend_output_arch_local_syms)
12245 (abfd, info, &flinfo,
12246 (out_sym_func) elf_link_output_symstrtab)))
12247 return FALSE;
12248 }
12249
12250 /* That wrote out all the local symbols. Finish up the symbol table
12251 with the global symbols. Even if we want to strip everything we
12252 can, we still need to deal with those global symbols that got
12253 converted to local in a version script. */
12254
12255 /* The sh_info field records the index of the first non local symbol. */
12256 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12257
12258 if (dynamic
12259 && htab->dynsym != NULL
12260 && htab->dynsym->output_section != bfd_abs_section_ptr)
12261 {
12262 Elf_Internal_Sym sym;
12263 bfd_byte *dynsym = htab->dynsym->contents;
12264
12265 o = htab->dynsym->output_section;
12266 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12267
12268 /* Write out the section symbols for the output sections. */
12269 if (bfd_link_pic (info)
12270 || htab->is_relocatable_executable)
12271 {
12272 asection *s;
12273
12274 sym.st_size = 0;
12275 sym.st_name = 0;
12276 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12277 sym.st_other = 0;
12278 sym.st_target_internal = 0;
12279
12280 for (s = abfd->sections; s != NULL; s = s->next)
12281 {
12282 int indx;
12283 bfd_byte *dest;
12284 long dynindx;
12285
12286 dynindx = elf_section_data (s)->dynindx;
12287 if (dynindx <= 0)
12288 continue;
12289 indx = elf_section_data (s)->this_idx;
12290 BFD_ASSERT (indx > 0);
12291 sym.st_shndx = indx;
12292 if (! check_dynsym (abfd, &sym))
12293 return FALSE;
12294 sym.st_value = s->vma;
12295 dest = dynsym + dynindx * bed->s->sizeof_sym;
12296 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12297 }
12298 }
12299
12300 /* Write out the local dynsyms. */
12301 if (htab->dynlocal)
12302 {
12303 struct elf_link_local_dynamic_entry *e;
12304 for (e = htab->dynlocal; e ; e = e->next)
12305 {
12306 asection *s;
12307 bfd_byte *dest;
12308
12309 /* Copy the internal symbol and turn off visibility.
12310 Note that we saved a word of storage and overwrote
12311 the original st_name with the dynstr_index. */
12312 sym = e->isym;
12313 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12314
12315 s = bfd_section_from_elf_index (e->input_bfd,
12316 e->isym.st_shndx);
12317 if (s != NULL)
12318 {
12319 sym.st_shndx =
12320 elf_section_data (s->output_section)->this_idx;
12321 if (! check_dynsym (abfd, &sym))
12322 return FALSE;
12323 sym.st_value = (s->output_section->vma
12324 + s->output_offset
12325 + e->isym.st_value);
12326 }
12327
12328 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12329 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12330 }
12331 }
12332 }
12333
12334 /* We get the global symbols from the hash table. */
12335 eoinfo.failed = FALSE;
12336 eoinfo.localsyms = FALSE;
12337 eoinfo.flinfo = &flinfo;
12338 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12339 if (eoinfo.failed)
12340 return FALSE;
12341
12342 /* If backend needs to output some symbols not present in the hash
12343 table, do it now. */
12344 if (bed->elf_backend_output_arch_syms
12345 && (info->strip != strip_all || emit_relocs))
12346 {
12347 typedef int (*out_sym_func)
12348 (void *, const char *, Elf_Internal_Sym *, asection *,
12349 struct elf_link_hash_entry *);
12350
12351 if (! ((*bed->elf_backend_output_arch_syms)
12352 (abfd, info, &flinfo,
12353 (out_sym_func) elf_link_output_symstrtab)))
12354 return FALSE;
12355 }
12356
12357 /* Finalize the .strtab section. */
12358 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12359
12360 /* Swap out the .strtab section. */
12361 if (!elf_link_swap_symbols_out (&flinfo))
12362 return FALSE;
12363
12364 /* Now we know the size of the symtab section. */
12365 if (bfd_get_symcount (abfd) > 0)
12366 {
12367 /* Finish up and write out the symbol string table (.strtab)
12368 section. */
12369 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12370 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12371
12372 if (elf_symtab_shndx_list (abfd))
12373 {
12374 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12375
12376 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12377 {
12378 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12379 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12380 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12381 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12382 symtab_shndx_hdr->sh_size = amt;
12383
12384 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12385 off, TRUE);
12386
12387 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12388 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12389 return FALSE;
12390 }
12391 }
12392
12393 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12394 /* sh_name was set in prep_headers. */
12395 symstrtab_hdr->sh_type = SHT_STRTAB;
12396 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12397 symstrtab_hdr->sh_addr = 0;
12398 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12399 symstrtab_hdr->sh_entsize = 0;
12400 symstrtab_hdr->sh_link = 0;
12401 symstrtab_hdr->sh_info = 0;
12402 /* sh_offset is set just below. */
12403 symstrtab_hdr->sh_addralign = 1;
12404
12405 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12406 off, TRUE);
12407 elf_next_file_pos (abfd) = off;
12408
12409 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12410 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12411 return FALSE;
12412 }
12413
12414 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12415 {
12416 _bfd_error_handler (_("%pB: failed to generate import library"),
12417 info->out_implib_bfd);
12418 return FALSE;
12419 }
12420
12421 /* Adjust the relocs to have the correct symbol indices. */
12422 for (o = abfd->sections; o != NULL; o = o->next)
12423 {
12424 struct bfd_elf_section_data *esdo = elf_section_data (o);
12425 bfd_boolean sort;
12426
12427 if ((o->flags & SEC_RELOC) == 0)
12428 continue;
12429
12430 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12431 if (esdo->rel.hdr != NULL
12432 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12433 return FALSE;
12434 if (esdo->rela.hdr != NULL
12435 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12436 return FALSE;
12437
12438 /* Set the reloc_count field to 0 to prevent write_relocs from
12439 trying to swap the relocs out itself. */
12440 o->reloc_count = 0;
12441 }
12442
12443 if (dynamic && info->combreloc && dynobj != NULL)
12444 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12445
12446 /* If we are linking against a dynamic object, or generating a
12447 shared library, finish up the dynamic linking information. */
12448 if (dynamic)
12449 {
12450 bfd_byte *dyncon, *dynconend;
12451
12452 /* Fix up .dynamic entries. */
12453 o = bfd_get_linker_section (dynobj, ".dynamic");
12454 BFD_ASSERT (o != NULL);
12455
12456 dyncon = o->contents;
12457 dynconend = o->contents + o->size;
12458 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12459 {
12460 Elf_Internal_Dyn dyn;
12461 const char *name;
12462 unsigned int type;
12463 bfd_size_type sh_size;
12464 bfd_vma sh_addr;
12465
12466 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12467
12468 switch (dyn.d_tag)
12469 {
12470 default:
12471 continue;
12472 case DT_NULL:
12473 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12474 {
12475 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12476 {
12477 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12478 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12479 default: continue;
12480 }
12481 dyn.d_un.d_val = relativecount;
12482 relativecount = 0;
12483 break;
12484 }
12485 continue;
12486
12487 case DT_INIT:
12488 name = info->init_function;
12489 goto get_sym;
12490 case DT_FINI:
12491 name = info->fini_function;
12492 get_sym:
12493 {
12494 struct elf_link_hash_entry *h;
12495
12496 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12497 if (h != NULL
12498 && (h->root.type == bfd_link_hash_defined
12499 || h->root.type == bfd_link_hash_defweak))
12500 {
12501 dyn.d_un.d_ptr = h->root.u.def.value;
12502 o = h->root.u.def.section;
12503 if (o->output_section != NULL)
12504 dyn.d_un.d_ptr += (o->output_section->vma
12505 + o->output_offset);
12506 else
12507 {
12508 /* The symbol is imported from another shared
12509 library and does not apply to this one. */
12510 dyn.d_un.d_ptr = 0;
12511 }
12512 break;
12513 }
12514 }
12515 continue;
12516
12517 case DT_PREINIT_ARRAYSZ:
12518 name = ".preinit_array";
12519 goto get_out_size;
12520 case DT_INIT_ARRAYSZ:
12521 name = ".init_array";
12522 goto get_out_size;
12523 case DT_FINI_ARRAYSZ:
12524 name = ".fini_array";
12525 get_out_size:
12526 o = bfd_get_section_by_name (abfd, name);
12527 if (o == NULL)
12528 {
12529 _bfd_error_handler
12530 (_("could not find section %s"), name);
12531 goto error_return;
12532 }
12533 if (o->size == 0)
12534 _bfd_error_handler
12535 (_("warning: %s section has zero size"), name);
12536 dyn.d_un.d_val = o->size;
12537 break;
12538
12539 case DT_PREINIT_ARRAY:
12540 name = ".preinit_array";
12541 goto get_out_vma;
12542 case DT_INIT_ARRAY:
12543 name = ".init_array";
12544 goto get_out_vma;
12545 case DT_FINI_ARRAY:
12546 name = ".fini_array";
12547 get_out_vma:
12548 o = bfd_get_section_by_name (abfd, name);
12549 goto do_vma;
12550
12551 case DT_HASH:
12552 name = ".hash";
12553 goto get_vma;
12554 case DT_GNU_HASH:
12555 name = ".gnu.hash";
12556 goto get_vma;
12557 case DT_STRTAB:
12558 name = ".dynstr";
12559 goto get_vma;
12560 case DT_SYMTAB:
12561 name = ".dynsym";
12562 goto get_vma;
12563 case DT_VERDEF:
12564 name = ".gnu.version_d";
12565 goto get_vma;
12566 case DT_VERNEED:
12567 name = ".gnu.version_r";
12568 goto get_vma;
12569 case DT_VERSYM:
12570 name = ".gnu.version";
12571 get_vma:
12572 o = bfd_get_linker_section (dynobj, name);
12573 do_vma:
12574 if (o == NULL || bfd_is_abs_section (o->output_section))
12575 {
12576 _bfd_error_handler
12577 (_("could not find section %s"), name);
12578 goto error_return;
12579 }
12580 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12581 {
12582 _bfd_error_handler
12583 (_("warning: section '%s' is being made into a note"), name);
12584 bfd_set_error (bfd_error_nonrepresentable_section);
12585 goto error_return;
12586 }
12587 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12588 break;
12589
12590 case DT_REL:
12591 case DT_RELA:
12592 case DT_RELSZ:
12593 case DT_RELASZ:
12594 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12595 type = SHT_REL;
12596 else
12597 type = SHT_RELA;
12598 sh_size = 0;
12599 sh_addr = 0;
12600 for (i = 1; i < elf_numsections (abfd); i++)
12601 {
12602 Elf_Internal_Shdr *hdr;
12603
12604 hdr = elf_elfsections (abfd)[i];
12605 if (hdr->sh_type == type
12606 && (hdr->sh_flags & SHF_ALLOC) != 0)
12607 {
12608 sh_size += hdr->sh_size;
12609 if (sh_addr == 0
12610 || sh_addr > hdr->sh_addr)
12611 sh_addr = hdr->sh_addr;
12612 }
12613 }
12614
12615 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12616 {
12617 /* Don't count procedure linkage table relocs in the
12618 overall reloc count. */
12619 sh_size -= htab->srelplt->size;
12620 if (sh_size == 0)
12621 /* If the size is zero, make the address zero too.
12622 This is to avoid a glibc bug. If the backend
12623 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12624 zero, then we'll put DT_RELA at the end of
12625 DT_JMPREL. glibc will interpret the end of
12626 DT_RELA matching the end of DT_JMPREL as the
12627 case where DT_RELA includes DT_JMPREL, and for
12628 LD_BIND_NOW will decide that processing DT_RELA
12629 will process the PLT relocs too. Net result:
12630 No PLT relocs applied. */
12631 sh_addr = 0;
12632
12633 /* If .rela.plt is the first .rela section, exclude
12634 it from DT_RELA. */
12635 else if (sh_addr == (htab->srelplt->output_section->vma
12636 + htab->srelplt->output_offset))
12637 sh_addr += htab->srelplt->size;
12638 }
12639
12640 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12641 dyn.d_un.d_val = sh_size;
12642 else
12643 dyn.d_un.d_ptr = sh_addr;
12644 break;
12645 }
12646 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12647 }
12648 }
12649
12650 /* If we have created any dynamic sections, then output them. */
12651 if (dynobj != NULL)
12652 {
12653 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12654 goto error_return;
12655
12656 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12657 if (((info->warn_shared_textrel && bfd_link_pic (info))
12658 || info->error_textrel)
12659 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12660 {
12661 bfd_byte *dyncon, *dynconend;
12662
12663 dyncon = o->contents;
12664 dynconend = o->contents + o->size;
12665 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12666 {
12667 Elf_Internal_Dyn dyn;
12668
12669 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12670
12671 if (dyn.d_tag == DT_TEXTREL)
12672 {
12673 if (info->error_textrel)
12674 info->callbacks->einfo
12675 (_("%P%X: read-only segment has dynamic relocations\n"));
12676 else
12677 info->callbacks->einfo
12678 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12679 break;
12680 }
12681 }
12682 }
12683
12684 for (o = dynobj->sections; o != NULL; o = o->next)
12685 {
12686 if ((o->flags & SEC_HAS_CONTENTS) == 0
12687 || o->size == 0
12688 || o->output_section == bfd_abs_section_ptr)
12689 continue;
12690 if ((o->flags & SEC_LINKER_CREATED) == 0)
12691 {
12692 /* At this point, we are only interested in sections
12693 created by _bfd_elf_link_create_dynamic_sections. */
12694 continue;
12695 }
12696 if (htab->stab_info.stabstr == o)
12697 continue;
12698 if (htab->eh_info.hdr_sec == o)
12699 continue;
12700 if (strcmp (o->name, ".dynstr") != 0)
12701 {
12702 if (! bfd_set_section_contents (abfd, o->output_section,
12703 o->contents,
12704 (file_ptr) o->output_offset
12705 * bfd_octets_per_byte (abfd),
12706 o->size))
12707 goto error_return;
12708 }
12709 else
12710 {
12711 /* The contents of the .dynstr section are actually in a
12712 stringtab. */
12713 file_ptr off;
12714
12715 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12716 if (bfd_seek (abfd, off, SEEK_SET) != 0
12717 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12718 goto error_return;
12719 }
12720 }
12721 }
12722
12723 if (!info->resolve_section_groups)
12724 {
12725 bfd_boolean failed = FALSE;
12726
12727 BFD_ASSERT (bfd_link_relocatable (info));
12728 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12729 if (failed)
12730 goto error_return;
12731 }
12732
12733 /* If we have optimized stabs strings, output them. */
12734 if (htab->stab_info.stabstr != NULL)
12735 {
12736 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12737 goto error_return;
12738 }
12739
12740 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12741 goto error_return;
12742
12743 elf_final_link_free (abfd, &flinfo);
12744
12745 elf_linker (abfd) = TRUE;
12746
12747 if (attr_section)
12748 {
12749 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12750 if (contents == NULL)
12751 return FALSE; /* Bail out and fail. */
12752 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12753 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12754 free (contents);
12755 }
12756
12757 return TRUE;
12758
12759 error_return:
12760 elf_final_link_free (abfd, &flinfo);
12761 return FALSE;
12762 }
12763 \f
12764 /* Initialize COOKIE for input bfd ABFD. */
12765
12766 static bfd_boolean
12767 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12768 struct bfd_link_info *info, bfd *abfd)
12769 {
12770 Elf_Internal_Shdr *symtab_hdr;
12771 const struct elf_backend_data *bed;
12772
12773 bed = get_elf_backend_data (abfd);
12774 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12775
12776 cookie->abfd = abfd;
12777 cookie->sym_hashes = elf_sym_hashes (abfd);
12778 cookie->bad_symtab = elf_bad_symtab (abfd);
12779 if (cookie->bad_symtab)
12780 {
12781 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12782 cookie->extsymoff = 0;
12783 }
12784 else
12785 {
12786 cookie->locsymcount = symtab_hdr->sh_info;
12787 cookie->extsymoff = symtab_hdr->sh_info;
12788 }
12789
12790 if (bed->s->arch_size == 32)
12791 cookie->r_sym_shift = 8;
12792 else
12793 cookie->r_sym_shift = 32;
12794
12795 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12796 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12797 {
12798 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12799 cookie->locsymcount, 0,
12800 NULL, NULL, NULL);
12801 if (cookie->locsyms == NULL)
12802 {
12803 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12804 return FALSE;
12805 }
12806 if (info->keep_memory)
12807 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12808 }
12809 return TRUE;
12810 }
12811
12812 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12813
12814 static void
12815 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12816 {
12817 Elf_Internal_Shdr *symtab_hdr;
12818
12819 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12820 if (cookie->locsyms != NULL
12821 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12822 free (cookie->locsyms);
12823 }
12824
12825 /* Initialize the relocation information in COOKIE for input section SEC
12826 of input bfd ABFD. */
12827
12828 static bfd_boolean
12829 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12830 struct bfd_link_info *info, bfd *abfd,
12831 asection *sec)
12832 {
12833 if (sec->reloc_count == 0)
12834 {
12835 cookie->rels = NULL;
12836 cookie->relend = NULL;
12837 }
12838 else
12839 {
12840 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12841 info->keep_memory);
12842 if (cookie->rels == NULL)
12843 return FALSE;
12844 cookie->rel = cookie->rels;
12845 cookie->relend = cookie->rels + sec->reloc_count;
12846 }
12847 cookie->rel = cookie->rels;
12848 return TRUE;
12849 }
12850
12851 /* Free the memory allocated by init_reloc_cookie_rels,
12852 if appropriate. */
12853
12854 static void
12855 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12856 asection *sec)
12857 {
12858 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12859 free (cookie->rels);
12860 }
12861
12862 /* Initialize the whole of COOKIE for input section SEC. */
12863
12864 static bfd_boolean
12865 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12866 struct bfd_link_info *info,
12867 asection *sec)
12868 {
12869 if (!init_reloc_cookie (cookie, info, sec->owner))
12870 goto error1;
12871 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12872 goto error2;
12873 return TRUE;
12874
12875 error2:
12876 fini_reloc_cookie (cookie, sec->owner);
12877 error1:
12878 return FALSE;
12879 }
12880
12881 /* Free the memory allocated by init_reloc_cookie_for_section,
12882 if appropriate. */
12883
12884 static void
12885 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12886 asection *sec)
12887 {
12888 fini_reloc_cookie_rels (cookie, sec);
12889 fini_reloc_cookie (cookie, sec->owner);
12890 }
12891 \f
12892 /* Garbage collect unused sections. */
12893
12894 /* Default gc_mark_hook. */
12895
12896 asection *
12897 _bfd_elf_gc_mark_hook (asection *sec,
12898 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12899 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12900 struct elf_link_hash_entry *h,
12901 Elf_Internal_Sym *sym)
12902 {
12903 if (h != NULL)
12904 {
12905 switch (h->root.type)
12906 {
12907 case bfd_link_hash_defined:
12908 case bfd_link_hash_defweak:
12909 return h->root.u.def.section;
12910
12911 case bfd_link_hash_common:
12912 return h->root.u.c.p->section;
12913
12914 default:
12915 break;
12916 }
12917 }
12918 else
12919 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12920
12921 return NULL;
12922 }
12923
12924 /* Return the debug definition section. */
12925
12926 static asection *
12927 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12928 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12929 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12930 struct elf_link_hash_entry *h,
12931 Elf_Internal_Sym *sym)
12932 {
12933 if (h != NULL)
12934 {
12935 /* Return the global debug definition section. */
12936 if ((h->root.type == bfd_link_hash_defined
12937 || h->root.type == bfd_link_hash_defweak)
12938 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12939 return h->root.u.def.section;
12940 }
12941 else
12942 {
12943 /* Return the local debug definition section. */
12944 asection *isec = bfd_section_from_elf_index (sec->owner,
12945 sym->st_shndx);
12946 if ((isec->flags & SEC_DEBUGGING) != 0)
12947 return isec;
12948 }
12949
12950 return NULL;
12951 }
12952
12953 /* COOKIE->rel describes a relocation against section SEC, which is
12954 a section we've decided to keep. Return the section that contains
12955 the relocation symbol, or NULL if no section contains it. */
12956
12957 asection *
12958 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12959 elf_gc_mark_hook_fn gc_mark_hook,
12960 struct elf_reloc_cookie *cookie,
12961 bfd_boolean *start_stop)
12962 {
12963 unsigned long r_symndx;
12964 struct elf_link_hash_entry *h;
12965
12966 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12967 if (r_symndx == STN_UNDEF)
12968 return NULL;
12969
12970 if (r_symndx >= cookie->locsymcount
12971 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12972 {
12973 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12974 if (h == NULL)
12975 {
12976 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
12977 sec->owner);
12978 return NULL;
12979 }
12980 while (h->root.type == bfd_link_hash_indirect
12981 || h->root.type == bfd_link_hash_warning)
12982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12983 h->mark = 1;
12984 /* If this symbol is weak and there is a non-weak definition, we
12985 keep the non-weak definition because many backends put
12986 dynamic reloc info on the non-weak definition for code
12987 handling copy relocs. */
12988 if (h->is_weakalias)
12989 weakdef (h)->mark = 1;
12990
12991 if (start_stop != NULL)
12992 {
12993 /* To work around a glibc bug, mark XXX input sections
12994 when there is a reference to __start_XXX or __stop_XXX
12995 symbols. */
12996 if (h->start_stop)
12997 {
12998 asection *s = h->u2.start_stop_section;
12999 *start_stop = !s->gc_mark;
13000 return s;
13001 }
13002 }
13003
13004 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13005 }
13006
13007 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13008 &cookie->locsyms[r_symndx]);
13009 }
13010
13011 /* COOKIE->rel describes a relocation against section SEC, which is
13012 a section we've decided to keep. Mark the section that contains
13013 the relocation symbol. */
13014
13015 bfd_boolean
13016 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13017 asection *sec,
13018 elf_gc_mark_hook_fn gc_mark_hook,
13019 struct elf_reloc_cookie *cookie)
13020 {
13021 asection *rsec;
13022 bfd_boolean start_stop = FALSE;
13023
13024 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13025 while (rsec != NULL)
13026 {
13027 if (!rsec->gc_mark)
13028 {
13029 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13030 || (rsec->owner->flags & DYNAMIC) != 0)
13031 rsec->gc_mark = 1;
13032 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13033 return FALSE;
13034 }
13035 if (!start_stop)
13036 break;
13037 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13038 }
13039 return TRUE;
13040 }
13041
13042 /* The mark phase of garbage collection. For a given section, mark
13043 it and any sections in this section's group, and all the sections
13044 which define symbols to which it refers. */
13045
13046 bfd_boolean
13047 _bfd_elf_gc_mark (struct bfd_link_info *info,
13048 asection *sec,
13049 elf_gc_mark_hook_fn gc_mark_hook)
13050 {
13051 bfd_boolean ret;
13052 asection *group_sec, *eh_frame;
13053
13054 sec->gc_mark = 1;
13055
13056 /* Mark all the sections in the group. */
13057 group_sec = elf_section_data (sec)->next_in_group;
13058 if (group_sec && !group_sec->gc_mark)
13059 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13060 return FALSE;
13061
13062 /* Look through the section relocs. */
13063 ret = TRUE;
13064 eh_frame = elf_eh_frame_section (sec->owner);
13065 if ((sec->flags & SEC_RELOC) != 0
13066 && sec->reloc_count > 0
13067 && sec != eh_frame)
13068 {
13069 struct elf_reloc_cookie cookie;
13070
13071 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13072 ret = FALSE;
13073 else
13074 {
13075 for (; cookie.rel < cookie.relend; cookie.rel++)
13076 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13077 {
13078 ret = FALSE;
13079 break;
13080 }
13081 fini_reloc_cookie_for_section (&cookie, sec);
13082 }
13083 }
13084
13085 if (ret && eh_frame && elf_fde_list (sec))
13086 {
13087 struct elf_reloc_cookie cookie;
13088
13089 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13090 ret = FALSE;
13091 else
13092 {
13093 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13094 gc_mark_hook, &cookie))
13095 ret = FALSE;
13096 fini_reloc_cookie_for_section (&cookie, eh_frame);
13097 }
13098 }
13099
13100 eh_frame = elf_section_eh_frame_entry (sec);
13101 if (ret && eh_frame && !eh_frame->gc_mark)
13102 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13103 ret = FALSE;
13104
13105 return ret;
13106 }
13107
13108 /* Scan and mark sections in a special or debug section group. */
13109
13110 static void
13111 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13112 {
13113 /* Point to first section of section group. */
13114 asection *ssec;
13115 /* Used to iterate the section group. */
13116 asection *msec;
13117
13118 bfd_boolean is_special_grp = TRUE;
13119 bfd_boolean is_debug_grp = TRUE;
13120
13121 /* First scan to see if group contains any section other than debug
13122 and special section. */
13123 ssec = msec = elf_next_in_group (grp);
13124 do
13125 {
13126 if ((msec->flags & SEC_DEBUGGING) == 0)
13127 is_debug_grp = FALSE;
13128
13129 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13130 is_special_grp = FALSE;
13131
13132 msec = elf_next_in_group (msec);
13133 }
13134 while (msec != ssec);
13135
13136 /* If this is a pure debug section group or pure special section group,
13137 keep all sections in this group. */
13138 if (is_debug_grp || is_special_grp)
13139 {
13140 do
13141 {
13142 msec->gc_mark = 1;
13143 msec = elf_next_in_group (msec);
13144 }
13145 while (msec != ssec);
13146 }
13147 }
13148
13149 /* Keep debug and special sections. */
13150
13151 bfd_boolean
13152 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13153 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13154 {
13155 bfd *ibfd;
13156
13157 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13158 {
13159 asection *isec;
13160 bfd_boolean some_kept;
13161 bfd_boolean debug_frag_seen;
13162 bfd_boolean has_kept_debug_info;
13163
13164 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13165 continue;
13166 isec = ibfd->sections;
13167 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13168 continue;
13169
13170 /* Ensure all linker created sections are kept,
13171 see if any other section is already marked,
13172 and note if we have any fragmented debug sections. */
13173 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13174 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13175 {
13176 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13177 isec->gc_mark = 1;
13178 else if (isec->gc_mark
13179 && (isec->flags & SEC_ALLOC) != 0
13180 && elf_section_type (isec) != SHT_NOTE)
13181 some_kept = TRUE;
13182
13183 if (!debug_frag_seen
13184 && (isec->flags & SEC_DEBUGGING)
13185 && CONST_STRNEQ (isec->name, ".debug_line."))
13186 debug_frag_seen = TRUE;
13187 }
13188
13189 /* If no non-note alloc section in this file will be kept, then
13190 we can toss out the debug and special sections. */
13191 if (!some_kept)
13192 continue;
13193
13194 /* Keep debug and special sections like .comment when they are
13195 not part of a group. Also keep section groups that contain
13196 just debug sections or special sections. */
13197 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13198 {
13199 if ((isec->flags & SEC_GROUP) != 0)
13200 _bfd_elf_gc_mark_debug_special_section_group (isec);
13201 else if (((isec->flags & SEC_DEBUGGING) != 0
13202 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13203 && elf_next_in_group (isec) == NULL)
13204 isec->gc_mark = 1;
13205 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13206 has_kept_debug_info = TRUE;
13207 }
13208
13209 /* Look for CODE sections which are going to be discarded,
13210 and find and discard any fragmented debug sections which
13211 are associated with that code section. */
13212 if (debug_frag_seen)
13213 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13214 if ((isec->flags & SEC_CODE) != 0
13215 && isec->gc_mark == 0)
13216 {
13217 unsigned int ilen;
13218 asection *dsec;
13219
13220 ilen = strlen (isec->name);
13221
13222 /* Association is determined by the name of the debug
13223 section containing the name of the code section as
13224 a suffix. For example .debug_line.text.foo is a
13225 debug section associated with .text.foo. */
13226 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13227 {
13228 unsigned int dlen;
13229
13230 if (dsec->gc_mark == 0
13231 || (dsec->flags & SEC_DEBUGGING) == 0)
13232 continue;
13233
13234 dlen = strlen (dsec->name);
13235
13236 if (dlen > ilen
13237 && strncmp (dsec->name + (dlen - ilen),
13238 isec->name, ilen) == 0)
13239 dsec->gc_mark = 0;
13240 }
13241 }
13242
13243 /* Mark debug sections referenced by kept debug sections. */
13244 if (has_kept_debug_info)
13245 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13246 if (isec->gc_mark
13247 && (isec->flags & SEC_DEBUGGING) != 0)
13248 if (!_bfd_elf_gc_mark (info, isec,
13249 elf_gc_mark_debug_section))
13250 return FALSE;
13251 }
13252 return TRUE;
13253 }
13254
13255 static bfd_boolean
13256 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13257 {
13258 bfd *sub;
13259 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13260
13261 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13262 {
13263 asection *o;
13264
13265 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13266 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13267 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13268 continue;
13269 o = sub->sections;
13270 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13271 continue;
13272
13273 for (o = sub->sections; o != NULL; o = o->next)
13274 {
13275 /* When any section in a section group is kept, we keep all
13276 sections in the section group. If the first member of
13277 the section group is excluded, we will also exclude the
13278 group section. */
13279 if (o->flags & SEC_GROUP)
13280 {
13281 asection *first = elf_next_in_group (o);
13282 o->gc_mark = first->gc_mark;
13283 }
13284
13285 if (o->gc_mark)
13286 continue;
13287
13288 /* Skip sweeping sections already excluded. */
13289 if (o->flags & SEC_EXCLUDE)
13290 continue;
13291
13292 /* Since this is early in the link process, it is simple
13293 to remove a section from the output. */
13294 o->flags |= SEC_EXCLUDE;
13295
13296 if (info->print_gc_sections && o->size != 0)
13297 /* xgettext:c-format */
13298 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13299 o, sub);
13300 }
13301 }
13302
13303 return TRUE;
13304 }
13305
13306 /* Propagate collected vtable information. This is called through
13307 elf_link_hash_traverse. */
13308
13309 static bfd_boolean
13310 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13311 {
13312 /* Those that are not vtables. */
13313 if (h->start_stop
13314 || h->u2.vtable == NULL
13315 || h->u2.vtable->parent == NULL)
13316 return TRUE;
13317
13318 /* Those vtables that do not have parents, we cannot merge. */
13319 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13320 return TRUE;
13321
13322 /* If we've already been done, exit. */
13323 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13324 return TRUE;
13325
13326 /* Make sure the parent's table is up to date. */
13327 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13328
13329 if (h->u2.vtable->used == NULL)
13330 {
13331 /* None of this table's entries were referenced. Re-use the
13332 parent's table. */
13333 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13334 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13335 }
13336 else
13337 {
13338 size_t n;
13339 bfd_boolean *cu, *pu;
13340
13341 /* Or the parent's entries into ours. */
13342 cu = h->u2.vtable->used;
13343 cu[-1] = TRUE;
13344 pu = h->u2.vtable->parent->u2.vtable->used;
13345 if (pu != NULL)
13346 {
13347 const struct elf_backend_data *bed;
13348 unsigned int log_file_align;
13349
13350 bed = get_elf_backend_data (h->root.u.def.section->owner);
13351 log_file_align = bed->s->log_file_align;
13352 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13353 while (n--)
13354 {
13355 if (*pu)
13356 *cu = TRUE;
13357 pu++;
13358 cu++;
13359 }
13360 }
13361 }
13362
13363 return TRUE;
13364 }
13365
13366 static bfd_boolean
13367 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13368 {
13369 asection *sec;
13370 bfd_vma hstart, hend;
13371 Elf_Internal_Rela *relstart, *relend, *rel;
13372 const struct elf_backend_data *bed;
13373 unsigned int log_file_align;
13374
13375 /* Take care of both those symbols that do not describe vtables as
13376 well as those that are not loaded. */
13377 if (h->start_stop
13378 || h->u2.vtable == NULL
13379 || h->u2.vtable->parent == NULL)
13380 return TRUE;
13381
13382 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13383 || h->root.type == bfd_link_hash_defweak);
13384
13385 sec = h->root.u.def.section;
13386 hstart = h->root.u.def.value;
13387 hend = hstart + h->size;
13388
13389 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13390 if (!relstart)
13391 return *(bfd_boolean *) okp = FALSE;
13392 bed = get_elf_backend_data (sec->owner);
13393 log_file_align = bed->s->log_file_align;
13394
13395 relend = relstart + sec->reloc_count;
13396
13397 for (rel = relstart; rel < relend; ++rel)
13398 if (rel->r_offset >= hstart && rel->r_offset < hend)
13399 {
13400 /* If the entry is in use, do nothing. */
13401 if (h->u2.vtable->used
13402 && (rel->r_offset - hstart) < h->u2.vtable->size)
13403 {
13404 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13405 if (h->u2.vtable->used[entry])
13406 continue;
13407 }
13408 /* Otherwise, kill it. */
13409 rel->r_offset = rel->r_info = rel->r_addend = 0;
13410 }
13411
13412 return TRUE;
13413 }
13414
13415 /* Mark sections containing dynamically referenced symbols. When
13416 building shared libraries, we must assume that any visible symbol is
13417 referenced. */
13418
13419 bfd_boolean
13420 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13421 {
13422 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13423 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13424
13425 if ((h->root.type == bfd_link_hash_defined
13426 || h->root.type == bfd_link_hash_defweak)
13427 && ((h->ref_dynamic && !h->forced_local)
13428 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13429 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13430 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13431 && (!bfd_link_executable (info)
13432 || info->gc_keep_exported
13433 || info->export_dynamic
13434 || (h->dynamic
13435 && d != NULL
13436 && (*d->match) (&d->head, NULL, h->root.root.string)))
13437 && (h->versioned >= versioned
13438 || !bfd_hide_sym_by_version (info->version_info,
13439 h->root.root.string)))))
13440 h->root.u.def.section->flags |= SEC_KEEP;
13441
13442 return TRUE;
13443 }
13444
13445 /* Keep all sections containing symbols undefined on the command-line,
13446 and the section containing the entry symbol. */
13447
13448 void
13449 _bfd_elf_gc_keep (struct bfd_link_info *info)
13450 {
13451 struct bfd_sym_chain *sym;
13452
13453 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13454 {
13455 struct elf_link_hash_entry *h;
13456
13457 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13458 FALSE, FALSE, FALSE);
13459
13460 if (h != NULL
13461 && (h->root.type == bfd_link_hash_defined
13462 || h->root.type == bfd_link_hash_defweak)
13463 && !bfd_is_abs_section (h->root.u.def.section)
13464 && !bfd_is_und_section (h->root.u.def.section))
13465 h->root.u.def.section->flags |= SEC_KEEP;
13466 }
13467 }
13468
13469 bfd_boolean
13470 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13471 struct bfd_link_info *info)
13472 {
13473 bfd *ibfd = info->input_bfds;
13474
13475 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13476 {
13477 asection *sec;
13478 struct elf_reloc_cookie cookie;
13479
13480 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13481 continue;
13482 sec = ibfd->sections;
13483 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13484 continue;
13485
13486 if (!init_reloc_cookie (&cookie, info, ibfd))
13487 return FALSE;
13488
13489 for (sec = ibfd->sections; sec; sec = sec->next)
13490 {
13491 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13492 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13493 {
13494 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13495 fini_reloc_cookie_rels (&cookie, sec);
13496 }
13497 }
13498 }
13499 return TRUE;
13500 }
13501
13502 /* Do mark and sweep of unused sections. */
13503
13504 bfd_boolean
13505 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13506 {
13507 bfd_boolean ok = TRUE;
13508 bfd *sub;
13509 elf_gc_mark_hook_fn gc_mark_hook;
13510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13511 struct elf_link_hash_table *htab;
13512
13513 if (!bed->can_gc_sections
13514 || !is_elf_hash_table (info->hash))
13515 {
13516 _bfd_error_handler(_("warning: gc-sections option ignored"));
13517 return TRUE;
13518 }
13519
13520 bed->gc_keep (info);
13521 htab = elf_hash_table (info);
13522
13523 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13524 at the .eh_frame section if we can mark the FDEs individually. */
13525 for (sub = info->input_bfds;
13526 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13527 sub = sub->link.next)
13528 {
13529 asection *sec;
13530 struct elf_reloc_cookie cookie;
13531
13532 sec = sub->sections;
13533 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13534 continue;
13535 sec = bfd_get_section_by_name (sub, ".eh_frame");
13536 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13537 {
13538 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13539 if (elf_section_data (sec)->sec_info
13540 && (sec->flags & SEC_LINKER_CREATED) == 0)
13541 elf_eh_frame_section (sub) = sec;
13542 fini_reloc_cookie_for_section (&cookie, sec);
13543 sec = bfd_get_next_section_by_name (NULL, sec);
13544 }
13545 }
13546
13547 /* Apply transitive closure to the vtable entry usage info. */
13548 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13549 if (!ok)
13550 return FALSE;
13551
13552 /* Kill the vtable relocations that were not used. */
13553 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13554 if (!ok)
13555 return FALSE;
13556
13557 /* Mark dynamically referenced symbols. */
13558 if (htab->dynamic_sections_created || info->gc_keep_exported)
13559 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13560
13561 /* Grovel through relocs to find out who stays ... */
13562 gc_mark_hook = bed->gc_mark_hook;
13563 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13564 {
13565 asection *o;
13566
13567 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13568 || elf_object_id (sub) != elf_hash_table_id (htab)
13569 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13570 continue;
13571
13572 o = sub->sections;
13573 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13574 continue;
13575
13576 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13577 Also treat note sections as a root, if the section is not part
13578 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13579 well as FINI_ARRAY sections for ld -r. */
13580 for (o = sub->sections; o != NULL; o = o->next)
13581 if (!o->gc_mark
13582 && (o->flags & SEC_EXCLUDE) == 0
13583 && ((o->flags & SEC_KEEP) != 0
13584 || (bfd_link_relocatable (info)
13585 && ((elf_section_data (o)->this_hdr.sh_type
13586 == SHT_PREINIT_ARRAY)
13587 || (elf_section_data (o)->this_hdr.sh_type
13588 == SHT_INIT_ARRAY)
13589 || (elf_section_data (o)->this_hdr.sh_type
13590 == SHT_FINI_ARRAY)))
13591 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13592 && elf_next_in_group (o) == NULL )))
13593 {
13594 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13595 return FALSE;
13596 }
13597 }
13598
13599 /* Allow the backend to mark additional target specific sections. */
13600 bed->gc_mark_extra_sections (info, gc_mark_hook);
13601
13602 /* ... and mark SEC_EXCLUDE for those that go. */
13603 return elf_gc_sweep (abfd, info);
13604 }
13605 \f
13606 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13607
13608 bfd_boolean
13609 bfd_elf_gc_record_vtinherit (bfd *abfd,
13610 asection *sec,
13611 struct elf_link_hash_entry *h,
13612 bfd_vma offset)
13613 {
13614 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13615 struct elf_link_hash_entry **search, *child;
13616 size_t extsymcount;
13617 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13618
13619 /* The sh_info field of the symtab header tells us where the
13620 external symbols start. We don't care about the local symbols at
13621 this point. */
13622 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13623 if (!elf_bad_symtab (abfd))
13624 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13625
13626 sym_hashes = elf_sym_hashes (abfd);
13627 sym_hashes_end = sym_hashes + extsymcount;
13628
13629 /* Hunt down the child symbol, which is in this section at the same
13630 offset as the relocation. */
13631 for (search = sym_hashes; search != sym_hashes_end; ++search)
13632 {
13633 if ((child = *search) != NULL
13634 && (child->root.type == bfd_link_hash_defined
13635 || child->root.type == bfd_link_hash_defweak)
13636 && child->root.u.def.section == sec
13637 && child->root.u.def.value == offset)
13638 goto win;
13639 }
13640
13641 /* xgettext:c-format */
13642 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13643 abfd, sec, (uint64_t) offset);
13644 bfd_set_error (bfd_error_invalid_operation);
13645 return FALSE;
13646
13647 win:
13648 if (!child->u2.vtable)
13649 {
13650 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13651 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13652 if (!child->u2.vtable)
13653 return FALSE;
13654 }
13655 if (!h)
13656 {
13657 /* This *should* only be the absolute section. It could potentially
13658 be that someone has defined a non-global vtable though, which
13659 would be bad. It isn't worth paging in the local symbols to be
13660 sure though; that case should simply be handled by the assembler. */
13661
13662 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13663 }
13664 else
13665 child->u2.vtable->parent = h;
13666
13667 return TRUE;
13668 }
13669
13670 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13671
13672 bfd_boolean
13673 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13674 asection *sec ATTRIBUTE_UNUSED,
13675 struct elf_link_hash_entry *h,
13676 bfd_vma addend)
13677 {
13678 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13679 unsigned int log_file_align = bed->s->log_file_align;
13680
13681 if (!h->u2.vtable)
13682 {
13683 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13684 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13685 if (!h->u2.vtable)
13686 return FALSE;
13687 }
13688
13689 if (addend >= h->u2.vtable->size)
13690 {
13691 size_t size, bytes, file_align;
13692 bfd_boolean *ptr = h->u2.vtable->used;
13693
13694 /* While the symbol is undefined, we have to be prepared to handle
13695 a zero size. */
13696 file_align = 1 << log_file_align;
13697 if (h->root.type == bfd_link_hash_undefined)
13698 size = addend + file_align;
13699 else
13700 {
13701 size = h->size;
13702 if (addend >= size)
13703 {
13704 /* Oops! We've got a reference past the defined end of
13705 the table. This is probably a bug -- shall we warn? */
13706 size = addend + file_align;
13707 }
13708 }
13709 size = (size + file_align - 1) & -file_align;
13710
13711 /* Allocate one extra entry for use as a "done" flag for the
13712 consolidation pass. */
13713 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13714
13715 if (ptr)
13716 {
13717 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13718
13719 if (ptr != NULL)
13720 {
13721 size_t oldbytes;
13722
13723 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13724 * sizeof (bfd_boolean));
13725 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13726 }
13727 }
13728 else
13729 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13730
13731 if (ptr == NULL)
13732 return FALSE;
13733
13734 /* And arrange for that done flag to be at index -1. */
13735 h->u2.vtable->used = ptr + 1;
13736 h->u2.vtable->size = size;
13737 }
13738
13739 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13740
13741 return TRUE;
13742 }
13743
13744 /* Map an ELF section header flag to its corresponding string. */
13745 typedef struct
13746 {
13747 char *flag_name;
13748 flagword flag_value;
13749 } elf_flags_to_name_table;
13750
13751 static elf_flags_to_name_table elf_flags_to_names [] =
13752 {
13753 { "SHF_WRITE", SHF_WRITE },
13754 { "SHF_ALLOC", SHF_ALLOC },
13755 { "SHF_EXECINSTR", SHF_EXECINSTR },
13756 { "SHF_MERGE", SHF_MERGE },
13757 { "SHF_STRINGS", SHF_STRINGS },
13758 { "SHF_INFO_LINK", SHF_INFO_LINK},
13759 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13760 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13761 { "SHF_GROUP", SHF_GROUP },
13762 { "SHF_TLS", SHF_TLS },
13763 { "SHF_MASKOS", SHF_MASKOS },
13764 { "SHF_EXCLUDE", SHF_EXCLUDE },
13765 };
13766
13767 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13768 bfd_boolean
13769 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13770 struct flag_info *flaginfo,
13771 asection *section)
13772 {
13773 const bfd_vma sh_flags = elf_section_flags (section);
13774
13775 if (!flaginfo->flags_initialized)
13776 {
13777 bfd *obfd = info->output_bfd;
13778 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13779 struct flag_info_list *tf = flaginfo->flag_list;
13780 int with_hex = 0;
13781 int without_hex = 0;
13782
13783 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13784 {
13785 unsigned i;
13786 flagword (*lookup) (char *);
13787
13788 lookup = bed->elf_backend_lookup_section_flags_hook;
13789 if (lookup != NULL)
13790 {
13791 flagword hexval = (*lookup) ((char *) tf->name);
13792
13793 if (hexval != 0)
13794 {
13795 if (tf->with == with_flags)
13796 with_hex |= hexval;
13797 else if (tf->with == without_flags)
13798 without_hex |= hexval;
13799 tf->valid = TRUE;
13800 continue;
13801 }
13802 }
13803 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13804 {
13805 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13806 {
13807 if (tf->with == with_flags)
13808 with_hex |= elf_flags_to_names[i].flag_value;
13809 else if (tf->with == without_flags)
13810 without_hex |= elf_flags_to_names[i].flag_value;
13811 tf->valid = TRUE;
13812 break;
13813 }
13814 }
13815 if (!tf->valid)
13816 {
13817 info->callbacks->einfo
13818 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13819 return FALSE;
13820 }
13821 }
13822 flaginfo->flags_initialized = TRUE;
13823 flaginfo->only_with_flags |= with_hex;
13824 flaginfo->not_with_flags |= without_hex;
13825 }
13826
13827 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13828 return FALSE;
13829
13830 if ((flaginfo->not_with_flags & sh_flags) != 0)
13831 return FALSE;
13832
13833 return TRUE;
13834 }
13835
13836 struct alloc_got_off_arg {
13837 bfd_vma gotoff;
13838 struct bfd_link_info *info;
13839 };
13840
13841 /* We need a special top-level link routine to convert got reference counts
13842 to real got offsets. */
13843
13844 static bfd_boolean
13845 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13846 {
13847 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13848 bfd *obfd = gofarg->info->output_bfd;
13849 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13850
13851 if (h->got.refcount > 0)
13852 {
13853 h->got.offset = gofarg->gotoff;
13854 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13855 }
13856 else
13857 h->got.offset = (bfd_vma) -1;
13858
13859 return TRUE;
13860 }
13861
13862 /* And an accompanying bit to work out final got entry offsets once
13863 we're done. Should be called from final_link. */
13864
13865 bfd_boolean
13866 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13867 struct bfd_link_info *info)
13868 {
13869 bfd *i;
13870 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13871 bfd_vma gotoff;
13872 struct alloc_got_off_arg gofarg;
13873
13874 BFD_ASSERT (abfd == info->output_bfd);
13875
13876 if (! is_elf_hash_table (info->hash))
13877 return FALSE;
13878
13879 /* The GOT offset is relative to the .got section, but the GOT header is
13880 put into the .got.plt section, if the backend uses it. */
13881 if (bed->want_got_plt)
13882 gotoff = 0;
13883 else
13884 gotoff = bed->got_header_size;
13885
13886 /* Do the local .got entries first. */
13887 for (i = info->input_bfds; i; i = i->link.next)
13888 {
13889 bfd_signed_vma *local_got;
13890 size_t j, locsymcount;
13891 Elf_Internal_Shdr *symtab_hdr;
13892
13893 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13894 continue;
13895
13896 local_got = elf_local_got_refcounts (i);
13897 if (!local_got)
13898 continue;
13899
13900 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13901 if (elf_bad_symtab (i))
13902 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13903 else
13904 locsymcount = symtab_hdr->sh_info;
13905
13906 for (j = 0; j < locsymcount; ++j)
13907 {
13908 if (local_got[j] > 0)
13909 {
13910 local_got[j] = gotoff;
13911 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13912 }
13913 else
13914 local_got[j] = (bfd_vma) -1;
13915 }
13916 }
13917
13918 /* Then the global .got entries. .plt refcounts are handled by
13919 adjust_dynamic_symbol */
13920 gofarg.gotoff = gotoff;
13921 gofarg.info = info;
13922 elf_link_hash_traverse (elf_hash_table (info),
13923 elf_gc_allocate_got_offsets,
13924 &gofarg);
13925 return TRUE;
13926 }
13927
13928 /* Many folk need no more in the way of final link than this, once
13929 got entry reference counting is enabled. */
13930
13931 bfd_boolean
13932 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13933 {
13934 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13935 return FALSE;
13936
13937 /* Invoke the regular ELF backend linker to do all the work. */
13938 return bfd_elf_final_link (abfd, info);
13939 }
13940
13941 bfd_boolean
13942 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13943 {
13944 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13945
13946 if (rcookie->bad_symtab)
13947 rcookie->rel = rcookie->rels;
13948
13949 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13950 {
13951 unsigned long r_symndx;
13952
13953 if (! rcookie->bad_symtab)
13954 if (rcookie->rel->r_offset > offset)
13955 return FALSE;
13956 if (rcookie->rel->r_offset != offset)
13957 continue;
13958
13959 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13960 if (r_symndx == STN_UNDEF)
13961 return TRUE;
13962
13963 if (r_symndx >= rcookie->locsymcount
13964 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13965 {
13966 struct elf_link_hash_entry *h;
13967
13968 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13969
13970 while (h->root.type == bfd_link_hash_indirect
13971 || h->root.type == bfd_link_hash_warning)
13972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13973
13974 if ((h->root.type == bfd_link_hash_defined
13975 || h->root.type == bfd_link_hash_defweak)
13976 && (h->root.u.def.section->owner != rcookie->abfd
13977 || h->root.u.def.section->kept_section != NULL
13978 || discarded_section (h->root.u.def.section)))
13979 return TRUE;
13980 }
13981 else
13982 {
13983 /* It's not a relocation against a global symbol,
13984 but it could be a relocation against a local
13985 symbol for a discarded section. */
13986 asection *isec;
13987 Elf_Internal_Sym *isym;
13988
13989 /* Need to: get the symbol; get the section. */
13990 isym = &rcookie->locsyms[r_symndx];
13991 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13992 if (isec != NULL
13993 && (isec->kept_section != NULL
13994 || discarded_section (isec)))
13995 return TRUE;
13996 }
13997 return FALSE;
13998 }
13999 return FALSE;
14000 }
14001
14002 /* Discard unneeded references to discarded sections.
14003 Returns -1 on error, 1 if any section's size was changed, 0 if
14004 nothing changed. This function assumes that the relocations are in
14005 sorted order, which is true for all known assemblers. */
14006
14007 int
14008 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14009 {
14010 struct elf_reloc_cookie cookie;
14011 asection *o;
14012 bfd *abfd;
14013 int changed = 0;
14014
14015 if (info->traditional_format
14016 || !is_elf_hash_table (info->hash))
14017 return 0;
14018
14019 o = bfd_get_section_by_name (output_bfd, ".stab");
14020 if (o != NULL)
14021 {
14022 asection *i;
14023
14024 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14025 {
14026 if (i->size == 0
14027 || i->reloc_count == 0
14028 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14029 continue;
14030
14031 abfd = i->owner;
14032 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14033 continue;
14034
14035 if (!init_reloc_cookie_for_section (&cookie, info, i))
14036 return -1;
14037
14038 if (_bfd_discard_section_stabs (abfd, i,
14039 elf_section_data (i)->sec_info,
14040 bfd_elf_reloc_symbol_deleted_p,
14041 &cookie))
14042 changed = 1;
14043
14044 fini_reloc_cookie_for_section (&cookie, i);
14045 }
14046 }
14047
14048 o = NULL;
14049 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14050 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14051 if (o != NULL)
14052 {
14053 asection *i;
14054 int eh_changed = 0;
14055 unsigned int eh_alignment;
14056
14057 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14058 {
14059 if (i->size == 0)
14060 continue;
14061
14062 abfd = i->owner;
14063 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14064 continue;
14065
14066 if (!init_reloc_cookie_for_section (&cookie, info, i))
14067 return -1;
14068
14069 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14070 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14071 bfd_elf_reloc_symbol_deleted_p,
14072 &cookie))
14073 {
14074 eh_changed = 1;
14075 if (i->size != i->rawsize)
14076 changed = 1;
14077 }
14078
14079 fini_reloc_cookie_for_section (&cookie, i);
14080 }
14081
14082 eh_alignment = 1 << o->alignment_power;
14083 /* Skip over zero terminator, and prevent empty sections from
14084 adding alignment padding at the end. */
14085 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14086 if (i->size == 0)
14087 i->flags |= SEC_EXCLUDE;
14088 else if (i->size > 4)
14089 break;
14090 /* The last non-empty eh_frame section doesn't need padding. */
14091 if (i != NULL)
14092 i = i->map_tail.s;
14093 /* Any prior sections must pad the last FDE out to the output
14094 section alignment. Otherwise we might have zero padding
14095 between sections, which would be seen as a terminator. */
14096 for (; i != NULL; i = i->map_tail.s)
14097 if (i->size == 4)
14098 /* All but the last zero terminator should have been removed. */
14099 BFD_FAIL ();
14100 else
14101 {
14102 bfd_size_type size
14103 = (i->size + eh_alignment - 1) & -eh_alignment;
14104 if (i->size != size)
14105 {
14106 i->size = size;
14107 changed = 1;
14108 eh_changed = 1;
14109 }
14110 }
14111 if (eh_changed)
14112 elf_link_hash_traverse (elf_hash_table (info),
14113 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14114 }
14115
14116 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14117 {
14118 const struct elf_backend_data *bed;
14119 asection *s;
14120
14121 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14122 continue;
14123 s = abfd->sections;
14124 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14125 continue;
14126
14127 bed = get_elf_backend_data (abfd);
14128
14129 if (bed->elf_backend_discard_info != NULL)
14130 {
14131 if (!init_reloc_cookie (&cookie, info, abfd))
14132 return -1;
14133
14134 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14135 changed = 1;
14136
14137 fini_reloc_cookie (&cookie, abfd);
14138 }
14139 }
14140
14141 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14142 _bfd_elf_end_eh_frame_parsing (info);
14143
14144 if (info->eh_frame_hdr_type
14145 && !bfd_link_relocatable (info)
14146 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14147 changed = 1;
14148
14149 return changed;
14150 }
14151
14152 bfd_boolean
14153 _bfd_elf_section_already_linked (bfd *abfd,
14154 asection *sec,
14155 struct bfd_link_info *info)
14156 {
14157 flagword flags;
14158 const char *name, *key;
14159 struct bfd_section_already_linked *l;
14160 struct bfd_section_already_linked_hash_entry *already_linked_list;
14161
14162 if (sec->output_section == bfd_abs_section_ptr)
14163 return FALSE;
14164
14165 flags = sec->flags;
14166
14167 /* Return if it isn't a linkonce section. A comdat group section
14168 also has SEC_LINK_ONCE set. */
14169 if ((flags & SEC_LINK_ONCE) == 0)
14170 return FALSE;
14171
14172 /* Don't put group member sections on our list of already linked
14173 sections. They are handled as a group via their group section. */
14174 if (elf_sec_group (sec) != NULL)
14175 return FALSE;
14176
14177 /* For a SHT_GROUP section, use the group signature as the key. */
14178 name = sec->name;
14179 if ((flags & SEC_GROUP) != 0
14180 && elf_next_in_group (sec) != NULL
14181 && elf_group_name (elf_next_in_group (sec)) != NULL)
14182 key = elf_group_name (elf_next_in_group (sec));
14183 else
14184 {
14185 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14186 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14187 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14188 key++;
14189 else
14190 /* Must be a user linkonce section that doesn't follow gcc's
14191 naming convention. In this case we won't be matching
14192 single member groups. */
14193 key = name;
14194 }
14195
14196 already_linked_list = bfd_section_already_linked_table_lookup (key);
14197
14198 for (l = already_linked_list->entry; l != NULL; l = l->next)
14199 {
14200 /* We may have 2 different types of sections on the list: group
14201 sections with a signature of <key> (<key> is some string),
14202 and linkonce sections named .gnu.linkonce.<type>.<key>.
14203 Match like sections. LTO plugin sections are an exception.
14204 They are always named .gnu.linkonce.t.<key> and match either
14205 type of section. */
14206 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14207 && ((flags & SEC_GROUP) != 0
14208 || strcmp (name, l->sec->name) == 0))
14209 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14210 {
14211 /* The section has already been linked. See if we should
14212 issue a warning. */
14213 if (!_bfd_handle_already_linked (sec, l, info))
14214 return FALSE;
14215
14216 if (flags & SEC_GROUP)
14217 {
14218 asection *first = elf_next_in_group (sec);
14219 asection *s = first;
14220
14221 while (s != NULL)
14222 {
14223 s->output_section = bfd_abs_section_ptr;
14224 /* Record which group discards it. */
14225 s->kept_section = l->sec;
14226 s = elf_next_in_group (s);
14227 /* These lists are circular. */
14228 if (s == first)
14229 break;
14230 }
14231 }
14232
14233 return TRUE;
14234 }
14235 }
14236
14237 /* A single member comdat group section may be discarded by a
14238 linkonce section and vice versa. */
14239 if ((flags & SEC_GROUP) != 0)
14240 {
14241 asection *first = elf_next_in_group (sec);
14242
14243 if (first != NULL && elf_next_in_group (first) == first)
14244 /* Check this single member group against linkonce sections. */
14245 for (l = already_linked_list->entry; l != NULL; l = l->next)
14246 if ((l->sec->flags & SEC_GROUP) == 0
14247 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14248 {
14249 first->output_section = bfd_abs_section_ptr;
14250 first->kept_section = l->sec;
14251 sec->output_section = bfd_abs_section_ptr;
14252 break;
14253 }
14254 }
14255 else
14256 /* Check this linkonce section against single member groups. */
14257 for (l = already_linked_list->entry; l != NULL; l = l->next)
14258 if (l->sec->flags & SEC_GROUP)
14259 {
14260 asection *first = elf_next_in_group (l->sec);
14261
14262 if (first != NULL
14263 && elf_next_in_group (first) == first
14264 && bfd_elf_match_symbols_in_sections (first, sec, info))
14265 {
14266 sec->output_section = bfd_abs_section_ptr;
14267 sec->kept_section = first;
14268 break;
14269 }
14270 }
14271
14272 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14273 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14274 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14275 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14276 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14277 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14278 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14279 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14280 The reverse order cannot happen as there is never a bfd with only the
14281 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14282 matter as here were are looking only for cross-bfd sections. */
14283
14284 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14285 for (l = already_linked_list->entry; l != NULL; l = l->next)
14286 if ((l->sec->flags & SEC_GROUP) == 0
14287 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14288 {
14289 if (abfd != l->sec->owner)
14290 sec->output_section = bfd_abs_section_ptr;
14291 break;
14292 }
14293
14294 /* This is the first section with this name. Record it. */
14295 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14296 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14297 return sec->output_section == bfd_abs_section_ptr;
14298 }
14299
14300 bfd_boolean
14301 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14302 {
14303 return sym->st_shndx == SHN_COMMON;
14304 }
14305
14306 unsigned int
14307 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14308 {
14309 return SHN_COMMON;
14310 }
14311
14312 asection *
14313 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14314 {
14315 return bfd_com_section_ptr;
14316 }
14317
14318 bfd_vma
14319 _bfd_elf_default_got_elt_size (bfd *abfd,
14320 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14321 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14322 bfd *ibfd ATTRIBUTE_UNUSED,
14323 unsigned long symndx ATTRIBUTE_UNUSED)
14324 {
14325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14326 return bed->s->arch_size / 8;
14327 }
14328
14329 /* Routines to support the creation of dynamic relocs. */
14330
14331 /* Returns the name of the dynamic reloc section associated with SEC. */
14332
14333 static const char *
14334 get_dynamic_reloc_section_name (bfd * abfd,
14335 asection * sec,
14336 bfd_boolean is_rela)
14337 {
14338 char *name;
14339 const char *old_name = bfd_get_section_name (NULL, sec);
14340 const char *prefix = is_rela ? ".rela" : ".rel";
14341
14342 if (old_name == NULL)
14343 return NULL;
14344
14345 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14346 sprintf (name, "%s%s", prefix, old_name);
14347
14348 return name;
14349 }
14350
14351 /* Returns the dynamic reloc section associated with SEC.
14352 If necessary compute the name of the dynamic reloc section based
14353 on SEC's name (looked up in ABFD's string table) and the setting
14354 of IS_RELA. */
14355
14356 asection *
14357 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14358 asection * sec,
14359 bfd_boolean is_rela)
14360 {
14361 asection * reloc_sec = elf_section_data (sec)->sreloc;
14362
14363 if (reloc_sec == NULL)
14364 {
14365 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14366
14367 if (name != NULL)
14368 {
14369 reloc_sec = bfd_get_linker_section (abfd, name);
14370
14371 if (reloc_sec != NULL)
14372 elf_section_data (sec)->sreloc = reloc_sec;
14373 }
14374 }
14375
14376 return reloc_sec;
14377 }
14378
14379 /* Returns the dynamic reloc section associated with SEC. If the
14380 section does not exist it is created and attached to the DYNOBJ
14381 bfd and stored in the SRELOC field of SEC's elf_section_data
14382 structure.
14383
14384 ALIGNMENT is the alignment for the newly created section and
14385 IS_RELA defines whether the name should be .rela.<SEC's name>
14386 or .rel.<SEC's name>. The section name is looked up in the
14387 string table associated with ABFD. */
14388
14389 asection *
14390 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14391 bfd *dynobj,
14392 unsigned int alignment,
14393 bfd *abfd,
14394 bfd_boolean is_rela)
14395 {
14396 asection * reloc_sec = elf_section_data (sec)->sreloc;
14397
14398 if (reloc_sec == NULL)
14399 {
14400 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14401
14402 if (name == NULL)
14403 return NULL;
14404
14405 reloc_sec = bfd_get_linker_section (dynobj, name);
14406
14407 if (reloc_sec == NULL)
14408 {
14409 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14410 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14411 if ((sec->flags & SEC_ALLOC) != 0)
14412 flags |= SEC_ALLOC | SEC_LOAD;
14413
14414 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14415 if (reloc_sec != NULL)
14416 {
14417 /* _bfd_elf_get_sec_type_attr chooses a section type by
14418 name. Override as it may be wrong, eg. for a user
14419 section named "auto" we'll get ".relauto" which is
14420 seen to be a .rela section. */
14421 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14422 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14423 reloc_sec = NULL;
14424 }
14425 }
14426
14427 elf_section_data (sec)->sreloc = reloc_sec;
14428 }
14429
14430 return reloc_sec;
14431 }
14432
14433 /* Copy the ELF symbol type and other attributes for a linker script
14434 assignment from HSRC to HDEST. Generally this should be treated as
14435 if we found a strong non-dynamic definition for HDEST (except that
14436 ld ignores multiple definition errors). */
14437 void
14438 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14439 struct bfd_link_hash_entry *hdest,
14440 struct bfd_link_hash_entry *hsrc)
14441 {
14442 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14443 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14444 Elf_Internal_Sym isym;
14445
14446 ehdest->type = ehsrc->type;
14447 ehdest->target_internal = ehsrc->target_internal;
14448
14449 isym.st_other = ehsrc->other;
14450 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14451 }
14452
14453 /* Append a RELA relocation REL to section S in BFD. */
14454
14455 void
14456 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14457 {
14458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14459 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14460 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14461 bed->s->swap_reloca_out (abfd, rel, loc);
14462 }
14463
14464 /* Append a REL relocation REL to section S in BFD. */
14465
14466 void
14467 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14468 {
14469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14470 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14471 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14472 bed->s->swap_reloc_out (abfd, rel, loc);
14473 }
14474
14475 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14476
14477 struct bfd_link_hash_entry *
14478 bfd_elf_define_start_stop (struct bfd_link_info *info,
14479 const char *symbol, asection *sec)
14480 {
14481 struct elf_link_hash_entry *h;
14482
14483 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14484 FALSE, FALSE, TRUE);
14485 if (h != NULL
14486 && (h->root.type == bfd_link_hash_undefined
14487 || h->root.type == bfd_link_hash_undefweak
14488 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14489 {
14490 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14491 h->root.type = bfd_link_hash_defined;
14492 h->root.u.def.section = sec;
14493 h->root.u.def.value = 0;
14494 h->def_regular = 1;
14495 h->def_dynamic = 0;
14496 h->start_stop = 1;
14497 h->u2.start_stop_section = sec;
14498 if (symbol[0] == '.')
14499 {
14500 /* .startof. and .sizeof. symbols are local. */
14501 const struct elf_backend_data *bed;
14502 bed = get_elf_backend_data (info->output_bfd);
14503 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14504 }
14505 else
14506 {
14507 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14508 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14509 if (was_dynamic)
14510 bfd_elf_link_record_dynamic_symbol (info, h);
14511 }
14512 return &h->root;
14513 }
14514 return NULL;
14515 }
This page took 0.336402 seconds and 4 git commands to generate.