Fix segfault in microblaze linker when garbage collection removes a symbol scheduled...
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 }
123
124 bh = &h->root;
125 bed = get_elf_backend_data (abfd);
126 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127 sec, 0, NULL, FALSE, bed->collect,
128 &bh))
129 return NULL;
130 h = (struct elf_link_hash_entry *) bh;
131 h->def_regular = 1;
132 h->non_elf = 0;
133 h->root.linker_def = 1;
134 h->type = STT_OBJECT;
135 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139 return h;
140 }
141
142 bfd_boolean
143 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144 {
145 flagword flags;
146 asection *s;
147 struct elf_link_hash_entry *h;
148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149 struct elf_link_hash_table *htab = elf_hash_table (info);
150
151 /* This function may be called more than once. */
152 if (htab->sgot != NULL)
153 return TRUE;
154
155 flags = bed->dynamic_sec_flags;
156
157 s = bfd_make_section_anyway_with_flags (abfd,
158 (bed->rela_plts_and_copies_p
159 ? ".rela.got" : ".rel.got"),
160 (bed->dynamic_sec_flags
161 | SEC_READONLY));
162 if (s == NULL
163 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
164 return FALSE;
165 htab->srelgot = s;
166
167 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
168 if (s == NULL
169 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 return FALSE;
171 htab->sgot = s;
172
173 if (bed->want_got_plt)
174 {
175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
176 if (s == NULL
177 || !bfd_set_section_alignment (abfd, s,
178 bed->s->log_file_align))
179 return FALSE;
180 htab->sgotplt = s;
181 }
182
183 /* The first bit of the global offset table is the header. */
184 s->size += bed->got_header_size;
185
186 if (bed->want_got_sym)
187 {
188 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
189 (or .got.plt) section. We don't do this in the linker script
190 because we don't want to define the symbol if we are not creating
191 a global offset table. */
192 h = _bfd_elf_define_linkage_sym (abfd, info, s,
193 "_GLOBAL_OFFSET_TABLE_");
194 elf_hash_table (info)->hgot = h;
195 if (h == NULL)
196 return FALSE;
197 }
198
199 return TRUE;
200 }
201 \f
202 /* Create a strtab to hold the dynamic symbol names. */
203 static bfd_boolean
204 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
205 {
206 struct elf_link_hash_table *hash_table;
207
208 hash_table = elf_hash_table (info);
209 if (hash_table->dynobj == NULL)
210 {
211 /* We may not set dynobj, an input file holding linker created
212 dynamic sections to abfd, which may be a dynamic object with
213 its own dynamic sections. We need to find a normal input file
214 to hold linker created sections if possible. */
215 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
216 {
217 bfd *ibfd;
218 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
219 if ((ibfd->flags
220 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
221 {
222 abfd = ibfd;
223 break;
224 }
225 }
226 hash_table->dynobj = abfd;
227 }
228
229 if (hash_table->dynstr == NULL)
230 {
231 hash_table->dynstr = _bfd_elf_strtab_init ();
232 if (hash_table->dynstr == NULL)
233 return FALSE;
234 }
235 return TRUE;
236 }
237
238 /* Create some sections which will be filled in with dynamic linking
239 information. ABFD is an input file which requires dynamic sections
240 to be created. The dynamic sections take up virtual memory space
241 when the final executable is run, so we need to create them before
242 addresses are assigned to the output sections. We work out the
243 actual contents and size of these sections later. */
244
245 bfd_boolean
246 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
247 {
248 flagword flags;
249 asection *s;
250 const struct elf_backend_data *bed;
251 struct elf_link_hash_entry *h;
252
253 if (! is_elf_hash_table (info->hash))
254 return FALSE;
255
256 if (elf_hash_table (info)->dynamic_sections_created)
257 return TRUE;
258
259 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
260 return FALSE;
261
262 abfd = elf_hash_table (info)->dynobj;
263 bed = get_elf_backend_data (abfd);
264
265 flags = bed->dynamic_sec_flags;
266
267 /* A dynamically linked executable has a .interp section, but a
268 shared library does not. */
269 if (bfd_link_executable (info) && !info->nointerp)
270 {
271 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
272 flags | SEC_READONLY);
273 if (s == NULL)
274 return FALSE;
275 }
276
277 /* Create sections to hold version informations. These are removed
278 if they are not needed. */
279 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
280 flags | SEC_READONLY);
281 if (s == NULL
282 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
283 return FALSE;
284
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || ! bfd_set_section_alignment (abfd, s, 1))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
301 return FALSE;
302 elf_hash_table (info)->dynsym = s;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
305 flags | SEC_READONLY);
306 if (s == NULL)
307 return FALSE;
308
309 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
310 if (s == NULL
311 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
312 return FALSE;
313
314 /* The special symbol _DYNAMIC is always set to the start of the
315 .dynamic section. We could set _DYNAMIC in a linker script, but we
316 only want to define it if we are, in fact, creating a .dynamic
317 section. We don't want to define it if there is no .dynamic
318 section, since on some ELF platforms the start up code examines it
319 to decide how to initialize the process. */
320 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
321 elf_hash_table (info)->hdynamic = h;
322 if (h == NULL)
323 return FALSE;
324
325 if (info->emit_hash)
326 {
327 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
328 flags | SEC_READONLY);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
331 return FALSE;
332 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
333 }
334
335 if (info->emit_gnu_hash)
336 {
337 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
338 flags | SEC_READONLY);
339 if (s == NULL
340 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
341 return FALSE;
342 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
343 4 32-bit words followed by variable count of 64-bit words, then
344 variable count of 32-bit words. */
345 if (bed->s->arch_size == 64)
346 elf_section_data (s)->this_hdr.sh_entsize = 0;
347 else
348 elf_section_data (s)->this_hdr.sh_entsize = 4;
349 }
350
351 /* Let the backend create the rest of the sections. This lets the
352 backend set the right flags. The backend will normally create
353 the .got and .plt sections. */
354 if (bed->elf_backend_create_dynamic_sections == NULL
355 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
356 return FALSE;
357
358 elf_hash_table (info)->dynamic_sections_created = TRUE;
359
360 return TRUE;
361 }
362
363 /* Create dynamic sections when linking against a dynamic object. */
364
365 bfd_boolean
366 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
367 {
368 flagword flags, pltflags;
369 struct elf_link_hash_entry *h;
370 asection *s;
371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
372 struct elf_link_hash_table *htab = elf_hash_table (info);
373
374 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
375 .rel[a].bss sections. */
376 flags = bed->dynamic_sec_flags;
377
378 pltflags = flags;
379 if (bed->plt_not_loaded)
380 /* We do not clear SEC_ALLOC here because we still want the OS to
381 allocate space for the section; it's just that there's nothing
382 to read in from the object file. */
383 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
384 else
385 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
386 if (bed->plt_readonly)
387 pltflags |= SEC_READONLY;
388
389 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
392 return FALSE;
393 htab->splt = s;
394
395 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
396 .plt section. */
397 if (bed->want_plt_sym)
398 {
399 h = _bfd_elf_define_linkage_sym (abfd, info, s,
400 "_PROCEDURE_LINKAGE_TABLE_");
401 elf_hash_table (info)->hplt = h;
402 if (h == NULL)
403 return FALSE;
404 }
405
406 s = bfd_make_section_anyway_with_flags (abfd,
407 (bed->rela_plts_and_copies_p
408 ? ".rela.plt" : ".rel.plt"),
409 flags | SEC_READONLY);
410 if (s == NULL
411 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
412 return FALSE;
413 htab->srelplt = s;
414
415 if (! _bfd_elf_create_got_section (abfd, info))
416 return FALSE;
417
418 if (bed->want_dynbss)
419 {
420 /* The .dynbss section is a place to put symbols which are defined
421 by dynamic objects, are referenced by regular objects, and are
422 not functions. We must allocate space for them in the process
423 image and use a R_*_COPY reloc to tell the dynamic linker to
424 initialize them at run time. The linker script puts the .dynbss
425 section into the .bss section of the final image. */
426 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
427 (SEC_ALLOC | SEC_LINKER_CREATED));
428 if (s == NULL)
429 return FALSE;
430 htab->sdynbss = s;
431
432 if (bed->want_dynrelro)
433 {
434 /* Similarly, but for symbols that were originally in read-only
435 sections. */
436 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
437 (SEC_ALLOC | SEC_READONLY
438 | SEC_HAS_CONTENTS
439 | SEC_LINKER_CREATED));
440 if (s == NULL)
441 return FALSE;
442 htab->sdynrelro = s;
443 }
444
445 /* The .rel[a].bss section holds copy relocs. This section is not
446 normally needed. We need to create it here, though, so that the
447 linker will map it to an output section. We can't just create it
448 only if we need it, because we will not know whether we need it
449 until we have seen all the input files, and the first time the
450 main linker code calls BFD after examining all the input files
451 (size_dynamic_sections) the input sections have already been
452 mapped to the output sections. If the section turns out not to
453 be needed, we can discard it later. We will never need this
454 section when generating a shared object, since they do not use
455 copy relocs. */
456 if (bfd_link_executable (info))
457 {
458 s = bfd_make_section_anyway_with_flags (abfd,
459 (bed->rela_plts_and_copies_p
460 ? ".rela.bss" : ".rel.bss"),
461 flags | SEC_READONLY);
462 if (s == NULL
463 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
464 return FALSE;
465 htab->srelbss = s;
466
467 if (bed->want_dynrelro)
468 {
469 s = (bfd_make_section_anyway_with_flags
470 (abfd, (bed->rela_plts_and_copies_p
471 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
472 flags | SEC_READONLY));
473 if (s == NULL
474 || ! bfd_set_section_alignment (abfd, s,
475 bed->s->log_file_align))
476 return FALSE;
477 htab->sreldynrelro = s;
478 }
479 }
480 }
481
482 return TRUE;
483 }
484 \f
485 /* Record a new dynamic symbol. We record the dynamic symbols as we
486 read the input files, since we need to have a list of all of them
487 before we can determine the final sizes of the output sections.
488 Note that we may actually call this function even though we are not
489 going to output any dynamic symbols; in some cases we know that a
490 symbol should be in the dynamic symbol table, but only if there is
491 one. */
492
493 bfd_boolean
494 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
495 struct elf_link_hash_entry *h)
496 {
497 if (h->dynindx == -1)
498 {
499 struct elf_strtab_hash *dynstr;
500 char *p;
501 const char *name;
502 size_t indx;
503
504 /* XXX: The ABI draft says the linker must turn hidden and
505 internal symbols into STB_LOCAL symbols when producing the
506 DSO. However, if ld.so honors st_other in the dynamic table,
507 this would not be necessary. */
508 switch (ELF_ST_VISIBILITY (h->other))
509 {
510 case STV_INTERNAL:
511 case STV_HIDDEN:
512 if (h->root.type != bfd_link_hash_undefined
513 && h->root.type != bfd_link_hash_undefweak)
514 {
515 h->forced_local = 1;
516 if (!elf_hash_table (info)->is_relocatable_executable)
517 return TRUE;
518 }
519
520 default:
521 break;
522 }
523
524 h->dynindx = elf_hash_table (info)->dynsymcount;
525 ++elf_hash_table (info)->dynsymcount;
526
527 dynstr = elf_hash_table (info)->dynstr;
528 if (dynstr == NULL)
529 {
530 /* Create a strtab to hold the dynamic symbol names. */
531 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
532 if (dynstr == NULL)
533 return FALSE;
534 }
535
536 /* We don't put any version information in the dynamic string
537 table. */
538 name = h->root.root.string;
539 p = strchr (name, ELF_VER_CHR);
540 if (p != NULL)
541 /* We know that the p points into writable memory. In fact,
542 there are only a few symbols that have read-only names, being
543 those like _GLOBAL_OFFSET_TABLE_ that are created specially
544 by the backends. Most symbols will have names pointing into
545 an ELF string table read from a file, or to objalloc memory. */
546 *p = 0;
547
548 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
549
550 if (p != NULL)
551 *p = ELF_VER_CHR;
552
553 if (indx == (size_t) -1)
554 return FALSE;
555 h->dynstr_index = indx;
556 }
557
558 return TRUE;
559 }
560 \f
561 /* Mark a symbol dynamic. */
562
563 static void
564 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
565 struct elf_link_hash_entry *h,
566 Elf_Internal_Sym *sym)
567 {
568 struct bfd_elf_dynamic_list *d = info->dynamic_list;
569
570 /* It may be called more than once on the same H. */
571 if(h->dynamic || bfd_link_relocatable (info))
572 return;
573
574 if ((info->dynamic_data
575 && (h->type == STT_OBJECT
576 || h->type == STT_COMMON
577 || (sym != NULL
578 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
579 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
580 || (d != NULL
581 && h->root.type == bfd_link_hash_new
582 && (*d->match) (&d->head, NULL, h->root.root.string)))
583 h->dynamic = 1;
584 }
585
586 /* Record an assignment to a symbol made by a linker script. We need
587 this in case some dynamic object refers to this symbol. */
588
589 bfd_boolean
590 bfd_elf_record_link_assignment (bfd *output_bfd,
591 struct bfd_link_info *info,
592 const char *name,
593 bfd_boolean provide,
594 bfd_boolean hidden)
595 {
596 struct elf_link_hash_entry *h, *hv;
597 struct elf_link_hash_table *htab;
598 const struct elf_backend_data *bed;
599
600 if (!is_elf_hash_table (info->hash))
601 return TRUE;
602
603 htab = elf_hash_table (info);
604 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
605 if (h == NULL)
606 return provide;
607
608 if (h->root.type == bfd_link_hash_warning)
609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
610
611 if (h->versioned == unknown)
612 {
613 /* Set versioned if symbol version is unknown. */
614 char *version = strrchr (name, ELF_VER_CHR);
615 if (version)
616 {
617 if (version > name && version[-1] != ELF_VER_CHR)
618 h->versioned = versioned_hidden;
619 else
620 h->versioned = versioned;
621 }
622 }
623
624 switch (h->root.type)
625 {
626 case bfd_link_hash_defined:
627 case bfd_link_hash_defweak:
628 case bfd_link_hash_common:
629 break;
630 case bfd_link_hash_undefweak:
631 case bfd_link_hash_undefined:
632 /* Since we're defining the symbol, don't let it seem to have not
633 been defined. record_dynamic_symbol and size_dynamic_sections
634 may depend on this. */
635 h->root.type = bfd_link_hash_new;
636 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
637 bfd_link_repair_undef_list (&htab->root);
638 break;
639 case bfd_link_hash_new:
640 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
641 h->non_elf = 0;
642 break;
643 case bfd_link_hash_indirect:
644 /* We had a versioned symbol in a dynamic library. We make the
645 the versioned symbol point to this one. */
646 bed = get_elf_backend_data (output_bfd);
647 hv = h;
648 while (hv->root.type == bfd_link_hash_indirect
649 || hv->root.type == bfd_link_hash_warning)
650 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
651 /* We don't need to update h->root.u since linker will set them
652 later. */
653 h->root.type = bfd_link_hash_undefined;
654 hv->root.type = bfd_link_hash_indirect;
655 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
656 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
657 break;
658 default:
659 BFD_FAIL ();
660 return FALSE;
661 }
662
663 /* If this symbol is being provided by the linker script, and it is
664 currently defined by a dynamic object, but not by a regular
665 object, then mark it as undefined so that the generic linker will
666 force the correct value. */
667 if (provide
668 && h->def_dynamic
669 && !h->def_regular)
670 h->root.type = bfd_link_hash_undefined;
671
672 /* If this symbol is not being provided by the linker script, and it is
673 currently defined by a dynamic object, but not by a regular object,
674 then clear out any version information because the symbol will not be
675 associated with the dynamic object any more. */
676 if (!provide
677 && h->def_dynamic
678 && !h->def_regular)
679 h->verinfo.verdef = NULL;
680
681 /* Make sure this symbol is not garbage collected. */
682 h->mark = 1;
683
684 h->def_regular = 1;
685
686 if (hidden)
687 {
688 bed = get_elf_backend_data (output_bfd);
689 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
690 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
691 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
692 }
693
694 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
695 and executables. */
696 if (!bfd_link_relocatable (info)
697 && h->dynindx != -1
698 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
699 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
700 h->forced_local = 1;
701
702 if ((h->def_dynamic
703 || h->ref_dynamic
704 || bfd_link_dll (info)
705 || elf_hash_table (info)->is_relocatable_executable)
706 && h->dynindx == -1)
707 {
708 if (! bfd_elf_link_record_dynamic_symbol (info, h))
709 return FALSE;
710
711 /* If this is a weak defined symbol, and we know a corresponding
712 real symbol from the same dynamic object, make sure the real
713 symbol is also made into a dynamic symbol. */
714 if (h->u.weakdef != NULL
715 && h->u.weakdef->dynindx == -1)
716 {
717 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
718 return FALSE;
719 }
720 }
721
722 return TRUE;
723 }
724
725 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
726 success, and 2 on a failure caused by attempting to record a symbol
727 in a discarded section, eg. a discarded link-once section symbol. */
728
729 int
730 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
731 bfd *input_bfd,
732 long input_indx)
733 {
734 bfd_size_type amt;
735 struct elf_link_local_dynamic_entry *entry;
736 struct elf_link_hash_table *eht;
737 struct elf_strtab_hash *dynstr;
738 size_t dynstr_index;
739 char *name;
740 Elf_External_Sym_Shndx eshndx;
741 char esym[sizeof (Elf64_External_Sym)];
742
743 if (! is_elf_hash_table (info->hash))
744 return 0;
745
746 /* See if the entry exists already. */
747 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
748 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
749 return 1;
750
751 amt = sizeof (*entry);
752 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
753 if (entry == NULL)
754 return 0;
755
756 /* Go find the symbol, so that we can find it's name. */
757 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
758 1, input_indx, &entry->isym, esym, &eshndx))
759 {
760 bfd_release (input_bfd, entry);
761 return 0;
762 }
763
764 if (entry->isym.st_shndx != SHN_UNDEF
765 && entry->isym.st_shndx < SHN_LORESERVE)
766 {
767 asection *s;
768
769 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
770 if (s == NULL || bfd_is_abs_section (s->output_section))
771 {
772 /* We can still bfd_release here as nothing has done another
773 bfd_alloc. We can't do this later in this function. */
774 bfd_release (input_bfd, entry);
775 return 2;
776 }
777 }
778
779 name = (bfd_elf_string_from_elf_section
780 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
781 entry->isym.st_name));
782
783 dynstr = elf_hash_table (info)->dynstr;
784 if (dynstr == NULL)
785 {
786 /* Create a strtab to hold the dynamic symbol names. */
787 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
788 if (dynstr == NULL)
789 return 0;
790 }
791
792 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
793 if (dynstr_index == (size_t) -1)
794 return 0;
795 entry->isym.st_name = dynstr_index;
796
797 eht = elf_hash_table (info);
798
799 entry->next = eht->dynlocal;
800 eht->dynlocal = entry;
801 entry->input_bfd = input_bfd;
802 entry->input_indx = input_indx;
803 eht->dynsymcount++;
804
805 /* Whatever binding the symbol had before, it's now local. */
806 entry->isym.st_info
807 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
808
809 /* The dynindx will be set at the end of size_dynamic_sections. */
810
811 return 1;
812 }
813
814 /* Return the dynindex of a local dynamic symbol. */
815
816 long
817 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
818 bfd *input_bfd,
819 long input_indx)
820 {
821 struct elf_link_local_dynamic_entry *e;
822
823 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
824 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
825 return e->dynindx;
826 return -1;
827 }
828
829 /* This function is used to renumber the dynamic symbols, if some of
830 them are removed because they are marked as local. This is called
831 via elf_link_hash_traverse. */
832
833 static bfd_boolean
834 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
835 void *data)
836 {
837 size_t *count = (size_t *) data;
838
839 if (h->forced_local)
840 return TRUE;
841
842 if (h->dynindx != -1)
843 h->dynindx = ++(*count);
844
845 return TRUE;
846 }
847
848
849 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
850 STB_LOCAL binding. */
851
852 static bfd_boolean
853 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
854 void *data)
855 {
856 size_t *count = (size_t *) data;
857
858 if (!h->forced_local)
859 return TRUE;
860
861 if (h->dynindx != -1)
862 h->dynindx = ++(*count);
863
864 return TRUE;
865 }
866
867 /* Return true if the dynamic symbol for a given section should be
868 omitted when creating a shared library. */
869 bfd_boolean
870 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
871 struct bfd_link_info *info,
872 asection *p)
873 {
874 struct elf_link_hash_table *htab;
875 asection *ip;
876
877 switch (elf_section_data (p)->this_hdr.sh_type)
878 {
879 case SHT_PROGBITS:
880 case SHT_NOBITS:
881 /* If sh_type is yet undecided, assume it could be
882 SHT_PROGBITS/SHT_NOBITS. */
883 case SHT_NULL:
884 htab = elf_hash_table (info);
885 if (p == htab->tls_sec)
886 return FALSE;
887
888 if (htab->text_index_section != NULL)
889 return p != htab->text_index_section && p != htab->data_index_section;
890
891 return (htab->dynobj != NULL
892 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
893 && ip->output_section == p);
894
895 /* There shouldn't be section relative relocations
896 against any other section. */
897 default:
898 return TRUE;
899 }
900 }
901
902 /* Assign dynsym indices. In a shared library we generate a section
903 symbol for each output section, which come first. Next come symbols
904 which have been forced to local binding. Then all of the back-end
905 allocated local dynamic syms, followed by the rest of the global
906 symbols. */
907
908 static unsigned long
909 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
910 struct bfd_link_info *info,
911 unsigned long *section_sym_count)
912 {
913 unsigned long dynsymcount = 0;
914
915 if (bfd_link_pic (info)
916 || elf_hash_table (info)->is_relocatable_executable)
917 {
918 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
919 asection *p;
920 for (p = output_bfd->sections; p ; p = p->next)
921 if ((p->flags & SEC_EXCLUDE) == 0
922 && (p->flags & SEC_ALLOC) != 0
923 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
924 elf_section_data (p)->dynindx = ++dynsymcount;
925 else
926 elf_section_data (p)->dynindx = 0;
927 }
928 *section_sym_count = dynsymcount;
929
930 elf_link_hash_traverse (elf_hash_table (info),
931 elf_link_renumber_local_hash_table_dynsyms,
932 &dynsymcount);
933
934 if (elf_hash_table (info)->dynlocal)
935 {
936 struct elf_link_local_dynamic_entry *p;
937 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
938 p->dynindx = ++dynsymcount;
939 }
940 elf_hash_table (info)->local_dynsymcount = dynsymcount;
941
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_hash_table_dynsyms,
944 &dynsymcount);
945
946 /* There is an unused NULL entry at the head of the table which we
947 must account for in our count even if the table is empty since it
948 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
949 .dynamic section. */
950 dynsymcount++;
951
952 elf_hash_table (info)->dynsymcount = dynsymcount;
953 return dynsymcount;
954 }
955
956 /* Merge st_other field. */
957
958 static void
959 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
960 const Elf_Internal_Sym *isym, asection *sec,
961 bfd_boolean definition, bfd_boolean dynamic)
962 {
963 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
964
965 /* If st_other has a processor-specific meaning, specific
966 code might be needed here. */
967 if (bed->elf_backend_merge_symbol_attribute)
968 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
969 dynamic);
970
971 if (!dynamic)
972 {
973 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
974 unsigned hvis = ELF_ST_VISIBILITY (h->other);
975
976 /* Keep the most constraining visibility. Leave the remainder
977 of the st_other field to elf_backend_merge_symbol_attribute. */
978 if (symvis - 1 < hvis - 1)
979 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
980 }
981 else if (definition
982 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
983 && (sec->flags & SEC_READONLY) == 0)
984 h->protected_def = 1;
985 }
986
987 /* This function is called when we want to merge a new symbol with an
988 existing symbol. It handles the various cases which arise when we
989 find a definition in a dynamic object, or when there is already a
990 definition in a dynamic object. The new symbol is described by
991 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
992 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
993 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
994 of an old common symbol. We set OVERRIDE if the old symbol is
995 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
996 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
997 to change. By OK to change, we mean that we shouldn't warn if the
998 type or size does change. */
999
1000 static bfd_boolean
1001 _bfd_elf_merge_symbol (bfd *abfd,
1002 struct bfd_link_info *info,
1003 const char *name,
1004 Elf_Internal_Sym *sym,
1005 asection **psec,
1006 bfd_vma *pvalue,
1007 struct elf_link_hash_entry **sym_hash,
1008 bfd **poldbfd,
1009 bfd_boolean *pold_weak,
1010 unsigned int *pold_alignment,
1011 bfd_boolean *skip,
1012 bfd_boolean *override,
1013 bfd_boolean *type_change_ok,
1014 bfd_boolean *size_change_ok,
1015 bfd_boolean *matched)
1016 {
1017 asection *sec, *oldsec;
1018 struct elf_link_hash_entry *h;
1019 struct elf_link_hash_entry *hi;
1020 struct elf_link_hash_entry *flip;
1021 int bind;
1022 bfd *oldbfd;
1023 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1024 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1025 const struct elf_backend_data *bed;
1026 char *new_version;
1027
1028 *skip = FALSE;
1029 *override = FALSE;
1030
1031 sec = *psec;
1032 bind = ELF_ST_BIND (sym->st_info);
1033
1034 if (! bfd_is_und_section (sec))
1035 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1036 else
1037 h = ((struct elf_link_hash_entry *)
1038 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1039 if (h == NULL)
1040 return FALSE;
1041 *sym_hash = h;
1042
1043 bed = get_elf_backend_data (abfd);
1044
1045 /* NEW_VERSION is the symbol version of the new symbol. */
1046 if (h->versioned != unversioned)
1047 {
1048 /* Symbol version is unknown or versioned. */
1049 new_version = strrchr (name, ELF_VER_CHR);
1050 if (new_version)
1051 {
1052 if (h->versioned == unknown)
1053 {
1054 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1055 h->versioned = versioned_hidden;
1056 else
1057 h->versioned = versioned;
1058 }
1059 new_version += 1;
1060 if (new_version[0] == '\0')
1061 new_version = NULL;
1062 }
1063 else
1064 h->versioned = unversioned;
1065 }
1066 else
1067 new_version = NULL;
1068
1069 /* For merging, we only care about real symbols. But we need to make
1070 sure that indirect symbol dynamic flags are updated. */
1071 hi = h;
1072 while (h->root.type == bfd_link_hash_indirect
1073 || h->root.type == bfd_link_hash_warning)
1074 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1075
1076 if (!*matched)
1077 {
1078 if (hi == h || h->root.type == bfd_link_hash_new)
1079 *matched = TRUE;
1080 else
1081 {
1082 /* OLD_HIDDEN is true if the existing symbol is only visible
1083 to the symbol with the same symbol version. NEW_HIDDEN is
1084 true if the new symbol is only visible to the symbol with
1085 the same symbol version. */
1086 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1087 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1088 if (!old_hidden && !new_hidden)
1089 /* The new symbol matches the existing symbol if both
1090 aren't hidden. */
1091 *matched = TRUE;
1092 else
1093 {
1094 /* OLD_VERSION is the symbol version of the existing
1095 symbol. */
1096 char *old_version;
1097
1098 if (h->versioned >= versioned)
1099 old_version = strrchr (h->root.root.string,
1100 ELF_VER_CHR) + 1;
1101 else
1102 old_version = NULL;
1103
1104 /* The new symbol matches the existing symbol if they
1105 have the same symbol version. */
1106 *matched = (old_version == new_version
1107 || (old_version != NULL
1108 && new_version != NULL
1109 && strcmp (old_version, new_version) == 0));
1110 }
1111 }
1112 }
1113
1114 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1115 existing symbol. */
1116
1117 oldbfd = NULL;
1118 oldsec = NULL;
1119 switch (h->root.type)
1120 {
1121 default:
1122 break;
1123
1124 case bfd_link_hash_undefined:
1125 case bfd_link_hash_undefweak:
1126 oldbfd = h->root.u.undef.abfd;
1127 break;
1128
1129 case bfd_link_hash_defined:
1130 case bfd_link_hash_defweak:
1131 oldbfd = h->root.u.def.section->owner;
1132 oldsec = h->root.u.def.section;
1133 break;
1134
1135 case bfd_link_hash_common:
1136 oldbfd = h->root.u.c.p->section->owner;
1137 oldsec = h->root.u.c.p->section;
1138 if (pold_alignment)
1139 *pold_alignment = h->root.u.c.p->alignment_power;
1140 break;
1141 }
1142 if (poldbfd && *poldbfd == NULL)
1143 *poldbfd = oldbfd;
1144
1145 /* Differentiate strong and weak symbols. */
1146 newweak = bind == STB_WEAK;
1147 oldweak = (h->root.type == bfd_link_hash_defweak
1148 || h->root.type == bfd_link_hash_undefweak);
1149 if (pold_weak)
1150 *pold_weak = oldweak;
1151
1152 /* This code is for coping with dynamic objects, and is only useful
1153 if we are doing an ELF link. */
1154 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1155 return TRUE;
1156
1157 /* We have to check it for every instance since the first few may be
1158 references and not all compilers emit symbol type for undefined
1159 symbols. */
1160 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1161
1162 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1163 respectively, is from a dynamic object. */
1164
1165 newdyn = (abfd->flags & DYNAMIC) != 0;
1166
1167 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1168 syms and defined syms in dynamic libraries respectively.
1169 ref_dynamic on the other hand can be set for a symbol defined in
1170 a dynamic library, and def_dynamic may not be set; When the
1171 definition in a dynamic lib is overridden by a definition in the
1172 executable use of the symbol in the dynamic lib becomes a
1173 reference to the executable symbol. */
1174 if (newdyn)
1175 {
1176 if (bfd_is_und_section (sec))
1177 {
1178 if (bind != STB_WEAK)
1179 {
1180 h->ref_dynamic_nonweak = 1;
1181 hi->ref_dynamic_nonweak = 1;
1182 }
1183 }
1184 else
1185 {
1186 /* Update the existing symbol only if they match. */
1187 if (*matched)
1188 h->dynamic_def = 1;
1189 hi->dynamic_def = 1;
1190 }
1191 }
1192
1193 /* If we just created the symbol, mark it as being an ELF symbol.
1194 Other than that, there is nothing to do--there is no merge issue
1195 with a newly defined symbol--so we just return. */
1196
1197 if (h->root.type == bfd_link_hash_new)
1198 {
1199 h->non_elf = 0;
1200 return TRUE;
1201 }
1202
1203 /* In cases involving weak versioned symbols, we may wind up trying
1204 to merge a symbol with itself. Catch that here, to avoid the
1205 confusion that results if we try to override a symbol with
1206 itself. The additional tests catch cases like
1207 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1208 dynamic object, which we do want to handle here. */
1209 if (abfd == oldbfd
1210 && (newweak || oldweak)
1211 && ((abfd->flags & DYNAMIC) == 0
1212 || !h->def_regular))
1213 return TRUE;
1214
1215 olddyn = FALSE;
1216 if (oldbfd != NULL)
1217 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1218 else if (oldsec != NULL)
1219 {
1220 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1221 indices used by MIPS ELF. */
1222 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1223 }
1224
1225 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1226 respectively, appear to be a definition rather than reference. */
1227
1228 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1229
1230 olddef = (h->root.type != bfd_link_hash_undefined
1231 && h->root.type != bfd_link_hash_undefweak
1232 && h->root.type != bfd_link_hash_common);
1233
1234 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1235 respectively, appear to be a function. */
1236
1237 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1238 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1239
1240 oldfunc = (h->type != STT_NOTYPE
1241 && bed->is_function_type (h->type));
1242
1243 /* If creating a default indirect symbol ("foo" or "foo@") from a
1244 dynamic versioned definition ("foo@@") skip doing so if there is
1245 an existing regular definition with a different type. We don't
1246 want, for example, a "time" variable in the executable overriding
1247 a "time" function in a shared library. */
1248 if (pold_alignment == NULL
1249 && newdyn
1250 && newdef
1251 && !olddyn
1252 && (olddef || h->root.type == bfd_link_hash_common)
1253 && ELF_ST_TYPE (sym->st_info) != h->type
1254 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1255 && h->type != STT_NOTYPE
1256 && !(newfunc && oldfunc))
1257 {
1258 *skip = TRUE;
1259 return TRUE;
1260 }
1261
1262 /* Check TLS symbols. We don't check undefined symbols introduced
1263 by "ld -u" which have no type (and oldbfd NULL), and we don't
1264 check symbols from plugins because they also have no type. */
1265 if (oldbfd != NULL
1266 && (oldbfd->flags & BFD_PLUGIN) == 0
1267 && (abfd->flags & BFD_PLUGIN) == 0
1268 && ELF_ST_TYPE (sym->st_info) != h->type
1269 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1270 {
1271 bfd *ntbfd, *tbfd;
1272 bfd_boolean ntdef, tdef;
1273 asection *ntsec, *tsec;
1274
1275 if (h->type == STT_TLS)
1276 {
1277 ntbfd = abfd;
1278 ntsec = sec;
1279 ntdef = newdef;
1280 tbfd = oldbfd;
1281 tsec = oldsec;
1282 tdef = olddef;
1283 }
1284 else
1285 {
1286 ntbfd = oldbfd;
1287 ntsec = oldsec;
1288 ntdef = olddef;
1289 tbfd = abfd;
1290 tsec = sec;
1291 tdef = newdef;
1292 }
1293
1294 if (tdef && ntdef)
1295 _bfd_error_handler
1296 /* xgettext:c-format */
1297 (_("%s: TLS definition in %B section %A "
1298 "mismatches non-TLS definition in %B section %A"),
1299 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1300 else if (!tdef && !ntdef)
1301 _bfd_error_handler
1302 /* xgettext:c-format */
1303 (_("%s: TLS reference in %B "
1304 "mismatches non-TLS reference in %B"),
1305 tbfd, ntbfd, h->root.root.string);
1306 else if (tdef)
1307 _bfd_error_handler
1308 /* xgettext:c-format */
1309 (_("%s: TLS definition in %B section %A "
1310 "mismatches non-TLS reference in %B"),
1311 tbfd, tsec, ntbfd, h->root.root.string);
1312 else
1313 _bfd_error_handler
1314 /* xgettext:c-format */
1315 (_("%s: TLS reference in %B "
1316 "mismatches non-TLS definition in %B section %A"),
1317 tbfd, ntbfd, ntsec, h->root.root.string);
1318
1319 bfd_set_error (bfd_error_bad_value);
1320 return FALSE;
1321 }
1322
1323 /* If the old symbol has non-default visibility, we ignore the new
1324 definition from a dynamic object. */
1325 if (newdyn
1326 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1327 && !bfd_is_und_section (sec))
1328 {
1329 *skip = TRUE;
1330 /* Make sure this symbol is dynamic. */
1331 h->ref_dynamic = 1;
1332 hi->ref_dynamic = 1;
1333 /* A protected symbol has external availability. Make sure it is
1334 recorded as dynamic.
1335
1336 FIXME: Should we check type and size for protected symbol? */
1337 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1338 return bfd_elf_link_record_dynamic_symbol (info, h);
1339 else
1340 return TRUE;
1341 }
1342 else if (!newdyn
1343 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1344 && h->def_dynamic)
1345 {
1346 /* If the new symbol with non-default visibility comes from a
1347 relocatable file and the old definition comes from a dynamic
1348 object, we remove the old definition. */
1349 if (hi->root.type == bfd_link_hash_indirect)
1350 {
1351 /* Handle the case where the old dynamic definition is
1352 default versioned. We need to copy the symbol info from
1353 the symbol with default version to the normal one if it
1354 was referenced before. */
1355 if (h->ref_regular)
1356 {
1357 hi->root.type = h->root.type;
1358 h->root.type = bfd_link_hash_indirect;
1359 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1360
1361 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1362 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1363 {
1364 /* If the new symbol is hidden or internal, completely undo
1365 any dynamic link state. */
1366 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1367 h->forced_local = 0;
1368 h->ref_dynamic = 0;
1369 }
1370 else
1371 h->ref_dynamic = 1;
1372
1373 h->def_dynamic = 0;
1374 /* FIXME: Should we check type and size for protected symbol? */
1375 h->size = 0;
1376 h->type = 0;
1377
1378 h = hi;
1379 }
1380 else
1381 h = hi;
1382 }
1383
1384 /* If the old symbol was undefined before, then it will still be
1385 on the undefs list. If the new symbol is undefined or
1386 common, we can't make it bfd_link_hash_new here, because new
1387 undefined or common symbols will be added to the undefs list
1388 by _bfd_generic_link_add_one_symbol. Symbols may not be
1389 added twice to the undefs list. Also, if the new symbol is
1390 undefweak then we don't want to lose the strong undef. */
1391 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1392 {
1393 h->root.type = bfd_link_hash_undefined;
1394 h->root.u.undef.abfd = abfd;
1395 }
1396 else
1397 {
1398 h->root.type = bfd_link_hash_new;
1399 h->root.u.undef.abfd = NULL;
1400 }
1401
1402 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1403 {
1404 /* If the new symbol is hidden or internal, completely undo
1405 any dynamic link state. */
1406 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1407 h->forced_local = 0;
1408 h->ref_dynamic = 0;
1409 }
1410 else
1411 h->ref_dynamic = 1;
1412 h->def_dynamic = 0;
1413 /* FIXME: Should we check type and size for protected symbol? */
1414 h->size = 0;
1415 h->type = 0;
1416 return TRUE;
1417 }
1418
1419 /* If a new weak symbol definition comes from a regular file and the
1420 old symbol comes from a dynamic library, we treat the new one as
1421 strong. Similarly, an old weak symbol definition from a regular
1422 file is treated as strong when the new symbol comes from a dynamic
1423 library. Further, an old weak symbol from a dynamic library is
1424 treated as strong if the new symbol is from a dynamic library.
1425 This reflects the way glibc's ld.so works.
1426
1427 Do this before setting *type_change_ok or *size_change_ok so that
1428 we warn properly when dynamic library symbols are overridden. */
1429
1430 if (newdef && !newdyn && olddyn)
1431 newweak = FALSE;
1432 if (olddef && newdyn)
1433 oldweak = FALSE;
1434
1435 /* Allow changes between different types of function symbol. */
1436 if (newfunc && oldfunc)
1437 *type_change_ok = TRUE;
1438
1439 /* It's OK to change the type if either the existing symbol or the
1440 new symbol is weak. A type change is also OK if the old symbol
1441 is undefined and the new symbol is defined. */
1442
1443 if (oldweak
1444 || newweak
1445 || (newdef
1446 && h->root.type == bfd_link_hash_undefined))
1447 *type_change_ok = TRUE;
1448
1449 /* It's OK to change the size if either the existing symbol or the
1450 new symbol is weak, or if the old symbol is undefined. */
1451
1452 if (*type_change_ok
1453 || h->root.type == bfd_link_hash_undefined)
1454 *size_change_ok = TRUE;
1455
1456 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1457 symbol, respectively, appears to be a common symbol in a dynamic
1458 object. If a symbol appears in an uninitialized section, and is
1459 not weak, and is not a function, then it may be a common symbol
1460 which was resolved when the dynamic object was created. We want
1461 to treat such symbols specially, because they raise special
1462 considerations when setting the symbol size: if the symbol
1463 appears as a common symbol in a regular object, and the size in
1464 the regular object is larger, we must make sure that we use the
1465 larger size. This problematic case can always be avoided in C,
1466 but it must be handled correctly when using Fortran shared
1467 libraries.
1468
1469 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1470 likewise for OLDDYNCOMMON and OLDDEF.
1471
1472 Note that this test is just a heuristic, and that it is quite
1473 possible to have an uninitialized symbol in a shared object which
1474 is really a definition, rather than a common symbol. This could
1475 lead to some minor confusion when the symbol really is a common
1476 symbol in some regular object. However, I think it will be
1477 harmless. */
1478
1479 if (newdyn
1480 && newdef
1481 && !newweak
1482 && (sec->flags & SEC_ALLOC) != 0
1483 && (sec->flags & SEC_LOAD) == 0
1484 && sym->st_size > 0
1485 && !newfunc)
1486 newdyncommon = TRUE;
1487 else
1488 newdyncommon = FALSE;
1489
1490 if (olddyn
1491 && olddef
1492 && h->root.type == bfd_link_hash_defined
1493 && h->def_dynamic
1494 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1495 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1496 && h->size > 0
1497 && !oldfunc)
1498 olddyncommon = TRUE;
1499 else
1500 olddyncommon = FALSE;
1501
1502 /* We now know everything about the old and new symbols. We ask the
1503 backend to check if we can merge them. */
1504 if (bed->merge_symbol != NULL)
1505 {
1506 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1507 return FALSE;
1508 sec = *psec;
1509 }
1510
1511 /* If both the old and the new symbols look like common symbols in a
1512 dynamic object, set the size of the symbol to the larger of the
1513 two. */
1514
1515 if (olddyncommon
1516 && newdyncommon
1517 && sym->st_size != h->size)
1518 {
1519 /* Since we think we have two common symbols, issue a multiple
1520 common warning if desired. Note that we only warn if the
1521 size is different. If the size is the same, we simply let
1522 the old symbol override the new one as normally happens with
1523 symbols defined in dynamic objects. */
1524
1525 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1526 bfd_link_hash_common, sym->st_size);
1527 if (sym->st_size > h->size)
1528 h->size = sym->st_size;
1529
1530 *size_change_ok = TRUE;
1531 }
1532
1533 /* If we are looking at a dynamic object, and we have found a
1534 definition, we need to see if the symbol was already defined by
1535 some other object. If so, we want to use the existing
1536 definition, and we do not want to report a multiple symbol
1537 definition error; we do this by clobbering *PSEC to be
1538 bfd_und_section_ptr.
1539
1540 We treat a common symbol as a definition if the symbol in the
1541 shared library is a function, since common symbols always
1542 represent variables; this can cause confusion in principle, but
1543 any such confusion would seem to indicate an erroneous program or
1544 shared library. We also permit a common symbol in a regular
1545 object to override a weak symbol in a shared object. A common
1546 symbol in executable also overrides a symbol in a shared object. */
1547
1548 if (newdyn
1549 && newdef
1550 && (olddef
1551 || (h->root.type == bfd_link_hash_common
1552 && (newweak
1553 || newfunc
1554 || (!olddyn && bfd_link_executable (info))))))
1555 {
1556 *override = TRUE;
1557 newdef = FALSE;
1558 newdyncommon = FALSE;
1559
1560 *psec = sec = bfd_und_section_ptr;
1561 *size_change_ok = TRUE;
1562
1563 /* If we get here when the old symbol is a common symbol, then
1564 we are explicitly letting it override a weak symbol or
1565 function in a dynamic object, and we don't want to warn about
1566 a type change. If the old symbol is a defined symbol, a type
1567 change warning may still be appropriate. */
1568
1569 if (h->root.type == bfd_link_hash_common)
1570 *type_change_ok = TRUE;
1571 }
1572
1573 /* Handle the special case of an old common symbol merging with a
1574 new symbol which looks like a common symbol in a shared object.
1575 We change *PSEC and *PVALUE to make the new symbol look like a
1576 common symbol, and let _bfd_generic_link_add_one_symbol do the
1577 right thing. */
1578
1579 if (newdyncommon
1580 && h->root.type == bfd_link_hash_common)
1581 {
1582 *override = TRUE;
1583 newdef = FALSE;
1584 newdyncommon = FALSE;
1585 *pvalue = sym->st_size;
1586 *psec = sec = bed->common_section (oldsec);
1587 *size_change_ok = TRUE;
1588 }
1589
1590 /* Skip weak definitions of symbols that are already defined. */
1591 if (newdef && olddef && newweak)
1592 {
1593 /* Don't skip new non-IR weak syms. */
1594 if (!(oldbfd != NULL
1595 && (oldbfd->flags & BFD_PLUGIN) != 0
1596 && (abfd->flags & BFD_PLUGIN) == 0))
1597 {
1598 newdef = FALSE;
1599 *skip = TRUE;
1600 }
1601
1602 /* Merge st_other. If the symbol already has a dynamic index,
1603 but visibility says it should not be visible, turn it into a
1604 local symbol. */
1605 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1606 if (h->dynindx != -1)
1607 switch (ELF_ST_VISIBILITY (h->other))
1608 {
1609 case STV_INTERNAL:
1610 case STV_HIDDEN:
1611 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1612 break;
1613 }
1614 }
1615
1616 /* If the old symbol is from a dynamic object, and the new symbol is
1617 a definition which is not from a dynamic object, then the new
1618 symbol overrides the old symbol. Symbols from regular files
1619 always take precedence over symbols from dynamic objects, even if
1620 they are defined after the dynamic object in the link.
1621
1622 As above, we again permit a common symbol in a regular object to
1623 override a definition in a shared object if the shared object
1624 symbol is a function or is weak. */
1625
1626 flip = NULL;
1627 if (!newdyn
1628 && (newdef
1629 || (bfd_is_com_section (sec)
1630 && (oldweak || oldfunc)))
1631 && olddyn
1632 && olddef
1633 && h->def_dynamic)
1634 {
1635 /* Change the hash table entry to undefined, and let
1636 _bfd_generic_link_add_one_symbol do the right thing with the
1637 new definition. */
1638
1639 h->root.type = bfd_link_hash_undefined;
1640 h->root.u.undef.abfd = h->root.u.def.section->owner;
1641 *size_change_ok = TRUE;
1642
1643 olddef = FALSE;
1644 olddyncommon = FALSE;
1645
1646 /* We again permit a type change when a common symbol may be
1647 overriding a function. */
1648
1649 if (bfd_is_com_section (sec))
1650 {
1651 if (oldfunc)
1652 {
1653 /* If a common symbol overrides a function, make sure
1654 that it isn't defined dynamically nor has type
1655 function. */
1656 h->def_dynamic = 0;
1657 h->type = STT_NOTYPE;
1658 }
1659 *type_change_ok = TRUE;
1660 }
1661
1662 if (hi->root.type == bfd_link_hash_indirect)
1663 flip = hi;
1664 else
1665 /* This union may have been set to be non-NULL when this symbol
1666 was seen in a dynamic object. We must force the union to be
1667 NULL, so that it is correct for a regular symbol. */
1668 h->verinfo.vertree = NULL;
1669 }
1670
1671 /* Handle the special case of a new common symbol merging with an
1672 old symbol that looks like it might be a common symbol defined in
1673 a shared object. Note that we have already handled the case in
1674 which a new common symbol should simply override the definition
1675 in the shared library. */
1676
1677 if (! newdyn
1678 && bfd_is_com_section (sec)
1679 && olddyncommon)
1680 {
1681 /* It would be best if we could set the hash table entry to a
1682 common symbol, but we don't know what to use for the section
1683 or the alignment. */
1684 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1685 bfd_link_hash_common, sym->st_size);
1686
1687 /* If the presumed common symbol in the dynamic object is
1688 larger, pretend that the new symbol has its size. */
1689
1690 if (h->size > *pvalue)
1691 *pvalue = h->size;
1692
1693 /* We need to remember the alignment required by the symbol
1694 in the dynamic object. */
1695 BFD_ASSERT (pold_alignment);
1696 *pold_alignment = h->root.u.def.section->alignment_power;
1697
1698 olddef = FALSE;
1699 olddyncommon = FALSE;
1700
1701 h->root.type = bfd_link_hash_undefined;
1702 h->root.u.undef.abfd = h->root.u.def.section->owner;
1703
1704 *size_change_ok = TRUE;
1705 *type_change_ok = TRUE;
1706
1707 if (hi->root.type == bfd_link_hash_indirect)
1708 flip = hi;
1709 else
1710 h->verinfo.vertree = NULL;
1711 }
1712
1713 if (flip != NULL)
1714 {
1715 /* Handle the case where we had a versioned symbol in a dynamic
1716 library and now find a definition in a normal object. In this
1717 case, we make the versioned symbol point to the normal one. */
1718 flip->root.type = h->root.type;
1719 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1720 h->root.type = bfd_link_hash_indirect;
1721 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1722 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1723 if (h->def_dynamic)
1724 {
1725 h->def_dynamic = 0;
1726 flip->ref_dynamic = 1;
1727 }
1728 }
1729
1730 return TRUE;
1731 }
1732
1733 /* This function is called to create an indirect symbol from the
1734 default for the symbol with the default version if needed. The
1735 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1736 set DYNSYM if the new indirect symbol is dynamic. */
1737
1738 static bfd_boolean
1739 _bfd_elf_add_default_symbol (bfd *abfd,
1740 struct bfd_link_info *info,
1741 struct elf_link_hash_entry *h,
1742 const char *name,
1743 Elf_Internal_Sym *sym,
1744 asection *sec,
1745 bfd_vma value,
1746 bfd **poldbfd,
1747 bfd_boolean *dynsym)
1748 {
1749 bfd_boolean type_change_ok;
1750 bfd_boolean size_change_ok;
1751 bfd_boolean skip;
1752 char *shortname;
1753 struct elf_link_hash_entry *hi;
1754 struct bfd_link_hash_entry *bh;
1755 const struct elf_backend_data *bed;
1756 bfd_boolean collect;
1757 bfd_boolean dynamic;
1758 bfd_boolean override;
1759 char *p;
1760 size_t len, shortlen;
1761 asection *tmp_sec;
1762 bfd_boolean matched;
1763
1764 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1765 return TRUE;
1766
1767 /* If this symbol has a version, and it is the default version, we
1768 create an indirect symbol from the default name to the fully
1769 decorated name. This will cause external references which do not
1770 specify a version to be bound to this version of the symbol. */
1771 p = strchr (name, ELF_VER_CHR);
1772 if (h->versioned == unknown)
1773 {
1774 if (p == NULL)
1775 {
1776 h->versioned = unversioned;
1777 return TRUE;
1778 }
1779 else
1780 {
1781 if (p[1] != ELF_VER_CHR)
1782 {
1783 h->versioned = versioned_hidden;
1784 return TRUE;
1785 }
1786 else
1787 h->versioned = versioned;
1788 }
1789 }
1790 else
1791 {
1792 /* PR ld/19073: We may see an unversioned definition after the
1793 default version. */
1794 if (p == NULL)
1795 return TRUE;
1796 }
1797
1798 bed = get_elf_backend_data (abfd);
1799 collect = bed->collect;
1800 dynamic = (abfd->flags & DYNAMIC) != 0;
1801
1802 shortlen = p - name;
1803 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1804 if (shortname == NULL)
1805 return FALSE;
1806 memcpy (shortname, name, shortlen);
1807 shortname[shortlen] = '\0';
1808
1809 /* We are going to create a new symbol. Merge it with any existing
1810 symbol with this name. For the purposes of the merge, act as
1811 though we were defining the symbol we just defined, although we
1812 actually going to define an indirect symbol. */
1813 type_change_ok = FALSE;
1814 size_change_ok = FALSE;
1815 matched = TRUE;
1816 tmp_sec = sec;
1817 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1818 &hi, poldbfd, NULL, NULL, &skip, &override,
1819 &type_change_ok, &size_change_ok, &matched))
1820 return FALSE;
1821
1822 if (skip)
1823 goto nondefault;
1824
1825 if (hi->def_regular)
1826 {
1827 /* If the undecorated symbol will have a version added by a
1828 script different to H, then don't indirect to/from the
1829 undecorated symbol. This isn't ideal because we may not yet
1830 have seen symbol versions, if given by a script on the
1831 command line rather than via --version-script. */
1832 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1833 {
1834 bfd_boolean hide;
1835
1836 hi->verinfo.vertree
1837 = bfd_find_version_for_sym (info->version_info,
1838 hi->root.root.string, &hide);
1839 if (hi->verinfo.vertree != NULL && hide)
1840 {
1841 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1842 goto nondefault;
1843 }
1844 }
1845 if (hi->verinfo.vertree != NULL
1846 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1847 goto nondefault;
1848 }
1849
1850 if (! override)
1851 {
1852 /* Add the default symbol if not performing a relocatable link. */
1853 if (! bfd_link_relocatable (info))
1854 {
1855 bh = &hi->root;
1856 if (! (_bfd_generic_link_add_one_symbol
1857 (info, abfd, shortname, BSF_INDIRECT,
1858 bfd_ind_section_ptr,
1859 0, name, FALSE, collect, &bh)))
1860 return FALSE;
1861 hi = (struct elf_link_hash_entry *) bh;
1862 }
1863 }
1864 else
1865 {
1866 /* In this case the symbol named SHORTNAME is overriding the
1867 indirect symbol we want to add. We were planning on making
1868 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1869 is the name without a version. NAME is the fully versioned
1870 name, and it is the default version.
1871
1872 Overriding means that we already saw a definition for the
1873 symbol SHORTNAME in a regular object, and it is overriding
1874 the symbol defined in the dynamic object.
1875
1876 When this happens, we actually want to change NAME, the
1877 symbol we just added, to refer to SHORTNAME. This will cause
1878 references to NAME in the shared object to become references
1879 to SHORTNAME in the regular object. This is what we expect
1880 when we override a function in a shared object: that the
1881 references in the shared object will be mapped to the
1882 definition in the regular object. */
1883
1884 while (hi->root.type == bfd_link_hash_indirect
1885 || hi->root.type == bfd_link_hash_warning)
1886 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1887
1888 h->root.type = bfd_link_hash_indirect;
1889 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1890 if (h->def_dynamic)
1891 {
1892 h->def_dynamic = 0;
1893 hi->ref_dynamic = 1;
1894 if (hi->ref_regular
1895 || hi->def_regular)
1896 {
1897 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1898 return FALSE;
1899 }
1900 }
1901
1902 /* Now set HI to H, so that the following code will set the
1903 other fields correctly. */
1904 hi = h;
1905 }
1906
1907 /* Check if HI is a warning symbol. */
1908 if (hi->root.type == bfd_link_hash_warning)
1909 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1910
1911 /* If there is a duplicate definition somewhere, then HI may not
1912 point to an indirect symbol. We will have reported an error to
1913 the user in that case. */
1914
1915 if (hi->root.type == bfd_link_hash_indirect)
1916 {
1917 struct elf_link_hash_entry *ht;
1918
1919 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1920 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1921
1922 /* A reference to the SHORTNAME symbol from a dynamic library
1923 will be satisfied by the versioned symbol at runtime. In
1924 effect, we have a reference to the versioned symbol. */
1925 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1926 hi->dynamic_def |= ht->dynamic_def;
1927
1928 /* See if the new flags lead us to realize that the symbol must
1929 be dynamic. */
1930 if (! *dynsym)
1931 {
1932 if (! dynamic)
1933 {
1934 if (! bfd_link_executable (info)
1935 || hi->def_dynamic
1936 || hi->ref_dynamic)
1937 *dynsym = TRUE;
1938 }
1939 else
1940 {
1941 if (hi->ref_regular)
1942 *dynsym = TRUE;
1943 }
1944 }
1945 }
1946
1947 /* We also need to define an indirection from the nondefault version
1948 of the symbol. */
1949
1950 nondefault:
1951 len = strlen (name);
1952 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1953 if (shortname == NULL)
1954 return FALSE;
1955 memcpy (shortname, name, shortlen);
1956 memcpy (shortname + shortlen, p + 1, len - shortlen);
1957
1958 /* Once again, merge with any existing symbol. */
1959 type_change_ok = FALSE;
1960 size_change_ok = FALSE;
1961 tmp_sec = sec;
1962 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1963 &hi, poldbfd, NULL, NULL, &skip, &override,
1964 &type_change_ok, &size_change_ok, &matched))
1965 return FALSE;
1966
1967 if (skip)
1968 return TRUE;
1969
1970 if (override)
1971 {
1972 /* Here SHORTNAME is a versioned name, so we don't expect to see
1973 the type of override we do in the case above unless it is
1974 overridden by a versioned definition. */
1975 if (hi->root.type != bfd_link_hash_defined
1976 && hi->root.type != bfd_link_hash_defweak)
1977 _bfd_error_handler
1978 /* xgettext:c-format */
1979 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1980 abfd, shortname);
1981 }
1982 else
1983 {
1984 bh = &hi->root;
1985 if (! (_bfd_generic_link_add_one_symbol
1986 (info, abfd, shortname, BSF_INDIRECT,
1987 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1988 return FALSE;
1989 hi = (struct elf_link_hash_entry *) bh;
1990
1991 /* If there is a duplicate definition somewhere, then HI may not
1992 point to an indirect symbol. We will have reported an error
1993 to the user in that case. */
1994
1995 if (hi->root.type == bfd_link_hash_indirect)
1996 {
1997 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1998 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1999 hi->dynamic_def |= h->dynamic_def;
2000
2001 /* See if the new flags lead us to realize that the symbol
2002 must be dynamic. */
2003 if (! *dynsym)
2004 {
2005 if (! dynamic)
2006 {
2007 if (! bfd_link_executable (info)
2008 || hi->ref_dynamic)
2009 *dynsym = TRUE;
2010 }
2011 else
2012 {
2013 if (hi->ref_regular)
2014 *dynsym = TRUE;
2015 }
2016 }
2017 }
2018 }
2019
2020 return TRUE;
2021 }
2022 \f
2023 /* This routine is used to export all defined symbols into the dynamic
2024 symbol table. It is called via elf_link_hash_traverse. */
2025
2026 static bfd_boolean
2027 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2028 {
2029 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2030
2031 /* Ignore indirect symbols. These are added by the versioning code. */
2032 if (h->root.type == bfd_link_hash_indirect)
2033 return TRUE;
2034
2035 /* Ignore this if we won't export it. */
2036 if (!eif->info->export_dynamic && !h->dynamic)
2037 return TRUE;
2038
2039 if (h->dynindx == -1
2040 && (h->def_regular || h->ref_regular)
2041 && ! bfd_hide_sym_by_version (eif->info->version_info,
2042 h->root.root.string))
2043 {
2044 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2045 {
2046 eif->failed = TRUE;
2047 return FALSE;
2048 }
2049 }
2050
2051 return TRUE;
2052 }
2053 \f
2054 /* Look through the symbols which are defined in other shared
2055 libraries and referenced here. Update the list of version
2056 dependencies. This will be put into the .gnu.version_r section.
2057 This function is called via elf_link_hash_traverse. */
2058
2059 static bfd_boolean
2060 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2061 void *data)
2062 {
2063 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2064 Elf_Internal_Verneed *t;
2065 Elf_Internal_Vernaux *a;
2066 bfd_size_type amt;
2067
2068 /* We only care about symbols defined in shared objects with version
2069 information. */
2070 if (!h->def_dynamic
2071 || h->def_regular
2072 || h->dynindx == -1
2073 || h->verinfo.verdef == NULL
2074 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2075 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2076 return TRUE;
2077
2078 /* See if we already know about this version. */
2079 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2080 t != NULL;
2081 t = t->vn_nextref)
2082 {
2083 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2084 continue;
2085
2086 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2087 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2088 return TRUE;
2089
2090 break;
2091 }
2092
2093 /* This is a new version. Add it to tree we are building. */
2094
2095 if (t == NULL)
2096 {
2097 amt = sizeof *t;
2098 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2099 if (t == NULL)
2100 {
2101 rinfo->failed = TRUE;
2102 return FALSE;
2103 }
2104
2105 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2106 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2107 elf_tdata (rinfo->info->output_bfd)->verref = t;
2108 }
2109
2110 amt = sizeof *a;
2111 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2112 if (a == NULL)
2113 {
2114 rinfo->failed = TRUE;
2115 return FALSE;
2116 }
2117
2118 /* Note that we are copying a string pointer here, and testing it
2119 above. If bfd_elf_string_from_elf_section is ever changed to
2120 discard the string data when low in memory, this will have to be
2121 fixed. */
2122 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2123
2124 a->vna_flags = h->verinfo.verdef->vd_flags;
2125 a->vna_nextptr = t->vn_auxptr;
2126
2127 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2128 ++rinfo->vers;
2129
2130 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2131
2132 t->vn_auxptr = a;
2133
2134 return TRUE;
2135 }
2136
2137 /* Figure out appropriate versions for all the symbols. We may not
2138 have the version number script until we have read all of the input
2139 files, so until that point we don't know which symbols should be
2140 local. This function is called via elf_link_hash_traverse. */
2141
2142 static bfd_boolean
2143 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2144 {
2145 struct elf_info_failed *sinfo;
2146 struct bfd_link_info *info;
2147 const struct elf_backend_data *bed;
2148 struct elf_info_failed eif;
2149 char *p;
2150
2151 sinfo = (struct elf_info_failed *) data;
2152 info = sinfo->info;
2153
2154 /* Fix the symbol flags. */
2155 eif.failed = FALSE;
2156 eif.info = info;
2157 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2158 {
2159 if (eif.failed)
2160 sinfo->failed = TRUE;
2161 return FALSE;
2162 }
2163
2164 /* We only need version numbers for symbols defined in regular
2165 objects. */
2166 if (!h->def_regular)
2167 return TRUE;
2168
2169 bed = get_elf_backend_data (info->output_bfd);
2170 p = strchr (h->root.root.string, ELF_VER_CHR);
2171 if (p != NULL && h->verinfo.vertree == NULL)
2172 {
2173 struct bfd_elf_version_tree *t;
2174
2175 ++p;
2176 if (*p == ELF_VER_CHR)
2177 ++p;
2178
2179 /* If there is no version string, we can just return out. */
2180 if (*p == '\0')
2181 return TRUE;
2182
2183 /* Look for the version. If we find it, it is no longer weak. */
2184 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2185 {
2186 if (strcmp (t->name, p) == 0)
2187 {
2188 size_t len;
2189 char *alc;
2190 struct bfd_elf_version_expr *d;
2191
2192 len = p - h->root.root.string;
2193 alc = (char *) bfd_malloc (len);
2194 if (alc == NULL)
2195 {
2196 sinfo->failed = TRUE;
2197 return FALSE;
2198 }
2199 memcpy (alc, h->root.root.string, len - 1);
2200 alc[len - 1] = '\0';
2201 if (alc[len - 2] == ELF_VER_CHR)
2202 alc[len - 2] = '\0';
2203
2204 h->verinfo.vertree = t;
2205 t->used = TRUE;
2206 d = NULL;
2207
2208 if (t->globals.list != NULL)
2209 d = (*t->match) (&t->globals, NULL, alc);
2210
2211 /* See if there is anything to force this symbol to
2212 local scope. */
2213 if (d == NULL && t->locals.list != NULL)
2214 {
2215 d = (*t->match) (&t->locals, NULL, alc);
2216 if (d != NULL
2217 && h->dynindx != -1
2218 && ! info->export_dynamic)
2219 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2220 }
2221
2222 free (alc);
2223 break;
2224 }
2225 }
2226
2227 /* If we are building an application, we need to create a
2228 version node for this version. */
2229 if (t == NULL && bfd_link_executable (info))
2230 {
2231 struct bfd_elf_version_tree **pp;
2232 int version_index;
2233
2234 /* If we aren't going to export this symbol, we don't need
2235 to worry about it. */
2236 if (h->dynindx == -1)
2237 return TRUE;
2238
2239 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2240 sizeof *t);
2241 if (t == NULL)
2242 {
2243 sinfo->failed = TRUE;
2244 return FALSE;
2245 }
2246
2247 t->name = p;
2248 t->name_indx = (unsigned int) -1;
2249 t->used = TRUE;
2250
2251 version_index = 1;
2252 /* Don't count anonymous version tag. */
2253 if (sinfo->info->version_info != NULL
2254 && sinfo->info->version_info->vernum == 0)
2255 version_index = 0;
2256 for (pp = &sinfo->info->version_info;
2257 *pp != NULL;
2258 pp = &(*pp)->next)
2259 ++version_index;
2260 t->vernum = version_index;
2261
2262 *pp = t;
2263
2264 h->verinfo.vertree = t;
2265 }
2266 else if (t == NULL)
2267 {
2268 /* We could not find the version for a symbol when
2269 generating a shared archive. Return an error. */
2270 _bfd_error_handler
2271 /* xgettext:c-format */
2272 (_("%B: version node not found for symbol %s"),
2273 info->output_bfd, h->root.root.string);
2274 bfd_set_error (bfd_error_bad_value);
2275 sinfo->failed = TRUE;
2276 return FALSE;
2277 }
2278 }
2279
2280 /* If we don't have a version for this symbol, see if we can find
2281 something. */
2282 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2283 {
2284 bfd_boolean hide;
2285
2286 h->verinfo.vertree
2287 = bfd_find_version_for_sym (sinfo->info->version_info,
2288 h->root.root.string, &hide);
2289 if (h->verinfo.vertree != NULL && hide)
2290 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2291 }
2292
2293 return TRUE;
2294 }
2295 \f
2296 /* Read and swap the relocs from the section indicated by SHDR. This
2297 may be either a REL or a RELA section. The relocations are
2298 translated into RELA relocations and stored in INTERNAL_RELOCS,
2299 which should have already been allocated to contain enough space.
2300 The EXTERNAL_RELOCS are a buffer where the external form of the
2301 relocations should be stored.
2302
2303 Returns FALSE if something goes wrong. */
2304
2305 static bfd_boolean
2306 elf_link_read_relocs_from_section (bfd *abfd,
2307 asection *sec,
2308 Elf_Internal_Shdr *shdr,
2309 void *external_relocs,
2310 Elf_Internal_Rela *internal_relocs)
2311 {
2312 const struct elf_backend_data *bed;
2313 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2314 const bfd_byte *erela;
2315 const bfd_byte *erelaend;
2316 Elf_Internal_Rela *irela;
2317 Elf_Internal_Shdr *symtab_hdr;
2318 size_t nsyms;
2319
2320 /* Position ourselves at the start of the section. */
2321 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2322 return FALSE;
2323
2324 /* Read the relocations. */
2325 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2326 return FALSE;
2327
2328 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2329 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2330
2331 bed = get_elf_backend_data (abfd);
2332
2333 /* Convert the external relocations to the internal format. */
2334 if (shdr->sh_entsize == bed->s->sizeof_rel)
2335 swap_in = bed->s->swap_reloc_in;
2336 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2337 swap_in = bed->s->swap_reloca_in;
2338 else
2339 {
2340 bfd_set_error (bfd_error_wrong_format);
2341 return FALSE;
2342 }
2343
2344 erela = (const bfd_byte *) external_relocs;
2345 erelaend = erela + shdr->sh_size;
2346 irela = internal_relocs;
2347 while (erela < erelaend)
2348 {
2349 bfd_vma r_symndx;
2350
2351 (*swap_in) (abfd, erela, irela);
2352 r_symndx = ELF32_R_SYM (irela->r_info);
2353 if (bed->s->arch_size == 64)
2354 r_symndx >>= 24;
2355 if (nsyms > 0)
2356 {
2357 if ((size_t) r_symndx >= nsyms)
2358 {
2359 _bfd_error_handler
2360 /* xgettext:c-format */
2361 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2362 " for offset 0x%lx in section `%A'"),
2363 abfd, sec,
2364 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2365 bfd_set_error (bfd_error_bad_value);
2366 return FALSE;
2367 }
2368 }
2369 else if (r_symndx != STN_UNDEF)
2370 {
2371 _bfd_error_handler
2372 /* xgettext:c-format */
2373 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2374 " when the object file has no symbol table"),
2375 abfd, sec,
2376 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2377 bfd_set_error (bfd_error_bad_value);
2378 return FALSE;
2379 }
2380 irela += bed->s->int_rels_per_ext_rel;
2381 erela += shdr->sh_entsize;
2382 }
2383
2384 return TRUE;
2385 }
2386
2387 /* Read and swap the relocs for a section O. They may have been
2388 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2389 not NULL, they are used as buffers to read into. They are known to
2390 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2391 the return value is allocated using either malloc or bfd_alloc,
2392 according to the KEEP_MEMORY argument. If O has two relocation
2393 sections (both REL and RELA relocations), then the REL_HDR
2394 relocations will appear first in INTERNAL_RELOCS, followed by the
2395 RELA_HDR relocations. */
2396
2397 Elf_Internal_Rela *
2398 _bfd_elf_link_read_relocs (bfd *abfd,
2399 asection *o,
2400 void *external_relocs,
2401 Elf_Internal_Rela *internal_relocs,
2402 bfd_boolean keep_memory)
2403 {
2404 void *alloc1 = NULL;
2405 Elf_Internal_Rela *alloc2 = NULL;
2406 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2407 struct bfd_elf_section_data *esdo = elf_section_data (o);
2408 Elf_Internal_Rela *internal_rela_relocs;
2409
2410 if (esdo->relocs != NULL)
2411 return esdo->relocs;
2412
2413 if (o->reloc_count == 0)
2414 return NULL;
2415
2416 if (internal_relocs == NULL)
2417 {
2418 bfd_size_type size;
2419
2420 size = o->reloc_count;
2421 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2422 if (keep_memory)
2423 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2424 else
2425 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2426 if (internal_relocs == NULL)
2427 goto error_return;
2428 }
2429
2430 if (external_relocs == NULL)
2431 {
2432 bfd_size_type size = 0;
2433
2434 if (esdo->rel.hdr)
2435 size += esdo->rel.hdr->sh_size;
2436 if (esdo->rela.hdr)
2437 size += esdo->rela.hdr->sh_size;
2438
2439 alloc1 = bfd_malloc (size);
2440 if (alloc1 == NULL)
2441 goto error_return;
2442 external_relocs = alloc1;
2443 }
2444
2445 internal_rela_relocs = internal_relocs;
2446 if (esdo->rel.hdr)
2447 {
2448 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2449 external_relocs,
2450 internal_relocs))
2451 goto error_return;
2452 external_relocs = (((bfd_byte *) external_relocs)
2453 + esdo->rel.hdr->sh_size);
2454 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2455 * bed->s->int_rels_per_ext_rel);
2456 }
2457
2458 if (esdo->rela.hdr
2459 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2460 external_relocs,
2461 internal_rela_relocs)))
2462 goto error_return;
2463
2464 /* Cache the results for next time, if we can. */
2465 if (keep_memory)
2466 esdo->relocs = internal_relocs;
2467
2468 if (alloc1 != NULL)
2469 free (alloc1);
2470
2471 /* Don't free alloc2, since if it was allocated we are passing it
2472 back (under the name of internal_relocs). */
2473
2474 return internal_relocs;
2475
2476 error_return:
2477 if (alloc1 != NULL)
2478 free (alloc1);
2479 if (alloc2 != NULL)
2480 {
2481 if (keep_memory)
2482 bfd_release (abfd, alloc2);
2483 else
2484 free (alloc2);
2485 }
2486 return NULL;
2487 }
2488
2489 /* Compute the size of, and allocate space for, REL_HDR which is the
2490 section header for a section containing relocations for O. */
2491
2492 static bfd_boolean
2493 _bfd_elf_link_size_reloc_section (bfd *abfd,
2494 struct bfd_elf_section_reloc_data *reldata)
2495 {
2496 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2497
2498 /* That allows us to calculate the size of the section. */
2499 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2500
2501 /* The contents field must last into write_object_contents, so we
2502 allocate it with bfd_alloc rather than malloc. Also since we
2503 cannot be sure that the contents will actually be filled in,
2504 we zero the allocated space. */
2505 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2506 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2507 return FALSE;
2508
2509 if (reldata->hashes == NULL && reldata->count)
2510 {
2511 struct elf_link_hash_entry **p;
2512
2513 p = ((struct elf_link_hash_entry **)
2514 bfd_zmalloc (reldata->count * sizeof (*p)));
2515 if (p == NULL)
2516 return FALSE;
2517
2518 reldata->hashes = p;
2519 }
2520
2521 return TRUE;
2522 }
2523
2524 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2525 originated from the section given by INPUT_REL_HDR) to the
2526 OUTPUT_BFD. */
2527
2528 bfd_boolean
2529 _bfd_elf_link_output_relocs (bfd *output_bfd,
2530 asection *input_section,
2531 Elf_Internal_Shdr *input_rel_hdr,
2532 Elf_Internal_Rela *internal_relocs,
2533 struct elf_link_hash_entry **rel_hash
2534 ATTRIBUTE_UNUSED)
2535 {
2536 Elf_Internal_Rela *irela;
2537 Elf_Internal_Rela *irelaend;
2538 bfd_byte *erel;
2539 struct bfd_elf_section_reloc_data *output_reldata;
2540 asection *output_section;
2541 const struct elf_backend_data *bed;
2542 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2543 struct bfd_elf_section_data *esdo;
2544
2545 output_section = input_section->output_section;
2546
2547 bed = get_elf_backend_data (output_bfd);
2548 esdo = elf_section_data (output_section);
2549 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2550 {
2551 output_reldata = &esdo->rel;
2552 swap_out = bed->s->swap_reloc_out;
2553 }
2554 else if (esdo->rela.hdr
2555 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2556 {
2557 output_reldata = &esdo->rela;
2558 swap_out = bed->s->swap_reloca_out;
2559 }
2560 else
2561 {
2562 _bfd_error_handler
2563 /* xgettext:c-format */
2564 (_("%B: relocation size mismatch in %B section %A"),
2565 output_bfd, input_section->owner, input_section);
2566 bfd_set_error (bfd_error_wrong_format);
2567 return FALSE;
2568 }
2569
2570 erel = output_reldata->hdr->contents;
2571 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2572 irela = internal_relocs;
2573 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2574 * bed->s->int_rels_per_ext_rel);
2575 while (irela < irelaend)
2576 {
2577 (*swap_out) (output_bfd, irela, erel);
2578 irela += bed->s->int_rels_per_ext_rel;
2579 erel += input_rel_hdr->sh_entsize;
2580 }
2581
2582 /* Bump the counter, so that we know where to add the next set of
2583 relocations. */
2584 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2585
2586 return TRUE;
2587 }
2588 \f
2589 /* Make weak undefined symbols in PIE dynamic. */
2590
2591 bfd_boolean
2592 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2593 struct elf_link_hash_entry *h)
2594 {
2595 if (bfd_link_pie (info)
2596 && h->dynindx == -1
2597 && h->root.type == bfd_link_hash_undefweak)
2598 return bfd_elf_link_record_dynamic_symbol (info, h);
2599
2600 return TRUE;
2601 }
2602
2603 /* Fix up the flags for a symbol. This handles various cases which
2604 can only be fixed after all the input files are seen. This is
2605 currently called by both adjust_dynamic_symbol and
2606 assign_sym_version, which is unnecessary but perhaps more robust in
2607 the face of future changes. */
2608
2609 static bfd_boolean
2610 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2611 struct elf_info_failed *eif)
2612 {
2613 const struct elf_backend_data *bed;
2614
2615 /* If this symbol was mentioned in a non-ELF file, try to set
2616 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2617 permit a non-ELF file to correctly refer to a symbol defined in
2618 an ELF dynamic object. */
2619 if (h->non_elf)
2620 {
2621 while (h->root.type == bfd_link_hash_indirect)
2622 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2623
2624 if (h->root.type != bfd_link_hash_defined
2625 && h->root.type != bfd_link_hash_defweak)
2626 {
2627 h->ref_regular = 1;
2628 h->ref_regular_nonweak = 1;
2629 }
2630 else
2631 {
2632 if (h->root.u.def.section->owner != NULL
2633 && (bfd_get_flavour (h->root.u.def.section->owner)
2634 == bfd_target_elf_flavour))
2635 {
2636 h->ref_regular = 1;
2637 h->ref_regular_nonweak = 1;
2638 }
2639 else
2640 h->def_regular = 1;
2641 }
2642
2643 if (h->dynindx == -1
2644 && (h->def_dynamic
2645 || h->ref_dynamic))
2646 {
2647 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2648 {
2649 eif->failed = TRUE;
2650 return FALSE;
2651 }
2652 }
2653 }
2654 else
2655 {
2656 /* Unfortunately, NON_ELF is only correct if the symbol
2657 was first seen in a non-ELF file. Fortunately, if the symbol
2658 was first seen in an ELF file, we're probably OK unless the
2659 symbol was defined in a non-ELF file. Catch that case here.
2660 FIXME: We're still in trouble if the symbol was first seen in
2661 a dynamic object, and then later in a non-ELF regular object. */
2662 if ((h->root.type == bfd_link_hash_defined
2663 || h->root.type == bfd_link_hash_defweak)
2664 && !h->def_regular
2665 && (h->root.u.def.section->owner != NULL
2666 ? (bfd_get_flavour (h->root.u.def.section->owner)
2667 != bfd_target_elf_flavour)
2668 : (bfd_is_abs_section (h->root.u.def.section)
2669 && !h->def_dynamic)))
2670 h->def_regular = 1;
2671 }
2672
2673 /* Backend specific symbol fixup. */
2674 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2675 if (bed->elf_backend_fixup_symbol
2676 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2677 return FALSE;
2678
2679 /* If this is a final link, and the symbol was defined as a common
2680 symbol in a regular object file, and there was no definition in
2681 any dynamic object, then the linker will have allocated space for
2682 the symbol in a common section but the DEF_REGULAR
2683 flag will not have been set. */
2684 if (h->root.type == bfd_link_hash_defined
2685 && !h->def_regular
2686 && h->ref_regular
2687 && !h->def_dynamic
2688 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2689 h->def_regular = 1;
2690
2691 /* If a weak undefined symbol has non-default visibility, we also
2692 hide it from the dynamic linker. */
2693 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2694 && h->root.type == bfd_link_hash_undefweak)
2695 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2696
2697 /* A hidden versioned symbol in executable should be forced local if
2698 it is is locally defined, not referenced by shared library and not
2699 exported. */
2700 else if (bfd_link_executable (eif->info)
2701 && h->versioned == versioned_hidden
2702 && !eif->info->export_dynamic
2703 && !h->dynamic
2704 && !h->ref_dynamic
2705 && h->def_regular)
2706 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2707
2708 /* If -Bsymbolic was used (which means to bind references to global
2709 symbols to the definition within the shared object), and this
2710 symbol was defined in a regular object, then it actually doesn't
2711 need a PLT entry. Likewise, if the symbol has non-default
2712 visibility. If the symbol has hidden or internal visibility, we
2713 will force it local. */
2714 else if (h->needs_plt
2715 && bfd_link_pic (eif->info)
2716 && is_elf_hash_table (eif->info->hash)
2717 && (SYMBOLIC_BIND (eif->info, h)
2718 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2719 && h->def_regular)
2720 {
2721 bfd_boolean force_local;
2722
2723 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2724 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2725 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2726 }
2727
2728 /* If this is a weak defined symbol in a dynamic object, and we know
2729 the real definition in the dynamic object, copy interesting flags
2730 over to the real definition. */
2731 if (h->u.weakdef != NULL)
2732 {
2733 /* If the real definition is defined by a regular object file,
2734 don't do anything special. See the longer description in
2735 _bfd_elf_adjust_dynamic_symbol, below. */
2736 if (h->u.weakdef->def_regular)
2737 h->u.weakdef = NULL;
2738 else
2739 {
2740 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2741
2742 while (h->root.type == bfd_link_hash_indirect)
2743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2744
2745 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2746 || h->root.type == bfd_link_hash_defweak);
2747 BFD_ASSERT (weakdef->def_dynamic);
2748 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2749 || weakdef->root.type == bfd_link_hash_defweak);
2750 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2751 }
2752 }
2753
2754 return TRUE;
2755 }
2756
2757 /* Make the backend pick a good value for a dynamic symbol. This is
2758 called via elf_link_hash_traverse, and also calls itself
2759 recursively. */
2760
2761 static bfd_boolean
2762 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2763 {
2764 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2765 bfd *dynobj;
2766 const struct elf_backend_data *bed;
2767
2768 if (! is_elf_hash_table (eif->info->hash))
2769 return FALSE;
2770
2771 /* Ignore indirect symbols. These are added by the versioning code. */
2772 if (h->root.type == bfd_link_hash_indirect)
2773 return TRUE;
2774
2775 /* Fix the symbol flags. */
2776 if (! _bfd_elf_fix_symbol_flags (h, eif))
2777 return FALSE;
2778
2779 /* If this symbol does not require a PLT entry, and it is not
2780 defined by a dynamic object, or is not referenced by a regular
2781 object, ignore it. We do have to handle a weak defined symbol,
2782 even if no regular object refers to it, if we decided to add it
2783 to the dynamic symbol table. FIXME: Do we normally need to worry
2784 about symbols which are defined by one dynamic object and
2785 referenced by another one? */
2786 if (!h->needs_plt
2787 && h->type != STT_GNU_IFUNC
2788 && (h->def_regular
2789 || !h->def_dynamic
2790 || (!h->ref_regular
2791 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2792 {
2793 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2794 return TRUE;
2795 }
2796
2797 /* If we've already adjusted this symbol, don't do it again. This
2798 can happen via a recursive call. */
2799 if (h->dynamic_adjusted)
2800 return TRUE;
2801
2802 /* Don't look at this symbol again. Note that we must set this
2803 after checking the above conditions, because we may look at a
2804 symbol once, decide not to do anything, and then get called
2805 recursively later after REF_REGULAR is set below. */
2806 h->dynamic_adjusted = 1;
2807
2808 /* If this is a weak definition, and we know a real definition, and
2809 the real symbol is not itself defined by a regular object file,
2810 then get a good value for the real definition. We handle the
2811 real symbol first, for the convenience of the backend routine.
2812
2813 Note that there is a confusing case here. If the real definition
2814 is defined by a regular object file, we don't get the real symbol
2815 from the dynamic object, but we do get the weak symbol. If the
2816 processor backend uses a COPY reloc, then if some routine in the
2817 dynamic object changes the real symbol, we will not see that
2818 change in the corresponding weak symbol. This is the way other
2819 ELF linkers work as well, and seems to be a result of the shared
2820 library model.
2821
2822 I will clarify this issue. Most SVR4 shared libraries define the
2823 variable _timezone and define timezone as a weak synonym. The
2824 tzset call changes _timezone. If you write
2825 extern int timezone;
2826 int _timezone = 5;
2827 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2828 you might expect that, since timezone is a synonym for _timezone,
2829 the same number will print both times. However, if the processor
2830 backend uses a COPY reloc, then actually timezone will be copied
2831 into your process image, and, since you define _timezone
2832 yourself, _timezone will not. Thus timezone and _timezone will
2833 wind up at different memory locations. The tzset call will set
2834 _timezone, leaving timezone unchanged. */
2835
2836 if (h->u.weakdef != NULL)
2837 {
2838 /* If we get to this point, there is an implicit reference to
2839 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2840 h->u.weakdef->ref_regular = 1;
2841
2842 /* Ensure that the backend adjust_dynamic_symbol function sees
2843 H->U.WEAKDEF before H by recursively calling ourselves. */
2844 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2845 return FALSE;
2846 }
2847
2848 /* If a symbol has no type and no size and does not require a PLT
2849 entry, then we are probably about to do the wrong thing here: we
2850 are probably going to create a COPY reloc for an empty object.
2851 This case can arise when a shared object is built with assembly
2852 code, and the assembly code fails to set the symbol type. */
2853 if (h->size == 0
2854 && h->type == STT_NOTYPE
2855 && !h->needs_plt)
2856 _bfd_error_handler
2857 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2858 h->root.root.string);
2859
2860 dynobj = elf_hash_table (eif->info)->dynobj;
2861 bed = get_elf_backend_data (dynobj);
2862
2863 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2864 {
2865 eif->failed = TRUE;
2866 return FALSE;
2867 }
2868
2869 return TRUE;
2870 }
2871
2872 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2873 DYNBSS. */
2874
2875 bfd_boolean
2876 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2877 struct elf_link_hash_entry *h,
2878 asection *dynbss)
2879 {
2880 unsigned int power_of_two;
2881 bfd_vma mask;
2882 asection *sec = h->root.u.def.section;
2883
2884 /* The section aligment of definition is the maximum alignment
2885 requirement of symbols defined in the section. Since we don't
2886 know the symbol alignment requirement, we start with the
2887 maximum alignment and check low bits of the symbol address
2888 for the minimum alignment. */
2889 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2890 mask = ((bfd_vma) 1 << power_of_two) - 1;
2891 while ((h->root.u.def.value & mask) != 0)
2892 {
2893 mask >>= 1;
2894 --power_of_two;
2895 }
2896
2897 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2898 dynbss))
2899 {
2900 /* Adjust the section alignment if needed. */
2901 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2902 power_of_two))
2903 return FALSE;
2904 }
2905
2906 /* We make sure that the symbol will be aligned properly. */
2907 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2908
2909 /* Define the symbol as being at this point in DYNBSS. */
2910 h->root.u.def.section = dynbss;
2911 h->root.u.def.value = dynbss->size;
2912
2913 /* Increment the size of DYNBSS to make room for the symbol. */
2914 dynbss->size += h->size;
2915
2916 /* No error if extern_protected_data is true. */
2917 if (h->protected_def
2918 && (!info->extern_protected_data
2919 || (info->extern_protected_data < 0
2920 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2921 info->callbacks->einfo
2922 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2923 h->root.root.string);
2924
2925 return TRUE;
2926 }
2927
2928 /* Adjust all external symbols pointing into SEC_MERGE sections
2929 to reflect the object merging within the sections. */
2930
2931 static bfd_boolean
2932 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2933 {
2934 asection *sec;
2935
2936 if ((h->root.type == bfd_link_hash_defined
2937 || h->root.type == bfd_link_hash_defweak)
2938 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2939 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2940 {
2941 bfd *output_bfd = (bfd *) data;
2942
2943 h->root.u.def.value =
2944 _bfd_merged_section_offset (output_bfd,
2945 &h->root.u.def.section,
2946 elf_section_data (sec)->sec_info,
2947 h->root.u.def.value);
2948 }
2949
2950 return TRUE;
2951 }
2952
2953 /* Returns false if the symbol referred to by H should be considered
2954 to resolve local to the current module, and true if it should be
2955 considered to bind dynamically. */
2956
2957 bfd_boolean
2958 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2959 struct bfd_link_info *info,
2960 bfd_boolean not_local_protected)
2961 {
2962 bfd_boolean binding_stays_local_p;
2963 const struct elf_backend_data *bed;
2964 struct elf_link_hash_table *hash_table;
2965
2966 if (h == NULL)
2967 return FALSE;
2968
2969 while (h->root.type == bfd_link_hash_indirect
2970 || h->root.type == bfd_link_hash_warning)
2971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2972
2973 /* If it was forced local, then clearly it's not dynamic. */
2974 if (h->dynindx == -1)
2975 return FALSE;
2976 if (h->forced_local)
2977 return FALSE;
2978
2979 /* Identify the cases where name binding rules say that a
2980 visible symbol resolves locally. */
2981 binding_stays_local_p = (bfd_link_executable (info)
2982 || SYMBOLIC_BIND (info, h));
2983
2984 switch (ELF_ST_VISIBILITY (h->other))
2985 {
2986 case STV_INTERNAL:
2987 case STV_HIDDEN:
2988 return FALSE;
2989
2990 case STV_PROTECTED:
2991 hash_table = elf_hash_table (info);
2992 if (!is_elf_hash_table (hash_table))
2993 return FALSE;
2994
2995 bed = get_elf_backend_data (hash_table->dynobj);
2996
2997 /* Proper resolution for function pointer equality may require
2998 that these symbols perhaps be resolved dynamically, even though
2999 we should be resolving them to the current module. */
3000 if (!not_local_protected || !bed->is_function_type (h->type))
3001 binding_stays_local_p = TRUE;
3002 break;
3003
3004 default:
3005 break;
3006 }
3007
3008 /* If it isn't defined locally, then clearly it's dynamic. */
3009 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3010 return TRUE;
3011
3012 /* Otherwise, the symbol is dynamic if binding rules don't tell
3013 us that it remains local. */
3014 return !binding_stays_local_p;
3015 }
3016
3017 /* Return true if the symbol referred to by H should be considered
3018 to resolve local to the current module, and false otherwise. Differs
3019 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3020 undefined symbols. The two functions are virtually identical except
3021 for the place where forced_local and dynindx == -1 are tested. If
3022 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3023 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3024 the symbol is local only for defined symbols.
3025 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3026 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3027 treatment of undefined weak symbols. For those that do not make
3028 undefined weak symbols dynamic, both functions may return false. */
3029
3030 bfd_boolean
3031 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3032 struct bfd_link_info *info,
3033 bfd_boolean local_protected)
3034 {
3035 const struct elf_backend_data *bed;
3036 struct elf_link_hash_table *hash_table;
3037
3038 /* If it's a local sym, of course we resolve locally. */
3039 if (h == NULL)
3040 return TRUE;
3041
3042 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3043 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3044 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3045 return TRUE;
3046
3047 /* Common symbols that become definitions don't get the DEF_REGULAR
3048 flag set, so test it first, and don't bail out. */
3049 if (ELF_COMMON_DEF_P (h))
3050 /* Do nothing. */;
3051 /* If we don't have a definition in a regular file, then we can't
3052 resolve locally. The sym is either undefined or dynamic. */
3053 else if (!h->def_regular)
3054 return FALSE;
3055
3056 /* Forced local symbols resolve locally. */
3057 if (h->forced_local)
3058 return TRUE;
3059
3060 /* As do non-dynamic symbols. */
3061 if (h->dynindx == -1)
3062 return TRUE;
3063
3064 /* At this point, we know the symbol is defined and dynamic. In an
3065 executable it must resolve locally, likewise when building symbolic
3066 shared libraries. */
3067 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3068 return TRUE;
3069
3070 /* Now deal with defined dynamic symbols in shared libraries. Ones
3071 with default visibility might not resolve locally. */
3072 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3073 return FALSE;
3074
3075 hash_table = elf_hash_table (info);
3076 if (!is_elf_hash_table (hash_table))
3077 return TRUE;
3078
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080
3081 /* If extern_protected_data is false, STV_PROTECTED non-function
3082 symbols are local. */
3083 if ((!info->extern_protected_data
3084 || (info->extern_protected_data < 0
3085 && !bed->extern_protected_data))
3086 && !bed->is_function_type (h->type))
3087 return TRUE;
3088
3089 /* Function pointer equality tests may require that STV_PROTECTED
3090 symbols be treated as dynamic symbols. If the address of a
3091 function not defined in an executable is set to that function's
3092 plt entry in the executable, then the address of the function in
3093 a shared library must also be the plt entry in the executable. */
3094 return local_protected;
3095 }
3096
3097 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3098 aligned. Returns the first TLS output section. */
3099
3100 struct bfd_section *
3101 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3102 {
3103 struct bfd_section *sec, *tls;
3104 unsigned int align = 0;
3105
3106 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3107 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3108 break;
3109 tls = sec;
3110
3111 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3112 if (sec->alignment_power > align)
3113 align = sec->alignment_power;
3114
3115 elf_hash_table (info)->tls_sec = tls;
3116
3117 /* Ensure the alignment of the first section is the largest alignment,
3118 so that the tls segment starts aligned. */
3119 if (tls != NULL)
3120 tls->alignment_power = align;
3121
3122 return tls;
3123 }
3124
3125 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3126 static bfd_boolean
3127 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3128 Elf_Internal_Sym *sym)
3129 {
3130 const struct elf_backend_data *bed;
3131
3132 /* Local symbols do not count, but target specific ones might. */
3133 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3134 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3135 return FALSE;
3136
3137 bed = get_elf_backend_data (abfd);
3138 /* Function symbols do not count. */
3139 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3140 return FALSE;
3141
3142 /* If the section is undefined, then so is the symbol. */
3143 if (sym->st_shndx == SHN_UNDEF)
3144 return FALSE;
3145
3146 /* If the symbol is defined in the common section, then
3147 it is a common definition and so does not count. */
3148 if (bed->common_definition (sym))
3149 return FALSE;
3150
3151 /* If the symbol is in a target specific section then we
3152 must rely upon the backend to tell us what it is. */
3153 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3154 /* FIXME - this function is not coded yet:
3155
3156 return _bfd_is_global_symbol_definition (abfd, sym);
3157
3158 Instead for now assume that the definition is not global,
3159 Even if this is wrong, at least the linker will behave
3160 in the same way that it used to do. */
3161 return FALSE;
3162
3163 return TRUE;
3164 }
3165
3166 /* Search the symbol table of the archive element of the archive ABFD
3167 whose archive map contains a mention of SYMDEF, and determine if
3168 the symbol is defined in this element. */
3169 static bfd_boolean
3170 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3171 {
3172 Elf_Internal_Shdr * hdr;
3173 size_t symcount;
3174 size_t extsymcount;
3175 size_t extsymoff;
3176 Elf_Internal_Sym *isymbuf;
3177 Elf_Internal_Sym *isym;
3178 Elf_Internal_Sym *isymend;
3179 bfd_boolean result;
3180
3181 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3182 if (abfd == NULL)
3183 return FALSE;
3184
3185 if (! bfd_check_format (abfd, bfd_object))
3186 return FALSE;
3187
3188 /* Select the appropriate symbol table. If we don't know if the
3189 object file is an IR object, give linker LTO plugin a chance to
3190 get the correct symbol table. */
3191 if (abfd->plugin_format == bfd_plugin_yes
3192 #if BFD_SUPPORTS_PLUGINS
3193 || (abfd->plugin_format == bfd_plugin_unknown
3194 && bfd_link_plugin_object_p (abfd))
3195 #endif
3196 )
3197 {
3198 /* Use the IR symbol table if the object has been claimed by
3199 plugin. */
3200 abfd = abfd->plugin_dummy_bfd;
3201 hdr = &elf_tdata (abfd)->symtab_hdr;
3202 }
3203 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3204 hdr = &elf_tdata (abfd)->symtab_hdr;
3205 else
3206 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3207
3208 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3209
3210 /* The sh_info field of the symtab header tells us where the
3211 external symbols start. We don't care about the local symbols. */
3212 if (elf_bad_symtab (abfd))
3213 {
3214 extsymcount = symcount;
3215 extsymoff = 0;
3216 }
3217 else
3218 {
3219 extsymcount = symcount - hdr->sh_info;
3220 extsymoff = hdr->sh_info;
3221 }
3222
3223 if (extsymcount == 0)
3224 return FALSE;
3225
3226 /* Read in the symbol table. */
3227 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3228 NULL, NULL, NULL);
3229 if (isymbuf == NULL)
3230 return FALSE;
3231
3232 /* Scan the symbol table looking for SYMDEF. */
3233 result = FALSE;
3234 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3235 {
3236 const char *name;
3237
3238 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3239 isym->st_name);
3240 if (name == NULL)
3241 break;
3242
3243 if (strcmp (name, symdef->name) == 0)
3244 {
3245 result = is_global_data_symbol_definition (abfd, isym);
3246 break;
3247 }
3248 }
3249
3250 free (isymbuf);
3251
3252 return result;
3253 }
3254 \f
3255 /* Add an entry to the .dynamic table. */
3256
3257 bfd_boolean
3258 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3259 bfd_vma tag,
3260 bfd_vma val)
3261 {
3262 struct elf_link_hash_table *hash_table;
3263 const struct elf_backend_data *bed;
3264 asection *s;
3265 bfd_size_type newsize;
3266 bfd_byte *newcontents;
3267 Elf_Internal_Dyn dyn;
3268
3269 hash_table = elf_hash_table (info);
3270 if (! is_elf_hash_table (hash_table))
3271 return FALSE;
3272
3273 bed = get_elf_backend_data (hash_table->dynobj);
3274 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3275 BFD_ASSERT (s != NULL);
3276
3277 newsize = s->size + bed->s->sizeof_dyn;
3278 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3279 if (newcontents == NULL)
3280 return FALSE;
3281
3282 dyn.d_tag = tag;
3283 dyn.d_un.d_val = val;
3284 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3285
3286 s->size = newsize;
3287 s->contents = newcontents;
3288
3289 return TRUE;
3290 }
3291
3292 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3293 otherwise just check whether one already exists. Returns -1 on error,
3294 1 if a DT_NEEDED tag already exists, and 0 on success. */
3295
3296 static int
3297 elf_add_dt_needed_tag (bfd *abfd,
3298 struct bfd_link_info *info,
3299 const char *soname,
3300 bfd_boolean do_it)
3301 {
3302 struct elf_link_hash_table *hash_table;
3303 size_t strindex;
3304
3305 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3306 return -1;
3307
3308 hash_table = elf_hash_table (info);
3309 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3310 if (strindex == (size_t) -1)
3311 return -1;
3312
3313 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3314 {
3315 asection *sdyn;
3316 const struct elf_backend_data *bed;
3317 bfd_byte *extdyn;
3318
3319 bed = get_elf_backend_data (hash_table->dynobj);
3320 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3321 if (sdyn != NULL)
3322 for (extdyn = sdyn->contents;
3323 extdyn < sdyn->contents + sdyn->size;
3324 extdyn += bed->s->sizeof_dyn)
3325 {
3326 Elf_Internal_Dyn dyn;
3327
3328 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3329 if (dyn.d_tag == DT_NEEDED
3330 && dyn.d_un.d_val == strindex)
3331 {
3332 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3333 return 1;
3334 }
3335 }
3336 }
3337
3338 if (do_it)
3339 {
3340 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3341 return -1;
3342
3343 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3344 return -1;
3345 }
3346 else
3347 /* We were just checking for existence of the tag. */
3348 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3349
3350 return 0;
3351 }
3352
3353 /* Return true if SONAME is on the needed list between NEEDED and STOP
3354 (or the end of list if STOP is NULL), and needed by a library that
3355 will be loaded. */
3356
3357 static bfd_boolean
3358 on_needed_list (const char *soname,
3359 struct bfd_link_needed_list *needed,
3360 struct bfd_link_needed_list *stop)
3361 {
3362 struct bfd_link_needed_list *look;
3363 for (look = needed; look != stop; look = look->next)
3364 if (strcmp (soname, look->name) == 0
3365 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3366 /* If needed by a library that itself is not directly
3367 needed, recursively check whether that library is
3368 indirectly needed. Since we add DT_NEEDED entries to
3369 the end of the list, library dependencies appear after
3370 the library. Therefore search prior to the current
3371 LOOK, preventing possible infinite recursion. */
3372 || on_needed_list (elf_dt_name (look->by), needed, look)))
3373 return TRUE;
3374
3375 return FALSE;
3376 }
3377
3378 /* Sort symbol by value, section, and size. */
3379 static int
3380 elf_sort_symbol (const void *arg1, const void *arg2)
3381 {
3382 const struct elf_link_hash_entry *h1;
3383 const struct elf_link_hash_entry *h2;
3384 bfd_signed_vma vdiff;
3385
3386 h1 = *(const struct elf_link_hash_entry **) arg1;
3387 h2 = *(const struct elf_link_hash_entry **) arg2;
3388 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3389 if (vdiff != 0)
3390 return vdiff > 0 ? 1 : -1;
3391 else
3392 {
3393 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3394 if (sdiff != 0)
3395 return sdiff > 0 ? 1 : -1;
3396 }
3397 vdiff = h1->size - h2->size;
3398 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3399 }
3400
3401 /* This function is used to adjust offsets into .dynstr for
3402 dynamic symbols. This is called via elf_link_hash_traverse. */
3403
3404 static bfd_boolean
3405 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3406 {
3407 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3408
3409 if (h->dynindx != -1)
3410 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3411 return TRUE;
3412 }
3413
3414 /* Assign string offsets in .dynstr, update all structures referencing
3415 them. */
3416
3417 static bfd_boolean
3418 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3419 {
3420 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3421 struct elf_link_local_dynamic_entry *entry;
3422 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3423 bfd *dynobj = hash_table->dynobj;
3424 asection *sdyn;
3425 bfd_size_type size;
3426 const struct elf_backend_data *bed;
3427 bfd_byte *extdyn;
3428
3429 _bfd_elf_strtab_finalize (dynstr);
3430 size = _bfd_elf_strtab_size (dynstr);
3431
3432 bed = get_elf_backend_data (dynobj);
3433 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3434 BFD_ASSERT (sdyn != NULL);
3435
3436 /* Update all .dynamic entries referencing .dynstr strings. */
3437 for (extdyn = sdyn->contents;
3438 extdyn < sdyn->contents + sdyn->size;
3439 extdyn += bed->s->sizeof_dyn)
3440 {
3441 Elf_Internal_Dyn dyn;
3442
3443 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3444 switch (dyn.d_tag)
3445 {
3446 case DT_STRSZ:
3447 dyn.d_un.d_val = size;
3448 break;
3449 case DT_NEEDED:
3450 case DT_SONAME:
3451 case DT_RPATH:
3452 case DT_RUNPATH:
3453 case DT_FILTER:
3454 case DT_AUXILIARY:
3455 case DT_AUDIT:
3456 case DT_DEPAUDIT:
3457 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3458 break;
3459 default:
3460 continue;
3461 }
3462 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3463 }
3464
3465 /* Now update local dynamic symbols. */
3466 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3467 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3468 entry->isym.st_name);
3469
3470 /* And the rest of dynamic symbols. */
3471 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3472
3473 /* Adjust version definitions. */
3474 if (elf_tdata (output_bfd)->cverdefs)
3475 {
3476 asection *s;
3477 bfd_byte *p;
3478 size_t i;
3479 Elf_Internal_Verdef def;
3480 Elf_Internal_Verdaux defaux;
3481
3482 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3483 p = s->contents;
3484 do
3485 {
3486 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3487 &def);
3488 p += sizeof (Elf_External_Verdef);
3489 if (def.vd_aux != sizeof (Elf_External_Verdef))
3490 continue;
3491 for (i = 0; i < def.vd_cnt; ++i)
3492 {
3493 _bfd_elf_swap_verdaux_in (output_bfd,
3494 (Elf_External_Verdaux *) p, &defaux);
3495 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3496 defaux.vda_name);
3497 _bfd_elf_swap_verdaux_out (output_bfd,
3498 &defaux, (Elf_External_Verdaux *) p);
3499 p += sizeof (Elf_External_Verdaux);
3500 }
3501 }
3502 while (def.vd_next);
3503 }
3504
3505 /* Adjust version references. */
3506 if (elf_tdata (output_bfd)->verref)
3507 {
3508 asection *s;
3509 bfd_byte *p;
3510 size_t i;
3511 Elf_Internal_Verneed need;
3512 Elf_Internal_Vernaux needaux;
3513
3514 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3515 p = s->contents;
3516 do
3517 {
3518 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3519 &need);
3520 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3521 _bfd_elf_swap_verneed_out (output_bfd, &need,
3522 (Elf_External_Verneed *) p);
3523 p += sizeof (Elf_External_Verneed);
3524 for (i = 0; i < need.vn_cnt; ++i)
3525 {
3526 _bfd_elf_swap_vernaux_in (output_bfd,
3527 (Elf_External_Vernaux *) p, &needaux);
3528 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3529 needaux.vna_name);
3530 _bfd_elf_swap_vernaux_out (output_bfd,
3531 &needaux,
3532 (Elf_External_Vernaux *) p);
3533 p += sizeof (Elf_External_Vernaux);
3534 }
3535 }
3536 while (need.vn_next);
3537 }
3538
3539 return TRUE;
3540 }
3541 \f
3542 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3543 The default is to only match when the INPUT and OUTPUT are exactly
3544 the same target. */
3545
3546 bfd_boolean
3547 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3548 const bfd_target *output)
3549 {
3550 return input == output;
3551 }
3552
3553 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3554 This version is used when different targets for the same architecture
3555 are virtually identical. */
3556
3557 bfd_boolean
3558 _bfd_elf_relocs_compatible (const bfd_target *input,
3559 const bfd_target *output)
3560 {
3561 const struct elf_backend_data *obed, *ibed;
3562
3563 if (input == output)
3564 return TRUE;
3565
3566 ibed = xvec_get_elf_backend_data (input);
3567 obed = xvec_get_elf_backend_data (output);
3568
3569 if (ibed->arch != obed->arch)
3570 return FALSE;
3571
3572 /* If both backends are using this function, deem them compatible. */
3573 return ibed->relocs_compatible == obed->relocs_compatible;
3574 }
3575
3576 /* Make a special call to the linker "notice" function to tell it that
3577 we are about to handle an as-needed lib, or have finished
3578 processing the lib. */
3579
3580 bfd_boolean
3581 _bfd_elf_notice_as_needed (bfd *ibfd,
3582 struct bfd_link_info *info,
3583 enum notice_asneeded_action act)
3584 {
3585 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3586 }
3587
3588 /* Check relocations an ELF object file. */
3589
3590 bfd_boolean
3591 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3592 {
3593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3594 struct elf_link_hash_table *htab = elf_hash_table (info);
3595
3596 /* If this object is the same format as the output object, and it is
3597 not a shared library, then let the backend look through the
3598 relocs.
3599
3600 This is required to build global offset table entries and to
3601 arrange for dynamic relocs. It is not required for the
3602 particular common case of linking non PIC code, even when linking
3603 against shared libraries, but unfortunately there is no way of
3604 knowing whether an object file has been compiled PIC or not.
3605 Looking through the relocs is not particularly time consuming.
3606 The problem is that we must either (1) keep the relocs in memory,
3607 which causes the linker to require additional runtime memory or
3608 (2) read the relocs twice from the input file, which wastes time.
3609 This would be a good case for using mmap.
3610
3611 I have no idea how to handle linking PIC code into a file of a
3612 different format. It probably can't be done. */
3613 if ((abfd->flags & DYNAMIC) == 0
3614 && is_elf_hash_table (htab)
3615 && bed->check_relocs != NULL
3616 && elf_object_id (abfd) == elf_hash_table_id (htab)
3617 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3618 {
3619 asection *o;
3620
3621 for (o = abfd->sections; o != NULL; o = o->next)
3622 {
3623 Elf_Internal_Rela *internal_relocs;
3624 bfd_boolean ok;
3625
3626 /* Don't check relocations in excluded sections. */
3627 if ((o->flags & SEC_RELOC) == 0
3628 || (o->flags & SEC_EXCLUDE) != 0
3629 || o->reloc_count == 0
3630 || ((info->strip == strip_all || info->strip == strip_debugger)
3631 && (o->flags & SEC_DEBUGGING) != 0)
3632 || bfd_is_abs_section (o->output_section))
3633 continue;
3634
3635 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3636 info->keep_memory);
3637 if (internal_relocs == NULL)
3638 return FALSE;
3639
3640 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3641
3642 if (elf_section_data (o)->relocs != internal_relocs)
3643 free (internal_relocs);
3644
3645 if (! ok)
3646 return FALSE;
3647 }
3648 }
3649
3650 return TRUE;
3651 }
3652
3653 /* Add symbols from an ELF object file to the linker hash table. */
3654
3655 static bfd_boolean
3656 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3657 {
3658 Elf_Internal_Ehdr *ehdr;
3659 Elf_Internal_Shdr *hdr;
3660 size_t symcount;
3661 size_t extsymcount;
3662 size_t extsymoff;
3663 struct elf_link_hash_entry **sym_hash;
3664 bfd_boolean dynamic;
3665 Elf_External_Versym *extversym = NULL;
3666 Elf_External_Versym *ever;
3667 struct elf_link_hash_entry *weaks;
3668 struct elf_link_hash_entry **nondeflt_vers = NULL;
3669 size_t nondeflt_vers_cnt = 0;
3670 Elf_Internal_Sym *isymbuf = NULL;
3671 Elf_Internal_Sym *isym;
3672 Elf_Internal_Sym *isymend;
3673 const struct elf_backend_data *bed;
3674 bfd_boolean add_needed;
3675 struct elf_link_hash_table *htab;
3676 bfd_size_type amt;
3677 void *alloc_mark = NULL;
3678 struct bfd_hash_entry **old_table = NULL;
3679 unsigned int old_size = 0;
3680 unsigned int old_count = 0;
3681 void *old_tab = NULL;
3682 void *old_ent;
3683 struct bfd_link_hash_entry *old_undefs = NULL;
3684 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3685 void *old_strtab = NULL;
3686 size_t tabsize = 0;
3687 asection *s;
3688 bfd_boolean just_syms;
3689
3690 htab = elf_hash_table (info);
3691 bed = get_elf_backend_data (abfd);
3692
3693 if ((abfd->flags & DYNAMIC) == 0)
3694 dynamic = FALSE;
3695 else
3696 {
3697 dynamic = TRUE;
3698
3699 /* You can't use -r against a dynamic object. Also, there's no
3700 hope of using a dynamic object which does not exactly match
3701 the format of the output file. */
3702 if (bfd_link_relocatable (info)
3703 || !is_elf_hash_table (htab)
3704 || info->output_bfd->xvec != abfd->xvec)
3705 {
3706 if (bfd_link_relocatable (info))
3707 bfd_set_error (bfd_error_invalid_operation);
3708 else
3709 bfd_set_error (bfd_error_wrong_format);
3710 goto error_return;
3711 }
3712 }
3713
3714 ehdr = elf_elfheader (abfd);
3715 if (info->warn_alternate_em
3716 && bed->elf_machine_code != ehdr->e_machine
3717 && ((bed->elf_machine_alt1 != 0
3718 && ehdr->e_machine == bed->elf_machine_alt1)
3719 || (bed->elf_machine_alt2 != 0
3720 && ehdr->e_machine == bed->elf_machine_alt2)))
3721 info->callbacks->einfo
3722 /* xgettext:c-format */
3723 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3724 ehdr->e_machine, abfd, bed->elf_machine_code);
3725
3726 /* As a GNU extension, any input sections which are named
3727 .gnu.warning.SYMBOL are treated as warning symbols for the given
3728 symbol. This differs from .gnu.warning sections, which generate
3729 warnings when they are included in an output file. */
3730 /* PR 12761: Also generate this warning when building shared libraries. */
3731 for (s = abfd->sections; s != NULL; s = s->next)
3732 {
3733 const char *name;
3734
3735 name = bfd_get_section_name (abfd, s);
3736 if (CONST_STRNEQ (name, ".gnu.warning."))
3737 {
3738 char *msg;
3739 bfd_size_type sz;
3740
3741 name += sizeof ".gnu.warning." - 1;
3742
3743 /* If this is a shared object, then look up the symbol
3744 in the hash table. If it is there, and it is already
3745 been defined, then we will not be using the entry
3746 from this shared object, so we don't need to warn.
3747 FIXME: If we see the definition in a regular object
3748 later on, we will warn, but we shouldn't. The only
3749 fix is to keep track of what warnings we are supposed
3750 to emit, and then handle them all at the end of the
3751 link. */
3752 if (dynamic)
3753 {
3754 struct elf_link_hash_entry *h;
3755
3756 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3757
3758 /* FIXME: What about bfd_link_hash_common? */
3759 if (h != NULL
3760 && (h->root.type == bfd_link_hash_defined
3761 || h->root.type == bfd_link_hash_defweak))
3762 continue;
3763 }
3764
3765 sz = s->size;
3766 msg = (char *) bfd_alloc (abfd, sz + 1);
3767 if (msg == NULL)
3768 goto error_return;
3769
3770 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3771 goto error_return;
3772
3773 msg[sz] = '\0';
3774
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, name, BSF_WARNING, s, 0, msg,
3777 FALSE, bed->collect, NULL)))
3778 goto error_return;
3779
3780 if (bfd_link_executable (info))
3781 {
3782 /* Clobber the section size so that the warning does
3783 not get copied into the output file. */
3784 s->size = 0;
3785
3786 /* Also set SEC_EXCLUDE, so that symbols defined in
3787 the warning section don't get copied to the output. */
3788 s->flags |= SEC_EXCLUDE;
3789 }
3790 }
3791 }
3792
3793 just_syms = ((s = abfd->sections) != NULL
3794 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3795
3796 add_needed = TRUE;
3797 if (! dynamic)
3798 {
3799 /* If we are creating a shared library, create all the dynamic
3800 sections immediately. We need to attach them to something,
3801 so we attach them to this BFD, provided it is the right
3802 format and is not from ld --just-symbols. Always create the
3803 dynamic sections for -E/--dynamic-list. FIXME: If there
3804 are no input BFD's of the same format as the output, we can't
3805 make a shared library. */
3806 if (!just_syms
3807 && (bfd_link_pic (info)
3808 || (!bfd_link_relocatable (info)
3809 && (info->export_dynamic || info->dynamic)))
3810 && is_elf_hash_table (htab)
3811 && info->output_bfd->xvec == abfd->xvec
3812 && !htab->dynamic_sections_created)
3813 {
3814 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3815 goto error_return;
3816 }
3817 }
3818 else if (!is_elf_hash_table (htab))
3819 goto error_return;
3820 else
3821 {
3822 const char *soname = NULL;
3823 char *audit = NULL;
3824 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3825 const Elf_Internal_Phdr *phdr;
3826 int ret;
3827
3828 /* ld --just-symbols and dynamic objects don't mix very well.
3829 ld shouldn't allow it. */
3830 if (just_syms)
3831 abort ();
3832
3833 /* If this dynamic lib was specified on the command line with
3834 --as-needed in effect, then we don't want to add a DT_NEEDED
3835 tag unless the lib is actually used. Similary for libs brought
3836 in by another lib's DT_NEEDED. When --no-add-needed is used
3837 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3838 any dynamic library in DT_NEEDED tags in the dynamic lib at
3839 all. */
3840 add_needed = (elf_dyn_lib_class (abfd)
3841 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3842 | DYN_NO_NEEDED)) == 0;
3843
3844 s = bfd_get_section_by_name (abfd, ".dynamic");
3845 if (s != NULL)
3846 {
3847 bfd_byte *dynbuf;
3848 bfd_byte *extdyn;
3849 unsigned int elfsec;
3850 unsigned long shlink;
3851
3852 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3853 {
3854 error_free_dyn:
3855 free (dynbuf);
3856 goto error_return;
3857 }
3858
3859 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3860 if (elfsec == SHN_BAD)
3861 goto error_free_dyn;
3862 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3863
3864 for (extdyn = dynbuf;
3865 extdyn < dynbuf + s->size;
3866 extdyn += bed->s->sizeof_dyn)
3867 {
3868 Elf_Internal_Dyn dyn;
3869
3870 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3871 if (dyn.d_tag == DT_SONAME)
3872 {
3873 unsigned int tagv = dyn.d_un.d_val;
3874 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3875 if (soname == NULL)
3876 goto error_free_dyn;
3877 }
3878 if (dyn.d_tag == DT_NEEDED)
3879 {
3880 struct bfd_link_needed_list *n, **pn;
3881 char *fnm, *anm;
3882 unsigned int tagv = dyn.d_un.d_val;
3883
3884 amt = sizeof (struct bfd_link_needed_list);
3885 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3886 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3887 if (n == NULL || fnm == NULL)
3888 goto error_free_dyn;
3889 amt = strlen (fnm) + 1;
3890 anm = (char *) bfd_alloc (abfd, amt);
3891 if (anm == NULL)
3892 goto error_free_dyn;
3893 memcpy (anm, fnm, amt);
3894 n->name = anm;
3895 n->by = abfd;
3896 n->next = NULL;
3897 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3898 ;
3899 *pn = n;
3900 }
3901 if (dyn.d_tag == DT_RUNPATH)
3902 {
3903 struct bfd_link_needed_list *n, **pn;
3904 char *fnm, *anm;
3905 unsigned int tagv = dyn.d_un.d_val;
3906
3907 amt = sizeof (struct bfd_link_needed_list);
3908 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3909 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3910 if (n == NULL || fnm == NULL)
3911 goto error_free_dyn;
3912 amt = strlen (fnm) + 1;
3913 anm = (char *) bfd_alloc (abfd, amt);
3914 if (anm == NULL)
3915 goto error_free_dyn;
3916 memcpy (anm, fnm, amt);
3917 n->name = anm;
3918 n->by = abfd;
3919 n->next = NULL;
3920 for (pn = & runpath;
3921 *pn != NULL;
3922 pn = &(*pn)->next)
3923 ;
3924 *pn = n;
3925 }
3926 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3927 if (!runpath && dyn.d_tag == DT_RPATH)
3928 {
3929 struct bfd_link_needed_list *n, **pn;
3930 char *fnm, *anm;
3931 unsigned int tagv = dyn.d_un.d_val;
3932
3933 amt = sizeof (struct bfd_link_needed_list);
3934 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3935 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3936 if (n == NULL || fnm == NULL)
3937 goto error_free_dyn;
3938 amt = strlen (fnm) + 1;
3939 anm = (char *) bfd_alloc (abfd, amt);
3940 if (anm == NULL)
3941 goto error_free_dyn;
3942 memcpy (anm, fnm, amt);
3943 n->name = anm;
3944 n->by = abfd;
3945 n->next = NULL;
3946 for (pn = & rpath;
3947 *pn != NULL;
3948 pn = &(*pn)->next)
3949 ;
3950 *pn = n;
3951 }
3952 if (dyn.d_tag == DT_AUDIT)
3953 {
3954 unsigned int tagv = dyn.d_un.d_val;
3955 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3956 }
3957 }
3958
3959 free (dynbuf);
3960 }
3961
3962 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3963 frees all more recently bfd_alloc'd blocks as well. */
3964 if (runpath)
3965 rpath = runpath;
3966
3967 if (rpath)
3968 {
3969 struct bfd_link_needed_list **pn;
3970 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3971 ;
3972 *pn = rpath;
3973 }
3974
3975 /* If we have a PT_GNU_RELRO program header, mark as read-only
3976 all sections contained fully therein. This makes relro
3977 shared library sections appear as they will at run-time. */
3978 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
3979 while (--phdr >= elf_tdata (abfd)->phdr)
3980 if (phdr->p_type == PT_GNU_RELRO)
3981 {
3982 for (s = abfd->sections; s != NULL; s = s->next)
3983 if ((s->flags & SEC_ALLOC) != 0
3984 && s->vma >= phdr->p_vaddr
3985 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
3986 s->flags |= SEC_READONLY;
3987 break;
3988 }
3989
3990 /* We do not want to include any of the sections in a dynamic
3991 object in the output file. We hack by simply clobbering the
3992 list of sections in the BFD. This could be handled more
3993 cleanly by, say, a new section flag; the existing
3994 SEC_NEVER_LOAD flag is not the one we want, because that one
3995 still implies that the section takes up space in the output
3996 file. */
3997 bfd_section_list_clear (abfd);
3998
3999 /* Find the name to use in a DT_NEEDED entry that refers to this
4000 object. If the object has a DT_SONAME entry, we use it.
4001 Otherwise, if the generic linker stuck something in
4002 elf_dt_name, we use that. Otherwise, we just use the file
4003 name. */
4004 if (soname == NULL || *soname == '\0')
4005 {
4006 soname = elf_dt_name (abfd);
4007 if (soname == NULL || *soname == '\0')
4008 soname = bfd_get_filename (abfd);
4009 }
4010
4011 /* Save the SONAME because sometimes the linker emulation code
4012 will need to know it. */
4013 elf_dt_name (abfd) = soname;
4014
4015 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4016 if (ret < 0)
4017 goto error_return;
4018
4019 /* If we have already included this dynamic object in the
4020 link, just ignore it. There is no reason to include a
4021 particular dynamic object more than once. */
4022 if (ret > 0)
4023 return TRUE;
4024
4025 /* Save the DT_AUDIT entry for the linker emulation code. */
4026 elf_dt_audit (abfd) = audit;
4027 }
4028
4029 /* If this is a dynamic object, we always link against the .dynsym
4030 symbol table, not the .symtab symbol table. The dynamic linker
4031 will only see the .dynsym symbol table, so there is no reason to
4032 look at .symtab for a dynamic object. */
4033
4034 if (! dynamic || elf_dynsymtab (abfd) == 0)
4035 hdr = &elf_tdata (abfd)->symtab_hdr;
4036 else
4037 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4038
4039 symcount = hdr->sh_size / bed->s->sizeof_sym;
4040
4041 /* The sh_info field of the symtab header tells us where the
4042 external symbols start. We don't care about the local symbols at
4043 this point. */
4044 if (elf_bad_symtab (abfd))
4045 {
4046 extsymcount = symcount;
4047 extsymoff = 0;
4048 }
4049 else
4050 {
4051 extsymcount = symcount - hdr->sh_info;
4052 extsymoff = hdr->sh_info;
4053 }
4054
4055 sym_hash = elf_sym_hashes (abfd);
4056 if (extsymcount != 0)
4057 {
4058 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4059 NULL, NULL, NULL);
4060 if (isymbuf == NULL)
4061 goto error_return;
4062
4063 if (sym_hash == NULL)
4064 {
4065 /* We store a pointer to the hash table entry for each
4066 external symbol. */
4067 amt = extsymcount;
4068 amt *= sizeof (struct elf_link_hash_entry *);
4069 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4070 if (sym_hash == NULL)
4071 goto error_free_sym;
4072 elf_sym_hashes (abfd) = sym_hash;
4073 }
4074 }
4075
4076 if (dynamic)
4077 {
4078 /* Read in any version definitions. */
4079 if (!_bfd_elf_slurp_version_tables (abfd,
4080 info->default_imported_symver))
4081 goto error_free_sym;
4082
4083 /* Read in the symbol versions, but don't bother to convert them
4084 to internal format. */
4085 if (elf_dynversym (abfd) != 0)
4086 {
4087 Elf_Internal_Shdr *versymhdr;
4088
4089 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4090 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4091 if (extversym == NULL)
4092 goto error_free_sym;
4093 amt = versymhdr->sh_size;
4094 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4095 || bfd_bread (extversym, amt, abfd) != amt)
4096 goto error_free_vers;
4097 }
4098 }
4099
4100 /* If we are loading an as-needed shared lib, save the symbol table
4101 state before we start adding symbols. If the lib turns out
4102 to be unneeded, restore the state. */
4103 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4104 {
4105 unsigned int i;
4106 size_t entsize;
4107
4108 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4109 {
4110 struct bfd_hash_entry *p;
4111 struct elf_link_hash_entry *h;
4112
4113 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4114 {
4115 h = (struct elf_link_hash_entry *) p;
4116 entsize += htab->root.table.entsize;
4117 if (h->root.type == bfd_link_hash_warning)
4118 entsize += htab->root.table.entsize;
4119 }
4120 }
4121
4122 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4123 old_tab = bfd_malloc (tabsize + entsize);
4124 if (old_tab == NULL)
4125 goto error_free_vers;
4126
4127 /* Remember the current objalloc pointer, so that all mem for
4128 symbols added can later be reclaimed. */
4129 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4130 if (alloc_mark == NULL)
4131 goto error_free_vers;
4132
4133 /* Make a special call to the linker "notice" function to
4134 tell it that we are about to handle an as-needed lib. */
4135 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4136 goto error_free_vers;
4137
4138 /* Clone the symbol table. Remember some pointers into the
4139 symbol table, and dynamic symbol count. */
4140 old_ent = (char *) old_tab + tabsize;
4141 memcpy (old_tab, htab->root.table.table, tabsize);
4142 old_undefs = htab->root.undefs;
4143 old_undefs_tail = htab->root.undefs_tail;
4144 old_table = htab->root.table.table;
4145 old_size = htab->root.table.size;
4146 old_count = htab->root.table.count;
4147 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4148 if (old_strtab == NULL)
4149 goto error_free_vers;
4150
4151 for (i = 0; i < htab->root.table.size; i++)
4152 {
4153 struct bfd_hash_entry *p;
4154 struct elf_link_hash_entry *h;
4155
4156 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4157 {
4158 memcpy (old_ent, p, htab->root.table.entsize);
4159 old_ent = (char *) old_ent + htab->root.table.entsize;
4160 h = (struct elf_link_hash_entry *) p;
4161 if (h->root.type == bfd_link_hash_warning)
4162 {
4163 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4164 old_ent = (char *) old_ent + htab->root.table.entsize;
4165 }
4166 }
4167 }
4168 }
4169
4170 weaks = NULL;
4171 ever = extversym != NULL ? extversym + extsymoff : NULL;
4172 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4173 isym < isymend;
4174 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4175 {
4176 int bind;
4177 bfd_vma value;
4178 asection *sec, *new_sec;
4179 flagword flags;
4180 const char *name;
4181 struct elf_link_hash_entry *h;
4182 struct elf_link_hash_entry *hi;
4183 bfd_boolean definition;
4184 bfd_boolean size_change_ok;
4185 bfd_boolean type_change_ok;
4186 bfd_boolean new_weakdef;
4187 bfd_boolean new_weak;
4188 bfd_boolean old_weak;
4189 bfd_boolean override;
4190 bfd_boolean common;
4191 bfd_boolean discarded;
4192 unsigned int old_alignment;
4193 bfd *old_bfd;
4194 bfd_boolean matched;
4195
4196 override = FALSE;
4197
4198 flags = BSF_NO_FLAGS;
4199 sec = NULL;
4200 value = isym->st_value;
4201 common = bed->common_definition (isym);
4202 discarded = FALSE;
4203
4204 bind = ELF_ST_BIND (isym->st_info);
4205 switch (bind)
4206 {
4207 case STB_LOCAL:
4208 /* This should be impossible, since ELF requires that all
4209 global symbols follow all local symbols, and that sh_info
4210 point to the first global symbol. Unfortunately, Irix 5
4211 screws this up. */
4212 continue;
4213
4214 case STB_GLOBAL:
4215 if (isym->st_shndx != SHN_UNDEF && !common)
4216 flags = BSF_GLOBAL;
4217 break;
4218
4219 case STB_WEAK:
4220 flags = BSF_WEAK;
4221 break;
4222
4223 case STB_GNU_UNIQUE:
4224 flags = BSF_GNU_UNIQUE;
4225 break;
4226
4227 default:
4228 /* Leave it up to the processor backend. */
4229 break;
4230 }
4231
4232 if (isym->st_shndx == SHN_UNDEF)
4233 sec = bfd_und_section_ptr;
4234 else if (isym->st_shndx == SHN_ABS)
4235 sec = bfd_abs_section_ptr;
4236 else if (isym->st_shndx == SHN_COMMON)
4237 {
4238 sec = bfd_com_section_ptr;
4239 /* What ELF calls the size we call the value. What ELF
4240 calls the value we call the alignment. */
4241 value = isym->st_size;
4242 }
4243 else
4244 {
4245 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4246 if (sec == NULL)
4247 sec = bfd_abs_section_ptr;
4248 else if (discarded_section (sec))
4249 {
4250 /* Symbols from discarded section are undefined. We keep
4251 its visibility. */
4252 sec = bfd_und_section_ptr;
4253 discarded = TRUE;
4254 isym->st_shndx = SHN_UNDEF;
4255 }
4256 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4257 value -= sec->vma;
4258 }
4259
4260 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4261 isym->st_name);
4262 if (name == NULL)
4263 goto error_free_vers;
4264
4265 if (isym->st_shndx == SHN_COMMON
4266 && (abfd->flags & BFD_PLUGIN) != 0)
4267 {
4268 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4269
4270 if (xc == NULL)
4271 {
4272 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4273 | SEC_EXCLUDE);
4274 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4275 if (xc == NULL)
4276 goto error_free_vers;
4277 }
4278 sec = xc;
4279 }
4280 else if (isym->st_shndx == SHN_COMMON
4281 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4282 && !bfd_link_relocatable (info))
4283 {
4284 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4285
4286 if (tcomm == NULL)
4287 {
4288 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4289 | SEC_LINKER_CREATED);
4290 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4291 if (tcomm == NULL)
4292 goto error_free_vers;
4293 }
4294 sec = tcomm;
4295 }
4296 else if (bed->elf_add_symbol_hook)
4297 {
4298 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4299 &sec, &value))
4300 goto error_free_vers;
4301
4302 /* The hook function sets the name to NULL if this symbol
4303 should be skipped for some reason. */
4304 if (name == NULL)
4305 continue;
4306 }
4307
4308 /* Sanity check that all possibilities were handled. */
4309 if (sec == NULL)
4310 {
4311 bfd_set_error (bfd_error_bad_value);
4312 goto error_free_vers;
4313 }
4314
4315 /* Silently discard TLS symbols from --just-syms. There's
4316 no way to combine a static TLS block with a new TLS block
4317 for this executable. */
4318 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4319 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4320 continue;
4321
4322 if (bfd_is_und_section (sec)
4323 || bfd_is_com_section (sec))
4324 definition = FALSE;
4325 else
4326 definition = TRUE;
4327
4328 size_change_ok = FALSE;
4329 type_change_ok = bed->type_change_ok;
4330 old_weak = FALSE;
4331 matched = FALSE;
4332 old_alignment = 0;
4333 old_bfd = NULL;
4334 new_sec = sec;
4335
4336 if (is_elf_hash_table (htab))
4337 {
4338 Elf_Internal_Versym iver;
4339 unsigned int vernum = 0;
4340 bfd_boolean skip;
4341
4342 if (ever == NULL)
4343 {
4344 if (info->default_imported_symver)
4345 /* Use the default symbol version created earlier. */
4346 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4347 else
4348 iver.vs_vers = 0;
4349 }
4350 else
4351 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4352
4353 vernum = iver.vs_vers & VERSYM_VERSION;
4354
4355 /* If this is a hidden symbol, or if it is not version
4356 1, we append the version name to the symbol name.
4357 However, we do not modify a non-hidden absolute symbol
4358 if it is not a function, because it might be the version
4359 symbol itself. FIXME: What if it isn't? */
4360 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4361 || (vernum > 1
4362 && (!bfd_is_abs_section (sec)
4363 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4364 {
4365 const char *verstr;
4366 size_t namelen, verlen, newlen;
4367 char *newname, *p;
4368
4369 if (isym->st_shndx != SHN_UNDEF)
4370 {
4371 if (vernum > elf_tdata (abfd)->cverdefs)
4372 verstr = NULL;
4373 else if (vernum > 1)
4374 verstr =
4375 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4376 else
4377 verstr = "";
4378
4379 if (verstr == NULL)
4380 {
4381 _bfd_error_handler
4382 /* xgettext:c-format */
4383 (_("%B: %s: invalid version %u (max %d)"),
4384 abfd, name, vernum,
4385 elf_tdata (abfd)->cverdefs);
4386 bfd_set_error (bfd_error_bad_value);
4387 goto error_free_vers;
4388 }
4389 }
4390 else
4391 {
4392 /* We cannot simply test for the number of
4393 entries in the VERNEED section since the
4394 numbers for the needed versions do not start
4395 at 0. */
4396 Elf_Internal_Verneed *t;
4397
4398 verstr = NULL;
4399 for (t = elf_tdata (abfd)->verref;
4400 t != NULL;
4401 t = t->vn_nextref)
4402 {
4403 Elf_Internal_Vernaux *a;
4404
4405 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4406 {
4407 if (a->vna_other == vernum)
4408 {
4409 verstr = a->vna_nodename;
4410 break;
4411 }
4412 }
4413 if (a != NULL)
4414 break;
4415 }
4416 if (verstr == NULL)
4417 {
4418 _bfd_error_handler
4419 /* xgettext:c-format */
4420 (_("%B: %s: invalid needed version %d"),
4421 abfd, name, vernum);
4422 bfd_set_error (bfd_error_bad_value);
4423 goto error_free_vers;
4424 }
4425 }
4426
4427 namelen = strlen (name);
4428 verlen = strlen (verstr);
4429 newlen = namelen + verlen + 2;
4430 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4431 && isym->st_shndx != SHN_UNDEF)
4432 ++newlen;
4433
4434 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4435 if (newname == NULL)
4436 goto error_free_vers;
4437 memcpy (newname, name, namelen);
4438 p = newname + namelen;
4439 *p++ = ELF_VER_CHR;
4440 /* If this is a defined non-hidden version symbol,
4441 we add another @ to the name. This indicates the
4442 default version of the symbol. */
4443 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4444 && isym->st_shndx != SHN_UNDEF)
4445 *p++ = ELF_VER_CHR;
4446 memcpy (p, verstr, verlen + 1);
4447
4448 name = newname;
4449 }
4450
4451 /* If this symbol has default visibility and the user has
4452 requested we not re-export it, then mark it as hidden. */
4453 if (!bfd_is_und_section (sec)
4454 && !dynamic
4455 && abfd->no_export
4456 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4457 isym->st_other = (STV_HIDDEN
4458 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4459
4460 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4461 sym_hash, &old_bfd, &old_weak,
4462 &old_alignment, &skip, &override,
4463 &type_change_ok, &size_change_ok,
4464 &matched))
4465 goto error_free_vers;
4466
4467 if (skip)
4468 continue;
4469
4470 /* Override a definition only if the new symbol matches the
4471 existing one. */
4472 if (override && matched)
4473 definition = FALSE;
4474
4475 h = *sym_hash;
4476 while (h->root.type == bfd_link_hash_indirect
4477 || h->root.type == bfd_link_hash_warning)
4478 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4479
4480 if (elf_tdata (abfd)->verdef != NULL
4481 && vernum > 1
4482 && definition)
4483 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4484 }
4485
4486 if (! (_bfd_generic_link_add_one_symbol
4487 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4488 (struct bfd_link_hash_entry **) sym_hash)))
4489 goto error_free_vers;
4490
4491 if ((flags & BSF_GNU_UNIQUE)
4492 && (abfd->flags & DYNAMIC) == 0
4493 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4494 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4495
4496 h = *sym_hash;
4497 /* We need to make sure that indirect symbol dynamic flags are
4498 updated. */
4499 hi = h;
4500 while (h->root.type == bfd_link_hash_indirect
4501 || h->root.type == bfd_link_hash_warning)
4502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4503
4504 /* Setting the index to -3 tells elf_link_output_extsym that
4505 this symbol is defined in a discarded section. */
4506 if (discarded)
4507 h->indx = -3;
4508
4509 *sym_hash = h;
4510
4511 new_weak = (flags & BSF_WEAK) != 0;
4512 new_weakdef = FALSE;
4513 if (dynamic
4514 && definition
4515 && new_weak
4516 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4517 && is_elf_hash_table (htab)
4518 && h->u.weakdef == NULL)
4519 {
4520 /* Keep a list of all weak defined non function symbols from
4521 a dynamic object, using the weakdef field. Later in this
4522 function we will set the weakdef field to the correct
4523 value. We only put non-function symbols from dynamic
4524 objects on this list, because that happens to be the only
4525 time we need to know the normal symbol corresponding to a
4526 weak symbol, and the information is time consuming to
4527 figure out. If the weakdef field is not already NULL,
4528 then this symbol was already defined by some previous
4529 dynamic object, and we will be using that previous
4530 definition anyhow. */
4531
4532 h->u.weakdef = weaks;
4533 weaks = h;
4534 new_weakdef = TRUE;
4535 }
4536
4537 /* Set the alignment of a common symbol. */
4538 if ((common || bfd_is_com_section (sec))
4539 && h->root.type == bfd_link_hash_common)
4540 {
4541 unsigned int align;
4542
4543 if (common)
4544 align = bfd_log2 (isym->st_value);
4545 else
4546 {
4547 /* The new symbol is a common symbol in a shared object.
4548 We need to get the alignment from the section. */
4549 align = new_sec->alignment_power;
4550 }
4551 if (align > old_alignment)
4552 h->root.u.c.p->alignment_power = align;
4553 else
4554 h->root.u.c.p->alignment_power = old_alignment;
4555 }
4556
4557 if (is_elf_hash_table (htab))
4558 {
4559 /* Set a flag in the hash table entry indicating the type of
4560 reference or definition we just found. A dynamic symbol
4561 is one which is referenced or defined by both a regular
4562 object and a shared object. */
4563 bfd_boolean dynsym = FALSE;
4564
4565 /* Plugin symbols aren't normal. Don't set def_regular or
4566 ref_regular for them, or make them dynamic. */
4567 if ((abfd->flags & BFD_PLUGIN) != 0)
4568 ;
4569 else if (! dynamic)
4570 {
4571 if (! definition)
4572 {
4573 h->ref_regular = 1;
4574 if (bind != STB_WEAK)
4575 h->ref_regular_nonweak = 1;
4576 }
4577 else
4578 {
4579 h->def_regular = 1;
4580 if (h->def_dynamic)
4581 {
4582 h->def_dynamic = 0;
4583 h->ref_dynamic = 1;
4584 }
4585 }
4586
4587 /* If the indirect symbol has been forced local, don't
4588 make the real symbol dynamic. */
4589 if ((h == hi || !hi->forced_local)
4590 && (bfd_link_dll (info)
4591 || h->def_dynamic
4592 || h->ref_dynamic))
4593 dynsym = TRUE;
4594 }
4595 else
4596 {
4597 if (! definition)
4598 {
4599 h->ref_dynamic = 1;
4600 hi->ref_dynamic = 1;
4601 }
4602 else
4603 {
4604 h->def_dynamic = 1;
4605 hi->def_dynamic = 1;
4606 }
4607
4608 /* If the indirect symbol has been forced local, don't
4609 make the real symbol dynamic. */
4610 if ((h == hi || !hi->forced_local)
4611 && (h->def_regular
4612 || h->ref_regular
4613 || (h->u.weakdef != NULL
4614 && ! new_weakdef
4615 && h->u.weakdef->dynindx != -1)))
4616 dynsym = TRUE;
4617 }
4618
4619 /* Check to see if we need to add an indirect symbol for
4620 the default name. */
4621 if (definition
4622 || (!override && h->root.type == bfd_link_hash_common))
4623 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4624 sec, value, &old_bfd, &dynsym))
4625 goto error_free_vers;
4626
4627 /* Check the alignment when a common symbol is involved. This
4628 can change when a common symbol is overridden by a normal
4629 definition or a common symbol is ignored due to the old
4630 normal definition. We need to make sure the maximum
4631 alignment is maintained. */
4632 if ((old_alignment || common)
4633 && h->root.type != bfd_link_hash_common)
4634 {
4635 unsigned int common_align;
4636 unsigned int normal_align;
4637 unsigned int symbol_align;
4638 bfd *normal_bfd;
4639 bfd *common_bfd;
4640
4641 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4642 || h->root.type == bfd_link_hash_defweak);
4643
4644 symbol_align = ffs (h->root.u.def.value) - 1;
4645 if (h->root.u.def.section->owner != NULL
4646 && (h->root.u.def.section->owner->flags
4647 & (DYNAMIC | BFD_PLUGIN)) == 0)
4648 {
4649 normal_align = h->root.u.def.section->alignment_power;
4650 if (normal_align > symbol_align)
4651 normal_align = symbol_align;
4652 }
4653 else
4654 normal_align = symbol_align;
4655
4656 if (old_alignment)
4657 {
4658 common_align = old_alignment;
4659 common_bfd = old_bfd;
4660 normal_bfd = abfd;
4661 }
4662 else
4663 {
4664 common_align = bfd_log2 (isym->st_value);
4665 common_bfd = abfd;
4666 normal_bfd = old_bfd;
4667 }
4668
4669 if (normal_align < common_align)
4670 {
4671 /* PR binutils/2735 */
4672 if (normal_bfd == NULL)
4673 _bfd_error_handler
4674 /* xgettext:c-format */
4675 (_("Warning: alignment %u of common symbol `%s' in %B is"
4676 " greater than the alignment (%u) of its section %A"),
4677 common_bfd, h->root.u.def.section,
4678 1 << common_align, name, 1 << normal_align);
4679 else
4680 _bfd_error_handler
4681 /* xgettext:c-format */
4682 (_("Warning: alignment %u of symbol `%s' in %B"
4683 " is smaller than %u in %B"),
4684 normal_bfd, common_bfd,
4685 1 << normal_align, name, 1 << common_align);
4686 }
4687 }
4688
4689 /* Remember the symbol size if it isn't undefined. */
4690 if (isym->st_size != 0
4691 && isym->st_shndx != SHN_UNDEF
4692 && (definition || h->size == 0))
4693 {
4694 if (h->size != 0
4695 && h->size != isym->st_size
4696 && ! size_change_ok)
4697 _bfd_error_handler
4698 /* xgettext:c-format */
4699 (_("Warning: size of symbol `%s' changed"
4700 " from %lu in %B to %lu in %B"),
4701 old_bfd, abfd,
4702 name, (unsigned long) h->size,
4703 (unsigned long) isym->st_size);
4704
4705 h->size = isym->st_size;
4706 }
4707
4708 /* If this is a common symbol, then we always want H->SIZE
4709 to be the size of the common symbol. The code just above
4710 won't fix the size if a common symbol becomes larger. We
4711 don't warn about a size change here, because that is
4712 covered by --warn-common. Allow changes between different
4713 function types. */
4714 if (h->root.type == bfd_link_hash_common)
4715 h->size = h->root.u.c.size;
4716
4717 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4718 && ((definition && !new_weak)
4719 || (old_weak && h->root.type == bfd_link_hash_common)
4720 || h->type == STT_NOTYPE))
4721 {
4722 unsigned int type = ELF_ST_TYPE (isym->st_info);
4723
4724 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4725 symbol. */
4726 if (type == STT_GNU_IFUNC
4727 && (abfd->flags & DYNAMIC) != 0)
4728 type = STT_FUNC;
4729
4730 if (h->type != type)
4731 {
4732 if (h->type != STT_NOTYPE && ! type_change_ok)
4733 /* xgettext:c-format */
4734 _bfd_error_handler
4735 (_("Warning: type of symbol `%s' changed"
4736 " from %d to %d in %B"),
4737 abfd, name, h->type, type);
4738
4739 h->type = type;
4740 }
4741 }
4742
4743 /* Merge st_other field. */
4744 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4745
4746 /* We don't want to make debug symbol dynamic. */
4747 if (definition
4748 && (sec->flags & SEC_DEBUGGING)
4749 && !bfd_link_relocatable (info))
4750 dynsym = FALSE;
4751
4752 /* Nor should we make plugin symbols dynamic. */
4753 if ((abfd->flags & BFD_PLUGIN) != 0)
4754 dynsym = FALSE;
4755
4756 if (definition)
4757 {
4758 h->target_internal = isym->st_target_internal;
4759 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4760 }
4761
4762 if (definition && !dynamic)
4763 {
4764 char *p = strchr (name, ELF_VER_CHR);
4765 if (p != NULL && p[1] != ELF_VER_CHR)
4766 {
4767 /* Queue non-default versions so that .symver x, x@FOO
4768 aliases can be checked. */
4769 if (!nondeflt_vers)
4770 {
4771 amt = ((isymend - isym + 1)
4772 * sizeof (struct elf_link_hash_entry *));
4773 nondeflt_vers
4774 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4775 if (!nondeflt_vers)
4776 goto error_free_vers;
4777 }
4778 nondeflt_vers[nondeflt_vers_cnt++] = h;
4779 }
4780 }
4781
4782 if (dynsym && h->dynindx == -1)
4783 {
4784 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4785 goto error_free_vers;
4786 if (h->u.weakdef != NULL
4787 && ! new_weakdef
4788 && h->u.weakdef->dynindx == -1)
4789 {
4790 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4791 goto error_free_vers;
4792 }
4793 }
4794 else if (h->dynindx != -1)
4795 /* If the symbol already has a dynamic index, but
4796 visibility says it should not be visible, turn it into
4797 a local symbol. */
4798 switch (ELF_ST_VISIBILITY (h->other))
4799 {
4800 case STV_INTERNAL:
4801 case STV_HIDDEN:
4802 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4803 dynsym = FALSE;
4804 break;
4805 }
4806
4807 /* Don't add DT_NEEDED for references from the dummy bfd nor
4808 for unmatched symbol. */
4809 if (!add_needed
4810 && matched
4811 && definition
4812 && ((dynsym
4813 && h->ref_regular_nonweak
4814 && (old_bfd == NULL
4815 || (old_bfd->flags & BFD_PLUGIN) == 0))
4816 || (h->ref_dynamic_nonweak
4817 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4818 && !on_needed_list (elf_dt_name (abfd),
4819 htab->needed, NULL))))
4820 {
4821 int ret;
4822 const char *soname = elf_dt_name (abfd);
4823
4824 info->callbacks->minfo ("%!", soname, old_bfd,
4825 h->root.root.string);
4826
4827 /* A symbol from a library loaded via DT_NEEDED of some
4828 other library is referenced by a regular object.
4829 Add a DT_NEEDED entry for it. Issue an error if
4830 --no-add-needed is used and the reference was not
4831 a weak one. */
4832 if (old_bfd != NULL
4833 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4834 {
4835 _bfd_error_handler
4836 /* xgettext:c-format */
4837 (_("%B: undefined reference to symbol '%s'"),
4838 old_bfd, name);
4839 bfd_set_error (bfd_error_missing_dso);
4840 goto error_free_vers;
4841 }
4842
4843 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4844 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4845
4846 add_needed = TRUE;
4847 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4848 if (ret < 0)
4849 goto error_free_vers;
4850
4851 BFD_ASSERT (ret == 0);
4852 }
4853 }
4854 }
4855
4856 if (extversym != NULL)
4857 {
4858 free (extversym);
4859 extversym = NULL;
4860 }
4861
4862 if (isymbuf != NULL)
4863 {
4864 free (isymbuf);
4865 isymbuf = NULL;
4866 }
4867
4868 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4869 {
4870 unsigned int i;
4871
4872 /* Restore the symbol table. */
4873 old_ent = (char *) old_tab + tabsize;
4874 memset (elf_sym_hashes (abfd), 0,
4875 extsymcount * sizeof (struct elf_link_hash_entry *));
4876 htab->root.table.table = old_table;
4877 htab->root.table.size = old_size;
4878 htab->root.table.count = old_count;
4879 memcpy (htab->root.table.table, old_tab, tabsize);
4880 htab->root.undefs = old_undefs;
4881 htab->root.undefs_tail = old_undefs_tail;
4882 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4883 free (old_strtab);
4884 old_strtab = NULL;
4885 for (i = 0; i < htab->root.table.size; i++)
4886 {
4887 struct bfd_hash_entry *p;
4888 struct elf_link_hash_entry *h;
4889 bfd_size_type size;
4890 unsigned int alignment_power;
4891
4892 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4893 {
4894 h = (struct elf_link_hash_entry *) p;
4895 if (h->root.type == bfd_link_hash_warning)
4896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4897
4898 /* Preserve the maximum alignment and size for common
4899 symbols even if this dynamic lib isn't on DT_NEEDED
4900 since it can still be loaded at run time by another
4901 dynamic lib. */
4902 if (h->root.type == bfd_link_hash_common)
4903 {
4904 size = h->root.u.c.size;
4905 alignment_power = h->root.u.c.p->alignment_power;
4906 }
4907 else
4908 {
4909 size = 0;
4910 alignment_power = 0;
4911 }
4912 memcpy (p, old_ent, htab->root.table.entsize);
4913 old_ent = (char *) old_ent + htab->root.table.entsize;
4914 h = (struct elf_link_hash_entry *) p;
4915 if (h->root.type == bfd_link_hash_warning)
4916 {
4917 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4918 old_ent = (char *) old_ent + htab->root.table.entsize;
4919 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4920 }
4921 if (h->root.type == bfd_link_hash_common)
4922 {
4923 if (size > h->root.u.c.size)
4924 h->root.u.c.size = size;
4925 if (alignment_power > h->root.u.c.p->alignment_power)
4926 h->root.u.c.p->alignment_power = alignment_power;
4927 }
4928 }
4929 }
4930
4931 /* Make a special call to the linker "notice" function to
4932 tell it that symbols added for crefs may need to be removed. */
4933 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4934 goto error_free_vers;
4935
4936 free (old_tab);
4937 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4938 alloc_mark);
4939 if (nondeflt_vers != NULL)
4940 free (nondeflt_vers);
4941 return TRUE;
4942 }
4943
4944 if (old_tab != NULL)
4945 {
4946 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4947 goto error_free_vers;
4948 free (old_tab);
4949 old_tab = NULL;
4950 }
4951
4952 /* Now that all the symbols from this input file are created, if
4953 not performing a relocatable link, handle .symver foo, foo@BAR
4954 such that any relocs against foo become foo@BAR. */
4955 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4956 {
4957 size_t cnt, symidx;
4958
4959 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4960 {
4961 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4962 char *shortname, *p;
4963
4964 p = strchr (h->root.root.string, ELF_VER_CHR);
4965 if (p == NULL
4966 || (h->root.type != bfd_link_hash_defined
4967 && h->root.type != bfd_link_hash_defweak))
4968 continue;
4969
4970 amt = p - h->root.root.string;
4971 shortname = (char *) bfd_malloc (amt + 1);
4972 if (!shortname)
4973 goto error_free_vers;
4974 memcpy (shortname, h->root.root.string, amt);
4975 shortname[amt] = '\0';
4976
4977 hi = (struct elf_link_hash_entry *)
4978 bfd_link_hash_lookup (&htab->root, shortname,
4979 FALSE, FALSE, FALSE);
4980 if (hi != NULL
4981 && hi->root.type == h->root.type
4982 && hi->root.u.def.value == h->root.u.def.value
4983 && hi->root.u.def.section == h->root.u.def.section)
4984 {
4985 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4986 hi->root.type = bfd_link_hash_indirect;
4987 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4988 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4989 sym_hash = elf_sym_hashes (abfd);
4990 if (sym_hash)
4991 for (symidx = 0; symidx < extsymcount; ++symidx)
4992 if (sym_hash[symidx] == hi)
4993 {
4994 sym_hash[symidx] = h;
4995 break;
4996 }
4997 }
4998 free (shortname);
4999 }
5000 free (nondeflt_vers);
5001 nondeflt_vers = NULL;
5002 }
5003
5004 /* Now set the weakdefs field correctly for all the weak defined
5005 symbols we found. The only way to do this is to search all the
5006 symbols. Since we only need the information for non functions in
5007 dynamic objects, that's the only time we actually put anything on
5008 the list WEAKS. We need this information so that if a regular
5009 object refers to a symbol defined weakly in a dynamic object, the
5010 real symbol in the dynamic object is also put in the dynamic
5011 symbols; we also must arrange for both symbols to point to the
5012 same memory location. We could handle the general case of symbol
5013 aliasing, but a general symbol alias can only be generated in
5014 assembler code, handling it correctly would be very time
5015 consuming, and other ELF linkers don't handle general aliasing
5016 either. */
5017 if (weaks != NULL)
5018 {
5019 struct elf_link_hash_entry **hpp;
5020 struct elf_link_hash_entry **hppend;
5021 struct elf_link_hash_entry **sorted_sym_hash;
5022 struct elf_link_hash_entry *h;
5023 size_t sym_count;
5024
5025 /* Since we have to search the whole symbol list for each weak
5026 defined symbol, search time for N weak defined symbols will be
5027 O(N^2). Binary search will cut it down to O(NlogN). */
5028 amt = extsymcount;
5029 amt *= sizeof (struct elf_link_hash_entry *);
5030 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5031 if (sorted_sym_hash == NULL)
5032 goto error_return;
5033 sym_hash = sorted_sym_hash;
5034 hpp = elf_sym_hashes (abfd);
5035 hppend = hpp + extsymcount;
5036 sym_count = 0;
5037 for (; hpp < hppend; hpp++)
5038 {
5039 h = *hpp;
5040 if (h != NULL
5041 && h->root.type == bfd_link_hash_defined
5042 && !bed->is_function_type (h->type))
5043 {
5044 *sym_hash = h;
5045 sym_hash++;
5046 sym_count++;
5047 }
5048 }
5049
5050 qsort (sorted_sym_hash, sym_count,
5051 sizeof (struct elf_link_hash_entry *),
5052 elf_sort_symbol);
5053
5054 while (weaks != NULL)
5055 {
5056 struct elf_link_hash_entry *hlook;
5057 asection *slook;
5058 bfd_vma vlook;
5059 size_t i, j, idx = 0;
5060
5061 hlook = weaks;
5062 weaks = hlook->u.weakdef;
5063 hlook->u.weakdef = NULL;
5064
5065 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5066 || hlook->root.type == bfd_link_hash_defweak
5067 || hlook->root.type == bfd_link_hash_common
5068 || hlook->root.type == bfd_link_hash_indirect);
5069 slook = hlook->root.u.def.section;
5070 vlook = hlook->root.u.def.value;
5071
5072 i = 0;
5073 j = sym_count;
5074 while (i != j)
5075 {
5076 bfd_signed_vma vdiff;
5077 idx = (i + j) / 2;
5078 h = sorted_sym_hash[idx];
5079 vdiff = vlook - h->root.u.def.value;
5080 if (vdiff < 0)
5081 j = idx;
5082 else if (vdiff > 0)
5083 i = idx + 1;
5084 else
5085 {
5086 int sdiff = slook->id - h->root.u.def.section->id;
5087 if (sdiff < 0)
5088 j = idx;
5089 else if (sdiff > 0)
5090 i = idx + 1;
5091 else
5092 break;
5093 }
5094 }
5095
5096 /* We didn't find a value/section match. */
5097 if (i == j)
5098 continue;
5099
5100 /* With multiple aliases, or when the weak symbol is already
5101 strongly defined, we have multiple matching symbols and
5102 the binary search above may land on any of them. Step
5103 one past the matching symbol(s). */
5104 while (++idx != j)
5105 {
5106 h = sorted_sym_hash[idx];
5107 if (h->root.u.def.section != slook
5108 || h->root.u.def.value != vlook)
5109 break;
5110 }
5111
5112 /* Now look back over the aliases. Since we sorted by size
5113 as well as value and section, we'll choose the one with
5114 the largest size. */
5115 while (idx-- != i)
5116 {
5117 h = sorted_sym_hash[idx];
5118
5119 /* Stop if value or section doesn't match. */
5120 if (h->root.u.def.section != slook
5121 || h->root.u.def.value != vlook)
5122 break;
5123 else if (h != hlook)
5124 {
5125 hlook->u.weakdef = h;
5126
5127 /* If the weak definition is in the list of dynamic
5128 symbols, make sure the real definition is put
5129 there as well. */
5130 if (hlook->dynindx != -1 && h->dynindx == -1)
5131 {
5132 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5133 {
5134 err_free_sym_hash:
5135 free (sorted_sym_hash);
5136 goto error_return;
5137 }
5138 }
5139
5140 /* If the real definition is in the list of dynamic
5141 symbols, make sure the weak definition is put
5142 there as well. If we don't do this, then the
5143 dynamic loader might not merge the entries for the
5144 real definition and the weak definition. */
5145 if (h->dynindx != -1 && hlook->dynindx == -1)
5146 {
5147 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5148 goto err_free_sym_hash;
5149 }
5150 break;
5151 }
5152 }
5153 }
5154
5155 free (sorted_sym_hash);
5156 }
5157
5158 if (bed->check_directives
5159 && !(*bed->check_directives) (abfd, info))
5160 return FALSE;
5161
5162 if (!info->check_relocs_after_open_input
5163 && !_bfd_elf_link_check_relocs (abfd, info))
5164 return FALSE;
5165
5166 /* If this is a non-traditional link, try to optimize the handling
5167 of the .stab/.stabstr sections. */
5168 if (! dynamic
5169 && ! info->traditional_format
5170 && is_elf_hash_table (htab)
5171 && (info->strip != strip_all && info->strip != strip_debugger))
5172 {
5173 asection *stabstr;
5174
5175 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5176 if (stabstr != NULL)
5177 {
5178 bfd_size_type string_offset = 0;
5179 asection *stab;
5180
5181 for (stab = abfd->sections; stab; stab = stab->next)
5182 if (CONST_STRNEQ (stab->name, ".stab")
5183 && (!stab->name[5] ||
5184 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5185 && (stab->flags & SEC_MERGE) == 0
5186 && !bfd_is_abs_section (stab->output_section))
5187 {
5188 struct bfd_elf_section_data *secdata;
5189
5190 secdata = elf_section_data (stab);
5191 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5192 stabstr, &secdata->sec_info,
5193 &string_offset))
5194 goto error_return;
5195 if (secdata->sec_info)
5196 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5197 }
5198 }
5199 }
5200
5201 if (is_elf_hash_table (htab) && add_needed)
5202 {
5203 /* Add this bfd to the loaded list. */
5204 struct elf_link_loaded_list *n;
5205
5206 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5207 if (n == NULL)
5208 goto error_return;
5209 n->abfd = abfd;
5210 n->next = htab->loaded;
5211 htab->loaded = n;
5212 }
5213
5214 return TRUE;
5215
5216 error_free_vers:
5217 if (old_tab != NULL)
5218 free (old_tab);
5219 if (old_strtab != NULL)
5220 free (old_strtab);
5221 if (nondeflt_vers != NULL)
5222 free (nondeflt_vers);
5223 if (extversym != NULL)
5224 free (extversym);
5225 error_free_sym:
5226 if (isymbuf != NULL)
5227 free (isymbuf);
5228 error_return:
5229 return FALSE;
5230 }
5231
5232 /* Return the linker hash table entry of a symbol that might be
5233 satisfied by an archive symbol. Return -1 on error. */
5234
5235 struct elf_link_hash_entry *
5236 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5237 struct bfd_link_info *info,
5238 const char *name)
5239 {
5240 struct elf_link_hash_entry *h;
5241 char *p, *copy;
5242 size_t len, first;
5243
5244 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5245 if (h != NULL)
5246 return h;
5247
5248 /* If this is a default version (the name contains @@), look up the
5249 symbol again with only one `@' as well as without the version.
5250 The effect is that references to the symbol with and without the
5251 version will be matched by the default symbol in the archive. */
5252
5253 p = strchr (name, ELF_VER_CHR);
5254 if (p == NULL || p[1] != ELF_VER_CHR)
5255 return h;
5256
5257 /* First check with only one `@'. */
5258 len = strlen (name);
5259 copy = (char *) bfd_alloc (abfd, len);
5260 if (copy == NULL)
5261 return (struct elf_link_hash_entry *) 0 - 1;
5262
5263 first = p - name + 1;
5264 memcpy (copy, name, first);
5265 memcpy (copy + first, name + first + 1, len - first);
5266
5267 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5268 if (h == NULL)
5269 {
5270 /* We also need to check references to the symbol without the
5271 version. */
5272 copy[first - 1] = '\0';
5273 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5274 FALSE, FALSE, TRUE);
5275 }
5276
5277 bfd_release (abfd, copy);
5278 return h;
5279 }
5280
5281 /* Add symbols from an ELF archive file to the linker hash table. We
5282 don't use _bfd_generic_link_add_archive_symbols because we need to
5283 handle versioned symbols.
5284
5285 Fortunately, ELF archive handling is simpler than that done by
5286 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5287 oddities. In ELF, if we find a symbol in the archive map, and the
5288 symbol is currently undefined, we know that we must pull in that
5289 object file.
5290
5291 Unfortunately, we do have to make multiple passes over the symbol
5292 table until nothing further is resolved. */
5293
5294 static bfd_boolean
5295 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5296 {
5297 symindex c;
5298 unsigned char *included = NULL;
5299 carsym *symdefs;
5300 bfd_boolean loop;
5301 bfd_size_type amt;
5302 const struct elf_backend_data *bed;
5303 struct elf_link_hash_entry * (*archive_symbol_lookup)
5304 (bfd *, struct bfd_link_info *, const char *);
5305
5306 if (! bfd_has_map (abfd))
5307 {
5308 /* An empty archive is a special case. */
5309 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5310 return TRUE;
5311 bfd_set_error (bfd_error_no_armap);
5312 return FALSE;
5313 }
5314
5315 /* Keep track of all symbols we know to be already defined, and all
5316 files we know to be already included. This is to speed up the
5317 second and subsequent passes. */
5318 c = bfd_ardata (abfd)->symdef_count;
5319 if (c == 0)
5320 return TRUE;
5321 amt = c;
5322 amt *= sizeof (*included);
5323 included = (unsigned char *) bfd_zmalloc (amt);
5324 if (included == NULL)
5325 return FALSE;
5326
5327 symdefs = bfd_ardata (abfd)->symdefs;
5328 bed = get_elf_backend_data (abfd);
5329 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5330
5331 do
5332 {
5333 file_ptr last;
5334 symindex i;
5335 carsym *symdef;
5336 carsym *symdefend;
5337
5338 loop = FALSE;
5339 last = -1;
5340
5341 symdef = symdefs;
5342 symdefend = symdef + c;
5343 for (i = 0; symdef < symdefend; symdef++, i++)
5344 {
5345 struct elf_link_hash_entry *h;
5346 bfd *element;
5347 struct bfd_link_hash_entry *undefs_tail;
5348 symindex mark;
5349
5350 if (included[i])
5351 continue;
5352 if (symdef->file_offset == last)
5353 {
5354 included[i] = TRUE;
5355 continue;
5356 }
5357
5358 h = archive_symbol_lookup (abfd, info, symdef->name);
5359 if (h == (struct elf_link_hash_entry *) 0 - 1)
5360 goto error_return;
5361
5362 if (h == NULL)
5363 continue;
5364
5365 if (h->root.type == bfd_link_hash_common)
5366 {
5367 /* We currently have a common symbol. The archive map contains
5368 a reference to this symbol, so we may want to include it. We
5369 only want to include it however, if this archive element
5370 contains a definition of the symbol, not just another common
5371 declaration of it.
5372
5373 Unfortunately some archivers (including GNU ar) will put
5374 declarations of common symbols into their archive maps, as
5375 well as real definitions, so we cannot just go by the archive
5376 map alone. Instead we must read in the element's symbol
5377 table and check that to see what kind of symbol definition
5378 this is. */
5379 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5380 continue;
5381 }
5382 else if (h->root.type != bfd_link_hash_undefined)
5383 {
5384 if (h->root.type != bfd_link_hash_undefweak)
5385 /* Symbol must be defined. Don't check it again. */
5386 included[i] = TRUE;
5387 continue;
5388 }
5389
5390 /* We need to include this archive member. */
5391 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5392 if (element == NULL)
5393 goto error_return;
5394
5395 if (! bfd_check_format (element, bfd_object))
5396 goto error_return;
5397
5398 undefs_tail = info->hash->undefs_tail;
5399
5400 if (!(*info->callbacks
5401 ->add_archive_element) (info, element, symdef->name, &element))
5402 continue;
5403 if (!bfd_link_add_symbols (element, info))
5404 goto error_return;
5405
5406 /* If there are any new undefined symbols, we need to make
5407 another pass through the archive in order to see whether
5408 they can be defined. FIXME: This isn't perfect, because
5409 common symbols wind up on undefs_tail and because an
5410 undefined symbol which is defined later on in this pass
5411 does not require another pass. This isn't a bug, but it
5412 does make the code less efficient than it could be. */
5413 if (undefs_tail != info->hash->undefs_tail)
5414 loop = TRUE;
5415
5416 /* Look backward to mark all symbols from this object file
5417 which we have already seen in this pass. */
5418 mark = i;
5419 do
5420 {
5421 included[mark] = TRUE;
5422 if (mark == 0)
5423 break;
5424 --mark;
5425 }
5426 while (symdefs[mark].file_offset == symdef->file_offset);
5427
5428 /* We mark subsequent symbols from this object file as we go
5429 on through the loop. */
5430 last = symdef->file_offset;
5431 }
5432 }
5433 while (loop);
5434
5435 free (included);
5436
5437 return TRUE;
5438
5439 error_return:
5440 if (included != NULL)
5441 free (included);
5442 return FALSE;
5443 }
5444
5445 /* Given an ELF BFD, add symbols to the global hash table as
5446 appropriate. */
5447
5448 bfd_boolean
5449 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5450 {
5451 switch (bfd_get_format (abfd))
5452 {
5453 case bfd_object:
5454 return elf_link_add_object_symbols (abfd, info);
5455 case bfd_archive:
5456 return elf_link_add_archive_symbols (abfd, info);
5457 default:
5458 bfd_set_error (bfd_error_wrong_format);
5459 return FALSE;
5460 }
5461 }
5462 \f
5463 struct hash_codes_info
5464 {
5465 unsigned long *hashcodes;
5466 bfd_boolean error;
5467 };
5468
5469 /* This function will be called though elf_link_hash_traverse to store
5470 all hash value of the exported symbols in an array. */
5471
5472 static bfd_boolean
5473 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5474 {
5475 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5476 const char *name;
5477 unsigned long ha;
5478 char *alc = NULL;
5479
5480 /* Ignore indirect symbols. These are added by the versioning code. */
5481 if (h->dynindx == -1)
5482 return TRUE;
5483
5484 name = h->root.root.string;
5485 if (h->versioned >= versioned)
5486 {
5487 char *p = strchr (name, ELF_VER_CHR);
5488 if (p != NULL)
5489 {
5490 alc = (char *) bfd_malloc (p - name + 1);
5491 if (alc == NULL)
5492 {
5493 inf->error = TRUE;
5494 return FALSE;
5495 }
5496 memcpy (alc, name, p - name);
5497 alc[p - name] = '\0';
5498 name = alc;
5499 }
5500 }
5501
5502 /* Compute the hash value. */
5503 ha = bfd_elf_hash (name);
5504
5505 /* Store the found hash value in the array given as the argument. */
5506 *(inf->hashcodes)++ = ha;
5507
5508 /* And store it in the struct so that we can put it in the hash table
5509 later. */
5510 h->u.elf_hash_value = ha;
5511
5512 if (alc != NULL)
5513 free (alc);
5514
5515 return TRUE;
5516 }
5517
5518 struct collect_gnu_hash_codes
5519 {
5520 bfd *output_bfd;
5521 const struct elf_backend_data *bed;
5522 unsigned long int nsyms;
5523 unsigned long int maskbits;
5524 unsigned long int *hashcodes;
5525 unsigned long int *hashval;
5526 unsigned long int *indx;
5527 unsigned long int *counts;
5528 bfd_vma *bitmask;
5529 bfd_byte *contents;
5530 long int min_dynindx;
5531 unsigned long int bucketcount;
5532 unsigned long int symindx;
5533 long int local_indx;
5534 long int shift1, shift2;
5535 unsigned long int mask;
5536 bfd_boolean error;
5537 };
5538
5539 /* This function will be called though elf_link_hash_traverse to store
5540 all hash value of the exported symbols in an array. */
5541
5542 static bfd_boolean
5543 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5544 {
5545 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5546 const char *name;
5547 unsigned long ha;
5548 char *alc = NULL;
5549
5550 /* Ignore indirect symbols. These are added by the versioning code. */
5551 if (h->dynindx == -1)
5552 return TRUE;
5553
5554 /* Ignore also local symbols and undefined symbols. */
5555 if (! (*s->bed->elf_hash_symbol) (h))
5556 return TRUE;
5557
5558 name = h->root.root.string;
5559 if (h->versioned >= versioned)
5560 {
5561 char *p = strchr (name, ELF_VER_CHR);
5562 if (p != NULL)
5563 {
5564 alc = (char *) bfd_malloc (p - name + 1);
5565 if (alc == NULL)
5566 {
5567 s->error = TRUE;
5568 return FALSE;
5569 }
5570 memcpy (alc, name, p - name);
5571 alc[p - name] = '\0';
5572 name = alc;
5573 }
5574 }
5575
5576 /* Compute the hash value. */
5577 ha = bfd_elf_gnu_hash (name);
5578
5579 /* Store the found hash value in the array for compute_bucket_count,
5580 and also for .dynsym reordering purposes. */
5581 s->hashcodes[s->nsyms] = ha;
5582 s->hashval[h->dynindx] = ha;
5583 ++s->nsyms;
5584 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5585 s->min_dynindx = h->dynindx;
5586
5587 if (alc != NULL)
5588 free (alc);
5589
5590 return TRUE;
5591 }
5592
5593 /* This function will be called though elf_link_hash_traverse to do
5594 final dynaminc symbol renumbering. */
5595
5596 static bfd_boolean
5597 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5598 {
5599 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5600 unsigned long int bucket;
5601 unsigned long int val;
5602
5603 /* Ignore indirect symbols. */
5604 if (h->dynindx == -1)
5605 return TRUE;
5606
5607 /* Ignore also local symbols and undefined symbols. */
5608 if (! (*s->bed->elf_hash_symbol) (h))
5609 {
5610 if (h->dynindx >= s->min_dynindx)
5611 h->dynindx = s->local_indx++;
5612 return TRUE;
5613 }
5614
5615 bucket = s->hashval[h->dynindx] % s->bucketcount;
5616 val = (s->hashval[h->dynindx] >> s->shift1)
5617 & ((s->maskbits >> s->shift1) - 1);
5618 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5619 s->bitmask[val]
5620 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5621 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5622 if (s->counts[bucket] == 1)
5623 /* Last element terminates the chain. */
5624 val |= 1;
5625 bfd_put_32 (s->output_bfd, val,
5626 s->contents + (s->indx[bucket] - s->symindx) * 4);
5627 --s->counts[bucket];
5628 h->dynindx = s->indx[bucket]++;
5629 return TRUE;
5630 }
5631
5632 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5633
5634 bfd_boolean
5635 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5636 {
5637 return !(h->forced_local
5638 || h->root.type == bfd_link_hash_undefined
5639 || h->root.type == bfd_link_hash_undefweak
5640 || ((h->root.type == bfd_link_hash_defined
5641 || h->root.type == bfd_link_hash_defweak)
5642 && h->root.u.def.section->output_section == NULL));
5643 }
5644
5645 /* Array used to determine the number of hash table buckets to use
5646 based on the number of symbols there are. If there are fewer than
5647 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5648 fewer than 37 we use 17 buckets, and so forth. We never use more
5649 than 32771 buckets. */
5650
5651 static const size_t elf_buckets[] =
5652 {
5653 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5654 16411, 32771, 0
5655 };
5656
5657 /* Compute bucket count for hashing table. We do not use a static set
5658 of possible tables sizes anymore. Instead we determine for all
5659 possible reasonable sizes of the table the outcome (i.e., the
5660 number of collisions etc) and choose the best solution. The
5661 weighting functions are not too simple to allow the table to grow
5662 without bounds. Instead one of the weighting factors is the size.
5663 Therefore the result is always a good payoff between few collisions
5664 (= short chain lengths) and table size. */
5665 static size_t
5666 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5667 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5668 unsigned long int nsyms,
5669 int gnu_hash)
5670 {
5671 size_t best_size = 0;
5672 unsigned long int i;
5673
5674 /* We have a problem here. The following code to optimize the table
5675 size requires an integer type with more the 32 bits. If
5676 BFD_HOST_U_64_BIT is set we know about such a type. */
5677 #ifdef BFD_HOST_U_64_BIT
5678 if (info->optimize)
5679 {
5680 size_t minsize;
5681 size_t maxsize;
5682 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5683 bfd *dynobj = elf_hash_table (info)->dynobj;
5684 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5685 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5686 unsigned long int *counts;
5687 bfd_size_type amt;
5688 unsigned int no_improvement_count = 0;
5689
5690 /* Possible optimization parameters: if we have NSYMS symbols we say
5691 that the hashing table must at least have NSYMS/4 and at most
5692 2*NSYMS buckets. */
5693 minsize = nsyms / 4;
5694 if (minsize == 0)
5695 minsize = 1;
5696 best_size = maxsize = nsyms * 2;
5697 if (gnu_hash)
5698 {
5699 if (minsize < 2)
5700 minsize = 2;
5701 if ((best_size & 31) == 0)
5702 ++best_size;
5703 }
5704
5705 /* Create array where we count the collisions in. We must use bfd_malloc
5706 since the size could be large. */
5707 amt = maxsize;
5708 amt *= sizeof (unsigned long int);
5709 counts = (unsigned long int *) bfd_malloc (amt);
5710 if (counts == NULL)
5711 return 0;
5712
5713 /* Compute the "optimal" size for the hash table. The criteria is a
5714 minimal chain length. The minor criteria is (of course) the size
5715 of the table. */
5716 for (i = minsize; i < maxsize; ++i)
5717 {
5718 /* Walk through the array of hashcodes and count the collisions. */
5719 BFD_HOST_U_64_BIT max;
5720 unsigned long int j;
5721 unsigned long int fact;
5722
5723 if (gnu_hash && (i & 31) == 0)
5724 continue;
5725
5726 memset (counts, '\0', i * sizeof (unsigned long int));
5727
5728 /* Determine how often each hash bucket is used. */
5729 for (j = 0; j < nsyms; ++j)
5730 ++counts[hashcodes[j] % i];
5731
5732 /* For the weight function we need some information about the
5733 pagesize on the target. This is information need not be 100%
5734 accurate. Since this information is not available (so far) we
5735 define it here to a reasonable default value. If it is crucial
5736 to have a better value some day simply define this value. */
5737 # ifndef BFD_TARGET_PAGESIZE
5738 # define BFD_TARGET_PAGESIZE (4096)
5739 # endif
5740
5741 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5742 and the chains. */
5743 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5744
5745 # if 1
5746 /* Variant 1: optimize for short chains. We add the squares
5747 of all the chain lengths (which favors many small chain
5748 over a few long chains). */
5749 for (j = 0; j < i; ++j)
5750 max += counts[j] * counts[j];
5751
5752 /* This adds penalties for the overall size of the table. */
5753 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5754 max *= fact * fact;
5755 # else
5756 /* Variant 2: Optimize a lot more for small table. Here we
5757 also add squares of the size but we also add penalties for
5758 empty slots (the +1 term). */
5759 for (j = 0; j < i; ++j)
5760 max += (1 + counts[j]) * (1 + counts[j]);
5761
5762 /* The overall size of the table is considered, but not as
5763 strong as in variant 1, where it is squared. */
5764 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5765 max *= fact;
5766 # endif
5767
5768 /* Compare with current best results. */
5769 if (max < best_chlen)
5770 {
5771 best_chlen = max;
5772 best_size = i;
5773 no_improvement_count = 0;
5774 }
5775 /* PR 11843: Avoid futile long searches for the best bucket size
5776 when there are a large number of symbols. */
5777 else if (++no_improvement_count == 100)
5778 break;
5779 }
5780
5781 free (counts);
5782 }
5783 else
5784 #endif /* defined (BFD_HOST_U_64_BIT) */
5785 {
5786 /* This is the fallback solution if no 64bit type is available or if we
5787 are not supposed to spend much time on optimizations. We select the
5788 bucket count using a fixed set of numbers. */
5789 for (i = 0; elf_buckets[i] != 0; i++)
5790 {
5791 best_size = elf_buckets[i];
5792 if (nsyms < elf_buckets[i + 1])
5793 break;
5794 }
5795 if (gnu_hash && best_size < 2)
5796 best_size = 2;
5797 }
5798
5799 return best_size;
5800 }
5801
5802 /* Size any SHT_GROUP section for ld -r. */
5803
5804 bfd_boolean
5805 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5806 {
5807 bfd *ibfd;
5808
5809 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5810 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5811 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5812 return FALSE;
5813 return TRUE;
5814 }
5815
5816 /* Set a default stack segment size. The value in INFO wins. If it
5817 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5818 undefined it is initialized. */
5819
5820 bfd_boolean
5821 bfd_elf_stack_segment_size (bfd *output_bfd,
5822 struct bfd_link_info *info,
5823 const char *legacy_symbol,
5824 bfd_vma default_size)
5825 {
5826 struct elf_link_hash_entry *h = NULL;
5827
5828 /* Look for legacy symbol. */
5829 if (legacy_symbol)
5830 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5831 FALSE, FALSE, FALSE);
5832 if (h && (h->root.type == bfd_link_hash_defined
5833 || h->root.type == bfd_link_hash_defweak)
5834 && h->def_regular
5835 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5836 {
5837 /* The symbol has no type if specified on the command line. */
5838 h->type = STT_OBJECT;
5839 if (info->stacksize)
5840 /* xgettext:c-format */
5841 _bfd_error_handler (_("%B: stack size specified and %s set"),
5842 output_bfd, legacy_symbol);
5843 else if (h->root.u.def.section != bfd_abs_section_ptr)
5844 /* xgettext:c-format */
5845 _bfd_error_handler (_("%B: %s not absolute"),
5846 output_bfd, legacy_symbol);
5847 else
5848 info->stacksize = h->root.u.def.value;
5849 }
5850
5851 if (!info->stacksize)
5852 /* If the user didn't set a size, or explicitly inhibit the
5853 size, set it now. */
5854 info->stacksize = default_size;
5855
5856 /* Provide the legacy symbol, if it is referenced. */
5857 if (h && (h->root.type == bfd_link_hash_undefined
5858 || h->root.type == bfd_link_hash_undefweak))
5859 {
5860 struct bfd_link_hash_entry *bh = NULL;
5861
5862 if (!(_bfd_generic_link_add_one_symbol
5863 (info, output_bfd, legacy_symbol,
5864 BSF_GLOBAL, bfd_abs_section_ptr,
5865 info->stacksize >= 0 ? info->stacksize : 0,
5866 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5867 return FALSE;
5868
5869 h = (struct elf_link_hash_entry *) bh;
5870 h->def_regular = 1;
5871 h->type = STT_OBJECT;
5872 }
5873
5874 return TRUE;
5875 }
5876
5877 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5878
5879 struct elf_gc_sweep_symbol_info
5880 {
5881 struct bfd_link_info *info;
5882 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5883 bfd_boolean);
5884 };
5885
5886 static bfd_boolean
5887 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5888 {
5889 if (!h->mark
5890 && (((h->root.type == bfd_link_hash_defined
5891 || h->root.type == bfd_link_hash_defweak)
5892 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5893 && h->root.u.def.section->gc_mark))
5894 || h->root.type == bfd_link_hash_undefined
5895 || h->root.type == bfd_link_hash_undefweak))
5896 {
5897 struct elf_gc_sweep_symbol_info *inf;
5898
5899 inf = (struct elf_gc_sweep_symbol_info *) data;
5900 (*inf->hide_symbol) (inf->info, h, TRUE);
5901 h->def_regular = 0;
5902 h->ref_regular = 0;
5903 h->ref_regular_nonweak = 0;
5904 }
5905
5906 return TRUE;
5907 }
5908
5909 /* Set up the sizes and contents of the ELF dynamic sections. This is
5910 called by the ELF linker emulation before_allocation routine. We
5911 must set the sizes of the sections before the linker sets the
5912 addresses of the various sections. */
5913
5914 bfd_boolean
5915 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5916 const char *soname,
5917 const char *rpath,
5918 const char *filter_shlib,
5919 const char *audit,
5920 const char *depaudit,
5921 const char * const *auxiliary_filters,
5922 struct bfd_link_info *info,
5923 asection **sinterpptr)
5924 {
5925 size_t soname_indx;
5926 bfd *dynobj;
5927 const struct elf_backend_data *bed;
5928
5929 *sinterpptr = NULL;
5930
5931 soname_indx = (size_t) -1;
5932
5933 if (!is_elf_hash_table (info->hash))
5934 return TRUE;
5935
5936 dynobj = elf_hash_table (info)->dynobj;
5937
5938 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5939 {
5940 struct bfd_elf_version_tree *verdefs;
5941 struct elf_info_failed asvinfo;
5942 struct bfd_elf_version_tree *t;
5943 struct bfd_elf_version_expr *d;
5944 struct elf_info_failed eif;
5945 bfd_boolean all_defined;
5946 asection *s;
5947
5948 eif.info = info;
5949 eif.failed = FALSE;
5950
5951 /* If we are supposed to export all symbols into the dynamic symbol
5952 table (this is not the normal case), then do so. */
5953 if (info->export_dynamic
5954 || (bfd_link_executable (info) && info->dynamic))
5955 {
5956 elf_link_hash_traverse (elf_hash_table (info),
5957 _bfd_elf_export_symbol,
5958 &eif);
5959 if (eif.failed)
5960 return FALSE;
5961 }
5962
5963 /* Make all global versions with definition. */
5964 for (t = info->version_info; t != NULL; t = t->next)
5965 for (d = t->globals.list; d != NULL; d = d->next)
5966 if (!d->symver && d->literal)
5967 {
5968 const char *verstr, *name;
5969 size_t namelen, verlen, newlen;
5970 char *newname, *p, leading_char;
5971 struct elf_link_hash_entry *newh;
5972
5973 leading_char = bfd_get_symbol_leading_char (output_bfd);
5974 name = d->pattern;
5975 namelen = strlen (name) + (leading_char != '\0');
5976 verstr = t->name;
5977 verlen = strlen (verstr);
5978 newlen = namelen + verlen + 3;
5979
5980 newname = (char *) bfd_malloc (newlen);
5981 if (newname == NULL)
5982 return FALSE;
5983 newname[0] = leading_char;
5984 memcpy (newname + (leading_char != '\0'), name, namelen);
5985
5986 /* Check the hidden versioned definition. */
5987 p = newname + namelen;
5988 *p++ = ELF_VER_CHR;
5989 memcpy (p, verstr, verlen + 1);
5990 newh = elf_link_hash_lookup (elf_hash_table (info),
5991 newname, FALSE, FALSE,
5992 FALSE);
5993 if (newh == NULL
5994 || (newh->root.type != bfd_link_hash_defined
5995 && newh->root.type != bfd_link_hash_defweak))
5996 {
5997 /* Check the default versioned definition. */
5998 *p++ = ELF_VER_CHR;
5999 memcpy (p, verstr, verlen + 1);
6000 newh = elf_link_hash_lookup (elf_hash_table (info),
6001 newname, FALSE, FALSE,
6002 FALSE);
6003 }
6004 free (newname);
6005
6006 /* Mark this version if there is a definition and it is
6007 not defined in a shared object. */
6008 if (newh != NULL
6009 && !newh->def_dynamic
6010 && (newh->root.type == bfd_link_hash_defined
6011 || newh->root.type == bfd_link_hash_defweak))
6012 d->symver = 1;
6013 }
6014
6015 /* Attach all the symbols to their version information. */
6016 asvinfo.info = info;
6017 asvinfo.failed = FALSE;
6018
6019 elf_link_hash_traverse (elf_hash_table (info),
6020 _bfd_elf_link_assign_sym_version,
6021 &asvinfo);
6022 if (asvinfo.failed)
6023 return FALSE;
6024
6025 if (!info->allow_undefined_version)
6026 {
6027 /* Check if all global versions have a definition. */
6028 all_defined = TRUE;
6029 for (t = info->version_info; t != NULL; t = t->next)
6030 for (d = t->globals.list; d != NULL; d = d->next)
6031 if (d->literal && !d->symver && !d->script)
6032 {
6033 _bfd_error_handler
6034 (_("%s: undefined version: %s"),
6035 d->pattern, t->name);
6036 all_defined = FALSE;
6037 }
6038
6039 if (!all_defined)
6040 {
6041 bfd_set_error (bfd_error_bad_value);
6042 return FALSE;
6043 }
6044 }
6045
6046 /* Set up the version definition section. */
6047 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6048 BFD_ASSERT (s != NULL);
6049
6050 /* We may have created additional version definitions if we are
6051 just linking a regular application. */
6052 verdefs = info->version_info;
6053
6054 /* Skip anonymous version tag. */
6055 if (verdefs != NULL && verdefs->vernum == 0)
6056 verdefs = verdefs->next;
6057
6058 if (verdefs == NULL && !info->create_default_symver)
6059 s->flags |= SEC_EXCLUDE;
6060 else
6061 {
6062 unsigned int cdefs;
6063 bfd_size_type size;
6064 bfd_byte *p;
6065 Elf_Internal_Verdef def;
6066 Elf_Internal_Verdaux defaux;
6067 struct bfd_link_hash_entry *bh;
6068 struct elf_link_hash_entry *h;
6069 const char *name;
6070
6071 cdefs = 0;
6072 size = 0;
6073
6074 /* Make space for the base version. */
6075 size += sizeof (Elf_External_Verdef);
6076 size += sizeof (Elf_External_Verdaux);
6077 ++cdefs;
6078
6079 /* Make space for the default version. */
6080 if (info->create_default_symver)
6081 {
6082 size += sizeof (Elf_External_Verdef);
6083 ++cdefs;
6084 }
6085
6086 for (t = verdefs; t != NULL; t = t->next)
6087 {
6088 struct bfd_elf_version_deps *n;
6089
6090 /* Don't emit base version twice. */
6091 if (t->vernum == 0)
6092 continue;
6093
6094 size += sizeof (Elf_External_Verdef);
6095 size += sizeof (Elf_External_Verdaux);
6096 ++cdefs;
6097
6098 for (n = t->deps; n != NULL; n = n->next)
6099 size += sizeof (Elf_External_Verdaux);
6100 }
6101
6102 s->size = size;
6103 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6104 if (s->contents == NULL && s->size != 0)
6105 return FALSE;
6106
6107 /* Fill in the version definition section. */
6108
6109 p = s->contents;
6110
6111 def.vd_version = VER_DEF_CURRENT;
6112 def.vd_flags = VER_FLG_BASE;
6113 def.vd_ndx = 1;
6114 def.vd_cnt = 1;
6115 if (info->create_default_symver)
6116 {
6117 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6118 def.vd_next = sizeof (Elf_External_Verdef);
6119 }
6120 else
6121 {
6122 def.vd_aux = sizeof (Elf_External_Verdef);
6123 def.vd_next = (sizeof (Elf_External_Verdef)
6124 + sizeof (Elf_External_Verdaux));
6125 }
6126
6127 if (soname_indx != (size_t) -1)
6128 {
6129 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6130 soname_indx);
6131 def.vd_hash = bfd_elf_hash (soname);
6132 defaux.vda_name = soname_indx;
6133 name = soname;
6134 }
6135 else
6136 {
6137 size_t indx;
6138
6139 name = lbasename (output_bfd->filename);
6140 def.vd_hash = bfd_elf_hash (name);
6141 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6142 name, FALSE);
6143 if (indx == (size_t) -1)
6144 return FALSE;
6145 defaux.vda_name = indx;
6146 }
6147 defaux.vda_next = 0;
6148
6149 _bfd_elf_swap_verdef_out (output_bfd, &def,
6150 (Elf_External_Verdef *) p);
6151 p += sizeof (Elf_External_Verdef);
6152 if (info->create_default_symver)
6153 {
6154 /* Add a symbol representing this version. */
6155 bh = NULL;
6156 if (! (_bfd_generic_link_add_one_symbol
6157 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6158 0, NULL, FALSE,
6159 get_elf_backend_data (dynobj)->collect, &bh)))
6160 return FALSE;
6161 h = (struct elf_link_hash_entry *) bh;
6162 h->non_elf = 0;
6163 h->def_regular = 1;
6164 h->type = STT_OBJECT;
6165 h->verinfo.vertree = NULL;
6166
6167 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6168 return FALSE;
6169
6170 /* Create a duplicate of the base version with the same
6171 aux block, but different flags. */
6172 def.vd_flags = 0;
6173 def.vd_ndx = 2;
6174 def.vd_aux = sizeof (Elf_External_Verdef);
6175 if (verdefs)
6176 def.vd_next = (sizeof (Elf_External_Verdef)
6177 + sizeof (Elf_External_Verdaux));
6178 else
6179 def.vd_next = 0;
6180 _bfd_elf_swap_verdef_out (output_bfd, &def,
6181 (Elf_External_Verdef *) p);
6182 p += sizeof (Elf_External_Verdef);
6183 }
6184 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6185 (Elf_External_Verdaux *) p);
6186 p += sizeof (Elf_External_Verdaux);
6187
6188 for (t = verdefs; t != NULL; t = t->next)
6189 {
6190 unsigned int cdeps;
6191 struct bfd_elf_version_deps *n;
6192
6193 /* Don't emit the base version twice. */
6194 if (t->vernum == 0)
6195 continue;
6196
6197 cdeps = 0;
6198 for (n = t->deps; n != NULL; n = n->next)
6199 ++cdeps;
6200
6201 /* Add a symbol representing this version. */
6202 bh = NULL;
6203 if (! (_bfd_generic_link_add_one_symbol
6204 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6205 0, NULL, FALSE,
6206 get_elf_backend_data (dynobj)->collect, &bh)))
6207 return FALSE;
6208 h = (struct elf_link_hash_entry *) bh;
6209 h->non_elf = 0;
6210 h->def_regular = 1;
6211 h->type = STT_OBJECT;
6212 h->verinfo.vertree = t;
6213
6214 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6215 return FALSE;
6216
6217 def.vd_version = VER_DEF_CURRENT;
6218 def.vd_flags = 0;
6219 if (t->globals.list == NULL
6220 && t->locals.list == NULL
6221 && ! t->used)
6222 def.vd_flags |= VER_FLG_WEAK;
6223 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6224 def.vd_cnt = cdeps + 1;
6225 def.vd_hash = bfd_elf_hash (t->name);
6226 def.vd_aux = sizeof (Elf_External_Verdef);
6227 def.vd_next = 0;
6228
6229 /* If a basever node is next, it *must* be the last node in
6230 the chain, otherwise Verdef construction breaks. */
6231 if (t->next != NULL && t->next->vernum == 0)
6232 BFD_ASSERT (t->next->next == NULL);
6233
6234 if (t->next != NULL && t->next->vernum != 0)
6235 def.vd_next = (sizeof (Elf_External_Verdef)
6236 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6237
6238 _bfd_elf_swap_verdef_out (output_bfd, &def,
6239 (Elf_External_Verdef *) p);
6240 p += sizeof (Elf_External_Verdef);
6241
6242 defaux.vda_name = h->dynstr_index;
6243 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6244 h->dynstr_index);
6245 defaux.vda_next = 0;
6246 if (t->deps != NULL)
6247 defaux.vda_next = sizeof (Elf_External_Verdaux);
6248 t->name_indx = defaux.vda_name;
6249
6250 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6251 (Elf_External_Verdaux *) p);
6252 p += sizeof (Elf_External_Verdaux);
6253
6254 for (n = t->deps; n != NULL; n = n->next)
6255 {
6256 if (n->version_needed == NULL)
6257 {
6258 /* This can happen if there was an error in the
6259 version script. */
6260 defaux.vda_name = 0;
6261 }
6262 else
6263 {
6264 defaux.vda_name = n->version_needed->name_indx;
6265 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6266 defaux.vda_name);
6267 }
6268 if (n->next == NULL)
6269 defaux.vda_next = 0;
6270 else
6271 defaux.vda_next = sizeof (Elf_External_Verdaux);
6272
6273 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6274 (Elf_External_Verdaux *) p);
6275 p += sizeof (Elf_External_Verdaux);
6276 }
6277 }
6278
6279 elf_tdata (output_bfd)->cverdefs = cdefs;
6280 }
6281
6282 /* Work out the size of the version reference section. */
6283
6284 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6285 BFD_ASSERT (s != NULL);
6286 {
6287 struct elf_find_verdep_info sinfo;
6288
6289 sinfo.info = info;
6290 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6291 if (sinfo.vers == 0)
6292 sinfo.vers = 1;
6293 sinfo.failed = FALSE;
6294
6295 elf_link_hash_traverse (elf_hash_table (info),
6296 _bfd_elf_link_find_version_dependencies,
6297 &sinfo);
6298 if (sinfo.failed)
6299 return FALSE;
6300
6301 if (elf_tdata (output_bfd)->verref == NULL)
6302 s->flags |= SEC_EXCLUDE;
6303 else
6304 {
6305 Elf_Internal_Verneed *vn;
6306 unsigned int size;
6307 unsigned int crefs;
6308 bfd_byte *p;
6309
6310 /* Build the version dependency section. */
6311 size = 0;
6312 crefs = 0;
6313 for (vn = elf_tdata (output_bfd)->verref;
6314 vn != NULL;
6315 vn = vn->vn_nextref)
6316 {
6317 Elf_Internal_Vernaux *a;
6318
6319 size += sizeof (Elf_External_Verneed);
6320 ++crefs;
6321 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6322 size += sizeof (Elf_External_Vernaux);
6323 }
6324
6325 s->size = size;
6326 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6327 if (s->contents == NULL)
6328 return FALSE;
6329
6330 p = s->contents;
6331 for (vn = elf_tdata (output_bfd)->verref;
6332 vn != NULL;
6333 vn = vn->vn_nextref)
6334 {
6335 unsigned int caux;
6336 Elf_Internal_Vernaux *a;
6337 size_t indx;
6338
6339 caux = 0;
6340 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6341 ++caux;
6342
6343 vn->vn_version = VER_NEED_CURRENT;
6344 vn->vn_cnt = caux;
6345 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6346 elf_dt_name (vn->vn_bfd) != NULL
6347 ? elf_dt_name (vn->vn_bfd)
6348 : lbasename (vn->vn_bfd->filename),
6349 FALSE);
6350 if (indx == (size_t) -1)
6351 return FALSE;
6352 vn->vn_file = indx;
6353 vn->vn_aux = sizeof (Elf_External_Verneed);
6354 if (vn->vn_nextref == NULL)
6355 vn->vn_next = 0;
6356 else
6357 vn->vn_next = (sizeof (Elf_External_Verneed)
6358 + caux * sizeof (Elf_External_Vernaux));
6359
6360 _bfd_elf_swap_verneed_out (output_bfd, vn,
6361 (Elf_External_Verneed *) p);
6362 p += sizeof (Elf_External_Verneed);
6363
6364 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6365 {
6366 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6367 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6368 a->vna_nodename, FALSE);
6369 if (indx == (size_t) -1)
6370 return FALSE;
6371 a->vna_name = indx;
6372 if (a->vna_nextptr == NULL)
6373 a->vna_next = 0;
6374 else
6375 a->vna_next = sizeof (Elf_External_Vernaux);
6376
6377 _bfd_elf_swap_vernaux_out (output_bfd, a,
6378 (Elf_External_Vernaux *) p);
6379 p += sizeof (Elf_External_Vernaux);
6380 }
6381 }
6382
6383 elf_tdata (output_bfd)->cverrefs = crefs;
6384 }
6385 }
6386 }
6387
6388 bed = get_elf_backend_data (output_bfd);
6389
6390 if (info->gc_sections && bed->can_gc_sections)
6391 {
6392 struct elf_gc_sweep_symbol_info sweep_info;
6393 unsigned long section_sym_count;
6394
6395 /* Remove the symbols that were in the swept sections from the
6396 dynamic symbol table. GCFIXME: Anyone know how to get them
6397 out of the static symbol table as well? */
6398 sweep_info.info = info;
6399 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6400 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6401 &sweep_info);
6402
6403 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6404 }
6405
6406 /* Any syms created from now on start with -1 in
6407 got.refcount/offset and plt.refcount/offset. */
6408 elf_hash_table (info)->init_got_refcount
6409 = elf_hash_table (info)->init_got_offset;
6410 elf_hash_table (info)->init_plt_refcount
6411 = elf_hash_table (info)->init_plt_offset;
6412
6413 if (bfd_link_relocatable (info)
6414 && !_bfd_elf_size_group_sections (info))
6415 return FALSE;
6416
6417 /* The backend may have to create some sections regardless of whether
6418 we're dynamic or not. */
6419 if (bed->elf_backend_always_size_sections
6420 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6421 return FALSE;
6422
6423 /* Determine any GNU_STACK segment requirements, after the backend
6424 has had a chance to set a default segment size. */
6425 if (info->execstack)
6426 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6427 else if (info->noexecstack)
6428 elf_stack_flags (output_bfd) = PF_R | PF_W;
6429 else
6430 {
6431 bfd *inputobj;
6432 asection *notesec = NULL;
6433 int exec = 0;
6434
6435 for (inputobj = info->input_bfds;
6436 inputobj;
6437 inputobj = inputobj->link.next)
6438 {
6439 asection *s;
6440
6441 if (inputobj->flags
6442 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6443 continue;
6444 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6445 if (s)
6446 {
6447 if (s->flags & SEC_CODE)
6448 exec = PF_X;
6449 notesec = s;
6450 }
6451 else if (bed->default_execstack)
6452 exec = PF_X;
6453 }
6454 if (notesec || info->stacksize > 0)
6455 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6456 if (notesec && exec && bfd_link_relocatable (info)
6457 && notesec->output_section != bfd_abs_section_ptr)
6458 notesec->output_section->flags |= SEC_CODE;
6459 }
6460
6461 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6462 {
6463 struct elf_info_failed eif;
6464 struct elf_link_hash_entry *h;
6465 asection *dynstr;
6466 asection *s;
6467
6468 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6469 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6470
6471 if (soname != NULL)
6472 {
6473 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6474 soname, TRUE);
6475 if (soname_indx == (size_t) -1
6476 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6477 return FALSE;
6478 }
6479
6480 if (info->symbolic)
6481 {
6482 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6483 return FALSE;
6484 info->flags |= DF_SYMBOLIC;
6485 }
6486
6487 if (rpath != NULL)
6488 {
6489 size_t indx;
6490 bfd_vma tag;
6491
6492 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6493 TRUE);
6494 if (indx == (size_t) -1)
6495 return FALSE;
6496
6497 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6498 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6499 return FALSE;
6500 }
6501
6502 if (filter_shlib != NULL)
6503 {
6504 size_t indx;
6505
6506 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6507 filter_shlib, TRUE);
6508 if (indx == (size_t) -1
6509 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6510 return FALSE;
6511 }
6512
6513 if (auxiliary_filters != NULL)
6514 {
6515 const char * const *p;
6516
6517 for (p = auxiliary_filters; *p != NULL; p++)
6518 {
6519 size_t indx;
6520
6521 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6522 *p, TRUE);
6523 if (indx == (size_t) -1
6524 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6525 return FALSE;
6526 }
6527 }
6528
6529 if (audit != NULL)
6530 {
6531 size_t indx;
6532
6533 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6534 TRUE);
6535 if (indx == (size_t) -1
6536 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6537 return FALSE;
6538 }
6539
6540 if (depaudit != NULL)
6541 {
6542 size_t indx;
6543
6544 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6545 TRUE);
6546 if (indx == (size_t) -1
6547 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6548 return FALSE;
6549 }
6550
6551 eif.info = info;
6552 eif.failed = FALSE;
6553
6554 /* Find all symbols which were defined in a dynamic object and make
6555 the backend pick a reasonable value for them. */
6556 elf_link_hash_traverse (elf_hash_table (info),
6557 _bfd_elf_adjust_dynamic_symbol,
6558 &eif);
6559 if (eif.failed)
6560 return FALSE;
6561
6562 /* Add some entries to the .dynamic section. We fill in some of the
6563 values later, in bfd_elf_final_link, but we must add the entries
6564 now so that we know the final size of the .dynamic section. */
6565
6566 /* If there are initialization and/or finalization functions to
6567 call then add the corresponding DT_INIT/DT_FINI entries. */
6568 h = (info->init_function
6569 ? elf_link_hash_lookup (elf_hash_table (info),
6570 info->init_function, FALSE,
6571 FALSE, FALSE)
6572 : NULL);
6573 if (h != NULL
6574 && (h->ref_regular
6575 || h->def_regular))
6576 {
6577 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6578 return FALSE;
6579 }
6580 h = (info->fini_function
6581 ? elf_link_hash_lookup (elf_hash_table (info),
6582 info->fini_function, FALSE,
6583 FALSE, FALSE)
6584 : NULL);
6585 if (h != NULL
6586 && (h->ref_regular
6587 || h->def_regular))
6588 {
6589 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6590 return FALSE;
6591 }
6592
6593 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6594 if (s != NULL && s->linker_has_input)
6595 {
6596 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6597 if (! bfd_link_executable (info))
6598 {
6599 bfd *sub;
6600 asection *o;
6601
6602 for (sub = info->input_bfds; sub != NULL;
6603 sub = sub->link.next)
6604 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6605 for (o = sub->sections; o != NULL; o = o->next)
6606 if (elf_section_data (o)->this_hdr.sh_type
6607 == SHT_PREINIT_ARRAY)
6608 {
6609 _bfd_error_handler
6610 (_("%B: .preinit_array section is not allowed in DSO"),
6611 sub);
6612 break;
6613 }
6614
6615 bfd_set_error (bfd_error_nonrepresentable_section);
6616 return FALSE;
6617 }
6618
6619 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6620 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6621 return FALSE;
6622 }
6623 s = bfd_get_section_by_name (output_bfd, ".init_array");
6624 if (s != NULL && s->linker_has_input)
6625 {
6626 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6627 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6628 return FALSE;
6629 }
6630 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6631 if (s != NULL && s->linker_has_input)
6632 {
6633 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6634 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6635 return FALSE;
6636 }
6637
6638 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6639 /* If .dynstr is excluded from the link, we don't want any of
6640 these tags. Strictly, we should be checking each section
6641 individually; This quick check covers for the case where
6642 someone does a /DISCARD/ : { *(*) }. */
6643 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6644 {
6645 bfd_size_type strsize;
6646
6647 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6648 if ((info->emit_hash
6649 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6650 || (info->emit_gnu_hash
6651 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6652 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6653 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6654 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6655 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6656 bed->s->sizeof_sym))
6657 return FALSE;
6658 }
6659 }
6660
6661 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6662 return FALSE;
6663
6664 /* The backend must work out the sizes of all the other dynamic
6665 sections. */
6666 if (dynobj != NULL
6667 && bed->elf_backend_size_dynamic_sections != NULL
6668 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6669 return FALSE;
6670
6671 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6672 {
6673 unsigned long section_sym_count;
6674
6675 if (elf_tdata (output_bfd)->cverdefs)
6676 {
6677 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6678
6679 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6680 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6681 return FALSE;
6682 }
6683
6684 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6685 {
6686 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6687 return FALSE;
6688 }
6689 else if (info->flags & DF_BIND_NOW)
6690 {
6691 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6692 return FALSE;
6693 }
6694
6695 if (info->flags_1)
6696 {
6697 if (bfd_link_executable (info))
6698 info->flags_1 &= ~ (DF_1_INITFIRST
6699 | DF_1_NODELETE
6700 | DF_1_NOOPEN);
6701 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6702 return FALSE;
6703 }
6704
6705 if (elf_tdata (output_bfd)->cverrefs)
6706 {
6707 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6708
6709 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6710 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6711 return FALSE;
6712 }
6713
6714 if ((elf_tdata (output_bfd)->cverrefs == 0
6715 && elf_tdata (output_bfd)->cverdefs == 0)
6716 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6717 &section_sym_count) == 0)
6718 {
6719 asection *s;
6720
6721 s = bfd_get_linker_section (dynobj, ".gnu.version");
6722 s->flags |= SEC_EXCLUDE;
6723 }
6724 }
6725 return TRUE;
6726 }
6727
6728 /* Find the first non-excluded output section. We'll use its
6729 section symbol for some emitted relocs. */
6730 void
6731 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6732 {
6733 asection *s;
6734
6735 for (s = output_bfd->sections; s != NULL; s = s->next)
6736 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6737 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6738 {
6739 elf_hash_table (info)->text_index_section = s;
6740 break;
6741 }
6742 }
6743
6744 /* Find two non-excluded output sections, one for code, one for data.
6745 We'll use their section symbols for some emitted relocs. */
6746 void
6747 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6748 {
6749 asection *s;
6750
6751 /* Data first, since setting text_index_section changes
6752 _bfd_elf_link_omit_section_dynsym. */
6753 for (s = output_bfd->sections; s != NULL; s = s->next)
6754 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6755 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6756 {
6757 elf_hash_table (info)->data_index_section = s;
6758 break;
6759 }
6760
6761 for (s = output_bfd->sections; s != NULL; s = s->next)
6762 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6763 == (SEC_ALLOC | SEC_READONLY))
6764 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6765 {
6766 elf_hash_table (info)->text_index_section = s;
6767 break;
6768 }
6769
6770 if (elf_hash_table (info)->text_index_section == NULL)
6771 elf_hash_table (info)->text_index_section
6772 = elf_hash_table (info)->data_index_section;
6773 }
6774
6775 bfd_boolean
6776 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6777 {
6778 const struct elf_backend_data *bed;
6779
6780 if (!is_elf_hash_table (info->hash))
6781 return TRUE;
6782
6783 bed = get_elf_backend_data (output_bfd);
6784 (*bed->elf_backend_init_index_section) (output_bfd, info);
6785
6786 if (elf_hash_table (info)->dynamic_sections_created)
6787 {
6788 bfd *dynobj;
6789 asection *s;
6790 bfd_size_type dynsymcount;
6791 unsigned long section_sym_count;
6792 unsigned int dtagcount;
6793
6794 dynobj = elf_hash_table (info)->dynobj;
6795
6796 /* Assign dynsym indicies. In a shared library we generate a
6797 section symbol for each output section, which come first.
6798 Next come all of the back-end allocated local dynamic syms,
6799 followed by the rest of the global symbols. */
6800
6801 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6802 &section_sym_count);
6803
6804 /* Work out the size of the symbol version section. */
6805 s = bfd_get_linker_section (dynobj, ".gnu.version");
6806 BFD_ASSERT (s != NULL);
6807 if ((s->flags & SEC_EXCLUDE) == 0)
6808 {
6809 s->size = dynsymcount * sizeof (Elf_External_Versym);
6810 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6811 if (s->contents == NULL)
6812 return FALSE;
6813
6814 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6815 return FALSE;
6816 }
6817
6818 /* Set the size of the .dynsym and .hash sections. We counted
6819 the number of dynamic symbols in elf_link_add_object_symbols.
6820 We will build the contents of .dynsym and .hash when we build
6821 the final symbol table, because until then we do not know the
6822 correct value to give the symbols. We built the .dynstr
6823 section as we went along in elf_link_add_object_symbols. */
6824 s = elf_hash_table (info)->dynsym;
6825 BFD_ASSERT (s != NULL);
6826 s->size = dynsymcount * bed->s->sizeof_sym;
6827
6828 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6829 if (s->contents == NULL)
6830 return FALSE;
6831
6832 /* The first entry in .dynsym is a dummy symbol. Clear all the
6833 section syms, in case we don't output them all. */
6834 ++section_sym_count;
6835 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6836
6837 elf_hash_table (info)->bucketcount = 0;
6838
6839 /* Compute the size of the hashing table. As a side effect this
6840 computes the hash values for all the names we export. */
6841 if (info->emit_hash)
6842 {
6843 unsigned long int *hashcodes;
6844 struct hash_codes_info hashinf;
6845 bfd_size_type amt;
6846 unsigned long int nsyms;
6847 size_t bucketcount;
6848 size_t hash_entry_size;
6849
6850 /* Compute the hash values for all exported symbols. At the same
6851 time store the values in an array so that we could use them for
6852 optimizations. */
6853 amt = dynsymcount * sizeof (unsigned long int);
6854 hashcodes = (unsigned long int *) bfd_malloc (amt);
6855 if (hashcodes == NULL)
6856 return FALSE;
6857 hashinf.hashcodes = hashcodes;
6858 hashinf.error = FALSE;
6859
6860 /* Put all hash values in HASHCODES. */
6861 elf_link_hash_traverse (elf_hash_table (info),
6862 elf_collect_hash_codes, &hashinf);
6863 if (hashinf.error)
6864 {
6865 free (hashcodes);
6866 return FALSE;
6867 }
6868
6869 nsyms = hashinf.hashcodes - hashcodes;
6870 bucketcount
6871 = compute_bucket_count (info, hashcodes, nsyms, 0);
6872 free (hashcodes);
6873
6874 if (bucketcount == 0)
6875 return FALSE;
6876
6877 elf_hash_table (info)->bucketcount = bucketcount;
6878
6879 s = bfd_get_linker_section (dynobj, ".hash");
6880 BFD_ASSERT (s != NULL);
6881 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6882 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6883 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6884 if (s->contents == NULL)
6885 return FALSE;
6886
6887 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6888 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6889 s->contents + hash_entry_size);
6890 }
6891
6892 if (info->emit_gnu_hash)
6893 {
6894 size_t i, cnt;
6895 unsigned char *contents;
6896 struct collect_gnu_hash_codes cinfo;
6897 bfd_size_type amt;
6898 size_t bucketcount;
6899
6900 memset (&cinfo, 0, sizeof (cinfo));
6901
6902 /* Compute the hash values for all exported symbols. At the same
6903 time store the values in an array so that we could use them for
6904 optimizations. */
6905 amt = dynsymcount * 2 * sizeof (unsigned long int);
6906 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6907 if (cinfo.hashcodes == NULL)
6908 return FALSE;
6909
6910 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6911 cinfo.min_dynindx = -1;
6912 cinfo.output_bfd = output_bfd;
6913 cinfo.bed = bed;
6914
6915 /* Put all hash values in HASHCODES. */
6916 elf_link_hash_traverse (elf_hash_table (info),
6917 elf_collect_gnu_hash_codes, &cinfo);
6918 if (cinfo.error)
6919 {
6920 free (cinfo.hashcodes);
6921 return FALSE;
6922 }
6923
6924 bucketcount
6925 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6926
6927 if (bucketcount == 0)
6928 {
6929 free (cinfo.hashcodes);
6930 return FALSE;
6931 }
6932
6933 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6934 BFD_ASSERT (s != NULL);
6935
6936 if (cinfo.nsyms == 0)
6937 {
6938 /* Empty .gnu.hash section is special. */
6939 BFD_ASSERT (cinfo.min_dynindx == -1);
6940 free (cinfo.hashcodes);
6941 s->size = 5 * 4 + bed->s->arch_size / 8;
6942 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6943 if (contents == NULL)
6944 return FALSE;
6945 s->contents = contents;
6946 /* 1 empty bucket. */
6947 bfd_put_32 (output_bfd, 1, contents);
6948 /* SYMIDX above the special symbol 0. */
6949 bfd_put_32 (output_bfd, 1, contents + 4);
6950 /* Just one word for bitmask. */
6951 bfd_put_32 (output_bfd, 1, contents + 8);
6952 /* Only hash fn bloom filter. */
6953 bfd_put_32 (output_bfd, 0, contents + 12);
6954 /* No hashes are valid - empty bitmask. */
6955 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6956 /* No hashes in the only bucket. */
6957 bfd_put_32 (output_bfd, 0,
6958 contents + 16 + bed->s->arch_size / 8);
6959 }
6960 else
6961 {
6962 unsigned long int maskwords, maskbitslog2, x;
6963 BFD_ASSERT (cinfo.min_dynindx != -1);
6964
6965 x = cinfo.nsyms;
6966 maskbitslog2 = 1;
6967 while ((x >>= 1) != 0)
6968 ++maskbitslog2;
6969 if (maskbitslog2 < 3)
6970 maskbitslog2 = 5;
6971 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6972 maskbitslog2 = maskbitslog2 + 3;
6973 else
6974 maskbitslog2 = maskbitslog2 + 2;
6975 if (bed->s->arch_size == 64)
6976 {
6977 if (maskbitslog2 == 5)
6978 maskbitslog2 = 6;
6979 cinfo.shift1 = 6;
6980 }
6981 else
6982 cinfo.shift1 = 5;
6983 cinfo.mask = (1 << cinfo.shift1) - 1;
6984 cinfo.shift2 = maskbitslog2;
6985 cinfo.maskbits = 1 << maskbitslog2;
6986 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6987 amt = bucketcount * sizeof (unsigned long int) * 2;
6988 amt += maskwords * sizeof (bfd_vma);
6989 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6990 if (cinfo.bitmask == NULL)
6991 {
6992 free (cinfo.hashcodes);
6993 return FALSE;
6994 }
6995
6996 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6997 cinfo.indx = cinfo.counts + bucketcount;
6998 cinfo.symindx = dynsymcount - cinfo.nsyms;
6999 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7000
7001 /* Determine how often each hash bucket is used. */
7002 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7003 for (i = 0; i < cinfo.nsyms; ++i)
7004 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7005
7006 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7007 if (cinfo.counts[i] != 0)
7008 {
7009 cinfo.indx[i] = cnt;
7010 cnt += cinfo.counts[i];
7011 }
7012 BFD_ASSERT (cnt == dynsymcount);
7013 cinfo.bucketcount = bucketcount;
7014 cinfo.local_indx = cinfo.min_dynindx;
7015
7016 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7017 s->size += cinfo.maskbits / 8;
7018 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7019 if (contents == NULL)
7020 {
7021 free (cinfo.bitmask);
7022 free (cinfo.hashcodes);
7023 return FALSE;
7024 }
7025
7026 s->contents = contents;
7027 bfd_put_32 (output_bfd, bucketcount, contents);
7028 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7029 bfd_put_32 (output_bfd, maskwords, contents + 8);
7030 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7031 contents += 16 + cinfo.maskbits / 8;
7032
7033 for (i = 0; i < bucketcount; ++i)
7034 {
7035 if (cinfo.counts[i] == 0)
7036 bfd_put_32 (output_bfd, 0, contents);
7037 else
7038 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7039 contents += 4;
7040 }
7041
7042 cinfo.contents = contents;
7043
7044 /* Renumber dynamic symbols, populate .gnu.hash section. */
7045 elf_link_hash_traverse (elf_hash_table (info),
7046 elf_renumber_gnu_hash_syms, &cinfo);
7047
7048 contents = s->contents + 16;
7049 for (i = 0; i < maskwords; ++i)
7050 {
7051 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7052 contents);
7053 contents += bed->s->arch_size / 8;
7054 }
7055
7056 free (cinfo.bitmask);
7057 free (cinfo.hashcodes);
7058 }
7059 }
7060
7061 s = bfd_get_linker_section (dynobj, ".dynstr");
7062 BFD_ASSERT (s != NULL);
7063
7064 elf_finalize_dynstr (output_bfd, info);
7065
7066 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7067
7068 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7069 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7070 return FALSE;
7071 }
7072
7073 return TRUE;
7074 }
7075 \f
7076 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7077
7078 static void
7079 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7080 asection *sec)
7081 {
7082 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7083 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7084 }
7085
7086 /* Finish SHF_MERGE section merging. */
7087
7088 bfd_boolean
7089 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7090 {
7091 bfd *ibfd;
7092 asection *sec;
7093
7094 if (!is_elf_hash_table (info->hash))
7095 return FALSE;
7096
7097 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7098 if ((ibfd->flags & DYNAMIC) == 0
7099 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7100 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7101 == get_elf_backend_data (obfd)->s->elfclass))
7102 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7103 if ((sec->flags & SEC_MERGE) != 0
7104 && !bfd_is_abs_section (sec->output_section))
7105 {
7106 struct bfd_elf_section_data *secdata;
7107
7108 secdata = elf_section_data (sec);
7109 if (! _bfd_add_merge_section (obfd,
7110 &elf_hash_table (info)->merge_info,
7111 sec, &secdata->sec_info))
7112 return FALSE;
7113 else if (secdata->sec_info)
7114 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7115 }
7116
7117 if (elf_hash_table (info)->merge_info != NULL)
7118 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7119 merge_sections_remove_hook);
7120 return TRUE;
7121 }
7122
7123 /* Create an entry in an ELF linker hash table. */
7124
7125 struct bfd_hash_entry *
7126 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7127 struct bfd_hash_table *table,
7128 const char *string)
7129 {
7130 /* Allocate the structure if it has not already been allocated by a
7131 subclass. */
7132 if (entry == NULL)
7133 {
7134 entry = (struct bfd_hash_entry *)
7135 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7136 if (entry == NULL)
7137 return entry;
7138 }
7139
7140 /* Call the allocation method of the superclass. */
7141 entry = _bfd_link_hash_newfunc (entry, table, string);
7142 if (entry != NULL)
7143 {
7144 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7145 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7146
7147 /* Set local fields. */
7148 ret->indx = -1;
7149 ret->dynindx = -1;
7150 ret->got = htab->init_got_refcount;
7151 ret->plt = htab->init_plt_refcount;
7152 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7153 - offsetof (struct elf_link_hash_entry, size)));
7154 /* Assume that we have been called by a non-ELF symbol reader.
7155 This flag is then reset by the code which reads an ELF input
7156 file. This ensures that a symbol created by a non-ELF symbol
7157 reader will have the flag set correctly. */
7158 ret->non_elf = 1;
7159 }
7160
7161 return entry;
7162 }
7163
7164 /* Copy data from an indirect symbol to its direct symbol, hiding the
7165 old indirect symbol. Also used for copying flags to a weakdef. */
7166
7167 void
7168 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7169 struct elf_link_hash_entry *dir,
7170 struct elf_link_hash_entry *ind)
7171 {
7172 struct elf_link_hash_table *htab;
7173
7174 /* Copy down any references that we may have already seen to the
7175 symbol which just became indirect. */
7176
7177 if (dir->versioned != versioned_hidden)
7178 dir->ref_dynamic |= ind->ref_dynamic;
7179 dir->ref_regular |= ind->ref_regular;
7180 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7181 dir->non_got_ref |= ind->non_got_ref;
7182 dir->needs_plt |= ind->needs_plt;
7183 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7184
7185 if (ind->root.type != bfd_link_hash_indirect)
7186 return;
7187
7188 /* Copy over the global and procedure linkage table refcount entries.
7189 These may have been already set up by a check_relocs routine. */
7190 htab = elf_hash_table (info);
7191 if (ind->got.refcount > htab->init_got_refcount.refcount)
7192 {
7193 if (dir->got.refcount < 0)
7194 dir->got.refcount = 0;
7195 dir->got.refcount += ind->got.refcount;
7196 ind->got.refcount = htab->init_got_refcount.refcount;
7197 }
7198
7199 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7200 {
7201 if (dir->plt.refcount < 0)
7202 dir->plt.refcount = 0;
7203 dir->plt.refcount += ind->plt.refcount;
7204 ind->plt.refcount = htab->init_plt_refcount.refcount;
7205 }
7206
7207 if (ind->dynindx != -1)
7208 {
7209 if (dir->dynindx != -1)
7210 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7211 dir->dynindx = ind->dynindx;
7212 dir->dynstr_index = ind->dynstr_index;
7213 ind->dynindx = -1;
7214 ind->dynstr_index = 0;
7215 }
7216 }
7217
7218 void
7219 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7220 struct elf_link_hash_entry *h,
7221 bfd_boolean force_local)
7222 {
7223 /* STT_GNU_IFUNC symbol must go through PLT. */
7224 if (h->type != STT_GNU_IFUNC)
7225 {
7226 h->plt = elf_hash_table (info)->init_plt_offset;
7227 h->needs_plt = 0;
7228 }
7229 if (force_local)
7230 {
7231 h->forced_local = 1;
7232 if (h->dynindx != -1)
7233 {
7234 h->dynindx = -1;
7235 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7236 h->dynstr_index);
7237 }
7238 }
7239 }
7240
7241 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7242 caller. */
7243
7244 bfd_boolean
7245 _bfd_elf_link_hash_table_init
7246 (struct elf_link_hash_table *table,
7247 bfd *abfd,
7248 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7249 struct bfd_hash_table *,
7250 const char *),
7251 unsigned int entsize,
7252 enum elf_target_id target_id)
7253 {
7254 bfd_boolean ret;
7255 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7256
7257 table->init_got_refcount.refcount = can_refcount - 1;
7258 table->init_plt_refcount.refcount = can_refcount - 1;
7259 table->init_got_offset.offset = -(bfd_vma) 1;
7260 table->init_plt_offset.offset = -(bfd_vma) 1;
7261 /* The first dynamic symbol is a dummy. */
7262 table->dynsymcount = 1;
7263
7264 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7265
7266 table->root.type = bfd_link_elf_hash_table;
7267 table->hash_table_id = target_id;
7268
7269 return ret;
7270 }
7271
7272 /* Create an ELF linker hash table. */
7273
7274 struct bfd_link_hash_table *
7275 _bfd_elf_link_hash_table_create (bfd *abfd)
7276 {
7277 struct elf_link_hash_table *ret;
7278 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7279
7280 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7281 if (ret == NULL)
7282 return NULL;
7283
7284 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7285 sizeof (struct elf_link_hash_entry),
7286 GENERIC_ELF_DATA))
7287 {
7288 free (ret);
7289 return NULL;
7290 }
7291 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7292
7293 return &ret->root;
7294 }
7295
7296 /* Destroy an ELF linker hash table. */
7297
7298 void
7299 _bfd_elf_link_hash_table_free (bfd *obfd)
7300 {
7301 struct elf_link_hash_table *htab;
7302
7303 htab = (struct elf_link_hash_table *) obfd->link.hash;
7304 if (htab->dynstr != NULL)
7305 _bfd_elf_strtab_free (htab->dynstr);
7306 _bfd_merge_sections_free (htab->merge_info);
7307 _bfd_generic_link_hash_table_free (obfd);
7308 }
7309
7310 /* This is a hook for the ELF emulation code in the generic linker to
7311 tell the backend linker what file name to use for the DT_NEEDED
7312 entry for a dynamic object. */
7313
7314 void
7315 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7316 {
7317 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7318 && bfd_get_format (abfd) == bfd_object)
7319 elf_dt_name (abfd) = name;
7320 }
7321
7322 int
7323 bfd_elf_get_dyn_lib_class (bfd *abfd)
7324 {
7325 int lib_class;
7326 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7327 && bfd_get_format (abfd) == bfd_object)
7328 lib_class = elf_dyn_lib_class (abfd);
7329 else
7330 lib_class = 0;
7331 return lib_class;
7332 }
7333
7334 void
7335 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7336 {
7337 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7338 && bfd_get_format (abfd) == bfd_object)
7339 elf_dyn_lib_class (abfd) = lib_class;
7340 }
7341
7342 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7343 the linker ELF emulation code. */
7344
7345 struct bfd_link_needed_list *
7346 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7347 struct bfd_link_info *info)
7348 {
7349 if (! is_elf_hash_table (info->hash))
7350 return NULL;
7351 return elf_hash_table (info)->needed;
7352 }
7353
7354 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7355 hook for the linker ELF emulation code. */
7356
7357 struct bfd_link_needed_list *
7358 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7359 struct bfd_link_info *info)
7360 {
7361 if (! is_elf_hash_table (info->hash))
7362 return NULL;
7363 return elf_hash_table (info)->runpath;
7364 }
7365
7366 /* Get the name actually used for a dynamic object for a link. This
7367 is the SONAME entry if there is one. Otherwise, it is the string
7368 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7369
7370 const char *
7371 bfd_elf_get_dt_soname (bfd *abfd)
7372 {
7373 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7374 && bfd_get_format (abfd) == bfd_object)
7375 return elf_dt_name (abfd);
7376 return NULL;
7377 }
7378
7379 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7380 the ELF linker emulation code. */
7381
7382 bfd_boolean
7383 bfd_elf_get_bfd_needed_list (bfd *abfd,
7384 struct bfd_link_needed_list **pneeded)
7385 {
7386 asection *s;
7387 bfd_byte *dynbuf = NULL;
7388 unsigned int elfsec;
7389 unsigned long shlink;
7390 bfd_byte *extdyn, *extdynend;
7391 size_t extdynsize;
7392 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7393
7394 *pneeded = NULL;
7395
7396 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7397 || bfd_get_format (abfd) != bfd_object)
7398 return TRUE;
7399
7400 s = bfd_get_section_by_name (abfd, ".dynamic");
7401 if (s == NULL || s->size == 0)
7402 return TRUE;
7403
7404 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7405 goto error_return;
7406
7407 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7408 if (elfsec == SHN_BAD)
7409 goto error_return;
7410
7411 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7412
7413 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7414 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7415
7416 extdyn = dynbuf;
7417 extdynend = extdyn + s->size;
7418 for (; extdyn < extdynend; extdyn += extdynsize)
7419 {
7420 Elf_Internal_Dyn dyn;
7421
7422 (*swap_dyn_in) (abfd, extdyn, &dyn);
7423
7424 if (dyn.d_tag == DT_NULL)
7425 break;
7426
7427 if (dyn.d_tag == DT_NEEDED)
7428 {
7429 const char *string;
7430 struct bfd_link_needed_list *l;
7431 unsigned int tagv = dyn.d_un.d_val;
7432 bfd_size_type amt;
7433
7434 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7435 if (string == NULL)
7436 goto error_return;
7437
7438 amt = sizeof *l;
7439 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7440 if (l == NULL)
7441 goto error_return;
7442
7443 l->by = abfd;
7444 l->name = string;
7445 l->next = *pneeded;
7446 *pneeded = l;
7447 }
7448 }
7449
7450 free (dynbuf);
7451
7452 return TRUE;
7453
7454 error_return:
7455 if (dynbuf != NULL)
7456 free (dynbuf);
7457 return FALSE;
7458 }
7459
7460 struct elf_symbuf_symbol
7461 {
7462 unsigned long st_name; /* Symbol name, index in string tbl */
7463 unsigned char st_info; /* Type and binding attributes */
7464 unsigned char st_other; /* Visibilty, and target specific */
7465 };
7466
7467 struct elf_symbuf_head
7468 {
7469 struct elf_symbuf_symbol *ssym;
7470 size_t count;
7471 unsigned int st_shndx;
7472 };
7473
7474 struct elf_symbol
7475 {
7476 union
7477 {
7478 Elf_Internal_Sym *isym;
7479 struct elf_symbuf_symbol *ssym;
7480 } u;
7481 const char *name;
7482 };
7483
7484 /* Sort references to symbols by ascending section number. */
7485
7486 static int
7487 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7488 {
7489 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7490 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7491
7492 return s1->st_shndx - s2->st_shndx;
7493 }
7494
7495 static int
7496 elf_sym_name_compare (const void *arg1, const void *arg2)
7497 {
7498 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7499 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7500 return strcmp (s1->name, s2->name);
7501 }
7502
7503 static struct elf_symbuf_head *
7504 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7505 {
7506 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7507 struct elf_symbuf_symbol *ssym;
7508 struct elf_symbuf_head *ssymbuf, *ssymhead;
7509 size_t i, shndx_count, total_size;
7510
7511 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7512 if (indbuf == NULL)
7513 return NULL;
7514
7515 for (ind = indbuf, i = 0; i < symcount; i++)
7516 if (isymbuf[i].st_shndx != SHN_UNDEF)
7517 *ind++ = &isymbuf[i];
7518 indbufend = ind;
7519
7520 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7521 elf_sort_elf_symbol);
7522
7523 shndx_count = 0;
7524 if (indbufend > indbuf)
7525 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7526 if (ind[0]->st_shndx != ind[1]->st_shndx)
7527 shndx_count++;
7528
7529 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7530 + (indbufend - indbuf) * sizeof (*ssym));
7531 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7532 if (ssymbuf == NULL)
7533 {
7534 free (indbuf);
7535 return NULL;
7536 }
7537
7538 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7539 ssymbuf->ssym = NULL;
7540 ssymbuf->count = shndx_count;
7541 ssymbuf->st_shndx = 0;
7542 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7543 {
7544 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7545 {
7546 ssymhead++;
7547 ssymhead->ssym = ssym;
7548 ssymhead->count = 0;
7549 ssymhead->st_shndx = (*ind)->st_shndx;
7550 }
7551 ssym->st_name = (*ind)->st_name;
7552 ssym->st_info = (*ind)->st_info;
7553 ssym->st_other = (*ind)->st_other;
7554 ssymhead->count++;
7555 }
7556 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7557 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7558 == total_size));
7559
7560 free (indbuf);
7561 return ssymbuf;
7562 }
7563
7564 /* Check if 2 sections define the same set of local and global
7565 symbols. */
7566
7567 static bfd_boolean
7568 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7569 struct bfd_link_info *info)
7570 {
7571 bfd *bfd1, *bfd2;
7572 const struct elf_backend_data *bed1, *bed2;
7573 Elf_Internal_Shdr *hdr1, *hdr2;
7574 size_t symcount1, symcount2;
7575 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7576 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7577 Elf_Internal_Sym *isym, *isymend;
7578 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7579 size_t count1, count2, i;
7580 unsigned int shndx1, shndx2;
7581 bfd_boolean result;
7582
7583 bfd1 = sec1->owner;
7584 bfd2 = sec2->owner;
7585
7586 /* Both sections have to be in ELF. */
7587 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7588 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7589 return FALSE;
7590
7591 if (elf_section_type (sec1) != elf_section_type (sec2))
7592 return FALSE;
7593
7594 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7595 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7596 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7597 return FALSE;
7598
7599 bed1 = get_elf_backend_data (bfd1);
7600 bed2 = get_elf_backend_data (bfd2);
7601 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7602 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7603 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7604 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7605
7606 if (symcount1 == 0 || symcount2 == 0)
7607 return FALSE;
7608
7609 result = FALSE;
7610 isymbuf1 = NULL;
7611 isymbuf2 = NULL;
7612 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7613 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7614
7615 if (ssymbuf1 == NULL)
7616 {
7617 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7618 NULL, NULL, NULL);
7619 if (isymbuf1 == NULL)
7620 goto done;
7621
7622 if (!info->reduce_memory_overheads)
7623 elf_tdata (bfd1)->symbuf = ssymbuf1
7624 = elf_create_symbuf (symcount1, isymbuf1);
7625 }
7626
7627 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7628 {
7629 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7630 NULL, NULL, NULL);
7631 if (isymbuf2 == NULL)
7632 goto done;
7633
7634 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7635 elf_tdata (bfd2)->symbuf = ssymbuf2
7636 = elf_create_symbuf (symcount2, isymbuf2);
7637 }
7638
7639 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7640 {
7641 /* Optimized faster version. */
7642 size_t lo, hi, mid;
7643 struct elf_symbol *symp;
7644 struct elf_symbuf_symbol *ssym, *ssymend;
7645
7646 lo = 0;
7647 hi = ssymbuf1->count;
7648 ssymbuf1++;
7649 count1 = 0;
7650 while (lo < hi)
7651 {
7652 mid = (lo + hi) / 2;
7653 if (shndx1 < ssymbuf1[mid].st_shndx)
7654 hi = mid;
7655 else if (shndx1 > ssymbuf1[mid].st_shndx)
7656 lo = mid + 1;
7657 else
7658 {
7659 count1 = ssymbuf1[mid].count;
7660 ssymbuf1 += mid;
7661 break;
7662 }
7663 }
7664
7665 lo = 0;
7666 hi = ssymbuf2->count;
7667 ssymbuf2++;
7668 count2 = 0;
7669 while (lo < hi)
7670 {
7671 mid = (lo + hi) / 2;
7672 if (shndx2 < ssymbuf2[mid].st_shndx)
7673 hi = mid;
7674 else if (shndx2 > ssymbuf2[mid].st_shndx)
7675 lo = mid + 1;
7676 else
7677 {
7678 count2 = ssymbuf2[mid].count;
7679 ssymbuf2 += mid;
7680 break;
7681 }
7682 }
7683
7684 if (count1 == 0 || count2 == 0 || count1 != count2)
7685 goto done;
7686
7687 symtable1
7688 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7689 symtable2
7690 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7691 if (symtable1 == NULL || symtable2 == NULL)
7692 goto done;
7693
7694 symp = symtable1;
7695 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7696 ssym < ssymend; ssym++, symp++)
7697 {
7698 symp->u.ssym = ssym;
7699 symp->name = bfd_elf_string_from_elf_section (bfd1,
7700 hdr1->sh_link,
7701 ssym->st_name);
7702 }
7703
7704 symp = symtable2;
7705 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7706 ssym < ssymend; ssym++, symp++)
7707 {
7708 symp->u.ssym = ssym;
7709 symp->name = bfd_elf_string_from_elf_section (bfd2,
7710 hdr2->sh_link,
7711 ssym->st_name);
7712 }
7713
7714 /* Sort symbol by name. */
7715 qsort (symtable1, count1, sizeof (struct elf_symbol),
7716 elf_sym_name_compare);
7717 qsort (symtable2, count1, sizeof (struct elf_symbol),
7718 elf_sym_name_compare);
7719
7720 for (i = 0; i < count1; i++)
7721 /* Two symbols must have the same binding, type and name. */
7722 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7723 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7724 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7725 goto done;
7726
7727 result = TRUE;
7728 goto done;
7729 }
7730
7731 symtable1 = (struct elf_symbol *)
7732 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7733 symtable2 = (struct elf_symbol *)
7734 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7735 if (symtable1 == NULL || symtable2 == NULL)
7736 goto done;
7737
7738 /* Count definitions in the section. */
7739 count1 = 0;
7740 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7741 if (isym->st_shndx == shndx1)
7742 symtable1[count1++].u.isym = isym;
7743
7744 count2 = 0;
7745 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7746 if (isym->st_shndx == shndx2)
7747 symtable2[count2++].u.isym = isym;
7748
7749 if (count1 == 0 || count2 == 0 || count1 != count2)
7750 goto done;
7751
7752 for (i = 0; i < count1; i++)
7753 symtable1[i].name
7754 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7755 symtable1[i].u.isym->st_name);
7756
7757 for (i = 0; i < count2; i++)
7758 symtable2[i].name
7759 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7760 symtable2[i].u.isym->st_name);
7761
7762 /* Sort symbol by name. */
7763 qsort (symtable1, count1, sizeof (struct elf_symbol),
7764 elf_sym_name_compare);
7765 qsort (symtable2, count1, sizeof (struct elf_symbol),
7766 elf_sym_name_compare);
7767
7768 for (i = 0; i < count1; i++)
7769 /* Two symbols must have the same binding, type and name. */
7770 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7771 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7772 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7773 goto done;
7774
7775 result = TRUE;
7776
7777 done:
7778 if (symtable1)
7779 free (symtable1);
7780 if (symtable2)
7781 free (symtable2);
7782 if (isymbuf1)
7783 free (isymbuf1);
7784 if (isymbuf2)
7785 free (isymbuf2);
7786
7787 return result;
7788 }
7789
7790 /* Return TRUE if 2 section types are compatible. */
7791
7792 bfd_boolean
7793 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7794 bfd *bbfd, const asection *bsec)
7795 {
7796 if (asec == NULL
7797 || bsec == NULL
7798 || abfd->xvec->flavour != bfd_target_elf_flavour
7799 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7800 return TRUE;
7801
7802 return elf_section_type (asec) == elf_section_type (bsec);
7803 }
7804 \f
7805 /* Final phase of ELF linker. */
7806
7807 /* A structure we use to avoid passing large numbers of arguments. */
7808
7809 struct elf_final_link_info
7810 {
7811 /* General link information. */
7812 struct bfd_link_info *info;
7813 /* Output BFD. */
7814 bfd *output_bfd;
7815 /* Symbol string table. */
7816 struct elf_strtab_hash *symstrtab;
7817 /* .hash section. */
7818 asection *hash_sec;
7819 /* symbol version section (.gnu.version). */
7820 asection *symver_sec;
7821 /* Buffer large enough to hold contents of any section. */
7822 bfd_byte *contents;
7823 /* Buffer large enough to hold external relocs of any section. */
7824 void *external_relocs;
7825 /* Buffer large enough to hold internal relocs of any section. */
7826 Elf_Internal_Rela *internal_relocs;
7827 /* Buffer large enough to hold external local symbols of any input
7828 BFD. */
7829 bfd_byte *external_syms;
7830 /* And a buffer for symbol section indices. */
7831 Elf_External_Sym_Shndx *locsym_shndx;
7832 /* Buffer large enough to hold internal local symbols of any input
7833 BFD. */
7834 Elf_Internal_Sym *internal_syms;
7835 /* Array large enough to hold a symbol index for each local symbol
7836 of any input BFD. */
7837 long *indices;
7838 /* Array large enough to hold a section pointer for each local
7839 symbol of any input BFD. */
7840 asection **sections;
7841 /* Buffer for SHT_SYMTAB_SHNDX section. */
7842 Elf_External_Sym_Shndx *symshndxbuf;
7843 /* Number of STT_FILE syms seen. */
7844 size_t filesym_count;
7845 };
7846
7847 /* This struct is used to pass information to elf_link_output_extsym. */
7848
7849 struct elf_outext_info
7850 {
7851 bfd_boolean failed;
7852 bfd_boolean localsyms;
7853 bfd_boolean file_sym_done;
7854 struct elf_final_link_info *flinfo;
7855 };
7856
7857
7858 /* Support for evaluating a complex relocation.
7859
7860 Complex relocations are generalized, self-describing relocations. The
7861 implementation of them consists of two parts: complex symbols, and the
7862 relocations themselves.
7863
7864 The relocations are use a reserved elf-wide relocation type code (R_RELC
7865 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7866 information (start bit, end bit, word width, etc) into the addend. This
7867 information is extracted from CGEN-generated operand tables within gas.
7868
7869 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7870 internal) representing prefix-notation expressions, including but not
7871 limited to those sorts of expressions normally encoded as addends in the
7872 addend field. The symbol mangling format is:
7873
7874 <node> := <literal>
7875 | <unary-operator> ':' <node>
7876 | <binary-operator> ':' <node> ':' <node>
7877 ;
7878
7879 <literal> := 's' <digits=N> ':' <N character symbol name>
7880 | 'S' <digits=N> ':' <N character section name>
7881 | '#' <hexdigits>
7882 ;
7883
7884 <binary-operator> := as in C
7885 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7886
7887 static void
7888 set_symbol_value (bfd *bfd_with_globals,
7889 Elf_Internal_Sym *isymbuf,
7890 size_t locsymcount,
7891 size_t symidx,
7892 bfd_vma val)
7893 {
7894 struct elf_link_hash_entry **sym_hashes;
7895 struct elf_link_hash_entry *h;
7896 size_t extsymoff = locsymcount;
7897
7898 if (symidx < locsymcount)
7899 {
7900 Elf_Internal_Sym *sym;
7901
7902 sym = isymbuf + symidx;
7903 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7904 {
7905 /* It is a local symbol: move it to the
7906 "absolute" section and give it a value. */
7907 sym->st_shndx = SHN_ABS;
7908 sym->st_value = val;
7909 return;
7910 }
7911 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7912 extsymoff = 0;
7913 }
7914
7915 /* It is a global symbol: set its link type
7916 to "defined" and give it a value. */
7917
7918 sym_hashes = elf_sym_hashes (bfd_with_globals);
7919 h = sym_hashes [symidx - extsymoff];
7920 while (h->root.type == bfd_link_hash_indirect
7921 || h->root.type == bfd_link_hash_warning)
7922 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7923 h->root.type = bfd_link_hash_defined;
7924 h->root.u.def.value = val;
7925 h->root.u.def.section = bfd_abs_section_ptr;
7926 }
7927
7928 static bfd_boolean
7929 resolve_symbol (const char *name,
7930 bfd *input_bfd,
7931 struct elf_final_link_info *flinfo,
7932 bfd_vma *result,
7933 Elf_Internal_Sym *isymbuf,
7934 size_t locsymcount)
7935 {
7936 Elf_Internal_Sym *sym;
7937 struct bfd_link_hash_entry *global_entry;
7938 const char *candidate = NULL;
7939 Elf_Internal_Shdr *symtab_hdr;
7940 size_t i;
7941
7942 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7943
7944 for (i = 0; i < locsymcount; ++ i)
7945 {
7946 sym = isymbuf + i;
7947
7948 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7949 continue;
7950
7951 candidate = bfd_elf_string_from_elf_section (input_bfd,
7952 symtab_hdr->sh_link,
7953 sym->st_name);
7954 #ifdef DEBUG
7955 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7956 name, candidate, (unsigned long) sym->st_value);
7957 #endif
7958 if (candidate && strcmp (candidate, name) == 0)
7959 {
7960 asection *sec = flinfo->sections [i];
7961
7962 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7963 *result += sec->output_offset + sec->output_section->vma;
7964 #ifdef DEBUG
7965 printf ("Found symbol with value %8.8lx\n",
7966 (unsigned long) *result);
7967 #endif
7968 return TRUE;
7969 }
7970 }
7971
7972 /* Hmm, haven't found it yet. perhaps it is a global. */
7973 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7974 FALSE, FALSE, TRUE);
7975 if (!global_entry)
7976 return FALSE;
7977
7978 if (global_entry->type == bfd_link_hash_defined
7979 || global_entry->type == bfd_link_hash_defweak)
7980 {
7981 *result = (global_entry->u.def.value
7982 + global_entry->u.def.section->output_section->vma
7983 + global_entry->u.def.section->output_offset);
7984 #ifdef DEBUG
7985 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7986 global_entry->root.string, (unsigned long) *result);
7987 #endif
7988 return TRUE;
7989 }
7990
7991 return FALSE;
7992 }
7993
7994 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7995 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7996 names like "foo.end" which is the end address of section "foo". */
7997
7998 static bfd_boolean
7999 resolve_section (const char *name,
8000 asection *sections,
8001 bfd_vma *result,
8002 bfd * abfd)
8003 {
8004 asection *curr;
8005 unsigned int len;
8006
8007 for (curr = sections; curr; curr = curr->next)
8008 if (strcmp (curr->name, name) == 0)
8009 {
8010 *result = curr->vma;
8011 return TRUE;
8012 }
8013
8014 /* Hmm. still haven't found it. try pseudo-section names. */
8015 /* FIXME: This could be coded more efficiently... */
8016 for (curr = sections; curr; curr = curr->next)
8017 {
8018 len = strlen (curr->name);
8019 if (len > strlen (name))
8020 continue;
8021
8022 if (strncmp (curr->name, name, len) == 0)
8023 {
8024 if (strncmp (".end", name + len, 4) == 0)
8025 {
8026 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8027 return TRUE;
8028 }
8029
8030 /* Insert more pseudo-section names here, if you like. */
8031 }
8032 }
8033
8034 return FALSE;
8035 }
8036
8037 static void
8038 undefined_reference (const char *reftype, const char *name)
8039 {
8040 /* xgettext:c-format */
8041 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8042 reftype, name);
8043 }
8044
8045 static bfd_boolean
8046 eval_symbol (bfd_vma *result,
8047 const char **symp,
8048 bfd *input_bfd,
8049 struct elf_final_link_info *flinfo,
8050 bfd_vma dot,
8051 Elf_Internal_Sym *isymbuf,
8052 size_t locsymcount,
8053 int signed_p)
8054 {
8055 size_t len;
8056 size_t symlen;
8057 bfd_vma a;
8058 bfd_vma b;
8059 char symbuf[4096];
8060 const char *sym = *symp;
8061 const char *symend;
8062 bfd_boolean symbol_is_section = FALSE;
8063
8064 len = strlen (sym);
8065 symend = sym + len;
8066
8067 if (len < 1 || len > sizeof (symbuf))
8068 {
8069 bfd_set_error (bfd_error_invalid_operation);
8070 return FALSE;
8071 }
8072
8073 switch (* sym)
8074 {
8075 case '.':
8076 *result = dot;
8077 *symp = sym + 1;
8078 return TRUE;
8079
8080 case '#':
8081 ++sym;
8082 *result = strtoul (sym, (char **) symp, 16);
8083 return TRUE;
8084
8085 case 'S':
8086 symbol_is_section = TRUE;
8087 /* Fall through. */
8088 case 's':
8089 ++sym;
8090 symlen = strtol (sym, (char **) symp, 10);
8091 sym = *symp + 1; /* Skip the trailing ':'. */
8092
8093 if (symend < sym || symlen + 1 > sizeof (symbuf))
8094 {
8095 bfd_set_error (bfd_error_invalid_operation);
8096 return FALSE;
8097 }
8098
8099 memcpy (symbuf, sym, symlen);
8100 symbuf[symlen] = '\0';
8101 *symp = sym + symlen;
8102
8103 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8104 the symbol as a section, or vice-versa. so we're pretty liberal in our
8105 interpretation here; section means "try section first", not "must be a
8106 section", and likewise with symbol. */
8107
8108 if (symbol_is_section)
8109 {
8110 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8111 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8112 isymbuf, locsymcount))
8113 {
8114 undefined_reference ("section", symbuf);
8115 return FALSE;
8116 }
8117 }
8118 else
8119 {
8120 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8121 isymbuf, locsymcount)
8122 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8123 result, input_bfd))
8124 {
8125 undefined_reference ("symbol", symbuf);
8126 return FALSE;
8127 }
8128 }
8129
8130 return TRUE;
8131
8132 /* All that remains are operators. */
8133
8134 #define UNARY_OP(op) \
8135 if (strncmp (sym, #op, strlen (#op)) == 0) \
8136 { \
8137 sym += strlen (#op); \
8138 if (*sym == ':') \
8139 ++sym; \
8140 *symp = sym; \
8141 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8142 isymbuf, locsymcount, signed_p)) \
8143 return FALSE; \
8144 if (signed_p) \
8145 *result = op ((bfd_signed_vma) a); \
8146 else \
8147 *result = op a; \
8148 return TRUE; \
8149 }
8150
8151 #define BINARY_OP(op) \
8152 if (strncmp (sym, #op, strlen (#op)) == 0) \
8153 { \
8154 sym += strlen (#op); \
8155 if (*sym == ':') \
8156 ++sym; \
8157 *symp = sym; \
8158 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8159 isymbuf, locsymcount, signed_p)) \
8160 return FALSE; \
8161 ++*symp; \
8162 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8163 isymbuf, locsymcount, signed_p)) \
8164 return FALSE; \
8165 if (signed_p) \
8166 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8167 else \
8168 *result = a op b; \
8169 return TRUE; \
8170 }
8171
8172 default:
8173 UNARY_OP (0-);
8174 BINARY_OP (<<);
8175 BINARY_OP (>>);
8176 BINARY_OP (==);
8177 BINARY_OP (!=);
8178 BINARY_OP (<=);
8179 BINARY_OP (>=);
8180 BINARY_OP (&&);
8181 BINARY_OP (||);
8182 UNARY_OP (~);
8183 UNARY_OP (!);
8184 BINARY_OP (*);
8185 BINARY_OP (/);
8186 BINARY_OP (%);
8187 BINARY_OP (^);
8188 BINARY_OP (|);
8189 BINARY_OP (&);
8190 BINARY_OP (+);
8191 BINARY_OP (-);
8192 BINARY_OP (<);
8193 BINARY_OP (>);
8194 #undef UNARY_OP
8195 #undef BINARY_OP
8196 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8197 bfd_set_error (bfd_error_invalid_operation);
8198 return FALSE;
8199 }
8200 }
8201
8202 static void
8203 put_value (bfd_vma size,
8204 unsigned long chunksz,
8205 bfd *input_bfd,
8206 bfd_vma x,
8207 bfd_byte *location)
8208 {
8209 location += (size - chunksz);
8210
8211 for (; size; size -= chunksz, location -= chunksz)
8212 {
8213 switch (chunksz)
8214 {
8215 case 1:
8216 bfd_put_8 (input_bfd, x, location);
8217 x >>= 8;
8218 break;
8219 case 2:
8220 bfd_put_16 (input_bfd, x, location);
8221 x >>= 16;
8222 break;
8223 case 4:
8224 bfd_put_32 (input_bfd, x, location);
8225 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8226 x >>= 16;
8227 x >>= 16;
8228 break;
8229 #ifdef BFD64
8230 case 8:
8231 bfd_put_64 (input_bfd, x, location);
8232 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8233 x >>= 32;
8234 x >>= 32;
8235 break;
8236 #endif
8237 default:
8238 abort ();
8239 break;
8240 }
8241 }
8242 }
8243
8244 static bfd_vma
8245 get_value (bfd_vma size,
8246 unsigned long chunksz,
8247 bfd *input_bfd,
8248 bfd_byte *location)
8249 {
8250 int shift;
8251 bfd_vma x = 0;
8252
8253 /* Sanity checks. */
8254 BFD_ASSERT (chunksz <= sizeof (x)
8255 && size >= chunksz
8256 && chunksz != 0
8257 && (size % chunksz) == 0
8258 && input_bfd != NULL
8259 && location != NULL);
8260
8261 if (chunksz == sizeof (x))
8262 {
8263 BFD_ASSERT (size == chunksz);
8264
8265 /* Make sure that we do not perform an undefined shift operation.
8266 We know that size == chunksz so there will only be one iteration
8267 of the loop below. */
8268 shift = 0;
8269 }
8270 else
8271 shift = 8 * chunksz;
8272
8273 for (; size; size -= chunksz, location += chunksz)
8274 {
8275 switch (chunksz)
8276 {
8277 case 1:
8278 x = (x << shift) | bfd_get_8 (input_bfd, location);
8279 break;
8280 case 2:
8281 x = (x << shift) | bfd_get_16 (input_bfd, location);
8282 break;
8283 case 4:
8284 x = (x << shift) | bfd_get_32 (input_bfd, location);
8285 break;
8286 #ifdef BFD64
8287 case 8:
8288 x = (x << shift) | bfd_get_64 (input_bfd, location);
8289 break;
8290 #endif
8291 default:
8292 abort ();
8293 }
8294 }
8295 return x;
8296 }
8297
8298 static void
8299 decode_complex_addend (unsigned long *start, /* in bits */
8300 unsigned long *oplen, /* in bits */
8301 unsigned long *len, /* in bits */
8302 unsigned long *wordsz, /* in bytes */
8303 unsigned long *chunksz, /* in bytes */
8304 unsigned long *lsb0_p,
8305 unsigned long *signed_p,
8306 unsigned long *trunc_p,
8307 unsigned long encoded)
8308 {
8309 * start = encoded & 0x3F;
8310 * len = (encoded >> 6) & 0x3F;
8311 * oplen = (encoded >> 12) & 0x3F;
8312 * wordsz = (encoded >> 18) & 0xF;
8313 * chunksz = (encoded >> 22) & 0xF;
8314 * lsb0_p = (encoded >> 27) & 1;
8315 * signed_p = (encoded >> 28) & 1;
8316 * trunc_p = (encoded >> 29) & 1;
8317 }
8318
8319 bfd_reloc_status_type
8320 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8321 asection *input_section ATTRIBUTE_UNUSED,
8322 bfd_byte *contents,
8323 Elf_Internal_Rela *rel,
8324 bfd_vma relocation)
8325 {
8326 bfd_vma shift, x, mask;
8327 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8328 bfd_reloc_status_type r;
8329
8330 /* Perform this reloc, since it is complex.
8331 (this is not to say that it necessarily refers to a complex
8332 symbol; merely that it is a self-describing CGEN based reloc.
8333 i.e. the addend has the complete reloc information (bit start, end,
8334 word size, etc) encoded within it.). */
8335
8336 decode_complex_addend (&start, &oplen, &len, &wordsz,
8337 &chunksz, &lsb0_p, &signed_p,
8338 &trunc_p, rel->r_addend);
8339
8340 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8341
8342 if (lsb0_p)
8343 shift = (start + 1) - len;
8344 else
8345 shift = (8 * wordsz) - (start + len);
8346
8347 x = get_value (wordsz, chunksz, input_bfd,
8348 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8349
8350 #ifdef DEBUG
8351 printf ("Doing complex reloc: "
8352 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8353 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8354 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8355 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8356 oplen, (unsigned long) x, (unsigned long) mask,
8357 (unsigned long) relocation);
8358 #endif
8359
8360 r = bfd_reloc_ok;
8361 if (! trunc_p)
8362 /* Now do an overflow check. */
8363 r = bfd_check_overflow ((signed_p
8364 ? complain_overflow_signed
8365 : complain_overflow_unsigned),
8366 len, 0, (8 * wordsz),
8367 relocation);
8368
8369 /* Do the deed. */
8370 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8371
8372 #ifdef DEBUG
8373 printf (" relocation: %8.8lx\n"
8374 " shifted mask: %8.8lx\n"
8375 " shifted/masked reloc: %8.8lx\n"
8376 " result: %8.8lx\n",
8377 (unsigned long) relocation, (unsigned long) (mask << shift),
8378 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8379 #endif
8380 put_value (wordsz, chunksz, input_bfd, x,
8381 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8382 return r;
8383 }
8384
8385 /* Functions to read r_offset from external (target order) reloc
8386 entry. Faster than bfd_getl32 et al, because we let the compiler
8387 know the value is aligned. */
8388
8389 static bfd_vma
8390 ext32l_r_offset (const void *p)
8391 {
8392 union aligned32
8393 {
8394 uint32_t v;
8395 unsigned char c[4];
8396 };
8397 const union aligned32 *a
8398 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8399
8400 uint32_t aval = ( (uint32_t) a->c[0]
8401 | (uint32_t) a->c[1] << 8
8402 | (uint32_t) a->c[2] << 16
8403 | (uint32_t) a->c[3] << 24);
8404 return aval;
8405 }
8406
8407 static bfd_vma
8408 ext32b_r_offset (const void *p)
8409 {
8410 union aligned32
8411 {
8412 uint32_t v;
8413 unsigned char c[4];
8414 };
8415 const union aligned32 *a
8416 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8417
8418 uint32_t aval = ( (uint32_t) a->c[0] << 24
8419 | (uint32_t) a->c[1] << 16
8420 | (uint32_t) a->c[2] << 8
8421 | (uint32_t) a->c[3]);
8422 return aval;
8423 }
8424
8425 #ifdef BFD_HOST_64_BIT
8426 static bfd_vma
8427 ext64l_r_offset (const void *p)
8428 {
8429 union aligned64
8430 {
8431 uint64_t v;
8432 unsigned char c[8];
8433 };
8434 const union aligned64 *a
8435 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8436
8437 uint64_t aval = ( (uint64_t) a->c[0]
8438 | (uint64_t) a->c[1] << 8
8439 | (uint64_t) a->c[2] << 16
8440 | (uint64_t) a->c[3] << 24
8441 | (uint64_t) a->c[4] << 32
8442 | (uint64_t) a->c[5] << 40
8443 | (uint64_t) a->c[6] << 48
8444 | (uint64_t) a->c[7] << 56);
8445 return aval;
8446 }
8447
8448 static bfd_vma
8449 ext64b_r_offset (const void *p)
8450 {
8451 union aligned64
8452 {
8453 uint64_t v;
8454 unsigned char c[8];
8455 };
8456 const union aligned64 *a
8457 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8458
8459 uint64_t aval = ( (uint64_t) a->c[0] << 56
8460 | (uint64_t) a->c[1] << 48
8461 | (uint64_t) a->c[2] << 40
8462 | (uint64_t) a->c[3] << 32
8463 | (uint64_t) a->c[4] << 24
8464 | (uint64_t) a->c[5] << 16
8465 | (uint64_t) a->c[6] << 8
8466 | (uint64_t) a->c[7]);
8467 return aval;
8468 }
8469 #endif
8470
8471 /* When performing a relocatable link, the input relocations are
8472 preserved. But, if they reference global symbols, the indices
8473 referenced must be updated. Update all the relocations found in
8474 RELDATA. */
8475
8476 static bfd_boolean
8477 elf_link_adjust_relocs (bfd *abfd,
8478 asection *sec,
8479 struct bfd_elf_section_reloc_data *reldata,
8480 bfd_boolean sort)
8481 {
8482 unsigned int i;
8483 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8484 bfd_byte *erela;
8485 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8486 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8487 bfd_vma r_type_mask;
8488 int r_sym_shift;
8489 unsigned int count = reldata->count;
8490 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8491
8492 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8493 {
8494 swap_in = bed->s->swap_reloc_in;
8495 swap_out = bed->s->swap_reloc_out;
8496 }
8497 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8498 {
8499 swap_in = bed->s->swap_reloca_in;
8500 swap_out = bed->s->swap_reloca_out;
8501 }
8502 else
8503 abort ();
8504
8505 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8506 abort ();
8507
8508 if (bed->s->arch_size == 32)
8509 {
8510 r_type_mask = 0xff;
8511 r_sym_shift = 8;
8512 }
8513 else
8514 {
8515 r_type_mask = 0xffffffff;
8516 r_sym_shift = 32;
8517 }
8518
8519 erela = reldata->hdr->contents;
8520 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8521 {
8522 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8523 unsigned int j;
8524
8525 if (*rel_hash == NULL)
8526 continue;
8527
8528 BFD_ASSERT ((*rel_hash)->indx >= 0);
8529
8530 (*swap_in) (abfd, erela, irela);
8531 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8532 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8533 | (irela[j].r_info & r_type_mask));
8534 (*swap_out) (abfd, irela, erela);
8535 }
8536
8537 if (bed->elf_backend_update_relocs)
8538 (*bed->elf_backend_update_relocs) (sec, reldata);
8539
8540 if (sort && count != 0)
8541 {
8542 bfd_vma (*ext_r_off) (const void *);
8543 bfd_vma r_off;
8544 size_t elt_size;
8545 bfd_byte *base, *end, *p, *loc;
8546 bfd_byte *buf = NULL;
8547
8548 if (bed->s->arch_size == 32)
8549 {
8550 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8551 ext_r_off = ext32l_r_offset;
8552 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8553 ext_r_off = ext32b_r_offset;
8554 else
8555 abort ();
8556 }
8557 else
8558 {
8559 #ifdef BFD_HOST_64_BIT
8560 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8561 ext_r_off = ext64l_r_offset;
8562 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8563 ext_r_off = ext64b_r_offset;
8564 else
8565 #endif
8566 abort ();
8567 }
8568
8569 /* Must use a stable sort here. A modified insertion sort,
8570 since the relocs are mostly sorted already. */
8571 elt_size = reldata->hdr->sh_entsize;
8572 base = reldata->hdr->contents;
8573 end = base + count * elt_size;
8574 if (elt_size > sizeof (Elf64_External_Rela))
8575 abort ();
8576
8577 /* Ensure the first element is lowest. This acts as a sentinel,
8578 speeding the main loop below. */
8579 r_off = (*ext_r_off) (base);
8580 for (p = loc = base; (p += elt_size) < end; )
8581 {
8582 bfd_vma r_off2 = (*ext_r_off) (p);
8583 if (r_off > r_off2)
8584 {
8585 r_off = r_off2;
8586 loc = p;
8587 }
8588 }
8589 if (loc != base)
8590 {
8591 /* Don't just swap *base and *loc as that changes the order
8592 of the original base[0] and base[1] if they happen to
8593 have the same r_offset. */
8594 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8595 memcpy (onebuf, loc, elt_size);
8596 memmove (base + elt_size, base, loc - base);
8597 memcpy (base, onebuf, elt_size);
8598 }
8599
8600 for (p = base + elt_size; (p += elt_size) < end; )
8601 {
8602 /* base to p is sorted, *p is next to insert. */
8603 r_off = (*ext_r_off) (p);
8604 /* Search the sorted region for location to insert. */
8605 loc = p - elt_size;
8606 while (r_off < (*ext_r_off) (loc))
8607 loc -= elt_size;
8608 loc += elt_size;
8609 if (loc != p)
8610 {
8611 /* Chances are there is a run of relocs to insert here,
8612 from one of more input files. Files are not always
8613 linked in order due to the way elf_link_input_bfd is
8614 called. See pr17666. */
8615 size_t sortlen = p - loc;
8616 bfd_vma r_off2 = (*ext_r_off) (loc);
8617 size_t runlen = elt_size;
8618 size_t buf_size = 96 * 1024;
8619 while (p + runlen < end
8620 && (sortlen <= buf_size
8621 || runlen + elt_size <= buf_size)
8622 && r_off2 > (*ext_r_off) (p + runlen))
8623 runlen += elt_size;
8624 if (buf == NULL)
8625 {
8626 buf = bfd_malloc (buf_size);
8627 if (buf == NULL)
8628 return FALSE;
8629 }
8630 if (runlen < sortlen)
8631 {
8632 memcpy (buf, p, runlen);
8633 memmove (loc + runlen, loc, sortlen);
8634 memcpy (loc, buf, runlen);
8635 }
8636 else
8637 {
8638 memcpy (buf, loc, sortlen);
8639 memmove (loc, p, runlen);
8640 memcpy (loc + runlen, buf, sortlen);
8641 }
8642 p += runlen - elt_size;
8643 }
8644 }
8645 /* Hashes are no longer valid. */
8646 free (reldata->hashes);
8647 reldata->hashes = NULL;
8648 free (buf);
8649 }
8650 return TRUE;
8651 }
8652
8653 struct elf_link_sort_rela
8654 {
8655 union {
8656 bfd_vma offset;
8657 bfd_vma sym_mask;
8658 } u;
8659 enum elf_reloc_type_class type;
8660 /* We use this as an array of size int_rels_per_ext_rel. */
8661 Elf_Internal_Rela rela[1];
8662 };
8663
8664 static int
8665 elf_link_sort_cmp1 (const void *A, const void *B)
8666 {
8667 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8668 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8669 int relativea, relativeb;
8670
8671 relativea = a->type == reloc_class_relative;
8672 relativeb = b->type == reloc_class_relative;
8673
8674 if (relativea < relativeb)
8675 return 1;
8676 if (relativea > relativeb)
8677 return -1;
8678 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8679 return -1;
8680 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8681 return 1;
8682 if (a->rela->r_offset < b->rela->r_offset)
8683 return -1;
8684 if (a->rela->r_offset > b->rela->r_offset)
8685 return 1;
8686 return 0;
8687 }
8688
8689 static int
8690 elf_link_sort_cmp2 (const void *A, const void *B)
8691 {
8692 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8693 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8694
8695 if (a->type < b->type)
8696 return -1;
8697 if (a->type > b->type)
8698 return 1;
8699 if (a->u.offset < b->u.offset)
8700 return -1;
8701 if (a->u.offset > b->u.offset)
8702 return 1;
8703 if (a->rela->r_offset < b->rela->r_offset)
8704 return -1;
8705 if (a->rela->r_offset > b->rela->r_offset)
8706 return 1;
8707 return 0;
8708 }
8709
8710 static size_t
8711 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8712 {
8713 asection *dynamic_relocs;
8714 asection *rela_dyn;
8715 asection *rel_dyn;
8716 bfd_size_type count, size;
8717 size_t i, ret, sort_elt, ext_size;
8718 bfd_byte *sort, *s_non_relative, *p;
8719 struct elf_link_sort_rela *sq;
8720 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8721 int i2e = bed->s->int_rels_per_ext_rel;
8722 unsigned int opb = bfd_octets_per_byte (abfd);
8723 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8724 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8725 struct bfd_link_order *lo;
8726 bfd_vma r_sym_mask;
8727 bfd_boolean use_rela;
8728
8729 /* Find a dynamic reloc section. */
8730 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8731 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8732 if (rela_dyn != NULL && rela_dyn->size > 0
8733 && rel_dyn != NULL && rel_dyn->size > 0)
8734 {
8735 bfd_boolean use_rela_initialised = FALSE;
8736
8737 /* This is just here to stop gcc from complaining.
8738 Its initialization checking code is not perfect. */
8739 use_rela = TRUE;
8740
8741 /* Both sections are present. Examine the sizes
8742 of the indirect sections to help us choose. */
8743 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8744 if (lo->type == bfd_indirect_link_order)
8745 {
8746 asection *o = lo->u.indirect.section;
8747
8748 if ((o->size % bed->s->sizeof_rela) == 0)
8749 {
8750 if ((o->size % bed->s->sizeof_rel) == 0)
8751 /* Section size is divisible by both rel and rela sizes.
8752 It is of no help to us. */
8753 ;
8754 else
8755 {
8756 /* Section size is only divisible by rela. */
8757 if (use_rela_initialised && (use_rela == FALSE))
8758 {
8759 _bfd_error_handler (_("%B: Unable to sort relocs - "
8760 "they are in more than one size"),
8761 abfd);
8762 bfd_set_error (bfd_error_invalid_operation);
8763 return 0;
8764 }
8765 else
8766 {
8767 use_rela = TRUE;
8768 use_rela_initialised = TRUE;
8769 }
8770 }
8771 }
8772 else if ((o->size % bed->s->sizeof_rel) == 0)
8773 {
8774 /* Section size is only divisible by rel. */
8775 if (use_rela_initialised && (use_rela == TRUE))
8776 {
8777 _bfd_error_handler (_("%B: Unable to sort relocs - "
8778 "they are in more than one size"),
8779 abfd);
8780 bfd_set_error (bfd_error_invalid_operation);
8781 return 0;
8782 }
8783 else
8784 {
8785 use_rela = FALSE;
8786 use_rela_initialised = TRUE;
8787 }
8788 }
8789 else
8790 {
8791 /* The section size is not divisible by either -
8792 something is wrong. */
8793 _bfd_error_handler (_("%B: Unable to sort relocs - "
8794 "they are of an unknown size"), abfd);
8795 bfd_set_error (bfd_error_invalid_operation);
8796 return 0;
8797 }
8798 }
8799
8800 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8801 if (lo->type == bfd_indirect_link_order)
8802 {
8803 asection *o = lo->u.indirect.section;
8804
8805 if ((o->size % bed->s->sizeof_rela) == 0)
8806 {
8807 if ((o->size % bed->s->sizeof_rel) == 0)
8808 /* Section size is divisible by both rel and rela sizes.
8809 It is of no help to us. */
8810 ;
8811 else
8812 {
8813 /* Section size is only divisible by rela. */
8814 if (use_rela_initialised && (use_rela == FALSE))
8815 {
8816 _bfd_error_handler (_("%B: Unable to sort relocs - "
8817 "they are in more than one size"),
8818 abfd);
8819 bfd_set_error (bfd_error_invalid_operation);
8820 return 0;
8821 }
8822 else
8823 {
8824 use_rela = TRUE;
8825 use_rela_initialised = TRUE;
8826 }
8827 }
8828 }
8829 else if ((o->size % bed->s->sizeof_rel) == 0)
8830 {
8831 /* Section size is only divisible by rel. */
8832 if (use_rela_initialised && (use_rela == TRUE))
8833 {
8834 _bfd_error_handler (_("%B: Unable to sort relocs - "
8835 "they are in more than one size"),
8836 abfd);
8837 bfd_set_error (bfd_error_invalid_operation);
8838 return 0;
8839 }
8840 else
8841 {
8842 use_rela = FALSE;
8843 use_rela_initialised = TRUE;
8844 }
8845 }
8846 else
8847 {
8848 /* The section size is not divisible by either -
8849 something is wrong. */
8850 _bfd_error_handler (_("%B: Unable to sort relocs - "
8851 "they are of an unknown size"), abfd);
8852 bfd_set_error (bfd_error_invalid_operation);
8853 return 0;
8854 }
8855 }
8856
8857 if (! use_rela_initialised)
8858 /* Make a guess. */
8859 use_rela = TRUE;
8860 }
8861 else if (rela_dyn != NULL && rela_dyn->size > 0)
8862 use_rela = TRUE;
8863 else if (rel_dyn != NULL && rel_dyn->size > 0)
8864 use_rela = FALSE;
8865 else
8866 return 0;
8867
8868 if (use_rela)
8869 {
8870 dynamic_relocs = rela_dyn;
8871 ext_size = bed->s->sizeof_rela;
8872 swap_in = bed->s->swap_reloca_in;
8873 swap_out = bed->s->swap_reloca_out;
8874 }
8875 else
8876 {
8877 dynamic_relocs = rel_dyn;
8878 ext_size = bed->s->sizeof_rel;
8879 swap_in = bed->s->swap_reloc_in;
8880 swap_out = bed->s->swap_reloc_out;
8881 }
8882
8883 size = 0;
8884 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8885 if (lo->type == bfd_indirect_link_order)
8886 size += lo->u.indirect.section->size;
8887
8888 if (size != dynamic_relocs->size)
8889 return 0;
8890
8891 sort_elt = (sizeof (struct elf_link_sort_rela)
8892 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8893
8894 count = dynamic_relocs->size / ext_size;
8895 if (count == 0)
8896 return 0;
8897 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8898
8899 if (sort == NULL)
8900 {
8901 (*info->callbacks->warning)
8902 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8903 return 0;
8904 }
8905
8906 if (bed->s->arch_size == 32)
8907 r_sym_mask = ~(bfd_vma) 0xff;
8908 else
8909 r_sym_mask = ~(bfd_vma) 0xffffffff;
8910
8911 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8912 if (lo->type == bfd_indirect_link_order)
8913 {
8914 bfd_byte *erel, *erelend;
8915 asection *o = lo->u.indirect.section;
8916
8917 if (o->contents == NULL && o->size != 0)
8918 {
8919 /* This is a reloc section that is being handled as a normal
8920 section. See bfd_section_from_shdr. We can't combine
8921 relocs in this case. */
8922 free (sort);
8923 return 0;
8924 }
8925 erel = o->contents;
8926 erelend = o->contents + o->size;
8927 p = sort + o->output_offset * opb / ext_size * sort_elt;
8928
8929 while (erel < erelend)
8930 {
8931 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8932
8933 (*swap_in) (abfd, erel, s->rela);
8934 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8935 s->u.sym_mask = r_sym_mask;
8936 p += sort_elt;
8937 erel += ext_size;
8938 }
8939 }
8940
8941 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8942
8943 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8944 {
8945 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8946 if (s->type != reloc_class_relative)
8947 break;
8948 }
8949 ret = i;
8950 s_non_relative = p;
8951
8952 sq = (struct elf_link_sort_rela *) s_non_relative;
8953 for (; i < count; i++, p += sort_elt)
8954 {
8955 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8956 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8957 sq = sp;
8958 sp->u.offset = sq->rela->r_offset;
8959 }
8960
8961 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8962
8963 struct elf_link_hash_table *htab = elf_hash_table (info);
8964 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8965 {
8966 /* We have plt relocs in .rela.dyn. */
8967 sq = (struct elf_link_sort_rela *) sort;
8968 for (i = 0; i < count; i++)
8969 if (sq[count - i - 1].type != reloc_class_plt)
8970 break;
8971 if (i != 0 && htab->srelplt->size == i * ext_size)
8972 {
8973 struct bfd_link_order **plo;
8974 /* Put srelplt link_order last. This is so the output_offset
8975 set in the next loop is correct for DT_JMPREL. */
8976 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8977 if ((*plo)->type == bfd_indirect_link_order
8978 && (*plo)->u.indirect.section == htab->srelplt)
8979 {
8980 lo = *plo;
8981 *plo = lo->next;
8982 }
8983 else
8984 plo = &(*plo)->next;
8985 *plo = lo;
8986 lo->next = NULL;
8987 dynamic_relocs->map_tail.link_order = lo;
8988 }
8989 }
8990
8991 p = sort;
8992 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8993 if (lo->type == bfd_indirect_link_order)
8994 {
8995 bfd_byte *erel, *erelend;
8996 asection *o = lo->u.indirect.section;
8997
8998 erel = o->contents;
8999 erelend = o->contents + o->size;
9000 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9001 while (erel < erelend)
9002 {
9003 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9004 (*swap_out) (abfd, s->rela, erel);
9005 p += sort_elt;
9006 erel += ext_size;
9007 }
9008 }
9009
9010 free (sort);
9011 *psec = dynamic_relocs;
9012 return ret;
9013 }
9014
9015 /* Add a symbol to the output symbol string table. */
9016
9017 static int
9018 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9019 const char *name,
9020 Elf_Internal_Sym *elfsym,
9021 asection *input_sec,
9022 struct elf_link_hash_entry *h)
9023 {
9024 int (*output_symbol_hook)
9025 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9026 struct elf_link_hash_entry *);
9027 struct elf_link_hash_table *hash_table;
9028 const struct elf_backend_data *bed;
9029 bfd_size_type strtabsize;
9030
9031 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9032
9033 bed = get_elf_backend_data (flinfo->output_bfd);
9034 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9035 if (output_symbol_hook != NULL)
9036 {
9037 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9038 if (ret != 1)
9039 return ret;
9040 }
9041
9042 if (name == NULL
9043 || *name == '\0'
9044 || (input_sec->flags & SEC_EXCLUDE))
9045 elfsym->st_name = (unsigned long) -1;
9046 else
9047 {
9048 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9049 to get the final offset for st_name. */
9050 elfsym->st_name
9051 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9052 name, FALSE);
9053 if (elfsym->st_name == (unsigned long) -1)
9054 return 0;
9055 }
9056
9057 hash_table = elf_hash_table (flinfo->info);
9058 strtabsize = hash_table->strtabsize;
9059 if (strtabsize <= hash_table->strtabcount)
9060 {
9061 strtabsize += strtabsize;
9062 hash_table->strtabsize = strtabsize;
9063 strtabsize *= sizeof (*hash_table->strtab);
9064 hash_table->strtab
9065 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9066 strtabsize);
9067 if (hash_table->strtab == NULL)
9068 return 0;
9069 }
9070 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9071 hash_table->strtab[hash_table->strtabcount].dest_index
9072 = hash_table->strtabcount;
9073 hash_table->strtab[hash_table->strtabcount].destshndx_index
9074 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9075
9076 bfd_get_symcount (flinfo->output_bfd) += 1;
9077 hash_table->strtabcount += 1;
9078
9079 return 1;
9080 }
9081
9082 /* Swap symbols out to the symbol table and flush the output symbols to
9083 the file. */
9084
9085 static bfd_boolean
9086 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9087 {
9088 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9089 bfd_size_type amt;
9090 size_t i;
9091 const struct elf_backend_data *bed;
9092 bfd_byte *symbuf;
9093 Elf_Internal_Shdr *hdr;
9094 file_ptr pos;
9095 bfd_boolean ret;
9096
9097 if (!hash_table->strtabcount)
9098 return TRUE;
9099
9100 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9101
9102 bed = get_elf_backend_data (flinfo->output_bfd);
9103
9104 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9105 symbuf = (bfd_byte *) bfd_malloc (amt);
9106 if (symbuf == NULL)
9107 return FALSE;
9108
9109 if (flinfo->symshndxbuf)
9110 {
9111 amt = sizeof (Elf_External_Sym_Shndx);
9112 amt *= bfd_get_symcount (flinfo->output_bfd);
9113 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9114 if (flinfo->symshndxbuf == NULL)
9115 {
9116 free (symbuf);
9117 return FALSE;
9118 }
9119 }
9120
9121 for (i = 0; i < hash_table->strtabcount; i++)
9122 {
9123 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9124 if (elfsym->sym.st_name == (unsigned long) -1)
9125 elfsym->sym.st_name = 0;
9126 else
9127 elfsym->sym.st_name
9128 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9129 elfsym->sym.st_name);
9130 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9131 ((bfd_byte *) symbuf
9132 + (elfsym->dest_index
9133 * bed->s->sizeof_sym)),
9134 (flinfo->symshndxbuf
9135 + elfsym->destshndx_index));
9136 }
9137
9138 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9139 pos = hdr->sh_offset + hdr->sh_size;
9140 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9141 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9142 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9143 {
9144 hdr->sh_size += amt;
9145 ret = TRUE;
9146 }
9147 else
9148 ret = FALSE;
9149
9150 free (symbuf);
9151
9152 free (hash_table->strtab);
9153 hash_table->strtab = NULL;
9154
9155 return ret;
9156 }
9157
9158 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9159
9160 static bfd_boolean
9161 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9162 {
9163 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9164 && sym->st_shndx < SHN_LORESERVE)
9165 {
9166 /* The gABI doesn't support dynamic symbols in output sections
9167 beyond 64k. */
9168 _bfd_error_handler
9169 /* xgettext:c-format */
9170 (_("%B: Too many sections: %d (>= %d)"),
9171 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9172 bfd_set_error (bfd_error_nonrepresentable_section);
9173 return FALSE;
9174 }
9175 return TRUE;
9176 }
9177
9178 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9179 allowing an unsatisfied unversioned symbol in the DSO to match a
9180 versioned symbol that would normally require an explicit version.
9181 We also handle the case that a DSO references a hidden symbol
9182 which may be satisfied by a versioned symbol in another DSO. */
9183
9184 static bfd_boolean
9185 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9186 const struct elf_backend_data *bed,
9187 struct elf_link_hash_entry *h)
9188 {
9189 bfd *abfd;
9190 struct elf_link_loaded_list *loaded;
9191
9192 if (!is_elf_hash_table (info->hash))
9193 return FALSE;
9194
9195 /* Check indirect symbol. */
9196 while (h->root.type == bfd_link_hash_indirect)
9197 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9198
9199 switch (h->root.type)
9200 {
9201 default:
9202 abfd = NULL;
9203 break;
9204
9205 case bfd_link_hash_undefined:
9206 case bfd_link_hash_undefweak:
9207 abfd = h->root.u.undef.abfd;
9208 if (abfd == NULL
9209 || (abfd->flags & DYNAMIC) == 0
9210 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9211 return FALSE;
9212 break;
9213
9214 case bfd_link_hash_defined:
9215 case bfd_link_hash_defweak:
9216 abfd = h->root.u.def.section->owner;
9217 break;
9218
9219 case bfd_link_hash_common:
9220 abfd = h->root.u.c.p->section->owner;
9221 break;
9222 }
9223 BFD_ASSERT (abfd != NULL);
9224
9225 for (loaded = elf_hash_table (info)->loaded;
9226 loaded != NULL;
9227 loaded = loaded->next)
9228 {
9229 bfd *input;
9230 Elf_Internal_Shdr *hdr;
9231 size_t symcount;
9232 size_t extsymcount;
9233 size_t extsymoff;
9234 Elf_Internal_Shdr *versymhdr;
9235 Elf_Internal_Sym *isym;
9236 Elf_Internal_Sym *isymend;
9237 Elf_Internal_Sym *isymbuf;
9238 Elf_External_Versym *ever;
9239 Elf_External_Versym *extversym;
9240
9241 input = loaded->abfd;
9242
9243 /* We check each DSO for a possible hidden versioned definition. */
9244 if (input == abfd
9245 || (input->flags & DYNAMIC) == 0
9246 || elf_dynversym (input) == 0)
9247 continue;
9248
9249 hdr = &elf_tdata (input)->dynsymtab_hdr;
9250
9251 symcount = hdr->sh_size / bed->s->sizeof_sym;
9252 if (elf_bad_symtab (input))
9253 {
9254 extsymcount = symcount;
9255 extsymoff = 0;
9256 }
9257 else
9258 {
9259 extsymcount = symcount - hdr->sh_info;
9260 extsymoff = hdr->sh_info;
9261 }
9262
9263 if (extsymcount == 0)
9264 continue;
9265
9266 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9267 NULL, NULL, NULL);
9268 if (isymbuf == NULL)
9269 return FALSE;
9270
9271 /* Read in any version definitions. */
9272 versymhdr = &elf_tdata (input)->dynversym_hdr;
9273 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9274 if (extversym == NULL)
9275 goto error_ret;
9276
9277 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9278 || (bfd_bread (extversym, versymhdr->sh_size, input)
9279 != versymhdr->sh_size))
9280 {
9281 free (extversym);
9282 error_ret:
9283 free (isymbuf);
9284 return FALSE;
9285 }
9286
9287 ever = extversym + extsymoff;
9288 isymend = isymbuf + extsymcount;
9289 for (isym = isymbuf; isym < isymend; isym++, ever++)
9290 {
9291 const char *name;
9292 Elf_Internal_Versym iver;
9293 unsigned short version_index;
9294
9295 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9296 || isym->st_shndx == SHN_UNDEF)
9297 continue;
9298
9299 name = bfd_elf_string_from_elf_section (input,
9300 hdr->sh_link,
9301 isym->st_name);
9302 if (strcmp (name, h->root.root.string) != 0)
9303 continue;
9304
9305 _bfd_elf_swap_versym_in (input, ever, &iver);
9306
9307 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9308 && !(h->def_regular
9309 && h->forced_local))
9310 {
9311 /* If we have a non-hidden versioned sym, then it should
9312 have provided a definition for the undefined sym unless
9313 it is defined in a non-shared object and forced local.
9314 */
9315 abort ();
9316 }
9317
9318 version_index = iver.vs_vers & VERSYM_VERSION;
9319 if (version_index == 1 || version_index == 2)
9320 {
9321 /* This is the base or first version. We can use it. */
9322 free (extversym);
9323 free (isymbuf);
9324 return TRUE;
9325 }
9326 }
9327
9328 free (extversym);
9329 free (isymbuf);
9330 }
9331
9332 return FALSE;
9333 }
9334
9335 /* Convert ELF common symbol TYPE. */
9336
9337 static int
9338 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9339 {
9340 /* Commom symbol can only appear in relocatable link. */
9341 if (!bfd_link_relocatable (info))
9342 abort ();
9343 switch (info->elf_stt_common)
9344 {
9345 case unchanged:
9346 break;
9347 case elf_stt_common:
9348 type = STT_COMMON;
9349 break;
9350 case no_elf_stt_common:
9351 type = STT_OBJECT;
9352 break;
9353 }
9354 return type;
9355 }
9356
9357 /* Add an external symbol to the symbol table. This is called from
9358 the hash table traversal routine. When generating a shared object,
9359 we go through the symbol table twice. The first time we output
9360 anything that might have been forced to local scope in a version
9361 script. The second time we output the symbols that are still
9362 global symbols. */
9363
9364 static bfd_boolean
9365 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9366 {
9367 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9368 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9369 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9370 bfd_boolean strip;
9371 Elf_Internal_Sym sym;
9372 asection *input_sec;
9373 const struct elf_backend_data *bed;
9374 long indx;
9375 int ret;
9376 unsigned int type;
9377
9378 if (h->root.type == bfd_link_hash_warning)
9379 {
9380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9381 if (h->root.type == bfd_link_hash_new)
9382 return TRUE;
9383 }
9384
9385 /* Decide whether to output this symbol in this pass. */
9386 if (eoinfo->localsyms)
9387 {
9388 if (!h->forced_local)
9389 return TRUE;
9390 }
9391 else
9392 {
9393 if (h->forced_local)
9394 return TRUE;
9395 }
9396
9397 bed = get_elf_backend_data (flinfo->output_bfd);
9398
9399 if (h->root.type == bfd_link_hash_undefined)
9400 {
9401 /* If we have an undefined symbol reference here then it must have
9402 come from a shared library that is being linked in. (Undefined
9403 references in regular files have already been handled unless
9404 they are in unreferenced sections which are removed by garbage
9405 collection). */
9406 bfd_boolean ignore_undef = FALSE;
9407
9408 /* Some symbols may be special in that the fact that they're
9409 undefined can be safely ignored - let backend determine that. */
9410 if (bed->elf_backend_ignore_undef_symbol)
9411 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9412
9413 /* If we are reporting errors for this situation then do so now. */
9414 if (!ignore_undef
9415 && h->ref_dynamic
9416 && (!h->ref_regular || flinfo->info->gc_sections)
9417 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9418 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9419 (*flinfo->info->callbacks->undefined_symbol)
9420 (flinfo->info, h->root.root.string,
9421 h->ref_regular ? NULL : h->root.u.undef.abfd,
9422 NULL, 0,
9423 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9424
9425 /* Strip a global symbol defined in a discarded section. */
9426 if (h->indx == -3)
9427 return TRUE;
9428 }
9429
9430 /* We should also warn if a forced local symbol is referenced from
9431 shared libraries. */
9432 if (bfd_link_executable (flinfo->info)
9433 && h->forced_local
9434 && h->ref_dynamic
9435 && h->def_regular
9436 && !h->dynamic_def
9437 && h->ref_dynamic_nonweak
9438 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9439 {
9440 bfd *def_bfd;
9441 const char *msg;
9442 struct elf_link_hash_entry *hi = h;
9443
9444 /* Check indirect symbol. */
9445 while (hi->root.type == bfd_link_hash_indirect)
9446 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9447
9448 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9449 /* xgettext:c-format */
9450 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9451 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9452 /* xgettext:c-format */
9453 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9454 else
9455 /* xgettext:c-format */
9456 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9457 def_bfd = flinfo->output_bfd;
9458 if (hi->root.u.def.section != bfd_abs_section_ptr)
9459 def_bfd = hi->root.u.def.section->owner;
9460 _bfd_error_handler (msg, flinfo->output_bfd, def_bfd,
9461 h->root.root.string);
9462 bfd_set_error (bfd_error_bad_value);
9463 eoinfo->failed = TRUE;
9464 return FALSE;
9465 }
9466
9467 /* We don't want to output symbols that have never been mentioned by
9468 a regular file, or that we have been told to strip. However, if
9469 h->indx is set to -2, the symbol is used by a reloc and we must
9470 output it. */
9471 strip = FALSE;
9472 if (h->indx == -2)
9473 ;
9474 else if ((h->def_dynamic
9475 || h->ref_dynamic
9476 || h->root.type == bfd_link_hash_new)
9477 && !h->def_regular
9478 && !h->ref_regular)
9479 strip = TRUE;
9480 else if (flinfo->info->strip == strip_all)
9481 strip = TRUE;
9482 else if (flinfo->info->strip == strip_some
9483 && bfd_hash_lookup (flinfo->info->keep_hash,
9484 h->root.root.string, FALSE, FALSE) == NULL)
9485 strip = TRUE;
9486 else if ((h->root.type == bfd_link_hash_defined
9487 || h->root.type == bfd_link_hash_defweak)
9488 && ((flinfo->info->strip_discarded
9489 && discarded_section (h->root.u.def.section))
9490 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9491 && h->root.u.def.section->owner != NULL
9492 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9493 strip = TRUE;
9494 else if ((h->root.type == bfd_link_hash_undefined
9495 || h->root.type == bfd_link_hash_undefweak)
9496 && h->root.u.undef.abfd != NULL
9497 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9498 strip = TRUE;
9499
9500 type = h->type;
9501
9502 /* If we're stripping it, and it's not a dynamic symbol, there's
9503 nothing else to do. However, if it is a forced local symbol or
9504 an ifunc symbol we need to give the backend finish_dynamic_symbol
9505 function a chance to make it dynamic. */
9506 if (strip
9507 && h->dynindx == -1
9508 && type != STT_GNU_IFUNC
9509 && !h->forced_local)
9510 return TRUE;
9511
9512 sym.st_value = 0;
9513 sym.st_size = h->size;
9514 sym.st_other = h->other;
9515 switch (h->root.type)
9516 {
9517 default:
9518 case bfd_link_hash_new:
9519 case bfd_link_hash_warning:
9520 abort ();
9521 return FALSE;
9522
9523 case bfd_link_hash_undefined:
9524 case bfd_link_hash_undefweak:
9525 input_sec = bfd_und_section_ptr;
9526 sym.st_shndx = SHN_UNDEF;
9527 break;
9528
9529 case bfd_link_hash_defined:
9530 case bfd_link_hash_defweak:
9531 {
9532 input_sec = h->root.u.def.section;
9533 if (input_sec->output_section != NULL)
9534 {
9535 sym.st_shndx =
9536 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9537 input_sec->output_section);
9538 if (sym.st_shndx == SHN_BAD)
9539 {
9540 _bfd_error_handler
9541 /* xgettext:c-format */
9542 (_("%B: could not find output section %A for input section %A"),
9543 flinfo->output_bfd, input_sec->output_section, input_sec);
9544 bfd_set_error (bfd_error_nonrepresentable_section);
9545 eoinfo->failed = TRUE;
9546 return FALSE;
9547 }
9548
9549 /* ELF symbols in relocatable files are section relative,
9550 but in nonrelocatable files they are virtual
9551 addresses. */
9552 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9553 if (!bfd_link_relocatable (flinfo->info))
9554 {
9555 sym.st_value += input_sec->output_section->vma;
9556 if (h->type == STT_TLS)
9557 {
9558 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9559 if (tls_sec != NULL)
9560 sym.st_value -= tls_sec->vma;
9561 }
9562 }
9563 }
9564 else
9565 {
9566 BFD_ASSERT (input_sec->owner == NULL
9567 || (input_sec->owner->flags & DYNAMIC) != 0);
9568 sym.st_shndx = SHN_UNDEF;
9569 input_sec = bfd_und_section_ptr;
9570 }
9571 }
9572 break;
9573
9574 case bfd_link_hash_common:
9575 input_sec = h->root.u.c.p->section;
9576 sym.st_shndx = bed->common_section_index (input_sec);
9577 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9578 break;
9579
9580 case bfd_link_hash_indirect:
9581 /* These symbols are created by symbol versioning. They point
9582 to the decorated version of the name. For example, if the
9583 symbol foo@@GNU_1.2 is the default, which should be used when
9584 foo is used with no version, then we add an indirect symbol
9585 foo which points to foo@@GNU_1.2. We ignore these symbols,
9586 since the indirected symbol is already in the hash table. */
9587 return TRUE;
9588 }
9589
9590 if (type == STT_COMMON || type == STT_OBJECT)
9591 switch (h->root.type)
9592 {
9593 case bfd_link_hash_common:
9594 type = elf_link_convert_common_type (flinfo->info, type);
9595 break;
9596 case bfd_link_hash_defined:
9597 case bfd_link_hash_defweak:
9598 if (bed->common_definition (&sym))
9599 type = elf_link_convert_common_type (flinfo->info, type);
9600 else
9601 type = STT_OBJECT;
9602 break;
9603 case bfd_link_hash_undefined:
9604 case bfd_link_hash_undefweak:
9605 break;
9606 default:
9607 abort ();
9608 }
9609
9610 if (h->forced_local)
9611 {
9612 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9613 /* Turn off visibility on local symbol. */
9614 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9615 }
9616 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9617 else if (h->unique_global && h->def_regular)
9618 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9619 else if (h->root.type == bfd_link_hash_undefweak
9620 || h->root.type == bfd_link_hash_defweak)
9621 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9622 else
9623 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9624 sym.st_target_internal = h->target_internal;
9625
9626 /* Give the processor backend a chance to tweak the symbol value,
9627 and also to finish up anything that needs to be done for this
9628 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9629 forced local syms when non-shared is due to a historical quirk.
9630 STT_GNU_IFUNC symbol must go through PLT. */
9631 if ((h->type == STT_GNU_IFUNC
9632 && h->def_regular
9633 && !bfd_link_relocatable (flinfo->info))
9634 || ((h->dynindx != -1
9635 || h->forced_local)
9636 && ((bfd_link_pic (flinfo->info)
9637 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9638 || h->root.type != bfd_link_hash_undefweak))
9639 || !h->forced_local)
9640 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9641 {
9642 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9643 (flinfo->output_bfd, flinfo->info, h, &sym)))
9644 {
9645 eoinfo->failed = TRUE;
9646 return FALSE;
9647 }
9648 }
9649
9650 /* If we are marking the symbol as undefined, and there are no
9651 non-weak references to this symbol from a regular object, then
9652 mark the symbol as weak undefined; if there are non-weak
9653 references, mark the symbol as strong. We can't do this earlier,
9654 because it might not be marked as undefined until the
9655 finish_dynamic_symbol routine gets through with it. */
9656 if (sym.st_shndx == SHN_UNDEF
9657 && h->ref_regular
9658 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9659 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9660 {
9661 int bindtype;
9662 type = ELF_ST_TYPE (sym.st_info);
9663
9664 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9665 if (type == STT_GNU_IFUNC)
9666 type = STT_FUNC;
9667
9668 if (h->ref_regular_nonweak)
9669 bindtype = STB_GLOBAL;
9670 else
9671 bindtype = STB_WEAK;
9672 sym.st_info = ELF_ST_INFO (bindtype, type);
9673 }
9674
9675 /* If this is a symbol defined in a dynamic library, don't use the
9676 symbol size from the dynamic library. Relinking an executable
9677 against a new library may introduce gratuitous changes in the
9678 executable's symbols if we keep the size. */
9679 if (sym.st_shndx == SHN_UNDEF
9680 && !h->def_regular
9681 && h->def_dynamic)
9682 sym.st_size = 0;
9683
9684 /* If a non-weak symbol with non-default visibility is not defined
9685 locally, it is a fatal error. */
9686 if (!bfd_link_relocatable (flinfo->info)
9687 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9688 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9689 && h->root.type == bfd_link_hash_undefined
9690 && !h->def_regular)
9691 {
9692 const char *msg;
9693
9694 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9695 /* xgettext:c-format */
9696 msg = _("%B: protected symbol `%s' isn't defined");
9697 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9698 /* xgettext:c-format */
9699 msg = _("%B: internal symbol `%s' isn't defined");
9700 else
9701 /* xgettext:c-format */
9702 msg = _("%B: hidden symbol `%s' isn't defined");
9703 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9704 bfd_set_error (bfd_error_bad_value);
9705 eoinfo->failed = TRUE;
9706 return FALSE;
9707 }
9708
9709 /* If this symbol should be put in the .dynsym section, then put it
9710 there now. We already know the symbol index. We also fill in
9711 the entry in the .hash section. */
9712 if (elf_hash_table (flinfo->info)->dynsym != NULL
9713 && h->dynindx != -1
9714 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9715 {
9716 bfd_byte *esym;
9717
9718 /* Since there is no version information in the dynamic string,
9719 if there is no version info in symbol version section, we will
9720 have a run-time problem if not linking executable, referenced
9721 by shared library, or not bound locally. */
9722 if (h->verinfo.verdef == NULL
9723 && (!bfd_link_executable (flinfo->info)
9724 || h->ref_dynamic
9725 || !h->def_regular))
9726 {
9727 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9728
9729 if (p && p [1] != '\0')
9730 {
9731 _bfd_error_handler
9732 /* xgettext:c-format */
9733 (_("%B: No symbol version section for versioned symbol `%s'"),
9734 flinfo->output_bfd, h->root.root.string);
9735 eoinfo->failed = TRUE;
9736 return FALSE;
9737 }
9738 }
9739
9740 sym.st_name = h->dynstr_index;
9741 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9742 + h->dynindx * bed->s->sizeof_sym);
9743 if (!check_dynsym (flinfo->output_bfd, &sym))
9744 {
9745 eoinfo->failed = TRUE;
9746 return FALSE;
9747 }
9748 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9749
9750 if (flinfo->hash_sec != NULL)
9751 {
9752 size_t hash_entry_size;
9753 bfd_byte *bucketpos;
9754 bfd_vma chain;
9755 size_t bucketcount;
9756 size_t bucket;
9757
9758 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9759 bucket = h->u.elf_hash_value % bucketcount;
9760
9761 hash_entry_size
9762 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9763 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9764 + (bucket + 2) * hash_entry_size);
9765 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9766 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9767 bucketpos);
9768 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9769 ((bfd_byte *) flinfo->hash_sec->contents
9770 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9771 }
9772
9773 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9774 {
9775 Elf_Internal_Versym iversym;
9776 Elf_External_Versym *eversym;
9777
9778 if (!h->def_regular)
9779 {
9780 if (h->verinfo.verdef == NULL
9781 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9782 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9783 iversym.vs_vers = 0;
9784 else
9785 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9786 }
9787 else
9788 {
9789 if (h->verinfo.vertree == NULL)
9790 iversym.vs_vers = 1;
9791 else
9792 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9793 if (flinfo->info->create_default_symver)
9794 iversym.vs_vers++;
9795 }
9796
9797 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9798 defined locally. */
9799 if (h->versioned == versioned_hidden && h->def_regular)
9800 iversym.vs_vers |= VERSYM_HIDDEN;
9801
9802 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9803 eversym += h->dynindx;
9804 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9805 }
9806 }
9807
9808 /* If the symbol is undefined, and we didn't output it to .dynsym,
9809 strip it from .symtab too. Obviously we can't do this for
9810 relocatable output or when needed for --emit-relocs. */
9811 else if (input_sec == bfd_und_section_ptr
9812 && h->indx != -2
9813 && !bfd_link_relocatable (flinfo->info))
9814 return TRUE;
9815 /* Also strip others that we couldn't earlier due to dynamic symbol
9816 processing. */
9817 if (strip)
9818 return TRUE;
9819 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9820 return TRUE;
9821
9822 /* Output a FILE symbol so that following locals are not associated
9823 with the wrong input file. We need one for forced local symbols
9824 if we've seen more than one FILE symbol or when we have exactly
9825 one FILE symbol but global symbols are present in a file other
9826 than the one with the FILE symbol. We also need one if linker
9827 defined symbols are present. In practice these conditions are
9828 always met, so just emit the FILE symbol unconditionally. */
9829 if (eoinfo->localsyms
9830 && !eoinfo->file_sym_done
9831 && eoinfo->flinfo->filesym_count != 0)
9832 {
9833 Elf_Internal_Sym fsym;
9834
9835 memset (&fsym, 0, sizeof (fsym));
9836 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9837 fsym.st_shndx = SHN_ABS;
9838 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9839 bfd_und_section_ptr, NULL))
9840 return FALSE;
9841
9842 eoinfo->file_sym_done = TRUE;
9843 }
9844
9845 indx = bfd_get_symcount (flinfo->output_bfd);
9846 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9847 input_sec, h);
9848 if (ret == 0)
9849 {
9850 eoinfo->failed = TRUE;
9851 return FALSE;
9852 }
9853 else if (ret == 1)
9854 h->indx = indx;
9855 else if (h->indx == -2)
9856 abort();
9857
9858 return TRUE;
9859 }
9860
9861 /* Return TRUE if special handling is done for relocs in SEC against
9862 symbols defined in discarded sections. */
9863
9864 static bfd_boolean
9865 elf_section_ignore_discarded_relocs (asection *sec)
9866 {
9867 const struct elf_backend_data *bed;
9868
9869 switch (sec->sec_info_type)
9870 {
9871 case SEC_INFO_TYPE_STABS:
9872 case SEC_INFO_TYPE_EH_FRAME:
9873 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9874 return TRUE;
9875 default:
9876 break;
9877 }
9878
9879 bed = get_elf_backend_data (sec->owner);
9880 if (bed->elf_backend_ignore_discarded_relocs != NULL
9881 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9882 return TRUE;
9883
9884 return FALSE;
9885 }
9886
9887 /* Return a mask saying how ld should treat relocations in SEC against
9888 symbols defined in discarded sections. If this function returns
9889 COMPLAIN set, ld will issue a warning message. If this function
9890 returns PRETEND set, and the discarded section was link-once and the
9891 same size as the kept link-once section, ld will pretend that the
9892 symbol was actually defined in the kept section. Otherwise ld will
9893 zero the reloc (at least that is the intent, but some cooperation by
9894 the target dependent code is needed, particularly for REL targets). */
9895
9896 unsigned int
9897 _bfd_elf_default_action_discarded (asection *sec)
9898 {
9899 if (sec->flags & SEC_DEBUGGING)
9900 return PRETEND;
9901
9902 if (strcmp (".eh_frame", sec->name) == 0)
9903 return 0;
9904
9905 if (strcmp (".gcc_except_table", sec->name) == 0)
9906 return 0;
9907
9908 return COMPLAIN | PRETEND;
9909 }
9910
9911 /* Find a match between a section and a member of a section group. */
9912
9913 static asection *
9914 match_group_member (asection *sec, asection *group,
9915 struct bfd_link_info *info)
9916 {
9917 asection *first = elf_next_in_group (group);
9918 asection *s = first;
9919
9920 while (s != NULL)
9921 {
9922 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9923 return s;
9924
9925 s = elf_next_in_group (s);
9926 if (s == first)
9927 break;
9928 }
9929
9930 return NULL;
9931 }
9932
9933 /* Check if the kept section of a discarded section SEC can be used
9934 to replace it. Return the replacement if it is OK. Otherwise return
9935 NULL. */
9936
9937 asection *
9938 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9939 {
9940 asection *kept;
9941
9942 kept = sec->kept_section;
9943 if (kept != NULL)
9944 {
9945 if ((kept->flags & SEC_GROUP) != 0)
9946 kept = match_group_member (sec, kept, info);
9947 if (kept != NULL
9948 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9949 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9950 kept = NULL;
9951 sec->kept_section = kept;
9952 }
9953 return kept;
9954 }
9955
9956 /* Link an input file into the linker output file. This function
9957 handles all the sections and relocations of the input file at once.
9958 This is so that we only have to read the local symbols once, and
9959 don't have to keep them in memory. */
9960
9961 static bfd_boolean
9962 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9963 {
9964 int (*relocate_section)
9965 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9966 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9967 bfd *output_bfd;
9968 Elf_Internal_Shdr *symtab_hdr;
9969 size_t locsymcount;
9970 size_t extsymoff;
9971 Elf_Internal_Sym *isymbuf;
9972 Elf_Internal_Sym *isym;
9973 Elf_Internal_Sym *isymend;
9974 long *pindex;
9975 asection **ppsection;
9976 asection *o;
9977 const struct elf_backend_data *bed;
9978 struct elf_link_hash_entry **sym_hashes;
9979 bfd_size_type address_size;
9980 bfd_vma r_type_mask;
9981 int r_sym_shift;
9982 bfd_boolean have_file_sym = FALSE;
9983
9984 output_bfd = flinfo->output_bfd;
9985 bed = get_elf_backend_data (output_bfd);
9986 relocate_section = bed->elf_backend_relocate_section;
9987
9988 /* If this is a dynamic object, we don't want to do anything here:
9989 we don't want the local symbols, and we don't want the section
9990 contents. */
9991 if ((input_bfd->flags & DYNAMIC) != 0)
9992 return TRUE;
9993
9994 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9995 if (elf_bad_symtab (input_bfd))
9996 {
9997 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9998 extsymoff = 0;
9999 }
10000 else
10001 {
10002 locsymcount = symtab_hdr->sh_info;
10003 extsymoff = symtab_hdr->sh_info;
10004 }
10005
10006 /* Read the local symbols. */
10007 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10008 if (isymbuf == NULL && locsymcount != 0)
10009 {
10010 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10011 flinfo->internal_syms,
10012 flinfo->external_syms,
10013 flinfo->locsym_shndx);
10014 if (isymbuf == NULL)
10015 return FALSE;
10016 }
10017
10018 /* Find local symbol sections and adjust values of symbols in
10019 SEC_MERGE sections. Write out those local symbols we know are
10020 going into the output file. */
10021 isymend = isymbuf + locsymcount;
10022 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10023 isym < isymend;
10024 isym++, pindex++, ppsection++)
10025 {
10026 asection *isec;
10027 const char *name;
10028 Elf_Internal_Sym osym;
10029 long indx;
10030 int ret;
10031
10032 *pindex = -1;
10033
10034 if (elf_bad_symtab (input_bfd))
10035 {
10036 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10037 {
10038 *ppsection = NULL;
10039 continue;
10040 }
10041 }
10042
10043 if (isym->st_shndx == SHN_UNDEF)
10044 isec = bfd_und_section_ptr;
10045 else if (isym->st_shndx == SHN_ABS)
10046 isec = bfd_abs_section_ptr;
10047 else if (isym->st_shndx == SHN_COMMON)
10048 isec = bfd_com_section_ptr;
10049 else
10050 {
10051 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10052 if (isec == NULL)
10053 {
10054 /* Don't attempt to output symbols with st_shnx in the
10055 reserved range other than SHN_ABS and SHN_COMMON. */
10056 *ppsection = NULL;
10057 continue;
10058 }
10059 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10060 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10061 isym->st_value =
10062 _bfd_merged_section_offset (output_bfd, &isec,
10063 elf_section_data (isec)->sec_info,
10064 isym->st_value);
10065 }
10066
10067 *ppsection = isec;
10068
10069 /* Don't output the first, undefined, symbol. In fact, don't
10070 output any undefined local symbol. */
10071 if (isec == bfd_und_section_ptr)
10072 continue;
10073
10074 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10075 {
10076 /* We never output section symbols. Instead, we use the
10077 section symbol of the corresponding section in the output
10078 file. */
10079 continue;
10080 }
10081
10082 /* If we are stripping all symbols, we don't want to output this
10083 one. */
10084 if (flinfo->info->strip == strip_all)
10085 continue;
10086
10087 /* If we are discarding all local symbols, we don't want to
10088 output this one. If we are generating a relocatable output
10089 file, then some of the local symbols may be required by
10090 relocs; we output them below as we discover that they are
10091 needed. */
10092 if (flinfo->info->discard == discard_all)
10093 continue;
10094
10095 /* If this symbol is defined in a section which we are
10096 discarding, we don't need to keep it. */
10097 if (isym->st_shndx != SHN_UNDEF
10098 && isym->st_shndx < SHN_LORESERVE
10099 && bfd_section_removed_from_list (output_bfd,
10100 isec->output_section))
10101 continue;
10102
10103 /* Get the name of the symbol. */
10104 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10105 isym->st_name);
10106 if (name == NULL)
10107 return FALSE;
10108
10109 /* See if we are discarding symbols with this name. */
10110 if ((flinfo->info->strip == strip_some
10111 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10112 == NULL))
10113 || (((flinfo->info->discard == discard_sec_merge
10114 && (isec->flags & SEC_MERGE)
10115 && !bfd_link_relocatable (flinfo->info))
10116 || flinfo->info->discard == discard_l)
10117 && bfd_is_local_label_name (input_bfd, name)))
10118 continue;
10119
10120 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10121 {
10122 if (input_bfd->lto_output)
10123 /* -flto puts a temp file name here. This means builds
10124 are not reproducible. Discard the symbol. */
10125 continue;
10126 have_file_sym = TRUE;
10127 flinfo->filesym_count += 1;
10128 }
10129 if (!have_file_sym)
10130 {
10131 /* In the absence of debug info, bfd_find_nearest_line uses
10132 FILE symbols to determine the source file for local
10133 function symbols. Provide a FILE symbol here if input
10134 files lack such, so that their symbols won't be
10135 associated with a previous input file. It's not the
10136 source file, but the best we can do. */
10137 have_file_sym = TRUE;
10138 flinfo->filesym_count += 1;
10139 memset (&osym, 0, sizeof (osym));
10140 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10141 osym.st_shndx = SHN_ABS;
10142 if (!elf_link_output_symstrtab (flinfo,
10143 (input_bfd->lto_output ? NULL
10144 : input_bfd->filename),
10145 &osym, bfd_abs_section_ptr,
10146 NULL))
10147 return FALSE;
10148 }
10149
10150 osym = *isym;
10151
10152 /* Adjust the section index for the output file. */
10153 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10154 isec->output_section);
10155 if (osym.st_shndx == SHN_BAD)
10156 return FALSE;
10157
10158 /* ELF symbols in relocatable files are section relative, but
10159 in executable files they are virtual addresses. Note that
10160 this code assumes that all ELF sections have an associated
10161 BFD section with a reasonable value for output_offset; below
10162 we assume that they also have a reasonable value for
10163 output_section. Any special sections must be set up to meet
10164 these requirements. */
10165 osym.st_value += isec->output_offset;
10166 if (!bfd_link_relocatable (flinfo->info))
10167 {
10168 osym.st_value += isec->output_section->vma;
10169 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10170 {
10171 /* STT_TLS symbols are relative to PT_TLS segment base. */
10172 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10173 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10174 }
10175 }
10176
10177 indx = bfd_get_symcount (output_bfd);
10178 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10179 if (ret == 0)
10180 return FALSE;
10181 else if (ret == 1)
10182 *pindex = indx;
10183 }
10184
10185 if (bed->s->arch_size == 32)
10186 {
10187 r_type_mask = 0xff;
10188 r_sym_shift = 8;
10189 address_size = 4;
10190 }
10191 else
10192 {
10193 r_type_mask = 0xffffffff;
10194 r_sym_shift = 32;
10195 address_size = 8;
10196 }
10197
10198 /* Relocate the contents of each section. */
10199 sym_hashes = elf_sym_hashes (input_bfd);
10200 for (o = input_bfd->sections; o != NULL; o = o->next)
10201 {
10202 bfd_byte *contents;
10203
10204 if (! o->linker_mark)
10205 {
10206 /* This section was omitted from the link. */
10207 continue;
10208 }
10209
10210 if (bfd_link_relocatable (flinfo->info)
10211 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10212 {
10213 /* Deal with the group signature symbol. */
10214 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10215 unsigned long symndx = sec_data->this_hdr.sh_info;
10216 asection *osec = o->output_section;
10217
10218 if (symndx >= locsymcount
10219 || (elf_bad_symtab (input_bfd)
10220 && flinfo->sections[symndx] == NULL))
10221 {
10222 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10223 while (h->root.type == bfd_link_hash_indirect
10224 || h->root.type == bfd_link_hash_warning)
10225 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10226 /* Arrange for symbol to be output. */
10227 h->indx = -2;
10228 elf_section_data (osec)->this_hdr.sh_info = -2;
10229 }
10230 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10231 {
10232 /* We'll use the output section target_index. */
10233 asection *sec = flinfo->sections[symndx]->output_section;
10234 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10235 }
10236 else
10237 {
10238 if (flinfo->indices[symndx] == -1)
10239 {
10240 /* Otherwise output the local symbol now. */
10241 Elf_Internal_Sym sym = isymbuf[symndx];
10242 asection *sec = flinfo->sections[symndx]->output_section;
10243 const char *name;
10244 long indx;
10245 int ret;
10246
10247 name = bfd_elf_string_from_elf_section (input_bfd,
10248 symtab_hdr->sh_link,
10249 sym.st_name);
10250 if (name == NULL)
10251 return FALSE;
10252
10253 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10254 sec);
10255 if (sym.st_shndx == SHN_BAD)
10256 return FALSE;
10257
10258 sym.st_value += o->output_offset;
10259
10260 indx = bfd_get_symcount (output_bfd);
10261 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10262 NULL);
10263 if (ret == 0)
10264 return FALSE;
10265 else if (ret == 1)
10266 flinfo->indices[symndx] = indx;
10267 else
10268 abort ();
10269 }
10270 elf_section_data (osec)->this_hdr.sh_info
10271 = flinfo->indices[symndx];
10272 }
10273 }
10274
10275 if ((o->flags & SEC_HAS_CONTENTS) == 0
10276 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10277 continue;
10278
10279 if ((o->flags & SEC_LINKER_CREATED) != 0)
10280 {
10281 /* Section was created by _bfd_elf_link_create_dynamic_sections
10282 or somesuch. */
10283 continue;
10284 }
10285
10286 /* Get the contents of the section. They have been cached by a
10287 relaxation routine. Note that o is a section in an input
10288 file, so the contents field will not have been set by any of
10289 the routines which work on output files. */
10290 if (elf_section_data (o)->this_hdr.contents != NULL)
10291 {
10292 contents = elf_section_data (o)->this_hdr.contents;
10293 if (bed->caches_rawsize
10294 && o->rawsize != 0
10295 && o->rawsize < o->size)
10296 {
10297 memcpy (flinfo->contents, contents, o->rawsize);
10298 contents = flinfo->contents;
10299 }
10300 }
10301 else
10302 {
10303 contents = flinfo->contents;
10304 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10305 return FALSE;
10306 }
10307
10308 if ((o->flags & SEC_RELOC) != 0)
10309 {
10310 Elf_Internal_Rela *internal_relocs;
10311 Elf_Internal_Rela *rel, *relend;
10312 int action_discarded;
10313 int ret;
10314
10315 /* Get the swapped relocs. */
10316 internal_relocs
10317 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10318 flinfo->internal_relocs, FALSE);
10319 if (internal_relocs == NULL
10320 && o->reloc_count > 0)
10321 return FALSE;
10322
10323 /* We need to reverse-copy input .ctors/.dtors sections if
10324 they are placed in .init_array/.finit_array for output. */
10325 if (o->size > address_size
10326 && ((strncmp (o->name, ".ctors", 6) == 0
10327 && strcmp (o->output_section->name,
10328 ".init_array") == 0)
10329 || (strncmp (o->name, ".dtors", 6) == 0
10330 && strcmp (o->output_section->name,
10331 ".fini_array") == 0))
10332 && (o->name[6] == 0 || o->name[6] == '.'))
10333 {
10334 if (o->size != o->reloc_count * address_size)
10335 {
10336 _bfd_error_handler
10337 /* xgettext:c-format */
10338 (_("error: %B: size of section %A is not "
10339 "multiple of address size"),
10340 input_bfd, o);
10341 bfd_set_error (bfd_error_on_input);
10342 return FALSE;
10343 }
10344 o->flags |= SEC_ELF_REVERSE_COPY;
10345 }
10346
10347 action_discarded = -1;
10348 if (!elf_section_ignore_discarded_relocs (o))
10349 action_discarded = (*bed->action_discarded) (o);
10350
10351 /* Run through the relocs evaluating complex reloc symbols and
10352 looking for relocs against symbols from discarded sections
10353 or section symbols from removed link-once sections.
10354 Complain about relocs against discarded sections. Zero
10355 relocs against removed link-once sections. */
10356
10357 rel = internal_relocs;
10358 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10359 for ( ; rel < relend; rel++)
10360 {
10361 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10362 unsigned int s_type;
10363 asection **ps, *sec;
10364 struct elf_link_hash_entry *h = NULL;
10365 const char *sym_name;
10366
10367 if (r_symndx == STN_UNDEF)
10368 continue;
10369
10370 if (r_symndx >= locsymcount
10371 || (elf_bad_symtab (input_bfd)
10372 && flinfo->sections[r_symndx] == NULL))
10373 {
10374 h = sym_hashes[r_symndx - extsymoff];
10375
10376 /* Badly formatted input files can contain relocs that
10377 reference non-existant symbols. Check here so that
10378 we do not seg fault. */
10379 if (h == NULL)
10380 {
10381 char buffer [32];
10382
10383 sprintf_vma (buffer, rel->r_info);
10384 _bfd_error_handler
10385 /* xgettext:c-format */
10386 (_("error: %B contains a reloc (0x%s) for section %A "
10387 "that references a non-existent global symbol"),
10388 input_bfd, o, buffer);
10389 bfd_set_error (bfd_error_bad_value);
10390 return FALSE;
10391 }
10392
10393 while (h->root.type == bfd_link_hash_indirect
10394 || h->root.type == bfd_link_hash_warning)
10395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10396
10397 s_type = h->type;
10398
10399 /* If a plugin symbol is referenced from a non-IR file,
10400 mark the symbol as undefined. Note that the
10401 linker may attach linker created dynamic sections
10402 to the plugin bfd. Symbols defined in linker
10403 created sections are not plugin symbols. */
10404 if (h->root.non_ir_ref
10405 && (h->root.type == bfd_link_hash_defined
10406 || h->root.type == bfd_link_hash_defweak)
10407 && (h->root.u.def.section->flags
10408 & SEC_LINKER_CREATED) == 0
10409 && h->root.u.def.section->owner != NULL
10410 && (h->root.u.def.section->owner->flags
10411 & BFD_PLUGIN) != 0)
10412 {
10413 h->root.type = bfd_link_hash_undefined;
10414 h->root.u.undef.abfd = h->root.u.def.section->owner;
10415 }
10416
10417 ps = NULL;
10418 if (h->root.type == bfd_link_hash_defined
10419 || h->root.type == bfd_link_hash_defweak)
10420 ps = &h->root.u.def.section;
10421
10422 sym_name = h->root.root.string;
10423 }
10424 else
10425 {
10426 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10427
10428 s_type = ELF_ST_TYPE (sym->st_info);
10429 ps = &flinfo->sections[r_symndx];
10430 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10431 sym, *ps);
10432 }
10433
10434 if ((s_type == STT_RELC || s_type == STT_SRELC)
10435 && !bfd_link_relocatable (flinfo->info))
10436 {
10437 bfd_vma val;
10438 bfd_vma dot = (rel->r_offset
10439 + o->output_offset + o->output_section->vma);
10440 #ifdef DEBUG
10441 printf ("Encountered a complex symbol!");
10442 printf (" (input_bfd %s, section %s, reloc %ld\n",
10443 input_bfd->filename, o->name,
10444 (long) (rel - internal_relocs));
10445 printf (" symbol: idx %8.8lx, name %s\n",
10446 r_symndx, sym_name);
10447 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10448 (unsigned long) rel->r_info,
10449 (unsigned long) rel->r_offset);
10450 #endif
10451 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10452 isymbuf, locsymcount, s_type == STT_SRELC))
10453 return FALSE;
10454
10455 /* Symbol evaluated OK. Update to absolute value. */
10456 set_symbol_value (input_bfd, isymbuf, locsymcount,
10457 r_symndx, val);
10458 continue;
10459 }
10460
10461 if (action_discarded != -1 && ps != NULL)
10462 {
10463 /* Complain if the definition comes from a
10464 discarded section. */
10465 if ((sec = *ps) != NULL && discarded_section (sec))
10466 {
10467 BFD_ASSERT (r_symndx != STN_UNDEF);
10468 if (action_discarded & COMPLAIN)
10469 (*flinfo->info->callbacks->einfo)
10470 /* xgettext:c-format */
10471 (_("%X`%s' referenced in section `%A' of %B: "
10472 "defined in discarded section `%A' of %B\n"),
10473 sym_name, o, input_bfd, sec, sec->owner);
10474
10475 /* Try to do the best we can to support buggy old
10476 versions of gcc. Pretend that the symbol is
10477 really defined in the kept linkonce section.
10478 FIXME: This is quite broken. Modifying the
10479 symbol here means we will be changing all later
10480 uses of the symbol, not just in this section. */
10481 if (action_discarded & PRETEND)
10482 {
10483 asection *kept;
10484
10485 kept = _bfd_elf_check_kept_section (sec,
10486 flinfo->info);
10487 if (kept != NULL)
10488 {
10489 *ps = kept;
10490 continue;
10491 }
10492 }
10493 }
10494 }
10495 }
10496
10497 /* Relocate the section by invoking a back end routine.
10498
10499 The back end routine is responsible for adjusting the
10500 section contents as necessary, and (if using Rela relocs
10501 and generating a relocatable output file) adjusting the
10502 reloc addend as necessary.
10503
10504 The back end routine does not have to worry about setting
10505 the reloc address or the reloc symbol index.
10506
10507 The back end routine is given a pointer to the swapped in
10508 internal symbols, and can access the hash table entries
10509 for the external symbols via elf_sym_hashes (input_bfd).
10510
10511 When generating relocatable output, the back end routine
10512 must handle STB_LOCAL/STT_SECTION symbols specially. The
10513 output symbol is going to be a section symbol
10514 corresponding to the output section, which will require
10515 the addend to be adjusted. */
10516
10517 ret = (*relocate_section) (output_bfd, flinfo->info,
10518 input_bfd, o, contents,
10519 internal_relocs,
10520 isymbuf,
10521 flinfo->sections);
10522 if (!ret)
10523 return FALSE;
10524
10525 if (ret == 2
10526 || bfd_link_relocatable (flinfo->info)
10527 || flinfo->info->emitrelocations)
10528 {
10529 Elf_Internal_Rela *irela;
10530 Elf_Internal_Rela *irelaend, *irelamid;
10531 bfd_vma last_offset;
10532 struct elf_link_hash_entry **rel_hash;
10533 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10534 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10535 unsigned int next_erel;
10536 bfd_boolean rela_normal;
10537 struct bfd_elf_section_data *esdi, *esdo;
10538
10539 esdi = elf_section_data (o);
10540 esdo = elf_section_data (o->output_section);
10541 rela_normal = FALSE;
10542
10543 /* Adjust the reloc addresses and symbol indices. */
10544
10545 irela = internal_relocs;
10546 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10547 rel_hash = esdo->rel.hashes + esdo->rel.count;
10548 /* We start processing the REL relocs, if any. When we reach
10549 IRELAMID in the loop, we switch to the RELA relocs. */
10550 irelamid = irela;
10551 if (esdi->rel.hdr != NULL)
10552 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10553 * bed->s->int_rels_per_ext_rel);
10554 rel_hash_list = rel_hash;
10555 rela_hash_list = NULL;
10556 last_offset = o->output_offset;
10557 if (!bfd_link_relocatable (flinfo->info))
10558 last_offset += o->output_section->vma;
10559 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10560 {
10561 unsigned long r_symndx;
10562 asection *sec;
10563 Elf_Internal_Sym sym;
10564
10565 if (next_erel == bed->s->int_rels_per_ext_rel)
10566 {
10567 rel_hash++;
10568 next_erel = 0;
10569 }
10570
10571 if (irela == irelamid)
10572 {
10573 rel_hash = esdo->rela.hashes + esdo->rela.count;
10574 rela_hash_list = rel_hash;
10575 rela_normal = bed->rela_normal;
10576 }
10577
10578 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10579 flinfo->info, o,
10580 irela->r_offset);
10581 if (irela->r_offset >= (bfd_vma) -2)
10582 {
10583 /* This is a reloc for a deleted entry or somesuch.
10584 Turn it into an R_*_NONE reloc, at the same
10585 offset as the last reloc. elf_eh_frame.c and
10586 bfd_elf_discard_info rely on reloc offsets
10587 being ordered. */
10588 irela->r_offset = last_offset;
10589 irela->r_info = 0;
10590 irela->r_addend = 0;
10591 continue;
10592 }
10593
10594 irela->r_offset += o->output_offset;
10595
10596 /* Relocs in an executable have to be virtual addresses. */
10597 if (!bfd_link_relocatable (flinfo->info))
10598 irela->r_offset += o->output_section->vma;
10599
10600 last_offset = irela->r_offset;
10601
10602 r_symndx = irela->r_info >> r_sym_shift;
10603 if (r_symndx == STN_UNDEF)
10604 continue;
10605
10606 if (r_symndx >= locsymcount
10607 || (elf_bad_symtab (input_bfd)
10608 && flinfo->sections[r_symndx] == NULL))
10609 {
10610 struct elf_link_hash_entry *rh;
10611 unsigned long indx;
10612
10613 /* This is a reloc against a global symbol. We
10614 have not yet output all the local symbols, so
10615 we do not know the symbol index of any global
10616 symbol. We set the rel_hash entry for this
10617 reloc to point to the global hash table entry
10618 for this symbol. The symbol index is then
10619 set at the end of bfd_elf_final_link. */
10620 indx = r_symndx - extsymoff;
10621 rh = elf_sym_hashes (input_bfd)[indx];
10622 while (rh->root.type == bfd_link_hash_indirect
10623 || rh->root.type == bfd_link_hash_warning)
10624 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10625
10626 /* Setting the index to -2 tells
10627 elf_link_output_extsym that this symbol is
10628 used by a reloc. */
10629 BFD_ASSERT (rh->indx < 0);
10630 rh->indx = -2;
10631
10632 *rel_hash = rh;
10633
10634 continue;
10635 }
10636
10637 /* This is a reloc against a local symbol. */
10638
10639 *rel_hash = NULL;
10640 sym = isymbuf[r_symndx];
10641 sec = flinfo->sections[r_symndx];
10642 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10643 {
10644 /* I suppose the backend ought to fill in the
10645 section of any STT_SECTION symbol against a
10646 processor specific section. */
10647 r_symndx = STN_UNDEF;
10648 if (bfd_is_abs_section (sec))
10649 ;
10650 else if (sec == NULL || sec->owner == NULL)
10651 {
10652 bfd_set_error (bfd_error_bad_value);
10653 return FALSE;
10654 }
10655 else
10656 {
10657 asection *osec = sec->output_section;
10658
10659 /* If we have discarded a section, the output
10660 section will be the absolute section. In
10661 case of discarded SEC_MERGE sections, use
10662 the kept section. relocate_section should
10663 have already handled discarded linkonce
10664 sections. */
10665 if (bfd_is_abs_section (osec)
10666 && sec->kept_section != NULL
10667 && sec->kept_section->output_section != NULL)
10668 {
10669 osec = sec->kept_section->output_section;
10670 irela->r_addend -= osec->vma;
10671 }
10672
10673 if (!bfd_is_abs_section (osec))
10674 {
10675 r_symndx = osec->target_index;
10676 if (r_symndx == STN_UNDEF)
10677 {
10678 irela->r_addend += osec->vma;
10679 osec = _bfd_nearby_section (output_bfd, osec,
10680 osec->vma);
10681 irela->r_addend -= osec->vma;
10682 r_symndx = osec->target_index;
10683 }
10684 }
10685 }
10686
10687 /* Adjust the addend according to where the
10688 section winds up in the output section. */
10689 if (rela_normal)
10690 irela->r_addend += sec->output_offset;
10691 }
10692 else
10693 {
10694 if (flinfo->indices[r_symndx] == -1)
10695 {
10696 unsigned long shlink;
10697 const char *name;
10698 asection *osec;
10699 long indx;
10700
10701 if (flinfo->info->strip == strip_all)
10702 {
10703 /* You can't do ld -r -s. */
10704 bfd_set_error (bfd_error_invalid_operation);
10705 return FALSE;
10706 }
10707
10708 /* This symbol was skipped earlier, but
10709 since it is needed by a reloc, we
10710 must output it now. */
10711 shlink = symtab_hdr->sh_link;
10712 name = (bfd_elf_string_from_elf_section
10713 (input_bfd, shlink, sym.st_name));
10714 if (name == NULL)
10715 return FALSE;
10716
10717 osec = sec->output_section;
10718 sym.st_shndx =
10719 _bfd_elf_section_from_bfd_section (output_bfd,
10720 osec);
10721 if (sym.st_shndx == SHN_BAD)
10722 return FALSE;
10723
10724 sym.st_value += sec->output_offset;
10725 if (!bfd_link_relocatable (flinfo->info))
10726 {
10727 sym.st_value += osec->vma;
10728 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10729 {
10730 /* STT_TLS symbols are relative to PT_TLS
10731 segment base. */
10732 BFD_ASSERT (elf_hash_table (flinfo->info)
10733 ->tls_sec != NULL);
10734 sym.st_value -= (elf_hash_table (flinfo->info)
10735 ->tls_sec->vma);
10736 }
10737 }
10738
10739 indx = bfd_get_symcount (output_bfd);
10740 ret = elf_link_output_symstrtab (flinfo, name,
10741 &sym, sec,
10742 NULL);
10743 if (ret == 0)
10744 return FALSE;
10745 else if (ret == 1)
10746 flinfo->indices[r_symndx] = indx;
10747 else
10748 abort ();
10749 }
10750
10751 r_symndx = flinfo->indices[r_symndx];
10752 }
10753
10754 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10755 | (irela->r_info & r_type_mask));
10756 }
10757
10758 /* Swap out the relocs. */
10759 input_rel_hdr = esdi->rel.hdr;
10760 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10761 {
10762 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10763 input_rel_hdr,
10764 internal_relocs,
10765 rel_hash_list))
10766 return FALSE;
10767 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10768 * bed->s->int_rels_per_ext_rel);
10769 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10770 }
10771
10772 input_rela_hdr = esdi->rela.hdr;
10773 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10774 {
10775 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10776 input_rela_hdr,
10777 internal_relocs,
10778 rela_hash_list))
10779 return FALSE;
10780 }
10781 }
10782 }
10783
10784 /* Write out the modified section contents. */
10785 if (bed->elf_backend_write_section
10786 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10787 contents))
10788 {
10789 /* Section written out. */
10790 }
10791 else switch (o->sec_info_type)
10792 {
10793 case SEC_INFO_TYPE_STABS:
10794 if (! (_bfd_write_section_stabs
10795 (output_bfd,
10796 &elf_hash_table (flinfo->info)->stab_info,
10797 o, &elf_section_data (o)->sec_info, contents)))
10798 return FALSE;
10799 break;
10800 case SEC_INFO_TYPE_MERGE:
10801 if (! _bfd_write_merged_section (output_bfd, o,
10802 elf_section_data (o)->sec_info))
10803 return FALSE;
10804 break;
10805 case SEC_INFO_TYPE_EH_FRAME:
10806 {
10807 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10808 o, contents))
10809 return FALSE;
10810 }
10811 break;
10812 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10813 {
10814 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10815 flinfo->info,
10816 o, contents))
10817 return FALSE;
10818 }
10819 break;
10820 default:
10821 {
10822 if (! (o->flags & SEC_EXCLUDE))
10823 {
10824 file_ptr offset = (file_ptr) o->output_offset;
10825 bfd_size_type todo = o->size;
10826
10827 offset *= bfd_octets_per_byte (output_bfd);
10828
10829 if ((o->flags & SEC_ELF_REVERSE_COPY))
10830 {
10831 /* Reverse-copy input section to output. */
10832 do
10833 {
10834 todo -= address_size;
10835 if (! bfd_set_section_contents (output_bfd,
10836 o->output_section,
10837 contents + todo,
10838 offset,
10839 address_size))
10840 return FALSE;
10841 if (todo == 0)
10842 break;
10843 offset += address_size;
10844 }
10845 while (1);
10846 }
10847 else if (! bfd_set_section_contents (output_bfd,
10848 o->output_section,
10849 contents,
10850 offset, todo))
10851 return FALSE;
10852 }
10853 }
10854 break;
10855 }
10856 }
10857
10858 return TRUE;
10859 }
10860
10861 /* Generate a reloc when linking an ELF file. This is a reloc
10862 requested by the linker, and does not come from any input file. This
10863 is used to build constructor and destructor tables when linking
10864 with -Ur. */
10865
10866 static bfd_boolean
10867 elf_reloc_link_order (bfd *output_bfd,
10868 struct bfd_link_info *info,
10869 asection *output_section,
10870 struct bfd_link_order *link_order)
10871 {
10872 reloc_howto_type *howto;
10873 long indx;
10874 bfd_vma offset;
10875 bfd_vma addend;
10876 struct bfd_elf_section_reloc_data *reldata;
10877 struct elf_link_hash_entry **rel_hash_ptr;
10878 Elf_Internal_Shdr *rel_hdr;
10879 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10880 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10881 bfd_byte *erel;
10882 unsigned int i;
10883 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10884
10885 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10886 if (howto == NULL)
10887 {
10888 bfd_set_error (bfd_error_bad_value);
10889 return FALSE;
10890 }
10891
10892 addend = link_order->u.reloc.p->addend;
10893
10894 if (esdo->rel.hdr)
10895 reldata = &esdo->rel;
10896 else if (esdo->rela.hdr)
10897 reldata = &esdo->rela;
10898 else
10899 {
10900 reldata = NULL;
10901 BFD_ASSERT (0);
10902 }
10903
10904 /* Figure out the symbol index. */
10905 rel_hash_ptr = reldata->hashes + reldata->count;
10906 if (link_order->type == bfd_section_reloc_link_order)
10907 {
10908 indx = link_order->u.reloc.p->u.section->target_index;
10909 BFD_ASSERT (indx != 0);
10910 *rel_hash_ptr = NULL;
10911 }
10912 else
10913 {
10914 struct elf_link_hash_entry *h;
10915
10916 /* Treat a reloc against a defined symbol as though it were
10917 actually against the section. */
10918 h = ((struct elf_link_hash_entry *)
10919 bfd_wrapped_link_hash_lookup (output_bfd, info,
10920 link_order->u.reloc.p->u.name,
10921 FALSE, FALSE, TRUE));
10922 if (h != NULL
10923 && (h->root.type == bfd_link_hash_defined
10924 || h->root.type == bfd_link_hash_defweak))
10925 {
10926 asection *section;
10927
10928 section = h->root.u.def.section;
10929 indx = section->output_section->target_index;
10930 *rel_hash_ptr = NULL;
10931 /* It seems that we ought to add the symbol value to the
10932 addend here, but in practice it has already been added
10933 because it was passed to constructor_callback. */
10934 addend += section->output_section->vma + section->output_offset;
10935 }
10936 else if (h != NULL)
10937 {
10938 /* Setting the index to -2 tells elf_link_output_extsym that
10939 this symbol is used by a reloc. */
10940 h->indx = -2;
10941 *rel_hash_ptr = h;
10942 indx = 0;
10943 }
10944 else
10945 {
10946 (*info->callbacks->unattached_reloc)
10947 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10948 indx = 0;
10949 }
10950 }
10951
10952 /* If this is an inplace reloc, we must write the addend into the
10953 object file. */
10954 if (howto->partial_inplace && addend != 0)
10955 {
10956 bfd_size_type size;
10957 bfd_reloc_status_type rstat;
10958 bfd_byte *buf;
10959 bfd_boolean ok;
10960 const char *sym_name;
10961
10962 size = (bfd_size_type) bfd_get_reloc_size (howto);
10963 buf = (bfd_byte *) bfd_zmalloc (size);
10964 if (buf == NULL && size != 0)
10965 return FALSE;
10966 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10967 switch (rstat)
10968 {
10969 case bfd_reloc_ok:
10970 break;
10971
10972 default:
10973 case bfd_reloc_outofrange:
10974 abort ();
10975
10976 case bfd_reloc_overflow:
10977 if (link_order->type == bfd_section_reloc_link_order)
10978 sym_name = bfd_section_name (output_bfd,
10979 link_order->u.reloc.p->u.section);
10980 else
10981 sym_name = link_order->u.reloc.p->u.name;
10982 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10983 howto->name, addend, NULL, NULL,
10984 (bfd_vma) 0);
10985 break;
10986 }
10987
10988 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10989 link_order->offset
10990 * bfd_octets_per_byte (output_bfd),
10991 size);
10992 free (buf);
10993 if (! ok)
10994 return FALSE;
10995 }
10996
10997 /* The address of a reloc is relative to the section in a
10998 relocatable file, and is a virtual address in an executable
10999 file. */
11000 offset = link_order->offset;
11001 if (! bfd_link_relocatable (info))
11002 offset += output_section->vma;
11003
11004 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11005 {
11006 irel[i].r_offset = offset;
11007 irel[i].r_info = 0;
11008 irel[i].r_addend = 0;
11009 }
11010 if (bed->s->arch_size == 32)
11011 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11012 else
11013 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11014
11015 rel_hdr = reldata->hdr;
11016 erel = rel_hdr->contents;
11017 if (rel_hdr->sh_type == SHT_REL)
11018 {
11019 erel += reldata->count * bed->s->sizeof_rel;
11020 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11021 }
11022 else
11023 {
11024 irel[0].r_addend = addend;
11025 erel += reldata->count * bed->s->sizeof_rela;
11026 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11027 }
11028
11029 ++reldata->count;
11030
11031 return TRUE;
11032 }
11033
11034
11035 /* Get the output vma of the section pointed to by the sh_link field. */
11036
11037 static bfd_vma
11038 elf_get_linked_section_vma (struct bfd_link_order *p)
11039 {
11040 Elf_Internal_Shdr **elf_shdrp;
11041 asection *s;
11042 int elfsec;
11043
11044 s = p->u.indirect.section;
11045 elf_shdrp = elf_elfsections (s->owner);
11046 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11047 elfsec = elf_shdrp[elfsec]->sh_link;
11048 /* PR 290:
11049 The Intel C compiler generates SHT_IA_64_UNWIND with
11050 SHF_LINK_ORDER. But it doesn't set the sh_link or
11051 sh_info fields. Hence we could get the situation
11052 where elfsec is 0. */
11053 if (elfsec == 0)
11054 {
11055 const struct elf_backend_data *bed
11056 = get_elf_backend_data (s->owner);
11057 if (bed->link_order_error_handler)
11058 bed->link_order_error_handler
11059 /* xgettext:c-format */
11060 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11061 return 0;
11062 }
11063 else
11064 {
11065 s = elf_shdrp[elfsec]->bfd_section;
11066 return s->output_section->vma + s->output_offset;
11067 }
11068 }
11069
11070
11071 /* Compare two sections based on the locations of the sections they are
11072 linked to. Used by elf_fixup_link_order. */
11073
11074 static int
11075 compare_link_order (const void * a, const void * b)
11076 {
11077 bfd_vma apos;
11078 bfd_vma bpos;
11079
11080 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11081 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11082 if (apos < bpos)
11083 return -1;
11084 return apos > bpos;
11085 }
11086
11087
11088 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11089 order as their linked sections. Returns false if this could not be done
11090 because an output section includes both ordered and unordered
11091 sections. Ideally we'd do this in the linker proper. */
11092
11093 static bfd_boolean
11094 elf_fixup_link_order (bfd *abfd, asection *o)
11095 {
11096 int seen_linkorder;
11097 int seen_other;
11098 int n;
11099 struct bfd_link_order *p;
11100 bfd *sub;
11101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11102 unsigned elfsec;
11103 struct bfd_link_order **sections;
11104 asection *s, *other_sec, *linkorder_sec;
11105 bfd_vma offset;
11106
11107 other_sec = NULL;
11108 linkorder_sec = NULL;
11109 seen_other = 0;
11110 seen_linkorder = 0;
11111 for (p = o->map_head.link_order; p != NULL; p = p->next)
11112 {
11113 if (p->type == bfd_indirect_link_order)
11114 {
11115 s = p->u.indirect.section;
11116 sub = s->owner;
11117 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11118 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11119 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11120 && elfsec < elf_numsections (sub)
11121 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11122 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11123 {
11124 seen_linkorder++;
11125 linkorder_sec = s;
11126 }
11127 else
11128 {
11129 seen_other++;
11130 other_sec = s;
11131 }
11132 }
11133 else
11134 seen_other++;
11135
11136 if (seen_other && seen_linkorder)
11137 {
11138 if (other_sec && linkorder_sec)
11139 _bfd_error_handler
11140 /* xgettext:c-format */
11141 (_("%A has both ordered [`%A' in %B] "
11142 "and unordered [`%A' in %B] sections"),
11143 o, linkorder_sec,
11144 linkorder_sec->owner, other_sec,
11145 other_sec->owner);
11146 else
11147 _bfd_error_handler
11148 (_("%A has both ordered and unordered sections"), o);
11149 bfd_set_error (bfd_error_bad_value);
11150 return FALSE;
11151 }
11152 }
11153
11154 if (!seen_linkorder)
11155 return TRUE;
11156
11157 sections = (struct bfd_link_order **)
11158 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11159 if (sections == NULL)
11160 return FALSE;
11161 seen_linkorder = 0;
11162
11163 for (p = o->map_head.link_order; p != NULL; p = p->next)
11164 {
11165 sections[seen_linkorder++] = p;
11166 }
11167 /* Sort the input sections in the order of their linked section. */
11168 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11169 compare_link_order);
11170
11171 /* Change the offsets of the sections. */
11172 offset = 0;
11173 for (n = 0; n < seen_linkorder; n++)
11174 {
11175 s = sections[n]->u.indirect.section;
11176 offset &= ~(bfd_vma) 0 << s->alignment_power;
11177 s->output_offset = offset / bfd_octets_per_byte (abfd);
11178 sections[n]->offset = offset;
11179 offset += sections[n]->size;
11180 }
11181
11182 free (sections);
11183 return TRUE;
11184 }
11185
11186 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11187 Returns TRUE upon success, FALSE otherwise. */
11188
11189 static bfd_boolean
11190 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11191 {
11192 bfd_boolean ret = FALSE;
11193 bfd *implib_bfd;
11194 const struct elf_backend_data *bed;
11195 flagword flags;
11196 enum bfd_architecture arch;
11197 unsigned int mach;
11198 asymbol **sympp = NULL;
11199 long symsize;
11200 long symcount;
11201 long src_count;
11202 elf_symbol_type *osymbuf;
11203
11204 implib_bfd = info->out_implib_bfd;
11205 bed = get_elf_backend_data (abfd);
11206
11207 if (!bfd_set_format (implib_bfd, bfd_object))
11208 return FALSE;
11209
11210 flags = bfd_get_file_flags (abfd);
11211 flags &= ~HAS_RELOC;
11212 if (!bfd_set_start_address (implib_bfd, 0)
11213 || !bfd_set_file_flags (implib_bfd, flags))
11214 return FALSE;
11215
11216 /* Copy architecture of output file to import library file. */
11217 arch = bfd_get_arch (abfd);
11218 mach = bfd_get_mach (abfd);
11219 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11220 && (abfd->target_defaulted
11221 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11222 return FALSE;
11223
11224 /* Get symbol table size. */
11225 symsize = bfd_get_symtab_upper_bound (abfd);
11226 if (symsize < 0)
11227 return FALSE;
11228
11229 /* Read in the symbol table. */
11230 sympp = (asymbol **) xmalloc (symsize);
11231 symcount = bfd_canonicalize_symtab (abfd, sympp);
11232 if (symcount < 0)
11233 goto free_sym_buf;
11234
11235 /* Allow the BFD backend to copy any private header data it
11236 understands from the output BFD to the import library BFD. */
11237 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11238 goto free_sym_buf;
11239
11240 /* Filter symbols to appear in the import library. */
11241 if (bed->elf_backend_filter_implib_symbols)
11242 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11243 symcount);
11244 else
11245 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11246 if (symcount == 0)
11247 {
11248 bfd_set_error (bfd_error_no_symbols);
11249 _bfd_error_handler (_("%B: no symbol found for import library"),
11250 implib_bfd);
11251 goto free_sym_buf;
11252 }
11253
11254
11255 /* Make symbols absolute. */
11256 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11257 sizeof (*osymbuf));
11258 for (src_count = 0; src_count < symcount; src_count++)
11259 {
11260 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11261 sizeof (*osymbuf));
11262 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11263 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11264 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11265 osymbuf[src_count].internal_elf_sym.st_value =
11266 osymbuf[src_count].symbol.value;
11267 sympp[src_count] = &osymbuf[src_count].symbol;
11268 }
11269
11270 bfd_set_symtab (implib_bfd, sympp, symcount);
11271
11272 /* Allow the BFD backend to copy any private data it understands
11273 from the output BFD to the import library BFD. This is done last
11274 to permit the routine to look at the filtered symbol table. */
11275 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11276 goto free_sym_buf;
11277
11278 if (!bfd_close (implib_bfd))
11279 goto free_sym_buf;
11280
11281 ret = TRUE;
11282
11283 free_sym_buf:
11284 free (sympp);
11285 return ret;
11286 }
11287
11288 static void
11289 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11290 {
11291 asection *o;
11292
11293 if (flinfo->symstrtab != NULL)
11294 _bfd_elf_strtab_free (flinfo->symstrtab);
11295 if (flinfo->contents != NULL)
11296 free (flinfo->contents);
11297 if (flinfo->external_relocs != NULL)
11298 free (flinfo->external_relocs);
11299 if (flinfo->internal_relocs != NULL)
11300 free (flinfo->internal_relocs);
11301 if (flinfo->external_syms != NULL)
11302 free (flinfo->external_syms);
11303 if (flinfo->locsym_shndx != NULL)
11304 free (flinfo->locsym_shndx);
11305 if (flinfo->internal_syms != NULL)
11306 free (flinfo->internal_syms);
11307 if (flinfo->indices != NULL)
11308 free (flinfo->indices);
11309 if (flinfo->sections != NULL)
11310 free (flinfo->sections);
11311 if (flinfo->symshndxbuf != NULL)
11312 free (flinfo->symshndxbuf);
11313 for (o = obfd->sections; o != NULL; o = o->next)
11314 {
11315 struct bfd_elf_section_data *esdo = elf_section_data (o);
11316 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11317 free (esdo->rel.hashes);
11318 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11319 free (esdo->rela.hashes);
11320 }
11321 }
11322
11323 /* Do the final step of an ELF link. */
11324
11325 bfd_boolean
11326 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11327 {
11328 bfd_boolean dynamic;
11329 bfd_boolean emit_relocs;
11330 bfd *dynobj;
11331 struct elf_final_link_info flinfo;
11332 asection *o;
11333 struct bfd_link_order *p;
11334 bfd *sub;
11335 bfd_size_type max_contents_size;
11336 bfd_size_type max_external_reloc_size;
11337 bfd_size_type max_internal_reloc_count;
11338 bfd_size_type max_sym_count;
11339 bfd_size_type max_sym_shndx_count;
11340 Elf_Internal_Sym elfsym;
11341 unsigned int i;
11342 Elf_Internal_Shdr *symtab_hdr;
11343 Elf_Internal_Shdr *symtab_shndx_hdr;
11344 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11345 struct elf_outext_info eoinfo;
11346 bfd_boolean merged;
11347 size_t relativecount = 0;
11348 asection *reldyn = 0;
11349 bfd_size_type amt;
11350 asection *attr_section = NULL;
11351 bfd_vma attr_size = 0;
11352 const char *std_attrs_section;
11353 struct elf_link_hash_table *htab = elf_hash_table (info);
11354
11355 if (!is_elf_hash_table (htab))
11356 return FALSE;
11357
11358 if (bfd_link_pic (info))
11359 abfd->flags |= DYNAMIC;
11360
11361 dynamic = htab->dynamic_sections_created;
11362 dynobj = htab->dynobj;
11363
11364 emit_relocs = (bfd_link_relocatable (info)
11365 || info->emitrelocations);
11366
11367 flinfo.info = info;
11368 flinfo.output_bfd = abfd;
11369 flinfo.symstrtab = _bfd_elf_strtab_init ();
11370 if (flinfo.symstrtab == NULL)
11371 return FALSE;
11372
11373 if (! dynamic)
11374 {
11375 flinfo.hash_sec = NULL;
11376 flinfo.symver_sec = NULL;
11377 }
11378 else
11379 {
11380 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11381 /* Note that dynsym_sec can be NULL (on VMS). */
11382 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11383 /* Note that it is OK if symver_sec is NULL. */
11384 }
11385
11386 flinfo.contents = NULL;
11387 flinfo.external_relocs = NULL;
11388 flinfo.internal_relocs = NULL;
11389 flinfo.external_syms = NULL;
11390 flinfo.locsym_shndx = NULL;
11391 flinfo.internal_syms = NULL;
11392 flinfo.indices = NULL;
11393 flinfo.sections = NULL;
11394 flinfo.symshndxbuf = NULL;
11395 flinfo.filesym_count = 0;
11396
11397 /* The object attributes have been merged. Remove the input
11398 sections from the link, and set the contents of the output
11399 secton. */
11400 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11401 for (o = abfd->sections; o != NULL; o = o->next)
11402 {
11403 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11404 || strcmp (o->name, ".gnu.attributes") == 0)
11405 {
11406 for (p = o->map_head.link_order; p != NULL; p = p->next)
11407 {
11408 asection *input_section;
11409
11410 if (p->type != bfd_indirect_link_order)
11411 continue;
11412 input_section = p->u.indirect.section;
11413 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11414 elf_link_input_bfd ignores this section. */
11415 input_section->flags &= ~SEC_HAS_CONTENTS;
11416 }
11417
11418 attr_size = bfd_elf_obj_attr_size (abfd);
11419 if (attr_size)
11420 {
11421 bfd_set_section_size (abfd, o, attr_size);
11422 attr_section = o;
11423 /* Skip this section later on. */
11424 o->map_head.link_order = NULL;
11425 }
11426 else
11427 o->flags |= SEC_EXCLUDE;
11428 }
11429 }
11430
11431 /* Count up the number of relocations we will output for each output
11432 section, so that we know the sizes of the reloc sections. We
11433 also figure out some maximum sizes. */
11434 max_contents_size = 0;
11435 max_external_reloc_size = 0;
11436 max_internal_reloc_count = 0;
11437 max_sym_count = 0;
11438 max_sym_shndx_count = 0;
11439 merged = FALSE;
11440 for (o = abfd->sections; o != NULL; o = o->next)
11441 {
11442 struct bfd_elf_section_data *esdo = elf_section_data (o);
11443 o->reloc_count = 0;
11444
11445 for (p = o->map_head.link_order; p != NULL; p = p->next)
11446 {
11447 unsigned int reloc_count = 0;
11448 unsigned int additional_reloc_count = 0;
11449 struct bfd_elf_section_data *esdi = NULL;
11450
11451 if (p->type == bfd_section_reloc_link_order
11452 || p->type == bfd_symbol_reloc_link_order)
11453 reloc_count = 1;
11454 else if (p->type == bfd_indirect_link_order)
11455 {
11456 asection *sec;
11457
11458 sec = p->u.indirect.section;
11459
11460 /* Mark all sections which are to be included in the
11461 link. This will normally be every section. We need
11462 to do this so that we can identify any sections which
11463 the linker has decided to not include. */
11464 sec->linker_mark = TRUE;
11465
11466 if (sec->flags & SEC_MERGE)
11467 merged = TRUE;
11468
11469 if (sec->rawsize > max_contents_size)
11470 max_contents_size = sec->rawsize;
11471 if (sec->size > max_contents_size)
11472 max_contents_size = sec->size;
11473
11474 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11475 && (sec->owner->flags & DYNAMIC) == 0)
11476 {
11477 size_t sym_count;
11478
11479 /* We are interested in just local symbols, not all
11480 symbols. */
11481 if (elf_bad_symtab (sec->owner))
11482 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11483 / bed->s->sizeof_sym);
11484 else
11485 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11486
11487 if (sym_count > max_sym_count)
11488 max_sym_count = sym_count;
11489
11490 if (sym_count > max_sym_shndx_count
11491 && elf_symtab_shndx_list (sec->owner) != NULL)
11492 max_sym_shndx_count = sym_count;
11493
11494 if (esdo->this_hdr.sh_type == SHT_REL
11495 || esdo->this_hdr.sh_type == SHT_RELA)
11496 /* Some backends use reloc_count in relocation sections
11497 to count particular types of relocs. Of course,
11498 reloc sections themselves can't have relocations. */
11499 ;
11500 else if (emit_relocs)
11501 {
11502 reloc_count = sec->reloc_count;
11503 if (bed->elf_backend_count_additional_relocs)
11504 {
11505 int c;
11506 c = (*bed->elf_backend_count_additional_relocs) (sec);
11507 additional_reloc_count += c;
11508 }
11509 }
11510 else if (bed->elf_backend_count_relocs)
11511 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11512
11513 esdi = elf_section_data (sec);
11514
11515 if ((sec->flags & SEC_RELOC) != 0)
11516 {
11517 size_t ext_size = 0;
11518
11519 if (esdi->rel.hdr != NULL)
11520 ext_size = esdi->rel.hdr->sh_size;
11521 if (esdi->rela.hdr != NULL)
11522 ext_size += esdi->rela.hdr->sh_size;
11523
11524 if (ext_size > max_external_reloc_size)
11525 max_external_reloc_size = ext_size;
11526 if (sec->reloc_count > max_internal_reloc_count)
11527 max_internal_reloc_count = sec->reloc_count;
11528 }
11529 }
11530 }
11531
11532 if (reloc_count == 0)
11533 continue;
11534
11535 reloc_count += additional_reloc_count;
11536 o->reloc_count += reloc_count;
11537
11538 if (p->type == bfd_indirect_link_order && emit_relocs)
11539 {
11540 if (esdi->rel.hdr)
11541 {
11542 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11543 esdo->rel.count += additional_reloc_count;
11544 }
11545 if (esdi->rela.hdr)
11546 {
11547 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11548 esdo->rela.count += additional_reloc_count;
11549 }
11550 }
11551 else
11552 {
11553 if (o->use_rela_p)
11554 esdo->rela.count += reloc_count;
11555 else
11556 esdo->rel.count += reloc_count;
11557 }
11558 }
11559
11560 if (o->reloc_count > 0)
11561 o->flags |= SEC_RELOC;
11562 else
11563 {
11564 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11565 set it (this is probably a bug) and if it is set
11566 assign_section_numbers will create a reloc section. */
11567 o->flags &=~ SEC_RELOC;
11568 }
11569
11570 /* If the SEC_ALLOC flag is not set, force the section VMA to
11571 zero. This is done in elf_fake_sections as well, but forcing
11572 the VMA to 0 here will ensure that relocs against these
11573 sections are handled correctly. */
11574 if ((o->flags & SEC_ALLOC) == 0
11575 && ! o->user_set_vma)
11576 o->vma = 0;
11577 }
11578
11579 if (! bfd_link_relocatable (info) && merged)
11580 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11581
11582 /* Figure out the file positions for everything but the symbol table
11583 and the relocs. We set symcount to force assign_section_numbers
11584 to create a symbol table. */
11585 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11586 BFD_ASSERT (! abfd->output_has_begun);
11587 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11588 goto error_return;
11589
11590 /* Set sizes, and assign file positions for reloc sections. */
11591 for (o = abfd->sections; o != NULL; o = o->next)
11592 {
11593 struct bfd_elf_section_data *esdo = elf_section_data (o);
11594 if ((o->flags & SEC_RELOC) != 0)
11595 {
11596 if (esdo->rel.hdr
11597 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11598 goto error_return;
11599
11600 if (esdo->rela.hdr
11601 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11602 goto error_return;
11603 }
11604
11605 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11606 to count upwards while actually outputting the relocations. */
11607 esdo->rel.count = 0;
11608 esdo->rela.count = 0;
11609
11610 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11611 {
11612 /* Cache the section contents so that they can be compressed
11613 later. Use bfd_malloc since it will be freed by
11614 bfd_compress_section_contents. */
11615 unsigned char *contents = esdo->this_hdr.contents;
11616 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11617 abort ();
11618 contents
11619 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11620 if (contents == NULL)
11621 goto error_return;
11622 esdo->this_hdr.contents = contents;
11623 }
11624 }
11625
11626 /* We have now assigned file positions for all the sections except
11627 .symtab, .strtab, and non-loaded reloc sections. We start the
11628 .symtab section at the current file position, and write directly
11629 to it. We build the .strtab section in memory. */
11630 bfd_get_symcount (abfd) = 0;
11631 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11632 /* sh_name is set in prep_headers. */
11633 symtab_hdr->sh_type = SHT_SYMTAB;
11634 /* sh_flags, sh_addr and sh_size all start off zero. */
11635 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11636 /* sh_link is set in assign_section_numbers. */
11637 /* sh_info is set below. */
11638 /* sh_offset is set just below. */
11639 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11640
11641 if (max_sym_count < 20)
11642 max_sym_count = 20;
11643 htab->strtabsize = max_sym_count;
11644 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11645 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11646 if (htab->strtab == NULL)
11647 goto error_return;
11648 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11649 flinfo.symshndxbuf
11650 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11651 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11652
11653 if (info->strip != strip_all || emit_relocs)
11654 {
11655 file_ptr off = elf_next_file_pos (abfd);
11656
11657 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11658
11659 /* Note that at this point elf_next_file_pos (abfd) is
11660 incorrect. We do not yet know the size of the .symtab section.
11661 We correct next_file_pos below, after we do know the size. */
11662
11663 /* Start writing out the symbol table. The first symbol is always a
11664 dummy symbol. */
11665 elfsym.st_value = 0;
11666 elfsym.st_size = 0;
11667 elfsym.st_info = 0;
11668 elfsym.st_other = 0;
11669 elfsym.st_shndx = SHN_UNDEF;
11670 elfsym.st_target_internal = 0;
11671 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11672 bfd_und_section_ptr, NULL) != 1)
11673 goto error_return;
11674
11675 /* Output a symbol for each section. We output these even if we are
11676 discarding local symbols, since they are used for relocs. These
11677 symbols have no names. We store the index of each one in the
11678 index field of the section, so that we can find it again when
11679 outputting relocs. */
11680
11681 elfsym.st_size = 0;
11682 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11683 elfsym.st_other = 0;
11684 elfsym.st_value = 0;
11685 elfsym.st_target_internal = 0;
11686 for (i = 1; i < elf_numsections (abfd); i++)
11687 {
11688 o = bfd_section_from_elf_index (abfd, i);
11689 if (o != NULL)
11690 {
11691 o->target_index = bfd_get_symcount (abfd);
11692 elfsym.st_shndx = i;
11693 if (!bfd_link_relocatable (info))
11694 elfsym.st_value = o->vma;
11695 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11696 NULL) != 1)
11697 goto error_return;
11698 }
11699 }
11700 }
11701
11702 /* Allocate some memory to hold information read in from the input
11703 files. */
11704 if (max_contents_size != 0)
11705 {
11706 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11707 if (flinfo.contents == NULL)
11708 goto error_return;
11709 }
11710
11711 if (max_external_reloc_size != 0)
11712 {
11713 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11714 if (flinfo.external_relocs == NULL)
11715 goto error_return;
11716 }
11717
11718 if (max_internal_reloc_count != 0)
11719 {
11720 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11721 amt *= sizeof (Elf_Internal_Rela);
11722 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11723 if (flinfo.internal_relocs == NULL)
11724 goto error_return;
11725 }
11726
11727 if (max_sym_count != 0)
11728 {
11729 amt = max_sym_count * bed->s->sizeof_sym;
11730 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11731 if (flinfo.external_syms == NULL)
11732 goto error_return;
11733
11734 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11735 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11736 if (flinfo.internal_syms == NULL)
11737 goto error_return;
11738
11739 amt = max_sym_count * sizeof (long);
11740 flinfo.indices = (long int *) bfd_malloc (amt);
11741 if (flinfo.indices == NULL)
11742 goto error_return;
11743
11744 amt = max_sym_count * sizeof (asection *);
11745 flinfo.sections = (asection **) bfd_malloc (amt);
11746 if (flinfo.sections == NULL)
11747 goto error_return;
11748 }
11749
11750 if (max_sym_shndx_count != 0)
11751 {
11752 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11753 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11754 if (flinfo.locsym_shndx == NULL)
11755 goto error_return;
11756 }
11757
11758 if (htab->tls_sec)
11759 {
11760 bfd_vma base, end = 0;
11761 asection *sec;
11762
11763 for (sec = htab->tls_sec;
11764 sec && (sec->flags & SEC_THREAD_LOCAL);
11765 sec = sec->next)
11766 {
11767 bfd_size_type size = sec->size;
11768
11769 if (size == 0
11770 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11771 {
11772 struct bfd_link_order *ord = sec->map_tail.link_order;
11773
11774 if (ord != NULL)
11775 size = ord->offset + ord->size;
11776 }
11777 end = sec->vma + size;
11778 }
11779 base = htab->tls_sec->vma;
11780 /* Only align end of TLS section if static TLS doesn't have special
11781 alignment requirements. */
11782 if (bed->static_tls_alignment == 1)
11783 end = align_power (end, htab->tls_sec->alignment_power);
11784 htab->tls_size = end - base;
11785 }
11786
11787 /* Reorder SHF_LINK_ORDER sections. */
11788 for (o = abfd->sections; o != NULL; o = o->next)
11789 {
11790 if (!elf_fixup_link_order (abfd, o))
11791 return FALSE;
11792 }
11793
11794 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11795 return FALSE;
11796
11797 /* Since ELF permits relocations to be against local symbols, we
11798 must have the local symbols available when we do the relocations.
11799 Since we would rather only read the local symbols once, and we
11800 would rather not keep them in memory, we handle all the
11801 relocations for a single input file at the same time.
11802
11803 Unfortunately, there is no way to know the total number of local
11804 symbols until we have seen all of them, and the local symbol
11805 indices precede the global symbol indices. This means that when
11806 we are generating relocatable output, and we see a reloc against
11807 a global symbol, we can not know the symbol index until we have
11808 finished examining all the local symbols to see which ones we are
11809 going to output. To deal with this, we keep the relocations in
11810 memory, and don't output them until the end of the link. This is
11811 an unfortunate waste of memory, but I don't see a good way around
11812 it. Fortunately, it only happens when performing a relocatable
11813 link, which is not the common case. FIXME: If keep_memory is set
11814 we could write the relocs out and then read them again; I don't
11815 know how bad the memory loss will be. */
11816
11817 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11818 sub->output_has_begun = FALSE;
11819 for (o = abfd->sections; o != NULL; o = o->next)
11820 {
11821 for (p = o->map_head.link_order; p != NULL; p = p->next)
11822 {
11823 if (p->type == bfd_indirect_link_order
11824 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11825 == bfd_target_elf_flavour)
11826 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11827 {
11828 if (! sub->output_has_begun)
11829 {
11830 if (! elf_link_input_bfd (&flinfo, sub))
11831 goto error_return;
11832 sub->output_has_begun = TRUE;
11833 }
11834 }
11835 else if (p->type == bfd_section_reloc_link_order
11836 || p->type == bfd_symbol_reloc_link_order)
11837 {
11838 if (! elf_reloc_link_order (abfd, info, o, p))
11839 goto error_return;
11840 }
11841 else
11842 {
11843 if (! _bfd_default_link_order (abfd, info, o, p))
11844 {
11845 if (p->type == bfd_indirect_link_order
11846 && (bfd_get_flavour (sub)
11847 == bfd_target_elf_flavour)
11848 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11849 != bed->s->elfclass))
11850 {
11851 const char *iclass, *oclass;
11852
11853 switch (bed->s->elfclass)
11854 {
11855 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11856 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11857 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11858 default: abort ();
11859 }
11860
11861 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11862 {
11863 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11864 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11865 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11866 default: abort ();
11867 }
11868
11869 bfd_set_error (bfd_error_wrong_format);
11870 _bfd_error_handler
11871 /* xgettext:c-format */
11872 (_("%B: file class %s incompatible with %s"),
11873 sub, iclass, oclass);
11874 }
11875
11876 goto error_return;
11877 }
11878 }
11879 }
11880 }
11881
11882 /* Free symbol buffer if needed. */
11883 if (!info->reduce_memory_overheads)
11884 {
11885 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11886 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11887 && elf_tdata (sub)->symbuf)
11888 {
11889 free (elf_tdata (sub)->symbuf);
11890 elf_tdata (sub)->symbuf = NULL;
11891 }
11892 }
11893
11894 /* Output any global symbols that got converted to local in a
11895 version script or due to symbol visibility. We do this in a
11896 separate step since ELF requires all local symbols to appear
11897 prior to any global symbols. FIXME: We should only do this if
11898 some global symbols were, in fact, converted to become local.
11899 FIXME: Will this work correctly with the Irix 5 linker? */
11900 eoinfo.failed = FALSE;
11901 eoinfo.flinfo = &flinfo;
11902 eoinfo.localsyms = TRUE;
11903 eoinfo.file_sym_done = FALSE;
11904 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11905 if (eoinfo.failed)
11906 return FALSE;
11907
11908 /* If backend needs to output some local symbols not present in the hash
11909 table, do it now. */
11910 if (bed->elf_backend_output_arch_local_syms
11911 && (info->strip != strip_all || emit_relocs))
11912 {
11913 typedef int (*out_sym_func)
11914 (void *, const char *, Elf_Internal_Sym *, asection *,
11915 struct elf_link_hash_entry *);
11916
11917 if (! ((*bed->elf_backend_output_arch_local_syms)
11918 (abfd, info, &flinfo,
11919 (out_sym_func) elf_link_output_symstrtab)))
11920 return FALSE;
11921 }
11922
11923 /* That wrote out all the local symbols. Finish up the symbol table
11924 with the global symbols. Even if we want to strip everything we
11925 can, we still need to deal with those global symbols that got
11926 converted to local in a version script. */
11927
11928 /* The sh_info field records the index of the first non local symbol. */
11929 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11930
11931 if (dynamic
11932 && htab->dynsym != NULL
11933 && htab->dynsym->output_section != bfd_abs_section_ptr)
11934 {
11935 Elf_Internal_Sym sym;
11936 bfd_byte *dynsym = htab->dynsym->contents;
11937
11938 o = htab->dynsym->output_section;
11939 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11940
11941 /* Write out the section symbols for the output sections. */
11942 if (bfd_link_pic (info)
11943 || htab->is_relocatable_executable)
11944 {
11945 asection *s;
11946
11947 sym.st_size = 0;
11948 sym.st_name = 0;
11949 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11950 sym.st_other = 0;
11951 sym.st_target_internal = 0;
11952
11953 for (s = abfd->sections; s != NULL; s = s->next)
11954 {
11955 int indx;
11956 bfd_byte *dest;
11957 long dynindx;
11958
11959 dynindx = elf_section_data (s)->dynindx;
11960 if (dynindx <= 0)
11961 continue;
11962 indx = elf_section_data (s)->this_idx;
11963 BFD_ASSERT (indx > 0);
11964 sym.st_shndx = indx;
11965 if (! check_dynsym (abfd, &sym))
11966 return FALSE;
11967 sym.st_value = s->vma;
11968 dest = dynsym + dynindx * bed->s->sizeof_sym;
11969 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11970 }
11971 }
11972
11973 /* Write out the local dynsyms. */
11974 if (htab->dynlocal)
11975 {
11976 struct elf_link_local_dynamic_entry *e;
11977 for (e = htab->dynlocal; e ; e = e->next)
11978 {
11979 asection *s;
11980 bfd_byte *dest;
11981
11982 /* Copy the internal symbol and turn off visibility.
11983 Note that we saved a word of storage and overwrote
11984 the original st_name with the dynstr_index. */
11985 sym = e->isym;
11986 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11987
11988 s = bfd_section_from_elf_index (e->input_bfd,
11989 e->isym.st_shndx);
11990 if (s != NULL)
11991 {
11992 sym.st_shndx =
11993 elf_section_data (s->output_section)->this_idx;
11994 if (! check_dynsym (abfd, &sym))
11995 return FALSE;
11996 sym.st_value = (s->output_section->vma
11997 + s->output_offset
11998 + e->isym.st_value);
11999 }
12000
12001 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12002 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12003 }
12004 }
12005 }
12006
12007 /* We get the global symbols from the hash table. */
12008 eoinfo.failed = FALSE;
12009 eoinfo.localsyms = FALSE;
12010 eoinfo.flinfo = &flinfo;
12011 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12012 if (eoinfo.failed)
12013 return FALSE;
12014
12015 /* If backend needs to output some symbols not present in the hash
12016 table, do it now. */
12017 if (bed->elf_backend_output_arch_syms
12018 && (info->strip != strip_all || emit_relocs))
12019 {
12020 typedef int (*out_sym_func)
12021 (void *, const char *, Elf_Internal_Sym *, asection *,
12022 struct elf_link_hash_entry *);
12023
12024 if (! ((*bed->elf_backend_output_arch_syms)
12025 (abfd, info, &flinfo,
12026 (out_sym_func) elf_link_output_symstrtab)))
12027 return FALSE;
12028 }
12029
12030 /* Finalize the .strtab section. */
12031 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12032
12033 /* Swap out the .strtab section. */
12034 if (!elf_link_swap_symbols_out (&flinfo))
12035 return FALSE;
12036
12037 /* Now we know the size of the symtab section. */
12038 if (bfd_get_symcount (abfd) > 0)
12039 {
12040 /* Finish up and write out the symbol string table (.strtab)
12041 section. */
12042 Elf_Internal_Shdr *symstrtab_hdr;
12043 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12044
12045 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12046 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12047 {
12048 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12049 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12050 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12051 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12052 symtab_shndx_hdr->sh_size = amt;
12053
12054 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12055 off, TRUE);
12056
12057 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12058 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12059 return FALSE;
12060 }
12061
12062 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12063 /* sh_name was set in prep_headers. */
12064 symstrtab_hdr->sh_type = SHT_STRTAB;
12065 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12066 symstrtab_hdr->sh_addr = 0;
12067 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12068 symstrtab_hdr->sh_entsize = 0;
12069 symstrtab_hdr->sh_link = 0;
12070 symstrtab_hdr->sh_info = 0;
12071 /* sh_offset is set just below. */
12072 symstrtab_hdr->sh_addralign = 1;
12073
12074 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12075 off, TRUE);
12076 elf_next_file_pos (abfd) = off;
12077
12078 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12079 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12080 return FALSE;
12081 }
12082
12083 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12084 {
12085 _bfd_error_handler (_("%B: failed to generate import library"),
12086 info->out_implib_bfd);
12087 return FALSE;
12088 }
12089
12090 /* Adjust the relocs to have the correct symbol indices. */
12091 for (o = abfd->sections; o != NULL; o = o->next)
12092 {
12093 struct bfd_elf_section_data *esdo = elf_section_data (o);
12094 bfd_boolean sort;
12095 if ((o->flags & SEC_RELOC) == 0)
12096 continue;
12097
12098 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12099 if (esdo->rel.hdr != NULL
12100 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12101 return FALSE;
12102 if (esdo->rela.hdr != NULL
12103 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12104 return FALSE;
12105
12106 /* Set the reloc_count field to 0 to prevent write_relocs from
12107 trying to swap the relocs out itself. */
12108 o->reloc_count = 0;
12109 }
12110
12111 if (dynamic && info->combreloc && dynobj != NULL)
12112 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12113
12114 /* If we are linking against a dynamic object, or generating a
12115 shared library, finish up the dynamic linking information. */
12116 if (dynamic)
12117 {
12118 bfd_byte *dyncon, *dynconend;
12119
12120 /* Fix up .dynamic entries. */
12121 o = bfd_get_linker_section (dynobj, ".dynamic");
12122 BFD_ASSERT (o != NULL);
12123
12124 dyncon = o->contents;
12125 dynconend = o->contents + o->size;
12126 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12127 {
12128 Elf_Internal_Dyn dyn;
12129 const char *name;
12130 unsigned int type;
12131 bfd_size_type sh_size;
12132 bfd_vma sh_addr;
12133
12134 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12135
12136 switch (dyn.d_tag)
12137 {
12138 default:
12139 continue;
12140 case DT_NULL:
12141 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12142 {
12143 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12144 {
12145 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12146 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12147 default: continue;
12148 }
12149 dyn.d_un.d_val = relativecount;
12150 relativecount = 0;
12151 break;
12152 }
12153 continue;
12154
12155 case DT_INIT:
12156 name = info->init_function;
12157 goto get_sym;
12158 case DT_FINI:
12159 name = info->fini_function;
12160 get_sym:
12161 {
12162 struct elf_link_hash_entry *h;
12163
12164 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12165 if (h != NULL
12166 && (h->root.type == bfd_link_hash_defined
12167 || h->root.type == bfd_link_hash_defweak))
12168 {
12169 dyn.d_un.d_ptr = h->root.u.def.value;
12170 o = h->root.u.def.section;
12171 if (o->output_section != NULL)
12172 dyn.d_un.d_ptr += (o->output_section->vma
12173 + o->output_offset);
12174 else
12175 {
12176 /* The symbol is imported from another shared
12177 library and does not apply to this one. */
12178 dyn.d_un.d_ptr = 0;
12179 }
12180 break;
12181 }
12182 }
12183 continue;
12184
12185 case DT_PREINIT_ARRAYSZ:
12186 name = ".preinit_array";
12187 goto get_out_size;
12188 case DT_INIT_ARRAYSZ:
12189 name = ".init_array";
12190 goto get_out_size;
12191 case DT_FINI_ARRAYSZ:
12192 name = ".fini_array";
12193 get_out_size:
12194 o = bfd_get_section_by_name (abfd, name);
12195 if (o == NULL)
12196 {
12197 _bfd_error_handler
12198 (_("could not find section %s"), name);
12199 goto error_return;
12200 }
12201 if (o->size == 0)
12202 _bfd_error_handler
12203 (_("warning: %s section has zero size"), name);
12204 dyn.d_un.d_val = o->size;
12205 break;
12206
12207 case DT_PREINIT_ARRAY:
12208 name = ".preinit_array";
12209 goto get_out_vma;
12210 case DT_INIT_ARRAY:
12211 name = ".init_array";
12212 goto get_out_vma;
12213 case DT_FINI_ARRAY:
12214 name = ".fini_array";
12215 get_out_vma:
12216 o = bfd_get_section_by_name (abfd, name);
12217 goto do_vma;
12218
12219 case DT_HASH:
12220 name = ".hash";
12221 goto get_vma;
12222 case DT_GNU_HASH:
12223 name = ".gnu.hash";
12224 goto get_vma;
12225 case DT_STRTAB:
12226 name = ".dynstr";
12227 goto get_vma;
12228 case DT_SYMTAB:
12229 name = ".dynsym";
12230 goto get_vma;
12231 case DT_VERDEF:
12232 name = ".gnu.version_d";
12233 goto get_vma;
12234 case DT_VERNEED:
12235 name = ".gnu.version_r";
12236 goto get_vma;
12237 case DT_VERSYM:
12238 name = ".gnu.version";
12239 get_vma:
12240 o = bfd_get_linker_section (dynobj, name);
12241 do_vma:
12242 if (o == NULL)
12243 {
12244 _bfd_error_handler
12245 (_("could not find section %s"), name);
12246 goto error_return;
12247 }
12248 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12249 {
12250 _bfd_error_handler
12251 (_("warning: section '%s' is being made into a note"), name);
12252 bfd_set_error (bfd_error_nonrepresentable_section);
12253 goto error_return;
12254 }
12255 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12256 break;
12257
12258 case DT_REL:
12259 case DT_RELA:
12260 case DT_RELSZ:
12261 case DT_RELASZ:
12262 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12263 type = SHT_REL;
12264 else
12265 type = SHT_RELA;
12266 sh_size = 0;
12267 sh_addr = 0;
12268 for (i = 1; i < elf_numsections (abfd); i++)
12269 {
12270 Elf_Internal_Shdr *hdr;
12271
12272 hdr = elf_elfsections (abfd)[i];
12273 if (hdr->sh_type == type
12274 && (hdr->sh_flags & SHF_ALLOC) != 0)
12275 {
12276 sh_size += hdr->sh_size;
12277 if (sh_addr == 0
12278 || sh_addr > hdr->sh_addr)
12279 sh_addr = hdr->sh_addr;
12280 }
12281 }
12282
12283 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12284 {
12285 /* Don't count procedure linkage table relocs in the
12286 overall reloc count. */
12287 sh_size -= htab->srelplt->size;
12288 if (sh_size == 0)
12289 /* If the size is zero, make the address zero too.
12290 This is to avoid a glibc bug. If the backend
12291 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12292 zero, then we'll put DT_RELA at the end of
12293 DT_JMPREL. glibc will interpret the end of
12294 DT_RELA matching the end of DT_JMPREL as the
12295 case where DT_RELA includes DT_JMPREL, and for
12296 LD_BIND_NOW will decide that processing DT_RELA
12297 will process the PLT relocs too. Net result:
12298 No PLT relocs applied. */
12299 sh_addr = 0;
12300
12301 /* If .rela.plt is the first .rela section, exclude
12302 it from DT_RELA. */
12303 else if (sh_addr == (htab->srelplt->output_section->vma
12304 + htab->srelplt->output_offset))
12305 sh_addr += htab->srelplt->size;
12306 }
12307
12308 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12309 dyn.d_un.d_val = sh_size;
12310 else
12311 dyn.d_un.d_ptr = sh_addr;
12312 break;
12313 }
12314 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12315 }
12316 }
12317
12318 /* If we have created any dynamic sections, then output them. */
12319 if (dynobj != NULL)
12320 {
12321 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12322 goto error_return;
12323
12324 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12325 if (((info->warn_shared_textrel && bfd_link_pic (info))
12326 || info->error_textrel)
12327 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12328 {
12329 bfd_byte *dyncon, *dynconend;
12330
12331 dyncon = o->contents;
12332 dynconend = o->contents + o->size;
12333 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12334 {
12335 Elf_Internal_Dyn dyn;
12336
12337 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12338
12339 if (dyn.d_tag == DT_TEXTREL)
12340 {
12341 if (info->error_textrel)
12342 info->callbacks->einfo
12343 (_("%P%X: read-only segment has dynamic relocations.\n"));
12344 else
12345 info->callbacks->einfo
12346 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12347 break;
12348 }
12349 }
12350 }
12351
12352 for (o = dynobj->sections; o != NULL; o = o->next)
12353 {
12354 if ((o->flags & SEC_HAS_CONTENTS) == 0
12355 || o->size == 0
12356 || o->output_section == bfd_abs_section_ptr)
12357 continue;
12358 if ((o->flags & SEC_LINKER_CREATED) == 0)
12359 {
12360 /* At this point, we are only interested in sections
12361 created by _bfd_elf_link_create_dynamic_sections. */
12362 continue;
12363 }
12364 if (htab->stab_info.stabstr == o)
12365 continue;
12366 if (htab->eh_info.hdr_sec == o)
12367 continue;
12368 if (strcmp (o->name, ".dynstr") != 0)
12369 {
12370 if (! bfd_set_section_contents (abfd, o->output_section,
12371 o->contents,
12372 (file_ptr) o->output_offset
12373 * bfd_octets_per_byte (abfd),
12374 o->size))
12375 goto error_return;
12376 }
12377 else
12378 {
12379 /* The contents of the .dynstr section are actually in a
12380 stringtab. */
12381 file_ptr off;
12382
12383 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12384 if (bfd_seek (abfd, off, SEEK_SET) != 0
12385 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12386 goto error_return;
12387 }
12388 }
12389 }
12390
12391 if (bfd_link_relocatable (info))
12392 {
12393 bfd_boolean failed = FALSE;
12394
12395 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12396 if (failed)
12397 goto error_return;
12398 }
12399
12400 /* If we have optimized stabs strings, output them. */
12401 if (htab->stab_info.stabstr != NULL)
12402 {
12403 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12404 goto error_return;
12405 }
12406
12407 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12408 goto error_return;
12409
12410 elf_final_link_free (abfd, &flinfo);
12411
12412 elf_linker (abfd) = TRUE;
12413
12414 if (attr_section)
12415 {
12416 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12417 if (contents == NULL)
12418 return FALSE; /* Bail out and fail. */
12419 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12420 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12421 free (contents);
12422 }
12423
12424 return TRUE;
12425
12426 error_return:
12427 elf_final_link_free (abfd, &flinfo);
12428 return FALSE;
12429 }
12430 \f
12431 /* Initialize COOKIE for input bfd ABFD. */
12432
12433 static bfd_boolean
12434 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12435 struct bfd_link_info *info, bfd *abfd)
12436 {
12437 Elf_Internal_Shdr *symtab_hdr;
12438 const struct elf_backend_data *bed;
12439
12440 bed = get_elf_backend_data (abfd);
12441 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12442
12443 cookie->abfd = abfd;
12444 cookie->sym_hashes = elf_sym_hashes (abfd);
12445 cookie->bad_symtab = elf_bad_symtab (abfd);
12446 if (cookie->bad_symtab)
12447 {
12448 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12449 cookie->extsymoff = 0;
12450 }
12451 else
12452 {
12453 cookie->locsymcount = symtab_hdr->sh_info;
12454 cookie->extsymoff = symtab_hdr->sh_info;
12455 }
12456
12457 if (bed->s->arch_size == 32)
12458 cookie->r_sym_shift = 8;
12459 else
12460 cookie->r_sym_shift = 32;
12461
12462 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12463 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12464 {
12465 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12466 cookie->locsymcount, 0,
12467 NULL, NULL, NULL);
12468 if (cookie->locsyms == NULL)
12469 {
12470 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12471 return FALSE;
12472 }
12473 if (info->keep_memory)
12474 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12475 }
12476 return TRUE;
12477 }
12478
12479 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12480
12481 static void
12482 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12483 {
12484 Elf_Internal_Shdr *symtab_hdr;
12485
12486 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12487 if (cookie->locsyms != NULL
12488 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12489 free (cookie->locsyms);
12490 }
12491
12492 /* Initialize the relocation information in COOKIE for input section SEC
12493 of input bfd ABFD. */
12494
12495 static bfd_boolean
12496 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12497 struct bfd_link_info *info, bfd *abfd,
12498 asection *sec)
12499 {
12500 const struct elf_backend_data *bed;
12501
12502 if (sec->reloc_count == 0)
12503 {
12504 cookie->rels = NULL;
12505 cookie->relend = NULL;
12506 }
12507 else
12508 {
12509 bed = get_elf_backend_data (abfd);
12510
12511 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12512 info->keep_memory);
12513 if (cookie->rels == NULL)
12514 return FALSE;
12515 cookie->rel = cookie->rels;
12516 cookie->relend = (cookie->rels
12517 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12518 }
12519 cookie->rel = cookie->rels;
12520 return TRUE;
12521 }
12522
12523 /* Free the memory allocated by init_reloc_cookie_rels,
12524 if appropriate. */
12525
12526 static void
12527 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12528 asection *sec)
12529 {
12530 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12531 free (cookie->rels);
12532 }
12533
12534 /* Initialize the whole of COOKIE for input section SEC. */
12535
12536 static bfd_boolean
12537 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12538 struct bfd_link_info *info,
12539 asection *sec)
12540 {
12541 if (!init_reloc_cookie (cookie, info, sec->owner))
12542 goto error1;
12543 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12544 goto error2;
12545 return TRUE;
12546
12547 error2:
12548 fini_reloc_cookie (cookie, sec->owner);
12549 error1:
12550 return FALSE;
12551 }
12552
12553 /* Free the memory allocated by init_reloc_cookie_for_section,
12554 if appropriate. */
12555
12556 static void
12557 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12558 asection *sec)
12559 {
12560 fini_reloc_cookie_rels (cookie, sec);
12561 fini_reloc_cookie (cookie, sec->owner);
12562 }
12563 \f
12564 /* Garbage collect unused sections. */
12565
12566 /* Default gc_mark_hook. */
12567
12568 asection *
12569 _bfd_elf_gc_mark_hook (asection *sec,
12570 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12571 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12572 struct elf_link_hash_entry *h,
12573 Elf_Internal_Sym *sym)
12574 {
12575 if (h != NULL)
12576 {
12577 switch (h->root.type)
12578 {
12579 case bfd_link_hash_defined:
12580 case bfd_link_hash_defweak:
12581 return h->root.u.def.section;
12582
12583 case bfd_link_hash_common:
12584 return h->root.u.c.p->section;
12585
12586 default:
12587 break;
12588 }
12589 }
12590 else
12591 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12592
12593 return NULL;
12594 }
12595
12596 /* For undefined __start_<name> and __stop_<name> symbols, return the
12597 first input section matching <name>. Return NULL otherwise. */
12598
12599 asection *
12600 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12601 struct elf_link_hash_entry *h)
12602 {
12603 asection *s;
12604 const char *sec_name;
12605
12606 if (h->root.type != bfd_link_hash_undefined
12607 && h->root.type != bfd_link_hash_undefweak)
12608 return NULL;
12609
12610 s = h->root.u.undef.section;
12611 if (s != NULL)
12612 {
12613 if (s == (asection *) 0 - 1)
12614 return NULL;
12615 return s;
12616 }
12617
12618 sec_name = NULL;
12619 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12620 sec_name = h->root.root.string + 8;
12621 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12622 sec_name = h->root.root.string + 7;
12623
12624 if (sec_name != NULL && *sec_name != '\0')
12625 {
12626 bfd *i;
12627
12628 for (i = info->input_bfds; i != NULL; i = i->link.next)
12629 {
12630 s = bfd_get_section_by_name (i, sec_name);
12631 if (s != NULL)
12632 {
12633 h->root.u.undef.section = s;
12634 break;
12635 }
12636 }
12637 }
12638
12639 if (s == NULL)
12640 h->root.u.undef.section = (asection *) 0 - 1;
12641
12642 return s;
12643 }
12644
12645 /* COOKIE->rel describes a relocation against section SEC, which is
12646 a section we've decided to keep. Return the section that contains
12647 the relocation symbol, or NULL if no section contains it. */
12648
12649 asection *
12650 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12651 elf_gc_mark_hook_fn gc_mark_hook,
12652 struct elf_reloc_cookie *cookie,
12653 bfd_boolean *start_stop)
12654 {
12655 unsigned long r_symndx;
12656 struct elf_link_hash_entry *h;
12657
12658 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12659 if (r_symndx == STN_UNDEF)
12660 return NULL;
12661
12662 if (r_symndx >= cookie->locsymcount
12663 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12664 {
12665 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12666 if (h == NULL)
12667 {
12668 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12669 sec->owner);
12670 return NULL;
12671 }
12672 while (h->root.type == bfd_link_hash_indirect
12673 || h->root.type == bfd_link_hash_warning)
12674 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12675 h->mark = 1;
12676 /* If this symbol is weak and there is a non-weak definition, we
12677 keep the non-weak definition because many backends put
12678 dynamic reloc info on the non-weak definition for code
12679 handling copy relocs. */
12680 if (h->u.weakdef != NULL)
12681 h->u.weakdef->mark = 1;
12682
12683 if (start_stop != NULL)
12684 {
12685 /* To work around a glibc bug, mark all XXX input sections
12686 when there is an as yet undefined reference to __start_XXX
12687 or __stop_XXX symbols. The linker will later define such
12688 symbols for orphan input sections that have a name
12689 representable as a C identifier. */
12690 asection *s = _bfd_elf_is_start_stop (info, h);
12691
12692 if (s != NULL)
12693 {
12694 *start_stop = !s->gc_mark;
12695 return s;
12696 }
12697 }
12698
12699 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12700 }
12701
12702 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12703 &cookie->locsyms[r_symndx]);
12704 }
12705
12706 /* COOKIE->rel describes a relocation against section SEC, which is
12707 a section we've decided to keep. Mark the section that contains
12708 the relocation symbol. */
12709
12710 bfd_boolean
12711 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12712 asection *sec,
12713 elf_gc_mark_hook_fn gc_mark_hook,
12714 struct elf_reloc_cookie *cookie)
12715 {
12716 asection *rsec;
12717 bfd_boolean start_stop = FALSE;
12718
12719 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12720 while (rsec != NULL)
12721 {
12722 if (!rsec->gc_mark)
12723 {
12724 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12725 || (rsec->owner->flags & DYNAMIC) != 0)
12726 rsec->gc_mark = 1;
12727 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12728 return FALSE;
12729 }
12730 if (!start_stop)
12731 break;
12732 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12733 }
12734 return TRUE;
12735 }
12736
12737 /* The mark phase of garbage collection. For a given section, mark
12738 it and any sections in this section's group, and all the sections
12739 which define symbols to which it refers. */
12740
12741 bfd_boolean
12742 _bfd_elf_gc_mark (struct bfd_link_info *info,
12743 asection *sec,
12744 elf_gc_mark_hook_fn gc_mark_hook)
12745 {
12746 bfd_boolean ret;
12747 asection *group_sec, *eh_frame;
12748
12749 sec->gc_mark = 1;
12750
12751 /* Mark all the sections in the group. */
12752 group_sec = elf_section_data (sec)->next_in_group;
12753 if (group_sec && !group_sec->gc_mark)
12754 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12755 return FALSE;
12756
12757 /* Look through the section relocs. */
12758 ret = TRUE;
12759 eh_frame = elf_eh_frame_section (sec->owner);
12760 if ((sec->flags & SEC_RELOC) != 0
12761 && sec->reloc_count > 0
12762 && sec != eh_frame)
12763 {
12764 struct elf_reloc_cookie cookie;
12765
12766 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12767 ret = FALSE;
12768 else
12769 {
12770 for (; cookie.rel < cookie.relend; cookie.rel++)
12771 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12772 {
12773 ret = FALSE;
12774 break;
12775 }
12776 fini_reloc_cookie_for_section (&cookie, sec);
12777 }
12778 }
12779
12780 if (ret && eh_frame && elf_fde_list (sec))
12781 {
12782 struct elf_reloc_cookie cookie;
12783
12784 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12785 ret = FALSE;
12786 else
12787 {
12788 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12789 gc_mark_hook, &cookie))
12790 ret = FALSE;
12791 fini_reloc_cookie_for_section (&cookie, eh_frame);
12792 }
12793 }
12794
12795 eh_frame = elf_section_eh_frame_entry (sec);
12796 if (ret && eh_frame && !eh_frame->gc_mark)
12797 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12798 ret = FALSE;
12799
12800 return ret;
12801 }
12802
12803 /* Scan and mark sections in a special or debug section group. */
12804
12805 static void
12806 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12807 {
12808 /* Point to first section of section group. */
12809 asection *ssec;
12810 /* Used to iterate the section group. */
12811 asection *msec;
12812
12813 bfd_boolean is_special_grp = TRUE;
12814 bfd_boolean is_debug_grp = TRUE;
12815
12816 /* First scan to see if group contains any section other than debug
12817 and special section. */
12818 ssec = msec = elf_next_in_group (grp);
12819 do
12820 {
12821 if ((msec->flags & SEC_DEBUGGING) == 0)
12822 is_debug_grp = FALSE;
12823
12824 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12825 is_special_grp = FALSE;
12826
12827 msec = elf_next_in_group (msec);
12828 }
12829 while (msec != ssec);
12830
12831 /* If this is a pure debug section group or pure special section group,
12832 keep all sections in this group. */
12833 if (is_debug_grp || is_special_grp)
12834 {
12835 do
12836 {
12837 msec->gc_mark = 1;
12838 msec = elf_next_in_group (msec);
12839 }
12840 while (msec != ssec);
12841 }
12842 }
12843
12844 /* Keep debug and special sections. */
12845
12846 bfd_boolean
12847 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12848 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12849 {
12850 bfd *ibfd;
12851
12852 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12853 {
12854 asection *isec;
12855 bfd_boolean some_kept;
12856 bfd_boolean debug_frag_seen;
12857
12858 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12859 continue;
12860
12861 /* Ensure all linker created sections are kept,
12862 see if any other section is already marked,
12863 and note if we have any fragmented debug sections. */
12864 debug_frag_seen = some_kept = FALSE;
12865 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12866 {
12867 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12868 isec->gc_mark = 1;
12869 else if (isec->gc_mark)
12870 some_kept = TRUE;
12871
12872 if (debug_frag_seen == FALSE
12873 && (isec->flags & SEC_DEBUGGING)
12874 && CONST_STRNEQ (isec->name, ".debug_line."))
12875 debug_frag_seen = TRUE;
12876 }
12877
12878 /* If no section in this file will be kept, then we can
12879 toss out the debug and special sections. */
12880 if (!some_kept)
12881 continue;
12882
12883 /* Keep debug and special sections like .comment when they are
12884 not part of a group. Also keep section groups that contain
12885 just debug sections or special sections. */
12886 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12887 {
12888 if ((isec->flags & SEC_GROUP) != 0)
12889 _bfd_elf_gc_mark_debug_special_section_group (isec);
12890 else if (((isec->flags & SEC_DEBUGGING) != 0
12891 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12892 && elf_next_in_group (isec) == NULL)
12893 isec->gc_mark = 1;
12894 }
12895
12896 if (! debug_frag_seen)
12897 continue;
12898
12899 /* Look for CODE sections which are going to be discarded,
12900 and find and discard any fragmented debug sections which
12901 are associated with that code section. */
12902 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12903 if ((isec->flags & SEC_CODE) != 0
12904 && isec->gc_mark == 0)
12905 {
12906 unsigned int ilen;
12907 asection *dsec;
12908
12909 ilen = strlen (isec->name);
12910
12911 /* Association is determined by the name of the debug section
12912 containing the name of the code section as a suffix. For
12913 example .debug_line.text.foo is a debug section associated
12914 with .text.foo. */
12915 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12916 {
12917 unsigned int dlen;
12918
12919 if (dsec->gc_mark == 0
12920 || (dsec->flags & SEC_DEBUGGING) == 0)
12921 continue;
12922
12923 dlen = strlen (dsec->name);
12924
12925 if (dlen > ilen
12926 && strncmp (dsec->name + (dlen - ilen),
12927 isec->name, ilen) == 0)
12928 {
12929 dsec->gc_mark = 0;
12930 }
12931 }
12932 }
12933 }
12934 return TRUE;
12935 }
12936
12937 /* The sweep phase of garbage collection. Remove all garbage sections. */
12938
12939 typedef bfd_boolean (*gc_sweep_hook_fn)
12940 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12941
12942 static bfd_boolean
12943 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12944 {
12945 bfd *sub;
12946 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12947 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12948
12949 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12950 {
12951 asection *o;
12952
12953 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12954 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12955 continue;
12956
12957 for (o = sub->sections; o != NULL; o = o->next)
12958 {
12959 /* When any section in a section group is kept, we keep all
12960 sections in the section group. If the first member of
12961 the section group is excluded, we will also exclude the
12962 group section. */
12963 if (o->flags & SEC_GROUP)
12964 {
12965 asection *first = elf_next_in_group (o);
12966 o->gc_mark = first->gc_mark;
12967 }
12968
12969 if (o->gc_mark)
12970 continue;
12971
12972 /* Skip sweeping sections already excluded. */
12973 if (o->flags & SEC_EXCLUDE)
12974 continue;
12975
12976 /* Since this is early in the link process, it is simple
12977 to remove a section from the output. */
12978 o->flags |= SEC_EXCLUDE;
12979
12980 if (info->print_gc_sections && o->size != 0)
12981 /* xgettext:c-format */
12982 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"),
12983 sub, o->name);
12984
12985 /* But we also have to update some of the relocation
12986 info we collected before. */
12987 if (gc_sweep_hook
12988 && (o->flags & SEC_RELOC) != 0
12989 && o->reloc_count != 0
12990 && !((info->strip == strip_all || info->strip == strip_debugger)
12991 && (o->flags & SEC_DEBUGGING) != 0)
12992 && !bfd_is_abs_section (o->output_section))
12993 {
12994 Elf_Internal_Rela *internal_relocs;
12995 bfd_boolean r;
12996
12997 internal_relocs
12998 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12999 info->keep_memory);
13000 if (internal_relocs == NULL)
13001 return FALSE;
13002
13003 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13004
13005 if (elf_section_data (o)->relocs != internal_relocs)
13006 free (internal_relocs);
13007
13008 if (!r)
13009 return FALSE;
13010 }
13011 }
13012 }
13013
13014 return TRUE;
13015 }
13016
13017 /* Propagate collected vtable information. This is called through
13018 elf_link_hash_traverse. */
13019
13020 static bfd_boolean
13021 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13022 {
13023 /* Those that are not vtables. */
13024 if (h->vtable == NULL || h->vtable->parent == NULL)
13025 return TRUE;
13026
13027 /* Those vtables that do not have parents, we cannot merge. */
13028 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13029 return TRUE;
13030
13031 /* If we've already been done, exit. */
13032 if (h->vtable->used && h->vtable->used[-1])
13033 return TRUE;
13034
13035 /* Make sure the parent's table is up to date. */
13036 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13037
13038 if (h->vtable->used == NULL)
13039 {
13040 /* None of this table's entries were referenced. Re-use the
13041 parent's table. */
13042 h->vtable->used = h->vtable->parent->vtable->used;
13043 h->vtable->size = h->vtable->parent->vtable->size;
13044 }
13045 else
13046 {
13047 size_t n;
13048 bfd_boolean *cu, *pu;
13049
13050 /* Or the parent's entries into ours. */
13051 cu = h->vtable->used;
13052 cu[-1] = TRUE;
13053 pu = h->vtable->parent->vtable->used;
13054 if (pu != NULL)
13055 {
13056 const struct elf_backend_data *bed;
13057 unsigned int log_file_align;
13058
13059 bed = get_elf_backend_data (h->root.u.def.section->owner);
13060 log_file_align = bed->s->log_file_align;
13061 n = h->vtable->parent->vtable->size >> log_file_align;
13062 while (n--)
13063 {
13064 if (*pu)
13065 *cu = TRUE;
13066 pu++;
13067 cu++;
13068 }
13069 }
13070 }
13071
13072 return TRUE;
13073 }
13074
13075 static bfd_boolean
13076 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13077 {
13078 asection *sec;
13079 bfd_vma hstart, hend;
13080 Elf_Internal_Rela *relstart, *relend, *rel;
13081 const struct elf_backend_data *bed;
13082 unsigned int log_file_align;
13083
13084 /* Take care of both those symbols that do not describe vtables as
13085 well as those that are not loaded. */
13086 if (h->vtable == NULL || h->vtable->parent == NULL)
13087 return TRUE;
13088
13089 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13090 || h->root.type == bfd_link_hash_defweak);
13091
13092 sec = h->root.u.def.section;
13093 hstart = h->root.u.def.value;
13094 hend = hstart + h->size;
13095
13096 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13097 if (!relstart)
13098 return *(bfd_boolean *) okp = FALSE;
13099 bed = get_elf_backend_data (sec->owner);
13100 log_file_align = bed->s->log_file_align;
13101
13102 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13103
13104 for (rel = relstart; rel < relend; ++rel)
13105 if (rel->r_offset >= hstart && rel->r_offset < hend)
13106 {
13107 /* If the entry is in use, do nothing. */
13108 if (h->vtable->used
13109 && (rel->r_offset - hstart) < h->vtable->size)
13110 {
13111 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13112 if (h->vtable->used[entry])
13113 continue;
13114 }
13115 /* Otherwise, kill it. */
13116 rel->r_offset = rel->r_info = rel->r_addend = 0;
13117 }
13118
13119 return TRUE;
13120 }
13121
13122 /* Mark sections containing dynamically referenced symbols. When
13123 building shared libraries, we must assume that any visible symbol is
13124 referenced. */
13125
13126 bfd_boolean
13127 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13128 {
13129 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13130 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13131
13132 if ((h->root.type == bfd_link_hash_defined
13133 || h->root.type == bfd_link_hash_defweak)
13134 && (h->ref_dynamic
13135 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13136 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13137 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13138 && (!bfd_link_executable (info)
13139 || info->gc_keep_exported
13140 || info->export_dynamic
13141 || (h->dynamic
13142 && d != NULL
13143 && (*d->match) (&d->head, NULL, h->root.root.string)))
13144 && (h->versioned >= versioned
13145 || !bfd_hide_sym_by_version (info->version_info,
13146 h->root.root.string)))))
13147 h->root.u.def.section->flags |= SEC_KEEP;
13148
13149 return TRUE;
13150 }
13151
13152 /* Keep all sections containing symbols undefined on the command-line,
13153 and the section containing the entry symbol. */
13154
13155 void
13156 _bfd_elf_gc_keep (struct bfd_link_info *info)
13157 {
13158 struct bfd_sym_chain *sym;
13159
13160 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13161 {
13162 struct elf_link_hash_entry *h;
13163
13164 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13165 FALSE, FALSE, FALSE);
13166
13167 if (h != NULL
13168 && (h->root.type == bfd_link_hash_defined
13169 || h->root.type == bfd_link_hash_defweak)
13170 && !bfd_is_abs_section (h->root.u.def.section)
13171 && !bfd_is_und_section (h->root.u.def.section))
13172 h->root.u.def.section->flags |= SEC_KEEP;
13173 }
13174 }
13175
13176 bfd_boolean
13177 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13178 struct bfd_link_info *info)
13179 {
13180 bfd *ibfd = info->input_bfds;
13181
13182 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13183 {
13184 asection *sec;
13185 struct elf_reloc_cookie cookie;
13186
13187 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13188 continue;
13189
13190 if (!init_reloc_cookie (&cookie, info, ibfd))
13191 return FALSE;
13192
13193 for (sec = ibfd->sections; sec; sec = sec->next)
13194 {
13195 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13196 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13197 {
13198 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13199 fini_reloc_cookie_rels (&cookie, sec);
13200 }
13201 }
13202 }
13203 return TRUE;
13204 }
13205
13206 /* Do mark and sweep of unused sections. */
13207
13208 bfd_boolean
13209 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13210 {
13211 bfd_boolean ok = TRUE;
13212 bfd *sub;
13213 elf_gc_mark_hook_fn gc_mark_hook;
13214 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13215 struct elf_link_hash_table *htab;
13216
13217 if (!bed->can_gc_sections
13218 || !is_elf_hash_table (info->hash))
13219 {
13220 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13221 return TRUE;
13222 }
13223
13224 bed->gc_keep (info);
13225 htab = elf_hash_table (info);
13226
13227 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13228 at the .eh_frame section if we can mark the FDEs individually. */
13229 for (sub = info->input_bfds;
13230 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13231 sub = sub->link.next)
13232 {
13233 asection *sec;
13234 struct elf_reloc_cookie cookie;
13235
13236 sec = bfd_get_section_by_name (sub, ".eh_frame");
13237 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13238 {
13239 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13240 if (elf_section_data (sec)->sec_info
13241 && (sec->flags & SEC_LINKER_CREATED) == 0)
13242 elf_eh_frame_section (sub) = sec;
13243 fini_reloc_cookie_for_section (&cookie, sec);
13244 sec = bfd_get_next_section_by_name (NULL, sec);
13245 }
13246 }
13247
13248 /* Apply transitive closure to the vtable entry usage info. */
13249 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13250 if (!ok)
13251 return FALSE;
13252
13253 /* Kill the vtable relocations that were not used. */
13254 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13255 if (!ok)
13256 return FALSE;
13257
13258 /* Mark dynamically referenced symbols. */
13259 if (htab->dynamic_sections_created || info->gc_keep_exported)
13260 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13261
13262 /* Grovel through relocs to find out who stays ... */
13263 gc_mark_hook = bed->gc_mark_hook;
13264 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13265 {
13266 asection *o;
13267
13268 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13269 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13270 continue;
13271
13272 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13273 Also treat note sections as a root, if the section is not part
13274 of a group. */
13275 for (o = sub->sections; o != NULL; o = o->next)
13276 if (!o->gc_mark
13277 && (o->flags & SEC_EXCLUDE) == 0
13278 && ((o->flags & SEC_KEEP) != 0
13279 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13280 && elf_next_in_group (o) == NULL )))
13281 {
13282 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13283 return FALSE;
13284 }
13285 }
13286
13287 /* Allow the backend to mark additional target specific sections. */
13288 bed->gc_mark_extra_sections (info, gc_mark_hook);
13289
13290 /* ... and mark SEC_EXCLUDE for those that go. */
13291 return elf_gc_sweep (abfd, info);
13292 }
13293 \f
13294 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13295
13296 bfd_boolean
13297 bfd_elf_gc_record_vtinherit (bfd *abfd,
13298 asection *sec,
13299 struct elf_link_hash_entry *h,
13300 bfd_vma offset)
13301 {
13302 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13303 struct elf_link_hash_entry **search, *child;
13304 size_t extsymcount;
13305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13306
13307 /* The sh_info field of the symtab header tells us where the
13308 external symbols start. We don't care about the local symbols at
13309 this point. */
13310 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13311 if (!elf_bad_symtab (abfd))
13312 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13313
13314 sym_hashes = elf_sym_hashes (abfd);
13315 sym_hashes_end = sym_hashes + extsymcount;
13316
13317 /* Hunt down the child symbol, which is in this section at the same
13318 offset as the relocation. */
13319 for (search = sym_hashes; search != sym_hashes_end; ++search)
13320 {
13321 if ((child = *search) != NULL
13322 && (child->root.type == bfd_link_hash_defined
13323 || child->root.type == bfd_link_hash_defweak)
13324 && child->root.u.def.section == sec
13325 && child->root.u.def.value == offset)
13326 goto win;
13327 }
13328
13329 /* xgettext:c-format */
13330 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13331 abfd, sec, (unsigned long) offset);
13332 bfd_set_error (bfd_error_invalid_operation);
13333 return FALSE;
13334
13335 win:
13336 if (!child->vtable)
13337 {
13338 child->vtable = ((struct elf_link_virtual_table_entry *)
13339 bfd_zalloc (abfd, sizeof (*child->vtable)));
13340 if (!child->vtable)
13341 return FALSE;
13342 }
13343 if (!h)
13344 {
13345 /* This *should* only be the absolute section. It could potentially
13346 be that someone has defined a non-global vtable though, which
13347 would be bad. It isn't worth paging in the local symbols to be
13348 sure though; that case should simply be handled by the assembler. */
13349
13350 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13351 }
13352 else
13353 child->vtable->parent = h;
13354
13355 return TRUE;
13356 }
13357
13358 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13359
13360 bfd_boolean
13361 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13362 asection *sec ATTRIBUTE_UNUSED,
13363 struct elf_link_hash_entry *h,
13364 bfd_vma addend)
13365 {
13366 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13367 unsigned int log_file_align = bed->s->log_file_align;
13368
13369 if (!h->vtable)
13370 {
13371 h->vtable = ((struct elf_link_virtual_table_entry *)
13372 bfd_zalloc (abfd, sizeof (*h->vtable)));
13373 if (!h->vtable)
13374 return FALSE;
13375 }
13376
13377 if (addend >= h->vtable->size)
13378 {
13379 size_t size, bytes, file_align;
13380 bfd_boolean *ptr = h->vtable->used;
13381
13382 /* While the symbol is undefined, we have to be prepared to handle
13383 a zero size. */
13384 file_align = 1 << log_file_align;
13385 if (h->root.type == bfd_link_hash_undefined)
13386 size = addend + file_align;
13387 else
13388 {
13389 size = h->size;
13390 if (addend >= size)
13391 {
13392 /* Oops! We've got a reference past the defined end of
13393 the table. This is probably a bug -- shall we warn? */
13394 size = addend + file_align;
13395 }
13396 }
13397 size = (size + file_align - 1) & -file_align;
13398
13399 /* Allocate one extra entry for use as a "done" flag for the
13400 consolidation pass. */
13401 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13402
13403 if (ptr)
13404 {
13405 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13406
13407 if (ptr != NULL)
13408 {
13409 size_t oldbytes;
13410
13411 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13412 * sizeof (bfd_boolean));
13413 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13414 }
13415 }
13416 else
13417 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13418
13419 if (ptr == NULL)
13420 return FALSE;
13421
13422 /* And arrange for that done flag to be at index -1. */
13423 h->vtable->used = ptr + 1;
13424 h->vtable->size = size;
13425 }
13426
13427 h->vtable->used[addend >> log_file_align] = TRUE;
13428
13429 return TRUE;
13430 }
13431
13432 /* Map an ELF section header flag to its corresponding string. */
13433 typedef struct
13434 {
13435 char *flag_name;
13436 flagword flag_value;
13437 } elf_flags_to_name_table;
13438
13439 static elf_flags_to_name_table elf_flags_to_names [] =
13440 {
13441 { "SHF_WRITE", SHF_WRITE },
13442 { "SHF_ALLOC", SHF_ALLOC },
13443 { "SHF_EXECINSTR", SHF_EXECINSTR },
13444 { "SHF_MERGE", SHF_MERGE },
13445 { "SHF_STRINGS", SHF_STRINGS },
13446 { "SHF_INFO_LINK", SHF_INFO_LINK},
13447 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13448 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13449 { "SHF_GROUP", SHF_GROUP },
13450 { "SHF_TLS", SHF_TLS },
13451 { "SHF_MASKOS", SHF_MASKOS },
13452 { "SHF_EXCLUDE", SHF_EXCLUDE },
13453 };
13454
13455 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13456 bfd_boolean
13457 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13458 struct flag_info *flaginfo,
13459 asection *section)
13460 {
13461 const bfd_vma sh_flags = elf_section_flags (section);
13462
13463 if (!flaginfo->flags_initialized)
13464 {
13465 bfd *obfd = info->output_bfd;
13466 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13467 struct flag_info_list *tf = flaginfo->flag_list;
13468 int with_hex = 0;
13469 int without_hex = 0;
13470
13471 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13472 {
13473 unsigned i;
13474 flagword (*lookup) (char *);
13475
13476 lookup = bed->elf_backend_lookup_section_flags_hook;
13477 if (lookup != NULL)
13478 {
13479 flagword hexval = (*lookup) ((char *) tf->name);
13480
13481 if (hexval != 0)
13482 {
13483 if (tf->with == with_flags)
13484 with_hex |= hexval;
13485 else if (tf->with == without_flags)
13486 without_hex |= hexval;
13487 tf->valid = TRUE;
13488 continue;
13489 }
13490 }
13491 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13492 {
13493 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13494 {
13495 if (tf->with == with_flags)
13496 with_hex |= elf_flags_to_names[i].flag_value;
13497 else if (tf->with == without_flags)
13498 without_hex |= elf_flags_to_names[i].flag_value;
13499 tf->valid = TRUE;
13500 break;
13501 }
13502 }
13503 if (!tf->valid)
13504 {
13505 info->callbacks->einfo
13506 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13507 return FALSE;
13508 }
13509 }
13510 flaginfo->flags_initialized = TRUE;
13511 flaginfo->only_with_flags |= with_hex;
13512 flaginfo->not_with_flags |= without_hex;
13513 }
13514
13515 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13516 return FALSE;
13517
13518 if ((flaginfo->not_with_flags & sh_flags) != 0)
13519 return FALSE;
13520
13521 return TRUE;
13522 }
13523
13524 struct alloc_got_off_arg {
13525 bfd_vma gotoff;
13526 struct bfd_link_info *info;
13527 };
13528
13529 /* We need a special top-level link routine to convert got reference counts
13530 to real got offsets. */
13531
13532 static bfd_boolean
13533 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13534 {
13535 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13536 bfd *obfd = gofarg->info->output_bfd;
13537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13538
13539 if (h->got.refcount > 0)
13540 {
13541 h->got.offset = gofarg->gotoff;
13542 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13543 }
13544 else
13545 h->got.offset = (bfd_vma) -1;
13546
13547 return TRUE;
13548 }
13549
13550 /* And an accompanying bit to work out final got entry offsets once
13551 we're done. Should be called from final_link. */
13552
13553 bfd_boolean
13554 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13555 struct bfd_link_info *info)
13556 {
13557 bfd *i;
13558 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13559 bfd_vma gotoff;
13560 struct alloc_got_off_arg gofarg;
13561
13562 BFD_ASSERT (abfd == info->output_bfd);
13563
13564 if (! is_elf_hash_table (info->hash))
13565 return FALSE;
13566
13567 /* The GOT offset is relative to the .got section, but the GOT header is
13568 put into the .got.plt section, if the backend uses it. */
13569 if (bed->want_got_plt)
13570 gotoff = 0;
13571 else
13572 gotoff = bed->got_header_size;
13573
13574 /* Do the local .got entries first. */
13575 for (i = info->input_bfds; i; i = i->link.next)
13576 {
13577 bfd_signed_vma *local_got;
13578 size_t j, locsymcount;
13579 Elf_Internal_Shdr *symtab_hdr;
13580
13581 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13582 continue;
13583
13584 local_got = elf_local_got_refcounts (i);
13585 if (!local_got)
13586 continue;
13587
13588 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13589 if (elf_bad_symtab (i))
13590 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13591 else
13592 locsymcount = symtab_hdr->sh_info;
13593
13594 for (j = 0; j < locsymcount; ++j)
13595 {
13596 if (local_got[j] > 0)
13597 {
13598 local_got[j] = gotoff;
13599 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13600 }
13601 else
13602 local_got[j] = (bfd_vma) -1;
13603 }
13604 }
13605
13606 /* Then the global .got entries. .plt refcounts are handled by
13607 adjust_dynamic_symbol */
13608 gofarg.gotoff = gotoff;
13609 gofarg.info = info;
13610 elf_link_hash_traverse (elf_hash_table (info),
13611 elf_gc_allocate_got_offsets,
13612 &gofarg);
13613 return TRUE;
13614 }
13615
13616 /* Many folk need no more in the way of final link than this, once
13617 got entry reference counting is enabled. */
13618
13619 bfd_boolean
13620 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13621 {
13622 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13623 return FALSE;
13624
13625 /* Invoke the regular ELF backend linker to do all the work. */
13626 return bfd_elf_final_link (abfd, info);
13627 }
13628
13629 bfd_boolean
13630 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13631 {
13632 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13633
13634 if (rcookie->bad_symtab)
13635 rcookie->rel = rcookie->rels;
13636
13637 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13638 {
13639 unsigned long r_symndx;
13640
13641 if (! rcookie->bad_symtab)
13642 if (rcookie->rel->r_offset > offset)
13643 return FALSE;
13644 if (rcookie->rel->r_offset != offset)
13645 continue;
13646
13647 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13648 if (r_symndx == STN_UNDEF)
13649 return TRUE;
13650
13651 if (r_symndx >= rcookie->locsymcount
13652 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13653 {
13654 struct elf_link_hash_entry *h;
13655
13656 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13657
13658 while (h->root.type == bfd_link_hash_indirect
13659 || h->root.type == bfd_link_hash_warning)
13660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13661
13662 if ((h->root.type == bfd_link_hash_defined
13663 || h->root.type == bfd_link_hash_defweak)
13664 && (h->root.u.def.section->owner != rcookie->abfd
13665 || h->root.u.def.section->kept_section != NULL
13666 || discarded_section (h->root.u.def.section)))
13667 return TRUE;
13668 }
13669 else
13670 {
13671 /* It's not a relocation against a global symbol,
13672 but it could be a relocation against a local
13673 symbol for a discarded section. */
13674 asection *isec;
13675 Elf_Internal_Sym *isym;
13676
13677 /* Need to: get the symbol; get the section. */
13678 isym = &rcookie->locsyms[r_symndx];
13679 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13680 if (isec != NULL
13681 && (isec->kept_section != NULL
13682 || discarded_section (isec)))
13683 return TRUE;
13684 }
13685 return FALSE;
13686 }
13687 return FALSE;
13688 }
13689
13690 /* Discard unneeded references to discarded sections.
13691 Returns -1 on error, 1 if any section's size was changed, 0 if
13692 nothing changed. This function assumes that the relocations are in
13693 sorted order, which is true for all known assemblers. */
13694
13695 int
13696 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13697 {
13698 struct elf_reloc_cookie cookie;
13699 asection *o;
13700 bfd *abfd;
13701 int changed = 0;
13702
13703 if (info->traditional_format
13704 || !is_elf_hash_table (info->hash))
13705 return 0;
13706
13707 o = bfd_get_section_by_name (output_bfd, ".stab");
13708 if (o != NULL)
13709 {
13710 asection *i;
13711
13712 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13713 {
13714 if (i->size == 0
13715 || i->reloc_count == 0
13716 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13717 continue;
13718
13719 abfd = i->owner;
13720 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13721 continue;
13722
13723 if (!init_reloc_cookie_for_section (&cookie, info, i))
13724 return -1;
13725
13726 if (_bfd_discard_section_stabs (abfd, i,
13727 elf_section_data (i)->sec_info,
13728 bfd_elf_reloc_symbol_deleted_p,
13729 &cookie))
13730 changed = 1;
13731
13732 fini_reloc_cookie_for_section (&cookie, i);
13733 }
13734 }
13735
13736 o = NULL;
13737 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13738 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13739 if (o != NULL)
13740 {
13741 asection *i;
13742
13743 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13744 {
13745 if (i->size == 0)
13746 continue;
13747
13748 abfd = i->owner;
13749 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13750 continue;
13751
13752 if (!init_reloc_cookie_for_section (&cookie, info, i))
13753 return -1;
13754
13755 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13756 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13757 bfd_elf_reloc_symbol_deleted_p,
13758 &cookie))
13759 changed = 1;
13760
13761 fini_reloc_cookie_for_section (&cookie, i);
13762 }
13763 }
13764
13765 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13766 {
13767 const struct elf_backend_data *bed;
13768
13769 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13770 continue;
13771
13772 bed = get_elf_backend_data (abfd);
13773
13774 if (bed->elf_backend_discard_info != NULL)
13775 {
13776 if (!init_reloc_cookie (&cookie, info, abfd))
13777 return -1;
13778
13779 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13780 changed = 1;
13781
13782 fini_reloc_cookie (&cookie, abfd);
13783 }
13784 }
13785
13786 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13787 _bfd_elf_end_eh_frame_parsing (info);
13788
13789 if (info->eh_frame_hdr_type
13790 && !bfd_link_relocatable (info)
13791 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13792 changed = 1;
13793
13794 return changed;
13795 }
13796
13797 bfd_boolean
13798 _bfd_elf_section_already_linked (bfd *abfd,
13799 asection *sec,
13800 struct bfd_link_info *info)
13801 {
13802 flagword flags;
13803 const char *name, *key;
13804 struct bfd_section_already_linked *l;
13805 struct bfd_section_already_linked_hash_entry *already_linked_list;
13806
13807 if (sec->output_section == bfd_abs_section_ptr)
13808 return FALSE;
13809
13810 flags = sec->flags;
13811
13812 /* Return if it isn't a linkonce section. A comdat group section
13813 also has SEC_LINK_ONCE set. */
13814 if ((flags & SEC_LINK_ONCE) == 0)
13815 return FALSE;
13816
13817 /* Don't put group member sections on our list of already linked
13818 sections. They are handled as a group via their group section. */
13819 if (elf_sec_group (sec) != NULL)
13820 return FALSE;
13821
13822 /* For a SHT_GROUP section, use the group signature as the key. */
13823 name = sec->name;
13824 if ((flags & SEC_GROUP) != 0
13825 && elf_next_in_group (sec) != NULL
13826 && elf_group_name (elf_next_in_group (sec)) != NULL)
13827 key = elf_group_name (elf_next_in_group (sec));
13828 else
13829 {
13830 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13831 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13832 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13833 key++;
13834 else
13835 /* Must be a user linkonce section that doesn't follow gcc's
13836 naming convention. In this case we won't be matching
13837 single member groups. */
13838 key = name;
13839 }
13840
13841 already_linked_list = bfd_section_already_linked_table_lookup (key);
13842
13843 for (l = already_linked_list->entry; l != NULL; l = l->next)
13844 {
13845 /* We may have 2 different types of sections on the list: group
13846 sections with a signature of <key> (<key> is some string),
13847 and linkonce sections named .gnu.linkonce.<type>.<key>.
13848 Match like sections. LTO plugin sections are an exception.
13849 They are always named .gnu.linkonce.t.<key> and match either
13850 type of section. */
13851 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13852 && ((flags & SEC_GROUP) != 0
13853 || strcmp (name, l->sec->name) == 0))
13854 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13855 {
13856 /* The section has already been linked. See if we should
13857 issue a warning. */
13858 if (!_bfd_handle_already_linked (sec, l, info))
13859 return FALSE;
13860
13861 if (flags & SEC_GROUP)
13862 {
13863 asection *first = elf_next_in_group (sec);
13864 asection *s = first;
13865
13866 while (s != NULL)
13867 {
13868 s->output_section = bfd_abs_section_ptr;
13869 /* Record which group discards it. */
13870 s->kept_section = l->sec;
13871 s = elf_next_in_group (s);
13872 /* These lists are circular. */
13873 if (s == first)
13874 break;
13875 }
13876 }
13877
13878 return TRUE;
13879 }
13880 }
13881
13882 /* A single member comdat group section may be discarded by a
13883 linkonce section and vice versa. */
13884 if ((flags & SEC_GROUP) != 0)
13885 {
13886 asection *first = elf_next_in_group (sec);
13887
13888 if (first != NULL && elf_next_in_group (first) == first)
13889 /* Check this single member group against linkonce sections. */
13890 for (l = already_linked_list->entry; l != NULL; l = l->next)
13891 if ((l->sec->flags & SEC_GROUP) == 0
13892 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13893 {
13894 first->output_section = bfd_abs_section_ptr;
13895 first->kept_section = l->sec;
13896 sec->output_section = bfd_abs_section_ptr;
13897 break;
13898 }
13899 }
13900 else
13901 /* Check this linkonce section against single member groups. */
13902 for (l = already_linked_list->entry; l != NULL; l = l->next)
13903 if (l->sec->flags & SEC_GROUP)
13904 {
13905 asection *first = elf_next_in_group (l->sec);
13906
13907 if (first != NULL
13908 && elf_next_in_group (first) == first
13909 && bfd_elf_match_symbols_in_sections (first, sec, info))
13910 {
13911 sec->output_section = bfd_abs_section_ptr;
13912 sec->kept_section = first;
13913 break;
13914 }
13915 }
13916
13917 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13918 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13919 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13920 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13921 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13922 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13923 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13924 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13925 The reverse order cannot happen as there is never a bfd with only the
13926 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13927 matter as here were are looking only for cross-bfd sections. */
13928
13929 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13930 for (l = already_linked_list->entry; l != NULL; l = l->next)
13931 if ((l->sec->flags & SEC_GROUP) == 0
13932 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13933 {
13934 if (abfd != l->sec->owner)
13935 sec->output_section = bfd_abs_section_ptr;
13936 break;
13937 }
13938
13939 /* This is the first section with this name. Record it. */
13940 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13941 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13942 return sec->output_section == bfd_abs_section_ptr;
13943 }
13944
13945 bfd_boolean
13946 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13947 {
13948 return sym->st_shndx == SHN_COMMON;
13949 }
13950
13951 unsigned int
13952 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13953 {
13954 return SHN_COMMON;
13955 }
13956
13957 asection *
13958 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13959 {
13960 return bfd_com_section_ptr;
13961 }
13962
13963 bfd_vma
13964 _bfd_elf_default_got_elt_size (bfd *abfd,
13965 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13966 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13967 bfd *ibfd ATTRIBUTE_UNUSED,
13968 unsigned long symndx ATTRIBUTE_UNUSED)
13969 {
13970 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13971 return bed->s->arch_size / 8;
13972 }
13973
13974 /* Routines to support the creation of dynamic relocs. */
13975
13976 /* Returns the name of the dynamic reloc section associated with SEC. */
13977
13978 static const char *
13979 get_dynamic_reloc_section_name (bfd * abfd,
13980 asection * sec,
13981 bfd_boolean is_rela)
13982 {
13983 char *name;
13984 const char *old_name = bfd_get_section_name (NULL, sec);
13985 const char *prefix = is_rela ? ".rela" : ".rel";
13986
13987 if (old_name == NULL)
13988 return NULL;
13989
13990 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13991 sprintf (name, "%s%s", prefix, old_name);
13992
13993 return name;
13994 }
13995
13996 /* Returns the dynamic reloc section associated with SEC.
13997 If necessary compute the name of the dynamic reloc section based
13998 on SEC's name (looked up in ABFD's string table) and the setting
13999 of IS_RELA. */
14000
14001 asection *
14002 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14003 asection * sec,
14004 bfd_boolean is_rela)
14005 {
14006 asection * reloc_sec = elf_section_data (sec)->sreloc;
14007
14008 if (reloc_sec == NULL)
14009 {
14010 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14011
14012 if (name != NULL)
14013 {
14014 reloc_sec = bfd_get_linker_section (abfd, name);
14015
14016 if (reloc_sec != NULL)
14017 elf_section_data (sec)->sreloc = reloc_sec;
14018 }
14019 }
14020
14021 return reloc_sec;
14022 }
14023
14024 /* Returns the dynamic reloc section associated with SEC. If the
14025 section does not exist it is created and attached to the DYNOBJ
14026 bfd and stored in the SRELOC field of SEC's elf_section_data
14027 structure.
14028
14029 ALIGNMENT is the alignment for the newly created section and
14030 IS_RELA defines whether the name should be .rela.<SEC's name>
14031 or .rel.<SEC's name>. The section name is looked up in the
14032 string table associated with ABFD. */
14033
14034 asection *
14035 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14036 bfd *dynobj,
14037 unsigned int alignment,
14038 bfd *abfd,
14039 bfd_boolean is_rela)
14040 {
14041 asection * reloc_sec = elf_section_data (sec)->sreloc;
14042
14043 if (reloc_sec == NULL)
14044 {
14045 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14046
14047 if (name == NULL)
14048 return NULL;
14049
14050 reloc_sec = bfd_get_linker_section (dynobj, name);
14051
14052 if (reloc_sec == NULL)
14053 {
14054 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14055 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14056 if ((sec->flags & SEC_ALLOC) != 0)
14057 flags |= SEC_ALLOC | SEC_LOAD;
14058
14059 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14060 if (reloc_sec != NULL)
14061 {
14062 /* _bfd_elf_get_sec_type_attr chooses a section type by
14063 name. Override as it may be wrong, eg. for a user
14064 section named "auto" we'll get ".relauto" which is
14065 seen to be a .rela section. */
14066 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14067 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14068 reloc_sec = NULL;
14069 }
14070 }
14071
14072 elf_section_data (sec)->sreloc = reloc_sec;
14073 }
14074
14075 return reloc_sec;
14076 }
14077
14078 /* Copy the ELF symbol type and other attributes for a linker script
14079 assignment from HSRC to HDEST. Generally this should be treated as
14080 if we found a strong non-dynamic definition for HDEST (except that
14081 ld ignores multiple definition errors). */
14082 void
14083 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14084 struct bfd_link_hash_entry *hdest,
14085 struct bfd_link_hash_entry *hsrc)
14086 {
14087 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14088 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14089 Elf_Internal_Sym isym;
14090
14091 ehdest->type = ehsrc->type;
14092 ehdest->target_internal = ehsrc->target_internal;
14093
14094 isym.st_other = ehsrc->other;
14095 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14096 }
14097
14098 /* Append a RELA relocation REL to section S in BFD. */
14099
14100 void
14101 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14102 {
14103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14104 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14105 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14106 bed->s->swap_reloca_out (abfd, rel, loc);
14107 }
14108
14109 /* Append a REL relocation REL to section S in BFD. */
14110
14111 void
14112 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14113 {
14114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14115 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14116 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14117 bed->s->swap_reloc_out (abfd, rel, loc);
14118 }
This page took 0.339982 seconds and 4 git commands to generate.