Properly place the NULL STT_FILE symbol revistited
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 sec, 0, NULL, FALSE,
82 get_elf_backend_data (abfd)->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->root.linker_def = 1;
89 h->type = STT_OBJECT;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_linker_section (abfd, ".got");
109 if (s != NULL)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_anyway_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191 struct elf_link_hash_entry *h;
192
193 if (! is_elf_hash_table (info->hash))
194 return FALSE;
195
196 if (elf_hash_table (info)->dynamic_sections_created)
197 return TRUE;
198
199 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 return FALSE;
201
202 abfd = elf_hash_table (info)->dynobj;
203 bed = get_elf_backend_data (abfd);
204
205 flags = bed->dynamic_sec_flags;
206
207 /* A dynamically linked executable has a .interp section, but a
208 shared library does not. */
209 if (info->executable)
210 {
211 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
212 flags | SEC_READONLY);
213 if (s == NULL)
214 return FALSE;
215 }
216
217 /* Create sections to hold version informations. These are removed
218 if they are not needed. */
219 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
220 flags | SEC_READONLY);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
226 flags | SEC_READONLY);
227 if (s == NULL
228 || ! bfd_set_section_alignment (abfd, s, 1))
229 return FALSE;
230
231 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
232 flags | SEC_READONLY);
233 if (s == NULL
234 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 return FALSE;
236
237 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
238 flags | SEC_READONLY);
239 if (s == NULL
240 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 return FALSE;
242
243 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
244 flags | SEC_READONLY);
245 if (s == NULL)
246 return FALSE;
247
248 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 if (s == NULL
250 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 return FALSE;
252
253 /* The special symbol _DYNAMIC is always set to the start of the
254 .dynamic section. We could set _DYNAMIC in a linker script, but we
255 only want to define it if we are, in fact, creating a .dynamic
256 section. We don't want to define it if there is no .dynamic
257 section, since on some ELF platforms the start up code examines it
258 to decide how to initialize the process. */
259 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
260 elf_hash_table (info)->hdynamic = h;
261 if (h == NULL)
262 return FALSE;
263
264 if (info->emit_hash)
265 {
266 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
267 flags | SEC_READONLY);
268 if (s == NULL
269 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 return FALSE;
271 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
272 }
273
274 if (info->emit_gnu_hash)
275 {
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
282 4 32-bit words followed by variable count of 64-bit words, then
283 variable count of 32-bit words. */
284 if (bed->s->arch_size == 64)
285 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 else
287 elf_section_data (s)->this_hdr.sh_entsize = 4;
288 }
289
290 /* Let the backend create the rest of the sections. This lets the
291 backend set the right flags. The backend will normally create
292 the .got and .plt sections. */
293 if (bed->elf_backend_create_dynamic_sections == NULL
294 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
295 return FALSE;
296
297 elf_hash_table (info)->dynamic_sections_created = TRUE;
298
299 return TRUE;
300 }
301
302 /* Create dynamic sections when linking against a dynamic object. */
303
304 bfd_boolean
305 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 {
307 flagword flags, pltflags;
308 struct elf_link_hash_entry *h;
309 asection *s;
310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
311 struct elf_link_hash_table *htab = elf_hash_table (info);
312
313 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
314 .rel[a].bss sections. */
315 flags = bed->dynamic_sec_flags;
316
317 pltflags = flags;
318 if (bed->plt_not_loaded)
319 /* We do not clear SEC_ALLOC here because we still want the OS to
320 allocate space for the section; it's just that there's nothing
321 to read in from the object file. */
322 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 else
324 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
325 if (bed->plt_readonly)
326 pltflags |= SEC_READONLY;
327
328 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
331 return FALSE;
332 htab->splt = s;
333
334 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 .plt section. */
336 if (bed->want_plt_sym)
337 {
338 h = _bfd_elf_define_linkage_sym (abfd, info, s,
339 "_PROCEDURE_LINKAGE_TABLE_");
340 elf_hash_table (info)->hplt = h;
341 if (h == NULL)
342 return FALSE;
343 }
344
345 s = bfd_make_section_anyway_with_flags (abfd,
346 (bed->rela_plts_and_copies_p
347 ? ".rela.plt" : ".rel.plt"),
348 flags | SEC_READONLY);
349 if (s == NULL
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
351 return FALSE;
352 htab->srelplt = s;
353
354 if (! _bfd_elf_create_got_section (abfd, info))
355 return FALSE;
356
357 if (bed->want_dynbss)
358 {
359 /* The .dynbss section is a place to put symbols which are defined
360 by dynamic objects, are referenced by regular objects, and are
361 not functions. We must allocate space for them in the process
362 image and use a R_*_COPY reloc to tell the dynamic linker to
363 initialize them at run time. The linker script puts the .dynbss
364 section into the .bss section of the final image. */
365 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
366 (SEC_ALLOC | SEC_LINKER_CREATED));
367 if (s == NULL)
368 return FALSE;
369
370 /* The .rel[a].bss section holds copy relocs. This section is not
371 normally needed. We need to create it here, though, so that the
372 linker will map it to an output section. We can't just create it
373 only if we need it, because we will not know whether we need it
374 until we have seen all the input files, and the first time the
375 main linker code calls BFD after examining all the input files
376 (size_dynamic_sections) the input sections have already been
377 mapped to the output sections. If the section turns out not to
378 be needed, we can discard it later. We will never need this
379 section when generating a shared object, since they do not use
380 copy relocs. */
381 if (! info->shared)
382 {
383 s = bfd_make_section_anyway_with_flags (abfd,
384 (bed->rela_plts_and_copies_p
385 ? ".rela.bss" : ".rel.bss"),
386 flags | SEC_READONLY);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
389 return FALSE;
390 }
391 }
392
393 return TRUE;
394 }
395 \f
396 /* Record a new dynamic symbol. We record the dynamic symbols as we
397 read the input files, since we need to have a list of all of them
398 before we can determine the final sizes of the output sections.
399 Note that we may actually call this function even though we are not
400 going to output any dynamic symbols; in some cases we know that a
401 symbol should be in the dynamic symbol table, but only if there is
402 one. */
403
404 bfd_boolean
405 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *h)
407 {
408 if (h->dynindx == -1)
409 {
410 struct elf_strtab_hash *dynstr;
411 char *p;
412 const char *name;
413 bfd_size_type indx;
414
415 /* XXX: The ABI draft says the linker must turn hidden and
416 internal symbols into STB_LOCAL symbols when producing the
417 DSO. However, if ld.so honors st_other in the dynamic table,
418 this would not be necessary. */
419 switch (ELF_ST_VISIBILITY (h->other))
420 {
421 case STV_INTERNAL:
422 case STV_HIDDEN:
423 if (h->root.type != bfd_link_hash_undefined
424 && h->root.type != bfd_link_hash_undefweak)
425 {
426 h->forced_local = 1;
427 if (!elf_hash_table (info)->is_relocatable_executable)
428 return TRUE;
429 }
430
431 default:
432 break;
433 }
434
435 h->dynindx = elf_hash_table (info)->dynsymcount;
436 ++elf_hash_table (info)->dynsymcount;
437
438 dynstr = elf_hash_table (info)->dynstr;
439 if (dynstr == NULL)
440 {
441 /* Create a strtab to hold the dynamic symbol names. */
442 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 if (dynstr == NULL)
444 return FALSE;
445 }
446
447 /* We don't put any version information in the dynamic string
448 table. */
449 name = h->root.root.string;
450 p = strchr (name, ELF_VER_CHR);
451 if (p != NULL)
452 /* We know that the p points into writable memory. In fact,
453 there are only a few symbols that have read-only names, being
454 those like _GLOBAL_OFFSET_TABLE_ that are created specially
455 by the backends. Most symbols will have names pointing into
456 an ELF string table read from a file, or to objalloc memory. */
457 *p = 0;
458
459 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460
461 if (p != NULL)
462 *p = ELF_VER_CHR;
463
464 if (indx == (bfd_size_type) -1)
465 return FALSE;
466 h->dynstr_index = indx;
467 }
468
469 return TRUE;
470 }
471 \f
472 /* Mark a symbol dynamic. */
473
474 static void
475 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
476 struct elf_link_hash_entry *h,
477 Elf_Internal_Sym *sym)
478 {
479 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480
481 /* It may be called more than once on the same H. */
482 if(h->dynamic || info->relocatable)
483 return;
484
485 if ((info->dynamic_data
486 && (h->type == STT_OBJECT
487 || (sym != NULL
488 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 || (d != NULL
490 && h->root.type == bfd_link_hash_new
491 && (*d->match) (&d->head, NULL, h->root.root.string)))
492 h->dynamic = 1;
493 }
494
495 /* Record an assignment to a symbol made by a linker script. We need
496 this in case some dynamic object refers to this symbol. */
497
498 bfd_boolean
499 bfd_elf_record_link_assignment (bfd *output_bfd,
500 struct bfd_link_info *info,
501 const char *name,
502 bfd_boolean provide,
503 bfd_boolean hidden)
504 {
505 struct elf_link_hash_entry *h, *hv;
506 struct elf_link_hash_table *htab;
507 const struct elf_backend_data *bed;
508
509 if (!is_elf_hash_table (info->hash))
510 return TRUE;
511
512 htab = elf_hash_table (info);
513 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
514 if (h == NULL)
515 return provide;
516
517 switch (h->root.type)
518 {
519 case bfd_link_hash_defined:
520 case bfd_link_hash_defweak:
521 case bfd_link_hash_common:
522 break;
523 case bfd_link_hash_undefweak:
524 case bfd_link_hash_undefined:
525 /* Since we're defining the symbol, don't let it seem to have not
526 been defined. record_dynamic_symbol and size_dynamic_sections
527 may depend on this. */
528 h->root.type = bfd_link_hash_new;
529 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
530 bfd_link_repair_undef_list (&htab->root);
531 break;
532 case bfd_link_hash_new:
533 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
534 h->non_elf = 0;
535 break;
536 case bfd_link_hash_indirect:
537 /* We had a versioned symbol in a dynamic library. We make the
538 the versioned symbol point to this one. */
539 bed = get_elf_backend_data (output_bfd);
540 hv = h;
541 while (hv->root.type == bfd_link_hash_indirect
542 || hv->root.type == bfd_link_hash_warning)
543 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
544 /* We don't need to update h->root.u since linker will set them
545 later. */
546 h->root.type = bfd_link_hash_undefined;
547 hv->root.type = bfd_link_hash_indirect;
548 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
549 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 break;
551 case bfd_link_hash_warning:
552 abort ();
553 break;
554 }
555
556 /* If this symbol is being provided by the linker script, and it is
557 currently defined by a dynamic object, but not by a regular
558 object, then mark it as undefined so that the generic linker will
559 force the correct value. */
560 if (provide
561 && h->def_dynamic
562 && !h->def_regular)
563 h->root.type = bfd_link_hash_undefined;
564
565 /* If this symbol is not being provided by the linker script, and it is
566 currently defined by a dynamic object, but not by a regular object,
567 then clear out any version information because the symbol will not be
568 associated with the dynamic object any more. */
569 if (!provide
570 && h->def_dynamic
571 && !h->def_regular)
572 h->verinfo.verdef = NULL;
573
574 h->def_regular = 1;
575
576 if (hidden)
577 {
578 bed = get_elf_backend_data (output_bfd);
579 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
580 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
581 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 }
583
584 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
585 and executables. */
586 if (!info->relocatable
587 && h->dynindx != -1
588 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
589 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 h->forced_local = 1;
591
592 if ((h->def_dynamic
593 || h->ref_dynamic
594 || info->shared
595 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 && h->dynindx == -1)
597 {
598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 return FALSE;
600
601 /* If this is a weak defined symbol, and we know a corresponding
602 real symbol from the same dynamic object, make sure the real
603 symbol is also made into a dynamic symbol. */
604 if (h->u.weakdef != NULL
605 && h->u.weakdef->dynindx == -1)
606 {
607 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
608 return FALSE;
609 }
610 }
611
612 return TRUE;
613 }
614
615 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
616 success, and 2 on a failure caused by attempting to record a symbol
617 in a discarded section, eg. a discarded link-once section symbol. */
618
619 int
620 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
621 bfd *input_bfd,
622 long input_indx)
623 {
624 bfd_size_type amt;
625 struct elf_link_local_dynamic_entry *entry;
626 struct elf_link_hash_table *eht;
627 struct elf_strtab_hash *dynstr;
628 unsigned long dynstr_index;
629 char *name;
630 Elf_External_Sym_Shndx eshndx;
631 char esym[sizeof (Elf64_External_Sym)];
632
633 if (! is_elf_hash_table (info->hash))
634 return 0;
635
636 /* See if the entry exists already. */
637 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
638 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 return 1;
640
641 amt = sizeof (*entry);
642 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
643 if (entry == NULL)
644 return 0;
645
646 /* Go find the symbol, so that we can find it's name. */
647 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
648 1, input_indx, &entry->isym, esym, &eshndx))
649 {
650 bfd_release (input_bfd, entry);
651 return 0;
652 }
653
654 if (entry->isym.st_shndx != SHN_UNDEF
655 && entry->isym.st_shndx < SHN_LORESERVE)
656 {
657 asection *s;
658
659 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
660 if (s == NULL || bfd_is_abs_section (s->output_section))
661 {
662 /* We can still bfd_release here as nothing has done another
663 bfd_alloc. We can't do this later in this function. */
664 bfd_release (input_bfd, entry);
665 return 2;
666 }
667 }
668
669 name = (bfd_elf_string_from_elf_section
670 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
671 entry->isym.st_name));
672
673 dynstr = elf_hash_table (info)->dynstr;
674 if (dynstr == NULL)
675 {
676 /* Create a strtab to hold the dynamic symbol names. */
677 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
678 if (dynstr == NULL)
679 return 0;
680 }
681
682 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
683 if (dynstr_index == (unsigned long) -1)
684 return 0;
685 entry->isym.st_name = dynstr_index;
686
687 eht = elf_hash_table (info);
688
689 entry->next = eht->dynlocal;
690 eht->dynlocal = entry;
691 entry->input_bfd = input_bfd;
692 entry->input_indx = input_indx;
693 eht->dynsymcount++;
694
695 /* Whatever binding the symbol had before, it's now local. */
696 entry->isym.st_info
697 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
698
699 /* The dynindx will be set at the end of size_dynamic_sections. */
700
701 return 1;
702 }
703
704 /* Return the dynindex of a local dynamic symbol. */
705
706 long
707 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
708 bfd *input_bfd,
709 long input_indx)
710 {
711 struct elf_link_local_dynamic_entry *e;
712
713 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
714 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
715 return e->dynindx;
716 return -1;
717 }
718
719 /* This function is used to renumber the dynamic symbols, if some of
720 them are removed because they are marked as local. This is called
721 via elf_link_hash_traverse. */
722
723 static bfd_boolean
724 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 void *data)
726 {
727 size_t *count = (size_t *) data;
728
729 if (h->forced_local)
730 return TRUE;
731
732 if (h->dynindx != -1)
733 h->dynindx = ++(*count);
734
735 return TRUE;
736 }
737
738
739 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
740 STB_LOCAL binding. */
741
742 static bfd_boolean
743 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 void *data)
745 {
746 size_t *count = (size_t *) data;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765 asection *ip;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 return (htab->dynobj != NULL
782 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
783 && ip->output_section == p);
784
785 /* There shouldn't be section relative relocations
786 against any other section. */
787 default:
788 return TRUE;
789 }
790 }
791
792 /* Assign dynsym indices. In a shared library we generate a section
793 symbol for each output section, which come first. Next come symbols
794 which have been forced to local binding. Then all of the back-end
795 allocated local dynamic syms, followed by the rest of the global
796 symbols. */
797
798 static unsigned long
799 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
800 struct bfd_link_info *info,
801 unsigned long *section_sym_count)
802 {
803 unsigned long dynsymcount = 0;
804
805 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
806 {
807 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
808 asection *p;
809 for (p = output_bfd->sections; p ; p = p->next)
810 if ((p->flags & SEC_EXCLUDE) == 0
811 && (p->flags & SEC_ALLOC) != 0
812 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
813 elf_section_data (p)->dynindx = ++dynsymcount;
814 else
815 elf_section_data (p)->dynindx = 0;
816 }
817 *section_sym_count = dynsymcount;
818
819 elf_link_hash_traverse (elf_hash_table (info),
820 elf_link_renumber_local_hash_table_dynsyms,
821 &dynsymcount);
822
823 if (elf_hash_table (info)->dynlocal)
824 {
825 struct elf_link_local_dynamic_entry *p;
826 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
827 p->dynindx = ++dynsymcount;
828 }
829
830 elf_link_hash_traverse (elf_hash_table (info),
831 elf_link_renumber_hash_table_dynsyms,
832 &dynsymcount);
833
834 /* There is an unused NULL entry at the head of the table which
835 we must account for in our count. Unless there weren't any
836 symbols, which means we'll have no table at all. */
837 if (dynsymcount != 0)
838 ++dynsymcount;
839
840 elf_hash_table (info)->dynsymcount = dynsymcount;
841 return dynsymcount;
842 }
843
844 /* Merge st_other field. */
845
846 static void
847 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
848 const Elf_Internal_Sym *isym,
849 bfd_boolean definition, bfd_boolean dynamic)
850 {
851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
852
853 /* If st_other has a processor-specific meaning, specific
854 code might be needed here. */
855 if (bed->elf_backend_merge_symbol_attribute)
856 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
857 dynamic);
858
859 if (!dynamic)
860 {
861 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
862 unsigned hvis = ELF_ST_VISIBILITY (h->other);
863
864 /* Keep the most constraining visibility. Leave the remainder
865 of the st_other field to elf_backend_merge_symbol_attribute. */
866 if (symvis - 1 < hvis - 1)
867 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
868 }
869 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
870 h->protected_def = 1;
871 }
872
873 /* This function is called when we want to merge a new symbol with an
874 existing symbol. It handles the various cases which arise when we
875 find a definition in a dynamic object, or when there is already a
876 definition in a dynamic object. The new symbol is described by
877 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
878 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
879 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
880 of an old common symbol. We set OVERRIDE if the old symbol is
881 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
882 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
883 to change. By OK to change, we mean that we shouldn't warn if the
884 type or size does change. */
885
886 static bfd_boolean
887 _bfd_elf_merge_symbol (bfd *abfd,
888 struct bfd_link_info *info,
889 const char *name,
890 Elf_Internal_Sym *sym,
891 asection **psec,
892 bfd_vma *pvalue,
893 struct elf_link_hash_entry **sym_hash,
894 bfd **poldbfd,
895 bfd_boolean *pold_weak,
896 unsigned int *pold_alignment,
897 bfd_boolean *skip,
898 bfd_boolean *override,
899 bfd_boolean *type_change_ok,
900 bfd_boolean *size_change_ok)
901 {
902 asection *sec, *oldsec;
903 struct elf_link_hash_entry *h;
904 struct elf_link_hash_entry *hi;
905 struct elf_link_hash_entry *flip;
906 int bind;
907 bfd *oldbfd;
908 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
909 bfd_boolean newweak, oldweak, newfunc, oldfunc;
910 const struct elf_backend_data *bed;
911
912 *skip = FALSE;
913 *override = FALSE;
914
915 sec = *psec;
916 bind = ELF_ST_BIND (sym->st_info);
917
918 if (! bfd_is_und_section (sec))
919 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
920 else
921 h = ((struct elf_link_hash_entry *)
922 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
923 if (h == NULL)
924 return FALSE;
925 *sym_hash = h;
926
927 bed = get_elf_backend_data (abfd);
928
929 /* For merging, we only care about real symbols. But we need to make
930 sure that indirect symbol dynamic flags are updated. */
931 hi = h;
932 while (h->root.type == bfd_link_hash_indirect
933 || h->root.type == bfd_link_hash_warning)
934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
935
936 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
937 existing symbol. */
938
939 oldbfd = NULL;
940 oldsec = NULL;
941 switch (h->root.type)
942 {
943 default:
944 break;
945
946 case bfd_link_hash_undefined:
947 case bfd_link_hash_undefweak:
948 oldbfd = h->root.u.undef.abfd;
949 break;
950
951 case bfd_link_hash_defined:
952 case bfd_link_hash_defweak:
953 oldbfd = h->root.u.def.section->owner;
954 oldsec = h->root.u.def.section;
955 break;
956
957 case bfd_link_hash_common:
958 oldbfd = h->root.u.c.p->section->owner;
959 oldsec = h->root.u.c.p->section;
960 if (pold_alignment)
961 *pold_alignment = h->root.u.c.p->alignment_power;
962 break;
963 }
964 if (poldbfd && *poldbfd == NULL)
965 *poldbfd = oldbfd;
966
967 /* Differentiate strong and weak symbols. */
968 newweak = bind == STB_WEAK;
969 oldweak = (h->root.type == bfd_link_hash_defweak
970 || h->root.type == bfd_link_hash_undefweak);
971 if (pold_weak)
972 *pold_weak = oldweak;
973
974 /* This code is for coping with dynamic objects, and is only useful
975 if we are doing an ELF link. */
976 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
977 return TRUE;
978
979 /* We have to check it for every instance since the first few may be
980 references and not all compilers emit symbol type for undefined
981 symbols. */
982 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
983
984 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
985 respectively, is from a dynamic object. */
986
987 newdyn = (abfd->flags & DYNAMIC) != 0;
988
989 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
990 syms and defined syms in dynamic libraries respectively.
991 ref_dynamic on the other hand can be set for a symbol defined in
992 a dynamic library, and def_dynamic may not be set; When the
993 definition in a dynamic lib is overridden by a definition in the
994 executable use of the symbol in the dynamic lib becomes a
995 reference to the executable symbol. */
996 if (newdyn)
997 {
998 if (bfd_is_und_section (sec))
999 {
1000 if (bind != STB_WEAK)
1001 {
1002 h->ref_dynamic_nonweak = 1;
1003 hi->ref_dynamic_nonweak = 1;
1004 }
1005 }
1006 else
1007 {
1008 h->dynamic_def = 1;
1009 hi->dynamic_def = 1;
1010 }
1011 }
1012
1013 /* If we just created the symbol, mark it as being an ELF symbol.
1014 Other than that, there is nothing to do--there is no merge issue
1015 with a newly defined symbol--so we just return. */
1016
1017 if (h->root.type == bfd_link_hash_new)
1018 {
1019 h->non_elf = 0;
1020 return TRUE;
1021 }
1022
1023 /* In cases involving weak versioned symbols, we may wind up trying
1024 to merge a symbol with itself. Catch that here, to avoid the
1025 confusion that results if we try to override a symbol with
1026 itself. The additional tests catch cases like
1027 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1028 dynamic object, which we do want to handle here. */
1029 if (abfd == oldbfd
1030 && (newweak || oldweak)
1031 && ((abfd->flags & DYNAMIC) == 0
1032 || !h->def_regular))
1033 return TRUE;
1034
1035 olddyn = FALSE;
1036 if (oldbfd != NULL)
1037 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1038 else if (oldsec != NULL)
1039 {
1040 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1041 indices used by MIPS ELF. */
1042 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 }
1044
1045 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1046 respectively, appear to be a definition rather than reference. */
1047
1048 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1049
1050 olddef = (h->root.type != bfd_link_hash_undefined
1051 && h->root.type != bfd_link_hash_undefweak
1052 && h->root.type != bfd_link_hash_common);
1053
1054 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1055 respectively, appear to be a function. */
1056
1057 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1058 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1059
1060 oldfunc = (h->type != STT_NOTYPE
1061 && bed->is_function_type (h->type));
1062
1063 /* When we try to create a default indirect symbol from the dynamic
1064 definition with the default version, we skip it if its type and
1065 the type of existing regular definition mismatch. */
1066 if (pold_alignment == NULL
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (((olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1075 || (olddef
1076 && ((h->type == STT_GNU_IFUNC)
1077 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1078 {
1079 *skip = TRUE;
1080 return TRUE;
1081 }
1082
1083 /* Check TLS symbols. We don't check undefined symbols introduced
1084 by "ld -u" which have no type (and oldbfd NULL), and we don't
1085 check symbols from plugins because they also have no type. */
1086 if (oldbfd != NULL
1087 && (oldbfd->flags & BFD_PLUGIN) == 0
1088 && (abfd->flags & BFD_PLUGIN) == 0
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1091 {
1092 bfd *ntbfd, *tbfd;
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1095
1096 if (h->type == STT_TLS)
1097 {
1098 ntbfd = abfd;
1099 ntsec = sec;
1100 ntdef = newdef;
1101 tbfd = oldbfd;
1102 tsec = oldsec;
1103 tdef = olddef;
1104 }
1105 else
1106 {
1107 ntbfd = oldbfd;
1108 ntsec = oldsec;
1109 ntdef = olddef;
1110 tbfd = abfd;
1111 tsec = sec;
1112 tdef = newdef;
1113 }
1114
1115 if (tdef && ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A "
1118 "mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B "
1123 "mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A "
1128 "mismatches non-TLS reference in %B"),
1129 tbfd, tsec, ntbfd, h->root.root.string);
1130 else
1131 (*_bfd_error_handler)
1132 (_("%s: TLS reference in %B "
1133 "mismatches non-TLS definition in %B section %A"),
1134 tbfd, ntbfd, ntsec, h->root.root.string);
1135
1136 bfd_set_error (bfd_error_bad_value);
1137 return FALSE;
1138 }
1139
1140 /* If the old symbol has non-default visibility, we ignore the new
1141 definition from a dynamic object. */
1142 if (newdyn
1143 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1144 && !bfd_is_und_section (sec))
1145 {
1146 *skip = TRUE;
1147 /* Make sure this symbol is dynamic. */
1148 h->ref_dynamic = 1;
1149 hi->ref_dynamic = 1;
1150 /* A protected symbol has external availability. Make sure it is
1151 recorded as dynamic.
1152
1153 FIXME: Should we check type and size for protected symbol? */
1154 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1155 return bfd_elf_link_record_dynamic_symbol (info, h);
1156 else
1157 return TRUE;
1158 }
1159 else if (!newdyn
1160 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1161 && h->def_dynamic)
1162 {
1163 /* If the new symbol with non-default visibility comes from a
1164 relocatable file and the old definition comes from a dynamic
1165 object, we remove the old definition. */
1166 if (hi->root.type == bfd_link_hash_indirect)
1167 {
1168 /* Handle the case where the old dynamic definition is
1169 default versioned. We need to copy the symbol info from
1170 the symbol with default version to the normal one if it
1171 was referenced before. */
1172 if (h->ref_regular)
1173 {
1174 hi->root.type = h->root.type;
1175 h->root.type = bfd_link_hash_indirect;
1176 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1177
1178 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1179 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1180 {
1181 /* If the new symbol is hidden or internal, completely undo
1182 any dynamic link state. */
1183 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1184 h->forced_local = 0;
1185 h->ref_dynamic = 0;
1186 }
1187 else
1188 h->ref_dynamic = 1;
1189
1190 h->def_dynamic = 0;
1191 /* FIXME: Should we check type and size for protected symbol? */
1192 h->size = 0;
1193 h->type = 0;
1194
1195 h = hi;
1196 }
1197 else
1198 h = hi;
1199 }
1200
1201 /* If the old symbol was undefined before, then it will still be
1202 on the undefs list. If the new symbol is undefined or
1203 common, we can't make it bfd_link_hash_new here, because new
1204 undefined or common symbols will be added to the undefs list
1205 by _bfd_generic_link_add_one_symbol. Symbols may not be
1206 added twice to the undefs list. Also, if the new symbol is
1207 undefweak then we don't want to lose the strong undef. */
1208 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1209 {
1210 h->root.type = bfd_link_hash_undefined;
1211 h->root.u.undef.abfd = abfd;
1212 }
1213 else
1214 {
1215 h->root.type = bfd_link_hash_new;
1216 h->root.u.undef.abfd = NULL;
1217 }
1218
1219 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1220 {
1221 /* If the new symbol is hidden or internal, completely undo
1222 any dynamic link state. */
1223 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1224 h->forced_local = 0;
1225 h->ref_dynamic = 0;
1226 }
1227 else
1228 h->ref_dynamic = 1;
1229 h->def_dynamic = 0;
1230 /* FIXME: Should we check type and size for protected symbol? */
1231 h->size = 0;
1232 h->type = 0;
1233 return TRUE;
1234 }
1235
1236 /* If a new weak symbol definition comes from a regular file and the
1237 old symbol comes from a dynamic library, we treat the new one as
1238 strong. Similarly, an old weak symbol definition from a regular
1239 file is treated as strong when the new symbol comes from a dynamic
1240 library. Further, an old weak symbol from a dynamic library is
1241 treated as strong if the new symbol is from a dynamic library.
1242 This reflects the way glibc's ld.so works.
1243
1244 Do this before setting *type_change_ok or *size_change_ok so that
1245 we warn properly when dynamic library symbols are overridden. */
1246
1247 if (newdef && !newdyn && olddyn)
1248 newweak = FALSE;
1249 if (olddef && newdyn)
1250 oldweak = FALSE;
1251
1252 /* Allow changes between different types of function symbol. */
1253 if (newfunc && oldfunc)
1254 *type_change_ok = TRUE;
1255
1256 /* It's OK to change the type if either the existing symbol or the
1257 new symbol is weak. A type change is also OK if the old symbol
1258 is undefined and the new symbol is defined. */
1259
1260 if (oldweak
1261 || newweak
1262 || (newdef
1263 && h->root.type == bfd_link_hash_undefined))
1264 *type_change_ok = TRUE;
1265
1266 /* It's OK to change the size if either the existing symbol or the
1267 new symbol is weak, or if the old symbol is undefined. */
1268
1269 if (*type_change_ok
1270 || h->root.type == bfd_link_hash_undefined)
1271 *size_change_ok = TRUE;
1272
1273 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1274 symbol, respectively, appears to be a common symbol in a dynamic
1275 object. If a symbol appears in an uninitialized section, and is
1276 not weak, and is not a function, then it may be a common symbol
1277 which was resolved when the dynamic object was created. We want
1278 to treat such symbols specially, because they raise special
1279 considerations when setting the symbol size: if the symbol
1280 appears as a common symbol in a regular object, and the size in
1281 the regular object is larger, we must make sure that we use the
1282 larger size. This problematic case can always be avoided in C,
1283 but it must be handled correctly when using Fortran shared
1284 libraries.
1285
1286 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1287 likewise for OLDDYNCOMMON and OLDDEF.
1288
1289 Note that this test is just a heuristic, and that it is quite
1290 possible to have an uninitialized symbol in a shared object which
1291 is really a definition, rather than a common symbol. This could
1292 lead to some minor confusion when the symbol really is a common
1293 symbol in some regular object. However, I think it will be
1294 harmless. */
1295
1296 if (newdyn
1297 && newdef
1298 && !newweak
1299 && (sec->flags & SEC_ALLOC) != 0
1300 && (sec->flags & SEC_LOAD) == 0
1301 && sym->st_size > 0
1302 && !newfunc)
1303 newdyncommon = TRUE;
1304 else
1305 newdyncommon = FALSE;
1306
1307 if (olddyn
1308 && olddef
1309 && h->root.type == bfd_link_hash_defined
1310 && h->def_dynamic
1311 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1312 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1313 && h->size > 0
1314 && !oldfunc)
1315 olddyncommon = TRUE;
1316 else
1317 olddyncommon = FALSE;
1318
1319 /* We now know everything about the old and new symbols. We ask the
1320 backend to check if we can merge them. */
1321 if (bed->merge_symbol != NULL)
1322 {
1323 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1324 return FALSE;
1325 sec = *psec;
1326 }
1327
1328 /* If both the old and the new symbols look like common symbols in a
1329 dynamic object, set the size of the symbol to the larger of the
1330 two. */
1331
1332 if (olddyncommon
1333 && newdyncommon
1334 && sym->st_size != h->size)
1335 {
1336 /* Since we think we have two common symbols, issue a multiple
1337 common warning if desired. Note that we only warn if the
1338 size is different. If the size is the same, we simply let
1339 the old symbol override the new one as normally happens with
1340 symbols defined in dynamic objects. */
1341
1342 if (! ((*info->callbacks->multiple_common)
1343 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1344 return FALSE;
1345
1346 if (sym->st_size > h->size)
1347 h->size = sym->st_size;
1348
1349 *size_change_ok = TRUE;
1350 }
1351
1352 /* If we are looking at a dynamic object, and we have found a
1353 definition, we need to see if the symbol was already defined by
1354 some other object. If so, we want to use the existing
1355 definition, and we do not want to report a multiple symbol
1356 definition error; we do this by clobbering *PSEC to be
1357 bfd_und_section_ptr.
1358
1359 We treat a common symbol as a definition if the symbol in the
1360 shared library is a function, since common symbols always
1361 represent variables; this can cause confusion in principle, but
1362 any such confusion would seem to indicate an erroneous program or
1363 shared library. We also permit a common symbol in a regular
1364 object to override a weak symbol in a shared object. */
1365
1366 if (newdyn
1367 && newdef
1368 && (olddef
1369 || (h->root.type == bfd_link_hash_common
1370 && (newweak || newfunc))))
1371 {
1372 *override = TRUE;
1373 newdef = FALSE;
1374 newdyncommon = FALSE;
1375
1376 *psec = sec = bfd_und_section_ptr;
1377 *size_change_ok = TRUE;
1378
1379 /* If we get here when the old symbol is a common symbol, then
1380 we are explicitly letting it override a weak symbol or
1381 function in a dynamic object, and we don't want to warn about
1382 a type change. If the old symbol is a defined symbol, a type
1383 change warning may still be appropriate. */
1384
1385 if (h->root.type == bfd_link_hash_common)
1386 *type_change_ok = TRUE;
1387 }
1388
1389 /* Handle the special case of an old common symbol merging with a
1390 new symbol which looks like a common symbol in a shared object.
1391 We change *PSEC and *PVALUE to make the new symbol look like a
1392 common symbol, and let _bfd_generic_link_add_one_symbol do the
1393 right thing. */
1394
1395 if (newdyncommon
1396 && h->root.type == bfd_link_hash_common)
1397 {
1398 *override = TRUE;
1399 newdef = FALSE;
1400 newdyncommon = FALSE;
1401 *pvalue = sym->st_size;
1402 *psec = sec = bed->common_section (oldsec);
1403 *size_change_ok = TRUE;
1404 }
1405
1406 /* Skip weak definitions of symbols that are already defined. */
1407 if (newdef && olddef && newweak)
1408 {
1409 /* Don't skip new non-IR weak syms. */
1410 if (!(oldbfd != NULL
1411 && (oldbfd->flags & BFD_PLUGIN) != 0
1412 && (abfd->flags & BFD_PLUGIN) == 0))
1413 {
1414 newdef = FALSE;
1415 *skip = TRUE;
1416 }
1417
1418 /* Merge st_other. If the symbol already has a dynamic index,
1419 but visibility says it should not be visible, turn it into a
1420 local symbol. */
1421 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1422 if (h->dynindx != -1)
1423 switch (ELF_ST_VISIBILITY (h->other))
1424 {
1425 case STV_INTERNAL:
1426 case STV_HIDDEN:
1427 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1428 break;
1429 }
1430 }
1431
1432 /* If the old symbol is from a dynamic object, and the new symbol is
1433 a definition which is not from a dynamic object, then the new
1434 symbol overrides the old symbol. Symbols from regular files
1435 always take precedence over symbols from dynamic objects, even if
1436 they are defined after the dynamic object in the link.
1437
1438 As above, we again permit a common symbol in a regular object to
1439 override a definition in a shared object if the shared object
1440 symbol is a function or is weak. */
1441
1442 flip = NULL;
1443 if (!newdyn
1444 && (newdef
1445 || (bfd_is_com_section (sec)
1446 && (oldweak || oldfunc)))
1447 && olddyn
1448 && olddef
1449 && h->def_dynamic)
1450 {
1451 /* Change the hash table entry to undefined, and let
1452 _bfd_generic_link_add_one_symbol do the right thing with the
1453 new definition. */
1454
1455 h->root.type = bfd_link_hash_undefined;
1456 h->root.u.undef.abfd = h->root.u.def.section->owner;
1457 *size_change_ok = TRUE;
1458
1459 olddef = FALSE;
1460 olddyncommon = FALSE;
1461
1462 /* We again permit a type change when a common symbol may be
1463 overriding a function. */
1464
1465 if (bfd_is_com_section (sec))
1466 {
1467 if (oldfunc)
1468 {
1469 /* If a common symbol overrides a function, make sure
1470 that it isn't defined dynamically nor has type
1471 function. */
1472 h->def_dynamic = 0;
1473 h->type = STT_NOTYPE;
1474 }
1475 *type_change_ok = TRUE;
1476 }
1477
1478 if (hi->root.type == bfd_link_hash_indirect)
1479 flip = hi;
1480 else
1481 /* This union may have been set to be non-NULL when this symbol
1482 was seen in a dynamic object. We must force the union to be
1483 NULL, so that it is correct for a regular symbol. */
1484 h->verinfo.vertree = NULL;
1485 }
1486
1487 /* Handle the special case of a new common symbol merging with an
1488 old symbol that looks like it might be a common symbol defined in
1489 a shared object. Note that we have already handled the case in
1490 which a new common symbol should simply override the definition
1491 in the shared library. */
1492
1493 if (! newdyn
1494 && bfd_is_com_section (sec)
1495 && olddyncommon)
1496 {
1497 /* It would be best if we could set the hash table entry to a
1498 common symbol, but we don't know what to use for the section
1499 or the alignment. */
1500 if (! ((*info->callbacks->multiple_common)
1501 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1502 return FALSE;
1503
1504 /* If the presumed common symbol in the dynamic object is
1505 larger, pretend that the new symbol has its size. */
1506
1507 if (h->size > *pvalue)
1508 *pvalue = h->size;
1509
1510 /* We need to remember the alignment required by the symbol
1511 in the dynamic object. */
1512 BFD_ASSERT (pold_alignment);
1513 *pold_alignment = h->root.u.def.section->alignment_power;
1514
1515 olddef = FALSE;
1516 olddyncommon = FALSE;
1517
1518 h->root.type = bfd_link_hash_undefined;
1519 h->root.u.undef.abfd = h->root.u.def.section->owner;
1520
1521 *size_change_ok = TRUE;
1522 *type_change_ok = TRUE;
1523
1524 if (hi->root.type == bfd_link_hash_indirect)
1525 flip = hi;
1526 else
1527 h->verinfo.vertree = NULL;
1528 }
1529
1530 if (flip != NULL)
1531 {
1532 /* Handle the case where we had a versioned symbol in a dynamic
1533 library and now find a definition in a normal object. In this
1534 case, we make the versioned symbol point to the normal one. */
1535 flip->root.type = h->root.type;
1536 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1537 h->root.type = bfd_link_hash_indirect;
1538 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1539 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1540 if (h->def_dynamic)
1541 {
1542 h->def_dynamic = 0;
1543 flip->ref_dynamic = 1;
1544 }
1545 }
1546
1547 return TRUE;
1548 }
1549
1550 /* This function is called to create an indirect symbol from the
1551 default for the symbol with the default version if needed. The
1552 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1553 set DYNSYM if the new indirect symbol is dynamic. */
1554
1555 static bfd_boolean
1556 _bfd_elf_add_default_symbol (bfd *abfd,
1557 struct bfd_link_info *info,
1558 struct elf_link_hash_entry *h,
1559 const char *name,
1560 Elf_Internal_Sym *sym,
1561 asection *sec,
1562 bfd_vma value,
1563 bfd **poldbfd,
1564 bfd_boolean *dynsym)
1565 {
1566 bfd_boolean type_change_ok;
1567 bfd_boolean size_change_ok;
1568 bfd_boolean skip;
1569 char *shortname;
1570 struct elf_link_hash_entry *hi;
1571 struct bfd_link_hash_entry *bh;
1572 const struct elf_backend_data *bed;
1573 bfd_boolean collect;
1574 bfd_boolean dynamic;
1575 bfd_boolean override;
1576 char *p;
1577 size_t len, shortlen;
1578 asection *tmp_sec;
1579
1580 /* If this symbol has a version, and it is the default version, we
1581 create an indirect symbol from the default name to the fully
1582 decorated name. This will cause external references which do not
1583 specify a version to be bound to this version of the symbol. */
1584 p = strchr (name, ELF_VER_CHR);
1585 if (p == NULL || p[1] != ELF_VER_CHR)
1586 return TRUE;
1587
1588 bed = get_elf_backend_data (abfd);
1589 collect = bed->collect;
1590 dynamic = (abfd->flags & DYNAMIC) != 0;
1591
1592 shortlen = p - name;
1593 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1594 if (shortname == NULL)
1595 return FALSE;
1596 memcpy (shortname, name, shortlen);
1597 shortname[shortlen] = '\0';
1598
1599 /* We are going to create a new symbol. Merge it with any existing
1600 symbol with this name. For the purposes of the merge, act as
1601 though we were defining the symbol we just defined, although we
1602 actually going to define an indirect symbol. */
1603 type_change_ok = FALSE;
1604 size_change_ok = FALSE;
1605 tmp_sec = sec;
1606 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1607 &hi, poldbfd, NULL, NULL, &skip, &override,
1608 &type_change_ok, &size_change_ok))
1609 return FALSE;
1610
1611 if (skip)
1612 goto nondefault;
1613
1614 if (! override)
1615 {
1616 bh = &hi->root;
1617 if (! (_bfd_generic_link_add_one_symbol
1618 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1619 0, name, FALSE, collect, &bh)))
1620 return FALSE;
1621 hi = (struct elf_link_hash_entry *) bh;
1622 }
1623 else
1624 {
1625 /* In this case the symbol named SHORTNAME is overriding the
1626 indirect symbol we want to add. We were planning on making
1627 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1628 is the name without a version. NAME is the fully versioned
1629 name, and it is the default version.
1630
1631 Overriding means that we already saw a definition for the
1632 symbol SHORTNAME in a regular object, and it is overriding
1633 the symbol defined in the dynamic object.
1634
1635 When this happens, we actually want to change NAME, the
1636 symbol we just added, to refer to SHORTNAME. This will cause
1637 references to NAME in the shared object to become references
1638 to SHORTNAME in the regular object. This is what we expect
1639 when we override a function in a shared object: that the
1640 references in the shared object will be mapped to the
1641 definition in the regular object. */
1642
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1645 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1646
1647 h->root.type = bfd_link_hash_indirect;
1648 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1649 if (h->def_dynamic)
1650 {
1651 h->def_dynamic = 0;
1652 hi->ref_dynamic = 1;
1653 if (hi->ref_regular
1654 || hi->def_regular)
1655 {
1656 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1657 return FALSE;
1658 }
1659 }
1660
1661 /* Now set HI to H, so that the following code will set the
1662 other fields correctly. */
1663 hi = h;
1664 }
1665
1666 /* Check if HI is a warning symbol. */
1667 if (hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1669
1670 /* If there is a duplicate definition somewhere, then HI may not
1671 point to an indirect symbol. We will have reported an error to
1672 the user in that case. */
1673
1674 if (hi->root.type == bfd_link_hash_indirect)
1675 {
1676 struct elf_link_hash_entry *ht;
1677
1678 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1680
1681 /* A reference to the SHORTNAME symbol from a dynamic library
1682 will be satisfied by the versioned symbol at runtime. In
1683 effect, we have a reference to the versioned symbol. */
1684 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1685 hi->dynamic_def |= ht->dynamic_def;
1686
1687 /* See if the new flags lead us to realize that the symbol must
1688 be dynamic. */
1689 if (! *dynsym)
1690 {
1691 if (! dynamic)
1692 {
1693 if (! info->executable
1694 || hi->def_dynamic
1695 || hi->ref_dynamic)
1696 *dynsym = TRUE;
1697 }
1698 else
1699 {
1700 if (hi->ref_regular)
1701 *dynsym = TRUE;
1702 }
1703 }
1704 }
1705
1706 /* We also need to define an indirection from the nondefault version
1707 of the symbol. */
1708
1709 nondefault:
1710 len = strlen (name);
1711 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1712 if (shortname == NULL)
1713 return FALSE;
1714 memcpy (shortname, name, shortlen);
1715 memcpy (shortname + shortlen, p + 1, len - shortlen);
1716
1717 /* Once again, merge with any existing symbol. */
1718 type_change_ok = FALSE;
1719 size_change_ok = FALSE;
1720 tmp_sec = sec;
1721 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1722 &hi, poldbfd, NULL, NULL, &skip, &override,
1723 &type_change_ok, &size_change_ok))
1724 return FALSE;
1725
1726 if (skip)
1727 return TRUE;
1728
1729 if (override)
1730 {
1731 /* Here SHORTNAME is a versioned name, so we don't expect to see
1732 the type of override we do in the case above unless it is
1733 overridden by a versioned definition. */
1734 if (hi->root.type != bfd_link_hash_defined
1735 && hi->root.type != bfd_link_hash_defweak)
1736 (*_bfd_error_handler)
1737 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1738 abfd, shortname);
1739 }
1740 else
1741 {
1742 bh = &hi->root;
1743 if (! (_bfd_generic_link_add_one_symbol
1744 (info, abfd, shortname, BSF_INDIRECT,
1745 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1746 return FALSE;
1747 hi = (struct elf_link_hash_entry *) bh;
1748
1749 /* If there is a duplicate definition somewhere, then HI may not
1750 point to an indirect symbol. We will have reported an error
1751 to the user in that case. */
1752
1753 if (hi->root.type == bfd_link_hash_indirect)
1754 {
1755 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1756 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1757 hi->dynamic_def |= h->dynamic_def;
1758
1759 /* See if the new flags lead us to realize that the symbol
1760 must be dynamic. */
1761 if (! *dynsym)
1762 {
1763 if (! dynamic)
1764 {
1765 if (! info->executable
1766 || hi->ref_dynamic)
1767 *dynsym = TRUE;
1768 }
1769 else
1770 {
1771 if (hi->ref_regular)
1772 *dynsym = TRUE;
1773 }
1774 }
1775 }
1776 }
1777
1778 return TRUE;
1779 }
1780 \f
1781 /* This routine is used to export all defined symbols into the dynamic
1782 symbol table. It is called via elf_link_hash_traverse. */
1783
1784 static bfd_boolean
1785 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1786 {
1787 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1788
1789 /* Ignore indirect symbols. These are added by the versioning code. */
1790 if (h->root.type == bfd_link_hash_indirect)
1791 return TRUE;
1792
1793 /* Ignore this if we won't export it. */
1794 if (!eif->info->export_dynamic && !h->dynamic)
1795 return TRUE;
1796
1797 if (h->dynindx == -1
1798 && (h->def_regular || h->ref_regular)
1799 && ! bfd_hide_sym_by_version (eif->info->version_info,
1800 h->root.root.string))
1801 {
1802 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1803 {
1804 eif->failed = TRUE;
1805 return FALSE;
1806 }
1807 }
1808
1809 return TRUE;
1810 }
1811 \f
1812 /* Look through the symbols which are defined in other shared
1813 libraries and referenced here. Update the list of version
1814 dependencies. This will be put into the .gnu.version_r section.
1815 This function is called via elf_link_hash_traverse. */
1816
1817 static bfd_boolean
1818 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1819 void *data)
1820 {
1821 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1822 Elf_Internal_Verneed *t;
1823 Elf_Internal_Vernaux *a;
1824 bfd_size_type amt;
1825
1826 /* We only care about symbols defined in shared objects with version
1827 information. */
1828 if (!h->def_dynamic
1829 || h->def_regular
1830 || h->dynindx == -1
1831 || h->verinfo.verdef == NULL
1832 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1833 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1834 return TRUE;
1835
1836 /* See if we already know about this version. */
1837 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1838 t != NULL;
1839 t = t->vn_nextref)
1840 {
1841 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1842 continue;
1843
1844 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1845 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1846 return TRUE;
1847
1848 break;
1849 }
1850
1851 /* This is a new version. Add it to tree we are building. */
1852
1853 if (t == NULL)
1854 {
1855 amt = sizeof *t;
1856 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1857 if (t == NULL)
1858 {
1859 rinfo->failed = TRUE;
1860 return FALSE;
1861 }
1862
1863 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1864 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1865 elf_tdata (rinfo->info->output_bfd)->verref = t;
1866 }
1867
1868 amt = sizeof *a;
1869 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1870 if (a == NULL)
1871 {
1872 rinfo->failed = TRUE;
1873 return FALSE;
1874 }
1875
1876 /* Note that we are copying a string pointer here, and testing it
1877 above. If bfd_elf_string_from_elf_section is ever changed to
1878 discard the string data when low in memory, this will have to be
1879 fixed. */
1880 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1881
1882 a->vna_flags = h->verinfo.verdef->vd_flags;
1883 a->vna_nextptr = t->vn_auxptr;
1884
1885 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1886 ++rinfo->vers;
1887
1888 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1889
1890 t->vn_auxptr = a;
1891
1892 return TRUE;
1893 }
1894
1895 /* Figure out appropriate versions for all the symbols. We may not
1896 have the version number script until we have read all of the input
1897 files, so until that point we don't know which symbols should be
1898 local. This function is called via elf_link_hash_traverse. */
1899
1900 static bfd_boolean
1901 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1902 {
1903 struct elf_info_failed *sinfo;
1904 struct bfd_link_info *info;
1905 const struct elf_backend_data *bed;
1906 struct elf_info_failed eif;
1907 char *p;
1908 bfd_size_type amt;
1909
1910 sinfo = (struct elf_info_failed *) data;
1911 info = sinfo->info;
1912
1913 /* Fix the symbol flags. */
1914 eif.failed = FALSE;
1915 eif.info = info;
1916 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1917 {
1918 if (eif.failed)
1919 sinfo->failed = TRUE;
1920 return FALSE;
1921 }
1922
1923 /* We only need version numbers for symbols defined in regular
1924 objects. */
1925 if (!h->def_regular)
1926 return TRUE;
1927
1928 bed = get_elf_backend_data (info->output_bfd);
1929 p = strchr (h->root.root.string, ELF_VER_CHR);
1930 if (p != NULL && h->verinfo.vertree == NULL)
1931 {
1932 struct bfd_elf_version_tree *t;
1933 bfd_boolean hidden;
1934
1935 hidden = TRUE;
1936
1937 /* There are two consecutive ELF_VER_CHR characters if this is
1938 not a hidden symbol. */
1939 ++p;
1940 if (*p == ELF_VER_CHR)
1941 {
1942 hidden = FALSE;
1943 ++p;
1944 }
1945
1946 /* If there is no version string, we can just return out. */
1947 if (*p == '\0')
1948 {
1949 if (hidden)
1950 h->hidden = 1;
1951 return TRUE;
1952 }
1953
1954 /* Look for the version. If we find it, it is no longer weak. */
1955 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1956 {
1957 if (strcmp (t->name, p) == 0)
1958 {
1959 size_t len;
1960 char *alc;
1961 struct bfd_elf_version_expr *d;
1962
1963 len = p - h->root.root.string;
1964 alc = (char *) bfd_malloc (len);
1965 if (alc == NULL)
1966 {
1967 sinfo->failed = TRUE;
1968 return FALSE;
1969 }
1970 memcpy (alc, h->root.root.string, len - 1);
1971 alc[len - 1] = '\0';
1972 if (alc[len - 2] == ELF_VER_CHR)
1973 alc[len - 2] = '\0';
1974
1975 h->verinfo.vertree = t;
1976 t->used = TRUE;
1977 d = NULL;
1978
1979 if (t->globals.list != NULL)
1980 d = (*t->match) (&t->globals, NULL, alc);
1981
1982 /* See if there is anything to force this symbol to
1983 local scope. */
1984 if (d == NULL && t->locals.list != NULL)
1985 {
1986 d = (*t->match) (&t->locals, NULL, alc);
1987 if (d != NULL
1988 && h->dynindx != -1
1989 && ! info->export_dynamic)
1990 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1991 }
1992
1993 free (alc);
1994 break;
1995 }
1996 }
1997
1998 /* If we are building an application, we need to create a
1999 version node for this version. */
2000 if (t == NULL && info->executable)
2001 {
2002 struct bfd_elf_version_tree **pp;
2003 int version_index;
2004
2005 /* If we aren't going to export this symbol, we don't need
2006 to worry about it. */
2007 if (h->dynindx == -1)
2008 return TRUE;
2009
2010 amt = sizeof *t;
2011 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2012 if (t == NULL)
2013 {
2014 sinfo->failed = TRUE;
2015 return FALSE;
2016 }
2017
2018 t->name = p;
2019 t->name_indx = (unsigned int) -1;
2020 t->used = TRUE;
2021
2022 version_index = 1;
2023 /* Don't count anonymous version tag. */
2024 if (sinfo->info->version_info != NULL
2025 && sinfo->info->version_info->vernum == 0)
2026 version_index = 0;
2027 for (pp = &sinfo->info->version_info;
2028 *pp != NULL;
2029 pp = &(*pp)->next)
2030 ++version_index;
2031 t->vernum = version_index;
2032
2033 *pp = t;
2034
2035 h->verinfo.vertree = t;
2036 }
2037 else if (t == NULL)
2038 {
2039 /* We could not find the version for a symbol when
2040 generating a shared archive. Return an error. */
2041 (*_bfd_error_handler)
2042 (_("%B: version node not found for symbol %s"),
2043 info->output_bfd, h->root.root.string);
2044 bfd_set_error (bfd_error_bad_value);
2045 sinfo->failed = TRUE;
2046 return FALSE;
2047 }
2048
2049 if (hidden)
2050 h->hidden = 1;
2051 }
2052
2053 /* If we don't have a version for this symbol, see if we can find
2054 something. */
2055 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2056 {
2057 bfd_boolean hide;
2058
2059 h->verinfo.vertree
2060 = bfd_find_version_for_sym (sinfo->info->version_info,
2061 h->root.root.string, &hide);
2062 if (h->verinfo.vertree != NULL && hide)
2063 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2064 }
2065
2066 return TRUE;
2067 }
2068 \f
2069 /* Read and swap the relocs from the section indicated by SHDR. This
2070 may be either a REL or a RELA section. The relocations are
2071 translated into RELA relocations and stored in INTERNAL_RELOCS,
2072 which should have already been allocated to contain enough space.
2073 The EXTERNAL_RELOCS are a buffer where the external form of the
2074 relocations should be stored.
2075
2076 Returns FALSE if something goes wrong. */
2077
2078 static bfd_boolean
2079 elf_link_read_relocs_from_section (bfd *abfd,
2080 asection *sec,
2081 Elf_Internal_Shdr *shdr,
2082 void *external_relocs,
2083 Elf_Internal_Rela *internal_relocs)
2084 {
2085 const struct elf_backend_data *bed;
2086 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2087 const bfd_byte *erela;
2088 const bfd_byte *erelaend;
2089 Elf_Internal_Rela *irela;
2090 Elf_Internal_Shdr *symtab_hdr;
2091 size_t nsyms;
2092
2093 /* Position ourselves at the start of the section. */
2094 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2095 return FALSE;
2096
2097 /* Read the relocations. */
2098 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2099 return FALSE;
2100
2101 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2102 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2103
2104 bed = get_elf_backend_data (abfd);
2105
2106 /* Convert the external relocations to the internal format. */
2107 if (shdr->sh_entsize == bed->s->sizeof_rel)
2108 swap_in = bed->s->swap_reloc_in;
2109 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2110 swap_in = bed->s->swap_reloca_in;
2111 else
2112 {
2113 bfd_set_error (bfd_error_wrong_format);
2114 return FALSE;
2115 }
2116
2117 erela = (const bfd_byte *) external_relocs;
2118 erelaend = erela + shdr->sh_size;
2119 irela = internal_relocs;
2120 while (erela < erelaend)
2121 {
2122 bfd_vma r_symndx;
2123
2124 (*swap_in) (abfd, erela, irela);
2125 r_symndx = ELF32_R_SYM (irela->r_info);
2126 if (bed->s->arch_size == 64)
2127 r_symndx >>= 24;
2128 if (nsyms > 0)
2129 {
2130 if ((size_t) r_symndx >= nsyms)
2131 {
2132 (*_bfd_error_handler)
2133 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2134 " for offset 0x%lx in section `%A'"),
2135 abfd, sec,
2136 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2137 bfd_set_error (bfd_error_bad_value);
2138 return FALSE;
2139 }
2140 }
2141 else if (r_symndx != STN_UNDEF)
2142 {
2143 (*_bfd_error_handler)
2144 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2145 " when the object file has no symbol table"),
2146 abfd, sec,
2147 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2148 bfd_set_error (bfd_error_bad_value);
2149 return FALSE;
2150 }
2151 irela += bed->s->int_rels_per_ext_rel;
2152 erela += shdr->sh_entsize;
2153 }
2154
2155 return TRUE;
2156 }
2157
2158 /* Read and swap the relocs for a section O. They may have been
2159 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2160 not NULL, they are used as buffers to read into. They are known to
2161 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2162 the return value is allocated using either malloc or bfd_alloc,
2163 according to the KEEP_MEMORY argument. If O has two relocation
2164 sections (both REL and RELA relocations), then the REL_HDR
2165 relocations will appear first in INTERNAL_RELOCS, followed by the
2166 RELA_HDR relocations. */
2167
2168 Elf_Internal_Rela *
2169 _bfd_elf_link_read_relocs (bfd *abfd,
2170 asection *o,
2171 void *external_relocs,
2172 Elf_Internal_Rela *internal_relocs,
2173 bfd_boolean keep_memory)
2174 {
2175 void *alloc1 = NULL;
2176 Elf_Internal_Rela *alloc2 = NULL;
2177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2178 struct bfd_elf_section_data *esdo = elf_section_data (o);
2179 Elf_Internal_Rela *internal_rela_relocs;
2180
2181 if (esdo->relocs != NULL)
2182 return esdo->relocs;
2183
2184 if (o->reloc_count == 0)
2185 return NULL;
2186
2187 if (internal_relocs == NULL)
2188 {
2189 bfd_size_type size;
2190
2191 size = o->reloc_count;
2192 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2193 if (keep_memory)
2194 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2195 else
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2197 if (internal_relocs == NULL)
2198 goto error_return;
2199 }
2200
2201 if (external_relocs == NULL)
2202 {
2203 bfd_size_type size = 0;
2204
2205 if (esdo->rel.hdr)
2206 size += esdo->rel.hdr->sh_size;
2207 if (esdo->rela.hdr)
2208 size += esdo->rela.hdr->sh_size;
2209
2210 alloc1 = bfd_malloc (size);
2211 if (alloc1 == NULL)
2212 goto error_return;
2213 external_relocs = alloc1;
2214 }
2215
2216 internal_rela_relocs = internal_relocs;
2217 if (esdo->rel.hdr)
2218 {
2219 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2220 external_relocs,
2221 internal_relocs))
2222 goto error_return;
2223 external_relocs = (((bfd_byte *) external_relocs)
2224 + esdo->rel.hdr->sh_size);
2225 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2226 * bed->s->int_rels_per_ext_rel);
2227 }
2228
2229 if (esdo->rela.hdr
2230 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2231 external_relocs,
2232 internal_rela_relocs)))
2233 goto error_return;
2234
2235 /* Cache the results for next time, if we can. */
2236 if (keep_memory)
2237 esdo->relocs = internal_relocs;
2238
2239 if (alloc1 != NULL)
2240 free (alloc1);
2241
2242 /* Don't free alloc2, since if it was allocated we are passing it
2243 back (under the name of internal_relocs). */
2244
2245 return internal_relocs;
2246
2247 error_return:
2248 if (alloc1 != NULL)
2249 free (alloc1);
2250 if (alloc2 != NULL)
2251 {
2252 if (keep_memory)
2253 bfd_release (abfd, alloc2);
2254 else
2255 free (alloc2);
2256 }
2257 return NULL;
2258 }
2259
2260 /* Compute the size of, and allocate space for, REL_HDR which is the
2261 section header for a section containing relocations for O. */
2262
2263 static bfd_boolean
2264 _bfd_elf_link_size_reloc_section (bfd *abfd,
2265 struct bfd_elf_section_reloc_data *reldata)
2266 {
2267 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2268
2269 /* That allows us to calculate the size of the section. */
2270 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2271
2272 /* The contents field must last into write_object_contents, so we
2273 allocate it with bfd_alloc rather than malloc. Also since we
2274 cannot be sure that the contents will actually be filled in,
2275 we zero the allocated space. */
2276 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2277 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2278 return FALSE;
2279
2280 if (reldata->hashes == NULL && reldata->count)
2281 {
2282 struct elf_link_hash_entry **p;
2283
2284 p = ((struct elf_link_hash_entry **)
2285 bfd_zmalloc (reldata->count * sizeof (*p)));
2286 if (p == NULL)
2287 return FALSE;
2288
2289 reldata->hashes = p;
2290 }
2291
2292 return TRUE;
2293 }
2294
2295 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2296 originated from the section given by INPUT_REL_HDR) to the
2297 OUTPUT_BFD. */
2298
2299 bfd_boolean
2300 _bfd_elf_link_output_relocs (bfd *output_bfd,
2301 asection *input_section,
2302 Elf_Internal_Shdr *input_rel_hdr,
2303 Elf_Internal_Rela *internal_relocs,
2304 struct elf_link_hash_entry **rel_hash
2305 ATTRIBUTE_UNUSED)
2306 {
2307 Elf_Internal_Rela *irela;
2308 Elf_Internal_Rela *irelaend;
2309 bfd_byte *erel;
2310 struct bfd_elf_section_reloc_data *output_reldata;
2311 asection *output_section;
2312 const struct elf_backend_data *bed;
2313 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2314 struct bfd_elf_section_data *esdo;
2315
2316 output_section = input_section->output_section;
2317
2318 bed = get_elf_backend_data (output_bfd);
2319 esdo = elf_section_data (output_section);
2320 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2321 {
2322 output_reldata = &esdo->rel;
2323 swap_out = bed->s->swap_reloc_out;
2324 }
2325 else if (esdo->rela.hdr
2326 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2327 {
2328 output_reldata = &esdo->rela;
2329 swap_out = bed->s->swap_reloca_out;
2330 }
2331 else
2332 {
2333 (*_bfd_error_handler)
2334 (_("%B: relocation size mismatch in %B section %A"),
2335 output_bfd, input_section->owner, input_section);
2336 bfd_set_error (bfd_error_wrong_format);
2337 return FALSE;
2338 }
2339
2340 erel = output_reldata->hdr->contents;
2341 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2342 irela = internal_relocs;
2343 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2344 * bed->s->int_rels_per_ext_rel);
2345 while (irela < irelaend)
2346 {
2347 (*swap_out) (output_bfd, irela, erel);
2348 irela += bed->s->int_rels_per_ext_rel;
2349 erel += input_rel_hdr->sh_entsize;
2350 }
2351
2352 /* Bump the counter, so that we know where to add the next set of
2353 relocations. */
2354 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2355
2356 return TRUE;
2357 }
2358 \f
2359 /* Make weak undefined symbols in PIE dynamic. */
2360
2361 bfd_boolean
2362 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2363 struct elf_link_hash_entry *h)
2364 {
2365 if (info->pie
2366 && h->dynindx == -1
2367 && h->root.type == bfd_link_hash_undefweak)
2368 return bfd_elf_link_record_dynamic_symbol (info, h);
2369
2370 return TRUE;
2371 }
2372
2373 /* Fix up the flags for a symbol. This handles various cases which
2374 can only be fixed after all the input files are seen. This is
2375 currently called by both adjust_dynamic_symbol and
2376 assign_sym_version, which is unnecessary but perhaps more robust in
2377 the face of future changes. */
2378
2379 static bfd_boolean
2380 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2381 struct elf_info_failed *eif)
2382 {
2383 const struct elf_backend_data *bed;
2384
2385 /* If this symbol was mentioned in a non-ELF file, try to set
2386 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2387 permit a non-ELF file to correctly refer to a symbol defined in
2388 an ELF dynamic object. */
2389 if (h->non_elf)
2390 {
2391 while (h->root.type == bfd_link_hash_indirect)
2392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2393
2394 if (h->root.type != bfd_link_hash_defined
2395 && h->root.type != bfd_link_hash_defweak)
2396 {
2397 h->ref_regular = 1;
2398 h->ref_regular_nonweak = 1;
2399 }
2400 else
2401 {
2402 if (h->root.u.def.section->owner != NULL
2403 && (bfd_get_flavour (h->root.u.def.section->owner)
2404 == bfd_target_elf_flavour))
2405 {
2406 h->ref_regular = 1;
2407 h->ref_regular_nonweak = 1;
2408 }
2409 else
2410 h->def_regular = 1;
2411 }
2412
2413 if (h->dynindx == -1
2414 && (h->def_dynamic
2415 || h->ref_dynamic))
2416 {
2417 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2418 {
2419 eif->failed = TRUE;
2420 return FALSE;
2421 }
2422 }
2423 }
2424 else
2425 {
2426 /* Unfortunately, NON_ELF is only correct if the symbol
2427 was first seen in a non-ELF file. Fortunately, if the symbol
2428 was first seen in an ELF file, we're probably OK unless the
2429 symbol was defined in a non-ELF file. Catch that case here.
2430 FIXME: We're still in trouble if the symbol was first seen in
2431 a dynamic object, and then later in a non-ELF regular object. */
2432 if ((h->root.type == bfd_link_hash_defined
2433 || h->root.type == bfd_link_hash_defweak)
2434 && !h->def_regular
2435 && (h->root.u.def.section->owner != NULL
2436 ? (bfd_get_flavour (h->root.u.def.section->owner)
2437 != bfd_target_elf_flavour)
2438 : (bfd_is_abs_section (h->root.u.def.section)
2439 && !h->def_dynamic)))
2440 h->def_regular = 1;
2441 }
2442
2443 /* Backend specific symbol fixup. */
2444 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2445 if (bed->elf_backend_fixup_symbol
2446 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2447 return FALSE;
2448
2449 /* If this is a final link, and the symbol was defined as a common
2450 symbol in a regular object file, and there was no definition in
2451 any dynamic object, then the linker will have allocated space for
2452 the symbol in a common section but the DEF_REGULAR
2453 flag will not have been set. */
2454 if (h->root.type == bfd_link_hash_defined
2455 && !h->def_regular
2456 && h->ref_regular
2457 && !h->def_dynamic
2458 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2459 h->def_regular = 1;
2460
2461 /* If -Bsymbolic was used (which means to bind references to global
2462 symbols to the definition within the shared object), and this
2463 symbol was defined in a regular object, then it actually doesn't
2464 need a PLT entry. Likewise, if the symbol has non-default
2465 visibility. If the symbol has hidden or internal visibility, we
2466 will force it local. */
2467 if (h->needs_plt
2468 && eif->info->shared
2469 && is_elf_hash_table (eif->info->hash)
2470 && (SYMBOLIC_BIND (eif->info, h)
2471 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2472 && h->def_regular)
2473 {
2474 bfd_boolean force_local;
2475
2476 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2477 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2478 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2479 }
2480
2481 /* If a weak undefined symbol has non-default visibility, we also
2482 hide it from the dynamic linker. */
2483 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2484 && h->root.type == bfd_link_hash_undefweak)
2485 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2486
2487 /* If this is a weak defined symbol in a dynamic object, and we know
2488 the real definition in the dynamic object, copy interesting flags
2489 over to the real definition. */
2490 if (h->u.weakdef != NULL)
2491 {
2492 /* If the real definition is defined by a regular object file,
2493 don't do anything special. See the longer description in
2494 _bfd_elf_adjust_dynamic_symbol, below. */
2495 if (h->u.weakdef->def_regular)
2496 h->u.weakdef = NULL;
2497 else
2498 {
2499 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2500
2501 while (h->root.type == bfd_link_hash_indirect)
2502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2503
2504 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2505 || h->root.type == bfd_link_hash_defweak);
2506 BFD_ASSERT (weakdef->def_dynamic);
2507 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2508 || weakdef->root.type == bfd_link_hash_defweak);
2509 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2510 }
2511 }
2512
2513 return TRUE;
2514 }
2515
2516 /* Make the backend pick a good value for a dynamic symbol. This is
2517 called via elf_link_hash_traverse, and also calls itself
2518 recursively. */
2519
2520 static bfd_boolean
2521 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2522 {
2523 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2524 bfd *dynobj;
2525 const struct elf_backend_data *bed;
2526
2527 if (! is_elf_hash_table (eif->info->hash))
2528 return FALSE;
2529
2530 /* Ignore indirect symbols. These are added by the versioning code. */
2531 if (h->root.type == bfd_link_hash_indirect)
2532 return TRUE;
2533
2534 /* Fix the symbol flags. */
2535 if (! _bfd_elf_fix_symbol_flags (h, eif))
2536 return FALSE;
2537
2538 /* If this symbol does not require a PLT entry, and it is not
2539 defined by a dynamic object, or is not referenced by a regular
2540 object, ignore it. We do have to handle a weak defined symbol,
2541 even if no regular object refers to it, if we decided to add it
2542 to the dynamic symbol table. FIXME: Do we normally need to worry
2543 about symbols which are defined by one dynamic object and
2544 referenced by another one? */
2545 if (!h->needs_plt
2546 && h->type != STT_GNU_IFUNC
2547 && (h->def_regular
2548 || !h->def_dynamic
2549 || (!h->ref_regular
2550 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2551 {
2552 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2553 return TRUE;
2554 }
2555
2556 /* If we've already adjusted this symbol, don't do it again. This
2557 can happen via a recursive call. */
2558 if (h->dynamic_adjusted)
2559 return TRUE;
2560
2561 /* Don't look at this symbol again. Note that we must set this
2562 after checking the above conditions, because we may look at a
2563 symbol once, decide not to do anything, and then get called
2564 recursively later after REF_REGULAR is set below. */
2565 h->dynamic_adjusted = 1;
2566
2567 /* If this is a weak definition, and we know a real definition, and
2568 the real symbol is not itself defined by a regular object file,
2569 then get a good value for the real definition. We handle the
2570 real symbol first, for the convenience of the backend routine.
2571
2572 Note that there is a confusing case here. If the real definition
2573 is defined by a regular object file, we don't get the real symbol
2574 from the dynamic object, but we do get the weak symbol. If the
2575 processor backend uses a COPY reloc, then if some routine in the
2576 dynamic object changes the real symbol, we will not see that
2577 change in the corresponding weak symbol. This is the way other
2578 ELF linkers work as well, and seems to be a result of the shared
2579 library model.
2580
2581 I will clarify this issue. Most SVR4 shared libraries define the
2582 variable _timezone and define timezone as a weak synonym. The
2583 tzset call changes _timezone. If you write
2584 extern int timezone;
2585 int _timezone = 5;
2586 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2587 you might expect that, since timezone is a synonym for _timezone,
2588 the same number will print both times. However, if the processor
2589 backend uses a COPY reloc, then actually timezone will be copied
2590 into your process image, and, since you define _timezone
2591 yourself, _timezone will not. Thus timezone and _timezone will
2592 wind up at different memory locations. The tzset call will set
2593 _timezone, leaving timezone unchanged. */
2594
2595 if (h->u.weakdef != NULL)
2596 {
2597 /* If we get to this point, there is an implicit reference to
2598 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2599 h->u.weakdef->ref_regular = 1;
2600
2601 /* Ensure that the backend adjust_dynamic_symbol function sees
2602 H->U.WEAKDEF before H by recursively calling ourselves. */
2603 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2604 return FALSE;
2605 }
2606
2607 /* If a symbol has no type and no size and does not require a PLT
2608 entry, then we are probably about to do the wrong thing here: we
2609 are probably going to create a COPY reloc for an empty object.
2610 This case can arise when a shared object is built with assembly
2611 code, and the assembly code fails to set the symbol type. */
2612 if (h->size == 0
2613 && h->type == STT_NOTYPE
2614 && !h->needs_plt)
2615 (*_bfd_error_handler)
2616 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2617 h->root.root.string);
2618
2619 dynobj = elf_hash_table (eif->info)->dynobj;
2620 bed = get_elf_backend_data (dynobj);
2621
2622 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2623 {
2624 eif->failed = TRUE;
2625 return FALSE;
2626 }
2627
2628 return TRUE;
2629 }
2630
2631 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2632 DYNBSS. */
2633
2634 bfd_boolean
2635 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2636 struct elf_link_hash_entry *h,
2637 asection *dynbss)
2638 {
2639 unsigned int power_of_two;
2640 bfd_vma mask;
2641 asection *sec = h->root.u.def.section;
2642
2643 /* The section aligment of definition is the maximum alignment
2644 requirement of symbols defined in the section. Since we don't
2645 know the symbol alignment requirement, we start with the
2646 maximum alignment and check low bits of the symbol address
2647 for the minimum alignment. */
2648 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2649 mask = ((bfd_vma) 1 << power_of_two) - 1;
2650 while ((h->root.u.def.value & mask) != 0)
2651 {
2652 mask >>= 1;
2653 --power_of_two;
2654 }
2655
2656 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2657 dynbss))
2658 {
2659 /* Adjust the section alignment if needed. */
2660 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2661 power_of_two))
2662 return FALSE;
2663 }
2664
2665 /* We make sure that the symbol will be aligned properly. */
2666 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2667
2668 /* Define the symbol as being at this point in DYNBSS. */
2669 h->root.u.def.section = dynbss;
2670 h->root.u.def.value = dynbss->size;
2671
2672 /* Increment the size of DYNBSS to make room for the symbol. */
2673 dynbss->size += h->size;
2674
2675 if (h->protected_def)
2676 {
2677 info->callbacks->einfo
2678 (_("%P: copy reloc against protected `%T' is invalid\n"),
2679 h->root.root.string);
2680 bfd_set_error (bfd_error_bad_value);
2681 return FALSE;
2682 }
2683
2684 return TRUE;
2685 }
2686
2687 /* Adjust all external symbols pointing into SEC_MERGE sections
2688 to reflect the object merging within the sections. */
2689
2690 static bfd_boolean
2691 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2692 {
2693 asection *sec;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = (bfd *) data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean not_local_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!not_local_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols. The two functions are virtually identical except
2779 for the place where forced_local and dynindx == -1 are tested. If
2780 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2781 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2782 the symbol is local only for defined symbols.
2783 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2784 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2785 treatment of undefined weak symbols. For those that do not make
2786 undefined weak symbols dynamic, both functions may return false. */
2787
2788 bfd_boolean
2789 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2790 struct bfd_link_info *info,
2791 bfd_boolean local_protected)
2792 {
2793 const struct elf_backend_data *bed;
2794 struct elf_link_hash_table *hash_table;
2795
2796 /* If it's a local sym, of course we resolve locally. */
2797 if (h == NULL)
2798 return TRUE;
2799
2800 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2801 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2802 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2803 return TRUE;
2804
2805 /* Common symbols that become definitions don't get the DEF_REGULAR
2806 flag set, so test it first, and don't bail out. */
2807 if (ELF_COMMON_DEF_P (h))
2808 /* Do nothing. */;
2809 /* If we don't have a definition in a regular file, then we can't
2810 resolve locally. The sym is either undefined or dynamic. */
2811 else if (!h->def_regular)
2812 return FALSE;
2813
2814 /* Forced local symbols resolve locally. */
2815 if (h->forced_local)
2816 return TRUE;
2817
2818 /* As do non-dynamic symbols. */
2819 if (h->dynindx == -1)
2820 return TRUE;
2821
2822 /* At this point, we know the symbol is defined and dynamic. In an
2823 executable it must resolve locally, likewise when building symbolic
2824 shared libraries. */
2825 if (info->executable || SYMBOLIC_BIND (info, h))
2826 return TRUE;
2827
2828 /* Now deal with defined dynamic symbols in shared libraries. Ones
2829 with default visibility might not resolve locally. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2831 return FALSE;
2832
2833 hash_table = elf_hash_table (info);
2834 if (!is_elf_hash_table (hash_table))
2835 return TRUE;
2836
2837 bed = get_elf_backend_data (hash_table->dynobj);
2838
2839 /* STV_PROTECTED non-function symbols are local. */
2840 if (!bed->is_function_type (h->type))
2841 return TRUE;
2842
2843 /* Function pointer equality tests may require that STV_PROTECTED
2844 symbols be treated as dynamic symbols. If the address of a
2845 function not defined in an executable is set to that function's
2846 plt entry in the executable, then the address of the function in
2847 a shared library must also be the plt entry in the executable. */
2848 return local_protected;
2849 }
2850
2851 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2852 aligned. Returns the first TLS output section. */
2853
2854 struct bfd_section *
2855 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2856 {
2857 struct bfd_section *sec, *tls;
2858 unsigned int align = 0;
2859
2860 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2861 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2862 break;
2863 tls = sec;
2864
2865 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2866 if (sec->alignment_power > align)
2867 align = sec->alignment_power;
2868
2869 elf_hash_table (info)->tls_sec = tls;
2870
2871 /* Ensure the alignment of the first section is the largest alignment,
2872 so that the tls segment starts aligned. */
2873 if (tls != NULL)
2874 tls->alignment_power = align;
2875
2876 return tls;
2877 }
2878
2879 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2880 static bfd_boolean
2881 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2882 Elf_Internal_Sym *sym)
2883 {
2884 const struct elf_backend_data *bed;
2885
2886 /* Local symbols do not count, but target specific ones might. */
2887 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2888 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2889 return FALSE;
2890
2891 bed = get_elf_backend_data (abfd);
2892 /* Function symbols do not count. */
2893 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2894 return FALSE;
2895
2896 /* If the section is undefined, then so is the symbol. */
2897 if (sym->st_shndx == SHN_UNDEF)
2898 return FALSE;
2899
2900 /* If the symbol is defined in the common section, then
2901 it is a common definition and so does not count. */
2902 if (bed->common_definition (sym))
2903 return FALSE;
2904
2905 /* If the symbol is in a target specific section then we
2906 must rely upon the backend to tell us what it is. */
2907 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2908 /* FIXME - this function is not coded yet:
2909
2910 return _bfd_is_global_symbol_definition (abfd, sym);
2911
2912 Instead for now assume that the definition is not global,
2913 Even if this is wrong, at least the linker will behave
2914 in the same way that it used to do. */
2915 return FALSE;
2916
2917 return TRUE;
2918 }
2919
2920 /* Search the symbol table of the archive element of the archive ABFD
2921 whose archive map contains a mention of SYMDEF, and determine if
2922 the symbol is defined in this element. */
2923 static bfd_boolean
2924 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2925 {
2926 Elf_Internal_Shdr * hdr;
2927 bfd_size_type symcount;
2928 bfd_size_type extsymcount;
2929 bfd_size_type extsymoff;
2930 Elf_Internal_Sym *isymbuf;
2931 Elf_Internal_Sym *isym;
2932 Elf_Internal_Sym *isymend;
2933 bfd_boolean result;
2934
2935 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2936 if (abfd == NULL)
2937 return FALSE;
2938
2939 if (! bfd_check_format (abfd, bfd_object))
2940 return FALSE;
2941
2942 /* Select the appropriate symbol table. */
2943 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2944 hdr = &elf_tdata (abfd)->symtab_hdr;
2945 else
2946 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2947
2948 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2949
2950 /* The sh_info field of the symtab header tells us where the
2951 external symbols start. We don't care about the local symbols. */
2952 if (elf_bad_symtab (abfd))
2953 {
2954 extsymcount = symcount;
2955 extsymoff = 0;
2956 }
2957 else
2958 {
2959 extsymcount = symcount - hdr->sh_info;
2960 extsymoff = hdr->sh_info;
2961 }
2962
2963 if (extsymcount == 0)
2964 return FALSE;
2965
2966 /* Read in the symbol table. */
2967 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2968 NULL, NULL, NULL);
2969 if (isymbuf == NULL)
2970 return FALSE;
2971
2972 /* Scan the symbol table looking for SYMDEF. */
2973 result = FALSE;
2974 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2975 {
2976 const char *name;
2977
2978 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2979 isym->st_name);
2980 if (name == NULL)
2981 break;
2982
2983 if (strcmp (name, symdef->name) == 0)
2984 {
2985 result = is_global_data_symbol_definition (abfd, isym);
2986 break;
2987 }
2988 }
2989
2990 free (isymbuf);
2991
2992 return result;
2993 }
2994 \f
2995 /* Add an entry to the .dynamic table. */
2996
2997 bfd_boolean
2998 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2999 bfd_vma tag,
3000 bfd_vma val)
3001 {
3002 struct elf_link_hash_table *hash_table;
3003 const struct elf_backend_data *bed;
3004 asection *s;
3005 bfd_size_type newsize;
3006 bfd_byte *newcontents;
3007 Elf_Internal_Dyn dyn;
3008
3009 hash_table = elf_hash_table (info);
3010 if (! is_elf_hash_table (hash_table))
3011 return FALSE;
3012
3013 bed = get_elf_backend_data (hash_table->dynobj);
3014 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3015 BFD_ASSERT (s != NULL);
3016
3017 newsize = s->size + bed->s->sizeof_dyn;
3018 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3019 if (newcontents == NULL)
3020 return FALSE;
3021
3022 dyn.d_tag = tag;
3023 dyn.d_un.d_val = val;
3024 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3025
3026 s->size = newsize;
3027 s->contents = newcontents;
3028
3029 return TRUE;
3030 }
3031
3032 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3033 otherwise just check whether one already exists. Returns -1 on error,
3034 1 if a DT_NEEDED tag already exists, and 0 on success. */
3035
3036 static int
3037 elf_add_dt_needed_tag (bfd *abfd,
3038 struct bfd_link_info *info,
3039 const char *soname,
3040 bfd_boolean do_it)
3041 {
3042 struct elf_link_hash_table *hash_table;
3043 bfd_size_type strindex;
3044
3045 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3046 return -1;
3047
3048 hash_table = elf_hash_table (info);
3049 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3050 if (strindex == (bfd_size_type) -1)
3051 return -1;
3052
3053 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3054 {
3055 asection *sdyn;
3056 const struct elf_backend_data *bed;
3057 bfd_byte *extdyn;
3058
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3061 if (sdyn != NULL)
3062 for (extdyn = sdyn->contents;
3063 extdyn < sdyn->contents + sdyn->size;
3064 extdyn += bed->s->sizeof_dyn)
3065 {
3066 Elf_Internal_Dyn dyn;
3067
3068 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3069 if (dyn.d_tag == DT_NEEDED
3070 && dyn.d_un.d_val == strindex)
3071 {
3072 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3073 return 1;
3074 }
3075 }
3076 }
3077
3078 if (do_it)
3079 {
3080 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3081 return -1;
3082
3083 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3084 return -1;
3085 }
3086 else
3087 /* We were just checking for existence of the tag. */
3088 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3089
3090 return 0;
3091 }
3092
3093 static bfd_boolean
3094 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3095 {
3096 for (; needed != NULL; needed = needed->next)
3097 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3098 && strcmp (soname, needed->name) == 0)
3099 return TRUE;
3100
3101 return FALSE;
3102 }
3103
3104 /* Sort symbol by value, section, and size. */
3105 static int
3106 elf_sort_symbol (const void *arg1, const void *arg2)
3107 {
3108 const struct elf_link_hash_entry *h1;
3109 const struct elf_link_hash_entry *h2;
3110 bfd_signed_vma vdiff;
3111
3112 h1 = *(const struct elf_link_hash_entry **) arg1;
3113 h2 = *(const struct elf_link_hash_entry **) arg2;
3114 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3115 if (vdiff != 0)
3116 return vdiff > 0 ? 1 : -1;
3117 else
3118 {
3119 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3120 if (sdiff != 0)
3121 return sdiff > 0 ? 1 : -1;
3122 }
3123 vdiff = h1->size - h2->size;
3124 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3125 }
3126
3127 /* This function is used to adjust offsets into .dynstr for
3128 dynamic symbols. This is called via elf_link_hash_traverse. */
3129
3130 static bfd_boolean
3131 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3132 {
3133 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3134
3135 if (h->dynindx != -1)
3136 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3137 return TRUE;
3138 }
3139
3140 /* Assign string offsets in .dynstr, update all structures referencing
3141 them. */
3142
3143 static bfd_boolean
3144 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3145 {
3146 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3147 struct elf_link_local_dynamic_entry *entry;
3148 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3149 bfd *dynobj = hash_table->dynobj;
3150 asection *sdyn;
3151 bfd_size_type size;
3152 const struct elf_backend_data *bed;
3153 bfd_byte *extdyn;
3154
3155 _bfd_elf_strtab_finalize (dynstr);
3156 size = _bfd_elf_strtab_size (dynstr);
3157
3158 bed = get_elf_backend_data (dynobj);
3159 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3160 BFD_ASSERT (sdyn != NULL);
3161
3162 /* Update all .dynamic entries referencing .dynstr strings. */
3163 for (extdyn = sdyn->contents;
3164 extdyn < sdyn->contents + sdyn->size;
3165 extdyn += bed->s->sizeof_dyn)
3166 {
3167 Elf_Internal_Dyn dyn;
3168
3169 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3170 switch (dyn.d_tag)
3171 {
3172 case DT_STRSZ:
3173 dyn.d_un.d_val = size;
3174 break;
3175 case DT_NEEDED:
3176 case DT_SONAME:
3177 case DT_RPATH:
3178 case DT_RUNPATH:
3179 case DT_FILTER:
3180 case DT_AUXILIARY:
3181 case DT_AUDIT:
3182 case DT_DEPAUDIT:
3183 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3184 break;
3185 default:
3186 continue;
3187 }
3188 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3189 }
3190
3191 /* Now update local dynamic symbols. */
3192 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3193 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3194 entry->isym.st_name);
3195
3196 /* And the rest of dynamic symbols. */
3197 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3198
3199 /* Adjust version definitions. */
3200 if (elf_tdata (output_bfd)->cverdefs)
3201 {
3202 asection *s;
3203 bfd_byte *p;
3204 bfd_size_type i;
3205 Elf_Internal_Verdef def;
3206 Elf_Internal_Verdaux defaux;
3207
3208 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3209 p = s->contents;
3210 do
3211 {
3212 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3213 &def);
3214 p += sizeof (Elf_External_Verdef);
3215 if (def.vd_aux != sizeof (Elf_External_Verdef))
3216 continue;
3217 for (i = 0; i < def.vd_cnt; ++i)
3218 {
3219 _bfd_elf_swap_verdaux_in (output_bfd,
3220 (Elf_External_Verdaux *) p, &defaux);
3221 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3222 defaux.vda_name);
3223 _bfd_elf_swap_verdaux_out (output_bfd,
3224 &defaux, (Elf_External_Verdaux *) p);
3225 p += sizeof (Elf_External_Verdaux);
3226 }
3227 }
3228 while (def.vd_next);
3229 }
3230
3231 /* Adjust version references. */
3232 if (elf_tdata (output_bfd)->verref)
3233 {
3234 asection *s;
3235 bfd_byte *p;
3236 bfd_size_type i;
3237 Elf_Internal_Verneed need;
3238 Elf_Internal_Vernaux needaux;
3239
3240 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3241 p = s->contents;
3242 do
3243 {
3244 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3245 &need);
3246 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3247 _bfd_elf_swap_verneed_out (output_bfd, &need,
3248 (Elf_External_Verneed *) p);
3249 p += sizeof (Elf_External_Verneed);
3250 for (i = 0; i < need.vn_cnt; ++i)
3251 {
3252 _bfd_elf_swap_vernaux_in (output_bfd,
3253 (Elf_External_Vernaux *) p, &needaux);
3254 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3255 needaux.vna_name);
3256 _bfd_elf_swap_vernaux_out (output_bfd,
3257 &needaux,
3258 (Elf_External_Vernaux *) p);
3259 p += sizeof (Elf_External_Vernaux);
3260 }
3261 }
3262 while (need.vn_next);
3263 }
3264
3265 return TRUE;
3266 }
3267 \f
3268 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3269 The default is to only match when the INPUT and OUTPUT are exactly
3270 the same target. */
3271
3272 bfd_boolean
3273 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3274 const bfd_target *output)
3275 {
3276 return input == output;
3277 }
3278
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 This version is used when different targets for the same architecture
3281 are virtually identical. */
3282
3283 bfd_boolean
3284 _bfd_elf_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3286 {
3287 const struct elf_backend_data *obed, *ibed;
3288
3289 if (input == output)
3290 return TRUE;
3291
3292 ibed = xvec_get_elf_backend_data (input);
3293 obed = xvec_get_elf_backend_data (output);
3294
3295 if (ibed->arch != obed->arch)
3296 return FALSE;
3297
3298 /* If both backends are using this function, deem them compatible. */
3299 return ibed->relocs_compatible == obed->relocs_compatible;
3300 }
3301
3302 /* Make a special call to the linker "notice" function to tell it that
3303 we are about to handle an as-needed lib, or have finished
3304 processing the lib. */
3305
3306 bfd_boolean
3307 _bfd_elf_notice_as_needed (bfd *ibfd,
3308 struct bfd_link_info *info,
3309 enum notice_asneeded_action act)
3310 {
3311 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3312 }
3313
3314 /* Add symbols from an ELF object file to the linker hash table. */
3315
3316 static bfd_boolean
3317 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3318 {
3319 Elf_Internal_Ehdr *ehdr;
3320 Elf_Internal_Shdr *hdr;
3321 bfd_size_type symcount;
3322 bfd_size_type extsymcount;
3323 bfd_size_type extsymoff;
3324 struct elf_link_hash_entry **sym_hash;
3325 bfd_boolean dynamic;
3326 Elf_External_Versym *extversym = NULL;
3327 Elf_External_Versym *ever;
3328 struct elf_link_hash_entry *weaks;
3329 struct elf_link_hash_entry **nondeflt_vers = NULL;
3330 bfd_size_type nondeflt_vers_cnt = 0;
3331 Elf_Internal_Sym *isymbuf = NULL;
3332 Elf_Internal_Sym *isym;
3333 Elf_Internal_Sym *isymend;
3334 const struct elf_backend_data *bed;
3335 bfd_boolean add_needed;
3336 struct elf_link_hash_table *htab;
3337 bfd_size_type amt;
3338 void *alloc_mark = NULL;
3339 struct bfd_hash_entry **old_table = NULL;
3340 unsigned int old_size = 0;
3341 unsigned int old_count = 0;
3342 void *old_tab = NULL;
3343 void *old_ent;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3348 size_t tabsize = 0;
3349 asection *s;
3350 bfd_boolean just_syms;
3351
3352 htab = elf_hash_table (info);
3353 bed = get_elf_backend_data (abfd);
3354
3355 if ((abfd->flags & DYNAMIC) == 0)
3356 dynamic = FALSE;
3357 else
3358 {
3359 dynamic = TRUE;
3360
3361 /* You can't use -r against a dynamic object. Also, there's no
3362 hope of using a dynamic object which does not exactly match
3363 the format of the output file. */
3364 if (info->relocatable
3365 || !is_elf_hash_table (htab)
3366 || info->output_bfd->xvec != abfd->xvec)
3367 {
3368 if (info->relocatable)
3369 bfd_set_error (bfd_error_invalid_operation);
3370 else
3371 bfd_set_error (bfd_error_wrong_format);
3372 goto error_return;
3373 }
3374 }
3375
3376 ehdr = elf_elfheader (abfd);
3377 if (info->warn_alternate_em
3378 && bed->elf_machine_code != ehdr->e_machine
3379 && ((bed->elf_machine_alt1 != 0
3380 && ehdr->e_machine == bed->elf_machine_alt1)
3381 || (bed->elf_machine_alt2 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt2)))
3383 info->callbacks->einfo
3384 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3385 ehdr->e_machine, abfd, bed->elf_machine_code);
3386
3387 /* As a GNU extension, any input sections which are named
3388 .gnu.warning.SYMBOL are treated as warning symbols for the given
3389 symbol. This differs from .gnu.warning sections, which generate
3390 warnings when they are included in an output file. */
3391 /* PR 12761: Also generate this warning when building shared libraries. */
3392 for (s = abfd->sections; s != NULL; s = s->next)
3393 {
3394 const char *name;
3395
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3398 {
3399 char *msg;
3400 bfd_size_type sz;
3401
3402 name += sizeof ".gnu.warning." - 1;
3403
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3412 link. */
3413 if (dynamic)
3414 {
3415 struct elf_link_hash_entry *h;
3416
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3418
3419 /* FIXME: What about bfd_link_hash_common? */
3420 if (h != NULL
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3423 continue;
3424 }
3425
3426 sz = s->size;
3427 msg = (char *) bfd_alloc (abfd, sz + 1);
3428 if (msg == NULL)
3429 goto error_return;
3430
3431 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3432 goto error_return;
3433
3434 msg[sz] = '\0';
3435
3436 if (! (_bfd_generic_link_add_one_symbol
3437 (info, abfd, name, BSF_WARNING, s, 0, msg,
3438 FALSE, bed->collect, NULL)))
3439 goto error_return;
3440
3441 if (!info->relocatable && info->executable)
3442 {
3443 /* Clobber the section size so that the warning does
3444 not get copied into the output file. */
3445 s->size = 0;
3446
3447 /* Also set SEC_EXCLUDE, so that symbols defined in
3448 the warning section don't get copied to the output. */
3449 s->flags |= SEC_EXCLUDE;
3450 }
3451 }
3452 }
3453
3454 just_syms = ((s = abfd->sections) != NULL
3455 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3456
3457 add_needed = TRUE;
3458 if (! dynamic)
3459 {
3460 /* If we are creating a shared library, create all the dynamic
3461 sections immediately. We need to attach them to something,
3462 so we attach them to this BFD, provided it is the right
3463 format and is not from ld --just-symbols. FIXME: If there
3464 are no input BFD's of the same format as the output, we can't
3465 make a shared library. */
3466 if (!just_syms
3467 && info->shared
3468 && is_elf_hash_table (htab)
3469 && info->output_bfd->xvec == abfd->xvec
3470 && !htab->dynamic_sections_created)
3471 {
3472 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3473 goto error_return;
3474 }
3475 }
3476 else if (!is_elf_hash_table (htab))
3477 goto error_return;
3478 else
3479 {
3480 const char *soname = NULL;
3481 char *audit = NULL;
3482 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3483 int ret;
3484
3485 /* ld --just-symbols and dynamic objects don't mix very well.
3486 ld shouldn't allow it. */
3487 if (just_syms)
3488 abort ();
3489
3490 /* If this dynamic lib was specified on the command line with
3491 --as-needed in effect, then we don't want to add a DT_NEEDED
3492 tag unless the lib is actually used. Similary for libs brought
3493 in by another lib's DT_NEEDED. When --no-add-needed is used
3494 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3495 any dynamic library in DT_NEEDED tags in the dynamic lib at
3496 all. */
3497 add_needed = (elf_dyn_lib_class (abfd)
3498 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3499 | DYN_NO_NEEDED)) == 0;
3500
3501 s = bfd_get_section_by_name (abfd, ".dynamic");
3502 if (s != NULL)
3503 {
3504 bfd_byte *dynbuf;
3505 bfd_byte *extdyn;
3506 unsigned int elfsec;
3507 unsigned long shlink;
3508
3509 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3510 {
3511 error_free_dyn:
3512 free (dynbuf);
3513 goto error_return;
3514 }
3515
3516 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3517 if (elfsec == SHN_BAD)
3518 goto error_free_dyn;
3519 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3520
3521 for (extdyn = dynbuf;
3522 extdyn < dynbuf + s->size;
3523 extdyn += bed->s->sizeof_dyn)
3524 {
3525 Elf_Internal_Dyn dyn;
3526
3527 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3528 if (dyn.d_tag == DT_SONAME)
3529 {
3530 unsigned int tagv = dyn.d_un.d_val;
3531 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3532 if (soname == NULL)
3533 goto error_free_dyn;
3534 }
3535 if (dyn.d_tag == DT_NEEDED)
3536 {
3537 struct bfd_link_needed_list *n, **pn;
3538 char *fnm, *anm;
3539 unsigned int tagv = dyn.d_un.d_val;
3540
3541 amt = sizeof (struct bfd_link_needed_list);
3542 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3543 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3544 if (n == NULL || fnm == NULL)
3545 goto error_free_dyn;
3546 amt = strlen (fnm) + 1;
3547 anm = (char *) bfd_alloc (abfd, amt);
3548 if (anm == NULL)
3549 goto error_free_dyn;
3550 memcpy (anm, fnm, amt);
3551 n->name = anm;
3552 n->by = abfd;
3553 n->next = NULL;
3554 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3555 ;
3556 *pn = n;
3557 }
3558 if (dyn.d_tag == DT_RUNPATH)
3559 {
3560 struct bfd_link_needed_list *n, **pn;
3561 char *fnm, *anm;
3562 unsigned int tagv = dyn.d_un.d_val;
3563
3564 amt = sizeof (struct bfd_link_needed_list);
3565 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3566 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3567 if (n == NULL || fnm == NULL)
3568 goto error_free_dyn;
3569 amt = strlen (fnm) + 1;
3570 anm = (char *) bfd_alloc (abfd, amt);
3571 if (anm == NULL)
3572 goto error_free_dyn;
3573 memcpy (anm, fnm, amt);
3574 n->name = anm;
3575 n->by = abfd;
3576 n->next = NULL;
3577 for (pn = & runpath;
3578 *pn != NULL;
3579 pn = &(*pn)->next)
3580 ;
3581 *pn = n;
3582 }
3583 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3584 if (!runpath && dyn.d_tag == DT_RPATH)
3585 {
3586 struct bfd_link_needed_list *n, **pn;
3587 char *fnm, *anm;
3588 unsigned int tagv = dyn.d_un.d_val;
3589
3590 amt = sizeof (struct bfd_link_needed_list);
3591 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3592 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3593 if (n == NULL || fnm == NULL)
3594 goto error_free_dyn;
3595 amt = strlen (fnm) + 1;
3596 anm = (char *) bfd_alloc (abfd, amt);
3597 if (anm == NULL)
3598 goto error_free_dyn;
3599 memcpy (anm, fnm, amt);
3600 n->name = anm;
3601 n->by = abfd;
3602 n->next = NULL;
3603 for (pn = & rpath;
3604 *pn != NULL;
3605 pn = &(*pn)->next)
3606 ;
3607 *pn = n;
3608 }
3609 if (dyn.d_tag == DT_AUDIT)
3610 {
3611 unsigned int tagv = dyn.d_un.d_val;
3612 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3613 }
3614 }
3615
3616 free (dynbuf);
3617 }
3618
3619 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3620 frees all more recently bfd_alloc'd blocks as well. */
3621 if (runpath)
3622 rpath = runpath;
3623
3624 if (rpath)
3625 {
3626 struct bfd_link_needed_list **pn;
3627 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3628 ;
3629 *pn = rpath;
3630 }
3631
3632 /* We do not want to include any of the sections in a dynamic
3633 object in the output file. We hack by simply clobbering the
3634 list of sections in the BFD. This could be handled more
3635 cleanly by, say, a new section flag; the existing
3636 SEC_NEVER_LOAD flag is not the one we want, because that one
3637 still implies that the section takes up space in the output
3638 file. */
3639 bfd_section_list_clear (abfd);
3640
3641 /* Find the name to use in a DT_NEEDED entry that refers to this
3642 object. If the object has a DT_SONAME entry, we use it.
3643 Otherwise, if the generic linker stuck something in
3644 elf_dt_name, we use that. Otherwise, we just use the file
3645 name. */
3646 if (soname == NULL || *soname == '\0')
3647 {
3648 soname = elf_dt_name (abfd);
3649 if (soname == NULL || *soname == '\0')
3650 soname = bfd_get_filename (abfd);
3651 }
3652
3653 /* Save the SONAME because sometimes the linker emulation code
3654 will need to know it. */
3655 elf_dt_name (abfd) = soname;
3656
3657 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3658 if (ret < 0)
3659 goto error_return;
3660
3661 /* If we have already included this dynamic object in the
3662 link, just ignore it. There is no reason to include a
3663 particular dynamic object more than once. */
3664 if (ret > 0)
3665 return TRUE;
3666
3667 /* Save the DT_AUDIT entry for the linker emulation code. */
3668 elf_dt_audit (abfd) = audit;
3669 }
3670
3671 /* If this is a dynamic object, we always link against the .dynsym
3672 symbol table, not the .symtab symbol table. The dynamic linker
3673 will only see the .dynsym symbol table, so there is no reason to
3674 look at .symtab for a dynamic object. */
3675
3676 if (! dynamic || elf_dynsymtab (abfd) == 0)
3677 hdr = &elf_tdata (abfd)->symtab_hdr;
3678 else
3679 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3680
3681 symcount = hdr->sh_size / bed->s->sizeof_sym;
3682
3683 /* The sh_info field of the symtab header tells us where the
3684 external symbols start. We don't care about the local symbols at
3685 this point. */
3686 if (elf_bad_symtab (abfd))
3687 {
3688 extsymcount = symcount;
3689 extsymoff = 0;
3690 }
3691 else
3692 {
3693 extsymcount = symcount - hdr->sh_info;
3694 extsymoff = hdr->sh_info;
3695 }
3696
3697 sym_hash = elf_sym_hashes (abfd);
3698 if (extsymcount != 0)
3699 {
3700 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3701 NULL, NULL, NULL);
3702 if (isymbuf == NULL)
3703 goto error_return;
3704
3705 if (sym_hash == NULL)
3706 {
3707 /* We store a pointer to the hash table entry for each
3708 external symbol. */
3709 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3710 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3711 if (sym_hash == NULL)
3712 goto error_free_sym;
3713 elf_sym_hashes (abfd) = sym_hash;
3714 }
3715 }
3716
3717 if (dynamic)
3718 {
3719 /* Read in any version definitions. */
3720 if (!_bfd_elf_slurp_version_tables (abfd,
3721 info->default_imported_symver))
3722 goto error_free_sym;
3723
3724 /* Read in the symbol versions, but don't bother to convert them
3725 to internal format. */
3726 if (elf_dynversym (abfd) != 0)
3727 {
3728 Elf_Internal_Shdr *versymhdr;
3729
3730 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3731 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3732 if (extversym == NULL)
3733 goto error_free_sym;
3734 amt = versymhdr->sh_size;
3735 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3736 || bfd_bread (extversym, amt, abfd) != amt)
3737 goto error_free_vers;
3738 }
3739 }
3740
3741 /* If we are loading an as-needed shared lib, save the symbol table
3742 state before we start adding symbols. If the lib turns out
3743 to be unneeded, restore the state. */
3744 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3745 {
3746 unsigned int i;
3747 size_t entsize;
3748
3749 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3750 {
3751 struct bfd_hash_entry *p;
3752 struct elf_link_hash_entry *h;
3753
3754 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3755 {
3756 h = (struct elf_link_hash_entry *) p;
3757 entsize += htab->root.table.entsize;
3758 if (h->root.type == bfd_link_hash_warning)
3759 entsize += htab->root.table.entsize;
3760 }
3761 }
3762
3763 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3764 old_tab = bfd_malloc (tabsize + entsize);
3765 if (old_tab == NULL)
3766 goto error_free_vers;
3767
3768 /* Remember the current objalloc pointer, so that all mem for
3769 symbols added can later be reclaimed. */
3770 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3771 if (alloc_mark == NULL)
3772 goto error_free_vers;
3773
3774 /* Make a special call to the linker "notice" function to
3775 tell it that we are about to handle an as-needed lib. */
3776 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3777 goto error_free_vers;
3778
3779 /* Clone the symbol table. Remember some pointers into the
3780 symbol table, and dynamic symbol count. */
3781 old_ent = (char *) old_tab + tabsize;
3782 memcpy (old_tab, htab->root.table.table, tabsize);
3783 old_undefs = htab->root.undefs;
3784 old_undefs_tail = htab->root.undefs_tail;
3785 old_table = htab->root.table.table;
3786 old_size = htab->root.table.size;
3787 old_count = htab->root.table.count;
3788 old_dynsymcount = htab->dynsymcount;
3789 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3790
3791 for (i = 0; i < htab->root.table.size; i++)
3792 {
3793 struct bfd_hash_entry *p;
3794 struct elf_link_hash_entry *h;
3795
3796 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3797 {
3798 memcpy (old_ent, p, htab->root.table.entsize);
3799 old_ent = (char *) old_ent + htab->root.table.entsize;
3800 h = (struct elf_link_hash_entry *) p;
3801 if (h->root.type == bfd_link_hash_warning)
3802 {
3803 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 }
3806 }
3807 }
3808 }
3809
3810 weaks = NULL;
3811 ever = extversym != NULL ? extversym + extsymoff : NULL;
3812 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3813 isym < isymend;
3814 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3815 {
3816 int bind;
3817 bfd_vma value;
3818 asection *sec, *new_sec;
3819 flagword flags;
3820 const char *name;
3821 struct elf_link_hash_entry *h;
3822 struct elf_link_hash_entry *hi;
3823 bfd_boolean definition;
3824 bfd_boolean size_change_ok;
3825 bfd_boolean type_change_ok;
3826 bfd_boolean new_weakdef;
3827 bfd_boolean new_weak;
3828 bfd_boolean old_weak;
3829 bfd_boolean override;
3830 bfd_boolean common;
3831 unsigned int old_alignment;
3832 bfd *old_bfd;
3833
3834 override = FALSE;
3835
3836 flags = BSF_NO_FLAGS;
3837 sec = NULL;
3838 value = isym->st_value;
3839 common = bed->common_definition (isym);
3840
3841 bind = ELF_ST_BIND (isym->st_info);
3842 switch (bind)
3843 {
3844 case STB_LOCAL:
3845 /* This should be impossible, since ELF requires that all
3846 global symbols follow all local symbols, and that sh_info
3847 point to the first global symbol. Unfortunately, Irix 5
3848 screws this up. */
3849 continue;
3850
3851 case STB_GLOBAL:
3852 if (isym->st_shndx != SHN_UNDEF && !common)
3853 flags = BSF_GLOBAL;
3854 break;
3855
3856 case STB_WEAK:
3857 flags = BSF_WEAK;
3858 break;
3859
3860 case STB_GNU_UNIQUE:
3861 flags = BSF_GNU_UNIQUE;
3862 break;
3863
3864 default:
3865 /* Leave it up to the processor backend. */
3866 break;
3867 }
3868
3869 if (isym->st_shndx == SHN_UNDEF)
3870 sec = bfd_und_section_ptr;
3871 else if (isym->st_shndx == SHN_ABS)
3872 sec = bfd_abs_section_ptr;
3873 else if (isym->st_shndx == SHN_COMMON)
3874 {
3875 sec = bfd_com_section_ptr;
3876 /* What ELF calls the size we call the value. What ELF
3877 calls the value we call the alignment. */
3878 value = isym->st_size;
3879 }
3880 else
3881 {
3882 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3883 if (sec == NULL)
3884 sec = bfd_abs_section_ptr;
3885 else if (discarded_section (sec))
3886 {
3887 /* Symbols from discarded section are undefined. We keep
3888 its visibility. */
3889 sec = bfd_und_section_ptr;
3890 isym->st_shndx = SHN_UNDEF;
3891 }
3892 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3893 value -= sec->vma;
3894 }
3895
3896 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3897 isym->st_name);
3898 if (name == NULL)
3899 goto error_free_vers;
3900
3901 if (isym->st_shndx == SHN_COMMON
3902 && (abfd->flags & BFD_PLUGIN) != 0)
3903 {
3904 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3905
3906 if (xc == NULL)
3907 {
3908 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3909 | SEC_EXCLUDE);
3910 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3911 if (xc == NULL)
3912 goto error_free_vers;
3913 }
3914 sec = xc;
3915 }
3916 else if (isym->st_shndx == SHN_COMMON
3917 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3918 && !info->relocatable)
3919 {
3920 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3921
3922 if (tcomm == NULL)
3923 {
3924 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3925 | SEC_LINKER_CREATED);
3926 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3927 if (tcomm == NULL)
3928 goto error_free_vers;
3929 }
3930 sec = tcomm;
3931 }
3932 else if (bed->elf_add_symbol_hook)
3933 {
3934 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3935 &sec, &value))
3936 goto error_free_vers;
3937
3938 /* The hook function sets the name to NULL if this symbol
3939 should be skipped for some reason. */
3940 if (name == NULL)
3941 continue;
3942 }
3943
3944 /* Sanity check that all possibilities were handled. */
3945 if (sec == NULL)
3946 {
3947 bfd_set_error (bfd_error_bad_value);
3948 goto error_free_vers;
3949 }
3950
3951 /* Silently discard TLS symbols from --just-syms. There's
3952 no way to combine a static TLS block with a new TLS block
3953 for this executable. */
3954 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3955 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3956 continue;
3957
3958 if (bfd_is_und_section (sec)
3959 || bfd_is_com_section (sec))
3960 definition = FALSE;
3961 else
3962 definition = TRUE;
3963
3964 size_change_ok = FALSE;
3965 type_change_ok = bed->type_change_ok;
3966 old_weak = FALSE;
3967 old_alignment = 0;
3968 old_bfd = NULL;
3969 new_sec = sec;
3970
3971 if (is_elf_hash_table (htab))
3972 {
3973 Elf_Internal_Versym iver;
3974 unsigned int vernum = 0;
3975 bfd_boolean skip;
3976
3977 if (ever == NULL)
3978 {
3979 if (info->default_imported_symver)
3980 /* Use the default symbol version created earlier. */
3981 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3982 else
3983 iver.vs_vers = 0;
3984 }
3985 else
3986 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3987
3988 vernum = iver.vs_vers & VERSYM_VERSION;
3989
3990 /* If this is a hidden symbol, or if it is not version
3991 1, we append the version name to the symbol name.
3992 However, we do not modify a non-hidden absolute symbol
3993 if it is not a function, because it might be the version
3994 symbol itself. FIXME: What if it isn't? */
3995 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3996 || (vernum > 1
3997 && (!bfd_is_abs_section (sec)
3998 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3999 {
4000 const char *verstr;
4001 size_t namelen, verlen, newlen;
4002 char *newname, *p;
4003
4004 if (isym->st_shndx != SHN_UNDEF)
4005 {
4006 if (vernum > elf_tdata (abfd)->cverdefs)
4007 verstr = NULL;
4008 else if (vernum > 1)
4009 verstr =
4010 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4011 else
4012 verstr = "";
4013
4014 if (verstr == NULL)
4015 {
4016 (*_bfd_error_handler)
4017 (_("%B: %s: invalid version %u (max %d)"),
4018 abfd, name, vernum,
4019 elf_tdata (abfd)->cverdefs);
4020 bfd_set_error (bfd_error_bad_value);
4021 goto error_free_vers;
4022 }
4023 }
4024 else
4025 {
4026 /* We cannot simply test for the number of
4027 entries in the VERNEED section since the
4028 numbers for the needed versions do not start
4029 at 0. */
4030 Elf_Internal_Verneed *t;
4031
4032 verstr = NULL;
4033 for (t = elf_tdata (abfd)->verref;
4034 t != NULL;
4035 t = t->vn_nextref)
4036 {
4037 Elf_Internal_Vernaux *a;
4038
4039 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4040 {
4041 if (a->vna_other == vernum)
4042 {
4043 verstr = a->vna_nodename;
4044 break;
4045 }
4046 }
4047 if (a != NULL)
4048 break;
4049 }
4050 if (verstr == NULL)
4051 {
4052 (*_bfd_error_handler)
4053 (_("%B: %s: invalid needed version %d"),
4054 abfd, name, vernum);
4055 bfd_set_error (bfd_error_bad_value);
4056 goto error_free_vers;
4057 }
4058 }
4059
4060 namelen = strlen (name);
4061 verlen = strlen (verstr);
4062 newlen = namelen + verlen + 2;
4063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4064 && isym->st_shndx != SHN_UNDEF)
4065 ++newlen;
4066
4067 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4068 if (newname == NULL)
4069 goto error_free_vers;
4070 memcpy (newname, name, namelen);
4071 p = newname + namelen;
4072 *p++ = ELF_VER_CHR;
4073 /* If this is a defined non-hidden version symbol,
4074 we add another @ to the name. This indicates the
4075 default version of the symbol. */
4076 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4077 && isym->st_shndx != SHN_UNDEF)
4078 *p++ = ELF_VER_CHR;
4079 memcpy (p, verstr, verlen + 1);
4080
4081 name = newname;
4082 }
4083
4084 /* If this symbol has default visibility and the user has
4085 requested we not re-export it, then mark it as hidden. */
4086 if (definition
4087 && !dynamic
4088 && abfd->no_export
4089 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4090 isym->st_other = (STV_HIDDEN
4091 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4092
4093 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4094 sym_hash, &old_bfd, &old_weak,
4095 &old_alignment, &skip, &override,
4096 &type_change_ok, &size_change_ok))
4097 goto error_free_vers;
4098
4099 if (skip)
4100 continue;
4101
4102 if (override)
4103 definition = FALSE;
4104
4105 h = *sym_hash;
4106 while (h->root.type == bfd_link_hash_indirect
4107 || h->root.type == bfd_link_hash_warning)
4108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4109
4110 if (elf_tdata (abfd)->verdef != NULL
4111 && vernum > 1
4112 && definition)
4113 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4114 }
4115
4116 if (! (_bfd_generic_link_add_one_symbol
4117 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4118 (struct bfd_link_hash_entry **) sym_hash)))
4119 goto error_free_vers;
4120
4121 h = *sym_hash;
4122 /* We need to make sure that indirect symbol dynamic flags are
4123 updated. */
4124 hi = h;
4125 while (h->root.type == bfd_link_hash_indirect
4126 || h->root.type == bfd_link_hash_warning)
4127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128
4129 *sym_hash = h;
4130
4131 new_weak = (flags & BSF_WEAK) != 0;
4132 new_weakdef = FALSE;
4133 if (dynamic
4134 && definition
4135 && new_weak
4136 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4137 && is_elf_hash_table (htab)
4138 && h->u.weakdef == NULL)
4139 {
4140 /* Keep a list of all weak defined non function symbols from
4141 a dynamic object, using the weakdef field. Later in this
4142 function we will set the weakdef field to the correct
4143 value. We only put non-function symbols from dynamic
4144 objects on this list, because that happens to be the only
4145 time we need to know the normal symbol corresponding to a
4146 weak symbol, and the information is time consuming to
4147 figure out. If the weakdef field is not already NULL,
4148 then this symbol was already defined by some previous
4149 dynamic object, and we will be using that previous
4150 definition anyhow. */
4151
4152 h->u.weakdef = weaks;
4153 weaks = h;
4154 new_weakdef = TRUE;
4155 }
4156
4157 /* Set the alignment of a common symbol. */
4158 if ((common || bfd_is_com_section (sec))
4159 && h->root.type == bfd_link_hash_common)
4160 {
4161 unsigned int align;
4162
4163 if (common)
4164 align = bfd_log2 (isym->st_value);
4165 else
4166 {
4167 /* The new symbol is a common symbol in a shared object.
4168 We need to get the alignment from the section. */
4169 align = new_sec->alignment_power;
4170 }
4171 if (align > old_alignment)
4172 h->root.u.c.p->alignment_power = align;
4173 else
4174 h->root.u.c.p->alignment_power = old_alignment;
4175 }
4176
4177 if (is_elf_hash_table (htab))
4178 {
4179 /* Set a flag in the hash table entry indicating the type of
4180 reference or definition we just found. A dynamic symbol
4181 is one which is referenced or defined by both a regular
4182 object and a shared object. */
4183 bfd_boolean dynsym = FALSE;
4184
4185 /* Plugin symbols aren't normal. Don't set def_regular or
4186 ref_regular for them, or make them dynamic. */
4187 if ((abfd->flags & BFD_PLUGIN) != 0)
4188 ;
4189 else if (! dynamic)
4190 {
4191 if (! definition)
4192 {
4193 h->ref_regular = 1;
4194 if (bind != STB_WEAK)
4195 h->ref_regular_nonweak = 1;
4196 }
4197 else
4198 {
4199 h->def_regular = 1;
4200 if (h->def_dynamic)
4201 {
4202 h->def_dynamic = 0;
4203 h->ref_dynamic = 1;
4204 }
4205 }
4206
4207 /* If the indirect symbol has been forced local, don't
4208 make the real symbol dynamic. */
4209 if ((h == hi || !hi->forced_local)
4210 && (! info->executable
4211 || h->def_dynamic
4212 || h->ref_dynamic))
4213 dynsym = TRUE;
4214 }
4215 else
4216 {
4217 if (! definition)
4218 {
4219 h->ref_dynamic = 1;
4220 hi->ref_dynamic = 1;
4221 }
4222 else
4223 {
4224 h->def_dynamic = 1;
4225 hi->def_dynamic = 1;
4226 }
4227
4228 /* If the indirect symbol has been forced local, don't
4229 make the real symbol dynamic. */
4230 if ((h == hi || !hi->forced_local)
4231 && (h->def_regular
4232 || h->ref_regular
4233 || (h->u.weakdef != NULL
4234 && ! new_weakdef
4235 && h->u.weakdef->dynindx != -1)))
4236 dynsym = TRUE;
4237 }
4238
4239 /* Check to see if we need to add an indirect symbol for
4240 the default name. */
4241 if (definition
4242 || (!override && h->root.type == bfd_link_hash_common))
4243 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4244 sec, value, &old_bfd, &dynsym))
4245 goto error_free_vers;
4246
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4254 {
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4258 bfd *normal_bfd;
4259 bfd *common_bfd;
4260
4261 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4262 || h->root.type == bfd_link_hash_defweak);
4263
4264 symbol_align = ffs (h->root.u.def.value) - 1;
4265 if (h->root.u.def.section->owner != NULL
4266 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4267 {
4268 normal_align = h->root.u.def.section->alignment_power;
4269 if (normal_align > symbol_align)
4270 normal_align = symbol_align;
4271 }
4272 else
4273 normal_align = symbol_align;
4274
4275 if (old_alignment)
4276 {
4277 common_align = old_alignment;
4278 common_bfd = old_bfd;
4279 normal_bfd = abfd;
4280 }
4281 else
4282 {
4283 common_align = bfd_log2 (isym->st_value);
4284 common_bfd = abfd;
4285 normal_bfd = old_bfd;
4286 }
4287
4288 if (normal_align < common_align)
4289 {
4290 /* PR binutils/2735 */
4291 if (normal_bfd == NULL)
4292 (*_bfd_error_handler)
4293 (_("Warning: alignment %u of common symbol `%s' in %B is"
4294 " greater than the alignment (%u) of its section %A"),
4295 common_bfd, h->root.u.def.section,
4296 1 << common_align, name, 1 << normal_align);
4297 else
4298 (*_bfd_error_handler)
4299 (_("Warning: alignment %u of symbol `%s' in %B"
4300 " is smaller than %u in %B"),
4301 normal_bfd, common_bfd,
4302 1 << normal_align, name, 1 << common_align);
4303 }
4304 }
4305
4306 /* Remember the symbol size if it isn't undefined. */
4307 if (isym->st_size != 0
4308 && isym->st_shndx != SHN_UNDEF
4309 && (definition || h->size == 0))
4310 {
4311 if (h->size != 0
4312 && h->size != isym->st_size
4313 && ! size_change_ok)
4314 (*_bfd_error_handler)
4315 (_("Warning: size of symbol `%s' changed"
4316 " from %lu in %B to %lu in %B"),
4317 old_bfd, abfd,
4318 name, (unsigned long) h->size,
4319 (unsigned long) isym->st_size);
4320
4321 h->size = isym->st_size;
4322 }
4323
4324 /* If this is a common symbol, then we always want H->SIZE
4325 to be the size of the common symbol. The code just above
4326 won't fix the size if a common symbol becomes larger. We
4327 don't warn about a size change here, because that is
4328 covered by --warn-common. Allow changes between different
4329 function types. */
4330 if (h->root.type == bfd_link_hash_common)
4331 h->size = h->root.u.c.size;
4332
4333 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4334 && ((definition && !new_weak)
4335 || (old_weak && h->root.type == bfd_link_hash_common)
4336 || h->type == STT_NOTYPE))
4337 {
4338 unsigned int type = ELF_ST_TYPE (isym->st_info);
4339
4340 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4341 symbol. */
4342 if (type == STT_GNU_IFUNC
4343 && (abfd->flags & DYNAMIC) != 0)
4344 type = STT_FUNC;
4345
4346 if (h->type != type)
4347 {
4348 if (h->type != STT_NOTYPE && ! type_change_ok)
4349 (*_bfd_error_handler)
4350 (_("Warning: type of symbol `%s' changed"
4351 " from %d to %d in %B"),
4352 abfd, name, h->type, type);
4353
4354 h->type = type;
4355 }
4356 }
4357
4358 /* Merge st_other field. */
4359 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4360
4361 /* We don't want to make debug symbol dynamic. */
4362 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4363 dynsym = FALSE;
4364
4365 /* Nor should we make plugin symbols dynamic. */
4366 if ((abfd->flags & BFD_PLUGIN) != 0)
4367 dynsym = FALSE;
4368
4369 if (definition)
4370 {
4371 h->target_internal = isym->st_target_internal;
4372 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4373 }
4374
4375 if (definition && !dynamic)
4376 {
4377 char *p = strchr (name, ELF_VER_CHR);
4378 if (p != NULL && p[1] != ELF_VER_CHR)
4379 {
4380 /* Queue non-default versions so that .symver x, x@FOO
4381 aliases can be checked. */
4382 if (!nondeflt_vers)
4383 {
4384 amt = ((isymend - isym + 1)
4385 * sizeof (struct elf_link_hash_entry *));
4386 nondeflt_vers
4387 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4388 if (!nondeflt_vers)
4389 goto error_free_vers;
4390 }
4391 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 }
4393 }
4394
4395 if (dynsym && h->dynindx == -1)
4396 {
4397 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4398 goto error_free_vers;
4399 if (h->u.weakdef != NULL
4400 && ! new_weakdef
4401 && h->u.weakdef->dynindx == -1)
4402 {
4403 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4404 goto error_free_vers;
4405 }
4406 }
4407 else if (dynsym && h->dynindx != -1)
4408 /* If the symbol already has a dynamic index, but
4409 visibility says it should not be visible, turn it into
4410 a local symbol. */
4411 switch (ELF_ST_VISIBILITY (h->other))
4412 {
4413 case STV_INTERNAL:
4414 case STV_HIDDEN:
4415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4416 dynsym = FALSE;
4417 break;
4418 }
4419
4420 /* Don't add DT_NEEDED for references from the dummy bfd. */
4421 if (!add_needed
4422 && definition
4423 && ((dynsym
4424 && h->ref_regular_nonweak
4425 && (old_bfd == NULL
4426 || (old_bfd->flags & BFD_PLUGIN) == 0))
4427 || (h->ref_dynamic_nonweak
4428 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4429 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4430 {
4431 int ret;
4432 const char *soname = elf_dt_name (abfd);
4433
4434 info->callbacks->minfo ("%!", soname, old_bfd,
4435 h->root.root.string);
4436
4437 /* A symbol from a library loaded via DT_NEEDED of some
4438 other library is referenced by a regular object.
4439 Add a DT_NEEDED entry for it. Issue an error if
4440 --no-add-needed is used and the reference was not
4441 a weak one. */
4442 if (old_bfd != NULL
4443 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4444 {
4445 (*_bfd_error_handler)
4446 (_("%B: undefined reference to symbol '%s'"),
4447 old_bfd, name);
4448 bfd_set_error (bfd_error_missing_dso);
4449 goto error_free_vers;
4450 }
4451
4452 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4453 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4454
4455 add_needed = TRUE;
4456 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4457 if (ret < 0)
4458 goto error_free_vers;
4459
4460 BFD_ASSERT (ret == 0);
4461 }
4462 }
4463 }
4464
4465 if (extversym != NULL)
4466 {
4467 free (extversym);
4468 extversym = NULL;
4469 }
4470
4471 if (isymbuf != NULL)
4472 {
4473 free (isymbuf);
4474 isymbuf = NULL;
4475 }
4476
4477 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4478 {
4479 unsigned int i;
4480
4481 /* Restore the symbol table. */
4482 old_ent = (char *) old_tab + tabsize;
4483 memset (elf_sym_hashes (abfd), 0,
4484 extsymcount * sizeof (struct elf_link_hash_entry *));
4485 htab->root.table.table = old_table;
4486 htab->root.table.size = old_size;
4487 htab->root.table.count = old_count;
4488 memcpy (htab->root.table.table, old_tab, tabsize);
4489 htab->root.undefs = old_undefs;
4490 htab->root.undefs_tail = old_undefs_tail;
4491 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4492 for (i = 0; i < htab->root.table.size; i++)
4493 {
4494 struct bfd_hash_entry *p;
4495 struct elf_link_hash_entry *h;
4496 bfd_size_type size;
4497 unsigned int alignment_power;
4498
4499 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4500 {
4501 h = (struct elf_link_hash_entry *) p;
4502 if (h->root.type == bfd_link_hash_warning)
4503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4504 if (h->dynindx >= old_dynsymcount
4505 && h->dynstr_index < old_dynstr_size)
4506 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4507
4508 /* Preserve the maximum alignment and size for common
4509 symbols even if this dynamic lib isn't on DT_NEEDED
4510 since it can still be loaded at run time by another
4511 dynamic lib. */
4512 if (h->root.type == bfd_link_hash_common)
4513 {
4514 size = h->root.u.c.size;
4515 alignment_power = h->root.u.c.p->alignment_power;
4516 }
4517 else
4518 {
4519 size = 0;
4520 alignment_power = 0;
4521 }
4522 memcpy (p, old_ent, htab->root.table.entsize);
4523 old_ent = (char *) old_ent + htab->root.table.entsize;
4524 h = (struct elf_link_hash_entry *) p;
4525 if (h->root.type == bfd_link_hash_warning)
4526 {
4527 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4528 old_ent = (char *) old_ent + htab->root.table.entsize;
4529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4530 }
4531 if (h->root.type == bfd_link_hash_common)
4532 {
4533 if (size > h->root.u.c.size)
4534 h->root.u.c.size = size;
4535 if (alignment_power > h->root.u.c.p->alignment_power)
4536 h->root.u.c.p->alignment_power = alignment_power;
4537 }
4538 }
4539 }
4540
4541 /* Make a special call to the linker "notice" function to
4542 tell it that symbols added for crefs may need to be removed. */
4543 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4544 goto error_free_vers;
4545
4546 free (old_tab);
4547 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4548 alloc_mark);
4549 if (nondeflt_vers != NULL)
4550 free (nondeflt_vers);
4551 return TRUE;
4552 }
4553
4554 if (old_tab != NULL)
4555 {
4556 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4557 goto error_free_vers;
4558 free (old_tab);
4559 old_tab = NULL;
4560 }
4561
4562 /* Now that all the symbols from this input file are created, handle
4563 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4564 if (nondeflt_vers != NULL)
4565 {
4566 bfd_size_type cnt, symidx;
4567
4568 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4569 {
4570 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4571 char *shortname, *p;
4572
4573 p = strchr (h->root.root.string, ELF_VER_CHR);
4574 if (p == NULL
4575 || (h->root.type != bfd_link_hash_defined
4576 && h->root.type != bfd_link_hash_defweak))
4577 continue;
4578
4579 amt = p - h->root.root.string;
4580 shortname = (char *) bfd_malloc (amt + 1);
4581 if (!shortname)
4582 goto error_free_vers;
4583 memcpy (shortname, h->root.root.string, amt);
4584 shortname[amt] = '\0';
4585
4586 hi = (struct elf_link_hash_entry *)
4587 bfd_link_hash_lookup (&htab->root, shortname,
4588 FALSE, FALSE, FALSE);
4589 if (hi != NULL
4590 && hi->root.type == h->root.type
4591 && hi->root.u.def.value == h->root.u.def.value
4592 && hi->root.u.def.section == h->root.u.def.section)
4593 {
4594 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4595 hi->root.type = bfd_link_hash_indirect;
4596 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4597 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4598 sym_hash = elf_sym_hashes (abfd);
4599 if (sym_hash)
4600 for (symidx = 0; symidx < extsymcount; ++symidx)
4601 if (sym_hash[symidx] == hi)
4602 {
4603 sym_hash[symidx] = h;
4604 break;
4605 }
4606 }
4607 free (shortname);
4608 }
4609 free (nondeflt_vers);
4610 nondeflt_vers = NULL;
4611 }
4612
4613 /* Now set the weakdefs field correctly for all the weak defined
4614 symbols we found. The only way to do this is to search all the
4615 symbols. Since we only need the information for non functions in
4616 dynamic objects, that's the only time we actually put anything on
4617 the list WEAKS. We need this information so that if a regular
4618 object refers to a symbol defined weakly in a dynamic object, the
4619 real symbol in the dynamic object is also put in the dynamic
4620 symbols; we also must arrange for both symbols to point to the
4621 same memory location. We could handle the general case of symbol
4622 aliasing, but a general symbol alias can only be generated in
4623 assembler code, handling it correctly would be very time
4624 consuming, and other ELF linkers don't handle general aliasing
4625 either. */
4626 if (weaks != NULL)
4627 {
4628 struct elf_link_hash_entry **hpp;
4629 struct elf_link_hash_entry **hppend;
4630 struct elf_link_hash_entry **sorted_sym_hash;
4631 struct elf_link_hash_entry *h;
4632 size_t sym_count;
4633
4634 /* Since we have to search the whole symbol list for each weak
4635 defined symbol, search time for N weak defined symbols will be
4636 O(N^2). Binary search will cut it down to O(NlogN). */
4637 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4638 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4639 if (sorted_sym_hash == NULL)
4640 goto error_return;
4641 sym_hash = sorted_sym_hash;
4642 hpp = elf_sym_hashes (abfd);
4643 hppend = hpp + extsymcount;
4644 sym_count = 0;
4645 for (; hpp < hppend; hpp++)
4646 {
4647 h = *hpp;
4648 if (h != NULL
4649 && h->root.type == bfd_link_hash_defined
4650 && !bed->is_function_type (h->type))
4651 {
4652 *sym_hash = h;
4653 sym_hash++;
4654 sym_count++;
4655 }
4656 }
4657
4658 qsort (sorted_sym_hash, sym_count,
4659 sizeof (struct elf_link_hash_entry *),
4660 elf_sort_symbol);
4661
4662 while (weaks != NULL)
4663 {
4664 struct elf_link_hash_entry *hlook;
4665 asection *slook;
4666 bfd_vma vlook;
4667 size_t i, j, idx = 0;
4668
4669 hlook = weaks;
4670 weaks = hlook->u.weakdef;
4671 hlook->u.weakdef = NULL;
4672
4673 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4674 || hlook->root.type == bfd_link_hash_defweak
4675 || hlook->root.type == bfd_link_hash_common
4676 || hlook->root.type == bfd_link_hash_indirect);
4677 slook = hlook->root.u.def.section;
4678 vlook = hlook->root.u.def.value;
4679
4680 i = 0;
4681 j = sym_count;
4682 while (i != j)
4683 {
4684 bfd_signed_vma vdiff;
4685 idx = (i + j) / 2;
4686 h = sorted_sym_hash[idx];
4687 vdiff = vlook - h->root.u.def.value;
4688 if (vdiff < 0)
4689 j = idx;
4690 else if (vdiff > 0)
4691 i = idx + 1;
4692 else
4693 {
4694 long sdiff = slook->id - h->root.u.def.section->id;
4695 if (sdiff < 0)
4696 j = idx;
4697 else if (sdiff > 0)
4698 i = idx + 1;
4699 else
4700 break;
4701 }
4702 }
4703
4704 /* We didn't find a value/section match. */
4705 if (i == j)
4706 continue;
4707
4708 /* With multiple aliases, or when the weak symbol is already
4709 strongly defined, we have multiple matching symbols and
4710 the binary search above may land on any of them. Step
4711 one past the matching symbol(s). */
4712 while (++idx != j)
4713 {
4714 h = sorted_sym_hash[idx];
4715 if (h->root.u.def.section != slook
4716 || h->root.u.def.value != vlook)
4717 break;
4718 }
4719
4720 /* Now look back over the aliases. Since we sorted by size
4721 as well as value and section, we'll choose the one with
4722 the largest size. */
4723 while (idx-- != i)
4724 {
4725 h = sorted_sym_hash[idx];
4726
4727 /* Stop if value or section doesn't match. */
4728 if (h->root.u.def.section != slook
4729 || h->root.u.def.value != vlook)
4730 break;
4731 else if (h != hlook)
4732 {
4733 hlook->u.weakdef = h;
4734
4735 /* If the weak definition is in the list of dynamic
4736 symbols, make sure the real definition is put
4737 there as well. */
4738 if (hlook->dynindx != -1 && h->dynindx == -1)
4739 {
4740 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4741 {
4742 err_free_sym_hash:
4743 free (sorted_sym_hash);
4744 goto error_return;
4745 }
4746 }
4747
4748 /* If the real definition is in the list of dynamic
4749 symbols, make sure the weak definition is put
4750 there as well. If we don't do this, then the
4751 dynamic loader might not merge the entries for the
4752 real definition and the weak definition. */
4753 if (h->dynindx != -1 && hlook->dynindx == -1)
4754 {
4755 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4756 goto err_free_sym_hash;
4757 }
4758 break;
4759 }
4760 }
4761 }
4762
4763 free (sorted_sym_hash);
4764 }
4765
4766 if (bed->check_directives
4767 && !(*bed->check_directives) (abfd, info))
4768 return FALSE;
4769
4770 /* If this object is the same format as the output object, and it is
4771 not a shared library, then let the backend look through the
4772 relocs.
4773
4774 This is required to build global offset table entries and to
4775 arrange for dynamic relocs. It is not required for the
4776 particular common case of linking non PIC code, even when linking
4777 against shared libraries, but unfortunately there is no way of
4778 knowing whether an object file has been compiled PIC or not.
4779 Looking through the relocs is not particularly time consuming.
4780 The problem is that we must either (1) keep the relocs in memory,
4781 which causes the linker to require additional runtime memory or
4782 (2) read the relocs twice from the input file, which wastes time.
4783 This would be a good case for using mmap.
4784
4785 I have no idea how to handle linking PIC code into a file of a
4786 different format. It probably can't be done. */
4787 if (! dynamic
4788 && is_elf_hash_table (htab)
4789 && bed->check_relocs != NULL
4790 && elf_object_id (abfd) == elf_hash_table_id (htab)
4791 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4792 {
4793 asection *o;
4794
4795 for (o = abfd->sections; o != NULL; o = o->next)
4796 {
4797 Elf_Internal_Rela *internal_relocs;
4798 bfd_boolean ok;
4799
4800 if ((o->flags & SEC_RELOC) == 0
4801 || o->reloc_count == 0
4802 || ((info->strip == strip_all || info->strip == strip_debugger)
4803 && (o->flags & SEC_DEBUGGING) != 0)
4804 || bfd_is_abs_section (o->output_section))
4805 continue;
4806
4807 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4808 info->keep_memory);
4809 if (internal_relocs == NULL)
4810 goto error_return;
4811
4812 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4813
4814 if (elf_section_data (o)->relocs != internal_relocs)
4815 free (internal_relocs);
4816
4817 if (! ok)
4818 goto error_return;
4819 }
4820 }
4821
4822 /* If this is a non-traditional link, try to optimize the handling
4823 of the .stab/.stabstr sections. */
4824 if (! dynamic
4825 && ! info->traditional_format
4826 && is_elf_hash_table (htab)
4827 && (info->strip != strip_all && info->strip != strip_debugger))
4828 {
4829 asection *stabstr;
4830
4831 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4832 if (stabstr != NULL)
4833 {
4834 bfd_size_type string_offset = 0;
4835 asection *stab;
4836
4837 for (stab = abfd->sections; stab; stab = stab->next)
4838 if (CONST_STRNEQ (stab->name, ".stab")
4839 && (!stab->name[5] ||
4840 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4841 && (stab->flags & SEC_MERGE) == 0
4842 && !bfd_is_abs_section (stab->output_section))
4843 {
4844 struct bfd_elf_section_data *secdata;
4845
4846 secdata = elf_section_data (stab);
4847 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4848 stabstr, &secdata->sec_info,
4849 &string_offset))
4850 goto error_return;
4851 if (secdata->sec_info)
4852 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4853 }
4854 }
4855 }
4856
4857 if (is_elf_hash_table (htab) && add_needed)
4858 {
4859 /* Add this bfd to the loaded list. */
4860 struct elf_link_loaded_list *n;
4861
4862 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4863 if (n == NULL)
4864 goto error_return;
4865 n->abfd = abfd;
4866 n->next = htab->loaded;
4867 htab->loaded = n;
4868 }
4869
4870 return TRUE;
4871
4872 error_free_vers:
4873 if (old_tab != NULL)
4874 free (old_tab);
4875 if (nondeflt_vers != NULL)
4876 free (nondeflt_vers);
4877 if (extversym != NULL)
4878 free (extversym);
4879 error_free_sym:
4880 if (isymbuf != NULL)
4881 free (isymbuf);
4882 error_return:
4883 return FALSE;
4884 }
4885
4886 /* Return the linker hash table entry of a symbol that might be
4887 satisfied by an archive symbol. Return -1 on error. */
4888
4889 struct elf_link_hash_entry *
4890 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4891 struct bfd_link_info *info,
4892 const char *name)
4893 {
4894 struct elf_link_hash_entry *h;
4895 char *p, *copy;
4896 size_t len, first;
4897
4898 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4899 if (h != NULL)
4900 return h;
4901
4902 /* If this is a default version (the name contains @@), look up the
4903 symbol again with only one `@' as well as without the version.
4904 The effect is that references to the symbol with and without the
4905 version will be matched by the default symbol in the archive. */
4906
4907 p = strchr (name, ELF_VER_CHR);
4908 if (p == NULL || p[1] != ELF_VER_CHR)
4909 return h;
4910
4911 /* First check with only one `@'. */
4912 len = strlen (name);
4913 copy = (char *) bfd_alloc (abfd, len);
4914 if (copy == NULL)
4915 return (struct elf_link_hash_entry *) 0 - 1;
4916
4917 first = p - name + 1;
4918 memcpy (copy, name, first);
4919 memcpy (copy + first, name + first + 1, len - first);
4920
4921 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4922 if (h == NULL)
4923 {
4924 /* We also need to check references to the symbol without the
4925 version. */
4926 copy[first - 1] = '\0';
4927 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4928 FALSE, FALSE, TRUE);
4929 }
4930
4931 bfd_release (abfd, copy);
4932 return h;
4933 }
4934
4935 /* Add symbols from an ELF archive file to the linker hash table. We
4936 don't use _bfd_generic_link_add_archive_symbols because we need to
4937 handle versioned symbols.
4938
4939 Fortunately, ELF archive handling is simpler than that done by
4940 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4941 oddities. In ELF, if we find a symbol in the archive map, and the
4942 symbol is currently undefined, we know that we must pull in that
4943 object file.
4944
4945 Unfortunately, we do have to make multiple passes over the symbol
4946 table until nothing further is resolved. */
4947
4948 static bfd_boolean
4949 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4950 {
4951 symindex c;
4952 unsigned char *included = NULL;
4953 carsym *symdefs;
4954 bfd_boolean loop;
4955 bfd_size_type amt;
4956 const struct elf_backend_data *bed;
4957 struct elf_link_hash_entry * (*archive_symbol_lookup)
4958 (bfd *, struct bfd_link_info *, const char *);
4959
4960 if (! bfd_has_map (abfd))
4961 {
4962 /* An empty archive is a special case. */
4963 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4964 return TRUE;
4965 bfd_set_error (bfd_error_no_armap);
4966 return FALSE;
4967 }
4968
4969 /* Keep track of all symbols we know to be already defined, and all
4970 files we know to be already included. This is to speed up the
4971 second and subsequent passes. */
4972 c = bfd_ardata (abfd)->symdef_count;
4973 if (c == 0)
4974 return TRUE;
4975 amt = c;
4976 amt *= sizeof (*included);
4977 included = (unsigned char *) bfd_zmalloc (amt);
4978 if (included == NULL)
4979 return FALSE;
4980
4981 symdefs = bfd_ardata (abfd)->symdefs;
4982 bed = get_elf_backend_data (abfd);
4983 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4984
4985 do
4986 {
4987 file_ptr last;
4988 symindex i;
4989 carsym *symdef;
4990 carsym *symdefend;
4991
4992 loop = FALSE;
4993 last = -1;
4994
4995 symdef = symdefs;
4996 symdefend = symdef + c;
4997 for (i = 0; symdef < symdefend; symdef++, i++)
4998 {
4999 struct elf_link_hash_entry *h;
5000 bfd *element;
5001 struct bfd_link_hash_entry *undefs_tail;
5002 symindex mark;
5003
5004 if (included[i])
5005 continue;
5006 if (symdef->file_offset == last)
5007 {
5008 included[i] = TRUE;
5009 continue;
5010 }
5011
5012 h = archive_symbol_lookup (abfd, info, symdef->name);
5013 if (h == (struct elf_link_hash_entry *) 0 - 1)
5014 goto error_return;
5015
5016 if (h == NULL)
5017 continue;
5018
5019 if (h->root.type == bfd_link_hash_common)
5020 {
5021 /* We currently have a common symbol. The archive map contains
5022 a reference to this symbol, so we may want to include it. We
5023 only want to include it however, if this archive element
5024 contains a definition of the symbol, not just another common
5025 declaration of it.
5026
5027 Unfortunately some archivers (including GNU ar) will put
5028 declarations of common symbols into their archive maps, as
5029 well as real definitions, so we cannot just go by the archive
5030 map alone. Instead we must read in the element's symbol
5031 table and check that to see what kind of symbol definition
5032 this is. */
5033 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5034 continue;
5035 }
5036 else if (h->root.type != bfd_link_hash_undefined)
5037 {
5038 if (h->root.type != bfd_link_hash_undefweak)
5039 /* Symbol must be defined. Don't check it again. */
5040 included[i] = TRUE;
5041 continue;
5042 }
5043
5044 /* We need to include this archive member. */
5045 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5046 if (element == NULL)
5047 goto error_return;
5048
5049 if (! bfd_check_format (element, bfd_object))
5050 goto error_return;
5051
5052 undefs_tail = info->hash->undefs_tail;
5053
5054 if (!(*info->callbacks
5055 ->add_archive_element) (info, element, symdef->name, &element))
5056 goto error_return;
5057 if (!bfd_link_add_symbols (element, info))
5058 goto error_return;
5059
5060 /* If there are any new undefined symbols, we need to make
5061 another pass through the archive in order to see whether
5062 they can be defined. FIXME: This isn't perfect, because
5063 common symbols wind up on undefs_tail and because an
5064 undefined symbol which is defined later on in this pass
5065 does not require another pass. This isn't a bug, but it
5066 does make the code less efficient than it could be. */
5067 if (undefs_tail != info->hash->undefs_tail)
5068 loop = TRUE;
5069
5070 /* Look backward to mark all symbols from this object file
5071 which we have already seen in this pass. */
5072 mark = i;
5073 do
5074 {
5075 included[mark] = TRUE;
5076 if (mark == 0)
5077 break;
5078 --mark;
5079 }
5080 while (symdefs[mark].file_offset == symdef->file_offset);
5081
5082 /* We mark subsequent symbols from this object file as we go
5083 on through the loop. */
5084 last = symdef->file_offset;
5085 }
5086 }
5087 while (loop);
5088
5089 free (included);
5090
5091 return TRUE;
5092
5093 error_return:
5094 if (included != NULL)
5095 free (included);
5096 return FALSE;
5097 }
5098
5099 /* Given an ELF BFD, add symbols to the global hash table as
5100 appropriate. */
5101
5102 bfd_boolean
5103 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5104 {
5105 switch (bfd_get_format (abfd))
5106 {
5107 case bfd_object:
5108 return elf_link_add_object_symbols (abfd, info);
5109 case bfd_archive:
5110 return elf_link_add_archive_symbols (abfd, info);
5111 default:
5112 bfd_set_error (bfd_error_wrong_format);
5113 return FALSE;
5114 }
5115 }
5116 \f
5117 struct hash_codes_info
5118 {
5119 unsigned long *hashcodes;
5120 bfd_boolean error;
5121 };
5122
5123 /* This function will be called though elf_link_hash_traverse to store
5124 all hash value of the exported symbols in an array. */
5125
5126 static bfd_boolean
5127 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5128 {
5129 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5130 const char *name;
5131 char *p;
5132 unsigned long ha;
5133 char *alc = NULL;
5134
5135 /* Ignore indirect symbols. These are added by the versioning code. */
5136 if (h->dynindx == -1)
5137 return TRUE;
5138
5139 name = h->root.root.string;
5140 p = strchr (name, ELF_VER_CHR);
5141 if (p != NULL)
5142 {
5143 alc = (char *) bfd_malloc (p - name + 1);
5144 if (alc == NULL)
5145 {
5146 inf->error = TRUE;
5147 return FALSE;
5148 }
5149 memcpy (alc, name, p - name);
5150 alc[p - name] = '\0';
5151 name = alc;
5152 }
5153
5154 /* Compute the hash value. */
5155 ha = bfd_elf_hash (name);
5156
5157 /* Store the found hash value in the array given as the argument. */
5158 *(inf->hashcodes)++ = ha;
5159
5160 /* And store it in the struct so that we can put it in the hash table
5161 later. */
5162 h->u.elf_hash_value = ha;
5163
5164 if (alc != NULL)
5165 free (alc);
5166
5167 return TRUE;
5168 }
5169
5170 struct collect_gnu_hash_codes
5171 {
5172 bfd *output_bfd;
5173 const struct elf_backend_data *bed;
5174 unsigned long int nsyms;
5175 unsigned long int maskbits;
5176 unsigned long int *hashcodes;
5177 unsigned long int *hashval;
5178 unsigned long int *indx;
5179 unsigned long int *counts;
5180 bfd_vma *bitmask;
5181 bfd_byte *contents;
5182 long int min_dynindx;
5183 unsigned long int bucketcount;
5184 unsigned long int symindx;
5185 long int local_indx;
5186 long int shift1, shift2;
5187 unsigned long int mask;
5188 bfd_boolean error;
5189 };
5190
5191 /* This function will be called though elf_link_hash_traverse to store
5192 all hash value of the exported symbols in an array. */
5193
5194 static bfd_boolean
5195 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5196 {
5197 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5198 const char *name;
5199 char *p;
5200 unsigned long ha;
5201 char *alc = NULL;
5202
5203 /* Ignore indirect symbols. These are added by the versioning code. */
5204 if (h->dynindx == -1)
5205 return TRUE;
5206
5207 /* Ignore also local symbols and undefined symbols. */
5208 if (! (*s->bed->elf_hash_symbol) (h))
5209 return TRUE;
5210
5211 name = h->root.root.string;
5212 p = strchr (name, ELF_VER_CHR);
5213 if (p != NULL)
5214 {
5215 alc = (char *) bfd_malloc (p - name + 1);
5216 if (alc == NULL)
5217 {
5218 s->error = TRUE;
5219 return FALSE;
5220 }
5221 memcpy (alc, name, p - name);
5222 alc[p - name] = '\0';
5223 name = alc;
5224 }
5225
5226 /* Compute the hash value. */
5227 ha = bfd_elf_gnu_hash (name);
5228
5229 /* Store the found hash value in the array for compute_bucket_count,
5230 and also for .dynsym reordering purposes. */
5231 s->hashcodes[s->nsyms] = ha;
5232 s->hashval[h->dynindx] = ha;
5233 ++s->nsyms;
5234 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5235 s->min_dynindx = h->dynindx;
5236
5237 if (alc != NULL)
5238 free (alc);
5239
5240 return TRUE;
5241 }
5242
5243 /* This function will be called though elf_link_hash_traverse to do
5244 final dynaminc symbol renumbering. */
5245
5246 static bfd_boolean
5247 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5248 {
5249 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5250 unsigned long int bucket;
5251 unsigned long int val;
5252
5253 /* Ignore indirect symbols. */
5254 if (h->dynindx == -1)
5255 return TRUE;
5256
5257 /* Ignore also local symbols and undefined symbols. */
5258 if (! (*s->bed->elf_hash_symbol) (h))
5259 {
5260 if (h->dynindx >= s->min_dynindx)
5261 h->dynindx = s->local_indx++;
5262 return TRUE;
5263 }
5264
5265 bucket = s->hashval[h->dynindx] % s->bucketcount;
5266 val = (s->hashval[h->dynindx] >> s->shift1)
5267 & ((s->maskbits >> s->shift1) - 1);
5268 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5269 s->bitmask[val]
5270 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5271 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5272 if (s->counts[bucket] == 1)
5273 /* Last element terminates the chain. */
5274 val |= 1;
5275 bfd_put_32 (s->output_bfd, val,
5276 s->contents + (s->indx[bucket] - s->symindx) * 4);
5277 --s->counts[bucket];
5278 h->dynindx = s->indx[bucket]++;
5279 return TRUE;
5280 }
5281
5282 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5283
5284 bfd_boolean
5285 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5286 {
5287 return !(h->forced_local
5288 || h->root.type == bfd_link_hash_undefined
5289 || h->root.type == bfd_link_hash_undefweak
5290 || ((h->root.type == bfd_link_hash_defined
5291 || h->root.type == bfd_link_hash_defweak)
5292 && h->root.u.def.section->output_section == NULL));
5293 }
5294
5295 /* Array used to determine the number of hash table buckets to use
5296 based on the number of symbols there are. If there are fewer than
5297 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5298 fewer than 37 we use 17 buckets, and so forth. We never use more
5299 than 32771 buckets. */
5300
5301 static const size_t elf_buckets[] =
5302 {
5303 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5304 16411, 32771, 0
5305 };
5306
5307 /* Compute bucket count for hashing table. We do not use a static set
5308 of possible tables sizes anymore. Instead we determine for all
5309 possible reasonable sizes of the table the outcome (i.e., the
5310 number of collisions etc) and choose the best solution. The
5311 weighting functions are not too simple to allow the table to grow
5312 without bounds. Instead one of the weighting factors is the size.
5313 Therefore the result is always a good payoff between few collisions
5314 (= short chain lengths) and table size. */
5315 static size_t
5316 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5317 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5318 unsigned long int nsyms,
5319 int gnu_hash)
5320 {
5321 size_t best_size = 0;
5322 unsigned long int i;
5323
5324 /* We have a problem here. The following code to optimize the table
5325 size requires an integer type with more the 32 bits. If
5326 BFD_HOST_U_64_BIT is set we know about such a type. */
5327 #ifdef BFD_HOST_U_64_BIT
5328 if (info->optimize)
5329 {
5330 size_t minsize;
5331 size_t maxsize;
5332 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5333 bfd *dynobj = elf_hash_table (info)->dynobj;
5334 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5335 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5336 unsigned long int *counts;
5337 bfd_size_type amt;
5338 unsigned int no_improvement_count = 0;
5339
5340 /* Possible optimization parameters: if we have NSYMS symbols we say
5341 that the hashing table must at least have NSYMS/4 and at most
5342 2*NSYMS buckets. */
5343 minsize = nsyms / 4;
5344 if (minsize == 0)
5345 minsize = 1;
5346 best_size = maxsize = nsyms * 2;
5347 if (gnu_hash)
5348 {
5349 if (minsize < 2)
5350 minsize = 2;
5351 if ((best_size & 31) == 0)
5352 ++best_size;
5353 }
5354
5355 /* Create array where we count the collisions in. We must use bfd_malloc
5356 since the size could be large. */
5357 amt = maxsize;
5358 amt *= sizeof (unsigned long int);
5359 counts = (unsigned long int *) bfd_malloc (amt);
5360 if (counts == NULL)
5361 return 0;
5362
5363 /* Compute the "optimal" size for the hash table. The criteria is a
5364 minimal chain length. The minor criteria is (of course) the size
5365 of the table. */
5366 for (i = minsize; i < maxsize; ++i)
5367 {
5368 /* Walk through the array of hashcodes and count the collisions. */
5369 BFD_HOST_U_64_BIT max;
5370 unsigned long int j;
5371 unsigned long int fact;
5372
5373 if (gnu_hash && (i & 31) == 0)
5374 continue;
5375
5376 memset (counts, '\0', i * sizeof (unsigned long int));
5377
5378 /* Determine how often each hash bucket is used. */
5379 for (j = 0; j < nsyms; ++j)
5380 ++counts[hashcodes[j] % i];
5381
5382 /* For the weight function we need some information about the
5383 pagesize on the target. This is information need not be 100%
5384 accurate. Since this information is not available (so far) we
5385 define it here to a reasonable default value. If it is crucial
5386 to have a better value some day simply define this value. */
5387 # ifndef BFD_TARGET_PAGESIZE
5388 # define BFD_TARGET_PAGESIZE (4096)
5389 # endif
5390
5391 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5392 and the chains. */
5393 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5394
5395 # if 1
5396 /* Variant 1: optimize for short chains. We add the squares
5397 of all the chain lengths (which favors many small chain
5398 over a few long chains). */
5399 for (j = 0; j < i; ++j)
5400 max += counts[j] * counts[j];
5401
5402 /* This adds penalties for the overall size of the table. */
5403 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5404 max *= fact * fact;
5405 # else
5406 /* Variant 2: Optimize a lot more for small table. Here we
5407 also add squares of the size but we also add penalties for
5408 empty slots (the +1 term). */
5409 for (j = 0; j < i; ++j)
5410 max += (1 + counts[j]) * (1 + counts[j]);
5411
5412 /* The overall size of the table is considered, but not as
5413 strong as in variant 1, where it is squared. */
5414 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5415 max *= fact;
5416 # endif
5417
5418 /* Compare with current best results. */
5419 if (max < best_chlen)
5420 {
5421 best_chlen = max;
5422 best_size = i;
5423 no_improvement_count = 0;
5424 }
5425 /* PR 11843: Avoid futile long searches for the best bucket size
5426 when there are a large number of symbols. */
5427 else if (++no_improvement_count == 100)
5428 break;
5429 }
5430
5431 free (counts);
5432 }
5433 else
5434 #endif /* defined (BFD_HOST_U_64_BIT) */
5435 {
5436 /* This is the fallback solution if no 64bit type is available or if we
5437 are not supposed to spend much time on optimizations. We select the
5438 bucket count using a fixed set of numbers. */
5439 for (i = 0; elf_buckets[i] != 0; i++)
5440 {
5441 best_size = elf_buckets[i];
5442 if (nsyms < elf_buckets[i + 1])
5443 break;
5444 }
5445 if (gnu_hash && best_size < 2)
5446 best_size = 2;
5447 }
5448
5449 return best_size;
5450 }
5451
5452 /* Size any SHT_GROUP section for ld -r. */
5453
5454 bfd_boolean
5455 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5456 {
5457 bfd *ibfd;
5458
5459 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5460 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5461 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5462 return FALSE;
5463 return TRUE;
5464 }
5465
5466 /* Set a default stack segment size. The value in INFO wins. If it
5467 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5468 undefined it is initialized. */
5469
5470 bfd_boolean
5471 bfd_elf_stack_segment_size (bfd *output_bfd,
5472 struct bfd_link_info *info,
5473 const char *legacy_symbol,
5474 bfd_vma default_size)
5475 {
5476 struct elf_link_hash_entry *h = NULL;
5477
5478 /* Look for legacy symbol. */
5479 if (legacy_symbol)
5480 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5481 FALSE, FALSE, FALSE);
5482 if (h && (h->root.type == bfd_link_hash_defined
5483 || h->root.type == bfd_link_hash_defweak)
5484 && h->def_regular
5485 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5486 {
5487 /* The symbol has no type if specified on the command line. */
5488 h->type = STT_OBJECT;
5489 if (info->stacksize)
5490 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5491 output_bfd, legacy_symbol);
5492 else if (h->root.u.def.section != bfd_abs_section_ptr)
5493 (*_bfd_error_handler) (_("%B: %s not absolute"),
5494 output_bfd, legacy_symbol);
5495 else
5496 info->stacksize = h->root.u.def.value;
5497 }
5498
5499 if (!info->stacksize)
5500 /* If the user didn't set a size, or explicitly inhibit the
5501 size, set it now. */
5502 info->stacksize = default_size;
5503
5504 /* Provide the legacy symbol, if it is referenced. */
5505 if (h && (h->root.type == bfd_link_hash_undefined
5506 || h->root.type == bfd_link_hash_undefweak))
5507 {
5508 struct bfd_link_hash_entry *bh = NULL;
5509
5510 if (!(_bfd_generic_link_add_one_symbol
5511 (info, output_bfd, legacy_symbol,
5512 BSF_GLOBAL, bfd_abs_section_ptr,
5513 info->stacksize >= 0 ? info->stacksize : 0,
5514 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5515 return FALSE;
5516
5517 h = (struct elf_link_hash_entry *) bh;
5518 h->def_regular = 1;
5519 h->type = STT_OBJECT;
5520 }
5521
5522 return TRUE;
5523 }
5524
5525 /* Set up the sizes and contents of the ELF dynamic sections. This is
5526 called by the ELF linker emulation before_allocation routine. We
5527 must set the sizes of the sections before the linker sets the
5528 addresses of the various sections. */
5529
5530 bfd_boolean
5531 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5532 const char *soname,
5533 const char *rpath,
5534 const char *filter_shlib,
5535 const char *audit,
5536 const char *depaudit,
5537 const char * const *auxiliary_filters,
5538 struct bfd_link_info *info,
5539 asection **sinterpptr)
5540 {
5541 bfd_size_type soname_indx;
5542 bfd *dynobj;
5543 const struct elf_backend_data *bed;
5544 struct elf_info_failed asvinfo;
5545
5546 *sinterpptr = NULL;
5547
5548 soname_indx = (bfd_size_type) -1;
5549
5550 if (!is_elf_hash_table (info->hash))
5551 return TRUE;
5552
5553 bed = get_elf_backend_data (output_bfd);
5554
5555 /* Any syms created from now on start with -1 in
5556 got.refcount/offset and plt.refcount/offset. */
5557 elf_hash_table (info)->init_got_refcount
5558 = elf_hash_table (info)->init_got_offset;
5559 elf_hash_table (info)->init_plt_refcount
5560 = elf_hash_table (info)->init_plt_offset;
5561
5562 if (info->relocatable
5563 && !_bfd_elf_size_group_sections (info))
5564 return FALSE;
5565
5566 /* The backend may have to create some sections regardless of whether
5567 we're dynamic or not. */
5568 if (bed->elf_backend_always_size_sections
5569 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5570 return FALSE;
5571
5572 /* Determine any GNU_STACK segment requirements, after the backend
5573 has had a chance to set a default segment size. */
5574 if (info->execstack)
5575 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5576 else if (info->noexecstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W;
5578 else
5579 {
5580 bfd *inputobj;
5581 asection *notesec = NULL;
5582 int exec = 0;
5583
5584 for (inputobj = info->input_bfds;
5585 inputobj;
5586 inputobj = inputobj->link.next)
5587 {
5588 asection *s;
5589
5590 if (inputobj->flags
5591 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5592 continue;
5593 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5594 if (s)
5595 {
5596 if (s->flags & SEC_CODE)
5597 exec = PF_X;
5598 notesec = s;
5599 }
5600 else if (bed->default_execstack)
5601 exec = PF_X;
5602 }
5603 if (notesec || info->stacksize > 0)
5604 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5605 if (notesec && exec && info->relocatable
5606 && notesec->output_section != bfd_abs_section_ptr)
5607 notesec->output_section->flags |= SEC_CODE;
5608 }
5609
5610 dynobj = elf_hash_table (info)->dynobj;
5611
5612 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5613 {
5614 struct elf_info_failed eif;
5615 struct elf_link_hash_entry *h;
5616 asection *dynstr;
5617 struct bfd_elf_version_tree *t;
5618 struct bfd_elf_version_expr *d;
5619 asection *s;
5620 bfd_boolean all_defined;
5621
5622 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5623 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5624
5625 if (soname != NULL)
5626 {
5627 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5628 soname, TRUE);
5629 if (soname_indx == (bfd_size_type) -1
5630 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5631 return FALSE;
5632 }
5633
5634 if (info->symbolic)
5635 {
5636 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5637 return FALSE;
5638 info->flags |= DF_SYMBOLIC;
5639 }
5640
5641 if (rpath != NULL)
5642 {
5643 bfd_size_type indx;
5644 bfd_vma tag;
5645
5646 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5647 TRUE);
5648 if (indx == (bfd_size_type) -1)
5649 return FALSE;
5650
5651 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5652 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5653 return FALSE;
5654 }
5655
5656 if (filter_shlib != NULL)
5657 {
5658 bfd_size_type indx;
5659
5660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5661 filter_shlib, TRUE);
5662 if (indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5664 return FALSE;
5665 }
5666
5667 if (auxiliary_filters != NULL)
5668 {
5669 const char * const *p;
5670
5671 for (p = auxiliary_filters; *p != NULL; p++)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5676 *p, TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5679 return FALSE;
5680 }
5681 }
5682
5683 if (audit != NULL)
5684 {
5685 bfd_size_type indx;
5686
5687 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5688 TRUE);
5689 if (indx == (bfd_size_type) -1
5690 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5691 return FALSE;
5692 }
5693
5694 if (depaudit != NULL)
5695 {
5696 bfd_size_type indx;
5697
5698 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5699 TRUE);
5700 if (indx == (bfd_size_type) -1
5701 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5702 return FALSE;
5703 }
5704
5705 eif.info = info;
5706 eif.failed = FALSE;
5707
5708 /* If we are supposed to export all symbols into the dynamic symbol
5709 table (this is not the normal case), then do so. */
5710 if (info->export_dynamic
5711 || (info->executable && info->dynamic))
5712 {
5713 elf_link_hash_traverse (elf_hash_table (info),
5714 _bfd_elf_export_symbol,
5715 &eif);
5716 if (eif.failed)
5717 return FALSE;
5718 }
5719
5720 /* Make all global versions with definition. */
5721 for (t = info->version_info; t != NULL; t = t->next)
5722 for (d = t->globals.list; d != NULL; d = d->next)
5723 if (!d->symver && d->literal)
5724 {
5725 const char *verstr, *name;
5726 size_t namelen, verlen, newlen;
5727 char *newname, *p, leading_char;
5728 struct elf_link_hash_entry *newh;
5729
5730 leading_char = bfd_get_symbol_leading_char (output_bfd);
5731 name = d->pattern;
5732 namelen = strlen (name) + (leading_char != '\0');
5733 verstr = t->name;
5734 verlen = strlen (verstr);
5735 newlen = namelen + verlen + 3;
5736
5737 newname = (char *) bfd_malloc (newlen);
5738 if (newname == NULL)
5739 return FALSE;
5740 newname[0] = leading_char;
5741 memcpy (newname + (leading_char != '\0'), name, namelen);
5742
5743 /* Check the hidden versioned definition. */
5744 p = newname + namelen;
5745 *p++ = ELF_VER_CHR;
5746 memcpy (p, verstr, verlen + 1);
5747 newh = elf_link_hash_lookup (elf_hash_table (info),
5748 newname, FALSE, FALSE,
5749 FALSE);
5750 if (newh == NULL
5751 || (newh->root.type != bfd_link_hash_defined
5752 && newh->root.type != bfd_link_hash_defweak))
5753 {
5754 /* Check the default versioned definition. */
5755 *p++ = ELF_VER_CHR;
5756 memcpy (p, verstr, verlen + 1);
5757 newh = elf_link_hash_lookup (elf_hash_table (info),
5758 newname, FALSE, FALSE,
5759 FALSE);
5760 }
5761 free (newname);
5762
5763 /* Mark this version if there is a definition and it is
5764 not defined in a shared object. */
5765 if (newh != NULL
5766 && !newh->def_dynamic
5767 && (newh->root.type == bfd_link_hash_defined
5768 || newh->root.type == bfd_link_hash_defweak))
5769 d->symver = 1;
5770 }
5771
5772 /* Attach all the symbols to their version information. */
5773 asvinfo.info = info;
5774 asvinfo.failed = FALSE;
5775
5776 elf_link_hash_traverse (elf_hash_table (info),
5777 _bfd_elf_link_assign_sym_version,
5778 &asvinfo);
5779 if (asvinfo.failed)
5780 return FALSE;
5781
5782 if (!info->allow_undefined_version)
5783 {
5784 /* Check if all global versions have a definition. */
5785 all_defined = TRUE;
5786 for (t = info->version_info; t != NULL; t = t->next)
5787 for (d = t->globals.list; d != NULL; d = d->next)
5788 if (d->literal && !d->symver && !d->script)
5789 {
5790 (*_bfd_error_handler)
5791 (_("%s: undefined version: %s"),
5792 d->pattern, t->name);
5793 all_defined = FALSE;
5794 }
5795
5796 if (!all_defined)
5797 {
5798 bfd_set_error (bfd_error_bad_value);
5799 return FALSE;
5800 }
5801 }
5802
5803 /* Find all symbols which were defined in a dynamic object and make
5804 the backend pick a reasonable value for them. */
5805 elf_link_hash_traverse (elf_hash_table (info),
5806 _bfd_elf_adjust_dynamic_symbol,
5807 &eif);
5808 if (eif.failed)
5809 return FALSE;
5810
5811 /* Add some entries to the .dynamic section. We fill in some of the
5812 values later, in bfd_elf_final_link, but we must add the entries
5813 now so that we know the final size of the .dynamic section. */
5814
5815 /* If there are initialization and/or finalization functions to
5816 call then add the corresponding DT_INIT/DT_FINI entries. */
5817 h = (info->init_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->init_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5825 {
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5827 return FALSE;
5828 }
5829 h = (info->fini_function
5830 ? elf_link_hash_lookup (elf_hash_table (info),
5831 info->fini_function, FALSE,
5832 FALSE, FALSE)
5833 : NULL);
5834 if (h != NULL
5835 && (h->ref_regular
5836 || h->def_regular))
5837 {
5838 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5839 return FALSE;
5840 }
5841
5842 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5843 if (s != NULL && s->linker_has_input)
5844 {
5845 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5846 if (! info->executable)
5847 {
5848 bfd *sub;
5849 asection *o;
5850
5851 for (sub = info->input_bfds; sub != NULL;
5852 sub = sub->link.next)
5853 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5854 for (o = sub->sections; o != NULL; o = o->next)
5855 if (elf_section_data (o)->this_hdr.sh_type
5856 == SHT_PREINIT_ARRAY)
5857 {
5858 (*_bfd_error_handler)
5859 (_("%B: .preinit_array section is not allowed in DSO"),
5860 sub);
5861 break;
5862 }
5863
5864 bfd_set_error (bfd_error_nonrepresentable_section);
5865 return FALSE;
5866 }
5867
5868 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5869 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5870 return FALSE;
5871 }
5872 s = bfd_get_section_by_name (output_bfd, ".init_array");
5873 if (s != NULL && s->linker_has_input)
5874 {
5875 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5876 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5877 return FALSE;
5878 }
5879 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5880 if (s != NULL && s->linker_has_input)
5881 {
5882 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5883 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5884 return FALSE;
5885 }
5886
5887 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5888 /* If .dynstr is excluded from the link, we don't want any of
5889 these tags. Strictly, we should be checking each section
5890 individually; This quick check covers for the case where
5891 someone does a /DISCARD/ : { *(*) }. */
5892 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5893 {
5894 bfd_size_type strsize;
5895
5896 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5897 if ((info->emit_hash
5898 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5899 || (info->emit_gnu_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5901 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5902 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5905 bed->s->sizeof_sym))
5906 return FALSE;
5907 }
5908 }
5909
5910 /* The backend must work out the sizes of all the other dynamic
5911 sections. */
5912 if (dynobj != NULL
5913 && bed->elf_backend_size_dynamic_sections != NULL
5914 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5915 return FALSE;
5916
5917 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5918 return FALSE;
5919
5920 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5921 {
5922 unsigned long section_sym_count;
5923 struct bfd_elf_version_tree *verdefs;
5924 asection *s;
5925
5926 /* Set up the version definition section. */
5927 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5928 BFD_ASSERT (s != NULL);
5929
5930 /* We may have created additional version definitions if we are
5931 just linking a regular application. */
5932 verdefs = info->version_info;
5933
5934 /* Skip anonymous version tag. */
5935 if (verdefs != NULL && verdefs->vernum == 0)
5936 verdefs = verdefs->next;
5937
5938 if (verdefs == NULL && !info->create_default_symver)
5939 s->flags |= SEC_EXCLUDE;
5940 else
5941 {
5942 unsigned int cdefs;
5943 bfd_size_type size;
5944 struct bfd_elf_version_tree *t;
5945 bfd_byte *p;
5946 Elf_Internal_Verdef def;
5947 Elf_Internal_Verdaux defaux;
5948 struct bfd_link_hash_entry *bh;
5949 struct elf_link_hash_entry *h;
5950 const char *name;
5951
5952 cdefs = 0;
5953 size = 0;
5954
5955 /* Make space for the base version. */
5956 size += sizeof (Elf_External_Verdef);
5957 size += sizeof (Elf_External_Verdaux);
5958 ++cdefs;
5959
5960 /* Make space for the default version. */
5961 if (info->create_default_symver)
5962 {
5963 size += sizeof (Elf_External_Verdef);
5964 ++cdefs;
5965 }
5966
5967 for (t = verdefs; t != NULL; t = t->next)
5968 {
5969 struct bfd_elf_version_deps *n;
5970
5971 /* Don't emit base version twice. */
5972 if (t->vernum == 0)
5973 continue;
5974
5975 size += sizeof (Elf_External_Verdef);
5976 size += sizeof (Elf_External_Verdaux);
5977 ++cdefs;
5978
5979 for (n = t->deps; n != NULL; n = n->next)
5980 size += sizeof (Elf_External_Verdaux);
5981 }
5982
5983 s->size = size;
5984 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5985 if (s->contents == NULL && s->size != 0)
5986 return FALSE;
5987
5988 /* Fill in the version definition section. */
5989
5990 p = s->contents;
5991
5992 def.vd_version = VER_DEF_CURRENT;
5993 def.vd_flags = VER_FLG_BASE;
5994 def.vd_ndx = 1;
5995 def.vd_cnt = 1;
5996 if (info->create_default_symver)
5997 {
5998 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5999 def.vd_next = sizeof (Elf_External_Verdef);
6000 }
6001 else
6002 {
6003 def.vd_aux = sizeof (Elf_External_Verdef);
6004 def.vd_next = (sizeof (Elf_External_Verdef)
6005 + sizeof (Elf_External_Verdaux));
6006 }
6007
6008 if (soname_indx != (bfd_size_type) -1)
6009 {
6010 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6011 soname_indx);
6012 def.vd_hash = bfd_elf_hash (soname);
6013 defaux.vda_name = soname_indx;
6014 name = soname;
6015 }
6016 else
6017 {
6018 bfd_size_type indx;
6019
6020 name = lbasename (output_bfd->filename);
6021 def.vd_hash = bfd_elf_hash (name);
6022 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6023 name, FALSE);
6024 if (indx == (bfd_size_type) -1)
6025 return FALSE;
6026 defaux.vda_name = indx;
6027 }
6028 defaux.vda_next = 0;
6029
6030 _bfd_elf_swap_verdef_out (output_bfd, &def,
6031 (Elf_External_Verdef *) p);
6032 p += sizeof (Elf_External_Verdef);
6033 if (info->create_default_symver)
6034 {
6035 /* Add a symbol representing this version. */
6036 bh = NULL;
6037 if (! (_bfd_generic_link_add_one_symbol
6038 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6039 0, NULL, FALSE,
6040 get_elf_backend_data (dynobj)->collect, &bh)))
6041 return FALSE;
6042 h = (struct elf_link_hash_entry *) bh;
6043 h->non_elf = 0;
6044 h->def_regular = 1;
6045 h->type = STT_OBJECT;
6046 h->verinfo.vertree = NULL;
6047
6048 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6049 return FALSE;
6050
6051 /* Create a duplicate of the base version with the same
6052 aux block, but different flags. */
6053 def.vd_flags = 0;
6054 def.vd_ndx = 2;
6055 def.vd_aux = sizeof (Elf_External_Verdef);
6056 if (verdefs)
6057 def.vd_next = (sizeof (Elf_External_Verdef)
6058 + sizeof (Elf_External_Verdaux));
6059 else
6060 def.vd_next = 0;
6061 _bfd_elf_swap_verdef_out (output_bfd, &def,
6062 (Elf_External_Verdef *) p);
6063 p += sizeof (Elf_External_Verdef);
6064 }
6065 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6066 (Elf_External_Verdaux *) p);
6067 p += sizeof (Elf_External_Verdaux);
6068
6069 for (t = verdefs; t != NULL; t = t->next)
6070 {
6071 unsigned int cdeps;
6072 struct bfd_elf_version_deps *n;
6073
6074 /* Don't emit the base version twice. */
6075 if (t->vernum == 0)
6076 continue;
6077
6078 cdeps = 0;
6079 for (n = t->deps; n != NULL; n = n->next)
6080 ++cdeps;
6081
6082 /* Add a symbol representing this version. */
6083 bh = NULL;
6084 if (! (_bfd_generic_link_add_one_symbol
6085 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6086 0, NULL, FALSE,
6087 get_elf_backend_data (dynobj)->collect, &bh)))
6088 return FALSE;
6089 h = (struct elf_link_hash_entry *) bh;
6090 h->non_elf = 0;
6091 h->def_regular = 1;
6092 h->type = STT_OBJECT;
6093 h->verinfo.vertree = t;
6094
6095 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6096 return FALSE;
6097
6098 def.vd_version = VER_DEF_CURRENT;
6099 def.vd_flags = 0;
6100 if (t->globals.list == NULL
6101 && t->locals.list == NULL
6102 && ! t->used)
6103 def.vd_flags |= VER_FLG_WEAK;
6104 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6105 def.vd_cnt = cdeps + 1;
6106 def.vd_hash = bfd_elf_hash (t->name);
6107 def.vd_aux = sizeof (Elf_External_Verdef);
6108 def.vd_next = 0;
6109
6110 /* If a basever node is next, it *must* be the last node in
6111 the chain, otherwise Verdef construction breaks. */
6112 if (t->next != NULL && t->next->vernum == 0)
6113 BFD_ASSERT (t->next->next == NULL);
6114
6115 if (t->next != NULL && t->next->vernum != 0)
6116 def.vd_next = (sizeof (Elf_External_Verdef)
6117 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6118
6119 _bfd_elf_swap_verdef_out (output_bfd, &def,
6120 (Elf_External_Verdef *) p);
6121 p += sizeof (Elf_External_Verdef);
6122
6123 defaux.vda_name = h->dynstr_index;
6124 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6125 h->dynstr_index);
6126 defaux.vda_next = 0;
6127 if (t->deps != NULL)
6128 defaux.vda_next = sizeof (Elf_External_Verdaux);
6129 t->name_indx = defaux.vda_name;
6130
6131 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6132 (Elf_External_Verdaux *) p);
6133 p += sizeof (Elf_External_Verdaux);
6134
6135 for (n = t->deps; n != NULL; n = n->next)
6136 {
6137 if (n->version_needed == NULL)
6138 {
6139 /* This can happen if there was an error in the
6140 version script. */
6141 defaux.vda_name = 0;
6142 }
6143 else
6144 {
6145 defaux.vda_name = n->version_needed->name_indx;
6146 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6147 defaux.vda_name);
6148 }
6149 if (n->next == NULL)
6150 defaux.vda_next = 0;
6151 else
6152 defaux.vda_next = sizeof (Elf_External_Verdaux);
6153
6154 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6155 (Elf_External_Verdaux *) p);
6156 p += sizeof (Elf_External_Verdaux);
6157 }
6158 }
6159
6160 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6161 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6162 return FALSE;
6163
6164 elf_tdata (output_bfd)->cverdefs = cdefs;
6165 }
6166
6167 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6168 {
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6170 return FALSE;
6171 }
6172 else if (info->flags & DF_BIND_NOW)
6173 {
6174 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6175 return FALSE;
6176 }
6177
6178 if (info->flags_1)
6179 {
6180 if (info->executable)
6181 info->flags_1 &= ~ (DF_1_INITFIRST
6182 | DF_1_NODELETE
6183 | DF_1_NOOPEN);
6184 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6185 return FALSE;
6186 }
6187
6188 /* Work out the size of the version reference section. */
6189
6190 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6191 BFD_ASSERT (s != NULL);
6192 {
6193 struct elf_find_verdep_info sinfo;
6194
6195 sinfo.info = info;
6196 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6197 if (sinfo.vers == 0)
6198 sinfo.vers = 1;
6199 sinfo.failed = FALSE;
6200
6201 elf_link_hash_traverse (elf_hash_table (info),
6202 _bfd_elf_link_find_version_dependencies,
6203 &sinfo);
6204 if (sinfo.failed)
6205 return FALSE;
6206
6207 if (elf_tdata (output_bfd)->verref == NULL)
6208 s->flags |= SEC_EXCLUDE;
6209 else
6210 {
6211 Elf_Internal_Verneed *t;
6212 unsigned int size;
6213 unsigned int crefs;
6214 bfd_byte *p;
6215
6216 /* Build the version dependency section. */
6217 size = 0;
6218 crefs = 0;
6219 for (t = elf_tdata (output_bfd)->verref;
6220 t != NULL;
6221 t = t->vn_nextref)
6222 {
6223 Elf_Internal_Vernaux *a;
6224
6225 size += sizeof (Elf_External_Verneed);
6226 ++crefs;
6227 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6228 size += sizeof (Elf_External_Vernaux);
6229 }
6230
6231 s->size = size;
6232 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6233 if (s->contents == NULL)
6234 return FALSE;
6235
6236 p = s->contents;
6237 for (t = elf_tdata (output_bfd)->verref;
6238 t != NULL;
6239 t = t->vn_nextref)
6240 {
6241 unsigned int caux;
6242 Elf_Internal_Vernaux *a;
6243 bfd_size_type indx;
6244
6245 caux = 0;
6246 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6247 ++caux;
6248
6249 t->vn_version = VER_NEED_CURRENT;
6250 t->vn_cnt = caux;
6251 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6252 elf_dt_name (t->vn_bfd) != NULL
6253 ? elf_dt_name (t->vn_bfd)
6254 : lbasename (t->vn_bfd->filename),
6255 FALSE);
6256 if (indx == (bfd_size_type) -1)
6257 return FALSE;
6258 t->vn_file = indx;
6259 t->vn_aux = sizeof (Elf_External_Verneed);
6260 if (t->vn_nextref == NULL)
6261 t->vn_next = 0;
6262 else
6263 t->vn_next = (sizeof (Elf_External_Verneed)
6264 + caux * sizeof (Elf_External_Vernaux));
6265
6266 _bfd_elf_swap_verneed_out (output_bfd, t,
6267 (Elf_External_Verneed *) p);
6268 p += sizeof (Elf_External_Verneed);
6269
6270 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6271 {
6272 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6273 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6274 a->vna_nodename, FALSE);
6275 if (indx == (bfd_size_type) -1)
6276 return FALSE;
6277 a->vna_name = indx;
6278 if (a->vna_nextptr == NULL)
6279 a->vna_next = 0;
6280 else
6281 a->vna_next = sizeof (Elf_External_Vernaux);
6282
6283 _bfd_elf_swap_vernaux_out (output_bfd, a,
6284 (Elf_External_Vernaux *) p);
6285 p += sizeof (Elf_External_Vernaux);
6286 }
6287 }
6288
6289 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6290 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6291 return FALSE;
6292
6293 elf_tdata (output_bfd)->cverrefs = crefs;
6294 }
6295 }
6296
6297 if ((elf_tdata (output_bfd)->cverrefs == 0
6298 && elf_tdata (output_bfd)->cverdefs == 0)
6299 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6300 &section_sym_count) == 0)
6301 {
6302 s = bfd_get_linker_section (dynobj, ".gnu.version");
6303 s->flags |= SEC_EXCLUDE;
6304 }
6305 }
6306 return TRUE;
6307 }
6308
6309 /* Find the first non-excluded output section. We'll use its
6310 section symbol for some emitted relocs. */
6311 void
6312 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6313 {
6314 asection *s;
6315
6316 for (s = output_bfd->sections; s != NULL; s = s->next)
6317 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6318 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6319 {
6320 elf_hash_table (info)->text_index_section = s;
6321 break;
6322 }
6323 }
6324
6325 /* Find two non-excluded output sections, one for code, one for data.
6326 We'll use their section symbols for some emitted relocs. */
6327 void
6328 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6329 {
6330 asection *s;
6331
6332 /* Data first, since setting text_index_section changes
6333 _bfd_elf_link_omit_section_dynsym. */
6334 for (s = output_bfd->sections; s != NULL; s = s->next)
6335 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6336 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6337 {
6338 elf_hash_table (info)->data_index_section = s;
6339 break;
6340 }
6341
6342 for (s = output_bfd->sections; s != NULL; s = s->next)
6343 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6344 == (SEC_ALLOC | SEC_READONLY))
6345 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346 {
6347 elf_hash_table (info)->text_index_section = s;
6348 break;
6349 }
6350
6351 if (elf_hash_table (info)->text_index_section == NULL)
6352 elf_hash_table (info)->text_index_section
6353 = elf_hash_table (info)->data_index_section;
6354 }
6355
6356 bfd_boolean
6357 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6358 {
6359 const struct elf_backend_data *bed;
6360
6361 if (!is_elf_hash_table (info->hash))
6362 return TRUE;
6363
6364 bed = get_elf_backend_data (output_bfd);
6365 (*bed->elf_backend_init_index_section) (output_bfd, info);
6366
6367 if (elf_hash_table (info)->dynamic_sections_created)
6368 {
6369 bfd *dynobj;
6370 asection *s;
6371 bfd_size_type dynsymcount;
6372 unsigned long section_sym_count;
6373 unsigned int dtagcount;
6374
6375 dynobj = elf_hash_table (info)->dynobj;
6376
6377 /* Assign dynsym indicies. In a shared library we generate a
6378 section symbol for each output section, which come first.
6379 Next come all of the back-end allocated local dynamic syms,
6380 followed by the rest of the global symbols. */
6381
6382 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6383 &section_sym_count);
6384
6385 /* Work out the size of the symbol version section. */
6386 s = bfd_get_linker_section (dynobj, ".gnu.version");
6387 BFD_ASSERT (s != NULL);
6388 if (dynsymcount != 0
6389 && (s->flags & SEC_EXCLUDE) == 0)
6390 {
6391 s->size = dynsymcount * sizeof (Elf_External_Versym);
6392 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6393 if (s->contents == NULL)
6394 return FALSE;
6395
6396 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6397 return FALSE;
6398 }
6399
6400 /* Set the size of the .dynsym and .hash sections. We counted
6401 the number of dynamic symbols in elf_link_add_object_symbols.
6402 We will build the contents of .dynsym and .hash when we build
6403 the final symbol table, because until then we do not know the
6404 correct value to give the symbols. We built the .dynstr
6405 section as we went along in elf_link_add_object_symbols. */
6406 s = bfd_get_linker_section (dynobj, ".dynsym");
6407 BFD_ASSERT (s != NULL);
6408 s->size = dynsymcount * bed->s->sizeof_sym;
6409
6410 if (dynsymcount != 0)
6411 {
6412 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6413 if (s->contents == NULL)
6414 return FALSE;
6415
6416 /* The first entry in .dynsym is a dummy symbol.
6417 Clear all the section syms, in case we don't output them all. */
6418 ++section_sym_count;
6419 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6420 }
6421
6422 elf_hash_table (info)->bucketcount = 0;
6423
6424 /* Compute the size of the hashing table. As a side effect this
6425 computes the hash values for all the names we export. */
6426 if (info->emit_hash)
6427 {
6428 unsigned long int *hashcodes;
6429 struct hash_codes_info hashinf;
6430 bfd_size_type amt;
6431 unsigned long int nsyms;
6432 size_t bucketcount;
6433 size_t hash_entry_size;
6434
6435 /* Compute the hash values for all exported symbols. At the same
6436 time store the values in an array so that we could use them for
6437 optimizations. */
6438 amt = dynsymcount * sizeof (unsigned long int);
6439 hashcodes = (unsigned long int *) bfd_malloc (amt);
6440 if (hashcodes == NULL)
6441 return FALSE;
6442 hashinf.hashcodes = hashcodes;
6443 hashinf.error = FALSE;
6444
6445 /* Put all hash values in HASHCODES. */
6446 elf_link_hash_traverse (elf_hash_table (info),
6447 elf_collect_hash_codes, &hashinf);
6448 if (hashinf.error)
6449 {
6450 free (hashcodes);
6451 return FALSE;
6452 }
6453
6454 nsyms = hashinf.hashcodes - hashcodes;
6455 bucketcount
6456 = compute_bucket_count (info, hashcodes, nsyms, 0);
6457 free (hashcodes);
6458
6459 if (bucketcount == 0)
6460 return FALSE;
6461
6462 elf_hash_table (info)->bucketcount = bucketcount;
6463
6464 s = bfd_get_linker_section (dynobj, ".hash");
6465 BFD_ASSERT (s != NULL);
6466 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6467 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6468 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6469 if (s->contents == NULL)
6470 return FALSE;
6471
6472 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6473 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6474 s->contents + hash_entry_size);
6475 }
6476
6477 if (info->emit_gnu_hash)
6478 {
6479 size_t i, cnt;
6480 unsigned char *contents;
6481 struct collect_gnu_hash_codes cinfo;
6482 bfd_size_type amt;
6483 size_t bucketcount;
6484
6485 memset (&cinfo, 0, sizeof (cinfo));
6486
6487 /* Compute the hash values for all exported symbols. At the same
6488 time store the values in an array so that we could use them for
6489 optimizations. */
6490 amt = dynsymcount * 2 * sizeof (unsigned long int);
6491 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6492 if (cinfo.hashcodes == NULL)
6493 return FALSE;
6494
6495 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6496 cinfo.min_dynindx = -1;
6497 cinfo.output_bfd = output_bfd;
6498 cinfo.bed = bed;
6499
6500 /* Put all hash values in HASHCODES. */
6501 elf_link_hash_traverse (elf_hash_table (info),
6502 elf_collect_gnu_hash_codes, &cinfo);
6503 if (cinfo.error)
6504 {
6505 free (cinfo.hashcodes);
6506 return FALSE;
6507 }
6508
6509 bucketcount
6510 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6511
6512 if (bucketcount == 0)
6513 {
6514 free (cinfo.hashcodes);
6515 return FALSE;
6516 }
6517
6518 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6519 BFD_ASSERT (s != NULL);
6520
6521 if (cinfo.nsyms == 0)
6522 {
6523 /* Empty .gnu.hash section is special. */
6524 BFD_ASSERT (cinfo.min_dynindx == -1);
6525 free (cinfo.hashcodes);
6526 s->size = 5 * 4 + bed->s->arch_size / 8;
6527 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6528 if (contents == NULL)
6529 return FALSE;
6530 s->contents = contents;
6531 /* 1 empty bucket. */
6532 bfd_put_32 (output_bfd, 1, contents);
6533 /* SYMIDX above the special symbol 0. */
6534 bfd_put_32 (output_bfd, 1, contents + 4);
6535 /* Just one word for bitmask. */
6536 bfd_put_32 (output_bfd, 1, contents + 8);
6537 /* Only hash fn bloom filter. */
6538 bfd_put_32 (output_bfd, 0, contents + 12);
6539 /* No hashes are valid - empty bitmask. */
6540 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6541 /* No hashes in the only bucket. */
6542 bfd_put_32 (output_bfd, 0,
6543 contents + 16 + bed->s->arch_size / 8);
6544 }
6545 else
6546 {
6547 unsigned long int maskwords, maskbitslog2, x;
6548 BFD_ASSERT (cinfo.min_dynindx != -1);
6549
6550 x = cinfo.nsyms;
6551 maskbitslog2 = 1;
6552 while ((x >>= 1) != 0)
6553 ++maskbitslog2;
6554 if (maskbitslog2 < 3)
6555 maskbitslog2 = 5;
6556 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6557 maskbitslog2 = maskbitslog2 + 3;
6558 else
6559 maskbitslog2 = maskbitslog2 + 2;
6560 if (bed->s->arch_size == 64)
6561 {
6562 if (maskbitslog2 == 5)
6563 maskbitslog2 = 6;
6564 cinfo.shift1 = 6;
6565 }
6566 else
6567 cinfo.shift1 = 5;
6568 cinfo.mask = (1 << cinfo.shift1) - 1;
6569 cinfo.shift2 = maskbitslog2;
6570 cinfo.maskbits = 1 << maskbitslog2;
6571 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6572 amt = bucketcount * sizeof (unsigned long int) * 2;
6573 amt += maskwords * sizeof (bfd_vma);
6574 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6575 if (cinfo.bitmask == NULL)
6576 {
6577 free (cinfo.hashcodes);
6578 return FALSE;
6579 }
6580
6581 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6582 cinfo.indx = cinfo.counts + bucketcount;
6583 cinfo.symindx = dynsymcount - cinfo.nsyms;
6584 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6585
6586 /* Determine how often each hash bucket is used. */
6587 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6588 for (i = 0; i < cinfo.nsyms; ++i)
6589 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6590
6591 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6592 if (cinfo.counts[i] != 0)
6593 {
6594 cinfo.indx[i] = cnt;
6595 cnt += cinfo.counts[i];
6596 }
6597 BFD_ASSERT (cnt == dynsymcount);
6598 cinfo.bucketcount = bucketcount;
6599 cinfo.local_indx = cinfo.min_dynindx;
6600
6601 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6602 s->size += cinfo.maskbits / 8;
6603 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6604 if (contents == NULL)
6605 {
6606 free (cinfo.bitmask);
6607 free (cinfo.hashcodes);
6608 return FALSE;
6609 }
6610
6611 s->contents = contents;
6612 bfd_put_32 (output_bfd, bucketcount, contents);
6613 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6614 bfd_put_32 (output_bfd, maskwords, contents + 8);
6615 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6616 contents += 16 + cinfo.maskbits / 8;
6617
6618 for (i = 0; i < bucketcount; ++i)
6619 {
6620 if (cinfo.counts[i] == 0)
6621 bfd_put_32 (output_bfd, 0, contents);
6622 else
6623 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6624 contents += 4;
6625 }
6626
6627 cinfo.contents = contents;
6628
6629 /* Renumber dynamic symbols, populate .gnu.hash section. */
6630 elf_link_hash_traverse (elf_hash_table (info),
6631 elf_renumber_gnu_hash_syms, &cinfo);
6632
6633 contents = s->contents + 16;
6634 for (i = 0; i < maskwords; ++i)
6635 {
6636 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6637 contents);
6638 contents += bed->s->arch_size / 8;
6639 }
6640
6641 free (cinfo.bitmask);
6642 free (cinfo.hashcodes);
6643 }
6644 }
6645
6646 s = bfd_get_linker_section (dynobj, ".dynstr");
6647 BFD_ASSERT (s != NULL);
6648
6649 elf_finalize_dynstr (output_bfd, info);
6650
6651 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6652
6653 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6654 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6655 return FALSE;
6656 }
6657
6658 return TRUE;
6659 }
6660 \f
6661 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6662
6663 static void
6664 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6665 asection *sec)
6666 {
6667 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6668 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6669 }
6670
6671 /* Finish SHF_MERGE section merging. */
6672
6673 bfd_boolean
6674 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6675 {
6676 bfd *ibfd;
6677 asection *sec;
6678
6679 if (!is_elf_hash_table (info->hash))
6680 return FALSE;
6681
6682 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6683 if ((ibfd->flags & DYNAMIC) == 0)
6684 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6685 if ((sec->flags & SEC_MERGE) != 0
6686 && !bfd_is_abs_section (sec->output_section))
6687 {
6688 struct bfd_elf_section_data *secdata;
6689
6690 secdata = elf_section_data (sec);
6691 if (! _bfd_add_merge_section (abfd,
6692 &elf_hash_table (info)->merge_info,
6693 sec, &secdata->sec_info))
6694 return FALSE;
6695 else if (secdata->sec_info)
6696 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6697 }
6698
6699 if (elf_hash_table (info)->merge_info != NULL)
6700 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6701 merge_sections_remove_hook);
6702 return TRUE;
6703 }
6704
6705 /* Create an entry in an ELF linker hash table. */
6706
6707 struct bfd_hash_entry *
6708 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6709 struct bfd_hash_table *table,
6710 const char *string)
6711 {
6712 /* Allocate the structure if it has not already been allocated by a
6713 subclass. */
6714 if (entry == NULL)
6715 {
6716 entry = (struct bfd_hash_entry *)
6717 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6718 if (entry == NULL)
6719 return entry;
6720 }
6721
6722 /* Call the allocation method of the superclass. */
6723 entry = _bfd_link_hash_newfunc (entry, table, string);
6724 if (entry != NULL)
6725 {
6726 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6727 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6728
6729 /* Set local fields. */
6730 ret->indx = -1;
6731 ret->dynindx = -1;
6732 ret->got = htab->init_got_refcount;
6733 ret->plt = htab->init_plt_refcount;
6734 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6735 - offsetof (struct elf_link_hash_entry, size)));
6736 /* Assume that we have been called by a non-ELF symbol reader.
6737 This flag is then reset by the code which reads an ELF input
6738 file. This ensures that a symbol created by a non-ELF symbol
6739 reader will have the flag set correctly. */
6740 ret->non_elf = 1;
6741 }
6742
6743 return entry;
6744 }
6745
6746 /* Copy data from an indirect symbol to its direct symbol, hiding the
6747 old indirect symbol. Also used for copying flags to a weakdef. */
6748
6749 void
6750 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6751 struct elf_link_hash_entry *dir,
6752 struct elf_link_hash_entry *ind)
6753 {
6754 struct elf_link_hash_table *htab;
6755
6756 /* Copy down any references that we may have already seen to the
6757 symbol which just became indirect. */
6758
6759 dir->ref_dynamic |= ind->ref_dynamic;
6760 dir->ref_regular |= ind->ref_regular;
6761 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6762 dir->non_got_ref |= ind->non_got_ref;
6763 dir->needs_plt |= ind->needs_plt;
6764 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6765
6766 if (ind->root.type != bfd_link_hash_indirect)
6767 return;
6768
6769 /* Copy over the global and procedure linkage table refcount entries.
6770 These may have been already set up by a check_relocs routine. */
6771 htab = elf_hash_table (info);
6772 if (ind->got.refcount > htab->init_got_refcount.refcount)
6773 {
6774 if (dir->got.refcount < 0)
6775 dir->got.refcount = 0;
6776 dir->got.refcount += ind->got.refcount;
6777 ind->got.refcount = htab->init_got_refcount.refcount;
6778 }
6779
6780 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6781 {
6782 if (dir->plt.refcount < 0)
6783 dir->plt.refcount = 0;
6784 dir->plt.refcount += ind->plt.refcount;
6785 ind->plt.refcount = htab->init_plt_refcount.refcount;
6786 }
6787
6788 if (ind->dynindx != -1)
6789 {
6790 if (dir->dynindx != -1)
6791 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6792 dir->dynindx = ind->dynindx;
6793 dir->dynstr_index = ind->dynstr_index;
6794 ind->dynindx = -1;
6795 ind->dynstr_index = 0;
6796 }
6797 }
6798
6799 void
6800 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6801 struct elf_link_hash_entry *h,
6802 bfd_boolean force_local)
6803 {
6804 /* STT_GNU_IFUNC symbol must go through PLT. */
6805 if (h->type != STT_GNU_IFUNC)
6806 {
6807 h->plt = elf_hash_table (info)->init_plt_offset;
6808 h->needs_plt = 0;
6809 }
6810 if (force_local)
6811 {
6812 h->forced_local = 1;
6813 if (h->dynindx != -1)
6814 {
6815 h->dynindx = -1;
6816 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6817 h->dynstr_index);
6818 }
6819 }
6820 }
6821
6822 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6823 caller. */
6824
6825 bfd_boolean
6826 _bfd_elf_link_hash_table_init
6827 (struct elf_link_hash_table *table,
6828 bfd *abfd,
6829 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6830 struct bfd_hash_table *,
6831 const char *),
6832 unsigned int entsize,
6833 enum elf_target_id target_id)
6834 {
6835 bfd_boolean ret;
6836 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6837
6838 table->init_got_refcount.refcount = can_refcount - 1;
6839 table->init_plt_refcount.refcount = can_refcount - 1;
6840 table->init_got_offset.offset = -(bfd_vma) 1;
6841 table->init_plt_offset.offset = -(bfd_vma) 1;
6842 /* The first dynamic symbol is a dummy. */
6843 table->dynsymcount = 1;
6844
6845 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6846
6847 table->root.type = bfd_link_elf_hash_table;
6848 table->hash_table_id = target_id;
6849
6850 return ret;
6851 }
6852
6853 /* Create an ELF linker hash table. */
6854
6855 struct bfd_link_hash_table *
6856 _bfd_elf_link_hash_table_create (bfd *abfd)
6857 {
6858 struct elf_link_hash_table *ret;
6859 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6860
6861 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6862 if (ret == NULL)
6863 return NULL;
6864
6865 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6866 sizeof (struct elf_link_hash_entry),
6867 GENERIC_ELF_DATA))
6868 {
6869 free (ret);
6870 return NULL;
6871 }
6872 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6873
6874 return &ret->root;
6875 }
6876
6877 /* Destroy an ELF linker hash table. */
6878
6879 void
6880 _bfd_elf_link_hash_table_free (bfd *obfd)
6881 {
6882 struct elf_link_hash_table *htab;
6883
6884 htab = (struct elf_link_hash_table *) obfd->link.hash;
6885 if (htab->dynstr != NULL)
6886 _bfd_elf_strtab_free (htab->dynstr);
6887 _bfd_merge_sections_free (htab->merge_info);
6888 _bfd_generic_link_hash_table_free (obfd);
6889 }
6890
6891 /* This is a hook for the ELF emulation code in the generic linker to
6892 tell the backend linker what file name to use for the DT_NEEDED
6893 entry for a dynamic object. */
6894
6895 void
6896 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6897 {
6898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6899 && bfd_get_format (abfd) == bfd_object)
6900 elf_dt_name (abfd) = name;
6901 }
6902
6903 int
6904 bfd_elf_get_dyn_lib_class (bfd *abfd)
6905 {
6906 int lib_class;
6907 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6908 && bfd_get_format (abfd) == bfd_object)
6909 lib_class = elf_dyn_lib_class (abfd);
6910 else
6911 lib_class = 0;
6912 return lib_class;
6913 }
6914
6915 void
6916 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6917 {
6918 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6919 && bfd_get_format (abfd) == bfd_object)
6920 elf_dyn_lib_class (abfd) = lib_class;
6921 }
6922
6923 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6924 the linker ELF emulation code. */
6925
6926 struct bfd_link_needed_list *
6927 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6928 struct bfd_link_info *info)
6929 {
6930 if (! is_elf_hash_table (info->hash))
6931 return NULL;
6932 return elf_hash_table (info)->needed;
6933 }
6934
6935 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6936 hook for the linker ELF emulation code. */
6937
6938 struct bfd_link_needed_list *
6939 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6940 struct bfd_link_info *info)
6941 {
6942 if (! is_elf_hash_table (info->hash))
6943 return NULL;
6944 return elf_hash_table (info)->runpath;
6945 }
6946
6947 /* Get the name actually used for a dynamic object for a link. This
6948 is the SONAME entry if there is one. Otherwise, it is the string
6949 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6950
6951 const char *
6952 bfd_elf_get_dt_soname (bfd *abfd)
6953 {
6954 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6955 && bfd_get_format (abfd) == bfd_object)
6956 return elf_dt_name (abfd);
6957 return NULL;
6958 }
6959
6960 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6961 the ELF linker emulation code. */
6962
6963 bfd_boolean
6964 bfd_elf_get_bfd_needed_list (bfd *abfd,
6965 struct bfd_link_needed_list **pneeded)
6966 {
6967 asection *s;
6968 bfd_byte *dynbuf = NULL;
6969 unsigned int elfsec;
6970 unsigned long shlink;
6971 bfd_byte *extdyn, *extdynend;
6972 size_t extdynsize;
6973 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6974
6975 *pneeded = NULL;
6976
6977 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6978 || bfd_get_format (abfd) != bfd_object)
6979 return TRUE;
6980
6981 s = bfd_get_section_by_name (abfd, ".dynamic");
6982 if (s == NULL || s->size == 0)
6983 return TRUE;
6984
6985 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6986 goto error_return;
6987
6988 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6989 if (elfsec == SHN_BAD)
6990 goto error_return;
6991
6992 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6993
6994 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6995 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6996
6997 extdyn = dynbuf;
6998 extdynend = extdyn + s->size;
6999 for (; extdyn < extdynend; extdyn += extdynsize)
7000 {
7001 Elf_Internal_Dyn dyn;
7002
7003 (*swap_dyn_in) (abfd, extdyn, &dyn);
7004
7005 if (dyn.d_tag == DT_NULL)
7006 break;
7007
7008 if (dyn.d_tag == DT_NEEDED)
7009 {
7010 const char *string;
7011 struct bfd_link_needed_list *l;
7012 unsigned int tagv = dyn.d_un.d_val;
7013 bfd_size_type amt;
7014
7015 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7016 if (string == NULL)
7017 goto error_return;
7018
7019 amt = sizeof *l;
7020 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7021 if (l == NULL)
7022 goto error_return;
7023
7024 l->by = abfd;
7025 l->name = string;
7026 l->next = *pneeded;
7027 *pneeded = l;
7028 }
7029 }
7030
7031 free (dynbuf);
7032
7033 return TRUE;
7034
7035 error_return:
7036 if (dynbuf != NULL)
7037 free (dynbuf);
7038 return FALSE;
7039 }
7040
7041 struct elf_symbuf_symbol
7042 {
7043 unsigned long st_name; /* Symbol name, index in string tbl */
7044 unsigned char st_info; /* Type and binding attributes */
7045 unsigned char st_other; /* Visibilty, and target specific */
7046 };
7047
7048 struct elf_symbuf_head
7049 {
7050 struct elf_symbuf_symbol *ssym;
7051 bfd_size_type count;
7052 unsigned int st_shndx;
7053 };
7054
7055 struct elf_symbol
7056 {
7057 union
7058 {
7059 Elf_Internal_Sym *isym;
7060 struct elf_symbuf_symbol *ssym;
7061 } u;
7062 const char *name;
7063 };
7064
7065 /* Sort references to symbols by ascending section number. */
7066
7067 static int
7068 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7069 {
7070 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7071 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7072
7073 return s1->st_shndx - s2->st_shndx;
7074 }
7075
7076 static int
7077 elf_sym_name_compare (const void *arg1, const void *arg2)
7078 {
7079 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7080 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7081 return strcmp (s1->name, s2->name);
7082 }
7083
7084 static struct elf_symbuf_head *
7085 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7086 {
7087 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7088 struct elf_symbuf_symbol *ssym;
7089 struct elf_symbuf_head *ssymbuf, *ssymhead;
7090 bfd_size_type i, shndx_count, total_size;
7091
7092 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7093 if (indbuf == NULL)
7094 return NULL;
7095
7096 for (ind = indbuf, i = 0; i < symcount; i++)
7097 if (isymbuf[i].st_shndx != SHN_UNDEF)
7098 *ind++ = &isymbuf[i];
7099 indbufend = ind;
7100
7101 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7102 elf_sort_elf_symbol);
7103
7104 shndx_count = 0;
7105 if (indbufend > indbuf)
7106 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7107 if (ind[0]->st_shndx != ind[1]->st_shndx)
7108 shndx_count++;
7109
7110 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7111 + (indbufend - indbuf) * sizeof (*ssym));
7112 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7113 if (ssymbuf == NULL)
7114 {
7115 free (indbuf);
7116 return NULL;
7117 }
7118
7119 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7120 ssymbuf->ssym = NULL;
7121 ssymbuf->count = shndx_count;
7122 ssymbuf->st_shndx = 0;
7123 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7124 {
7125 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7126 {
7127 ssymhead++;
7128 ssymhead->ssym = ssym;
7129 ssymhead->count = 0;
7130 ssymhead->st_shndx = (*ind)->st_shndx;
7131 }
7132 ssym->st_name = (*ind)->st_name;
7133 ssym->st_info = (*ind)->st_info;
7134 ssym->st_other = (*ind)->st_other;
7135 ssymhead->count++;
7136 }
7137 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7138 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7139 == total_size));
7140
7141 free (indbuf);
7142 return ssymbuf;
7143 }
7144
7145 /* Check if 2 sections define the same set of local and global
7146 symbols. */
7147
7148 static bfd_boolean
7149 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7150 struct bfd_link_info *info)
7151 {
7152 bfd *bfd1, *bfd2;
7153 const struct elf_backend_data *bed1, *bed2;
7154 Elf_Internal_Shdr *hdr1, *hdr2;
7155 bfd_size_type symcount1, symcount2;
7156 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7157 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7158 Elf_Internal_Sym *isym, *isymend;
7159 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7160 bfd_size_type count1, count2, i;
7161 unsigned int shndx1, shndx2;
7162 bfd_boolean result;
7163
7164 bfd1 = sec1->owner;
7165 bfd2 = sec2->owner;
7166
7167 /* Both sections have to be in ELF. */
7168 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7169 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7170 return FALSE;
7171
7172 if (elf_section_type (sec1) != elf_section_type (sec2))
7173 return FALSE;
7174
7175 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7176 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7177 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7178 return FALSE;
7179
7180 bed1 = get_elf_backend_data (bfd1);
7181 bed2 = get_elf_backend_data (bfd2);
7182 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7183 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7184 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7185 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7186
7187 if (symcount1 == 0 || symcount2 == 0)
7188 return FALSE;
7189
7190 result = FALSE;
7191 isymbuf1 = NULL;
7192 isymbuf2 = NULL;
7193 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7194 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7195
7196 if (ssymbuf1 == NULL)
7197 {
7198 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7199 NULL, NULL, NULL);
7200 if (isymbuf1 == NULL)
7201 goto done;
7202
7203 if (!info->reduce_memory_overheads)
7204 elf_tdata (bfd1)->symbuf = ssymbuf1
7205 = elf_create_symbuf (symcount1, isymbuf1);
7206 }
7207
7208 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7209 {
7210 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7211 NULL, NULL, NULL);
7212 if (isymbuf2 == NULL)
7213 goto done;
7214
7215 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7216 elf_tdata (bfd2)->symbuf = ssymbuf2
7217 = elf_create_symbuf (symcount2, isymbuf2);
7218 }
7219
7220 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7221 {
7222 /* Optimized faster version. */
7223 bfd_size_type lo, hi, mid;
7224 struct elf_symbol *symp;
7225 struct elf_symbuf_symbol *ssym, *ssymend;
7226
7227 lo = 0;
7228 hi = ssymbuf1->count;
7229 ssymbuf1++;
7230 count1 = 0;
7231 while (lo < hi)
7232 {
7233 mid = (lo + hi) / 2;
7234 if (shndx1 < ssymbuf1[mid].st_shndx)
7235 hi = mid;
7236 else if (shndx1 > ssymbuf1[mid].st_shndx)
7237 lo = mid + 1;
7238 else
7239 {
7240 count1 = ssymbuf1[mid].count;
7241 ssymbuf1 += mid;
7242 break;
7243 }
7244 }
7245
7246 lo = 0;
7247 hi = ssymbuf2->count;
7248 ssymbuf2++;
7249 count2 = 0;
7250 while (lo < hi)
7251 {
7252 mid = (lo + hi) / 2;
7253 if (shndx2 < ssymbuf2[mid].st_shndx)
7254 hi = mid;
7255 else if (shndx2 > ssymbuf2[mid].st_shndx)
7256 lo = mid + 1;
7257 else
7258 {
7259 count2 = ssymbuf2[mid].count;
7260 ssymbuf2 += mid;
7261 break;
7262 }
7263 }
7264
7265 if (count1 == 0 || count2 == 0 || count1 != count2)
7266 goto done;
7267
7268 symtable1
7269 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7270 symtable2
7271 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7272 if (symtable1 == NULL || symtable2 == NULL)
7273 goto done;
7274
7275 symp = symtable1;
7276 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7277 ssym < ssymend; ssym++, symp++)
7278 {
7279 symp->u.ssym = ssym;
7280 symp->name = bfd_elf_string_from_elf_section (bfd1,
7281 hdr1->sh_link,
7282 ssym->st_name);
7283 }
7284
7285 symp = symtable2;
7286 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7287 ssym < ssymend; ssym++, symp++)
7288 {
7289 symp->u.ssym = ssym;
7290 symp->name = bfd_elf_string_from_elf_section (bfd2,
7291 hdr2->sh_link,
7292 ssym->st_name);
7293 }
7294
7295 /* Sort symbol by name. */
7296 qsort (symtable1, count1, sizeof (struct elf_symbol),
7297 elf_sym_name_compare);
7298 qsort (symtable2, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300
7301 for (i = 0; i < count1; i++)
7302 /* Two symbols must have the same binding, type and name. */
7303 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7304 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7305 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7306 goto done;
7307
7308 result = TRUE;
7309 goto done;
7310 }
7311
7312 symtable1 = (struct elf_symbol *)
7313 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7314 symtable2 = (struct elf_symbol *)
7315 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7316 if (symtable1 == NULL || symtable2 == NULL)
7317 goto done;
7318
7319 /* Count definitions in the section. */
7320 count1 = 0;
7321 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7322 if (isym->st_shndx == shndx1)
7323 symtable1[count1++].u.isym = isym;
7324
7325 count2 = 0;
7326 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7327 if (isym->st_shndx == shndx2)
7328 symtable2[count2++].u.isym = isym;
7329
7330 if (count1 == 0 || count2 == 0 || count1 != count2)
7331 goto done;
7332
7333 for (i = 0; i < count1; i++)
7334 symtable1[i].name
7335 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7336 symtable1[i].u.isym->st_name);
7337
7338 for (i = 0; i < count2; i++)
7339 symtable2[i].name
7340 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7341 symtable2[i].u.isym->st_name);
7342
7343 /* Sort symbol by name. */
7344 qsort (symtable1, count1, sizeof (struct elf_symbol),
7345 elf_sym_name_compare);
7346 qsort (symtable2, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348
7349 for (i = 0; i < count1; i++)
7350 /* Two symbols must have the same binding, type and name. */
7351 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7352 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7353 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7354 goto done;
7355
7356 result = TRUE;
7357
7358 done:
7359 if (symtable1)
7360 free (symtable1);
7361 if (symtable2)
7362 free (symtable2);
7363 if (isymbuf1)
7364 free (isymbuf1);
7365 if (isymbuf2)
7366 free (isymbuf2);
7367
7368 return result;
7369 }
7370
7371 /* Return TRUE if 2 section types are compatible. */
7372
7373 bfd_boolean
7374 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7375 bfd *bbfd, const asection *bsec)
7376 {
7377 if (asec == NULL
7378 || bsec == NULL
7379 || abfd->xvec->flavour != bfd_target_elf_flavour
7380 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7381 return TRUE;
7382
7383 return elf_section_type (asec) == elf_section_type (bsec);
7384 }
7385 \f
7386 /* Final phase of ELF linker. */
7387
7388 /* A structure we use to avoid passing large numbers of arguments. */
7389
7390 struct elf_final_link_info
7391 {
7392 /* General link information. */
7393 struct bfd_link_info *info;
7394 /* Output BFD. */
7395 bfd *output_bfd;
7396 /* Symbol string table. */
7397 struct bfd_strtab_hash *symstrtab;
7398 /* .dynsym section. */
7399 asection *dynsym_sec;
7400 /* .hash section. */
7401 asection *hash_sec;
7402 /* symbol version section (.gnu.version). */
7403 asection *symver_sec;
7404 /* Buffer large enough to hold contents of any section. */
7405 bfd_byte *contents;
7406 /* Buffer large enough to hold external relocs of any section. */
7407 void *external_relocs;
7408 /* Buffer large enough to hold internal relocs of any section. */
7409 Elf_Internal_Rela *internal_relocs;
7410 /* Buffer large enough to hold external local symbols of any input
7411 BFD. */
7412 bfd_byte *external_syms;
7413 /* And a buffer for symbol section indices. */
7414 Elf_External_Sym_Shndx *locsym_shndx;
7415 /* Buffer large enough to hold internal local symbols of any input
7416 BFD. */
7417 Elf_Internal_Sym *internal_syms;
7418 /* Array large enough to hold a symbol index for each local symbol
7419 of any input BFD. */
7420 long *indices;
7421 /* Array large enough to hold a section pointer for each local
7422 symbol of any input BFD. */
7423 asection **sections;
7424 /* Buffer to hold swapped out symbols. */
7425 bfd_byte *symbuf;
7426 /* And one for symbol section indices. */
7427 Elf_External_Sym_Shndx *symshndxbuf;
7428 /* Number of swapped out symbols in buffer. */
7429 size_t symbuf_count;
7430 /* Number of symbols which fit in symbuf. */
7431 size_t symbuf_size;
7432 /* And same for symshndxbuf. */
7433 size_t shndxbuf_size;
7434 /* Number of STT_FILE syms seen. */
7435 size_t filesym_count;
7436 };
7437
7438 /* This struct is used to pass information to elf_link_output_extsym. */
7439
7440 struct elf_outext_info
7441 {
7442 bfd_boolean failed;
7443 bfd_boolean localsyms;
7444 bfd_boolean file_sym_done;
7445 struct elf_final_link_info *flinfo;
7446 };
7447
7448
7449 /* Support for evaluating a complex relocation.
7450
7451 Complex relocations are generalized, self-describing relocations. The
7452 implementation of them consists of two parts: complex symbols, and the
7453 relocations themselves.
7454
7455 The relocations are use a reserved elf-wide relocation type code (R_RELC
7456 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7457 information (start bit, end bit, word width, etc) into the addend. This
7458 information is extracted from CGEN-generated operand tables within gas.
7459
7460 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7461 internal) representing prefix-notation expressions, including but not
7462 limited to those sorts of expressions normally encoded as addends in the
7463 addend field. The symbol mangling format is:
7464
7465 <node> := <literal>
7466 | <unary-operator> ':' <node>
7467 | <binary-operator> ':' <node> ':' <node>
7468 ;
7469
7470 <literal> := 's' <digits=N> ':' <N character symbol name>
7471 | 'S' <digits=N> ':' <N character section name>
7472 | '#' <hexdigits>
7473 ;
7474
7475 <binary-operator> := as in C
7476 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7477
7478 static void
7479 set_symbol_value (bfd *bfd_with_globals,
7480 Elf_Internal_Sym *isymbuf,
7481 size_t locsymcount,
7482 size_t symidx,
7483 bfd_vma val)
7484 {
7485 struct elf_link_hash_entry **sym_hashes;
7486 struct elf_link_hash_entry *h;
7487 size_t extsymoff = locsymcount;
7488
7489 if (symidx < locsymcount)
7490 {
7491 Elf_Internal_Sym *sym;
7492
7493 sym = isymbuf + symidx;
7494 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7495 {
7496 /* It is a local symbol: move it to the
7497 "absolute" section and give it a value. */
7498 sym->st_shndx = SHN_ABS;
7499 sym->st_value = val;
7500 return;
7501 }
7502 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7503 extsymoff = 0;
7504 }
7505
7506 /* It is a global symbol: set its link type
7507 to "defined" and give it a value. */
7508
7509 sym_hashes = elf_sym_hashes (bfd_with_globals);
7510 h = sym_hashes [symidx - extsymoff];
7511 while (h->root.type == bfd_link_hash_indirect
7512 || h->root.type == bfd_link_hash_warning)
7513 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7514 h->root.type = bfd_link_hash_defined;
7515 h->root.u.def.value = val;
7516 h->root.u.def.section = bfd_abs_section_ptr;
7517 }
7518
7519 static bfd_boolean
7520 resolve_symbol (const char *name,
7521 bfd *input_bfd,
7522 struct elf_final_link_info *flinfo,
7523 bfd_vma *result,
7524 Elf_Internal_Sym *isymbuf,
7525 size_t locsymcount)
7526 {
7527 Elf_Internal_Sym *sym;
7528 struct bfd_link_hash_entry *global_entry;
7529 const char *candidate = NULL;
7530 Elf_Internal_Shdr *symtab_hdr;
7531 size_t i;
7532
7533 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7534
7535 for (i = 0; i < locsymcount; ++ i)
7536 {
7537 sym = isymbuf + i;
7538
7539 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7540 continue;
7541
7542 candidate = bfd_elf_string_from_elf_section (input_bfd,
7543 symtab_hdr->sh_link,
7544 sym->st_name);
7545 #ifdef DEBUG
7546 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7547 name, candidate, (unsigned long) sym->st_value);
7548 #endif
7549 if (candidate && strcmp (candidate, name) == 0)
7550 {
7551 asection *sec = flinfo->sections [i];
7552
7553 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7554 *result += sec->output_offset + sec->output_section->vma;
7555 #ifdef DEBUG
7556 printf ("Found symbol with value %8.8lx\n",
7557 (unsigned long) *result);
7558 #endif
7559 return TRUE;
7560 }
7561 }
7562
7563 /* Hmm, haven't found it yet. perhaps it is a global. */
7564 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7565 FALSE, FALSE, TRUE);
7566 if (!global_entry)
7567 return FALSE;
7568
7569 if (global_entry->type == bfd_link_hash_defined
7570 || global_entry->type == bfd_link_hash_defweak)
7571 {
7572 *result = (global_entry->u.def.value
7573 + global_entry->u.def.section->output_section->vma
7574 + global_entry->u.def.section->output_offset);
7575 #ifdef DEBUG
7576 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7577 global_entry->root.string, (unsigned long) *result);
7578 #endif
7579 return TRUE;
7580 }
7581
7582 return FALSE;
7583 }
7584
7585 static bfd_boolean
7586 resolve_section (const char *name,
7587 asection *sections,
7588 bfd_vma *result)
7589 {
7590 asection *curr;
7591 unsigned int len;
7592
7593 for (curr = sections; curr; curr = curr->next)
7594 if (strcmp (curr->name, name) == 0)
7595 {
7596 *result = curr->vma;
7597 return TRUE;
7598 }
7599
7600 /* Hmm. still haven't found it. try pseudo-section names. */
7601 for (curr = sections; curr; curr = curr->next)
7602 {
7603 len = strlen (curr->name);
7604 if (len > strlen (name))
7605 continue;
7606
7607 if (strncmp (curr->name, name, len) == 0)
7608 {
7609 if (strncmp (".end", name + len, 4) == 0)
7610 {
7611 *result = curr->vma + curr->size;
7612 return TRUE;
7613 }
7614
7615 /* Insert more pseudo-section names here, if you like. */
7616 }
7617 }
7618
7619 return FALSE;
7620 }
7621
7622 static void
7623 undefined_reference (const char *reftype, const char *name)
7624 {
7625 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7626 reftype, name);
7627 }
7628
7629 static bfd_boolean
7630 eval_symbol (bfd_vma *result,
7631 const char **symp,
7632 bfd *input_bfd,
7633 struct elf_final_link_info *flinfo,
7634 bfd_vma dot,
7635 Elf_Internal_Sym *isymbuf,
7636 size_t locsymcount,
7637 int signed_p)
7638 {
7639 size_t len;
7640 size_t symlen;
7641 bfd_vma a;
7642 bfd_vma b;
7643 char symbuf[4096];
7644 const char *sym = *symp;
7645 const char *symend;
7646 bfd_boolean symbol_is_section = FALSE;
7647
7648 len = strlen (sym);
7649 symend = sym + len;
7650
7651 if (len < 1 || len > sizeof (symbuf))
7652 {
7653 bfd_set_error (bfd_error_invalid_operation);
7654 return FALSE;
7655 }
7656
7657 switch (* sym)
7658 {
7659 case '.':
7660 *result = dot;
7661 *symp = sym + 1;
7662 return TRUE;
7663
7664 case '#':
7665 ++sym;
7666 *result = strtoul (sym, (char **) symp, 16);
7667 return TRUE;
7668
7669 case 'S':
7670 symbol_is_section = TRUE;
7671 case 's':
7672 ++sym;
7673 symlen = strtol (sym, (char **) symp, 10);
7674 sym = *symp + 1; /* Skip the trailing ':'. */
7675
7676 if (symend < sym || symlen + 1 > sizeof (symbuf))
7677 {
7678 bfd_set_error (bfd_error_invalid_operation);
7679 return FALSE;
7680 }
7681
7682 memcpy (symbuf, sym, symlen);
7683 symbuf[symlen] = '\0';
7684 *symp = sym + symlen;
7685
7686 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7687 the symbol as a section, or vice-versa. so we're pretty liberal in our
7688 interpretation here; section means "try section first", not "must be a
7689 section", and likewise with symbol. */
7690
7691 if (symbol_is_section)
7692 {
7693 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7694 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7695 isymbuf, locsymcount))
7696 {
7697 undefined_reference ("section", symbuf);
7698 return FALSE;
7699 }
7700 }
7701 else
7702 {
7703 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7704 isymbuf, locsymcount)
7705 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7706 result))
7707 {
7708 undefined_reference ("symbol", symbuf);
7709 return FALSE;
7710 }
7711 }
7712
7713 return TRUE;
7714
7715 /* All that remains are operators. */
7716
7717 #define UNARY_OP(op) \
7718 if (strncmp (sym, #op, strlen (#op)) == 0) \
7719 { \
7720 sym += strlen (#op); \
7721 if (*sym == ':') \
7722 ++sym; \
7723 *symp = sym; \
7724 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7725 isymbuf, locsymcount, signed_p)) \
7726 return FALSE; \
7727 if (signed_p) \
7728 *result = op ((bfd_signed_vma) a); \
7729 else \
7730 *result = op a; \
7731 return TRUE; \
7732 }
7733
7734 #define BINARY_OP(op) \
7735 if (strncmp (sym, #op, strlen (#op)) == 0) \
7736 { \
7737 sym += strlen (#op); \
7738 if (*sym == ':') \
7739 ++sym; \
7740 *symp = sym; \
7741 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7742 isymbuf, locsymcount, signed_p)) \
7743 return FALSE; \
7744 ++*symp; \
7745 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7746 isymbuf, locsymcount, signed_p)) \
7747 return FALSE; \
7748 if (signed_p) \
7749 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7750 else \
7751 *result = a op b; \
7752 return TRUE; \
7753 }
7754
7755 default:
7756 UNARY_OP (0-);
7757 BINARY_OP (<<);
7758 BINARY_OP (>>);
7759 BINARY_OP (==);
7760 BINARY_OP (!=);
7761 BINARY_OP (<=);
7762 BINARY_OP (>=);
7763 BINARY_OP (&&);
7764 BINARY_OP (||);
7765 UNARY_OP (~);
7766 UNARY_OP (!);
7767 BINARY_OP (*);
7768 BINARY_OP (/);
7769 BINARY_OP (%);
7770 BINARY_OP (^);
7771 BINARY_OP (|);
7772 BINARY_OP (&);
7773 BINARY_OP (+);
7774 BINARY_OP (-);
7775 BINARY_OP (<);
7776 BINARY_OP (>);
7777 #undef UNARY_OP
7778 #undef BINARY_OP
7779 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7780 bfd_set_error (bfd_error_invalid_operation);
7781 return FALSE;
7782 }
7783 }
7784
7785 static void
7786 put_value (bfd_vma size,
7787 unsigned long chunksz,
7788 bfd *input_bfd,
7789 bfd_vma x,
7790 bfd_byte *location)
7791 {
7792 location += (size - chunksz);
7793
7794 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7795 {
7796 switch (chunksz)
7797 {
7798 default:
7799 case 0:
7800 abort ();
7801 case 1:
7802 bfd_put_8 (input_bfd, x, location);
7803 break;
7804 case 2:
7805 bfd_put_16 (input_bfd, x, location);
7806 break;
7807 case 4:
7808 bfd_put_32 (input_bfd, x, location);
7809 break;
7810 case 8:
7811 #ifdef BFD64
7812 bfd_put_64 (input_bfd, x, location);
7813 #else
7814 abort ();
7815 #endif
7816 break;
7817 }
7818 }
7819 }
7820
7821 static bfd_vma
7822 get_value (bfd_vma size,
7823 unsigned long chunksz,
7824 bfd *input_bfd,
7825 bfd_byte *location)
7826 {
7827 int shift;
7828 bfd_vma x = 0;
7829
7830 /* Sanity checks. */
7831 BFD_ASSERT (chunksz <= sizeof (x)
7832 && size >= chunksz
7833 && chunksz != 0
7834 && (size % chunksz) == 0
7835 && input_bfd != NULL
7836 && location != NULL);
7837
7838 if (chunksz == sizeof (x))
7839 {
7840 BFD_ASSERT (size == chunksz);
7841
7842 /* Make sure that we do not perform an undefined shift operation.
7843 We know that size == chunksz so there will only be one iteration
7844 of the loop below. */
7845 shift = 0;
7846 }
7847 else
7848 shift = 8 * chunksz;
7849
7850 for (; size; size -= chunksz, location += chunksz)
7851 {
7852 switch (chunksz)
7853 {
7854 case 1:
7855 x = (x << shift) | bfd_get_8 (input_bfd, location);
7856 break;
7857 case 2:
7858 x = (x << shift) | bfd_get_16 (input_bfd, location);
7859 break;
7860 case 4:
7861 x = (x << shift) | bfd_get_32 (input_bfd, location);
7862 break;
7863 #ifdef BFD64
7864 case 8:
7865 x = (x << shift) | bfd_get_64 (input_bfd, location);
7866 break;
7867 #endif
7868 default:
7869 abort ();
7870 }
7871 }
7872 return x;
7873 }
7874
7875 static void
7876 decode_complex_addend (unsigned long *start, /* in bits */
7877 unsigned long *oplen, /* in bits */
7878 unsigned long *len, /* in bits */
7879 unsigned long *wordsz, /* in bytes */
7880 unsigned long *chunksz, /* in bytes */
7881 unsigned long *lsb0_p,
7882 unsigned long *signed_p,
7883 unsigned long *trunc_p,
7884 unsigned long encoded)
7885 {
7886 * start = encoded & 0x3F;
7887 * len = (encoded >> 6) & 0x3F;
7888 * oplen = (encoded >> 12) & 0x3F;
7889 * wordsz = (encoded >> 18) & 0xF;
7890 * chunksz = (encoded >> 22) & 0xF;
7891 * lsb0_p = (encoded >> 27) & 1;
7892 * signed_p = (encoded >> 28) & 1;
7893 * trunc_p = (encoded >> 29) & 1;
7894 }
7895
7896 bfd_reloc_status_type
7897 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7898 asection *input_section ATTRIBUTE_UNUSED,
7899 bfd_byte *contents,
7900 Elf_Internal_Rela *rel,
7901 bfd_vma relocation)
7902 {
7903 bfd_vma shift, x, mask;
7904 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7905 bfd_reloc_status_type r;
7906
7907 /* Perform this reloc, since it is complex.
7908 (this is not to say that it necessarily refers to a complex
7909 symbol; merely that it is a self-describing CGEN based reloc.
7910 i.e. the addend has the complete reloc information (bit start, end,
7911 word size, etc) encoded within it.). */
7912
7913 decode_complex_addend (&start, &oplen, &len, &wordsz,
7914 &chunksz, &lsb0_p, &signed_p,
7915 &trunc_p, rel->r_addend);
7916
7917 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7918
7919 if (lsb0_p)
7920 shift = (start + 1) - len;
7921 else
7922 shift = (8 * wordsz) - (start + len);
7923
7924 /* FIXME: octets_per_byte. */
7925 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7926
7927 #ifdef DEBUG
7928 printf ("Doing complex reloc: "
7929 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7930 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7931 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7932 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7933 oplen, (unsigned long) x, (unsigned long) mask,
7934 (unsigned long) relocation);
7935 #endif
7936
7937 r = bfd_reloc_ok;
7938 if (! trunc_p)
7939 /* Now do an overflow check. */
7940 r = bfd_check_overflow ((signed_p
7941 ? complain_overflow_signed
7942 : complain_overflow_unsigned),
7943 len, 0, (8 * wordsz),
7944 relocation);
7945
7946 /* Do the deed. */
7947 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7948
7949 #ifdef DEBUG
7950 printf (" relocation: %8.8lx\n"
7951 " shifted mask: %8.8lx\n"
7952 " shifted/masked reloc: %8.8lx\n"
7953 " result: %8.8lx\n",
7954 (unsigned long) relocation, (unsigned long) (mask << shift),
7955 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7956 #endif
7957 /* FIXME: octets_per_byte. */
7958 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7959 return r;
7960 }
7961
7962 /* qsort comparison functions sorting external relocs by r_offset. */
7963
7964 static int
7965 cmp_ext32l_r_offset (const void *p, const void *q)
7966 {
7967 union aligned32
7968 {
7969 uint32_t v;
7970 unsigned char c[4];
7971 };
7972 const union aligned32 *a
7973 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7974 const union aligned32 *b
7975 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7976
7977 uint32_t aval = ( (uint32_t) a->c[0]
7978 | (uint32_t) a->c[1] << 8
7979 | (uint32_t) a->c[2] << 16
7980 | (uint32_t) a->c[3] << 24);
7981 uint32_t bval = ( (uint32_t) b->c[0]
7982 | (uint32_t) b->c[1] << 8
7983 | (uint32_t) b->c[2] << 16
7984 | (uint32_t) b->c[3] << 24);
7985 if (aval < bval)
7986 return -1;
7987 else if (aval > bval)
7988 return 1;
7989 return 0;
7990 }
7991
7992 static int
7993 cmp_ext32b_r_offset (const void *p, const void *q)
7994 {
7995 union aligned32
7996 {
7997 uint32_t v;
7998 unsigned char c[4];
7999 };
8000 const union aligned32 *a
8001 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8002 const union aligned32 *b
8003 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8004
8005 uint32_t aval = ( (uint32_t) a->c[0] << 24
8006 | (uint32_t) a->c[1] << 16
8007 | (uint32_t) a->c[2] << 8
8008 | (uint32_t) a->c[3]);
8009 uint32_t bval = ( (uint32_t) b->c[0] << 24
8010 | (uint32_t) b->c[1] << 16
8011 | (uint32_t) b->c[2] << 8
8012 | (uint32_t) b->c[3]);
8013 if (aval < bval)
8014 return -1;
8015 else if (aval > bval)
8016 return 1;
8017 return 0;
8018 }
8019
8020 #ifdef BFD_HOST_64_BIT
8021 static int
8022 cmp_ext64l_r_offset (const void *p, const void *q)
8023 {
8024 union aligned64
8025 {
8026 uint64_t v;
8027 unsigned char c[8];
8028 };
8029 const union aligned64 *a
8030 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8031 const union aligned64 *b
8032 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8033
8034 uint64_t aval = ( (uint64_t) a->c[0]
8035 | (uint64_t) a->c[1] << 8
8036 | (uint64_t) a->c[2] << 16
8037 | (uint64_t) a->c[3] << 24
8038 | (uint64_t) a->c[4] << 32
8039 | (uint64_t) a->c[5] << 40
8040 | (uint64_t) a->c[6] << 48
8041 | (uint64_t) a->c[7] << 56);
8042 uint64_t bval = ( (uint64_t) b->c[0]
8043 | (uint64_t) b->c[1] << 8
8044 | (uint64_t) b->c[2] << 16
8045 | (uint64_t) b->c[3] << 24
8046 | (uint64_t) b->c[4] << 32
8047 | (uint64_t) b->c[5] << 40
8048 | (uint64_t) b->c[6] << 48
8049 | (uint64_t) b->c[7] << 56);
8050 if (aval < bval)
8051 return -1;
8052 else if (aval > bval)
8053 return 1;
8054 return 0;
8055 }
8056
8057 static int
8058 cmp_ext64b_r_offset (const void *p, const void *q)
8059 {
8060 union aligned64
8061 {
8062 uint64_t v;
8063 unsigned char c[8];
8064 };
8065 const union aligned64 *a
8066 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8067 const union aligned64 *b
8068 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8069
8070 uint64_t aval = ( (uint64_t) a->c[0] << 56
8071 | (uint64_t) a->c[1] << 48
8072 | (uint64_t) a->c[2] << 40
8073 | (uint64_t) a->c[3] << 32
8074 | (uint64_t) a->c[4] << 24
8075 | (uint64_t) a->c[5] << 16
8076 | (uint64_t) a->c[6] << 8
8077 | (uint64_t) a->c[7]);
8078 uint64_t bval = ( (uint64_t) b->c[0] << 56
8079 | (uint64_t) b->c[1] << 48
8080 | (uint64_t) b->c[2] << 40
8081 | (uint64_t) b->c[3] << 32
8082 | (uint64_t) b->c[4] << 24
8083 | (uint64_t) b->c[5] << 16
8084 | (uint64_t) b->c[6] << 8
8085 | (uint64_t) b->c[7]);
8086 if (aval < bval)
8087 return -1;
8088 else if (aval > bval)
8089 return 1;
8090 return 0;
8091 }
8092 #endif
8093
8094 /* When performing a relocatable link, the input relocations are
8095 preserved. But, if they reference global symbols, the indices
8096 referenced must be updated. Update all the relocations found in
8097 RELDATA. */
8098
8099 static void
8100 elf_link_adjust_relocs (bfd *abfd,
8101 struct bfd_elf_section_reloc_data *reldata,
8102 bfd_boolean sort)
8103 {
8104 unsigned int i;
8105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8106 bfd_byte *erela;
8107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8108 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8109 bfd_vma r_type_mask;
8110 int r_sym_shift;
8111 unsigned int count = reldata->count;
8112 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8113
8114 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8115 {
8116 swap_in = bed->s->swap_reloc_in;
8117 swap_out = bed->s->swap_reloc_out;
8118 }
8119 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8120 {
8121 swap_in = bed->s->swap_reloca_in;
8122 swap_out = bed->s->swap_reloca_out;
8123 }
8124 else
8125 abort ();
8126
8127 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8128 abort ();
8129
8130 if (bed->s->arch_size == 32)
8131 {
8132 r_type_mask = 0xff;
8133 r_sym_shift = 8;
8134 }
8135 else
8136 {
8137 r_type_mask = 0xffffffff;
8138 r_sym_shift = 32;
8139 }
8140
8141 erela = reldata->hdr->contents;
8142 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8143 {
8144 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8145 unsigned int j;
8146
8147 if (*rel_hash == NULL)
8148 continue;
8149
8150 BFD_ASSERT ((*rel_hash)->indx >= 0);
8151
8152 (*swap_in) (abfd, erela, irela);
8153 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8154 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8155 | (irela[j].r_info & r_type_mask));
8156 (*swap_out) (abfd, irela, erela);
8157 }
8158
8159 if (sort)
8160 {
8161 int (*compare) (const void *, const void *);
8162
8163 if (bed->s->arch_size == 32)
8164 {
8165 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8166 compare = cmp_ext32l_r_offset;
8167 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8168 compare = cmp_ext32b_r_offset;
8169 else
8170 abort ();
8171 }
8172 else
8173 {
8174 #ifdef BFD_HOST_64_BIT
8175 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8176 compare = cmp_ext64l_r_offset;
8177 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8178 compare = cmp_ext64b_r_offset;
8179 else
8180 #endif
8181 abort ();
8182 }
8183 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8184 free (reldata->hashes);
8185 reldata->hashes = NULL;
8186 }
8187 }
8188
8189 struct elf_link_sort_rela
8190 {
8191 union {
8192 bfd_vma offset;
8193 bfd_vma sym_mask;
8194 } u;
8195 enum elf_reloc_type_class type;
8196 /* We use this as an array of size int_rels_per_ext_rel. */
8197 Elf_Internal_Rela rela[1];
8198 };
8199
8200 static int
8201 elf_link_sort_cmp1 (const void *A, const void *B)
8202 {
8203 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8204 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8205 int relativea, relativeb;
8206
8207 relativea = a->type == reloc_class_relative;
8208 relativeb = b->type == reloc_class_relative;
8209
8210 if (relativea < relativeb)
8211 return 1;
8212 if (relativea > relativeb)
8213 return -1;
8214 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8215 return -1;
8216 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8217 return 1;
8218 if (a->rela->r_offset < b->rela->r_offset)
8219 return -1;
8220 if (a->rela->r_offset > b->rela->r_offset)
8221 return 1;
8222 return 0;
8223 }
8224
8225 static int
8226 elf_link_sort_cmp2 (const void *A, const void *B)
8227 {
8228 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8229 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8230
8231 if (a->type < b->type)
8232 return -1;
8233 if (a->type > b->type)
8234 return 1;
8235 if (a->u.offset < b->u.offset)
8236 return -1;
8237 if (a->u.offset > b->u.offset)
8238 return 1;
8239 if (a->rela->r_offset < b->rela->r_offset)
8240 return -1;
8241 if (a->rela->r_offset > b->rela->r_offset)
8242 return 1;
8243 return 0;
8244 }
8245
8246 static size_t
8247 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8248 {
8249 asection *dynamic_relocs;
8250 asection *rela_dyn;
8251 asection *rel_dyn;
8252 bfd_size_type count, size;
8253 size_t i, ret, sort_elt, ext_size;
8254 bfd_byte *sort, *s_non_relative, *p;
8255 struct elf_link_sort_rela *sq;
8256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8257 int i2e = bed->s->int_rels_per_ext_rel;
8258 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8259 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8260 struct bfd_link_order *lo;
8261 bfd_vma r_sym_mask;
8262 bfd_boolean use_rela;
8263
8264 /* Find a dynamic reloc section. */
8265 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8266 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8267 if (rela_dyn != NULL && rela_dyn->size > 0
8268 && rel_dyn != NULL && rel_dyn->size > 0)
8269 {
8270 bfd_boolean use_rela_initialised = FALSE;
8271
8272 /* This is just here to stop gcc from complaining.
8273 It's initialization checking code is not perfect. */
8274 use_rela = TRUE;
8275
8276 /* Both sections are present. Examine the sizes
8277 of the indirect sections to help us choose. */
8278 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8279 if (lo->type == bfd_indirect_link_order)
8280 {
8281 asection *o = lo->u.indirect.section;
8282
8283 if ((o->size % bed->s->sizeof_rela) == 0)
8284 {
8285 if ((o->size % bed->s->sizeof_rel) == 0)
8286 /* Section size is divisible by both rel and rela sizes.
8287 It is of no help to us. */
8288 ;
8289 else
8290 {
8291 /* Section size is only divisible by rela. */
8292 if (use_rela_initialised && (use_rela == FALSE))
8293 {
8294 _bfd_error_handler
8295 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8296 bfd_set_error (bfd_error_invalid_operation);
8297 return 0;
8298 }
8299 else
8300 {
8301 use_rela = TRUE;
8302 use_rela_initialised = TRUE;
8303 }
8304 }
8305 }
8306 else if ((o->size % bed->s->sizeof_rel) == 0)
8307 {
8308 /* Section size is only divisible by rel. */
8309 if (use_rela_initialised && (use_rela == TRUE))
8310 {
8311 _bfd_error_handler
8312 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8313 bfd_set_error (bfd_error_invalid_operation);
8314 return 0;
8315 }
8316 else
8317 {
8318 use_rela = FALSE;
8319 use_rela_initialised = TRUE;
8320 }
8321 }
8322 else
8323 {
8324 /* The section size is not divisible by either - something is wrong. */
8325 _bfd_error_handler
8326 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8327 bfd_set_error (bfd_error_invalid_operation);
8328 return 0;
8329 }
8330 }
8331
8332 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8333 if (lo->type == bfd_indirect_link_order)
8334 {
8335 asection *o = lo->u.indirect.section;
8336
8337 if ((o->size % bed->s->sizeof_rela) == 0)
8338 {
8339 if ((o->size % bed->s->sizeof_rel) == 0)
8340 /* Section size is divisible by both rel and rela sizes.
8341 It is of no help to us. */
8342 ;
8343 else
8344 {
8345 /* Section size is only divisible by rela. */
8346 if (use_rela_initialised && (use_rela == FALSE))
8347 {
8348 _bfd_error_handler
8349 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8350 bfd_set_error (bfd_error_invalid_operation);
8351 return 0;
8352 }
8353 else
8354 {
8355 use_rela = TRUE;
8356 use_rela_initialised = TRUE;
8357 }
8358 }
8359 }
8360 else if ((o->size % bed->s->sizeof_rel) == 0)
8361 {
8362 /* Section size is only divisible by rel. */
8363 if (use_rela_initialised && (use_rela == TRUE))
8364 {
8365 _bfd_error_handler
8366 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8367 bfd_set_error (bfd_error_invalid_operation);
8368 return 0;
8369 }
8370 else
8371 {
8372 use_rela = FALSE;
8373 use_rela_initialised = TRUE;
8374 }
8375 }
8376 else
8377 {
8378 /* The section size is not divisible by either - something is wrong. */
8379 _bfd_error_handler
8380 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8381 bfd_set_error (bfd_error_invalid_operation);
8382 return 0;
8383 }
8384 }
8385
8386 if (! use_rela_initialised)
8387 /* Make a guess. */
8388 use_rela = TRUE;
8389 }
8390 else if (rela_dyn != NULL && rela_dyn->size > 0)
8391 use_rela = TRUE;
8392 else if (rel_dyn != NULL && rel_dyn->size > 0)
8393 use_rela = FALSE;
8394 else
8395 return 0;
8396
8397 if (use_rela)
8398 {
8399 dynamic_relocs = rela_dyn;
8400 ext_size = bed->s->sizeof_rela;
8401 swap_in = bed->s->swap_reloca_in;
8402 swap_out = bed->s->swap_reloca_out;
8403 }
8404 else
8405 {
8406 dynamic_relocs = rel_dyn;
8407 ext_size = bed->s->sizeof_rel;
8408 swap_in = bed->s->swap_reloc_in;
8409 swap_out = bed->s->swap_reloc_out;
8410 }
8411
8412 size = 0;
8413 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8414 if (lo->type == bfd_indirect_link_order)
8415 size += lo->u.indirect.section->size;
8416
8417 if (size != dynamic_relocs->size)
8418 return 0;
8419
8420 sort_elt = (sizeof (struct elf_link_sort_rela)
8421 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8422
8423 count = dynamic_relocs->size / ext_size;
8424 if (count == 0)
8425 return 0;
8426 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8427
8428 if (sort == NULL)
8429 {
8430 (*info->callbacks->warning)
8431 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8432 return 0;
8433 }
8434
8435 if (bed->s->arch_size == 32)
8436 r_sym_mask = ~(bfd_vma) 0xff;
8437 else
8438 r_sym_mask = ~(bfd_vma) 0xffffffff;
8439
8440 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8441 if (lo->type == bfd_indirect_link_order)
8442 {
8443 bfd_byte *erel, *erelend;
8444 asection *o = lo->u.indirect.section;
8445
8446 if (o->contents == NULL && o->size != 0)
8447 {
8448 /* This is a reloc section that is being handled as a normal
8449 section. See bfd_section_from_shdr. We can't combine
8450 relocs in this case. */
8451 free (sort);
8452 return 0;
8453 }
8454 erel = o->contents;
8455 erelend = o->contents + o->size;
8456 /* FIXME: octets_per_byte. */
8457 p = sort + o->output_offset / ext_size * sort_elt;
8458
8459 while (erel < erelend)
8460 {
8461 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8462
8463 (*swap_in) (abfd, erel, s->rela);
8464 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8465 s->u.sym_mask = r_sym_mask;
8466 p += sort_elt;
8467 erel += ext_size;
8468 }
8469 }
8470
8471 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8472
8473 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8474 {
8475 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8476 if (s->type != reloc_class_relative)
8477 break;
8478 }
8479 ret = i;
8480 s_non_relative = p;
8481
8482 sq = (struct elf_link_sort_rela *) s_non_relative;
8483 for (; i < count; i++, p += sort_elt)
8484 {
8485 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8486 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8487 sq = sp;
8488 sp->u.offset = sq->rela->r_offset;
8489 }
8490
8491 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8492
8493 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8494 if (lo->type == bfd_indirect_link_order)
8495 {
8496 bfd_byte *erel, *erelend;
8497 asection *o = lo->u.indirect.section;
8498
8499 erel = o->contents;
8500 erelend = o->contents + o->size;
8501 /* FIXME: octets_per_byte. */
8502 p = sort + o->output_offset / ext_size * sort_elt;
8503 while (erel < erelend)
8504 {
8505 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8506 (*swap_out) (abfd, s->rela, erel);
8507 p += sort_elt;
8508 erel += ext_size;
8509 }
8510 }
8511
8512 free (sort);
8513 *psec = dynamic_relocs;
8514 return ret;
8515 }
8516
8517 /* Flush the output symbols to the file. */
8518
8519 static bfd_boolean
8520 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8521 const struct elf_backend_data *bed)
8522 {
8523 if (flinfo->symbuf_count > 0)
8524 {
8525 Elf_Internal_Shdr *hdr;
8526 file_ptr pos;
8527 bfd_size_type amt;
8528
8529 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8530 pos = hdr->sh_offset + hdr->sh_size;
8531 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8532 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8533 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8534 return FALSE;
8535
8536 hdr->sh_size += amt;
8537 flinfo->symbuf_count = 0;
8538 }
8539
8540 return TRUE;
8541 }
8542
8543 /* Add a symbol to the output symbol table. */
8544
8545 static int
8546 elf_link_output_sym (struct elf_final_link_info *flinfo,
8547 const char *name,
8548 Elf_Internal_Sym *elfsym,
8549 asection *input_sec,
8550 struct elf_link_hash_entry *h)
8551 {
8552 bfd_byte *dest;
8553 Elf_External_Sym_Shndx *destshndx;
8554 int (*output_symbol_hook)
8555 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8556 struct elf_link_hash_entry *);
8557 const struct elf_backend_data *bed;
8558
8559 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8560
8561 bed = get_elf_backend_data (flinfo->output_bfd);
8562 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8563 if (output_symbol_hook != NULL)
8564 {
8565 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8566 if (ret != 1)
8567 return ret;
8568 }
8569
8570 if (name == NULL || *name == '\0')
8571 elfsym->st_name = 0;
8572 else if (input_sec->flags & SEC_EXCLUDE)
8573 elfsym->st_name = 0;
8574 else
8575 {
8576 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8577 name, TRUE, FALSE);
8578 if (elfsym->st_name == (unsigned long) -1)
8579 return 0;
8580 }
8581
8582 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8583 {
8584 if (! elf_link_flush_output_syms (flinfo, bed))
8585 return 0;
8586 }
8587
8588 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8589 destshndx = flinfo->symshndxbuf;
8590 if (destshndx != NULL)
8591 {
8592 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8593 {
8594 bfd_size_type amt;
8595
8596 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8597 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8598 amt * 2);
8599 if (destshndx == NULL)
8600 return 0;
8601 flinfo->symshndxbuf = destshndx;
8602 memset ((char *) destshndx + amt, 0, amt);
8603 flinfo->shndxbuf_size *= 2;
8604 }
8605 destshndx += bfd_get_symcount (flinfo->output_bfd);
8606 }
8607
8608 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8609 flinfo->symbuf_count += 1;
8610 bfd_get_symcount (flinfo->output_bfd) += 1;
8611
8612 return 1;
8613 }
8614
8615 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8616
8617 static bfd_boolean
8618 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8619 {
8620 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8621 && sym->st_shndx < SHN_LORESERVE)
8622 {
8623 /* The gABI doesn't support dynamic symbols in output sections
8624 beyond 64k. */
8625 (*_bfd_error_handler)
8626 (_("%B: Too many sections: %d (>= %d)"),
8627 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8628 bfd_set_error (bfd_error_nonrepresentable_section);
8629 return FALSE;
8630 }
8631 return TRUE;
8632 }
8633
8634 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8635 allowing an unsatisfied unversioned symbol in the DSO to match a
8636 versioned symbol that would normally require an explicit version.
8637 We also handle the case that a DSO references a hidden symbol
8638 which may be satisfied by a versioned symbol in another DSO. */
8639
8640 static bfd_boolean
8641 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8642 const struct elf_backend_data *bed,
8643 struct elf_link_hash_entry *h)
8644 {
8645 bfd *abfd;
8646 struct elf_link_loaded_list *loaded;
8647
8648 if (!is_elf_hash_table (info->hash))
8649 return FALSE;
8650
8651 /* Check indirect symbol. */
8652 while (h->root.type == bfd_link_hash_indirect)
8653 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8654
8655 switch (h->root.type)
8656 {
8657 default:
8658 abfd = NULL;
8659 break;
8660
8661 case bfd_link_hash_undefined:
8662 case bfd_link_hash_undefweak:
8663 abfd = h->root.u.undef.abfd;
8664 if ((abfd->flags & DYNAMIC) == 0
8665 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8666 return FALSE;
8667 break;
8668
8669 case bfd_link_hash_defined:
8670 case bfd_link_hash_defweak:
8671 abfd = h->root.u.def.section->owner;
8672 break;
8673
8674 case bfd_link_hash_common:
8675 abfd = h->root.u.c.p->section->owner;
8676 break;
8677 }
8678 BFD_ASSERT (abfd != NULL);
8679
8680 for (loaded = elf_hash_table (info)->loaded;
8681 loaded != NULL;
8682 loaded = loaded->next)
8683 {
8684 bfd *input;
8685 Elf_Internal_Shdr *hdr;
8686 bfd_size_type symcount;
8687 bfd_size_type extsymcount;
8688 bfd_size_type extsymoff;
8689 Elf_Internal_Shdr *versymhdr;
8690 Elf_Internal_Sym *isym;
8691 Elf_Internal_Sym *isymend;
8692 Elf_Internal_Sym *isymbuf;
8693 Elf_External_Versym *ever;
8694 Elf_External_Versym *extversym;
8695
8696 input = loaded->abfd;
8697
8698 /* We check each DSO for a possible hidden versioned definition. */
8699 if (input == abfd
8700 || (input->flags & DYNAMIC) == 0
8701 || elf_dynversym (input) == 0)
8702 continue;
8703
8704 hdr = &elf_tdata (input)->dynsymtab_hdr;
8705
8706 symcount = hdr->sh_size / bed->s->sizeof_sym;
8707 if (elf_bad_symtab (input))
8708 {
8709 extsymcount = symcount;
8710 extsymoff = 0;
8711 }
8712 else
8713 {
8714 extsymcount = symcount - hdr->sh_info;
8715 extsymoff = hdr->sh_info;
8716 }
8717
8718 if (extsymcount == 0)
8719 continue;
8720
8721 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8722 NULL, NULL, NULL);
8723 if (isymbuf == NULL)
8724 return FALSE;
8725
8726 /* Read in any version definitions. */
8727 versymhdr = &elf_tdata (input)->dynversym_hdr;
8728 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8729 if (extversym == NULL)
8730 goto error_ret;
8731
8732 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8733 || (bfd_bread (extversym, versymhdr->sh_size, input)
8734 != versymhdr->sh_size))
8735 {
8736 free (extversym);
8737 error_ret:
8738 free (isymbuf);
8739 return FALSE;
8740 }
8741
8742 ever = extversym + extsymoff;
8743 isymend = isymbuf + extsymcount;
8744 for (isym = isymbuf; isym < isymend; isym++, ever++)
8745 {
8746 const char *name;
8747 Elf_Internal_Versym iver;
8748 unsigned short version_index;
8749
8750 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8751 || isym->st_shndx == SHN_UNDEF)
8752 continue;
8753
8754 name = bfd_elf_string_from_elf_section (input,
8755 hdr->sh_link,
8756 isym->st_name);
8757 if (strcmp (name, h->root.root.string) != 0)
8758 continue;
8759
8760 _bfd_elf_swap_versym_in (input, ever, &iver);
8761
8762 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8763 && !(h->def_regular
8764 && h->forced_local))
8765 {
8766 /* If we have a non-hidden versioned sym, then it should
8767 have provided a definition for the undefined sym unless
8768 it is defined in a non-shared object and forced local.
8769 */
8770 abort ();
8771 }
8772
8773 version_index = iver.vs_vers & VERSYM_VERSION;
8774 if (version_index == 1 || version_index == 2)
8775 {
8776 /* This is the base or first version. We can use it. */
8777 free (extversym);
8778 free (isymbuf);
8779 return TRUE;
8780 }
8781 }
8782
8783 free (extversym);
8784 free (isymbuf);
8785 }
8786
8787 return FALSE;
8788 }
8789
8790 /* Add an external symbol to the symbol table. This is called from
8791 the hash table traversal routine. When generating a shared object,
8792 we go through the symbol table twice. The first time we output
8793 anything that might have been forced to local scope in a version
8794 script. The second time we output the symbols that are still
8795 global symbols. */
8796
8797 static bfd_boolean
8798 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8799 {
8800 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8801 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8802 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8803 bfd_boolean strip;
8804 Elf_Internal_Sym sym;
8805 asection *input_sec;
8806 const struct elf_backend_data *bed;
8807 long indx;
8808 int ret;
8809
8810 if (h->root.type == bfd_link_hash_warning)
8811 {
8812 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8813 if (h->root.type == bfd_link_hash_new)
8814 return TRUE;
8815 }
8816
8817 /* Decide whether to output this symbol in this pass. */
8818 if (eoinfo->localsyms)
8819 {
8820 if (!h->forced_local)
8821 return TRUE;
8822 }
8823 else
8824 {
8825 if (h->forced_local)
8826 return TRUE;
8827 }
8828
8829 bed = get_elf_backend_data (flinfo->output_bfd);
8830
8831 if (h->root.type == bfd_link_hash_undefined)
8832 {
8833 /* If we have an undefined symbol reference here then it must have
8834 come from a shared library that is being linked in. (Undefined
8835 references in regular files have already been handled unless
8836 they are in unreferenced sections which are removed by garbage
8837 collection). */
8838 bfd_boolean ignore_undef = FALSE;
8839
8840 /* Some symbols may be special in that the fact that they're
8841 undefined can be safely ignored - let backend determine that. */
8842 if (bed->elf_backend_ignore_undef_symbol)
8843 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8844
8845 /* If we are reporting errors for this situation then do so now. */
8846 if (!ignore_undef
8847 && h->ref_dynamic
8848 && (!h->ref_regular || flinfo->info->gc_sections)
8849 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8850 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8851 {
8852 if (!(flinfo->info->callbacks->undefined_symbol
8853 (flinfo->info, h->root.root.string,
8854 h->ref_regular ? NULL : h->root.u.undef.abfd,
8855 NULL, 0,
8856 (flinfo->info->unresolved_syms_in_shared_libs
8857 == RM_GENERATE_ERROR))))
8858 {
8859 bfd_set_error (bfd_error_bad_value);
8860 eoinfo->failed = TRUE;
8861 return FALSE;
8862 }
8863 }
8864 }
8865
8866 /* We should also warn if a forced local symbol is referenced from
8867 shared libraries. */
8868 if (!flinfo->info->relocatable
8869 && flinfo->info->executable
8870 && h->forced_local
8871 && h->ref_dynamic
8872 && h->def_regular
8873 && !h->dynamic_def
8874 && h->ref_dynamic_nonweak
8875 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8876 {
8877 bfd *def_bfd;
8878 const char *msg;
8879 struct elf_link_hash_entry *hi = h;
8880
8881 /* Check indirect symbol. */
8882 while (hi->root.type == bfd_link_hash_indirect)
8883 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8884
8885 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8886 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8887 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8888 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8889 else
8890 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8891 def_bfd = flinfo->output_bfd;
8892 if (hi->root.u.def.section != bfd_abs_section_ptr)
8893 def_bfd = hi->root.u.def.section->owner;
8894 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8895 h->root.root.string);
8896 bfd_set_error (bfd_error_bad_value);
8897 eoinfo->failed = TRUE;
8898 return FALSE;
8899 }
8900
8901 /* We don't want to output symbols that have never been mentioned by
8902 a regular file, or that we have been told to strip. However, if
8903 h->indx is set to -2, the symbol is used by a reloc and we must
8904 output it. */
8905 if (h->indx == -2)
8906 strip = FALSE;
8907 else if ((h->def_dynamic
8908 || h->ref_dynamic
8909 || h->root.type == bfd_link_hash_new)
8910 && !h->def_regular
8911 && !h->ref_regular)
8912 strip = TRUE;
8913 else if (flinfo->info->strip == strip_all)
8914 strip = TRUE;
8915 else if (flinfo->info->strip == strip_some
8916 && bfd_hash_lookup (flinfo->info->keep_hash,
8917 h->root.root.string, FALSE, FALSE) == NULL)
8918 strip = TRUE;
8919 else if ((h->root.type == bfd_link_hash_defined
8920 || h->root.type == bfd_link_hash_defweak)
8921 && ((flinfo->info->strip_discarded
8922 && discarded_section (h->root.u.def.section))
8923 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8924 && h->root.u.def.section->owner != NULL
8925 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8926 strip = TRUE;
8927 else if ((h->root.type == bfd_link_hash_undefined
8928 || h->root.type == bfd_link_hash_undefweak)
8929 && h->root.u.undef.abfd != NULL
8930 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8931 strip = TRUE;
8932 else
8933 strip = FALSE;
8934
8935 /* If we're stripping it, and it's not a dynamic symbol, there's
8936 nothing else to do unless it is a forced local symbol or a
8937 STT_GNU_IFUNC symbol. */
8938 if (strip
8939 && h->dynindx == -1
8940 && h->type != STT_GNU_IFUNC
8941 && !h->forced_local)
8942 return TRUE;
8943
8944 sym.st_value = 0;
8945 sym.st_size = h->size;
8946 sym.st_other = h->other;
8947 if (h->forced_local)
8948 {
8949 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8950 /* Turn off visibility on local symbol. */
8951 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8952 }
8953 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8954 else if (h->unique_global && h->def_regular)
8955 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8956 else if (h->root.type == bfd_link_hash_undefweak
8957 || h->root.type == bfd_link_hash_defweak)
8958 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8959 else
8960 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8961 sym.st_target_internal = h->target_internal;
8962
8963 switch (h->root.type)
8964 {
8965 default:
8966 case bfd_link_hash_new:
8967 case bfd_link_hash_warning:
8968 abort ();
8969 return FALSE;
8970
8971 case bfd_link_hash_undefined:
8972 case bfd_link_hash_undefweak:
8973 input_sec = bfd_und_section_ptr;
8974 sym.st_shndx = SHN_UNDEF;
8975 break;
8976
8977 case bfd_link_hash_defined:
8978 case bfd_link_hash_defweak:
8979 {
8980 input_sec = h->root.u.def.section;
8981 if (input_sec->output_section != NULL)
8982 {
8983 sym.st_shndx =
8984 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8985 input_sec->output_section);
8986 if (sym.st_shndx == SHN_BAD)
8987 {
8988 (*_bfd_error_handler)
8989 (_("%B: could not find output section %A for input section %A"),
8990 flinfo->output_bfd, input_sec->output_section, input_sec);
8991 bfd_set_error (bfd_error_nonrepresentable_section);
8992 eoinfo->failed = TRUE;
8993 return FALSE;
8994 }
8995
8996 /* ELF symbols in relocatable files are section relative,
8997 but in nonrelocatable files they are virtual
8998 addresses. */
8999 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9000 if (!flinfo->info->relocatable)
9001 {
9002 sym.st_value += input_sec->output_section->vma;
9003 if (h->type == STT_TLS)
9004 {
9005 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9006 if (tls_sec != NULL)
9007 sym.st_value -= tls_sec->vma;
9008 }
9009 }
9010 }
9011 else
9012 {
9013 BFD_ASSERT (input_sec->owner == NULL
9014 || (input_sec->owner->flags & DYNAMIC) != 0);
9015 sym.st_shndx = SHN_UNDEF;
9016 input_sec = bfd_und_section_ptr;
9017 }
9018 }
9019 break;
9020
9021 case bfd_link_hash_common:
9022 input_sec = h->root.u.c.p->section;
9023 sym.st_shndx = bed->common_section_index (input_sec);
9024 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9025 break;
9026
9027 case bfd_link_hash_indirect:
9028 /* These symbols are created by symbol versioning. They point
9029 to the decorated version of the name. For example, if the
9030 symbol foo@@GNU_1.2 is the default, which should be used when
9031 foo is used with no version, then we add an indirect symbol
9032 foo which points to foo@@GNU_1.2. We ignore these symbols,
9033 since the indirected symbol is already in the hash table. */
9034 return TRUE;
9035 }
9036
9037 /* Give the processor backend a chance to tweak the symbol value,
9038 and also to finish up anything that needs to be done for this
9039 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9040 forced local syms when non-shared is due to a historical quirk.
9041 STT_GNU_IFUNC symbol must go through PLT. */
9042 if ((h->type == STT_GNU_IFUNC
9043 && h->def_regular
9044 && !flinfo->info->relocatable)
9045 || ((h->dynindx != -1
9046 || h->forced_local)
9047 && ((flinfo->info->shared
9048 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9049 || h->root.type != bfd_link_hash_undefweak))
9050 || !h->forced_local)
9051 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9052 {
9053 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9054 (flinfo->output_bfd, flinfo->info, h, &sym)))
9055 {
9056 eoinfo->failed = TRUE;
9057 return FALSE;
9058 }
9059 }
9060
9061 /* If we are marking the symbol as undefined, and there are no
9062 non-weak references to this symbol from a regular object, then
9063 mark the symbol as weak undefined; if there are non-weak
9064 references, mark the symbol as strong. We can't do this earlier,
9065 because it might not be marked as undefined until the
9066 finish_dynamic_symbol routine gets through with it. */
9067 if (sym.st_shndx == SHN_UNDEF
9068 && h->ref_regular
9069 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9070 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9071 {
9072 int bindtype;
9073 unsigned int type = ELF_ST_TYPE (sym.st_info);
9074
9075 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9076 if (type == STT_GNU_IFUNC)
9077 type = STT_FUNC;
9078
9079 if (h->ref_regular_nonweak)
9080 bindtype = STB_GLOBAL;
9081 else
9082 bindtype = STB_WEAK;
9083 sym.st_info = ELF_ST_INFO (bindtype, type);
9084 }
9085
9086 /* If this is a symbol defined in a dynamic library, don't use the
9087 symbol size from the dynamic library. Relinking an executable
9088 against a new library may introduce gratuitous changes in the
9089 executable's symbols if we keep the size. */
9090 if (sym.st_shndx == SHN_UNDEF
9091 && !h->def_regular
9092 && h->def_dynamic)
9093 sym.st_size = 0;
9094
9095 /* If a non-weak symbol with non-default visibility is not defined
9096 locally, it is a fatal error. */
9097 if (!flinfo->info->relocatable
9098 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9099 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9100 && h->root.type == bfd_link_hash_undefined
9101 && !h->def_regular)
9102 {
9103 const char *msg;
9104
9105 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9106 msg = _("%B: protected symbol `%s' isn't defined");
9107 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9108 msg = _("%B: internal symbol `%s' isn't defined");
9109 else
9110 msg = _("%B: hidden symbol `%s' isn't defined");
9111 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9112 bfd_set_error (bfd_error_bad_value);
9113 eoinfo->failed = TRUE;
9114 return FALSE;
9115 }
9116
9117 /* If this symbol should be put in the .dynsym section, then put it
9118 there now. We already know the symbol index. We also fill in
9119 the entry in the .hash section. */
9120 if (flinfo->dynsym_sec != NULL
9121 && h->dynindx != -1
9122 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9123 {
9124 bfd_byte *esym;
9125
9126 /* Since there is no version information in the dynamic string,
9127 if there is no version info in symbol version section, we will
9128 have a run-time problem. */
9129 if (h->verinfo.verdef == NULL)
9130 {
9131 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9132
9133 if (p && p [1] != '\0')
9134 {
9135 (*_bfd_error_handler)
9136 (_("%B: No symbol version section for versioned symbol `%s'"),
9137 flinfo->output_bfd, h->root.root.string);
9138 eoinfo->failed = TRUE;
9139 return FALSE;
9140 }
9141 }
9142
9143 sym.st_name = h->dynstr_index;
9144 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9145 if (!check_dynsym (flinfo->output_bfd, &sym))
9146 {
9147 eoinfo->failed = TRUE;
9148 return FALSE;
9149 }
9150 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9151
9152 if (flinfo->hash_sec != NULL)
9153 {
9154 size_t hash_entry_size;
9155 bfd_byte *bucketpos;
9156 bfd_vma chain;
9157 size_t bucketcount;
9158 size_t bucket;
9159
9160 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9161 bucket = h->u.elf_hash_value % bucketcount;
9162
9163 hash_entry_size
9164 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9165 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9166 + (bucket + 2) * hash_entry_size);
9167 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9168 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9169 bucketpos);
9170 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9171 ((bfd_byte *) flinfo->hash_sec->contents
9172 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9173 }
9174
9175 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9176 {
9177 Elf_Internal_Versym iversym;
9178 Elf_External_Versym *eversym;
9179
9180 if (!h->def_regular)
9181 {
9182 if (h->verinfo.verdef == NULL
9183 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9184 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9185 iversym.vs_vers = 0;
9186 else
9187 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9188 }
9189 else
9190 {
9191 if (h->verinfo.vertree == NULL)
9192 iversym.vs_vers = 1;
9193 else
9194 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9195 if (flinfo->info->create_default_symver)
9196 iversym.vs_vers++;
9197 }
9198
9199 if (h->hidden)
9200 iversym.vs_vers |= VERSYM_HIDDEN;
9201
9202 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9203 eversym += h->dynindx;
9204 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9205 }
9206 }
9207
9208 /* If we're stripping it, then it was just a dynamic symbol, and
9209 there's nothing else to do. */
9210 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9211 return TRUE;
9212
9213 /* Output a FILE symbol so that following locals are not associated
9214 with the wrong input file. We need one for forced local symbols
9215 if we've seen more than one FILE symbol or when we have exactly
9216 one FILE symbol but global symbols are present in a file other
9217 than the one with the FILE symbol. We also need one if linker
9218 defined symbols are present. In practice these conditions are
9219 always met, so just emit the FILE symbol unconditionally. */
9220 if (eoinfo->localsyms
9221 && !eoinfo->file_sym_done
9222 && eoinfo->flinfo->filesym_count != 0)
9223 {
9224 Elf_Internal_Sym fsym;
9225
9226 memset (&fsym, 0, sizeof (fsym));
9227 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9228 fsym.st_shndx = SHN_ABS;
9229 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9230 bfd_und_section_ptr, NULL))
9231 return FALSE;
9232
9233 eoinfo->file_sym_done = TRUE;
9234 }
9235
9236 indx = bfd_get_symcount (flinfo->output_bfd);
9237 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9238 if (ret == 0)
9239 {
9240 eoinfo->failed = TRUE;
9241 return FALSE;
9242 }
9243 else if (ret == 1)
9244 h->indx = indx;
9245 else if (h->indx == -2)
9246 abort();
9247
9248 return TRUE;
9249 }
9250
9251 /* Return TRUE if special handling is done for relocs in SEC against
9252 symbols defined in discarded sections. */
9253
9254 static bfd_boolean
9255 elf_section_ignore_discarded_relocs (asection *sec)
9256 {
9257 const struct elf_backend_data *bed;
9258
9259 switch (sec->sec_info_type)
9260 {
9261 case SEC_INFO_TYPE_STABS:
9262 case SEC_INFO_TYPE_EH_FRAME:
9263 return TRUE;
9264 default:
9265 break;
9266 }
9267
9268 bed = get_elf_backend_data (sec->owner);
9269 if (bed->elf_backend_ignore_discarded_relocs != NULL
9270 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9271 return TRUE;
9272
9273 return FALSE;
9274 }
9275
9276 /* Return a mask saying how ld should treat relocations in SEC against
9277 symbols defined in discarded sections. If this function returns
9278 COMPLAIN set, ld will issue a warning message. If this function
9279 returns PRETEND set, and the discarded section was link-once and the
9280 same size as the kept link-once section, ld will pretend that the
9281 symbol was actually defined in the kept section. Otherwise ld will
9282 zero the reloc (at least that is the intent, but some cooperation by
9283 the target dependent code is needed, particularly for REL targets). */
9284
9285 unsigned int
9286 _bfd_elf_default_action_discarded (asection *sec)
9287 {
9288 if (sec->flags & SEC_DEBUGGING)
9289 return PRETEND;
9290
9291 if (strcmp (".eh_frame", sec->name) == 0)
9292 return 0;
9293
9294 if (strcmp (".gcc_except_table", sec->name) == 0)
9295 return 0;
9296
9297 return COMPLAIN | PRETEND;
9298 }
9299
9300 /* Find a match between a section and a member of a section group. */
9301
9302 static asection *
9303 match_group_member (asection *sec, asection *group,
9304 struct bfd_link_info *info)
9305 {
9306 asection *first = elf_next_in_group (group);
9307 asection *s = first;
9308
9309 while (s != NULL)
9310 {
9311 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9312 return s;
9313
9314 s = elf_next_in_group (s);
9315 if (s == first)
9316 break;
9317 }
9318
9319 return NULL;
9320 }
9321
9322 /* Check if the kept section of a discarded section SEC can be used
9323 to replace it. Return the replacement if it is OK. Otherwise return
9324 NULL. */
9325
9326 asection *
9327 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9328 {
9329 asection *kept;
9330
9331 kept = sec->kept_section;
9332 if (kept != NULL)
9333 {
9334 if ((kept->flags & SEC_GROUP) != 0)
9335 kept = match_group_member (sec, kept, info);
9336 if (kept != NULL
9337 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9338 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9339 kept = NULL;
9340 sec->kept_section = kept;
9341 }
9342 return kept;
9343 }
9344
9345 /* Link an input file into the linker output file. This function
9346 handles all the sections and relocations of the input file at once.
9347 This is so that we only have to read the local symbols once, and
9348 don't have to keep them in memory. */
9349
9350 static bfd_boolean
9351 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9352 {
9353 int (*relocate_section)
9354 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9355 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9356 bfd *output_bfd;
9357 Elf_Internal_Shdr *symtab_hdr;
9358 size_t locsymcount;
9359 size_t extsymoff;
9360 Elf_Internal_Sym *isymbuf;
9361 Elf_Internal_Sym *isym;
9362 Elf_Internal_Sym *isymend;
9363 long *pindex;
9364 asection **ppsection;
9365 asection *o;
9366 const struct elf_backend_data *bed;
9367 struct elf_link_hash_entry **sym_hashes;
9368 bfd_size_type address_size;
9369 bfd_vma r_type_mask;
9370 int r_sym_shift;
9371 bfd_boolean have_file_sym = FALSE;
9372
9373 output_bfd = flinfo->output_bfd;
9374 bed = get_elf_backend_data (output_bfd);
9375 relocate_section = bed->elf_backend_relocate_section;
9376
9377 /* If this is a dynamic object, we don't want to do anything here:
9378 we don't want the local symbols, and we don't want the section
9379 contents. */
9380 if ((input_bfd->flags & DYNAMIC) != 0)
9381 return TRUE;
9382
9383 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9384 if (elf_bad_symtab (input_bfd))
9385 {
9386 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9387 extsymoff = 0;
9388 }
9389 else
9390 {
9391 locsymcount = symtab_hdr->sh_info;
9392 extsymoff = symtab_hdr->sh_info;
9393 }
9394
9395 /* Read the local symbols. */
9396 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9397 if (isymbuf == NULL && locsymcount != 0)
9398 {
9399 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9400 flinfo->internal_syms,
9401 flinfo->external_syms,
9402 flinfo->locsym_shndx);
9403 if (isymbuf == NULL)
9404 return FALSE;
9405 }
9406
9407 /* Find local symbol sections and adjust values of symbols in
9408 SEC_MERGE sections. Write out those local symbols we know are
9409 going into the output file. */
9410 isymend = isymbuf + locsymcount;
9411 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9412 isym < isymend;
9413 isym++, pindex++, ppsection++)
9414 {
9415 asection *isec;
9416 const char *name;
9417 Elf_Internal_Sym osym;
9418 long indx;
9419 int ret;
9420
9421 *pindex = -1;
9422
9423 if (elf_bad_symtab (input_bfd))
9424 {
9425 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9426 {
9427 *ppsection = NULL;
9428 continue;
9429 }
9430 }
9431
9432 if (isym->st_shndx == SHN_UNDEF)
9433 isec = bfd_und_section_ptr;
9434 else if (isym->st_shndx == SHN_ABS)
9435 isec = bfd_abs_section_ptr;
9436 else if (isym->st_shndx == SHN_COMMON)
9437 isec = bfd_com_section_ptr;
9438 else
9439 {
9440 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9441 if (isec == NULL)
9442 {
9443 /* Don't attempt to output symbols with st_shnx in the
9444 reserved range other than SHN_ABS and SHN_COMMON. */
9445 *ppsection = NULL;
9446 continue;
9447 }
9448 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9449 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9450 isym->st_value =
9451 _bfd_merged_section_offset (output_bfd, &isec,
9452 elf_section_data (isec)->sec_info,
9453 isym->st_value);
9454 }
9455
9456 *ppsection = isec;
9457
9458 /* Don't output the first, undefined, symbol. */
9459 if (ppsection == flinfo->sections)
9460 continue;
9461
9462 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9463 {
9464 /* We never output section symbols. Instead, we use the
9465 section symbol of the corresponding section in the output
9466 file. */
9467 continue;
9468 }
9469
9470 /* If we are stripping all symbols, we don't want to output this
9471 one. */
9472 if (flinfo->info->strip == strip_all)
9473 continue;
9474
9475 /* If we are discarding all local symbols, we don't want to
9476 output this one. If we are generating a relocatable output
9477 file, then some of the local symbols may be required by
9478 relocs; we output them below as we discover that they are
9479 needed. */
9480 if (flinfo->info->discard == discard_all)
9481 continue;
9482
9483 /* If this symbol is defined in a section which we are
9484 discarding, we don't need to keep it. */
9485 if (isym->st_shndx != SHN_UNDEF
9486 && isym->st_shndx < SHN_LORESERVE
9487 && bfd_section_removed_from_list (output_bfd,
9488 isec->output_section))
9489 continue;
9490
9491 /* Get the name of the symbol. */
9492 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9493 isym->st_name);
9494 if (name == NULL)
9495 return FALSE;
9496
9497 /* See if we are discarding symbols with this name. */
9498 if ((flinfo->info->strip == strip_some
9499 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9500 == NULL))
9501 || (((flinfo->info->discard == discard_sec_merge
9502 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9503 || flinfo->info->discard == discard_l)
9504 && bfd_is_local_label_name (input_bfd, name)))
9505 continue;
9506
9507 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9508 {
9509 if (input_bfd->lto_output)
9510 /* -flto puts a temp file name here. This means builds
9511 are not reproducible. Discard the symbol. */
9512 continue;
9513 have_file_sym = TRUE;
9514 flinfo->filesym_count += 1;
9515 }
9516 if (!have_file_sym)
9517 {
9518 /* In the absence of debug info, bfd_find_nearest_line uses
9519 FILE symbols to determine the source file for local
9520 function symbols. Provide a FILE symbol here if input
9521 files lack such, so that their symbols won't be
9522 associated with a previous input file. It's not the
9523 source file, but the best we can do. */
9524 have_file_sym = TRUE;
9525 flinfo->filesym_count += 1;
9526 memset (&osym, 0, sizeof (osym));
9527 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9528 osym.st_shndx = SHN_ABS;
9529 if (!elf_link_output_sym (flinfo,
9530 (input_bfd->lto_output ? NULL
9531 : input_bfd->filename),
9532 &osym, bfd_abs_section_ptr, NULL))
9533 return FALSE;
9534 }
9535
9536 osym = *isym;
9537
9538 /* Adjust the section index for the output file. */
9539 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9540 isec->output_section);
9541 if (osym.st_shndx == SHN_BAD)
9542 return FALSE;
9543
9544 /* ELF symbols in relocatable files are section relative, but
9545 in executable files they are virtual addresses. Note that
9546 this code assumes that all ELF sections have an associated
9547 BFD section with a reasonable value for output_offset; below
9548 we assume that they also have a reasonable value for
9549 output_section. Any special sections must be set up to meet
9550 these requirements. */
9551 osym.st_value += isec->output_offset;
9552 if (!flinfo->info->relocatable)
9553 {
9554 osym.st_value += isec->output_section->vma;
9555 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9556 {
9557 /* STT_TLS symbols are relative to PT_TLS segment base. */
9558 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9559 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9560 }
9561 }
9562
9563 indx = bfd_get_symcount (output_bfd);
9564 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9565 if (ret == 0)
9566 return FALSE;
9567 else if (ret == 1)
9568 *pindex = indx;
9569 }
9570
9571 if (bed->s->arch_size == 32)
9572 {
9573 r_type_mask = 0xff;
9574 r_sym_shift = 8;
9575 address_size = 4;
9576 }
9577 else
9578 {
9579 r_type_mask = 0xffffffff;
9580 r_sym_shift = 32;
9581 address_size = 8;
9582 }
9583
9584 /* Relocate the contents of each section. */
9585 sym_hashes = elf_sym_hashes (input_bfd);
9586 for (o = input_bfd->sections; o != NULL; o = o->next)
9587 {
9588 bfd_byte *contents;
9589
9590 if (! o->linker_mark)
9591 {
9592 /* This section was omitted from the link. */
9593 continue;
9594 }
9595
9596 if (flinfo->info->relocatable
9597 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9598 {
9599 /* Deal with the group signature symbol. */
9600 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9601 unsigned long symndx = sec_data->this_hdr.sh_info;
9602 asection *osec = o->output_section;
9603
9604 if (symndx >= locsymcount
9605 || (elf_bad_symtab (input_bfd)
9606 && flinfo->sections[symndx] == NULL))
9607 {
9608 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9609 while (h->root.type == bfd_link_hash_indirect
9610 || h->root.type == bfd_link_hash_warning)
9611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9612 /* Arrange for symbol to be output. */
9613 h->indx = -2;
9614 elf_section_data (osec)->this_hdr.sh_info = -2;
9615 }
9616 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9617 {
9618 /* We'll use the output section target_index. */
9619 asection *sec = flinfo->sections[symndx]->output_section;
9620 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9621 }
9622 else
9623 {
9624 if (flinfo->indices[symndx] == -1)
9625 {
9626 /* Otherwise output the local symbol now. */
9627 Elf_Internal_Sym sym = isymbuf[symndx];
9628 asection *sec = flinfo->sections[symndx]->output_section;
9629 const char *name;
9630 long indx;
9631 int ret;
9632
9633 name = bfd_elf_string_from_elf_section (input_bfd,
9634 symtab_hdr->sh_link,
9635 sym.st_name);
9636 if (name == NULL)
9637 return FALSE;
9638
9639 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9640 sec);
9641 if (sym.st_shndx == SHN_BAD)
9642 return FALSE;
9643
9644 sym.st_value += o->output_offset;
9645
9646 indx = bfd_get_symcount (output_bfd);
9647 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9648 if (ret == 0)
9649 return FALSE;
9650 else if (ret == 1)
9651 flinfo->indices[symndx] = indx;
9652 else
9653 abort ();
9654 }
9655 elf_section_data (osec)->this_hdr.sh_info
9656 = flinfo->indices[symndx];
9657 }
9658 }
9659
9660 if ((o->flags & SEC_HAS_CONTENTS) == 0
9661 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9662 continue;
9663
9664 if ((o->flags & SEC_LINKER_CREATED) != 0)
9665 {
9666 /* Section was created by _bfd_elf_link_create_dynamic_sections
9667 or somesuch. */
9668 continue;
9669 }
9670
9671 /* Get the contents of the section. They have been cached by a
9672 relaxation routine. Note that o is a section in an input
9673 file, so the contents field will not have been set by any of
9674 the routines which work on output files. */
9675 if (elf_section_data (o)->this_hdr.contents != NULL)
9676 {
9677 contents = elf_section_data (o)->this_hdr.contents;
9678 if (bed->caches_rawsize
9679 && o->rawsize != 0
9680 && o->rawsize < o->size)
9681 {
9682 memcpy (flinfo->contents, contents, o->rawsize);
9683 contents = flinfo->contents;
9684 }
9685 }
9686 else
9687 {
9688 contents = flinfo->contents;
9689 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9690 return FALSE;
9691 }
9692
9693 if ((o->flags & SEC_RELOC) != 0)
9694 {
9695 Elf_Internal_Rela *internal_relocs;
9696 Elf_Internal_Rela *rel, *relend;
9697 int action_discarded;
9698 int ret;
9699
9700 /* Get the swapped relocs. */
9701 internal_relocs
9702 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9703 flinfo->internal_relocs, FALSE);
9704 if (internal_relocs == NULL
9705 && o->reloc_count > 0)
9706 return FALSE;
9707
9708 /* We need to reverse-copy input .ctors/.dtors sections if
9709 they are placed in .init_array/.finit_array for output. */
9710 if (o->size > address_size
9711 && ((strncmp (o->name, ".ctors", 6) == 0
9712 && strcmp (o->output_section->name,
9713 ".init_array") == 0)
9714 || (strncmp (o->name, ".dtors", 6) == 0
9715 && strcmp (o->output_section->name,
9716 ".fini_array") == 0))
9717 && (o->name[6] == 0 || o->name[6] == '.'))
9718 {
9719 if (o->size != o->reloc_count * address_size)
9720 {
9721 (*_bfd_error_handler)
9722 (_("error: %B: size of section %A is not "
9723 "multiple of address size"),
9724 input_bfd, o);
9725 bfd_set_error (bfd_error_on_input);
9726 return FALSE;
9727 }
9728 o->flags |= SEC_ELF_REVERSE_COPY;
9729 }
9730
9731 action_discarded = -1;
9732 if (!elf_section_ignore_discarded_relocs (o))
9733 action_discarded = (*bed->action_discarded) (o);
9734
9735 /* Run through the relocs evaluating complex reloc symbols and
9736 looking for relocs against symbols from discarded sections
9737 or section symbols from removed link-once sections.
9738 Complain about relocs against discarded sections. Zero
9739 relocs against removed link-once sections. */
9740
9741 rel = internal_relocs;
9742 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9743 for ( ; rel < relend; rel++)
9744 {
9745 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9746 unsigned int s_type;
9747 asection **ps, *sec;
9748 struct elf_link_hash_entry *h = NULL;
9749 const char *sym_name;
9750
9751 if (r_symndx == STN_UNDEF)
9752 continue;
9753
9754 if (r_symndx >= locsymcount
9755 || (elf_bad_symtab (input_bfd)
9756 && flinfo->sections[r_symndx] == NULL))
9757 {
9758 h = sym_hashes[r_symndx - extsymoff];
9759
9760 /* Badly formatted input files can contain relocs that
9761 reference non-existant symbols. Check here so that
9762 we do not seg fault. */
9763 if (h == NULL)
9764 {
9765 char buffer [32];
9766
9767 sprintf_vma (buffer, rel->r_info);
9768 (*_bfd_error_handler)
9769 (_("error: %B contains a reloc (0x%s) for section %A "
9770 "that references a non-existent global symbol"),
9771 input_bfd, o, buffer);
9772 bfd_set_error (bfd_error_bad_value);
9773 return FALSE;
9774 }
9775
9776 while (h->root.type == bfd_link_hash_indirect
9777 || h->root.type == bfd_link_hash_warning)
9778 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9779
9780 s_type = h->type;
9781
9782 /* If a plugin symbol is referenced from a non-IR file,
9783 mark the symbol as undefined. Note that the
9784 linker may attach linker created dynamic sections
9785 to the plugin bfd. Symbols defined in linker
9786 created sections are not plugin symbols. */
9787 if (h->root.non_ir_ref
9788 && (h->root.type == bfd_link_hash_defined
9789 || h->root.type == bfd_link_hash_defweak)
9790 && (h->root.u.def.section->flags
9791 & SEC_LINKER_CREATED) == 0
9792 && h->root.u.def.section->owner != NULL
9793 && (h->root.u.def.section->owner->flags
9794 & BFD_PLUGIN) != 0)
9795 {
9796 h->root.type = bfd_link_hash_undefined;
9797 h->root.u.undef.abfd = h->root.u.def.section->owner;
9798 }
9799
9800 ps = NULL;
9801 if (h->root.type == bfd_link_hash_defined
9802 || h->root.type == bfd_link_hash_defweak)
9803 ps = &h->root.u.def.section;
9804
9805 sym_name = h->root.root.string;
9806 }
9807 else
9808 {
9809 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9810
9811 s_type = ELF_ST_TYPE (sym->st_info);
9812 ps = &flinfo->sections[r_symndx];
9813 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9814 sym, *ps);
9815 }
9816
9817 if ((s_type == STT_RELC || s_type == STT_SRELC)
9818 && !flinfo->info->relocatable)
9819 {
9820 bfd_vma val;
9821 bfd_vma dot = (rel->r_offset
9822 + o->output_offset + o->output_section->vma);
9823 #ifdef DEBUG
9824 printf ("Encountered a complex symbol!");
9825 printf (" (input_bfd %s, section %s, reloc %ld\n",
9826 input_bfd->filename, o->name,
9827 (long) (rel - internal_relocs));
9828 printf (" symbol: idx %8.8lx, name %s\n",
9829 r_symndx, sym_name);
9830 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9831 (unsigned long) rel->r_info,
9832 (unsigned long) rel->r_offset);
9833 #endif
9834 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9835 isymbuf, locsymcount, s_type == STT_SRELC))
9836 return FALSE;
9837
9838 /* Symbol evaluated OK. Update to absolute value. */
9839 set_symbol_value (input_bfd, isymbuf, locsymcount,
9840 r_symndx, val);
9841 continue;
9842 }
9843
9844 if (action_discarded != -1 && ps != NULL)
9845 {
9846 /* Complain if the definition comes from a
9847 discarded section. */
9848 if ((sec = *ps) != NULL && discarded_section (sec))
9849 {
9850 BFD_ASSERT (r_symndx != STN_UNDEF);
9851 if (action_discarded & COMPLAIN)
9852 (*flinfo->info->callbacks->einfo)
9853 (_("%X`%s' referenced in section `%A' of %B: "
9854 "defined in discarded section `%A' of %B\n"),
9855 sym_name, o, input_bfd, sec, sec->owner);
9856
9857 /* Try to do the best we can to support buggy old
9858 versions of gcc. Pretend that the symbol is
9859 really defined in the kept linkonce section.
9860 FIXME: This is quite broken. Modifying the
9861 symbol here means we will be changing all later
9862 uses of the symbol, not just in this section. */
9863 if (action_discarded & PRETEND)
9864 {
9865 asection *kept;
9866
9867 kept = _bfd_elf_check_kept_section (sec,
9868 flinfo->info);
9869 if (kept != NULL)
9870 {
9871 *ps = kept;
9872 continue;
9873 }
9874 }
9875 }
9876 }
9877 }
9878
9879 /* Relocate the section by invoking a back end routine.
9880
9881 The back end routine is responsible for adjusting the
9882 section contents as necessary, and (if using Rela relocs
9883 and generating a relocatable output file) adjusting the
9884 reloc addend as necessary.
9885
9886 The back end routine does not have to worry about setting
9887 the reloc address or the reloc symbol index.
9888
9889 The back end routine is given a pointer to the swapped in
9890 internal symbols, and can access the hash table entries
9891 for the external symbols via elf_sym_hashes (input_bfd).
9892
9893 When generating relocatable output, the back end routine
9894 must handle STB_LOCAL/STT_SECTION symbols specially. The
9895 output symbol is going to be a section symbol
9896 corresponding to the output section, which will require
9897 the addend to be adjusted. */
9898
9899 ret = (*relocate_section) (output_bfd, flinfo->info,
9900 input_bfd, o, contents,
9901 internal_relocs,
9902 isymbuf,
9903 flinfo->sections);
9904 if (!ret)
9905 return FALSE;
9906
9907 if (ret == 2
9908 || flinfo->info->relocatable
9909 || flinfo->info->emitrelocations)
9910 {
9911 Elf_Internal_Rela *irela;
9912 Elf_Internal_Rela *irelaend, *irelamid;
9913 bfd_vma last_offset;
9914 struct elf_link_hash_entry **rel_hash;
9915 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9916 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9917 unsigned int next_erel;
9918 bfd_boolean rela_normal;
9919 struct bfd_elf_section_data *esdi, *esdo;
9920
9921 esdi = elf_section_data (o);
9922 esdo = elf_section_data (o->output_section);
9923 rela_normal = FALSE;
9924
9925 /* Adjust the reloc addresses and symbol indices. */
9926
9927 irela = internal_relocs;
9928 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9929 rel_hash = esdo->rel.hashes + esdo->rel.count;
9930 /* We start processing the REL relocs, if any. When we reach
9931 IRELAMID in the loop, we switch to the RELA relocs. */
9932 irelamid = irela;
9933 if (esdi->rel.hdr != NULL)
9934 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9935 * bed->s->int_rels_per_ext_rel);
9936 rel_hash_list = rel_hash;
9937 rela_hash_list = NULL;
9938 last_offset = o->output_offset;
9939 if (!flinfo->info->relocatable)
9940 last_offset += o->output_section->vma;
9941 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9942 {
9943 unsigned long r_symndx;
9944 asection *sec;
9945 Elf_Internal_Sym sym;
9946
9947 if (next_erel == bed->s->int_rels_per_ext_rel)
9948 {
9949 rel_hash++;
9950 next_erel = 0;
9951 }
9952
9953 if (irela == irelamid)
9954 {
9955 rel_hash = esdo->rela.hashes + esdo->rela.count;
9956 rela_hash_list = rel_hash;
9957 rela_normal = bed->rela_normal;
9958 }
9959
9960 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9961 flinfo->info, o,
9962 irela->r_offset);
9963 if (irela->r_offset >= (bfd_vma) -2)
9964 {
9965 /* This is a reloc for a deleted entry or somesuch.
9966 Turn it into an R_*_NONE reloc, at the same
9967 offset as the last reloc. elf_eh_frame.c and
9968 bfd_elf_discard_info rely on reloc offsets
9969 being ordered. */
9970 irela->r_offset = last_offset;
9971 irela->r_info = 0;
9972 irela->r_addend = 0;
9973 continue;
9974 }
9975
9976 irela->r_offset += o->output_offset;
9977
9978 /* Relocs in an executable have to be virtual addresses. */
9979 if (!flinfo->info->relocatable)
9980 irela->r_offset += o->output_section->vma;
9981
9982 last_offset = irela->r_offset;
9983
9984 r_symndx = irela->r_info >> r_sym_shift;
9985 if (r_symndx == STN_UNDEF)
9986 continue;
9987
9988 if (r_symndx >= locsymcount
9989 || (elf_bad_symtab (input_bfd)
9990 && flinfo->sections[r_symndx] == NULL))
9991 {
9992 struct elf_link_hash_entry *rh;
9993 unsigned long indx;
9994
9995 /* This is a reloc against a global symbol. We
9996 have not yet output all the local symbols, so
9997 we do not know the symbol index of any global
9998 symbol. We set the rel_hash entry for this
9999 reloc to point to the global hash table entry
10000 for this symbol. The symbol index is then
10001 set at the end of bfd_elf_final_link. */
10002 indx = r_symndx - extsymoff;
10003 rh = elf_sym_hashes (input_bfd)[indx];
10004 while (rh->root.type == bfd_link_hash_indirect
10005 || rh->root.type == bfd_link_hash_warning)
10006 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10007
10008 /* Setting the index to -2 tells
10009 elf_link_output_extsym that this symbol is
10010 used by a reloc. */
10011 BFD_ASSERT (rh->indx < 0);
10012 rh->indx = -2;
10013
10014 *rel_hash = rh;
10015
10016 continue;
10017 }
10018
10019 /* This is a reloc against a local symbol. */
10020
10021 *rel_hash = NULL;
10022 sym = isymbuf[r_symndx];
10023 sec = flinfo->sections[r_symndx];
10024 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10025 {
10026 /* I suppose the backend ought to fill in the
10027 section of any STT_SECTION symbol against a
10028 processor specific section. */
10029 r_symndx = STN_UNDEF;
10030 if (bfd_is_abs_section (sec))
10031 ;
10032 else if (sec == NULL || sec->owner == NULL)
10033 {
10034 bfd_set_error (bfd_error_bad_value);
10035 return FALSE;
10036 }
10037 else
10038 {
10039 asection *osec = sec->output_section;
10040
10041 /* If we have discarded a section, the output
10042 section will be the absolute section. In
10043 case of discarded SEC_MERGE sections, use
10044 the kept section. relocate_section should
10045 have already handled discarded linkonce
10046 sections. */
10047 if (bfd_is_abs_section (osec)
10048 && sec->kept_section != NULL
10049 && sec->kept_section->output_section != NULL)
10050 {
10051 osec = sec->kept_section->output_section;
10052 irela->r_addend -= osec->vma;
10053 }
10054
10055 if (!bfd_is_abs_section (osec))
10056 {
10057 r_symndx = osec->target_index;
10058 if (r_symndx == STN_UNDEF)
10059 {
10060 irela->r_addend += osec->vma;
10061 osec = _bfd_nearby_section (output_bfd, osec,
10062 osec->vma);
10063 irela->r_addend -= osec->vma;
10064 r_symndx = osec->target_index;
10065 }
10066 }
10067 }
10068
10069 /* Adjust the addend according to where the
10070 section winds up in the output section. */
10071 if (rela_normal)
10072 irela->r_addend += sec->output_offset;
10073 }
10074 else
10075 {
10076 if (flinfo->indices[r_symndx] == -1)
10077 {
10078 unsigned long shlink;
10079 const char *name;
10080 asection *osec;
10081 long indx;
10082
10083 if (flinfo->info->strip == strip_all)
10084 {
10085 /* You can't do ld -r -s. */
10086 bfd_set_error (bfd_error_invalid_operation);
10087 return FALSE;
10088 }
10089
10090 /* This symbol was skipped earlier, but
10091 since it is needed by a reloc, we
10092 must output it now. */
10093 shlink = symtab_hdr->sh_link;
10094 name = (bfd_elf_string_from_elf_section
10095 (input_bfd, shlink, sym.st_name));
10096 if (name == NULL)
10097 return FALSE;
10098
10099 osec = sec->output_section;
10100 sym.st_shndx =
10101 _bfd_elf_section_from_bfd_section (output_bfd,
10102 osec);
10103 if (sym.st_shndx == SHN_BAD)
10104 return FALSE;
10105
10106 sym.st_value += sec->output_offset;
10107 if (!flinfo->info->relocatable)
10108 {
10109 sym.st_value += osec->vma;
10110 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10111 {
10112 /* STT_TLS symbols are relative to PT_TLS
10113 segment base. */
10114 BFD_ASSERT (elf_hash_table (flinfo->info)
10115 ->tls_sec != NULL);
10116 sym.st_value -= (elf_hash_table (flinfo->info)
10117 ->tls_sec->vma);
10118 }
10119 }
10120
10121 indx = bfd_get_symcount (output_bfd);
10122 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10123 NULL);
10124 if (ret == 0)
10125 return FALSE;
10126 else if (ret == 1)
10127 flinfo->indices[r_symndx] = indx;
10128 else
10129 abort ();
10130 }
10131
10132 r_symndx = flinfo->indices[r_symndx];
10133 }
10134
10135 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10136 | (irela->r_info & r_type_mask));
10137 }
10138
10139 /* Swap out the relocs. */
10140 input_rel_hdr = esdi->rel.hdr;
10141 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10142 {
10143 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10144 input_rel_hdr,
10145 internal_relocs,
10146 rel_hash_list))
10147 return FALSE;
10148 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10149 * bed->s->int_rels_per_ext_rel);
10150 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10151 }
10152
10153 input_rela_hdr = esdi->rela.hdr;
10154 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10155 {
10156 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10157 input_rela_hdr,
10158 internal_relocs,
10159 rela_hash_list))
10160 return FALSE;
10161 }
10162 }
10163 }
10164
10165 /* Write out the modified section contents. */
10166 if (bed->elf_backend_write_section
10167 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10168 contents))
10169 {
10170 /* Section written out. */
10171 }
10172 else switch (o->sec_info_type)
10173 {
10174 case SEC_INFO_TYPE_STABS:
10175 if (! (_bfd_write_section_stabs
10176 (output_bfd,
10177 &elf_hash_table (flinfo->info)->stab_info,
10178 o, &elf_section_data (o)->sec_info, contents)))
10179 return FALSE;
10180 break;
10181 case SEC_INFO_TYPE_MERGE:
10182 if (! _bfd_write_merged_section (output_bfd, o,
10183 elf_section_data (o)->sec_info))
10184 return FALSE;
10185 break;
10186 case SEC_INFO_TYPE_EH_FRAME:
10187 {
10188 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10189 o, contents))
10190 return FALSE;
10191 }
10192 break;
10193 default:
10194 {
10195 /* FIXME: octets_per_byte. */
10196 if (! (o->flags & SEC_EXCLUDE))
10197 {
10198 file_ptr offset = (file_ptr) o->output_offset;
10199 bfd_size_type todo = o->size;
10200 if ((o->flags & SEC_ELF_REVERSE_COPY))
10201 {
10202 /* Reverse-copy input section to output. */
10203 do
10204 {
10205 todo -= address_size;
10206 if (! bfd_set_section_contents (output_bfd,
10207 o->output_section,
10208 contents + todo,
10209 offset,
10210 address_size))
10211 return FALSE;
10212 if (todo == 0)
10213 break;
10214 offset += address_size;
10215 }
10216 while (1);
10217 }
10218 else if (! bfd_set_section_contents (output_bfd,
10219 o->output_section,
10220 contents,
10221 offset, todo))
10222 return FALSE;
10223 }
10224 }
10225 break;
10226 }
10227 }
10228
10229 return TRUE;
10230 }
10231
10232 /* Generate a reloc when linking an ELF file. This is a reloc
10233 requested by the linker, and does not come from any input file. This
10234 is used to build constructor and destructor tables when linking
10235 with -Ur. */
10236
10237 static bfd_boolean
10238 elf_reloc_link_order (bfd *output_bfd,
10239 struct bfd_link_info *info,
10240 asection *output_section,
10241 struct bfd_link_order *link_order)
10242 {
10243 reloc_howto_type *howto;
10244 long indx;
10245 bfd_vma offset;
10246 bfd_vma addend;
10247 struct bfd_elf_section_reloc_data *reldata;
10248 struct elf_link_hash_entry **rel_hash_ptr;
10249 Elf_Internal_Shdr *rel_hdr;
10250 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10251 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10252 bfd_byte *erel;
10253 unsigned int i;
10254 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10255
10256 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10257 if (howto == NULL)
10258 {
10259 bfd_set_error (bfd_error_bad_value);
10260 return FALSE;
10261 }
10262
10263 addend = link_order->u.reloc.p->addend;
10264
10265 if (esdo->rel.hdr)
10266 reldata = &esdo->rel;
10267 else if (esdo->rela.hdr)
10268 reldata = &esdo->rela;
10269 else
10270 {
10271 reldata = NULL;
10272 BFD_ASSERT (0);
10273 }
10274
10275 /* Figure out the symbol index. */
10276 rel_hash_ptr = reldata->hashes + reldata->count;
10277 if (link_order->type == bfd_section_reloc_link_order)
10278 {
10279 indx = link_order->u.reloc.p->u.section->target_index;
10280 BFD_ASSERT (indx != 0);
10281 *rel_hash_ptr = NULL;
10282 }
10283 else
10284 {
10285 struct elf_link_hash_entry *h;
10286
10287 /* Treat a reloc against a defined symbol as though it were
10288 actually against the section. */
10289 h = ((struct elf_link_hash_entry *)
10290 bfd_wrapped_link_hash_lookup (output_bfd, info,
10291 link_order->u.reloc.p->u.name,
10292 FALSE, FALSE, TRUE));
10293 if (h != NULL
10294 && (h->root.type == bfd_link_hash_defined
10295 || h->root.type == bfd_link_hash_defweak))
10296 {
10297 asection *section;
10298
10299 section = h->root.u.def.section;
10300 indx = section->output_section->target_index;
10301 *rel_hash_ptr = NULL;
10302 /* It seems that we ought to add the symbol value to the
10303 addend here, but in practice it has already been added
10304 because it was passed to constructor_callback. */
10305 addend += section->output_section->vma + section->output_offset;
10306 }
10307 else if (h != NULL)
10308 {
10309 /* Setting the index to -2 tells elf_link_output_extsym that
10310 this symbol is used by a reloc. */
10311 h->indx = -2;
10312 *rel_hash_ptr = h;
10313 indx = 0;
10314 }
10315 else
10316 {
10317 if (! ((*info->callbacks->unattached_reloc)
10318 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10319 return FALSE;
10320 indx = 0;
10321 }
10322 }
10323
10324 /* If this is an inplace reloc, we must write the addend into the
10325 object file. */
10326 if (howto->partial_inplace && addend != 0)
10327 {
10328 bfd_size_type size;
10329 bfd_reloc_status_type rstat;
10330 bfd_byte *buf;
10331 bfd_boolean ok;
10332 const char *sym_name;
10333
10334 size = (bfd_size_type) bfd_get_reloc_size (howto);
10335 buf = (bfd_byte *) bfd_zmalloc (size);
10336 if (buf == NULL && size != 0)
10337 return FALSE;
10338 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10339 switch (rstat)
10340 {
10341 case bfd_reloc_ok:
10342 break;
10343
10344 default:
10345 case bfd_reloc_outofrange:
10346 abort ();
10347
10348 case bfd_reloc_overflow:
10349 if (link_order->type == bfd_section_reloc_link_order)
10350 sym_name = bfd_section_name (output_bfd,
10351 link_order->u.reloc.p->u.section);
10352 else
10353 sym_name = link_order->u.reloc.p->u.name;
10354 if (! ((*info->callbacks->reloc_overflow)
10355 (info, NULL, sym_name, howto->name, addend, NULL,
10356 NULL, (bfd_vma) 0)))
10357 {
10358 free (buf);
10359 return FALSE;
10360 }
10361 break;
10362 }
10363 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10364 link_order->offset, size);
10365 free (buf);
10366 if (! ok)
10367 return FALSE;
10368 }
10369
10370 /* The address of a reloc is relative to the section in a
10371 relocatable file, and is a virtual address in an executable
10372 file. */
10373 offset = link_order->offset;
10374 if (! info->relocatable)
10375 offset += output_section->vma;
10376
10377 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10378 {
10379 irel[i].r_offset = offset;
10380 irel[i].r_info = 0;
10381 irel[i].r_addend = 0;
10382 }
10383 if (bed->s->arch_size == 32)
10384 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10385 else
10386 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10387
10388 rel_hdr = reldata->hdr;
10389 erel = rel_hdr->contents;
10390 if (rel_hdr->sh_type == SHT_REL)
10391 {
10392 erel += reldata->count * bed->s->sizeof_rel;
10393 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10394 }
10395 else
10396 {
10397 irel[0].r_addend = addend;
10398 erel += reldata->count * bed->s->sizeof_rela;
10399 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10400 }
10401
10402 ++reldata->count;
10403
10404 return TRUE;
10405 }
10406
10407
10408 /* Get the output vma of the section pointed to by the sh_link field. */
10409
10410 static bfd_vma
10411 elf_get_linked_section_vma (struct bfd_link_order *p)
10412 {
10413 Elf_Internal_Shdr **elf_shdrp;
10414 asection *s;
10415 int elfsec;
10416
10417 s = p->u.indirect.section;
10418 elf_shdrp = elf_elfsections (s->owner);
10419 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10420 elfsec = elf_shdrp[elfsec]->sh_link;
10421 /* PR 290:
10422 The Intel C compiler generates SHT_IA_64_UNWIND with
10423 SHF_LINK_ORDER. But it doesn't set the sh_link or
10424 sh_info fields. Hence we could get the situation
10425 where elfsec is 0. */
10426 if (elfsec == 0)
10427 {
10428 const struct elf_backend_data *bed
10429 = get_elf_backend_data (s->owner);
10430 if (bed->link_order_error_handler)
10431 bed->link_order_error_handler
10432 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10433 return 0;
10434 }
10435 else
10436 {
10437 s = elf_shdrp[elfsec]->bfd_section;
10438 return s->output_section->vma + s->output_offset;
10439 }
10440 }
10441
10442
10443 /* Compare two sections based on the locations of the sections they are
10444 linked to. Used by elf_fixup_link_order. */
10445
10446 static int
10447 compare_link_order (const void * a, const void * b)
10448 {
10449 bfd_vma apos;
10450 bfd_vma bpos;
10451
10452 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10453 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10454 if (apos < bpos)
10455 return -1;
10456 return apos > bpos;
10457 }
10458
10459
10460 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10461 order as their linked sections. Returns false if this could not be done
10462 because an output section includes both ordered and unordered
10463 sections. Ideally we'd do this in the linker proper. */
10464
10465 static bfd_boolean
10466 elf_fixup_link_order (bfd *abfd, asection *o)
10467 {
10468 int seen_linkorder;
10469 int seen_other;
10470 int n;
10471 struct bfd_link_order *p;
10472 bfd *sub;
10473 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10474 unsigned elfsec;
10475 struct bfd_link_order **sections;
10476 asection *s, *other_sec, *linkorder_sec;
10477 bfd_vma offset;
10478
10479 other_sec = NULL;
10480 linkorder_sec = NULL;
10481 seen_other = 0;
10482 seen_linkorder = 0;
10483 for (p = o->map_head.link_order; p != NULL; p = p->next)
10484 {
10485 if (p->type == bfd_indirect_link_order)
10486 {
10487 s = p->u.indirect.section;
10488 sub = s->owner;
10489 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10490 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10491 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10492 && elfsec < elf_numsections (sub)
10493 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10494 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10495 {
10496 seen_linkorder++;
10497 linkorder_sec = s;
10498 }
10499 else
10500 {
10501 seen_other++;
10502 other_sec = s;
10503 }
10504 }
10505 else
10506 seen_other++;
10507
10508 if (seen_other && seen_linkorder)
10509 {
10510 if (other_sec && linkorder_sec)
10511 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10512 o, linkorder_sec,
10513 linkorder_sec->owner, other_sec,
10514 other_sec->owner);
10515 else
10516 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10517 o);
10518 bfd_set_error (bfd_error_bad_value);
10519 return FALSE;
10520 }
10521 }
10522
10523 if (!seen_linkorder)
10524 return TRUE;
10525
10526 sections = (struct bfd_link_order **)
10527 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10528 if (sections == NULL)
10529 return FALSE;
10530 seen_linkorder = 0;
10531
10532 for (p = o->map_head.link_order; p != NULL; p = p->next)
10533 {
10534 sections[seen_linkorder++] = p;
10535 }
10536 /* Sort the input sections in the order of their linked section. */
10537 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10538 compare_link_order);
10539
10540 /* Change the offsets of the sections. */
10541 offset = 0;
10542 for (n = 0; n < seen_linkorder; n++)
10543 {
10544 s = sections[n]->u.indirect.section;
10545 offset &= ~(bfd_vma) 0 << s->alignment_power;
10546 s->output_offset = offset;
10547 sections[n]->offset = offset;
10548 /* FIXME: octets_per_byte. */
10549 offset += sections[n]->size;
10550 }
10551
10552 free (sections);
10553 return TRUE;
10554 }
10555
10556 static void
10557 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10558 {
10559 asection *o;
10560
10561 if (flinfo->symstrtab != NULL)
10562 _bfd_stringtab_free (flinfo->symstrtab);
10563 if (flinfo->contents != NULL)
10564 free (flinfo->contents);
10565 if (flinfo->external_relocs != NULL)
10566 free (flinfo->external_relocs);
10567 if (flinfo->internal_relocs != NULL)
10568 free (flinfo->internal_relocs);
10569 if (flinfo->external_syms != NULL)
10570 free (flinfo->external_syms);
10571 if (flinfo->locsym_shndx != NULL)
10572 free (flinfo->locsym_shndx);
10573 if (flinfo->internal_syms != NULL)
10574 free (flinfo->internal_syms);
10575 if (flinfo->indices != NULL)
10576 free (flinfo->indices);
10577 if (flinfo->sections != NULL)
10578 free (flinfo->sections);
10579 if (flinfo->symbuf != NULL)
10580 free (flinfo->symbuf);
10581 if (flinfo->symshndxbuf != NULL)
10582 free (flinfo->symshndxbuf);
10583 for (o = obfd->sections; o != NULL; o = o->next)
10584 {
10585 struct bfd_elf_section_data *esdo = elf_section_data (o);
10586 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10587 free (esdo->rel.hashes);
10588 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10589 free (esdo->rela.hashes);
10590 }
10591 }
10592
10593 /* Do the final step of an ELF link. */
10594
10595 bfd_boolean
10596 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10597 {
10598 bfd_boolean dynamic;
10599 bfd_boolean emit_relocs;
10600 bfd *dynobj;
10601 struct elf_final_link_info flinfo;
10602 asection *o;
10603 struct bfd_link_order *p;
10604 bfd *sub;
10605 bfd_size_type max_contents_size;
10606 bfd_size_type max_external_reloc_size;
10607 bfd_size_type max_internal_reloc_count;
10608 bfd_size_type max_sym_count;
10609 bfd_size_type max_sym_shndx_count;
10610 Elf_Internal_Sym elfsym;
10611 unsigned int i;
10612 Elf_Internal_Shdr *symtab_hdr;
10613 Elf_Internal_Shdr *symtab_shndx_hdr;
10614 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10615 struct elf_outext_info eoinfo;
10616 bfd_boolean merged;
10617 size_t relativecount = 0;
10618 asection *reldyn = 0;
10619 bfd_size_type amt;
10620 asection *attr_section = NULL;
10621 bfd_vma attr_size = 0;
10622 const char *std_attrs_section;
10623
10624 if (! is_elf_hash_table (info->hash))
10625 return FALSE;
10626
10627 if (info->shared)
10628 abfd->flags |= DYNAMIC;
10629
10630 dynamic = elf_hash_table (info)->dynamic_sections_created;
10631 dynobj = elf_hash_table (info)->dynobj;
10632
10633 emit_relocs = (info->relocatable
10634 || info->emitrelocations);
10635
10636 flinfo.info = info;
10637 flinfo.output_bfd = abfd;
10638 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10639 if (flinfo.symstrtab == NULL)
10640 return FALSE;
10641
10642 if (! dynamic)
10643 {
10644 flinfo.dynsym_sec = NULL;
10645 flinfo.hash_sec = NULL;
10646 flinfo.symver_sec = NULL;
10647 }
10648 else
10649 {
10650 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10651 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10652 /* Note that dynsym_sec can be NULL (on VMS). */
10653 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10654 /* Note that it is OK if symver_sec is NULL. */
10655 }
10656
10657 flinfo.contents = NULL;
10658 flinfo.external_relocs = NULL;
10659 flinfo.internal_relocs = NULL;
10660 flinfo.external_syms = NULL;
10661 flinfo.locsym_shndx = NULL;
10662 flinfo.internal_syms = NULL;
10663 flinfo.indices = NULL;
10664 flinfo.sections = NULL;
10665 flinfo.symbuf = NULL;
10666 flinfo.symshndxbuf = NULL;
10667 flinfo.symbuf_count = 0;
10668 flinfo.shndxbuf_size = 0;
10669 flinfo.filesym_count = 0;
10670
10671 /* The object attributes have been merged. Remove the input
10672 sections from the link, and set the contents of the output
10673 secton. */
10674 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10675 for (o = abfd->sections; o != NULL; o = o->next)
10676 {
10677 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10678 || strcmp (o->name, ".gnu.attributes") == 0)
10679 {
10680 for (p = o->map_head.link_order; p != NULL; p = p->next)
10681 {
10682 asection *input_section;
10683
10684 if (p->type != bfd_indirect_link_order)
10685 continue;
10686 input_section = p->u.indirect.section;
10687 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10688 elf_link_input_bfd ignores this section. */
10689 input_section->flags &= ~SEC_HAS_CONTENTS;
10690 }
10691
10692 attr_size = bfd_elf_obj_attr_size (abfd);
10693 if (attr_size)
10694 {
10695 bfd_set_section_size (abfd, o, attr_size);
10696 attr_section = o;
10697 /* Skip this section later on. */
10698 o->map_head.link_order = NULL;
10699 }
10700 else
10701 o->flags |= SEC_EXCLUDE;
10702 }
10703 }
10704
10705 /* Count up the number of relocations we will output for each output
10706 section, so that we know the sizes of the reloc sections. We
10707 also figure out some maximum sizes. */
10708 max_contents_size = 0;
10709 max_external_reloc_size = 0;
10710 max_internal_reloc_count = 0;
10711 max_sym_count = 0;
10712 max_sym_shndx_count = 0;
10713 merged = FALSE;
10714 for (o = abfd->sections; o != NULL; o = o->next)
10715 {
10716 struct bfd_elf_section_data *esdo = elf_section_data (o);
10717 o->reloc_count = 0;
10718
10719 for (p = o->map_head.link_order; p != NULL; p = p->next)
10720 {
10721 unsigned int reloc_count = 0;
10722 struct bfd_elf_section_data *esdi = NULL;
10723
10724 if (p->type == bfd_section_reloc_link_order
10725 || p->type == bfd_symbol_reloc_link_order)
10726 reloc_count = 1;
10727 else if (p->type == bfd_indirect_link_order)
10728 {
10729 asection *sec;
10730
10731 sec = p->u.indirect.section;
10732 esdi = elf_section_data (sec);
10733
10734 /* Mark all sections which are to be included in the
10735 link. This will normally be every section. We need
10736 to do this so that we can identify any sections which
10737 the linker has decided to not include. */
10738 sec->linker_mark = TRUE;
10739
10740 if (sec->flags & SEC_MERGE)
10741 merged = TRUE;
10742
10743 if (esdo->this_hdr.sh_type == SHT_REL
10744 || esdo->this_hdr.sh_type == SHT_RELA)
10745 /* Some backends use reloc_count in relocation sections
10746 to count particular types of relocs. Of course,
10747 reloc sections themselves can't have relocations. */
10748 reloc_count = 0;
10749 else if (info->relocatable || info->emitrelocations)
10750 reloc_count = sec->reloc_count;
10751 else if (bed->elf_backend_count_relocs)
10752 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10753
10754 if (sec->rawsize > max_contents_size)
10755 max_contents_size = sec->rawsize;
10756 if (sec->size > max_contents_size)
10757 max_contents_size = sec->size;
10758
10759 /* We are interested in just local symbols, not all
10760 symbols. */
10761 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10762 && (sec->owner->flags & DYNAMIC) == 0)
10763 {
10764 size_t sym_count;
10765
10766 if (elf_bad_symtab (sec->owner))
10767 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10768 / bed->s->sizeof_sym);
10769 else
10770 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10771
10772 if (sym_count > max_sym_count)
10773 max_sym_count = sym_count;
10774
10775 if (sym_count > max_sym_shndx_count
10776 && elf_symtab_shndx (sec->owner) != 0)
10777 max_sym_shndx_count = sym_count;
10778
10779 if ((sec->flags & SEC_RELOC) != 0)
10780 {
10781 size_t ext_size = 0;
10782
10783 if (esdi->rel.hdr != NULL)
10784 ext_size = esdi->rel.hdr->sh_size;
10785 if (esdi->rela.hdr != NULL)
10786 ext_size += esdi->rela.hdr->sh_size;
10787
10788 if (ext_size > max_external_reloc_size)
10789 max_external_reloc_size = ext_size;
10790 if (sec->reloc_count > max_internal_reloc_count)
10791 max_internal_reloc_count = sec->reloc_count;
10792 }
10793 }
10794 }
10795
10796 if (reloc_count == 0)
10797 continue;
10798
10799 o->reloc_count += reloc_count;
10800
10801 if (p->type == bfd_indirect_link_order
10802 && (info->relocatable || info->emitrelocations))
10803 {
10804 if (esdi->rel.hdr)
10805 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10806 if (esdi->rela.hdr)
10807 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10808 }
10809 else
10810 {
10811 if (o->use_rela_p)
10812 esdo->rela.count += reloc_count;
10813 else
10814 esdo->rel.count += reloc_count;
10815 }
10816 }
10817
10818 if (o->reloc_count > 0)
10819 o->flags |= SEC_RELOC;
10820 else
10821 {
10822 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10823 set it (this is probably a bug) and if it is set
10824 assign_section_numbers will create a reloc section. */
10825 o->flags &=~ SEC_RELOC;
10826 }
10827
10828 /* If the SEC_ALLOC flag is not set, force the section VMA to
10829 zero. This is done in elf_fake_sections as well, but forcing
10830 the VMA to 0 here will ensure that relocs against these
10831 sections are handled correctly. */
10832 if ((o->flags & SEC_ALLOC) == 0
10833 && ! o->user_set_vma)
10834 o->vma = 0;
10835 }
10836
10837 if (! info->relocatable && merged)
10838 elf_link_hash_traverse (elf_hash_table (info),
10839 _bfd_elf_link_sec_merge_syms, abfd);
10840
10841 /* Figure out the file positions for everything but the symbol table
10842 and the relocs. We set symcount to force assign_section_numbers
10843 to create a symbol table. */
10844 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10845 BFD_ASSERT (! abfd->output_has_begun);
10846 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10847 goto error_return;
10848
10849 /* Set sizes, and assign file positions for reloc sections. */
10850 for (o = abfd->sections; o != NULL; o = o->next)
10851 {
10852 struct bfd_elf_section_data *esdo = elf_section_data (o);
10853 if ((o->flags & SEC_RELOC) != 0)
10854 {
10855 if (esdo->rel.hdr
10856 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10857 goto error_return;
10858
10859 if (esdo->rela.hdr
10860 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10861 goto error_return;
10862 }
10863
10864 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10865 to count upwards while actually outputting the relocations. */
10866 esdo->rel.count = 0;
10867 esdo->rela.count = 0;
10868 }
10869
10870 /* We have now assigned file positions for all the sections except
10871 .symtab, .strtab, and non-loaded reloc sections. We start the
10872 .symtab section at the current file position, and write directly
10873 to it. We build the .strtab section in memory. */
10874 bfd_get_symcount (abfd) = 0;
10875 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10876 /* sh_name is set in prep_headers. */
10877 symtab_hdr->sh_type = SHT_SYMTAB;
10878 /* sh_flags, sh_addr and sh_size all start off zero. */
10879 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10880 /* sh_link is set in assign_section_numbers. */
10881 /* sh_info is set below. */
10882 /* sh_offset is set just below. */
10883 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10884
10885 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10886 continuously seeking to the right position in the file. */
10887 if (! info->keep_memory || max_sym_count < 20)
10888 flinfo.symbuf_size = 20;
10889 else
10890 flinfo.symbuf_size = max_sym_count;
10891 amt = flinfo.symbuf_size;
10892 amt *= bed->s->sizeof_sym;
10893 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10894 if (flinfo.symbuf == NULL)
10895 goto error_return;
10896 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10897 {
10898 /* Wild guess at number of output symbols. realloc'd as needed. */
10899 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10900 flinfo.shndxbuf_size = amt;
10901 amt *= sizeof (Elf_External_Sym_Shndx);
10902 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10903 if (flinfo.symshndxbuf == NULL)
10904 goto error_return;
10905 }
10906
10907 if (info->strip != strip_all || emit_relocs)
10908 {
10909 file_ptr off = elf_next_file_pos (abfd);
10910
10911 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10912
10913 /* Note that at this point elf_next_file_pos (abfd) is
10914 incorrect. We do not yet know the size of the .symtab section.
10915 We correct next_file_pos below, after we do know the size. */
10916
10917 /* Start writing out the symbol table. The first symbol is always a
10918 dummy symbol. */
10919 elfsym.st_value = 0;
10920 elfsym.st_size = 0;
10921 elfsym.st_info = 0;
10922 elfsym.st_other = 0;
10923 elfsym.st_shndx = SHN_UNDEF;
10924 elfsym.st_target_internal = 0;
10925 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10926 NULL) != 1)
10927 goto error_return;
10928
10929 /* Output a symbol for each section. We output these even if we are
10930 discarding local symbols, since they are used for relocs. These
10931 symbols have no names. We store the index of each one in the
10932 index field of the section, so that we can find it again when
10933 outputting relocs. */
10934
10935 elfsym.st_size = 0;
10936 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10937 elfsym.st_other = 0;
10938 elfsym.st_value = 0;
10939 elfsym.st_target_internal = 0;
10940 for (i = 1; i < elf_numsections (abfd); i++)
10941 {
10942 o = bfd_section_from_elf_index (abfd, i);
10943 if (o != NULL)
10944 {
10945 o->target_index = bfd_get_symcount (abfd);
10946 elfsym.st_shndx = i;
10947 if (!info->relocatable)
10948 elfsym.st_value = o->vma;
10949 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10950 goto error_return;
10951 }
10952 }
10953 }
10954
10955 /* Allocate some memory to hold information read in from the input
10956 files. */
10957 if (max_contents_size != 0)
10958 {
10959 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10960 if (flinfo.contents == NULL)
10961 goto error_return;
10962 }
10963
10964 if (max_external_reloc_size != 0)
10965 {
10966 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10967 if (flinfo.external_relocs == NULL)
10968 goto error_return;
10969 }
10970
10971 if (max_internal_reloc_count != 0)
10972 {
10973 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10974 amt *= sizeof (Elf_Internal_Rela);
10975 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10976 if (flinfo.internal_relocs == NULL)
10977 goto error_return;
10978 }
10979
10980 if (max_sym_count != 0)
10981 {
10982 amt = max_sym_count * bed->s->sizeof_sym;
10983 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10984 if (flinfo.external_syms == NULL)
10985 goto error_return;
10986
10987 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10988 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10989 if (flinfo.internal_syms == NULL)
10990 goto error_return;
10991
10992 amt = max_sym_count * sizeof (long);
10993 flinfo.indices = (long int *) bfd_malloc (amt);
10994 if (flinfo.indices == NULL)
10995 goto error_return;
10996
10997 amt = max_sym_count * sizeof (asection *);
10998 flinfo.sections = (asection **) bfd_malloc (amt);
10999 if (flinfo.sections == NULL)
11000 goto error_return;
11001 }
11002
11003 if (max_sym_shndx_count != 0)
11004 {
11005 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11006 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11007 if (flinfo.locsym_shndx == NULL)
11008 goto error_return;
11009 }
11010
11011 if (elf_hash_table (info)->tls_sec)
11012 {
11013 bfd_vma base, end = 0;
11014 asection *sec;
11015
11016 for (sec = elf_hash_table (info)->tls_sec;
11017 sec && (sec->flags & SEC_THREAD_LOCAL);
11018 sec = sec->next)
11019 {
11020 bfd_size_type size = sec->size;
11021
11022 if (size == 0
11023 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11024 {
11025 struct bfd_link_order *ord = sec->map_tail.link_order;
11026
11027 if (ord != NULL)
11028 size = ord->offset + ord->size;
11029 }
11030 end = sec->vma + size;
11031 }
11032 base = elf_hash_table (info)->tls_sec->vma;
11033 /* Only align end of TLS section if static TLS doesn't have special
11034 alignment requirements. */
11035 if (bed->static_tls_alignment == 1)
11036 end = align_power (end,
11037 elf_hash_table (info)->tls_sec->alignment_power);
11038 elf_hash_table (info)->tls_size = end - base;
11039 }
11040
11041 /* Reorder SHF_LINK_ORDER sections. */
11042 for (o = abfd->sections; o != NULL; o = o->next)
11043 {
11044 if (!elf_fixup_link_order (abfd, o))
11045 return FALSE;
11046 }
11047
11048 /* Since ELF permits relocations to be against local symbols, we
11049 must have the local symbols available when we do the relocations.
11050 Since we would rather only read the local symbols once, and we
11051 would rather not keep them in memory, we handle all the
11052 relocations for a single input file at the same time.
11053
11054 Unfortunately, there is no way to know the total number of local
11055 symbols until we have seen all of them, and the local symbol
11056 indices precede the global symbol indices. This means that when
11057 we are generating relocatable output, and we see a reloc against
11058 a global symbol, we can not know the symbol index until we have
11059 finished examining all the local symbols to see which ones we are
11060 going to output. To deal with this, we keep the relocations in
11061 memory, and don't output them until the end of the link. This is
11062 an unfortunate waste of memory, but I don't see a good way around
11063 it. Fortunately, it only happens when performing a relocatable
11064 link, which is not the common case. FIXME: If keep_memory is set
11065 we could write the relocs out and then read them again; I don't
11066 know how bad the memory loss will be. */
11067
11068 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11069 sub->output_has_begun = FALSE;
11070 for (o = abfd->sections; o != NULL; o = o->next)
11071 {
11072 for (p = o->map_head.link_order; p != NULL; p = p->next)
11073 {
11074 if (p->type == bfd_indirect_link_order
11075 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11076 == bfd_target_elf_flavour)
11077 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11078 {
11079 if (! sub->output_has_begun)
11080 {
11081 if (! elf_link_input_bfd (&flinfo, sub))
11082 goto error_return;
11083 sub->output_has_begun = TRUE;
11084 }
11085 }
11086 else if (p->type == bfd_section_reloc_link_order
11087 || p->type == bfd_symbol_reloc_link_order)
11088 {
11089 if (! elf_reloc_link_order (abfd, info, o, p))
11090 goto error_return;
11091 }
11092 else
11093 {
11094 if (! _bfd_default_link_order (abfd, info, o, p))
11095 {
11096 if (p->type == bfd_indirect_link_order
11097 && (bfd_get_flavour (sub)
11098 == bfd_target_elf_flavour)
11099 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11100 != bed->s->elfclass))
11101 {
11102 const char *iclass, *oclass;
11103
11104 if (bed->s->elfclass == ELFCLASS64)
11105 {
11106 iclass = "ELFCLASS32";
11107 oclass = "ELFCLASS64";
11108 }
11109 else
11110 {
11111 iclass = "ELFCLASS64";
11112 oclass = "ELFCLASS32";
11113 }
11114
11115 bfd_set_error (bfd_error_wrong_format);
11116 (*_bfd_error_handler)
11117 (_("%B: file class %s incompatible with %s"),
11118 sub, iclass, oclass);
11119 }
11120
11121 goto error_return;
11122 }
11123 }
11124 }
11125 }
11126
11127 /* Free symbol buffer if needed. */
11128 if (!info->reduce_memory_overheads)
11129 {
11130 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11131 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11132 && elf_tdata (sub)->symbuf)
11133 {
11134 free (elf_tdata (sub)->symbuf);
11135 elf_tdata (sub)->symbuf = NULL;
11136 }
11137 }
11138
11139 /* Output any global symbols that got converted to local in a
11140 version script or due to symbol visibility. We do this in a
11141 separate step since ELF requires all local symbols to appear
11142 prior to any global symbols. FIXME: We should only do this if
11143 some global symbols were, in fact, converted to become local.
11144 FIXME: Will this work correctly with the Irix 5 linker? */
11145 eoinfo.failed = FALSE;
11146 eoinfo.flinfo = &flinfo;
11147 eoinfo.localsyms = TRUE;
11148 eoinfo.file_sym_done = FALSE;
11149 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11150 if (eoinfo.failed)
11151 return FALSE;
11152
11153 /* If backend needs to output some local symbols not present in the hash
11154 table, do it now. */
11155 if (bed->elf_backend_output_arch_local_syms
11156 && (info->strip != strip_all || emit_relocs))
11157 {
11158 typedef int (*out_sym_func)
11159 (void *, const char *, Elf_Internal_Sym *, asection *,
11160 struct elf_link_hash_entry *);
11161
11162 if (! ((*bed->elf_backend_output_arch_local_syms)
11163 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11164 return FALSE;
11165 }
11166
11167 /* That wrote out all the local symbols. Finish up the symbol table
11168 with the global symbols. Even if we want to strip everything we
11169 can, we still need to deal with those global symbols that got
11170 converted to local in a version script. */
11171
11172 /* The sh_info field records the index of the first non local symbol. */
11173 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11174
11175 if (dynamic
11176 && flinfo.dynsym_sec != NULL
11177 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11178 {
11179 Elf_Internal_Sym sym;
11180 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11181 long last_local = 0;
11182
11183 /* Write out the section symbols for the output sections. */
11184 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11185 {
11186 asection *s;
11187
11188 sym.st_size = 0;
11189 sym.st_name = 0;
11190 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11191 sym.st_other = 0;
11192 sym.st_target_internal = 0;
11193
11194 for (s = abfd->sections; s != NULL; s = s->next)
11195 {
11196 int indx;
11197 bfd_byte *dest;
11198 long dynindx;
11199
11200 dynindx = elf_section_data (s)->dynindx;
11201 if (dynindx <= 0)
11202 continue;
11203 indx = elf_section_data (s)->this_idx;
11204 BFD_ASSERT (indx > 0);
11205 sym.st_shndx = indx;
11206 if (! check_dynsym (abfd, &sym))
11207 return FALSE;
11208 sym.st_value = s->vma;
11209 dest = dynsym + dynindx * bed->s->sizeof_sym;
11210 if (last_local < dynindx)
11211 last_local = dynindx;
11212 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11213 }
11214 }
11215
11216 /* Write out the local dynsyms. */
11217 if (elf_hash_table (info)->dynlocal)
11218 {
11219 struct elf_link_local_dynamic_entry *e;
11220 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11221 {
11222 asection *s;
11223 bfd_byte *dest;
11224
11225 /* Copy the internal symbol and turn off visibility.
11226 Note that we saved a word of storage and overwrote
11227 the original st_name with the dynstr_index. */
11228 sym = e->isym;
11229 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11230
11231 s = bfd_section_from_elf_index (e->input_bfd,
11232 e->isym.st_shndx);
11233 if (s != NULL)
11234 {
11235 sym.st_shndx =
11236 elf_section_data (s->output_section)->this_idx;
11237 if (! check_dynsym (abfd, &sym))
11238 return FALSE;
11239 sym.st_value = (s->output_section->vma
11240 + s->output_offset
11241 + e->isym.st_value);
11242 }
11243
11244 if (last_local < e->dynindx)
11245 last_local = e->dynindx;
11246
11247 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11248 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11249 }
11250 }
11251
11252 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11253 last_local + 1;
11254 }
11255
11256 /* We get the global symbols from the hash table. */
11257 eoinfo.failed = FALSE;
11258 eoinfo.localsyms = FALSE;
11259 eoinfo.flinfo = &flinfo;
11260 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11261 if (eoinfo.failed)
11262 return FALSE;
11263
11264 /* If backend needs to output some symbols not present in the hash
11265 table, do it now. */
11266 if (bed->elf_backend_output_arch_syms
11267 && (info->strip != strip_all || emit_relocs))
11268 {
11269 typedef int (*out_sym_func)
11270 (void *, const char *, Elf_Internal_Sym *, asection *,
11271 struct elf_link_hash_entry *);
11272
11273 if (! ((*bed->elf_backend_output_arch_syms)
11274 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11275 return FALSE;
11276 }
11277
11278 /* Flush all symbols to the file. */
11279 if (! elf_link_flush_output_syms (&flinfo, bed))
11280 return FALSE;
11281
11282 /* Now we know the size of the symtab section. */
11283 if (bfd_get_symcount (abfd) > 0)
11284 {
11285 /* Finish up and write out the symbol string table (.strtab)
11286 section. */
11287 Elf_Internal_Shdr *symstrtab_hdr;
11288 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11289
11290 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11291 if (symtab_shndx_hdr->sh_name != 0)
11292 {
11293 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11294 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11295 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11296 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11297 symtab_shndx_hdr->sh_size = amt;
11298
11299 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11300 off, TRUE);
11301
11302 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11303 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11304 return FALSE;
11305 }
11306
11307 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11308 /* sh_name was set in prep_headers. */
11309 symstrtab_hdr->sh_type = SHT_STRTAB;
11310 symstrtab_hdr->sh_flags = 0;
11311 symstrtab_hdr->sh_addr = 0;
11312 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11313 symstrtab_hdr->sh_entsize = 0;
11314 symstrtab_hdr->sh_link = 0;
11315 symstrtab_hdr->sh_info = 0;
11316 /* sh_offset is set just below. */
11317 symstrtab_hdr->sh_addralign = 1;
11318
11319 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11320 off, TRUE);
11321 elf_next_file_pos (abfd) = off;
11322
11323 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11324 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11325 return FALSE;
11326 }
11327
11328 /* Adjust the relocs to have the correct symbol indices. */
11329 for (o = abfd->sections; o != NULL; o = o->next)
11330 {
11331 struct bfd_elf_section_data *esdo = elf_section_data (o);
11332 bfd_boolean sort;
11333 if ((o->flags & SEC_RELOC) == 0)
11334 continue;
11335
11336 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11337 if (esdo->rel.hdr != NULL)
11338 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11339 if (esdo->rela.hdr != NULL)
11340 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11341
11342 /* Set the reloc_count field to 0 to prevent write_relocs from
11343 trying to swap the relocs out itself. */
11344 o->reloc_count = 0;
11345 }
11346
11347 if (dynamic && info->combreloc && dynobj != NULL)
11348 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11349
11350 /* If we are linking against a dynamic object, or generating a
11351 shared library, finish up the dynamic linking information. */
11352 if (dynamic)
11353 {
11354 bfd_byte *dyncon, *dynconend;
11355
11356 /* Fix up .dynamic entries. */
11357 o = bfd_get_linker_section (dynobj, ".dynamic");
11358 BFD_ASSERT (o != NULL);
11359
11360 dyncon = o->contents;
11361 dynconend = o->contents + o->size;
11362 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11363 {
11364 Elf_Internal_Dyn dyn;
11365 const char *name;
11366 unsigned int type;
11367
11368 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11369
11370 switch (dyn.d_tag)
11371 {
11372 default:
11373 continue;
11374 case DT_NULL:
11375 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11376 {
11377 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11378 {
11379 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11380 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11381 default: continue;
11382 }
11383 dyn.d_un.d_val = relativecount;
11384 relativecount = 0;
11385 break;
11386 }
11387 continue;
11388
11389 case DT_INIT:
11390 name = info->init_function;
11391 goto get_sym;
11392 case DT_FINI:
11393 name = info->fini_function;
11394 get_sym:
11395 {
11396 struct elf_link_hash_entry *h;
11397
11398 h = elf_link_hash_lookup (elf_hash_table (info), name,
11399 FALSE, FALSE, TRUE);
11400 if (h != NULL
11401 && (h->root.type == bfd_link_hash_defined
11402 || h->root.type == bfd_link_hash_defweak))
11403 {
11404 dyn.d_un.d_ptr = h->root.u.def.value;
11405 o = h->root.u.def.section;
11406 if (o->output_section != NULL)
11407 dyn.d_un.d_ptr += (o->output_section->vma
11408 + o->output_offset);
11409 else
11410 {
11411 /* The symbol is imported from another shared
11412 library and does not apply to this one. */
11413 dyn.d_un.d_ptr = 0;
11414 }
11415 break;
11416 }
11417 }
11418 continue;
11419
11420 case DT_PREINIT_ARRAYSZ:
11421 name = ".preinit_array";
11422 goto get_size;
11423 case DT_INIT_ARRAYSZ:
11424 name = ".init_array";
11425 goto get_size;
11426 case DT_FINI_ARRAYSZ:
11427 name = ".fini_array";
11428 get_size:
11429 o = bfd_get_section_by_name (abfd, name);
11430 if (o == NULL)
11431 {
11432 (*_bfd_error_handler)
11433 (_("%B: could not find output section %s"), abfd, name);
11434 goto error_return;
11435 }
11436 if (o->size == 0)
11437 (*_bfd_error_handler)
11438 (_("warning: %s section has zero size"), name);
11439 dyn.d_un.d_val = o->size;
11440 break;
11441
11442 case DT_PREINIT_ARRAY:
11443 name = ".preinit_array";
11444 goto get_vma;
11445 case DT_INIT_ARRAY:
11446 name = ".init_array";
11447 goto get_vma;
11448 case DT_FINI_ARRAY:
11449 name = ".fini_array";
11450 goto get_vma;
11451
11452 case DT_HASH:
11453 name = ".hash";
11454 goto get_vma;
11455 case DT_GNU_HASH:
11456 name = ".gnu.hash";
11457 goto get_vma;
11458 case DT_STRTAB:
11459 name = ".dynstr";
11460 goto get_vma;
11461 case DT_SYMTAB:
11462 name = ".dynsym";
11463 goto get_vma;
11464 case DT_VERDEF:
11465 name = ".gnu.version_d";
11466 goto get_vma;
11467 case DT_VERNEED:
11468 name = ".gnu.version_r";
11469 goto get_vma;
11470 case DT_VERSYM:
11471 name = ".gnu.version";
11472 get_vma:
11473 o = bfd_get_section_by_name (abfd, name);
11474 if (o == NULL)
11475 {
11476 (*_bfd_error_handler)
11477 (_("%B: could not find output section %s"), abfd, name);
11478 goto error_return;
11479 }
11480 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11481 {
11482 (*_bfd_error_handler)
11483 (_("warning: section '%s' is being made into a note"), name);
11484 bfd_set_error (bfd_error_nonrepresentable_section);
11485 goto error_return;
11486 }
11487 dyn.d_un.d_ptr = o->vma;
11488 break;
11489
11490 case DT_REL:
11491 case DT_RELA:
11492 case DT_RELSZ:
11493 case DT_RELASZ:
11494 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11495 type = SHT_REL;
11496 else
11497 type = SHT_RELA;
11498 dyn.d_un.d_val = 0;
11499 dyn.d_un.d_ptr = 0;
11500 for (i = 1; i < elf_numsections (abfd); i++)
11501 {
11502 Elf_Internal_Shdr *hdr;
11503
11504 hdr = elf_elfsections (abfd)[i];
11505 if (hdr->sh_type == type
11506 && (hdr->sh_flags & SHF_ALLOC) != 0)
11507 {
11508 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11509 dyn.d_un.d_val += hdr->sh_size;
11510 else
11511 {
11512 if (dyn.d_un.d_ptr == 0
11513 || hdr->sh_addr < dyn.d_un.d_ptr)
11514 dyn.d_un.d_ptr = hdr->sh_addr;
11515 }
11516 }
11517 }
11518 break;
11519 }
11520 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11521 }
11522 }
11523
11524 /* If we have created any dynamic sections, then output them. */
11525 if (dynobj != NULL)
11526 {
11527 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11528 goto error_return;
11529
11530 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11531 if (((info->warn_shared_textrel && info->shared)
11532 || info->error_textrel)
11533 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11534 {
11535 bfd_byte *dyncon, *dynconend;
11536
11537 dyncon = o->contents;
11538 dynconend = o->contents + o->size;
11539 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11540 {
11541 Elf_Internal_Dyn dyn;
11542
11543 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11544
11545 if (dyn.d_tag == DT_TEXTREL)
11546 {
11547 if (info->error_textrel)
11548 info->callbacks->einfo
11549 (_("%P%X: read-only segment has dynamic relocations.\n"));
11550 else
11551 info->callbacks->einfo
11552 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11553 break;
11554 }
11555 }
11556 }
11557
11558 for (o = dynobj->sections; o != NULL; o = o->next)
11559 {
11560 if ((o->flags & SEC_HAS_CONTENTS) == 0
11561 || o->size == 0
11562 || o->output_section == bfd_abs_section_ptr)
11563 continue;
11564 if ((o->flags & SEC_LINKER_CREATED) == 0)
11565 {
11566 /* At this point, we are only interested in sections
11567 created by _bfd_elf_link_create_dynamic_sections. */
11568 continue;
11569 }
11570 if (elf_hash_table (info)->stab_info.stabstr == o)
11571 continue;
11572 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11573 continue;
11574 if (strcmp (o->name, ".dynstr") != 0)
11575 {
11576 /* FIXME: octets_per_byte. */
11577 if (! bfd_set_section_contents (abfd, o->output_section,
11578 o->contents,
11579 (file_ptr) o->output_offset,
11580 o->size))
11581 goto error_return;
11582 }
11583 else
11584 {
11585 /* The contents of the .dynstr section are actually in a
11586 stringtab. */
11587 file_ptr off;
11588
11589 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11590 if (bfd_seek (abfd, off, SEEK_SET) != 0
11591 || ! _bfd_elf_strtab_emit (abfd,
11592 elf_hash_table (info)->dynstr))
11593 goto error_return;
11594 }
11595 }
11596 }
11597
11598 if (info->relocatable)
11599 {
11600 bfd_boolean failed = FALSE;
11601
11602 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11603 if (failed)
11604 goto error_return;
11605 }
11606
11607 /* If we have optimized stabs strings, output them. */
11608 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11609 {
11610 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11611 goto error_return;
11612 }
11613
11614 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11615 goto error_return;
11616
11617 elf_final_link_free (abfd, &flinfo);
11618
11619 elf_linker (abfd) = TRUE;
11620
11621 if (attr_section)
11622 {
11623 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11624 if (contents == NULL)
11625 return FALSE; /* Bail out and fail. */
11626 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11627 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11628 free (contents);
11629 }
11630
11631 return TRUE;
11632
11633 error_return:
11634 elf_final_link_free (abfd, &flinfo);
11635 return FALSE;
11636 }
11637 \f
11638 /* Initialize COOKIE for input bfd ABFD. */
11639
11640 static bfd_boolean
11641 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11642 struct bfd_link_info *info, bfd *abfd)
11643 {
11644 Elf_Internal_Shdr *symtab_hdr;
11645 const struct elf_backend_data *bed;
11646
11647 bed = get_elf_backend_data (abfd);
11648 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11649
11650 cookie->abfd = abfd;
11651 cookie->sym_hashes = elf_sym_hashes (abfd);
11652 cookie->bad_symtab = elf_bad_symtab (abfd);
11653 if (cookie->bad_symtab)
11654 {
11655 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11656 cookie->extsymoff = 0;
11657 }
11658 else
11659 {
11660 cookie->locsymcount = symtab_hdr->sh_info;
11661 cookie->extsymoff = symtab_hdr->sh_info;
11662 }
11663
11664 if (bed->s->arch_size == 32)
11665 cookie->r_sym_shift = 8;
11666 else
11667 cookie->r_sym_shift = 32;
11668
11669 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11670 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11671 {
11672 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11673 cookie->locsymcount, 0,
11674 NULL, NULL, NULL);
11675 if (cookie->locsyms == NULL)
11676 {
11677 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11678 return FALSE;
11679 }
11680 if (info->keep_memory)
11681 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11682 }
11683 return TRUE;
11684 }
11685
11686 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11687
11688 static void
11689 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11690 {
11691 Elf_Internal_Shdr *symtab_hdr;
11692
11693 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11694 if (cookie->locsyms != NULL
11695 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11696 free (cookie->locsyms);
11697 }
11698
11699 /* Initialize the relocation information in COOKIE for input section SEC
11700 of input bfd ABFD. */
11701
11702 static bfd_boolean
11703 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11704 struct bfd_link_info *info, bfd *abfd,
11705 asection *sec)
11706 {
11707 const struct elf_backend_data *bed;
11708
11709 if (sec->reloc_count == 0)
11710 {
11711 cookie->rels = NULL;
11712 cookie->relend = NULL;
11713 }
11714 else
11715 {
11716 bed = get_elf_backend_data (abfd);
11717
11718 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11719 info->keep_memory);
11720 if (cookie->rels == NULL)
11721 return FALSE;
11722 cookie->rel = cookie->rels;
11723 cookie->relend = (cookie->rels
11724 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11725 }
11726 cookie->rel = cookie->rels;
11727 return TRUE;
11728 }
11729
11730 /* Free the memory allocated by init_reloc_cookie_rels,
11731 if appropriate. */
11732
11733 static void
11734 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11735 asection *sec)
11736 {
11737 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11738 free (cookie->rels);
11739 }
11740
11741 /* Initialize the whole of COOKIE for input section SEC. */
11742
11743 static bfd_boolean
11744 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11745 struct bfd_link_info *info,
11746 asection *sec)
11747 {
11748 if (!init_reloc_cookie (cookie, info, sec->owner))
11749 goto error1;
11750 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11751 goto error2;
11752 return TRUE;
11753
11754 error2:
11755 fini_reloc_cookie (cookie, sec->owner);
11756 error1:
11757 return FALSE;
11758 }
11759
11760 /* Free the memory allocated by init_reloc_cookie_for_section,
11761 if appropriate. */
11762
11763 static void
11764 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11765 asection *sec)
11766 {
11767 fini_reloc_cookie_rels (cookie, sec);
11768 fini_reloc_cookie (cookie, sec->owner);
11769 }
11770 \f
11771 /* Garbage collect unused sections. */
11772
11773 /* Default gc_mark_hook. */
11774
11775 asection *
11776 _bfd_elf_gc_mark_hook (asection *sec,
11777 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11778 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11779 struct elf_link_hash_entry *h,
11780 Elf_Internal_Sym *sym)
11781 {
11782 const char *sec_name;
11783
11784 if (h != NULL)
11785 {
11786 switch (h->root.type)
11787 {
11788 case bfd_link_hash_defined:
11789 case bfd_link_hash_defweak:
11790 return h->root.u.def.section;
11791
11792 case bfd_link_hash_common:
11793 return h->root.u.c.p->section;
11794
11795 case bfd_link_hash_undefined:
11796 case bfd_link_hash_undefweak:
11797 /* To work around a glibc bug, keep all XXX input sections
11798 when there is an as yet undefined reference to __start_XXX
11799 or __stop_XXX symbols. The linker will later define such
11800 symbols for orphan input sections that have a name
11801 representable as a C identifier. */
11802 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11803 sec_name = h->root.root.string + 8;
11804 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11805 sec_name = h->root.root.string + 7;
11806 else
11807 sec_name = NULL;
11808
11809 if (sec_name && *sec_name != '\0')
11810 {
11811 bfd *i;
11812
11813 for (i = info->input_bfds; i; i = i->link.next)
11814 {
11815 sec = bfd_get_section_by_name (i, sec_name);
11816 if (sec)
11817 sec->flags |= SEC_KEEP;
11818 }
11819 }
11820 break;
11821
11822 default:
11823 break;
11824 }
11825 }
11826 else
11827 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11828
11829 return NULL;
11830 }
11831
11832 /* COOKIE->rel describes a relocation against section SEC, which is
11833 a section we've decided to keep. Return the section that contains
11834 the relocation symbol, or NULL if no section contains it. */
11835
11836 asection *
11837 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11838 elf_gc_mark_hook_fn gc_mark_hook,
11839 struct elf_reloc_cookie *cookie)
11840 {
11841 unsigned long r_symndx;
11842 struct elf_link_hash_entry *h;
11843
11844 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11845 if (r_symndx == STN_UNDEF)
11846 return NULL;
11847
11848 if (r_symndx >= cookie->locsymcount
11849 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11850 {
11851 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11852 if (h == NULL)
11853 {
11854 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11855 sec->owner);
11856 return NULL;
11857 }
11858 while (h->root.type == bfd_link_hash_indirect
11859 || h->root.type == bfd_link_hash_warning)
11860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11861 h->mark = 1;
11862 /* If this symbol is weak and there is a non-weak definition, we
11863 keep the non-weak definition because many backends put
11864 dynamic reloc info on the non-weak definition for code
11865 handling copy relocs. */
11866 if (h->u.weakdef != NULL)
11867 h->u.weakdef->mark = 1;
11868 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11869 }
11870
11871 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11872 &cookie->locsyms[r_symndx]);
11873 }
11874
11875 /* COOKIE->rel describes a relocation against section SEC, which is
11876 a section we've decided to keep. Mark the section that contains
11877 the relocation symbol. */
11878
11879 bfd_boolean
11880 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11881 asection *sec,
11882 elf_gc_mark_hook_fn gc_mark_hook,
11883 struct elf_reloc_cookie *cookie)
11884 {
11885 asection *rsec;
11886
11887 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11888 if (rsec && !rsec->gc_mark)
11889 {
11890 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11891 || (rsec->owner->flags & DYNAMIC) != 0)
11892 rsec->gc_mark = 1;
11893 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11894 return FALSE;
11895 }
11896 return TRUE;
11897 }
11898
11899 /* The mark phase of garbage collection. For a given section, mark
11900 it and any sections in this section's group, and all the sections
11901 which define symbols to which it refers. */
11902
11903 bfd_boolean
11904 _bfd_elf_gc_mark (struct bfd_link_info *info,
11905 asection *sec,
11906 elf_gc_mark_hook_fn gc_mark_hook)
11907 {
11908 bfd_boolean ret;
11909 asection *group_sec, *eh_frame;
11910
11911 sec->gc_mark = 1;
11912
11913 /* Mark all the sections in the group. */
11914 group_sec = elf_section_data (sec)->next_in_group;
11915 if (group_sec && !group_sec->gc_mark)
11916 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11917 return FALSE;
11918
11919 /* Look through the section relocs. */
11920 ret = TRUE;
11921 eh_frame = elf_eh_frame_section (sec->owner);
11922 if ((sec->flags & SEC_RELOC) != 0
11923 && sec->reloc_count > 0
11924 && sec != eh_frame)
11925 {
11926 struct elf_reloc_cookie cookie;
11927
11928 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11929 ret = FALSE;
11930 else
11931 {
11932 for (; cookie.rel < cookie.relend; cookie.rel++)
11933 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11934 {
11935 ret = FALSE;
11936 break;
11937 }
11938 fini_reloc_cookie_for_section (&cookie, sec);
11939 }
11940 }
11941
11942 if (ret && eh_frame && elf_fde_list (sec))
11943 {
11944 struct elf_reloc_cookie cookie;
11945
11946 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11947 ret = FALSE;
11948 else
11949 {
11950 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11951 gc_mark_hook, &cookie))
11952 ret = FALSE;
11953 fini_reloc_cookie_for_section (&cookie, eh_frame);
11954 }
11955 }
11956
11957 return ret;
11958 }
11959
11960 /* Scan and mark sections in a special or debug section group. */
11961
11962 static void
11963 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11964 {
11965 /* Point to first section of section group. */
11966 asection *ssec;
11967 /* Used to iterate the section group. */
11968 asection *msec;
11969
11970 bfd_boolean is_special_grp = TRUE;
11971 bfd_boolean is_debug_grp = TRUE;
11972
11973 /* First scan to see if group contains any section other than debug
11974 and special section. */
11975 ssec = msec = elf_next_in_group (grp);
11976 do
11977 {
11978 if ((msec->flags & SEC_DEBUGGING) == 0)
11979 is_debug_grp = FALSE;
11980
11981 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11982 is_special_grp = FALSE;
11983
11984 msec = elf_next_in_group (msec);
11985 }
11986 while (msec != ssec);
11987
11988 /* If this is a pure debug section group or pure special section group,
11989 keep all sections in this group. */
11990 if (is_debug_grp || is_special_grp)
11991 {
11992 do
11993 {
11994 msec->gc_mark = 1;
11995 msec = elf_next_in_group (msec);
11996 }
11997 while (msec != ssec);
11998 }
11999 }
12000
12001 /* Keep debug and special sections. */
12002
12003 bfd_boolean
12004 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12005 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12006 {
12007 bfd *ibfd;
12008
12009 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12010 {
12011 asection *isec;
12012 bfd_boolean some_kept;
12013 bfd_boolean debug_frag_seen;
12014
12015 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12016 continue;
12017
12018 /* Ensure all linker created sections are kept,
12019 see if any other section is already marked,
12020 and note if we have any fragmented debug sections. */
12021 debug_frag_seen = some_kept = FALSE;
12022 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12023 {
12024 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12025 isec->gc_mark = 1;
12026 else if (isec->gc_mark)
12027 some_kept = TRUE;
12028
12029 if (debug_frag_seen == FALSE
12030 && (isec->flags & SEC_DEBUGGING)
12031 && CONST_STRNEQ (isec->name, ".debug_line."))
12032 debug_frag_seen = TRUE;
12033 }
12034
12035 /* If no section in this file will be kept, then we can
12036 toss out the debug and special sections. */
12037 if (!some_kept)
12038 continue;
12039
12040 /* Keep debug and special sections like .comment when they are
12041 not part of a group. Also keep section groups that contain
12042 just debug sections or special sections. */
12043 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12044 {
12045 if ((isec->flags & SEC_GROUP) != 0)
12046 _bfd_elf_gc_mark_debug_special_section_group (isec);
12047 else if (((isec->flags & SEC_DEBUGGING) != 0
12048 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12049 && elf_next_in_group (isec) == NULL)
12050 isec->gc_mark = 1;
12051 }
12052
12053 if (! debug_frag_seen)
12054 continue;
12055
12056 /* Look for CODE sections which are going to be discarded,
12057 and find and discard any fragmented debug sections which
12058 are associated with that code section. */
12059 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12060 if ((isec->flags & SEC_CODE) != 0
12061 && isec->gc_mark == 0)
12062 {
12063 unsigned int ilen;
12064 asection *dsec;
12065
12066 ilen = strlen (isec->name);
12067
12068 /* Association is determined by the name of the debug section
12069 containing the name of the code section as a suffix. For
12070 example .debug_line.text.foo is a debug section associated
12071 with .text.foo. */
12072 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12073 {
12074 unsigned int dlen;
12075
12076 if (dsec->gc_mark == 0
12077 || (dsec->flags & SEC_DEBUGGING) == 0)
12078 continue;
12079
12080 dlen = strlen (dsec->name);
12081
12082 if (dlen > ilen
12083 && strncmp (dsec->name + (dlen - ilen),
12084 isec->name, ilen) == 0)
12085 {
12086 dsec->gc_mark = 0;
12087 break;
12088 }
12089 }
12090 }
12091 }
12092 return TRUE;
12093 }
12094
12095 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12096
12097 struct elf_gc_sweep_symbol_info
12098 {
12099 struct bfd_link_info *info;
12100 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12101 bfd_boolean);
12102 };
12103
12104 static bfd_boolean
12105 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12106 {
12107 if (!h->mark
12108 && (((h->root.type == bfd_link_hash_defined
12109 || h->root.type == bfd_link_hash_defweak)
12110 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12111 && h->root.u.def.section->gc_mark))
12112 || h->root.type == bfd_link_hash_undefined
12113 || h->root.type == bfd_link_hash_undefweak))
12114 {
12115 struct elf_gc_sweep_symbol_info *inf;
12116
12117 inf = (struct elf_gc_sweep_symbol_info *) data;
12118 (*inf->hide_symbol) (inf->info, h, TRUE);
12119 h->def_regular = 0;
12120 h->ref_regular = 0;
12121 h->ref_regular_nonweak = 0;
12122 }
12123
12124 return TRUE;
12125 }
12126
12127 /* The sweep phase of garbage collection. Remove all garbage sections. */
12128
12129 typedef bfd_boolean (*gc_sweep_hook_fn)
12130 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12131
12132 static bfd_boolean
12133 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12134 {
12135 bfd *sub;
12136 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12137 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12138 unsigned long section_sym_count;
12139 struct elf_gc_sweep_symbol_info sweep_info;
12140
12141 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12142 {
12143 asection *o;
12144
12145 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12146 continue;
12147
12148 for (o = sub->sections; o != NULL; o = o->next)
12149 {
12150 /* When any section in a section group is kept, we keep all
12151 sections in the section group. If the first member of
12152 the section group is excluded, we will also exclude the
12153 group section. */
12154 if (o->flags & SEC_GROUP)
12155 {
12156 asection *first = elf_next_in_group (o);
12157 o->gc_mark = first->gc_mark;
12158 }
12159
12160 if (o->gc_mark)
12161 continue;
12162
12163 /* Skip sweeping sections already excluded. */
12164 if (o->flags & SEC_EXCLUDE)
12165 continue;
12166
12167 /* Since this is early in the link process, it is simple
12168 to remove a section from the output. */
12169 o->flags |= SEC_EXCLUDE;
12170
12171 if (info->print_gc_sections && o->size != 0)
12172 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12173
12174 /* But we also have to update some of the relocation
12175 info we collected before. */
12176 if (gc_sweep_hook
12177 && (o->flags & SEC_RELOC) != 0
12178 && o->reloc_count != 0
12179 && !((info->strip == strip_all || info->strip == strip_debugger)
12180 && (o->flags & SEC_DEBUGGING) != 0)
12181 && !bfd_is_abs_section (o->output_section))
12182 {
12183 Elf_Internal_Rela *internal_relocs;
12184 bfd_boolean r;
12185
12186 internal_relocs
12187 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12188 info->keep_memory);
12189 if (internal_relocs == NULL)
12190 return FALSE;
12191
12192 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12193
12194 if (elf_section_data (o)->relocs != internal_relocs)
12195 free (internal_relocs);
12196
12197 if (!r)
12198 return FALSE;
12199 }
12200 }
12201 }
12202
12203 /* Remove the symbols that were in the swept sections from the dynamic
12204 symbol table. GCFIXME: Anyone know how to get them out of the
12205 static symbol table as well? */
12206 sweep_info.info = info;
12207 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12208 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12209 &sweep_info);
12210
12211 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12212 return TRUE;
12213 }
12214
12215 /* Propagate collected vtable information. This is called through
12216 elf_link_hash_traverse. */
12217
12218 static bfd_boolean
12219 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12220 {
12221 /* Those that are not vtables. */
12222 if (h->vtable == NULL || h->vtable->parent == NULL)
12223 return TRUE;
12224
12225 /* Those vtables that do not have parents, we cannot merge. */
12226 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12227 return TRUE;
12228
12229 /* If we've already been done, exit. */
12230 if (h->vtable->used && h->vtable->used[-1])
12231 return TRUE;
12232
12233 /* Make sure the parent's table is up to date. */
12234 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12235
12236 if (h->vtable->used == NULL)
12237 {
12238 /* None of this table's entries were referenced. Re-use the
12239 parent's table. */
12240 h->vtable->used = h->vtable->parent->vtable->used;
12241 h->vtable->size = h->vtable->parent->vtable->size;
12242 }
12243 else
12244 {
12245 size_t n;
12246 bfd_boolean *cu, *pu;
12247
12248 /* Or the parent's entries into ours. */
12249 cu = h->vtable->used;
12250 cu[-1] = TRUE;
12251 pu = h->vtable->parent->vtable->used;
12252 if (pu != NULL)
12253 {
12254 const struct elf_backend_data *bed;
12255 unsigned int log_file_align;
12256
12257 bed = get_elf_backend_data (h->root.u.def.section->owner);
12258 log_file_align = bed->s->log_file_align;
12259 n = h->vtable->parent->vtable->size >> log_file_align;
12260 while (n--)
12261 {
12262 if (*pu)
12263 *cu = TRUE;
12264 pu++;
12265 cu++;
12266 }
12267 }
12268 }
12269
12270 return TRUE;
12271 }
12272
12273 static bfd_boolean
12274 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12275 {
12276 asection *sec;
12277 bfd_vma hstart, hend;
12278 Elf_Internal_Rela *relstart, *relend, *rel;
12279 const struct elf_backend_data *bed;
12280 unsigned int log_file_align;
12281
12282 /* Take care of both those symbols that do not describe vtables as
12283 well as those that are not loaded. */
12284 if (h->vtable == NULL || h->vtable->parent == NULL)
12285 return TRUE;
12286
12287 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12288 || h->root.type == bfd_link_hash_defweak);
12289
12290 sec = h->root.u.def.section;
12291 hstart = h->root.u.def.value;
12292 hend = hstart + h->size;
12293
12294 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12295 if (!relstart)
12296 return *(bfd_boolean *) okp = FALSE;
12297 bed = get_elf_backend_data (sec->owner);
12298 log_file_align = bed->s->log_file_align;
12299
12300 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12301
12302 for (rel = relstart; rel < relend; ++rel)
12303 if (rel->r_offset >= hstart && rel->r_offset < hend)
12304 {
12305 /* If the entry is in use, do nothing. */
12306 if (h->vtable->used
12307 && (rel->r_offset - hstart) < h->vtable->size)
12308 {
12309 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12310 if (h->vtable->used[entry])
12311 continue;
12312 }
12313 /* Otherwise, kill it. */
12314 rel->r_offset = rel->r_info = rel->r_addend = 0;
12315 }
12316
12317 return TRUE;
12318 }
12319
12320 /* Mark sections containing dynamically referenced symbols. When
12321 building shared libraries, we must assume that any visible symbol is
12322 referenced. */
12323
12324 bfd_boolean
12325 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12326 {
12327 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12328 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12329
12330 if ((h->root.type == bfd_link_hash_defined
12331 || h->root.type == bfd_link_hash_defweak)
12332 && (h->ref_dynamic
12333 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12334 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12335 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12336 && (!info->executable
12337 || info->export_dynamic
12338 || (h->dynamic
12339 && d != NULL
12340 && (*d->match) (&d->head, NULL, h->root.root.string)))
12341 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12342 || !bfd_hide_sym_by_version (info->version_info,
12343 h->root.root.string)))))
12344 h->root.u.def.section->flags |= SEC_KEEP;
12345
12346 return TRUE;
12347 }
12348
12349 /* Keep all sections containing symbols undefined on the command-line,
12350 and the section containing the entry symbol. */
12351
12352 void
12353 _bfd_elf_gc_keep (struct bfd_link_info *info)
12354 {
12355 struct bfd_sym_chain *sym;
12356
12357 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12358 {
12359 struct elf_link_hash_entry *h;
12360
12361 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12362 FALSE, FALSE, FALSE);
12363
12364 if (h != NULL
12365 && (h->root.type == bfd_link_hash_defined
12366 || h->root.type == bfd_link_hash_defweak)
12367 && !bfd_is_abs_section (h->root.u.def.section))
12368 h->root.u.def.section->flags |= SEC_KEEP;
12369 }
12370 }
12371
12372 /* Do mark and sweep of unused sections. */
12373
12374 bfd_boolean
12375 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12376 {
12377 bfd_boolean ok = TRUE;
12378 bfd *sub;
12379 elf_gc_mark_hook_fn gc_mark_hook;
12380 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12381 struct elf_link_hash_table *htab;
12382
12383 if (!bed->can_gc_sections
12384 || !is_elf_hash_table (info->hash))
12385 {
12386 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12387 return TRUE;
12388 }
12389
12390 bed->gc_keep (info);
12391 htab = elf_hash_table (info);
12392
12393 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12394 at the .eh_frame section if we can mark the FDEs individually. */
12395 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12396 {
12397 asection *sec;
12398 struct elf_reloc_cookie cookie;
12399
12400 sec = bfd_get_section_by_name (sub, ".eh_frame");
12401 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12402 {
12403 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12404 if (elf_section_data (sec)->sec_info
12405 && (sec->flags & SEC_LINKER_CREATED) == 0)
12406 elf_eh_frame_section (sub) = sec;
12407 fini_reloc_cookie_for_section (&cookie, sec);
12408 sec = bfd_get_next_section_by_name (sec);
12409 }
12410 }
12411
12412 /* Apply transitive closure to the vtable entry usage info. */
12413 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12414 if (!ok)
12415 return FALSE;
12416
12417 /* Kill the vtable relocations that were not used. */
12418 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12419 if (!ok)
12420 return FALSE;
12421
12422 /* Mark dynamically referenced symbols. */
12423 if (htab->dynamic_sections_created)
12424 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12425
12426 /* Grovel through relocs to find out who stays ... */
12427 gc_mark_hook = bed->gc_mark_hook;
12428 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12429 {
12430 asection *o;
12431
12432 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12433 continue;
12434
12435 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12436 Also treat note sections as a root, if the section is not part
12437 of a group. */
12438 for (o = sub->sections; o != NULL; o = o->next)
12439 if (!o->gc_mark
12440 && (o->flags & SEC_EXCLUDE) == 0
12441 && ((o->flags & SEC_KEEP) != 0
12442 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12443 && elf_next_in_group (o) == NULL )))
12444 {
12445 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12446 return FALSE;
12447 }
12448 }
12449
12450 /* Allow the backend to mark additional target specific sections. */
12451 bed->gc_mark_extra_sections (info, gc_mark_hook);
12452
12453 /* ... and mark SEC_EXCLUDE for those that go. */
12454 return elf_gc_sweep (abfd, info);
12455 }
12456 \f
12457 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12458
12459 bfd_boolean
12460 bfd_elf_gc_record_vtinherit (bfd *abfd,
12461 asection *sec,
12462 struct elf_link_hash_entry *h,
12463 bfd_vma offset)
12464 {
12465 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12466 struct elf_link_hash_entry **search, *child;
12467 bfd_size_type extsymcount;
12468 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12469
12470 /* The sh_info field of the symtab header tells us where the
12471 external symbols start. We don't care about the local symbols at
12472 this point. */
12473 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12474 if (!elf_bad_symtab (abfd))
12475 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12476
12477 sym_hashes = elf_sym_hashes (abfd);
12478 sym_hashes_end = sym_hashes + extsymcount;
12479
12480 /* Hunt down the child symbol, which is in this section at the same
12481 offset as the relocation. */
12482 for (search = sym_hashes; search != sym_hashes_end; ++search)
12483 {
12484 if ((child = *search) != NULL
12485 && (child->root.type == bfd_link_hash_defined
12486 || child->root.type == bfd_link_hash_defweak)
12487 && child->root.u.def.section == sec
12488 && child->root.u.def.value == offset)
12489 goto win;
12490 }
12491
12492 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12493 abfd, sec, (unsigned long) offset);
12494 bfd_set_error (bfd_error_invalid_operation);
12495 return FALSE;
12496
12497 win:
12498 if (!child->vtable)
12499 {
12500 child->vtable = ((struct elf_link_virtual_table_entry *)
12501 bfd_zalloc (abfd, sizeof (*child->vtable)));
12502 if (!child->vtable)
12503 return FALSE;
12504 }
12505 if (!h)
12506 {
12507 /* This *should* only be the absolute section. It could potentially
12508 be that someone has defined a non-global vtable though, which
12509 would be bad. It isn't worth paging in the local symbols to be
12510 sure though; that case should simply be handled by the assembler. */
12511
12512 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12513 }
12514 else
12515 child->vtable->parent = h;
12516
12517 return TRUE;
12518 }
12519
12520 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12521
12522 bfd_boolean
12523 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12524 asection *sec ATTRIBUTE_UNUSED,
12525 struct elf_link_hash_entry *h,
12526 bfd_vma addend)
12527 {
12528 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12529 unsigned int log_file_align = bed->s->log_file_align;
12530
12531 if (!h->vtable)
12532 {
12533 h->vtable = ((struct elf_link_virtual_table_entry *)
12534 bfd_zalloc (abfd, sizeof (*h->vtable)));
12535 if (!h->vtable)
12536 return FALSE;
12537 }
12538
12539 if (addend >= h->vtable->size)
12540 {
12541 size_t size, bytes, file_align;
12542 bfd_boolean *ptr = h->vtable->used;
12543
12544 /* While the symbol is undefined, we have to be prepared to handle
12545 a zero size. */
12546 file_align = 1 << log_file_align;
12547 if (h->root.type == bfd_link_hash_undefined)
12548 size = addend + file_align;
12549 else
12550 {
12551 size = h->size;
12552 if (addend >= size)
12553 {
12554 /* Oops! We've got a reference past the defined end of
12555 the table. This is probably a bug -- shall we warn? */
12556 size = addend + file_align;
12557 }
12558 }
12559 size = (size + file_align - 1) & -file_align;
12560
12561 /* Allocate one extra entry for use as a "done" flag for the
12562 consolidation pass. */
12563 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12564
12565 if (ptr)
12566 {
12567 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12568
12569 if (ptr != NULL)
12570 {
12571 size_t oldbytes;
12572
12573 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12574 * sizeof (bfd_boolean));
12575 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12576 }
12577 }
12578 else
12579 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12580
12581 if (ptr == NULL)
12582 return FALSE;
12583
12584 /* And arrange for that done flag to be at index -1. */
12585 h->vtable->used = ptr + 1;
12586 h->vtable->size = size;
12587 }
12588
12589 h->vtable->used[addend >> log_file_align] = TRUE;
12590
12591 return TRUE;
12592 }
12593
12594 /* Map an ELF section header flag to its corresponding string. */
12595 typedef struct
12596 {
12597 char *flag_name;
12598 flagword flag_value;
12599 } elf_flags_to_name_table;
12600
12601 static elf_flags_to_name_table elf_flags_to_names [] =
12602 {
12603 { "SHF_WRITE", SHF_WRITE },
12604 { "SHF_ALLOC", SHF_ALLOC },
12605 { "SHF_EXECINSTR", SHF_EXECINSTR },
12606 { "SHF_MERGE", SHF_MERGE },
12607 { "SHF_STRINGS", SHF_STRINGS },
12608 { "SHF_INFO_LINK", SHF_INFO_LINK},
12609 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12610 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12611 { "SHF_GROUP", SHF_GROUP },
12612 { "SHF_TLS", SHF_TLS },
12613 { "SHF_MASKOS", SHF_MASKOS },
12614 { "SHF_EXCLUDE", SHF_EXCLUDE },
12615 };
12616
12617 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12618 bfd_boolean
12619 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12620 struct flag_info *flaginfo,
12621 asection *section)
12622 {
12623 const bfd_vma sh_flags = elf_section_flags (section);
12624
12625 if (!flaginfo->flags_initialized)
12626 {
12627 bfd *obfd = info->output_bfd;
12628 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12629 struct flag_info_list *tf = flaginfo->flag_list;
12630 int with_hex = 0;
12631 int without_hex = 0;
12632
12633 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12634 {
12635 unsigned i;
12636 flagword (*lookup) (char *);
12637
12638 lookup = bed->elf_backend_lookup_section_flags_hook;
12639 if (lookup != NULL)
12640 {
12641 flagword hexval = (*lookup) ((char *) tf->name);
12642
12643 if (hexval != 0)
12644 {
12645 if (tf->with == with_flags)
12646 with_hex |= hexval;
12647 else if (tf->with == without_flags)
12648 without_hex |= hexval;
12649 tf->valid = TRUE;
12650 continue;
12651 }
12652 }
12653 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12654 {
12655 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12656 {
12657 if (tf->with == with_flags)
12658 with_hex |= elf_flags_to_names[i].flag_value;
12659 else if (tf->with == without_flags)
12660 without_hex |= elf_flags_to_names[i].flag_value;
12661 tf->valid = TRUE;
12662 break;
12663 }
12664 }
12665 if (!tf->valid)
12666 {
12667 info->callbacks->einfo
12668 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12669 return FALSE;
12670 }
12671 }
12672 flaginfo->flags_initialized = TRUE;
12673 flaginfo->only_with_flags |= with_hex;
12674 flaginfo->not_with_flags |= without_hex;
12675 }
12676
12677 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12678 return FALSE;
12679
12680 if ((flaginfo->not_with_flags & sh_flags) != 0)
12681 return FALSE;
12682
12683 return TRUE;
12684 }
12685
12686 struct alloc_got_off_arg {
12687 bfd_vma gotoff;
12688 struct bfd_link_info *info;
12689 };
12690
12691 /* We need a special top-level link routine to convert got reference counts
12692 to real got offsets. */
12693
12694 static bfd_boolean
12695 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12696 {
12697 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12698 bfd *obfd = gofarg->info->output_bfd;
12699 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12700
12701 if (h->got.refcount > 0)
12702 {
12703 h->got.offset = gofarg->gotoff;
12704 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12705 }
12706 else
12707 h->got.offset = (bfd_vma) -1;
12708
12709 return TRUE;
12710 }
12711
12712 /* And an accompanying bit to work out final got entry offsets once
12713 we're done. Should be called from final_link. */
12714
12715 bfd_boolean
12716 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12717 struct bfd_link_info *info)
12718 {
12719 bfd *i;
12720 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12721 bfd_vma gotoff;
12722 struct alloc_got_off_arg gofarg;
12723
12724 BFD_ASSERT (abfd == info->output_bfd);
12725
12726 if (! is_elf_hash_table (info->hash))
12727 return FALSE;
12728
12729 /* The GOT offset is relative to the .got section, but the GOT header is
12730 put into the .got.plt section, if the backend uses it. */
12731 if (bed->want_got_plt)
12732 gotoff = 0;
12733 else
12734 gotoff = bed->got_header_size;
12735
12736 /* Do the local .got entries first. */
12737 for (i = info->input_bfds; i; i = i->link.next)
12738 {
12739 bfd_signed_vma *local_got;
12740 bfd_size_type j, locsymcount;
12741 Elf_Internal_Shdr *symtab_hdr;
12742
12743 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12744 continue;
12745
12746 local_got = elf_local_got_refcounts (i);
12747 if (!local_got)
12748 continue;
12749
12750 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12751 if (elf_bad_symtab (i))
12752 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12753 else
12754 locsymcount = symtab_hdr->sh_info;
12755
12756 for (j = 0; j < locsymcount; ++j)
12757 {
12758 if (local_got[j] > 0)
12759 {
12760 local_got[j] = gotoff;
12761 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12762 }
12763 else
12764 local_got[j] = (bfd_vma) -1;
12765 }
12766 }
12767
12768 /* Then the global .got entries. .plt refcounts are handled by
12769 adjust_dynamic_symbol */
12770 gofarg.gotoff = gotoff;
12771 gofarg.info = info;
12772 elf_link_hash_traverse (elf_hash_table (info),
12773 elf_gc_allocate_got_offsets,
12774 &gofarg);
12775 return TRUE;
12776 }
12777
12778 /* Many folk need no more in the way of final link than this, once
12779 got entry reference counting is enabled. */
12780
12781 bfd_boolean
12782 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12783 {
12784 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12785 return FALSE;
12786
12787 /* Invoke the regular ELF backend linker to do all the work. */
12788 return bfd_elf_final_link (abfd, info);
12789 }
12790
12791 bfd_boolean
12792 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12793 {
12794 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12795
12796 if (rcookie->bad_symtab)
12797 rcookie->rel = rcookie->rels;
12798
12799 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12800 {
12801 unsigned long r_symndx;
12802
12803 if (! rcookie->bad_symtab)
12804 if (rcookie->rel->r_offset > offset)
12805 return FALSE;
12806 if (rcookie->rel->r_offset != offset)
12807 continue;
12808
12809 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12810 if (r_symndx == STN_UNDEF)
12811 return TRUE;
12812
12813 if (r_symndx >= rcookie->locsymcount
12814 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12815 {
12816 struct elf_link_hash_entry *h;
12817
12818 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12819
12820 while (h->root.type == bfd_link_hash_indirect
12821 || h->root.type == bfd_link_hash_warning)
12822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12823
12824 if ((h->root.type == bfd_link_hash_defined
12825 || h->root.type == bfd_link_hash_defweak)
12826 && (h->root.u.def.section->owner != rcookie->abfd
12827 || h->root.u.def.section->kept_section != NULL
12828 || discarded_section (h->root.u.def.section)))
12829 return TRUE;
12830 }
12831 else
12832 {
12833 /* It's not a relocation against a global symbol,
12834 but it could be a relocation against a local
12835 symbol for a discarded section. */
12836 asection *isec;
12837 Elf_Internal_Sym *isym;
12838
12839 /* Need to: get the symbol; get the section. */
12840 isym = &rcookie->locsyms[r_symndx];
12841 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12842 if (isec != NULL
12843 && (isec->kept_section != NULL
12844 || discarded_section (isec)))
12845 return TRUE;
12846 }
12847 return FALSE;
12848 }
12849 return FALSE;
12850 }
12851
12852 /* Discard unneeded references to discarded sections.
12853 Returns -1 on error, 1 if any section's size was changed, 0 if
12854 nothing changed. This function assumes that the relocations are in
12855 sorted order, which is true for all known assemblers. */
12856
12857 int
12858 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12859 {
12860 struct elf_reloc_cookie cookie;
12861 asection *o;
12862 bfd *abfd;
12863 int changed = 0;
12864
12865 if (info->traditional_format
12866 || !is_elf_hash_table (info->hash))
12867 return 0;
12868
12869 o = bfd_get_section_by_name (output_bfd, ".stab");
12870 if (o != NULL)
12871 {
12872 asection *i;
12873
12874 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12875 {
12876 if (i->size == 0
12877 || i->reloc_count == 0
12878 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12879 continue;
12880
12881 abfd = i->owner;
12882 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12883 continue;
12884
12885 if (!init_reloc_cookie_for_section (&cookie, info, i))
12886 return -1;
12887
12888 if (_bfd_discard_section_stabs (abfd, i,
12889 elf_section_data (i)->sec_info,
12890 bfd_elf_reloc_symbol_deleted_p,
12891 &cookie))
12892 changed = 1;
12893
12894 fini_reloc_cookie_for_section (&cookie, i);
12895 }
12896 }
12897
12898 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12899 if (o != NULL)
12900 {
12901 asection *i;
12902
12903 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12904 {
12905 if (i->size == 0)
12906 continue;
12907
12908 abfd = i->owner;
12909 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12910 continue;
12911
12912 if (!init_reloc_cookie_for_section (&cookie, info, i))
12913 return -1;
12914
12915 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12916 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12917 bfd_elf_reloc_symbol_deleted_p,
12918 &cookie))
12919 changed = 1;
12920
12921 fini_reloc_cookie_for_section (&cookie, i);
12922 }
12923 }
12924
12925 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12926 {
12927 const struct elf_backend_data *bed;
12928
12929 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12930 continue;
12931
12932 bed = get_elf_backend_data (abfd);
12933
12934 if (bed->elf_backend_discard_info != NULL)
12935 {
12936 if (!init_reloc_cookie (&cookie, info, abfd))
12937 return -1;
12938
12939 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12940 changed = 1;
12941
12942 fini_reloc_cookie (&cookie, abfd);
12943 }
12944 }
12945
12946 if (info->eh_frame_hdr
12947 && !info->relocatable
12948 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12949 changed = 1;
12950
12951 return changed;
12952 }
12953
12954 bfd_boolean
12955 _bfd_elf_section_already_linked (bfd *abfd,
12956 asection *sec,
12957 struct bfd_link_info *info)
12958 {
12959 flagword flags;
12960 const char *name, *key;
12961 struct bfd_section_already_linked *l;
12962 struct bfd_section_already_linked_hash_entry *already_linked_list;
12963
12964 if (sec->output_section == bfd_abs_section_ptr)
12965 return FALSE;
12966
12967 flags = sec->flags;
12968
12969 /* Return if it isn't a linkonce section. A comdat group section
12970 also has SEC_LINK_ONCE set. */
12971 if ((flags & SEC_LINK_ONCE) == 0)
12972 return FALSE;
12973
12974 /* Don't put group member sections on our list of already linked
12975 sections. They are handled as a group via their group section. */
12976 if (elf_sec_group (sec) != NULL)
12977 return FALSE;
12978
12979 /* For a SHT_GROUP section, use the group signature as the key. */
12980 name = sec->name;
12981 if ((flags & SEC_GROUP) != 0
12982 && elf_next_in_group (sec) != NULL
12983 && elf_group_name (elf_next_in_group (sec)) != NULL)
12984 key = elf_group_name (elf_next_in_group (sec));
12985 else
12986 {
12987 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12988 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12989 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12990 key++;
12991 else
12992 /* Must be a user linkonce section that doesn't follow gcc's
12993 naming convention. In this case we won't be matching
12994 single member groups. */
12995 key = name;
12996 }
12997
12998 already_linked_list = bfd_section_already_linked_table_lookup (key);
12999
13000 for (l = already_linked_list->entry; l != NULL; l = l->next)
13001 {
13002 /* We may have 2 different types of sections on the list: group
13003 sections with a signature of <key> (<key> is some string),
13004 and linkonce sections named .gnu.linkonce.<type>.<key>.
13005 Match like sections. LTO plugin sections are an exception.
13006 They are always named .gnu.linkonce.t.<key> and match either
13007 type of section. */
13008 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13009 && ((flags & SEC_GROUP) != 0
13010 || strcmp (name, l->sec->name) == 0))
13011 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13012 {
13013 /* The section has already been linked. See if we should
13014 issue a warning. */
13015 if (!_bfd_handle_already_linked (sec, l, info))
13016 return FALSE;
13017
13018 if (flags & SEC_GROUP)
13019 {
13020 asection *first = elf_next_in_group (sec);
13021 asection *s = first;
13022
13023 while (s != NULL)
13024 {
13025 s->output_section = bfd_abs_section_ptr;
13026 /* Record which group discards it. */
13027 s->kept_section = l->sec;
13028 s = elf_next_in_group (s);
13029 /* These lists are circular. */
13030 if (s == first)
13031 break;
13032 }
13033 }
13034
13035 return TRUE;
13036 }
13037 }
13038
13039 /* A single member comdat group section may be discarded by a
13040 linkonce section and vice versa. */
13041 if ((flags & SEC_GROUP) != 0)
13042 {
13043 asection *first = elf_next_in_group (sec);
13044
13045 if (first != NULL && elf_next_in_group (first) == first)
13046 /* Check this single member group against linkonce sections. */
13047 for (l = already_linked_list->entry; l != NULL; l = l->next)
13048 if ((l->sec->flags & SEC_GROUP) == 0
13049 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13050 {
13051 first->output_section = bfd_abs_section_ptr;
13052 first->kept_section = l->sec;
13053 sec->output_section = bfd_abs_section_ptr;
13054 break;
13055 }
13056 }
13057 else
13058 /* Check this linkonce section against single member groups. */
13059 for (l = already_linked_list->entry; l != NULL; l = l->next)
13060 if (l->sec->flags & SEC_GROUP)
13061 {
13062 asection *first = elf_next_in_group (l->sec);
13063
13064 if (first != NULL
13065 && elf_next_in_group (first) == first
13066 && bfd_elf_match_symbols_in_sections (first, sec, info))
13067 {
13068 sec->output_section = bfd_abs_section_ptr;
13069 sec->kept_section = first;
13070 break;
13071 }
13072 }
13073
13074 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13075 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13076 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13077 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13078 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13079 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13080 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13081 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13082 The reverse order cannot happen as there is never a bfd with only the
13083 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13084 matter as here were are looking only for cross-bfd sections. */
13085
13086 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13087 for (l = already_linked_list->entry; l != NULL; l = l->next)
13088 if ((l->sec->flags & SEC_GROUP) == 0
13089 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13090 {
13091 if (abfd != l->sec->owner)
13092 sec->output_section = bfd_abs_section_ptr;
13093 break;
13094 }
13095
13096 /* This is the first section with this name. Record it. */
13097 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13098 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13099 return sec->output_section == bfd_abs_section_ptr;
13100 }
13101
13102 bfd_boolean
13103 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13104 {
13105 return sym->st_shndx == SHN_COMMON;
13106 }
13107
13108 unsigned int
13109 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13110 {
13111 return SHN_COMMON;
13112 }
13113
13114 asection *
13115 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13116 {
13117 return bfd_com_section_ptr;
13118 }
13119
13120 bfd_vma
13121 _bfd_elf_default_got_elt_size (bfd *abfd,
13122 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13123 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13124 bfd *ibfd ATTRIBUTE_UNUSED,
13125 unsigned long symndx ATTRIBUTE_UNUSED)
13126 {
13127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13128 return bed->s->arch_size / 8;
13129 }
13130
13131 /* Routines to support the creation of dynamic relocs. */
13132
13133 /* Returns the name of the dynamic reloc section associated with SEC. */
13134
13135 static const char *
13136 get_dynamic_reloc_section_name (bfd * abfd,
13137 asection * sec,
13138 bfd_boolean is_rela)
13139 {
13140 char *name;
13141 const char *old_name = bfd_get_section_name (NULL, sec);
13142 const char *prefix = is_rela ? ".rela" : ".rel";
13143
13144 if (old_name == NULL)
13145 return NULL;
13146
13147 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13148 sprintf (name, "%s%s", prefix, old_name);
13149
13150 return name;
13151 }
13152
13153 /* Returns the dynamic reloc section associated with SEC.
13154 If necessary compute the name of the dynamic reloc section based
13155 on SEC's name (looked up in ABFD's string table) and the setting
13156 of IS_RELA. */
13157
13158 asection *
13159 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13160 asection * sec,
13161 bfd_boolean is_rela)
13162 {
13163 asection * reloc_sec = elf_section_data (sec)->sreloc;
13164
13165 if (reloc_sec == NULL)
13166 {
13167 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13168
13169 if (name != NULL)
13170 {
13171 reloc_sec = bfd_get_linker_section (abfd, name);
13172
13173 if (reloc_sec != NULL)
13174 elf_section_data (sec)->sreloc = reloc_sec;
13175 }
13176 }
13177
13178 return reloc_sec;
13179 }
13180
13181 /* Returns the dynamic reloc section associated with SEC. If the
13182 section does not exist it is created and attached to the DYNOBJ
13183 bfd and stored in the SRELOC field of SEC's elf_section_data
13184 structure.
13185
13186 ALIGNMENT is the alignment for the newly created section and
13187 IS_RELA defines whether the name should be .rela.<SEC's name>
13188 or .rel.<SEC's name>. The section name is looked up in the
13189 string table associated with ABFD. */
13190
13191 asection *
13192 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13193 bfd *dynobj,
13194 unsigned int alignment,
13195 bfd *abfd,
13196 bfd_boolean is_rela)
13197 {
13198 asection * reloc_sec = elf_section_data (sec)->sreloc;
13199
13200 if (reloc_sec == NULL)
13201 {
13202 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13203
13204 if (name == NULL)
13205 return NULL;
13206
13207 reloc_sec = bfd_get_linker_section (dynobj, name);
13208
13209 if (reloc_sec == NULL)
13210 {
13211 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13212 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13213 if ((sec->flags & SEC_ALLOC) != 0)
13214 flags |= SEC_ALLOC | SEC_LOAD;
13215
13216 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13217 if (reloc_sec != NULL)
13218 {
13219 /* _bfd_elf_get_sec_type_attr chooses a section type by
13220 name. Override as it may be wrong, eg. for a user
13221 section named "auto" we'll get ".relauto" which is
13222 seen to be a .rela section. */
13223 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13224 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13225 reloc_sec = NULL;
13226 }
13227 }
13228
13229 elf_section_data (sec)->sreloc = reloc_sec;
13230 }
13231
13232 return reloc_sec;
13233 }
13234
13235 /* Copy the ELF symbol type and other attributes for a linker script
13236 assignment from HSRC to HDEST. Generally this should be treated as
13237 if we found a strong non-dynamic definition for HDEST (except that
13238 ld ignores multiple definition errors). */
13239 void
13240 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13241 struct bfd_link_hash_entry *hdest,
13242 struct bfd_link_hash_entry *hsrc)
13243 {
13244 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13245 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13246 Elf_Internal_Sym isym;
13247
13248 ehdest->type = ehsrc->type;
13249 ehdest->target_internal = ehsrc->target_internal;
13250
13251 isym.st_other = ehsrc->other;
13252 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13253 }
13254
13255 /* Append a RELA relocation REL to section S in BFD. */
13256
13257 void
13258 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13259 {
13260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13261 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13262 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13263 bed->s->swap_reloca_out (abfd, rel, loc);
13264 }
13265
13266 /* Append a REL relocation REL to section S in BFD. */
13267
13268 void
13269 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13270 {
13271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13272 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13273 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13274 bed->s->swap_reloc_out (abfd, rel, loc);
13275 }
This page took 0.304162 seconds and 4 git commands to generate.