20057f55f1678c4a75e8cfb3e6e2940337b52a37
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 h->dynamic = 1;
590 }
591
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
594
595 bfd_boolean
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
598 const char *name,
599 bfd_boolean provide,
600 bfd_boolean hidden)
601 {
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
605
606 if (!is_elf_hash_table (info->hash))
607 return TRUE;
608
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
611 if (h == NULL)
612 return provide;
613
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
616
617 if (h->versioned == unknown)
618 {
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
621 if (version)
622 {
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
625 else
626 h->versioned = versioned;
627 }
628 }
629
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
632 if (h->non_elf)
633 {
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
635 h->non_elf = 0;
636 }
637
638 switch (h->root.type)
639 {
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
643 break;
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
652 break;
653 case bfd_link_hash_new:
654 break;
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
659 hv = h;
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
664 later. */
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
669 break;
670 default:
671 BFD_FAIL ();
672 return FALSE;
673 }
674
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
679 if (provide
680 && h->def_dynamic
681 && !h->def_regular)
682 h->root.type = bfd_link_hash_undefined;
683
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
688 if (!provide
689 && h->def_dynamic
690 && !h->def_regular)
691 h->verinfo.verdef = NULL;
692
693 /* Make sure this symbol is not garbage collected. */
694 h->mark = 1;
695
696 h->def_regular = 1;
697
698 if (hidden)
699 {
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
704 }
705
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
707 and executables. */
708 if (!bfd_link_relocatable (info)
709 && h->dynindx != -1
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
712 h->forced_local = 1;
713
714 if ((h->def_dynamic
715 || h->ref_dynamic
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
718 && h->dynindx == -1)
719 {
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
721 return FALSE;
722
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->u.weakdef != NULL
727 && h->u.weakdef->dynindx == -1)
728 {
729 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
730 return FALSE;
731 }
732 }
733
734 return TRUE;
735 }
736
737 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
738 success, and 2 on a failure caused by attempting to record a symbol
739 in a discarded section, eg. a discarded link-once section symbol. */
740
741 int
742 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
743 bfd *input_bfd,
744 long input_indx)
745 {
746 bfd_size_type amt;
747 struct elf_link_local_dynamic_entry *entry;
748 struct elf_link_hash_table *eht;
749 struct elf_strtab_hash *dynstr;
750 size_t dynstr_index;
751 char *name;
752 Elf_External_Sym_Shndx eshndx;
753 char esym[sizeof (Elf64_External_Sym)];
754
755 if (! is_elf_hash_table (info->hash))
756 return 0;
757
758 /* See if the entry exists already. */
759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
760 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
761 return 1;
762
763 amt = sizeof (*entry);
764 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
765 if (entry == NULL)
766 return 0;
767
768 /* Go find the symbol, so that we can find it's name. */
769 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
770 1, input_indx, &entry->isym, esym, &eshndx))
771 {
772 bfd_release (input_bfd, entry);
773 return 0;
774 }
775
776 if (entry->isym.st_shndx != SHN_UNDEF
777 && entry->isym.st_shndx < SHN_LORESERVE)
778 {
779 asection *s;
780
781 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
782 if (s == NULL || bfd_is_abs_section (s->output_section))
783 {
784 /* We can still bfd_release here as nothing has done another
785 bfd_alloc. We can't do this later in this function. */
786 bfd_release (input_bfd, entry);
787 return 2;
788 }
789 }
790
791 name = (bfd_elf_string_from_elf_section
792 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
793 entry->isym.st_name));
794
795 dynstr = elf_hash_table (info)->dynstr;
796 if (dynstr == NULL)
797 {
798 /* Create a strtab to hold the dynamic symbol names. */
799 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
800 if (dynstr == NULL)
801 return 0;
802 }
803
804 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
805 if (dynstr_index == (size_t) -1)
806 return 0;
807 entry->isym.st_name = dynstr_index;
808
809 eht = elf_hash_table (info);
810
811 entry->next = eht->dynlocal;
812 eht->dynlocal = entry;
813 entry->input_bfd = input_bfd;
814 entry->input_indx = input_indx;
815 eht->dynsymcount++;
816
817 /* Whatever binding the symbol had before, it's now local. */
818 entry->isym.st_info
819 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
820
821 /* The dynindx will be set at the end of size_dynamic_sections. */
822
823 return 1;
824 }
825
826 /* Return the dynindex of a local dynamic symbol. */
827
828 long
829 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
830 bfd *input_bfd,
831 long input_indx)
832 {
833 struct elf_link_local_dynamic_entry *e;
834
835 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
836 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
837 return e->dynindx;
838 return -1;
839 }
840
841 /* This function is used to renumber the dynamic symbols, if some of
842 them are removed because they are marked as local. This is called
843 via elf_link_hash_traverse. */
844
845 static bfd_boolean
846 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
847 void *data)
848 {
849 size_t *count = (size_t *) data;
850
851 if (h->forced_local)
852 return TRUE;
853
854 if (h->dynindx != -1)
855 h->dynindx = ++(*count);
856
857 return TRUE;
858 }
859
860
861 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
862 STB_LOCAL binding. */
863
864 static bfd_boolean
865 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
866 void *data)
867 {
868 size_t *count = (size_t *) data;
869
870 if (!h->forced_local)
871 return TRUE;
872
873 if (h->dynindx != -1)
874 h->dynindx = ++(*count);
875
876 return TRUE;
877 }
878
879 /* Return true if the dynamic symbol for a given section should be
880 omitted when creating a shared library. */
881 bfd_boolean
882 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
884 asection *p)
885 {
886 struct elf_link_hash_table *htab;
887 asection *ip;
888
889 switch (elf_section_data (p)->this_hdr.sh_type)
890 {
891 case SHT_PROGBITS:
892 case SHT_NOBITS:
893 /* If sh_type is yet undecided, assume it could be
894 SHT_PROGBITS/SHT_NOBITS. */
895 case SHT_NULL:
896 htab = elf_hash_table (info);
897 if (p == htab->tls_sec)
898 return FALSE;
899
900 if (htab->text_index_section != NULL)
901 return p != htab->text_index_section && p != htab->data_index_section;
902
903 return (htab->dynobj != NULL
904 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
905 && ip->output_section == p);
906
907 /* There shouldn't be section relative relocations
908 against any other section. */
909 default:
910 return TRUE;
911 }
912 }
913
914 /* Assign dynsym indices. In a shared library we generate a section
915 symbol for each output section, which come first. Next come symbols
916 which have been forced to local binding. Then all of the back-end
917 allocated local dynamic syms, followed by the rest of the global
918 symbols. */
919
920 static unsigned long
921 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
922 struct bfd_link_info *info,
923 unsigned long *section_sym_count)
924 {
925 unsigned long dynsymcount = 0;
926
927 if (bfd_link_pic (info)
928 || elf_hash_table (info)->is_relocatable_executable)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
931 asection *p;
932 for (p = output_bfd->sections; p ; p = p->next)
933 if ((p->flags & SEC_EXCLUDE) == 0
934 && (p->flags & SEC_ALLOC) != 0
935 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
936 elf_section_data (p)->dynindx = ++dynsymcount;
937 else
938 elf_section_data (p)->dynindx = 0;
939 }
940 *section_sym_count = dynsymcount;
941
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_local_hash_table_dynsyms,
944 &dynsymcount);
945
946 if (elf_hash_table (info)->dynlocal)
947 {
948 struct elf_link_local_dynamic_entry *p;
949 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
950 p->dynindx = ++dynsymcount;
951 }
952 elf_hash_table (info)->local_dynsymcount = dynsymcount;
953
954 elf_link_hash_traverse (elf_hash_table (info),
955 elf_link_renumber_hash_table_dynsyms,
956 &dynsymcount);
957
958 /* There is an unused NULL entry at the head of the table which we
959 must account for in our count even if the table is empty since it
960 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
961 .dynamic section. */
962 dynsymcount++;
963
964 elf_hash_table (info)->dynsymcount = dynsymcount;
965 return dynsymcount;
966 }
967
968 /* Merge st_other field. */
969
970 static void
971 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
972 const Elf_Internal_Sym *isym, asection *sec,
973 bfd_boolean definition, bfd_boolean dynamic)
974 {
975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
976
977 /* If st_other has a processor-specific meaning, specific
978 code might be needed here. */
979 if (bed->elf_backend_merge_symbol_attribute)
980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
981 dynamic);
982
983 if (!dynamic)
984 {
985 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
986 unsigned hvis = ELF_ST_VISIBILITY (h->other);
987
988 /* Keep the most constraining visibility. Leave the remainder
989 of the st_other field to elf_backend_merge_symbol_attribute. */
990 if (symvis - 1 < hvis - 1)
991 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
992 }
993 else if (definition
994 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
995 && (sec->flags & SEC_READONLY) == 0)
996 h->protected_def = 1;
997 }
998
999 /* This function is called when we want to merge a new symbol with an
1000 existing symbol. It handles the various cases which arise when we
1001 find a definition in a dynamic object, or when there is already a
1002 definition in a dynamic object. The new symbol is described by
1003 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1004 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1005 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1006 of an old common symbol. We set OVERRIDE if the old symbol is
1007 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1008 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1009 to change. By OK to change, we mean that we shouldn't warn if the
1010 type or size does change. */
1011
1012 static bfd_boolean
1013 _bfd_elf_merge_symbol (bfd *abfd,
1014 struct bfd_link_info *info,
1015 const char *name,
1016 Elf_Internal_Sym *sym,
1017 asection **psec,
1018 bfd_vma *pvalue,
1019 struct elf_link_hash_entry **sym_hash,
1020 bfd **poldbfd,
1021 bfd_boolean *pold_weak,
1022 unsigned int *pold_alignment,
1023 bfd_boolean *skip,
1024 bfd_boolean *override,
1025 bfd_boolean *type_change_ok,
1026 bfd_boolean *size_change_ok,
1027 bfd_boolean *matched)
1028 {
1029 asection *sec, *oldsec;
1030 struct elf_link_hash_entry *h;
1031 struct elf_link_hash_entry *hi;
1032 struct elf_link_hash_entry *flip;
1033 int bind;
1034 bfd *oldbfd;
1035 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1036 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1037 const struct elf_backend_data *bed;
1038 char *new_version;
1039 bfd_boolean default_sym = *matched;
1040
1041 *skip = FALSE;
1042 *override = FALSE;
1043
1044 sec = *psec;
1045 bind = ELF_ST_BIND (sym->st_info);
1046
1047 if (! bfd_is_und_section (sec))
1048 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1049 else
1050 h = ((struct elf_link_hash_entry *)
1051 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1052 if (h == NULL)
1053 return FALSE;
1054 *sym_hash = h;
1055
1056 bed = get_elf_backend_data (abfd);
1057
1058 /* NEW_VERSION is the symbol version of the new symbol. */
1059 if (h->versioned != unversioned)
1060 {
1061 /* Symbol version is unknown or versioned. */
1062 new_version = strrchr (name, ELF_VER_CHR);
1063 if (new_version)
1064 {
1065 if (h->versioned == unknown)
1066 {
1067 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1068 h->versioned = versioned_hidden;
1069 else
1070 h->versioned = versioned;
1071 }
1072 new_version += 1;
1073 if (new_version[0] == '\0')
1074 new_version = NULL;
1075 }
1076 else
1077 h->versioned = unversioned;
1078 }
1079 else
1080 new_version = NULL;
1081
1082 /* For merging, we only care about real symbols. But we need to make
1083 sure that indirect symbol dynamic flags are updated. */
1084 hi = h;
1085 while (h->root.type == bfd_link_hash_indirect
1086 || h->root.type == bfd_link_hash_warning)
1087 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1088
1089 if (!*matched)
1090 {
1091 if (hi == h || h->root.type == bfd_link_hash_new)
1092 *matched = TRUE;
1093 else
1094 {
1095 /* OLD_HIDDEN is true if the existing symbol is only visible
1096 to the symbol with the same symbol version. NEW_HIDDEN is
1097 true if the new symbol is only visible to the symbol with
1098 the same symbol version. */
1099 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1100 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1101 if (!old_hidden && !new_hidden)
1102 /* The new symbol matches the existing symbol if both
1103 aren't hidden. */
1104 *matched = TRUE;
1105 else
1106 {
1107 /* OLD_VERSION is the symbol version of the existing
1108 symbol. */
1109 char *old_version;
1110
1111 if (h->versioned >= versioned)
1112 old_version = strrchr (h->root.root.string,
1113 ELF_VER_CHR) + 1;
1114 else
1115 old_version = NULL;
1116
1117 /* The new symbol matches the existing symbol if they
1118 have the same symbol version. */
1119 *matched = (old_version == new_version
1120 || (old_version != NULL
1121 && new_version != NULL
1122 && strcmp (old_version, new_version) == 0));
1123 }
1124 }
1125 }
1126
1127 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1128 existing symbol. */
1129
1130 oldbfd = NULL;
1131 oldsec = NULL;
1132 switch (h->root.type)
1133 {
1134 default:
1135 break;
1136
1137 case bfd_link_hash_undefined:
1138 case bfd_link_hash_undefweak:
1139 oldbfd = h->root.u.undef.abfd;
1140 break;
1141
1142 case bfd_link_hash_defined:
1143 case bfd_link_hash_defweak:
1144 oldbfd = h->root.u.def.section->owner;
1145 oldsec = h->root.u.def.section;
1146 break;
1147
1148 case bfd_link_hash_common:
1149 oldbfd = h->root.u.c.p->section->owner;
1150 oldsec = h->root.u.c.p->section;
1151 if (pold_alignment)
1152 *pold_alignment = h->root.u.c.p->alignment_power;
1153 break;
1154 }
1155 if (poldbfd && *poldbfd == NULL)
1156 *poldbfd = oldbfd;
1157
1158 /* Differentiate strong and weak symbols. */
1159 newweak = bind == STB_WEAK;
1160 oldweak = (h->root.type == bfd_link_hash_defweak
1161 || h->root.type == bfd_link_hash_undefweak);
1162 if (pold_weak)
1163 *pold_weak = oldweak;
1164
1165 /* This code is for coping with dynamic objects, and is only useful
1166 if we are doing an ELF link. */
1167 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1168 return TRUE;
1169
1170 /* We have to check it for every instance since the first few may be
1171 references and not all compilers emit symbol type for undefined
1172 symbols. */
1173 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1174
1175 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1176 respectively, is from a dynamic object. */
1177
1178 newdyn = (abfd->flags & DYNAMIC) != 0;
1179
1180 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1181 syms and defined syms in dynamic libraries respectively.
1182 ref_dynamic on the other hand can be set for a symbol defined in
1183 a dynamic library, and def_dynamic may not be set; When the
1184 definition in a dynamic lib is overridden by a definition in the
1185 executable use of the symbol in the dynamic lib becomes a
1186 reference to the executable symbol. */
1187 if (newdyn)
1188 {
1189 if (bfd_is_und_section (sec))
1190 {
1191 if (bind != STB_WEAK)
1192 {
1193 h->ref_dynamic_nonweak = 1;
1194 hi->ref_dynamic_nonweak = 1;
1195 }
1196 }
1197 else
1198 {
1199 /* Update the existing symbol only if they match. */
1200 if (*matched)
1201 h->dynamic_def = 1;
1202 hi->dynamic_def = 1;
1203 }
1204 }
1205
1206 /* If we just created the symbol, mark it as being an ELF symbol.
1207 Other than that, there is nothing to do--there is no merge issue
1208 with a newly defined symbol--so we just return. */
1209
1210 if (h->root.type == bfd_link_hash_new)
1211 {
1212 h->non_elf = 0;
1213 return TRUE;
1214 }
1215
1216 /* In cases involving weak versioned symbols, we may wind up trying
1217 to merge a symbol with itself. Catch that here, to avoid the
1218 confusion that results if we try to override a symbol with
1219 itself. The additional tests catch cases like
1220 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1221 dynamic object, which we do want to handle here. */
1222 if (abfd == oldbfd
1223 && (newweak || oldweak)
1224 && ((abfd->flags & DYNAMIC) == 0
1225 || !h->def_regular))
1226 return TRUE;
1227
1228 olddyn = FALSE;
1229 if (oldbfd != NULL)
1230 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1231 else if (oldsec != NULL)
1232 {
1233 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1234 indices used by MIPS ELF. */
1235 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1236 }
1237
1238 /* Handle a case where plugin_notice won't be called and thus won't
1239 set the non_ir_ref flags on the first pass over symbols. */
1240 if (oldbfd != NULL
1241 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1242 && newdyn != olddyn)
1243 {
1244 h->root.non_ir_ref_dynamic = TRUE;
1245 hi->root.non_ir_ref_dynamic = TRUE;
1246 }
1247
1248 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1249 respectively, appear to be a definition rather than reference. */
1250
1251 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1252
1253 olddef = (h->root.type != bfd_link_hash_undefined
1254 && h->root.type != bfd_link_hash_undefweak
1255 && h->root.type != bfd_link_hash_common);
1256
1257 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1258 respectively, appear to be a function. */
1259
1260 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1261 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1262
1263 oldfunc = (h->type != STT_NOTYPE
1264 && bed->is_function_type (h->type));
1265
1266 if (!(newfunc && oldfunc)
1267 && ELF_ST_TYPE (sym->st_info) != h->type
1268 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1269 && h->type != STT_NOTYPE
1270 && (newdef || bfd_is_com_section (sec))
1271 && (olddef || h->root.type == bfd_link_hash_common))
1272 {
1273 /* If creating a default indirect symbol ("foo" or "foo@") from
1274 a dynamic versioned definition ("foo@@") skip doing so if
1275 there is an existing regular definition with a different
1276 type. We don't want, for example, a "time" variable in the
1277 executable overriding a "time" function in a shared library. */
1278 if (newdyn
1279 && !olddyn)
1280 {
1281 *skip = TRUE;
1282 return TRUE;
1283 }
1284
1285 /* When adding a symbol from a regular object file after we have
1286 created indirect symbols, undo the indirection and any
1287 dynamic state. */
1288 if (hi != h
1289 && !newdyn
1290 && olddyn)
1291 {
1292 h = hi;
1293 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1294 h->forced_local = 0;
1295 h->ref_dynamic = 0;
1296 h->def_dynamic = 0;
1297 h->dynamic_def = 0;
1298 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1299 {
1300 h->root.type = bfd_link_hash_undefined;
1301 h->root.u.undef.abfd = abfd;
1302 }
1303 else
1304 {
1305 h->root.type = bfd_link_hash_new;
1306 h->root.u.undef.abfd = NULL;
1307 }
1308 return TRUE;
1309 }
1310 }
1311
1312 /* Check TLS symbols. We don't check undefined symbols introduced
1313 by "ld -u" which have no type (and oldbfd NULL), and we don't
1314 check symbols from plugins because they also have no type. */
1315 if (oldbfd != NULL
1316 && (oldbfd->flags & BFD_PLUGIN) == 0
1317 && (abfd->flags & BFD_PLUGIN) == 0
1318 && ELF_ST_TYPE (sym->st_info) != h->type
1319 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1320 {
1321 bfd *ntbfd, *tbfd;
1322 bfd_boolean ntdef, tdef;
1323 asection *ntsec, *tsec;
1324
1325 if (h->type == STT_TLS)
1326 {
1327 ntbfd = abfd;
1328 ntsec = sec;
1329 ntdef = newdef;
1330 tbfd = oldbfd;
1331 tsec = oldsec;
1332 tdef = olddef;
1333 }
1334 else
1335 {
1336 ntbfd = oldbfd;
1337 ntsec = oldsec;
1338 ntdef = olddef;
1339 tbfd = abfd;
1340 tsec = sec;
1341 tdef = newdef;
1342 }
1343
1344 if (tdef && ntdef)
1345 _bfd_error_handler
1346 /* xgettext:c-format */
1347 (_("%s: TLS definition in %B section %A "
1348 "mismatches non-TLS definition in %B section %A"),
1349 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1350 else if (!tdef && !ntdef)
1351 _bfd_error_handler
1352 /* xgettext:c-format */
1353 (_("%s: TLS reference in %B "
1354 "mismatches non-TLS reference in %B"),
1355 h->root.root.string, tbfd, ntbfd);
1356 else if (tdef)
1357 _bfd_error_handler
1358 /* xgettext:c-format */
1359 (_("%s: TLS definition in %B section %A "
1360 "mismatches non-TLS reference in %B"),
1361 h->root.root.string, tbfd, tsec, ntbfd);
1362 else
1363 _bfd_error_handler
1364 /* xgettext:c-format */
1365 (_("%s: TLS reference in %B "
1366 "mismatches non-TLS definition in %B section %A"),
1367 h->root.root.string, tbfd, ntbfd, ntsec);
1368
1369 bfd_set_error (bfd_error_bad_value);
1370 return FALSE;
1371 }
1372
1373 /* If the old symbol has non-default visibility, we ignore the new
1374 definition from a dynamic object. */
1375 if (newdyn
1376 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1377 && !bfd_is_und_section (sec))
1378 {
1379 *skip = TRUE;
1380 /* Make sure this symbol is dynamic. */
1381 h->ref_dynamic = 1;
1382 hi->ref_dynamic = 1;
1383 /* A protected symbol has external availability. Make sure it is
1384 recorded as dynamic.
1385
1386 FIXME: Should we check type and size for protected symbol? */
1387 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1388 return bfd_elf_link_record_dynamic_symbol (info, h);
1389 else
1390 return TRUE;
1391 }
1392 else if (!newdyn
1393 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1394 && h->def_dynamic)
1395 {
1396 /* If the new symbol with non-default visibility comes from a
1397 relocatable file and the old definition comes from a dynamic
1398 object, we remove the old definition. */
1399 if (hi->root.type == bfd_link_hash_indirect)
1400 {
1401 /* Handle the case where the old dynamic definition is
1402 default versioned. We need to copy the symbol info from
1403 the symbol with default version to the normal one if it
1404 was referenced before. */
1405 if (h->ref_regular)
1406 {
1407 hi->root.type = h->root.type;
1408 h->root.type = bfd_link_hash_indirect;
1409 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1410
1411 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1412 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1413 {
1414 /* If the new symbol is hidden or internal, completely undo
1415 any dynamic link state. */
1416 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1417 h->forced_local = 0;
1418 h->ref_dynamic = 0;
1419 }
1420 else
1421 h->ref_dynamic = 1;
1422
1423 h->def_dynamic = 0;
1424 /* FIXME: Should we check type and size for protected symbol? */
1425 h->size = 0;
1426 h->type = 0;
1427
1428 h = hi;
1429 }
1430 else
1431 h = hi;
1432 }
1433
1434 /* If the old symbol was undefined before, then it will still be
1435 on the undefs list. If the new symbol is undefined or
1436 common, we can't make it bfd_link_hash_new here, because new
1437 undefined or common symbols will be added to the undefs list
1438 by _bfd_generic_link_add_one_symbol. Symbols may not be
1439 added twice to the undefs list. Also, if the new symbol is
1440 undefweak then we don't want to lose the strong undef. */
1441 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1442 {
1443 h->root.type = bfd_link_hash_undefined;
1444 h->root.u.undef.abfd = abfd;
1445 }
1446 else
1447 {
1448 h->root.type = bfd_link_hash_new;
1449 h->root.u.undef.abfd = NULL;
1450 }
1451
1452 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1453 {
1454 /* If the new symbol is hidden or internal, completely undo
1455 any dynamic link state. */
1456 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1457 h->forced_local = 0;
1458 h->ref_dynamic = 0;
1459 }
1460 else
1461 h->ref_dynamic = 1;
1462 h->def_dynamic = 0;
1463 /* FIXME: Should we check type and size for protected symbol? */
1464 h->size = 0;
1465 h->type = 0;
1466 return TRUE;
1467 }
1468
1469 /* If a new weak symbol definition comes from a regular file and the
1470 old symbol comes from a dynamic library, we treat the new one as
1471 strong. Similarly, an old weak symbol definition from a regular
1472 file is treated as strong when the new symbol comes from a dynamic
1473 library. Further, an old weak symbol from a dynamic library is
1474 treated as strong if the new symbol is from a dynamic library.
1475 This reflects the way glibc's ld.so works.
1476
1477 Do this before setting *type_change_ok or *size_change_ok so that
1478 we warn properly when dynamic library symbols are overridden. */
1479
1480 if (newdef && !newdyn && olddyn)
1481 newweak = FALSE;
1482 if (olddef && newdyn)
1483 oldweak = FALSE;
1484
1485 /* Allow changes between different types of function symbol. */
1486 if (newfunc && oldfunc)
1487 *type_change_ok = TRUE;
1488
1489 /* It's OK to change the type if either the existing symbol or the
1490 new symbol is weak. A type change is also OK if the old symbol
1491 is undefined and the new symbol is defined. */
1492
1493 if (oldweak
1494 || newweak
1495 || (newdef
1496 && h->root.type == bfd_link_hash_undefined))
1497 *type_change_ok = TRUE;
1498
1499 /* It's OK to change the size if either the existing symbol or the
1500 new symbol is weak, or if the old symbol is undefined. */
1501
1502 if (*type_change_ok
1503 || h->root.type == bfd_link_hash_undefined)
1504 *size_change_ok = TRUE;
1505
1506 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1507 symbol, respectively, appears to be a common symbol in a dynamic
1508 object. If a symbol appears in an uninitialized section, and is
1509 not weak, and is not a function, then it may be a common symbol
1510 which was resolved when the dynamic object was created. We want
1511 to treat such symbols specially, because they raise special
1512 considerations when setting the symbol size: if the symbol
1513 appears as a common symbol in a regular object, and the size in
1514 the regular object is larger, we must make sure that we use the
1515 larger size. This problematic case can always be avoided in C,
1516 but it must be handled correctly when using Fortran shared
1517 libraries.
1518
1519 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1520 likewise for OLDDYNCOMMON and OLDDEF.
1521
1522 Note that this test is just a heuristic, and that it is quite
1523 possible to have an uninitialized symbol in a shared object which
1524 is really a definition, rather than a common symbol. This could
1525 lead to some minor confusion when the symbol really is a common
1526 symbol in some regular object. However, I think it will be
1527 harmless. */
1528
1529 if (newdyn
1530 && newdef
1531 && !newweak
1532 && (sec->flags & SEC_ALLOC) != 0
1533 && (sec->flags & SEC_LOAD) == 0
1534 && sym->st_size > 0
1535 && !newfunc)
1536 newdyncommon = TRUE;
1537 else
1538 newdyncommon = FALSE;
1539
1540 if (olddyn
1541 && olddef
1542 && h->root.type == bfd_link_hash_defined
1543 && h->def_dynamic
1544 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1545 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1546 && h->size > 0
1547 && !oldfunc)
1548 olddyncommon = TRUE;
1549 else
1550 olddyncommon = FALSE;
1551
1552 /* We now know everything about the old and new symbols. We ask the
1553 backend to check if we can merge them. */
1554 if (bed->merge_symbol != NULL)
1555 {
1556 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1557 return FALSE;
1558 sec = *psec;
1559 }
1560
1561 /* There are multiple definitions of a normal symbol.
1562 Skip the default symbol as well. */
1563 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1564 && !default_sym && h->def_regular)
1565 {
1566 /* Handle a multiple definition. */
1567 (*info->callbacks->multiple_definition) (info, &h->root,
1568 abfd, sec, *pvalue);
1569 *skip = TRUE;
1570 return TRUE;
1571 }
1572
1573 /* If both the old and the new symbols look like common symbols in a
1574 dynamic object, set the size of the symbol to the larger of the
1575 two. */
1576
1577 if (olddyncommon
1578 && newdyncommon
1579 && sym->st_size != h->size)
1580 {
1581 /* Since we think we have two common symbols, issue a multiple
1582 common warning if desired. Note that we only warn if the
1583 size is different. If the size is the same, we simply let
1584 the old symbol override the new one as normally happens with
1585 symbols defined in dynamic objects. */
1586
1587 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1588 bfd_link_hash_common, sym->st_size);
1589 if (sym->st_size > h->size)
1590 h->size = sym->st_size;
1591
1592 *size_change_ok = TRUE;
1593 }
1594
1595 /* If we are looking at a dynamic object, and we have found a
1596 definition, we need to see if the symbol was already defined by
1597 some other object. If so, we want to use the existing
1598 definition, and we do not want to report a multiple symbol
1599 definition error; we do this by clobbering *PSEC to be
1600 bfd_und_section_ptr.
1601
1602 We treat a common symbol as a definition if the symbol in the
1603 shared library is a function, since common symbols always
1604 represent variables; this can cause confusion in principle, but
1605 any such confusion would seem to indicate an erroneous program or
1606 shared library. We also permit a common symbol in a regular
1607 object to override a weak symbol in a shared object. */
1608
1609 if (newdyn
1610 && newdef
1611 && (olddef
1612 || (h->root.type == bfd_link_hash_common
1613 && (newweak || newfunc))))
1614 {
1615 *override = TRUE;
1616 newdef = FALSE;
1617 newdyncommon = FALSE;
1618
1619 *psec = sec = bfd_und_section_ptr;
1620 *size_change_ok = TRUE;
1621
1622 /* If we get here when the old symbol is a common symbol, then
1623 we are explicitly letting it override a weak symbol or
1624 function in a dynamic object, and we don't want to warn about
1625 a type change. If the old symbol is a defined symbol, a type
1626 change warning may still be appropriate. */
1627
1628 if (h->root.type == bfd_link_hash_common)
1629 *type_change_ok = TRUE;
1630 }
1631
1632 /* Handle the special case of an old common symbol merging with a
1633 new symbol which looks like a common symbol in a shared object.
1634 We change *PSEC and *PVALUE to make the new symbol look like a
1635 common symbol, and let _bfd_generic_link_add_one_symbol do the
1636 right thing. */
1637
1638 if (newdyncommon
1639 && h->root.type == bfd_link_hash_common)
1640 {
1641 *override = TRUE;
1642 newdef = FALSE;
1643 newdyncommon = FALSE;
1644 *pvalue = sym->st_size;
1645 *psec = sec = bed->common_section (oldsec);
1646 *size_change_ok = TRUE;
1647 }
1648
1649 /* Skip weak definitions of symbols that are already defined. */
1650 if (newdef && olddef && newweak)
1651 {
1652 /* Don't skip new non-IR weak syms. */
1653 if (!(oldbfd != NULL
1654 && (oldbfd->flags & BFD_PLUGIN) != 0
1655 && (abfd->flags & BFD_PLUGIN) == 0))
1656 {
1657 newdef = FALSE;
1658 *skip = TRUE;
1659 }
1660
1661 /* Merge st_other. If the symbol already has a dynamic index,
1662 but visibility says it should not be visible, turn it into a
1663 local symbol. */
1664 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1665 if (h->dynindx != -1)
1666 switch (ELF_ST_VISIBILITY (h->other))
1667 {
1668 case STV_INTERNAL:
1669 case STV_HIDDEN:
1670 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1671 break;
1672 }
1673 }
1674
1675 /* If the old symbol is from a dynamic object, and the new symbol is
1676 a definition which is not from a dynamic object, then the new
1677 symbol overrides the old symbol. Symbols from regular files
1678 always take precedence over symbols from dynamic objects, even if
1679 they are defined after the dynamic object in the link.
1680
1681 As above, we again permit a common symbol in a regular object to
1682 override a definition in a shared object if the shared object
1683 symbol is a function or is weak. */
1684
1685 flip = NULL;
1686 if (!newdyn
1687 && (newdef
1688 || (bfd_is_com_section (sec)
1689 && (oldweak || oldfunc)))
1690 && olddyn
1691 && olddef
1692 && h->def_dynamic)
1693 {
1694 /* Change the hash table entry to undefined, and let
1695 _bfd_generic_link_add_one_symbol do the right thing with the
1696 new definition. */
1697
1698 h->root.type = bfd_link_hash_undefined;
1699 h->root.u.undef.abfd = h->root.u.def.section->owner;
1700 *size_change_ok = TRUE;
1701
1702 olddef = FALSE;
1703 olddyncommon = FALSE;
1704
1705 /* We again permit a type change when a common symbol may be
1706 overriding a function. */
1707
1708 if (bfd_is_com_section (sec))
1709 {
1710 if (oldfunc)
1711 {
1712 /* If a common symbol overrides a function, make sure
1713 that it isn't defined dynamically nor has type
1714 function. */
1715 h->def_dynamic = 0;
1716 h->type = STT_NOTYPE;
1717 }
1718 *type_change_ok = TRUE;
1719 }
1720
1721 if (hi->root.type == bfd_link_hash_indirect)
1722 flip = hi;
1723 else
1724 /* This union may have been set to be non-NULL when this symbol
1725 was seen in a dynamic object. We must force the union to be
1726 NULL, so that it is correct for a regular symbol. */
1727 h->verinfo.vertree = NULL;
1728 }
1729
1730 /* Handle the special case of a new common symbol merging with an
1731 old symbol that looks like it might be a common symbol defined in
1732 a shared object. Note that we have already handled the case in
1733 which a new common symbol should simply override the definition
1734 in the shared library. */
1735
1736 if (! newdyn
1737 && bfd_is_com_section (sec)
1738 && olddyncommon)
1739 {
1740 /* It would be best if we could set the hash table entry to a
1741 common symbol, but we don't know what to use for the section
1742 or the alignment. */
1743 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1744 bfd_link_hash_common, sym->st_size);
1745
1746 /* If the presumed common symbol in the dynamic object is
1747 larger, pretend that the new symbol has its size. */
1748
1749 if (h->size > *pvalue)
1750 *pvalue = h->size;
1751
1752 /* We need to remember the alignment required by the symbol
1753 in the dynamic object. */
1754 BFD_ASSERT (pold_alignment);
1755 *pold_alignment = h->root.u.def.section->alignment_power;
1756
1757 olddef = FALSE;
1758 olddyncommon = FALSE;
1759
1760 h->root.type = bfd_link_hash_undefined;
1761 h->root.u.undef.abfd = h->root.u.def.section->owner;
1762
1763 *size_change_ok = TRUE;
1764 *type_change_ok = TRUE;
1765
1766 if (hi->root.type == bfd_link_hash_indirect)
1767 flip = hi;
1768 else
1769 h->verinfo.vertree = NULL;
1770 }
1771
1772 if (flip != NULL)
1773 {
1774 /* Handle the case where we had a versioned symbol in a dynamic
1775 library and now find a definition in a normal object. In this
1776 case, we make the versioned symbol point to the normal one. */
1777 flip->root.type = h->root.type;
1778 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1779 h->root.type = bfd_link_hash_indirect;
1780 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1781 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1782 if (h->def_dynamic)
1783 {
1784 h->def_dynamic = 0;
1785 flip->ref_dynamic = 1;
1786 }
1787 }
1788
1789 return TRUE;
1790 }
1791
1792 /* This function is called to create an indirect symbol from the
1793 default for the symbol with the default version if needed. The
1794 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1795 set DYNSYM if the new indirect symbol is dynamic. */
1796
1797 static bfd_boolean
1798 _bfd_elf_add_default_symbol (bfd *abfd,
1799 struct bfd_link_info *info,
1800 struct elf_link_hash_entry *h,
1801 const char *name,
1802 Elf_Internal_Sym *sym,
1803 asection *sec,
1804 bfd_vma value,
1805 bfd **poldbfd,
1806 bfd_boolean *dynsym)
1807 {
1808 bfd_boolean type_change_ok;
1809 bfd_boolean size_change_ok;
1810 bfd_boolean skip;
1811 char *shortname;
1812 struct elf_link_hash_entry *hi;
1813 struct bfd_link_hash_entry *bh;
1814 const struct elf_backend_data *bed;
1815 bfd_boolean collect;
1816 bfd_boolean dynamic;
1817 bfd_boolean override;
1818 char *p;
1819 size_t len, shortlen;
1820 asection *tmp_sec;
1821 bfd_boolean matched;
1822
1823 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1824 return TRUE;
1825
1826 /* If this symbol has a version, and it is the default version, we
1827 create an indirect symbol from the default name to the fully
1828 decorated name. This will cause external references which do not
1829 specify a version to be bound to this version of the symbol. */
1830 p = strchr (name, ELF_VER_CHR);
1831 if (h->versioned == unknown)
1832 {
1833 if (p == NULL)
1834 {
1835 h->versioned = unversioned;
1836 return TRUE;
1837 }
1838 else
1839 {
1840 if (p[1] != ELF_VER_CHR)
1841 {
1842 h->versioned = versioned_hidden;
1843 return TRUE;
1844 }
1845 else
1846 h->versioned = versioned;
1847 }
1848 }
1849 else
1850 {
1851 /* PR ld/19073: We may see an unversioned definition after the
1852 default version. */
1853 if (p == NULL)
1854 return TRUE;
1855 }
1856
1857 bed = get_elf_backend_data (abfd);
1858 collect = bed->collect;
1859 dynamic = (abfd->flags & DYNAMIC) != 0;
1860
1861 shortlen = p - name;
1862 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1863 if (shortname == NULL)
1864 return FALSE;
1865 memcpy (shortname, name, shortlen);
1866 shortname[shortlen] = '\0';
1867
1868 /* We are going to create a new symbol. Merge it with any existing
1869 symbol with this name. For the purposes of the merge, act as
1870 though we were defining the symbol we just defined, although we
1871 actually going to define an indirect symbol. */
1872 type_change_ok = FALSE;
1873 size_change_ok = FALSE;
1874 matched = TRUE;
1875 tmp_sec = sec;
1876 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1877 &hi, poldbfd, NULL, NULL, &skip, &override,
1878 &type_change_ok, &size_change_ok, &matched))
1879 return FALSE;
1880
1881 if (skip)
1882 goto nondefault;
1883
1884 if (hi->def_regular)
1885 {
1886 /* If the undecorated symbol will have a version added by a
1887 script different to H, then don't indirect to/from the
1888 undecorated symbol. This isn't ideal because we may not yet
1889 have seen symbol versions, if given by a script on the
1890 command line rather than via --version-script. */
1891 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1892 {
1893 bfd_boolean hide;
1894
1895 hi->verinfo.vertree
1896 = bfd_find_version_for_sym (info->version_info,
1897 hi->root.root.string, &hide);
1898 if (hi->verinfo.vertree != NULL && hide)
1899 {
1900 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1901 goto nondefault;
1902 }
1903 }
1904 if (hi->verinfo.vertree != NULL
1905 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1906 goto nondefault;
1907 }
1908
1909 if (! override)
1910 {
1911 /* Add the default symbol if not performing a relocatable link. */
1912 if (! bfd_link_relocatable (info))
1913 {
1914 bh = &hi->root;
1915 if (! (_bfd_generic_link_add_one_symbol
1916 (info, abfd, shortname, BSF_INDIRECT,
1917 bfd_ind_section_ptr,
1918 0, name, FALSE, collect, &bh)))
1919 return FALSE;
1920 hi = (struct elf_link_hash_entry *) bh;
1921 }
1922 }
1923 else
1924 {
1925 /* In this case the symbol named SHORTNAME is overriding the
1926 indirect symbol we want to add. We were planning on making
1927 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1928 is the name without a version. NAME is the fully versioned
1929 name, and it is the default version.
1930
1931 Overriding means that we already saw a definition for the
1932 symbol SHORTNAME in a regular object, and it is overriding
1933 the symbol defined in the dynamic object.
1934
1935 When this happens, we actually want to change NAME, the
1936 symbol we just added, to refer to SHORTNAME. This will cause
1937 references to NAME in the shared object to become references
1938 to SHORTNAME in the regular object. This is what we expect
1939 when we override a function in a shared object: that the
1940 references in the shared object will be mapped to the
1941 definition in the regular object. */
1942
1943 while (hi->root.type == bfd_link_hash_indirect
1944 || hi->root.type == bfd_link_hash_warning)
1945 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946
1947 h->root.type = bfd_link_hash_indirect;
1948 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1949 if (h->def_dynamic)
1950 {
1951 h->def_dynamic = 0;
1952 hi->ref_dynamic = 1;
1953 if (hi->ref_regular
1954 || hi->def_regular)
1955 {
1956 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1957 return FALSE;
1958 }
1959 }
1960
1961 /* Now set HI to H, so that the following code will set the
1962 other fields correctly. */
1963 hi = h;
1964 }
1965
1966 /* Check if HI is a warning symbol. */
1967 if (hi->root.type == bfd_link_hash_warning)
1968 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1969
1970 /* If there is a duplicate definition somewhere, then HI may not
1971 point to an indirect symbol. We will have reported an error to
1972 the user in that case. */
1973
1974 if (hi->root.type == bfd_link_hash_indirect)
1975 {
1976 struct elf_link_hash_entry *ht;
1977
1978 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1980
1981 /* A reference to the SHORTNAME symbol from a dynamic library
1982 will be satisfied by the versioned symbol at runtime. In
1983 effect, we have a reference to the versioned symbol. */
1984 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1985 hi->dynamic_def |= ht->dynamic_def;
1986
1987 /* See if the new flags lead us to realize that the symbol must
1988 be dynamic. */
1989 if (! *dynsym)
1990 {
1991 if (! dynamic)
1992 {
1993 if (! bfd_link_executable (info)
1994 || hi->def_dynamic
1995 || hi->ref_dynamic)
1996 *dynsym = TRUE;
1997 }
1998 else
1999 {
2000 if (hi->ref_regular)
2001 *dynsym = TRUE;
2002 }
2003 }
2004 }
2005
2006 /* We also need to define an indirection from the nondefault version
2007 of the symbol. */
2008
2009 nondefault:
2010 len = strlen (name);
2011 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2012 if (shortname == NULL)
2013 return FALSE;
2014 memcpy (shortname, name, shortlen);
2015 memcpy (shortname + shortlen, p + 1, len - shortlen);
2016
2017 /* Once again, merge with any existing symbol. */
2018 type_change_ok = FALSE;
2019 size_change_ok = FALSE;
2020 tmp_sec = sec;
2021 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2022 &hi, poldbfd, NULL, NULL, &skip, &override,
2023 &type_change_ok, &size_change_ok, &matched))
2024 return FALSE;
2025
2026 if (skip)
2027 return TRUE;
2028
2029 if (override)
2030 {
2031 /* Here SHORTNAME is a versioned name, so we don't expect to see
2032 the type of override we do in the case above unless it is
2033 overridden by a versioned definition. */
2034 if (hi->root.type != bfd_link_hash_defined
2035 && hi->root.type != bfd_link_hash_defweak)
2036 _bfd_error_handler
2037 /* xgettext:c-format */
2038 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2039 abfd, shortname);
2040 }
2041 else
2042 {
2043 bh = &hi->root;
2044 if (! (_bfd_generic_link_add_one_symbol
2045 (info, abfd, shortname, BSF_INDIRECT,
2046 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2047 return FALSE;
2048 hi = (struct elf_link_hash_entry *) bh;
2049
2050 /* If there is a duplicate definition somewhere, then HI may not
2051 point to an indirect symbol. We will have reported an error
2052 to the user in that case. */
2053
2054 if (hi->root.type == bfd_link_hash_indirect)
2055 {
2056 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2057 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2058 hi->dynamic_def |= h->dynamic_def;
2059
2060 /* See if the new flags lead us to realize that the symbol
2061 must be dynamic. */
2062 if (! *dynsym)
2063 {
2064 if (! dynamic)
2065 {
2066 if (! bfd_link_executable (info)
2067 || hi->ref_dynamic)
2068 *dynsym = TRUE;
2069 }
2070 else
2071 {
2072 if (hi->ref_regular)
2073 *dynsym = TRUE;
2074 }
2075 }
2076 }
2077 }
2078
2079 return TRUE;
2080 }
2081 \f
2082 /* This routine is used to export all defined symbols into the dynamic
2083 symbol table. It is called via elf_link_hash_traverse. */
2084
2085 static bfd_boolean
2086 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2087 {
2088 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2089
2090 /* Ignore indirect symbols. These are added by the versioning code. */
2091 if (h->root.type == bfd_link_hash_indirect)
2092 return TRUE;
2093
2094 /* Ignore this if we won't export it. */
2095 if (!eif->info->export_dynamic && !h->dynamic)
2096 return TRUE;
2097
2098 if (h->dynindx == -1
2099 && (h->def_regular || h->ref_regular)
2100 && ! bfd_hide_sym_by_version (eif->info->version_info,
2101 h->root.root.string))
2102 {
2103 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2104 {
2105 eif->failed = TRUE;
2106 return FALSE;
2107 }
2108 }
2109
2110 return TRUE;
2111 }
2112 \f
2113 /* Look through the symbols which are defined in other shared
2114 libraries and referenced here. Update the list of version
2115 dependencies. This will be put into the .gnu.version_r section.
2116 This function is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2120 void *data)
2121 {
2122 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2123 Elf_Internal_Verneed *t;
2124 Elf_Internal_Vernaux *a;
2125 bfd_size_type amt;
2126
2127 /* We only care about symbols defined in shared objects with version
2128 information. */
2129 if (!h->def_dynamic
2130 || h->def_regular
2131 || h->dynindx == -1
2132 || h->verinfo.verdef == NULL
2133 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2134 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2135 return TRUE;
2136
2137 /* See if we already know about this version. */
2138 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2139 t != NULL;
2140 t = t->vn_nextref)
2141 {
2142 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2143 continue;
2144
2145 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2146 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2147 return TRUE;
2148
2149 break;
2150 }
2151
2152 /* This is a new version. Add it to tree we are building. */
2153
2154 if (t == NULL)
2155 {
2156 amt = sizeof *t;
2157 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2158 if (t == NULL)
2159 {
2160 rinfo->failed = TRUE;
2161 return FALSE;
2162 }
2163
2164 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2165 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2166 elf_tdata (rinfo->info->output_bfd)->verref = t;
2167 }
2168
2169 amt = sizeof *a;
2170 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2171 if (a == NULL)
2172 {
2173 rinfo->failed = TRUE;
2174 return FALSE;
2175 }
2176
2177 /* Note that we are copying a string pointer here, and testing it
2178 above. If bfd_elf_string_from_elf_section is ever changed to
2179 discard the string data when low in memory, this will have to be
2180 fixed. */
2181 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2182
2183 a->vna_flags = h->verinfo.verdef->vd_flags;
2184 a->vna_nextptr = t->vn_auxptr;
2185
2186 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2187 ++rinfo->vers;
2188
2189 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2190
2191 t->vn_auxptr = a;
2192
2193 return TRUE;
2194 }
2195
2196 /* Figure out appropriate versions for all the symbols. We may not
2197 have the version number script until we have read all of the input
2198 files, so until that point we don't know which symbols should be
2199 local. This function is called via elf_link_hash_traverse. */
2200
2201 static bfd_boolean
2202 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2203 {
2204 struct elf_info_failed *sinfo;
2205 struct bfd_link_info *info;
2206 const struct elf_backend_data *bed;
2207 struct elf_info_failed eif;
2208 char *p;
2209
2210 sinfo = (struct elf_info_failed *) data;
2211 info = sinfo->info;
2212
2213 /* Fix the symbol flags. */
2214 eif.failed = FALSE;
2215 eif.info = info;
2216 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2217 {
2218 if (eif.failed)
2219 sinfo->failed = TRUE;
2220 return FALSE;
2221 }
2222
2223 /* We only need version numbers for symbols defined in regular
2224 objects. */
2225 if (!h->def_regular)
2226 return TRUE;
2227
2228 bed = get_elf_backend_data (info->output_bfd);
2229 p = strchr (h->root.root.string, ELF_VER_CHR);
2230 if (p != NULL && h->verinfo.vertree == NULL)
2231 {
2232 struct bfd_elf_version_tree *t;
2233
2234 ++p;
2235 if (*p == ELF_VER_CHR)
2236 ++p;
2237
2238 /* If there is no version string, we can just return out. */
2239 if (*p == '\0')
2240 return TRUE;
2241
2242 /* Look for the version. If we find it, it is no longer weak. */
2243 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2244 {
2245 if (strcmp (t->name, p) == 0)
2246 {
2247 size_t len;
2248 char *alc;
2249 struct bfd_elf_version_expr *d;
2250
2251 len = p - h->root.root.string;
2252 alc = (char *) bfd_malloc (len);
2253 if (alc == NULL)
2254 {
2255 sinfo->failed = TRUE;
2256 return FALSE;
2257 }
2258 memcpy (alc, h->root.root.string, len - 1);
2259 alc[len - 1] = '\0';
2260 if (alc[len - 2] == ELF_VER_CHR)
2261 alc[len - 2] = '\0';
2262
2263 h->verinfo.vertree = t;
2264 t->used = TRUE;
2265 d = NULL;
2266
2267 if (t->globals.list != NULL)
2268 d = (*t->match) (&t->globals, NULL, alc);
2269
2270 /* See if there is anything to force this symbol to
2271 local scope. */
2272 if (d == NULL && t->locals.list != NULL)
2273 {
2274 d = (*t->match) (&t->locals, NULL, alc);
2275 if (d != NULL
2276 && h->dynindx != -1
2277 && ! info->export_dynamic)
2278 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2279 }
2280
2281 free (alc);
2282 break;
2283 }
2284 }
2285
2286 /* If we are building an application, we need to create a
2287 version node for this version. */
2288 if (t == NULL && bfd_link_executable (info))
2289 {
2290 struct bfd_elf_version_tree **pp;
2291 int version_index;
2292
2293 /* If we aren't going to export this symbol, we don't need
2294 to worry about it. */
2295 if (h->dynindx == -1)
2296 return TRUE;
2297
2298 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2299 sizeof *t);
2300 if (t == NULL)
2301 {
2302 sinfo->failed = TRUE;
2303 return FALSE;
2304 }
2305
2306 t->name = p;
2307 t->name_indx = (unsigned int) -1;
2308 t->used = TRUE;
2309
2310 version_index = 1;
2311 /* Don't count anonymous version tag. */
2312 if (sinfo->info->version_info != NULL
2313 && sinfo->info->version_info->vernum == 0)
2314 version_index = 0;
2315 for (pp = &sinfo->info->version_info;
2316 *pp != NULL;
2317 pp = &(*pp)->next)
2318 ++version_index;
2319 t->vernum = version_index;
2320
2321 *pp = t;
2322
2323 h->verinfo.vertree = t;
2324 }
2325 else if (t == NULL)
2326 {
2327 /* We could not find the version for a symbol when
2328 generating a shared archive. Return an error. */
2329 _bfd_error_handler
2330 /* xgettext:c-format */
2331 (_("%B: version node not found for symbol %s"),
2332 info->output_bfd, h->root.root.string);
2333 bfd_set_error (bfd_error_bad_value);
2334 sinfo->failed = TRUE;
2335 return FALSE;
2336 }
2337 }
2338
2339 /* If we don't have a version for this symbol, see if we can find
2340 something. */
2341 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2342 {
2343 bfd_boolean hide;
2344
2345 h->verinfo.vertree
2346 = bfd_find_version_for_sym (sinfo->info->version_info,
2347 h->root.root.string, &hide);
2348 if (h->verinfo.vertree != NULL && hide)
2349 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2350 }
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Read and swap the relocs from the section indicated by SHDR. This
2356 may be either a REL or a RELA section. The relocations are
2357 translated into RELA relocations and stored in INTERNAL_RELOCS,
2358 which should have already been allocated to contain enough space.
2359 The EXTERNAL_RELOCS are a buffer where the external form of the
2360 relocations should be stored.
2361
2362 Returns FALSE if something goes wrong. */
2363
2364 static bfd_boolean
2365 elf_link_read_relocs_from_section (bfd *abfd,
2366 asection *sec,
2367 Elf_Internal_Shdr *shdr,
2368 void *external_relocs,
2369 Elf_Internal_Rela *internal_relocs)
2370 {
2371 const struct elf_backend_data *bed;
2372 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2373 const bfd_byte *erela;
2374 const bfd_byte *erelaend;
2375 Elf_Internal_Rela *irela;
2376 Elf_Internal_Shdr *symtab_hdr;
2377 size_t nsyms;
2378
2379 /* Position ourselves at the start of the section. */
2380 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2381 return FALSE;
2382
2383 /* Read the relocations. */
2384 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2385 return FALSE;
2386
2387 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2388 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2389
2390 bed = get_elf_backend_data (abfd);
2391
2392 /* Convert the external relocations to the internal format. */
2393 if (shdr->sh_entsize == bed->s->sizeof_rel)
2394 swap_in = bed->s->swap_reloc_in;
2395 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2396 swap_in = bed->s->swap_reloca_in;
2397 else
2398 {
2399 bfd_set_error (bfd_error_wrong_format);
2400 return FALSE;
2401 }
2402
2403 erela = (const bfd_byte *) external_relocs;
2404 erelaend = erela + shdr->sh_size;
2405 irela = internal_relocs;
2406 while (erela < erelaend)
2407 {
2408 bfd_vma r_symndx;
2409
2410 (*swap_in) (abfd, erela, irela);
2411 r_symndx = ELF32_R_SYM (irela->r_info);
2412 if (bed->s->arch_size == 64)
2413 r_symndx >>= 24;
2414 if (nsyms > 0)
2415 {
2416 if ((size_t) r_symndx >= nsyms)
2417 {
2418 _bfd_error_handler
2419 /* xgettext:c-format */
2420 (_("%B: bad reloc symbol index (%#Lx >= %#lx)"
2421 " for offset %#Lx in section `%A'"),
2422 abfd, r_symndx, (unsigned long) nsyms,
2423 irela->r_offset, sec);
2424 bfd_set_error (bfd_error_bad_value);
2425 return FALSE;
2426 }
2427 }
2428 else if (r_symndx != STN_UNDEF)
2429 {
2430 _bfd_error_handler
2431 /* xgettext:c-format */
2432 (_("%B: non-zero symbol index (%#Lx)"
2433 " for offset %#Lx in section `%A'"
2434 " when the object file has no symbol table"),
2435 abfd, r_symndx,
2436 irela->r_offset, sec);
2437 bfd_set_error (bfd_error_bad_value);
2438 return FALSE;
2439 }
2440 irela += bed->s->int_rels_per_ext_rel;
2441 erela += shdr->sh_entsize;
2442 }
2443
2444 return TRUE;
2445 }
2446
2447 /* Read and swap the relocs for a section O. They may have been
2448 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2449 not NULL, they are used as buffers to read into. They are known to
2450 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2451 the return value is allocated using either malloc or bfd_alloc,
2452 according to the KEEP_MEMORY argument. If O has two relocation
2453 sections (both REL and RELA relocations), then the REL_HDR
2454 relocations will appear first in INTERNAL_RELOCS, followed by the
2455 RELA_HDR relocations. */
2456
2457 Elf_Internal_Rela *
2458 _bfd_elf_link_read_relocs (bfd *abfd,
2459 asection *o,
2460 void *external_relocs,
2461 Elf_Internal_Rela *internal_relocs,
2462 bfd_boolean keep_memory)
2463 {
2464 void *alloc1 = NULL;
2465 Elf_Internal_Rela *alloc2 = NULL;
2466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2467 struct bfd_elf_section_data *esdo = elf_section_data (o);
2468 Elf_Internal_Rela *internal_rela_relocs;
2469
2470 if (esdo->relocs != NULL)
2471 return esdo->relocs;
2472
2473 if (o->reloc_count == 0)
2474 return NULL;
2475
2476 if (internal_relocs == NULL)
2477 {
2478 bfd_size_type size;
2479
2480 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2481 if (keep_memory)
2482 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2483 else
2484 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2485 if (internal_relocs == NULL)
2486 goto error_return;
2487 }
2488
2489 if (external_relocs == NULL)
2490 {
2491 bfd_size_type size = 0;
2492
2493 if (esdo->rel.hdr)
2494 size += esdo->rel.hdr->sh_size;
2495 if (esdo->rela.hdr)
2496 size += esdo->rela.hdr->sh_size;
2497
2498 alloc1 = bfd_malloc (size);
2499 if (alloc1 == NULL)
2500 goto error_return;
2501 external_relocs = alloc1;
2502 }
2503
2504 internal_rela_relocs = internal_relocs;
2505 if (esdo->rel.hdr)
2506 {
2507 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2508 external_relocs,
2509 internal_relocs))
2510 goto error_return;
2511 external_relocs = (((bfd_byte *) external_relocs)
2512 + esdo->rel.hdr->sh_size);
2513 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2514 * bed->s->int_rels_per_ext_rel);
2515 }
2516
2517 if (esdo->rela.hdr
2518 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2519 external_relocs,
2520 internal_rela_relocs)))
2521 goto error_return;
2522
2523 /* Cache the results for next time, if we can. */
2524 if (keep_memory)
2525 esdo->relocs = internal_relocs;
2526
2527 if (alloc1 != NULL)
2528 free (alloc1);
2529
2530 /* Don't free alloc2, since if it was allocated we are passing it
2531 back (under the name of internal_relocs). */
2532
2533 return internal_relocs;
2534
2535 error_return:
2536 if (alloc1 != NULL)
2537 free (alloc1);
2538 if (alloc2 != NULL)
2539 {
2540 if (keep_memory)
2541 bfd_release (abfd, alloc2);
2542 else
2543 free (alloc2);
2544 }
2545 return NULL;
2546 }
2547
2548 /* Compute the size of, and allocate space for, REL_HDR which is the
2549 section header for a section containing relocations for O. */
2550
2551 static bfd_boolean
2552 _bfd_elf_link_size_reloc_section (bfd *abfd,
2553 struct bfd_elf_section_reloc_data *reldata)
2554 {
2555 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2556
2557 /* That allows us to calculate the size of the section. */
2558 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2559
2560 /* The contents field must last into write_object_contents, so we
2561 allocate it with bfd_alloc rather than malloc. Also since we
2562 cannot be sure that the contents will actually be filled in,
2563 we zero the allocated space. */
2564 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2565 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2566 return FALSE;
2567
2568 if (reldata->hashes == NULL && reldata->count)
2569 {
2570 struct elf_link_hash_entry **p;
2571
2572 p = ((struct elf_link_hash_entry **)
2573 bfd_zmalloc (reldata->count * sizeof (*p)));
2574 if (p == NULL)
2575 return FALSE;
2576
2577 reldata->hashes = p;
2578 }
2579
2580 return TRUE;
2581 }
2582
2583 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2584 originated from the section given by INPUT_REL_HDR) to the
2585 OUTPUT_BFD. */
2586
2587 bfd_boolean
2588 _bfd_elf_link_output_relocs (bfd *output_bfd,
2589 asection *input_section,
2590 Elf_Internal_Shdr *input_rel_hdr,
2591 Elf_Internal_Rela *internal_relocs,
2592 struct elf_link_hash_entry **rel_hash
2593 ATTRIBUTE_UNUSED)
2594 {
2595 Elf_Internal_Rela *irela;
2596 Elf_Internal_Rela *irelaend;
2597 bfd_byte *erel;
2598 struct bfd_elf_section_reloc_data *output_reldata;
2599 asection *output_section;
2600 const struct elf_backend_data *bed;
2601 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2602 struct bfd_elf_section_data *esdo;
2603
2604 output_section = input_section->output_section;
2605
2606 bed = get_elf_backend_data (output_bfd);
2607 esdo = elf_section_data (output_section);
2608 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2609 {
2610 output_reldata = &esdo->rel;
2611 swap_out = bed->s->swap_reloc_out;
2612 }
2613 else if (esdo->rela.hdr
2614 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2615 {
2616 output_reldata = &esdo->rela;
2617 swap_out = bed->s->swap_reloca_out;
2618 }
2619 else
2620 {
2621 _bfd_error_handler
2622 /* xgettext:c-format */
2623 (_("%B: relocation size mismatch in %B section %A"),
2624 output_bfd, input_section->owner, input_section);
2625 bfd_set_error (bfd_error_wrong_format);
2626 return FALSE;
2627 }
2628
2629 erel = output_reldata->hdr->contents;
2630 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2631 irela = internal_relocs;
2632 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 while (irela < irelaend)
2635 {
2636 (*swap_out) (output_bfd, irela, erel);
2637 irela += bed->s->int_rels_per_ext_rel;
2638 erel += input_rel_hdr->sh_entsize;
2639 }
2640
2641 /* Bump the counter, so that we know where to add the next set of
2642 relocations. */
2643 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2644
2645 return TRUE;
2646 }
2647 \f
2648 /* Make weak undefined symbols in PIE dynamic. */
2649
2650 bfd_boolean
2651 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2652 struct elf_link_hash_entry *h)
2653 {
2654 if (bfd_link_pie (info)
2655 && h->dynindx == -1
2656 && h->root.type == bfd_link_hash_undefweak)
2657 return bfd_elf_link_record_dynamic_symbol (info, h);
2658
2659 return TRUE;
2660 }
2661
2662 /* Fix up the flags for a symbol. This handles various cases which
2663 can only be fixed after all the input files are seen. This is
2664 currently called by both adjust_dynamic_symbol and
2665 assign_sym_version, which is unnecessary but perhaps more robust in
2666 the face of future changes. */
2667
2668 static bfd_boolean
2669 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2670 struct elf_info_failed *eif)
2671 {
2672 const struct elf_backend_data *bed;
2673
2674 /* If this symbol was mentioned in a non-ELF file, try to set
2675 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2676 permit a non-ELF file to correctly refer to a symbol defined in
2677 an ELF dynamic object. */
2678 if (h->non_elf)
2679 {
2680 while (h->root.type == bfd_link_hash_indirect)
2681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2682
2683 if (h->root.type != bfd_link_hash_defined
2684 && h->root.type != bfd_link_hash_defweak)
2685 {
2686 h->ref_regular = 1;
2687 h->ref_regular_nonweak = 1;
2688 }
2689 else
2690 {
2691 if (h->root.u.def.section->owner != NULL
2692 && (bfd_get_flavour (h->root.u.def.section->owner)
2693 == bfd_target_elf_flavour))
2694 {
2695 h->ref_regular = 1;
2696 h->ref_regular_nonweak = 1;
2697 }
2698 else
2699 h->def_regular = 1;
2700 }
2701
2702 if (h->dynindx == -1
2703 && (h->def_dynamic
2704 || h->ref_dynamic))
2705 {
2706 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2707 {
2708 eif->failed = TRUE;
2709 return FALSE;
2710 }
2711 }
2712 }
2713 else
2714 {
2715 /* Unfortunately, NON_ELF is only correct if the symbol
2716 was first seen in a non-ELF file. Fortunately, if the symbol
2717 was first seen in an ELF file, we're probably OK unless the
2718 symbol was defined in a non-ELF file. Catch that case here.
2719 FIXME: We're still in trouble if the symbol was first seen in
2720 a dynamic object, and then later in a non-ELF regular object. */
2721 if ((h->root.type == bfd_link_hash_defined
2722 || h->root.type == bfd_link_hash_defweak)
2723 && !h->def_regular
2724 && (h->root.u.def.section->owner != NULL
2725 ? (bfd_get_flavour (h->root.u.def.section->owner)
2726 != bfd_target_elf_flavour)
2727 : (bfd_is_abs_section (h->root.u.def.section)
2728 && !h->def_dynamic)))
2729 h->def_regular = 1;
2730 }
2731
2732 /* Backend specific symbol fixup. */
2733 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2734 if (bed->elf_backend_fixup_symbol
2735 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2736 return FALSE;
2737
2738 /* If this is a final link, and the symbol was defined as a common
2739 symbol in a regular object file, and there was no definition in
2740 any dynamic object, then the linker will have allocated space for
2741 the symbol in a common section but the DEF_REGULAR
2742 flag will not have been set. */
2743 if (h->root.type == bfd_link_hash_defined
2744 && !h->def_regular
2745 && h->ref_regular
2746 && !h->def_dynamic
2747 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2748 h->def_regular = 1;
2749
2750 /* If a weak undefined symbol has non-default visibility, we also
2751 hide it from the dynamic linker. */
2752 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2753 && h->root.type == bfd_link_hash_undefweak)
2754 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2755
2756 /* A hidden versioned symbol in executable should be forced local if
2757 it is is locally defined, not referenced by shared library and not
2758 exported. */
2759 else if (bfd_link_executable (eif->info)
2760 && h->versioned == versioned_hidden
2761 && !eif->info->export_dynamic
2762 && !h->dynamic
2763 && !h->ref_dynamic
2764 && h->def_regular)
2765 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2766
2767 /* If -Bsymbolic was used (which means to bind references to global
2768 symbols to the definition within the shared object), and this
2769 symbol was defined in a regular object, then it actually doesn't
2770 need a PLT entry. Likewise, if the symbol has non-default
2771 visibility. If the symbol has hidden or internal visibility, we
2772 will force it local. */
2773 else if (h->needs_plt
2774 && bfd_link_pic (eif->info)
2775 && is_elf_hash_table (eif->info->hash)
2776 && (SYMBOLIC_BIND (eif->info, h)
2777 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2778 && h->def_regular)
2779 {
2780 bfd_boolean force_local;
2781
2782 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2783 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2784 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2785 }
2786
2787 /* If this is a weak defined symbol in a dynamic object, and we know
2788 the real definition in the dynamic object, copy interesting flags
2789 over to the real definition. */
2790 if (h->u.weakdef != NULL)
2791 {
2792 /* If the real definition is defined by a regular object file,
2793 don't do anything special. See the longer description in
2794 _bfd_elf_adjust_dynamic_symbol, below. */
2795 if (h->u.weakdef->def_regular)
2796 h->u.weakdef = NULL;
2797 else
2798 {
2799 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2800
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2803
2804 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2805 || h->root.type == bfd_link_hash_defweak);
2806 BFD_ASSERT (weakdef->def_dynamic);
2807 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2808 || weakdef->root.type == bfd_link_hash_defweak);
2809 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2810 }
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* Make the backend pick a good value for a dynamic symbol. This is
2817 called via elf_link_hash_traverse, and also calls itself
2818 recursively. */
2819
2820 static bfd_boolean
2821 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2822 {
2823 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2824 struct elf_link_hash_table *htab;
2825 const struct elf_backend_data *bed;
2826
2827 if (! is_elf_hash_table (eif->info->hash))
2828 return FALSE;
2829
2830 /* Ignore indirect symbols. These are added by the versioning code. */
2831 if (h->root.type == bfd_link_hash_indirect)
2832 return TRUE;
2833
2834 /* Fix the symbol flags. */
2835 if (! _bfd_elf_fix_symbol_flags (h, eif))
2836 return FALSE;
2837
2838 htab = elf_hash_table (eif->info);
2839 bed = get_elf_backend_data (htab->dynobj);
2840
2841 if (h->root.type == bfd_link_hash_undefweak)
2842 {
2843 if (eif->info->dynamic_undefined_weak == 0)
2844 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2845 else if (eif->info->dynamic_undefined_weak > 0
2846 && h->ref_regular
2847 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2848 && !bfd_hide_sym_by_version (eif->info->version_info,
2849 h->root.root.string))
2850 {
2851 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2852 {
2853 eif->failed = TRUE;
2854 return FALSE;
2855 }
2856 }
2857 }
2858
2859 /* If this symbol does not require a PLT entry, and it is not
2860 defined by a dynamic object, or is not referenced by a regular
2861 object, ignore it. We do have to handle a weak defined symbol,
2862 even if no regular object refers to it, if we decided to add it
2863 to the dynamic symbol table. FIXME: Do we normally need to worry
2864 about symbols which are defined by one dynamic object and
2865 referenced by another one? */
2866 if (!h->needs_plt
2867 && h->type != STT_GNU_IFUNC
2868 && (h->def_regular
2869 || !h->def_dynamic
2870 || (!h->ref_regular
2871 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2872 {
2873 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2874 return TRUE;
2875 }
2876
2877 /* If we've already adjusted this symbol, don't do it again. This
2878 can happen via a recursive call. */
2879 if (h->dynamic_adjusted)
2880 return TRUE;
2881
2882 /* Don't look at this symbol again. Note that we must set this
2883 after checking the above conditions, because we may look at a
2884 symbol once, decide not to do anything, and then get called
2885 recursively later after REF_REGULAR is set below. */
2886 h->dynamic_adjusted = 1;
2887
2888 /* If this is a weak definition, and we know a real definition, and
2889 the real symbol is not itself defined by a regular object file,
2890 then get a good value for the real definition. We handle the
2891 real symbol first, for the convenience of the backend routine.
2892
2893 Note that there is a confusing case here. If the real definition
2894 is defined by a regular object file, we don't get the real symbol
2895 from the dynamic object, but we do get the weak symbol. If the
2896 processor backend uses a COPY reloc, then if some routine in the
2897 dynamic object changes the real symbol, we will not see that
2898 change in the corresponding weak symbol. This is the way other
2899 ELF linkers work as well, and seems to be a result of the shared
2900 library model.
2901
2902 I will clarify this issue. Most SVR4 shared libraries define the
2903 variable _timezone and define timezone as a weak synonym. The
2904 tzset call changes _timezone. If you write
2905 extern int timezone;
2906 int _timezone = 5;
2907 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2908 you might expect that, since timezone is a synonym for _timezone,
2909 the same number will print both times. However, if the processor
2910 backend uses a COPY reloc, then actually timezone will be copied
2911 into your process image, and, since you define _timezone
2912 yourself, _timezone will not. Thus timezone and _timezone will
2913 wind up at different memory locations. The tzset call will set
2914 _timezone, leaving timezone unchanged. */
2915
2916 if (h->u.weakdef != NULL)
2917 {
2918 /* If we get to this point, there is an implicit reference to
2919 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2920 h->u.weakdef->ref_regular = 1;
2921
2922 /* Ensure that the backend adjust_dynamic_symbol function sees
2923 H->U.WEAKDEF before H by recursively calling ourselves. */
2924 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2925 return FALSE;
2926 }
2927
2928 /* If a symbol has no type and no size and does not require a PLT
2929 entry, then we are probably about to do the wrong thing here: we
2930 are probably going to create a COPY reloc for an empty object.
2931 This case can arise when a shared object is built with assembly
2932 code, and the assembly code fails to set the symbol type. */
2933 if (h->size == 0
2934 && h->type == STT_NOTYPE
2935 && !h->needs_plt)
2936 _bfd_error_handler
2937 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2938 h->root.root.string);
2939
2940 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2941 {
2942 eif->failed = TRUE;
2943 return FALSE;
2944 }
2945
2946 return TRUE;
2947 }
2948
2949 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2950 DYNBSS. */
2951
2952 bfd_boolean
2953 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2954 struct elf_link_hash_entry *h,
2955 asection *dynbss)
2956 {
2957 unsigned int power_of_two;
2958 bfd_vma mask;
2959 asection *sec = h->root.u.def.section;
2960
2961 /* The section alignment of the definition is the maximum alignment
2962 requirement of symbols defined in the section. Since we don't
2963 know the symbol alignment requirement, we start with the
2964 maximum alignment and check low bits of the symbol address
2965 for the minimum alignment. */
2966 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2967 mask = ((bfd_vma) 1 << power_of_two) - 1;
2968 while ((h->root.u.def.value & mask) != 0)
2969 {
2970 mask >>= 1;
2971 --power_of_two;
2972 }
2973
2974 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2975 dynbss))
2976 {
2977 /* Adjust the section alignment if needed. */
2978 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2979 power_of_two))
2980 return FALSE;
2981 }
2982
2983 /* We make sure that the symbol will be aligned properly. */
2984 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2985
2986 /* Define the symbol as being at this point in DYNBSS. */
2987 h->root.u.def.section = dynbss;
2988 h->root.u.def.value = dynbss->size;
2989
2990 /* Increment the size of DYNBSS to make room for the symbol. */
2991 dynbss->size += h->size;
2992
2993 /* No error if extern_protected_data is true. */
2994 if (h->protected_def
2995 && (!info->extern_protected_data
2996 || (info->extern_protected_data < 0
2997 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2998 info->callbacks->einfo
2999 (_("%P: copy reloc against protected `%T' is dangerous\n"),
3000 h->root.root.string);
3001
3002 return TRUE;
3003 }
3004
3005 /* Adjust all external symbols pointing into SEC_MERGE sections
3006 to reflect the object merging within the sections. */
3007
3008 static bfd_boolean
3009 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3010 {
3011 asection *sec;
3012
3013 if ((h->root.type == bfd_link_hash_defined
3014 || h->root.type == bfd_link_hash_defweak)
3015 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3016 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3017 {
3018 bfd *output_bfd = (bfd *) data;
3019
3020 h->root.u.def.value =
3021 _bfd_merged_section_offset (output_bfd,
3022 &h->root.u.def.section,
3023 elf_section_data (sec)->sec_info,
3024 h->root.u.def.value);
3025 }
3026
3027 return TRUE;
3028 }
3029
3030 /* Returns false if the symbol referred to by H should be considered
3031 to resolve local to the current module, and true if it should be
3032 considered to bind dynamically. */
3033
3034 bfd_boolean
3035 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3036 struct bfd_link_info *info,
3037 bfd_boolean not_local_protected)
3038 {
3039 bfd_boolean binding_stays_local_p;
3040 const struct elf_backend_data *bed;
3041 struct elf_link_hash_table *hash_table;
3042
3043 if (h == NULL)
3044 return FALSE;
3045
3046 while (h->root.type == bfd_link_hash_indirect
3047 || h->root.type == bfd_link_hash_warning)
3048 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3049
3050 /* If it was forced local, then clearly it's not dynamic. */
3051 if (h->dynindx == -1)
3052 return FALSE;
3053 if (h->forced_local)
3054 return FALSE;
3055
3056 /* Identify the cases where name binding rules say that a
3057 visible symbol resolves locally. */
3058 binding_stays_local_p = (bfd_link_executable (info)
3059 || SYMBOLIC_BIND (info, h));
3060
3061 switch (ELF_ST_VISIBILITY (h->other))
3062 {
3063 case STV_INTERNAL:
3064 case STV_HIDDEN:
3065 return FALSE;
3066
3067 case STV_PROTECTED:
3068 hash_table = elf_hash_table (info);
3069 if (!is_elf_hash_table (hash_table))
3070 return FALSE;
3071
3072 bed = get_elf_backend_data (hash_table->dynobj);
3073
3074 /* Proper resolution for function pointer equality may require
3075 that these symbols perhaps be resolved dynamically, even though
3076 we should be resolving them to the current module. */
3077 if (!not_local_protected || !bed->is_function_type (h->type))
3078 binding_stays_local_p = TRUE;
3079 break;
3080
3081 default:
3082 break;
3083 }
3084
3085 /* If it isn't defined locally, then clearly it's dynamic. */
3086 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3087 return TRUE;
3088
3089 /* Otherwise, the symbol is dynamic if binding rules don't tell
3090 us that it remains local. */
3091 return !binding_stays_local_p;
3092 }
3093
3094 /* Return true if the symbol referred to by H should be considered
3095 to resolve local to the current module, and false otherwise. Differs
3096 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3097 undefined symbols. The two functions are virtually identical except
3098 for the place where dynindx == -1 is tested. If that test is true,
3099 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3100 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3101 defined symbols.
3102 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3103 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3104 treatment of undefined weak symbols. For those that do not make
3105 undefined weak symbols dynamic, both functions may return false. */
3106
3107 bfd_boolean
3108 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3109 struct bfd_link_info *info,
3110 bfd_boolean local_protected)
3111 {
3112 const struct elf_backend_data *bed;
3113 struct elf_link_hash_table *hash_table;
3114
3115 /* If it's a local sym, of course we resolve locally. */
3116 if (h == NULL)
3117 return TRUE;
3118
3119 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3120 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3121 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3122 return TRUE;
3123
3124 /* Forced local symbols resolve locally. */
3125 if (h->forced_local)
3126 return TRUE;
3127
3128 /* Common symbols that become definitions don't get the DEF_REGULAR
3129 flag set, so test it first, and don't bail out. */
3130 if (ELF_COMMON_DEF_P (h))
3131 /* Do nothing. */;
3132 /* If we don't have a definition in a regular file, then we can't
3133 resolve locally. The sym is either undefined or dynamic. */
3134 else if (!h->def_regular)
3135 return FALSE;
3136
3137 /* Non-dynamic symbols resolve locally. */
3138 if (h->dynindx == -1)
3139 return TRUE;
3140
3141 /* At this point, we know the symbol is defined and dynamic. In an
3142 executable it must resolve locally, likewise when building symbolic
3143 shared libraries. */
3144 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3145 return TRUE;
3146
3147 /* Now deal with defined dynamic symbols in shared libraries. Ones
3148 with default visibility might not resolve locally. */
3149 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3150 return FALSE;
3151
3152 hash_table = elf_hash_table (info);
3153 if (!is_elf_hash_table (hash_table))
3154 return TRUE;
3155
3156 bed = get_elf_backend_data (hash_table->dynobj);
3157
3158 /* If extern_protected_data is false, STV_PROTECTED non-function
3159 symbols are local. */
3160 if ((!info->extern_protected_data
3161 || (info->extern_protected_data < 0
3162 && !bed->extern_protected_data))
3163 && !bed->is_function_type (h->type))
3164 return TRUE;
3165
3166 /* Function pointer equality tests may require that STV_PROTECTED
3167 symbols be treated as dynamic symbols. If the address of a
3168 function not defined in an executable is set to that function's
3169 plt entry in the executable, then the address of the function in
3170 a shared library must also be the plt entry in the executable. */
3171 return local_protected;
3172 }
3173
3174 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3175 aligned. Returns the first TLS output section. */
3176
3177 struct bfd_section *
3178 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3179 {
3180 struct bfd_section *sec, *tls;
3181 unsigned int align = 0;
3182
3183 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3184 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3185 break;
3186 tls = sec;
3187
3188 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3189 if (sec->alignment_power > align)
3190 align = sec->alignment_power;
3191
3192 elf_hash_table (info)->tls_sec = tls;
3193
3194 /* Ensure the alignment of the first section is the largest alignment,
3195 so that the tls segment starts aligned. */
3196 if (tls != NULL)
3197 tls->alignment_power = align;
3198
3199 return tls;
3200 }
3201
3202 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3203 static bfd_boolean
3204 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3205 Elf_Internal_Sym *sym)
3206 {
3207 const struct elf_backend_data *bed;
3208
3209 /* Local symbols do not count, but target specific ones might. */
3210 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3211 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3212 return FALSE;
3213
3214 bed = get_elf_backend_data (abfd);
3215 /* Function symbols do not count. */
3216 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3217 return FALSE;
3218
3219 /* If the section is undefined, then so is the symbol. */
3220 if (sym->st_shndx == SHN_UNDEF)
3221 return FALSE;
3222
3223 /* If the symbol is defined in the common section, then
3224 it is a common definition and so does not count. */
3225 if (bed->common_definition (sym))
3226 return FALSE;
3227
3228 /* If the symbol is in a target specific section then we
3229 must rely upon the backend to tell us what it is. */
3230 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3231 /* FIXME - this function is not coded yet:
3232
3233 return _bfd_is_global_symbol_definition (abfd, sym);
3234
3235 Instead for now assume that the definition is not global,
3236 Even if this is wrong, at least the linker will behave
3237 in the same way that it used to do. */
3238 return FALSE;
3239
3240 return TRUE;
3241 }
3242
3243 /* Search the symbol table of the archive element of the archive ABFD
3244 whose archive map contains a mention of SYMDEF, and determine if
3245 the symbol is defined in this element. */
3246 static bfd_boolean
3247 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3248 {
3249 Elf_Internal_Shdr * hdr;
3250 size_t symcount;
3251 size_t extsymcount;
3252 size_t extsymoff;
3253 Elf_Internal_Sym *isymbuf;
3254 Elf_Internal_Sym *isym;
3255 Elf_Internal_Sym *isymend;
3256 bfd_boolean result;
3257
3258 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3259 if (abfd == NULL)
3260 return FALSE;
3261
3262 if (! bfd_check_format (abfd, bfd_object))
3263 return FALSE;
3264
3265 /* Select the appropriate symbol table. If we don't know if the
3266 object file is an IR object, give linker LTO plugin a chance to
3267 get the correct symbol table. */
3268 if (abfd->plugin_format == bfd_plugin_yes
3269 #if BFD_SUPPORTS_PLUGINS
3270 || (abfd->plugin_format == bfd_plugin_unknown
3271 && bfd_link_plugin_object_p (abfd))
3272 #endif
3273 )
3274 {
3275 /* Use the IR symbol table if the object has been claimed by
3276 plugin. */
3277 abfd = abfd->plugin_dummy_bfd;
3278 hdr = &elf_tdata (abfd)->symtab_hdr;
3279 }
3280 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3281 hdr = &elf_tdata (abfd)->symtab_hdr;
3282 else
3283 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3284
3285 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3286
3287 /* The sh_info field of the symtab header tells us where the
3288 external symbols start. We don't care about the local symbols. */
3289 if (elf_bad_symtab (abfd))
3290 {
3291 extsymcount = symcount;
3292 extsymoff = 0;
3293 }
3294 else
3295 {
3296 extsymcount = symcount - hdr->sh_info;
3297 extsymoff = hdr->sh_info;
3298 }
3299
3300 if (extsymcount == 0)
3301 return FALSE;
3302
3303 /* Read in the symbol table. */
3304 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3305 NULL, NULL, NULL);
3306 if (isymbuf == NULL)
3307 return FALSE;
3308
3309 /* Scan the symbol table looking for SYMDEF. */
3310 result = FALSE;
3311 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3312 {
3313 const char *name;
3314
3315 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3316 isym->st_name);
3317 if (name == NULL)
3318 break;
3319
3320 if (strcmp (name, symdef->name) == 0)
3321 {
3322 result = is_global_data_symbol_definition (abfd, isym);
3323 break;
3324 }
3325 }
3326
3327 free (isymbuf);
3328
3329 return result;
3330 }
3331 \f
3332 /* Add an entry to the .dynamic table. */
3333
3334 bfd_boolean
3335 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3336 bfd_vma tag,
3337 bfd_vma val)
3338 {
3339 struct elf_link_hash_table *hash_table;
3340 const struct elf_backend_data *bed;
3341 asection *s;
3342 bfd_size_type newsize;
3343 bfd_byte *newcontents;
3344 Elf_Internal_Dyn dyn;
3345
3346 hash_table = elf_hash_table (info);
3347 if (! is_elf_hash_table (hash_table))
3348 return FALSE;
3349
3350 bed = get_elf_backend_data (hash_table->dynobj);
3351 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3352 BFD_ASSERT (s != NULL);
3353
3354 newsize = s->size + bed->s->sizeof_dyn;
3355 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3356 if (newcontents == NULL)
3357 return FALSE;
3358
3359 dyn.d_tag = tag;
3360 dyn.d_un.d_val = val;
3361 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3362
3363 s->size = newsize;
3364 s->contents = newcontents;
3365
3366 return TRUE;
3367 }
3368
3369 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3370 otherwise just check whether one already exists. Returns -1 on error,
3371 1 if a DT_NEEDED tag already exists, and 0 on success. */
3372
3373 static int
3374 elf_add_dt_needed_tag (bfd *abfd,
3375 struct bfd_link_info *info,
3376 const char *soname,
3377 bfd_boolean do_it)
3378 {
3379 struct elf_link_hash_table *hash_table;
3380 size_t strindex;
3381
3382 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3383 return -1;
3384
3385 hash_table = elf_hash_table (info);
3386 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3387 if (strindex == (size_t) -1)
3388 return -1;
3389
3390 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3391 {
3392 asection *sdyn;
3393 const struct elf_backend_data *bed;
3394 bfd_byte *extdyn;
3395
3396 bed = get_elf_backend_data (hash_table->dynobj);
3397 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3398 if (sdyn != NULL)
3399 for (extdyn = sdyn->contents;
3400 extdyn < sdyn->contents + sdyn->size;
3401 extdyn += bed->s->sizeof_dyn)
3402 {
3403 Elf_Internal_Dyn dyn;
3404
3405 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3406 if (dyn.d_tag == DT_NEEDED
3407 && dyn.d_un.d_val == strindex)
3408 {
3409 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3410 return 1;
3411 }
3412 }
3413 }
3414
3415 if (do_it)
3416 {
3417 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3418 return -1;
3419
3420 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3421 return -1;
3422 }
3423 else
3424 /* We were just checking for existence of the tag. */
3425 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3426
3427 return 0;
3428 }
3429
3430 /* Return true if SONAME is on the needed list between NEEDED and STOP
3431 (or the end of list if STOP is NULL), and needed by a library that
3432 will be loaded. */
3433
3434 static bfd_boolean
3435 on_needed_list (const char *soname,
3436 struct bfd_link_needed_list *needed,
3437 struct bfd_link_needed_list *stop)
3438 {
3439 struct bfd_link_needed_list *look;
3440 for (look = needed; look != stop; look = look->next)
3441 if (strcmp (soname, look->name) == 0
3442 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3443 /* If needed by a library that itself is not directly
3444 needed, recursively check whether that library is
3445 indirectly needed. Since we add DT_NEEDED entries to
3446 the end of the list, library dependencies appear after
3447 the library. Therefore search prior to the current
3448 LOOK, preventing possible infinite recursion. */
3449 || on_needed_list (elf_dt_name (look->by), needed, look)))
3450 return TRUE;
3451
3452 return FALSE;
3453 }
3454
3455 /* Sort symbol by value, section, and size. */
3456 static int
3457 elf_sort_symbol (const void *arg1, const void *arg2)
3458 {
3459 const struct elf_link_hash_entry *h1;
3460 const struct elf_link_hash_entry *h2;
3461 bfd_signed_vma vdiff;
3462
3463 h1 = *(const struct elf_link_hash_entry **) arg1;
3464 h2 = *(const struct elf_link_hash_entry **) arg2;
3465 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3466 if (vdiff != 0)
3467 return vdiff > 0 ? 1 : -1;
3468 else
3469 {
3470 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3471 if (sdiff != 0)
3472 return sdiff > 0 ? 1 : -1;
3473 }
3474 vdiff = h1->size - h2->size;
3475 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3476 }
3477
3478 /* This function is used to adjust offsets into .dynstr for
3479 dynamic symbols. This is called via elf_link_hash_traverse. */
3480
3481 static bfd_boolean
3482 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3483 {
3484 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3485
3486 if (h->dynindx != -1)
3487 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3488 return TRUE;
3489 }
3490
3491 /* Assign string offsets in .dynstr, update all structures referencing
3492 them. */
3493
3494 static bfd_boolean
3495 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3496 {
3497 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3498 struct elf_link_local_dynamic_entry *entry;
3499 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3500 bfd *dynobj = hash_table->dynobj;
3501 asection *sdyn;
3502 bfd_size_type size;
3503 const struct elf_backend_data *bed;
3504 bfd_byte *extdyn;
3505
3506 _bfd_elf_strtab_finalize (dynstr);
3507 size = _bfd_elf_strtab_size (dynstr);
3508
3509 bed = get_elf_backend_data (dynobj);
3510 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3511 BFD_ASSERT (sdyn != NULL);
3512
3513 /* Update all .dynamic entries referencing .dynstr strings. */
3514 for (extdyn = sdyn->contents;
3515 extdyn < sdyn->contents + sdyn->size;
3516 extdyn += bed->s->sizeof_dyn)
3517 {
3518 Elf_Internal_Dyn dyn;
3519
3520 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3521 switch (dyn.d_tag)
3522 {
3523 case DT_STRSZ:
3524 dyn.d_un.d_val = size;
3525 break;
3526 case DT_NEEDED:
3527 case DT_SONAME:
3528 case DT_RPATH:
3529 case DT_RUNPATH:
3530 case DT_FILTER:
3531 case DT_AUXILIARY:
3532 case DT_AUDIT:
3533 case DT_DEPAUDIT:
3534 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3535 break;
3536 default:
3537 continue;
3538 }
3539 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3540 }
3541
3542 /* Now update local dynamic symbols. */
3543 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3544 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3545 entry->isym.st_name);
3546
3547 /* And the rest of dynamic symbols. */
3548 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3549
3550 /* Adjust version definitions. */
3551 if (elf_tdata (output_bfd)->cverdefs)
3552 {
3553 asection *s;
3554 bfd_byte *p;
3555 size_t i;
3556 Elf_Internal_Verdef def;
3557 Elf_Internal_Verdaux defaux;
3558
3559 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3560 p = s->contents;
3561 do
3562 {
3563 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3564 &def);
3565 p += sizeof (Elf_External_Verdef);
3566 if (def.vd_aux != sizeof (Elf_External_Verdef))
3567 continue;
3568 for (i = 0; i < def.vd_cnt; ++i)
3569 {
3570 _bfd_elf_swap_verdaux_in (output_bfd,
3571 (Elf_External_Verdaux *) p, &defaux);
3572 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3573 defaux.vda_name);
3574 _bfd_elf_swap_verdaux_out (output_bfd,
3575 &defaux, (Elf_External_Verdaux *) p);
3576 p += sizeof (Elf_External_Verdaux);
3577 }
3578 }
3579 while (def.vd_next);
3580 }
3581
3582 /* Adjust version references. */
3583 if (elf_tdata (output_bfd)->verref)
3584 {
3585 asection *s;
3586 bfd_byte *p;
3587 size_t i;
3588 Elf_Internal_Verneed need;
3589 Elf_Internal_Vernaux needaux;
3590
3591 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3592 p = s->contents;
3593 do
3594 {
3595 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3596 &need);
3597 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3598 _bfd_elf_swap_verneed_out (output_bfd, &need,
3599 (Elf_External_Verneed *) p);
3600 p += sizeof (Elf_External_Verneed);
3601 for (i = 0; i < need.vn_cnt; ++i)
3602 {
3603 _bfd_elf_swap_vernaux_in (output_bfd,
3604 (Elf_External_Vernaux *) p, &needaux);
3605 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3606 needaux.vna_name);
3607 _bfd_elf_swap_vernaux_out (output_bfd,
3608 &needaux,
3609 (Elf_External_Vernaux *) p);
3610 p += sizeof (Elf_External_Vernaux);
3611 }
3612 }
3613 while (need.vn_next);
3614 }
3615
3616 return TRUE;
3617 }
3618 \f
3619 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3620 The default is to only match when the INPUT and OUTPUT are exactly
3621 the same target. */
3622
3623 bfd_boolean
3624 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3625 const bfd_target *output)
3626 {
3627 return input == output;
3628 }
3629
3630 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3631 This version is used when different targets for the same architecture
3632 are virtually identical. */
3633
3634 bfd_boolean
3635 _bfd_elf_relocs_compatible (const bfd_target *input,
3636 const bfd_target *output)
3637 {
3638 const struct elf_backend_data *obed, *ibed;
3639
3640 if (input == output)
3641 return TRUE;
3642
3643 ibed = xvec_get_elf_backend_data (input);
3644 obed = xvec_get_elf_backend_data (output);
3645
3646 if (ibed->arch != obed->arch)
3647 return FALSE;
3648
3649 /* If both backends are using this function, deem them compatible. */
3650 return ibed->relocs_compatible == obed->relocs_compatible;
3651 }
3652
3653 /* Make a special call to the linker "notice" function to tell it that
3654 we are about to handle an as-needed lib, or have finished
3655 processing the lib. */
3656
3657 bfd_boolean
3658 _bfd_elf_notice_as_needed (bfd *ibfd,
3659 struct bfd_link_info *info,
3660 enum notice_asneeded_action act)
3661 {
3662 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3663 }
3664
3665 /* Check relocations an ELF object file. */
3666
3667 bfd_boolean
3668 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3669 {
3670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3671 struct elf_link_hash_table *htab = elf_hash_table (info);
3672
3673 /* If this object is the same format as the output object, and it is
3674 not a shared library, then let the backend look through the
3675 relocs.
3676
3677 This is required to build global offset table entries and to
3678 arrange for dynamic relocs. It is not required for the
3679 particular common case of linking non PIC code, even when linking
3680 against shared libraries, but unfortunately there is no way of
3681 knowing whether an object file has been compiled PIC or not.
3682 Looking through the relocs is not particularly time consuming.
3683 The problem is that we must either (1) keep the relocs in memory,
3684 which causes the linker to require additional runtime memory or
3685 (2) read the relocs twice from the input file, which wastes time.
3686 This would be a good case for using mmap.
3687
3688 I have no idea how to handle linking PIC code into a file of a
3689 different format. It probably can't be done. */
3690 if ((abfd->flags & DYNAMIC) == 0
3691 && is_elf_hash_table (htab)
3692 && bed->check_relocs != NULL
3693 && elf_object_id (abfd) == elf_hash_table_id (htab)
3694 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3695 {
3696 asection *o;
3697
3698 for (o = abfd->sections; o != NULL; o = o->next)
3699 {
3700 Elf_Internal_Rela *internal_relocs;
3701 bfd_boolean ok;
3702
3703 /* Don't check relocations in excluded sections. */
3704 if ((o->flags & SEC_RELOC) == 0
3705 || (o->flags & SEC_EXCLUDE) != 0
3706 || o->reloc_count == 0
3707 || ((info->strip == strip_all || info->strip == strip_debugger)
3708 && (o->flags & SEC_DEBUGGING) != 0)
3709 || bfd_is_abs_section (o->output_section))
3710 continue;
3711
3712 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3713 info->keep_memory);
3714 if (internal_relocs == NULL)
3715 return FALSE;
3716
3717 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3718
3719 if (elf_section_data (o)->relocs != internal_relocs)
3720 free (internal_relocs);
3721
3722 if (! ok)
3723 return FALSE;
3724 }
3725 }
3726
3727 return TRUE;
3728 }
3729
3730 /* Add symbols from an ELF object file to the linker hash table. */
3731
3732 static bfd_boolean
3733 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3734 {
3735 Elf_Internal_Ehdr *ehdr;
3736 Elf_Internal_Shdr *hdr;
3737 size_t symcount;
3738 size_t extsymcount;
3739 size_t extsymoff;
3740 struct elf_link_hash_entry **sym_hash;
3741 bfd_boolean dynamic;
3742 Elf_External_Versym *extversym = NULL;
3743 Elf_External_Versym *ever;
3744 struct elf_link_hash_entry *weaks;
3745 struct elf_link_hash_entry **nondeflt_vers = NULL;
3746 size_t nondeflt_vers_cnt = 0;
3747 Elf_Internal_Sym *isymbuf = NULL;
3748 Elf_Internal_Sym *isym;
3749 Elf_Internal_Sym *isymend;
3750 const struct elf_backend_data *bed;
3751 bfd_boolean add_needed;
3752 struct elf_link_hash_table *htab;
3753 bfd_size_type amt;
3754 void *alloc_mark = NULL;
3755 struct bfd_hash_entry **old_table = NULL;
3756 unsigned int old_size = 0;
3757 unsigned int old_count = 0;
3758 void *old_tab = NULL;
3759 void *old_ent;
3760 struct bfd_link_hash_entry *old_undefs = NULL;
3761 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3762 void *old_strtab = NULL;
3763 size_t tabsize = 0;
3764 asection *s;
3765 bfd_boolean just_syms;
3766
3767 htab = elf_hash_table (info);
3768 bed = get_elf_backend_data (abfd);
3769
3770 if ((abfd->flags & DYNAMIC) == 0)
3771 dynamic = FALSE;
3772 else
3773 {
3774 dynamic = TRUE;
3775
3776 /* You can't use -r against a dynamic object. Also, there's no
3777 hope of using a dynamic object which does not exactly match
3778 the format of the output file. */
3779 if (bfd_link_relocatable (info)
3780 || !is_elf_hash_table (htab)
3781 || info->output_bfd->xvec != abfd->xvec)
3782 {
3783 if (bfd_link_relocatable (info))
3784 bfd_set_error (bfd_error_invalid_operation);
3785 else
3786 bfd_set_error (bfd_error_wrong_format);
3787 goto error_return;
3788 }
3789 }
3790
3791 ehdr = elf_elfheader (abfd);
3792 if (info->warn_alternate_em
3793 && bed->elf_machine_code != ehdr->e_machine
3794 && ((bed->elf_machine_alt1 != 0
3795 && ehdr->e_machine == bed->elf_machine_alt1)
3796 || (bed->elf_machine_alt2 != 0
3797 && ehdr->e_machine == bed->elf_machine_alt2)))
3798 info->callbacks->einfo
3799 /* xgettext:c-format */
3800 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3801 ehdr->e_machine, abfd, bed->elf_machine_code);
3802
3803 /* As a GNU extension, any input sections which are named
3804 .gnu.warning.SYMBOL are treated as warning symbols for the given
3805 symbol. This differs from .gnu.warning sections, which generate
3806 warnings when they are included in an output file. */
3807 /* PR 12761: Also generate this warning when building shared libraries. */
3808 for (s = abfd->sections; s != NULL; s = s->next)
3809 {
3810 const char *name;
3811
3812 name = bfd_get_section_name (abfd, s);
3813 if (CONST_STRNEQ (name, ".gnu.warning."))
3814 {
3815 char *msg;
3816 bfd_size_type sz;
3817
3818 name += sizeof ".gnu.warning." - 1;
3819
3820 /* If this is a shared object, then look up the symbol
3821 in the hash table. If it is there, and it is already
3822 been defined, then we will not be using the entry
3823 from this shared object, so we don't need to warn.
3824 FIXME: If we see the definition in a regular object
3825 later on, we will warn, but we shouldn't. The only
3826 fix is to keep track of what warnings we are supposed
3827 to emit, and then handle them all at the end of the
3828 link. */
3829 if (dynamic)
3830 {
3831 struct elf_link_hash_entry *h;
3832
3833 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3834
3835 /* FIXME: What about bfd_link_hash_common? */
3836 if (h != NULL
3837 && (h->root.type == bfd_link_hash_defined
3838 || h->root.type == bfd_link_hash_defweak))
3839 continue;
3840 }
3841
3842 sz = s->size;
3843 msg = (char *) bfd_alloc (abfd, sz + 1);
3844 if (msg == NULL)
3845 goto error_return;
3846
3847 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3848 goto error_return;
3849
3850 msg[sz] = '\0';
3851
3852 if (! (_bfd_generic_link_add_one_symbol
3853 (info, abfd, name, BSF_WARNING, s, 0, msg,
3854 FALSE, bed->collect, NULL)))
3855 goto error_return;
3856
3857 if (bfd_link_executable (info))
3858 {
3859 /* Clobber the section size so that the warning does
3860 not get copied into the output file. */
3861 s->size = 0;
3862
3863 /* Also set SEC_EXCLUDE, so that symbols defined in
3864 the warning section don't get copied to the output. */
3865 s->flags |= SEC_EXCLUDE;
3866 }
3867 }
3868 }
3869
3870 just_syms = ((s = abfd->sections) != NULL
3871 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3872
3873 add_needed = TRUE;
3874 if (! dynamic)
3875 {
3876 /* If we are creating a shared library, create all the dynamic
3877 sections immediately. We need to attach them to something,
3878 so we attach them to this BFD, provided it is the right
3879 format and is not from ld --just-symbols. Always create the
3880 dynamic sections for -E/--dynamic-list. FIXME: If there
3881 are no input BFD's of the same format as the output, we can't
3882 make a shared library. */
3883 if (!just_syms
3884 && (bfd_link_pic (info)
3885 || (!bfd_link_relocatable (info)
3886 && info->nointerp
3887 && (info->export_dynamic || info->dynamic)))
3888 && is_elf_hash_table (htab)
3889 && info->output_bfd->xvec == abfd->xvec
3890 && !htab->dynamic_sections_created)
3891 {
3892 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3893 goto error_return;
3894 }
3895 }
3896 else if (!is_elf_hash_table (htab))
3897 goto error_return;
3898 else
3899 {
3900 const char *soname = NULL;
3901 char *audit = NULL;
3902 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3903 const Elf_Internal_Phdr *phdr;
3904 int ret;
3905
3906 /* ld --just-symbols and dynamic objects don't mix very well.
3907 ld shouldn't allow it. */
3908 if (just_syms)
3909 abort ();
3910
3911 /* If this dynamic lib was specified on the command line with
3912 --as-needed in effect, then we don't want to add a DT_NEEDED
3913 tag unless the lib is actually used. Similary for libs brought
3914 in by another lib's DT_NEEDED. When --no-add-needed is used
3915 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3916 any dynamic library in DT_NEEDED tags in the dynamic lib at
3917 all. */
3918 add_needed = (elf_dyn_lib_class (abfd)
3919 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3920 | DYN_NO_NEEDED)) == 0;
3921
3922 s = bfd_get_section_by_name (abfd, ".dynamic");
3923 if (s != NULL)
3924 {
3925 bfd_byte *dynbuf;
3926 bfd_byte *extdyn;
3927 unsigned int elfsec;
3928 unsigned long shlink;
3929
3930 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3931 {
3932 error_free_dyn:
3933 free (dynbuf);
3934 goto error_return;
3935 }
3936
3937 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3938 if (elfsec == SHN_BAD)
3939 goto error_free_dyn;
3940 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3941
3942 for (extdyn = dynbuf;
3943 extdyn < dynbuf + s->size;
3944 extdyn += bed->s->sizeof_dyn)
3945 {
3946 Elf_Internal_Dyn dyn;
3947
3948 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3949 if (dyn.d_tag == DT_SONAME)
3950 {
3951 unsigned int tagv = dyn.d_un.d_val;
3952 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3953 if (soname == NULL)
3954 goto error_free_dyn;
3955 }
3956 if (dyn.d_tag == DT_NEEDED)
3957 {
3958 struct bfd_link_needed_list *n, **pn;
3959 char *fnm, *anm;
3960 unsigned int tagv = dyn.d_un.d_val;
3961
3962 amt = sizeof (struct bfd_link_needed_list);
3963 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3964 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3965 if (n == NULL || fnm == NULL)
3966 goto error_free_dyn;
3967 amt = strlen (fnm) + 1;
3968 anm = (char *) bfd_alloc (abfd, amt);
3969 if (anm == NULL)
3970 goto error_free_dyn;
3971 memcpy (anm, fnm, amt);
3972 n->name = anm;
3973 n->by = abfd;
3974 n->next = NULL;
3975 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3976 ;
3977 *pn = n;
3978 }
3979 if (dyn.d_tag == DT_RUNPATH)
3980 {
3981 struct bfd_link_needed_list *n, **pn;
3982 char *fnm, *anm;
3983 unsigned int tagv = dyn.d_un.d_val;
3984
3985 amt = sizeof (struct bfd_link_needed_list);
3986 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3987 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3988 if (n == NULL || fnm == NULL)
3989 goto error_free_dyn;
3990 amt = strlen (fnm) + 1;
3991 anm = (char *) bfd_alloc (abfd, amt);
3992 if (anm == NULL)
3993 goto error_free_dyn;
3994 memcpy (anm, fnm, amt);
3995 n->name = anm;
3996 n->by = abfd;
3997 n->next = NULL;
3998 for (pn = & runpath;
3999 *pn != NULL;
4000 pn = &(*pn)->next)
4001 ;
4002 *pn = n;
4003 }
4004 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4005 if (!runpath && dyn.d_tag == DT_RPATH)
4006 {
4007 struct bfd_link_needed_list *n, **pn;
4008 char *fnm, *anm;
4009 unsigned int tagv = dyn.d_un.d_val;
4010
4011 amt = sizeof (struct bfd_link_needed_list);
4012 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4013 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4014 if (n == NULL || fnm == NULL)
4015 goto error_free_dyn;
4016 amt = strlen (fnm) + 1;
4017 anm = (char *) bfd_alloc (abfd, amt);
4018 if (anm == NULL)
4019 goto error_free_dyn;
4020 memcpy (anm, fnm, amt);
4021 n->name = anm;
4022 n->by = abfd;
4023 n->next = NULL;
4024 for (pn = & rpath;
4025 *pn != NULL;
4026 pn = &(*pn)->next)
4027 ;
4028 *pn = n;
4029 }
4030 if (dyn.d_tag == DT_AUDIT)
4031 {
4032 unsigned int tagv = dyn.d_un.d_val;
4033 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4034 }
4035 }
4036
4037 free (dynbuf);
4038 }
4039
4040 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4041 frees all more recently bfd_alloc'd blocks as well. */
4042 if (runpath)
4043 rpath = runpath;
4044
4045 if (rpath)
4046 {
4047 struct bfd_link_needed_list **pn;
4048 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4049 ;
4050 *pn = rpath;
4051 }
4052
4053 /* If we have a PT_GNU_RELRO program header, mark as read-only
4054 all sections contained fully therein. This makes relro
4055 shared library sections appear as they will at run-time. */
4056 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4057 while (--phdr >= elf_tdata (abfd)->phdr)
4058 if (phdr->p_type == PT_GNU_RELRO)
4059 {
4060 for (s = abfd->sections; s != NULL; s = s->next)
4061 if ((s->flags & SEC_ALLOC) != 0
4062 && s->vma >= phdr->p_vaddr
4063 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4064 s->flags |= SEC_READONLY;
4065 break;
4066 }
4067
4068 /* We do not want to include any of the sections in a dynamic
4069 object in the output file. We hack by simply clobbering the
4070 list of sections in the BFD. This could be handled more
4071 cleanly by, say, a new section flag; the existing
4072 SEC_NEVER_LOAD flag is not the one we want, because that one
4073 still implies that the section takes up space in the output
4074 file. */
4075 bfd_section_list_clear (abfd);
4076
4077 /* Find the name to use in a DT_NEEDED entry that refers to this
4078 object. If the object has a DT_SONAME entry, we use it.
4079 Otherwise, if the generic linker stuck something in
4080 elf_dt_name, we use that. Otherwise, we just use the file
4081 name. */
4082 if (soname == NULL || *soname == '\0')
4083 {
4084 soname = elf_dt_name (abfd);
4085 if (soname == NULL || *soname == '\0')
4086 soname = bfd_get_filename (abfd);
4087 }
4088
4089 /* Save the SONAME because sometimes the linker emulation code
4090 will need to know it. */
4091 elf_dt_name (abfd) = soname;
4092
4093 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4094 if (ret < 0)
4095 goto error_return;
4096
4097 /* If we have already included this dynamic object in the
4098 link, just ignore it. There is no reason to include a
4099 particular dynamic object more than once. */
4100 if (ret > 0)
4101 return TRUE;
4102
4103 /* Save the DT_AUDIT entry for the linker emulation code. */
4104 elf_dt_audit (abfd) = audit;
4105 }
4106
4107 /* If this is a dynamic object, we always link against the .dynsym
4108 symbol table, not the .symtab symbol table. The dynamic linker
4109 will only see the .dynsym symbol table, so there is no reason to
4110 look at .symtab for a dynamic object. */
4111
4112 if (! dynamic || elf_dynsymtab (abfd) == 0)
4113 hdr = &elf_tdata (abfd)->symtab_hdr;
4114 else
4115 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4116
4117 symcount = hdr->sh_size / bed->s->sizeof_sym;
4118
4119 /* The sh_info field of the symtab header tells us where the
4120 external symbols start. We don't care about the local symbols at
4121 this point. */
4122 if (elf_bad_symtab (abfd))
4123 {
4124 extsymcount = symcount;
4125 extsymoff = 0;
4126 }
4127 else
4128 {
4129 extsymcount = symcount - hdr->sh_info;
4130 extsymoff = hdr->sh_info;
4131 }
4132
4133 sym_hash = elf_sym_hashes (abfd);
4134 if (extsymcount != 0)
4135 {
4136 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4137 NULL, NULL, NULL);
4138 if (isymbuf == NULL)
4139 goto error_return;
4140
4141 if (sym_hash == NULL)
4142 {
4143 /* We store a pointer to the hash table entry for each
4144 external symbol. */
4145 amt = extsymcount;
4146 amt *= sizeof (struct elf_link_hash_entry *);
4147 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4148 if (sym_hash == NULL)
4149 goto error_free_sym;
4150 elf_sym_hashes (abfd) = sym_hash;
4151 }
4152 }
4153
4154 if (dynamic)
4155 {
4156 /* Read in any version definitions. */
4157 if (!_bfd_elf_slurp_version_tables (abfd,
4158 info->default_imported_symver))
4159 goto error_free_sym;
4160
4161 /* Read in the symbol versions, but don't bother to convert them
4162 to internal format. */
4163 if (elf_dynversym (abfd) != 0)
4164 {
4165 Elf_Internal_Shdr *versymhdr;
4166
4167 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4168 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4169 if (extversym == NULL)
4170 goto error_free_sym;
4171 amt = versymhdr->sh_size;
4172 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4173 || bfd_bread (extversym, amt, abfd) != amt)
4174 goto error_free_vers;
4175 }
4176 }
4177
4178 /* If we are loading an as-needed shared lib, save the symbol table
4179 state before we start adding symbols. If the lib turns out
4180 to be unneeded, restore the state. */
4181 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4182 {
4183 unsigned int i;
4184 size_t entsize;
4185
4186 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4187 {
4188 struct bfd_hash_entry *p;
4189 struct elf_link_hash_entry *h;
4190
4191 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4192 {
4193 h = (struct elf_link_hash_entry *) p;
4194 entsize += htab->root.table.entsize;
4195 if (h->root.type == bfd_link_hash_warning)
4196 entsize += htab->root.table.entsize;
4197 }
4198 }
4199
4200 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4201 old_tab = bfd_malloc (tabsize + entsize);
4202 if (old_tab == NULL)
4203 goto error_free_vers;
4204
4205 /* Remember the current objalloc pointer, so that all mem for
4206 symbols added can later be reclaimed. */
4207 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4208 if (alloc_mark == NULL)
4209 goto error_free_vers;
4210
4211 /* Make a special call to the linker "notice" function to
4212 tell it that we are about to handle an as-needed lib. */
4213 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4214 goto error_free_vers;
4215
4216 /* Clone the symbol table. Remember some pointers into the
4217 symbol table, and dynamic symbol count. */
4218 old_ent = (char *) old_tab + tabsize;
4219 memcpy (old_tab, htab->root.table.table, tabsize);
4220 old_undefs = htab->root.undefs;
4221 old_undefs_tail = htab->root.undefs_tail;
4222 old_table = htab->root.table.table;
4223 old_size = htab->root.table.size;
4224 old_count = htab->root.table.count;
4225 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4226 if (old_strtab == NULL)
4227 goto error_free_vers;
4228
4229 for (i = 0; i < htab->root.table.size; i++)
4230 {
4231 struct bfd_hash_entry *p;
4232 struct elf_link_hash_entry *h;
4233
4234 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4235 {
4236 memcpy (old_ent, p, htab->root.table.entsize);
4237 old_ent = (char *) old_ent + htab->root.table.entsize;
4238 h = (struct elf_link_hash_entry *) p;
4239 if (h->root.type == bfd_link_hash_warning)
4240 {
4241 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4242 old_ent = (char *) old_ent + htab->root.table.entsize;
4243 }
4244 }
4245 }
4246 }
4247
4248 weaks = NULL;
4249 ever = extversym != NULL ? extversym + extsymoff : NULL;
4250 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4251 isym < isymend;
4252 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4253 {
4254 int bind;
4255 bfd_vma value;
4256 asection *sec, *new_sec;
4257 flagword flags;
4258 const char *name;
4259 struct elf_link_hash_entry *h;
4260 struct elf_link_hash_entry *hi;
4261 bfd_boolean definition;
4262 bfd_boolean size_change_ok;
4263 bfd_boolean type_change_ok;
4264 bfd_boolean new_weakdef;
4265 bfd_boolean new_weak;
4266 bfd_boolean old_weak;
4267 bfd_boolean override;
4268 bfd_boolean common;
4269 bfd_boolean discarded;
4270 unsigned int old_alignment;
4271 bfd *old_bfd;
4272 bfd_boolean matched;
4273
4274 override = FALSE;
4275
4276 flags = BSF_NO_FLAGS;
4277 sec = NULL;
4278 value = isym->st_value;
4279 common = bed->common_definition (isym);
4280 if (common && info->inhibit_common_definition)
4281 {
4282 /* Treat common symbol as undefined for --no-define-common. */
4283 isym->st_shndx = SHN_UNDEF;
4284 common = FALSE;
4285 }
4286 discarded = FALSE;
4287
4288 bind = ELF_ST_BIND (isym->st_info);
4289 switch (bind)
4290 {
4291 case STB_LOCAL:
4292 /* This should be impossible, since ELF requires that all
4293 global symbols follow all local symbols, and that sh_info
4294 point to the first global symbol. Unfortunately, Irix 5
4295 screws this up. */
4296 continue;
4297
4298 case STB_GLOBAL:
4299 if (isym->st_shndx != SHN_UNDEF && !common)
4300 flags = BSF_GLOBAL;
4301 break;
4302
4303 case STB_WEAK:
4304 flags = BSF_WEAK;
4305 break;
4306
4307 case STB_GNU_UNIQUE:
4308 flags = BSF_GNU_UNIQUE;
4309 break;
4310
4311 default:
4312 /* Leave it up to the processor backend. */
4313 break;
4314 }
4315
4316 if (isym->st_shndx == SHN_UNDEF)
4317 sec = bfd_und_section_ptr;
4318 else if (isym->st_shndx == SHN_ABS)
4319 sec = bfd_abs_section_ptr;
4320 else if (isym->st_shndx == SHN_COMMON)
4321 {
4322 sec = bfd_com_section_ptr;
4323 /* What ELF calls the size we call the value. What ELF
4324 calls the value we call the alignment. */
4325 value = isym->st_size;
4326 }
4327 else
4328 {
4329 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4330 if (sec == NULL)
4331 sec = bfd_abs_section_ptr;
4332 else if (discarded_section (sec))
4333 {
4334 /* Symbols from discarded section are undefined. We keep
4335 its visibility. */
4336 sec = bfd_und_section_ptr;
4337 discarded = TRUE;
4338 isym->st_shndx = SHN_UNDEF;
4339 }
4340 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4341 value -= sec->vma;
4342 }
4343
4344 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4345 isym->st_name);
4346 if (name == NULL)
4347 goto error_free_vers;
4348
4349 if (isym->st_shndx == SHN_COMMON
4350 && (abfd->flags & BFD_PLUGIN) != 0)
4351 {
4352 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4353
4354 if (xc == NULL)
4355 {
4356 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4357 | SEC_EXCLUDE);
4358 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4359 if (xc == NULL)
4360 goto error_free_vers;
4361 }
4362 sec = xc;
4363 }
4364 else if (isym->st_shndx == SHN_COMMON
4365 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4366 && !bfd_link_relocatable (info))
4367 {
4368 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4369
4370 if (tcomm == NULL)
4371 {
4372 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4373 | SEC_LINKER_CREATED);
4374 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4375 if (tcomm == NULL)
4376 goto error_free_vers;
4377 }
4378 sec = tcomm;
4379 }
4380 else if (bed->elf_add_symbol_hook)
4381 {
4382 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4383 &sec, &value))
4384 goto error_free_vers;
4385
4386 /* The hook function sets the name to NULL if this symbol
4387 should be skipped for some reason. */
4388 if (name == NULL)
4389 continue;
4390 }
4391
4392 /* Sanity check that all possibilities were handled. */
4393 if (sec == NULL)
4394 {
4395 bfd_set_error (bfd_error_bad_value);
4396 goto error_free_vers;
4397 }
4398
4399 /* Silently discard TLS symbols from --just-syms. There's
4400 no way to combine a static TLS block with a new TLS block
4401 for this executable. */
4402 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4403 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4404 continue;
4405
4406 if (bfd_is_und_section (sec)
4407 || bfd_is_com_section (sec))
4408 definition = FALSE;
4409 else
4410 definition = TRUE;
4411
4412 size_change_ok = FALSE;
4413 type_change_ok = bed->type_change_ok;
4414 old_weak = FALSE;
4415 matched = FALSE;
4416 old_alignment = 0;
4417 old_bfd = NULL;
4418 new_sec = sec;
4419
4420 if (is_elf_hash_table (htab))
4421 {
4422 Elf_Internal_Versym iver;
4423 unsigned int vernum = 0;
4424 bfd_boolean skip;
4425
4426 if (ever == NULL)
4427 {
4428 if (info->default_imported_symver)
4429 /* Use the default symbol version created earlier. */
4430 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4431 else
4432 iver.vs_vers = 0;
4433 }
4434 else
4435 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4436
4437 vernum = iver.vs_vers & VERSYM_VERSION;
4438
4439 /* If this is a hidden symbol, or if it is not version
4440 1, we append the version name to the symbol name.
4441 However, we do not modify a non-hidden absolute symbol
4442 if it is not a function, because it might be the version
4443 symbol itself. FIXME: What if it isn't? */
4444 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4445 || (vernum > 1
4446 && (!bfd_is_abs_section (sec)
4447 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4448 {
4449 const char *verstr;
4450 size_t namelen, verlen, newlen;
4451 char *newname, *p;
4452
4453 if (isym->st_shndx != SHN_UNDEF)
4454 {
4455 if (vernum > elf_tdata (abfd)->cverdefs)
4456 verstr = NULL;
4457 else if (vernum > 1)
4458 verstr =
4459 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4460 else
4461 verstr = "";
4462
4463 if (verstr == NULL)
4464 {
4465 _bfd_error_handler
4466 /* xgettext:c-format */
4467 (_("%B: %s: invalid version %u (max %d)"),
4468 abfd, name, vernum,
4469 elf_tdata (abfd)->cverdefs);
4470 bfd_set_error (bfd_error_bad_value);
4471 goto error_free_vers;
4472 }
4473 }
4474 else
4475 {
4476 /* We cannot simply test for the number of
4477 entries in the VERNEED section since the
4478 numbers for the needed versions do not start
4479 at 0. */
4480 Elf_Internal_Verneed *t;
4481
4482 verstr = NULL;
4483 for (t = elf_tdata (abfd)->verref;
4484 t != NULL;
4485 t = t->vn_nextref)
4486 {
4487 Elf_Internal_Vernaux *a;
4488
4489 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4490 {
4491 if (a->vna_other == vernum)
4492 {
4493 verstr = a->vna_nodename;
4494 break;
4495 }
4496 }
4497 if (a != NULL)
4498 break;
4499 }
4500 if (verstr == NULL)
4501 {
4502 _bfd_error_handler
4503 /* xgettext:c-format */
4504 (_("%B: %s: invalid needed version %d"),
4505 abfd, name, vernum);
4506 bfd_set_error (bfd_error_bad_value);
4507 goto error_free_vers;
4508 }
4509 }
4510
4511 namelen = strlen (name);
4512 verlen = strlen (verstr);
4513 newlen = namelen + verlen + 2;
4514 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4515 && isym->st_shndx != SHN_UNDEF)
4516 ++newlen;
4517
4518 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4519 if (newname == NULL)
4520 goto error_free_vers;
4521 memcpy (newname, name, namelen);
4522 p = newname + namelen;
4523 *p++ = ELF_VER_CHR;
4524 /* If this is a defined non-hidden version symbol,
4525 we add another @ to the name. This indicates the
4526 default version of the symbol. */
4527 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4528 && isym->st_shndx != SHN_UNDEF)
4529 *p++ = ELF_VER_CHR;
4530 memcpy (p, verstr, verlen + 1);
4531
4532 name = newname;
4533 }
4534
4535 /* If this symbol has default visibility and the user has
4536 requested we not re-export it, then mark it as hidden. */
4537 if (!bfd_is_und_section (sec)
4538 && !dynamic
4539 && abfd->no_export
4540 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4541 isym->st_other = (STV_HIDDEN
4542 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4543
4544 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4545 sym_hash, &old_bfd, &old_weak,
4546 &old_alignment, &skip, &override,
4547 &type_change_ok, &size_change_ok,
4548 &matched))
4549 goto error_free_vers;
4550
4551 if (skip)
4552 continue;
4553
4554 /* Override a definition only if the new symbol matches the
4555 existing one. */
4556 if (override && matched)
4557 definition = FALSE;
4558
4559 h = *sym_hash;
4560 while (h->root.type == bfd_link_hash_indirect
4561 || h->root.type == bfd_link_hash_warning)
4562 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4563
4564 if (elf_tdata (abfd)->verdef != NULL
4565 && vernum > 1
4566 && definition)
4567 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4568 }
4569
4570 if (! (_bfd_generic_link_add_one_symbol
4571 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4572 (struct bfd_link_hash_entry **) sym_hash)))
4573 goto error_free_vers;
4574
4575 if ((flags & BSF_GNU_UNIQUE)
4576 && (abfd->flags & DYNAMIC) == 0
4577 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4578 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4579
4580 h = *sym_hash;
4581 /* We need to make sure that indirect symbol dynamic flags are
4582 updated. */
4583 hi = h;
4584 while (h->root.type == bfd_link_hash_indirect
4585 || h->root.type == bfd_link_hash_warning)
4586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4587
4588 /* Setting the index to -3 tells elf_link_output_extsym that
4589 this symbol is defined in a discarded section. */
4590 if (discarded)
4591 h->indx = -3;
4592
4593 *sym_hash = h;
4594
4595 new_weak = (flags & BSF_WEAK) != 0;
4596 new_weakdef = FALSE;
4597 if (dynamic
4598 && definition
4599 && new_weak
4600 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4601 && is_elf_hash_table (htab)
4602 && h->u.weakdef == NULL)
4603 {
4604 /* Keep a list of all weak defined non function symbols from
4605 a dynamic object, using the weakdef field. Later in this
4606 function we will set the weakdef field to the correct
4607 value. We only put non-function symbols from dynamic
4608 objects on this list, because that happens to be the only
4609 time we need to know the normal symbol corresponding to a
4610 weak symbol, and the information is time consuming to
4611 figure out. If the weakdef field is not already NULL,
4612 then this symbol was already defined by some previous
4613 dynamic object, and we will be using that previous
4614 definition anyhow. */
4615
4616 h->u.weakdef = weaks;
4617 weaks = h;
4618 new_weakdef = TRUE;
4619 }
4620
4621 /* Set the alignment of a common symbol. */
4622 if ((common || bfd_is_com_section (sec))
4623 && h->root.type == bfd_link_hash_common)
4624 {
4625 unsigned int align;
4626
4627 if (common)
4628 align = bfd_log2 (isym->st_value);
4629 else
4630 {
4631 /* The new symbol is a common symbol in a shared object.
4632 We need to get the alignment from the section. */
4633 align = new_sec->alignment_power;
4634 }
4635 if (align > old_alignment)
4636 h->root.u.c.p->alignment_power = align;
4637 else
4638 h->root.u.c.p->alignment_power = old_alignment;
4639 }
4640
4641 if (is_elf_hash_table (htab))
4642 {
4643 /* Set a flag in the hash table entry indicating the type of
4644 reference or definition we just found. A dynamic symbol
4645 is one which is referenced or defined by both a regular
4646 object and a shared object. */
4647 bfd_boolean dynsym = FALSE;
4648
4649 /* Plugin symbols aren't normal. Don't set def_regular or
4650 ref_regular for them, or make them dynamic. */
4651 if ((abfd->flags & BFD_PLUGIN) != 0)
4652 ;
4653 else if (! dynamic)
4654 {
4655 if (! definition)
4656 {
4657 h->ref_regular = 1;
4658 if (bind != STB_WEAK)
4659 h->ref_regular_nonweak = 1;
4660 }
4661 else
4662 {
4663 h->def_regular = 1;
4664 if (h->def_dynamic)
4665 {
4666 h->def_dynamic = 0;
4667 h->ref_dynamic = 1;
4668 }
4669 }
4670
4671 /* If the indirect symbol has been forced local, don't
4672 make the real symbol dynamic. */
4673 if ((h == hi || !hi->forced_local)
4674 && (bfd_link_dll (info)
4675 || h->def_dynamic
4676 || h->ref_dynamic))
4677 dynsym = TRUE;
4678 }
4679 else
4680 {
4681 if (! definition)
4682 {
4683 h->ref_dynamic = 1;
4684 hi->ref_dynamic = 1;
4685 }
4686 else
4687 {
4688 h->def_dynamic = 1;
4689 hi->def_dynamic = 1;
4690 }
4691
4692 /* If the indirect symbol has been forced local, don't
4693 make the real symbol dynamic. */
4694 if ((h == hi || !hi->forced_local)
4695 && (h->def_regular
4696 || h->ref_regular
4697 || (h->u.weakdef != NULL
4698 && ! new_weakdef
4699 && h->u.weakdef->dynindx != -1)))
4700 dynsym = TRUE;
4701 }
4702
4703 /* Check to see if we need to add an indirect symbol for
4704 the default name. */
4705 if (definition
4706 || (!override && h->root.type == bfd_link_hash_common))
4707 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4708 sec, value, &old_bfd, &dynsym))
4709 goto error_free_vers;
4710
4711 /* Check the alignment when a common symbol is involved. This
4712 can change when a common symbol is overridden by a normal
4713 definition or a common symbol is ignored due to the old
4714 normal definition. We need to make sure the maximum
4715 alignment is maintained. */
4716 if ((old_alignment || common)
4717 && h->root.type != bfd_link_hash_common)
4718 {
4719 unsigned int common_align;
4720 unsigned int normal_align;
4721 unsigned int symbol_align;
4722 bfd *normal_bfd;
4723 bfd *common_bfd;
4724
4725 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4726 || h->root.type == bfd_link_hash_defweak);
4727
4728 symbol_align = ffs (h->root.u.def.value) - 1;
4729 if (h->root.u.def.section->owner != NULL
4730 && (h->root.u.def.section->owner->flags
4731 & (DYNAMIC | BFD_PLUGIN)) == 0)
4732 {
4733 normal_align = h->root.u.def.section->alignment_power;
4734 if (normal_align > symbol_align)
4735 normal_align = symbol_align;
4736 }
4737 else
4738 normal_align = symbol_align;
4739
4740 if (old_alignment)
4741 {
4742 common_align = old_alignment;
4743 common_bfd = old_bfd;
4744 normal_bfd = abfd;
4745 }
4746 else
4747 {
4748 common_align = bfd_log2 (isym->st_value);
4749 common_bfd = abfd;
4750 normal_bfd = old_bfd;
4751 }
4752
4753 if (normal_align < common_align)
4754 {
4755 /* PR binutils/2735 */
4756 if (normal_bfd == NULL)
4757 _bfd_error_handler
4758 /* xgettext:c-format */
4759 (_("Warning: alignment %u of common symbol `%s' in %B is"
4760 " greater than the alignment (%u) of its section %A"),
4761 1 << common_align, name, common_bfd,
4762 1 << normal_align, h->root.u.def.section);
4763 else
4764 _bfd_error_handler
4765 /* xgettext:c-format */
4766 (_("Warning: alignment %u of symbol `%s' in %B"
4767 " is smaller than %u in %B"),
4768 1 << normal_align, name, normal_bfd,
4769 1 << common_align, common_bfd);
4770 }
4771 }
4772
4773 /* Remember the symbol size if it isn't undefined. */
4774 if (isym->st_size != 0
4775 && isym->st_shndx != SHN_UNDEF
4776 && (definition || h->size == 0))
4777 {
4778 if (h->size != 0
4779 && h->size != isym->st_size
4780 && ! size_change_ok)
4781 _bfd_error_handler
4782 /* xgettext:c-format */
4783 (_("Warning: size of symbol `%s' changed"
4784 " from %Lu in %B to %Lu in %B"),
4785 name, h->size, old_bfd, isym->st_size, abfd);
4786
4787 h->size = isym->st_size;
4788 }
4789
4790 /* If this is a common symbol, then we always want H->SIZE
4791 to be the size of the common symbol. The code just above
4792 won't fix the size if a common symbol becomes larger. We
4793 don't warn about a size change here, because that is
4794 covered by --warn-common. Allow changes between different
4795 function types. */
4796 if (h->root.type == bfd_link_hash_common)
4797 h->size = h->root.u.c.size;
4798
4799 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4800 && ((definition && !new_weak)
4801 || (old_weak && h->root.type == bfd_link_hash_common)
4802 || h->type == STT_NOTYPE))
4803 {
4804 unsigned int type = ELF_ST_TYPE (isym->st_info);
4805
4806 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4807 symbol. */
4808 if (type == STT_GNU_IFUNC
4809 && (abfd->flags & DYNAMIC) != 0)
4810 type = STT_FUNC;
4811
4812 if (h->type != type)
4813 {
4814 if (h->type != STT_NOTYPE && ! type_change_ok)
4815 /* xgettext:c-format */
4816 _bfd_error_handler
4817 (_("Warning: type of symbol `%s' changed"
4818 " from %d to %d in %B"),
4819 name, h->type, type, abfd);
4820
4821 h->type = type;
4822 }
4823 }
4824
4825 /* Merge st_other field. */
4826 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4827
4828 /* We don't want to make debug symbol dynamic. */
4829 if (definition
4830 && (sec->flags & SEC_DEBUGGING)
4831 && !bfd_link_relocatable (info))
4832 dynsym = FALSE;
4833
4834 /* Nor should we make plugin symbols dynamic. */
4835 if ((abfd->flags & BFD_PLUGIN) != 0)
4836 dynsym = FALSE;
4837
4838 if (definition)
4839 {
4840 h->target_internal = isym->st_target_internal;
4841 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4842 }
4843
4844 if (definition && !dynamic)
4845 {
4846 char *p = strchr (name, ELF_VER_CHR);
4847 if (p != NULL && p[1] != ELF_VER_CHR)
4848 {
4849 /* Queue non-default versions so that .symver x, x@FOO
4850 aliases can be checked. */
4851 if (!nondeflt_vers)
4852 {
4853 amt = ((isymend - isym + 1)
4854 * sizeof (struct elf_link_hash_entry *));
4855 nondeflt_vers
4856 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4857 if (!nondeflt_vers)
4858 goto error_free_vers;
4859 }
4860 nondeflt_vers[nondeflt_vers_cnt++] = h;
4861 }
4862 }
4863
4864 if (dynsym && h->dynindx == -1)
4865 {
4866 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4867 goto error_free_vers;
4868 if (h->u.weakdef != NULL
4869 && ! new_weakdef
4870 && h->u.weakdef->dynindx == -1)
4871 {
4872 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4873 goto error_free_vers;
4874 }
4875 }
4876 else if (h->dynindx != -1)
4877 /* If the symbol already has a dynamic index, but
4878 visibility says it should not be visible, turn it into
4879 a local symbol. */
4880 switch (ELF_ST_VISIBILITY (h->other))
4881 {
4882 case STV_INTERNAL:
4883 case STV_HIDDEN:
4884 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4885 dynsym = FALSE;
4886 break;
4887 }
4888
4889 /* Don't add DT_NEEDED for references from the dummy bfd nor
4890 for unmatched symbol. */
4891 if (!add_needed
4892 && matched
4893 && definition
4894 && ((dynsym
4895 && h->ref_regular_nonweak
4896 && (old_bfd == NULL
4897 || (old_bfd->flags & BFD_PLUGIN) == 0))
4898 || (h->ref_dynamic_nonweak
4899 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4900 && !on_needed_list (elf_dt_name (abfd),
4901 htab->needed, NULL))))
4902 {
4903 int ret;
4904 const char *soname = elf_dt_name (abfd);
4905
4906 info->callbacks->minfo ("%!", soname, old_bfd,
4907 h->root.root.string);
4908
4909 /* A symbol from a library loaded via DT_NEEDED of some
4910 other library is referenced by a regular object.
4911 Add a DT_NEEDED entry for it. Issue an error if
4912 --no-add-needed is used and the reference was not
4913 a weak one. */
4914 if (old_bfd != NULL
4915 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4916 {
4917 _bfd_error_handler
4918 /* xgettext:c-format */
4919 (_("%B: undefined reference to symbol '%s'"),
4920 old_bfd, name);
4921 bfd_set_error (bfd_error_missing_dso);
4922 goto error_free_vers;
4923 }
4924
4925 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4926 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4927
4928 add_needed = TRUE;
4929 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4930 if (ret < 0)
4931 goto error_free_vers;
4932
4933 BFD_ASSERT (ret == 0);
4934 }
4935 }
4936 }
4937
4938 if (extversym != NULL)
4939 {
4940 free (extversym);
4941 extversym = NULL;
4942 }
4943
4944 if (isymbuf != NULL)
4945 {
4946 free (isymbuf);
4947 isymbuf = NULL;
4948 }
4949
4950 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4951 {
4952 unsigned int i;
4953
4954 /* Restore the symbol table. */
4955 old_ent = (char *) old_tab + tabsize;
4956 memset (elf_sym_hashes (abfd), 0,
4957 extsymcount * sizeof (struct elf_link_hash_entry *));
4958 htab->root.table.table = old_table;
4959 htab->root.table.size = old_size;
4960 htab->root.table.count = old_count;
4961 memcpy (htab->root.table.table, old_tab, tabsize);
4962 htab->root.undefs = old_undefs;
4963 htab->root.undefs_tail = old_undefs_tail;
4964 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4965 free (old_strtab);
4966 old_strtab = NULL;
4967 for (i = 0; i < htab->root.table.size; i++)
4968 {
4969 struct bfd_hash_entry *p;
4970 struct elf_link_hash_entry *h;
4971 bfd_size_type size;
4972 unsigned int alignment_power;
4973 unsigned int non_ir_ref_dynamic;
4974
4975 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4976 {
4977 h = (struct elf_link_hash_entry *) p;
4978 if (h->root.type == bfd_link_hash_warning)
4979 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4980
4981 /* Preserve the maximum alignment and size for common
4982 symbols even if this dynamic lib isn't on DT_NEEDED
4983 since it can still be loaded at run time by another
4984 dynamic lib. */
4985 if (h->root.type == bfd_link_hash_common)
4986 {
4987 size = h->root.u.c.size;
4988 alignment_power = h->root.u.c.p->alignment_power;
4989 }
4990 else
4991 {
4992 size = 0;
4993 alignment_power = 0;
4994 }
4995 /* Preserve non_ir_ref_dynamic so that this symbol
4996 will be exported when the dynamic lib becomes needed
4997 in the second pass. */
4998 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4999 memcpy (p, old_ent, htab->root.table.entsize);
5000 old_ent = (char *) old_ent + htab->root.table.entsize;
5001 h = (struct elf_link_hash_entry *) p;
5002 if (h->root.type == bfd_link_hash_warning)
5003 {
5004 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5005 old_ent = (char *) old_ent + htab->root.table.entsize;
5006 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5007 }
5008 if (h->root.type == bfd_link_hash_common)
5009 {
5010 if (size > h->root.u.c.size)
5011 h->root.u.c.size = size;
5012 if (alignment_power > h->root.u.c.p->alignment_power)
5013 h->root.u.c.p->alignment_power = alignment_power;
5014 }
5015 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5016 }
5017 }
5018
5019 /* Make a special call to the linker "notice" function to
5020 tell it that symbols added for crefs may need to be removed. */
5021 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5022 goto error_free_vers;
5023
5024 free (old_tab);
5025 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5026 alloc_mark);
5027 if (nondeflt_vers != NULL)
5028 free (nondeflt_vers);
5029 return TRUE;
5030 }
5031
5032 if (old_tab != NULL)
5033 {
5034 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5035 goto error_free_vers;
5036 free (old_tab);
5037 old_tab = NULL;
5038 }
5039
5040 /* Now that all the symbols from this input file are created, if
5041 not performing a relocatable link, handle .symver foo, foo@BAR
5042 such that any relocs against foo become foo@BAR. */
5043 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5044 {
5045 size_t cnt, symidx;
5046
5047 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5048 {
5049 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5050 char *shortname, *p;
5051
5052 p = strchr (h->root.root.string, ELF_VER_CHR);
5053 if (p == NULL
5054 || (h->root.type != bfd_link_hash_defined
5055 && h->root.type != bfd_link_hash_defweak))
5056 continue;
5057
5058 amt = p - h->root.root.string;
5059 shortname = (char *) bfd_malloc (amt + 1);
5060 if (!shortname)
5061 goto error_free_vers;
5062 memcpy (shortname, h->root.root.string, amt);
5063 shortname[amt] = '\0';
5064
5065 hi = (struct elf_link_hash_entry *)
5066 bfd_link_hash_lookup (&htab->root, shortname,
5067 FALSE, FALSE, FALSE);
5068 if (hi != NULL
5069 && hi->root.type == h->root.type
5070 && hi->root.u.def.value == h->root.u.def.value
5071 && hi->root.u.def.section == h->root.u.def.section)
5072 {
5073 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5074 hi->root.type = bfd_link_hash_indirect;
5075 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5076 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5077 sym_hash = elf_sym_hashes (abfd);
5078 if (sym_hash)
5079 for (symidx = 0; symidx < extsymcount; ++symidx)
5080 if (sym_hash[symidx] == hi)
5081 {
5082 sym_hash[symidx] = h;
5083 break;
5084 }
5085 }
5086 free (shortname);
5087 }
5088 free (nondeflt_vers);
5089 nondeflt_vers = NULL;
5090 }
5091
5092 /* Now set the weakdefs field correctly for all the weak defined
5093 symbols we found. The only way to do this is to search all the
5094 symbols. Since we only need the information for non functions in
5095 dynamic objects, that's the only time we actually put anything on
5096 the list WEAKS. We need this information so that if a regular
5097 object refers to a symbol defined weakly in a dynamic object, the
5098 real symbol in the dynamic object is also put in the dynamic
5099 symbols; we also must arrange for both symbols to point to the
5100 same memory location. We could handle the general case of symbol
5101 aliasing, but a general symbol alias can only be generated in
5102 assembler code, handling it correctly would be very time
5103 consuming, and other ELF linkers don't handle general aliasing
5104 either. */
5105 if (weaks != NULL)
5106 {
5107 struct elf_link_hash_entry **hpp;
5108 struct elf_link_hash_entry **hppend;
5109 struct elf_link_hash_entry **sorted_sym_hash;
5110 struct elf_link_hash_entry *h;
5111 size_t sym_count;
5112
5113 /* Since we have to search the whole symbol list for each weak
5114 defined symbol, search time for N weak defined symbols will be
5115 O(N^2). Binary search will cut it down to O(NlogN). */
5116 amt = extsymcount;
5117 amt *= sizeof (struct elf_link_hash_entry *);
5118 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5119 if (sorted_sym_hash == NULL)
5120 goto error_return;
5121 sym_hash = sorted_sym_hash;
5122 hpp = elf_sym_hashes (abfd);
5123 hppend = hpp + extsymcount;
5124 sym_count = 0;
5125 for (; hpp < hppend; hpp++)
5126 {
5127 h = *hpp;
5128 if (h != NULL
5129 && h->root.type == bfd_link_hash_defined
5130 && !bed->is_function_type (h->type))
5131 {
5132 *sym_hash = h;
5133 sym_hash++;
5134 sym_count++;
5135 }
5136 }
5137
5138 qsort (sorted_sym_hash, sym_count,
5139 sizeof (struct elf_link_hash_entry *),
5140 elf_sort_symbol);
5141
5142 while (weaks != NULL)
5143 {
5144 struct elf_link_hash_entry *hlook;
5145 asection *slook;
5146 bfd_vma vlook;
5147 size_t i, j, idx = 0;
5148
5149 hlook = weaks;
5150 weaks = hlook->u.weakdef;
5151 hlook->u.weakdef = NULL;
5152
5153 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5154 || hlook->root.type == bfd_link_hash_defweak
5155 || hlook->root.type == bfd_link_hash_common
5156 || hlook->root.type == bfd_link_hash_indirect);
5157 slook = hlook->root.u.def.section;
5158 vlook = hlook->root.u.def.value;
5159
5160 i = 0;
5161 j = sym_count;
5162 while (i != j)
5163 {
5164 bfd_signed_vma vdiff;
5165 idx = (i + j) / 2;
5166 h = sorted_sym_hash[idx];
5167 vdiff = vlook - h->root.u.def.value;
5168 if (vdiff < 0)
5169 j = idx;
5170 else if (vdiff > 0)
5171 i = idx + 1;
5172 else
5173 {
5174 int sdiff = slook->id - h->root.u.def.section->id;
5175 if (sdiff < 0)
5176 j = idx;
5177 else if (sdiff > 0)
5178 i = idx + 1;
5179 else
5180 break;
5181 }
5182 }
5183
5184 /* We didn't find a value/section match. */
5185 if (i == j)
5186 continue;
5187
5188 /* With multiple aliases, or when the weak symbol is already
5189 strongly defined, we have multiple matching symbols and
5190 the binary search above may land on any of them. Step
5191 one past the matching symbol(s). */
5192 while (++idx != j)
5193 {
5194 h = sorted_sym_hash[idx];
5195 if (h->root.u.def.section != slook
5196 || h->root.u.def.value != vlook)
5197 break;
5198 }
5199
5200 /* Now look back over the aliases. Since we sorted by size
5201 as well as value and section, we'll choose the one with
5202 the largest size. */
5203 while (idx-- != i)
5204 {
5205 h = sorted_sym_hash[idx];
5206
5207 /* Stop if value or section doesn't match. */
5208 if (h->root.u.def.section != slook
5209 || h->root.u.def.value != vlook)
5210 break;
5211 else if (h != hlook)
5212 {
5213 hlook->u.weakdef = h;
5214
5215 /* If the weak definition is in the list of dynamic
5216 symbols, make sure the real definition is put
5217 there as well. */
5218 if (hlook->dynindx != -1 && h->dynindx == -1)
5219 {
5220 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5221 {
5222 err_free_sym_hash:
5223 free (sorted_sym_hash);
5224 goto error_return;
5225 }
5226 }
5227
5228 /* If the real definition is in the list of dynamic
5229 symbols, make sure the weak definition is put
5230 there as well. If we don't do this, then the
5231 dynamic loader might not merge the entries for the
5232 real definition and the weak definition. */
5233 if (h->dynindx != -1 && hlook->dynindx == -1)
5234 {
5235 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5236 goto err_free_sym_hash;
5237 }
5238 break;
5239 }
5240 }
5241 }
5242
5243 free (sorted_sym_hash);
5244 }
5245
5246 if (bed->check_directives
5247 && !(*bed->check_directives) (abfd, info))
5248 return FALSE;
5249
5250 /* If this is a non-traditional link, try to optimize the handling
5251 of the .stab/.stabstr sections. */
5252 if (! dynamic
5253 && ! info->traditional_format
5254 && is_elf_hash_table (htab)
5255 && (info->strip != strip_all && info->strip != strip_debugger))
5256 {
5257 asection *stabstr;
5258
5259 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5260 if (stabstr != NULL)
5261 {
5262 bfd_size_type string_offset = 0;
5263 asection *stab;
5264
5265 for (stab = abfd->sections; stab; stab = stab->next)
5266 if (CONST_STRNEQ (stab->name, ".stab")
5267 && (!stab->name[5] ||
5268 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5269 && (stab->flags & SEC_MERGE) == 0
5270 && !bfd_is_abs_section (stab->output_section))
5271 {
5272 struct bfd_elf_section_data *secdata;
5273
5274 secdata = elf_section_data (stab);
5275 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5276 stabstr, &secdata->sec_info,
5277 &string_offset))
5278 goto error_return;
5279 if (secdata->sec_info)
5280 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5281 }
5282 }
5283 }
5284
5285 if (is_elf_hash_table (htab) && add_needed)
5286 {
5287 /* Add this bfd to the loaded list. */
5288 struct elf_link_loaded_list *n;
5289
5290 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5291 if (n == NULL)
5292 goto error_return;
5293 n->abfd = abfd;
5294 n->next = htab->loaded;
5295 htab->loaded = n;
5296 }
5297
5298 return TRUE;
5299
5300 error_free_vers:
5301 if (old_tab != NULL)
5302 free (old_tab);
5303 if (old_strtab != NULL)
5304 free (old_strtab);
5305 if (nondeflt_vers != NULL)
5306 free (nondeflt_vers);
5307 if (extversym != NULL)
5308 free (extversym);
5309 error_free_sym:
5310 if (isymbuf != NULL)
5311 free (isymbuf);
5312 error_return:
5313 return FALSE;
5314 }
5315
5316 /* Return the linker hash table entry of a symbol that might be
5317 satisfied by an archive symbol. Return -1 on error. */
5318
5319 struct elf_link_hash_entry *
5320 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5321 struct bfd_link_info *info,
5322 const char *name)
5323 {
5324 struct elf_link_hash_entry *h;
5325 char *p, *copy;
5326 size_t len, first;
5327
5328 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5329 if (h != NULL)
5330 return h;
5331
5332 /* If this is a default version (the name contains @@), look up the
5333 symbol again with only one `@' as well as without the version.
5334 The effect is that references to the symbol with and without the
5335 version will be matched by the default symbol in the archive. */
5336
5337 p = strchr (name, ELF_VER_CHR);
5338 if (p == NULL || p[1] != ELF_VER_CHR)
5339 return h;
5340
5341 /* First check with only one `@'. */
5342 len = strlen (name);
5343 copy = (char *) bfd_alloc (abfd, len);
5344 if (copy == NULL)
5345 return (struct elf_link_hash_entry *) 0 - 1;
5346
5347 first = p - name + 1;
5348 memcpy (copy, name, first);
5349 memcpy (copy + first, name + first + 1, len - first);
5350
5351 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5352 if (h == NULL)
5353 {
5354 /* We also need to check references to the symbol without the
5355 version. */
5356 copy[first - 1] = '\0';
5357 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5358 FALSE, FALSE, TRUE);
5359 }
5360
5361 bfd_release (abfd, copy);
5362 return h;
5363 }
5364
5365 /* Add symbols from an ELF archive file to the linker hash table. We
5366 don't use _bfd_generic_link_add_archive_symbols because we need to
5367 handle versioned symbols.
5368
5369 Fortunately, ELF archive handling is simpler than that done by
5370 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5371 oddities. In ELF, if we find a symbol in the archive map, and the
5372 symbol is currently undefined, we know that we must pull in that
5373 object file.
5374
5375 Unfortunately, we do have to make multiple passes over the symbol
5376 table until nothing further is resolved. */
5377
5378 static bfd_boolean
5379 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5380 {
5381 symindex c;
5382 unsigned char *included = NULL;
5383 carsym *symdefs;
5384 bfd_boolean loop;
5385 bfd_size_type amt;
5386 const struct elf_backend_data *bed;
5387 struct elf_link_hash_entry * (*archive_symbol_lookup)
5388 (bfd *, struct bfd_link_info *, const char *);
5389
5390 if (! bfd_has_map (abfd))
5391 {
5392 /* An empty archive is a special case. */
5393 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5394 return TRUE;
5395 bfd_set_error (bfd_error_no_armap);
5396 return FALSE;
5397 }
5398
5399 /* Keep track of all symbols we know to be already defined, and all
5400 files we know to be already included. This is to speed up the
5401 second and subsequent passes. */
5402 c = bfd_ardata (abfd)->symdef_count;
5403 if (c == 0)
5404 return TRUE;
5405 amt = c;
5406 amt *= sizeof (*included);
5407 included = (unsigned char *) bfd_zmalloc (amt);
5408 if (included == NULL)
5409 return FALSE;
5410
5411 symdefs = bfd_ardata (abfd)->symdefs;
5412 bed = get_elf_backend_data (abfd);
5413 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5414
5415 do
5416 {
5417 file_ptr last;
5418 symindex i;
5419 carsym *symdef;
5420 carsym *symdefend;
5421
5422 loop = FALSE;
5423 last = -1;
5424
5425 symdef = symdefs;
5426 symdefend = symdef + c;
5427 for (i = 0; symdef < symdefend; symdef++, i++)
5428 {
5429 struct elf_link_hash_entry *h;
5430 bfd *element;
5431 struct bfd_link_hash_entry *undefs_tail;
5432 symindex mark;
5433
5434 if (included[i])
5435 continue;
5436 if (symdef->file_offset == last)
5437 {
5438 included[i] = TRUE;
5439 continue;
5440 }
5441
5442 h = archive_symbol_lookup (abfd, info, symdef->name);
5443 if (h == (struct elf_link_hash_entry *) 0 - 1)
5444 goto error_return;
5445
5446 if (h == NULL)
5447 continue;
5448
5449 if (h->root.type == bfd_link_hash_common)
5450 {
5451 /* We currently have a common symbol. The archive map contains
5452 a reference to this symbol, so we may want to include it. We
5453 only want to include it however, if this archive element
5454 contains a definition of the symbol, not just another common
5455 declaration of it.
5456
5457 Unfortunately some archivers (including GNU ar) will put
5458 declarations of common symbols into their archive maps, as
5459 well as real definitions, so we cannot just go by the archive
5460 map alone. Instead we must read in the element's symbol
5461 table and check that to see what kind of symbol definition
5462 this is. */
5463 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5464 continue;
5465 }
5466 else if (h->root.type != bfd_link_hash_undefined)
5467 {
5468 if (h->root.type != bfd_link_hash_undefweak)
5469 /* Symbol must be defined. Don't check it again. */
5470 included[i] = TRUE;
5471 continue;
5472 }
5473
5474 /* We need to include this archive member. */
5475 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5476 if (element == NULL)
5477 goto error_return;
5478
5479 if (! bfd_check_format (element, bfd_object))
5480 goto error_return;
5481
5482 undefs_tail = info->hash->undefs_tail;
5483
5484 if (!(*info->callbacks
5485 ->add_archive_element) (info, element, symdef->name, &element))
5486 continue;
5487 if (!bfd_link_add_symbols (element, info))
5488 goto error_return;
5489
5490 /* If there are any new undefined symbols, we need to make
5491 another pass through the archive in order to see whether
5492 they can be defined. FIXME: This isn't perfect, because
5493 common symbols wind up on undefs_tail and because an
5494 undefined symbol which is defined later on in this pass
5495 does not require another pass. This isn't a bug, but it
5496 does make the code less efficient than it could be. */
5497 if (undefs_tail != info->hash->undefs_tail)
5498 loop = TRUE;
5499
5500 /* Look backward to mark all symbols from this object file
5501 which we have already seen in this pass. */
5502 mark = i;
5503 do
5504 {
5505 included[mark] = TRUE;
5506 if (mark == 0)
5507 break;
5508 --mark;
5509 }
5510 while (symdefs[mark].file_offset == symdef->file_offset);
5511
5512 /* We mark subsequent symbols from this object file as we go
5513 on through the loop. */
5514 last = symdef->file_offset;
5515 }
5516 }
5517 while (loop);
5518
5519 free (included);
5520
5521 return TRUE;
5522
5523 error_return:
5524 if (included != NULL)
5525 free (included);
5526 return FALSE;
5527 }
5528
5529 /* Given an ELF BFD, add symbols to the global hash table as
5530 appropriate. */
5531
5532 bfd_boolean
5533 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5534 {
5535 switch (bfd_get_format (abfd))
5536 {
5537 case bfd_object:
5538 return elf_link_add_object_symbols (abfd, info);
5539 case bfd_archive:
5540 return elf_link_add_archive_symbols (abfd, info);
5541 default:
5542 bfd_set_error (bfd_error_wrong_format);
5543 return FALSE;
5544 }
5545 }
5546 \f
5547 struct hash_codes_info
5548 {
5549 unsigned long *hashcodes;
5550 bfd_boolean error;
5551 };
5552
5553 /* This function will be called though elf_link_hash_traverse to store
5554 all hash value of the exported symbols in an array. */
5555
5556 static bfd_boolean
5557 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5558 {
5559 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5560 const char *name;
5561 unsigned long ha;
5562 char *alc = NULL;
5563
5564 /* Ignore indirect symbols. These are added by the versioning code. */
5565 if (h->dynindx == -1)
5566 return TRUE;
5567
5568 name = h->root.root.string;
5569 if (h->versioned >= versioned)
5570 {
5571 char *p = strchr (name, ELF_VER_CHR);
5572 if (p != NULL)
5573 {
5574 alc = (char *) bfd_malloc (p - name + 1);
5575 if (alc == NULL)
5576 {
5577 inf->error = TRUE;
5578 return FALSE;
5579 }
5580 memcpy (alc, name, p - name);
5581 alc[p - name] = '\0';
5582 name = alc;
5583 }
5584 }
5585
5586 /* Compute the hash value. */
5587 ha = bfd_elf_hash (name);
5588
5589 /* Store the found hash value in the array given as the argument. */
5590 *(inf->hashcodes)++ = ha;
5591
5592 /* And store it in the struct so that we can put it in the hash table
5593 later. */
5594 h->u.elf_hash_value = ha;
5595
5596 if (alc != NULL)
5597 free (alc);
5598
5599 return TRUE;
5600 }
5601
5602 struct collect_gnu_hash_codes
5603 {
5604 bfd *output_bfd;
5605 const struct elf_backend_data *bed;
5606 unsigned long int nsyms;
5607 unsigned long int maskbits;
5608 unsigned long int *hashcodes;
5609 unsigned long int *hashval;
5610 unsigned long int *indx;
5611 unsigned long int *counts;
5612 bfd_vma *bitmask;
5613 bfd_byte *contents;
5614 long int min_dynindx;
5615 unsigned long int bucketcount;
5616 unsigned long int symindx;
5617 long int local_indx;
5618 long int shift1, shift2;
5619 unsigned long int mask;
5620 bfd_boolean error;
5621 };
5622
5623 /* This function will be called though elf_link_hash_traverse to store
5624 all hash value of the exported symbols in an array. */
5625
5626 static bfd_boolean
5627 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5628 {
5629 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5630 const char *name;
5631 unsigned long ha;
5632 char *alc = NULL;
5633
5634 /* Ignore indirect symbols. These are added by the versioning code. */
5635 if (h->dynindx == -1)
5636 return TRUE;
5637
5638 /* Ignore also local symbols and undefined symbols. */
5639 if (! (*s->bed->elf_hash_symbol) (h))
5640 return TRUE;
5641
5642 name = h->root.root.string;
5643 if (h->versioned >= versioned)
5644 {
5645 char *p = strchr (name, ELF_VER_CHR);
5646 if (p != NULL)
5647 {
5648 alc = (char *) bfd_malloc (p - name + 1);
5649 if (alc == NULL)
5650 {
5651 s->error = TRUE;
5652 return FALSE;
5653 }
5654 memcpy (alc, name, p - name);
5655 alc[p - name] = '\0';
5656 name = alc;
5657 }
5658 }
5659
5660 /* Compute the hash value. */
5661 ha = bfd_elf_gnu_hash (name);
5662
5663 /* Store the found hash value in the array for compute_bucket_count,
5664 and also for .dynsym reordering purposes. */
5665 s->hashcodes[s->nsyms] = ha;
5666 s->hashval[h->dynindx] = ha;
5667 ++s->nsyms;
5668 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5669 s->min_dynindx = h->dynindx;
5670
5671 if (alc != NULL)
5672 free (alc);
5673
5674 return TRUE;
5675 }
5676
5677 /* This function will be called though elf_link_hash_traverse to do
5678 final dynaminc symbol renumbering. */
5679
5680 static bfd_boolean
5681 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5682 {
5683 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5684 unsigned long int bucket;
5685 unsigned long int val;
5686
5687 /* Ignore indirect symbols. */
5688 if (h->dynindx == -1)
5689 return TRUE;
5690
5691 /* Ignore also local symbols and undefined symbols. */
5692 if (! (*s->bed->elf_hash_symbol) (h))
5693 {
5694 if (h->dynindx >= s->min_dynindx)
5695 h->dynindx = s->local_indx++;
5696 return TRUE;
5697 }
5698
5699 bucket = s->hashval[h->dynindx] % s->bucketcount;
5700 val = (s->hashval[h->dynindx] >> s->shift1)
5701 & ((s->maskbits >> s->shift1) - 1);
5702 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5703 s->bitmask[val]
5704 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5705 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5706 if (s->counts[bucket] == 1)
5707 /* Last element terminates the chain. */
5708 val |= 1;
5709 bfd_put_32 (s->output_bfd, val,
5710 s->contents + (s->indx[bucket] - s->symindx) * 4);
5711 --s->counts[bucket];
5712 h->dynindx = s->indx[bucket]++;
5713 return TRUE;
5714 }
5715
5716 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5717
5718 bfd_boolean
5719 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5720 {
5721 return !(h->forced_local
5722 || h->root.type == bfd_link_hash_undefined
5723 || h->root.type == bfd_link_hash_undefweak
5724 || ((h->root.type == bfd_link_hash_defined
5725 || h->root.type == bfd_link_hash_defweak)
5726 && h->root.u.def.section->output_section == NULL));
5727 }
5728
5729 /* Array used to determine the number of hash table buckets to use
5730 based on the number of symbols there are. If there are fewer than
5731 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5732 fewer than 37 we use 17 buckets, and so forth. We never use more
5733 than 32771 buckets. */
5734
5735 static const size_t elf_buckets[] =
5736 {
5737 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5738 16411, 32771, 0
5739 };
5740
5741 /* Compute bucket count for hashing table. We do not use a static set
5742 of possible tables sizes anymore. Instead we determine for all
5743 possible reasonable sizes of the table the outcome (i.e., the
5744 number of collisions etc) and choose the best solution. The
5745 weighting functions are not too simple to allow the table to grow
5746 without bounds. Instead one of the weighting factors is the size.
5747 Therefore the result is always a good payoff between few collisions
5748 (= short chain lengths) and table size. */
5749 static size_t
5750 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5751 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5752 unsigned long int nsyms,
5753 int gnu_hash)
5754 {
5755 size_t best_size = 0;
5756 unsigned long int i;
5757
5758 /* We have a problem here. The following code to optimize the table
5759 size requires an integer type with more the 32 bits. If
5760 BFD_HOST_U_64_BIT is set we know about such a type. */
5761 #ifdef BFD_HOST_U_64_BIT
5762 if (info->optimize)
5763 {
5764 size_t minsize;
5765 size_t maxsize;
5766 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5767 bfd *dynobj = elf_hash_table (info)->dynobj;
5768 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5769 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5770 unsigned long int *counts;
5771 bfd_size_type amt;
5772 unsigned int no_improvement_count = 0;
5773
5774 /* Possible optimization parameters: if we have NSYMS symbols we say
5775 that the hashing table must at least have NSYMS/4 and at most
5776 2*NSYMS buckets. */
5777 minsize = nsyms / 4;
5778 if (minsize == 0)
5779 minsize = 1;
5780 best_size = maxsize = nsyms * 2;
5781 if (gnu_hash)
5782 {
5783 if (minsize < 2)
5784 minsize = 2;
5785 if ((best_size & 31) == 0)
5786 ++best_size;
5787 }
5788
5789 /* Create array where we count the collisions in. We must use bfd_malloc
5790 since the size could be large. */
5791 amt = maxsize;
5792 amt *= sizeof (unsigned long int);
5793 counts = (unsigned long int *) bfd_malloc (amt);
5794 if (counts == NULL)
5795 return 0;
5796
5797 /* Compute the "optimal" size for the hash table. The criteria is a
5798 minimal chain length. The minor criteria is (of course) the size
5799 of the table. */
5800 for (i = minsize; i < maxsize; ++i)
5801 {
5802 /* Walk through the array of hashcodes and count the collisions. */
5803 BFD_HOST_U_64_BIT max;
5804 unsigned long int j;
5805 unsigned long int fact;
5806
5807 if (gnu_hash && (i & 31) == 0)
5808 continue;
5809
5810 memset (counts, '\0', i * sizeof (unsigned long int));
5811
5812 /* Determine how often each hash bucket is used. */
5813 for (j = 0; j < nsyms; ++j)
5814 ++counts[hashcodes[j] % i];
5815
5816 /* For the weight function we need some information about the
5817 pagesize on the target. This is information need not be 100%
5818 accurate. Since this information is not available (so far) we
5819 define it here to a reasonable default value. If it is crucial
5820 to have a better value some day simply define this value. */
5821 # ifndef BFD_TARGET_PAGESIZE
5822 # define BFD_TARGET_PAGESIZE (4096)
5823 # endif
5824
5825 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5826 and the chains. */
5827 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5828
5829 # if 1
5830 /* Variant 1: optimize for short chains. We add the squares
5831 of all the chain lengths (which favors many small chain
5832 over a few long chains). */
5833 for (j = 0; j < i; ++j)
5834 max += counts[j] * counts[j];
5835
5836 /* This adds penalties for the overall size of the table. */
5837 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5838 max *= fact * fact;
5839 # else
5840 /* Variant 2: Optimize a lot more for small table. Here we
5841 also add squares of the size but we also add penalties for
5842 empty slots (the +1 term). */
5843 for (j = 0; j < i; ++j)
5844 max += (1 + counts[j]) * (1 + counts[j]);
5845
5846 /* The overall size of the table is considered, but not as
5847 strong as in variant 1, where it is squared. */
5848 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5849 max *= fact;
5850 # endif
5851
5852 /* Compare with current best results. */
5853 if (max < best_chlen)
5854 {
5855 best_chlen = max;
5856 best_size = i;
5857 no_improvement_count = 0;
5858 }
5859 /* PR 11843: Avoid futile long searches for the best bucket size
5860 when there are a large number of symbols. */
5861 else if (++no_improvement_count == 100)
5862 break;
5863 }
5864
5865 free (counts);
5866 }
5867 else
5868 #endif /* defined (BFD_HOST_U_64_BIT) */
5869 {
5870 /* This is the fallback solution if no 64bit type is available or if we
5871 are not supposed to spend much time on optimizations. We select the
5872 bucket count using a fixed set of numbers. */
5873 for (i = 0; elf_buckets[i] != 0; i++)
5874 {
5875 best_size = elf_buckets[i];
5876 if (nsyms < elf_buckets[i + 1])
5877 break;
5878 }
5879 if (gnu_hash && best_size < 2)
5880 best_size = 2;
5881 }
5882
5883 return best_size;
5884 }
5885
5886 /* Size any SHT_GROUP section for ld -r. */
5887
5888 bfd_boolean
5889 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5890 {
5891 bfd *ibfd;
5892 asection *s;
5893
5894 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5895 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5896 && (s = ibfd->sections) != NULL
5897 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5898 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5899 return FALSE;
5900 return TRUE;
5901 }
5902
5903 /* Set a default stack segment size. The value in INFO wins. If it
5904 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5905 undefined it is initialized. */
5906
5907 bfd_boolean
5908 bfd_elf_stack_segment_size (bfd *output_bfd,
5909 struct bfd_link_info *info,
5910 const char *legacy_symbol,
5911 bfd_vma default_size)
5912 {
5913 struct elf_link_hash_entry *h = NULL;
5914
5915 /* Look for legacy symbol. */
5916 if (legacy_symbol)
5917 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5918 FALSE, FALSE, FALSE);
5919 if (h && (h->root.type == bfd_link_hash_defined
5920 || h->root.type == bfd_link_hash_defweak)
5921 && h->def_regular
5922 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5923 {
5924 /* The symbol has no type if specified on the command line. */
5925 h->type = STT_OBJECT;
5926 if (info->stacksize)
5927 /* xgettext:c-format */
5928 _bfd_error_handler (_("%B: stack size specified and %s set"),
5929 output_bfd, legacy_symbol);
5930 else if (h->root.u.def.section != bfd_abs_section_ptr)
5931 /* xgettext:c-format */
5932 _bfd_error_handler (_("%B: %s not absolute"),
5933 output_bfd, legacy_symbol);
5934 else
5935 info->stacksize = h->root.u.def.value;
5936 }
5937
5938 if (!info->stacksize)
5939 /* If the user didn't set a size, or explicitly inhibit the
5940 size, set it now. */
5941 info->stacksize = default_size;
5942
5943 /* Provide the legacy symbol, if it is referenced. */
5944 if (h && (h->root.type == bfd_link_hash_undefined
5945 || h->root.type == bfd_link_hash_undefweak))
5946 {
5947 struct bfd_link_hash_entry *bh = NULL;
5948
5949 if (!(_bfd_generic_link_add_one_symbol
5950 (info, output_bfd, legacy_symbol,
5951 BSF_GLOBAL, bfd_abs_section_ptr,
5952 info->stacksize >= 0 ? info->stacksize : 0,
5953 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5954 return FALSE;
5955
5956 h = (struct elf_link_hash_entry *) bh;
5957 h->def_regular = 1;
5958 h->type = STT_OBJECT;
5959 }
5960
5961 return TRUE;
5962 }
5963
5964 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5965
5966 struct elf_gc_sweep_symbol_info
5967 {
5968 struct bfd_link_info *info;
5969 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5970 bfd_boolean);
5971 };
5972
5973 static bfd_boolean
5974 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5975 {
5976 if (!h->mark
5977 && (((h->root.type == bfd_link_hash_defined
5978 || h->root.type == bfd_link_hash_defweak)
5979 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5980 && h->root.u.def.section->gc_mark))
5981 || h->root.type == bfd_link_hash_undefined
5982 || h->root.type == bfd_link_hash_undefweak))
5983 {
5984 struct elf_gc_sweep_symbol_info *inf;
5985
5986 inf = (struct elf_gc_sweep_symbol_info *) data;
5987 (*inf->hide_symbol) (inf->info, h, TRUE);
5988 h->def_regular = 0;
5989 h->ref_regular = 0;
5990 h->ref_regular_nonweak = 0;
5991 }
5992
5993 return TRUE;
5994 }
5995
5996 /* Set up the sizes and contents of the ELF dynamic sections. This is
5997 called by the ELF linker emulation before_allocation routine. We
5998 must set the sizes of the sections before the linker sets the
5999 addresses of the various sections. */
6000
6001 bfd_boolean
6002 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6003 const char *soname,
6004 const char *rpath,
6005 const char *filter_shlib,
6006 const char *audit,
6007 const char *depaudit,
6008 const char * const *auxiliary_filters,
6009 struct bfd_link_info *info,
6010 asection **sinterpptr)
6011 {
6012 bfd *dynobj;
6013 const struct elf_backend_data *bed;
6014
6015 *sinterpptr = NULL;
6016
6017 if (!is_elf_hash_table (info->hash))
6018 return TRUE;
6019
6020 dynobj = elf_hash_table (info)->dynobj;
6021
6022 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6023 {
6024 struct bfd_elf_version_tree *verdefs;
6025 struct elf_info_failed asvinfo;
6026 struct bfd_elf_version_tree *t;
6027 struct bfd_elf_version_expr *d;
6028 asection *s;
6029 size_t soname_indx;
6030
6031 /* If we are supposed to export all symbols into the dynamic symbol
6032 table (this is not the normal case), then do so. */
6033 if (info->export_dynamic
6034 || (bfd_link_executable (info) && info->dynamic))
6035 {
6036 struct elf_info_failed eif;
6037
6038 eif.info = info;
6039 eif.failed = FALSE;
6040 elf_link_hash_traverse (elf_hash_table (info),
6041 _bfd_elf_export_symbol,
6042 &eif);
6043 if (eif.failed)
6044 return FALSE;
6045 }
6046
6047 if (soname != NULL)
6048 {
6049 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6050 soname, TRUE);
6051 if (soname_indx == (size_t) -1
6052 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6053 return FALSE;
6054 }
6055 else
6056 soname_indx = (size_t) -1;
6057
6058 /* Make all global versions with definition. */
6059 for (t = info->version_info; t != NULL; t = t->next)
6060 for (d = t->globals.list; d != NULL; d = d->next)
6061 if (!d->symver && d->literal)
6062 {
6063 const char *verstr, *name;
6064 size_t namelen, verlen, newlen;
6065 char *newname, *p, leading_char;
6066 struct elf_link_hash_entry *newh;
6067
6068 leading_char = bfd_get_symbol_leading_char (output_bfd);
6069 name = d->pattern;
6070 namelen = strlen (name) + (leading_char != '\0');
6071 verstr = t->name;
6072 verlen = strlen (verstr);
6073 newlen = namelen + verlen + 3;
6074
6075 newname = (char *) bfd_malloc (newlen);
6076 if (newname == NULL)
6077 return FALSE;
6078 newname[0] = leading_char;
6079 memcpy (newname + (leading_char != '\0'), name, namelen);
6080
6081 /* Check the hidden versioned definition. */
6082 p = newname + namelen;
6083 *p++ = ELF_VER_CHR;
6084 memcpy (p, verstr, verlen + 1);
6085 newh = elf_link_hash_lookup (elf_hash_table (info),
6086 newname, FALSE, FALSE,
6087 FALSE);
6088 if (newh == NULL
6089 || (newh->root.type != bfd_link_hash_defined
6090 && newh->root.type != bfd_link_hash_defweak))
6091 {
6092 /* Check the default versioned definition. */
6093 *p++ = ELF_VER_CHR;
6094 memcpy (p, verstr, verlen + 1);
6095 newh = elf_link_hash_lookup (elf_hash_table (info),
6096 newname, FALSE, FALSE,
6097 FALSE);
6098 }
6099 free (newname);
6100
6101 /* Mark this version if there is a definition and it is
6102 not defined in a shared object. */
6103 if (newh != NULL
6104 && !newh->def_dynamic
6105 && (newh->root.type == bfd_link_hash_defined
6106 || newh->root.type == bfd_link_hash_defweak))
6107 d->symver = 1;
6108 }
6109
6110 /* Attach all the symbols to their version information. */
6111 asvinfo.info = info;
6112 asvinfo.failed = FALSE;
6113
6114 elf_link_hash_traverse (elf_hash_table (info),
6115 _bfd_elf_link_assign_sym_version,
6116 &asvinfo);
6117 if (asvinfo.failed)
6118 return FALSE;
6119
6120 if (!info->allow_undefined_version)
6121 {
6122 /* Check if all global versions have a definition. */
6123 bfd_boolean all_defined = TRUE;
6124 for (t = info->version_info; t != NULL; t = t->next)
6125 for (d = t->globals.list; d != NULL; d = d->next)
6126 if (d->literal && !d->symver && !d->script)
6127 {
6128 _bfd_error_handler
6129 (_("%s: undefined version: %s"),
6130 d->pattern, t->name);
6131 all_defined = FALSE;
6132 }
6133
6134 if (!all_defined)
6135 {
6136 bfd_set_error (bfd_error_bad_value);
6137 return FALSE;
6138 }
6139 }
6140
6141 /* Set up the version definition section. */
6142 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6143 BFD_ASSERT (s != NULL);
6144
6145 /* We may have created additional version definitions if we are
6146 just linking a regular application. */
6147 verdefs = info->version_info;
6148
6149 /* Skip anonymous version tag. */
6150 if (verdefs != NULL && verdefs->vernum == 0)
6151 verdefs = verdefs->next;
6152
6153 if (verdefs == NULL && !info->create_default_symver)
6154 s->flags |= SEC_EXCLUDE;
6155 else
6156 {
6157 unsigned int cdefs;
6158 bfd_size_type size;
6159 bfd_byte *p;
6160 Elf_Internal_Verdef def;
6161 Elf_Internal_Verdaux defaux;
6162 struct bfd_link_hash_entry *bh;
6163 struct elf_link_hash_entry *h;
6164 const char *name;
6165
6166 cdefs = 0;
6167 size = 0;
6168
6169 /* Make space for the base version. */
6170 size += sizeof (Elf_External_Verdef);
6171 size += sizeof (Elf_External_Verdaux);
6172 ++cdefs;
6173
6174 /* Make space for the default version. */
6175 if (info->create_default_symver)
6176 {
6177 size += sizeof (Elf_External_Verdef);
6178 ++cdefs;
6179 }
6180
6181 for (t = verdefs; t != NULL; t = t->next)
6182 {
6183 struct bfd_elf_version_deps *n;
6184
6185 /* Don't emit base version twice. */
6186 if (t->vernum == 0)
6187 continue;
6188
6189 size += sizeof (Elf_External_Verdef);
6190 size += sizeof (Elf_External_Verdaux);
6191 ++cdefs;
6192
6193 for (n = t->deps; n != NULL; n = n->next)
6194 size += sizeof (Elf_External_Verdaux);
6195 }
6196
6197 s->size = size;
6198 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6199 if (s->contents == NULL && s->size != 0)
6200 return FALSE;
6201
6202 /* Fill in the version definition section. */
6203
6204 p = s->contents;
6205
6206 def.vd_version = VER_DEF_CURRENT;
6207 def.vd_flags = VER_FLG_BASE;
6208 def.vd_ndx = 1;
6209 def.vd_cnt = 1;
6210 if (info->create_default_symver)
6211 {
6212 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6213 def.vd_next = sizeof (Elf_External_Verdef);
6214 }
6215 else
6216 {
6217 def.vd_aux = sizeof (Elf_External_Verdef);
6218 def.vd_next = (sizeof (Elf_External_Verdef)
6219 + sizeof (Elf_External_Verdaux));
6220 }
6221
6222 if (soname_indx != (size_t) -1)
6223 {
6224 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6225 soname_indx);
6226 def.vd_hash = bfd_elf_hash (soname);
6227 defaux.vda_name = soname_indx;
6228 name = soname;
6229 }
6230 else
6231 {
6232 size_t indx;
6233
6234 name = lbasename (output_bfd->filename);
6235 def.vd_hash = bfd_elf_hash (name);
6236 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6237 name, FALSE);
6238 if (indx == (size_t) -1)
6239 return FALSE;
6240 defaux.vda_name = indx;
6241 }
6242 defaux.vda_next = 0;
6243
6244 _bfd_elf_swap_verdef_out (output_bfd, &def,
6245 (Elf_External_Verdef *) p);
6246 p += sizeof (Elf_External_Verdef);
6247 if (info->create_default_symver)
6248 {
6249 /* Add a symbol representing this version. */
6250 bh = NULL;
6251 if (! (_bfd_generic_link_add_one_symbol
6252 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6253 0, NULL, FALSE,
6254 get_elf_backend_data (dynobj)->collect, &bh)))
6255 return FALSE;
6256 h = (struct elf_link_hash_entry *) bh;
6257 h->non_elf = 0;
6258 h->def_regular = 1;
6259 h->type = STT_OBJECT;
6260 h->verinfo.vertree = NULL;
6261
6262 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6263 return FALSE;
6264
6265 /* Create a duplicate of the base version with the same
6266 aux block, but different flags. */
6267 def.vd_flags = 0;
6268 def.vd_ndx = 2;
6269 def.vd_aux = sizeof (Elf_External_Verdef);
6270 if (verdefs)
6271 def.vd_next = (sizeof (Elf_External_Verdef)
6272 + sizeof (Elf_External_Verdaux));
6273 else
6274 def.vd_next = 0;
6275 _bfd_elf_swap_verdef_out (output_bfd, &def,
6276 (Elf_External_Verdef *) p);
6277 p += sizeof (Elf_External_Verdef);
6278 }
6279 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6280 (Elf_External_Verdaux *) p);
6281 p += sizeof (Elf_External_Verdaux);
6282
6283 for (t = verdefs; t != NULL; t = t->next)
6284 {
6285 unsigned int cdeps;
6286 struct bfd_elf_version_deps *n;
6287
6288 /* Don't emit the base version twice. */
6289 if (t->vernum == 0)
6290 continue;
6291
6292 cdeps = 0;
6293 for (n = t->deps; n != NULL; n = n->next)
6294 ++cdeps;
6295
6296 /* Add a symbol representing this version. */
6297 bh = NULL;
6298 if (! (_bfd_generic_link_add_one_symbol
6299 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6300 0, NULL, FALSE,
6301 get_elf_backend_data (dynobj)->collect, &bh)))
6302 return FALSE;
6303 h = (struct elf_link_hash_entry *) bh;
6304 h->non_elf = 0;
6305 h->def_regular = 1;
6306 h->type = STT_OBJECT;
6307 h->verinfo.vertree = t;
6308
6309 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6310 return FALSE;
6311
6312 def.vd_version = VER_DEF_CURRENT;
6313 def.vd_flags = 0;
6314 if (t->globals.list == NULL
6315 && t->locals.list == NULL
6316 && ! t->used)
6317 def.vd_flags |= VER_FLG_WEAK;
6318 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6319 def.vd_cnt = cdeps + 1;
6320 def.vd_hash = bfd_elf_hash (t->name);
6321 def.vd_aux = sizeof (Elf_External_Verdef);
6322 def.vd_next = 0;
6323
6324 /* If a basever node is next, it *must* be the last node in
6325 the chain, otherwise Verdef construction breaks. */
6326 if (t->next != NULL && t->next->vernum == 0)
6327 BFD_ASSERT (t->next->next == NULL);
6328
6329 if (t->next != NULL && t->next->vernum != 0)
6330 def.vd_next = (sizeof (Elf_External_Verdef)
6331 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6332
6333 _bfd_elf_swap_verdef_out (output_bfd, &def,
6334 (Elf_External_Verdef *) p);
6335 p += sizeof (Elf_External_Verdef);
6336
6337 defaux.vda_name = h->dynstr_index;
6338 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6339 h->dynstr_index);
6340 defaux.vda_next = 0;
6341 if (t->deps != NULL)
6342 defaux.vda_next = sizeof (Elf_External_Verdaux);
6343 t->name_indx = defaux.vda_name;
6344
6345 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6346 (Elf_External_Verdaux *) p);
6347 p += sizeof (Elf_External_Verdaux);
6348
6349 for (n = t->deps; n != NULL; n = n->next)
6350 {
6351 if (n->version_needed == NULL)
6352 {
6353 /* This can happen if there was an error in the
6354 version script. */
6355 defaux.vda_name = 0;
6356 }
6357 else
6358 {
6359 defaux.vda_name = n->version_needed->name_indx;
6360 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6361 defaux.vda_name);
6362 }
6363 if (n->next == NULL)
6364 defaux.vda_next = 0;
6365 else
6366 defaux.vda_next = sizeof (Elf_External_Verdaux);
6367
6368 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6369 (Elf_External_Verdaux *) p);
6370 p += sizeof (Elf_External_Verdaux);
6371 }
6372 }
6373
6374 elf_tdata (output_bfd)->cverdefs = cdefs;
6375 }
6376 }
6377
6378 bed = get_elf_backend_data (output_bfd);
6379
6380 if (info->gc_sections && bed->can_gc_sections)
6381 {
6382 struct elf_gc_sweep_symbol_info sweep_info;
6383
6384 /* Remove the symbols that were in the swept sections from the
6385 dynamic symbol table. */
6386 sweep_info.info = info;
6387 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6388 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6389 &sweep_info);
6390 }
6391
6392 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6393 {
6394 asection *s;
6395 struct elf_find_verdep_info sinfo;
6396
6397 /* Work out the size of the version reference section. */
6398
6399 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6400 BFD_ASSERT (s != NULL);
6401
6402 sinfo.info = info;
6403 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6404 if (sinfo.vers == 0)
6405 sinfo.vers = 1;
6406 sinfo.failed = FALSE;
6407
6408 elf_link_hash_traverse (elf_hash_table (info),
6409 _bfd_elf_link_find_version_dependencies,
6410 &sinfo);
6411 if (sinfo.failed)
6412 return FALSE;
6413
6414 if (elf_tdata (output_bfd)->verref == NULL)
6415 s->flags |= SEC_EXCLUDE;
6416 else
6417 {
6418 Elf_Internal_Verneed *vn;
6419 unsigned int size;
6420 unsigned int crefs;
6421 bfd_byte *p;
6422
6423 /* Build the version dependency section. */
6424 size = 0;
6425 crefs = 0;
6426 for (vn = elf_tdata (output_bfd)->verref;
6427 vn != NULL;
6428 vn = vn->vn_nextref)
6429 {
6430 Elf_Internal_Vernaux *a;
6431
6432 size += sizeof (Elf_External_Verneed);
6433 ++crefs;
6434 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6435 size += sizeof (Elf_External_Vernaux);
6436 }
6437
6438 s->size = size;
6439 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6440 if (s->contents == NULL)
6441 return FALSE;
6442
6443 p = s->contents;
6444 for (vn = elf_tdata (output_bfd)->verref;
6445 vn != NULL;
6446 vn = vn->vn_nextref)
6447 {
6448 unsigned int caux;
6449 Elf_Internal_Vernaux *a;
6450 size_t indx;
6451
6452 caux = 0;
6453 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6454 ++caux;
6455
6456 vn->vn_version = VER_NEED_CURRENT;
6457 vn->vn_cnt = caux;
6458 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6459 elf_dt_name (vn->vn_bfd) != NULL
6460 ? elf_dt_name (vn->vn_bfd)
6461 : lbasename (vn->vn_bfd->filename),
6462 FALSE);
6463 if (indx == (size_t) -1)
6464 return FALSE;
6465 vn->vn_file = indx;
6466 vn->vn_aux = sizeof (Elf_External_Verneed);
6467 if (vn->vn_nextref == NULL)
6468 vn->vn_next = 0;
6469 else
6470 vn->vn_next = (sizeof (Elf_External_Verneed)
6471 + caux * sizeof (Elf_External_Vernaux));
6472
6473 _bfd_elf_swap_verneed_out (output_bfd, vn,
6474 (Elf_External_Verneed *) p);
6475 p += sizeof (Elf_External_Verneed);
6476
6477 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6478 {
6479 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6480 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6481 a->vna_nodename, FALSE);
6482 if (indx == (size_t) -1)
6483 return FALSE;
6484 a->vna_name = indx;
6485 if (a->vna_nextptr == NULL)
6486 a->vna_next = 0;
6487 else
6488 a->vna_next = sizeof (Elf_External_Vernaux);
6489
6490 _bfd_elf_swap_vernaux_out (output_bfd, a,
6491 (Elf_External_Vernaux *) p);
6492 p += sizeof (Elf_External_Vernaux);
6493 }
6494 }
6495
6496 elf_tdata (output_bfd)->cverrefs = crefs;
6497 }
6498 }
6499
6500 /* Any syms created from now on start with -1 in
6501 got.refcount/offset and plt.refcount/offset. */
6502 elf_hash_table (info)->init_got_refcount
6503 = elf_hash_table (info)->init_got_offset;
6504 elf_hash_table (info)->init_plt_refcount
6505 = elf_hash_table (info)->init_plt_offset;
6506
6507 if (bfd_link_relocatable (info)
6508 && !_bfd_elf_size_group_sections (info))
6509 return FALSE;
6510
6511 /* The backend may have to create some sections regardless of whether
6512 we're dynamic or not. */
6513 if (bed->elf_backend_always_size_sections
6514 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6515 return FALSE;
6516
6517 /* Determine any GNU_STACK segment requirements, after the backend
6518 has had a chance to set a default segment size. */
6519 if (info->execstack)
6520 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6521 else if (info->noexecstack)
6522 elf_stack_flags (output_bfd) = PF_R | PF_W;
6523 else
6524 {
6525 bfd *inputobj;
6526 asection *notesec = NULL;
6527 int exec = 0;
6528
6529 for (inputobj = info->input_bfds;
6530 inputobj;
6531 inputobj = inputobj->link.next)
6532 {
6533 asection *s;
6534
6535 if (inputobj->flags
6536 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6537 continue;
6538 s = inputobj->sections;
6539 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6540 continue;
6541
6542 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6543 if (s)
6544 {
6545 if (s->flags & SEC_CODE)
6546 exec = PF_X;
6547 notesec = s;
6548 }
6549 else if (bed->default_execstack)
6550 exec = PF_X;
6551 }
6552 if (notesec || info->stacksize > 0)
6553 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6554 if (notesec && exec && bfd_link_relocatable (info)
6555 && notesec->output_section != bfd_abs_section_ptr)
6556 notesec->output_section->flags |= SEC_CODE;
6557 }
6558
6559 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6560 {
6561 struct elf_info_failed eif;
6562 struct elf_link_hash_entry *h;
6563 asection *dynstr;
6564 asection *s;
6565
6566 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6567 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6568
6569 if (info->symbolic)
6570 {
6571 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6572 return FALSE;
6573 info->flags |= DF_SYMBOLIC;
6574 }
6575
6576 if (rpath != NULL)
6577 {
6578 size_t indx;
6579 bfd_vma tag;
6580
6581 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6582 TRUE);
6583 if (indx == (size_t) -1)
6584 return FALSE;
6585
6586 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6587 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6588 return FALSE;
6589 }
6590
6591 if (filter_shlib != NULL)
6592 {
6593 size_t indx;
6594
6595 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6596 filter_shlib, TRUE);
6597 if (indx == (size_t) -1
6598 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6599 return FALSE;
6600 }
6601
6602 if (auxiliary_filters != NULL)
6603 {
6604 const char * const *p;
6605
6606 for (p = auxiliary_filters; *p != NULL; p++)
6607 {
6608 size_t indx;
6609
6610 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6611 *p, TRUE);
6612 if (indx == (size_t) -1
6613 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6614 return FALSE;
6615 }
6616 }
6617
6618 if (audit != NULL)
6619 {
6620 size_t indx;
6621
6622 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6623 TRUE);
6624 if (indx == (size_t) -1
6625 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6626 return FALSE;
6627 }
6628
6629 if (depaudit != NULL)
6630 {
6631 size_t indx;
6632
6633 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6634 TRUE);
6635 if (indx == (size_t) -1
6636 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6637 return FALSE;
6638 }
6639
6640 eif.info = info;
6641 eif.failed = FALSE;
6642
6643 /* Find all symbols which were defined in a dynamic object and make
6644 the backend pick a reasonable value for them. */
6645 elf_link_hash_traverse (elf_hash_table (info),
6646 _bfd_elf_adjust_dynamic_symbol,
6647 &eif);
6648 if (eif.failed)
6649 return FALSE;
6650
6651 /* Add some entries to the .dynamic section. We fill in some of the
6652 values later, in bfd_elf_final_link, but we must add the entries
6653 now so that we know the final size of the .dynamic section. */
6654
6655 /* If there are initialization and/or finalization functions to
6656 call then add the corresponding DT_INIT/DT_FINI entries. */
6657 h = (info->init_function
6658 ? elf_link_hash_lookup (elf_hash_table (info),
6659 info->init_function, FALSE,
6660 FALSE, FALSE)
6661 : NULL);
6662 if (h != NULL
6663 && (h->ref_regular
6664 || h->def_regular))
6665 {
6666 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6667 return FALSE;
6668 }
6669 h = (info->fini_function
6670 ? elf_link_hash_lookup (elf_hash_table (info),
6671 info->fini_function, FALSE,
6672 FALSE, FALSE)
6673 : NULL);
6674 if (h != NULL
6675 && (h->ref_regular
6676 || h->def_regular))
6677 {
6678 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6679 return FALSE;
6680 }
6681
6682 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6683 if (s != NULL && s->linker_has_input)
6684 {
6685 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6686 if (! bfd_link_executable (info))
6687 {
6688 bfd *sub;
6689 asection *o;
6690
6691 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6692 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6693 && (o = sub->sections) != NULL
6694 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6695 for (o = sub->sections; o != NULL; o = o->next)
6696 if (elf_section_data (o)->this_hdr.sh_type
6697 == SHT_PREINIT_ARRAY)
6698 {
6699 _bfd_error_handler
6700 (_("%B: .preinit_array section is not allowed in DSO"),
6701 sub);
6702 break;
6703 }
6704
6705 bfd_set_error (bfd_error_nonrepresentable_section);
6706 return FALSE;
6707 }
6708
6709 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6710 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6711 return FALSE;
6712 }
6713 s = bfd_get_section_by_name (output_bfd, ".init_array");
6714 if (s != NULL && s->linker_has_input)
6715 {
6716 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6717 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6718 return FALSE;
6719 }
6720 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6721 if (s != NULL && s->linker_has_input)
6722 {
6723 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6724 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6725 return FALSE;
6726 }
6727
6728 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6729 /* If .dynstr is excluded from the link, we don't want any of
6730 these tags. Strictly, we should be checking each section
6731 individually; This quick check covers for the case where
6732 someone does a /DISCARD/ : { *(*) }. */
6733 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6734 {
6735 bfd_size_type strsize;
6736
6737 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6738 if ((info->emit_hash
6739 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6740 || (info->emit_gnu_hash
6741 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6742 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6743 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6744 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6745 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6746 bed->s->sizeof_sym))
6747 return FALSE;
6748 }
6749 }
6750
6751 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6752 return FALSE;
6753
6754 /* The backend must work out the sizes of all the other dynamic
6755 sections. */
6756 if (dynobj != NULL
6757 && bed->elf_backend_size_dynamic_sections != NULL
6758 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6759 return FALSE;
6760
6761 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6762 {
6763 unsigned long section_sym_count;
6764
6765 if (elf_tdata (output_bfd)->cverdefs)
6766 {
6767 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6768
6769 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6770 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6771 return FALSE;
6772 }
6773
6774 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6775 {
6776 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6777 return FALSE;
6778 }
6779 else if (info->flags & DF_BIND_NOW)
6780 {
6781 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6782 return FALSE;
6783 }
6784
6785 if (info->flags_1)
6786 {
6787 if (bfd_link_executable (info))
6788 info->flags_1 &= ~ (DF_1_INITFIRST
6789 | DF_1_NODELETE
6790 | DF_1_NOOPEN);
6791 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6792 return FALSE;
6793 }
6794
6795 if (elf_tdata (output_bfd)->cverrefs)
6796 {
6797 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6798
6799 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6800 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6801 return FALSE;
6802 }
6803
6804 if ((elf_tdata (output_bfd)->cverrefs == 0
6805 && elf_tdata (output_bfd)->cverdefs == 0)
6806 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6807 &section_sym_count) <= 1)
6808 {
6809 asection *s;
6810
6811 s = bfd_get_linker_section (dynobj, ".gnu.version");
6812 s->flags |= SEC_EXCLUDE;
6813 }
6814 }
6815 return TRUE;
6816 }
6817
6818 /* Find the first non-excluded output section. We'll use its
6819 section symbol for some emitted relocs. */
6820 void
6821 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6822 {
6823 asection *s;
6824
6825 for (s = output_bfd->sections; s != NULL; s = s->next)
6826 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6827 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6828 {
6829 elf_hash_table (info)->text_index_section = s;
6830 break;
6831 }
6832 }
6833
6834 /* Find two non-excluded output sections, one for code, one for data.
6835 We'll use their section symbols for some emitted relocs. */
6836 void
6837 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6838 {
6839 asection *s;
6840
6841 /* Data first, since setting text_index_section changes
6842 _bfd_elf_link_omit_section_dynsym. */
6843 for (s = output_bfd->sections; s != NULL; s = s->next)
6844 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6845 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6846 {
6847 elf_hash_table (info)->data_index_section = s;
6848 break;
6849 }
6850
6851 for (s = output_bfd->sections; s != NULL; s = s->next)
6852 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6853 == (SEC_ALLOC | SEC_READONLY))
6854 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6855 {
6856 elf_hash_table (info)->text_index_section = s;
6857 break;
6858 }
6859
6860 if (elf_hash_table (info)->text_index_section == NULL)
6861 elf_hash_table (info)->text_index_section
6862 = elf_hash_table (info)->data_index_section;
6863 }
6864
6865 bfd_boolean
6866 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6867 {
6868 const struct elf_backend_data *bed;
6869 unsigned long section_sym_count;
6870 bfd_size_type dynsymcount = 0;
6871
6872 if (!is_elf_hash_table (info->hash))
6873 return TRUE;
6874
6875 bed = get_elf_backend_data (output_bfd);
6876 (*bed->elf_backend_init_index_section) (output_bfd, info);
6877
6878 /* Assign dynsym indices. In a shared library we generate a section
6879 symbol for each output section, which come first. Next come all
6880 of the back-end allocated local dynamic syms, followed by the rest
6881 of the global symbols.
6882
6883 This is usually not needed for static binaries, however backends
6884 can request to always do it, e.g. the MIPS backend uses dynamic
6885 symbol counts to lay out GOT, which will be produced in the
6886 presence of GOT relocations even in static binaries (holding fixed
6887 data in that case, to satisfy those relocations). */
6888
6889 if (elf_hash_table (info)->dynamic_sections_created
6890 || bed->always_renumber_dynsyms)
6891 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6892 &section_sym_count);
6893
6894 if (elf_hash_table (info)->dynamic_sections_created)
6895 {
6896 bfd *dynobj;
6897 asection *s;
6898 unsigned int dtagcount;
6899
6900 dynobj = elf_hash_table (info)->dynobj;
6901
6902 /* Work out the size of the symbol version section. */
6903 s = bfd_get_linker_section (dynobj, ".gnu.version");
6904 BFD_ASSERT (s != NULL);
6905 if ((s->flags & SEC_EXCLUDE) == 0)
6906 {
6907 s->size = dynsymcount * sizeof (Elf_External_Versym);
6908 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6909 if (s->contents == NULL)
6910 return FALSE;
6911
6912 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6913 return FALSE;
6914 }
6915
6916 /* Set the size of the .dynsym and .hash sections. We counted
6917 the number of dynamic symbols in elf_link_add_object_symbols.
6918 We will build the contents of .dynsym and .hash when we build
6919 the final symbol table, because until then we do not know the
6920 correct value to give the symbols. We built the .dynstr
6921 section as we went along in elf_link_add_object_symbols. */
6922 s = elf_hash_table (info)->dynsym;
6923 BFD_ASSERT (s != NULL);
6924 s->size = dynsymcount * bed->s->sizeof_sym;
6925
6926 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6927 if (s->contents == NULL)
6928 return FALSE;
6929
6930 /* The first entry in .dynsym is a dummy symbol. Clear all the
6931 section syms, in case we don't output them all. */
6932 ++section_sym_count;
6933 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6934
6935 elf_hash_table (info)->bucketcount = 0;
6936
6937 /* Compute the size of the hashing table. As a side effect this
6938 computes the hash values for all the names we export. */
6939 if (info->emit_hash)
6940 {
6941 unsigned long int *hashcodes;
6942 struct hash_codes_info hashinf;
6943 bfd_size_type amt;
6944 unsigned long int nsyms;
6945 size_t bucketcount;
6946 size_t hash_entry_size;
6947
6948 /* Compute the hash values for all exported symbols. At the same
6949 time store the values in an array so that we could use them for
6950 optimizations. */
6951 amt = dynsymcount * sizeof (unsigned long int);
6952 hashcodes = (unsigned long int *) bfd_malloc (amt);
6953 if (hashcodes == NULL)
6954 return FALSE;
6955 hashinf.hashcodes = hashcodes;
6956 hashinf.error = FALSE;
6957
6958 /* Put all hash values in HASHCODES. */
6959 elf_link_hash_traverse (elf_hash_table (info),
6960 elf_collect_hash_codes, &hashinf);
6961 if (hashinf.error)
6962 {
6963 free (hashcodes);
6964 return FALSE;
6965 }
6966
6967 nsyms = hashinf.hashcodes - hashcodes;
6968 bucketcount
6969 = compute_bucket_count (info, hashcodes, nsyms, 0);
6970 free (hashcodes);
6971
6972 if (bucketcount == 0 && nsyms > 0)
6973 return FALSE;
6974
6975 elf_hash_table (info)->bucketcount = bucketcount;
6976
6977 s = bfd_get_linker_section (dynobj, ".hash");
6978 BFD_ASSERT (s != NULL);
6979 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6980 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6981 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6982 if (s->contents == NULL)
6983 return FALSE;
6984
6985 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6986 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6987 s->contents + hash_entry_size);
6988 }
6989
6990 if (info->emit_gnu_hash)
6991 {
6992 size_t i, cnt;
6993 unsigned char *contents;
6994 struct collect_gnu_hash_codes cinfo;
6995 bfd_size_type amt;
6996 size_t bucketcount;
6997
6998 memset (&cinfo, 0, sizeof (cinfo));
6999
7000 /* Compute the hash values for all exported symbols. At the same
7001 time store the values in an array so that we could use them for
7002 optimizations. */
7003 amt = dynsymcount * 2 * sizeof (unsigned long int);
7004 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7005 if (cinfo.hashcodes == NULL)
7006 return FALSE;
7007
7008 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7009 cinfo.min_dynindx = -1;
7010 cinfo.output_bfd = output_bfd;
7011 cinfo.bed = bed;
7012
7013 /* Put all hash values in HASHCODES. */
7014 elf_link_hash_traverse (elf_hash_table (info),
7015 elf_collect_gnu_hash_codes, &cinfo);
7016 if (cinfo.error)
7017 {
7018 free (cinfo.hashcodes);
7019 return FALSE;
7020 }
7021
7022 bucketcount
7023 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7024
7025 if (bucketcount == 0)
7026 {
7027 free (cinfo.hashcodes);
7028 return FALSE;
7029 }
7030
7031 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7032 BFD_ASSERT (s != NULL);
7033
7034 if (cinfo.nsyms == 0)
7035 {
7036 /* Empty .gnu.hash section is special. */
7037 BFD_ASSERT (cinfo.min_dynindx == -1);
7038 free (cinfo.hashcodes);
7039 s->size = 5 * 4 + bed->s->arch_size / 8;
7040 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7041 if (contents == NULL)
7042 return FALSE;
7043 s->contents = contents;
7044 /* 1 empty bucket. */
7045 bfd_put_32 (output_bfd, 1, contents);
7046 /* SYMIDX above the special symbol 0. */
7047 bfd_put_32 (output_bfd, 1, contents + 4);
7048 /* Just one word for bitmask. */
7049 bfd_put_32 (output_bfd, 1, contents + 8);
7050 /* Only hash fn bloom filter. */
7051 bfd_put_32 (output_bfd, 0, contents + 12);
7052 /* No hashes are valid - empty bitmask. */
7053 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7054 /* No hashes in the only bucket. */
7055 bfd_put_32 (output_bfd, 0,
7056 contents + 16 + bed->s->arch_size / 8);
7057 }
7058 else
7059 {
7060 unsigned long int maskwords, maskbitslog2, x;
7061 BFD_ASSERT (cinfo.min_dynindx != -1);
7062
7063 x = cinfo.nsyms;
7064 maskbitslog2 = 1;
7065 while ((x >>= 1) != 0)
7066 ++maskbitslog2;
7067 if (maskbitslog2 < 3)
7068 maskbitslog2 = 5;
7069 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7070 maskbitslog2 = maskbitslog2 + 3;
7071 else
7072 maskbitslog2 = maskbitslog2 + 2;
7073 if (bed->s->arch_size == 64)
7074 {
7075 if (maskbitslog2 == 5)
7076 maskbitslog2 = 6;
7077 cinfo.shift1 = 6;
7078 }
7079 else
7080 cinfo.shift1 = 5;
7081 cinfo.mask = (1 << cinfo.shift1) - 1;
7082 cinfo.shift2 = maskbitslog2;
7083 cinfo.maskbits = 1 << maskbitslog2;
7084 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7085 amt = bucketcount * sizeof (unsigned long int) * 2;
7086 amt += maskwords * sizeof (bfd_vma);
7087 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7088 if (cinfo.bitmask == NULL)
7089 {
7090 free (cinfo.hashcodes);
7091 return FALSE;
7092 }
7093
7094 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7095 cinfo.indx = cinfo.counts + bucketcount;
7096 cinfo.symindx = dynsymcount - cinfo.nsyms;
7097 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7098
7099 /* Determine how often each hash bucket is used. */
7100 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7101 for (i = 0; i < cinfo.nsyms; ++i)
7102 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7103
7104 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7105 if (cinfo.counts[i] != 0)
7106 {
7107 cinfo.indx[i] = cnt;
7108 cnt += cinfo.counts[i];
7109 }
7110 BFD_ASSERT (cnt == dynsymcount);
7111 cinfo.bucketcount = bucketcount;
7112 cinfo.local_indx = cinfo.min_dynindx;
7113
7114 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7115 s->size += cinfo.maskbits / 8;
7116 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7117 if (contents == NULL)
7118 {
7119 free (cinfo.bitmask);
7120 free (cinfo.hashcodes);
7121 return FALSE;
7122 }
7123
7124 s->contents = contents;
7125 bfd_put_32 (output_bfd, bucketcount, contents);
7126 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7127 bfd_put_32 (output_bfd, maskwords, contents + 8);
7128 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7129 contents += 16 + cinfo.maskbits / 8;
7130
7131 for (i = 0; i < bucketcount; ++i)
7132 {
7133 if (cinfo.counts[i] == 0)
7134 bfd_put_32 (output_bfd, 0, contents);
7135 else
7136 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7137 contents += 4;
7138 }
7139
7140 cinfo.contents = contents;
7141
7142 /* Renumber dynamic symbols, populate .gnu.hash section. */
7143 elf_link_hash_traverse (elf_hash_table (info),
7144 elf_renumber_gnu_hash_syms, &cinfo);
7145
7146 contents = s->contents + 16;
7147 for (i = 0; i < maskwords; ++i)
7148 {
7149 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7150 contents);
7151 contents += bed->s->arch_size / 8;
7152 }
7153
7154 free (cinfo.bitmask);
7155 free (cinfo.hashcodes);
7156 }
7157 }
7158
7159 s = bfd_get_linker_section (dynobj, ".dynstr");
7160 BFD_ASSERT (s != NULL);
7161
7162 elf_finalize_dynstr (output_bfd, info);
7163
7164 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7165
7166 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7167 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7168 return FALSE;
7169 }
7170
7171 return TRUE;
7172 }
7173 \f
7174 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7175
7176 static void
7177 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7178 asection *sec)
7179 {
7180 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7181 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7182 }
7183
7184 /* Finish SHF_MERGE section merging. */
7185
7186 bfd_boolean
7187 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7188 {
7189 bfd *ibfd;
7190 asection *sec;
7191
7192 if (!is_elf_hash_table (info->hash))
7193 return FALSE;
7194
7195 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7196 if ((ibfd->flags & DYNAMIC) == 0
7197 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7198 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7199 == get_elf_backend_data (obfd)->s->elfclass))
7200 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7201 if ((sec->flags & SEC_MERGE) != 0
7202 && !bfd_is_abs_section (sec->output_section))
7203 {
7204 struct bfd_elf_section_data *secdata;
7205
7206 secdata = elf_section_data (sec);
7207 if (! _bfd_add_merge_section (obfd,
7208 &elf_hash_table (info)->merge_info,
7209 sec, &secdata->sec_info))
7210 return FALSE;
7211 else if (secdata->sec_info)
7212 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7213 }
7214
7215 if (elf_hash_table (info)->merge_info != NULL)
7216 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7217 merge_sections_remove_hook);
7218 return TRUE;
7219 }
7220
7221 /* Create an entry in an ELF linker hash table. */
7222
7223 struct bfd_hash_entry *
7224 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7225 struct bfd_hash_table *table,
7226 const char *string)
7227 {
7228 /* Allocate the structure if it has not already been allocated by a
7229 subclass. */
7230 if (entry == NULL)
7231 {
7232 entry = (struct bfd_hash_entry *)
7233 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7234 if (entry == NULL)
7235 return entry;
7236 }
7237
7238 /* Call the allocation method of the superclass. */
7239 entry = _bfd_link_hash_newfunc (entry, table, string);
7240 if (entry != NULL)
7241 {
7242 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7243 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7244
7245 /* Set local fields. */
7246 ret->indx = -1;
7247 ret->dynindx = -1;
7248 ret->got = htab->init_got_refcount;
7249 ret->plt = htab->init_plt_refcount;
7250 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7251 - offsetof (struct elf_link_hash_entry, size)));
7252 /* Assume that we have been called by a non-ELF symbol reader.
7253 This flag is then reset by the code which reads an ELF input
7254 file. This ensures that a symbol created by a non-ELF symbol
7255 reader will have the flag set correctly. */
7256 ret->non_elf = 1;
7257 }
7258
7259 return entry;
7260 }
7261
7262 /* Copy data from an indirect symbol to its direct symbol, hiding the
7263 old indirect symbol. Also used for copying flags to a weakdef. */
7264
7265 void
7266 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7267 struct elf_link_hash_entry *dir,
7268 struct elf_link_hash_entry *ind)
7269 {
7270 struct elf_link_hash_table *htab;
7271
7272 /* Copy down any references that we may have already seen to the
7273 symbol which just became indirect. */
7274
7275 if (dir->versioned != versioned_hidden)
7276 dir->ref_dynamic |= ind->ref_dynamic;
7277 dir->ref_regular |= ind->ref_regular;
7278 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7279 dir->non_got_ref |= ind->non_got_ref;
7280 dir->needs_plt |= ind->needs_plt;
7281 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7282
7283 if (ind->root.type != bfd_link_hash_indirect)
7284 return;
7285
7286 /* Copy over the global and procedure linkage table refcount entries.
7287 These may have been already set up by a check_relocs routine. */
7288 htab = elf_hash_table (info);
7289 if (ind->got.refcount > htab->init_got_refcount.refcount)
7290 {
7291 if (dir->got.refcount < 0)
7292 dir->got.refcount = 0;
7293 dir->got.refcount += ind->got.refcount;
7294 ind->got.refcount = htab->init_got_refcount.refcount;
7295 }
7296
7297 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7298 {
7299 if (dir->plt.refcount < 0)
7300 dir->plt.refcount = 0;
7301 dir->plt.refcount += ind->plt.refcount;
7302 ind->plt.refcount = htab->init_plt_refcount.refcount;
7303 }
7304
7305 if (ind->dynindx != -1)
7306 {
7307 if (dir->dynindx != -1)
7308 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7309 dir->dynindx = ind->dynindx;
7310 dir->dynstr_index = ind->dynstr_index;
7311 ind->dynindx = -1;
7312 ind->dynstr_index = 0;
7313 }
7314 }
7315
7316 void
7317 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7318 struct elf_link_hash_entry *h,
7319 bfd_boolean force_local)
7320 {
7321 /* STT_GNU_IFUNC symbol must go through PLT. */
7322 if (h->type != STT_GNU_IFUNC)
7323 {
7324 h->plt = elf_hash_table (info)->init_plt_offset;
7325 h->needs_plt = 0;
7326 }
7327 if (force_local)
7328 {
7329 h->forced_local = 1;
7330 if (h->dynindx != -1)
7331 {
7332 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7333 h->dynstr_index);
7334 h->dynindx = -1;
7335 h->dynstr_index = 0;
7336 }
7337 }
7338 }
7339
7340 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7341 caller. */
7342
7343 bfd_boolean
7344 _bfd_elf_link_hash_table_init
7345 (struct elf_link_hash_table *table,
7346 bfd *abfd,
7347 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7348 struct bfd_hash_table *,
7349 const char *),
7350 unsigned int entsize,
7351 enum elf_target_id target_id)
7352 {
7353 bfd_boolean ret;
7354 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7355
7356 table->init_got_refcount.refcount = can_refcount - 1;
7357 table->init_plt_refcount.refcount = can_refcount - 1;
7358 table->init_got_offset.offset = -(bfd_vma) 1;
7359 table->init_plt_offset.offset = -(bfd_vma) 1;
7360 /* The first dynamic symbol is a dummy. */
7361 table->dynsymcount = 1;
7362
7363 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7364
7365 table->root.type = bfd_link_elf_hash_table;
7366 table->hash_table_id = target_id;
7367
7368 return ret;
7369 }
7370
7371 /* Create an ELF linker hash table. */
7372
7373 struct bfd_link_hash_table *
7374 _bfd_elf_link_hash_table_create (bfd *abfd)
7375 {
7376 struct elf_link_hash_table *ret;
7377 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7378
7379 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7380 if (ret == NULL)
7381 return NULL;
7382
7383 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7384 sizeof (struct elf_link_hash_entry),
7385 GENERIC_ELF_DATA))
7386 {
7387 free (ret);
7388 return NULL;
7389 }
7390 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7391
7392 return &ret->root;
7393 }
7394
7395 /* Destroy an ELF linker hash table. */
7396
7397 void
7398 _bfd_elf_link_hash_table_free (bfd *obfd)
7399 {
7400 struct elf_link_hash_table *htab;
7401
7402 htab = (struct elf_link_hash_table *) obfd->link.hash;
7403 if (htab->dynstr != NULL)
7404 _bfd_elf_strtab_free (htab->dynstr);
7405 _bfd_merge_sections_free (htab->merge_info);
7406 _bfd_generic_link_hash_table_free (obfd);
7407 }
7408
7409 /* This is a hook for the ELF emulation code in the generic linker to
7410 tell the backend linker what file name to use for the DT_NEEDED
7411 entry for a dynamic object. */
7412
7413 void
7414 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7415 {
7416 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7417 && bfd_get_format (abfd) == bfd_object)
7418 elf_dt_name (abfd) = name;
7419 }
7420
7421 int
7422 bfd_elf_get_dyn_lib_class (bfd *abfd)
7423 {
7424 int lib_class;
7425 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7426 && bfd_get_format (abfd) == bfd_object)
7427 lib_class = elf_dyn_lib_class (abfd);
7428 else
7429 lib_class = 0;
7430 return lib_class;
7431 }
7432
7433 void
7434 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7435 {
7436 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7437 && bfd_get_format (abfd) == bfd_object)
7438 elf_dyn_lib_class (abfd) = lib_class;
7439 }
7440
7441 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7442 the linker ELF emulation code. */
7443
7444 struct bfd_link_needed_list *
7445 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7446 struct bfd_link_info *info)
7447 {
7448 if (! is_elf_hash_table (info->hash))
7449 return NULL;
7450 return elf_hash_table (info)->needed;
7451 }
7452
7453 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7454 hook for the linker ELF emulation code. */
7455
7456 struct bfd_link_needed_list *
7457 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7458 struct bfd_link_info *info)
7459 {
7460 if (! is_elf_hash_table (info->hash))
7461 return NULL;
7462 return elf_hash_table (info)->runpath;
7463 }
7464
7465 /* Get the name actually used for a dynamic object for a link. This
7466 is the SONAME entry if there is one. Otherwise, it is the string
7467 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7468
7469 const char *
7470 bfd_elf_get_dt_soname (bfd *abfd)
7471 {
7472 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7473 && bfd_get_format (abfd) == bfd_object)
7474 return elf_dt_name (abfd);
7475 return NULL;
7476 }
7477
7478 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7479 the ELF linker emulation code. */
7480
7481 bfd_boolean
7482 bfd_elf_get_bfd_needed_list (bfd *abfd,
7483 struct bfd_link_needed_list **pneeded)
7484 {
7485 asection *s;
7486 bfd_byte *dynbuf = NULL;
7487 unsigned int elfsec;
7488 unsigned long shlink;
7489 bfd_byte *extdyn, *extdynend;
7490 size_t extdynsize;
7491 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7492
7493 *pneeded = NULL;
7494
7495 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7496 || bfd_get_format (abfd) != bfd_object)
7497 return TRUE;
7498
7499 s = bfd_get_section_by_name (abfd, ".dynamic");
7500 if (s == NULL || s->size == 0)
7501 return TRUE;
7502
7503 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7504 goto error_return;
7505
7506 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7507 if (elfsec == SHN_BAD)
7508 goto error_return;
7509
7510 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7511
7512 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7513 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7514
7515 extdyn = dynbuf;
7516 extdynend = extdyn + s->size;
7517 for (; extdyn < extdynend; extdyn += extdynsize)
7518 {
7519 Elf_Internal_Dyn dyn;
7520
7521 (*swap_dyn_in) (abfd, extdyn, &dyn);
7522
7523 if (dyn.d_tag == DT_NULL)
7524 break;
7525
7526 if (dyn.d_tag == DT_NEEDED)
7527 {
7528 const char *string;
7529 struct bfd_link_needed_list *l;
7530 unsigned int tagv = dyn.d_un.d_val;
7531 bfd_size_type amt;
7532
7533 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7534 if (string == NULL)
7535 goto error_return;
7536
7537 amt = sizeof *l;
7538 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7539 if (l == NULL)
7540 goto error_return;
7541
7542 l->by = abfd;
7543 l->name = string;
7544 l->next = *pneeded;
7545 *pneeded = l;
7546 }
7547 }
7548
7549 free (dynbuf);
7550
7551 return TRUE;
7552
7553 error_return:
7554 if (dynbuf != NULL)
7555 free (dynbuf);
7556 return FALSE;
7557 }
7558
7559 struct elf_symbuf_symbol
7560 {
7561 unsigned long st_name; /* Symbol name, index in string tbl */
7562 unsigned char st_info; /* Type and binding attributes */
7563 unsigned char st_other; /* Visibilty, and target specific */
7564 };
7565
7566 struct elf_symbuf_head
7567 {
7568 struct elf_symbuf_symbol *ssym;
7569 size_t count;
7570 unsigned int st_shndx;
7571 };
7572
7573 struct elf_symbol
7574 {
7575 union
7576 {
7577 Elf_Internal_Sym *isym;
7578 struct elf_symbuf_symbol *ssym;
7579 } u;
7580 const char *name;
7581 };
7582
7583 /* Sort references to symbols by ascending section number. */
7584
7585 static int
7586 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7587 {
7588 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7589 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7590
7591 return s1->st_shndx - s2->st_shndx;
7592 }
7593
7594 static int
7595 elf_sym_name_compare (const void *arg1, const void *arg2)
7596 {
7597 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7598 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7599 return strcmp (s1->name, s2->name);
7600 }
7601
7602 static struct elf_symbuf_head *
7603 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7604 {
7605 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7606 struct elf_symbuf_symbol *ssym;
7607 struct elf_symbuf_head *ssymbuf, *ssymhead;
7608 size_t i, shndx_count, total_size;
7609
7610 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7611 if (indbuf == NULL)
7612 return NULL;
7613
7614 for (ind = indbuf, i = 0; i < symcount; i++)
7615 if (isymbuf[i].st_shndx != SHN_UNDEF)
7616 *ind++ = &isymbuf[i];
7617 indbufend = ind;
7618
7619 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7620 elf_sort_elf_symbol);
7621
7622 shndx_count = 0;
7623 if (indbufend > indbuf)
7624 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7625 if (ind[0]->st_shndx != ind[1]->st_shndx)
7626 shndx_count++;
7627
7628 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7629 + (indbufend - indbuf) * sizeof (*ssym));
7630 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7631 if (ssymbuf == NULL)
7632 {
7633 free (indbuf);
7634 return NULL;
7635 }
7636
7637 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7638 ssymbuf->ssym = NULL;
7639 ssymbuf->count = shndx_count;
7640 ssymbuf->st_shndx = 0;
7641 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7642 {
7643 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7644 {
7645 ssymhead++;
7646 ssymhead->ssym = ssym;
7647 ssymhead->count = 0;
7648 ssymhead->st_shndx = (*ind)->st_shndx;
7649 }
7650 ssym->st_name = (*ind)->st_name;
7651 ssym->st_info = (*ind)->st_info;
7652 ssym->st_other = (*ind)->st_other;
7653 ssymhead->count++;
7654 }
7655 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7656 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7657 == total_size));
7658
7659 free (indbuf);
7660 return ssymbuf;
7661 }
7662
7663 /* Check if 2 sections define the same set of local and global
7664 symbols. */
7665
7666 static bfd_boolean
7667 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7668 struct bfd_link_info *info)
7669 {
7670 bfd *bfd1, *bfd2;
7671 const struct elf_backend_data *bed1, *bed2;
7672 Elf_Internal_Shdr *hdr1, *hdr2;
7673 size_t symcount1, symcount2;
7674 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7675 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7676 Elf_Internal_Sym *isym, *isymend;
7677 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7678 size_t count1, count2, i;
7679 unsigned int shndx1, shndx2;
7680 bfd_boolean result;
7681
7682 bfd1 = sec1->owner;
7683 bfd2 = sec2->owner;
7684
7685 /* Both sections have to be in ELF. */
7686 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7687 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7688 return FALSE;
7689
7690 if (elf_section_type (sec1) != elf_section_type (sec2))
7691 return FALSE;
7692
7693 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7694 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7695 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7696 return FALSE;
7697
7698 bed1 = get_elf_backend_data (bfd1);
7699 bed2 = get_elf_backend_data (bfd2);
7700 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7701 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7702 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7703 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7704
7705 if (symcount1 == 0 || symcount2 == 0)
7706 return FALSE;
7707
7708 result = FALSE;
7709 isymbuf1 = NULL;
7710 isymbuf2 = NULL;
7711 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7712 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7713
7714 if (ssymbuf1 == NULL)
7715 {
7716 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7717 NULL, NULL, NULL);
7718 if (isymbuf1 == NULL)
7719 goto done;
7720
7721 if (!info->reduce_memory_overheads)
7722 elf_tdata (bfd1)->symbuf = ssymbuf1
7723 = elf_create_symbuf (symcount1, isymbuf1);
7724 }
7725
7726 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7727 {
7728 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7729 NULL, NULL, NULL);
7730 if (isymbuf2 == NULL)
7731 goto done;
7732
7733 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7734 elf_tdata (bfd2)->symbuf = ssymbuf2
7735 = elf_create_symbuf (symcount2, isymbuf2);
7736 }
7737
7738 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7739 {
7740 /* Optimized faster version. */
7741 size_t lo, hi, mid;
7742 struct elf_symbol *symp;
7743 struct elf_symbuf_symbol *ssym, *ssymend;
7744
7745 lo = 0;
7746 hi = ssymbuf1->count;
7747 ssymbuf1++;
7748 count1 = 0;
7749 while (lo < hi)
7750 {
7751 mid = (lo + hi) / 2;
7752 if (shndx1 < ssymbuf1[mid].st_shndx)
7753 hi = mid;
7754 else if (shndx1 > ssymbuf1[mid].st_shndx)
7755 lo = mid + 1;
7756 else
7757 {
7758 count1 = ssymbuf1[mid].count;
7759 ssymbuf1 += mid;
7760 break;
7761 }
7762 }
7763
7764 lo = 0;
7765 hi = ssymbuf2->count;
7766 ssymbuf2++;
7767 count2 = 0;
7768 while (lo < hi)
7769 {
7770 mid = (lo + hi) / 2;
7771 if (shndx2 < ssymbuf2[mid].st_shndx)
7772 hi = mid;
7773 else if (shndx2 > ssymbuf2[mid].st_shndx)
7774 lo = mid + 1;
7775 else
7776 {
7777 count2 = ssymbuf2[mid].count;
7778 ssymbuf2 += mid;
7779 break;
7780 }
7781 }
7782
7783 if (count1 == 0 || count2 == 0 || count1 != count2)
7784 goto done;
7785
7786 symtable1
7787 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7788 symtable2
7789 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7790 if (symtable1 == NULL || symtable2 == NULL)
7791 goto done;
7792
7793 symp = symtable1;
7794 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7795 ssym < ssymend; ssym++, symp++)
7796 {
7797 symp->u.ssym = ssym;
7798 symp->name = bfd_elf_string_from_elf_section (bfd1,
7799 hdr1->sh_link,
7800 ssym->st_name);
7801 }
7802
7803 symp = symtable2;
7804 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7805 ssym < ssymend; ssym++, symp++)
7806 {
7807 symp->u.ssym = ssym;
7808 symp->name = bfd_elf_string_from_elf_section (bfd2,
7809 hdr2->sh_link,
7810 ssym->st_name);
7811 }
7812
7813 /* Sort symbol by name. */
7814 qsort (symtable1, count1, sizeof (struct elf_symbol),
7815 elf_sym_name_compare);
7816 qsort (symtable2, count1, sizeof (struct elf_symbol),
7817 elf_sym_name_compare);
7818
7819 for (i = 0; i < count1; i++)
7820 /* Two symbols must have the same binding, type and name. */
7821 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7822 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7823 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7824 goto done;
7825
7826 result = TRUE;
7827 goto done;
7828 }
7829
7830 symtable1 = (struct elf_symbol *)
7831 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7832 symtable2 = (struct elf_symbol *)
7833 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7834 if (symtable1 == NULL || symtable2 == NULL)
7835 goto done;
7836
7837 /* Count definitions in the section. */
7838 count1 = 0;
7839 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7840 if (isym->st_shndx == shndx1)
7841 symtable1[count1++].u.isym = isym;
7842
7843 count2 = 0;
7844 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7845 if (isym->st_shndx == shndx2)
7846 symtable2[count2++].u.isym = isym;
7847
7848 if (count1 == 0 || count2 == 0 || count1 != count2)
7849 goto done;
7850
7851 for (i = 0; i < count1; i++)
7852 symtable1[i].name
7853 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7854 symtable1[i].u.isym->st_name);
7855
7856 for (i = 0; i < count2; i++)
7857 symtable2[i].name
7858 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7859 symtable2[i].u.isym->st_name);
7860
7861 /* Sort symbol by name. */
7862 qsort (symtable1, count1, sizeof (struct elf_symbol),
7863 elf_sym_name_compare);
7864 qsort (symtable2, count1, sizeof (struct elf_symbol),
7865 elf_sym_name_compare);
7866
7867 for (i = 0; i < count1; i++)
7868 /* Two symbols must have the same binding, type and name. */
7869 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7870 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7871 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7872 goto done;
7873
7874 result = TRUE;
7875
7876 done:
7877 if (symtable1)
7878 free (symtable1);
7879 if (symtable2)
7880 free (symtable2);
7881 if (isymbuf1)
7882 free (isymbuf1);
7883 if (isymbuf2)
7884 free (isymbuf2);
7885
7886 return result;
7887 }
7888
7889 /* Return TRUE if 2 section types are compatible. */
7890
7891 bfd_boolean
7892 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7893 bfd *bbfd, const asection *bsec)
7894 {
7895 if (asec == NULL
7896 || bsec == NULL
7897 || abfd->xvec->flavour != bfd_target_elf_flavour
7898 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7899 return TRUE;
7900
7901 return elf_section_type (asec) == elf_section_type (bsec);
7902 }
7903 \f
7904 /* Final phase of ELF linker. */
7905
7906 /* A structure we use to avoid passing large numbers of arguments. */
7907
7908 struct elf_final_link_info
7909 {
7910 /* General link information. */
7911 struct bfd_link_info *info;
7912 /* Output BFD. */
7913 bfd *output_bfd;
7914 /* Symbol string table. */
7915 struct elf_strtab_hash *symstrtab;
7916 /* .hash section. */
7917 asection *hash_sec;
7918 /* symbol version section (.gnu.version). */
7919 asection *symver_sec;
7920 /* Buffer large enough to hold contents of any section. */
7921 bfd_byte *contents;
7922 /* Buffer large enough to hold external relocs of any section. */
7923 void *external_relocs;
7924 /* Buffer large enough to hold internal relocs of any section. */
7925 Elf_Internal_Rela *internal_relocs;
7926 /* Buffer large enough to hold external local symbols of any input
7927 BFD. */
7928 bfd_byte *external_syms;
7929 /* And a buffer for symbol section indices. */
7930 Elf_External_Sym_Shndx *locsym_shndx;
7931 /* Buffer large enough to hold internal local symbols of any input
7932 BFD. */
7933 Elf_Internal_Sym *internal_syms;
7934 /* Array large enough to hold a symbol index for each local symbol
7935 of any input BFD. */
7936 long *indices;
7937 /* Array large enough to hold a section pointer for each local
7938 symbol of any input BFD. */
7939 asection **sections;
7940 /* Buffer for SHT_SYMTAB_SHNDX section. */
7941 Elf_External_Sym_Shndx *symshndxbuf;
7942 /* Number of STT_FILE syms seen. */
7943 size_t filesym_count;
7944 };
7945
7946 /* This struct is used to pass information to elf_link_output_extsym. */
7947
7948 struct elf_outext_info
7949 {
7950 bfd_boolean failed;
7951 bfd_boolean localsyms;
7952 bfd_boolean file_sym_done;
7953 struct elf_final_link_info *flinfo;
7954 };
7955
7956
7957 /* Support for evaluating a complex relocation.
7958
7959 Complex relocations are generalized, self-describing relocations. The
7960 implementation of them consists of two parts: complex symbols, and the
7961 relocations themselves.
7962
7963 The relocations are use a reserved elf-wide relocation type code (R_RELC
7964 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7965 information (start bit, end bit, word width, etc) into the addend. This
7966 information is extracted from CGEN-generated operand tables within gas.
7967
7968 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7969 internal) representing prefix-notation expressions, including but not
7970 limited to those sorts of expressions normally encoded as addends in the
7971 addend field. The symbol mangling format is:
7972
7973 <node> := <literal>
7974 | <unary-operator> ':' <node>
7975 | <binary-operator> ':' <node> ':' <node>
7976 ;
7977
7978 <literal> := 's' <digits=N> ':' <N character symbol name>
7979 | 'S' <digits=N> ':' <N character section name>
7980 | '#' <hexdigits>
7981 ;
7982
7983 <binary-operator> := as in C
7984 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7985
7986 static void
7987 set_symbol_value (bfd *bfd_with_globals,
7988 Elf_Internal_Sym *isymbuf,
7989 size_t locsymcount,
7990 size_t symidx,
7991 bfd_vma val)
7992 {
7993 struct elf_link_hash_entry **sym_hashes;
7994 struct elf_link_hash_entry *h;
7995 size_t extsymoff = locsymcount;
7996
7997 if (symidx < locsymcount)
7998 {
7999 Elf_Internal_Sym *sym;
8000
8001 sym = isymbuf + symidx;
8002 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8003 {
8004 /* It is a local symbol: move it to the
8005 "absolute" section and give it a value. */
8006 sym->st_shndx = SHN_ABS;
8007 sym->st_value = val;
8008 return;
8009 }
8010 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8011 extsymoff = 0;
8012 }
8013
8014 /* It is a global symbol: set its link type
8015 to "defined" and give it a value. */
8016
8017 sym_hashes = elf_sym_hashes (bfd_with_globals);
8018 h = sym_hashes [symidx - extsymoff];
8019 while (h->root.type == bfd_link_hash_indirect
8020 || h->root.type == bfd_link_hash_warning)
8021 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8022 h->root.type = bfd_link_hash_defined;
8023 h->root.u.def.value = val;
8024 h->root.u.def.section = bfd_abs_section_ptr;
8025 }
8026
8027 static bfd_boolean
8028 resolve_symbol (const char *name,
8029 bfd *input_bfd,
8030 struct elf_final_link_info *flinfo,
8031 bfd_vma *result,
8032 Elf_Internal_Sym *isymbuf,
8033 size_t locsymcount)
8034 {
8035 Elf_Internal_Sym *sym;
8036 struct bfd_link_hash_entry *global_entry;
8037 const char *candidate = NULL;
8038 Elf_Internal_Shdr *symtab_hdr;
8039 size_t i;
8040
8041 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8042
8043 for (i = 0; i < locsymcount; ++ i)
8044 {
8045 sym = isymbuf + i;
8046
8047 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8048 continue;
8049
8050 candidate = bfd_elf_string_from_elf_section (input_bfd,
8051 symtab_hdr->sh_link,
8052 sym->st_name);
8053 #ifdef DEBUG
8054 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8055 name, candidate, (unsigned long) sym->st_value);
8056 #endif
8057 if (candidate && strcmp (candidate, name) == 0)
8058 {
8059 asection *sec = flinfo->sections [i];
8060
8061 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8062 *result += sec->output_offset + sec->output_section->vma;
8063 #ifdef DEBUG
8064 printf ("Found symbol with value %8.8lx\n",
8065 (unsigned long) *result);
8066 #endif
8067 return TRUE;
8068 }
8069 }
8070
8071 /* Hmm, haven't found it yet. perhaps it is a global. */
8072 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8073 FALSE, FALSE, TRUE);
8074 if (!global_entry)
8075 return FALSE;
8076
8077 if (global_entry->type == bfd_link_hash_defined
8078 || global_entry->type == bfd_link_hash_defweak)
8079 {
8080 *result = (global_entry->u.def.value
8081 + global_entry->u.def.section->output_section->vma
8082 + global_entry->u.def.section->output_offset);
8083 #ifdef DEBUG
8084 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8085 global_entry->root.string, (unsigned long) *result);
8086 #endif
8087 return TRUE;
8088 }
8089
8090 return FALSE;
8091 }
8092
8093 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8094 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8095 names like "foo.end" which is the end address of section "foo". */
8096
8097 static bfd_boolean
8098 resolve_section (const char *name,
8099 asection *sections,
8100 bfd_vma *result,
8101 bfd * abfd)
8102 {
8103 asection *curr;
8104 unsigned int len;
8105
8106 for (curr = sections; curr; curr = curr->next)
8107 if (strcmp (curr->name, name) == 0)
8108 {
8109 *result = curr->vma;
8110 return TRUE;
8111 }
8112
8113 /* Hmm. still haven't found it. try pseudo-section names. */
8114 /* FIXME: This could be coded more efficiently... */
8115 for (curr = sections; curr; curr = curr->next)
8116 {
8117 len = strlen (curr->name);
8118 if (len > strlen (name))
8119 continue;
8120
8121 if (strncmp (curr->name, name, len) == 0)
8122 {
8123 if (strncmp (".end", name + len, 4) == 0)
8124 {
8125 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8126 return TRUE;
8127 }
8128
8129 /* Insert more pseudo-section names here, if you like. */
8130 }
8131 }
8132
8133 return FALSE;
8134 }
8135
8136 static void
8137 undefined_reference (const char *reftype, const char *name)
8138 {
8139 /* xgettext:c-format */
8140 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8141 reftype, name);
8142 }
8143
8144 static bfd_boolean
8145 eval_symbol (bfd_vma *result,
8146 const char **symp,
8147 bfd *input_bfd,
8148 struct elf_final_link_info *flinfo,
8149 bfd_vma dot,
8150 Elf_Internal_Sym *isymbuf,
8151 size_t locsymcount,
8152 int signed_p)
8153 {
8154 size_t len;
8155 size_t symlen;
8156 bfd_vma a;
8157 bfd_vma b;
8158 char symbuf[4096];
8159 const char *sym = *symp;
8160 const char *symend;
8161 bfd_boolean symbol_is_section = FALSE;
8162
8163 len = strlen (sym);
8164 symend = sym + len;
8165
8166 if (len < 1 || len > sizeof (symbuf))
8167 {
8168 bfd_set_error (bfd_error_invalid_operation);
8169 return FALSE;
8170 }
8171
8172 switch (* sym)
8173 {
8174 case '.':
8175 *result = dot;
8176 *symp = sym + 1;
8177 return TRUE;
8178
8179 case '#':
8180 ++sym;
8181 *result = strtoul (sym, (char **) symp, 16);
8182 return TRUE;
8183
8184 case 'S':
8185 symbol_is_section = TRUE;
8186 /* Fall through. */
8187 case 's':
8188 ++sym;
8189 symlen = strtol (sym, (char **) symp, 10);
8190 sym = *symp + 1; /* Skip the trailing ':'. */
8191
8192 if (symend < sym || symlen + 1 > sizeof (symbuf))
8193 {
8194 bfd_set_error (bfd_error_invalid_operation);
8195 return FALSE;
8196 }
8197
8198 memcpy (symbuf, sym, symlen);
8199 symbuf[symlen] = '\0';
8200 *symp = sym + symlen;
8201
8202 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8203 the symbol as a section, or vice-versa. so we're pretty liberal in our
8204 interpretation here; section means "try section first", not "must be a
8205 section", and likewise with symbol. */
8206
8207 if (symbol_is_section)
8208 {
8209 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8210 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8211 isymbuf, locsymcount))
8212 {
8213 undefined_reference ("section", symbuf);
8214 return FALSE;
8215 }
8216 }
8217 else
8218 {
8219 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8220 isymbuf, locsymcount)
8221 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8222 result, input_bfd))
8223 {
8224 undefined_reference ("symbol", symbuf);
8225 return FALSE;
8226 }
8227 }
8228
8229 return TRUE;
8230
8231 /* All that remains are operators. */
8232
8233 #define UNARY_OP(op) \
8234 if (strncmp (sym, #op, strlen (#op)) == 0) \
8235 { \
8236 sym += strlen (#op); \
8237 if (*sym == ':') \
8238 ++sym; \
8239 *symp = sym; \
8240 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8241 isymbuf, locsymcount, signed_p)) \
8242 return FALSE; \
8243 if (signed_p) \
8244 *result = op ((bfd_signed_vma) a); \
8245 else \
8246 *result = op a; \
8247 return TRUE; \
8248 }
8249
8250 #define BINARY_OP(op) \
8251 if (strncmp (sym, #op, strlen (#op)) == 0) \
8252 { \
8253 sym += strlen (#op); \
8254 if (*sym == ':') \
8255 ++sym; \
8256 *symp = sym; \
8257 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8258 isymbuf, locsymcount, signed_p)) \
8259 return FALSE; \
8260 ++*symp; \
8261 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8262 isymbuf, locsymcount, signed_p)) \
8263 return FALSE; \
8264 if (signed_p) \
8265 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8266 else \
8267 *result = a op b; \
8268 return TRUE; \
8269 }
8270
8271 default:
8272 UNARY_OP (0-);
8273 BINARY_OP (<<);
8274 BINARY_OP (>>);
8275 BINARY_OP (==);
8276 BINARY_OP (!=);
8277 BINARY_OP (<=);
8278 BINARY_OP (>=);
8279 BINARY_OP (&&);
8280 BINARY_OP (||);
8281 UNARY_OP (~);
8282 UNARY_OP (!);
8283 BINARY_OP (*);
8284 BINARY_OP (/);
8285 BINARY_OP (%);
8286 BINARY_OP (^);
8287 BINARY_OP (|);
8288 BINARY_OP (&);
8289 BINARY_OP (+);
8290 BINARY_OP (-);
8291 BINARY_OP (<);
8292 BINARY_OP (>);
8293 #undef UNARY_OP
8294 #undef BINARY_OP
8295 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8296 bfd_set_error (bfd_error_invalid_operation);
8297 return FALSE;
8298 }
8299 }
8300
8301 static void
8302 put_value (bfd_vma size,
8303 unsigned long chunksz,
8304 bfd *input_bfd,
8305 bfd_vma x,
8306 bfd_byte *location)
8307 {
8308 location += (size - chunksz);
8309
8310 for (; size; size -= chunksz, location -= chunksz)
8311 {
8312 switch (chunksz)
8313 {
8314 case 1:
8315 bfd_put_8 (input_bfd, x, location);
8316 x >>= 8;
8317 break;
8318 case 2:
8319 bfd_put_16 (input_bfd, x, location);
8320 x >>= 16;
8321 break;
8322 case 4:
8323 bfd_put_32 (input_bfd, x, location);
8324 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8325 x >>= 16;
8326 x >>= 16;
8327 break;
8328 #ifdef BFD64
8329 case 8:
8330 bfd_put_64 (input_bfd, x, location);
8331 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8332 x >>= 32;
8333 x >>= 32;
8334 break;
8335 #endif
8336 default:
8337 abort ();
8338 break;
8339 }
8340 }
8341 }
8342
8343 static bfd_vma
8344 get_value (bfd_vma size,
8345 unsigned long chunksz,
8346 bfd *input_bfd,
8347 bfd_byte *location)
8348 {
8349 int shift;
8350 bfd_vma x = 0;
8351
8352 /* Sanity checks. */
8353 BFD_ASSERT (chunksz <= sizeof (x)
8354 && size >= chunksz
8355 && chunksz != 0
8356 && (size % chunksz) == 0
8357 && input_bfd != NULL
8358 && location != NULL);
8359
8360 if (chunksz == sizeof (x))
8361 {
8362 BFD_ASSERT (size == chunksz);
8363
8364 /* Make sure that we do not perform an undefined shift operation.
8365 We know that size == chunksz so there will only be one iteration
8366 of the loop below. */
8367 shift = 0;
8368 }
8369 else
8370 shift = 8 * chunksz;
8371
8372 for (; size; size -= chunksz, location += chunksz)
8373 {
8374 switch (chunksz)
8375 {
8376 case 1:
8377 x = (x << shift) | bfd_get_8 (input_bfd, location);
8378 break;
8379 case 2:
8380 x = (x << shift) | bfd_get_16 (input_bfd, location);
8381 break;
8382 case 4:
8383 x = (x << shift) | bfd_get_32 (input_bfd, location);
8384 break;
8385 #ifdef BFD64
8386 case 8:
8387 x = (x << shift) | bfd_get_64 (input_bfd, location);
8388 break;
8389 #endif
8390 default:
8391 abort ();
8392 }
8393 }
8394 return x;
8395 }
8396
8397 static void
8398 decode_complex_addend (unsigned long *start, /* in bits */
8399 unsigned long *oplen, /* in bits */
8400 unsigned long *len, /* in bits */
8401 unsigned long *wordsz, /* in bytes */
8402 unsigned long *chunksz, /* in bytes */
8403 unsigned long *lsb0_p,
8404 unsigned long *signed_p,
8405 unsigned long *trunc_p,
8406 unsigned long encoded)
8407 {
8408 * start = encoded & 0x3F;
8409 * len = (encoded >> 6) & 0x3F;
8410 * oplen = (encoded >> 12) & 0x3F;
8411 * wordsz = (encoded >> 18) & 0xF;
8412 * chunksz = (encoded >> 22) & 0xF;
8413 * lsb0_p = (encoded >> 27) & 1;
8414 * signed_p = (encoded >> 28) & 1;
8415 * trunc_p = (encoded >> 29) & 1;
8416 }
8417
8418 bfd_reloc_status_type
8419 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8420 asection *input_section ATTRIBUTE_UNUSED,
8421 bfd_byte *contents,
8422 Elf_Internal_Rela *rel,
8423 bfd_vma relocation)
8424 {
8425 bfd_vma shift, x, mask;
8426 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8427 bfd_reloc_status_type r;
8428
8429 /* Perform this reloc, since it is complex.
8430 (this is not to say that it necessarily refers to a complex
8431 symbol; merely that it is a self-describing CGEN based reloc.
8432 i.e. the addend has the complete reloc information (bit start, end,
8433 word size, etc) encoded within it.). */
8434
8435 decode_complex_addend (&start, &oplen, &len, &wordsz,
8436 &chunksz, &lsb0_p, &signed_p,
8437 &trunc_p, rel->r_addend);
8438
8439 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8440
8441 if (lsb0_p)
8442 shift = (start + 1) - len;
8443 else
8444 shift = (8 * wordsz) - (start + len);
8445
8446 x = get_value (wordsz, chunksz, input_bfd,
8447 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8448
8449 #ifdef DEBUG
8450 printf ("Doing complex reloc: "
8451 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8452 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8453 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8454 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8455 oplen, (unsigned long) x, (unsigned long) mask,
8456 (unsigned long) relocation);
8457 #endif
8458
8459 r = bfd_reloc_ok;
8460 if (! trunc_p)
8461 /* Now do an overflow check. */
8462 r = bfd_check_overflow ((signed_p
8463 ? complain_overflow_signed
8464 : complain_overflow_unsigned),
8465 len, 0, (8 * wordsz),
8466 relocation);
8467
8468 /* Do the deed. */
8469 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8470
8471 #ifdef DEBUG
8472 printf (" relocation: %8.8lx\n"
8473 " shifted mask: %8.8lx\n"
8474 " shifted/masked reloc: %8.8lx\n"
8475 " result: %8.8lx\n",
8476 (unsigned long) relocation, (unsigned long) (mask << shift),
8477 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8478 #endif
8479 put_value (wordsz, chunksz, input_bfd, x,
8480 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8481 return r;
8482 }
8483
8484 /* Functions to read r_offset from external (target order) reloc
8485 entry. Faster than bfd_getl32 et al, because we let the compiler
8486 know the value is aligned. */
8487
8488 static bfd_vma
8489 ext32l_r_offset (const void *p)
8490 {
8491 union aligned32
8492 {
8493 uint32_t v;
8494 unsigned char c[4];
8495 };
8496 const union aligned32 *a
8497 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8498
8499 uint32_t aval = ( (uint32_t) a->c[0]
8500 | (uint32_t) a->c[1] << 8
8501 | (uint32_t) a->c[2] << 16
8502 | (uint32_t) a->c[3] << 24);
8503 return aval;
8504 }
8505
8506 static bfd_vma
8507 ext32b_r_offset (const void *p)
8508 {
8509 union aligned32
8510 {
8511 uint32_t v;
8512 unsigned char c[4];
8513 };
8514 const union aligned32 *a
8515 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8516
8517 uint32_t aval = ( (uint32_t) a->c[0] << 24
8518 | (uint32_t) a->c[1] << 16
8519 | (uint32_t) a->c[2] << 8
8520 | (uint32_t) a->c[3]);
8521 return aval;
8522 }
8523
8524 #ifdef BFD_HOST_64_BIT
8525 static bfd_vma
8526 ext64l_r_offset (const void *p)
8527 {
8528 union aligned64
8529 {
8530 uint64_t v;
8531 unsigned char c[8];
8532 };
8533 const union aligned64 *a
8534 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8535
8536 uint64_t aval = ( (uint64_t) a->c[0]
8537 | (uint64_t) a->c[1] << 8
8538 | (uint64_t) a->c[2] << 16
8539 | (uint64_t) a->c[3] << 24
8540 | (uint64_t) a->c[4] << 32
8541 | (uint64_t) a->c[5] << 40
8542 | (uint64_t) a->c[6] << 48
8543 | (uint64_t) a->c[7] << 56);
8544 return aval;
8545 }
8546
8547 static bfd_vma
8548 ext64b_r_offset (const void *p)
8549 {
8550 union aligned64
8551 {
8552 uint64_t v;
8553 unsigned char c[8];
8554 };
8555 const union aligned64 *a
8556 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8557
8558 uint64_t aval = ( (uint64_t) a->c[0] << 56
8559 | (uint64_t) a->c[1] << 48
8560 | (uint64_t) a->c[2] << 40
8561 | (uint64_t) a->c[3] << 32
8562 | (uint64_t) a->c[4] << 24
8563 | (uint64_t) a->c[5] << 16
8564 | (uint64_t) a->c[6] << 8
8565 | (uint64_t) a->c[7]);
8566 return aval;
8567 }
8568 #endif
8569
8570 /* When performing a relocatable link, the input relocations are
8571 preserved. But, if they reference global symbols, the indices
8572 referenced must be updated. Update all the relocations found in
8573 RELDATA. */
8574
8575 static bfd_boolean
8576 elf_link_adjust_relocs (bfd *abfd,
8577 asection *sec,
8578 struct bfd_elf_section_reloc_data *reldata,
8579 bfd_boolean sort,
8580 struct bfd_link_info *info)
8581 {
8582 unsigned int i;
8583 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8584 bfd_byte *erela;
8585 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8586 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8587 bfd_vma r_type_mask;
8588 int r_sym_shift;
8589 unsigned int count = reldata->count;
8590 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8591
8592 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8593 {
8594 swap_in = bed->s->swap_reloc_in;
8595 swap_out = bed->s->swap_reloc_out;
8596 }
8597 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8598 {
8599 swap_in = bed->s->swap_reloca_in;
8600 swap_out = bed->s->swap_reloca_out;
8601 }
8602 else
8603 abort ();
8604
8605 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8606 abort ();
8607
8608 if (bed->s->arch_size == 32)
8609 {
8610 r_type_mask = 0xff;
8611 r_sym_shift = 8;
8612 }
8613 else
8614 {
8615 r_type_mask = 0xffffffff;
8616 r_sym_shift = 32;
8617 }
8618
8619 erela = reldata->hdr->contents;
8620 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8621 {
8622 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8623 unsigned int j;
8624
8625 if (*rel_hash == NULL)
8626 continue;
8627
8628 if ((*rel_hash)->indx == -2
8629 && info->gc_sections
8630 && ! info->gc_keep_exported)
8631 {
8632 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8633 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8634 abfd, sec,
8635 (*rel_hash)->root.root.string);
8636 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8637 abfd, sec);
8638 bfd_set_error (bfd_error_invalid_operation);
8639 return FALSE;
8640 }
8641 BFD_ASSERT ((*rel_hash)->indx >= 0);
8642
8643 (*swap_in) (abfd, erela, irela);
8644 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8645 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8646 | (irela[j].r_info & r_type_mask));
8647 (*swap_out) (abfd, irela, erela);
8648 }
8649
8650 if (bed->elf_backend_update_relocs)
8651 (*bed->elf_backend_update_relocs) (sec, reldata);
8652
8653 if (sort && count != 0)
8654 {
8655 bfd_vma (*ext_r_off) (const void *);
8656 bfd_vma r_off;
8657 size_t elt_size;
8658 bfd_byte *base, *end, *p, *loc;
8659 bfd_byte *buf = NULL;
8660
8661 if (bed->s->arch_size == 32)
8662 {
8663 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8664 ext_r_off = ext32l_r_offset;
8665 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8666 ext_r_off = ext32b_r_offset;
8667 else
8668 abort ();
8669 }
8670 else
8671 {
8672 #ifdef BFD_HOST_64_BIT
8673 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8674 ext_r_off = ext64l_r_offset;
8675 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8676 ext_r_off = ext64b_r_offset;
8677 else
8678 #endif
8679 abort ();
8680 }
8681
8682 /* Must use a stable sort here. A modified insertion sort,
8683 since the relocs are mostly sorted already. */
8684 elt_size = reldata->hdr->sh_entsize;
8685 base = reldata->hdr->contents;
8686 end = base + count * elt_size;
8687 if (elt_size > sizeof (Elf64_External_Rela))
8688 abort ();
8689
8690 /* Ensure the first element is lowest. This acts as a sentinel,
8691 speeding the main loop below. */
8692 r_off = (*ext_r_off) (base);
8693 for (p = loc = base; (p += elt_size) < end; )
8694 {
8695 bfd_vma r_off2 = (*ext_r_off) (p);
8696 if (r_off > r_off2)
8697 {
8698 r_off = r_off2;
8699 loc = p;
8700 }
8701 }
8702 if (loc != base)
8703 {
8704 /* Don't just swap *base and *loc as that changes the order
8705 of the original base[0] and base[1] if they happen to
8706 have the same r_offset. */
8707 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8708 memcpy (onebuf, loc, elt_size);
8709 memmove (base + elt_size, base, loc - base);
8710 memcpy (base, onebuf, elt_size);
8711 }
8712
8713 for (p = base + elt_size; (p += elt_size) < end; )
8714 {
8715 /* base to p is sorted, *p is next to insert. */
8716 r_off = (*ext_r_off) (p);
8717 /* Search the sorted region for location to insert. */
8718 loc = p - elt_size;
8719 while (r_off < (*ext_r_off) (loc))
8720 loc -= elt_size;
8721 loc += elt_size;
8722 if (loc != p)
8723 {
8724 /* Chances are there is a run of relocs to insert here,
8725 from one of more input files. Files are not always
8726 linked in order due to the way elf_link_input_bfd is
8727 called. See pr17666. */
8728 size_t sortlen = p - loc;
8729 bfd_vma r_off2 = (*ext_r_off) (loc);
8730 size_t runlen = elt_size;
8731 size_t buf_size = 96 * 1024;
8732 while (p + runlen < end
8733 && (sortlen <= buf_size
8734 || runlen + elt_size <= buf_size)
8735 && r_off2 > (*ext_r_off) (p + runlen))
8736 runlen += elt_size;
8737 if (buf == NULL)
8738 {
8739 buf = bfd_malloc (buf_size);
8740 if (buf == NULL)
8741 return FALSE;
8742 }
8743 if (runlen < sortlen)
8744 {
8745 memcpy (buf, p, runlen);
8746 memmove (loc + runlen, loc, sortlen);
8747 memcpy (loc, buf, runlen);
8748 }
8749 else
8750 {
8751 memcpy (buf, loc, sortlen);
8752 memmove (loc, p, runlen);
8753 memcpy (loc + runlen, buf, sortlen);
8754 }
8755 p += runlen - elt_size;
8756 }
8757 }
8758 /* Hashes are no longer valid. */
8759 free (reldata->hashes);
8760 reldata->hashes = NULL;
8761 free (buf);
8762 }
8763 return TRUE;
8764 }
8765
8766 struct elf_link_sort_rela
8767 {
8768 union {
8769 bfd_vma offset;
8770 bfd_vma sym_mask;
8771 } u;
8772 enum elf_reloc_type_class type;
8773 /* We use this as an array of size int_rels_per_ext_rel. */
8774 Elf_Internal_Rela rela[1];
8775 };
8776
8777 static int
8778 elf_link_sort_cmp1 (const void *A, const void *B)
8779 {
8780 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8781 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8782 int relativea, relativeb;
8783
8784 relativea = a->type == reloc_class_relative;
8785 relativeb = b->type == reloc_class_relative;
8786
8787 if (relativea < relativeb)
8788 return 1;
8789 if (relativea > relativeb)
8790 return -1;
8791 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8792 return -1;
8793 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8794 return 1;
8795 if (a->rela->r_offset < b->rela->r_offset)
8796 return -1;
8797 if (a->rela->r_offset > b->rela->r_offset)
8798 return 1;
8799 return 0;
8800 }
8801
8802 static int
8803 elf_link_sort_cmp2 (const void *A, const void *B)
8804 {
8805 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8806 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8807
8808 if (a->type < b->type)
8809 return -1;
8810 if (a->type > b->type)
8811 return 1;
8812 if (a->u.offset < b->u.offset)
8813 return -1;
8814 if (a->u.offset > b->u.offset)
8815 return 1;
8816 if (a->rela->r_offset < b->rela->r_offset)
8817 return -1;
8818 if (a->rela->r_offset > b->rela->r_offset)
8819 return 1;
8820 return 0;
8821 }
8822
8823 static size_t
8824 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8825 {
8826 asection *dynamic_relocs;
8827 asection *rela_dyn;
8828 asection *rel_dyn;
8829 bfd_size_type count, size;
8830 size_t i, ret, sort_elt, ext_size;
8831 bfd_byte *sort, *s_non_relative, *p;
8832 struct elf_link_sort_rela *sq;
8833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8834 int i2e = bed->s->int_rels_per_ext_rel;
8835 unsigned int opb = bfd_octets_per_byte (abfd);
8836 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8837 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8838 struct bfd_link_order *lo;
8839 bfd_vma r_sym_mask;
8840 bfd_boolean use_rela;
8841
8842 /* Find a dynamic reloc section. */
8843 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8844 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8845 if (rela_dyn != NULL && rela_dyn->size > 0
8846 && rel_dyn != NULL && rel_dyn->size > 0)
8847 {
8848 bfd_boolean use_rela_initialised = FALSE;
8849
8850 /* This is just here to stop gcc from complaining.
8851 Its initialization checking code is not perfect. */
8852 use_rela = TRUE;
8853
8854 /* Both sections are present. Examine the sizes
8855 of the indirect sections to help us choose. */
8856 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8857 if (lo->type == bfd_indirect_link_order)
8858 {
8859 asection *o = lo->u.indirect.section;
8860
8861 if ((o->size % bed->s->sizeof_rela) == 0)
8862 {
8863 if ((o->size % bed->s->sizeof_rel) == 0)
8864 /* Section size is divisible by both rel and rela sizes.
8865 It is of no help to us. */
8866 ;
8867 else
8868 {
8869 /* Section size is only divisible by rela. */
8870 if (use_rela_initialised && !use_rela)
8871 {
8872 _bfd_error_handler (_("%B: Unable to sort relocs - "
8873 "they are in more than one size"),
8874 abfd);
8875 bfd_set_error (bfd_error_invalid_operation);
8876 return 0;
8877 }
8878 else
8879 {
8880 use_rela = TRUE;
8881 use_rela_initialised = TRUE;
8882 }
8883 }
8884 }
8885 else if ((o->size % bed->s->sizeof_rel) == 0)
8886 {
8887 /* Section size is only divisible by rel. */
8888 if (use_rela_initialised && use_rela)
8889 {
8890 _bfd_error_handler (_("%B: Unable to sort relocs - "
8891 "they are in more than one size"),
8892 abfd);
8893 bfd_set_error (bfd_error_invalid_operation);
8894 return 0;
8895 }
8896 else
8897 {
8898 use_rela = FALSE;
8899 use_rela_initialised = TRUE;
8900 }
8901 }
8902 else
8903 {
8904 /* The section size is not divisible by either -
8905 something is wrong. */
8906 _bfd_error_handler (_("%B: Unable to sort relocs - "
8907 "they are of an unknown size"), abfd);
8908 bfd_set_error (bfd_error_invalid_operation);
8909 return 0;
8910 }
8911 }
8912
8913 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8914 if (lo->type == bfd_indirect_link_order)
8915 {
8916 asection *o = lo->u.indirect.section;
8917
8918 if ((o->size % bed->s->sizeof_rela) == 0)
8919 {
8920 if ((o->size % bed->s->sizeof_rel) == 0)
8921 /* Section size is divisible by both rel and rela sizes.
8922 It is of no help to us. */
8923 ;
8924 else
8925 {
8926 /* Section size is only divisible by rela. */
8927 if (use_rela_initialised && !use_rela)
8928 {
8929 _bfd_error_handler (_("%B: Unable to sort relocs - "
8930 "they are in more than one size"),
8931 abfd);
8932 bfd_set_error (bfd_error_invalid_operation);
8933 return 0;
8934 }
8935 else
8936 {
8937 use_rela = TRUE;
8938 use_rela_initialised = TRUE;
8939 }
8940 }
8941 }
8942 else if ((o->size % bed->s->sizeof_rel) == 0)
8943 {
8944 /* Section size is only divisible by rel. */
8945 if (use_rela_initialised && use_rela)
8946 {
8947 _bfd_error_handler (_("%B: Unable to sort relocs - "
8948 "they are in more than one size"),
8949 abfd);
8950 bfd_set_error (bfd_error_invalid_operation);
8951 return 0;
8952 }
8953 else
8954 {
8955 use_rela = FALSE;
8956 use_rela_initialised = TRUE;
8957 }
8958 }
8959 else
8960 {
8961 /* The section size is not divisible by either -
8962 something is wrong. */
8963 _bfd_error_handler (_("%B: Unable to sort relocs - "
8964 "they are of an unknown size"), abfd);
8965 bfd_set_error (bfd_error_invalid_operation);
8966 return 0;
8967 }
8968 }
8969
8970 if (! use_rela_initialised)
8971 /* Make a guess. */
8972 use_rela = TRUE;
8973 }
8974 else if (rela_dyn != NULL && rela_dyn->size > 0)
8975 use_rela = TRUE;
8976 else if (rel_dyn != NULL && rel_dyn->size > 0)
8977 use_rela = FALSE;
8978 else
8979 return 0;
8980
8981 if (use_rela)
8982 {
8983 dynamic_relocs = rela_dyn;
8984 ext_size = bed->s->sizeof_rela;
8985 swap_in = bed->s->swap_reloca_in;
8986 swap_out = bed->s->swap_reloca_out;
8987 }
8988 else
8989 {
8990 dynamic_relocs = rel_dyn;
8991 ext_size = bed->s->sizeof_rel;
8992 swap_in = bed->s->swap_reloc_in;
8993 swap_out = bed->s->swap_reloc_out;
8994 }
8995
8996 size = 0;
8997 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8998 if (lo->type == bfd_indirect_link_order)
8999 size += lo->u.indirect.section->size;
9000
9001 if (size != dynamic_relocs->size)
9002 return 0;
9003
9004 sort_elt = (sizeof (struct elf_link_sort_rela)
9005 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9006
9007 count = dynamic_relocs->size / ext_size;
9008 if (count == 0)
9009 return 0;
9010 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9011
9012 if (sort == NULL)
9013 {
9014 (*info->callbacks->warning)
9015 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
9016 return 0;
9017 }
9018
9019 if (bed->s->arch_size == 32)
9020 r_sym_mask = ~(bfd_vma) 0xff;
9021 else
9022 r_sym_mask = ~(bfd_vma) 0xffffffff;
9023
9024 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9025 if (lo->type == bfd_indirect_link_order)
9026 {
9027 bfd_byte *erel, *erelend;
9028 asection *o = lo->u.indirect.section;
9029
9030 if (o->contents == NULL && o->size != 0)
9031 {
9032 /* This is a reloc section that is being handled as a normal
9033 section. See bfd_section_from_shdr. We can't combine
9034 relocs in this case. */
9035 free (sort);
9036 return 0;
9037 }
9038 erel = o->contents;
9039 erelend = o->contents + o->size;
9040 p = sort + o->output_offset * opb / ext_size * sort_elt;
9041
9042 while (erel < erelend)
9043 {
9044 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9045
9046 (*swap_in) (abfd, erel, s->rela);
9047 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9048 s->u.sym_mask = r_sym_mask;
9049 p += sort_elt;
9050 erel += ext_size;
9051 }
9052 }
9053
9054 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9055
9056 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9057 {
9058 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9059 if (s->type != reloc_class_relative)
9060 break;
9061 }
9062 ret = i;
9063 s_non_relative = p;
9064
9065 sq = (struct elf_link_sort_rela *) s_non_relative;
9066 for (; i < count; i++, p += sort_elt)
9067 {
9068 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9069 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9070 sq = sp;
9071 sp->u.offset = sq->rela->r_offset;
9072 }
9073
9074 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9075
9076 struct elf_link_hash_table *htab = elf_hash_table (info);
9077 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9078 {
9079 /* We have plt relocs in .rela.dyn. */
9080 sq = (struct elf_link_sort_rela *) sort;
9081 for (i = 0; i < count; i++)
9082 if (sq[count - i - 1].type != reloc_class_plt)
9083 break;
9084 if (i != 0 && htab->srelplt->size == i * ext_size)
9085 {
9086 struct bfd_link_order **plo;
9087 /* Put srelplt link_order last. This is so the output_offset
9088 set in the next loop is correct for DT_JMPREL. */
9089 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9090 if ((*plo)->type == bfd_indirect_link_order
9091 && (*plo)->u.indirect.section == htab->srelplt)
9092 {
9093 lo = *plo;
9094 *plo = lo->next;
9095 }
9096 else
9097 plo = &(*plo)->next;
9098 *plo = lo;
9099 lo->next = NULL;
9100 dynamic_relocs->map_tail.link_order = lo;
9101 }
9102 }
9103
9104 p = sort;
9105 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9106 if (lo->type == bfd_indirect_link_order)
9107 {
9108 bfd_byte *erel, *erelend;
9109 asection *o = lo->u.indirect.section;
9110
9111 erel = o->contents;
9112 erelend = o->contents + o->size;
9113 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9114 while (erel < erelend)
9115 {
9116 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9117 (*swap_out) (abfd, s->rela, erel);
9118 p += sort_elt;
9119 erel += ext_size;
9120 }
9121 }
9122
9123 free (sort);
9124 *psec = dynamic_relocs;
9125 return ret;
9126 }
9127
9128 /* Add a symbol to the output symbol string table. */
9129
9130 static int
9131 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9132 const char *name,
9133 Elf_Internal_Sym *elfsym,
9134 asection *input_sec,
9135 struct elf_link_hash_entry *h)
9136 {
9137 int (*output_symbol_hook)
9138 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9139 struct elf_link_hash_entry *);
9140 struct elf_link_hash_table *hash_table;
9141 const struct elf_backend_data *bed;
9142 bfd_size_type strtabsize;
9143
9144 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9145
9146 bed = get_elf_backend_data (flinfo->output_bfd);
9147 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9148 if (output_symbol_hook != NULL)
9149 {
9150 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9151 if (ret != 1)
9152 return ret;
9153 }
9154
9155 if (name == NULL
9156 || *name == '\0'
9157 || (input_sec->flags & SEC_EXCLUDE))
9158 elfsym->st_name = (unsigned long) -1;
9159 else
9160 {
9161 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9162 to get the final offset for st_name. */
9163 elfsym->st_name
9164 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9165 name, FALSE);
9166 if (elfsym->st_name == (unsigned long) -1)
9167 return 0;
9168 }
9169
9170 hash_table = elf_hash_table (flinfo->info);
9171 strtabsize = hash_table->strtabsize;
9172 if (strtabsize <= hash_table->strtabcount)
9173 {
9174 strtabsize += strtabsize;
9175 hash_table->strtabsize = strtabsize;
9176 strtabsize *= sizeof (*hash_table->strtab);
9177 hash_table->strtab
9178 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9179 strtabsize);
9180 if (hash_table->strtab == NULL)
9181 return 0;
9182 }
9183 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9184 hash_table->strtab[hash_table->strtabcount].dest_index
9185 = hash_table->strtabcount;
9186 hash_table->strtab[hash_table->strtabcount].destshndx_index
9187 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9188
9189 bfd_get_symcount (flinfo->output_bfd) += 1;
9190 hash_table->strtabcount += 1;
9191
9192 return 1;
9193 }
9194
9195 /* Swap symbols out to the symbol table and flush the output symbols to
9196 the file. */
9197
9198 static bfd_boolean
9199 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9200 {
9201 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9202 bfd_size_type amt;
9203 size_t i;
9204 const struct elf_backend_data *bed;
9205 bfd_byte *symbuf;
9206 Elf_Internal_Shdr *hdr;
9207 file_ptr pos;
9208 bfd_boolean ret;
9209
9210 if (!hash_table->strtabcount)
9211 return TRUE;
9212
9213 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9214
9215 bed = get_elf_backend_data (flinfo->output_bfd);
9216
9217 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9218 symbuf = (bfd_byte *) bfd_malloc (amt);
9219 if (symbuf == NULL)
9220 return FALSE;
9221
9222 if (flinfo->symshndxbuf)
9223 {
9224 amt = sizeof (Elf_External_Sym_Shndx);
9225 amt *= bfd_get_symcount (flinfo->output_bfd);
9226 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9227 if (flinfo->symshndxbuf == NULL)
9228 {
9229 free (symbuf);
9230 return FALSE;
9231 }
9232 }
9233
9234 for (i = 0; i < hash_table->strtabcount; i++)
9235 {
9236 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9237 if (elfsym->sym.st_name == (unsigned long) -1)
9238 elfsym->sym.st_name = 0;
9239 else
9240 elfsym->sym.st_name
9241 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9242 elfsym->sym.st_name);
9243 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9244 ((bfd_byte *) symbuf
9245 + (elfsym->dest_index
9246 * bed->s->sizeof_sym)),
9247 (flinfo->symshndxbuf
9248 + elfsym->destshndx_index));
9249 }
9250
9251 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9252 pos = hdr->sh_offset + hdr->sh_size;
9253 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9254 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9255 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9256 {
9257 hdr->sh_size += amt;
9258 ret = TRUE;
9259 }
9260 else
9261 ret = FALSE;
9262
9263 free (symbuf);
9264
9265 free (hash_table->strtab);
9266 hash_table->strtab = NULL;
9267
9268 return ret;
9269 }
9270
9271 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9272
9273 static bfd_boolean
9274 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9275 {
9276 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9277 && sym->st_shndx < SHN_LORESERVE)
9278 {
9279 /* The gABI doesn't support dynamic symbols in output sections
9280 beyond 64k. */
9281 _bfd_error_handler
9282 /* xgettext:c-format */
9283 (_("%B: Too many sections: %d (>= %d)"),
9284 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9285 bfd_set_error (bfd_error_nonrepresentable_section);
9286 return FALSE;
9287 }
9288 return TRUE;
9289 }
9290
9291 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9292 allowing an unsatisfied unversioned symbol in the DSO to match a
9293 versioned symbol that would normally require an explicit version.
9294 We also handle the case that a DSO references a hidden symbol
9295 which may be satisfied by a versioned symbol in another DSO. */
9296
9297 static bfd_boolean
9298 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9299 const struct elf_backend_data *bed,
9300 struct elf_link_hash_entry *h)
9301 {
9302 bfd *abfd;
9303 struct elf_link_loaded_list *loaded;
9304
9305 if (!is_elf_hash_table (info->hash))
9306 return FALSE;
9307
9308 /* Check indirect symbol. */
9309 while (h->root.type == bfd_link_hash_indirect)
9310 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9311
9312 switch (h->root.type)
9313 {
9314 default:
9315 abfd = NULL;
9316 break;
9317
9318 case bfd_link_hash_undefined:
9319 case bfd_link_hash_undefweak:
9320 abfd = h->root.u.undef.abfd;
9321 if (abfd == NULL
9322 || (abfd->flags & DYNAMIC) == 0
9323 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9324 return FALSE;
9325 break;
9326
9327 case bfd_link_hash_defined:
9328 case bfd_link_hash_defweak:
9329 abfd = h->root.u.def.section->owner;
9330 break;
9331
9332 case bfd_link_hash_common:
9333 abfd = h->root.u.c.p->section->owner;
9334 break;
9335 }
9336 BFD_ASSERT (abfd != NULL);
9337
9338 for (loaded = elf_hash_table (info)->loaded;
9339 loaded != NULL;
9340 loaded = loaded->next)
9341 {
9342 bfd *input;
9343 Elf_Internal_Shdr *hdr;
9344 size_t symcount;
9345 size_t extsymcount;
9346 size_t extsymoff;
9347 Elf_Internal_Shdr *versymhdr;
9348 Elf_Internal_Sym *isym;
9349 Elf_Internal_Sym *isymend;
9350 Elf_Internal_Sym *isymbuf;
9351 Elf_External_Versym *ever;
9352 Elf_External_Versym *extversym;
9353
9354 input = loaded->abfd;
9355
9356 /* We check each DSO for a possible hidden versioned definition. */
9357 if (input == abfd
9358 || (input->flags & DYNAMIC) == 0
9359 || elf_dynversym (input) == 0)
9360 continue;
9361
9362 hdr = &elf_tdata (input)->dynsymtab_hdr;
9363
9364 symcount = hdr->sh_size / bed->s->sizeof_sym;
9365 if (elf_bad_symtab (input))
9366 {
9367 extsymcount = symcount;
9368 extsymoff = 0;
9369 }
9370 else
9371 {
9372 extsymcount = symcount - hdr->sh_info;
9373 extsymoff = hdr->sh_info;
9374 }
9375
9376 if (extsymcount == 0)
9377 continue;
9378
9379 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9380 NULL, NULL, NULL);
9381 if (isymbuf == NULL)
9382 return FALSE;
9383
9384 /* Read in any version definitions. */
9385 versymhdr = &elf_tdata (input)->dynversym_hdr;
9386 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9387 if (extversym == NULL)
9388 goto error_ret;
9389
9390 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9391 || (bfd_bread (extversym, versymhdr->sh_size, input)
9392 != versymhdr->sh_size))
9393 {
9394 free (extversym);
9395 error_ret:
9396 free (isymbuf);
9397 return FALSE;
9398 }
9399
9400 ever = extversym + extsymoff;
9401 isymend = isymbuf + extsymcount;
9402 for (isym = isymbuf; isym < isymend; isym++, ever++)
9403 {
9404 const char *name;
9405 Elf_Internal_Versym iver;
9406 unsigned short version_index;
9407
9408 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9409 || isym->st_shndx == SHN_UNDEF)
9410 continue;
9411
9412 name = bfd_elf_string_from_elf_section (input,
9413 hdr->sh_link,
9414 isym->st_name);
9415 if (strcmp (name, h->root.root.string) != 0)
9416 continue;
9417
9418 _bfd_elf_swap_versym_in (input, ever, &iver);
9419
9420 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9421 && !(h->def_regular
9422 && h->forced_local))
9423 {
9424 /* If we have a non-hidden versioned sym, then it should
9425 have provided a definition for the undefined sym unless
9426 it is defined in a non-shared object and forced local.
9427 */
9428 abort ();
9429 }
9430
9431 version_index = iver.vs_vers & VERSYM_VERSION;
9432 if (version_index == 1 || version_index == 2)
9433 {
9434 /* This is the base or first version. We can use it. */
9435 free (extversym);
9436 free (isymbuf);
9437 return TRUE;
9438 }
9439 }
9440
9441 free (extversym);
9442 free (isymbuf);
9443 }
9444
9445 return FALSE;
9446 }
9447
9448 /* Convert ELF common symbol TYPE. */
9449
9450 static int
9451 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9452 {
9453 /* Commom symbol can only appear in relocatable link. */
9454 if (!bfd_link_relocatable (info))
9455 abort ();
9456 switch (info->elf_stt_common)
9457 {
9458 case unchanged:
9459 break;
9460 case elf_stt_common:
9461 type = STT_COMMON;
9462 break;
9463 case no_elf_stt_common:
9464 type = STT_OBJECT;
9465 break;
9466 }
9467 return type;
9468 }
9469
9470 /* Add an external symbol to the symbol table. This is called from
9471 the hash table traversal routine. When generating a shared object,
9472 we go through the symbol table twice. The first time we output
9473 anything that might have been forced to local scope in a version
9474 script. The second time we output the symbols that are still
9475 global symbols. */
9476
9477 static bfd_boolean
9478 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9479 {
9480 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9481 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9482 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9483 bfd_boolean strip;
9484 Elf_Internal_Sym sym;
9485 asection *input_sec;
9486 const struct elf_backend_data *bed;
9487 long indx;
9488 int ret;
9489 unsigned int type;
9490
9491 if (h->root.type == bfd_link_hash_warning)
9492 {
9493 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9494 if (h->root.type == bfd_link_hash_new)
9495 return TRUE;
9496 }
9497
9498 /* Decide whether to output this symbol in this pass. */
9499 if (eoinfo->localsyms)
9500 {
9501 if (!h->forced_local)
9502 return TRUE;
9503 }
9504 else
9505 {
9506 if (h->forced_local)
9507 return TRUE;
9508 }
9509
9510 bed = get_elf_backend_data (flinfo->output_bfd);
9511
9512 if (h->root.type == bfd_link_hash_undefined)
9513 {
9514 /* If we have an undefined symbol reference here then it must have
9515 come from a shared library that is being linked in. (Undefined
9516 references in regular files have already been handled unless
9517 they are in unreferenced sections which are removed by garbage
9518 collection). */
9519 bfd_boolean ignore_undef = FALSE;
9520
9521 /* Some symbols may be special in that the fact that they're
9522 undefined can be safely ignored - let backend determine that. */
9523 if (bed->elf_backend_ignore_undef_symbol)
9524 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9525
9526 /* If we are reporting errors for this situation then do so now. */
9527 if (!ignore_undef
9528 && h->ref_dynamic
9529 && (!h->ref_regular || flinfo->info->gc_sections)
9530 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9531 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9532 (*flinfo->info->callbacks->undefined_symbol)
9533 (flinfo->info, h->root.root.string,
9534 h->ref_regular ? NULL : h->root.u.undef.abfd,
9535 NULL, 0,
9536 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9537
9538 /* Strip a global symbol defined in a discarded section. */
9539 if (h->indx == -3)
9540 return TRUE;
9541 }
9542
9543 /* We should also warn if a forced local symbol is referenced from
9544 shared libraries. */
9545 if (bfd_link_executable (flinfo->info)
9546 && h->forced_local
9547 && h->ref_dynamic
9548 && h->def_regular
9549 && !h->dynamic_def
9550 && h->ref_dynamic_nonweak
9551 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9552 {
9553 bfd *def_bfd;
9554 const char *msg;
9555 struct elf_link_hash_entry *hi = h;
9556
9557 /* Check indirect symbol. */
9558 while (hi->root.type == bfd_link_hash_indirect)
9559 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9560
9561 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9562 /* xgettext:c-format */
9563 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9564 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9565 /* xgettext:c-format */
9566 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9567 else
9568 /* xgettext:c-format */
9569 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9570 def_bfd = flinfo->output_bfd;
9571 if (hi->root.u.def.section != bfd_abs_section_ptr)
9572 def_bfd = hi->root.u.def.section->owner;
9573 _bfd_error_handler (msg, flinfo->output_bfd,
9574 h->root.root.string, def_bfd);
9575 bfd_set_error (bfd_error_bad_value);
9576 eoinfo->failed = TRUE;
9577 return FALSE;
9578 }
9579
9580 /* We don't want to output symbols that have never been mentioned by
9581 a regular file, or that we have been told to strip. However, if
9582 h->indx is set to -2, the symbol is used by a reloc and we must
9583 output it. */
9584 strip = FALSE;
9585 if (h->indx == -2)
9586 ;
9587 else if ((h->def_dynamic
9588 || h->ref_dynamic
9589 || h->root.type == bfd_link_hash_new)
9590 && !h->def_regular
9591 && !h->ref_regular)
9592 strip = TRUE;
9593 else if (flinfo->info->strip == strip_all)
9594 strip = TRUE;
9595 else if (flinfo->info->strip == strip_some
9596 && bfd_hash_lookup (flinfo->info->keep_hash,
9597 h->root.root.string, FALSE, FALSE) == NULL)
9598 strip = TRUE;
9599 else if ((h->root.type == bfd_link_hash_defined
9600 || h->root.type == bfd_link_hash_defweak)
9601 && ((flinfo->info->strip_discarded
9602 && discarded_section (h->root.u.def.section))
9603 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9604 && h->root.u.def.section->owner != NULL
9605 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9606 strip = TRUE;
9607 else if ((h->root.type == bfd_link_hash_undefined
9608 || h->root.type == bfd_link_hash_undefweak)
9609 && h->root.u.undef.abfd != NULL
9610 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9611 strip = TRUE;
9612
9613 type = h->type;
9614
9615 /* If we're stripping it, and it's not a dynamic symbol, there's
9616 nothing else to do. However, if it is a forced local symbol or
9617 an ifunc symbol we need to give the backend finish_dynamic_symbol
9618 function a chance to make it dynamic. */
9619 if (strip
9620 && h->dynindx == -1
9621 && type != STT_GNU_IFUNC
9622 && !h->forced_local)
9623 return TRUE;
9624
9625 sym.st_value = 0;
9626 sym.st_size = h->size;
9627 sym.st_other = h->other;
9628 switch (h->root.type)
9629 {
9630 default:
9631 case bfd_link_hash_new:
9632 case bfd_link_hash_warning:
9633 abort ();
9634 return FALSE;
9635
9636 case bfd_link_hash_undefined:
9637 case bfd_link_hash_undefweak:
9638 input_sec = bfd_und_section_ptr;
9639 sym.st_shndx = SHN_UNDEF;
9640 break;
9641
9642 case bfd_link_hash_defined:
9643 case bfd_link_hash_defweak:
9644 {
9645 input_sec = h->root.u.def.section;
9646 if (input_sec->output_section != NULL)
9647 {
9648 sym.st_shndx =
9649 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9650 input_sec->output_section);
9651 if (sym.st_shndx == SHN_BAD)
9652 {
9653 _bfd_error_handler
9654 /* xgettext:c-format */
9655 (_("%B: could not find output section %A for input section %A"),
9656 flinfo->output_bfd, input_sec->output_section, input_sec);
9657 bfd_set_error (bfd_error_nonrepresentable_section);
9658 eoinfo->failed = TRUE;
9659 return FALSE;
9660 }
9661
9662 /* ELF symbols in relocatable files are section relative,
9663 but in nonrelocatable files they are virtual
9664 addresses. */
9665 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9666 if (!bfd_link_relocatable (flinfo->info))
9667 {
9668 sym.st_value += input_sec->output_section->vma;
9669 if (h->type == STT_TLS)
9670 {
9671 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9672 if (tls_sec != NULL)
9673 sym.st_value -= tls_sec->vma;
9674 }
9675 }
9676 }
9677 else
9678 {
9679 BFD_ASSERT (input_sec->owner == NULL
9680 || (input_sec->owner->flags & DYNAMIC) != 0);
9681 sym.st_shndx = SHN_UNDEF;
9682 input_sec = bfd_und_section_ptr;
9683 }
9684 }
9685 break;
9686
9687 case bfd_link_hash_common:
9688 input_sec = h->root.u.c.p->section;
9689 sym.st_shndx = bed->common_section_index (input_sec);
9690 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9691 break;
9692
9693 case bfd_link_hash_indirect:
9694 /* These symbols are created by symbol versioning. They point
9695 to the decorated version of the name. For example, if the
9696 symbol foo@@GNU_1.2 is the default, which should be used when
9697 foo is used with no version, then we add an indirect symbol
9698 foo which points to foo@@GNU_1.2. We ignore these symbols,
9699 since the indirected symbol is already in the hash table. */
9700 return TRUE;
9701 }
9702
9703 if (type == STT_COMMON || type == STT_OBJECT)
9704 switch (h->root.type)
9705 {
9706 case bfd_link_hash_common:
9707 type = elf_link_convert_common_type (flinfo->info, type);
9708 break;
9709 case bfd_link_hash_defined:
9710 case bfd_link_hash_defweak:
9711 if (bed->common_definition (&sym))
9712 type = elf_link_convert_common_type (flinfo->info, type);
9713 else
9714 type = STT_OBJECT;
9715 break;
9716 case bfd_link_hash_undefined:
9717 case bfd_link_hash_undefweak:
9718 break;
9719 default:
9720 abort ();
9721 }
9722
9723 if (h->forced_local)
9724 {
9725 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9726 /* Turn off visibility on local symbol. */
9727 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9728 }
9729 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9730 else if (h->unique_global && h->def_regular)
9731 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9732 else if (h->root.type == bfd_link_hash_undefweak
9733 || h->root.type == bfd_link_hash_defweak)
9734 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9735 else
9736 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9737 sym.st_target_internal = h->target_internal;
9738
9739 /* Give the processor backend a chance to tweak the symbol value,
9740 and also to finish up anything that needs to be done for this
9741 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9742 forced local syms when non-shared is due to a historical quirk.
9743 STT_GNU_IFUNC symbol must go through PLT. */
9744 if ((h->type == STT_GNU_IFUNC
9745 && h->def_regular
9746 && !bfd_link_relocatable (flinfo->info))
9747 || ((h->dynindx != -1
9748 || h->forced_local)
9749 && ((bfd_link_pic (flinfo->info)
9750 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9751 || h->root.type != bfd_link_hash_undefweak))
9752 || !h->forced_local)
9753 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9754 {
9755 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9756 (flinfo->output_bfd, flinfo->info, h, &sym)))
9757 {
9758 eoinfo->failed = TRUE;
9759 return FALSE;
9760 }
9761 }
9762
9763 /* If we are marking the symbol as undefined, and there are no
9764 non-weak references to this symbol from a regular object, then
9765 mark the symbol as weak undefined; if there are non-weak
9766 references, mark the symbol as strong. We can't do this earlier,
9767 because it might not be marked as undefined until the
9768 finish_dynamic_symbol routine gets through with it. */
9769 if (sym.st_shndx == SHN_UNDEF
9770 && h->ref_regular
9771 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9772 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9773 {
9774 int bindtype;
9775 type = ELF_ST_TYPE (sym.st_info);
9776
9777 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9778 if (type == STT_GNU_IFUNC)
9779 type = STT_FUNC;
9780
9781 if (h->ref_regular_nonweak)
9782 bindtype = STB_GLOBAL;
9783 else
9784 bindtype = STB_WEAK;
9785 sym.st_info = ELF_ST_INFO (bindtype, type);
9786 }
9787
9788 /* If this is a symbol defined in a dynamic library, don't use the
9789 symbol size from the dynamic library. Relinking an executable
9790 against a new library may introduce gratuitous changes in the
9791 executable's symbols if we keep the size. */
9792 if (sym.st_shndx == SHN_UNDEF
9793 && !h->def_regular
9794 && h->def_dynamic)
9795 sym.st_size = 0;
9796
9797 /* If a non-weak symbol with non-default visibility is not defined
9798 locally, it is a fatal error. */
9799 if (!bfd_link_relocatable (flinfo->info)
9800 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9801 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9802 && h->root.type == bfd_link_hash_undefined
9803 && !h->def_regular)
9804 {
9805 const char *msg;
9806
9807 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9808 /* xgettext:c-format */
9809 msg = _("%B: protected symbol `%s' isn't defined");
9810 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9811 /* xgettext:c-format */
9812 msg = _("%B: internal symbol `%s' isn't defined");
9813 else
9814 /* xgettext:c-format */
9815 msg = _("%B: hidden symbol `%s' isn't defined");
9816 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9817 bfd_set_error (bfd_error_bad_value);
9818 eoinfo->failed = TRUE;
9819 return FALSE;
9820 }
9821
9822 /* If this symbol should be put in the .dynsym section, then put it
9823 there now. We already know the symbol index. We also fill in
9824 the entry in the .hash section. */
9825 if (elf_hash_table (flinfo->info)->dynsym != NULL
9826 && h->dynindx != -1
9827 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9828 {
9829 bfd_byte *esym;
9830
9831 /* Since there is no version information in the dynamic string,
9832 if there is no version info in symbol version section, we will
9833 have a run-time problem if not linking executable, referenced
9834 by shared library, or not bound locally. */
9835 if (h->verinfo.verdef == NULL
9836 && (!bfd_link_executable (flinfo->info)
9837 || h->ref_dynamic
9838 || !h->def_regular))
9839 {
9840 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9841
9842 if (p && p [1] != '\0')
9843 {
9844 _bfd_error_handler
9845 /* xgettext:c-format */
9846 (_("%B: No symbol version section for versioned symbol `%s'"),
9847 flinfo->output_bfd, h->root.root.string);
9848 eoinfo->failed = TRUE;
9849 return FALSE;
9850 }
9851 }
9852
9853 sym.st_name = h->dynstr_index;
9854 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9855 + h->dynindx * bed->s->sizeof_sym);
9856 if (!check_dynsym (flinfo->output_bfd, &sym))
9857 {
9858 eoinfo->failed = TRUE;
9859 return FALSE;
9860 }
9861 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9862
9863 if (flinfo->hash_sec != NULL)
9864 {
9865 size_t hash_entry_size;
9866 bfd_byte *bucketpos;
9867 bfd_vma chain;
9868 size_t bucketcount;
9869 size_t bucket;
9870
9871 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9872 bucket = h->u.elf_hash_value % bucketcount;
9873
9874 hash_entry_size
9875 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9876 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9877 + (bucket + 2) * hash_entry_size);
9878 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9879 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9880 bucketpos);
9881 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9882 ((bfd_byte *) flinfo->hash_sec->contents
9883 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9884 }
9885
9886 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9887 {
9888 Elf_Internal_Versym iversym;
9889 Elf_External_Versym *eversym;
9890
9891 if (!h->def_regular)
9892 {
9893 if (h->verinfo.verdef == NULL
9894 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9895 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9896 iversym.vs_vers = 0;
9897 else
9898 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9899 }
9900 else
9901 {
9902 if (h->verinfo.vertree == NULL)
9903 iversym.vs_vers = 1;
9904 else
9905 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9906 if (flinfo->info->create_default_symver)
9907 iversym.vs_vers++;
9908 }
9909
9910 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9911 defined locally. */
9912 if (h->versioned == versioned_hidden && h->def_regular)
9913 iversym.vs_vers |= VERSYM_HIDDEN;
9914
9915 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9916 eversym += h->dynindx;
9917 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9918 }
9919 }
9920
9921 /* If the symbol is undefined, and we didn't output it to .dynsym,
9922 strip it from .symtab too. Obviously we can't do this for
9923 relocatable output or when needed for --emit-relocs. */
9924 else if (input_sec == bfd_und_section_ptr
9925 && h->indx != -2
9926 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
9927 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
9928 && !bfd_link_relocatable (flinfo->info))
9929 return TRUE;
9930
9931 /* Also strip others that we couldn't earlier due to dynamic symbol
9932 processing. */
9933 if (strip)
9934 return TRUE;
9935 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9936 return TRUE;
9937
9938 /* Output a FILE symbol so that following locals are not associated
9939 with the wrong input file. We need one for forced local symbols
9940 if we've seen more than one FILE symbol or when we have exactly
9941 one FILE symbol but global symbols are present in a file other
9942 than the one with the FILE symbol. We also need one if linker
9943 defined symbols are present. In practice these conditions are
9944 always met, so just emit the FILE symbol unconditionally. */
9945 if (eoinfo->localsyms
9946 && !eoinfo->file_sym_done
9947 && eoinfo->flinfo->filesym_count != 0)
9948 {
9949 Elf_Internal_Sym fsym;
9950
9951 memset (&fsym, 0, sizeof (fsym));
9952 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9953 fsym.st_shndx = SHN_ABS;
9954 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9955 bfd_und_section_ptr, NULL))
9956 return FALSE;
9957
9958 eoinfo->file_sym_done = TRUE;
9959 }
9960
9961 indx = bfd_get_symcount (flinfo->output_bfd);
9962 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9963 input_sec, h);
9964 if (ret == 0)
9965 {
9966 eoinfo->failed = TRUE;
9967 return FALSE;
9968 }
9969 else if (ret == 1)
9970 h->indx = indx;
9971 else if (h->indx == -2)
9972 abort();
9973
9974 return TRUE;
9975 }
9976
9977 /* Return TRUE if special handling is done for relocs in SEC against
9978 symbols defined in discarded sections. */
9979
9980 static bfd_boolean
9981 elf_section_ignore_discarded_relocs (asection *sec)
9982 {
9983 const struct elf_backend_data *bed;
9984
9985 switch (sec->sec_info_type)
9986 {
9987 case SEC_INFO_TYPE_STABS:
9988 case SEC_INFO_TYPE_EH_FRAME:
9989 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9990 return TRUE;
9991 default:
9992 break;
9993 }
9994
9995 bed = get_elf_backend_data (sec->owner);
9996 if (bed->elf_backend_ignore_discarded_relocs != NULL
9997 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9998 return TRUE;
9999
10000 return FALSE;
10001 }
10002
10003 /* Return a mask saying how ld should treat relocations in SEC against
10004 symbols defined in discarded sections. If this function returns
10005 COMPLAIN set, ld will issue a warning message. If this function
10006 returns PRETEND set, and the discarded section was link-once and the
10007 same size as the kept link-once section, ld will pretend that the
10008 symbol was actually defined in the kept section. Otherwise ld will
10009 zero the reloc (at least that is the intent, but some cooperation by
10010 the target dependent code is needed, particularly for REL targets). */
10011
10012 unsigned int
10013 _bfd_elf_default_action_discarded (asection *sec)
10014 {
10015 if (sec->flags & SEC_DEBUGGING)
10016 return PRETEND;
10017
10018 if (strcmp (".eh_frame", sec->name) == 0)
10019 return 0;
10020
10021 if (strcmp (".gcc_except_table", sec->name) == 0)
10022 return 0;
10023
10024 return COMPLAIN | PRETEND;
10025 }
10026
10027 /* Find a match between a section and a member of a section group. */
10028
10029 static asection *
10030 match_group_member (asection *sec, asection *group,
10031 struct bfd_link_info *info)
10032 {
10033 asection *first = elf_next_in_group (group);
10034 asection *s = first;
10035
10036 while (s != NULL)
10037 {
10038 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10039 return s;
10040
10041 s = elf_next_in_group (s);
10042 if (s == first)
10043 break;
10044 }
10045
10046 return NULL;
10047 }
10048
10049 /* Check if the kept section of a discarded section SEC can be used
10050 to replace it. Return the replacement if it is OK. Otherwise return
10051 NULL. */
10052
10053 asection *
10054 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10055 {
10056 asection *kept;
10057
10058 kept = sec->kept_section;
10059 if (kept != NULL)
10060 {
10061 if ((kept->flags & SEC_GROUP) != 0)
10062 kept = match_group_member (sec, kept, info);
10063 if (kept != NULL
10064 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10065 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10066 kept = NULL;
10067 sec->kept_section = kept;
10068 }
10069 return kept;
10070 }
10071
10072 /* Link an input file into the linker output file. This function
10073 handles all the sections and relocations of the input file at once.
10074 This is so that we only have to read the local symbols once, and
10075 don't have to keep them in memory. */
10076
10077 static bfd_boolean
10078 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10079 {
10080 int (*relocate_section)
10081 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10082 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10083 bfd *output_bfd;
10084 Elf_Internal_Shdr *symtab_hdr;
10085 size_t locsymcount;
10086 size_t extsymoff;
10087 Elf_Internal_Sym *isymbuf;
10088 Elf_Internal_Sym *isym;
10089 Elf_Internal_Sym *isymend;
10090 long *pindex;
10091 asection **ppsection;
10092 asection *o;
10093 const struct elf_backend_data *bed;
10094 struct elf_link_hash_entry **sym_hashes;
10095 bfd_size_type address_size;
10096 bfd_vma r_type_mask;
10097 int r_sym_shift;
10098 bfd_boolean have_file_sym = FALSE;
10099
10100 output_bfd = flinfo->output_bfd;
10101 bed = get_elf_backend_data (output_bfd);
10102 relocate_section = bed->elf_backend_relocate_section;
10103
10104 /* If this is a dynamic object, we don't want to do anything here:
10105 we don't want the local symbols, and we don't want the section
10106 contents. */
10107 if ((input_bfd->flags & DYNAMIC) != 0)
10108 return TRUE;
10109
10110 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10111 if (elf_bad_symtab (input_bfd))
10112 {
10113 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10114 extsymoff = 0;
10115 }
10116 else
10117 {
10118 locsymcount = symtab_hdr->sh_info;
10119 extsymoff = symtab_hdr->sh_info;
10120 }
10121
10122 /* Read the local symbols. */
10123 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10124 if (isymbuf == NULL && locsymcount != 0)
10125 {
10126 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10127 flinfo->internal_syms,
10128 flinfo->external_syms,
10129 flinfo->locsym_shndx);
10130 if (isymbuf == NULL)
10131 return FALSE;
10132 }
10133
10134 /* Find local symbol sections and adjust values of symbols in
10135 SEC_MERGE sections. Write out those local symbols we know are
10136 going into the output file. */
10137 isymend = isymbuf + locsymcount;
10138 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10139 isym < isymend;
10140 isym++, pindex++, ppsection++)
10141 {
10142 asection *isec;
10143 const char *name;
10144 Elf_Internal_Sym osym;
10145 long indx;
10146 int ret;
10147
10148 *pindex = -1;
10149
10150 if (elf_bad_symtab (input_bfd))
10151 {
10152 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10153 {
10154 *ppsection = NULL;
10155 continue;
10156 }
10157 }
10158
10159 if (isym->st_shndx == SHN_UNDEF)
10160 isec = bfd_und_section_ptr;
10161 else if (isym->st_shndx == SHN_ABS)
10162 isec = bfd_abs_section_ptr;
10163 else if (isym->st_shndx == SHN_COMMON)
10164 isec = bfd_com_section_ptr;
10165 else
10166 {
10167 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10168 if (isec == NULL)
10169 {
10170 /* Don't attempt to output symbols with st_shnx in the
10171 reserved range other than SHN_ABS and SHN_COMMON. */
10172 *ppsection = NULL;
10173 continue;
10174 }
10175 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10176 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10177 isym->st_value =
10178 _bfd_merged_section_offset (output_bfd, &isec,
10179 elf_section_data (isec)->sec_info,
10180 isym->st_value);
10181 }
10182
10183 *ppsection = isec;
10184
10185 /* Don't output the first, undefined, symbol. In fact, don't
10186 output any undefined local symbol. */
10187 if (isec == bfd_und_section_ptr)
10188 continue;
10189
10190 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10191 {
10192 /* We never output section symbols. Instead, we use the
10193 section symbol of the corresponding section in the output
10194 file. */
10195 continue;
10196 }
10197
10198 /* If we are stripping all symbols, we don't want to output this
10199 one. */
10200 if (flinfo->info->strip == strip_all)
10201 continue;
10202
10203 /* If we are discarding all local symbols, we don't want to
10204 output this one. If we are generating a relocatable output
10205 file, then some of the local symbols may be required by
10206 relocs; we output them below as we discover that they are
10207 needed. */
10208 if (flinfo->info->discard == discard_all)
10209 continue;
10210
10211 /* If this symbol is defined in a section which we are
10212 discarding, we don't need to keep it. */
10213 if (isym->st_shndx != SHN_UNDEF
10214 && isym->st_shndx < SHN_LORESERVE
10215 && bfd_section_removed_from_list (output_bfd,
10216 isec->output_section))
10217 continue;
10218
10219 /* Get the name of the symbol. */
10220 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10221 isym->st_name);
10222 if (name == NULL)
10223 return FALSE;
10224
10225 /* See if we are discarding symbols with this name. */
10226 if ((flinfo->info->strip == strip_some
10227 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10228 == NULL))
10229 || (((flinfo->info->discard == discard_sec_merge
10230 && (isec->flags & SEC_MERGE)
10231 && !bfd_link_relocatable (flinfo->info))
10232 || flinfo->info->discard == discard_l)
10233 && bfd_is_local_label_name (input_bfd, name)))
10234 continue;
10235
10236 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10237 {
10238 if (input_bfd->lto_output)
10239 /* -flto puts a temp file name here. This means builds
10240 are not reproducible. Discard the symbol. */
10241 continue;
10242 have_file_sym = TRUE;
10243 flinfo->filesym_count += 1;
10244 }
10245 if (!have_file_sym)
10246 {
10247 /* In the absence of debug info, bfd_find_nearest_line uses
10248 FILE symbols to determine the source file for local
10249 function symbols. Provide a FILE symbol here if input
10250 files lack such, so that their symbols won't be
10251 associated with a previous input file. It's not the
10252 source file, but the best we can do. */
10253 have_file_sym = TRUE;
10254 flinfo->filesym_count += 1;
10255 memset (&osym, 0, sizeof (osym));
10256 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10257 osym.st_shndx = SHN_ABS;
10258 if (!elf_link_output_symstrtab (flinfo,
10259 (input_bfd->lto_output ? NULL
10260 : input_bfd->filename),
10261 &osym, bfd_abs_section_ptr,
10262 NULL))
10263 return FALSE;
10264 }
10265
10266 osym = *isym;
10267
10268 /* Adjust the section index for the output file. */
10269 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10270 isec->output_section);
10271 if (osym.st_shndx == SHN_BAD)
10272 return FALSE;
10273
10274 /* ELF symbols in relocatable files are section relative, but
10275 in executable files they are virtual addresses. Note that
10276 this code assumes that all ELF sections have an associated
10277 BFD section with a reasonable value for output_offset; below
10278 we assume that they also have a reasonable value for
10279 output_section. Any special sections must be set up to meet
10280 these requirements. */
10281 osym.st_value += isec->output_offset;
10282 if (!bfd_link_relocatable (flinfo->info))
10283 {
10284 osym.st_value += isec->output_section->vma;
10285 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10286 {
10287 /* STT_TLS symbols are relative to PT_TLS segment base. */
10288 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10289 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10290 }
10291 }
10292
10293 indx = bfd_get_symcount (output_bfd);
10294 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10295 if (ret == 0)
10296 return FALSE;
10297 else if (ret == 1)
10298 *pindex = indx;
10299 }
10300
10301 if (bed->s->arch_size == 32)
10302 {
10303 r_type_mask = 0xff;
10304 r_sym_shift = 8;
10305 address_size = 4;
10306 }
10307 else
10308 {
10309 r_type_mask = 0xffffffff;
10310 r_sym_shift = 32;
10311 address_size = 8;
10312 }
10313
10314 /* Relocate the contents of each section. */
10315 sym_hashes = elf_sym_hashes (input_bfd);
10316 for (o = input_bfd->sections; o != NULL; o = o->next)
10317 {
10318 bfd_byte *contents;
10319
10320 if (! o->linker_mark)
10321 {
10322 /* This section was omitted from the link. */
10323 continue;
10324 }
10325
10326 if (!flinfo->info->resolve_section_groups
10327 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10328 {
10329 /* Deal with the group signature symbol. */
10330 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10331 unsigned long symndx = sec_data->this_hdr.sh_info;
10332 asection *osec = o->output_section;
10333
10334 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10335 if (symndx >= locsymcount
10336 || (elf_bad_symtab (input_bfd)
10337 && flinfo->sections[symndx] == NULL))
10338 {
10339 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10340 while (h->root.type == bfd_link_hash_indirect
10341 || h->root.type == bfd_link_hash_warning)
10342 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10343 /* Arrange for symbol to be output. */
10344 h->indx = -2;
10345 elf_section_data (osec)->this_hdr.sh_info = -2;
10346 }
10347 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10348 {
10349 /* We'll use the output section target_index. */
10350 asection *sec = flinfo->sections[symndx]->output_section;
10351 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10352 }
10353 else
10354 {
10355 if (flinfo->indices[symndx] == -1)
10356 {
10357 /* Otherwise output the local symbol now. */
10358 Elf_Internal_Sym sym = isymbuf[symndx];
10359 asection *sec = flinfo->sections[symndx]->output_section;
10360 const char *name;
10361 long indx;
10362 int ret;
10363
10364 name = bfd_elf_string_from_elf_section (input_bfd,
10365 symtab_hdr->sh_link,
10366 sym.st_name);
10367 if (name == NULL)
10368 return FALSE;
10369
10370 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10371 sec);
10372 if (sym.st_shndx == SHN_BAD)
10373 return FALSE;
10374
10375 sym.st_value += o->output_offset;
10376
10377 indx = bfd_get_symcount (output_bfd);
10378 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10379 NULL);
10380 if (ret == 0)
10381 return FALSE;
10382 else if (ret == 1)
10383 flinfo->indices[symndx] = indx;
10384 else
10385 abort ();
10386 }
10387 elf_section_data (osec)->this_hdr.sh_info
10388 = flinfo->indices[symndx];
10389 }
10390 }
10391
10392 if ((o->flags & SEC_HAS_CONTENTS) == 0
10393 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10394 continue;
10395
10396 if ((o->flags & SEC_LINKER_CREATED) != 0)
10397 {
10398 /* Section was created by _bfd_elf_link_create_dynamic_sections
10399 or somesuch. */
10400 continue;
10401 }
10402
10403 /* Get the contents of the section. They have been cached by a
10404 relaxation routine. Note that o is a section in an input
10405 file, so the contents field will not have been set by any of
10406 the routines which work on output files. */
10407 if (elf_section_data (o)->this_hdr.contents != NULL)
10408 {
10409 contents = elf_section_data (o)->this_hdr.contents;
10410 if (bed->caches_rawsize
10411 && o->rawsize != 0
10412 && o->rawsize < o->size)
10413 {
10414 memcpy (flinfo->contents, contents, o->rawsize);
10415 contents = flinfo->contents;
10416 }
10417 }
10418 else
10419 {
10420 contents = flinfo->contents;
10421 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10422 return FALSE;
10423 }
10424
10425 if ((o->flags & SEC_RELOC) != 0)
10426 {
10427 Elf_Internal_Rela *internal_relocs;
10428 Elf_Internal_Rela *rel, *relend;
10429 int action_discarded;
10430 int ret;
10431
10432 /* Get the swapped relocs. */
10433 internal_relocs
10434 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10435 flinfo->internal_relocs, FALSE);
10436 if (internal_relocs == NULL
10437 && o->reloc_count > 0)
10438 return FALSE;
10439
10440 /* We need to reverse-copy input .ctors/.dtors sections if
10441 they are placed in .init_array/.finit_array for output. */
10442 if (o->size > address_size
10443 && ((strncmp (o->name, ".ctors", 6) == 0
10444 && strcmp (o->output_section->name,
10445 ".init_array") == 0)
10446 || (strncmp (o->name, ".dtors", 6) == 0
10447 && strcmp (o->output_section->name,
10448 ".fini_array") == 0))
10449 && (o->name[6] == 0 || o->name[6] == '.'))
10450 {
10451 if (o->size * bed->s->int_rels_per_ext_rel
10452 != o->reloc_count * address_size)
10453 {
10454 _bfd_error_handler
10455 /* xgettext:c-format */
10456 (_("error: %B: size of section %A is not "
10457 "multiple of address size"),
10458 input_bfd, o);
10459 bfd_set_error (bfd_error_bad_value);
10460 return FALSE;
10461 }
10462 o->flags |= SEC_ELF_REVERSE_COPY;
10463 }
10464
10465 action_discarded = -1;
10466 if (!elf_section_ignore_discarded_relocs (o))
10467 action_discarded = (*bed->action_discarded) (o);
10468
10469 /* Run through the relocs evaluating complex reloc symbols and
10470 looking for relocs against symbols from discarded sections
10471 or section symbols from removed link-once sections.
10472 Complain about relocs against discarded sections. Zero
10473 relocs against removed link-once sections. */
10474
10475 rel = internal_relocs;
10476 relend = rel + o->reloc_count;
10477 for ( ; rel < relend; rel++)
10478 {
10479 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10480 unsigned int s_type;
10481 asection **ps, *sec;
10482 struct elf_link_hash_entry *h = NULL;
10483 const char *sym_name;
10484
10485 if (r_symndx == STN_UNDEF)
10486 continue;
10487
10488 if (r_symndx >= locsymcount
10489 || (elf_bad_symtab (input_bfd)
10490 && flinfo->sections[r_symndx] == NULL))
10491 {
10492 h = sym_hashes[r_symndx - extsymoff];
10493
10494 /* Badly formatted input files can contain relocs that
10495 reference non-existant symbols. Check here so that
10496 we do not seg fault. */
10497 if (h == NULL)
10498 {
10499 _bfd_error_handler
10500 /* xgettext:c-format */
10501 (_("error: %B contains a reloc (%#Lx) for section %A "
10502 "that references a non-existent global symbol"),
10503 input_bfd, rel->r_info, o);
10504 bfd_set_error (bfd_error_bad_value);
10505 return FALSE;
10506 }
10507
10508 while (h->root.type == bfd_link_hash_indirect
10509 || h->root.type == bfd_link_hash_warning)
10510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10511
10512 s_type = h->type;
10513
10514 /* If a plugin symbol is referenced from a non-IR file,
10515 mark the symbol as undefined. Note that the
10516 linker may attach linker created dynamic sections
10517 to the plugin bfd. Symbols defined in linker
10518 created sections are not plugin symbols. */
10519 if ((h->root.non_ir_ref_regular
10520 || h->root.non_ir_ref_dynamic)
10521 && (h->root.type == bfd_link_hash_defined
10522 || h->root.type == bfd_link_hash_defweak)
10523 && (h->root.u.def.section->flags
10524 & SEC_LINKER_CREATED) == 0
10525 && h->root.u.def.section->owner != NULL
10526 && (h->root.u.def.section->owner->flags
10527 & BFD_PLUGIN) != 0)
10528 {
10529 h->root.type = bfd_link_hash_undefined;
10530 h->root.u.undef.abfd = h->root.u.def.section->owner;
10531 }
10532
10533 ps = NULL;
10534 if (h->root.type == bfd_link_hash_defined
10535 || h->root.type == bfd_link_hash_defweak)
10536 ps = &h->root.u.def.section;
10537
10538 sym_name = h->root.root.string;
10539 }
10540 else
10541 {
10542 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10543
10544 s_type = ELF_ST_TYPE (sym->st_info);
10545 ps = &flinfo->sections[r_symndx];
10546 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10547 sym, *ps);
10548 }
10549
10550 if ((s_type == STT_RELC || s_type == STT_SRELC)
10551 && !bfd_link_relocatable (flinfo->info))
10552 {
10553 bfd_vma val;
10554 bfd_vma dot = (rel->r_offset
10555 + o->output_offset + o->output_section->vma);
10556 #ifdef DEBUG
10557 printf ("Encountered a complex symbol!");
10558 printf (" (input_bfd %s, section %s, reloc %ld\n",
10559 input_bfd->filename, o->name,
10560 (long) (rel - internal_relocs));
10561 printf (" symbol: idx %8.8lx, name %s\n",
10562 r_symndx, sym_name);
10563 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10564 (unsigned long) rel->r_info,
10565 (unsigned long) rel->r_offset);
10566 #endif
10567 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10568 isymbuf, locsymcount, s_type == STT_SRELC))
10569 return FALSE;
10570
10571 /* Symbol evaluated OK. Update to absolute value. */
10572 set_symbol_value (input_bfd, isymbuf, locsymcount,
10573 r_symndx, val);
10574 continue;
10575 }
10576
10577 if (action_discarded != -1 && ps != NULL)
10578 {
10579 /* Complain if the definition comes from a
10580 discarded section. */
10581 if ((sec = *ps) != NULL && discarded_section (sec))
10582 {
10583 BFD_ASSERT (r_symndx != STN_UNDEF);
10584 if (action_discarded & COMPLAIN)
10585 (*flinfo->info->callbacks->einfo)
10586 /* xgettext:c-format */
10587 (_("%X`%s' referenced in section `%A' of %B: "
10588 "defined in discarded section `%A' of %B\n"),
10589 sym_name, o, input_bfd, sec, sec->owner);
10590
10591 /* Try to do the best we can to support buggy old
10592 versions of gcc. Pretend that the symbol is
10593 really defined in the kept linkonce section.
10594 FIXME: This is quite broken. Modifying the
10595 symbol here means we will be changing all later
10596 uses of the symbol, not just in this section. */
10597 if (action_discarded & PRETEND)
10598 {
10599 asection *kept;
10600
10601 kept = _bfd_elf_check_kept_section (sec,
10602 flinfo->info);
10603 if (kept != NULL)
10604 {
10605 *ps = kept;
10606 continue;
10607 }
10608 }
10609 }
10610 }
10611 }
10612
10613 /* Relocate the section by invoking a back end routine.
10614
10615 The back end routine is responsible for adjusting the
10616 section contents as necessary, and (if using Rela relocs
10617 and generating a relocatable output file) adjusting the
10618 reloc addend as necessary.
10619
10620 The back end routine does not have to worry about setting
10621 the reloc address or the reloc symbol index.
10622
10623 The back end routine is given a pointer to the swapped in
10624 internal symbols, and can access the hash table entries
10625 for the external symbols via elf_sym_hashes (input_bfd).
10626
10627 When generating relocatable output, the back end routine
10628 must handle STB_LOCAL/STT_SECTION symbols specially. The
10629 output symbol is going to be a section symbol
10630 corresponding to the output section, which will require
10631 the addend to be adjusted. */
10632
10633 ret = (*relocate_section) (output_bfd, flinfo->info,
10634 input_bfd, o, contents,
10635 internal_relocs,
10636 isymbuf,
10637 flinfo->sections);
10638 if (!ret)
10639 return FALSE;
10640
10641 if (ret == 2
10642 || bfd_link_relocatable (flinfo->info)
10643 || flinfo->info->emitrelocations)
10644 {
10645 Elf_Internal_Rela *irela;
10646 Elf_Internal_Rela *irelaend, *irelamid;
10647 bfd_vma last_offset;
10648 struct elf_link_hash_entry **rel_hash;
10649 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10650 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10651 unsigned int next_erel;
10652 bfd_boolean rela_normal;
10653 struct bfd_elf_section_data *esdi, *esdo;
10654
10655 esdi = elf_section_data (o);
10656 esdo = elf_section_data (o->output_section);
10657 rela_normal = FALSE;
10658
10659 /* Adjust the reloc addresses and symbol indices. */
10660
10661 irela = internal_relocs;
10662 irelaend = irela + o->reloc_count;
10663 rel_hash = esdo->rel.hashes + esdo->rel.count;
10664 /* We start processing the REL relocs, if any. When we reach
10665 IRELAMID in the loop, we switch to the RELA relocs. */
10666 irelamid = irela;
10667 if (esdi->rel.hdr != NULL)
10668 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10669 * bed->s->int_rels_per_ext_rel);
10670 rel_hash_list = rel_hash;
10671 rela_hash_list = NULL;
10672 last_offset = o->output_offset;
10673 if (!bfd_link_relocatable (flinfo->info))
10674 last_offset += o->output_section->vma;
10675 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10676 {
10677 unsigned long r_symndx;
10678 asection *sec;
10679 Elf_Internal_Sym sym;
10680
10681 if (next_erel == bed->s->int_rels_per_ext_rel)
10682 {
10683 rel_hash++;
10684 next_erel = 0;
10685 }
10686
10687 if (irela == irelamid)
10688 {
10689 rel_hash = esdo->rela.hashes + esdo->rela.count;
10690 rela_hash_list = rel_hash;
10691 rela_normal = bed->rela_normal;
10692 }
10693
10694 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10695 flinfo->info, o,
10696 irela->r_offset);
10697 if (irela->r_offset >= (bfd_vma) -2)
10698 {
10699 /* This is a reloc for a deleted entry or somesuch.
10700 Turn it into an R_*_NONE reloc, at the same
10701 offset as the last reloc. elf_eh_frame.c and
10702 bfd_elf_discard_info rely on reloc offsets
10703 being ordered. */
10704 irela->r_offset = last_offset;
10705 irela->r_info = 0;
10706 irela->r_addend = 0;
10707 continue;
10708 }
10709
10710 irela->r_offset += o->output_offset;
10711
10712 /* Relocs in an executable have to be virtual addresses. */
10713 if (!bfd_link_relocatable (flinfo->info))
10714 irela->r_offset += o->output_section->vma;
10715
10716 last_offset = irela->r_offset;
10717
10718 r_symndx = irela->r_info >> r_sym_shift;
10719 if (r_symndx == STN_UNDEF)
10720 continue;
10721
10722 if (r_symndx >= locsymcount
10723 || (elf_bad_symtab (input_bfd)
10724 && flinfo->sections[r_symndx] == NULL))
10725 {
10726 struct elf_link_hash_entry *rh;
10727 unsigned long indx;
10728
10729 /* This is a reloc against a global symbol. We
10730 have not yet output all the local symbols, so
10731 we do not know the symbol index of any global
10732 symbol. We set the rel_hash entry for this
10733 reloc to point to the global hash table entry
10734 for this symbol. The symbol index is then
10735 set at the end of bfd_elf_final_link. */
10736 indx = r_symndx - extsymoff;
10737 rh = elf_sym_hashes (input_bfd)[indx];
10738 while (rh->root.type == bfd_link_hash_indirect
10739 || rh->root.type == bfd_link_hash_warning)
10740 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10741
10742 /* Setting the index to -2 tells
10743 elf_link_output_extsym that this symbol is
10744 used by a reloc. */
10745 BFD_ASSERT (rh->indx < 0);
10746 rh->indx = -2;
10747 *rel_hash = rh;
10748
10749 continue;
10750 }
10751
10752 /* This is a reloc against a local symbol. */
10753
10754 *rel_hash = NULL;
10755 sym = isymbuf[r_symndx];
10756 sec = flinfo->sections[r_symndx];
10757 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10758 {
10759 /* I suppose the backend ought to fill in the
10760 section of any STT_SECTION symbol against a
10761 processor specific section. */
10762 r_symndx = STN_UNDEF;
10763 if (bfd_is_abs_section (sec))
10764 ;
10765 else if (sec == NULL || sec->owner == NULL)
10766 {
10767 bfd_set_error (bfd_error_bad_value);
10768 return FALSE;
10769 }
10770 else
10771 {
10772 asection *osec = sec->output_section;
10773
10774 /* If we have discarded a section, the output
10775 section will be the absolute section. In
10776 case of discarded SEC_MERGE sections, use
10777 the kept section. relocate_section should
10778 have already handled discarded linkonce
10779 sections. */
10780 if (bfd_is_abs_section (osec)
10781 && sec->kept_section != NULL
10782 && sec->kept_section->output_section != NULL)
10783 {
10784 osec = sec->kept_section->output_section;
10785 irela->r_addend -= osec->vma;
10786 }
10787
10788 if (!bfd_is_abs_section (osec))
10789 {
10790 r_symndx = osec->target_index;
10791 if (r_symndx == STN_UNDEF)
10792 {
10793 irela->r_addend += osec->vma;
10794 osec = _bfd_nearby_section (output_bfd, osec,
10795 osec->vma);
10796 irela->r_addend -= osec->vma;
10797 r_symndx = osec->target_index;
10798 }
10799 }
10800 }
10801
10802 /* Adjust the addend according to where the
10803 section winds up in the output section. */
10804 if (rela_normal)
10805 irela->r_addend += sec->output_offset;
10806 }
10807 else
10808 {
10809 if (flinfo->indices[r_symndx] == -1)
10810 {
10811 unsigned long shlink;
10812 const char *name;
10813 asection *osec;
10814 long indx;
10815
10816 if (flinfo->info->strip == strip_all)
10817 {
10818 /* You can't do ld -r -s. */
10819 bfd_set_error (bfd_error_invalid_operation);
10820 return FALSE;
10821 }
10822
10823 /* This symbol was skipped earlier, but
10824 since it is needed by a reloc, we
10825 must output it now. */
10826 shlink = symtab_hdr->sh_link;
10827 name = (bfd_elf_string_from_elf_section
10828 (input_bfd, shlink, sym.st_name));
10829 if (name == NULL)
10830 return FALSE;
10831
10832 osec = sec->output_section;
10833 sym.st_shndx =
10834 _bfd_elf_section_from_bfd_section (output_bfd,
10835 osec);
10836 if (sym.st_shndx == SHN_BAD)
10837 return FALSE;
10838
10839 sym.st_value += sec->output_offset;
10840 if (!bfd_link_relocatable (flinfo->info))
10841 {
10842 sym.st_value += osec->vma;
10843 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10844 {
10845 /* STT_TLS symbols are relative to PT_TLS
10846 segment base. */
10847 BFD_ASSERT (elf_hash_table (flinfo->info)
10848 ->tls_sec != NULL);
10849 sym.st_value -= (elf_hash_table (flinfo->info)
10850 ->tls_sec->vma);
10851 }
10852 }
10853
10854 indx = bfd_get_symcount (output_bfd);
10855 ret = elf_link_output_symstrtab (flinfo, name,
10856 &sym, sec,
10857 NULL);
10858 if (ret == 0)
10859 return FALSE;
10860 else if (ret == 1)
10861 flinfo->indices[r_symndx] = indx;
10862 else
10863 abort ();
10864 }
10865
10866 r_symndx = flinfo->indices[r_symndx];
10867 }
10868
10869 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10870 | (irela->r_info & r_type_mask));
10871 }
10872
10873 /* Swap out the relocs. */
10874 input_rel_hdr = esdi->rel.hdr;
10875 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10876 {
10877 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10878 input_rel_hdr,
10879 internal_relocs,
10880 rel_hash_list))
10881 return FALSE;
10882 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10883 * bed->s->int_rels_per_ext_rel);
10884 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10885 }
10886
10887 input_rela_hdr = esdi->rela.hdr;
10888 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10889 {
10890 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10891 input_rela_hdr,
10892 internal_relocs,
10893 rela_hash_list))
10894 return FALSE;
10895 }
10896 }
10897 }
10898
10899 /* Write out the modified section contents. */
10900 if (bed->elf_backend_write_section
10901 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10902 contents))
10903 {
10904 /* Section written out. */
10905 }
10906 else switch (o->sec_info_type)
10907 {
10908 case SEC_INFO_TYPE_STABS:
10909 if (! (_bfd_write_section_stabs
10910 (output_bfd,
10911 &elf_hash_table (flinfo->info)->stab_info,
10912 o, &elf_section_data (o)->sec_info, contents)))
10913 return FALSE;
10914 break;
10915 case SEC_INFO_TYPE_MERGE:
10916 if (! _bfd_write_merged_section (output_bfd, o,
10917 elf_section_data (o)->sec_info))
10918 return FALSE;
10919 break;
10920 case SEC_INFO_TYPE_EH_FRAME:
10921 {
10922 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10923 o, contents))
10924 return FALSE;
10925 }
10926 break;
10927 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10928 {
10929 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10930 flinfo->info,
10931 o, contents))
10932 return FALSE;
10933 }
10934 break;
10935 default:
10936 {
10937 if (! (o->flags & SEC_EXCLUDE))
10938 {
10939 file_ptr offset = (file_ptr) o->output_offset;
10940 bfd_size_type todo = o->size;
10941
10942 offset *= bfd_octets_per_byte (output_bfd);
10943
10944 if ((o->flags & SEC_ELF_REVERSE_COPY))
10945 {
10946 /* Reverse-copy input section to output. */
10947 do
10948 {
10949 todo -= address_size;
10950 if (! bfd_set_section_contents (output_bfd,
10951 o->output_section,
10952 contents + todo,
10953 offset,
10954 address_size))
10955 return FALSE;
10956 if (todo == 0)
10957 break;
10958 offset += address_size;
10959 }
10960 while (1);
10961 }
10962 else if (! bfd_set_section_contents (output_bfd,
10963 o->output_section,
10964 contents,
10965 offset, todo))
10966 return FALSE;
10967 }
10968 }
10969 break;
10970 }
10971 }
10972
10973 return TRUE;
10974 }
10975
10976 /* Generate a reloc when linking an ELF file. This is a reloc
10977 requested by the linker, and does not come from any input file. This
10978 is used to build constructor and destructor tables when linking
10979 with -Ur. */
10980
10981 static bfd_boolean
10982 elf_reloc_link_order (bfd *output_bfd,
10983 struct bfd_link_info *info,
10984 asection *output_section,
10985 struct bfd_link_order *link_order)
10986 {
10987 reloc_howto_type *howto;
10988 long indx;
10989 bfd_vma offset;
10990 bfd_vma addend;
10991 struct bfd_elf_section_reloc_data *reldata;
10992 struct elf_link_hash_entry **rel_hash_ptr;
10993 Elf_Internal_Shdr *rel_hdr;
10994 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10995 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10996 bfd_byte *erel;
10997 unsigned int i;
10998 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10999
11000 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11001 if (howto == NULL)
11002 {
11003 bfd_set_error (bfd_error_bad_value);
11004 return FALSE;
11005 }
11006
11007 addend = link_order->u.reloc.p->addend;
11008
11009 if (esdo->rel.hdr)
11010 reldata = &esdo->rel;
11011 else if (esdo->rela.hdr)
11012 reldata = &esdo->rela;
11013 else
11014 {
11015 reldata = NULL;
11016 BFD_ASSERT (0);
11017 }
11018
11019 /* Figure out the symbol index. */
11020 rel_hash_ptr = reldata->hashes + reldata->count;
11021 if (link_order->type == bfd_section_reloc_link_order)
11022 {
11023 indx = link_order->u.reloc.p->u.section->target_index;
11024 BFD_ASSERT (indx != 0);
11025 *rel_hash_ptr = NULL;
11026 }
11027 else
11028 {
11029 struct elf_link_hash_entry *h;
11030
11031 /* Treat a reloc against a defined symbol as though it were
11032 actually against the section. */
11033 h = ((struct elf_link_hash_entry *)
11034 bfd_wrapped_link_hash_lookup (output_bfd, info,
11035 link_order->u.reloc.p->u.name,
11036 FALSE, FALSE, TRUE));
11037 if (h != NULL
11038 && (h->root.type == bfd_link_hash_defined
11039 || h->root.type == bfd_link_hash_defweak))
11040 {
11041 asection *section;
11042
11043 section = h->root.u.def.section;
11044 indx = section->output_section->target_index;
11045 *rel_hash_ptr = NULL;
11046 /* It seems that we ought to add the symbol value to the
11047 addend here, but in practice it has already been added
11048 because it was passed to constructor_callback. */
11049 addend += section->output_section->vma + section->output_offset;
11050 }
11051 else if (h != NULL)
11052 {
11053 /* Setting the index to -2 tells elf_link_output_extsym that
11054 this symbol is used by a reloc. */
11055 h->indx = -2;
11056 *rel_hash_ptr = h;
11057 indx = 0;
11058 }
11059 else
11060 {
11061 (*info->callbacks->unattached_reloc)
11062 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11063 indx = 0;
11064 }
11065 }
11066
11067 /* If this is an inplace reloc, we must write the addend into the
11068 object file. */
11069 if (howto->partial_inplace && addend != 0)
11070 {
11071 bfd_size_type size;
11072 bfd_reloc_status_type rstat;
11073 bfd_byte *buf;
11074 bfd_boolean ok;
11075 const char *sym_name;
11076
11077 size = (bfd_size_type) bfd_get_reloc_size (howto);
11078 buf = (bfd_byte *) bfd_zmalloc (size);
11079 if (buf == NULL && size != 0)
11080 return FALSE;
11081 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11082 switch (rstat)
11083 {
11084 case bfd_reloc_ok:
11085 break;
11086
11087 default:
11088 case bfd_reloc_outofrange:
11089 abort ();
11090
11091 case bfd_reloc_overflow:
11092 if (link_order->type == bfd_section_reloc_link_order)
11093 sym_name = bfd_section_name (output_bfd,
11094 link_order->u.reloc.p->u.section);
11095 else
11096 sym_name = link_order->u.reloc.p->u.name;
11097 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11098 howto->name, addend, NULL, NULL,
11099 (bfd_vma) 0);
11100 break;
11101 }
11102
11103 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11104 link_order->offset
11105 * bfd_octets_per_byte (output_bfd),
11106 size);
11107 free (buf);
11108 if (! ok)
11109 return FALSE;
11110 }
11111
11112 /* The address of a reloc is relative to the section in a
11113 relocatable file, and is a virtual address in an executable
11114 file. */
11115 offset = link_order->offset;
11116 if (! bfd_link_relocatable (info))
11117 offset += output_section->vma;
11118
11119 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11120 {
11121 irel[i].r_offset = offset;
11122 irel[i].r_info = 0;
11123 irel[i].r_addend = 0;
11124 }
11125 if (bed->s->arch_size == 32)
11126 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11127 else
11128 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11129
11130 rel_hdr = reldata->hdr;
11131 erel = rel_hdr->contents;
11132 if (rel_hdr->sh_type == SHT_REL)
11133 {
11134 erel += reldata->count * bed->s->sizeof_rel;
11135 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11136 }
11137 else
11138 {
11139 irel[0].r_addend = addend;
11140 erel += reldata->count * bed->s->sizeof_rela;
11141 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11142 }
11143
11144 ++reldata->count;
11145
11146 return TRUE;
11147 }
11148
11149
11150 /* Get the output vma of the section pointed to by the sh_link field. */
11151
11152 static bfd_vma
11153 elf_get_linked_section_vma (struct bfd_link_order *p)
11154 {
11155 Elf_Internal_Shdr **elf_shdrp;
11156 asection *s;
11157 int elfsec;
11158
11159 s = p->u.indirect.section;
11160 elf_shdrp = elf_elfsections (s->owner);
11161 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11162 elfsec = elf_shdrp[elfsec]->sh_link;
11163 /* PR 290:
11164 The Intel C compiler generates SHT_IA_64_UNWIND with
11165 SHF_LINK_ORDER. But it doesn't set the sh_link or
11166 sh_info fields. Hence we could get the situation
11167 where elfsec is 0. */
11168 if (elfsec == 0)
11169 {
11170 const struct elf_backend_data *bed
11171 = get_elf_backend_data (s->owner);
11172 if (bed->link_order_error_handler)
11173 bed->link_order_error_handler
11174 /* xgettext:c-format */
11175 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11176 return 0;
11177 }
11178 else
11179 {
11180 s = elf_shdrp[elfsec]->bfd_section;
11181 return s->output_section->vma + s->output_offset;
11182 }
11183 }
11184
11185
11186 /* Compare two sections based on the locations of the sections they are
11187 linked to. Used by elf_fixup_link_order. */
11188
11189 static int
11190 compare_link_order (const void * a, const void * b)
11191 {
11192 bfd_vma apos;
11193 bfd_vma bpos;
11194
11195 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11196 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11197 if (apos < bpos)
11198 return -1;
11199 return apos > bpos;
11200 }
11201
11202
11203 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11204 order as their linked sections. Returns false if this could not be done
11205 because an output section includes both ordered and unordered
11206 sections. Ideally we'd do this in the linker proper. */
11207
11208 static bfd_boolean
11209 elf_fixup_link_order (bfd *abfd, asection *o)
11210 {
11211 int seen_linkorder;
11212 int seen_other;
11213 int n;
11214 struct bfd_link_order *p;
11215 bfd *sub;
11216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11217 unsigned elfsec;
11218 struct bfd_link_order **sections;
11219 asection *s, *other_sec, *linkorder_sec;
11220 bfd_vma offset;
11221
11222 other_sec = NULL;
11223 linkorder_sec = NULL;
11224 seen_other = 0;
11225 seen_linkorder = 0;
11226 for (p = o->map_head.link_order; p != NULL; p = p->next)
11227 {
11228 if (p->type == bfd_indirect_link_order)
11229 {
11230 s = p->u.indirect.section;
11231 sub = s->owner;
11232 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11233 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11234 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11235 && elfsec < elf_numsections (sub)
11236 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11237 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11238 {
11239 seen_linkorder++;
11240 linkorder_sec = s;
11241 }
11242 else
11243 {
11244 seen_other++;
11245 other_sec = s;
11246 }
11247 }
11248 else
11249 seen_other++;
11250
11251 if (seen_other && seen_linkorder)
11252 {
11253 if (other_sec && linkorder_sec)
11254 _bfd_error_handler
11255 /* xgettext:c-format */
11256 (_("%A has both ordered [`%A' in %B] "
11257 "and unordered [`%A' in %B] sections"),
11258 o, linkorder_sec, linkorder_sec->owner,
11259 other_sec, other_sec->owner);
11260 else
11261 _bfd_error_handler
11262 (_("%A has both ordered and unordered sections"), o);
11263 bfd_set_error (bfd_error_bad_value);
11264 return FALSE;
11265 }
11266 }
11267
11268 if (!seen_linkorder)
11269 return TRUE;
11270
11271 sections = (struct bfd_link_order **)
11272 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11273 if (sections == NULL)
11274 return FALSE;
11275 seen_linkorder = 0;
11276
11277 for (p = o->map_head.link_order; p != NULL; p = p->next)
11278 {
11279 sections[seen_linkorder++] = p;
11280 }
11281 /* Sort the input sections in the order of their linked section. */
11282 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11283 compare_link_order);
11284
11285 /* Change the offsets of the sections. */
11286 offset = 0;
11287 for (n = 0; n < seen_linkorder; n++)
11288 {
11289 s = sections[n]->u.indirect.section;
11290 offset &= ~(bfd_vma) 0 << s->alignment_power;
11291 s->output_offset = offset / bfd_octets_per_byte (abfd);
11292 sections[n]->offset = offset;
11293 offset += sections[n]->size;
11294 }
11295
11296 free (sections);
11297 return TRUE;
11298 }
11299
11300 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11301 Returns TRUE upon success, FALSE otherwise. */
11302
11303 static bfd_boolean
11304 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11305 {
11306 bfd_boolean ret = FALSE;
11307 bfd *implib_bfd;
11308 const struct elf_backend_data *bed;
11309 flagword flags;
11310 enum bfd_architecture arch;
11311 unsigned int mach;
11312 asymbol **sympp = NULL;
11313 long symsize;
11314 long symcount;
11315 long src_count;
11316 elf_symbol_type *osymbuf;
11317
11318 implib_bfd = info->out_implib_bfd;
11319 bed = get_elf_backend_data (abfd);
11320
11321 if (!bfd_set_format (implib_bfd, bfd_object))
11322 return FALSE;
11323
11324 /* Use flag from executable but make it a relocatable object. */
11325 flags = bfd_get_file_flags (abfd);
11326 flags &= ~HAS_RELOC;
11327 if (!bfd_set_start_address (implib_bfd, 0)
11328 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11329 return FALSE;
11330
11331 /* Copy architecture of output file to import library file. */
11332 arch = bfd_get_arch (abfd);
11333 mach = bfd_get_mach (abfd);
11334 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11335 && (abfd->target_defaulted
11336 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11337 return FALSE;
11338
11339 /* Get symbol table size. */
11340 symsize = bfd_get_symtab_upper_bound (abfd);
11341 if (symsize < 0)
11342 return FALSE;
11343
11344 /* Read in the symbol table. */
11345 sympp = (asymbol **) xmalloc (symsize);
11346 symcount = bfd_canonicalize_symtab (abfd, sympp);
11347 if (symcount < 0)
11348 goto free_sym_buf;
11349
11350 /* Allow the BFD backend to copy any private header data it
11351 understands from the output BFD to the import library BFD. */
11352 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11353 goto free_sym_buf;
11354
11355 /* Filter symbols to appear in the import library. */
11356 if (bed->elf_backend_filter_implib_symbols)
11357 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11358 symcount);
11359 else
11360 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11361 if (symcount == 0)
11362 {
11363 bfd_set_error (bfd_error_no_symbols);
11364 _bfd_error_handler (_("%B: no symbol found for import library"),
11365 implib_bfd);
11366 goto free_sym_buf;
11367 }
11368
11369
11370 /* Make symbols absolute. */
11371 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11372 sizeof (*osymbuf));
11373 for (src_count = 0; src_count < symcount; src_count++)
11374 {
11375 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11376 sizeof (*osymbuf));
11377 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11378 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11379 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11380 osymbuf[src_count].internal_elf_sym.st_value =
11381 osymbuf[src_count].symbol.value;
11382 sympp[src_count] = &osymbuf[src_count].symbol;
11383 }
11384
11385 bfd_set_symtab (implib_bfd, sympp, symcount);
11386
11387 /* Allow the BFD backend to copy any private data it understands
11388 from the output BFD to the import library BFD. This is done last
11389 to permit the routine to look at the filtered symbol table. */
11390 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11391 goto free_sym_buf;
11392
11393 if (!bfd_close (implib_bfd))
11394 goto free_sym_buf;
11395
11396 ret = TRUE;
11397
11398 free_sym_buf:
11399 free (sympp);
11400 return ret;
11401 }
11402
11403 static void
11404 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11405 {
11406 asection *o;
11407
11408 if (flinfo->symstrtab != NULL)
11409 _bfd_elf_strtab_free (flinfo->symstrtab);
11410 if (flinfo->contents != NULL)
11411 free (flinfo->contents);
11412 if (flinfo->external_relocs != NULL)
11413 free (flinfo->external_relocs);
11414 if (flinfo->internal_relocs != NULL)
11415 free (flinfo->internal_relocs);
11416 if (flinfo->external_syms != NULL)
11417 free (flinfo->external_syms);
11418 if (flinfo->locsym_shndx != NULL)
11419 free (flinfo->locsym_shndx);
11420 if (flinfo->internal_syms != NULL)
11421 free (flinfo->internal_syms);
11422 if (flinfo->indices != NULL)
11423 free (flinfo->indices);
11424 if (flinfo->sections != NULL)
11425 free (flinfo->sections);
11426 if (flinfo->symshndxbuf != NULL)
11427 free (flinfo->symshndxbuf);
11428 for (o = obfd->sections; o != NULL; o = o->next)
11429 {
11430 struct bfd_elf_section_data *esdo = elf_section_data (o);
11431 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11432 free (esdo->rel.hashes);
11433 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11434 free (esdo->rela.hashes);
11435 }
11436 }
11437
11438 /* Do the final step of an ELF link. */
11439
11440 bfd_boolean
11441 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11442 {
11443 bfd_boolean dynamic;
11444 bfd_boolean emit_relocs;
11445 bfd *dynobj;
11446 struct elf_final_link_info flinfo;
11447 asection *o;
11448 struct bfd_link_order *p;
11449 bfd *sub;
11450 bfd_size_type max_contents_size;
11451 bfd_size_type max_external_reloc_size;
11452 bfd_size_type max_internal_reloc_count;
11453 bfd_size_type max_sym_count;
11454 bfd_size_type max_sym_shndx_count;
11455 Elf_Internal_Sym elfsym;
11456 unsigned int i;
11457 Elf_Internal_Shdr *symtab_hdr;
11458 Elf_Internal_Shdr *symtab_shndx_hdr;
11459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11460 struct elf_outext_info eoinfo;
11461 bfd_boolean merged;
11462 size_t relativecount = 0;
11463 asection *reldyn = 0;
11464 bfd_size_type amt;
11465 asection *attr_section = NULL;
11466 bfd_vma attr_size = 0;
11467 const char *std_attrs_section;
11468 struct elf_link_hash_table *htab = elf_hash_table (info);
11469
11470 if (!is_elf_hash_table (htab))
11471 return FALSE;
11472
11473 if (bfd_link_pic (info))
11474 abfd->flags |= DYNAMIC;
11475
11476 dynamic = htab->dynamic_sections_created;
11477 dynobj = htab->dynobj;
11478
11479 emit_relocs = (bfd_link_relocatable (info)
11480 || info->emitrelocations);
11481
11482 flinfo.info = info;
11483 flinfo.output_bfd = abfd;
11484 flinfo.symstrtab = _bfd_elf_strtab_init ();
11485 if (flinfo.symstrtab == NULL)
11486 return FALSE;
11487
11488 if (! dynamic)
11489 {
11490 flinfo.hash_sec = NULL;
11491 flinfo.symver_sec = NULL;
11492 }
11493 else
11494 {
11495 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11496 /* Note that dynsym_sec can be NULL (on VMS). */
11497 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11498 /* Note that it is OK if symver_sec is NULL. */
11499 }
11500
11501 flinfo.contents = NULL;
11502 flinfo.external_relocs = NULL;
11503 flinfo.internal_relocs = NULL;
11504 flinfo.external_syms = NULL;
11505 flinfo.locsym_shndx = NULL;
11506 flinfo.internal_syms = NULL;
11507 flinfo.indices = NULL;
11508 flinfo.sections = NULL;
11509 flinfo.symshndxbuf = NULL;
11510 flinfo.filesym_count = 0;
11511
11512 /* The object attributes have been merged. Remove the input
11513 sections from the link, and set the contents of the output
11514 secton. */
11515 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11516 for (o = abfd->sections; o != NULL; o = o->next)
11517 {
11518 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11519 || strcmp (o->name, ".gnu.attributes") == 0)
11520 {
11521 for (p = o->map_head.link_order; p != NULL; p = p->next)
11522 {
11523 asection *input_section;
11524
11525 if (p->type != bfd_indirect_link_order)
11526 continue;
11527 input_section = p->u.indirect.section;
11528 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11529 elf_link_input_bfd ignores this section. */
11530 input_section->flags &= ~SEC_HAS_CONTENTS;
11531 }
11532
11533 attr_size = bfd_elf_obj_attr_size (abfd);
11534 if (attr_size)
11535 {
11536 bfd_set_section_size (abfd, o, attr_size);
11537 attr_section = o;
11538 /* Skip this section later on. */
11539 o->map_head.link_order = NULL;
11540 }
11541 else
11542 o->flags |= SEC_EXCLUDE;
11543 }
11544 }
11545
11546 /* Count up the number of relocations we will output for each output
11547 section, so that we know the sizes of the reloc sections. We
11548 also figure out some maximum sizes. */
11549 max_contents_size = 0;
11550 max_external_reloc_size = 0;
11551 max_internal_reloc_count = 0;
11552 max_sym_count = 0;
11553 max_sym_shndx_count = 0;
11554 merged = FALSE;
11555 for (o = abfd->sections; o != NULL; o = o->next)
11556 {
11557 struct bfd_elf_section_data *esdo = elf_section_data (o);
11558 o->reloc_count = 0;
11559
11560 for (p = o->map_head.link_order; p != NULL; p = p->next)
11561 {
11562 unsigned int reloc_count = 0;
11563 unsigned int additional_reloc_count = 0;
11564 struct bfd_elf_section_data *esdi = NULL;
11565
11566 if (p->type == bfd_section_reloc_link_order
11567 || p->type == bfd_symbol_reloc_link_order)
11568 reloc_count = 1;
11569 else if (p->type == bfd_indirect_link_order)
11570 {
11571 asection *sec;
11572
11573 sec = p->u.indirect.section;
11574
11575 /* Mark all sections which are to be included in the
11576 link. This will normally be every section. We need
11577 to do this so that we can identify any sections which
11578 the linker has decided to not include. */
11579 sec->linker_mark = TRUE;
11580
11581 if (sec->flags & SEC_MERGE)
11582 merged = TRUE;
11583
11584 if (sec->rawsize > max_contents_size)
11585 max_contents_size = sec->rawsize;
11586 if (sec->size > max_contents_size)
11587 max_contents_size = sec->size;
11588
11589 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11590 && (sec->owner->flags & DYNAMIC) == 0)
11591 {
11592 size_t sym_count;
11593
11594 /* We are interested in just local symbols, not all
11595 symbols. */
11596 if (elf_bad_symtab (sec->owner))
11597 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11598 / bed->s->sizeof_sym);
11599 else
11600 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11601
11602 if (sym_count > max_sym_count)
11603 max_sym_count = sym_count;
11604
11605 if (sym_count > max_sym_shndx_count
11606 && elf_symtab_shndx_list (sec->owner) != NULL)
11607 max_sym_shndx_count = sym_count;
11608
11609 if (esdo->this_hdr.sh_type == SHT_REL
11610 || esdo->this_hdr.sh_type == SHT_RELA)
11611 /* Some backends use reloc_count in relocation sections
11612 to count particular types of relocs. Of course,
11613 reloc sections themselves can't have relocations. */
11614 ;
11615 else if (emit_relocs)
11616 {
11617 reloc_count = sec->reloc_count;
11618 if (bed->elf_backend_count_additional_relocs)
11619 {
11620 int c;
11621 c = (*bed->elf_backend_count_additional_relocs) (sec);
11622 additional_reloc_count += c;
11623 }
11624 }
11625 else if (bed->elf_backend_count_relocs)
11626 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11627
11628 esdi = elf_section_data (sec);
11629
11630 if ((sec->flags & SEC_RELOC) != 0)
11631 {
11632 size_t ext_size = 0;
11633
11634 if (esdi->rel.hdr != NULL)
11635 ext_size = esdi->rel.hdr->sh_size;
11636 if (esdi->rela.hdr != NULL)
11637 ext_size += esdi->rela.hdr->sh_size;
11638
11639 if (ext_size > max_external_reloc_size)
11640 max_external_reloc_size = ext_size;
11641 if (sec->reloc_count > max_internal_reloc_count)
11642 max_internal_reloc_count = sec->reloc_count;
11643 }
11644 }
11645 }
11646
11647 if (reloc_count == 0)
11648 continue;
11649
11650 reloc_count += additional_reloc_count;
11651 o->reloc_count += reloc_count;
11652
11653 if (p->type == bfd_indirect_link_order && emit_relocs)
11654 {
11655 if (esdi->rel.hdr)
11656 {
11657 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11658 esdo->rel.count += additional_reloc_count;
11659 }
11660 if (esdi->rela.hdr)
11661 {
11662 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11663 esdo->rela.count += additional_reloc_count;
11664 }
11665 }
11666 else
11667 {
11668 if (o->use_rela_p)
11669 esdo->rela.count += reloc_count;
11670 else
11671 esdo->rel.count += reloc_count;
11672 }
11673 }
11674
11675 if (o->reloc_count > 0)
11676 o->flags |= SEC_RELOC;
11677 else
11678 {
11679 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11680 set it (this is probably a bug) and if it is set
11681 assign_section_numbers will create a reloc section. */
11682 o->flags &=~ SEC_RELOC;
11683 }
11684
11685 /* If the SEC_ALLOC flag is not set, force the section VMA to
11686 zero. This is done in elf_fake_sections as well, but forcing
11687 the VMA to 0 here will ensure that relocs against these
11688 sections are handled correctly. */
11689 if ((o->flags & SEC_ALLOC) == 0
11690 && ! o->user_set_vma)
11691 o->vma = 0;
11692 }
11693
11694 if (! bfd_link_relocatable (info) && merged)
11695 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11696
11697 /* Figure out the file positions for everything but the symbol table
11698 and the relocs. We set symcount to force assign_section_numbers
11699 to create a symbol table. */
11700 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11701 BFD_ASSERT (! abfd->output_has_begun);
11702 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11703 goto error_return;
11704
11705 /* Set sizes, and assign file positions for reloc sections. */
11706 for (o = abfd->sections; o != NULL; o = o->next)
11707 {
11708 struct bfd_elf_section_data *esdo = elf_section_data (o);
11709 if ((o->flags & SEC_RELOC) != 0)
11710 {
11711 if (esdo->rel.hdr
11712 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11713 goto error_return;
11714
11715 if (esdo->rela.hdr
11716 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11717 goto error_return;
11718 }
11719
11720 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11721 to count upwards while actually outputting the relocations. */
11722 esdo->rel.count = 0;
11723 esdo->rela.count = 0;
11724
11725 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11726 {
11727 /* Cache the section contents so that they can be compressed
11728 later. Use bfd_malloc since it will be freed by
11729 bfd_compress_section_contents. */
11730 unsigned char *contents = esdo->this_hdr.contents;
11731 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11732 abort ();
11733 contents
11734 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11735 if (contents == NULL)
11736 goto error_return;
11737 esdo->this_hdr.contents = contents;
11738 }
11739 }
11740
11741 /* We have now assigned file positions for all the sections except
11742 .symtab, .strtab, and non-loaded reloc sections. We start the
11743 .symtab section at the current file position, and write directly
11744 to it. We build the .strtab section in memory. */
11745 bfd_get_symcount (abfd) = 0;
11746 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11747 /* sh_name is set in prep_headers. */
11748 symtab_hdr->sh_type = SHT_SYMTAB;
11749 /* sh_flags, sh_addr and sh_size all start off zero. */
11750 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11751 /* sh_link is set in assign_section_numbers. */
11752 /* sh_info is set below. */
11753 /* sh_offset is set just below. */
11754 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11755
11756 if (max_sym_count < 20)
11757 max_sym_count = 20;
11758 htab->strtabsize = max_sym_count;
11759 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11760 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11761 if (htab->strtab == NULL)
11762 goto error_return;
11763 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11764 flinfo.symshndxbuf
11765 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11766 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11767
11768 if (info->strip != strip_all || emit_relocs)
11769 {
11770 file_ptr off = elf_next_file_pos (abfd);
11771
11772 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11773
11774 /* Note that at this point elf_next_file_pos (abfd) is
11775 incorrect. We do not yet know the size of the .symtab section.
11776 We correct next_file_pos below, after we do know the size. */
11777
11778 /* Start writing out the symbol table. The first symbol is always a
11779 dummy symbol. */
11780 elfsym.st_value = 0;
11781 elfsym.st_size = 0;
11782 elfsym.st_info = 0;
11783 elfsym.st_other = 0;
11784 elfsym.st_shndx = SHN_UNDEF;
11785 elfsym.st_target_internal = 0;
11786 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11787 bfd_und_section_ptr, NULL) != 1)
11788 goto error_return;
11789
11790 /* Output a symbol for each section. We output these even if we are
11791 discarding local symbols, since they are used for relocs. These
11792 symbols have no names. We store the index of each one in the
11793 index field of the section, so that we can find it again when
11794 outputting relocs. */
11795
11796 elfsym.st_size = 0;
11797 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11798 elfsym.st_other = 0;
11799 elfsym.st_value = 0;
11800 elfsym.st_target_internal = 0;
11801 for (i = 1; i < elf_numsections (abfd); i++)
11802 {
11803 o = bfd_section_from_elf_index (abfd, i);
11804 if (o != NULL)
11805 {
11806 o->target_index = bfd_get_symcount (abfd);
11807 elfsym.st_shndx = i;
11808 if (!bfd_link_relocatable (info))
11809 elfsym.st_value = o->vma;
11810 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11811 NULL) != 1)
11812 goto error_return;
11813 }
11814 }
11815 }
11816
11817 /* Allocate some memory to hold information read in from the input
11818 files. */
11819 if (max_contents_size != 0)
11820 {
11821 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11822 if (flinfo.contents == NULL)
11823 goto error_return;
11824 }
11825
11826 if (max_external_reloc_size != 0)
11827 {
11828 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11829 if (flinfo.external_relocs == NULL)
11830 goto error_return;
11831 }
11832
11833 if (max_internal_reloc_count != 0)
11834 {
11835 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11836 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11837 if (flinfo.internal_relocs == NULL)
11838 goto error_return;
11839 }
11840
11841 if (max_sym_count != 0)
11842 {
11843 amt = max_sym_count * bed->s->sizeof_sym;
11844 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11845 if (flinfo.external_syms == NULL)
11846 goto error_return;
11847
11848 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11849 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11850 if (flinfo.internal_syms == NULL)
11851 goto error_return;
11852
11853 amt = max_sym_count * sizeof (long);
11854 flinfo.indices = (long int *) bfd_malloc (amt);
11855 if (flinfo.indices == NULL)
11856 goto error_return;
11857
11858 amt = max_sym_count * sizeof (asection *);
11859 flinfo.sections = (asection **) bfd_malloc (amt);
11860 if (flinfo.sections == NULL)
11861 goto error_return;
11862 }
11863
11864 if (max_sym_shndx_count != 0)
11865 {
11866 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11867 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11868 if (flinfo.locsym_shndx == NULL)
11869 goto error_return;
11870 }
11871
11872 if (htab->tls_sec)
11873 {
11874 bfd_vma base, end = 0;
11875 asection *sec;
11876
11877 for (sec = htab->tls_sec;
11878 sec && (sec->flags & SEC_THREAD_LOCAL);
11879 sec = sec->next)
11880 {
11881 bfd_size_type size = sec->size;
11882
11883 if (size == 0
11884 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11885 {
11886 struct bfd_link_order *ord = sec->map_tail.link_order;
11887
11888 if (ord != NULL)
11889 size = ord->offset + ord->size;
11890 }
11891 end = sec->vma + size;
11892 }
11893 base = htab->tls_sec->vma;
11894 /* Only align end of TLS section if static TLS doesn't have special
11895 alignment requirements. */
11896 if (bed->static_tls_alignment == 1)
11897 end = align_power (end, htab->tls_sec->alignment_power);
11898 htab->tls_size = end - base;
11899 }
11900
11901 /* Reorder SHF_LINK_ORDER sections. */
11902 for (o = abfd->sections; o != NULL; o = o->next)
11903 {
11904 if (!elf_fixup_link_order (abfd, o))
11905 return FALSE;
11906 }
11907
11908 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11909 return FALSE;
11910
11911 /* Since ELF permits relocations to be against local symbols, we
11912 must have the local symbols available when we do the relocations.
11913 Since we would rather only read the local symbols once, and we
11914 would rather not keep them in memory, we handle all the
11915 relocations for a single input file at the same time.
11916
11917 Unfortunately, there is no way to know the total number of local
11918 symbols until we have seen all of them, and the local symbol
11919 indices precede the global symbol indices. This means that when
11920 we are generating relocatable output, and we see a reloc against
11921 a global symbol, we can not know the symbol index until we have
11922 finished examining all the local symbols to see which ones we are
11923 going to output. To deal with this, we keep the relocations in
11924 memory, and don't output them until the end of the link. This is
11925 an unfortunate waste of memory, but I don't see a good way around
11926 it. Fortunately, it only happens when performing a relocatable
11927 link, which is not the common case. FIXME: If keep_memory is set
11928 we could write the relocs out and then read them again; I don't
11929 know how bad the memory loss will be. */
11930
11931 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11932 sub->output_has_begun = FALSE;
11933 for (o = abfd->sections; o != NULL; o = o->next)
11934 {
11935 for (p = o->map_head.link_order; p != NULL; p = p->next)
11936 {
11937 if (p->type == bfd_indirect_link_order
11938 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11939 == bfd_target_elf_flavour)
11940 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11941 {
11942 if (! sub->output_has_begun)
11943 {
11944 if (! elf_link_input_bfd (&flinfo, sub))
11945 goto error_return;
11946 sub->output_has_begun = TRUE;
11947 }
11948 }
11949 else if (p->type == bfd_section_reloc_link_order
11950 || p->type == bfd_symbol_reloc_link_order)
11951 {
11952 if (! elf_reloc_link_order (abfd, info, o, p))
11953 goto error_return;
11954 }
11955 else
11956 {
11957 if (! _bfd_default_link_order (abfd, info, o, p))
11958 {
11959 if (p->type == bfd_indirect_link_order
11960 && (bfd_get_flavour (sub)
11961 == bfd_target_elf_flavour)
11962 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11963 != bed->s->elfclass))
11964 {
11965 const char *iclass, *oclass;
11966
11967 switch (bed->s->elfclass)
11968 {
11969 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11970 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11971 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11972 default: abort ();
11973 }
11974
11975 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11976 {
11977 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11978 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11979 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11980 default: abort ();
11981 }
11982
11983 bfd_set_error (bfd_error_wrong_format);
11984 _bfd_error_handler
11985 /* xgettext:c-format */
11986 (_("%B: file class %s incompatible with %s"),
11987 sub, iclass, oclass);
11988 }
11989
11990 goto error_return;
11991 }
11992 }
11993 }
11994 }
11995
11996 /* Free symbol buffer if needed. */
11997 if (!info->reduce_memory_overheads)
11998 {
11999 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12000 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12001 && elf_tdata (sub)->symbuf)
12002 {
12003 free (elf_tdata (sub)->symbuf);
12004 elf_tdata (sub)->symbuf = NULL;
12005 }
12006 }
12007
12008 /* Output any global symbols that got converted to local in a
12009 version script or due to symbol visibility. We do this in a
12010 separate step since ELF requires all local symbols to appear
12011 prior to any global symbols. FIXME: We should only do this if
12012 some global symbols were, in fact, converted to become local.
12013 FIXME: Will this work correctly with the Irix 5 linker? */
12014 eoinfo.failed = FALSE;
12015 eoinfo.flinfo = &flinfo;
12016 eoinfo.localsyms = TRUE;
12017 eoinfo.file_sym_done = FALSE;
12018 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12019 if (eoinfo.failed)
12020 return FALSE;
12021
12022 /* If backend needs to output some local symbols not present in the hash
12023 table, do it now. */
12024 if (bed->elf_backend_output_arch_local_syms
12025 && (info->strip != strip_all || emit_relocs))
12026 {
12027 typedef int (*out_sym_func)
12028 (void *, const char *, Elf_Internal_Sym *, asection *,
12029 struct elf_link_hash_entry *);
12030
12031 if (! ((*bed->elf_backend_output_arch_local_syms)
12032 (abfd, info, &flinfo,
12033 (out_sym_func) elf_link_output_symstrtab)))
12034 return FALSE;
12035 }
12036
12037 /* That wrote out all the local symbols. Finish up the symbol table
12038 with the global symbols. Even if we want to strip everything we
12039 can, we still need to deal with those global symbols that got
12040 converted to local in a version script. */
12041
12042 /* The sh_info field records the index of the first non local symbol. */
12043 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12044
12045 if (dynamic
12046 && htab->dynsym != NULL
12047 && htab->dynsym->output_section != bfd_abs_section_ptr)
12048 {
12049 Elf_Internal_Sym sym;
12050 bfd_byte *dynsym = htab->dynsym->contents;
12051
12052 o = htab->dynsym->output_section;
12053 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12054
12055 /* Write out the section symbols for the output sections. */
12056 if (bfd_link_pic (info)
12057 || htab->is_relocatable_executable)
12058 {
12059 asection *s;
12060
12061 sym.st_size = 0;
12062 sym.st_name = 0;
12063 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12064 sym.st_other = 0;
12065 sym.st_target_internal = 0;
12066
12067 for (s = abfd->sections; s != NULL; s = s->next)
12068 {
12069 int indx;
12070 bfd_byte *dest;
12071 long dynindx;
12072
12073 dynindx = elf_section_data (s)->dynindx;
12074 if (dynindx <= 0)
12075 continue;
12076 indx = elf_section_data (s)->this_idx;
12077 BFD_ASSERT (indx > 0);
12078 sym.st_shndx = indx;
12079 if (! check_dynsym (abfd, &sym))
12080 return FALSE;
12081 sym.st_value = s->vma;
12082 dest = dynsym + dynindx * bed->s->sizeof_sym;
12083 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12084 }
12085 }
12086
12087 /* Write out the local dynsyms. */
12088 if (htab->dynlocal)
12089 {
12090 struct elf_link_local_dynamic_entry *e;
12091 for (e = htab->dynlocal; e ; e = e->next)
12092 {
12093 asection *s;
12094 bfd_byte *dest;
12095
12096 /* Copy the internal symbol and turn off visibility.
12097 Note that we saved a word of storage and overwrote
12098 the original st_name with the dynstr_index. */
12099 sym = e->isym;
12100 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12101
12102 s = bfd_section_from_elf_index (e->input_bfd,
12103 e->isym.st_shndx);
12104 if (s != NULL)
12105 {
12106 sym.st_shndx =
12107 elf_section_data (s->output_section)->this_idx;
12108 if (! check_dynsym (abfd, &sym))
12109 return FALSE;
12110 sym.st_value = (s->output_section->vma
12111 + s->output_offset
12112 + e->isym.st_value);
12113 }
12114
12115 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12116 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12117 }
12118 }
12119 }
12120
12121 /* We get the global symbols from the hash table. */
12122 eoinfo.failed = FALSE;
12123 eoinfo.localsyms = FALSE;
12124 eoinfo.flinfo = &flinfo;
12125 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12126 if (eoinfo.failed)
12127 return FALSE;
12128
12129 /* If backend needs to output some symbols not present in the hash
12130 table, do it now. */
12131 if (bed->elf_backend_output_arch_syms
12132 && (info->strip != strip_all || emit_relocs))
12133 {
12134 typedef int (*out_sym_func)
12135 (void *, const char *, Elf_Internal_Sym *, asection *,
12136 struct elf_link_hash_entry *);
12137
12138 if (! ((*bed->elf_backend_output_arch_syms)
12139 (abfd, info, &flinfo,
12140 (out_sym_func) elf_link_output_symstrtab)))
12141 return FALSE;
12142 }
12143
12144 /* Finalize the .strtab section. */
12145 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12146
12147 /* Swap out the .strtab section. */
12148 if (!elf_link_swap_symbols_out (&flinfo))
12149 return FALSE;
12150
12151 /* Now we know the size of the symtab section. */
12152 if (bfd_get_symcount (abfd) > 0)
12153 {
12154 /* Finish up and write out the symbol string table (.strtab)
12155 section. */
12156 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12157 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12158
12159 if (elf_symtab_shndx_list (abfd))
12160 {
12161 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12162
12163 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12164 {
12165 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12166 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12167 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12168 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12169 symtab_shndx_hdr->sh_size = amt;
12170
12171 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12172 off, TRUE);
12173
12174 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12175 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12176 return FALSE;
12177 }
12178 }
12179
12180 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12181 /* sh_name was set in prep_headers. */
12182 symstrtab_hdr->sh_type = SHT_STRTAB;
12183 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12184 symstrtab_hdr->sh_addr = 0;
12185 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12186 symstrtab_hdr->sh_entsize = 0;
12187 symstrtab_hdr->sh_link = 0;
12188 symstrtab_hdr->sh_info = 0;
12189 /* sh_offset is set just below. */
12190 symstrtab_hdr->sh_addralign = 1;
12191
12192 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12193 off, TRUE);
12194 elf_next_file_pos (abfd) = off;
12195
12196 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12197 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12198 return FALSE;
12199 }
12200
12201 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12202 {
12203 _bfd_error_handler (_("%B: failed to generate import library"),
12204 info->out_implib_bfd);
12205 return FALSE;
12206 }
12207
12208 /* Adjust the relocs to have the correct symbol indices. */
12209 for (o = abfd->sections; o != NULL; o = o->next)
12210 {
12211 struct bfd_elf_section_data *esdo = elf_section_data (o);
12212 bfd_boolean sort;
12213
12214 if ((o->flags & SEC_RELOC) == 0)
12215 continue;
12216
12217 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12218 if (esdo->rel.hdr != NULL
12219 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12220 return FALSE;
12221 if (esdo->rela.hdr != NULL
12222 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12223 return FALSE;
12224
12225 /* Set the reloc_count field to 0 to prevent write_relocs from
12226 trying to swap the relocs out itself. */
12227 o->reloc_count = 0;
12228 }
12229
12230 if (dynamic && info->combreloc && dynobj != NULL)
12231 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12232
12233 /* If we are linking against a dynamic object, or generating a
12234 shared library, finish up the dynamic linking information. */
12235 if (dynamic)
12236 {
12237 bfd_byte *dyncon, *dynconend;
12238
12239 /* Fix up .dynamic entries. */
12240 o = bfd_get_linker_section (dynobj, ".dynamic");
12241 BFD_ASSERT (o != NULL);
12242
12243 dyncon = o->contents;
12244 dynconend = o->contents + o->size;
12245 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12246 {
12247 Elf_Internal_Dyn dyn;
12248 const char *name;
12249 unsigned int type;
12250 bfd_size_type sh_size;
12251 bfd_vma sh_addr;
12252
12253 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12254
12255 switch (dyn.d_tag)
12256 {
12257 default:
12258 continue;
12259 case DT_NULL:
12260 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12261 {
12262 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12263 {
12264 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12265 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12266 default: continue;
12267 }
12268 dyn.d_un.d_val = relativecount;
12269 relativecount = 0;
12270 break;
12271 }
12272 continue;
12273
12274 case DT_INIT:
12275 name = info->init_function;
12276 goto get_sym;
12277 case DT_FINI:
12278 name = info->fini_function;
12279 get_sym:
12280 {
12281 struct elf_link_hash_entry *h;
12282
12283 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12284 if (h != NULL
12285 && (h->root.type == bfd_link_hash_defined
12286 || h->root.type == bfd_link_hash_defweak))
12287 {
12288 dyn.d_un.d_ptr = h->root.u.def.value;
12289 o = h->root.u.def.section;
12290 if (o->output_section != NULL)
12291 dyn.d_un.d_ptr += (o->output_section->vma
12292 + o->output_offset);
12293 else
12294 {
12295 /* The symbol is imported from another shared
12296 library and does not apply to this one. */
12297 dyn.d_un.d_ptr = 0;
12298 }
12299 break;
12300 }
12301 }
12302 continue;
12303
12304 case DT_PREINIT_ARRAYSZ:
12305 name = ".preinit_array";
12306 goto get_out_size;
12307 case DT_INIT_ARRAYSZ:
12308 name = ".init_array";
12309 goto get_out_size;
12310 case DT_FINI_ARRAYSZ:
12311 name = ".fini_array";
12312 get_out_size:
12313 o = bfd_get_section_by_name (abfd, name);
12314 if (o == NULL)
12315 {
12316 _bfd_error_handler
12317 (_("could not find section %s"), name);
12318 goto error_return;
12319 }
12320 if (o->size == 0)
12321 _bfd_error_handler
12322 (_("warning: %s section has zero size"), name);
12323 dyn.d_un.d_val = o->size;
12324 break;
12325
12326 case DT_PREINIT_ARRAY:
12327 name = ".preinit_array";
12328 goto get_out_vma;
12329 case DT_INIT_ARRAY:
12330 name = ".init_array";
12331 goto get_out_vma;
12332 case DT_FINI_ARRAY:
12333 name = ".fini_array";
12334 get_out_vma:
12335 o = bfd_get_section_by_name (abfd, name);
12336 goto do_vma;
12337
12338 case DT_HASH:
12339 name = ".hash";
12340 goto get_vma;
12341 case DT_GNU_HASH:
12342 name = ".gnu.hash";
12343 goto get_vma;
12344 case DT_STRTAB:
12345 name = ".dynstr";
12346 goto get_vma;
12347 case DT_SYMTAB:
12348 name = ".dynsym";
12349 goto get_vma;
12350 case DT_VERDEF:
12351 name = ".gnu.version_d";
12352 goto get_vma;
12353 case DT_VERNEED:
12354 name = ".gnu.version_r";
12355 goto get_vma;
12356 case DT_VERSYM:
12357 name = ".gnu.version";
12358 get_vma:
12359 o = bfd_get_linker_section (dynobj, name);
12360 do_vma:
12361 if (o == NULL || bfd_is_abs_section (o->output_section))
12362 {
12363 _bfd_error_handler
12364 (_("could not find section %s"), name);
12365 goto error_return;
12366 }
12367 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12368 {
12369 _bfd_error_handler
12370 (_("warning: section '%s' is being made into a note"), name);
12371 bfd_set_error (bfd_error_nonrepresentable_section);
12372 goto error_return;
12373 }
12374 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12375 break;
12376
12377 case DT_REL:
12378 case DT_RELA:
12379 case DT_RELSZ:
12380 case DT_RELASZ:
12381 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12382 type = SHT_REL;
12383 else
12384 type = SHT_RELA;
12385 sh_size = 0;
12386 sh_addr = 0;
12387 for (i = 1; i < elf_numsections (abfd); i++)
12388 {
12389 Elf_Internal_Shdr *hdr;
12390
12391 hdr = elf_elfsections (abfd)[i];
12392 if (hdr->sh_type == type
12393 && (hdr->sh_flags & SHF_ALLOC) != 0)
12394 {
12395 sh_size += hdr->sh_size;
12396 if (sh_addr == 0
12397 || sh_addr > hdr->sh_addr)
12398 sh_addr = hdr->sh_addr;
12399 }
12400 }
12401
12402 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12403 {
12404 /* Don't count procedure linkage table relocs in the
12405 overall reloc count. */
12406 sh_size -= htab->srelplt->size;
12407 if (sh_size == 0)
12408 /* If the size is zero, make the address zero too.
12409 This is to avoid a glibc bug. If the backend
12410 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12411 zero, then we'll put DT_RELA at the end of
12412 DT_JMPREL. glibc will interpret the end of
12413 DT_RELA matching the end of DT_JMPREL as the
12414 case where DT_RELA includes DT_JMPREL, and for
12415 LD_BIND_NOW will decide that processing DT_RELA
12416 will process the PLT relocs too. Net result:
12417 No PLT relocs applied. */
12418 sh_addr = 0;
12419
12420 /* If .rela.plt is the first .rela section, exclude
12421 it from DT_RELA. */
12422 else if (sh_addr == (htab->srelplt->output_section->vma
12423 + htab->srelplt->output_offset))
12424 sh_addr += htab->srelplt->size;
12425 }
12426
12427 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12428 dyn.d_un.d_val = sh_size;
12429 else
12430 dyn.d_un.d_ptr = sh_addr;
12431 break;
12432 }
12433 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12434 }
12435 }
12436
12437 /* If we have created any dynamic sections, then output them. */
12438 if (dynobj != NULL)
12439 {
12440 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12441 goto error_return;
12442
12443 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12444 if (((info->warn_shared_textrel && bfd_link_pic (info))
12445 || info->error_textrel)
12446 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12447 {
12448 bfd_byte *dyncon, *dynconend;
12449
12450 dyncon = o->contents;
12451 dynconend = o->contents + o->size;
12452 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12453 {
12454 Elf_Internal_Dyn dyn;
12455
12456 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12457
12458 if (dyn.d_tag == DT_TEXTREL)
12459 {
12460 if (info->error_textrel)
12461 info->callbacks->einfo
12462 (_("%P%X: read-only segment has dynamic relocations.\n"));
12463 else
12464 info->callbacks->einfo
12465 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12466 break;
12467 }
12468 }
12469 }
12470
12471 for (o = dynobj->sections; o != NULL; o = o->next)
12472 {
12473 if ((o->flags & SEC_HAS_CONTENTS) == 0
12474 || o->size == 0
12475 || o->output_section == bfd_abs_section_ptr)
12476 continue;
12477 if ((o->flags & SEC_LINKER_CREATED) == 0)
12478 {
12479 /* At this point, we are only interested in sections
12480 created by _bfd_elf_link_create_dynamic_sections. */
12481 continue;
12482 }
12483 if (htab->stab_info.stabstr == o)
12484 continue;
12485 if (htab->eh_info.hdr_sec == o)
12486 continue;
12487 if (strcmp (o->name, ".dynstr") != 0)
12488 {
12489 if (! bfd_set_section_contents (abfd, o->output_section,
12490 o->contents,
12491 (file_ptr) o->output_offset
12492 * bfd_octets_per_byte (abfd),
12493 o->size))
12494 goto error_return;
12495 }
12496 else
12497 {
12498 /* The contents of the .dynstr section are actually in a
12499 stringtab. */
12500 file_ptr off;
12501
12502 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12503 if (bfd_seek (abfd, off, SEEK_SET) != 0
12504 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12505 goto error_return;
12506 }
12507 }
12508 }
12509
12510 if (!info->resolve_section_groups)
12511 {
12512 bfd_boolean failed = FALSE;
12513
12514 BFD_ASSERT (bfd_link_relocatable (info));
12515 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12516 if (failed)
12517 goto error_return;
12518 }
12519
12520 /* If we have optimized stabs strings, output them. */
12521 if (htab->stab_info.stabstr != NULL)
12522 {
12523 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12524 goto error_return;
12525 }
12526
12527 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12528 goto error_return;
12529
12530 elf_final_link_free (abfd, &flinfo);
12531
12532 elf_linker (abfd) = TRUE;
12533
12534 if (attr_section)
12535 {
12536 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12537 if (contents == NULL)
12538 return FALSE; /* Bail out and fail. */
12539 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12540 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12541 free (contents);
12542 }
12543
12544 return TRUE;
12545
12546 error_return:
12547 elf_final_link_free (abfd, &flinfo);
12548 return FALSE;
12549 }
12550 \f
12551 /* Initialize COOKIE for input bfd ABFD. */
12552
12553 static bfd_boolean
12554 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12555 struct bfd_link_info *info, bfd *abfd)
12556 {
12557 Elf_Internal_Shdr *symtab_hdr;
12558 const struct elf_backend_data *bed;
12559
12560 bed = get_elf_backend_data (abfd);
12561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12562
12563 cookie->abfd = abfd;
12564 cookie->sym_hashes = elf_sym_hashes (abfd);
12565 cookie->bad_symtab = elf_bad_symtab (abfd);
12566 if (cookie->bad_symtab)
12567 {
12568 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12569 cookie->extsymoff = 0;
12570 }
12571 else
12572 {
12573 cookie->locsymcount = symtab_hdr->sh_info;
12574 cookie->extsymoff = symtab_hdr->sh_info;
12575 }
12576
12577 if (bed->s->arch_size == 32)
12578 cookie->r_sym_shift = 8;
12579 else
12580 cookie->r_sym_shift = 32;
12581
12582 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12583 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12584 {
12585 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12586 cookie->locsymcount, 0,
12587 NULL, NULL, NULL);
12588 if (cookie->locsyms == NULL)
12589 {
12590 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12591 return FALSE;
12592 }
12593 if (info->keep_memory)
12594 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12595 }
12596 return TRUE;
12597 }
12598
12599 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12600
12601 static void
12602 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12603 {
12604 Elf_Internal_Shdr *symtab_hdr;
12605
12606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12607 if (cookie->locsyms != NULL
12608 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12609 free (cookie->locsyms);
12610 }
12611
12612 /* Initialize the relocation information in COOKIE for input section SEC
12613 of input bfd ABFD. */
12614
12615 static bfd_boolean
12616 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12617 struct bfd_link_info *info, bfd *abfd,
12618 asection *sec)
12619 {
12620 if (sec->reloc_count == 0)
12621 {
12622 cookie->rels = NULL;
12623 cookie->relend = NULL;
12624 }
12625 else
12626 {
12627 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12628 info->keep_memory);
12629 if (cookie->rels == NULL)
12630 return FALSE;
12631 cookie->rel = cookie->rels;
12632 cookie->relend = cookie->rels + sec->reloc_count;
12633 }
12634 cookie->rel = cookie->rels;
12635 return TRUE;
12636 }
12637
12638 /* Free the memory allocated by init_reloc_cookie_rels,
12639 if appropriate. */
12640
12641 static void
12642 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12643 asection *sec)
12644 {
12645 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12646 free (cookie->rels);
12647 }
12648
12649 /* Initialize the whole of COOKIE for input section SEC. */
12650
12651 static bfd_boolean
12652 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12653 struct bfd_link_info *info,
12654 asection *sec)
12655 {
12656 if (!init_reloc_cookie (cookie, info, sec->owner))
12657 goto error1;
12658 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12659 goto error2;
12660 return TRUE;
12661
12662 error2:
12663 fini_reloc_cookie (cookie, sec->owner);
12664 error1:
12665 return FALSE;
12666 }
12667
12668 /* Free the memory allocated by init_reloc_cookie_for_section,
12669 if appropriate. */
12670
12671 static void
12672 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12673 asection *sec)
12674 {
12675 fini_reloc_cookie_rels (cookie, sec);
12676 fini_reloc_cookie (cookie, sec->owner);
12677 }
12678 \f
12679 /* Garbage collect unused sections. */
12680
12681 /* Default gc_mark_hook. */
12682
12683 asection *
12684 _bfd_elf_gc_mark_hook (asection *sec,
12685 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12686 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12687 struct elf_link_hash_entry *h,
12688 Elf_Internal_Sym *sym)
12689 {
12690 if (h != NULL)
12691 {
12692 switch (h->root.type)
12693 {
12694 case bfd_link_hash_defined:
12695 case bfd_link_hash_defweak:
12696 return h->root.u.def.section;
12697
12698 case bfd_link_hash_common:
12699 return h->root.u.c.p->section;
12700
12701 default:
12702 break;
12703 }
12704 }
12705 else
12706 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12707
12708 return NULL;
12709 }
12710
12711 /* Return the global debug definition section. */
12712
12713 static asection *
12714 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12715 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12716 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12717 struct elf_link_hash_entry *h,
12718 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12719 {
12720 if (h != NULL
12721 && (h->root.type == bfd_link_hash_defined
12722 || h->root.type == bfd_link_hash_defweak)
12723 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12724 return h->root.u.def.section;
12725
12726 return NULL;
12727 }
12728
12729 /* COOKIE->rel describes a relocation against section SEC, which is
12730 a section we've decided to keep. Return the section that contains
12731 the relocation symbol, or NULL if no section contains it. */
12732
12733 asection *
12734 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12735 elf_gc_mark_hook_fn gc_mark_hook,
12736 struct elf_reloc_cookie *cookie,
12737 bfd_boolean *start_stop)
12738 {
12739 unsigned long r_symndx;
12740 struct elf_link_hash_entry *h;
12741
12742 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12743 if (r_symndx == STN_UNDEF)
12744 return NULL;
12745
12746 if (r_symndx >= cookie->locsymcount
12747 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12748 {
12749 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12750 if (h == NULL)
12751 {
12752 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12753 sec->owner);
12754 return NULL;
12755 }
12756 while (h->root.type == bfd_link_hash_indirect
12757 || h->root.type == bfd_link_hash_warning)
12758 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12759 h->mark = 1;
12760 /* If this symbol is weak and there is a non-weak definition, we
12761 keep the non-weak definition because many backends put
12762 dynamic reloc info on the non-weak definition for code
12763 handling copy relocs. */
12764 if (h->u.weakdef != NULL)
12765 h->u.weakdef->mark = 1;
12766
12767 if (start_stop != NULL)
12768 {
12769 /* To work around a glibc bug, mark XXX input sections
12770 when there is a reference to __start_XXX or __stop_XXX
12771 symbols. */
12772 if (h->start_stop)
12773 {
12774 asection *s = h->u2.start_stop_section;
12775 *start_stop = !s->gc_mark;
12776 return s;
12777 }
12778 }
12779
12780 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12781 }
12782
12783 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12784 &cookie->locsyms[r_symndx]);
12785 }
12786
12787 /* COOKIE->rel describes a relocation against section SEC, which is
12788 a section we've decided to keep. Mark the section that contains
12789 the relocation symbol. */
12790
12791 bfd_boolean
12792 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12793 asection *sec,
12794 elf_gc_mark_hook_fn gc_mark_hook,
12795 struct elf_reloc_cookie *cookie)
12796 {
12797 asection *rsec;
12798 bfd_boolean start_stop = FALSE;
12799
12800 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12801 while (rsec != NULL)
12802 {
12803 if (!rsec->gc_mark)
12804 {
12805 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12806 || (rsec->owner->flags & DYNAMIC) != 0)
12807 rsec->gc_mark = 1;
12808 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12809 return FALSE;
12810 }
12811 if (!start_stop)
12812 break;
12813 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12814 }
12815 return TRUE;
12816 }
12817
12818 /* The mark phase of garbage collection. For a given section, mark
12819 it and any sections in this section's group, and all the sections
12820 which define symbols to which it refers. */
12821
12822 bfd_boolean
12823 _bfd_elf_gc_mark (struct bfd_link_info *info,
12824 asection *sec,
12825 elf_gc_mark_hook_fn gc_mark_hook)
12826 {
12827 bfd_boolean ret;
12828 asection *group_sec, *eh_frame;
12829
12830 sec->gc_mark = 1;
12831
12832 /* Mark all the sections in the group. */
12833 group_sec = elf_section_data (sec)->next_in_group;
12834 if (group_sec && !group_sec->gc_mark)
12835 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12836 return FALSE;
12837
12838 /* Look through the section relocs. */
12839 ret = TRUE;
12840 eh_frame = elf_eh_frame_section (sec->owner);
12841 if ((sec->flags & SEC_RELOC) != 0
12842 && sec->reloc_count > 0
12843 && sec != eh_frame)
12844 {
12845 struct elf_reloc_cookie cookie;
12846
12847 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12848 ret = FALSE;
12849 else
12850 {
12851 for (; cookie.rel < cookie.relend; cookie.rel++)
12852 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12853 {
12854 ret = FALSE;
12855 break;
12856 }
12857 fini_reloc_cookie_for_section (&cookie, sec);
12858 }
12859 }
12860
12861 if (ret && eh_frame && elf_fde_list (sec))
12862 {
12863 struct elf_reloc_cookie cookie;
12864
12865 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12866 ret = FALSE;
12867 else
12868 {
12869 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12870 gc_mark_hook, &cookie))
12871 ret = FALSE;
12872 fini_reloc_cookie_for_section (&cookie, eh_frame);
12873 }
12874 }
12875
12876 eh_frame = elf_section_eh_frame_entry (sec);
12877 if (ret && eh_frame && !eh_frame->gc_mark)
12878 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12879 ret = FALSE;
12880
12881 return ret;
12882 }
12883
12884 /* Scan and mark sections in a special or debug section group. */
12885
12886 static void
12887 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12888 {
12889 /* Point to first section of section group. */
12890 asection *ssec;
12891 /* Used to iterate the section group. */
12892 asection *msec;
12893
12894 bfd_boolean is_special_grp = TRUE;
12895 bfd_boolean is_debug_grp = TRUE;
12896
12897 /* First scan to see if group contains any section other than debug
12898 and special section. */
12899 ssec = msec = elf_next_in_group (grp);
12900 do
12901 {
12902 if ((msec->flags & SEC_DEBUGGING) == 0)
12903 is_debug_grp = FALSE;
12904
12905 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12906 is_special_grp = FALSE;
12907
12908 msec = elf_next_in_group (msec);
12909 }
12910 while (msec != ssec);
12911
12912 /* If this is a pure debug section group or pure special section group,
12913 keep all sections in this group. */
12914 if (is_debug_grp || is_special_grp)
12915 {
12916 do
12917 {
12918 msec->gc_mark = 1;
12919 msec = elf_next_in_group (msec);
12920 }
12921 while (msec != ssec);
12922 }
12923 }
12924
12925 /* Keep debug and special sections. */
12926
12927 bfd_boolean
12928 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12929 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12930 {
12931 bfd *ibfd;
12932
12933 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12934 {
12935 asection *isec;
12936 bfd_boolean some_kept;
12937 bfd_boolean debug_frag_seen;
12938 bfd_boolean has_kept_debug_info;
12939
12940 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12941 continue;
12942 isec = ibfd->sections;
12943 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
12944 continue;
12945
12946 /* Ensure all linker created sections are kept,
12947 see if any other section is already marked,
12948 and note if we have any fragmented debug sections. */
12949 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12950 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12951 {
12952 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12953 isec->gc_mark = 1;
12954 else if (isec->gc_mark
12955 && (isec->flags & SEC_ALLOC) != 0
12956 && elf_section_type (isec) != SHT_NOTE)
12957 some_kept = TRUE;
12958
12959 if (!debug_frag_seen
12960 && (isec->flags & SEC_DEBUGGING)
12961 && CONST_STRNEQ (isec->name, ".debug_line."))
12962 debug_frag_seen = TRUE;
12963 }
12964
12965 /* If no non-note alloc section in this file will be kept, then
12966 we can toss out the debug and special sections. */
12967 if (!some_kept)
12968 continue;
12969
12970 /* Keep debug and special sections like .comment when they are
12971 not part of a group. Also keep section groups that contain
12972 just debug sections or special sections. */
12973 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12974 {
12975 if ((isec->flags & SEC_GROUP) != 0)
12976 _bfd_elf_gc_mark_debug_special_section_group (isec);
12977 else if (((isec->flags & SEC_DEBUGGING) != 0
12978 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12979 && elf_next_in_group (isec) == NULL)
12980 isec->gc_mark = 1;
12981 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12982 has_kept_debug_info = TRUE;
12983 }
12984
12985 /* Look for CODE sections which are going to be discarded,
12986 and find and discard any fragmented debug sections which
12987 are associated with that code section. */
12988 if (debug_frag_seen)
12989 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12990 if ((isec->flags & SEC_CODE) != 0
12991 && isec->gc_mark == 0)
12992 {
12993 unsigned int ilen;
12994 asection *dsec;
12995
12996 ilen = strlen (isec->name);
12997
12998 /* Association is determined by the name of the debug
12999 section containing the name of the code section as
13000 a suffix. For example .debug_line.text.foo is a
13001 debug section associated with .text.foo. */
13002 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13003 {
13004 unsigned int dlen;
13005
13006 if (dsec->gc_mark == 0
13007 || (dsec->flags & SEC_DEBUGGING) == 0)
13008 continue;
13009
13010 dlen = strlen (dsec->name);
13011
13012 if (dlen > ilen
13013 && strncmp (dsec->name + (dlen - ilen),
13014 isec->name, ilen) == 0)
13015 dsec->gc_mark = 0;
13016 }
13017 }
13018
13019 /* Mark debug sections referenced by kept debug sections. */
13020 if (has_kept_debug_info)
13021 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13022 if (isec->gc_mark
13023 && (isec->flags & SEC_DEBUGGING) != 0)
13024 if (!_bfd_elf_gc_mark (info, isec,
13025 elf_gc_mark_debug_section))
13026 return FALSE;
13027 }
13028 return TRUE;
13029 }
13030
13031 static bfd_boolean
13032 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13033 {
13034 bfd *sub;
13035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13036
13037 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13038 {
13039 asection *o;
13040
13041 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13042 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13043 continue;
13044 o = sub->sections;
13045 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13046 continue;
13047
13048 for (o = sub->sections; o != NULL; o = o->next)
13049 {
13050 /* When any section in a section group is kept, we keep all
13051 sections in the section group. If the first member of
13052 the section group is excluded, we will also exclude the
13053 group section. */
13054 if (o->flags & SEC_GROUP)
13055 {
13056 asection *first = elf_next_in_group (o);
13057 o->gc_mark = first->gc_mark;
13058 }
13059
13060 if (o->gc_mark)
13061 continue;
13062
13063 /* Skip sweeping sections already excluded. */
13064 if (o->flags & SEC_EXCLUDE)
13065 continue;
13066
13067 /* Since this is early in the link process, it is simple
13068 to remove a section from the output. */
13069 o->flags |= SEC_EXCLUDE;
13070
13071 if (info->print_gc_sections && o->size != 0)
13072 /* xgettext:c-format */
13073 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13074 o, sub);
13075 }
13076 }
13077
13078 return TRUE;
13079 }
13080
13081 /* Propagate collected vtable information. This is called through
13082 elf_link_hash_traverse. */
13083
13084 static bfd_boolean
13085 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13086 {
13087 /* Those that are not vtables. */
13088 if (h->start_stop
13089 || h->u2.vtable == NULL
13090 || h->u2.vtable->parent == NULL)
13091 return TRUE;
13092
13093 /* Those vtables that do not have parents, we cannot merge. */
13094 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13095 return TRUE;
13096
13097 /* If we've already been done, exit. */
13098 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13099 return TRUE;
13100
13101 /* Make sure the parent's table is up to date. */
13102 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13103
13104 if (h->u2.vtable->used == NULL)
13105 {
13106 /* None of this table's entries were referenced. Re-use the
13107 parent's table. */
13108 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13109 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13110 }
13111 else
13112 {
13113 size_t n;
13114 bfd_boolean *cu, *pu;
13115
13116 /* Or the parent's entries into ours. */
13117 cu = h->u2.vtable->used;
13118 cu[-1] = TRUE;
13119 pu = h->u2.vtable->parent->u2.vtable->used;
13120 if (pu != NULL)
13121 {
13122 const struct elf_backend_data *bed;
13123 unsigned int log_file_align;
13124
13125 bed = get_elf_backend_data (h->root.u.def.section->owner);
13126 log_file_align = bed->s->log_file_align;
13127 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13128 while (n--)
13129 {
13130 if (*pu)
13131 *cu = TRUE;
13132 pu++;
13133 cu++;
13134 }
13135 }
13136 }
13137
13138 return TRUE;
13139 }
13140
13141 static bfd_boolean
13142 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13143 {
13144 asection *sec;
13145 bfd_vma hstart, hend;
13146 Elf_Internal_Rela *relstart, *relend, *rel;
13147 const struct elf_backend_data *bed;
13148 unsigned int log_file_align;
13149
13150 /* Take care of both those symbols that do not describe vtables as
13151 well as those that are not loaded. */
13152 if (h->start_stop
13153 || h->u2.vtable == NULL
13154 || h->u2.vtable->parent == NULL)
13155 return TRUE;
13156
13157 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13158 || h->root.type == bfd_link_hash_defweak);
13159
13160 sec = h->root.u.def.section;
13161 hstart = h->root.u.def.value;
13162 hend = hstart + h->size;
13163
13164 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13165 if (!relstart)
13166 return *(bfd_boolean *) okp = FALSE;
13167 bed = get_elf_backend_data (sec->owner);
13168 log_file_align = bed->s->log_file_align;
13169
13170 relend = relstart + sec->reloc_count;
13171
13172 for (rel = relstart; rel < relend; ++rel)
13173 if (rel->r_offset >= hstart && rel->r_offset < hend)
13174 {
13175 /* If the entry is in use, do nothing. */
13176 if (h->u2.vtable->used
13177 && (rel->r_offset - hstart) < h->u2.vtable->size)
13178 {
13179 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13180 if (h->u2.vtable->used[entry])
13181 continue;
13182 }
13183 /* Otherwise, kill it. */
13184 rel->r_offset = rel->r_info = rel->r_addend = 0;
13185 }
13186
13187 return TRUE;
13188 }
13189
13190 /* Mark sections containing dynamically referenced symbols. When
13191 building shared libraries, we must assume that any visible symbol is
13192 referenced. */
13193
13194 bfd_boolean
13195 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13196 {
13197 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13198 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13199
13200 if ((h->root.type == bfd_link_hash_defined
13201 || h->root.type == bfd_link_hash_defweak)
13202 && (h->ref_dynamic
13203 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13204 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13205 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13206 && (!bfd_link_executable (info)
13207 || info->gc_keep_exported
13208 || info->export_dynamic
13209 || (h->dynamic
13210 && d != NULL
13211 && (*d->match) (&d->head, NULL, h->root.root.string)))
13212 && (h->versioned >= versioned
13213 || !bfd_hide_sym_by_version (info->version_info,
13214 h->root.root.string)))))
13215 h->root.u.def.section->flags |= SEC_KEEP;
13216
13217 return TRUE;
13218 }
13219
13220 /* Keep all sections containing symbols undefined on the command-line,
13221 and the section containing the entry symbol. */
13222
13223 void
13224 _bfd_elf_gc_keep (struct bfd_link_info *info)
13225 {
13226 struct bfd_sym_chain *sym;
13227
13228 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13229 {
13230 struct elf_link_hash_entry *h;
13231
13232 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13233 FALSE, FALSE, FALSE);
13234
13235 if (h != NULL
13236 && (h->root.type == bfd_link_hash_defined
13237 || h->root.type == bfd_link_hash_defweak)
13238 && !bfd_is_abs_section (h->root.u.def.section)
13239 && !bfd_is_und_section (h->root.u.def.section))
13240 h->root.u.def.section->flags |= SEC_KEEP;
13241 }
13242 }
13243
13244 bfd_boolean
13245 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13246 struct bfd_link_info *info)
13247 {
13248 bfd *ibfd = info->input_bfds;
13249
13250 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13251 {
13252 asection *sec;
13253 struct elf_reloc_cookie cookie;
13254
13255 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13256 continue;
13257 sec = ibfd->sections;
13258 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13259 continue;
13260
13261 if (!init_reloc_cookie (&cookie, info, ibfd))
13262 return FALSE;
13263
13264 for (sec = ibfd->sections; sec; sec = sec->next)
13265 {
13266 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13267 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13268 {
13269 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13270 fini_reloc_cookie_rels (&cookie, sec);
13271 }
13272 }
13273 }
13274 return TRUE;
13275 }
13276
13277 /* Do mark and sweep of unused sections. */
13278
13279 bfd_boolean
13280 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13281 {
13282 bfd_boolean ok = TRUE;
13283 bfd *sub;
13284 elf_gc_mark_hook_fn gc_mark_hook;
13285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13286 struct elf_link_hash_table *htab;
13287
13288 if (!bed->can_gc_sections
13289 || !is_elf_hash_table (info->hash))
13290 {
13291 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13292 return TRUE;
13293 }
13294
13295 bed->gc_keep (info);
13296 htab = elf_hash_table (info);
13297
13298 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13299 at the .eh_frame section if we can mark the FDEs individually. */
13300 for (sub = info->input_bfds;
13301 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13302 sub = sub->link.next)
13303 {
13304 asection *sec;
13305 struct elf_reloc_cookie cookie;
13306
13307 sec = sub->sections;
13308 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13309 continue;
13310 sec = bfd_get_section_by_name (sub, ".eh_frame");
13311 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13312 {
13313 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13314 if (elf_section_data (sec)->sec_info
13315 && (sec->flags & SEC_LINKER_CREATED) == 0)
13316 elf_eh_frame_section (sub) = sec;
13317 fini_reloc_cookie_for_section (&cookie, sec);
13318 sec = bfd_get_next_section_by_name (NULL, sec);
13319 }
13320 }
13321
13322 /* Apply transitive closure to the vtable entry usage info. */
13323 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13324 if (!ok)
13325 return FALSE;
13326
13327 /* Kill the vtable relocations that were not used. */
13328 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13329 if (!ok)
13330 return FALSE;
13331
13332 /* Mark dynamically referenced symbols. */
13333 if (htab->dynamic_sections_created || info->gc_keep_exported)
13334 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13335
13336 /* Grovel through relocs to find out who stays ... */
13337 gc_mark_hook = bed->gc_mark_hook;
13338 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13339 {
13340 asection *o;
13341
13342 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13343 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13344 continue;
13345
13346 o = sub->sections;
13347 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13348 continue;
13349
13350 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13351 Also treat note sections as a root, if the section is not part
13352 of a group. */
13353 for (o = sub->sections; o != NULL; o = o->next)
13354 if (!o->gc_mark
13355 && (o->flags & SEC_EXCLUDE) == 0
13356 && ((o->flags & SEC_KEEP) != 0
13357 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13358 && elf_next_in_group (o) == NULL )))
13359 {
13360 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13361 return FALSE;
13362 }
13363 }
13364
13365 /* Allow the backend to mark additional target specific sections. */
13366 bed->gc_mark_extra_sections (info, gc_mark_hook);
13367
13368 /* ... and mark SEC_EXCLUDE for those that go. */
13369 return elf_gc_sweep (abfd, info);
13370 }
13371 \f
13372 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13373
13374 bfd_boolean
13375 bfd_elf_gc_record_vtinherit (bfd *abfd,
13376 asection *sec,
13377 struct elf_link_hash_entry *h,
13378 bfd_vma offset)
13379 {
13380 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13381 struct elf_link_hash_entry **search, *child;
13382 size_t extsymcount;
13383 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13384
13385 /* The sh_info field of the symtab header tells us where the
13386 external symbols start. We don't care about the local symbols at
13387 this point. */
13388 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13389 if (!elf_bad_symtab (abfd))
13390 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13391
13392 sym_hashes = elf_sym_hashes (abfd);
13393 sym_hashes_end = sym_hashes + extsymcount;
13394
13395 /* Hunt down the child symbol, which is in this section at the same
13396 offset as the relocation. */
13397 for (search = sym_hashes; search != sym_hashes_end; ++search)
13398 {
13399 if ((child = *search) != NULL
13400 && (child->root.type == bfd_link_hash_defined
13401 || child->root.type == bfd_link_hash_defweak)
13402 && child->root.u.def.section == sec
13403 && child->root.u.def.value == offset)
13404 goto win;
13405 }
13406
13407 /* xgettext:c-format */
13408 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13409 abfd, sec, offset);
13410 bfd_set_error (bfd_error_invalid_operation);
13411 return FALSE;
13412
13413 win:
13414 if (!child->u2.vtable)
13415 {
13416 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13417 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13418 if (!child->u2.vtable)
13419 return FALSE;
13420 }
13421 if (!h)
13422 {
13423 /* This *should* only be the absolute section. It could potentially
13424 be that someone has defined a non-global vtable though, which
13425 would be bad. It isn't worth paging in the local symbols to be
13426 sure though; that case should simply be handled by the assembler. */
13427
13428 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13429 }
13430 else
13431 child->u2.vtable->parent = h;
13432
13433 return TRUE;
13434 }
13435
13436 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13437
13438 bfd_boolean
13439 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13440 asection *sec ATTRIBUTE_UNUSED,
13441 struct elf_link_hash_entry *h,
13442 bfd_vma addend)
13443 {
13444 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13445 unsigned int log_file_align = bed->s->log_file_align;
13446
13447 if (!h->u2.vtable)
13448 {
13449 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13450 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13451 if (!h->u2.vtable)
13452 return FALSE;
13453 }
13454
13455 if (addend >= h->u2.vtable->size)
13456 {
13457 size_t size, bytes, file_align;
13458 bfd_boolean *ptr = h->u2.vtable->used;
13459
13460 /* While the symbol is undefined, we have to be prepared to handle
13461 a zero size. */
13462 file_align = 1 << log_file_align;
13463 if (h->root.type == bfd_link_hash_undefined)
13464 size = addend + file_align;
13465 else
13466 {
13467 size = h->size;
13468 if (addend >= size)
13469 {
13470 /* Oops! We've got a reference past the defined end of
13471 the table. This is probably a bug -- shall we warn? */
13472 size = addend + file_align;
13473 }
13474 }
13475 size = (size + file_align - 1) & -file_align;
13476
13477 /* Allocate one extra entry for use as a "done" flag for the
13478 consolidation pass. */
13479 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13480
13481 if (ptr)
13482 {
13483 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13484
13485 if (ptr != NULL)
13486 {
13487 size_t oldbytes;
13488
13489 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13490 * sizeof (bfd_boolean));
13491 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13492 }
13493 }
13494 else
13495 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13496
13497 if (ptr == NULL)
13498 return FALSE;
13499
13500 /* And arrange for that done flag to be at index -1. */
13501 h->u2.vtable->used = ptr + 1;
13502 h->u2.vtable->size = size;
13503 }
13504
13505 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13506
13507 return TRUE;
13508 }
13509
13510 /* Map an ELF section header flag to its corresponding string. */
13511 typedef struct
13512 {
13513 char *flag_name;
13514 flagword flag_value;
13515 } elf_flags_to_name_table;
13516
13517 static elf_flags_to_name_table elf_flags_to_names [] =
13518 {
13519 { "SHF_WRITE", SHF_WRITE },
13520 { "SHF_ALLOC", SHF_ALLOC },
13521 { "SHF_EXECINSTR", SHF_EXECINSTR },
13522 { "SHF_MERGE", SHF_MERGE },
13523 { "SHF_STRINGS", SHF_STRINGS },
13524 { "SHF_INFO_LINK", SHF_INFO_LINK},
13525 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13526 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13527 { "SHF_GROUP", SHF_GROUP },
13528 { "SHF_TLS", SHF_TLS },
13529 { "SHF_MASKOS", SHF_MASKOS },
13530 { "SHF_EXCLUDE", SHF_EXCLUDE },
13531 };
13532
13533 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13534 bfd_boolean
13535 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13536 struct flag_info *flaginfo,
13537 asection *section)
13538 {
13539 const bfd_vma sh_flags = elf_section_flags (section);
13540
13541 if (!flaginfo->flags_initialized)
13542 {
13543 bfd *obfd = info->output_bfd;
13544 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13545 struct flag_info_list *tf = flaginfo->flag_list;
13546 int with_hex = 0;
13547 int without_hex = 0;
13548
13549 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13550 {
13551 unsigned i;
13552 flagword (*lookup) (char *);
13553
13554 lookup = bed->elf_backend_lookup_section_flags_hook;
13555 if (lookup != NULL)
13556 {
13557 flagword hexval = (*lookup) ((char *) tf->name);
13558
13559 if (hexval != 0)
13560 {
13561 if (tf->with == with_flags)
13562 with_hex |= hexval;
13563 else if (tf->with == without_flags)
13564 without_hex |= hexval;
13565 tf->valid = TRUE;
13566 continue;
13567 }
13568 }
13569 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13570 {
13571 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13572 {
13573 if (tf->with == with_flags)
13574 with_hex |= elf_flags_to_names[i].flag_value;
13575 else if (tf->with == without_flags)
13576 without_hex |= elf_flags_to_names[i].flag_value;
13577 tf->valid = TRUE;
13578 break;
13579 }
13580 }
13581 if (!tf->valid)
13582 {
13583 info->callbacks->einfo
13584 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13585 return FALSE;
13586 }
13587 }
13588 flaginfo->flags_initialized = TRUE;
13589 flaginfo->only_with_flags |= with_hex;
13590 flaginfo->not_with_flags |= without_hex;
13591 }
13592
13593 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13594 return FALSE;
13595
13596 if ((flaginfo->not_with_flags & sh_flags) != 0)
13597 return FALSE;
13598
13599 return TRUE;
13600 }
13601
13602 struct alloc_got_off_arg {
13603 bfd_vma gotoff;
13604 struct bfd_link_info *info;
13605 };
13606
13607 /* We need a special top-level link routine to convert got reference counts
13608 to real got offsets. */
13609
13610 static bfd_boolean
13611 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13612 {
13613 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13614 bfd *obfd = gofarg->info->output_bfd;
13615 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13616
13617 if (h->got.refcount > 0)
13618 {
13619 h->got.offset = gofarg->gotoff;
13620 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13621 }
13622 else
13623 h->got.offset = (bfd_vma) -1;
13624
13625 return TRUE;
13626 }
13627
13628 /* And an accompanying bit to work out final got entry offsets once
13629 we're done. Should be called from final_link. */
13630
13631 bfd_boolean
13632 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13633 struct bfd_link_info *info)
13634 {
13635 bfd *i;
13636 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13637 bfd_vma gotoff;
13638 struct alloc_got_off_arg gofarg;
13639
13640 BFD_ASSERT (abfd == info->output_bfd);
13641
13642 if (! is_elf_hash_table (info->hash))
13643 return FALSE;
13644
13645 /* The GOT offset is relative to the .got section, but the GOT header is
13646 put into the .got.plt section, if the backend uses it. */
13647 if (bed->want_got_plt)
13648 gotoff = 0;
13649 else
13650 gotoff = bed->got_header_size;
13651
13652 /* Do the local .got entries first. */
13653 for (i = info->input_bfds; i; i = i->link.next)
13654 {
13655 bfd_signed_vma *local_got;
13656 size_t j, locsymcount;
13657 Elf_Internal_Shdr *symtab_hdr;
13658
13659 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13660 continue;
13661
13662 local_got = elf_local_got_refcounts (i);
13663 if (!local_got)
13664 continue;
13665
13666 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13667 if (elf_bad_symtab (i))
13668 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13669 else
13670 locsymcount = symtab_hdr->sh_info;
13671
13672 for (j = 0; j < locsymcount; ++j)
13673 {
13674 if (local_got[j] > 0)
13675 {
13676 local_got[j] = gotoff;
13677 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13678 }
13679 else
13680 local_got[j] = (bfd_vma) -1;
13681 }
13682 }
13683
13684 /* Then the global .got entries. .plt refcounts are handled by
13685 adjust_dynamic_symbol */
13686 gofarg.gotoff = gotoff;
13687 gofarg.info = info;
13688 elf_link_hash_traverse (elf_hash_table (info),
13689 elf_gc_allocate_got_offsets,
13690 &gofarg);
13691 return TRUE;
13692 }
13693
13694 /* Many folk need no more in the way of final link than this, once
13695 got entry reference counting is enabled. */
13696
13697 bfd_boolean
13698 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13699 {
13700 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13701 return FALSE;
13702
13703 /* Invoke the regular ELF backend linker to do all the work. */
13704 return bfd_elf_final_link (abfd, info);
13705 }
13706
13707 bfd_boolean
13708 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13709 {
13710 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13711
13712 if (rcookie->bad_symtab)
13713 rcookie->rel = rcookie->rels;
13714
13715 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13716 {
13717 unsigned long r_symndx;
13718
13719 if (! rcookie->bad_symtab)
13720 if (rcookie->rel->r_offset > offset)
13721 return FALSE;
13722 if (rcookie->rel->r_offset != offset)
13723 continue;
13724
13725 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13726 if (r_symndx == STN_UNDEF)
13727 return TRUE;
13728
13729 if (r_symndx >= rcookie->locsymcount
13730 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13731 {
13732 struct elf_link_hash_entry *h;
13733
13734 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13735
13736 while (h->root.type == bfd_link_hash_indirect
13737 || h->root.type == bfd_link_hash_warning)
13738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13739
13740 if ((h->root.type == bfd_link_hash_defined
13741 || h->root.type == bfd_link_hash_defweak)
13742 && (h->root.u.def.section->owner != rcookie->abfd
13743 || h->root.u.def.section->kept_section != NULL
13744 || discarded_section (h->root.u.def.section)))
13745 return TRUE;
13746 }
13747 else
13748 {
13749 /* It's not a relocation against a global symbol,
13750 but it could be a relocation against a local
13751 symbol for a discarded section. */
13752 asection *isec;
13753 Elf_Internal_Sym *isym;
13754
13755 /* Need to: get the symbol; get the section. */
13756 isym = &rcookie->locsyms[r_symndx];
13757 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13758 if (isec != NULL
13759 && (isec->kept_section != NULL
13760 || discarded_section (isec)))
13761 return TRUE;
13762 }
13763 return FALSE;
13764 }
13765 return FALSE;
13766 }
13767
13768 /* Discard unneeded references to discarded sections.
13769 Returns -1 on error, 1 if any section's size was changed, 0 if
13770 nothing changed. This function assumes that the relocations are in
13771 sorted order, which is true for all known assemblers. */
13772
13773 int
13774 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13775 {
13776 struct elf_reloc_cookie cookie;
13777 asection *o;
13778 bfd *abfd;
13779 int changed = 0;
13780
13781 if (info->traditional_format
13782 || !is_elf_hash_table (info->hash))
13783 return 0;
13784
13785 o = bfd_get_section_by_name (output_bfd, ".stab");
13786 if (o != NULL)
13787 {
13788 asection *i;
13789
13790 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13791 {
13792 if (i->size == 0
13793 || i->reloc_count == 0
13794 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13795 continue;
13796
13797 abfd = i->owner;
13798 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13799 continue;
13800
13801 if (!init_reloc_cookie_for_section (&cookie, info, i))
13802 return -1;
13803
13804 if (_bfd_discard_section_stabs (abfd, i,
13805 elf_section_data (i)->sec_info,
13806 bfd_elf_reloc_symbol_deleted_p,
13807 &cookie))
13808 changed = 1;
13809
13810 fini_reloc_cookie_for_section (&cookie, i);
13811 }
13812 }
13813
13814 o = NULL;
13815 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13816 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13817 if (o != NULL)
13818 {
13819 asection *i;
13820 int eh_changed = 0;
13821 unsigned int eh_alignment;
13822
13823 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13824 {
13825 if (i->size == 0)
13826 continue;
13827
13828 abfd = i->owner;
13829 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13830 continue;
13831
13832 if (!init_reloc_cookie_for_section (&cookie, info, i))
13833 return -1;
13834
13835 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13836 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13837 bfd_elf_reloc_symbol_deleted_p,
13838 &cookie))
13839 {
13840 eh_changed = 1;
13841 if (i->size != i->rawsize)
13842 changed = 1;
13843 }
13844
13845 fini_reloc_cookie_for_section (&cookie, i);
13846 }
13847
13848 eh_alignment = 1 << o->alignment_power;
13849 /* Skip over zero terminator, and prevent empty sections from
13850 adding alignment padding at the end. */
13851 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
13852 if (i->size == 0)
13853 i->flags |= SEC_EXCLUDE;
13854 else if (i->size > 4)
13855 break;
13856 /* The last non-empty eh_frame section doesn't need padding. */
13857 if (i != NULL)
13858 i = i->map_tail.s;
13859 /* Any prior sections must pad the last FDE out to the output
13860 section alignment. Otherwise we might have zero padding
13861 between sections, which would be seen as a terminator. */
13862 for (; i != NULL; i = i->map_tail.s)
13863 if (i->size == 4)
13864 /* All but the last zero terminator should have been removed. */
13865 BFD_FAIL ();
13866 else
13867 {
13868 bfd_size_type size
13869 = (i->size + eh_alignment - 1) & -eh_alignment;
13870 if (i->size != size)
13871 {
13872 i->size = size;
13873 changed = 1;
13874 eh_changed = 1;
13875 }
13876 }
13877 if (eh_changed)
13878 elf_link_hash_traverse (elf_hash_table (info),
13879 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13880 }
13881
13882 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13883 {
13884 const struct elf_backend_data *bed;
13885 asection *s;
13886
13887 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13888 continue;
13889 s = abfd->sections;
13890 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13891 continue;
13892
13893 bed = get_elf_backend_data (abfd);
13894
13895 if (bed->elf_backend_discard_info != NULL)
13896 {
13897 if (!init_reloc_cookie (&cookie, info, abfd))
13898 return -1;
13899
13900 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13901 changed = 1;
13902
13903 fini_reloc_cookie (&cookie, abfd);
13904 }
13905 }
13906
13907 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13908 _bfd_elf_end_eh_frame_parsing (info);
13909
13910 if (info->eh_frame_hdr_type
13911 && !bfd_link_relocatable (info)
13912 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13913 changed = 1;
13914
13915 return changed;
13916 }
13917
13918 bfd_boolean
13919 _bfd_elf_section_already_linked (bfd *abfd,
13920 asection *sec,
13921 struct bfd_link_info *info)
13922 {
13923 flagword flags;
13924 const char *name, *key;
13925 struct bfd_section_already_linked *l;
13926 struct bfd_section_already_linked_hash_entry *already_linked_list;
13927
13928 if (sec->output_section == bfd_abs_section_ptr)
13929 return FALSE;
13930
13931 flags = sec->flags;
13932
13933 /* Return if it isn't a linkonce section. A comdat group section
13934 also has SEC_LINK_ONCE set. */
13935 if ((flags & SEC_LINK_ONCE) == 0)
13936 return FALSE;
13937
13938 /* Don't put group member sections on our list of already linked
13939 sections. They are handled as a group via their group section. */
13940 if (elf_sec_group (sec) != NULL)
13941 return FALSE;
13942
13943 /* For a SHT_GROUP section, use the group signature as the key. */
13944 name = sec->name;
13945 if ((flags & SEC_GROUP) != 0
13946 && elf_next_in_group (sec) != NULL
13947 && elf_group_name (elf_next_in_group (sec)) != NULL)
13948 key = elf_group_name (elf_next_in_group (sec));
13949 else
13950 {
13951 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13952 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13953 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13954 key++;
13955 else
13956 /* Must be a user linkonce section that doesn't follow gcc's
13957 naming convention. In this case we won't be matching
13958 single member groups. */
13959 key = name;
13960 }
13961
13962 already_linked_list = bfd_section_already_linked_table_lookup (key);
13963
13964 for (l = already_linked_list->entry; l != NULL; l = l->next)
13965 {
13966 /* We may have 2 different types of sections on the list: group
13967 sections with a signature of <key> (<key> is some string),
13968 and linkonce sections named .gnu.linkonce.<type>.<key>.
13969 Match like sections. LTO plugin sections are an exception.
13970 They are always named .gnu.linkonce.t.<key> and match either
13971 type of section. */
13972 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13973 && ((flags & SEC_GROUP) != 0
13974 || strcmp (name, l->sec->name) == 0))
13975 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13976 {
13977 /* The section has already been linked. See if we should
13978 issue a warning. */
13979 if (!_bfd_handle_already_linked (sec, l, info))
13980 return FALSE;
13981
13982 if (flags & SEC_GROUP)
13983 {
13984 asection *first = elf_next_in_group (sec);
13985 asection *s = first;
13986
13987 while (s != NULL)
13988 {
13989 s->output_section = bfd_abs_section_ptr;
13990 /* Record which group discards it. */
13991 s->kept_section = l->sec;
13992 s = elf_next_in_group (s);
13993 /* These lists are circular. */
13994 if (s == first)
13995 break;
13996 }
13997 }
13998
13999 return TRUE;
14000 }
14001 }
14002
14003 /* A single member comdat group section may be discarded by a
14004 linkonce section and vice versa. */
14005 if ((flags & SEC_GROUP) != 0)
14006 {
14007 asection *first = elf_next_in_group (sec);
14008
14009 if (first != NULL && elf_next_in_group (first) == first)
14010 /* Check this single member group against linkonce sections. */
14011 for (l = already_linked_list->entry; l != NULL; l = l->next)
14012 if ((l->sec->flags & SEC_GROUP) == 0
14013 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14014 {
14015 first->output_section = bfd_abs_section_ptr;
14016 first->kept_section = l->sec;
14017 sec->output_section = bfd_abs_section_ptr;
14018 break;
14019 }
14020 }
14021 else
14022 /* Check this linkonce section against single member groups. */
14023 for (l = already_linked_list->entry; l != NULL; l = l->next)
14024 if (l->sec->flags & SEC_GROUP)
14025 {
14026 asection *first = elf_next_in_group (l->sec);
14027
14028 if (first != NULL
14029 && elf_next_in_group (first) == first
14030 && bfd_elf_match_symbols_in_sections (first, sec, info))
14031 {
14032 sec->output_section = bfd_abs_section_ptr;
14033 sec->kept_section = first;
14034 break;
14035 }
14036 }
14037
14038 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14039 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14040 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14041 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14042 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14043 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14044 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14045 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14046 The reverse order cannot happen as there is never a bfd with only the
14047 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14048 matter as here were are looking only for cross-bfd sections. */
14049
14050 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14051 for (l = already_linked_list->entry; l != NULL; l = l->next)
14052 if ((l->sec->flags & SEC_GROUP) == 0
14053 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14054 {
14055 if (abfd != l->sec->owner)
14056 sec->output_section = bfd_abs_section_ptr;
14057 break;
14058 }
14059
14060 /* This is the first section with this name. Record it. */
14061 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14062 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14063 return sec->output_section == bfd_abs_section_ptr;
14064 }
14065
14066 bfd_boolean
14067 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14068 {
14069 return sym->st_shndx == SHN_COMMON;
14070 }
14071
14072 unsigned int
14073 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14074 {
14075 return SHN_COMMON;
14076 }
14077
14078 asection *
14079 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14080 {
14081 return bfd_com_section_ptr;
14082 }
14083
14084 bfd_vma
14085 _bfd_elf_default_got_elt_size (bfd *abfd,
14086 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14087 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14088 bfd *ibfd ATTRIBUTE_UNUSED,
14089 unsigned long symndx ATTRIBUTE_UNUSED)
14090 {
14091 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14092 return bed->s->arch_size / 8;
14093 }
14094
14095 /* Routines to support the creation of dynamic relocs. */
14096
14097 /* Returns the name of the dynamic reloc section associated with SEC. */
14098
14099 static const char *
14100 get_dynamic_reloc_section_name (bfd * abfd,
14101 asection * sec,
14102 bfd_boolean is_rela)
14103 {
14104 char *name;
14105 const char *old_name = bfd_get_section_name (NULL, sec);
14106 const char *prefix = is_rela ? ".rela" : ".rel";
14107
14108 if (old_name == NULL)
14109 return NULL;
14110
14111 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14112 sprintf (name, "%s%s", prefix, old_name);
14113
14114 return name;
14115 }
14116
14117 /* Returns the dynamic reloc section associated with SEC.
14118 If necessary compute the name of the dynamic reloc section based
14119 on SEC's name (looked up in ABFD's string table) and the setting
14120 of IS_RELA. */
14121
14122 asection *
14123 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14124 asection * sec,
14125 bfd_boolean is_rela)
14126 {
14127 asection * reloc_sec = elf_section_data (sec)->sreloc;
14128
14129 if (reloc_sec == NULL)
14130 {
14131 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14132
14133 if (name != NULL)
14134 {
14135 reloc_sec = bfd_get_linker_section (abfd, name);
14136
14137 if (reloc_sec != NULL)
14138 elf_section_data (sec)->sreloc = reloc_sec;
14139 }
14140 }
14141
14142 return reloc_sec;
14143 }
14144
14145 /* Returns the dynamic reloc section associated with SEC. If the
14146 section does not exist it is created and attached to the DYNOBJ
14147 bfd and stored in the SRELOC field of SEC's elf_section_data
14148 structure.
14149
14150 ALIGNMENT is the alignment for the newly created section and
14151 IS_RELA defines whether the name should be .rela.<SEC's name>
14152 or .rel.<SEC's name>. The section name is looked up in the
14153 string table associated with ABFD. */
14154
14155 asection *
14156 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14157 bfd *dynobj,
14158 unsigned int alignment,
14159 bfd *abfd,
14160 bfd_boolean is_rela)
14161 {
14162 asection * reloc_sec = elf_section_data (sec)->sreloc;
14163
14164 if (reloc_sec == NULL)
14165 {
14166 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14167
14168 if (name == NULL)
14169 return NULL;
14170
14171 reloc_sec = bfd_get_linker_section (dynobj, name);
14172
14173 if (reloc_sec == NULL)
14174 {
14175 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14176 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14177 if ((sec->flags & SEC_ALLOC) != 0)
14178 flags |= SEC_ALLOC | SEC_LOAD;
14179
14180 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14181 if (reloc_sec != NULL)
14182 {
14183 /* _bfd_elf_get_sec_type_attr chooses a section type by
14184 name. Override as it may be wrong, eg. for a user
14185 section named "auto" we'll get ".relauto" which is
14186 seen to be a .rela section. */
14187 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14188 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14189 reloc_sec = NULL;
14190 }
14191 }
14192
14193 elf_section_data (sec)->sreloc = reloc_sec;
14194 }
14195
14196 return reloc_sec;
14197 }
14198
14199 /* Copy the ELF symbol type and other attributes for a linker script
14200 assignment from HSRC to HDEST. Generally this should be treated as
14201 if we found a strong non-dynamic definition for HDEST (except that
14202 ld ignores multiple definition errors). */
14203 void
14204 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14205 struct bfd_link_hash_entry *hdest,
14206 struct bfd_link_hash_entry *hsrc)
14207 {
14208 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14209 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14210 Elf_Internal_Sym isym;
14211
14212 ehdest->type = ehsrc->type;
14213 ehdest->target_internal = ehsrc->target_internal;
14214
14215 isym.st_other = ehsrc->other;
14216 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14217 }
14218
14219 /* Append a RELA relocation REL to section S in BFD. */
14220
14221 void
14222 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14223 {
14224 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14225 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14226 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14227 bed->s->swap_reloca_out (abfd, rel, loc);
14228 }
14229
14230 /* Append a REL relocation REL to section S in BFD. */
14231
14232 void
14233 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14234 {
14235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14236 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14237 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14238 bed->s->swap_reloc_out (abfd, rel, loc);
14239 }
14240
14241 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14242
14243 struct bfd_link_hash_entry *
14244 bfd_elf_define_start_stop (struct bfd_link_info *info,
14245 const char *symbol, asection *sec)
14246 {
14247 struct elf_link_hash_entry *h;
14248
14249 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14250 FALSE, FALSE, TRUE);
14251 if (h != NULL
14252 && (h->root.type == bfd_link_hash_undefined
14253 || h->root.type == bfd_link_hash_undefweak
14254 || (h->ref_regular && !h->def_regular)))
14255 {
14256 h->root.type = bfd_link_hash_defined;
14257 h->root.u.def.section = sec;
14258 h->root.u.def.value = 0;
14259 h->def_regular = 1;
14260 h->def_dynamic = 0;
14261 h->start_stop = 1;
14262 h->u2.start_stop_section = sec;
14263 if (symbol[0] == '.')
14264 {
14265 /* .startof. and .sizeof. symbols are local. */
14266 const struct elf_backend_data *bed;
14267 bed = get_elf_backend_data (info->output_bfd);
14268 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14269 }
14270 else if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14271 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14272 return &h->root;
14273 }
14274 return NULL;
14275 }
This page took 0.395314 seconds and 4 git commands to generate.