PR ld/12365
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1036
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1083 {
1084 *skip = TRUE;
1085 return TRUE;
1086 }
1087
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1093 {
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1097
1098 if (h->type == STT_TLS)
1099 {
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1106 }
1107 else
1108 {
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1115 }
1116
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1133
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1136 }
1137
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1142 {
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1146 {
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1151 {
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1154 }
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1157 }
1158 }
1159
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1165 {
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1171
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1177 }
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1181 {
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186 {
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1192 {
1193 struct elf_link_hash_entry *vh = *sym_hash;
1194
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201 {
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1205 }
1206 else
1207 {
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214 }
1215 h = vh;
1216 }
1217 else
1218 h = *sym_hash;
1219 }
1220
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1223 {
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1232 }
1233 else
1234 {
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1237 }
1238
1239 if (h->def_dynamic)
1240 {
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1244 }
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1249 }
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1557 {
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1560 }
1561 }
1562
1563 return TRUE;
1564 }
1565
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1570
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1581 {
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1594
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1602
1603 if (override)
1604 {
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1614 {
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1618 }
1619 }
1620
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1624
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1631
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1643
1644 if (skip)
1645 goto nondefault;
1646
1647 if (! override)
1648 {
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1655 }
1656 else
1657 {
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1663
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1667
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1675
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1683 {
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1688 {
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1691 }
1692 }
1693
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1697 }
1698
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1706
1707 if (hi->root.type == bfd_link_hash_indirect)
1708 {
1709 struct elf_link_hash_entry *ht;
1710
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1717 {
1718 if (! dynamic)
1719 {
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1786 {
1787 if (! dynamic)
1788 {
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1792 }
1793 else
1794 {
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1797 }
1798 }
1799 }
1800 }
1801
1802 return TRUE;
1803 }
1804 \f
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1807
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 {
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812
1813 /* Ignore this if we won't export it. */
1814 if (!eif->info->export_dynamic && !h->dynamic)
1815 return TRUE;
1816
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h->root.type == bfd_link_hash_indirect)
1819 return TRUE;
1820
1821 if (h->root.type == bfd_link_hash_warning)
1822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1823
1824 if (h->dynindx == -1
1825 && (h->def_regular
1826 || h->ref_regular))
1827 {
1828 bfd_boolean hide;
1829
1830 if (eif->verdefs == NULL
1831 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 && !hide))
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1835 {
1836 eif->failed = TRUE;
1837 return FALSE;
1838 }
1839 }
1840 }
1841
1842 return TRUE;
1843 }
1844 \f
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1849
1850 static bfd_boolean
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 void *data)
1853 {
1854 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1855 Elf_Internal_Verneed *t;
1856 Elf_Internal_Vernaux *a;
1857 bfd_size_type amt;
1858
1859 if (h->root.type == bfd_link_hash_warning)
1860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1861
1862 /* We only care about symbols defined in shared objects with version
1863 information. */
1864 if (!h->def_dynamic
1865 || h->def_regular
1866 || h->dynindx == -1
1867 || h->verinfo.verdef == NULL)
1868 return TRUE;
1869
1870 /* See if we already know about this version. */
1871 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1872 t != NULL;
1873 t = t->vn_nextref)
1874 {
1875 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 continue;
1877
1878 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1879 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1880 return TRUE;
1881
1882 break;
1883 }
1884
1885 /* This is a new version. Add it to tree we are building. */
1886
1887 if (t == NULL)
1888 {
1889 amt = sizeof *t;
1890 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (t == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1898 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1899 elf_tdata (rinfo->info->output_bfd)->verref = t;
1900 }
1901
1902 amt = sizeof *a;
1903 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1904 if (a == NULL)
1905 {
1906 rinfo->failed = TRUE;
1907 return FALSE;
1908 }
1909
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1913 fixed. */
1914 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1915
1916 a->vna_flags = h->verinfo.verdef->vd_flags;
1917 a->vna_nextptr = t->vn_auxptr;
1918
1919 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 ++rinfo->vers;
1921
1922 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1923
1924 t->vn_auxptr = a;
1925
1926 return TRUE;
1927 }
1928
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1933
1934 static bfd_boolean
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1936 {
1937 struct elf_info_failed *sinfo;
1938 struct bfd_link_info *info;
1939 const struct elf_backend_data *bed;
1940 struct elf_info_failed eif;
1941 char *p;
1942 bfd_size_type amt;
1943
1944 sinfo = (struct elf_info_failed *) data;
1945 info = sinfo->info;
1946
1947 if (h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1949
1950 /* Fix the symbol flags. */
1951 eif.failed = FALSE;
1952 eif.info = info;
1953 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1954 {
1955 if (eif.failed)
1956 sinfo->failed = TRUE;
1957 return FALSE;
1958 }
1959
1960 /* We only need version numbers for symbols defined in regular
1961 objects. */
1962 if (!h->def_regular)
1963 return TRUE;
1964
1965 bed = get_elf_backend_data (info->output_bfd);
1966 p = strchr (h->root.root.string, ELF_VER_CHR);
1967 if (p != NULL && h->verinfo.vertree == NULL)
1968 {
1969 struct bfd_elf_version_tree *t;
1970 bfd_boolean hidden;
1971
1972 hidden = TRUE;
1973
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1976 ++p;
1977 if (*p == ELF_VER_CHR)
1978 {
1979 hidden = FALSE;
1980 ++p;
1981 }
1982
1983 /* If there is no version string, we can just return out. */
1984 if (*p == '\0')
1985 {
1986 if (hidden)
1987 h->hidden = 1;
1988 return TRUE;
1989 }
1990
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t = sinfo->verdefs; t != NULL; t = t->next)
1993 {
1994 if (strcmp (t->name, p) == 0)
1995 {
1996 size_t len;
1997 char *alc;
1998 struct bfd_elf_version_expr *d;
1999
2000 len = p - h->root.root.string;
2001 alc = (char *) bfd_malloc (len);
2002 if (alc == NULL)
2003 {
2004 sinfo->failed = TRUE;
2005 return FALSE;
2006 }
2007 memcpy (alc, h->root.root.string, len - 1);
2008 alc[len - 1] = '\0';
2009 if (alc[len - 2] == ELF_VER_CHR)
2010 alc[len - 2] = '\0';
2011
2012 h->verinfo.vertree = t;
2013 t->used = TRUE;
2014 d = NULL;
2015
2016 if (t->globals.list != NULL)
2017 d = (*t->match) (&t->globals, NULL, alc);
2018
2019 /* See if there is anything to force this symbol to
2020 local scope. */
2021 if (d == NULL && t->locals.list != NULL)
2022 {
2023 d = (*t->match) (&t->locals, NULL, alc);
2024 if (d != NULL
2025 && h->dynindx != -1
2026 && ! info->export_dynamic)
2027 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2028 }
2029
2030 free (alc);
2031 break;
2032 }
2033 }
2034
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t == NULL && info->executable)
2038 {
2039 struct bfd_elf_version_tree **pp;
2040 int version_index;
2041
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h->dynindx == -1)
2045 return TRUE;
2046
2047 amt = sizeof *t;
2048 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2049 if (t == NULL)
2050 {
2051 sinfo->failed = TRUE;
2052 return FALSE;
2053 }
2054
2055 t->name = p;
2056 t->name_indx = (unsigned int) -1;
2057 t->used = TRUE;
2058
2059 version_index = 1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2064 ++version_index;
2065 t->vernum = version_index;
2066
2067 *pp = t;
2068
2069 h->verinfo.vertree = t;
2070 }
2071 else if (t == NULL)
2072 {
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler)
2076 (_("%B: version node not found for symbol %s"),
2077 info->output_bfd, h->root.root.string);
2078 bfd_set_error (bfd_error_bad_value);
2079 sinfo->failed = TRUE;
2080 return FALSE;
2081 }
2082
2083 if (hidden)
2084 h->hidden = 1;
2085 }
2086
2087 /* If we don't have a version for this symbol, see if we can find
2088 something. */
2089 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2090 {
2091 bfd_boolean hide;
2092
2093 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2097 }
2098
2099 return TRUE;
2100 }
2101 \f
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2108
2109 Returns FALSE if something goes wrong. */
2110
2111 static bfd_boolean
2112 elf_link_read_relocs_from_section (bfd *abfd,
2113 asection *sec,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2117 {
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2124 size_t nsyms;
2125
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 return FALSE;
2129
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 return FALSE;
2133
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2136
2137 bed = get_elf_backend_data (abfd);
2138
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2144 else
2145 {
2146 bfd_set_error (bfd_error_wrong_format);
2147 return FALSE;
2148 }
2149
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2154 {
2155 bfd_vma r_symndx;
2156
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2160 r_symndx >>= 24;
2161 if (nsyms > 0)
2162 {
2163 if ((size_t) r_symndx >= nsyms)
2164 {
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2172 }
2173 }
2174 else if (r_symndx != STN_UNDEF)
2175 {
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2179 abfd, sec,
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2183 }
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2186 }
2187
2188 return TRUE;
2189 }
2190
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2200
2201 Elf_Internal_Rela *
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2203 asection *o,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2207 {
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 struct bfd_elf_section_data *esdo = elf_section_data (o);
2212 Elf_Internal_Rela *internal_rela_relocs;
2213
2214 if (esdo->relocs != NULL)
2215 return esdo->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = 0;
2237
2238 if (esdo->rel.hdr)
2239 size += esdo->rel.hdr->sh_size;
2240 if (esdo->rela.hdr)
2241 size += esdo->rela.hdr->sh_size;
2242
2243 alloc1 = bfd_malloc (size);
2244 if (alloc1 == NULL)
2245 goto error_return;
2246 external_relocs = alloc1;
2247 }
2248
2249 internal_rela_relocs = internal_relocs;
2250 if (esdo->rel.hdr)
2251 {
2252 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2253 external_relocs,
2254 internal_relocs))
2255 goto error_return;
2256 external_relocs = (((bfd_byte *) external_relocs)
2257 + esdo->rel.hdr->sh_size);
2258 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2259 * bed->s->int_rels_per_ext_rel);
2260 }
2261
2262 if (esdo->rela.hdr
2263 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2264 external_relocs,
2265 internal_rela_relocs)))
2266 goto error_return;
2267
2268 /* Cache the results for next time, if we can. */
2269 if (keep_memory)
2270 esdo->relocs = internal_relocs;
2271
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2277
2278 return internal_relocs;
2279
2280 error_return:
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283 if (alloc2 != NULL)
2284 {
2285 if (keep_memory)
2286 bfd_release (abfd, alloc2);
2287 else
2288 free (alloc2);
2289 }
2290 return NULL;
2291 }
2292
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2295
2296 static bfd_boolean
2297 _bfd_elf_link_size_reloc_section (bfd *abfd,
2298 struct bfd_elf_section_reloc_data *reldata)
2299 {
2300 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2301
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2304
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2311 return FALSE;
2312
2313 if (reldata->hashes == NULL && reldata->count)
2314 {
2315 struct elf_link_hash_entry **p;
2316
2317 p = (struct elf_link_hash_entry **)
2318 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2319 if (p == NULL)
2320 return FALSE;
2321
2322 reldata->hashes = p;
2323 }
2324
2325 return TRUE;
2326 }
2327
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2330 OUTPUT_BFD. */
2331
2332 bfd_boolean
2333 _bfd_elf_link_output_relocs (bfd *output_bfd,
2334 asection *input_section,
2335 Elf_Internal_Shdr *input_rel_hdr,
2336 Elf_Internal_Rela *internal_relocs,
2337 struct elf_link_hash_entry **rel_hash
2338 ATTRIBUTE_UNUSED)
2339 {
2340 Elf_Internal_Rela *irela;
2341 Elf_Internal_Rela *irelaend;
2342 bfd_byte *erel;
2343 struct bfd_elf_section_reloc_data *output_reldata;
2344 asection *output_section;
2345 const struct elf_backend_data *bed;
2346 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2347 struct bfd_elf_section_data *esdo;
2348
2349 output_section = input_section->output_section;
2350
2351 bed = get_elf_backend_data (output_bfd);
2352 esdo = elf_section_data (output_section);
2353 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2354 {
2355 output_reldata = &esdo->rel;
2356 swap_out = bed->s->swap_reloc_out;
2357 }
2358 else if (esdo->rela.hdr
2359 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rela;
2362 swap_out = bed->s->swap_reloca_out;
2363 }
2364 else
2365 {
2366 (*_bfd_error_handler)
2367 (_("%B: relocation size mismatch in %B section %A"),
2368 output_bfd, input_section->owner, input_section);
2369 bfd_set_error (bfd_error_wrong_format);
2370 return FALSE;
2371 }
2372
2373 erel = output_reldata->hdr->contents;
2374 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2375 irela = internal_relocs;
2376 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2377 * bed->s->int_rels_per_ext_rel);
2378 while (irela < irelaend)
2379 {
2380 (*swap_out) (output_bfd, irela, erel);
2381 irela += bed->s->int_rels_per_ext_rel;
2382 erel += input_rel_hdr->sh_entsize;
2383 }
2384
2385 /* Bump the counter, so that we know where to add the next set of
2386 relocations. */
2387 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2388
2389 return TRUE;
2390 }
2391 \f
2392 /* Make weak undefined symbols in PIE dynamic. */
2393
2394 bfd_boolean
2395 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2397 {
2398 if (info->pie
2399 && h->dynindx == -1
2400 && h->root.type == bfd_link_hash_undefweak)
2401 return bfd_elf_link_record_dynamic_symbol (info, h);
2402
2403 return TRUE;
2404 }
2405
2406 /* Fix up the flags for a symbol. This handles various cases which
2407 can only be fixed after all the input files are seen. This is
2408 currently called by both adjust_dynamic_symbol and
2409 assign_sym_version, which is unnecessary but perhaps more robust in
2410 the face of future changes. */
2411
2412 static bfd_boolean
2413 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2414 struct elf_info_failed *eif)
2415 {
2416 const struct elf_backend_data *bed;
2417
2418 /* If this symbol was mentioned in a non-ELF file, try to set
2419 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2420 permit a non-ELF file to correctly refer to a symbol defined in
2421 an ELF dynamic object. */
2422 if (h->non_elf)
2423 {
2424 while (h->root.type == bfd_link_hash_indirect)
2425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2426
2427 if (h->root.type != bfd_link_hash_defined
2428 && h->root.type != bfd_link_hash_defweak)
2429 {
2430 h->ref_regular = 1;
2431 h->ref_regular_nonweak = 1;
2432 }
2433 else
2434 {
2435 if (h->root.u.def.section->owner != NULL
2436 && (bfd_get_flavour (h->root.u.def.section->owner)
2437 == bfd_target_elf_flavour))
2438 {
2439 h->ref_regular = 1;
2440 h->ref_regular_nonweak = 1;
2441 }
2442 else
2443 h->def_regular = 1;
2444 }
2445
2446 if (h->dynindx == -1
2447 && (h->def_dynamic
2448 || h->ref_dynamic))
2449 {
2450 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2451 {
2452 eif->failed = TRUE;
2453 return FALSE;
2454 }
2455 }
2456 }
2457 else
2458 {
2459 /* Unfortunately, NON_ELF is only correct if the symbol
2460 was first seen in a non-ELF file. Fortunately, if the symbol
2461 was first seen in an ELF file, we're probably OK unless the
2462 symbol was defined in a non-ELF file. Catch that case here.
2463 FIXME: We're still in trouble if the symbol was first seen in
2464 a dynamic object, and then later in a non-ELF regular object. */
2465 if ((h->root.type == bfd_link_hash_defined
2466 || h->root.type == bfd_link_hash_defweak)
2467 && !h->def_regular
2468 && (h->root.u.def.section->owner != NULL
2469 ? (bfd_get_flavour (h->root.u.def.section->owner)
2470 != bfd_target_elf_flavour)
2471 : (bfd_is_abs_section (h->root.u.def.section)
2472 && !h->def_dynamic)))
2473 h->def_regular = 1;
2474 }
2475
2476 /* Backend specific symbol fixup. */
2477 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2478 if (bed->elf_backend_fixup_symbol
2479 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2480 return FALSE;
2481
2482 /* If this is a final link, and the symbol was defined as a common
2483 symbol in a regular object file, and there was no definition in
2484 any dynamic object, then the linker will have allocated space for
2485 the symbol in a common section but the DEF_REGULAR
2486 flag will not have been set. */
2487 if (h->root.type == bfd_link_hash_defined
2488 && !h->def_regular
2489 && h->ref_regular
2490 && !h->def_dynamic
2491 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2492 h->def_regular = 1;
2493
2494 /* If -Bsymbolic was used (which means to bind references to global
2495 symbols to the definition within the shared object), and this
2496 symbol was defined in a regular object, then it actually doesn't
2497 need a PLT entry. Likewise, if the symbol has non-default
2498 visibility. If the symbol has hidden or internal visibility, we
2499 will force it local. */
2500 if (h->needs_plt
2501 && eif->info->shared
2502 && is_elf_hash_table (eif->info->hash)
2503 && (SYMBOLIC_BIND (eif->info, h)
2504 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2505 && h->def_regular)
2506 {
2507 bfd_boolean force_local;
2508
2509 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2510 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2511 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2512 }
2513
2514 /* If a weak undefined symbol has non-default visibility, we also
2515 hide it from the dynamic linker. */
2516 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2517 && h->root.type == bfd_link_hash_undefweak)
2518 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2519
2520 /* If this is a weak defined symbol in a dynamic object, and we know
2521 the real definition in the dynamic object, copy interesting flags
2522 over to the real definition. */
2523 if (h->u.weakdef != NULL)
2524 {
2525 struct elf_link_hash_entry *weakdef;
2526
2527 weakdef = h->u.weakdef;
2528 if (h->root.type == bfd_link_hash_indirect)
2529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2530
2531 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2532 || h->root.type == bfd_link_hash_defweak);
2533 BFD_ASSERT (weakdef->def_dynamic);
2534
2535 /* If the real definition is defined by a regular object file,
2536 don't do anything special. See the longer description in
2537 _bfd_elf_adjust_dynamic_symbol, below. */
2538 if (weakdef->def_regular)
2539 h->u.weakdef = NULL;
2540 else
2541 {
2542 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2543 || weakdef->root.type == bfd_link_hash_defweak);
2544 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2545 }
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Make the backend pick a good value for a dynamic symbol. This is
2552 called via elf_link_hash_traverse, and also calls itself
2553 recursively. */
2554
2555 static bfd_boolean
2556 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2557 {
2558 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2559 bfd *dynobj;
2560 const struct elf_backend_data *bed;
2561
2562 if (! is_elf_hash_table (eif->info->hash))
2563 return FALSE;
2564
2565 if (h->root.type == bfd_link_hash_warning)
2566 {
2567 h->got = elf_hash_table (eif->info)->init_got_offset;
2568 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2569
2570 /* When warning symbols are created, they **replace** the "real"
2571 entry in the hash table, thus we never get to see the real
2572 symbol in a hash traversal. So look at it now. */
2573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2574 }
2575
2576 /* Ignore indirect symbols. These are added by the versioning code. */
2577 if (h->root.type == bfd_link_hash_indirect)
2578 return TRUE;
2579
2580 /* Fix the symbol flags. */
2581 if (! _bfd_elf_fix_symbol_flags (h, eif))
2582 return FALSE;
2583
2584 /* If this symbol does not require a PLT entry, and it is not
2585 defined by a dynamic object, or is not referenced by a regular
2586 object, ignore it. We do have to handle a weak defined symbol,
2587 even if no regular object refers to it, if we decided to add it
2588 to the dynamic symbol table. FIXME: Do we normally need to worry
2589 about symbols which are defined by one dynamic object and
2590 referenced by another one? */
2591 if (!h->needs_plt
2592 && h->type != STT_GNU_IFUNC
2593 && (h->def_regular
2594 || !h->def_dynamic
2595 || (!h->ref_regular
2596 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2597 {
2598 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2599 return TRUE;
2600 }
2601
2602 /* If we've already adjusted this symbol, don't do it again. This
2603 can happen via a recursive call. */
2604 if (h->dynamic_adjusted)
2605 return TRUE;
2606
2607 /* Don't look at this symbol again. Note that we must set this
2608 after checking the above conditions, because we may look at a
2609 symbol once, decide not to do anything, and then get called
2610 recursively later after REF_REGULAR is set below. */
2611 h->dynamic_adjusted = 1;
2612
2613 /* If this is a weak definition, and we know a real definition, and
2614 the real symbol is not itself defined by a regular object file,
2615 then get a good value for the real definition. We handle the
2616 real symbol first, for the convenience of the backend routine.
2617
2618 Note that there is a confusing case here. If the real definition
2619 is defined by a regular object file, we don't get the real symbol
2620 from the dynamic object, but we do get the weak symbol. If the
2621 processor backend uses a COPY reloc, then if some routine in the
2622 dynamic object changes the real symbol, we will not see that
2623 change in the corresponding weak symbol. This is the way other
2624 ELF linkers work as well, and seems to be a result of the shared
2625 library model.
2626
2627 I will clarify this issue. Most SVR4 shared libraries define the
2628 variable _timezone and define timezone as a weak synonym. The
2629 tzset call changes _timezone. If you write
2630 extern int timezone;
2631 int _timezone = 5;
2632 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2633 you might expect that, since timezone is a synonym for _timezone,
2634 the same number will print both times. However, if the processor
2635 backend uses a COPY reloc, then actually timezone will be copied
2636 into your process image, and, since you define _timezone
2637 yourself, _timezone will not. Thus timezone and _timezone will
2638 wind up at different memory locations. The tzset call will set
2639 _timezone, leaving timezone unchanged. */
2640
2641 if (h->u.weakdef != NULL)
2642 {
2643 /* If we get to this point, we know there is an implicit
2644 reference by a regular object file via the weak symbol H.
2645 FIXME: Is this really true? What if the traversal finds
2646 H->U.WEAKDEF before it finds H? */
2647 h->u.weakdef->ref_regular = 1;
2648
2649 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2650 return FALSE;
2651 }
2652
2653 /* If a symbol has no type and no size and does not require a PLT
2654 entry, then we are probably about to do the wrong thing here: we
2655 are probably going to create a COPY reloc for an empty object.
2656 This case can arise when a shared object is built with assembly
2657 code, and the assembly code fails to set the symbol type. */
2658 if (h->size == 0
2659 && h->type == STT_NOTYPE
2660 && !h->needs_plt)
2661 (*_bfd_error_handler)
2662 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2663 h->root.root.string);
2664
2665 dynobj = elf_hash_table (eif->info)->dynobj;
2666 bed = get_elf_backend_data (dynobj);
2667
2668 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2669 {
2670 eif->failed = TRUE;
2671 return FALSE;
2672 }
2673
2674 return TRUE;
2675 }
2676
2677 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2678 DYNBSS. */
2679
2680 bfd_boolean
2681 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2682 asection *dynbss)
2683 {
2684 unsigned int power_of_two;
2685 bfd_vma mask;
2686 asection *sec = h->root.u.def.section;
2687
2688 /* The section aligment of definition is the maximum alignment
2689 requirement of symbols defined in the section. Since we don't
2690 know the symbol alignment requirement, we start with the
2691 maximum alignment and check low bits of the symbol address
2692 for the minimum alignment. */
2693 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2694 mask = ((bfd_vma) 1 << power_of_two) - 1;
2695 while ((h->root.u.def.value & mask) != 0)
2696 {
2697 mask >>= 1;
2698 --power_of_two;
2699 }
2700
2701 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2702 dynbss))
2703 {
2704 /* Adjust the section alignment if needed. */
2705 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2706 power_of_two))
2707 return FALSE;
2708 }
2709
2710 /* We make sure that the symbol will be aligned properly. */
2711 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2712
2713 /* Define the symbol as being at this point in DYNBSS. */
2714 h->root.u.def.section = dynbss;
2715 h->root.u.def.value = dynbss->size;
2716
2717 /* Increment the size of DYNBSS to make room for the symbol. */
2718 dynbss->size += h->size;
2719
2720 return TRUE;
2721 }
2722
2723 /* Adjust all external symbols pointing into SEC_MERGE sections
2724 to reflect the object merging within the sections. */
2725
2726 static bfd_boolean
2727 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2728 {
2729 asection *sec;
2730
2731 if (h->root.type == bfd_link_hash_warning)
2732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2733
2734 if ((h->root.type == bfd_link_hash_defined
2735 || h->root.type == bfd_link_hash_defweak)
2736 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2737 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2738 {
2739 bfd *output_bfd = (bfd *) data;
2740
2741 h->root.u.def.value =
2742 _bfd_merged_section_offset (output_bfd,
2743 &h->root.u.def.section,
2744 elf_section_data (sec)->sec_info,
2745 h->root.u.def.value);
2746 }
2747
2748 return TRUE;
2749 }
2750
2751 /* Returns false if the symbol referred to by H should be considered
2752 to resolve local to the current module, and true if it should be
2753 considered to bind dynamically. */
2754
2755 bfd_boolean
2756 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2757 struct bfd_link_info *info,
2758 bfd_boolean not_local_protected)
2759 {
2760 bfd_boolean binding_stays_local_p;
2761 const struct elf_backend_data *bed;
2762 struct elf_link_hash_table *hash_table;
2763
2764 if (h == NULL)
2765 return FALSE;
2766
2767 while (h->root.type == bfd_link_hash_indirect
2768 || h->root.type == bfd_link_hash_warning)
2769 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2770
2771 /* If it was forced local, then clearly it's not dynamic. */
2772 if (h->dynindx == -1)
2773 return FALSE;
2774 if (h->forced_local)
2775 return FALSE;
2776
2777 /* Identify the cases where name binding rules say that a
2778 visible symbol resolves locally. */
2779 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2780
2781 switch (ELF_ST_VISIBILITY (h->other))
2782 {
2783 case STV_INTERNAL:
2784 case STV_HIDDEN:
2785 return FALSE;
2786
2787 case STV_PROTECTED:
2788 hash_table = elf_hash_table (info);
2789 if (!is_elf_hash_table (hash_table))
2790 return FALSE;
2791
2792 bed = get_elf_backend_data (hash_table->dynobj);
2793
2794 /* Proper resolution for function pointer equality may require
2795 that these symbols perhaps be resolved dynamically, even though
2796 we should be resolving them to the current module. */
2797 if (!not_local_protected || !bed->is_function_type (h->type))
2798 binding_stays_local_p = TRUE;
2799 break;
2800
2801 default:
2802 break;
2803 }
2804
2805 /* If it isn't defined locally, then clearly it's dynamic. */
2806 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2807 return TRUE;
2808
2809 /* Otherwise, the symbol is dynamic if binding rules don't tell
2810 us that it remains local. */
2811 return !binding_stays_local_p;
2812 }
2813
2814 /* Return true if the symbol referred to by H should be considered
2815 to resolve local to the current module, and false otherwise. Differs
2816 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2817 undefined symbols. The two functions are virtually identical except
2818 for the place where forced_local and dynindx == -1 are tested. If
2819 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2820 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2821 the symbol is local only for defined symbols.
2822 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2823 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2824 treatment of undefined weak symbols. For those that do not make
2825 undefined weak symbols dynamic, both functions may return false. */
2826
2827 bfd_boolean
2828 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2829 struct bfd_link_info *info,
2830 bfd_boolean local_protected)
2831 {
2832 const struct elf_backend_data *bed;
2833 struct elf_link_hash_table *hash_table;
2834
2835 /* If it's a local sym, of course we resolve locally. */
2836 if (h == NULL)
2837 return TRUE;
2838
2839 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2840 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2841 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2842 return TRUE;
2843
2844 /* Common symbols that become definitions don't get the DEF_REGULAR
2845 flag set, so test it first, and don't bail out. */
2846 if (ELF_COMMON_DEF_P (h))
2847 /* Do nothing. */;
2848 /* If we don't have a definition in a regular file, then we can't
2849 resolve locally. The sym is either undefined or dynamic. */
2850 else if (!h->def_regular)
2851 return FALSE;
2852
2853 /* Forced local symbols resolve locally. */
2854 if (h->forced_local)
2855 return TRUE;
2856
2857 /* As do non-dynamic symbols. */
2858 if (h->dynindx == -1)
2859 return TRUE;
2860
2861 /* At this point, we know the symbol is defined and dynamic. In an
2862 executable it must resolve locally, likewise when building symbolic
2863 shared libraries. */
2864 if (info->executable || SYMBOLIC_BIND (info, h))
2865 return TRUE;
2866
2867 /* Now deal with defined dynamic symbols in shared libraries. Ones
2868 with default visibility might not resolve locally. */
2869 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2870 return FALSE;
2871
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return TRUE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* STV_PROTECTED non-function symbols are local. */
2879 if (!bed->is_function_type (h->type))
2880 return TRUE;
2881
2882 /* Function pointer equality tests may require that STV_PROTECTED
2883 symbols be treated as dynamic symbols, even when we know that the
2884 dynamic linker will resolve them locally. */
2885 return local_protected;
2886 }
2887
2888 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2889 aligned. Returns the first TLS output section. */
2890
2891 struct bfd_section *
2892 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2893 {
2894 struct bfd_section *sec, *tls;
2895 unsigned int align = 0;
2896
2897 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2898 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2899 break;
2900 tls = sec;
2901
2902 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2903 if (sec->alignment_power > align)
2904 align = sec->alignment_power;
2905
2906 elf_hash_table (info)->tls_sec = tls;
2907
2908 /* Ensure the alignment of the first section is the largest alignment,
2909 so that the tls segment starts aligned. */
2910 if (tls != NULL)
2911 tls->alignment_power = align;
2912
2913 return tls;
2914 }
2915
2916 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2917 static bfd_boolean
2918 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2919 Elf_Internal_Sym *sym)
2920 {
2921 const struct elf_backend_data *bed;
2922
2923 /* Local symbols do not count, but target specific ones might. */
2924 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2925 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2926 return FALSE;
2927
2928 bed = get_elf_backend_data (abfd);
2929 /* Function symbols do not count. */
2930 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2931 return FALSE;
2932
2933 /* If the section is undefined, then so is the symbol. */
2934 if (sym->st_shndx == SHN_UNDEF)
2935 return FALSE;
2936
2937 /* If the symbol is defined in the common section, then
2938 it is a common definition and so does not count. */
2939 if (bed->common_definition (sym))
2940 return FALSE;
2941
2942 /* If the symbol is in a target specific section then we
2943 must rely upon the backend to tell us what it is. */
2944 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2945 /* FIXME - this function is not coded yet:
2946
2947 return _bfd_is_global_symbol_definition (abfd, sym);
2948
2949 Instead for now assume that the definition is not global,
2950 Even if this is wrong, at least the linker will behave
2951 in the same way that it used to do. */
2952 return FALSE;
2953
2954 return TRUE;
2955 }
2956
2957 /* Search the symbol table of the archive element of the archive ABFD
2958 whose archive map contains a mention of SYMDEF, and determine if
2959 the symbol is defined in this element. */
2960 static bfd_boolean
2961 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2962 {
2963 Elf_Internal_Shdr * hdr;
2964 bfd_size_type symcount;
2965 bfd_size_type extsymcount;
2966 bfd_size_type extsymoff;
2967 Elf_Internal_Sym *isymbuf;
2968 Elf_Internal_Sym *isym;
2969 Elf_Internal_Sym *isymend;
2970 bfd_boolean result;
2971
2972 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2973 if (abfd == NULL)
2974 return FALSE;
2975
2976 if (! bfd_check_format (abfd, bfd_object))
2977 return FALSE;
2978
2979 /* If we have already included the element containing this symbol in the
2980 link then we do not need to include it again. Just claim that any symbol
2981 it contains is not a definition, so that our caller will not decide to
2982 (re)include this element. */
2983 if (abfd->archive_pass)
2984 return FALSE;
2985
2986 /* Select the appropriate symbol table. */
2987 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2988 hdr = &elf_tdata (abfd)->symtab_hdr;
2989 else
2990 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2991
2992 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2993
2994 /* The sh_info field of the symtab header tells us where the
2995 external symbols start. We don't care about the local symbols. */
2996 if (elf_bad_symtab (abfd))
2997 {
2998 extsymcount = symcount;
2999 extsymoff = 0;
3000 }
3001 else
3002 {
3003 extsymcount = symcount - hdr->sh_info;
3004 extsymoff = hdr->sh_info;
3005 }
3006
3007 if (extsymcount == 0)
3008 return FALSE;
3009
3010 /* Read in the symbol table. */
3011 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3012 NULL, NULL, NULL);
3013 if (isymbuf == NULL)
3014 return FALSE;
3015
3016 /* Scan the symbol table looking for SYMDEF. */
3017 result = FALSE;
3018 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3019 {
3020 const char *name;
3021
3022 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3023 isym->st_name);
3024 if (name == NULL)
3025 break;
3026
3027 if (strcmp (name, symdef->name) == 0)
3028 {
3029 result = is_global_data_symbol_definition (abfd, isym);
3030 break;
3031 }
3032 }
3033
3034 free (isymbuf);
3035
3036 return result;
3037 }
3038 \f
3039 /* Add an entry to the .dynamic table. */
3040
3041 bfd_boolean
3042 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3043 bfd_vma tag,
3044 bfd_vma val)
3045 {
3046 struct elf_link_hash_table *hash_table;
3047 const struct elf_backend_data *bed;
3048 asection *s;
3049 bfd_size_type newsize;
3050 bfd_byte *newcontents;
3051 Elf_Internal_Dyn dyn;
3052
3053 hash_table = elf_hash_table (info);
3054 if (! is_elf_hash_table (hash_table))
3055 return FALSE;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 BFD_ASSERT (s != NULL);
3060
3061 newsize = s->size + bed->s->sizeof_dyn;
3062 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3063 if (newcontents == NULL)
3064 return FALSE;
3065
3066 dyn.d_tag = tag;
3067 dyn.d_un.d_val = val;
3068 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3069
3070 s->size = newsize;
3071 s->contents = newcontents;
3072
3073 return TRUE;
3074 }
3075
3076 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3077 otherwise just check whether one already exists. Returns -1 on error,
3078 1 if a DT_NEEDED tag already exists, and 0 on success. */
3079
3080 static int
3081 elf_add_dt_needed_tag (bfd *abfd,
3082 struct bfd_link_info *info,
3083 const char *soname,
3084 bfd_boolean do_it)
3085 {
3086 struct elf_link_hash_table *hash_table;
3087 bfd_size_type oldsize;
3088 bfd_size_type strindex;
3089
3090 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3091 return -1;
3092
3093 hash_table = elf_hash_table (info);
3094 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3095 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3096 if (strindex == (bfd_size_type) -1)
3097 return -1;
3098
3099 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3100 {
3101 asection *sdyn;
3102 const struct elf_backend_data *bed;
3103 bfd_byte *extdyn;
3104
3105 bed = get_elf_backend_data (hash_table->dynobj);
3106 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3107 if (sdyn != NULL)
3108 for (extdyn = sdyn->contents;
3109 extdyn < sdyn->contents + sdyn->size;
3110 extdyn += bed->s->sizeof_dyn)
3111 {
3112 Elf_Internal_Dyn dyn;
3113
3114 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3115 if (dyn.d_tag == DT_NEEDED
3116 && dyn.d_un.d_val == strindex)
3117 {
3118 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3119 return 1;
3120 }
3121 }
3122 }
3123
3124 if (do_it)
3125 {
3126 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3127 return -1;
3128
3129 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3130 return -1;
3131 }
3132 else
3133 /* We were just checking for existence of the tag. */
3134 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3135
3136 return 0;
3137 }
3138
3139 static bfd_boolean
3140 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3141 {
3142 for (; needed != NULL; needed = needed->next)
3143 if (strcmp (soname, needed->name) == 0)
3144 return TRUE;
3145
3146 return FALSE;
3147 }
3148
3149 /* Sort symbol by value and section. */
3150 static int
3151 elf_sort_symbol (const void *arg1, const void *arg2)
3152 {
3153 const struct elf_link_hash_entry *h1;
3154 const struct elf_link_hash_entry *h2;
3155 bfd_signed_vma vdiff;
3156
3157 h1 = *(const struct elf_link_hash_entry **) arg1;
3158 h2 = *(const struct elf_link_hash_entry **) arg2;
3159 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3160 if (vdiff != 0)
3161 return vdiff > 0 ? 1 : -1;
3162 else
3163 {
3164 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3165 if (sdiff != 0)
3166 return sdiff > 0 ? 1 : -1;
3167 }
3168 return 0;
3169 }
3170
3171 /* This function is used to adjust offsets into .dynstr for
3172 dynamic symbols. This is called via elf_link_hash_traverse. */
3173
3174 static bfd_boolean
3175 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3176 {
3177 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3178
3179 if (h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 if (h->dynindx != -1)
3183 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3184 return TRUE;
3185 }
3186
3187 /* Assign string offsets in .dynstr, update all structures referencing
3188 them. */
3189
3190 static bfd_boolean
3191 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3192 {
3193 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3194 struct elf_link_local_dynamic_entry *entry;
3195 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3196 bfd *dynobj = hash_table->dynobj;
3197 asection *sdyn;
3198 bfd_size_type size;
3199 const struct elf_backend_data *bed;
3200 bfd_byte *extdyn;
3201
3202 _bfd_elf_strtab_finalize (dynstr);
3203 size = _bfd_elf_strtab_size (dynstr);
3204
3205 bed = get_elf_backend_data (dynobj);
3206 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3207 BFD_ASSERT (sdyn != NULL);
3208
3209 /* Update all .dynamic entries referencing .dynstr strings. */
3210 for (extdyn = sdyn->contents;
3211 extdyn < sdyn->contents + sdyn->size;
3212 extdyn += bed->s->sizeof_dyn)
3213 {
3214 Elf_Internal_Dyn dyn;
3215
3216 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3217 switch (dyn.d_tag)
3218 {
3219 case DT_STRSZ:
3220 dyn.d_un.d_val = size;
3221 break;
3222 case DT_NEEDED:
3223 case DT_SONAME:
3224 case DT_RPATH:
3225 case DT_RUNPATH:
3226 case DT_FILTER:
3227 case DT_AUXILIARY:
3228 case DT_AUDIT:
3229 case DT_DEPAUDIT:
3230 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3231 break;
3232 default:
3233 continue;
3234 }
3235 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3236 }
3237
3238 /* Now update local dynamic symbols. */
3239 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3240 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3241 entry->isym.st_name);
3242
3243 /* And the rest of dynamic symbols. */
3244 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3245
3246 /* Adjust version definitions. */
3247 if (elf_tdata (output_bfd)->cverdefs)
3248 {
3249 asection *s;
3250 bfd_byte *p;
3251 bfd_size_type i;
3252 Elf_Internal_Verdef def;
3253 Elf_Internal_Verdaux defaux;
3254
3255 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3256 p = s->contents;
3257 do
3258 {
3259 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3260 &def);
3261 p += sizeof (Elf_External_Verdef);
3262 if (def.vd_aux != sizeof (Elf_External_Verdef))
3263 continue;
3264 for (i = 0; i < def.vd_cnt; ++i)
3265 {
3266 _bfd_elf_swap_verdaux_in (output_bfd,
3267 (Elf_External_Verdaux *) p, &defaux);
3268 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3269 defaux.vda_name);
3270 _bfd_elf_swap_verdaux_out (output_bfd,
3271 &defaux, (Elf_External_Verdaux *) p);
3272 p += sizeof (Elf_External_Verdaux);
3273 }
3274 }
3275 while (def.vd_next);
3276 }
3277
3278 /* Adjust version references. */
3279 if (elf_tdata (output_bfd)->verref)
3280 {
3281 asection *s;
3282 bfd_byte *p;
3283 bfd_size_type i;
3284 Elf_Internal_Verneed need;
3285 Elf_Internal_Vernaux needaux;
3286
3287 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3288 p = s->contents;
3289 do
3290 {
3291 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3292 &need);
3293 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3294 _bfd_elf_swap_verneed_out (output_bfd, &need,
3295 (Elf_External_Verneed *) p);
3296 p += sizeof (Elf_External_Verneed);
3297 for (i = 0; i < need.vn_cnt; ++i)
3298 {
3299 _bfd_elf_swap_vernaux_in (output_bfd,
3300 (Elf_External_Vernaux *) p, &needaux);
3301 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3302 needaux.vna_name);
3303 _bfd_elf_swap_vernaux_out (output_bfd,
3304 &needaux,
3305 (Elf_External_Vernaux *) p);
3306 p += sizeof (Elf_External_Vernaux);
3307 }
3308 }
3309 while (need.vn_next);
3310 }
3311
3312 return TRUE;
3313 }
3314 \f
3315 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3316 The default is to only match when the INPUT and OUTPUT are exactly
3317 the same target. */
3318
3319 bfd_boolean
3320 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3321 const bfd_target *output)
3322 {
3323 return input == output;
3324 }
3325
3326 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3327 This version is used when different targets for the same architecture
3328 are virtually identical. */
3329
3330 bfd_boolean
3331 _bfd_elf_relocs_compatible (const bfd_target *input,
3332 const bfd_target *output)
3333 {
3334 const struct elf_backend_data *obed, *ibed;
3335
3336 if (input == output)
3337 return TRUE;
3338
3339 ibed = xvec_get_elf_backend_data (input);
3340 obed = xvec_get_elf_backend_data (output);
3341
3342 if (ibed->arch != obed->arch)
3343 return FALSE;
3344
3345 /* If both backends are using this function, deem them compatible. */
3346 return ibed->relocs_compatible == obed->relocs_compatible;
3347 }
3348
3349 /* Add symbols from an ELF object file to the linker hash table. */
3350
3351 static bfd_boolean
3352 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3353 {
3354 Elf_Internal_Ehdr *ehdr;
3355 Elf_Internal_Shdr *hdr;
3356 bfd_size_type symcount;
3357 bfd_size_type extsymcount;
3358 bfd_size_type extsymoff;
3359 struct elf_link_hash_entry **sym_hash;
3360 bfd_boolean dynamic;
3361 Elf_External_Versym *extversym = NULL;
3362 Elf_External_Versym *ever;
3363 struct elf_link_hash_entry *weaks;
3364 struct elf_link_hash_entry **nondeflt_vers = NULL;
3365 bfd_size_type nondeflt_vers_cnt = 0;
3366 Elf_Internal_Sym *isymbuf = NULL;
3367 Elf_Internal_Sym *isym;
3368 Elf_Internal_Sym *isymend;
3369 const struct elf_backend_data *bed;
3370 bfd_boolean add_needed;
3371 struct elf_link_hash_table *htab;
3372 bfd_size_type amt;
3373 void *alloc_mark = NULL;
3374 struct bfd_hash_entry **old_table = NULL;
3375 unsigned int old_size = 0;
3376 unsigned int old_count = 0;
3377 void *old_tab = NULL;
3378 void *old_hash;
3379 void *old_ent;
3380 struct bfd_link_hash_entry *old_undefs = NULL;
3381 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3382 long old_dynsymcount = 0;
3383 size_t tabsize = 0;
3384 size_t hashsize = 0;
3385
3386 htab = elf_hash_table (info);
3387 bed = get_elf_backend_data (abfd);
3388
3389 if ((abfd->flags & DYNAMIC) == 0)
3390 dynamic = FALSE;
3391 else
3392 {
3393 dynamic = TRUE;
3394
3395 /* You can't use -r against a dynamic object. Also, there's no
3396 hope of using a dynamic object which does not exactly match
3397 the format of the output file. */
3398 if (info->relocatable
3399 || !is_elf_hash_table (htab)
3400 || info->output_bfd->xvec != abfd->xvec)
3401 {
3402 if (info->relocatable)
3403 bfd_set_error (bfd_error_invalid_operation);
3404 else
3405 bfd_set_error (bfd_error_wrong_format);
3406 goto error_return;
3407 }
3408 }
3409
3410 ehdr = elf_elfheader (abfd);
3411 if (info->warn_alternate_em
3412 && bed->elf_machine_code != ehdr->e_machine
3413 && ((bed->elf_machine_alt1 != 0
3414 && ehdr->e_machine == bed->elf_machine_alt1)
3415 || (bed->elf_machine_alt2 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt2)))
3417 info->callbacks->einfo
3418 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3419 ehdr->e_machine, abfd, bed->elf_machine_code);
3420
3421 /* As a GNU extension, any input sections which are named
3422 .gnu.warning.SYMBOL are treated as warning symbols for the given
3423 symbol. This differs from .gnu.warning sections, which generate
3424 warnings when they are included in an output file. */
3425 if (info->executable)
3426 {
3427 asection *s;
3428
3429 for (s = abfd->sections; s != NULL; s = s->next)
3430 {
3431 const char *name;
3432
3433 name = bfd_get_section_name (abfd, s);
3434 if (CONST_STRNEQ (name, ".gnu.warning."))
3435 {
3436 char *msg;
3437 bfd_size_type sz;
3438
3439 name += sizeof ".gnu.warning." - 1;
3440
3441 /* If this is a shared object, then look up the symbol
3442 in the hash table. If it is there, and it is already
3443 been defined, then we will not be using the entry
3444 from this shared object, so we don't need to warn.
3445 FIXME: If we see the definition in a regular object
3446 later on, we will warn, but we shouldn't. The only
3447 fix is to keep track of what warnings we are supposed
3448 to emit, and then handle them all at the end of the
3449 link. */
3450 if (dynamic)
3451 {
3452 struct elf_link_hash_entry *h;
3453
3454 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3455
3456 /* FIXME: What about bfd_link_hash_common? */
3457 if (h != NULL
3458 && (h->root.type == bfd_link_hash_defined
3459 || h->root.type == bfd_link_hash_defweak))
3460 {
3461 /* We don't want to issue this warning. Clobber
3462 the section size so that the warning does not
3463 get copied into the output file. */
3464 s->size = 0;
3465 continue;
3466 }
3467 }
3468
3469 sz = s->size;
3470 msg = (char *) bfd_alloc (abfd, sz + 1);
3471 if (msg == NULL)
3472 goto error_return;
3473
3474 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3475 goto error_return;
3476
3477 msg[sz] = '\0';
3478
3479 if (! (_bfd_generic_link_add_one_symbol
3480 (info, abfd, name, BSF_WARNING, s, 0, msg,
3481 FALSE, bed->collect, NULL)))
3482 goto error_return;
3483
3484 if (! info->relocatable)
3485 {
3486 /* Clobber the section size so that the warning does
3487 not get copied into the output file. */
3488 s->size = 0;
3489
3490 /* Also set SEC_EXCLUDE, so that symbols defined in
3491 the warning section don't get copied to the output. */
3492 s->flags |= SEC_EXCLUDE;
3493 }
3494 }
3495 }
3496 }
3497
3498 add_needed = TRUE;
3499 if (! dynamic)
3500 {
3501 /* If we are creating a shared library, create all the dynamic
3502 sections immediately. We need to attach them to something,
3503 so we attach them to this BFD, provided it is the right
3504 format. FIXME: If there are no input BFD's of the same
3505 format as the output, we can't make a shared library. */
3506 if (info->shared
3507 && is_elf_hash_table (htab)
3508 && info->output_bfd->xvec == abfd->xvec
3509 && !htab->dynamic_sections_created)
3510 {
3511 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3512 goto error_return;
3513 }
3514 }
3515 else if (!is_elf_hash_table (htab))
3516 goto error_return;
3517 else
3518 {
3519 asection *s;
3520 const char *soname = NULL;
3521 char *audit = NULL;
3522 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3523 int ret;
3524
3525 /* ld --just-symbols and dynamic objects don't mix very well.
3526 ld shouldn't allow it. */
3527 if ((s = abfd->sections) != NULL
3528 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3529 abort ();
3530
3531 /* If this dynamic lib was specified on the command line with
3532 --as-needed in effect, then we don't want to add a DT_NEEDED
3533 tag unless the lib is actually used. Similary for libs brought
3534 in by another lib's DT_NEEDED. When --no-add-needed is used
3535 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3536 any dynamic library in DT_NEEDED tags in the dynamic lib at
3537 all. */
3538 add_needed = (elf_dyn_lib_class (abfd)
3539 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3540 | DYN_NO_NEEDED)) == 0;
3541
3542 s = bfd_get_section_by_name (abfd, ".dynamic");
3543 if (s != NULL)
3544 {
3545 bfd_byte *dynbuf;
3546 bfd_byte *extdyn;
3547 unsigned int elfsec;
3548 unsigned long shlink;
3549
3550 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3551 {
3552 error_free_dyn:
3553 free (dynbuf);
3554 goto error_return;
3555 }
3556
3557 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3558 if (elfsec == SHN_BAD)
3559 goto error_free_dyn;
3560 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3561
3562 for (extdyn = dynbuf;
3563 extdyn < dynbuf + s->size;
3564 extdyn += bed->s->sizeof_dyn)
3565 {
3566 Elf_Internal_Dyn dyn;
3567
3568 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3569 if (dyn.d_tag == DT_SONAME)
3570 {
3571 unsigned int tagv = dyn.d_un.d_val;
3572 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3573 if (soname == NULL)
3574 goto error_free_dyn;
3575 }
3576 if (dyn.d_tag == DT_NEEDED)
3577 {
3578 struct bfd_link_needed_list *n, **pn;
3579 char *fnm, *anm;
3580 unsigned int tagv = dyn.d_un.d_val;
3581
3582 amt = sizeof (struct bfd_link_needed_list);
3583 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3584 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3585 if (n == NULL || fnm == NULL)
3586 goto error_free_dyn;
3587 amt = strlen (fnm) + 1;
3588 anm = (char *) bfd_alloc (abfd, amt);
3589 if (anm == NULL)
3590 goto error_free_dyn;
3591 memcpy (anm, fnm, amt);
3592 n->name = anm;
3593 n->by = abfd;
3594 n->next = NULL;
3595 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3596 ;
3597 *pn = n;
3598 }
3599 if (dyn.d_tag == DT_RUNPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & runpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3625 if (!runpath && dyn.d_tag == DT_RPATH)
3626 {
3627 struct bfd_link_needed_list *n, **pn;
3628 char *fnm, *anm;
3629 unsigned int tagv = dyn.d_un.d_val;
3630
3631 amt = sizeof (struct bfd_link_needed_list);
3632 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3633 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3634 if (n == NULL || fnm == NULL)
3635 goto error_free_dyn;
3636 amt = strlen (fnm) + 1;
3637 anm = (char *) bfd_alloc (abfd, amt);
3638 if (anm == NULL)
3639 goto error_free_dyn;
3640 memcpy (anm, fnm, amt);
3641 n->name = anm;
3642 n->by = abfd;
3643 n->next = NULL;
3644 for (pn = & rpath;
3645 *pn != NULL;
3646 pn = &(*pn)->next)
3647 ;
3648 *pn = n;
3649 }
3650 if (dyn.d_tag == DT_AUDIT)
3651 {
3652 unsigned int tagv = dyn.d_un.d_val;
3653 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3654 }
3655 }
3656
3657 free (dynbuf);
3658 }
3659
3660 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3661 frees all more recently bfd_alloc'd blocks as well. */
3662 if (runpath)
3663 rpath = runpath;
3664
3665 if (rpath)
3666 {
3667 struct bfd_link_needed_list **pn;
3668 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3669 ;
3670 *pn = rpath;
3671 }
3672
3673 /* We do not want to include any of the sections in a dynamic
3674 object in the output file. We hack by simply clobbering the
3675 list of sections in the BFD. This could be handled more
3676 cleanly by, say, a new section flag; the existing
3677 SEC_NEVER_LOAD flag is not the one we want, because that one
3678 still implies that the section takes up space in the output
3679 file. */
3680 bfd_section_list_clear (abfd);
3681
3682 /* Find the name to use in a DT_NEEDED entry that refers to this
3683 object. If the object has a DT_SONAME entry, we use it.
3684 Otherwise, if the generic linker stuck something in
3685 elf_dt_name, we use that. Otherwise, we just use the file
3686 name. */
3687 if (soname == NULL || *soname == '\0')
3688 {
3689 soname = elf_dt_name (abfd);
3690 if (soname == NULL || *soname == '\0')
3691 soname = bfd_get_filename (abfd);
3692 }
3693
3694 /* Save the SONAME because sometimes the linker emulation code
3695 will need to know it. */
3696 elf_dt_name (abfd) = soname;
3697
3698 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3699 if (ret < 0)
3700 goto error_return;
3701
3702 /* If we have already included this dynamic object in the
3703 link, just ignore it. There is no reason to include a
3704 particular dynamic object more than once. */
3705 if (ret > 0)
3706 return TRUE;
3707
3708 /* Save the DT_AUDIT entry for the linker emulation code. */
3709 elf_dt_audit (abfd) = audit;
3710 }
3711
3712 /* If this is a dynamic object, we always link against the .dynsym
3713 symbol table, not the .symtab symbol table. The dynamic linker
3714 will only see the .dynsym symbol table, so there is no reason to
3715 look at .symtab for a dynamic object. */
3716
3717 if (! dynamic || elf_dynsymtab (abfd) == 0)
3718 hdr = &elf_tdata (abfd)->symtab_hdr;
3719 else
3720 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3721
3722 symcount = hdr->sh_size / bed->s->sizeof_sym;
3723
3724 /* The sh_info field of the symtab header tells us where the
3725 external symbols start. We don't care about the local symbols at
3726 this point. */
3727 if (elf_bad_symtab (abfd))
3728 {
3729 extsymcount = symcount;
3730 extsymoff = 0;
3731 }
3732 else
3733 {
3734 extsymcount = symcount - hdr->sh_info;
3735 extsymoff = hdr->sh_info;
3736 }
3737
3738 sym_hash = NULL;
3739 if (extsymcount != 0)
3740 {
3741 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3742 NULL, NULL, NULL);
3743 if (isymbuf == NULL)
3744 goto error_return;
3745
3746 /* We store a pointer to the hash table entry for each external
3747 symbol. */
3748 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3749 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3750 if (sym_hash == NULL)
3751 goto error_free_sym;
3752 elf_sym_hashes (abfd) = sym_hash;
3753 }
3754
3755 if (dynamic)
3756 {
3757 /* Read in any version definitions. */
3758 if (!_bfd_elf_slurp_version_tables (abfd,
3759 info->default_imported_symver))
3760 goto error_free_sym;
3761
3762 /* Read in the symbol versions, but don't bother to convert them
3763 to internal format. */
3764 if (elf_dynversym (abfd) != 0)
3765 {
3766 Elf_Internal_Shdr *versymhdr;
3767
3768 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3769 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3770 if (extversym == NULL)
3771 goto error_free_sym;
3772 amt = versymhdr->sh_size;
3773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3774 || bfd_bread (extversym, amt, abfd) != amt)
3775 goto error_free_vers;
3776 }
3777 }
3778
3779 /* If we are loading an as-needed shared lib, save the symbol table
3780 state before we start adding symbols. If the lib turns out
3781 to be unneeded, restore the state. */
3782 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3783 {
3784 unsigned int i;
3785 size_t entsize;
3786
3787 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3788 {
3789 struct bfd_hash_entry *p;
3790 struct elf_link_hash_entry *h;
3791
3792 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3793 {
3794 h = (struct elf_link_hash_entry *) p;
3795 entsize += htab->root.table.entsize;
3796 if (h->root.type == bfd_link_hash_warning)
3797 entsize += htab->root.table.entsize;
3798 }
3799 }
3800
3801 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3802 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3803 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3804 if (old_tab == NULL)
3805 goto error_free_vers;
3806
3807 /* Remember the current objalloc pointer, so that all mem for
3808 symbols added can later be reclaimed. */
3809 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3810 if (alloc_mark == NULL)
3811 goto error_free_vers;
3812
3813 /* Make a special call to the linker "notice" function to
3814 tell it that we are about to handle an as-needed lib. */
3815 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3816 notice_as_needed))
3817 goto error_free_vers;
3818
3819 /* Clone the symbol table and sym hashes. Remember some
3820 pointers into the symbol table, and dynamic symbol count. */
3821 old_hash = (char *) old_tab + tabsize;
3822 old_ent = (char *) old_hash + hashsize;
3823 memcpy (old_tab, htab->root.table.table, tabsize);
3824 memcpy (old_hash, sym_hash, hashsize);
3825 old_undefs = htab->root.undefs;
3826 old_undefs_tail = htab->root.undefs_tail;
3827 old_table = htab->root.table.table;
3828 old_size = htab->root.table.size;
3829 old_count = htab->root.table.count;
3830 old_dynsymcount = htab->dynsymcount;
3831
3832 for (i = 0; i < htab->root.table.size; i++)
3833 {
3834 struct bfd_hash_entry *p;
3835 struct elf_link_hash_entry *h;
3836
3837 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3838 {
3839 memcpy (old_ent, p, htab->root.table.entsize);
3840 old_ent = (char *) old_ent + htab->root.table.entsize;
3841 h = (struct elf_link_hash_entry *) p;
3842 if (h->root.type == bfd_link_hash_warning)
3843 {
3844 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3845 old_ent = (char *) old_ent + htab->root.table.entsize;
3846 }
3847 }
3848 }
3849 }
3850
3851 weaks = NULL;
3852 ever = extversym != NULL ? extversym + extsymoff : NULL;
3853 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3854 isym < isymend;
3855 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3856 {
3857 int bind;
3858 bfd_vma value;
3859 asection *sec, *new_sec;
3860 flagword flags;
3861 const char *name;
3862 struct elf_link_hash_entry *h;
3863 bfd_boolean definition;
3864 bfd_boolean size_change_ok;
3865 bfd_boolean type_change_ok;
3866 bfd_boolean new_weakdef;
3867 bfd_boolean override;
3868 bfd_boolean common;
3869 unsigned int old_alignment;
3870 bfd *old_bfd;
3871 bfd * undef_bfd = NULL;
3872
3873 override = FALSE;
3874
3875 flags = BSF_NO_FLAGS;
3876 sec = NULL;
3877 value = isym->st_value;
3878 *sym_hash = NULL;
3879 common = bed->common_definition (isym);
3880
3881 bind = ELF_ST_BIND (isym->st_info);
3882 switch (bind)
3883 {
3884 case STB_LOCAL:
3885 /* This should be impossible, since ELF requires that all
3886 global symbols follow all local symbols, and that sh_info
3887 point to the first global symbol. Unfortunately, Irix 5
3888 screws this up. */
3889 continue;
3890
3891 case STB_GLOBAL:
3892 if (isym->st_shndx != SHN_UNDEF && !common)
3893 flags = BSF_GLOBAL;
3894 break;
3895
3896 case STB_WEAK:
3897 flags = BSF_WEAK;
3898 break;
3899
3900 case STB_GNU_UNIQUE:
3901 flags = BSF_GNU_UNIQUE;
3902 break;
3903
3904 default:
3905 /* Leave it up to the processor backend. */
3906 break;
3907 }
3908
3909 if (isym->st_shndx == SHN_UNDEF)
3910 sec = bfd_und_section_ptr;
3911 else if (isym->st_shndx == SHN_ABS)
3912 sec = bfd_abs_section_ptr;
3913 else if (isym->st_shndx == SHN_COMMON)
3914 {
3915 sec = bfd_com_section_ptr;
3916 /* What ELF calls the size we call the value. What ELF
3917 calls the value we call the alignment. */
3918 value = isym->st_size;
3919 }
3920 else
3921 {
3922 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3923 if (sec == NULL)
3924 sec = bfd_abs_section_ptr;
3925 else if (sec->kept_section)
3926 {
3927 /* Symbols from discarded section are undefined. We keep
3928 its visibility. */
3929 sec = bfd_und_section_ptr;
3930 isym->st_shndx = SHN_UNDEF;
3931 }
3932 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3933 value -= sec->vma;
3934 }
3935
3936 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3937 isym->st_name);
3938 if (name == NULL)
3939 goto error_free_vers;
3940
3941 if (isym->st_shndx == SHN_COMMON
3942 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3943 && !info->relocatable)
3944 {
3945 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3946
3947 if (tcomm == NULL)
3948 {
3949 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3950 (SEC_ALLOC
3951 | SEC_IS_COMMON
3952 | SEC_LINKER_CREATED
3953 | SEC_THREAD_LOCAL));
3954 if (tcomm == NULL)
3955 goto error_free_vers;
3956 }
3957 sec = tcomm;
3958 }
3959 else if (bed->elf_add_symbol_hook)
3960 {
3961 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3962 &sec, &value))
3963 goto error_free_vers;
3964
3965 /* The hook function sets the name to NULL if this symbol
3966 should be skipped for some reason. */
3967 if (name == NULL)
3968 continue;
3969 }
3970
3971 /* Sanity check that all possibilities were handled. */
3972 if (sec == NULL)
3973 {
3974 bfd_set_error (bfd_error_bad_value);
3975 goto error_free_vers;
3976 }
3977
3978 if (bfd_is_und_section (sec)
3979 || bfd_is_com_section (sec))
3980 definition = FALSE;
3981 else
3982 definition = TRUE;
3983
3984 size_change_ok = FALSE;
3985 type_change_ok = bed->type_change_ok;
3986 old_alignment = 0;
3987 old_bfd = NULL;
3988 new_sec = sec;
3989
3990 if (is_elf_hash_table (htab))
3991 {
3992 Elf_Internal_Versym iver;
3993 unsigned int vernum = 0;
3994 bfd_boolean skip;
3995
3996 /* If this is a definition of a symbol which was previously
3997 referenced in a non-weak manner then make a note of the bfd
3998 that contained the reference. This is used if we need to
3999 refer to the source of the reference later on. */
4000 if (! bfd_is_und_section (sec))
4001 {
4002 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4003
4004 if (h != NULL
4005 && h->root.type == bfd_link_hash_undefined
4006 && h->root.u.undef.abfd)
4007 undef_bfd = h->root.u.undef.abfd;
4008 }
4009
4010 if (ever == NULL)
4011 {
4012 if (info->default_imported_symver)
4013 /* Use the default symbol version created earlier. */
4014 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4015 else
4016 iver.vs_vers = 0;
4017 }
4018 else
4019 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4020
4021 vernum = iver.vs_vers & VERSYM_VERSION;
4022
4023 /* If this is a hidden symbol, or if it is not version
4024 1, we append the version name to the symbol name.
4025 However, we do not modify a non-hidden absolute symbol
4026 if it is not a function, because it might be the version
4027 symbol itself. FIXME: What if it isn't? */
4028 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4029 || (vernum > 1
4030 && (!bfd_is_abs_section (sec)
4031 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4032 {
4033 const char *verstr;
4034 size_t namelen, verlen, newlen;
4035 char *newname, *p;
4036
4037 if (isym->st_shndx != SHN_UNDEF)
4038 {
4039 if (vernum > elf_tdata (abfd)->cverdefs)
4040 verstr = NULL;
4041 else if (vernum > 1)
4042 verstr =
4043 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4044 else
4045 verstr = "";
4046
4047 if (verstr == NULL)
4048 {
4049 (*_bfd_error_handler)
4050 (_("%B: %s: invalid version %u (max %d)"),
4051 abfd, name, vernum,
4052 elf_tdata (abfd)->cverdefs);
4053 bfd_set_error (bfd_error_bad_value);
4054 goto error_free_vers;
4055 }
4056 }
4057 else
4058 {
4059 /* We cannot simply test for the number of
4060 entries in the VERNEED section since the
4061 numbers for the needed versions do not start
4062 at 0. */
4063 Elf_Internal_Verneed *t;
4064
4065 verstr = NULL;
4066 for (t = elf_tdata (abfd)->verref;
4067 t != NULL;
4068 t = t->vn_nextref)
4069 {
4070 Elf_Internal_Vernaux *a;
4071
4072 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4073 {
4074 if (a->vna_other == vernum)
4075 {
4076 verstr = a->vna_nodename;
4077 break;
4078 }
4079 }
4080 if (a != NULL)
4081 break;
4082 }
4083 if (verstr == NULL)
4084 {
4085 (*_bfd_error_handler)
4086 (_("%B: %s: invalid needed version %d"),
4087 abfd, name, vernum);
4088 bfd_set_error (bfd_error_bad_value);
4089 goto error_free_vers;
4090 }
4091 }
4092
4093 namelen = strlen (name);
4094 verlen = strlen (verstr);
4095 newlen = namelen + verlen + 2;
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 ++newlen;
4099
4100 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4101 if (newname == NULL)
4102 goto error_free_vers;
4103 memcpy (newname, name, namelen);
4104 p = newname + namelen;
4105 *p++ = ELF_VER_CHR;
4106 /* If this is a defined non-hidden version symbol,
4107 we add another @ to the name. This indicates the
4108 default version of the symbol. */
4109 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4110 && isym->st_shndx != SHN_UNDEF)
4111 *p++ = ELF_VER_CHR;
4112 memcpy (p, verstr, verlen + 1);
4113
4114 name = newname;
4115 }
4116
4117 /* If necessary, make a second attempt to locate the bfd
4118 containing an unresolved, non-weak reference to the
4119 current symbol. */
4120 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4121 {
4122 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4123
4124 if (h != NULL
4125 && h->root.type == bfd_link_hash_undefined
4126 && h->root.u.undef.abfd)
4127 undef_bfd = h->root.u.undef.abfd;
4128 }
4129
4130 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4131 &value, &old_alignment,
4132 sym_hash, &skip, &override,
4133 &type_change_ok, &size_change_ok))
4134 goto error_free_vers;
4135
4136 if (skip)
4137 continue;
4138
4139 if (override)
4140 definition = FALSE;
4141
4142 h = *sym_hash;
4143 while (h->root.type == bfd_link_hash_indirect
4144 || h->root.type == bfd_link_hash_warning)
4145 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4146
4147 /* Remember the old alignment if this is a common symbol, so
4148 that we don't reduce the alignment later on. We can't
4149 check later, because _bfd_generic_link_add_one_symbol
4150 will set a default for the alignment which we want to
4151 override. We also remember the old bfd where the existing
4152 definition comes from. */
4153 switch (h->root.type)
4154 {
4155 default:
4156 break;
4157
4158 case bfd_link_hash_defined:
4159 case bfd_link_hash_defweak:
4160 old_bfd = h->root.u.def.section->owner;
4161 break;
4162
4163 case bfd_link_hash_common:
4164 old_bfd = h->root.u.c.p->section->owner;
4165 old_alignment = h->root.u.c.p->alignment_power;
4166 break;
4167 }
4168
4169 if (elf_tdata (abfd)->verdef != NULL
4170 && ! override
4171 && vernum > 1
4172 && definition)
4173 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4174 }
4175
4176 if (! (_bfd_generic_link_add_one_symbol
4177 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4178 (struct bfd_link_hash_entry **) sym_hash)))
4179 goto error_free_vers;
4180
4181 h = *sym_hash;
4182 while (h->root.type == bfd_link_hash_indirect
4183 || h->root.type == bfd_link_hash_warning)
4184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4185
4186 *sym_hash = h;
4187 if (is_elf_hash_table (htab))
4188 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4189
4190 new_weakdef = FALSE;
4191 if (dynamic
4192 && definition
4193 && (flags & BSF_WEAK) != 0
4194 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4195 && is_elf_hash_table (htab)
4196 && h->u.weakdef == NULL)
4197 {
4198 /* Keep a list of all weak defined non function symbols from
4199 a dynamic object, using the weakdef field. Later in this
4200 function we will set the weakdef field to the correct
4201 value. We only put non-function symbols from dynamic
4202 objects on this list, because that happens to be the only
4203 time we need to know the normal symbol corresponding to a
4204 weak symbol, and the information is time consuming to
4205 figure out. If the weakdef field is not already NULL,
4206 then this symbol was already defined by some previous
4207 dynamic object, and we will be using that previous
4208 definition anyhow. */
4209
4210 h->u.weakdef = weaks;
4211 weaks = h;
4212 new_weakdef = TRUE;
4213 }
4214
4215 /* Set the alignment of a common symbol. */
4216 if ((common || bfd_is_com_section (sec))
4217 && h->root.type == bfd_link_hash_common)
4218 {
4219 unsigned int align;
4220
4221 if (common)
4222 align = bfd_log2 (isym->st_value);
4223 else
4224 {
4225 /* The new symbol is a common symbol in a shared object.
4226 We need to get the alignment from the section. */
4227 align = new_sec->alignment_power;
4228 }
4229 if (align > old_alignment
4230 /* Permit an alignment power of zero if an alignment of one
4231 is specified and no other alignments have been specified. */
4232 || (isym->st_value == 1 && old_alignment == 0))
4233 h->root.u.c.p->alignment_power = align;
4234 else
4235 h->root.u.c.p->alignment_power = old_alignment;
4236 }
4237
4238 if (is_elf_hash_table (htab))
4239 {
4240 bfd_boolean dynsym;
4241
4242 /* Check the alignment when a common symbol is involved. This
4243 can change when a common symbol is overridden by a normal
4244 definition or a common symbol is ignored due to the old
4245 normal definition. We need to make sure the maximum
4246 alignment is maintained. */
4247 if ((old_alignment || common)
4248 && h->root.type != bfd_link_hash_common)
4249 {
4250 unsigned int common_align;
4251 unsigned int normal_align;
4252 unsigned int symbol_align;
4253 bfd *normal_bfd;
4254 bfd *common_bfd;
4255
4256 symbol_align = ffs (h->root.u.def.value) - 1;
4257 if (h->root.u.def.section->owner != NULL
4258 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4259 {
4260 normal_align = h->root.u.def.section->alignment_power;
4261 if (normal_align > symbol_align)
4262 normal_align = symbol_align;
4263 }
4264 else
4265 normal_align = symbol_align;
4266
4267 if (old_alignment)
4268 {
4269 common_align = old_alignment;
4270 common_bfd = old_bfd;
4271 normal_bfd = abfd;
4272 }
4273 else
4274 {
4275 common_align = bfd_log2 (isym->st_value);
4276 common_bfd = abfd;
4277 normal_bfd = old_bfd;
4278 }
4279
4280 if (normal_align < common_align)
4281 {
4282 /* PR binutils/2735 */
4283 if (normal_bfd == NULL)
4284 (*_bfd_error_handler)
4285 (_("Warning: alignment %u of common symbol `%s' in %B"
4286 " is greater than the alignment (%u) of its section %A"),
4287 common_bfd, h->root.u.def.section,
4288 1 << common_align, name, 1 << normal_align);
4289 else
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of symbol `%s' in %B"
4292 " is smaller than %u in %B"),
4293 normal_bfd, common_bfd,
4294 1 << normal_align, name, 1 << common_align);
4295 }
4296 }
4297
4298 /* Remember the symbol size if it isn't undefined. */
4299 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4300 && (definition || h->size == 0))
4301 {
4302 if (h->size != 0
4303 && h->size != isym->st_size
4304 && ! size_change_ok)
4305 (*_bfd_error_handler)
4306 (_("Warning: size of symbol `%s' changed"
4307 " from %lu in %B to %lu in %B"),
4308 old_bfd, abfd,
4309 name, (unsigned long) h->size,
4310 (unsigned long) isym->st_size);
4311
4312 h->size = isym->st_size;
4313 }
4314
4315 /* If this is a common symbol, then we always want H->SIZE
4316 to be the size of the common symbol. The code just above
4317 won't fix the size if a common symbol becomes larger. We
4318 don't warn about a size change here, because that is
4319 covered by --warn-common. Allow changed between different
4320 function types. */
4321 if (h->root.type == bfd_link_hash_common)
4322 h->size = h->root.u.c.size;
4323
4324 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4325 && (definition || h->type == STT_NOTYPE))
4326 {
4327 unsigned int type = ELF_ST_TYPE (isym->st_info);
4328
4329 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4330 symbol. */
4331 if (type == STT_GNU_IFUNC
4332 && (abfd->flags & DYNAMIC) != 0)
4333 type = STT_FUNC;
4334
4335 if (h->type != type)
4336 {
4337 if (h->type != STT_NOTYPE && ! type_change_ok)
4338 (*_bfd_error_handler)
4339 (_("Warning: type of symbol `%s' changed"
4340 " from %d to %d in %B"),
4341 abfd, name, h->type, type);
4342
4343 h->type = type;
4344 }
4345 }
4346
4347 /* Merge st_other field. */
4348 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4349
4350 /* Set a flag in the hash table entry indicating the type of
4351 reference or definition we just found. Keep a count of
4352 the number of dynamic symbols we find. A dynamic symbol
4353 is one which is referenced or defined by both a regular
4354 object and a shared object. */
4355 dynsym = FALSE;
4356 if (! dynamic)
4357 {
4358 if (! definition)
4359 {
4360 h->ref_regular = 1;
4361 if (bind != STB_WEAK)
4362 h->ref_regular_nonweak = 1;
4363 }
4364 else
4365 {
4366 h->def_regular = 1;
4367 if (h->def_dynamic)
4368 {
4369 h->def_dynamic = 0;
4370 h->ref_dynamic = 1;
4371 h->dynamic_def = 1;
4372 }
4373 }
4374 if (! info->executable
4375 || h->def_dynamic
4376 || h->ref_dynamic)
4377 dynsym = TRUE;
4378 }
4379 else
4380 {
4381 if (! definition)
4382 h->ref_dynamic = 1;
4383 else
4384 h->def_dynamic = 1;
4385 if (h->def_regular
4386 || h->ref_regular
4387 || (h->u.weakdef != NULL
4388 && ! new_weakdef
4389 && h->u.weakdef->dynindx != -1))
4390 dynsym = TRUE;
4391 }
4392
4393 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4394 {
4395 /* We don't want to make debug symbol dynamic. */
4396 dynsym = FALSE;
4397 }
4398
4399 if (definition)
4400 h->target_internal = isym->st_target_internal;
4401
4402 /* Check to see if we need to add an indirect symbol for
4403 the default name. */
4404 if (definition || h->root.type == bfd_link_hash_common)
4405 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4406 &sec, &value, &dynsym,
4407 override))
4408 goto error_free_vers;
4409
4410 if (definition && !dynamic)
4411 {
4412 char *p = strchr (name, ELF_VER_CHR);
4413 if (p != NULL && p[1] != ELF_VER_CHR)
4414 {
4415 /* Queue non-default versions so that .symver x, x@FOO
4416 aliases can be checked. */
4417 if (!nondeflt_vers)
4418 {
4419 amt = ((isymend - isym + 1)
4420 * sizeof (struct elf_link_hash_entry *));
4421 nondeflt_vers =
4422 (struct elf_link_hash_entry **) bfd_malloc (amt);
4423 if (!nondeflt_vers)
4424 goto error_free_vers;
4425 }
4426 nondeflt_vers[nondeflt_vers_cnt++] = h;
4427 }
4428 }
4429
4430 if (dynsym && h->dynindx == -1)
4431 {
4432 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4433 goto error_free_vers;
4434 if (h->u.weakdef != NULL
4435 && ! new_weakdef
4436 && h->u.weakdef->dynindx == -1)
4437 {
4438 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4439 goto error_free_vers;
4440 }
4441 }
4442 else if (dynsym && h->dynindx != -1)
4443 /* If the symbol already has a dynamic index, but
4444 visibility says it should not be visible, turn it into
4445 a local symbol. */
4446 switch (ELF_ST_VISIBILITY (h->other))
4447 {
4448 case STV_INTERNAL:
4449 case STV_HIDDEN:
4450 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4451 dynsym = FALSE;
4452 break;
4453 }
4454
4455 if (!add_needed
4456 && definition
4457 && ((dynsym
4458 && h->ref_regular)
4459 || (h->ref_dynamic
4460 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4461 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4462 {
4463 int ret;
4464 const char *soname = elf_dt_name (abfd);
4465
4466 /* A symbol from a library loaded via DT_NEEDED of some
4467 other library is referenced by a regular object.
4468 Add a DT_NEEDED entry for it. Issue an error if
4469 --no-add-needed is used and the reference was not
4470 a weak one. */
4471 if (undef_bfd != NULL
4472 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4473 {
4474 (*_bfd_error_handler)
4475 (_("%B: undefined reference to symbol '%s'"),
4476 undef_bfd, name);
4477 (*_bfd_error_handler)
4478 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4479 abfd, name);
4480 bfd_set_error (bfd_error_invalid_operation);
4481 goto error_free_vers;
4482 }
4483
4484 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4485 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4486
4487 add_needed = TRUE;
4488 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4489 if (ret < 0)
4490 goto error_free_vers;
4491
4492 BFD_ASSERT (ret == 0);
4493 }
4494 }
4495 }
4496
4497 if (extversym != NULL)
4498 {
4499 free (extversym);
4500 extversym = NULL;
4501 }
4502
4503 if (isymbuf != NULL)
4504 {
4505 free (isymbuf);
4506 isymbuf = NULL;
4507 }
4508
4509 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4510 {
4511 unsigned int i;
4512
4513 /* Restore the symbol table. */
4514 if (bed->as_needed_cleanup)
4515 (*bed->as_needed_cleanup) (abfd, info);
4516 old_hash = (char *) old_tab + tabsize;
4517 old_ent = (char *) old_hash + hashsize;
4518 sym_hash = elf_sym_hashes (abfd);
4519 htab->root.table.table = old_table;
4520 htab->root.table.size = old_size;
4521 htab->root.table.count = old_count;
4522 memcpy (htab->root.table.table, old_tab, tabsize);
4523 memcpy (sym_hash, old_hash, hashsize);
4524 htab->root.undefs = old_undefs;
4525 htab->root.undefs_tail = old_undefs_tail;
4526 for (i = 0; i < htab->root.table.size; i++)
4527 {
4528 struct bfd_hash_entry *p;
4529 struct elf_link_hash_entry *h;
4530
4531 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4532 {
4533 h = (struct elf_link_hash_entry *) p;
4534 if (h->root.type == bfd_link_hash_warning)
4535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4536 if (h->dynindx >= old_dynsymcount)
4537 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4538
4539 memcpy (p, old_ent, htab->root.table.entsize);
4540 old_ent = (char *) old_ent + htab->root.table.entsize;
4541 h = (struct elf_link_hash_entry *) p;
4542 if (h->root.type == bfd_link_hash_warning)
4543 {
4544 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4545 old_ent = (char *) old_ent + htab->root.table.entsize;
4546 }
4547 }
4548 }
4549
4550 /* Make a special call to the linker "notice" function to
4551 tell it that symbols added for crefs may need to be removed. */
4552 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4553 notice_not_needed))
4554 goto error_free_vers;
4555
4556 free (old_tab);
4557 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4558 alloc_mark);
4559 if (nondeflt_vers != NULL)
4560 free (nondeflt_vers);
4561 return TRUE;
4562 }
4563
4564 if (old_tab != NULL)
4565 {
4566 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4567 notice_needed))
4568 goto error_free_vers;
4569 free (old_tab);
4570 old_tab = NULL;
4571 }
4572
4573 /* Now that all the symbols from this input file are created, handle
4574 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4575 if (nondeflt_vers != NULL)
4576 {
4577 bfd_size_type cnt, symidx;
4578
4579 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4580 {
4581 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4582 char *shortname, *p;
4583
4584 p = strchr (h->root.root.string, ELF_VER_CHR);
4585 if (p == NULL
4586 || (h->root.type != bfd_link_hash_defined
4587 && h->root.type != bfd_link_hash_defweak))
4588 continue;
4589
4590 amt = p - h->root.root.string;
4591 shortname = (char *) bfd_malloc (amt + 1);
4592 if (!shortname)
4593 goto error_free_vers;
4594 memcpy (shortname, h->root.root.string, amt);
4595 shortname[amt] = '\0';
4596
4597 hi = (struct elf_link_hash_entry *)
4598 bfd_link_hash_lookup (&htab->root, shortname,
4599 FALSE, FALSE, FALSE);
4600 if (hi != NULL
4601 && hi->root.type == h->root.type
4602 && hi->root.u.def.value == h->root.u.def.value
4603 && hi->root.u.def.section == h->root.u.def.section)
4604 {
4605 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4606 hi->root.type = bfd_link_hash_indirect;
4607 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4608 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4609 sym_hash = elf_sym_hashes (abfd);
4610 if (sym_hash)
4611 for (symidx = 0; symidx < extsymcount; ++symidx)
4612 if (sym_hash[symidx] == hi)
4613 {
4614 sym_hash[symidx] = h;
4615 break;
4616 }
4617 }
4618 free (shortname);
4619 }
4620 free (nondeflt_vers);
4621 nondeflt_vers = NULL;
4622 }
4623
4624 /* Now set the weakdefs field correctly for all the weak defined
4625 symbols we found. The only way to do this is to search all the
4626 symbols. Since we only need the information for non functions in
4627 dynamic objects, that's the only time we actually put anything on
4628 the list WEAKS. We need this information so that if a regular
4629 object refers to a symbol defined weakly in a dynamic object, the
4630 real symbol in the dynamic object is also put in the dynamic
4631 symbols; we also must arrange for both symbols to point to the
4632 same memory location. We could handle the general case of symbol
4633 aliasing, but a general symbol alias can only be generated in
4634 assembler code, handling it correctly would be very time
4635 consuming, and other ELF linkers don't handle general aliasing
4636 either. */
4637 if (weaks != NULL)
4638 {
4639 struct elf_link_hash_entry **hpp;
4640 struct elf_link_hash_entry **hppend;
4641 struct elf_link_hash_entry **sorted_sym_hash;
4642 struct elf_link_hash_entry *h;
4643 size_t sym_count;
4644
4645 /* Since we have to search the whole symbol list for each weak
4646 defined symbol, search time for N weak defined symbols will be
4647 O(N^2). Binary search will cut it down to O(NlogN). */
4648 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4649 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4650 if (sorted_sym_hash == NULL)
4651 goto error_return;
4652 sym_hash = sorted_sym_hash;
4653 hpp = elf_sym_hashes (abfd);
4654 hppend = hpp + extsymcount;
4655 sym_count = 0;
4656 for (; hpp < hppend; hpp++)
4657 {
4658 h = *hpp;
4659 if (h != NULL
4660 && h->root.type == bfd_link_hash_defined
4661 && !bed->is_function_type (h->type))
4662 {
4663 *sym_hash = h;
4664 sym_hash++;
4665 sym_count++;
4666 }
4667 }
4668
4669 qsort (sorted_sym_hash, sym_count,
4670 sizeof (struct elf_link_hash_entry *),
4671 elf_sort_symbol);
4672
4673 while (weaks != NULL)
4674 {
4675 struct elf_link_hash_entry *hlook;
4676 asection *slook;
4677 bfd_vma vlook;
4678 long ilook;
4679 size_t i, j, idx;
4680
4681 hlook = weaks;
4682 weaks = hlook->u.weakdef;
4683 hlook->u.weakdef = NULL;
4684
4685 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4686 || hlook->root.type == bfd_link_hash_defweak
4687 || hlook->root.type == bfd_link_hash_common
4688 || hlook->root.type == bfd_link_hash_indirect);
4689 slook = hlook->root.u.def.section;
4690 vlook = hlook->root.u.def.value;
4691
4692 ilook = -1;
4693 i = 0;
4694 j = sym_count;
4695 while (i < j)
4696 {
4697 bfd_signed_vma vdiff;
4698 idx = (i + j) / 2;
4699 h = sorted_sym_hash [idx];
4700 vdiff = vlook - h->root.u.def.value;
4701 if (vdiff < 0)
4702 j = idx;
4703 else if (vdiff > 0)
4704 i = idx + 1;
4705 else
4706 {
4707 long sdiff = slook->id - h->root.u.def.section->id;
4708 if (sdiff < 0)
4709 j = idx;
4710 else if (sdiff > 0)
4711 i = idx + 1;
4712 else
4713 {
4714 ilook = idx;
4715 break;
4716 }
4717 }
4718 }
4719
4720 /* We didn't find a value/section match. */
4721 if (ilook == -1)
4722 continue;
4723
4724 for (i = ilook; i < sym_count; i++)
4725 {
4726 h = sorted_sym_hash [i];
4727
4728 /* Stop if value or section doesn't match. */
4729 if (h->root.u.def.value != vlook
4730 || h->root.u.def.section != slook)
4731 break;
4732 else if (h != hlook)
4733 {
4734 hlook->u.weakdef = h;
4735
4736 /* If the weak definition is in the list of dynamic
4737 symbols, make sure the real definition is put
4738 there as well. */
4739 if (hlook->dynindx != -1 && h->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4742 {
4743 err_free_sym_hash:
4744 free (sorted_sym_hash);
4745 goto error_return;
4746 }
4747 }
4748
4749 /* If the real definition is in the list of dynamic
4750 symbols, make sure the weak definition is put
4751 there as well. If we don't do this, then the
4752 dynamic loader might not merge the entries for the
4753 real definition and the weak definition. */
4754 if (h->dynindx != -1 && hlook->dynindx == -1)
4755 {
4756 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4757 goto err_free_sym_hash;
4758 }
4759 break;
4760 }
4761 }
4762 }
4763
4764 free (sorted_sym_hash);
4765 }
4766
4767 if (bed->check_directives
4768 && !(*bed->check_directives) (abfd, info))
4769 return FALSE;
4770
4771 /* If this object is the same format as the output object, and it is
4772 not a shared library, then let the backend look through the
4773 relocs.
4774
4775 This is required to build global offset table entries and to
4776 arrange for dynamic relocs. It is not required for the
4777 particular common case of linking non PIC code, even when linking
4778 against shared libraries, but unfortunately there is no way of
4779 knowing whether an object file has been compiled PIC or not.
4780 Looking through the relocs is not particularly time consuming.
4781 The problem is that we must either (1) keep the relocs in memory,
4782 which causes the linker to require additional runtime memory or
4783 (2) read the relocs twice from the input file, which wastes time.
4784 This would be a good case for using mmap.
4785
4786 I have no idea how to handle linking PIC code into a file of a
4787 different format. It probably can't be done. */
4788 if (! dynamic
4789 && is_elf_hash_table (htab)
4790 && bed->check_relocs != NULL
4791 && elf_object_id (abfd) == elf_hash_table_id (htab)
4792 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4793 {
4794 asection *o;
4795
4796 for (o = abfd->sections; o != NULL; o = o->next)
4797 {
4798 Elf_Internal_Rela *internal_relocs;
4799 bfd_boolean ok;
4800
4801 if ((o->flags & SEC_RELOC) == 0
4802 || o->reloc_count == 0
4803 || ((info->strip == strip_all || info->strip == strip_debugger)
4804 && (o->flags & SEC_DEBUGGING) != 0)
4805 || bfd_is_abs_section (o->output_section))
4806 continue;
4807
4808 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4809 info->keep_memory);
4810 if (internal_relocs == NULL)
4811 goto error_return;
4812
4813 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4814
4815 if (elf_section_data (o)->relocs != internal_relocs)
4816 free (internal_relocs);
4817
4818 if (! ok)
4819 goto error_return;
4820 }
4821 }
4822
4823 /* If this is a non-traditional link, try to optimize the handling
4824 of the .stab/.stabstr sections. */
4825 if (! dynamic
4826 && ! info->traditional_format
4827 && is_elf_hash_table (htab)
4828 && (info->strip != strip_all && info->strip != strip_debugger))
4829 {
4830 asection *stabstr;
4831
4832 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4833 if (stabstr != NULL)
4834 {
4835 bfd_size_type string_offset = 0;
4836 asection *stab;
4837
4838 for (stab = abfd->sections; stab; stab = stab->next)
4839 if (CONST_STRNEQ (stab->name, ".stab")
4840 && (!stab->name[5] ||
4841 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4842 && (stab->flags & SEC_MERGE) == 0
4843 && !bfd_is_abs_section (stab->output_section))
4844 {
4845 struct bfd_elf_section_data *secdata;
4846
4847 secdata = elf_section_data (stab);
4848 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4849 stabstr, &secdata->sec_info,
4850 &string_offset))
4851 goto error_return;
4852 if (secdata->sec_info)
4853 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4854 }
4855 }
4856 }
4857
4858 if (is_elf_hash_table (htab) && add_needed)
4859 {
4860 /* Add this bfd to the loaded list. */
4861 struct elf_link_loaded_list *n;
4862
4863 n = (struct elf_link_loaded_list *)
4864 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, FALSE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because of a
4939 problem which arises on UnixWare. The UnixWare libc.so is an
4940 archive which includes an entry libc.so.1 which defines a bunch of
4941 symbols. The libc.so archive also includes a number of other
4942 object files, which also define symbols, some of which are the same
4943 as those defined in libc.so.1. Correct linking requires that we
4944 consider each object file in turn, and include it if it defines any
4945 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4946 this; it looks through the list of undefined symbols, and includes
4947 any object file which defines them. When this algorithm is used on
4948 UnixWare, it winds up pulling in libc.so.1 early and defining a
4949 bunch of symbols. This means that some of the other objects in the
4950 archive are not included in the link, which is incorrect since they
4951 precede libc.so.1 in the archive.
4952
4953 Fortunately, ELF archive handling is simpler than that done by
4954 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4955 oddities. In ELF, if we find a symbol in the archive map, and the
4956 symbol is currently undefined, we know that we must pull in that
4957 object file.
4958
4959 Unfortunately, we do have to make multiple passes over the symbol
4960 table until nothing further is resolved. */
4961
4962 static bfd_boolean
4963 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4964 {
4965 symindex c;
4966 bfd_boolean *defined = NULL;
4967 bfd_boolean *included = NULL;
4968 carsym *symdefs;
4969 bfd_boolean loop;
4970 bfd_size_type amt;
4971 const struct elf_backend_data *bed;
4972 struct elf_link_hash_entry * (*archive_symbol_lookup)
4973 (bfd *, struct bfd_link_info *, const char *);
4974
4975 if (! bfd_has_map (abfd))
4976 {
4977 /* An empty archive is a special case. */
4978 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4979 return TRUE;
4980 bfd_set_error (bfd_error_no_armap);
4981 return FALSE;
4982 }
4983
4984 /* Keep track of all symbols we know to be already defined, and all
4985 files we know to be already included. This is to speed up the
4986 second and subsequent passes. */
4987 c = bfd_ardata (abfd)->symdef_count;
4988 if (c == 0)
4989 return TRUE;
4990 amt = c;
4991 amt *= sizeof (bfd_boolean);
4992 defined = (bfd_boolean *) bfd_zmalloc (amt);
4993 included = (bfd_boolean *) bfd_zmalloc (amt);
4994 if (defined == NULL || included == NULL)
4995 goto error_return;
4996
4997 symdefs = bfd_ardata (abfd)->symdefs;
4998 bed = get_elf_backend_data (abfd);
4999 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5000
5001 do
5002 {
5003 file_ptr last;
5004 symindex i;
5005 carsym *symdef;
5006 carsym *symdefend;
5007
5008 loop = FALSE;
5009 last = -1;
5010
5011 symdef = symdefs;
5012 symdefend = symdef + c;
5013 for (i = 0; symdef < symdefend; symdef++, i++)
5014 {
5015 struct elf_link_hash_entry *h;
5016 bfd *element;
5017 struct bfd_link_hash_entry *undefs_tail;
5018 symindex mark;
5019
5020 if (defined[i] || included[i])
5021 continue;
5022 if (symdef->file_offset == last)
5023 {
5024 included[i] = TRUE;
5025 continue;
5026 }
5027
5028 h = archive_symbol_lookup (abfd, info, symdef->name);
5029 if (h == (struct elf_link_hash_entry *) 0 - 1)
5030 goto error_return;
5031
5032 if (h == NULL)
5033 continue;
5034
5035 if (h->root.type == bfd_link_hash_common)
5036 {
5037 /* We currently have a common symbol. The archive map contains
5038 a reference to this symbol, so we may want to include it. We
5039 only want to include it however, if this archive element
5040 contains a definition of the symbol, not just another common
5041 declaration of it.
5042
5043 Unfortunately some archivers (including GNU ar) will put
5044 declarations of common symbols into their archive maps, as
5045 well as real definitions, so we cannot just go by the archive
5046 map alone. Instead we must read in the element's symbol
5047 table and check that to see what kind of symbol definition
5048 this is. */
5049 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5050 continue;
5051 }
5052 else if (h->root.type != bfd_link_hash_undefined)
5053 {
5054 if (h->root.type != bfd_link_hash_undefweak)
5055 defined[i] = TRUE;
5056 continue;
5057 }
5058
5059 /* We need to include this archive member. */
5060 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5061 if (element == NULL)
5062 goto error_return;
5063
5064 if (! bfd_check_format (element, bfd_object))
5065 goto error_return;
5066
5067 /* Doublecheck that we have not included this object
5068 already--it should be impossible, but there may be
5069 something wrong with the archive. */
5070 if (element->archive_pass != 0)
5071 {
5072 bfd_set_error (bfd_error_bad_value);
5073 goto error_return;
5074 }
5075 element->archive_pass = 1;
5076
5077 undefs_tail = info->hash->undefs_tail;
5078
5079 if (!(*info->callbacks
5080 ->add_archive_element) (info, element, symdef->name, &element))
5081 goto error_return;
5082 if (!bfd_link_add_symbols (element, info))
5083 goto error_return;
5084
5085 /* If there are any new undefined symbols, we need to make
5086 another pass through the archive in order to see whether
5087 they can be defined. FIXME: This isn't perfect, because
5088 common symbols wind up on undefs_tail and because an
5089 undefined symbol which is defined later on in this pass
5090 does not require another pass. This isn't a bug, but it
5091 does make the code less efficient than it could be. */
5092 if (undefs_tail != info->hash->undefs_tail)
5093 loop = TRUE;
5094
5095 /* Look backward to mark all symbols from this object file
5096 which we have already seen in this pass. */
5097 mark = i;
5098 do
5099 {
5100 included[mark] = TRUE;
5101 if (mark == 0)
5102 break;
5103 --mark;
5104 }
5105 while (symdefs[mark].file_offset == symdef->file_offset);
5106
5107 /* We mark subsequent symbols from this object file as we go
5108 on through the loop. */
5109 last = symdef->file_offset;
5110 }
5111 }
5112 while (loop);
5113
5114 free (defined);
5115 free (included);
5116
5117 return TRUE;
5118
5119 error_return:
5120 if (defined != NULL)
5121 free (defined);
5122 if (included != NULL)
5123 free (included);
5124 return FALSE;
5125 }
5126
5127 /* Given an ELF BFD, add symbols to the global hash table as
5128 appropriate. */
5129
5130 bfd_boolean
5131 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5132 {
5133 switch (bfd_get_format (abfd))
5134 {
5135 case bfd_object:
5136 return elf_link_add_object_symbols (abfd, info);
5137 case bfd_archive:
5138 return elf_link_add_archive_symbols (abfd, info);
5139 default:
5140 bfd_set_error (bfd_error_wrong_format);
5141 return FALSE;
5142 }
5143 }
5144 \f
5145 struct hash_codes_info
5146 {
5147 unsigned long *hashcodes;
5148 bfd_boolean error;
5149 };
5150
5151 /* This function will be called though elf_link_hash_traverse to store
5152 all hash value of the exported symbols in an array. */
5153
5154 static bfd_boolean
5155 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5156 {
5157 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5158 const char *name;
5159 char *p;
5160 unsigned long ha;
5161 char *alc = NULL;
5162
5163 if (h->root.type == bfd_link_hash_warning)
5164 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5165
5166 /* Ignore indirect symbols. These are added by the versioning code. */
5167 if (h->dynindx == -1)
5168 return TRUE;
5169
5170 name = h->root.root.string;
5171 p = strchr (name, ELF_VER_CHR);
5172 if (p != NULL)
5173 {
5174 alc = (char *) bfd_malloc (p - name + 1);
5175 if (alc == NULL)
5176 {
5177 inf->error = TRUE;
5178 return FALSE;
5179 }
5180 memcpy (alc, name, p - name);
5181 alc[p - name] = '\0';
5182 name = alc;
5183 }
5184
5185 /* Compute the hash value. */
5186 ha = bfd_elf_hash (name);
5187
5188 /* Store the found hash value in the array given as the argument. */
5189 *(inf->hashcodes)++ = ha;
5190
5191 /* And store it in the struct so that we can put it in the hash table
5192 later. */
5193 h->u.elf_hash_value = ha;
5194
5195 if (alc != NULL)
5196 free (alc);
5197
5198 return TRUE;
5199 }
5200
5201 struct collect_gnu_hash_codes
5202 {
5203 bfd *output_bfd;
5204 const struct elf_backend_data *bed;
5205 unsigned long int nsyms;
5206 unsigned long int maskbits;
5207 unsigned long int *hashcodes;
5208 unsigned long int *hashval;
5209 unsigned long int *indx;
5210 unsigned long int *counts;
5211 bfd_vma *bitmask;
5212 bfd_byte *contents;
5213 long int min_dynindx;
5214 unsigned long int bucketcount;
5215 unsigned long int symindx;
5216 long int local_indx;
5217 long int shift1, shift2;
5218 unsigned long int mask;
5219 bfd_boolean error;
5220 };
5221
5222 /* This function will be called though elf_link_hash_traverse to store
5223 all hash value of the exported symbols in an array. */
5224
5225 static bfd_boolean
5226 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5227 {
5228 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5229 const char *name;
5230 char *p;
5231 unsigned long ha;
5232 char *alc = NULL;
5233
5234 if (h->root.type == bfd_link_hash_warning)
5235 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5236
5237 /* Ignore indirect symbols. These are added by the versioning code. */
5238 if (h->dynindx == -1)
5239 return TRUE;
5240
5241 /* Ignore also local symbols and undefined symbols. */
5242 if (! (*s->bed->elf_hash_symbol) (h))
5243 return TRUE;
5244
5245 name = h->root.root.string;
5246 p = strchr (name, ELF_VER_CHR);
5247 if (p != NULL)
5248 {
5249 alc = (char *) bfd_malloc (p - name + 1);
5250 if (alc == NULL)
5251 {
5252 s->error = TRUE;
5253 return FALSE;
5254 }
5255 memcpy (alc, name, p - name);
5256 alc[p - name] = '\0';
5257 name = alc;
5258 }
5259
5260 /* Compute the hash value. */
5261 ha = bfd_elf_gnu_hash (name);
5262
5263 /* Store the found hash value in the array for compute_bucket_count,
5264 and also for .dynsym reordering purposes. */
5265 s->hashcodes[s->nsyms] = ha;
5266 s->hashval[h->dynindx] = ha;
5267 ++s->nsyms;
5268 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5269 s->min_dynindx = h->dynindx;
5270
5271 if (alc != NULL)
5272 free (alc);
5273
5274 return TRUE;
5275 }
5276
5277 /* This function will be called though elf_link_hash_traverse to do
5278 final dynaminc symbol renumbering. */
5279
5280 static bfd_boolean
5281 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5282 {
5283 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5284 unsigned long int bucket;
5285 unsigned long int val;
5286
5287 if (h->root.type == bfd_link_hash_warning)
5288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5289
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5292 return TRUE;
5293
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5296 {
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5299 return TRUE;
5300 }
5301
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5306 s->bitmask[val]
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5311 val |= 1;
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5316 return TRUE;
5317 }
5318
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5320
5321 bfd_boolean
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5323 {
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5330 }
5331
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5337
5338 static const size_t elf_buckets[] =
5339 {
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 16411, 32771, 0
5342 };
5343
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5352 static size_t
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5356 int gnu_hash)
5357 {
5358 size_t best_size = 0;
5359 unsigned long int i;
5360
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5365 if (info->optimize)
5366 {
5367 size_t minsize;
5368 size_t maxsize;
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5374 bfd_size_type amt;
5375 unsigned int no_improvement_count = 0;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 no_improvement_count = 0;
5461 }
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5465 break;
5466 }
5467
5468 free (counts);
5469 }
5470 else
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5472 {
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5477 {
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5480 break;
5481 }
5482 if (gnu_hash && best_size < 2)
5483 best_size = 2;
5484 }
5485
5486 return best_size;
5487 }
5488
5489 /* Size any SHT_GROUP section for ld -r. */
5490
5491 bfd_boolean
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5493 {
5494 bfd *ibfd;
5495
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 return FALSE;
5500 return TRUE;
5501 }
5502
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5507
5508 bfd_boolean
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5510 const char *soname,
5511 const char *rpath,
5512 const char *filter_shlib,
5513 const char *audit,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr,
5518 struct bfd_elf_version_tree *verdefs)
5519 {
5520 bfd_size_type soname_indx;
5521 bfd *dynobj;
5522 const struct elf_backend_data *bed;
5523 struct elf_info_failed asvinfo;
5524
5525 *sinterpptr = NULL;
5526
5527 soname_indx = (bfd_size_type) -1;
5528
5529 if (!is_elf_hash_table (info->hash))
5530 return TRUE;
5531
5532 bed = get_elf_backend_data (output_bfd);
5533 if (info->execstack)
5534 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5535 else if (info->noexecstack)
5536 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5537 else
5538 {
5539 bfd *inputobj;
5540 asection *notesec = NULL;
5541 int exec = 0;
5542
5543 for (inputobj = info->input_bfds;
5544 inputobj;
5545 inputobj = inputobj->link_next)
5546 {
5547 asection *s;
5548
5549 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5550 continue;
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5552 if (s)
5553 {
5554 if (s->flags & SEC_CODE)
5555 exec = PF_X;
5556 notesec = s;
5557 }
5558 else if (bed->default_execstack)
5559 exec = PF_X;
5560 }
5561 if (notesec)
5562 {
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5567 }
5568 }
5569
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5576
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5579 return FALSE;
5580
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5585 return FALSE;
5586
5587 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5588 return FALSE;
5589
5590 dynobj = elf_hash_table (info)->dynobj;
5591
5592 /* If there were no dynamic objects in the link, there is nothing to
5593 do here. */
5594 if (dynobj == NULL)
5595 return TRUE;
5596
5597 if (elf_hash_table (info)->dynamic_sections_created)
5598 {
5599 struct elf_info_failed eif;
5600 struct elf_link_hash_entry *h;
5601 asection *dynstr;
5602 struct bfd_elf_version_tree *t;
5603 struct bfd_elf_version_expr *d;
5604 asection *s;
5605 bfd_boolean all_defined;
5606
5607 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5608 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5609
5610 if (soname != NULL)
5611 {
5612 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5613 soname, TRUE);
5614 if (soname_indx == (bfd_size_type) -1
5615 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5616 return FALSE;
5617 }
5618
5619 if (info->symbolic)
5620 {
5621 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5622 return FALSE;
5623 info->flags |= DF_SYMBOLIC;
5624 }
5625
5626 if (rpath != NULL)
5627 {
5628 bfd_size_type indx;
5629
5630 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5631 TRUE);
5632 if (indx == (bfd_size_type) -1
5633 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5634 return FALSE;
5635
5636 if (info->new_dtags)
5637 {
5638 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5640 return FALSE;
5641 }
5642 }
5643
5644 if (filter_shlib != NULL)
5645 {
5646 bfd_size_type indx;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5652 return FALSE;
5653 }
5654
5655 if (auxiliary_filters != NULL)
5656 {
5657 const char * const *p;
5658
5659 for (p = auxiliary_filters; *p != NULL; p++)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 *p, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5667 return FALSE;
5668 }
5669 }
5670
5671 if (audit != NULL)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5679 return FALSE;
5680 }
5681
5682 if (depaudit != NULL)
5683 {
5684 bfd_size_type indx;
5685
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5687 TRUE);
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5690 return FALSE;
5691 }
5692
5693 eif.info = info;
5694 eif.verdefs = verdefs;
5695 eif.failed = FALSE;
5696
5697 /* If we are supposed to export all symbols into the dynamic symbol
5698 table (this is not the normal case), then do so. */
5699 if (info->export_dynamic
5700 || (info->executable && info->dynamic))
5701 {
5702 elf_link_hash_traverse (elf_hash_table (info),
5703 _bfd_elf_export_symbol,
5704 &eif);
5705 if (eif.failed)
5706 return FALSE;
5707 }
5708
5709 /* Make all global versions with definition. */
5710 for (t = verdefs; t != NULL; t = t->next)
5711 for (d = t->globals.list; d != NULL; d = d->next)
5712 if (!d->symver && d->literal)
5713 {
5714 const char *verstr, *name;
5715 size_t namelen, verlen, newlen;
5716 char *newname, *p, leading_char;
5717 struct elf_link_hash_entry *newh;
5718
5719 leading_char = bfd_get_symbol_leading_char (output_bfd);
5720 name = d->pattern;
5721 namelen = strlen (name) + (leading_char != '\0');
5722 verstr = t->name;
5723 verlen = strlen (verstr);
5724 newlen = namelen + verlen + 3;
5725
5726 newname = (char *) bfd_malloc (newlen);
5727 if (newname == NULL)
5728 return FALSE;
5729 newname[0] = leading_char;
5730 memcpy (newname + (leading_char != '\0'), name, namelen);
5731
5732 /* Check the hidden versioned definition. */
5733 p = newname + namelen;
5734 *p++ = ELF_VER_CHR;
5735 memcpy (p, verstr, verlen + 1);
5736 newh = elf_link_hash_lookup (elf_hash_table (info),
5737 newname, FALSE, FALSE,
5738 FALSE);
5739 if (newh == NULL
5740 || (newh->root.type != bfd_link_hash_defined
5741 && newh->root.type != bfd_link_hash_defweak))
5742 {
5743 /* Check the default versioned definition. */
5744 *p++ = ELF_VER_CHR;
5745 memcpy (p, verstr, verlen + 1);
5746 newh = elf_link_hash_lookup (elf_hash_table (info),
5747 newname, FALSE, FALSE,
5748 FALSE);
5749 }
5750 free (newname);
5751
5752 /* Mark this version if there is a definition and it is
5753 not defined in a shared object. */
5754 if (newh != NULL
5755 && !newh->def_dynamic
5756 && (newh->root.type == bfd_link_hash_defined
5757 || newh->root.type == bfd_link_hash_defweak))
5758 d->symver = 1;
5759 }
5760
5761 /* Attach all the symbols to their version information. */
5762 asvinfo.info = info;
5763 asvinfo.verdefs = verdefs;
5764 asvinfo.failed = FALSE;
5765
5766 elf_link_hash_traverse (elf_hash_table (info),
5767 _bfd_elf_link_assign_sym_version,
5768 &asvinfo);
5769 if (asvinfo.failed)
5770 return FALSE;
5771
5772 if (!info->allow_undefined_version)
5773 {
5774 /* Check if all global versions have a definition. */
5775 all_defined = TRUE;
5776 for (t = verdefs; t != NULL; t = t->next)
5777 for (d = t->globals.list; d != NULL; d = d->next)
5778 if (d->literal && !d->symver && !d->script)
5779 {
5780 (*_bfd_error_handler)
5781 (_("%s: undefined version: %s"),
5782 d->pattern, t->name);
5783 all_defined = FALSE;
5784 }
5785
5786 if (!all_defined)
5787 {
5788 bfd_set_error (bfd_error_bad_value);
5789 return FALSE;
5790 }
5791 }
5792
5793 /* Find all symbols which were defined in a dynamic object and make
5794 the backend pick a reasonable value for them. */
5795 elf_link_hash_traverse (elf_hash_table (info),
5796 _bfd_elf_adjust_dynamic_symbol,
5797 &eif);
5798 if (eif.failed)
5799 return FALSE;
5800
5801 /* Add some entries to the .dynamic section. We fill in some of the
5802 values later, in bfd_elf_final_link, but we must add the entries
5803 now so that we know the final size of the .dynamic section. */
5804
5805 /* If there are initialization and/or finalization functions to
5806 call then add the corresponding DT_INIT/DT_FINI entries. */
5807 h = (info->init_function
5808 ? elf_link_hash_lookup (elf_hash_table (info),
5809 info->init_function, FALSE,
5810 FALSE, FALSE)
5811 : NULL);
5812 if (h != NULL
5813 && (h->ref_regular
5814 || h->def_regular))
5815 {
5816 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5817 return FALSE;
5818 }
5819 h = (info->fini_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->fini_function, FALSE,
5822 FALSE, FALSE)
5823 : NULL);
5824 if (h != NULL
5825 && (h->ref_regular
5826 || h->def_regular))
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5829 return FALSE;
5830 }
5831
5832 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5833 if (s != NULL && s->linker_has_input)
5834 {
5835 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5836 if (! info->executable)
5837 {
5838 bfd *sub;
5839 asection *o;
5840
5841 for (sub = info->input_bfds; sub != NULL;
5842 sub = sub->link_next)
5843 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5844 for (o = sub->sections; o != NULL; o = o->next)
5845 if (elf_section_data (o)->this_hdr.sh_type
5846 == SHT_PREINIT_ARRAY)
5847 {
5848 (*_bfd_error_handler)
5849 (_("%B: .preinit_array section is not allowed in DSO"),
5850 sub);
5851 break;
5852 }
5853
5854 bfd_set_error (bfd_error_nonrepresentable_section);
5855 return FALSE;
5856 }
5857
5858 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5859 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5860 return FALSE;
5861 }
5862 s = bfd_get_section_by_name (output_bfd, ".init_array");
5863 if (s != NULL && s->linker_has_input)
5864 {
5865 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5867 return FALSE;
5868 }
5869 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5870 if (s != NULL && s->linker_has_input)
5871 {
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5874 return FALSE;
5875 }
5876
5877 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5878 /* If .dynstr is excluded from the link, we don't want any of
5879 these tags. Strictly, we should be checking each section
5880 individually; This quick check covers for the case where
5881 someone does a /DISCARD/ : { *(*) }. */
5882 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5883 {
5884 bfd_size_type strsize;
5885
5886 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5887 if ((info->emit_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5889 || (info->emit_gnu_hash
5890 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5894 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5895 bed->s->sizeof_sym))
5896 return FALSE;
5897 }
5898 }
5899
5900 /* The backend must work out the sizes of all the other dynamic
5901 sections. */
5902 if (bed->elf_backend_size_dynamic_sections
5903 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5904 return FALSE;
5905
5906 if (elf_hash_table (info)->dynamic_sections_created)
5907 {
5908 unsigned long section_sym_count;
5909 asection *s;
5910
5911 /* Set up the version definition section. */
5912 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5913 BFD_ASSERT (s != NULL);
5914
5915 /* We may have created additional version definitions if we are
5916 just linking a regular application. */
5917 verdefs = asvinfo.verdefs;
5918
5919 /* Skip anonymous version tag. */
5920 if (verdefs != NULL && verdefs->vernum == 0)
5921 verdefs = verdefs->next;
5922
5923 if (verdefs == NULL && !info->create_default_symver)
5924 s->flags |= SEC_EXCLUDE;
5925 else
5926 {
5927 unsigned int cdefs;
5928 bfd_size_type size;
5929 struct bfd_elf_version_tree *t;
5930 bfd_byte *p;
5931 Elf_Internal_Verdef def;
5932 Elf_Internal_Verdaux defaux;
5933 struct bfd_link_hash_entry *bh;
5934 struct elf_link_hash_entry *h;
5935 const char *name;
5936
5937 cdefs = 0;
5938 size = 0;
5939
5940 /* Make space for the base version. */
5941 size += sizeof (Elf_External_Verdef);
5942 size += sizeof (Elf_External_Verdaux);
5943 ++cdefs;
5944
5945 /* Make space for the default version. */
5946 if (info->create_default_symver)
5947 {
5948 size += sizeof (Elf_External_Verdef);
5949 ++cdefs;
5950 }
5951
5952 for (t = verdefs; t != NULL; t = t->next)
5953 {
5954 struct bfd_elf_version_deps *n;
5955
5956 /* Don't emit base version twice. */
5957 if (t->vernum == 0)
5958 continue;
5959
5960 size += sizeof (Elf_External_Verdef);
5961 size += sizeof (Elf_External_Verdaux);
5962 ++cdefs;
5963
5964 for (n = t->deps; n != NULL; n = n->next)
5965 size += sizeof (Elf_External_Verdaux);
5966 }
5967
5968 s->size = size;
5969 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5970 if (s->contents == NULL && s->size != 0)
5971 return FALSE;
5972
5973 /* Fill in the version definition section. */
5974
5975 p = s->contents;
5976
5977 def.vd_version = VER_DEF_CURRENT;
5978 def.vd_flags = VER_FLG_BASE;
5979 def.vd_ndx = 1;
5980 def.vd_cnt = 1;
5981 if (info->create_default_symver)
5982 {
5983 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5984 def.vd_next = sizeof (Elf_External_Verdef);
5985 }
5986 else
5987 {
5988 def.vd_aux = sizeof (Elf_External_Verdef);
5989 def.vd_next = (sizeof (Elf_External_Verdef)
5990 + sizeof (Elf_External_Verdaux));
5991 }
5992
5993 if (soname_indx != (bfd_size_type) -1)
5994 {
5995 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5996 soname_indx);
5997 def.vd_hash = bfd_elf_hash (soname);
5998 defaux.vda_name = soname_indx;
5999 name = soname;
6000 }
6001 else
6002 {
6003 bfd_size_type indx;
6004
6005 name = lbasename (output_bfd->filename);
6006 def.vd_hash = bfd_elf_hash (name);
6007 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6008 name, FALSE);
6009 if (indx == (bfd_size_type) -1)
6010 return FALSE;
6011 defaux.vda_name = indx;
6012 }
6013 defaux.vda_next = 0;
6014
6015 _bfd_elf_swap_verdef_out (output_bfd, &def,
6016 (Elf_External_Verdef *) p);
6017 p += sizeof (Elf_External_Verdef);
6018 if (info->create_default_symver)
6019 {
6020 /* Add a symbol representing this version. */
6021 bh = NULL;
6022 if (! (_bfd_generic_link_add_one_symbol
6023 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6024 0, NULL, FALSE,
6025 get_elf_backend_data (dynobj)->collect, &bh)))
6026 return FALSE;
6027 h = (struct elf_link_hash_entry *) bh;
6028 h->non_elf = 0;
6029 h->def_regular = 1;
6030 h->type = STT_OBJECT;
6031 h->verinfo.vertree = NULL;
6032
6033 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6034 return FALSE;
6035
6036 /* Create a duplicate of the base version with the same
6037 aux block, but different flags. */
6038 def.vd_flags = 0;
6039 def.vd_ndx = 2;
6040 def.vd_aux = sizeof (Elf_External_Verdef);
6041 if (verdefs)
6042 def.vd_next = (sizeof (Elf_External_Verdef)
6043 + sizeof (Elf_External_Verdaux));
6044 else
6045 def.vd_next = 0;
6046 _bfd_elf_swap_verdef_out (output_bfd, &def,
6047 (Elf_External_Verdef *) p);
6048 p += sizeof (Elf_External_Verdef);
6049 }
6050 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6051 (Elf_External_Verdaux *) p);
6052 p += sizeof (Elf_External_Verdaux);
6053
6054 for (t = verdefs; t != NULL; t = t->next)
6055 {
6056 unsigned int cdeps;
6057 struct bfd_elf_version_deps *n;
6058
6059 /* Don't emit the base version twice. */
6060 if (t->vernum == 0)
6061 continue;
6062
6063 cdeps = 0;
6064 for (n = t->deps; n != NULL; n = n->next)
6065 ++cdeps;
6066
6067 /* Add a symbol representing this version. */
6068 bh = NULL;
6069 if (! (_bfd_generic_link_add_one_symbol
6070 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6071 0, NULL, FALSE,
6072 get_elf_backend_data (dynobj)->collect, &bh)))
6073 return FALSE;
6074 h = (struct elf_link_hash_entry *) bh;
6075 h->non_elf = 0;
6076 h->def_regular = 1;
6077 h->type = STT_OBJECT;
6078 h->verinfo.vertree = t;
6079
6080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6081 return FALSE;
6082
6083 def.vd_version = VER_DEF_CURRENT;
6084 def.vd_flags = 0;
6085 if (t->globals.list == NULL
6086 && t->locals.list == NULL
6087 && ! t->used)
6088 def.vd_flags |= VER_FLG_WEAK;
6089 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6090 def.vd_cnt = cdeps + 1;
6091 def.vd_hash = bfd_elf_hash (t->name);
6092 def.vd_aux = sizeof (Elf_External_Verdef);
6093 def.vd_next = 0;
6094
6095 /* If a basever node is next, it *must* be the last node in
6096 the chain, otherwise Verdef construction breaks. */
6097 if (t->next != NULL && t->next->vernum == 0)
6098 BFD_ASSERT (t->next->next == NULL);
6099
6100 if (t->next != NULL && t->next->vernum != 0)
6101 def.vd_next = (sizeof (Elf_External_Verdef)
6102 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6103
6104 _bfd_elf_swap_verdef_out (output_bfd, &def,
6105 (Elf_External_Verdef *) p);
6106 p += sizeof (Elf_External_Verdef);
6107
6108 defaux.vda_name = h->dynstr_index;
6109 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6110 h->dynstr_index);
6111 defaux.vda_next = 0;
6112 if (t->deps != NULL)
6113 defaux.vda_next = sizeof (Elf_External_Verdaux);
6114 t->name_indx = defaux.vda_name;
6115
6116 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6117 (Elf_External_Verdaux *) p);
6118 p += sizeof (Elf_External_Verdaux);
6119
6120 for (n = t->deps; n != NULL; n = n->next)
6121 {
6122 if (n->version_needed == NULL)
6123 {
6124 /* This can happen if there was an error in the
6125 version script. */
6126 defaux.vda_name = 0;
6127 }
6128 else
6129 {
6130 defaux.vda_name = n->version_needed->name_indx;
6131 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6132 defaux.vda_name);
6133 }
6134 if (n->next == NULL)
6135 defaux.vda_next = 0;
6136 else
6137 defaux.vda_next = sizeof (Elf_External_Verdaux);
6138
6139 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6140 (Elf_External_Verdaux *) p);
6141 p += sizeof (Elf_External_Verdaux);
6142 }
6143 }
6144
6145 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6146 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6147 return FALSE;
6148
6149 elf_tdata (output_bfd)->cverdefs = cdefs;
6150 }
6151
6152 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6153 {
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6155 return FALSE;
6156 }
6157 else if (info->flags & DF_BIND_NOW)
6158 {
6159 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6160 return FALSE;
6161 }
6162
6163 if (info->flags_1)
6164 {
6165 if (info->executable)
6166 info->flags_1 &= ~ (DF_1_INITFIRST
6167 | DF_1_NODELETE
6168 | DF_1_NOOPEN);
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6170 return FALSE;
6171 }
6172
6173 /* Work out the size of the version reference section. */
6174
6175 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6176 BFD_ASSERT (s != NULL);
6177 {
6178 struct elf_find_verdep_info sinfo;
6179
6180 sinfo.info = info;
6181 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6182 if (sinfo.vers == 0)
6183 sinfo.vers = 1;
6184 sinfo.failed = FALSE;
6185
6186 elf_link_hash_traverse (elf_hash_table (info),
6187 _bfd_elf_link_find_version_dependencies,
6188 &sinfo);
6189 if (sinfo.failed)
6190 return FALSE;
6191
6192 if (elf_tdata (output_bfd)->verref == NULL)
6193 s->flags |= SEC_EXCLUDE;
6194 else
6195 {
6196 Elf_Internal_Verneed *t;
6197 unsigned int size;
6198 unsigned int crefs;
6199 bfd_byte *p;
6200
6201 /* Build the version dependency section. */
6202 size = 0;
6203 crefs = 0;
6204 for (t = elf_tdata (output_bfd)->verref;
6205 t != NULL;
6206 t = t->vn_nextref)
6207 {
6208 Elf_Internal_Vernaux *a;
6209
6210 size += sizeof (Elf_External_Verneed);
6211 ++crefs;
6212 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6213 size += sizeof (Elf_External_Vernaux);
6214 }
6215
6216 s->size = size;
6217 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6218 if (s->contents == NULL)
6219 return FALSE;
6220
6221 p = s->contents;
6222 for (t = elf_tdata (output_bfd)->verref;
6223 t != NULL;
6224 t = t->vn_nextref)
6225 {
6226 unsigned int caux;
6227 Elf_Internal_Vernaux *a;
6228 bfd_size_type indx;
6229
6230 caux = 0;
6231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6232 ++caux;
6233
6234 t->vn_version = VER_NEED_CURRENT;
6235 t->vn_cnt = caux;
6236 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6237 elf_dt_name (t->vn_bfd) != NULL
6238 ? elf_dt_name (t->vn_bfd)
6239 : lbasename (t->vn_bfd->filename),
6240 FALSE);
6241 if (indx == (bfd_size_type) -1)
6242 return FALSE;
6243 t->vn_file = indx;
6244 t->vn_aux = sizeof (Elf_External_Verneed);
6245 if (t->vn_nextref == NULL)
6246 t->vn_next = 0;
6247 else
6248 t->vn_next = (sizeof (Elf_External_Verneed)
6249 + caux * sizeof (Elf_External_Vernaux));
6250
6251 _bfd_elf_swap_verneed_out (output_bfd, t,
6252 (Elf_External_Verneed *) p);
6253 p += sizeof (Elf_External_Verneed);
6254
6255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 {
6257 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6258 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6259 a->vna_nodename, FALSE);
6260 if (indx == (bfd_size_type) -1)
6261 return FALSE;
6262 a->vna_name = indx;
6263 if (a->vna_nextptr == NULL)
6264 a->vna_next = 0;
6265 else
6266 a->vna_next = sizeof (Elf_External_Vernaux);
6267
6268 _bfd_elf_swap_vernaux_out (output_bfd, a,
6269 (Elf_External_Vernaux *) p);
6270 p += sizeof (Elf_External_Vernaux);
6271 }
6272 }
6273
6274 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6275 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6276 return FALSE;
6277
6278 elf_tdata (output_bfd)->cverrefs = crefs;
6279 }
6280 }
6281
6282 if ((elf_tdata (output_bfd)->cverrefs == 0
6283 && elf_tdata (output_bfd)->cverdefs == 0)
6284 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6285 &section_sym_count) == 0)
6286 {
6287 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6288 s->flags |= SEC_EXCLUDE;
6289 }
6290 }
6291 return TRUE;
6292 }
6293
6294 /* Find the first non-excluded output section. We'll use its
6295 section symbol for some emitted relocs. */
6296 void
6297 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6298 {
6299 asection *s;
6300
6301 for (s = output_bfd->sections; s != NULL; s = s->next)
6302 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6303 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6304 {
6305 elf_hash_table (info)->text_index_section = s;
6306 break;
6307 }
6308 }
6309
6310 /* Find two non-excluded output sections, one for code, one for data.
6311 We'll use their section symbols for some emitted relocs. */
6312 void
6313 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6314 {
6315 asection *s;
6316
6317 /* Data first, since setting text_index_section changes
6318 _bfd_elf_link_omit_section_dynsym. */
6319 for (s = output_bfd->sections; s != NULL; s = s->next)
6320 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6321 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6322 {
6323 elf_hash_table (info)->data_index_section = s;
6324 break;
6325 }
6326
6327 for (s = output_bfd->sections; s != NULL; s = s->next)
6328 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6329 == (SEC_ALLOC | SEC_READONLY))
6330 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6331 {
6332 elf_hash_table (info)->text_index_section = s;
6333 break;
6334 }
6335
6336 if (elf_hash_table (info)->text_index_section == NULL)
6337 elf_hash_table (info)->text_index_section
6338 = elf_hash_table (info)->data_index_section;
6339 }
6340
6341 bfd_boolean
6342 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6343 {
6344 const struct elf_backend_data *bed;
6345
6346 if (!is_elf_hash_table (info->hash))
6347 return TRUE;
6348
6349 bed = get_elf_backend_data (output_bfd);
6350 (*bed->elf_backend_init_index_section) (output_bfd, info);
6351
6352 if (elf_hash_table (info)->dynamic_sections_created)
6353 {
6354 bfd *dynobj;
6355 asection *s;
6356 bfd_size_type dynsymcount;
6357 unsigned long section_sym_count;
6358 unsigned int dtagcount;
6359
6360 dynobj = elf_hash_table (info)->dynobj;
6361
6362 /* Assign dynsym indicies. In a shared library we generate a
6363 section symbol for each output section, which come first.
6364 Next come all of the back-end allocated local dynamic syms,
6365 followed by the rest of the global symbols. */
6366
6367 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6368 &section_sym_count);
6369
6370 /* Work out the size of the symbol version section. */
6371 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6372 BFD_ASSERT (s != NULL);
6373 if (dynsymcount != 0
6374 && (s->flags & SEC_EXCLUDE) == 0)
6375 {
6376 s->size = dynsymcount * sizeof (Elf_External_Versym);
6377 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6378 if (s->contents == NULL)
6379 return FALSE;
6380
6381 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6382 return FALSE;
6383 }
6384
6385 /* Set the size of the .dynsym and .hash sections. We counted
6386 the number of dynamic symbols in elf_link_add_object_symbols.
6387 We will build the contents of .dynsym and .hash when we build
6388 the final symbol table, because until then we do not know the
6389 correct value to give the symbols. We built the .dynstr
6390 section as we went along in elf_link_add_object_symbols. */
6391 s = bfd_get_section_by_name (dynobj, ".dynsym");
6392 BFD_ASSERT (s != NULL);
6393 s->size = dynsymcount * bed->s->sizeof_sym;
6394
6395 if (dynsymcount != 0)
6396 {
6397 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6398 if (s->contents == NULL)
6399 return FALSE;
6400
6401 /* The first entry in .dynsym is a dummy symbol.
6402 Clear all the section syms, in case we don't output them all. */
6403 ++section_sym_count;
6404 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6405 }
6406
6407 elf_hash_table (info)->bucketcount = 0;
6408
6409 /* Compute the size of the hashing table. As a side effect this
6410 computes the hash values for all the names we export. */
6411 if (info->emit_hash)
6412 {
6413 unsigned long int *hashcodes;
6414 struct hash_codes_info hashinf;
6415 bfd_size_type amt;
6416 unsigned long int nsyms;
6417 size_t bucketcount;
6418 size_t hash_entry_size;
6419
6420 /* Compute the hash values for all exported symbols. At the same
6421 time store the values in an array so that we could use them for
6422 optimizations. */
6423 amt = dynsymcount * sizeof (unsigned long int);
6424 hashcodes = (unsigned long int *) bfd_malloc (amt);
6425 if (hashcodes == NULL)
6426 return FALSE;
6427 hashinf.hashcodes = hashcodes;
6428 hashinf.error = FALSE;
6429
6430 /* Put all hash values in HASHCODES. */
6431 elf_link_hash_traverse (elf_hash_table (info),
6432 elf_collect_hash_codes, &hashinf);
6433 if (hashinf.error)
6434 {
6435 free (hashcodes);
6436 return FALSE;
6437 }
6438
6439 nsyms = hashinf.hashcodes - hashcodes;
6440 bucketcount
6441 = compute_bucket_count (info, hashcodes, nsyms, 0);
6442 free (hashcodes);
6443
6444 if (bucketcount == 0)
6445 return FALSE;
6446
6447 elf_hash_table (info)->bucketcount = bucketcount;
6448
6449 s = bfd_get_section_by_name (dynobj, ".hash");
6450 BFD_ASSERT (s != NULL);
6451 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6452 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6453 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6454 if (s->contents == NULL)
6455 return FALSE;
6456
6457 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6458 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6459 s->contents + hash_entry_size);
6460 }
6461
6462 if (info->emit_gnu_hash)
6463 {
6464 size_t i, cnt;
6465 unsigned char *contents;
6466 struct collect_gnu_hash_codes cinfo;
6467 bfd_size_type amt;
6468 size_t bucketcount;
6469
6470 memset (&cinfo, 0, sizeof (cinfo));
6471
6472 /* Compute the hash values for all exported symbols. At the same
6473 time store the values in an array so that we could use them for
6474 optimizations. */
6475 amt = dynsymcount * 2 * sizeof (unsigned long int);
6476 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6477 if (cinfo.hashcodes == NULL)
6478 return FALSE;
6479
6480 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6481 cinfo.min_dynindx = -1;
6482 cinfo.output_bfd = output_bfd;
6483 cinfo.bed = bed;
6484
6485 /* Put all hash values in HASHCODES. */
6486 elf_link_hash_traverse (elf_hash_table (info),
6487 elf_collect_gnu_hash_codes, &cinfo);
6488 if (cinfo.error)
6489 {
6490 free (cinfo.hashcodes);
6491 return FALSE;
6492 }
6493
6494 bucketcount
6495 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6496
6497 if (bucketcount == 0)
6498 {
6499 free (cinfo.hashcodes);
6500 return FALSE;
6501 }
6502
6503 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6504 BFD_ASSERT (s != NULL);
6505
6506 if (cinfo.nsyms == 0)
6507 {
6508 /* Empty .gnu.hash section is special. */
6509 BFD_ASSERT (cinfo.min_dynindx == -1);
6510 free (cinfo.hashcodes);
6511 s->size = 5 * 4 + bed->s->arch_size / 8;
6512 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6513 if (contents == NULL)
6514 return FALSE;
6515 s->contents = contents;
6516 /* 1 empty bucket. */
6517 bfd_put_32 (output_bfd, 1, contents);
6518 /* SYMIDX above the special symbol 0. */
6519 bfd_put_32 (output_bfd, 1, contents + 4);
6520 /* Just one word for bitmask. */
6521 bfd_put_32 (output_bfd, 1, contents + 8);
6522 /* Only hash fn bloom filter. */
6523 bfd_put_32 (output_bfd, 0, contents + 12);
6524 /* No hashes are valid - empty bitmask. */
6525 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6526 /* No hashes in the only bucket. */
6527 bfd_put_32 (output_bfd, 0,
6528 contents + 16 + bed->s->arch_size / 8);
6529 }
6530 else
6531 {
6532 unsigned long int maskwords, maskbitslog2;
6533 BFD_ASSERT (cinfo.min_dynindx != -1);
6534
6535 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6536 if (maskbitslog2 < 3)
6537 maskbitslog2 = 5;
6538 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6539 maskbitslog2 = maskbitslog2 + 3;
6540 else
6541 maskbitslog2 = maskbitslog2 + 2;
6542 if (bed->s->arch_size == 64)
6543 {
6544 if (maskbitslog2 == 5)
6545 maskbitslog2 = 6;
6546 cinfo.shift1 = 6;
6547 }
6548 else
6549 cinfo.shift1 = 5;
6550 cinfo.mask = (1 << cinfo.shift1) - 1;
6551 cinfo.shift2 = maskbitslog2;
6552 cinfo.maskbits = 1 << maskbitslog2;
6553 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6554 amt = bucketcount * sizeof (unsigned long int) * 2;
6555 amt += maskwords * sizeof (bfd_vma);
6556 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6557 if (cinfo.bitmask == NULL)
6558 {
6559 free (cinfo.hashcodes);
6560 return FALSE;
6561 }
6562
6563 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6564 cinfo.indx = cinfo.counts + bucketcount;
6565 cinfo.symindx = dynsymcount - cinfo.nsyms;
6566 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6567
6568 /* Determine how often each hash bucket is used. */
6569 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6570 for (i = 0; i < cinfo.nsyms; ++i)
6571 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6572
6573 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6574 if (cinfo.counts[i] != 0)
6575 {
6576 cinfo.indx[i] = cnt;
6577 cnt += cinfo.counts[i];
6578 }
6579 BFD_ASSERT (cnt == dynsymcount);
6580 cinfo.bucketcount = bucketcount;
6581 cinfo.local_indx = cinfo.min_dynindx;
6582
6583 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6584 s->size += cinfo.maskbits / 8;
6585 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6586 if (contents == NULL)
6587 {
6588 free (cinfo.bitmask);
6589 free (cinfo.hashcodes);
6590 return FALSE;
6591 }
6592
6593 s->contents = contents;
6594 bfd_put_32 (output_bfd, bucketcount, contents);
6595 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6596 bfd_put_32 (output_bfd, maskwords, contents + 8);
6597 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6598 contents += 16 + cinfo.maskbits / 8;
6599
6600 for (i = 0; i < bucketcount; ++i)
6601 {
6602 if (cinfo.counts[i] == 0)
6603 bfd_put_32 (output_bfd, 0, contents);
6604 else
6605 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6606 contents += 4;
6607 }
6608
6609 cinfo.contents = contents;
6610
6611 /* Renumber dynamic symbols, populate .gnu.hash section. */
6612 elf_link_hash_traverse (elf_hash_table (info),
6613 elf_renumber_gnu_hash_syms, &cinfo);
6614
6615 contents = s->contents + 16;
6616 for (i = 0; i < maskwords; ++i)
6617 {
6618 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6619 contents);
6620 contents += bed->s->arch_size / 8;
6621 }
6622
6623 free (cinfo.bitmask);
6624 free (cinfo.hashcodes);
6625 }
6626 }
6627
6628 s = bfd_get_section_by_name (dynobj, ".dynstr");
6629 BFD_ASSERT (s != NULL);
6630
6631 elf_finalize_dynstr (output_bfd, info);
6632
6633 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6634
6635 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6636 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6637 return FALSE;
6638 }
6639
6640 return TRUE;
6641 }
6642 \f
6643 /* Indicate that we are only retrieving symbol values from this
6644 section. */
6645
6646 void
6647 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6648 {
6649 if (is_elf_hash_table (info->hash))
6650 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6651 _bfd_generic_link_just_syms (sec, info);
6652 }
6653
6654 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6655
6656 static void
6657 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6658 asection *sec)
6659 {
6660 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6661 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6662 }
6663
6664 /* Finish SHF_MERGE section merging. */
6665
6666 bfd_boolean
6667 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6668 {
6669 bfd *ibfd;
6670 asection *sec;
6671
6672 if (!is_elf_hash_table (info->hash))
6673 return FALSE;
6674
6675 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6676 if ((ibfd->flags & DYNAMIC) == 0)
6677 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6678 if ((sec->flags & SEC_MERGE) != 0
6679 && !bfd_is_abs_section (sec->output_section))
6680 {
6681 struct bfd_elf_section_data *secdata;
6682
6683 secdata = elf_section_data (sec);
6684 if (! _bfd_add_merge_section (abfd,
6685 &elf_hash_table (info)->merge_info,
6686 sec, &secdata->sec_info))
6687 return FALSE;
6688 else if (secdata->sec_info)
6689 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6690 }
6691
6692 if (elf_hash_table (info)->merge_info != NULL)
6693 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6694 merge_sections_remove_hook);
6695 return TRUE;
6696 }
6697
6698 /* Create an entry in an ELF linker hash table. */
6699
6700 struct bfd_hash_entry *
6701 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6702 struct bfd_hash_table *table,
6703 const char *string)
6704 {
6705 /* Allocate the structure if it has not already been allocated by a
6706 subclass. */
6707 if (entry == NULL)
6708 {
6709 entry = (struct bfd_hash_entry *)
6710 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6711 if (entry == NULL)
6712 return entry;
6713 }
6714
6715 /* Call the allocation method of the superclass. */
6716 entry = _bfd_link_hash_newfunc (entry, table, string);
6717 if (entry != NULL)
6718 {
6719 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6720 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6721
6722 /* Set local fields. */
6723 ret->indx = -1;
6724 ret->dynindx = -1;
6725 ret->got = htab->init_got_refcount;
6726 ret->plt = htab->init_plt_refcount;
6727 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6728 - offsetof (struct elf_link_hash_entry, size)));
6729 /* Assume that we have been called by a non-ELF symbol reader.
6730 This flag is then reset by the code which reads an ELF input
6731 file. This ensures that a symbol created by a non-ELF symbol
6732 reader will have the flag set correctly. */
6733 ret->non_elf = 1;
6734 }
6735
6736 return entry;
6737 }
6738
6739 /* Copy data from an indirect symbol to its direct symbol, hiding the
6740 old indirect symbol. Also used for copying flags to a weakdef. */
6741
6742 void
6743 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6744 struct elf_link_hash_entry *dir,
6745 struct elf_link_hash_entry *ind)
6746 {
6747 struct elf_link_hash_table *htab;
6748
6749 /* Copy down any references that we may have already seen to the
6750 symbol which just became indirect. */
6751
6752 dir->ref_dynamic |= ind->ref_dynamic;
6753 dir->ref_regular |= ind->ref_regular;
6754 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6755 dir->non_got_ref |= ind->non_got_ref;
6756 dir->needs_plt |= ind->needs_plt;
6757 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6758
6759 if (ind->root.type != bfd_link_hash_indirect)
6760 return;
6761
6762 /* Copy over the global and procedure linkage table refcount entries.
6763 These may have been already set up by a check_relocs routine. */
6764 htab = elf_hash_table (info);
6765 if (ind->got.refcount > htab->init_got_refcount.refcount)
6766 {
6767 if (dir->got.refcount < 0)
6768 dir->got.refcount = 0;
6769 dir->got.refcount += ind->got.refcount;
6770 ind->got.refcount = htab->init_got_refcount.refcount;
6771 }
6772
6773 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6774 {
6775 if (dir->plt.refcount < 0)
6776 dir->plt.refcount = 0;
6777 dir->plt.refcount += ind->plt.refcount;
6778 ind->plt.refcount = htab->init_plt_refcount.refcount;
6779 }
6780
6781 if (ind->dynindx != -1)
6782 {
6783 if (dir->dynindx != -1)
6784 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6785 dir->dynindx = ind->dynindx;
6786 dir->dynstr_index = ind->dynstr_index;
6787 ind->dynindx = -1;
6788 ind->dynstr_index = 0;
6789 }
6790 }
6791
6792 void
6793 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6794 struct elf_link_hash_entry *h,
6795 bfd_boolean force_local)
6796 {
6797 /* STT_GNU_IFUNC symbol must go through PLT. */
6798 if (h->type != STT_GNU_IFUNC)
6799 {
6800 h->plt = elf_hash_table (info)->init_plt_offset;
6801 h->needs_plt = 0;
6802 }
6803 if (force_local)
6804 {
6805 h->forced_local = 1;
6806 if (h->dynindx != -1)
6807 {
6808 h->dynindx = -1;
6809 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6810 h->dynstr_index);
6811 }
6812 }
6813 }
6814
6815 /* Initialize an ELF linker hash table. */
6816
6817 bfd_boolean
6818 _bfd_elf_link_hash_table_init
6819 (struct elf_link_hash_table *table,
6820 bfd *abfd,
6821 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6822 struct bfd_hash_table *,
6823 const char *),
6824 unsigned int entsize,
6825 enum elf_target_id target_id)
6826 {
6827 bfd_boolean ret;
6828 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6829
6830 memset (table, 0, sizeof * table);
6831 table->init_got_refcount.refcount = can_refcount - 1;
6832 table->init_plt_refcount.refcount = can_refcount - 1;
6833 table->init_got_offset.offset = -(bfd_vma) 1;
6834 table->init_plt_offset.offset = -(bfd_vma) 1;
6835 /* The first dynamic symbol is a dummy. */
6836 table->dynsymcount = 1;
6837
6838 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6839
6840 table->root.type = bfd_link_elf_hash_table;
6841 table->hash_table_id = target_id;
6842
6843 return ret;
6844 }
6845
6846 /* Create an ELF linker hash table. */
6847
6848 struct bfd_link_hash_table *
6849 _bfd_elf_link_hash_table_create (bfd *abfd)
6850 {
6851 struct elf_link_hash_table *ret;
6852 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6853
6854 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6855 if (ret == NULL)
6856 return NULL;
6857
6858 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6859 sizeof (struct elf_link_hash_entry),
6860 GENERIC_ELF_DATA))
6861 {
6862 free (ret);
6863 return NULL;
6864 }
6865
6866 return &ret->root;
6867 }
6868
6869 /* This is a hook for the ELF emulation code in the generic linker to
6870 tell the backend linker what file name to use for the DT_NEEDED
6871 entry for a dynamic object. */
6872
6873 void
6874 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6875 {
6876 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6877 && bfd_get_format (abfd) == bfd_object)
6878 elf_dt_name (abfd) = name;
6879 }
6880
6881 int
6882 bfd_elf_get_dyn_lib_class (bfd *abfd)
6883 {
6884 int lib_class;
6885 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6886 && bfd_get_format (abfd) == bfd_object)
6887 lib_class = elf_dyn_lib_class (abfd);
6888 else
6889 lib_class = 0;
6890 return lib_class;
6891 }
6892
6893 void
6894 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6895 {
6896 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6897 && bfd_get_format (abfd) == bfd_object)
6898 elf_dyn_lib_class (abfd) = lib_class;
6899 }
6900
6901 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6902 the linker ELF emulation code. */
6903
6904 struct bfd_link_needed_list *
6905 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6906 struct bfd_link_info *info)
6907 {
6908 if (! is_elf_hash_table (info->hash))
6909 return NULL;
6910 return elf_hash_table (info)->needed;
6911 }
6912
6913 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6914 hook for the linker ELF emulation code. */
6915
6916 struct bfd_link_needed_list *
6917 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6918 struct bfd_link_info *info)
6919 {
6920 if (! is_elf_hash_table (info->hash))
6921 return NULL;
6922 return elf_hash_table (info)->runpath;
6923 }
6924
6925 /* Get the name actually used for a dynamic object for a link. This
6926 is the SONAME entry if there is one. Otherwise, it is the string
6927 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6928
6929 const char *
6930 bfd_elf_get_dt_soname (bfd *abfd)
6931 {
6932 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6933 && bfd_get_format (abfd) == bfd_object)
6934 return elf_dt_name (abfd);
6935 return NULL;
6936 }
6937
6938 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6939 the ELF linker emulation code. */
6940
6941 bfd_boolean
6942 bfd_elf_get_bfd_needed_list (bfd *abfd,
6943 struct bfd_link_needed_list **pneeded)
6944 {
6945 asection *s;
6946 bfd_byte *dynbuf = NULL;
6947 unsigned int elfsec;
6948 unsigned long shlink;
6949 bfd_byte *extdyn, *extdynend;
6950 size_t extdynsize;
6951 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6952
6953 *pneeded = NULL;
6954
6955 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6956 || bfd_get_format (abfd) != bfd_object)
6957 return TRUE;
6958
6959 s = bfd_get_section_by_name (abfd, ".dynamic");
6960 if (s == NULL || s->size == 0)
6961 return TRUE;
6962
6963 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6964 goto error_return;
6965
6966 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6967 if (elfsec == SHN_BAD)
6968 goto error_return;
6969
6970 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6971
6972 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6973 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6974
6975 extdyn = dynbuf;
6976 extdynend = extdyn + s->size;
6977 for (; extdyn < extdynend; extdyn += extdynsize)
6978 {
6979 Elf_Internal_Dyn dyn;
6980
6981 (*swap_dyn_in) (abfd, extdyn, &dyn);
6982
6983 if (dyn.d_tag == DT_NULL)
6984 break;
6985
6986 if (dyn.d_tag == DT_NEEDED)
6987 {
6988 const char *string;
6989 struct bfd_link_needed_list *l;
6990 unsigned int tagv = dyn.d_un.d_val;
6991 bfd_size_type amt;
6992
6993 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6994 if (string == NULL)
6995 goto error_return;
6996
6997 amt = sizeof *l;
6998 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6999 if (l == NULL)
7000 goto error_return;
7001
7002 l->by = abfd;
7003 l->name = string;
7004 l->next = *pneeded;
7005 *pneeded = l;
7006 }
7007 }
7008
7009 free (dynbuf);
7010
7011 return TRUE;
7012
7013 error_return:
7014 if (dynbuf != NULL)
7015 free (dynbuf);
7016 return FALSE;
7017 }
7018
7019 struct elf_symbuf_symbol
7020 {
7021 unsigned long st_name; /* Symbol name, index in string tbl */
7022 unsigned char st_info; /* Type and binding attributes */
7023 unsigned char st_other; /* Visibilty, and target specific */
7024 };
7025
7026 struct elf_symbuf_head
7027 {
7028 struct elf_symbuf_symbol *ssym;
7029 bfd_size_type count;
7030 unsigned int st_shndx;
7031 };
7032
7033 struct elf_symbol
7034 {
7035 union
7036 {
7037 Elf_Internal_Sym *isym;
7038 struct elf_symbuf_symbol *ssym;
7039 } u;
7040 const char *name;
7041 };
7042
7043 /* Sort references to symbols by ascending section number. */
7044
7045 static int
7046 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7047 {
7048 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7049 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7050
7051 return s1->st_shndx - s2->st_shndx;
7052 }
7053
7054 static int
7055 elf_sym_name_compare (const void *arg1, const void *arg2)
7056 {
7057 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7058 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7059 return strcmp (s1->name, s2->name);
7060 }
7061
7062 static struct elf_symbuf_head *
7063 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7064 {
7065 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7066 struct elf_symbuf_symbol *ssym;
7067 struct elf_symbuf_head *ssymbuf, *ssymhead;
7068 bfd_size_type i, shndx_count, total_size;
7069
7070 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7071 if (indbuf == NULL)
7072 return NULL;
7073
7074 for (ind = indbuf, i = 0; i < symcount; i++)
7075 if (isymbuf[i].st_shndx != SHN_UNDEF)
7076 *ind++ = &isymbuf[i];
7077 indbufend = ind;
7078
7079 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7080 elf_sort_elf_symbol);
7081
7082 shndx_count = 0;
7083 if (indbufend > indbuf)
7084 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7085 if (ind[0]->st_shndx != ind[1]->st_shndx)
7086 shndx_count++;
7087
7088 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7089 + (indbufend - indbuf) * sizeof (*ssym));
7090 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7091 if (ssymbuf == NULL)
7092 {
7093 free (indbuf);
7094 return NULL;
7095 }
7096
7097 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7098 ssymbuf->ssym = NULL;
7099 ssymbuf->count = shndx_count;
7100 ssymbuf->st_shndx = 0;
7101 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7102 {
7103 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7104 {
7105 ssymhead++;
7106 ssymhead->ssym = ssym;
7107 ssymhead->count = 0;
7108 ssymhead->st_shndx = (*ind)->st_shndx;
7109 }
7110 ssym->st_name = (*ind)->st_name;
7111 ssym->st_info = (*ind)->st_info;
7112 ssym->st_other = (*ind)->st_other;
7113 ssymhead->count++;
7114 }
7115 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7116 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7117 == total_size));
7118
7119 free (indbuf);
7120 return ssymbuf;
7121 }
7122
7123 /* Check if 2 sections define the same set of local and global
7124 symbols. */
7125
7126 static bfd_boolean
7127 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7128 struct bfd_link_info *info)
7129 {
7130 bfd *bfd1, *bfd2;
7131 const struct elf_backend_data *bed1, *bed2;
7132 Elf_Internal_Shdr *hdr1, *hdr2;
7133 bfd_size_type symcount1, symcount2;
7134 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7135 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7136 Elf_Internal_Sym *isym, *isymend;
7137 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7138 bfd_size_type count1, count2, i;
7139 unsigned int shndx1, shndx2;
7140 bfd_boolean result;
7141
7142 bfd1 = sec1->owner;
7143 bfd2 = sec2->owner;
7144
7145 /* Both sections have to be in ELF. */
7146 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7147 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7148 return FALSE;
7149
7150 if (elf_section_type (sec1) != elf_section_type (sec2))
7151 return FALSE;
7152
7153 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7154 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7155 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7156 return FALSE;
7157
7158 bed1 = get_elf_backend_data (bfd1);
7159 bed2 = get_elf_backend_data (bfd2);
7160 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7161 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7162 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7163 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7164
7165 if (symcount1 == 0 || symcount2 == 0)
7166 return FALSE;
7167
7168 result = FALSE;
7169 isymbuf1 = NULL;
7170 isymbuf2 = NULL;
7171 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7172 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7173
7174 if (ssymbuf1 == NULL)
7175 {
7176 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7177 NULL, NULL, NULL);
7178 if (isymbuf1 == NULL)
7179 goto done;
7180
7181 if (!info->reduce_memory_overheads)
7182 elf_tdata (bfd1)->symbuf = ssymbuf1
7183 = elf_create_symbuf (symcount1, isymbuf1);
7184 }
7185
7186 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7187 {
7188 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7189 NULL, NULL, NULL);
7190 if (isymbuf2 == NULL)
7191 goto done;
7192
7193 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7194 elf_tdata (bfd2)->symbuf = ssymbuf2
7195 = elf_create_symbuf (symcount2, isymbuf2);
7196 }
7197
7198 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7199 {
7200 /* Optimized faster version. */
7201 bfd_size_type lo, hi, mid;
7202 struct elf_symbol *symp;
7203 struct elf_symbuf_symbol *ssym, *ssymend;
7204
7205 lo = 0;
7206 hi = ssymbuf1->count;
7207 ssymbuf1++;
7208 count1 = 0;
7209 while (lo < hi)
7210 {
7211 mid = (lo + hi) / 2;
7212 if (shndx1 < ssymbuf1[mid].st_shndx)
7213 hi = mid;
7214 else if (shndx1 > ssymbuf1[mid].st_shndx)
7215 lo = mid + 1;
7216 else
7217 {
7218 count1 = ssymbuf1[mid].count;
7219 ssymbuf1 += mid;
7220 break;
7221 }
7222 }
7223
7224 lo = 0;
7225 hi = ssymbuf2->count;
7226 ssymbuf2++;
7227 count2 = 0;
7228 while (lo < hi)
7229 {
7230 mid = (lo + hi) / 2;
7231 if (shndx2 < ssymbuf2[mid].st_shndx)
7232 hi = mid;
7233 else if (shndx2 > ssymbuf2[mid].st_shndx)
7234 lo = mid + 1;
7235 else
7236 {
7237 count2 = ssymbuf2[mid].count;
7238 ssymbuf2 += mid;
7239 break;
7240 }
7241 }
7242
7243 if (count1 == 0 || count2 == 0 || count1 != count2)
7244 goto done;
7245
7246 symtable1 = (struct elf_symbol *)
7247 bfd_malloc (count1 * sizeof (struct elf_symbol));
7248 symtable2 = (struct elf_symbol *)
7249 bfd_malloc (count2 * sizeof (struct elf_symbol));
7250 if (symtable1 == NULL || symtable2 == NULL)
7251 goto done;
7252
7253 symp = symtable1;
7254 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7255 ssym < ssymend; ssym++, symp++)
7256 {
7257 symp->u.ssym = ssym;
7258 symp->name = bfd_elf_string_from_elf_section (bfd1,
7259 hdr1->sh_link,
7260 ssym->st_name);
7261 }
7262
7263 symp = symtable2;
7264 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7265 ssym < ssymend; ssym++, symp++)
7266 {
7267 symp->u.ssym = ssym;
7268 symp->name = bfd_elf_string_from_elf_section (bfd2,
7269 hdr2->sh_link,
7270 ssym->st_name);
7271 }
7272
7273 /* Sort symbol by name. */
7274 qsort (symtable1, count1, sizeof (struct elf_symbol),
7275 elf_sym_name_compare);
7276 qsort (symtable2, count1, sizeof (struct elf_symbol),
7277 elf_sym_name_compare);
7278
7279 for (i = 0; i < count1; i++)
7280 /* Two symbols must have the same binding, type and name. */
7281 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7282 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7283 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7284 goto done;
7285
7286 result = TRUE;
7287 goto done;
7288 }
7289
7290 symtable1 = (struct elf_symbol *)
7291 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7292 symtable2 = (struct elf_symbol *)
7293 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7294 if (symtable1 == NULL || symtable2 == NULL)
7295 goto done;
7296
7297 /* Count definitions in the section. */
7298 count1 = 0;
7299 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7300 if (isym->st_shndx == shndx1)
7301 symtable1[count1++].u.isym = isym;
7302
7303 count2 = 0;
7304 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7305 if (isym->st_shndx == shndx2)
7306 symtable2[count2++].u.isym = isym;
7307
7308 if (count1 == 0 || count2 == 0 || count1 != count2)
7309 goto done;
7310
7311 for (i = 0; i < count1; i++)
7312 symtable1[i].name
7313 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7314 symtable1[i].u.isym->st_name);
7315
7316 for (i = 0; i < count2; i++)
7317 symtable2[i].name
7318 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7319 symtable2[i].u.isym->st_name);
7320
7321 /* Sort symbol by name. */
7322 qsort (symtable1, count1, sizeof (struct elf_symbol),
7323 elf_sym_name_compare);
7324 qsort (symtable2, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326
7327 for (i = 0; i < count1; i++)
7328 /* Two symbols must have the same binding, type and name. */
7329 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7330 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7331 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7332 goto done;
7333
7334 result = TRUE;
7335
7336 done:
7337 if (symtable1)
7338 free (symtable1);
7339 if (symtable2)
7340 free (symtable2);
7341 if (isymbuf1)
7342 free (isymbuf1);
7343 if (isymbuf2)
7344 free (isymbuf2);
7345
7346 return result;
7347 }
7348
7349 /* Return TRUE if 2 section types are compatible. */
7350
7351 bfd_boolean
7352 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7353 bfd *bbfd, const asection *bsec)
7354 {
7355 if (asec == NULL
7356 || bsec == NULL
7357 || abfd->xvec->flavour != bfd_target_elf_flavour
7358 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7359 return TRUE;
7360
7361 return elf_section_type (asec) == elf_section_type (bsec);
7362 }
7363 \f
7364 /* Final phase of ELF linker. */
7365
7366 /* A structure we use to avoid passing large numbers of arguments. */
7367
7368 struct elf_final_link_info
7369 {
7370 /* General link information. */
7371 struct bfd_link_info *info;
7372 /* Output BFD. */
7373 bfd *output_bfd;
7374 /* Symbol string table. */
7375 struct bfd_strtab_hash *symstrtab;
7376 /* .dynsym section. */
7377 asection *dynsym_sec;
7378 /* .hash section. */
7379 asection *hash_sec;
7380 /* symbol version section (.gnu.version). */
7381 asection *symver_sec;
7382 /* Buffer large enough to hold contents of any section. */
7383 bfd_byte *contents;
7384 /* Buffer large enough to hold external relocs of any section. */
7385 void *external_relocs;
7386 /* Buffer large enough to hold internal relocs of any section. */
7387 Elf_Internal_Rela *internal_relocs;
7388 /* Buffer large enough to hold external local symbols of any input
7389 BFD. */
7390 bfd_byte *external_syms;
7391 /* And a buffer for symbol section indices. */
7392 Elf_External_Sym_Shndx *locsym_shndx;
7393 /* Buffer large enough to hold internal local symbols of any input
7394 BFD. */
7395 Elf_Internal_Sym *internal_syms;
7396 /* Array large enough to hold a symbol index for each local symbol
7397 of any input BFD. */
7398 long *indices;
7399 /* Array large enough to hold a section pointer for each local
7400 symbol of any input BFD. */
7401 asection **sections;
7402 /* Buffer to hold swapped out symbols. */
7403 bfd_byte *symbuf;
7404 /* And one for symbol section indices. */
7405 Elf_External_Sym_Shndx *symshndxbuf;
7406 /* Number of swapped out symbols in buffer. */
7407 size_t symbuf_count;
7408 /* Number of symbols which fit in symbuf. */
7409 size_t symbuf_size;
7410 /* And same for symshndxbuf. */
7411 size_t shndxbuf_size;
7412 };
7413
7414 /* This struct is used to pass information to elf_link_output_extsym. */
7415
7416 struct elf_outext_info
7417 {
7418 bfd_boolean failed;
7419 bfd_boolean localsyms;
7420 struct elf_final_link_info *finfo;
7421 };
7422
7423
7424 /* Support for evaluating a complex relocation.
7425
7426 Complex relocations are generalized, self-describing relocations. The
7427 implementation of them consists of two parts: complex symbols, and the
7428 relocations themselves.
7429
7430 The relocations are use a reserved elf-wide relocation type code (R_RELC
7431 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7432 information (start bit, end bit, word width, etc) into the addend. This
7433 information is extracted from CGEN-generated operand tables within gas.
7434
7435 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7436 internal) representing prefix-notation expressions, including but not
7437 limited to those sorts of expressions normally encoded as addends in the
7438 addend field. The symbol mangling format is:
7439
7440 <node> := <literal>
7441 | <unary-operator> ':' <node>
7442 | <binary-operator> ':' <node> ':' <node>
7443 ;
7444
7445 <literal> := 's' <digits=N> ':' <N character symbol name>
7446 | 'S' <digits=N> ':' <N character section name>
7447 | '#' <hexdigits>
7448 ;
7449
7450 <binary-operator> := as in C
7451 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7452
7453 static void
7454 set_symbol_value (bfd *bfd_with_globals,
7455 Elf_Internal_Sym *isymbuf,
7456 size_t locsymcount,
7457 size_t symidx,
7458 bfd_vma val)
7459 {
7460 struct elf_link_hash_entry **sym_hashes;
7461 struct elf_link_hash_entry *h;
7462 size_t extsymoff = locsymcount;
7463
7464 if (symidx < locsymcount)
7465 {
7466 Elf_Internal_Sym *sym;
7467
7468 sym = isymbuf + symidx;
7469 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7470 {
7471 /* It is a local symbol: move it to the
7472 "absolute" section and give it a value. */
7473 sym->st_shndx = SHN_ABS;
7474 sym->st_value = val;
7475 return;
7476 }
7477 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7478 extsymoff = 0;
7479 }
7480
7481 /* It is a global symbol: set its link type
7482 to "defined" and give it a value. */
7483
7484 sym_hashes = elf_sym_hashes (bfd_with_globals);
7485 h = sym_hashes [symidx - extsymoff];
7486 while (h->root.type == bfd_link_hash_indirect
7487 || h->root.type == bfd_link_hash_warning)
7488 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7489 h->root.type = bfd_link_hash_defined;
7490 h->root.u.def.value = val;
7491 h->root.u.def.section = bfd_abs_section_ptr;
7492 }
7493
7494 static bfd_boolean
7495 resolve_symbol (const char *name,
7496 bfd *input_bfd,
7497 struct elf_final_link_info *finfo,
7498 bfd_vma *result,
7499 Elf_Internal_Sym *isymbuf,
7500 size_t locsymcount)
7501 {
7502 Elf_Internal_Sym *sym;
7503 struct bfd_link_hash_entry *global_entry;
7504 const char *candidate = NULL;
7505 Elf_Internal_Shdr *symtab_hdr;
7506 size_t i;
7507
7508 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7509
7510 for (i = 0; i < locsymcount; ++ i)
7511 {
7512 sym = isymbuf + i;
7513
7514 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7515 continue;
7516
7517 candidate = bfd_elf_string_from_elf_section (input_bfd,
7518 symtab_hdr->sh_link,
7519 sym->st_name);
7520 #ifdef DEBUG
7521 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7522 name, candidate, (unsigned long) sym->st_value);
7523 #endif
7524 if (candidate && strcmp (candidate, name) == 0)
7525 {
7526 asection *sec = finfo->sections [i];
7527
7528 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7529 *result += sec->output_offset + sec->output_section->vma;
7530 #ifdef DEBUG
7531 printf ("Found symbol with value %8.8lx\n",
7532 (unsigned long) *result);
7533 #endif
7534 return TRUE;
7535 }
7536 }
7537
7538 /* Hmm, haven't found it yet. perhaps it is a global. */
7539 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7540 FALSE, FALSE, TRUE);
7541 if (!global_entry)
7542 return FALSE;
7543
7544 if (global_entry->type == bfd_link_hash_defined
7545 || global_entry->type == bfd_link_hash_defweak)
7546 {
7547 *result = (global_entry->u.def.value
7548 + global_entry->u.def.section->output_section->vma
7549 + global_entry->u.def.section->output_offset);
7550 #ifdef DEBUG
7551 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7552 global_entry->root.string, (unsigned long) *result);
7553 #endif
7554 return TRUE;
7555 }
7556
7557 return FALSE;
7558 }
7559
7560 static bfd_boolean
7561 resolve_section (const char *name,
7562 asection *sections,
7563 bfd_vma *result)
7564 {
7565 asection *curr;
7566 unsigned int len;
7567
7568 for (curr = sections; curr; curr = curr->next)
7569 if (strcmp (curr->name, name) == 0)
7570 {
7571 *result = curr->vma;
7572 return TRUE;
7573 }
7574
7575 /* Hmm. still haven't found it. try pseudo-section names. */
7576 for (curr = sections; curr; curr = curr->next)
7577 {
7578 len = strlen (curr->name);
7579 if (len > strlen (name))
7580 continue;
7581
7582 if (strncmp (curr->name, name, len) == 0)
7583 {
7584 if (strncmp (".end", name + len, 4) == 0)
7585 {
7586 *result = curr->vma + curr->size;
7587 return TRUE;
7588 }
7589
7590 /* Insert more pseudo-section names here, if you like. */
7591 }
7592 }
7593
7594 return FALSE;
7595 }
7596
7597 static void
7598 undefined_reference (const char *reftype, const char *name)
7599 {
7600 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7601 reftype, name);
7602 }
7603
7604 static bfd_boolean
7605 eval_symbol (bfd_vma *result,
7606 const char **symp,
7607 bfd *input_bfd,
7608 struct elf_final_link_info *finfo,
7609 bfd_vma dot,
7610 Elf_Internal_Sym *isymbuf,
7611 size_t locsymcount,
7612 int signed_p)
7613 {
7614 size_t len;
7615 size_t symlen;
7616 bfd_vma a;
7617 bfd_vma b;
7618 char symbuf[4096];
7619 const char *sym = *symp;
7620 const char *symend;
7621 bfd_boolean symbol_is_section = FALSE;
7622
7623 len = strlen (sym);
7624 symend = sym + len;
7625
7626 if (len < 1 || len > sizeof (symbuf))
7627 {
7628 bfd_set_error (bfd_error_invalid_operation);
7629 return FALSE;
7630 }
7631
7632 switch (* sym)
7633 {
7634 case '.':
7635 *result = dot;
7636 *symp = sym + 1;
7637 return TRUE;
7638
7639 case '#':
7640 ++sym;
7641 *result = strtoul (sym, (char **) symp, 16);
7642 return TRUE;
7643
7644 case 'S':
7645 symbol_is_section = TRUE;
7646 case 's':
7647 ++sym;
7648 symlen = strtol (sym, (char **) symp, 10);
7649 sym = *symp + 1; /* Skip the trailing ':'. */
7650
7651 if (symend < sym || symlen + 1 > sizeof (symbuf))
7652 {
7653 bfd_set_error (bfd_error_invalid_operation);
7654 return FALSE;
7655 }
7656
7657 memcpy (symbuf, sym, symlen);
7658 symbuf[symlen] = '\0';
7659 *symp = sym + symlen;
7660
7661 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7662 the symbol as a section, or vice-versa. so we're pretty liberal in our
7663 interpretation here; section means "try section first", not "must be a
7664 section", and likewise with symbol. */
7665
7666 if (symbol_is_section)
7667 {
7668 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7669 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7670 isymbuf, locsymcount))
7671 {
7672 undefined_reference ("section", symbuf);
7673 return FALSE;
7674 }
7675 }
7676 else
7677 {
7678 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7679 isymbuf, locsymcount)
7680 && !resolve_section (symbuf, finfo->output_bfd->sections,
7681 result))
7682 {
7683 undefined_reference ("symbol", symbuf);
7684 return FALSE;
7685 }
7686 }
7687
7688 return TRUE;
7689
7690 /* All that remains are operators. */
7691
7692 #define UNARY_OP(op) \
7693 if (strncmp (sym, #op, strlen (#op)) == 0) \
7694 { \
7695 sym += strlen (#op); \
7696 if (*sym == ':') \
7697 ++sym; \
7698 *symp = sym; \
7699 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7700 isymbuf, locsymcount, signed_p)) \
7701 return FALSE; \
7702 if (signed_p) \
7703 *result = op ((bfd_signed_vma) a); \
7704 else \
7705 *result = op a; \
7706 return TRUE; \
7707 }
7708
7709 #define BINARY_OP(op) \
7710 if (strncmp (sym, #op, strlen (#op)) == 0) \
7711 { \
7712 sym += strlen (#op); \
7713 if (*sym == ':') \
7714 ++sym; \
7715 *symp = sym; \
7716 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7717 isymbuf, locsymcount, signed_p)) \
7718 return FALSE; \
7719 ++*symp; \
7720 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7721 isymbuf, locsymcount, signed_p)) \
7722 return FALSE; \
7723 if (signed_p) \
7724 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7725 else \
7726 *result = a op b; \
7727 return TRUE; \
7728 }
7729
7730 default:
7731 UNARY_OP (0-);
7732 BINARY_OP (<<);
7733 BINARY_OP (>>);
7734 BINARY_OP (==);
7735 BINARY_OP (!=);
7736 BINARY_OP (<=);
7737 BINARY_OP (>=);
7738 BINARY_OP (&&);
7739 BINARY_OP (||);
7740 UNARY_OP (~);
7741 UNARY_OP (!);
7742 BINARY_OP (*);
7743 BINARY_OP (/);
7744 BINARY_OP (%);
7745 BINARY_OP (^);
7746 BINARY_OP (|);
7747 BINARY_OP (&);
7748 BINARY_OP (+);
7749 BINARY_OP (-);
7750 BINARY_OP (<);
7751 BINARY_OP (>);
7752 #undef UNARY_OP
7753 #undef BINARY_OP
7754 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7755 bfd_set_error (bfd_error_invalid_operation);
7756 return FALSE;
7757 }
7758 }
7759
7760 static void
7761 put_value (bfd_vma size,
7762 unsigned long chunksz,
7763 bfd *input_bfd,
7764 bfd_vma x,
7765 bfd_byte *location)
7766 {
7767 location += (size - chunksz);
7768
7769 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7770 {
7771 switch (chunksz)
7772 {
7773 default:
7774 case 0:
7775 abort ();
7776 case 1:
7777 bfd_put_8 (input_bfd, x, location);
7778 break;
7779 case 2:
7780 bfd_put_16 (input_bfd, x, location);
7781 break;
7782 case 4:
7783 bfd_put_32 (input_bfd, x, location);
7784 break;
7785 case 8:
7786 #ifdef BFD64
7787 bfd_put_64 (input_bfd, x, location);
7788 #else
7789 abort ();
7790 #endif
7791 break;
7792 }
7793 }
7794 }
7795
7796 static bfd_vma
7797 get_value (bfd_vma size,
7798 unsigned long chunksz,
7799 bfd *input_bfd,
7800 bfd_byte *location)
7801 {
7802 bfd_vma x = 0;
7803
7804 for (; size; size -= chunksz, location += chunksz)
7805 {
7806 switch (chunksz)
7807 {
7808 default:
7809 case 0:
7810 abort ();
7811 case 1:
7812 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7813 break;
7814 case 2:
7815 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7816 break;
7817 case 4:
7818 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7819 break;
7820 case 8:
7821 #ifdef BFD64
7822 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7823 #else
7824 abort ();
7825 #endif
7826 break;
7827 }
7828 }
7829 return x;
7830 }
7831
7832 static void
7833 decode_complex_addend (unsigned long *start, /* in bits */
7834 unsigned long *oplen, /* in bits */
7835 unsigned long *len, /* in bits */
7836 unsigned long *wordsz, /* in bytes */
7837 unsigned long *chunksz, /* in bytes */
7838 unsigned long *lsb0_p,
7839 unsigned long *signed_p,
7840 unsigned long *trunc_p,
7841 unsigned long encoded)
7842 {
7843 * start = encoded & 0x3F;
7844 * len = (encoded >> 6) & 0x3F;
7845 * oplen = (encoded >> 12) & 0x3F;
7846 * wordsz = (encoded >> 18) & 0xF;
7847 * chunksz = (encoded >> 22) & 0xF;
7848 * lsb0_p = (encoded >> 27) & 1;
7849 * signed_p = (encoded >> 28) & 1;
7850 * trunc_p = (encoded >> 29) & 1;
7851 }
7852
7853 bfd_reloc_status_type
7854 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7855 asection *input_section ATTRIBUTE_UNUSED,
7856 bfd_byte *contents,
7857 Elf_Internal_Rela *rel,
7858 bfd_vma relocation)
7859 {
7860 bfd_vma shift, x, mask;
7861 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7862 bfd_reloc_status_type r;
7863
7864 /* Perform this reloc, since it is complex.
7865 (this is not to say that it necessarily refers to a complex
7866 symbol; merely that it is a self-describing CGEN based reloc.
7867 i.e. the addend has the complete reloc information (bit start, end,
7868 word size, etc) encoded within it.). */
7869
7870 decode_complex_addend (&start, &oplen, &len, &wordsz,
7871 &chunksz, &lsb0_p, &signed_p,
7872 &trunc_p, rel->r_addend);
7873
7874 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7875
7876 if (lsb0_p)
7877 shift = (start + 1) - len;
7878 else
7879 shift = (8 * wordsz) - (start + len);
7880
7881 /* FIXME: octets_per_byte. */
7882 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7883
7884 #ifdef DEBUG
7885 printf ("Doing complex reloc: "
7886 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7887 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7888 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7889 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7890 oplen, (unsigned long) x, (unsigned long) mask,
7891 (unsigned long) relocation);
7892 #endif
7893
7894 r = bfd_reloc_ok;
7895 if (! trunc_p)
7896 /* Now do an overflow check. */
7897 r = bfd_check_overflow ((signed_p
7898 ? complain_overflow_signed
7899 : complain_overflow_unsigned),
7900 len, 0, (8 * wordsz),
7901 relocation);
7902
7903 /* Do the deed. */
7904 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7905
7906 #ifdef DEBUG
7907 printf (" relocation: %8.8lx\n"
7908 " shifted mask: %8.8lx\n"
7909 " shifted/masked reloc: %8.8lx\n"
7910 " result: %8.8lx\n",
7911 (unsigned long) relocation, (unsigned long) (mask << shift),
7912 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7913 #endif
7914 /* FIXME: octets_per_byte. */
7915 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7916 return r;
7917 }
7918
7919 /* When performing a relocatable link, the input relocations are
7920 preserved. But, if they reference global symbols, the indices
7921 referenced must be updated. Update all the relocations found in
7922 RELDATA. */
7923
7924 static void
7925 elf_link_adjust_relocs (bfd *abfd,
7926 struct bfd_elf_section_reloc_data *reldata)
7927 {
7928 unsigned int i;
7929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7930 bfd_byte *erela;
7931 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7932 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7933 bfd_vma r_type_mask;
7934 int r_sym_shift;
7935 unsigned int count = reldata->count;
7936 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7937
7938 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7939 {
7940 swap_in = bed->s->swap_reloc_in;
7941 swap_out = bed->s->swap_reloc_out;
7942 }
7943 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7944 {
7945 swap_in = bed->s->swap_reloca_in;
7946 swap_out = bed->s->swap_reloca_out;
7947 }
7948 else
7949 abort ();
7950
7951 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7952 abort ();
7953
7954 if (bed->s->arch_size == 32)
7955 {
7956 r_type_mask = 0xff;
7957 r_sym_shift = 8;
7958 }
7959 else
7960 {
7961 r_type_mask = 0xffffffff;
7962 r_sym_shift = 32;
7963 }
7964
7965 erela = reldata->hdr->contents;
7966 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7967 {
7968 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7969 unsigned int j;
7970
7971 if (*rel_hash == NULL)
7972 continue;
7973
7974 BFD_ASSERT ((*rel_hash)->indx >= 0);
7975
7976 (*swap_in) (abfd, erela, irela);
7977 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7978 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7979 | (irela[j].r_info & r_type_mask));
7980 (*swap_out) (abfd, irela, erela);
7981 }
7982 }
7983
7984 struct elf_link_sort_rela
7985 {
7986 union {
7987 bfd_vma offset;
7988 bfd_vma sym_mask;
7989 } u;
7990 enum elf_reloc_type_class type;
7991 /* We use this as an array of size int_rels_per_ext_rel. */
7992 Elf_Internal_Rela rela[1];
7993 };
7994
7995 static int
7996 elf_link_sort_cmp1 (const void *A, const void *B)
7997 {
7998 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7999 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8000 int relativea, relativeb;
8001
8002 relativea = a->type == reloc_class_relative;
8003 relativeb = b->type == reloc_class_relative;
8004
8005 if (relativea < relativeb)
8006 return 1;
8007 if (relativea > relativeb)
8008 return -1;
8009 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8010 return -1;
8011 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8012 return 1;
8013 if (a->rela->r_offset < b->rela->r_offset)
8014 return -1;
8015 if (a->rela->r_offset > b->rela->r_offset)
8016 return 1;
8017 return 0;
8018 }
8019
8020 static int
8021 elf_link_sort_cmp2 (const void *A, const void *B)
8022 {
8023 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8024 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8025 int copya, copyb;
8026
8027 if (a->u.offset < b->u.offset)
8028 return -1;
8029 if (a->u.offset > b->u.offset)
8030 return 1;
8031 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8032 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8033 if (copya < copyb)
8034 return -1;
8035 if (copya > copyb)
8036 return 1;
8037 if (a->rela->r_offset < b->rela->r_offset)
8038 return -1;
8039 if (a->rela->r_offset > b->rela->r_offset)
8040 return 1;
8041 return 0;
8042 }
8043
8044 static size_t
8045 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8046 {
8047 asection *dynamic_relocs;
8048 asection *rela_dyn;
8049 asection *rel_dyn;
8050 bfd_size_type count, size;
8051 size_t i, ret, sort_elt, ext_size;
8052 bfd_byte *sort, *s_non_relative, *p;
8053 struct elf_link_sort_rela *sq;
8054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8055 int i2e = bed->s->int_rels_per_ext_rel;
8056 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8057 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8058 struct bfd_link_order *lo;
8059 bfd_vma r_sym_mask;
8060 bfd_boolean use_rela;
8061
8062 /* Find a dynamic reloc section. */
8063 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8064 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8065 if (rela_dyn != NULL && rela_dyn->size > 0
8066 && rel_dyn != NULL && rel_dyn->size > 0)
8067 {
8068 bfd_boolean use_rela_initialised = FALSE;
8069
8070 /* This is just here to stop gcc from complaining.
8071 It's initialization checking code is not perfect. */
8072 use_rela = TRUE;
8073
8074 /* Both sections are present. Examine the sizes
8075 of the indirect sections to help us choose. */
8076 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8077 if (lo->type == bfd_indirect_link_order)
8078 {
8079 asection *o = lo->u.indirect.section;
8080
8081 if ((o->size % bed->s->sizeof_rela) == 0)
8082 {
8083 if ((o->size % bed->s->sizeof_rel) == 0)
8084 /* Section size is divisible by both rel and rela sizes.
8085 It is of no help to us. */
8086 ;
8087 else
8088 {
8089 /* Section size is only divisible by rela. */
8090 if (use_rela_initialised && (use_rela == FALSE))
8091 {
8092 _bfd_error_handler
8093 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8094 bfd_set_error (bfd_error_invalid_operation);
8095 return 0;
8096 }
8097 else
8098 {
8099 use_rela = TRUE;
8100 use_rela_initialised = TRUE;
8101 }
8102 }
8103 }
8104 else if ((o->size % bed->s->sizeof_rel) == 0)
8105 {
8106 /* Section size is only divisible by rel. */
8107 if (use_rela_initialised && (use_rela == TRUE))
8108 {
8109 _bfd_error_handler
8110 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8111 bfd_set_error (bfd_error_invalid_operation);
8112 return 0;
8113 }
8114 else
8115 {
8116 use_rela = FALSE;
8117 use_rela_initialised = TRUE;
8118 }
8119 }
8120 else
8121 {
8122 /* The section size is not divisible by either - something is wrong. */
8123 _bfd_error_handler
8124 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8125 bfd_set_error (bfd_error_invalid_operation);
8126 return 0;
8127 }
8128 }
8129
8130 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8131 if (lo->type == bfd_indirect_link_order)
8132 {
8133 asection *o = lo->u.indirect.section;
8134
8135 if ((o->size % bed->s->sizeof_rela) == 0)
8136 {
8137 if ((o->size % bed->s->sizeof_rel) == 0)
8138 /* Section size is divisible by both rel and rela sizes.
8139 It is of no help to us. */
8140 ;
8141 else
8142 {
8143 /* Section size is only divisible by rela. */
8144 if (use_rela_initialised && (use_rela == FALSE))
8145 {
8146 _bfd_error_handler
8147 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8148 bfd_set_error (bfd_error_invalid_operation);
8149 return 0;
8150 }
8151 else
8152 {
8153 use_rela = TRUE;
8154 use_rela_initialised = TRUE;
8155 }
8156 }
8157 }
8158 else if ((o->size % bed->s->sizeof_rel) == 0)
8159 {
8160 /* Section size is only divisible by rel. */
8161 if (use_rela_initialised && (use_rela == TRUE))
8162 {
8163 _bfd_error_handler
8164 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8165 bfd_set_error (bfd_error_invalid_operation);
8166 return 0;
8167 }
8168 else
8169 {
8170 use_rela = FALSE;
8171 use_rela_initialised = TRUE;
8172 }
8173 }
8174 else
8175 {
8176 /* The section size is not divisible by either - something is wrong. */
8177 _bfd_error_handler
8178 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8179 bfd_set_error (bfd_error_invalid_operation);
8180 return 0;
8181 }
8182 }
8183
8184 if (! use_rela_initialised)
8185 /* Make a guess. */
8186 use_rela = TRUE;
8187 }
8188 else if (rela_dyn != NULL && rela_dyn->size > 0)
8189 use_rela = TRUE;
8190 else if (rel_dyn != NULL && rel_dyn->size > 0)
8191 use_rela = FALSE;
8192 else
8193 return 0;
8194
8195 if (use_rela)
8196 {
8197 dynamic_relocs = rela_dyn;
8198 ext_size = bed->s->sizeof_rela;
8199 swap_in = bed->s->swap_reloca_in;
8200 swap_out = bed->s->swap_reloca_out;
8201 }
8202 else
8203 {
8204 dynamic_relocs = rel_dyn;
8205 ext_size = bed->s->sizeof_rel;
8206 swap_in = bed->s->swap_reloc_in;
8207 swap_out = bed->s->swap_reloc_out;
8208 }
8209
8210 size = 0;
8211 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8212 if (lo->type == bfd_indirect_link_order)
8213 size += lo->u.indirect.section->size;
8214
8215 if (size != dynamic_relocs->size)
8216 return 0;
8217
8218 sort_elt = (sizeof (struct elf_link_sort_rela)
8219 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8220
8221 count = dynamic_relocs->size / ext_size;
8222 if (count == 0)
8223 return 0;
8224 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8225
8226 if (sort == NULL)
8227 {
8228 (*info->callbacks->warning)
8229 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8230 return 0;
8231 }
8232
8233 if (bed->s->arch_size == 32)
8234 r_sym_mask = ~(bfd_vma) 0xff;
8235 else
8236 r_sym_mask = ~(bfd_vma) 0xffffffff;
8237
8238 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8239 if (lo->type == bfd_indirect_link_order)
8240 {
8241 bfd_byte *erel, *erelend;
8242 asection *o = lo->u.indirect.section;
8243
8244 if (o->contents == NULL && o->size != 0)
8245 {
8246 /* This is a reloc section that is being handled as a normal
8247 section. See bfd_section_from_shdr. We can't combine
8248 relocs in this case. */
8249 free (sort);
8250 return 0;
8251 }
8252 erel = o->contents;
8253 erelend = o->contents + o->size;
8254 /* FIXME: octets_per_byte. */
8255 p = sort + o->output_offset / ext_size * sort_elt;
8256
8257 while (erel < erelend)
8258 {
8259 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8260
8261 (*swap_in) (abfd, erel, s->rela);
8262 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8263 s->u.sym_mask = r_sym_mask;
8264 p += sort_elt;
8265 erel += ext_size;
8266 }
8267 }
8268
8269 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8270
8271 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8272 {
8273 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8274 if (s->type != reloc_class_relative)
8275 break;
8276 }
8277 ret = i;
8278 s_non_relative = p;
8279
8280 sq = (struct elf_link_sort_rela *) s_non_relative;
8281 for (; i < count; i++, p += sort_elt)
8282 {
8283 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8284 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8285 sq = sp;
8286 sp->u.offset = sq->rela->r_offset;
8287 }
8288
8289 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8290
8291 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8292 if (lo->type == bfd_indirect_link_order)
8293 {
8294 bfd_byte *erel, *erelend;
8295 asection *o = lo->u.indirect.section;
8296
8297 erel = o->contents;
8298 erelend = o->contents + o->size;
8299 /* FIXME: octets_per_byte. */
8300 p = sort + o->output_offset / ext_size * sort_elt;
8301 while (erel < erelend)
8302 {
8303 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8304 (*swap_out) (abfd, s->rela, erel);
8305 p += sort_elt;
8306 erel += ext_size;
8307 }
8308 }
8309
8310 free (sort);
8311 *psec = dynamic_relocs;
8312 return ret;
8313 }
8314
8315 /* Flush the output symbols to the file. */
8316
8317 static bfd_boolean
8318 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8319 const struct elf_backend_data *bed)
8320 {
8321 if (finfo->symbuf_count > 0)
8322 {
8323 Elf_Internal_Shdr *hdr;
8324 file_ptr pos;
8325 bfd_size_type amt;
8326
8327 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8328 pos = hdr->sh_offset + hdr->sh_size;
8329 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8330 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8331 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8332 return FALSE;
8333
8334 hdr->sh_size += amt;
8335 finfo->symbuf_count = 0;
8336 }
8337
8338 return TRUE;
8339 }
8340
8341 /* Add a symbol to the output symbol table. */
8342
8343 static int
8344 elf_link_output_sym (struct elf_final_link_info *finfo,
8345 const char *name,
8346 Elf_Internal_Sym *elfsym,
8347 asection *input_sec,
8348 struct elf_link_hash_entry *h)
8349 {
8350 bfd_byte *dest;
8351 Elf_External_Sym_Shndx *destshndx;
8352 int (*output_symbol_hook)
8353 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8354 struct elf_link_hash_entry *);
8355 const struct elf_backend_data *bed;
8356
8357 bed = get_elf_backend_data (finfo->output_bfd);
8358 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8359 if (output_symbol_hook != NULL)
8360 {
8361 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8362 if (ret != 1)
8363 return ret;
8364 }
8365
8366 if (name == NULL || *name == '\0')
8367 elfsym->st_name = 0;
8368 else if (input_sec->flags & SEC_EXCLUDE)
8369 elfsym->st_name = 0;
8370 else
8371 {
8372 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8373 name, TRUE, FALSE);
8374 if (elfsym->st_name == (unsigned long) -1)
8375 return 0;
8376 }
8377
8378 if (finfo->symbuf_count >= finfo->symbuf_size)
8379 {
8380 if (! elf_link_flush_output_syms (finfo, bed))
8381 return 0;
8382 }
8383
8384 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8385 destshndx = finfo->symshndxbuf;
8386 if (destshndx != NULL)
8387 {
8388 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8389 {
8390 bfd_size_type amt;
8391
8392 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8393 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8394 amt * 2);
8395 if (destshndx == NULL)
8396 return 0;
8397 finfo->symshndxbuf = destshndx;
8398 memset ((char *) destshndx + amt, 0, amt);
8399 finfo->shndxbuf_size *= 2;
8400 }
8401 destshndx += bfd_get_symcount (finfo->output_bfd);
8402 }
8403
8404 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8405 finfo->symbuf_count += 1;
8406 bfd_get_symcount (finfo->output_bfd) += 1;
8407
8408 return 1;
8409 }
8410
8411 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8412
8413 static bfd_boolean
8414 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8415 {
8416 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8417 && sym->st_shndx < SHN_LORESERVE)
8418 {
8419 /* The gABI doesn't support dynamic symbols in output sections
8420 beyond 64k. */
8421 (*_bfd_error_handler)
8422 (_("%B: Too many sections: %d (>= %d)"),
8423 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8424 bfd_set_error (bfd_error_nonrepresentable_section);
8425 return FALSE;
8426 }
8427 return TRUE;
8428 }
8429
8430 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8431 allowing an unsatisfied unversioned symbol in the DSO to match a
8432 versioned symbol that would normally require an explicit version.
8433 We also handle the case that a DSO references a hidden symbol
8434 which may be satisfied by a versioned symbol in another DSO. */
8435
8436 static bfd_boolean
8437 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8438 const struct elf_backend_data *bed,
8439 struct elf_link_hash_entry *h)
8440 {
8441 bfd *abfd;
8442 struct elf_link_loaded_list *loaded;
8443
8444 if (!is_elf_hash_table (info->hash))
8445 return FALSE;
8446
8447 switch (h->root.type)
8448 {
8449 default:
8450 abfd = NULL;
8451 break;
8452
8453 case bfd_link_hash_undefined:
8454 case bfd_link_hash_undefweak:
8455 abfd = h->root.u.undef.abfd;
8456 if ((abfd->flags & DYNAMIC) == 0
8457 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8458 return FALSE;
8459 break;
8460
8461 case bfd_link_hash_defined:
8462 case bfd_link_hash_defweak:
8463 abfd = h->root.u.def.section->owner;
8464 break;
8465
8466 case bfd_link_hash_common:
8467 abfd = h->root.u.c.p->section->owner;
8468 break;
8469 }
8470 BFD_ASSERT (abfd != NULL);
8471
8472 for (loaded = elf_hash_table (info)->loaded;
8473 loaded != NULL;
8474 loaded = loaded->next)
8475 {
8476 bfd *input;
8477 Elf_Internal_Shdr *hdr;
8478 bfd_size_type symcount;
8479 bfd_size_type extsymcount;
8480 bfd_size_type extsymoff;
8481 Elf_Internal_Shdr *versymhdr;
8482 Elf_Internal_Sym *isym;
8483 Elf_Internal_Sym *isymend;
8484 Elf_Internal_Sym *isymbuf;
8485 Elf_External_Versym *ever;
8486 Elf_External_Versym *extversym;
8487
8488 input = loaded->abfd;
8489
8490 /* We check each DSO for a possible hidden versioned definition. */
8491 if (input == abfd
8492 || (input->flags & DYNAMIC) == 0
8493 || elf_dynversym (input) == 0)
8494 continue;
8495
8496 hdr = &elf_tdata (input)->dynsymtab_hdr;
8497
8498 symcount = hdr->sh_size / bed->s->sizeof_sym;
8499 if (elf_bad_symtab (input))
8500 {
8501 extsymcount = symcount;
8502 extsymoff = 0;
8503 }
8504 else
8505 {
8506 extsymcount = symcount - hdr->sh_info;
8507 extsymoff = hdr->sh_info;
8508 }
8509
8510 if (extsymcount == 0)
8511 continue;
8512
8513 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8514 NULL, NULL, NULL);
8515 if (isymbuf == NULL)
8516 return FALSE;
8517
8518 /* Read in any version definitions. */
8519 versymhdr = &elf_tdata (input)->dynversym_hdr;
8520 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8521 if (extversym == NULL)
8522 goto error_ret;
8523
8524 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8525 || (bfd_bread (extversym, versymhdr->sh_size, input)
8526 != versymhdr->sh_size))
8527 {
8528 free (extversym);
8529 error_ret:
8530 free (isymbuf);
8531 return FALSE;
8532 }
8533
8534 ever = extversym + extsymoff;
8535 isymend = isymbuf + extsymcount;
8536 for (isym = isymbuf; isym < isymend; isym++, ever++)
8537 {
8538 const char *name;
8539 Elf_Internal_Versym iver;
8540 unsigned short version_index;
8541
8542 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8543 || isym->st_shndx == SHN_UNDEF)
8544 continue;
8545
8546 name = bfd_elf_string_from_elf_section (input,
8547 hdr->sh_link,
8548 isym->st_name);
8549 if (strcmp (name, h->root.root.string) != 0)
8550 continue;
8551
8552 _bfd_elf_swap_versym_in (input, ever, &iver);
8553
8554 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8555 && !(h->def_regular
8556 && h->forced_local))
8557 {
8558 /* If we have a non-hidden versioned sym, then it should
8559 have provided a definition for the undefined sym unless
8560 it is defined in a non-shared object and forced local.
8561 */
8562 abort ();
8563 }
8564
8565 version_index = iver.vs_vers & VERSYM_VERSION;
8566 if (version_index == 1 || version_index == 2)
8567 {
8568 /* This is the base or first version. We can use it. */
8569 free (extversym);
8570 free (isymbuf);
8571 return TRUE;
8572 }
8573 }
8574
8575 free (extversym);
8576 free (isymbuf);
8577 }
8578
8579 return FALSE;
8580 }
8581
8582 /* Add an external symbol to the symbol table. This is called from
8583 the hash table traversal routine. When generating a shared object,
8584 we go through the symbol table twice. The first time we output
8585 anything that might have been forced to local scope in a version
8586 script. The second time we output the symbols that are still
8587 global symbols. */
8588
8589 static bfd_boolean
8590 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8591 {
8592 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8593 struct elf_final_link_info *finfo = eoinfo->finfo;
8594 bfd_boolean strip;
8595 Elf_Internal_Sym sym;
8596 asection *input_sec;
8597 const struct elf_backend_data *bed;
8598 long indx;
8599 int ret;
8600
8601 if (h->root.type == bfd_link_hash_warning)
8602 {
8603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8604 if (h->root.type == bfd_link_hash_new)
8605 return TRUE;
8606 }
8607
8608 /* Decide whether to output this symbol in this pass. */
8609 if (eoinfo->localsyms)
8610 {
8611 if (!h->forced_local)
8612 return TRUE;
8613 }
8614 else
8615 {
8616 if (h->forced_local)
8617 return TRUE;
8618 }
8619
8620 bed = get_elf_backend_data (finfo->output_bfd);
8621
8622 if (h->root.type == bfd_link_hash_undefined)
8623 {
8624 /* If we have an undefined symbol reference here then it must have
8625 come from a shared library that is being linked in. (Undefined
8626 references in regular files have already been handled unless
8627 they are in unreferenced sections which are removed by garbage
8628 collection). */
8629 bfd_boolean ignore_undef = FALSE;
8630
8631 /* Some symbols may be special in that the fact that they're
8632 undefined can be safely ignored - let backend determine that. */
8633 if (bed->elf_backend_ignore_undef_symbol)
8634 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8635
8636 /* If we are reporting errors for this situation then do so now. */
8637 if (!ignore_undef
8638 && h->ref_dynamic
8639 && (!h->ref_regular || finfo->info->gc_sections)
8640 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8641 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8642 {
8643 if (! (finfo->info->callbacks->undefined_symbol
8644 (finfo->info, h->root.root.string,
8645 h->ref_regular ? NULL : h->root.u.undef.abfd,
8646 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8647 {
8648 bfd_set_error (bfd_error_bad_value);
8649 eoinfo->failed = TRUE;
8650 return FALSE;
8651 }
8652 }
8653 }
8654
8655 /* We should also warn if a forced local symbol is referenced from
8656 shared libraries. */
8657 if (! finfo->info->relocatable
8658 && (! finfo->info->shared)
8659 && h->forced_local
8660 && h->ref_dynamic
8661 && !h->dynamic_def
8662 && !h->dynamic_weak
8663 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8664 {
8665 bfd *def_bfd;
8666 const char *msg;
8667
8668 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8669 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8670 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8671 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8672 else
8673 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8674 def_bfd = finfo->output_bfd;
8675 if (h->root.u.def.section != bfd_abs_section_ptr)
8676 def_bfd = h->root.u.def.section->owner;
8677 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8678 h->root.root.string);
8679 bfd_set_error (bfd_error_bad_value);
8680 eoinfo->failed = TRUE;
8681 return FALSE;
8682 }
8683
8684 /* We don't want to output symbols that have never been mentioned by
8685 a regular file, or that we have been told to strip. However, if
8686 h->indx is set to -2, the symbol is used by a reloc and we must
8687 output it. */
8688 if (h->indx == -2)
8689 strip = FALSE;
8690 else if ((h->def_dynamic
8691 || h->ref_dynamic
8692 || h->root.type == bfd_link_hash_new)
8693 && !h->def_regular
8694 && !h->ref_regular)
8695 strip = TRUE;
8696 else if (finfo->info->strip == strip_all)
8697 strip = TRUE;
8698 else if (finfo->info->strip == strip_some
8699 && bfd_hash_lookup (finfo->info->keep_hash,
8700 h->root.root.string, FALSE, FALSE) == NULL)
8701 strip = TRUE;
8702 else if (finfo->info->strip_discarded
8703 && (h->root.type == bfd_link_hash_defined
8704 || h->root.type == bfd_link_hash_defweak)
8705 && elf_discarded_section (h->root.u.def.section))
8706 strip = TRUE;
8707 else if ((h->root.type == bfd_link_hash_undefined
8708 || h->root.type == bfd_link_hash_undefweak)
8709 && h->root.u.undef.abfd != NULL
8710 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8711 strip = TRUE;
8712 else
8713 strip = FALSE;
8714
8715 /* If we're stripping it, and it's not a dynamic symbol, there's
8716 nothing else to do unless it is a forced local symbol or a
8717 STT_GNU_IFUNC symbol. */
8718 if (strip
8719 && h->dynindx == -1
8720 && h->type != STT_GNU_IFUNC
8721 && !h->forced_local)
8722 return TRUE;
8723
8724 sym.st_value = 0;
8725 sym.st_size = h->size;
8726 sym.st_other = h->other;
8727 if (h->forced_local)
8728 {
8729 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8730 /* Turn off visibility on local symbol. */
8731 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8732 }
8733 else if (h->unique_global)
8734 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8735 else if (h->root.type == bfd_link_hash_undefweak
8736 || h->root.type == bfd_link_hash_defweak)
8737 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8738 else
8739 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8740 sym.st_target_internal = h->target_internal;
8741
8742 switch (h->root.type)
8743 {
8744 default:
8745 case bfd_link_hash_new:
8746 case bfd_link_hash_warning:
8747 abort ();
8748 return FALSE;
8749
8750 case bfd_link_hash_undefined:
8751 case bfd_link_hash_undefweak:
8752 input_sec = bfd_und_section_ptr;
8753 sym.st_shndx = SHN_UNDEF;
8754 break;
8755
8756 case bfd_link_hash_defined:
8757 case bfd_link_hash_defweak:
8758 {
8759 input_sec = h->root.u.def.section;
8760 if (input_sec->output_section != NULL)
8761 {
8762 sym.st_shndx =
8763 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8764 input_sec->output_section);
8765 if (sym.st_shndx == SHN_BAD)
8766 {
8767 (*_bfd_error_handler)
8768 (_("%B: could not find output section %A for input section %A"),
8769 finfo->output_bfd, input_sec->output_section, input_sec);
8770 bfd_set_error (bfd_error_nonrepresentable_section);
8771 eoinfo->failed = TRUE;
8772 return FALSE;
8773 }
8774
8775 /* ELF symbols in relocatable files are section relative,
8776 but in nonrelocatable files they are virtual
8777 addresses. */
8778 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8779 if (! finfo->info->relocatable)
8780 {
8781 sym.st_value += input_sec->output_section->vma;
8782 if (h->type == STT_TLS)
8783 {
8784 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8785 if (tls_sec != NULL)
8786 sym.st_value -= tls_sec->vma;
8787 else
8788 {
8789 /* The TLS section may have been garbage collected. */
8790 BFD_ASSERT (finfo->info->gc_sections
8791 && !input_sec->gc_mark);
8792 }
8793 }
8794 }
8795 }
8796 else
8797 {
8798 BFD_ASSERT (input_sec->owner == NULL
8799 || (input_sec->owner->flags & DYNAMIC) != 0);
8800 sym.st_shndx = SHN_UNDEF;
8801 input_sec = bfd_und_section_ptr;
8802 }
8803 }
8804 break;
8805
8806 case bfd_link_hash_common:
8807 input_sec = h->root.u.c.p->section;
8808 sym.st_shndx = bed->common_section_index (input_sec);
8809 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8810 break;
8811
8812 case bfd_link_hash_indirect:
8813 /* These symbols are created by symbol versioning. They point
8814 to the decorated version of the name. For example, if the
8815 symbol foo@@GNU_1.2 is the default, which should be used when
8816 foo is used with no version, then we add an indirect symbol
8817 foo which points to foo@@GNU_1.2. We ignore these symbols,
8818 since the indirected symbol is already in the hash table. */
8819 return TRUE;
8820 }
8821
8822 /* Give the processor backend a chance to tweak the symbol value,
8823 and also to finish up anything that needs to be done for this
8824 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8825 forced local syms when non-shared is due to a historical quirk.
8826 STT_GNU_IFUNC symbol must go through PLT. */
8827 if ((h->type == STT_GNU_IFUNC
8828 && h->def_regular
8829 && !finfo->info->relocatable)
8830 || ((h->dynindx != -1
8831 || h->forced_local)
8832 && ((finfo->info->shared
8833 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8834 || h->root.type != bfd_link_hash_undefweak))
8835 || !h->forced_local)
8836 && elf_hash_table (finfo->info)->dynamic_sections_created))
8837 {
8838 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8839 (finfo->output_bfd, finfo->info, h, &sym)))
8840 {
8841 eoinfo->failed = TRUE;
8842 return FALSE;
8843 }
8844 }
8845
8846 /* If we are marking the symbol as undefined, and there are no
8847 non-weak references to this symbol from a regular object, then
8848 mark the symbol as weak undefined; if there are non-weak
8849 references, mark the symbol as strong. We can't do this earlier,
8850 because it might not be marked as undefined until the
8851 finish_dynamic_symbol routine gets through with it. */
8852 if (sym.st_shndx == SHN_UNDEF
8853 && h->ref_regular
8854 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8855 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8856 {
8857 int bindtype;
8858 unsigned int type = ELF_ST_TYPE (sym.st_info);
8859
8860 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8861 if (type == STT_GNU_IFUNC)
8862 type = STT_FUNC;
8863
8864 if (h->ref_regular_nonweak)
8865 bindtype = STB_GLOBAL;
8866 else
8867 bindtype = STB_WEAK;
8868 sym.st_info = ELF_ST_INFO (bindtype, type);
8869 }
8870
8871 /* If this is a symbol defined in a dynamic library, don't use the
8872 symbol size from the dynamic library. Relinking an executable
8873 against a new library may introduce gratuitous changes in the
8874 executable's symbols if we keep the size. */
8875 if (sym.st_shndx == SHN_UNDEF
8876 && !h->def_regular
8877 && h->def_dynamic)
8878 sym.st_size = 0;
8879
8880 /* If a non-weak symbol with non-default visibility is not defined
8881 locally, it is a fatal error. */
8882 if (! finfo->info->relocatable
8883 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8884 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8885 && h->root.type == bfd_link_hash_undefined
8886 && !h->def_regular)
8887 {
8888 const char *msg;
8889
8890 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8891 msg = _("%B: protected symbol `%s' isn't defined");
8892 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8893 msg = _("%B: internal symbol `%s' isn't defined");
8894 else
8895 msg = _("%B: hidden symbol `%s' isn't defined");
8896 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8897 bfd_set_error (bfd_error_bad_value);
8898 eoinfo->failed = TRUE;
8899 return FALSE;
8900 }
8901
8902 /* If this symbol should be put in the .dynsym section, then put it
8903 there now. We already know the symbol index. We also fill in
8904 the entry in the .hash section. */
8905 if (h->dynindx != -1
8906 && elf_hash_table (finfo->info)->dynamic_sections_created)
8907 {
8908 bfd_byte *esym;
8909
8910 sym.st_name = h->dynstr_index;
8911 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8912 if (! check_dynsym (finfo->output_bfd, &sym))
8913 {
8914 eoinfo->failed = TRUE;
8915 return FALSE;
8916 }
8917 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8918
8919 if (finfo->hash_sec != NULL)
8920 {
8921 size_t hash_entry_size;
8922 bfd_byte *bucketpos;
8923 bfd_vma chain;
8924 size_t bucketcount;
8925 size_t bucket;
8926
8927 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8928 bucket = h->u.elf_hash_value % bucketcount;
8929
8930 hash_entry_size
8931 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8932 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8933 + (bucket + 2) * hash_entry_size);
8934 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8935 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8936 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8937 ((bfd_byte *) finfo->hash_sec->contents
8938 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8939 }
8940
8941 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8942 {
8943 Elf_Internal_Versym iversym;
8944 Elf_External_Versym *eversym;
8945
8946 if (!h->def_regular)
8947 {
8948 if (h->verinfo.verdef == NULL)
8949 iversym.vs_vers = 0;
8950 else
8951 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8952 }
8953 else
8954 {
8955 if (h->verinfo.vertree == NULL)
8956 iversym.vs_vers = 1;
8957 else
8958 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8959 if (finfo->info->create_default_symver)
8960 iversym.vs_vers++;
8961 }
8962
8963 if (h->hidden)
8964 iversym.vs_vers |= VERSYM_HIDDEN;
8965
8966 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8967 eversym += h->dynindx;
8968 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8969 }
8970 }
8971
8972 /* If we're stripping it, then it was just a dynamic symbol, and
8973 there's nothing else to do. */
8974 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8975 return TRUE;
8976
8977 indx = bfd_get_symcount (finfo->output_bfd);
8978 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8979 if (ret == 0)
8980 {
8981 eoinfo->failed = TRUE;
8982 return FALSE;
8983 }
8984 else if (ret == 1)
8985 h->indx = indx;
8986 else if (h->indx == -2)
8987 abort();
8988
8989 return TRUE;
8990 }
8991
8992 /* Return TRUE if special handling is done for relocs in SEC against
8993 symbols defined in discarded sections. */
8994
8995 static bfd_boolean
8996 elf_section_ignore_discarded_relocs (asection *sec)
8997 {
8998 const struct elf_backend_data *bed;
8999
9000 switch (sec->sec_info_type)
9001 {
9002 case ELF_INFO_TYPE_STABS:
9003 case ELF_INFO_TYPE_EH_FRAME:
9004 return TRUE;
9005 default:
9006 break;
9007 }
9008
9009 bed = get_elf_backend_data (sec->owner);
9010 if (bed->elf_backend_ignore_discarded_relocs != NULL
9011 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9012 return TRUE;
9013
9014 return FALSE;
9015 }
9016
9017 /* Return a mask saying how ld should treat relocations in SEC against
9018 symbols defined in discarded sections. If this function returns
9019 COMPLAIN set, ld will issue a warning message. If this function
9020 returns PRETEND set, and the discarded section was link-once and the
9021 same size as the kept link-once section, ld will pretend that the
9022 symbol was actually defined in the kept section. Otherwise ld will
9023 zero the reloc (at least that is the intent, but some cooperation by
9024 the target dependent code is needed, particularly for REL targets). */
9025
9026 unsigned int
9027 _bfd_elf_default_action_discarded (asection *sec)
9028 {
9029 if (sec->flags & SEC_DEBUGGING)
9030 return PRETEND;
9031
9032 if (strcmp (".eh_frame", sec->name) == 0)
9033 return 0;
9034
9035 if (strcmp (".gcc_except_table", sec->name) == 0)
9036 return 0;
9037
9038 return COMPLAIN | PRETEND;
9039 }
9040
9041 /* Find a match between a section and a member of a section group. */
9042
9043 static asection *
9044 match_group_member (asection *sec, asection *group,
9045 struct bfd_link_info *info)
9046 {
9047 asection *first = elf_next_in_group (group);
9048 asection *s = first;
9049
9050 while (s != NULL)
9051 {
9052 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9053 return s;
9054
9055 s = elf_next_in_group (s);
9056 if (s == first)
9057 break;
9058 }
9059
9060 return NULL;
9061 }
9062
9063 /* Check if the kept section of a discarded section SEC can be used
9064 to replace it. Return the replacement if it is OK. Otherwise return
9065 NULL. */
9066
9067 asection *
9068 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9069 {
9070 asection *kept;
9071
9072 kept = sec->kept_section;
9073 if (kept != NULL)
9074 {
9075 if ((kept->flags & SEC_GROUP) != 0)
9076 kept = match_group_member (sec, kept, info);
9077 if (kept != NULL
9078 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9079 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9080 kept = NULL;
9081 sec->kept_section = kept;
9082 }
9083 return kept;
9084 }
9085
9086 /* Link an input file into the linker output file. This function
9087 handles all the sections and relocations of the input file at once.
9088 This is so that we only have to read the local symbols once, and
9089 don't have to keep them in memory. */
9090
9091 static bfd_boolean
9092 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9093 {
9094 int (*relocate_section)
9095 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9096 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9097 bfd *output_bfd;
9098 Elf_Internal_Shdr *symtab_hdr;
9099 size_t locsymcount;
9100 size_t extsymoff;
9101 Elf_Internal_Sym *isymbuf;
9102 Elf_Internal_Sym *isym;
9103 Elf_Internal_Sym *isymend;
9104 long *pindex;
9105 asection **ppsection;
9106 asection *o;
9107 const struct elf_backend_data *bed;
9108 struct elf_link_hash_entry **sym_hashes;
9109
9110 output_bfd = finfo->output_bfd;
9111 bed = get_elf_backend_data (output_bfd);
9112 relocate_section = bed->elf_backend_relocate_section;
9113
9114 /* If this is a dynamic object, we don't want to do anything here:
9115 we don't want the local symbols, and we don't want the section
9116 contents. */
9117 if ((input_bfd->flags & DYNAMIC) != 0)
9118 return TRUE;
9119
9120 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9121 if (elf_bad_symtab (input_bfd))
9122 {
9123 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9124 extsymoff = 0;
9125 }
9126 else
9127 {
9128 locsymcount = symtab_hdr->sh_info;
9129 extsymoff = symtab_hdr->sh_info;
9130 }
9131
9132 /* Read the local symbols. */
9133 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9134 if (isymbuf == NULL && locsymcount != 0)
9135 {
9136 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9137 finfo->internal_syms,
9138 finfo->external_syms,
9139 finfo->locsym_shndx);
9140 if (isymbuf == NULL)
9141 return FALSE;
9142 }
9143
9144 /* Find local symbol sections and adjust values of symbols in
9145 SEC_MERGE sections. Write out those local symbols we know are
9146 going into the output file. */
9147 isymend = isymbuf + locsymcount;
9148 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9149 isym < isymend;
9150 isym++, pindex++, ppsection++)
9151 {
9152 asection *isec;
9153 const char *name;
9154 Elf_Internal_Sym osym;
9155 long indx;
9156 int ret;
9157
9158 *pindex = -1;
9159
9160 if (elf_bad_symtab (input_bfd))
9161 {
9162 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9163 {
9164 *ppsection = NULL;
9165 continue;
9166 }
9167 }
9168
9169 if (isym->st_shndx == SHN_UNDEF)
9170 isec = bfd_und_section_ptr;
9171 else if (isym->st_shndx == SHN_ABS)
9172 isec = bfd_abs_section_ptr;
9173 else if (isym->st_shndx == SHN_COMMON)
9174 isec = bfd_com_section_ptr;
9175 else
9176 {
9177 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9178 if (isec == NULL)
9179 {
9180 /* Don't attempt to output symbols with st_shnx in the
9181 reserved range other than SHN_ABS and SHN_COMMON. */
9182 *ppsection = NULL;
9183 continue;
9184 }
9185 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9186 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9187 isym->st_value =
9188 _bfd_merged_section_offset (output_bfd, &isec,
9189 elf_section_data (isec)->sec_info,
9190 isym->st_value);
9191 }
9192
9193 *ppsection = isec;
9194
9195 /* Don't output the first, undefined, symbol. */
9196 if (ppsection == finfo->sections)
9197 continue;
9198
9199 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9200 {
9201 /* We never output section symbols. Instead, we use the
9202 section symbol of the corresponding section in the output
9203 file. */
9204 continue;
9205 }
9206
9207 /* If we are stripping all symbols, we don't want to output this
9208 one. */
9209 if (finfo->info->strip == strip_all)
9210 continue;
9211
9212 /* If we are discarding all local symbols, we don't want to
9213 output this one. If we are generating a relocatable output
9214 file, then some of the local symbols may be required by
9215 relocs; we output them below as we discover that they are
9216 needed. */
9217 if (finfo->info->discard == discard_all)
9218 continue;
9219
9220 /* If this symbol is defined in a section which we are
9221 discarding, we don't need to keep it. */
9222 if (isym->st_shndx != SHN_UNDEF
9223 && isym->st_shndx < SHN_LORESERVE
9224 && bfd_section_removed_from_list (output_bfd,
9225 isec->output_section))
9226 continue;
9227
9228 /* Get the name of the symbol. */
9229 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9230 isym->st_name);
9231 if (name == NULL)
9232 return FALSE;
9233
9234 /* See if we are discarding symbols with this name. */
9235 if ((finfo->info->strip == strip_some
9236 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9237 == NULL))
9238 || (((finfo->info->discard == discard_sec_merge
9239 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9240 || finfo->info->discard == discard_l)
9241 && bfd_is_local_label_name (input_bfd, name)))
9242 continue;
9243
9244 osym = *isym;
9245
9246 /* Adjust the section index for the output file. */
9247 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9248 isec->output_section);
9249 if (osym.st_shndx == SHN_BAD)
9250 return FALSE;
9251
9252 /* ELF symbols in relocatable files are section relative, but
9253 in executable files they are virtual addresses. Note that
9254 this code assumes that all ELF sections have an associated
9255 BFD section with a reasonable value for output_offset; below
9256 we assume that they also have a reasonable value for
9257 output_section. Any special sections must be set up to meet
9258 these requirements. */
9259 osym.st_value += isec->output_offset;
9260 if (! finfo->info->relocatable)
9261 {
9262 osym.st_value += isec->output_section->vma;
9263 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9264 {
9265 /* STT_TLS symbols are relative to PT_TLS segment base. */
9266 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9267 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9268 }
9269 }
9270
9271 indx = bfd_get_symcount (output_bfd);
9272 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9273 if (ret == 0)
9274 return FALSE;
9275 else if (ret == 1)
9276 *pindex = indx;
9277 }
9278
9279 /* Relocate the contents of each section. */
9280 sym_hashes = elf_sym_hashes (input_bfd);
9281 for (o = input_bfd->sections; o != NULL; o = o->next)
9282 {
9283 bfd_byte *contents;
9284
9285 if (! o->linker_mark)
9286 {
9287 /* This section was omitted from the link. */
9288 continue;
9289 }
9290
9291 if (finfo->info->relocatable
9292 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9293 {
9294 /* Deal with the group signature symbol. */
9295 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9296 unsigned long symndx = sec_data->this_hdr.sh_info;
9297 asection *osec = o->output_section;
9298
9299 if (symndx >= locsymcount
9300 || (elf_bad_symtab (input_bfd)
9301 && finfo->sections[symndx] == NULL))
9302 {
9303 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9304 while (h->root.type == bfd_link_hash_indirect
9305 || h->root.type == bfd_link_hash_warning)
9306 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9307 /* Arrange for symbol to be output. */
9308 h->indx = -2;
9309 elf_section_data (osec)->this_hdr.sh_info = -2;
9310 }
9311 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9312 {
9313 /* We'll use the output section target_index. */
9314 asection *sec = finfo->sections[symndx]->output_section;
9315 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9316 }
9317 else
9318 {
9319 if (finfo->indices[symndx] == -1)
9320 {
9321 /* Otherwise output the local symbol now. */
9322 Elf_Internal_Sym sym = isymbuf[symndx];
9323 asection *sec = finfo->sections[symndx]->output_section;
9324 const char *name;
9325 long indx;
9326 int ret;
9327
9328 name = bfd_elf_string_from_elf_section (input_bfd,
9329 symtab_hdr->sh_link,
9330 sym.st_name);
9331 if (name == NULL)
9332 return FALSE;
9333
9334 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9335 sec);
9336 if (sym.st_shndx == SHN_BAD)
9337 return FALSE;
9338
9339 sym.st_value += o->output_offset;
9340
9341 indx = bfd_get_symcount (output_bfd);
9342 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9343 if (ret == 0)
9344 return FALSE;
9345 else if (ret == 1)
9346 finfo->indices[symndx] = indx;
9347 else
9348 abort ();
9349 }
9350 elf_section_data (osec)->this_hdr.sh_info
9351 = finfo->indices[symndx];
9352 }
9353 }
9354
9355 if ((o->flags & SEC_HAS_CONTENTS) == 0
9356 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9357 continue;
9358
9359 if ((o->flags & SEC_LINKER_CREATED) != 0)
9360 {
9361 /* Section was created by _bfd_elf_link_create_dynamic_sections
9362 or somesuch. */
9363 continue;
9364 }
9365
9366 /* Get the contents of the section. They have been cached by a
9367 relaxation routine. Note that o is a section in an input
9368 file, so the contents field will not have been set by any of
9369 the routines which work on output files. */
9370 if (elf_section_data (o)->this_hdr.contents != NULL)
9371 contents = elf_section_data (o)->this_hdr.contents;
9372 else
9373 {
9374 contents = finfo->contents;
9375 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9376 return FALSE;
9377 }
9378
9379 if ((o->flags & SEC_RELOC) != 0)
9380 {
9381 Elf_Internal_Rela *internal_relocs;
9382 Elf_Internal_Rela *rel, *relend;
9383 bfd_vma r_type_mask;
9384 int r_sym_shift;
9385 int action_discarded;
9386 int ret;
9387
9388 /* Get the swapped relocs. */
9389 internal_relocs
9390 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9391 finfo->internal_relocs, FALSE);
9392 if (internal_relocs == NULL
9393 && o->reloc_count > 0)
9394 return FALSE;
9395
9396 if (bed->s->arch_size == 32)
9397 {
9398 r_type_mask = 0xff;
9399 r_sym_shift = 8;
9400 }
9401 else
9402 {
9403 r_type_mask = 0xffffffff;
9404 r_sym_shift = 32;
9405 }
9406
9407 action_discarded = -1;
9408 if (!elf_section_ignore_discarded_relocs (o))
9409 action_discarded = (*bed->action_discarded) (o);
9410
9411 /* Run through the relocs evaluating complex reloc symbols and
9412 looking for relocs against symbols from discarded sections
9413 or section symbols from removed link-once sections.
9414 Complain about relocs against discarded sections. Zero
9415 relocs against removed link-once sections. */
9416
9417 rel = internal_relocs;
9418 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9419 for ( ; rel < relend; rel++)
9420 {
9421 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9422 unsigned int s_type;
9423 asection **ps, *sec;
9424 struct elf_link_hash_entry *h = NULL;
9425 const char *sym_name;
9426
9427 if (r_symndx == STN_UNDEF)
9428 continue;
9429
9430 if (r_symndx >= locsymcount
9431 || (elf_bad_symtab (input_bfd)
9432 && finfo->sections[r_symndx] == NULL))
9433 {
9434 h = sym_hashes[r_symndx - extsymoff];
9435
9436 /* Badly formatted input files can contain relocs that
9437 reference non-existant symbols. Check here so that
9438 we do not seg fault. */
9439 if (h == NULL)
9440 {
9441 char buffer [32];
9442
9443 sprintf_vma (buffer, rel->r_info);
9444 (*_bfd_error_handler)
9445 (_("error: %B contains a reloc (0x%s) for section %A "
9446 "that references a non-existent global symbol"),
9447 input_bfd, o, buffer);
9448 bfd_set_error (bfd_error_bad_value);
9449 return FALSE;
9450 }
9451
9452 while (h->root.type == bfd_link_hash_indirect
9453 || h->root.type == bfd_link_hash_warning)
9454 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9455
9456 s_type = h->type;
9457
9458 ps = NULL;
9459 if (h->root.type == bfd_link_hash_defined
9460 || h->root.type == bfd_link_hash_defweak)
9461 ps = &h->root.u.def.section;
9462
9463 sym_name = h->root.root.string;
9464 }
9465 else
9466 {
9467 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9468
9469 s_type = ELF_ST_TYPE (sym->st_info);
9470 ps = &finfo->sections[r_symndx];
9471 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9472 sym, *ps);
9473 }
9474
9475 if ((s_type == STT_RELC || s_type == STT_SRELC)
9476 && !finfo->info->relocatable)
9477 {
9478 bfd_vma val;
9479 bfd_vma dot = (rel->r_offset
9480 + o->output_offset + o->output_section->vma);
9481 #ifdef DEBUG
9482 printf ("Encountered a complex symbol!");
9483 printf (" (input_bfd %s, section %s, reloc %ld\n",
9484 input_bfd->filename, o->name,
9485 (long) (rel - internal_relocs));
9486 printf (" symbol: idx %8.8lx, name %s\n",
9487 r_symndx, sym_name);
9488 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9489 (unsigned long) rel->r_info,
9490 (unsigned long) rel->r_offset);
9491 #endif
9492 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9493 isymbuf, locsymcount, s_type == STT_SRELC))
9494 return FALSE;
9495
9496 /* Symbol evaluated OK. Update to absolute value. */
9497 set_symbol_value (input_bfd, isymbuf, locsymcount,
9498 r_symndx, val);
9499 continue;
9500 }
9501
9502 if (action_discarded != -1 && ps != NULL)
9503 {
9504 /* Complain if the definition comes from a
9505 discarded section. */
9506 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9507 {
9508 BFD_ASSERT (r_symndx != STN_UNDEF);
9509 if (action_discarded & COMPLAIN)
9510 (*finfo->info->callbacks->einfo)
9511 (_("%X`%s' referenced in section `%A' of %B: "
9512 "defined in discarded section `%A' of %B\n"),
9513 sym_name, o, input_bfd, sec, sec->owner);
9514
9515 /* Try to do the best we can to support buggy old
9516 versions of gcc. Pretend that the symbol is
9517 really defined in the kept linkonce section.
9518 FIXME: This is quite broken. Modifying the
9519 symbol here means we will be changing all later
9520 uses of the symbol, not just in this section. */
9521 if (action_discarded & PRETEND)
9522 {
9523 asection *kept;
9524
9525 kept = _bfd_elf_check_kept_section (sec,
9526 finfo->info);
9527 if (kept != NULL)
9528 {
9529 *ps = kept;
9530 continue;
9531 }
9532 }
9533 }
9534 }
9535 }
9536
9537 /* Relocate the section by invoking a back end routine.
9538
9539 The back end routine is responsible for adjusting the
9540 section contents as necessary, and (if using Rela relocs
9541 and generating a relocatable output file) adjusting the
9542 reloc addend as necessary.
9543
9544 The back end routine does not have to worry about setting
9545 the reloc address or the reloc symbol index.
9546
9547 The back end routine is given a pointer to the swapped in
9548 internal symbols, and can access the hash table entries
9549 for the external symbols via elf_sym_hashes (input_bfd).
9550
9551 When generating relocatable output, the back end routine
9552 must handle STB_LOCAL/STT_SECTION symbols specially. The
9553 output symbol is going to be a section symbol
9554 corresponding to the output section, which will require
9555 the addend to be adjusted. */
9556
9557 ret = (*relocate_section) (output_bfd, finfo->info,
9558 input_bfd, o, contents,
9559 internal_relocs,
9560 isymbuf,
9561 finfo->sections);
9562 if (!ret)
9563 return FALSE;
9564
9565 if (ret == 2
9566 || finfo->info->relocatable
9567 || finfo->info->emitrelocations)
9568 {
9569 Elf_Internal_Rela *irela;
9570 Elf_Internal_Rela *irelaend, *irelamid;
9571 bfd_vma last_offset;
9572 struct elf_link_hash_entry **rel_hash;
9573 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9574 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9575 unsigned int next_erel;
9576 bfd_boolean rela_normal;
9577 struct bfd_elf_section_data *esdi, *esdo;
9578
9579 esdi = elf_section_data (o);
9580 esdo = elf_section_data (o->output_section);
9581 rela_normal = FALSE;
9582
9583 /* Adjust the reloc addresses and symbol indices. */
9584
9585 irela = internal_relocs;
9586 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9587 rel_hash = esdo->rel.hashes + esdo->rel.count;
9588 /* We start processing the REL relocs, if any. When we reach
9589 IRELAMID in the loop, we switch to the RELA relocs. */
9590 irelamid = irela;
9591 if (esdi->rel.hdr != NULL)
9592 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9593 * bed->s->int_rels_per_ext_rel);
9594 rel_hash_list = rel_hash;
9595 rela_hash_list = NULL;
9596 last_offset = o->output_offset;
9597 if (!finfo->info->relocatable)
9598 last_offset += o->output_section->vma;
9599 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9600 {
9601 unsigned long r_symndx;
9602 asection *sec;
9603 Elf_Internal_Sym sym;
9604
9605 if (next_erel == bed->s->int_rels_per_ext_rel)
9606 {
9607 rel_hash++;
9608 next_erel = 0;
9609 }
9610
9611 if (irela == irelamid)
9612 {
9613 rel_hash = esdo->rela.hashes + esdo->rela.count;
9614 rela_hash_list = rel_hash;
9615 rela_normal = bed->rela_normal;
9616 }
9617
9618 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9619 finfo->info, o,
9620 irela->r_offset);
9621 if (irela->r_offset >= (bfd_vma) -2)
9622 {
9623 /* This is a reloc for a deleted entry or somesuch.
9624 Turn it into an R_*_NONE reloc, at the same
9625 offset as the last reloc. elf_eh_frame.c and
9626 bfd_elf_discard_info rely on reloc offsets
9627 being ordered. */
9628 irela->r_offset = last_offset;
9629 irela->r_info = 0;
9630 irela->r_addend = 0;
9631 continue;
9632 }
9633
9634 irela->r_offset += o->output_offset;
9635
9636 /* Relocs in an executable have to be virtual addresses. */
9637 if (!finfo->info->relocatable)
9638 irela->r_offset += o->output_section->vma;
9639
9640 last_offset = irela->r_offset;
9641
9642 r_symndx = irela->r_info >> r_sym_shift;
9643 if (r_symndx == STN_UNDEF)
9644 continue;
9645
9646 if (r_symndx >= locsymcount
9647 || (elf_bad_symtab (input_bfd)
9648 && finfo->sections[r_symndx] == NULL))
9649 {
9650 struct elf_link_hash_entry *rh;
9651 unsigned long indx;
9652
9653 /* This is a reloc against a global symbol. We
9654 have not yet output all the local symbols, so
9655 we do not know the symbol index of any global
9656 symbol. We set the rel_hash entry for this
9657 reloc to point to the global hash table entry
9658 for this symbol. The symbol index is then
9659 set at the end of bfd_elf_final_link. */
9660 indx = r_symndx - extsymoff;
9661 rh = elf_sym_hashes (input_bfd)[indx];
9662 while (rh->root.type == bfd_link_hash_indirect
9663 || rh->root.type == bfd_link_hash_warning)
9664 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9665
9666 /* Setting the index to -2 tells
9667 elf_link_output_extsym that this symbol is
9668 used by a reloc. */
9669 BFD_ASSERT (rh->indx < 0);
9670 rh->indx = -2;
9671
9672 *rel_hash = rh;
9673
9674 continue;
9675 }
9676
9677 /* This is a reloc against a local symbol. */
9678
9679 *rel_hash = NULL;
9680 sym = isymbuf[r_symndx];
9681 sec = finfo->sections[r_symndx];
9682 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9683 {
9684 /* I suppose the backend ought to fill in the
9685 section of any STT_SECTION symbol against a
9686 processor specific section. */
9687 r_symndx = STN_UNDEF;
9688 if (bfd_is_abs_section (sec))
9689 ;
9690 else if (sec == NULL || sec->owner == NULL)
9691 {
9692 bfd_set_error (bfd_error_bad_value);
9693 return FALSE;
9694 }
9695 else
9696 {
9697 asection *osec = sec->output_section;
9698
9699 /* If we have discarded a section, the output
9700 section will be the absolute section. In
9701 case of discarded SEC_MERGE sections, use
9702 the kept section. relocate_section should
9703 have already handled discarded linkonce
9704 sections. */
9705 if (bfd_is_abs_section (osec)
9706 && sec->kept_section != NULL
9707 && sec->kept_section->output_section != NULL)
9708 {
9709 osec = sec->kept_section->output_section;
9710 irela->r_addend -= osec->vma;
9711 }
9712
9713 if (!bfd_is_abs_section (osec))
9714 {
9715 r_symndx = osec->target_index;
9716 if (r_symndx == STN_UNDEF)
9717 {
9718 struct elf_link_hash_table *htab;
9719 asection *oi;
9720
9721 htab = elf_hash_table (finfo->info);
9722 oi = htab->text_index_section;
9723 if ((osec->flags & SEC_READONLY) == 0
9724 && htab->data_index_section != NULL)
9725 oi = htab->data_index_section;
9726
9727 if (oi != NULL)
9728 {
9729 irela->r_addend += osec->vma - oi->vma;
9730 r_symndx = oi->target_index;
9731 }
9732 }
9733
9734 BFD_ASSERT (r_symndx != STN_UNDEF);
9735 }
9736 }
9737
9738 /* Adjust the addend according to where the
9739 section winds up in the output section. */
9740 if (rela_normal)
9741 irela->r_addend += sec->output_offset;
9742 }
9743 else
9744 {
9745 if (finfo->indices[r_symndx] == -1)
9746 {
9747 unsigned long shlink;
9748 const char *name;
9749 asection *osec;
9750 long indx;
9751
9752 if (finfo->info->strip == strip_all)
9753 {
9754 /* You can't do ld -r -s. */
9755 bfd_set_error (bfd_error_invalid_operation);
9756 return FALSE;
9757 }
9758
9759 /* This symbol was skipped earlier, but
9760 since it is needed by a reloc, we
9761 must output it now. */
9762 shlink = symtab_hdr->sh_link;
9763 name = (bfd_elf_string_from_elf_section
9764 (input_bfd, shlink, sym.st_name));
9765 if (name == NULL)
9766 return FALSE;
9767
9768 osec = sec->output_section;
9769 sym.st_shndx =
9770 _bfd_elf_section_from_bfd_section (output_bfd,
9771 osec);
9772 if (sym.st_shndx == SHN_BAD)
9773 return FALSE;
9774
9775 sym.st_value += sec->output_offset;
9776 if (! finfo->info->relocatable)
9777 {
9778 sym.st_value += osec->vma;
9779 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9780 {
9781 /* STT_TLS symbols are relative to PT_TLS
9782 segment base. */
9783 BFD_ASSERT (elf_hash_table (finfo->info)
9784 ->tls_sec != NULL);
9785 sym.st_value -= (elf_hash_table (finfo->info)
9786 ->tls_sec->vma);
9787 }
9788 }
9789
9790 indx = bfd_get_symcount (output_bfd);
9791 ret = elf_link_output_sym (finfo, name, &sym, sec,
9792 NULL);
9793 if (ret == 0)
9794 return FALSE;
9795 else if (ret == 1)
9796 finfo->indices[r_symndx] = indx;
9797 else
9798 abort ();
9799 }
9800
9801 r_symndx = finfo->indices[r_symndx];
9802 }
9803
9804 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9805 | (irela->r_info & r_type_mask));
9806 }
9807
9808 /* Swap out the relocs. */
9809 input_rel_hdr = esdi->rel.hdr;
9810 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9811 {
9812 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9813 input_rel_hdr,
9814 internal_relocs,
9815 rel_hash_list))
9816 return FALSE;
9817 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9818 * bed->s->int_rels_per_ext_rel);
9819 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9820 }
9821
9822 input_rela_hdr = esdi->rela.hdr;
9823 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9824 {
9825 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9826 input_rela_hdr,
9827 internal_relocs,
9828 rela_hash_list))
9829 return FALSE;
9830 }
9831 }
9832 }
9833
9834 /* Write out the modified section contents. */
9835 if (bed->elf_backend_write_section
9836 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9837 contents))
9838 {
9839 /* Section written out. */
9840 }
9841 else switch (o->sec_info_type)
9842 {
9843 case ELF_INFO_TYPE_STABS:
9844 if (! (_bfd_write_section_stabs
9845 (output_bfd,
9846 &elf_hash_table (finfo->info)->stab_info,
9847 o, &elf_section_data (o)->sec_info, contents)))
9848 return FALSE;
9849 break;
9850 case ELF_INFO_TYPE_MERGE:
9851 if (! _bfd_write_merged_section (output_bfd, o,
9852 elf_section_data (o)->sec_info))
9853 return FALSE;
9854 break;
9855 case ELF_INFO_TYPE_EH_FRAME:
9856 {
9857 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9858 o, contents))
9859 return FALSE;
9860 }
9861 break;
9862 default:
9863 {
9864 /* FIXME: octets_per_byte. */
9865 if (! (o->flags & SEC_EXCLUDE)
9866 && ! bfd_set_section_contents (output_bfd, o->output_section,
9867 contents,
9868 (file_ptr) o->output_offset,
9869 o->size))
9870 return FALSE;
9871 }
9872 break;
9873 }
9874 }
9875
9876 return TRUE;
9877 }
9878
9879 /* Generate a reloc when linking an ELF file. This is a reloc
9880 requested by the linker, and does not come from any input file. This
9881 is used to build constructor and destructor tables when linking
9882 with -Ur. */
9883
9884 static bfd_boolean
9885 elf_reloc_link_order (bfd *output_bfd,
9886 struct bfd_link_info *info,
9887 asection *output_section,
9888 struct bfd_link_order *link_order)
9889 {
9890 reloc_howto_type *howto;
9891 long indx;
9892 bfd_vma offset;
9893 bfd_vma addend;
9894 struct bfd_elf_section_reloc_data *reldata;
9895 struct elf_link_hash_entry **rel_hash_ptr;
9896 Elf_Internal_Shdr *rel_hdr;
9897 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9898 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9899 bfd_byte *erel;
9900 unsigned int i;
9901 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9902
9903 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9904 if (howto == NULL)
9905 {
9906 bfd_set_error (bfd_error_bad_value);
9907 return FALSE;
9908 }
9909
9910 addend = link_order->u.reloc.p->addend;
9911
9912 if (esdo->rel.hdr)
9913 reldata = &esdo->rel;
9914 else if (esdo->rela.hdr)
9915 reldata = &esdo->rela;
9916 else
9917 {
9918 reldata = NULL;
9919 BFD_ASSERT (0);
9920 }
9921
9922 /* Figure out the symbol index. */
9923 rel_hash_ptr = reldata->hashes + reldata->count;
9924 if (link_order->type == bfd_section_reloc_link_order)
9925 {
9926 indx = link_order->u.reloc.p->u.section->target_index;
9927 BFD_ASSERT (indx != 0);
9928 *rel_hash_ptr = NULL;
9929 }
9930 else
9931 {
9932 struct elf_link_hash_entry *h;
9933
9934 /* Treat a reloc against a defined symbol as though it were
9935 actually against the section. */
9936 h = ((struct elf_link_hash_entry *)
9937 bfd_wrapped_link_hash_lookup (output_bfd, info,
9938 link_order->u.reloc.p->u.name,
9939 FALSE, FALSE, TRUE));
9940 if (h != NULL
9941 && (h->root.type == bfd_link_hash_defined
9942 || h->root.type == bfd_link_hash_defweak))
9943 {
9944 asection *section;
9945
9946 section = h->root.u.def.section;
9947 indx = section->output_section->target_index;
9948 *rel_hash_ptr = NULL;
9949 /* It seems that we ought to add the symbol value to the
9950 addend here, but in practice it has already been added
9951 because it was passed to constructor_callback. */
9952 addend += section->output_section->vma + section->output_offset;
9953 }
9954 else if (h != NULL)
9955 {
9956 /* Setting the index to -2 tells elf_link_output_extsym that
9957 this symbol is used by a reloc. */
9958 h->indx = -2;
9959 *rel_hash_ptr = h;
9960 indx = 0;
9961 }
9962 else
9963 {
9964 if (! ((*info->callbacks->unattached_reloc)
9965 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9966 return FALSE;
9967 indx = 0;
9968 }
9969 }
9970
9971 /* If this is an inplace reloc, we must write the addend into the
9972 object file. */
9973 if (howto->partial_inplace && addend != 0)
9974 {
9975 bfd_size_type size;
9976 bfd_reloc_status_type rstat;
9977 bfd_byte *buf;
9978 bfd_boolean ok;
9979 const char *sym_name;
9980
9981 size = (bfd_size_type) bfd_get_reloc_size (howto);
9982 buf = (bfd_byte *) bfd_zmalloc (size);
9983 if (buf == NULL)
9984 return FALSE;
9985 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9986 switch (rstat)
9987 {
9988 case bfd_reloc_ok:
9989 break;
9990
9991 default:
9992 case bfd_reloc_outofrange:
9993 abort ();
9994
9995 case bfd_reloc_overflow:
9996 if (link_order->type == bfd_section_reloc_link_order)
9997 sym_name = bfd_section_name (output_bfd,
9998 link_order->u.reloc.p->u.section);
9999 else
10000 sym_name = link_order->u.reloc.p->u.name;
10001 if (! ((*info->callbacks->reloc_overflow)
10002 (info, NULL, sym_name, howto->name, addend, NULL,
10003 NULL, (bfd_vma) 0)))
10004 {
10005 free (buf);
10006 return FALSE;
10007 }
10008 break;
10009 }
10010 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10011 link_order->offset, size);
10012 free (buf);
10013 if (! ok)
10014 return FALSE;
10015 }
10016
10017 /* The address of a reloc is relative to the section in a
10018 relocatable file, and is a virtual address in an executable
10019 file. */
10020 offset = link_order->offset;
10021 if (! info->relocatable)
10022 offset += output_section->vma;
10023
10024 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10025 {
10026 irel[i].r_offset = offset;
10027 irel[i].r_info = 0;
10028 irel[i].r_addend = 0;
10029 }
10030 if (bed->s->arch_size == 32)
10031 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10032 else
10033 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10034
10035 rel_hdr = reldata->hdr;
10036 erel = rel_hdr->contents;
10037 if (rel_hdr->sh_type == SHT_REL)
10038 {
10039 erel += reldata->count * bed->s->sizeof_rel;
10040 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10041 }
10042 else
10043 {
10044 irel[0].r_addend = addend;
10045 erel += reldata->count * bed->s->sizeof_rela;
10046 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10047 }
10048
10049 ++reldata->count;
10050
10051 return TRUE;
10052 }
10053
10054
10055 /* Get the output vma of the section pointed to by the sh_link field. */
10056
10057 static bfd_vma
10058 elf_get_linked_section_vma (struct bfd_link_order *p)
10059 {
10060 Elf_Internal_Shdr **elf_shdrp;
10061 asection *s;
10062 int elfsec;
10063
10064 s = p->u.indirect.section;
10065 elf_shdrp = elf_elfsections (s->owner);
10066 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10067 elfsec = elf_shdrp[elfsec]->sh_link;
10068 /* PR 290:
10069 The Intel C compiler generates SHT_IA_64_UNWIND with
10070 SHF_LINK_ORDER. But it doesn't set the sh_link or
10071 sh_info fields. Hence we could get the situation
10072 where elfsec is 0. */
10073 if (elfsec == 0)
10074 {
10075 const struct elf_backend_data *bed
10076 = get_elf_backend_data (s->owner);
10077 if (bed->link_order_error_handler)
10078 bed->link_order_error_handler
10079 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10080 return 0;
10081 }
10082 else
10083 {
10084 s = elf_shdrp[elfsec]->bfd_section;
10085 return s->output_section->vma + s->output_offset;
10086 }
10087 }
10088
10089
10090 /* Compare two sections based on the locations of the sections they are
10091 linked to. Used by elf_fixup_link_order. */
10092
10093 static int
10094 compare_link_order (const void * a, const void * b)
10095 {
10096 bfd_vma apos;
10097 bfd_vma bpos;
10098
10099 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10100 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10101 if (apos < bpos)
10102 return -1;
10103 return apos > bpos;
10104 }
10105
10106
10107 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10108 order as their linked sections. Returns false if this could not be done
10109 because an output section includes both ordered and unordered
10110 sections. Ideally we'd do this in the linker proper. */
10111
10112 static bfd_boolean
10113 elf_fixup_link_order (bfd *abfd, asection *o)
10114 {
10115 int seen_linkorder;
10116 int seen_other;
10117 int n;
10118 struct bfd_link_order *p;
10119 bfd *sub;
10120 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10121 unsigned elfsec;
10122 struct bfd_link_order **sections;
10123 asection *s, *other_sec, *linkorder_sec;
10124 bfd_vma offset;
10125
10126 other_sec = NULL;
10127 linkorder_sec = NULL;
10128 seen_other = 0;
10129 seen_linkorder = 0;
10130 for (p = o->map_head.link_order; p != NULL; p = p->next)
10131 {
10132 if (p->type == bfd_indirect_link_order)
10133 {
10134 s = p->u.indirect.section;
10135 sub = s->owner;
10136 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10137 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10138 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10139 && elfsec < elf_numsections (sub)
10140 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10141 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10142 {
10143 seen_linkorder++;
10144 linkorder_sec = s;
10145 }
10146 else
10147 {
10148 seen_other++;
10149 other_sec = s;
10150 }
10151 }
10152 else
10153 seen_other++;
10154
10155 if (seen_other && seen_linkorder)
10156 {
10157 if (other_sec && linkorder_sec)
10158 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10159 o, linkorder_sec,
10160 linkorder_sec->owner, other_sec,
10161 other_sec->owner);
10162 else
10163 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10164 o);
10165 bfd_set_error (bfd_error_bad_value);
10166 return FALSE;
10167 }
10168 }
10169
10170 if (!seen_linkorder)
10171 return TRUE;
10172
10173 sections = (struct bfd_link_order **)
10174 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10175 if (sections == NULL)
10176 return FALSE;
10177 seen_linkorder = 0;
10178
10179 for (p = o->map_head.link_order; p != NULL; p = p->next)
10180 {
10181 sections[seen_linkorder++] = p;
10182 }
10183 /* Sort the input sections in the order of their linked section. */
10184 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10185 compare_link_order);
10186
10187 /* Change the offsets of the sections. */
10188 offset = 0;
10189 for (n = 0; n < seen_linkorder; n++)
10190 {
10191 s = sections[n]->u.indirect.section;
10192 offset &= ~(bfd_vma) 0 << s->alignment_power;
10193 s->output_offset = offset;
10194 sections[n]->offset = offset;
10195 /* FIXME: octets_per_byte. */
10196 offset += sections[n]->size;
10197 }
10198
10199 free (sections);
10200 return TRUE;
10201 }
10202
10203
10204 /* Do the final step of an ELF link. */
10205
10206 bfd_boolean
10207 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10208 {
10209 bfd_boolean dynamic;
10210 bfd_boolean emit_relocs;
10211 bfd *dynobj;
10212 struct elf_final_link_info finfo;
10213 asection *o;
10214 struct bfd_link_order *p;
10215 bfd *sub;
10216 bfd_size_type max_contents_size;
10217 bfd_size_type max_external_reloc_size;
10218 bfd_size_type max_internal_reloc_count;
10219 bfd_size_type max_sym_count;
10220 bfd_size_type max_sym_shndx_count;
10221 file_ptr off;
10222 Elf_Internal_Sym elfsym;
10223 unsigned int i;
10224 Elf_Internal_Shdr *symtab_hdr;
10225 Elf_Internal_Shdr *symtab_shndx_hdr;
10226 Elf_Internal_Shdr *symstrtab_hdr;
10227 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10228 struct elf_outext_info eoinfo;
10229 bfd_boolean merged;
10230 size_t relativecount = 0;
10231 asection *reldyn = 0;
10232 bfd_size_type amt;
10233 asection *attr_section = NULL;
10234 bfd_vma attr_size = 0;
10235 const char *std_attrs_section;
10236
10237 if (! is_elf_hash_table (info->hash))
10238 return FALSE;
10239
10240 if (info->shared)
10241 abfd->flags |= DYNAMIC;
10242
10243 dynamic = elf_hash_table (info)->dynamic_sections_created;
10244 dynobj = elf_hash_table (info)->dynobj;
10245
10246 emit_relocs = (info->relocatable
10247 || info->emitrelocations);
10248
10249 finfo.info = info;
10250 finfo.output_bfd = abfd;
10251 finfo.symstrtab = _bfd_elf_stringtab_init ();
10252 if (finfo.symstrtab == NULL)
10253 return FALSE;
10254
10255 if (! dynamic)
10256 {
10257 finfo.dynsym_sec = NULL;
10258 finfo.hash_sec = NULL;
10259 finfo.symver_sec = NULL;
10260 }
10261 else
10262 {
10263 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10264 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10265 BFD_ASSERT (finfo.dynsym_sec != NULL);
10266 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10267 /* Note that it is OK if symver_sec is NULL. */
10268 }
10269
10270 finfo.contents = NULL;
10271 finfo.external_relocs = NULL;
10272 finfo.internal_relocs = NULL;
10273 finfo.external_syms = NULL;
10274 finfo.locsym_shndx = NULL;
10275 finfo.internal_syms = NULL;
10276 finfo.indices = NULL;
10277 finfo.sections = NULL;
10278 finfo.symbuf = NULL;
10279 finfo.symshndxbuf = NULL;
10280 finfo.symbuf_count = 0;
10281 finfo.shndxbuf_size = 0;
10282
10283 /* The object attributes have been merged. Remove the input
10284 sections from the link, and set the contents of the output
10285 secton. */
10286 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10287 for (o = abfd->sections; o != NULL; o = o->next)
10288 {
10289 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10290 || strcmp (o->name, ".gnu.attributes") == 0)
10291 {
10292 for (p = o->map_head.link_order; p != NULL; p = p->next)
10293 {
10294 asection *input_section;
10295
10296 if (p->type != bfd_indirect_link_order)
10297 continue;
10298 input_section = p->u.indirect.section;
10299 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10300 elf_link_input_bfd ignores this section. */
10301 input_section->flags &= ~SEC_HAS_CONTENTS;
10302 }
10303
10304 attr_size = bfd_elf_obj_attr_size (abfd);
10305 if (attr_size)
10306 {
10307 bfd_set_section_size (abfd, o, attr_size);
10308 attr_section = o;
10309 /* Skip this section later on. */
10310 o->map_head.link_order = NULL;
10311 }
10312 else
10313 o->flags |= SEC_EXCLUDE;
10314 }
10315 }
10316
10317 /* Count up the number of relocations we will output for each output
10318 section, so that we know the sizes of the reloc sections. We
10319 also figure out some maximum sizes. */
10320 max_contents_size = 0;
10321 max_external_reloc_size = 0;
10322 max_internal_reloc_count = 0;
10323 max_sym_count = 0;
10324 max_sym_shndx_count = 0;
10325 merged = FALSE;
10326 for (o = abfd->sections; o != NULL; o = o->next)
10327 {
10328 struct bfd_elf_section_data *esdo = elf_section_data (o);
10329 o->reloc_count = 0;
10330
10331 for (p = o->map_head.link_order; p != NULL; p = p->next)
10332 {
10333 unsigned int reloc_count = 0;
10334 struct bfd_elf_section_data *esdi = NULL;
10335
10336 if (p->type == bfd_section_reloc_link_order
10337 || p->type == bfd_symbol_reloc_link_order)
10338 reloc_count = 1;
10339 else if (p->type == bfd_indirect_link_order)
10340 {
10341 asection *sec;
10342
10343 sec = p->u.indirect.section;
10344 esdi = elf_section_data (sec);
10345
10346 /* Mark all sections which are to be included in the
10347 link. This will normally be every section. We need
10348 to do this so that we can identify any sections which
10349 the linker has decided to not include. */
10350 sec->linker_mark = TRUE;
10351
10352 if (sec->flags & SEC_MERGE)
10353 merged = TRUE;
10354
10355 if (info->relocatable || info->emitrelocations)
10356 reloc_count = sec->reloc_count;
10357 else if (bed->elf_backend_count_relocs)
10358 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10359
10360 if (sec->rawsize > max_contents_size)
10361 max_contents_size = sec->rawsize;
10362 if (sec->size > max_contents_size)
10363 max_contents_size = sec->size;
10364
10365 /* We are interested in just local symbols, not all
10366 symbols. */
10367 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10368 && (sec->owner->flags & DYNAMIC) == 0)
10369 {
10370 size_t sym_count;
10371
10372 if (elf_bad_symtab (sec->owner))
10373 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10374 / bed->s->sizeof_sym);
10375 else
10376 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10377
10378 if (sym_count > max_sym_count)
10379 max_sym_count = sym_count;
10380
10381 if (sym_count > max_sym_shndx_count
10382 && elf_symtab_shndx (sec->owner) != 0)
10383 max_sym_shndx_count = sym_count;
10384
10385 if ((sec->flags & SEC_RELOC) != 0)
10386 {
10387 size_t ext_size = 0;
10388
10389 if (esdi->rel.hdr != NULL)
10390 ext_size = esdi->rel.hdr->sh_size;
10391 if (esdi->rela.hdr != NULL)
10392 ext_size += esdi->rela.hdr->sh_size;
10393
10394 if (ext_size > max_external_reloc_size)
10395 max_external_reloc_size = ext_size;
10396 if (sec->reloc_count > max_internal_reloc_count)
10397 max_internal_reloc_count = sec->reloc_count;
10398 }
10399 }
10400 }
10401
10402 if (reloc_count == 0)
10403 continue;
10404
10405 o->reloc_count += reloc_count;
10406
10407 if (p->type == bfd_indirect_link_order
10408 && (info->relocatable || info->emitrelocations))
10409 {
10410 if (esdi->rel.hdr)
10411 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10412 if (esdi->rela.hdr)
10413 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10414 }
10415 else
10416 {
10417 if (o->use_rela_p)
10418 esdo->rela.count += reloc_count;
10419 else
10420 esdo->rel.count += reloc_count;
10421 }
10422 }
10423
10424 if (o->reloc_count > 0)
10425 o->flags |= SEC_RELOC;
10426 else
10427 {
10428 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10429 set it (this is probably a bug) and if it is set
10430 assign_section_numbers will create a reloc section. */
10431 o->flags &=~ SEC_RELOC;
10432 }
10433
10434 /* If the SEC_ALLOC flag is not set, force the section VMA to
10435 zero. This is done in elf_fake_sections as well, but forcing
10436 the VMA to 0 here will ensure that relocs against these
10437 sections are handled correctly. */
10438 if ((o->flags & SEC_ALLOC) == 0
10439 && ! o->user_set_vma)
10440 o->vma = 0;
10441 }
10442
10443 if (! info->relocatable && merged)
10444 elf_link_hash_traverse (elf_hash_table (info),
10445 _bfd_elf_link_sec_merge_syms, abfd);
10446
10447 /* Figure out the file positions for everything but the symbol table
10448 and the relocs. We set symcount to force assign_section_numbers
10449 to create a symbol table. */
10450 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10451 BFD_ASSERT (! abfd->output_has_begun);
10452 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10453 goto error_return;
10454
10455 /* Set sizes, and assign file positions for reloc sections. */
10456 for (o = abfd->sections; o != NULL; o = o->next)
10457 {
10458 struct bfd_elf_section_data *esdo = elf_section_data (o);
10459 if ((o->flags & SEC_RELOC) != 0)
10460 {
10461 if (esdo->rel.hdr
10462 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10463 goto error_return;
10464
10465 if (esdo->rela.hdr
10466 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10467 goto error_return;
10468 }
10469
10470 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10471 to count upwards while actually outputting the relocations. */
10472 esdo->rel.count = 0;
10473 esdo->rela.count = 0;
10474 }
10475
10476 _bfd_elf_assign_file_positions_for_relocs (abfd);
10477
10478 /* We have now assigned file positions for all the sections except
10479 .symtab and .strtab. We start the .symtab section at the current
10480 file position, and write directly to it. We build the .strtab
10481 section in memory. */
10482 bfd_get_symcount (abfd) = 0;
10483 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10484 /* sh_name is set in prep_headers. */
10485 symtab_hdr->sh_type = SHT_SYMTAB;
10486 /* sh_flags, sh_addr and sh_size all start off zero. */
10487 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10488 /* sh_link is set in assign_section_numbers. */
10489 /* sh_info is set below. */
10490 /* sh_offset is set just below. */
10491 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10492
10493 off = elf_tdata (abfd)->next_file_pos;
10494 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10495
10496 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10497 incorrect. We do not yet know the size of the .symtab section.
10498 We correct next_file_pos below, after we do know the size. */
10499
10500 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10501 continuously seeking to the right position in the file. */
10502 if (! info->keep_memory || max_sym_count < 20)
10503 finfo.symbuf_size = 20;
10504 else
10505 finfo.symbuf_size = max_sym_count;
10506 amt = finfo.symbuf_size;
10507 amt *= bed->s->sizeof_sym;
10508 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10509 if (finfo.symbuf == NULL)
10510 goto error_return;
10511 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10512 {
10513 /* Wild guess at number of output symbols. realloc'd as needed. */
10514 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10515 finfo.shndxbuf_size = amt;
10516 amt *= sizeof (Elf_External_Sym_Shndx);
10517 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10518 if (finfo.symshndxbuf == NULL)
10519 goto error_return;
10520 }
10521
10522 /* Start writing out the symbol table. The first symbol is always a
10523 dummy symbol. */
10524 if (info->strip != strip_all
10525 || emit_relocs)
10526 {
10527 elfsym.st_value = 0;
10528 elfsym.st_size = 0;
10529 elfsym.st_info = 0;
10530 elfsym.st_other = 0;
10531 elfsym.st_shndx = SHN_UNDEF;
10532 elfsym.st_target_internal = 0;
10533 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10534 NULL) != 1)
10535 goto error_return;
10536 }
10537
10538 /* Output a symbol for each section. We output these even if we are
10539 discarding local symbols, since they are used for relocs. These
10540 symbols have no names. We store the index of each one in the
10541 index field of the section, so that we can find it again when
10542 outputting relocs. */
10543 if (info->strip != strip_all
10544 || emit_relocs)
10545 {
10546 elfsym.st_size = 0;
10547 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10548 elfsym.st_other = 0;
10549 elfsym.st_value = 0;
10550 elfsym.st_target_internal = 0;
10551 for (i = 1; i < elf_numsections (abfd); i++)
10552 {
10553 o = bfd_section_from_elf_index (abfd, i);
10554 if (o != NULL)
10555 {
10556 o->target_index = bfd_get_symcount (abfd);
10557 elfsym.st_shndx = i;
10558 if (!info->relocatable)
10559 elfsym.st_value = o->vma;
10560 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10561 goto error_return;
10562 }
10563 }
10564 }
10565
10566 /* Allocate some memory to hold information read in from the input
10567 files. */
10568 if (max_contents_size != 0)
10569 {
10570 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10571 if (finfo.contents == NULL)
10572 goto error_return;
10573 }
10574
10575 if (max_external_reloc_size != 0)
10576 {
10577 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10578 if (finfo.external_relocs == NULL)
10579 goto error_return;
10580 }
10581
10582 if (max_internal_reloc_count != 0)
10583 {
10584 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10585 amt *= sizeof (Elf_Internal_Rela);
10586 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10587 if (finfo.internal_relocs == NULL)
10588 goto error_return;
10589 }
10590
10591 if (max_sym_count != 0)
10592 {
10593 amt = max_sym_count * bed->s->sizeof_sym;
10594 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10595 if (finfo.external_syms == NULL)
10596 goto error_return;
10597
10598 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10599 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10600 if (finfo.internal_syms == NULL)
10601 goto error_return;
10602
10603 amt = max_sym_count * sizeof (long);
10604 finfo.indices = (long int *) bfd_malloc (amt);
10605 if (finfo.indices == NULL)
10606 goto error_return;
10607
10608 amt = max_sym_count * sizeof (asection *);
10609 finfo.sections = (asection **) bfd_malloc (amt);
10610 if (finfo.sections == NULL)
10611 goto error_return;
10612 }
10613
10614 if (max_sym_shndx_count != 0)
10615 {
10616 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10617 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10618 if (finfo.locsym_shndx == NULL)
10619 goto error_return;
10620 }
10621
10622 if (elf_hash_table (info)->tls_sec)
10623 {
10624 bfd_vma base, end = 0;
10625 asection *sec;
10626
10627 for (sec = elf_hash_table (info)->tls_sec;
10628 sec && (sec->flags & SEC_THREAD_LOCAL);
10629 sec = sec->next)
10630 {
10631 bfd_size_type size = sec->size;
10632
10633 if (size == 0
10634 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10635 {
10636 struct bfd_link_order *ord = sec->map_tail.link_order;
10637
10638 if (ord != NULL)
10639 size = ord->offset + ord->size;
10640 }
10641 end = sec->vma + size;
10642 }
10643 base = elf_hash_table (info)->tls_sec->vma;
10644 /* Only align end of TLS section if static TLS doesn't have special
10645 alignment requirements. */
10646 if (bed->static_tls_alignment == 1)
10647 end = align_power (end,
10648 elf_hash_table (info)->tls_sec->alignment_power);
10649 elf_hash_table (info)->tls_size = end - base;
10650 }
10651
10652 /* Reorder SHF_LINK_ORDER sections. */
10653 for (o = abfd->sections; o != NULL; o = o->next)
10654 {
10655 if (!elf_fixup_link_order (abfd, o))
10656 return FALSE;
10657 }
10658
10659 /* Since ELF permits relocations to be against local symbols, we
10660 must have the local symbols available when we do the relocations.
10661 Since we would rather only read the local symbols once, and we
10662 would rather not keep them in memory, we handle all the
10663 relocations for a single input file at the same time.
10664
10665 Unfortunately, there is no way to know the total number of local
10666 symbols until we have seen all of them, and the local symbol
10667 indices precede the global symbol indices. This means that when
10668 we are generating relocatable output, and we see a reloc against
10669 a global symbol, we can not know the symbol index until we have
10670 finished examining all the local symbols to see which ones we are
10671 going to output. To deal with this, we keep the relocations in
10672 memory, and don't output them until the end of the link. This is
10673 an unfortunate waste of memory, but I don't see a good way around
10674 it. Fortunately, it only happens when performing a relocatable
10675 link, which is not the common case. FIXME: If keep_memory is set
10676 we could write the relocs out and then read them again; I don't
10677 know how bad the memory loss will be. */
10678
10679 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10680 sub->output_has_begun = FALSE;
10681 for (o = abfd->sections; o != NULL; o = o->next)
10682 {
10683 for (p = o->map_head.link_order; p != NULL; p = p->next)
10684 {
10685 if (p->type == bfd_indirect_link_order
10686 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10687 == bfd_target_elf_flavour)
10688 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10689 {
10690 if (! sub->output_has_begun)
10691 {
10692 if (! elf_link_input_bfd (&finfo, sub))
10693 goto error_return;
10694 sub->output_has_begun = TRUE;
10695 }
10696 }
10697 else if (p->type == bfd_section_reloc_link_order
10698 || p->type == bfd_symbol_reloc_link_order)
10699 {
10700 if (! elf_reloc_link_order (abfd, info, o, p))
10701 goto error_return;
10702 }
10703 else
10704 {
10705 if (! _bfd_default_link_order (abfd, info, o, p))
10706 {
10707 if (p->type == bfd_indirect_link_order
10708 && (bfd_get_flavour (sub)
10709 == bfd_target_elf_flavour)
10710 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10711 != bed->s->elfclass))
10712 {
10713 const char *iclass, *oclass;
10714
10715 if (bed->s->elfclass == ELFCLASS64)
10716 {
10717 iclass = "ELFCLASS32";
10718 oclass = "ELFCLASS64";
10719 }
10720 else
10721 {
10722 iclass = "ELFCLASS64";
10723 oclass = "ELFCLASS32";
10724 }
10725
10726 bfd_set_error (bfd_error_wrong_format);
10727 (*_bfd_error_handler)
10728 (_("%B: file class %s incompatible with %s"),
10729 sub, iclass, oclass);
10730 }
10731
10732 goto error_return;
10733 }
10734 }
10735 }
10736 }
10737
10738 /* Free symbol buffer if needed. */
10739 if (!info->reduce_memory_overheads)
10740 {
10741 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10742 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10743 && elf_tdata (sub)->symbuf)
10744 {
10745 free (elf_tdata (sub)->symbuf);
10746 elf_tdata (sub)->symbuf = NULL;
10747 }
10748 }
10749
10750 /* Output any global symbols that got converted to local in a
10751 version script or due to symbol visibility. We do this in a
10752 separate step since ELF requires all local symbols to appear
10753 prior to any global symbols. FIXME: We should only do this if
10754 some global symbols were, in fact, converted to become local.
10755 FIXME: Will this work correctly with the Irix 5 linker? */
10756 eoinfo.failed = FALSE;
10757 eoinfo.finfo = &finfo;
10758 eoinfo.localsyms = TRUE;
10759 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10760 &eoinfo);
10761 if (eoinfo.failed)
10762 return FALSE;
10763
10764 /* If backend needs to output some local symbols not present in the hash
10765 table, do it now. */
10766 if (bed->elf_backend_output_arch_local_syms)
10767 {
10768 typedef int (*out_sym_func)
10769 (void *, const char *, Elf_Internal_Sym *, asection *,
10770 struct elf_link_hash_entry *);
10771
10772 if (! ((*bed->elf_backend_output_arch_local_syms)
10773 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10774 return FALSE;
10775 }
10776
10777 /* That wrote out all the local symbols. Finish up the symbol table
10778 with the global symbols. Even if we want to strip everything we
10779 can, we still need to deal with those global symbols that got
10780 converted to local in a version script. */
10781
10782 /* The sh_info field records the index of the first non local symbol. */
10783 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10784
10785 if (dynamic
10786 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10787 {
10788 Elf_Internal_Sym sym;
10789 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10790 long last_local = 0;
10791
10792 /* Write out the section symbols for the output sections. */
10793 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10794 {
10795 asection *s;
10796
10797 sym.st_size = 0;
10798 sym.st_name = 0;
10799 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10800 sym.st_other = 0;
10801 sym.st_target_internal = 0;
10802
10803 for (s = abfd->sections; s != NULL; s = s->next)
10804 {
10805 int indx;
10806 bfd_byte *dest;
10807 long dynindx;
10808
10809 dynindx = elf_section_data (s)->dynindx;
10810 if (dynindx <= 0)
10811 continue;
10812 indx = elf_section_data (s)->this_idx;
10813 BFD_ASSERT (indx > 0);
10814 sym.st_shndx = indx;
10815 if (! check_dynsym (abfd, &sym))
10816 return FALSE;
10817 sym.st_value = s->vma;
10818 dest = dynsym + dynindx * bed->s->sizeof_sym;
10819 if (last_local < dynindx)
10820 last_local = dynindx;
10821 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10822 }
10823 }
10824
10825 /* Write out the local dynsyms. */
10826 if (elf_hash_table (info)->dynlocal)
10827 {
10828 struct elf_link_local_dynamic_entry *e;
10829 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10830 {
10831 asection *s;
10832 bfd_byte *dest;
10833
10834 /* Copy the internal symbol and turn off visibility.
10835 Note that we saved a word of storage and overwrote
10836 the original st_name with the dynstr_index. */
10837 sym = e->isym;
10838 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10839
10840 s = bfd_section_from_elf_index (e->input_bfd,
10841 e->isym.st_shndx);
10842 if (s != NULL)
10843 {
10844 sym.st_shndx =
10845 elf_section_data (s->output_section)->this_idx;
10846 if (! check_dynsym (abfd, &sym))
10847 return FALSE;
10848 sym.st_value = (s->output_section->vma
10849 + s->output_offset
10850 + e->isym.st_value);
10851 }
10852
10853 if (last_local < e->dynindx)
10854 last_local = e->dynindx;
10855
10856 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10857 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10858 }
10859 }
10860
10861 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10862 last_local + 1;
10863 }
10864
10865 /* We get the global symbols from the hash table. */
10866 eoinfo.failed = FALSE;
10867 eoinfo.localsyms = FALSE;
10868 eoinfo.finfo = &finfo;
10869 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10870 &eoinfo);
10871 if (eoinfo.failed)
10872 return FALSE;
10873
10874 /* If backend needs to output some symbols not present in the hash
10875 table, do it now. */
10876 if (bed->elf_backend_output_arch_syms)
10877 {
10878 typedef int (*out_sym_func)
10879 (void *, const char *, Elf_Internal_Sym *, asection *,
10880 struct elf_link_hash_entry *);
10881
10882 if (! ((*bed->elf_backend_output_arch_syms)
10883 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10884 return FALSE;
10885 }
10886
10887 /* Flush all symbols to the file. */
10888 if (! elf_link_flush_output_syms (&finfo, bed))
10889 return FALSE;
10890
10891 /* Now we know the size of the symtab section. */
10892 off += symtab_hdr->sh_size;
10893
10894 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10895 if (symtab_shndx_hdr->sh_name != 0)
10896 {
10897 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10898 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10899 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10900 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10901 symtab_shndx_hdr->sh_size = amt;
10902
10903 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10904 off, TRUE);
10905
10906 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10907 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10908 return FALSE;
10909 }
10910
10911
10912 /* Finish up and write out the symbol string table (.strtab)
10913 section. */
10914 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10915 /* sh_name was set in prep_headers. */
10916 symstrtab_hdr->sh_type = SHT_STRTAB;
10917 symstrtab_hdr->sh_flags = 0;
10918 symstrtab_hdr->sh_addr = 0;
10919 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10920 symstrtab_hdr->sh_entsize = 0;
10921 symstrtab_hdr->sh_link = 0;
10922 symstrtab_hdr->sh_info = 0;
10923 /* sh_offset is set just below. */
10924 symstrtab_hdr->sh_addralign = 1;
10925
10926 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10927 elf_tdata (abfd)->next_file_pos = off;
10928
10929 if (bfd_get_symcount (abfd) > 0)
10930 {
10931 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10932 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10933 return FALSE;
10934 }
10935
10936 /* Adjust the relocs to have the correct symbol indices. */
10937 for (o = abfd->sections; o != NULL; o = o->next)
10938 {
10939 struct bfd_elf_section_data *esdo = elf_section_data (o);
10940 if ((o->flags & SEC_RELOC) == 0)
10941 continue;
10942
10943 if (esdo->rel.hdr != NULL)
10944 elf_link_adjust_relocs (abfd, &esdo->rel);
10945 if (esdo->rela.hdr != NULL)
10946 elf_link_adjust_relocs (abfd, &esdo->rela);
10947
10948 /* Set the reloc_count field to 0 to prevent write_relocs from
10949 trying to swap the relocs out itself. */
10950 o->reloc_count = 0;
10951 }
10952
10953 if (dynamic && info->combreloc && dynobj != NULL)
10954 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10955
10956 /* If we are linking against a dynamic object, or generating a
10957 shared library, finish up the dynamic linking information. */
10958 if (dynamic)
10959 {
10960 bfd_byte *dyncon, *dynconend;
10961
10962 /* Fix up .dynamic entries. */
10963 o = bfd_get_section_by_name (dynobj, ".dynamic");
10964 BFD_ASSERT (o != NULL);
10965
10966 dyncon = o->contents;
10967 dynconend = o->contents + o->size;
10968 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10969 {
10970 Elf_Internal_Dyn dyn;
10971 const char *name;
10972 unsigned int type;
10973
10974 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10975
10976 switch (dyn.d_tag)
10977 {
10978 default:
10979 continue;
10980 case DT_NULL:
10981 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10982 {
10983 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10984 {
10985 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10986 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10987 default: continue;
10988 }
10989 dyn.d_un.d_val = relativecount;
10990 relativecount = 0;
10991 break;
10992 }
10993 continue;
10994
10995 case DT_INIT:
10996 name = info->init_function;
10997 goto get_sym;
10998 case DT_FINI:
10999 name = info->fini_function;
11000 get_sym:
11001 {
11002 struct elf_link_hash_entry *h;
11003
11004 h = elf_link_hash_lookup (elf_hash_table (info), name,
11005 FALSE, FALSE, TRUE);
11006 if (h != NULL
11007 && (h->root.type == bfd_link_hash_defined
11008 || h->root.type == bfd_link_hash_defweak))
11009 {
11010 dyn.d_un.d_ptr = h->root.u.def.value;
11011 o = h->root.u.def.section;
11012 if (o->output_section != NULL)
11013 dyn.d_un.d_ptr += (o->output_section->vma
11014 + o->output_offset);
11015 else
11016 {
11017 /* The symbol is imported from another shared
11018 library and does not apply to this one. */
11019 dyn.d_un.d_ptr = 0;
11020 }
11021 break;
11022 }
11023 }
11024 continue;
11025
11026 case DT_PREINIT_ARRAYSZ:
11027 name = ".preinit_array";
11028 goto get_size;
11029 case DT_INIT_ARRAYSZ:
11030 name = ".init_array";
11031 goto get_size;
11032 case DT_FINI_ARRAYSZ:
11033 name = ".fini_array";
11034 get_size:
11035 o = bfd_get_section_by_name (abfd, name);
11036 if (o == NULL)
11037 {
11038 (*_bfd_error_handler)
11039 (_("%B: could not find output section %s"), abfd, name);
11040 goto error_return;
11041 }
11042 if (o->size == 0)
11043 (*_bfd_error_handler)
11044 (_("warning: %s section has zero size"), name);
11045 dyn.d_un.d_val = o->size;
11046 break;
11047
11048 case DT_PREINIT_ARRAY:
11049 name = ".preinit_array";
11050 goto get_vma;
11051 case DT_INIT_ARRAY:
11052 name = ".init_array";
11053 goto get_vma;
11054 case DT_FINI_ARRAY:
11055 name = ".fini_array";
11056 goto get_vma;
11057
11058 case DT_HASH:
11059 name = ".hash";
11060 goto get_vma;
11061 case DT_GNU_HASH:
11062 name = ".gnu.hash";
11063 goto get_vma;
11064 case DT_STRTAB:
11065 name = ".dynstr";
11066 goto get_vma;
11067 case DT_SYMTAB:
11068 name = ".dynsym";
11069 goto get_vma;
11070 case DT_VERDEF:
11071 name = ".gnu.version_d";
11072 goto get_vma;
11073 case DT_VERNEED:
11074 name = ".gnu.version_r";
11075 goto get_vma;
11076 case DT_VERSYM:
11077 name = ".gnu.version";
11078 get_vma:
11079 o = bfd_get_section_by_name (abfd, name);
11080 if (o == NULL)
11081 {
11082 (*_bfd_error_handler)
11083 (_("%B: could not find output section %s"), abfd, name);
11084 goto error_return;
11085 }
11086 dyn.d_un.d_ptr = o->vma;
11087 break;
11088
11089 case DT_REL:
11090 case DT_RELA:
11091 case DT_RELSZ:
11092 case DT_RELASZ:
11093 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11094 type = SHT_REL;
11095 else
11096 type = SHT_RELA;
11097 dyn.d_un.d_val = 0;
11098 dyn.d_un.d_ptr = 0;
11099 for (i = 1; i < elf_numsections (abfd); i++)
11100 {
11101 Elf_Internal_Shdr *hdr;
11102
11103 hdr = elf_elfsections (abfd)[i];
11104 if (hdr->sh_type == type
11105 && (hdr->sh_flags & SHF_ALLOC) != 0)
11106 {
11107 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11108 dyn.d_un.d_val += hdr->sh_size;
11109 else
11110 {
11111 if (dyn.d_un.d_ptr == 0
11112 || hdr->sh_addr < dyn.d_un.d_ptr)
11113 dyn.d_un.d_ptr = hdr->sh_addr;
11114 }
11115 }
11116 }
11117 break;
11118 }
11119 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11120 }
11121 }
11122
11123 /* If we have created any dynamic sections, then output them. */
11124 if (dynobj != NULL)
11125 {
11126 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11127 goto error_return;
11128
11129 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11130 if (info->warn_shared_textrel && info->shared)
11131 {
11132 bfd_byte *dyncon, *dynconend;
11133
11134 /* Fix up .dynamic entries. */
11135 o = bfd_get_section_by_name (dynobj, ".dynamic");
11136 BFD_ASSERT (o != NULL);
11137
11138 dyncon = o->contents;
11139 dynconend = o->contents + o->size;
11140 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11141 {
11142 Elf_Internal_Dyn dyn;
11143
11144 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11145
11146 if (dyn.d_tag == DT_TEXTREL)
11147 {
11148 info->callbacks->einfo
11149 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11150 break;
11151 }
11152 }
11153 }
11154
11155 for (o = dynobj->sections; o != NULL; o = o->next)
11156 {
11157 if ((o->flags & SEC_HAS_CONTENTS) == 0
11158 || o->size == 0
11159 || o->output_section == bfd_abs_section_ptr)
11160 continue;
11161 if ((o->flags & SEC_LINKER_CREATED) == 0)
11162 {
11163 /* At this point, we are only interested in sections
11164 created by _bfd_elf_link_create_dynamic_sections. */
11165 continue;
11166 }
11167 if (elf_hash_table (info)->stab_info.stabstr == o)
11168 continue;
11169 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11170 continue;
11171 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11172 != SHT_STRTAB)
11173 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11174 {
11175 /* FIXME: octets_per_byte. */
11176 if (! bfd_set_section_contents (abfd, o->output_section,
11177 o->contents,
11178 (file_ptr) o->output_offset,
11179 o->size))
11180 goto error_return;
11181 }
11182 else
11183 {
11184 /* The contents of the .dynstr section are actually in a
11185 stringtab. */
11186 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11187 if (bfd_seek (abfd, off, SEEK_SET) != 0
11188 || ! _bfd_elf_strtab_emit (abfd,
11189 elf_hash_table (info)->dynstr))
11190 goto error_return;
11191 }
11192 }
11193 }
11194
11195 if (info->relocatable)
11196 {
11197 bfd_boolean failed = FALSE;
11198
11199 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11200 if (failed)
11201 goto error_return;
11202 }
11203
11204 /* If we have optimized stabs strings, output them. */
11205 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11206 {
11207 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11208 goto error_return;
11209 }
11210
11211 if (info->eh_frame_hdr)
11212 {
11213 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11214 goto error_return;
11215 }
11216
11217 if (finfo.symstrtab != NULL)
11218 _bfd_stringtab_free (finfo.symstrtab);
11219 if (finfo.contents != NULL)
11220 free (finfo.contents);
11221 if (finfo.external_relocs != NULL)
11222 free (finfo.external_relocs);
11223 if (finfo.internal_relocs != NULL)
11224 free (finfo.internal_relocs);
11225 if (finfo.external_syms != NULL)
11226 free (finfo.external_syms);
11227 if (finfo.locsym_shndx != NULL)
11228 free (finfo.locsym_shndx);
11229 if (finfo.internal_syms != NULL)
11230 free (finfo.internal_syms);
11231 if (finfo.indices != NULL)
11232 free (finfo.indices);
11233 if (finfo.sections != NULL)
11234 free (finfo.sections);
11235 if (finfo.symbuf != NULL)
11236 free (finfo.symbuf);
11237 if (finfo.symshndxbuf != NULL)
11238 free (finfo.symshndxbuf);
11239 for (o = abfd->sections; o != NULL; o = o->next)
11240 {
11241 struct bfd_elf_section_data *esdo = elf_section_data (o);
11242 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11243 free (esdo->rel.hashes);
11244 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11245 free (esdo->rela.hashes);
11246 }
11247
11248 elf_tdata (abfd)->linker = TRUE;
11249
11250 if (attr_section)
11251 {
11252 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11253 if (contents == NULL)
11254 return FALSE; /* Bail out and fail. */
11255 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11256 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11257 free (contents);
11258 }
11259
11260 return TRUE;
11261
11262 error_return:
11263 if (finfo.symstrtab != NULL)
11264 _bfd_stringtab_free (finfo.symstrtab);
11265 if (finfo.contents != NULL)
11266 free (finfo.contents);
11267 if (finfo.external_relocs != NULL)
11268 free (finfo.external_relocs);
11269 if (finfo.internal_relocs != NULL)
11270 free (finfo.internal_relocs);
11271 if (finfo.external_syms != NULL)
11272 free (finfo.external_syms);
11273 if (finfo.locsym_shndx != NULL)
11274 free (finfo.locsym_shndx);
11275 if (finfo.internal_syms != NULL)
11276 free (finfo.internal_syms);
11277 if (finfo.indices != NULL)
11278 free (finfo.indices);
11279 if (finfo.sections != NULL)
11280 free (finfo.sections);
11281 if (finfo.symbuf != NULL)
11282 free (finfo.symbuf);
11283 if (finfo.symshndxbuf != NULL)
11284 free (finfo.symshndxbuf);
11285 for (o = abfd->sections; o != NULL; o = o->next)
11286 {
11287 struct bfd_elf_section_data *esdo = elf_section_data (o);
11288 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11289 free (esdo->rel.hashes);
11290 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11291 free (esdo->rela.hashes);
11292 }
11293
11294 return FALSE;
11295 }
11296 \f
11297 /* Initialize COOKIE for input bfd ABFD. */
11298
11299 static bfd_boolean
11300 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11301 struct bfd_link_info *info, bfd *abfd)
11302 {
11303 Elf_Internal_Shdr *symtab_hdr;
11304 const struct elf_backend_data *bed;
11305
11306 bed = get_elf_backend_data (abfd);
11307 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11308
11309 cookie->abfd = abfd;
11310 cookie->sym_hashes = elf_sym_hashes (abfd);
11311 cookie->bad_symtab = elf_bad_symtab (abfd);
11312 if (cookie->bad_symtab)
11313 {
11314 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11315 cookie->extsymoff = 0;
11316 }
11317 else
11318 {
11319 cookie->locsymcount = symtab_hdr->sh_info;
11320 cookie->extsymoff = symtab_hdr->sh_info;
11321 }
11322
11323 if (bed->s->arch_size == 32)
11324 cookie->r_sym_shift = 8;
11325 else
11326 cookie->r_sym_shift = 32;
11327
11328 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11329 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11330 {
11331 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11332 cookie->locsymcount, 0,
11333 NULL, NULL, NULL);
11334 if (cookie->locsyms == NULL)
11335 {
11336 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11337 return FALSE;
11338 }
11339 if (info->keep_memory)
11340 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11341 }
11342 return TRUE;
11343 }
11344
11345 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11346
11347 static void
11348 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11349 {
11350 Elf_Internal_Shdr *symtab_hdr;
11351
11352 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11353 if (cookie->locsyms != NULL
11354 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11355 free (cookie->locsyms);
11356 }
11357
11358 /* Initialize the relocation information in COOKIE for input section SEC
11359 of input bfd ABFD. */
11360
11361 static bfd_boolean
11362 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11363 struct bfd_link_info *info, bfd *abfd,
11364 asection *sec)
11365 {
11366 const struct elf_backend_data *bed;
11367
11368 if (sec->reloc_count == 0)
11369 {
11370 cookie->rels = NULL;
11371 cookie->relend = NULL;
11372 }
11373 else
11374 {
11375 bed = get_elf_backend_data (abfd);
11376
11377 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11378 info->keep_memory);
11379 if (cookie->rels == NULL)
11380 return FALSE;
11381 cookie->rel = cookie->rels;
11382 cookie->relend = (cookie->rels
11383 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11384 }
11385 cookie->rel = cookie->rels;
11386 return TRUE;
11387 }
11388
11389 /* Free the memory allocated by init_reloc_cookie_rels,
11390 if appropriate. */
11391
11392 static void
11393 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11394 asection *sec)
11395 {
11396 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11397 free (cookie->rels);
11398 }
11399
11400 /* Initialize the whole of COOKIE for input section SEC. */
11401
11402 static bfd_boolean
11403 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11404 struct bfd_link_info *info,
11405 asection *sec)
11406 {
11407 if (!init_reloc_cookie (cookie, info, sec->owner))
11408 goto error1;
11409 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11410 goto error2;
11411 return TRUE;
11412
11413 error2:
11414 fini_reloc_cookie (cookie, sec->owner);
11415 error1:
11416 return FALSE;
11417 }
11418
11419 /* Free the memory allocated by init_reloc_cookie_for_section,
11420 if appropriate. */
11421
11422 static void
11423 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11424 asection *sec)
11425 {
11426 fini_reloc_cookie_rels (cookie, sec);
11427 fini_reloc_cookie (cookie, sec->owner);
11428 }
11429 \f
11430 /* Garbage collect unused sections. */
11431
11432 /* Default gc_mark_hook. */
11433
11434 asection *
11435 _bfd_elf_gc_mark_hook (asection *sec,
11436 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11437 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11438 struct elf_link_hash_entry *h,
11439 Elf_Internal_Sym *sym)
11440 {
11441 const char *sec_name;
11442
11443 if (h != NULL)
11444 {
11445 switch (h->root.type)
11446 {
11447 case bfd_link_hash_defined:
11448 case bfd_link_hash_defweak:
11449 return h->root.u.def.section;
11450
11451 case bfd_link_hash_common:
11452 return h->root.u.c.p->section;
11453
11454 case bfd_link_hash_undefined:
11455 case bfd_link_hash_undefweak:
11456 /* To work around a glibc bug, keep all XXX input sections
11457 when there is an as yet undefined reference to __start_XXX
11458 or __stop_XXX symbols. The linker will later define such
11459 symbols for orphan input sections that have a name
11460 representable as a C identifier. */
11461 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11462 sec_name = h->root.root.string + 8;
11463 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11464 sec_name = h->root.root.string + 7;
11465 else
11466 sec_name = NULL;
11467
11468 if (sec_name && *sec_name != '\0')
11469 {
11470 bfd *i;
11471
11472 for (i = info->input_bfds; i; i = i->link_next)
11473 {
11474 sec = bfd_get_section_by_name (i, sec_name);
11475 if (sec)
11476 sec->flags |= SEC_KEEP;
11477 }
11478 }
11479 break;
11480
11481 default:
11482 break;
11483 }
11484 }
11485 else
11486 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11487
11488 return NULL;
11489 }
11490
11491 /* COOKIE->rel describes a relocation against section SEC, which is
11492 a section we've decided to keep. Return the section that contains
11493 the relocation symbol, or NULL if no section contains it. */
11494
11495 asection *
11496 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11497 elf_gc_mark_hook_fn gc_mark_hook,
11498 struct elf_reloc_cookie *cookie)
11499 {
11500 unsigned long r_symndx;
11501 struct elf_link_hash_entry *h;
11502
11503 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11504 if (r_symndx == STN_UNDEF)
11505 return NULL;
11506
11507 if (r_symndx >= cookie->locsymcount
11508 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11509 {
11510 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11511 while (h->root.type == bfd_link_hash_indirect
11512 || h->root.type == bfd_link_hash_warning)
11513 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11514 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11515 }
11516
11517 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11518 &cookie->locsyms[r_symndx]);
11519 }
11520
11521 /* COOKIE->rel describes a relocation against section SEC, which is
11522 a section we've decided to keep. Mark the section that contains
11523 the relocation symbol. */
11524
11525 bfd_boolean
11526 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11527 asection *sec,
11528 elf_gc_mark_hook_fn gc_mark_hook,
11529 struct elf_reloc_cookie *cookie)
11530 {
11531 asection *rsec;
11532
11533 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11534 if (rsec && !rsec->gc_mark)
11535 {
11536 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11537 rsec->gc_mark = 1;
11538 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11539 return FALSE;
11540 }
11541 return TRUE;
11542 }
11543
11544 /* The mark phase of garbage collection. For a given section, mark
11545 it and any sections in this section's group, and all the sections
11546 which define symbols to which it refers. */
11547
11548 bfd_boolean
11549 _bfd_elf_gc_mark (struct bfd_link_info *info,
11550 asection *sec,
11551 elf_gc_mark_hook_fn gc_mark_hook)
11552 {
11553 bfd_boolean ret;
11554 asection *group_sec, *eh_frame;
11555
11556 sec->gc_mark = 1;
11557
11558 /* Mark all the sections in the group. */
11559 group_sec = elf_section_data (sec)->next_in_group;
11560 if (group_sec && !group_sec->gc_mark)
11561 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11562 return FALSE;
11563
11564 /* Look through the section relocs. */
11565 ret = TRUE;
11566 eh_frame = elf_eh_frame_section (sec->owner);
11567 if ((sec->flags & SEC_RELOC) != 0
11568 && sec->reloc_count > 0
11569 && sec != eh_frame)
11570 {
11571 struct elf_reloc_cookie cookie;
11572
11573 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11574 ret = FALSE;
11575 else
11576 {
11577 for (; cookie.rel < cookie.relend; cookie.rel++)
11578 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11579 {
11580 ret = FALSE;
11581 break;
11582 }
11583 fini_reloc_cookie_for_section (&cookie, sec);
11584 }
11585 }
11586
11587 if (ret && eh_frame && elf_fde_list (sec))
11588 {
11589 struct elf_reloc_cookie cookie;
11590
11591 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11592 ret = FALSE;
11593 else
11594 {
11595 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11596 gc_mark_hook, &cookie))
11597 ret = FALSE;
11598 fini_reloc_cookie_for_section (&cookie, eh_frame);
11599 }
11600 }
11601
11602 return ret;
11603 }
11604
11605 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11606
11607 struct elf_gc_sweep_symbol_info
11608 {
11609 struct bfd_link_info *info;
11610 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11611 bfd_boolean);
11612 };
11613
11614 static bfd_boolean
11615 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11616 {
11617 if (h->root.type == bfd_link_hash_warning)
11618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11619
11620 if ((h->root.type == bfd_link_hash_defined
11621 || h->root.type == bfd_link_hash_defweak)
11622 && !h->root.u.def.section->gc_mark
11623 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11624 {
11625 struct elf_gc_sweep_symbol_info *inf =
11626 (struct elf_gc_sweep_symbol_info *) data;
11627 (*inf->hide_symbol) (inf->info, h, TRUE);
11628 }
11629
11630 return TRUE;
11631 }
11632
11633 /* The sweep phase of garbage collection. Remove all garbage sections. */
11634
11635 typedef bfd_boolean (*gc_sweep_hook_fn)
11636 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11637
11638 static bfd_boolean
11639 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11640 {
11641 bfd *sub;
11642 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11643 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11644 unsigned long section_sym_count;
11645 struct elf_gc_sweep_symbol_info sweep_info;
11646
11647 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11648 {
11649 asection *o;
11650
11651 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11652 continue;
11653
11654 for (o = sub->sections; o != NULL; o = o->next)
11655 {
11656 /* When any section in a section group is kept, we keep all
11657 sections in the section group. If the first member of
11658 the section group is excluded, we will also exclude the
11659 group section. */
11660 if (o->flags & SEC_GROUP)
11661 {
11662 asection *first = elf_next_in_group (o);
11663 o->gc_mark = first->gc_mark;
11664 }
11665 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11666 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11667 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11668 {
11669 /* Keep debug, special and SHT_NOTE sections. */
11670 o->gc_mark = 1;
11671 }
11672
11673 if (o->gc_mark)
11674 continue;
11675
11676 /* Skip sweeping sections already excluded. */
11677 if (o->flags & SEC_EXCLUDE)
11678 continue;
11679
11680 /* Since this is early in the link process, it is simple
11681 to remove a section from the output. */
11682 o->flags |= SEC_EXCLUDE;
11683
11684 if (info->print_gc_sections && o->size != 0)
11685 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11686
11687 /* But we also have to update some of the relocation
11688 info we collected before. */
11689 if (gc_sweep_hook
11690 && (o->flags & SEC_RELOC) != 0
11691 && o->reloc_count > 0
11692 && !bfd_is_abs_section (o->output_section))
11693 {
11694 Elf_Internal_Rela *internal_relocs;
11695 bfd_boolean r;
11696
11697 internal_relocs
11698 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11699 info->keep_memory);
11700 if (internal_relocs == NULL)
11701 return FALSE;
11702
11703 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11704
11705 if (elf_section_data (o)->relocs != internal_relocs)
11706 free (internal_relocs);
11707
11708 if (!r)
11709 return FALSE;
11710 }
11711 }
11712 }
11713
11714 /* Remove the symbols that were in the swept sections from the dynamic
11715 symbol table. GCFIXME: Anyone know how to get them out of the
11716 static symbol table as well? */
11717 sweep_info.info = info;
11718 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11719 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11720 &sweep_info);
11721
11722 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11723 return TRUE;
11724 }
11725
11726 /* Propagate collected vtable information. This is called through
11727 elf_link_hash_traverse. */
11728
11729 static bfd_boolean
11730 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11731 {
11732 if (h->root.type == bfd_link_hash_warning)
11733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11734
11735 /* Those that are not vtables. */
11736 if (h->vtable == NULL || h->vtable->parent == NULL)
11737 return TRUE;
11738
11739 /* Those vtables that do not have parents, we cannot merge. */
11740 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11741 return TRUE;
11742
11743 /* If we've already been done, exit. */
11744 if (h->vtable->used && h->vtable->used[-1])
11745 return TRUE;
11746
11747 /* Make sure the parent's table is up to date. */
11748 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11749
11750 if (h->vtable->used == NULL)
11751 {
11752 /* None of this table's entries were referenced. Re-use the
11753 parent's table. */
11754 h->vtable->used = h->vtable->parent->vtable->used;
11755 h->vtable->size = h->vtable->parent->vtable->size;
11756 }
11757 else
11758 {
11759 size_t n;
11760 bfd_boolean *cu, *pu;
11761
11762 /* Or the parent's entries into ours. */
11763 cu = h->vtable->used;
11764 cu[-1] = TRUE;
11765 pu = h->vtable->parent->vtable->used;
11766 if (pu != NULL)
11767 {
11768 const struct elf_backend_data *bed;
11769 unsigned int log_file_align;
11770
11771 bed = get_elf_backend_data (h->root.u.def.section->owner);
11772 log_file_align = bed->s->log_file_align;
11773 n = h->vtable->parent->vtable->size >> log_file_align;
11774 while (n--)
11775 {
11776 if (*pu)
11777 *cu = TRUE;
11778 pu++;
11779 cu++;
11780 }
11781 }
11782 }
11783
11784 return TRUE;
11785 }
11786
11787 static bfd_boolean
11788 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11789 {
11790 asection *sec;
11791 bfd_vma hstart, hend;
11792 Elf_Internal_Rela *relstart, *relend, *rel;
11793 const struct elf_backend_data *bed;
11794 unsigned int log_file_align;
11795
11796 if (h->root.type == bfd_link_hash_warning)
11797 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11798
11799 /* Take care of both those symbols that do not describe vtables as
11800 well as those that are not loaded. */
11801 if (h->vtable == NULL || h->vtable->parent == NULL)
11802 return TRUE;
11803
11804 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11805 || h->root.type == bfd_link_hash_defweak);
11806
11807 sec = h->root.u.def.section;
11808 hstart = h->root.u.def.value;
11809 hend = hstart + h->size;
11810
11811 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11812 if (!relstart)
11813 return *(bfd_boolean *) okp = FALSE;
11814 bed = get_elf_backend_data (sec->owner);
11815 log_file_align = bed->s->log_file_align;
11816
11817 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11818
11819 for (rel = relstart; rel < relend; ++rel)
11820 if (rel->r_offset >= hstart && rel->r_offset < hend)
11821 {
11822 /* If the entry is in use, do nothing. */
11823 if (h->vtable->used
11824 && (rel->r_offset - hstart) < h->vtable->size)
11825 {
11826 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11827 if (h->vtable->used[entry])
11828 continue;
11829 }
11830 /* Otherwise, kill it. */
11831 rel->r_offset = rel->r_info = rel->r_addend = 0;
11832 }
11833
11834 return TRUE;
11835 }
11836
11837 /* Mark sections containing dynamically referenced symbols. When
11838 building shared libraries, we must assume that any visible symbol is
11839 referenced. */
11840
11841 bfd_boolean
11842 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11843 {
11844 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11845
11846 if (h->root.type == bfd_link_hash_warning)
11847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11848
11849 if ((h->root.type == bfd_link_hash_defined
11850 || h->root.type == bfd_link_hash_defweak)
11851 && (h->ref_dynamic
11852 || (!info->executable
11853 && h->def_regular
11854 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11855 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11856 h->root.u.def.section->flags |= SEC_KEEP;
11857
11858 return TRUE;
11859 }
11860
11861 /* Keep all sections containing symbols undefined on the command-line,
11862 and the section containing the entry symbol. */
11863
11864 void
11865 _bfd_elf_gc_keep (struct bfd_link_info *info)
11866 {
11867 struct bfd_sym_chain *sym;
11868
11869 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11870 {
11871 struct elf_link_hash_entry *h;
11872
11873 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11874 FALSE, FALSE, FALSE);
11875
11876 if (h != NULL
11877 && (h->root.type == bfd_link_hash_defined
11878 || h->root.type == bfd_link_hash_defweak)
11879 && !bfd_is_abs_section (h->root.u.def.section))
11880 h->root.u.def.section->flags |= SEC_KEEP;
11881 }
11882 }
11883
11884 /* Do mark and sweep of unused sections. */
11885
11886 bfd_boolean
11887 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11888 {
11889 bfd_boolean ok = TRUE;
11890 bfd *sub;
11891 elf_gc_mark_hook_fn gc_mark_hook;
11892 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11893
11894 if (!bed->can_gc_sections
11895 || !is_elf_hash_table (info->hash))
11896 {
11897 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11898 return TRUE;
11899 }
11900
11901 bed->gc_keep (info);
11902
11903 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11904 at the .eh_frame section if we can mark the FDEs individually. */
11905 _bfd_elf_begin_eh_frame_parsing (info);
11906 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11907 {
11908 asection *sec;
11909 struct elf_reloc_cookie cookie;
11910
11911 sec = bfd_get_section_by_name (sub, ".eh_frame");
11912 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11913 {
11914 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11915 if (elf_section_data (sec)->sec_info)
11916 elf_eh_frame_section (sub) = sec;
11917 fini_reloc_cookie_for_section (&cookie, sec);
11918 }
11919 }
11920 _bfd_elf_end_eh_frame_parsing (info);
11921
11922 /* Apply transitive closure to the vtable entry usage info. */
11923 elf_link_hash_traverse (elf_hash_table (info),
11924 elf_gc_propagate_vtable_entries_used,
11925 &ok);
11926 if (!ok)
11927 return FALSE;
11928
11929 /* Kill the vtable relocations that were not used. */
11930 elf_link_hash_traverse (elf_hash_table (info),
11931 elf_gc_smash_unused_vtentry_relocs,
11932 &ok);
11933 if (!ok)
11934 return FALSE;
11935
11936 /* Mark dynamically referenced symbols. */
11937 if (elf_hash_table (info)->dynamic_sections_created)
11938 elf_link_hash_traverse (elf_hash_table (info),
11939 bed->gc_mark_dynamic_ref,
11940 info);
11941
11942 /* Grovel through relocs to find out who stays ... */
11943 gc_mark_hook = bed->gc_mark_hook;
11944 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11945 {
11946 asection *o;
11947
11948 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11949 continue;
11950
11951 for (o = sub->sections; o != NULL; o = o->next)
11952 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11953 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11954 return FALSE;
11955 }
11956
11957 /* Allow the backend to mark additional target specific sections. */
11958 if (bed->gc_mark_extra_sections)
11959 bed->gc_mark_extra_sections (info, gc_mark_hook);
11960
11961 /* ... and mark SEC_EXCLUDE for those that go. */
11962 return elf_gc_sweep (abfd, info);
11963 }
11964 \f
11965 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11966
11967 bfd_boolean
11968 bfd_elf_gc_record_vtinherit (bfd *abfd,
11969 asection *sec,
11970 struct elf_link_hash_entry *h,
11971 bfd_vma offset)
11972 {
11973 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11974 struct elf_link_hash_entry **search, *child;
11975 bfd_size_type extsymcount;
11976 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11977
11978 /* The sh_info field of the symtab header tells us where the
11979 external symbols start. We don't care about the local symbols at
11980 this point. */
11981 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11982 if (!elf_bad_symtab (abfd))
11983 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11984
11985 sym_hashes = elf_sym_hashes (abfd);
11986 sym_hashes_end = sym_hashes + extsymcount;
11987
11988 /* Hunt down the child symbol, which is in this section at the same
11989 offset as the relocation. */
11990 for (search = sym_hashes; search != sym_hashes_end; ++search)
11991 {
11992 if ((child = *search) != NULL
11993 && (child->root.type == bfd_link_hash_defined
11994 || child->root.type == bfd_link_hash_defweak)
11995 && child->root.u.def.section == sec
11996 && child->root.u.def.value == offset)
11997 goto win;
11998 }
11999
12000 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12001 abfd, sec, (unsigned long) offset);
12002 bfd_set_error (bfd_error_invalid_operation);
12003 return FALSE;
12004
12005 win:
12006 if (!child->vtable)
12007 {
12008 child->vtable = (struct elf_link_virtual_table_entry *)
12009 bfd_zalloc (abfd, sizeof (*child->vtable));
12010 if (!child->vtable)
12011 return FALSE;
12012 }
12013 if (!h)
12014 {
12015 /* This *should* only be the absolute section. It could potentially
12016 be that someone has defined a non-global vtable though, which
12017 would be bad. It isn't worth paging in the local symbols to be
12018 sure though; that case should simply be handled by the assembler. */
12019
12020 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12021 }
12022 else
12023 child->vtable->parent = h;
12024
12025 return TRUE;
12026 }
12027
12028 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12029
12030 bfd_boolean
12031 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12032 asection *sec ATTRIBUTE_UNUSED,
12033 struct elf_link_hash_entry *h,
12034 bfd_vma addend)
12035 {
12036 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12037 unsigned int log_file_align = bed->s->log_file_align;
12038
12039 if (!h->vtable)
12040 {
12041 h->vtable = (struct elf_link_virtual_table_entry *)
12042 bfd_zalloc (abfd, sizeof (*h->vtable));
12043 if (!h->vtable)
12044 return FALSE;
12045 }
12046
12047 if (addend >= h->vtable->size)
12048 {
12049 size_t size, bytes, file_align;
12050 bfd_boolean *ptr = h->vtable->used;
12051
12052 /* While the symbol is undefined, we have to be prepared to handle
12053 a zero size. */
12054 file_align = 1 << log_file_align;
12055 if (h->root.type == bfd_link_hash_undefined)
12056 size = addend + file_align;
12057 else
12058 {
12059 size = h->size;
12060 if (addend >= size)
12061 {
12062 /* Oops! We've got a reference past the defined end of
12063 the table. This is probably a bug -- shall we warn? */
12064 size = addend + file_align;
12065 }
12066 }
12067 size = (size + file_align - 1) & -file_align;
12068
12069 /* Allocate one extra entry for use as a "done" flag for the
12070 consolidation pass. */
12071 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12072
12073 if (ptr)
12074 {
12075 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12076
12077 if (ptr != NULL)
12078 {
12079 size_t oldbytes;
12080
12081 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12082 * sizeof (bfd_boolean));
12083 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12084 }
12085 }
12086 else
12087 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12088
12089 if (ptr == NULL)
12090 return FALSE;
12091
12092 /* And arrange for that done flag to be at index -1. */
12093 h->vtable->used = ptr + 1;
12094 h->vtable->size = size;
12095 }
12096
12097 h->vtable->used[addend >> log_file_align] = TRUE;
12098
12099 return TRUE;
12100 }
12101
12102 struct alloc_got_off_arg {
12103 bfd_vma gotoff;
12104 struct bfd_link_info *info;
12105 };
12106
12107 /* We need a special top-level link routine to convert got reference counts
12108 to real got offsets. */
12109
12110 static bfd_boolean
12111 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12112 {
12113 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12114 bfd *obfd = gofarg->info->output_bfd;
12115 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12116
12117 if (h->root.type == bfd_link_hash_warning)
12118 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12119
12120 if (h->got.refcount > 0)
12121 {
12122 h->got.offset = gofarg->gotoff;
12123 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12124 }
12125 else
12126 h->got.offset = (bfd_vma) -1;
12127
12128 return TRUE;
12129 }
12130
12131 /* And an accompanying bit to work out final got entry offsets once
12132 we're done. Should be called from final_link. */
12133
12134 bfd_boolean
12135 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12136 struct bfd_link_info *info)
12137 {
12138 bfd *i;
12139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12140 bfd_vma gotoff;
12141 struct alloc_got_off_arg gofarg;
12142
12143 BFD_ASSERT (abfd == info->output_bfd);
12144
12145 if (! is_elf_hash_table (info->hash))
12146 return FALSE;
12147
12148 /* The GOT offset is relative to the .got section, but the GOT header is
12149 put into the .got.plt section, if the backend uses it. */
12150 if (bed->want_got_plt)
12151 gotoff = 0;
12152 else
12153 gotoff = bed->got_header_size;
12154
12155 /* Do the local .got entries first. */
12156 for (i = info->input_bfds; i; i = i->link_next)
12157 {
12158 bfd_signed_vma *local_got;
12159 bfd_size_type j, locsymcount;
12160 Elf_Internal_Shdr *symtab_hdr;
12161
12162 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12163 continue;
12164
12165 local_got = elf_local_got_refcounts (i);
12166 if (!local_got)
12167 continue;
12168
12169 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12170 if (elf_bad_symtab (i))
12171 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12172 else
12173 locsymcount = symtab_hdr->sh_info;
12174
12175 for (j = 0; j < locsymcount; ++j)
12176 {
12177 if (local_got[j] > 0)
12178 {
12179 local_got[j] = gotoff;
12180 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12181 }
12182 else
12183 local_got[j] = (bfd_vma) -1;
12184 }
12185 }
12186
12187 /* Then the global .got entries. .plt refcounts are handled by
12188 adjust_dynamic_symbol */
12189 gofarg.gotoff = gotoff;
12190 gofarg.info = info;
12191 elf_link_hash_traverse (elf_hash_table (info),
12192 elf_gc_allocate_got_offsets,
12193 &gofarg);
12194 return TRUE;
12195 }
12196
12197 /* Many folk need no more in the way of final link than this, once
12198 got entry reference counting is enabled. */
12199
12200 bfd_boolean
12201 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12202 {
12203 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12204 return FALSE;
12205
12206 /* Invoke the regular ELF backend linker to do all the work. */
12207 return bfd_elf_final_link (abfd, info);
12208 }
12209
12210 bfd_boolean
12211 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12212 {
12213 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12214
12215 if (rcookie->bad_symtab)
12216 rcookie->rel = rcookie->rels;
12217
12218 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12219 {
12220 unsigned long r_symndx;
12221
12222 if (! rcookie->bad_symtab)
12223 if (rcookie->rel->r_offset > offset)
12224 return FALSE;
12225 if (rcookie->rel->r_offset != offset)
12226 continue;
12227
12228 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12229 if (r_symndx == STN_UNDEF)
12230 return TRUE;
12231
12232 if (r_symndx >= rcookie->locsymcount
12233 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12234 {
12235 struct elf_link_hash_entry *h;
12236
12237 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12238
12239 while (h->root.type == bfd_link_hash_indirect
12240 || h->root.type == bfd_link_hash_warning)
12241 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12242
12243 if ((h->root.type == bfd_link_hash_defined
12244 || h->root.type == bfd_link_hash_defweak)
12245 && elf_discarded_section (h->root.u.def.section))
12246 return TRUE;
12247 else
12248 return FALSE;
12249 }
12250 else
12251 {
12252 /* It's not a relocation against a global symbol,
12253 but it could be a relocation against a local
12254 symbol for a discarded section. */
12255 asection *isec;
12256 Elf_Internal_Sym *isym;
12257
12258 /* Need to: get the symbol; get the section. */
12259 isym = &rcookie->locsyms[r_symndx];
12260 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12261 if (isec != NULL && elf_discarded_section (isec))
12262 return TRUE;
12263 }
12264 return FALSE;
12265 }
12266 return FALSE;
12267 }
12268
12269 /* Discard unneeded references to discarded sections.
12270 Returns TRUE if any section's size was changed. */
12271 /* This function assumes that the relocations are in sorted order,
12272 which is true for all known assemblers. */
12273
12274 bfd_boolean
12275 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12276 {
12277 struct elf_reloc_cookie cookie;
12278 asection *stab, *eh;
12279 const struct elf_backend_data *bed;
12280 bfd *abfd;
12281 bfd_boolean ret = FALSE;
12282
12283 if (info->traditional_format
12284 || !is_elf_hash_table (info->hash))
12285 return FALSE;
12286
12287 _bfd_elf_begin_eh_frame_parsing (info);
12288 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12289 {
12290 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12291 continue;
12292
12293 bed = get_elf_backend_data (abfd);
12294
12295 if ((abfd->flags & DYNAMIC) != 0)
12296 continue;
12297
12298 eh = NULL;
12299 if (!info->relocatable)
12300 {
12301 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12302 if (eh != NULL
12303 && (eh->size == 0
12304 || bfd_is_abs_section (eh->output_section)))
12305 eh = NULL;
12306 }
12307
12308 stab = bfd_get_section_by_name (abfd, ".stab");
12309 if (stab != NULL
12310 && (stab->size == 0
12311 || bfd_is_abs_section (stab->output_section)
12312 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12313 stab = NULL;
12314
12315 if (stab == NULL
12316 && eh == NULL
12317 && bed->elf_backend_discard_info == NULL)
12318 continue;
12319
12320 if (!init_reloc_cookie (&cookie, info, abfd))
12321 return FALSE;
12322
12323 if (stab != NULL
12324 && stab->reloc_count > 0
12325 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12326 {
12327 if (_bfd_discard_section_stabs (abfd, stab,
12328 elf_section_data (stab)->sec_info,
12329 bfd_elf_reloc_symbol_deleted_p,
12330 &cookie))
12331 ret = TRUE;
12332 fini_reloc_cookie_rels (&cookie, stab);
12333 }
12334
12335 if (eh != NULL
12336 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12337 {
12338 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12339 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12340 bfd_elf_reloc_symbol_deleted_p,
12341 &cookie))
12342 ret = TRUE;
12343 fini_reloc_cookie_rels (&cookie, eh);
12344 }
12345
12346 if (bed->elf_backend_discard_info != NULL
12347 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12348 ret = TRUE;
12349
12350 fini_reloc_cookie (&cookie, abfd);
12351 }
12352 _bfd_elf_end_eh_frame_parsing (info);
12353
12354 if (info->eh_frame_hdr
12355 && !info->relocatable
12356 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12357 ret = TRUE;
12358
12359 return ret;
12360 }
12361
12362 /* For a SHT_GROUP section, return the group signature. For other
12363 sections, return the normal section name. */
12364
12365 static const char *
12366 section_signature (asection *sec)
12367 {
12368 if ((sec->flags & SEC_GROUP) != 0
12369 && elf_next_in_group (sec) != NULL
12370 && elf_group_name (elf_next_in_group (sec)) != NULL)
12371 return elf_group_name (elf_next_in_group (sec));
12372 return sec->name;
12373 }
12374
12375 void
12376 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12377 struct bfd_link_info *info)
12378 {
12379 flagword flags;
12380 const char *name, *p;
12381 struct bfd_section_already_linked *l;
12382 struct bfd_section_already_linked_hash_entry *already_linked_list;
12383
12384 if (sec->output_section == bfd_abs_section_ptr)
12385 return;
12386
12387 flags = sec->flags;
12388
12389 /* Return if it isn't a linkonce section. A comdat group section
12390 also has SEC_LINK_ONCE set. */
12391 if ((flags & SEC_LINK_ONCE) == 0)
12392 return;
12393
12394 /* Don't put group member sections on our list of already linked
12395 sections. They are handled as a group via their group section. */
12396 if (elf_sec_group (sec) != NULL)
12397 return;
12398
12399 /* FIXME: When doing a relocatable link, we may have trouble
12400 copying relocations in other sections that refer to local symbols
12401 in the section being discarded. Those relocations will have to
12402 be converted somehow; as of this writing I'm not sure that any of
12403 the backends handle that correctly.
12404
12405 It is tempting to instead not discard link once sections when
12406 doing a relocatable link (technically, they should be discarded
12407 whenever we are building constructors). However, that fails,
12408 because the linker winds up combining all the link once sections
12409 into a single large link once section, which defeats the purpose
12410 of having link once sections in the first place.
12411
12412 Also, not merging link once sections in a relocatable link
12413 causes trouble for MIPS ELF, which relies on link once semantics
12414 to handle the .reginfo section correctly. */
12415
12416 name = section_signature (sec);
12417
12418 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12419 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12420 p++;
12421 else
12422 p = name;
12423
12424 already_linked_list = bfd_section_already_linked_table_lookup (p);
12425
12426 for (l = already_linked_list->entry; l != NULL; l = l->next)
12427 {
12428 /* We may have 2 different types of sections on the list: group
12429 sections and linkonce sections. Match like sections. */
12430 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12431 && strcmp (name, section_signature (l->sec)) == 0
12432 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12433 {
12434 /* The section has already been linked. See if we should
12435 issue a warning. */
12436 switch (flags & SEC_LINK_DUPLICATES)
12437 {
12438 default:
12439 abort ();
12440
12441 case SEC_LINK_DUPLICATES_DISCARD:
12442 break;
12443
12444 case SEC_LINK_DUPLICATES_ONE_ONLY:
12445 (*_bfd_error_handler)
12446 (_("%B: ignoring duplicate section `%A'"),
12447 abfd, sec);
12448 break;
12449
12450 case SEC_LINK_DUPLICATES_SAME_SIZE:
12451 if (sec->size != l->sec->size)
12452 (*_bfd_error_handler)
12453 (_("%B: duplicate section `%A' has different size"),
12454 abfd, sec);
12455 break;
12456
12457 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12458 if (sec->size != l->sec->size)
12459 (*_bfd_error_handler)
12460 (_("%B: duplicate section `%A' has different size"),
12461 abfd, sec);
12462 else if (sec->size != 0)
12463 {
12464 bfd_byte *sec_contents, *l_sec_contents;
12465
12466 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12467 (*_bfd_error_handler)
12468 (_("%B: warning: could not read contents of section `%A'"),
12469 abfd, sec);
12470 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12471 &l_sec_contents))
12472 (*_bfd_error_handler)
12473 (_("%B: warning: could not read contents of section `%A'"),
12474 l->sec->owner, l->sec);
12475 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12476 (*_bfd_error_handler)
12477 (_("%B: warning: duplicate section `%A' has different contents"),
12478 abfd, sec);
12479
12480 if (sec_contents)
12481 free (sec_contents);
12482 if (l_sec_contents)
12483 free (l_sec_contents);
12484 }
12485 break;
12486 }
12487
12488 /* Set the output_section field so that lang_add_section
12489 does not create a lang_input_section structure for this
12490 section. Since there might be a symbol in the section
12491 being discarded, we must retain a pointer to the section
12492 which we are really going to use. */
12493 sec->output_section = bfd_abs_section_ptr;
12494 sec->kept_section = l->sec;
12495
12496 if (flags & SEC_GROUP)
12497 {
12498 asection *first = elf_next_in_group (sec);
12499 asection *s = first;
12500
12501 while (s != NULL)
12502 {
12503 s->output_section = bfd_abs_section_ptr;
12504 /* Record which group discards it. */
12505 s->kept_section = l->sec;
12506 s = elf_next_in_group (s);
12507 /* These lists are circular. */
12508 if (s == first)
12509 break;
12510 }
12511 }
12512
12513 return;
12514 }
12515 }
12516
12517 /* A single member comdat group section may be discarded by a
12518 linkonce section and vice versa. */
12519
12520 if ((flags & SEC_GROUP) != 0)
12521 {
12522 asection *first = elf_next_in_group (sec);
12523
12524 if (first != NULL && elf_next_in_group (first) == first)
12525 /* Check this single member group against linkonce sections. */
12526 for (l = already_linked_list->entry; l != NULL; l = l->next)
12527 if ((l->sec->flags & SEC_GROUP) == 0
12528 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12529 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12530 {
12531 first->output_section = bfd_abs_section_ptr;
12532 first->kept_section = l->sec;
12533 sec->output_section = bfd_abs_section_ptr;
12534 break;
12535 }
12536 }
12537 else
12538 /* Check this linkonce section against single member groups. */
12539 for (l = already_linked_list->entry; l != NULL; l = l->next)
12540 if (l->sec->flags & SEC_GROUP)
12541 {
12542 asection *first = elf_next_in_group (l->sec);
12543
12544 if (first != NULL
12545 && elf_next_in_group (first) == first
12546 && bfd_elf_match_symbols_in_sections (first, sec, info))
12547 {
12548 sec->output_section = bfd_abs_section_ptr;
12549 sec->kept_section = first;
12550 break;
12551 }
12552 }
12553
12554 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12555 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12556 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12557 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12558 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12559 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12560 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12561 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12562 The reverse order cannot happen as there is never a bfd with only the
12563 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12564 matter as here were are looking only for cross-bfd sections. */
12565
12566 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12567 for (l = already_linked_list->entry; l != NULL; l = l->next)
12568 if ((l->sec->flags & SEC_GROUP) == 0
12569 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12570 {
12571 if (abfd != l->sec->owner)
12572 sec->output_section = bfd_abs_section_ptr;
12573 break;
12574 }
12575
12576 /* This is the first section with this name. Record it. */
12577 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12578 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12579 }
12580
12581 bfd_boolean
12582 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12583 {
12584 return sym->st_shndx == SHN_COMMON;
12585 }
12586
12587 unsigned int
12588 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12589 {
12590 return SHN_COMMON;
12591 }
12592
12593 asection *
12594 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12595 {
12596 return bfd_com_section_ptr;
12597 }
12598
12599 bfd_vma
12600 _bfd_elf_default_got_elt_size (bfd *abfd,
12601 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12602 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12603 bfd *ibfd ATTRIBUTE_UNUSED,
12604 unsigned long symndx ATTRIBUTE_UNUSED)
12605 {
12606 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12607 return bed->s->arch_size / 8;
12608 }
12609
12610 /* Routines to support the creation of dynamic relocs. */
12611
12612 /* Returns the name of the dynamic reloc section associated with SEC. */
12613
12614 static const char *
12615 get_dynamic_reloc_section_name (bfd * abfd,
12616 asection * sec,
12617 bfd_boolean is_rela)
12618 {
12619 char *name;
12620 const char *old_name = bfd_get_section_name (NULL, sec);
12621 const char *prefix = is_rela ? ".rela" : ".rel";
12622
12623 if (old_name == NULL)
12624 return NULL;
12625
12626 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12627 sprintf (name, "%s%s", prefix, old_name);
12628
12629 return name;
12630 }
12631
12632 /* Returns the dynamic reloc section associated with SEC.
12633 If necessary compute the name of the dynamic reloc section based
12634 on SEC's name (looked up in ABFD's string table) and the setting
12635 of IS_RELA. */
12636
12637 asection *
12638 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12639 asection * sec,
12640 bfd_boolean is_rela)
12641 {
12642 asection * reloc_sec = elf_section_data (sec)->sreloc;
12643
12644 if (reloc_sec == NULL)
12645 {
12646 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12647
12648 if (name != NULL)
12649 {
12650 reloc_sec = bfd_get_section_by_name (abfd, name);
12651
12652 if (reloc_sec != NULL)
12653 elf_section_data (sec)->sreloc = reloc_sec;
12654 }
12655 }
12656
12657 return reloc_sec;
12658 }
12659
12660 /* Returns the dynamic reloc section associated with SEC. If the
12661 section does not exist it is created and attached to the DYNOBJ
12662 bfd and stored in the SRELOC field of SEC's elf_section_data
12663 structure.
12664
12665 ALIGNMENT is the alignment for the newly created section and
12666 IS_RELA defines whether the name should be .rela.<SEC's name>
12667 or .rel.<SEC's name>. The section name is looked up in the
12668 string table associated with ABFD. */
12669
12670 asection *
12671 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12672 bfd * dynobj,
12673 unsigned int alignment,
12674 bfd * abfd,
12675 bfd_boolean is_rela)
12676 {
12677 asection * reloc_sec = elf_section_data (sec)->sreloc;
12678
12679 if (reloc_sec == NULL)
12680 {
12681 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12682
12683 if (name == NULL)
12684 return NULL;
12685
12686 reloc_sec = bfd_get_section_by_name (dynobj, name);
12687
12688 if (reloc_sec == NULL)
12689 {
12690 flagword flags;
12691
12692 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12693 if ((sec->flags & SEC_ALLOC) != 0)
12694 flags |= SEC_ALLOC | SEC_LOAD;
12695
12696 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12697 if (reloc_sec != NULL)
12698 {
12699 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12700 reloc_sec = NULL;
12701 }
12702 }
12703
12704 elf_section_data (sec)->sreloc = reloc_sec;
12705 }
12706
12707 return reloc_sec;
12708 }
12709
12710 /* Copy the ELF symbol type associated with a linker hash entry. */
12711 void
12712 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12713 struct bfd_link_hash_entry * hdest,
12714 struct bfd_link_hash_entry * hsrc)
12715 {
12716 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12717 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12718
12719 ehdest->type = ehsrc->type;
12720 ehdest->target_internal = ehsrc->target_internal;
12721 }
12722
12723 /* Append a RELA relocation REL to section S in BFD. */
12724
12725 void
12726 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12727 {
12728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12729 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12730 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12731 bed->s->swap_reloca_out (abfd, rel, loc);
12732 }
12733
12734 /* Append a REL relocation REL to section S in BFD. */
12735
12736 void
12737 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12738 {
12739 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12740 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12741 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12742 bed->s->swap_reloca_out (abfd, rel, loc);
12743 }
This page took 0.296154 seconds and 4 git commands to generate.