Fix whitespace, tabs/spaces.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 bed = get_elf_backend_data (output_bfd);
574 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
575 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
576 }
577
578 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
579 and executables. */
580 if (!info->relocatable
581 && h->dynindx != -1
582 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
583 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
584 h->forced_local = 1;
585
586 if ((h->def_dynamic
587 || h->ref_dynamic
588 || info->shared
589 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
590 && h->dynindx == -1)
591 {
592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
593 return FALSE;
594
595 /* If this is a weak defined symbol, and we know a corresponding
596 real symbol from the same dynamic object, make sure the real
597 symbol is also made into a dynamic symbol. */
598 if (h->u.weakdef != NULL
599 && h->u.weakdef->dynindx == -1)
600 {
601 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
602 return FALSE;
603 }
604 }
605
606 return TRUE;
607 }
608
609 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
610 success, and 2 on a failure caused by attempting to record a symbol
611 in a discarded section, eg. a discarded link-once section symbol. */
612
613 int
614 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
615 bfd *input_bfd,
616 long input_indx)
617 {
618 bfd_size_type amt;
619 struct elf_link_local_dynamic_entry *entry;
620 struct elf_link_hash_table *eht;
621 struct elf_strtab_hash *dynstr;
622 unsigned long dynstr_index;
623 char *name;
624 Elf_External_Sym_Shndx eshndx;
625 char esym[sizeof (Elf64_External_Sym)];
626
627 if (! is_elf_hash_table (info->hash))
628 return 0;
629
630 /* See if the entry exists already. */
631 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
632 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
633 return 1;
634
635 amt = sizeof (*entry);
636 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
637 if (entry == NULL)
638 return 0;
639
640 /* Go find the symbol, so that we can find it's name. */
641 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
642 1, input_indx, &entry->isym, esym, &eshndx))
643 {
644 bfd_release (input_bfd, entry);
645 return 0;
646 }
647
648 if (entry->isym.st_shndx != SHN_UNDEF
649 && entry->isym.st_shndx < SHN_LORESERVE)
650 {
651 asection *s;
652
653 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
654 if (s == NULL || bfd_is_abs_section (s->output_section))
655 {
656 /* We can still bfd_release here as nothing has done another
657 bfd_alloc. We can't do this later in this function. */
658 bfd_release (input_bfd, entry);
659 return 2;
660 }
661 }
662
663 name = (bfd_elf_string_from_elf_section
664 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
665 entry->isym.st_name));
666
667 dynstr = elf_hash_table (info)->dynstr;
668 if (dynstr == NULL)
669 {
670 /* Create a strtab to hold the dynamic symbol names. */
671 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
672 if (dynstr == NULL)
673 return 0;
674 }
675
676 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
677 if (dynstr_index == (unsigned long) -1)
678 return 0;
679 entry->isym.st_name = dynstr_index;
680
681 eht = elf_hash_table (info);
682
683 entry->next = eht->dynlocal;
684 eht->dynlocal = entry;
685 entry->input_bfd = input_bfd;
686 entry->input_indx = input_indx;
687 eht->dynsymcount++;
688
689 /* Whatever binding the symbol had before, it's now local. */
690 entry->isym.st_info
691 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
692
693 /* The dynindx will be set at the end of size_dynamic_sections. */
694
695 return 1;
696 }
697
698 /* Return the dynindex of a local dynamic symbol. */
699
700 long
701 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
702 bfd *input_bfd,
703 long input_indx)
704 {
705 struct elf_link_local_dynamic_entry *e;
706
707 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
708 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
709 return e->dynindx;
710 return -1;
711 }
712
713 /* This function is used to renumber the dynamic symbols, if some of
714 them are removed because they are marked as local. This is called
715 via elf_link_hash_traverse. */
716
717 static bfd_boolean
718 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
719 void *data)
720 {
721 size_t *count = (size_t *) data;
722
723 if (h->root.type == bfd_link_hash_warning)
724 h = (struct elf_link_hash_entry *) h->root.u.i.link;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 if (!h->forced_local)
749 return TRUE;
750
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
753
754 return TRUE;
755 }
756
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
759 bfd_boolean
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
762 asection *p)
763 {
764 struct elf_link_hash_table *htab;
765
766 switch (elf_section_data (p)->this_hdr.sh_type)
767 {
768 case SHT_PROGBITS:
769 case SHT_NOBITS:
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
772 case SHT_NULL:
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
775 return FALSE;
776
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
779
780 if (strcmp (p->name, ".got") == 0
781 || strcmp (p->name, ".got.plt") == 0
782 || strcmp (p->name, ".plt") == 0)
783 {
784 asection *ip;
785
786 if (htab->dynobj != NULL
787 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
788 && (ip->flags & SEC_LINKER_CREATED)
789 && ip->output_section == p)
790 return TRUE;
791 }
792 return FALSE;
793
794 /* There shouldn't be section relative relocations
795 against any other section. */
796 default:
797 return TRUE;
798 }
799 }
800
801 /* Assign dynsym indices. In a shared library we generate a section
802 symbol for each output section, which come first. Next come symbols
803 which have been forced to local binding. Then all of the back-end
804 allocated local dynamic syms, followed by the rest of the global
805 symbols. */
806
807 static unsigned long
808 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
809 struct bfd_link_info *info,
810 unsigned long *section_sym_count)
811 {
812 unsigned long dynsymcount = 0;
813
814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
815 {
816 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
817 asection *p;
818 for (p = output_bfd->sections; p ; p = p->next)
819 if ((p->flags & SEC_EXCLUDE) == 0
820 && (p->flags & SEC_ALLOC) != 0
821 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
822 elf_section_data (p)->dynindx = ++dynsymcount;
823 else
824 elf_section_data (p)->dynindx = 0;
825 }
826 *section_sym_count = dynsymcount;
827
828 elf_link_hash_traverse (elf_hash_table (info),
829 elf_link_renumber_local_hash_table_dynsyms,
830 &dynsymcount);
831
832 if (elf_hash_table (info)->dynlocal)
833 {
834 struct elf_link_local_dynamic_entry *p;
835 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
836 p->dynindx = ++dynsymcount;
837 }
838
839 elf_link_hash_traverse (elf_hash_table (info),
840 elf_link_renumber_hash_table_dynsyms,
841 &dynsymcount);
842
843 /* There is an unused NULL entry at the head of the table which
844 we must account for in our count. Unless there weren't any
845 symbols, which means we'll have no table at all. */
846 if (dynsymcount != 0)
847 ++dynsymcount;
848
849 elf_hash_table (info)->dynsymcount = dynsymcount;
850 return dynsymcount;
851 }
852
853 /* Merge st_other field. */
854
855 static void
856 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
857 Elf_Internal_Sym *isym, bfd_boolean definition,
858 bfd_boolean dynamic)
859 {
860 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
861
862 /* If st_other has a processor-specific meaning, specific
863 code might be needed here. We never merge the visibility
864 attribute with the one from a dynamic object. */
865 if (bed->elf_backend_merge_symbol_attribute)
866 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
867 dynamic);
868
869 /* If this symbol has default visibility and the user has requested
870 we not re-export it, then mark it as hidden. */
871 if (definition
872 && !dynamic
873 && (abfd->no_export
874 || (abfd->my_archive && abfd->my_archive->no_export))
875 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
876 isym->st_other = (STV_HIDDEN
877 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
878
879 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
880 {
881 unsigned char hvis, symvis, other, nvis;
882
883 /* Only merge the visibility. Leave the remainder of the
884 st_other field to elf_backend_merge_symbol_attribute. */
885 other = h->other & ~ELF_ST_VISIBILITY (-1);
886
887 /* Combine visibilities, using the most constraining one. */
888 hvis = ELF_ST_VISIBILITY (h->other);
889 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 if (! hvis)
891 nvis = symvis;
892 else if (! symvis)
893 nvis = hvis;
894 else
895 nvis = hvis < symvis ? hvis : symvis;
896
897 h->other = other | nvis;
898 }
899 }
900
901 /* This function is called when we want to define a new symbol. It
902 handles the various cases which arise when we find a definition in
903 a dynamic object, or when there is already a definition in a
904 dynamic object. The new symbol is described by NAME, SYM, PSEC,
905 and PVALUE. We set SYM_HASH to the hash table entry. We set
906 OVERRIDE if the old symbol is overriding a new definition. We set
907 TYPE_CHANGE_OK if it is OK for the type to change. We set
908 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
909 change, we mean that we shouldn't warn if the type or size does
910 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
911 object is overridden by a regular object. */
912
913 bfd_boolean
914 _bfd_elf_merge_symbol (bfd *abfd,
915 struct bfd_link_info *info,
916 const char *name,
917 Elf_Internal_Sym *sym,
918 asection **psec,
919 bfd_vma *pvalue,
920 unsigned int *pold_alignment,
921 struct elf_link_hash_entry **sym_hash,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 /* Silently discard TLS symbols from --just-syms. There's no way to
943 combine a static TLS block with a new TLS block for this executable. */
944 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
945 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 {
947 *skip = TRUE;
948 return TRUE;
949 }
950
951 if (! bfd_is_und_section (sec))
952 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
953 else
954 h = ((struct elf_link_hash_entry *)
955 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
956 if (h == NULL)
957 return FALSE;
958 *sym_hash = h;
959
960 bed = get_elf_backend_data (abfd);
961
962 /* This code is for coping with dynamic objects, and is only useful
963 if we are doing an ELF link. */
964 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
965 return TRUE;
966
967 /* For merging, we only care about real symbols. */
968
969 while (h->root.type == bfd_link_hash_indirect
970 || h->root.type == bfd_link_hash_warning)
971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
972
973 /* We have to check it for every instance since the first few may be
974 refereences and not all compilers emit symbol type for undefined
975 symbols. */
976 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
977
978 /* If we just created the symbol, mark it as being an ELF symbol.
979 Other than that, there is nothing to do--there is no merge issue
980 with a newly defined symbol--so we just return. */
981
982 if (h->root.type == bfd_link_hash_new)
983 {
984 h->non_elf = 0;
985 return TRUE;
986 }
987
988 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
989 existing symbol. */
990
991 switch (h->root.type)
992 {
993 default:
994 oldbfd = NULL;
995 oldsec = NULL;
996 break;
997
998 case bfd_link_hash_undefined:
999 case bfd_link_hash_undefweak:
1000 oldbfd = h->root.u.undef.abfd;
1001 oldsec = NULL;
1002 break;
1003
1004 case bfd_link_hash_defined:
1005 case bfd_link_hash_defweak:
1006 oldbfd = h->root.u.def.section->owner;
1007 oldsec = h->root.u.def.section;
1008 break;
1009
1010 case bfd_link_hash_common:
1011 oldbfd = h->root.u.c.p->section->owner;
1012 oldsec = h->root.u.c.p->section;
1013 break;
1014 }
1015
1016 /* Differentiate strong and weak symbols. */
1017 newweak = bind == STB_WEAK;
1018 oldweak = (h->root.type == bfd_link_hash_defweak
1019 || h->root.type == bfd_link_hash_undefweak);
1020
1021 /* In cases involving weak versioned symbols, we may wind up trying
1022 to merge a symbol with itself. Catch that here, to avoid the
1023 confusion that results if we try to override a symbol with
1024 itself. The additional tests catch cases like
1025 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1026 dynamic object, which we do want to handle here. */
1027 if (abfd == oldbfd
1028 && (newweak || oldweak)
1029 && ((abfd->flags & DYNAMIC) == 0
1030 || !h->def_regular))
1031 return TRUE;
1032
1033 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1034 respectively, is from a dynamic object. */
1035
1036 newdyn = (abfd->flags & DYNAMIC) != 0;
1037
1038 olddyn = FALSE;
1039 if (oldbfd != NULL)
1040 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1041 else if (oldsec != NULL)
1042 {
1043 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1044 indices used by MIPS ELF. */
1045 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1046 }
1047
1048 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1049 respectively, appear to be a definition rather than reference. */
1050
1051 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1052
1053 olddef = (h->root.type != bfd_link_hash_undefined
1054 && h->root.type != bfd_link_hash_undefweak
1055 && h->root.type != bfd_link_hash_common);
1056
1057 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1058 respectively, appear to be a function. */
1059
1060 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1061 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1062
1063 oldfunc = (h->type != STT_NOTYPE
1064 && bed->is_function_type (h->type));
1065
1066 /* When we try to create a default indirect symbol from the dynamic
1067 definition with the default version, we skip it if its type and
1068 the type of existing regular definition mismatch. We only do it
1069 if the existing regular definition won't be dynamic. */
1070 if (pold_alignment == NULL
1071 && !info->shared
1072 && !info->export_dynamic
1073 && !h->ref_dynamic
1074 && newdyn
1075 && newdef
1076 && !olddyn
1077 && (olddef || h->root.type == bfd_link_hash_common)
1078 && ELF_ST_TYPE (sym->st_info) != h->type
1079 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1080 && h->type != STT_NOTYPE
1081 && !(newfunc && oldfunc))
1082 {
1083 *skip = TRUE;
1084 return TRUE;
1085 }
1086
1087 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 "ld -u". */
1089 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && oldbfd != NULL)
1092 {
1093 bfd *ntbfd, *tbfd;
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1096
1097 if (h->type == STT_TLS)
1098 {
1099 ntbfd = abfd;
1100 ntsec = sec;
1101 ntdef = newdef;
1102 tbfd = oldbfd;
1103 tsec = oldsec;
1104 tdef = olddef;
1105 }
1106 else
1107 {
1108 ntbfd = oldbfd;
1109 ntsec = oldsec;
1110 ntdef = olddef;
1111 tbfd = abfd;
1112 tsec = sec;
1113 tdef = newdef;
1114 }
1115
1116 if (tdef && ntdef)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1123 tbfd, ntbfd, h->root.root.string);
1124 else if (tdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1127 tbfd, tsec, ntbfd, h->root.root.string);
1128 else
1129 (*_bfd_error_handler)
1130 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1131 tbfd, ntbfd, ntsec, h->root.root.string);
1132
1133 bfd_set_error (bfd_error_bad_value);
1134 return FALSE;
1135 }
1136
1137 /* We need to remember if a symbol has a definition in a dynamic
1138 object or is weak in all dynamic objects. Internal and hidden
1139 visibility will make it unavailable to dynamic objects. */
1140 if (newdyn && !h->dynamic_def)
1141 {
1142 if (!bfd_is_und_section (sec))
1143 h->dynamic_def = 1;
1144 else
1145 {
1146 /* Check if this symbol is weak in all dynamic objects. If it
1147 is the first time we see it in a dynamic object, we mark
1148 if it is weak. Otherwise, we clear it. */
1149 if (!h->ref_dynamic)
1150 {
1151 if (bind == STB_WEAK)
1152 h->dynamic_weak = 1;
1153 }
1154 else if (bind != STB_WEAK)
1155 h->dynamic_weak = 0;
1156 }
1157 }
1158
1159 /* If the old symbol has non-default visibility, we ignore the new
1160 definition from a dynamic object. */
1161 if (newdyn
1162 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1163 && !bfd_is_und_section (sec))
1164 {
1165 *skip = TRUE;
1166 /* Make sure this symbol is dynamic. */
1167 h->ref_dynamic = 1;
1168 /* A protected symbol has external availability. Make sure it is
1169 recorded as dynamic.
1170
1171 FIXME: Should we check type and size for protected symbol? */
1172 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1173 return bfd_elf_link_record_dynamic_symbol (info, h);
1174 else
1175 return TRUE;
1176 }
1177 else if (!newdyn
1178 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1179 && h->def_dynamic)
1180 {
1181 /* If the new symbol with non-default visibility comes from a
1182 relocatable file and the old definition comes from a dynamic
1183 object, we remove the old definition. */
1184 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185 {
1186 /* Handle the case where the old dynamic definition is
1187 default versioned. We need to copy the symbol info from
1188 the symbol with default version to the normal one if it
1189 was referenced before. */
1190 if (h->ref_regular)
1191 {
1192 struct elf_link_hash_entry *vh = *sym_hash;
1193
1194 vh->root.type = h->root.type;
1195 h->root.type = bfd_link_hash_indirect;
1196 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1197 /* Protected symbols will override the dynamic definition
1198 with default version. */
1199 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 {
1201 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1202 vh->dynamic_def = 1;
1203 vh->ref_dynamic = 1;
1204 }
1205 else
1206 {
1207 h->root.type = vh->root.type;
1208 vh->ref_dynamic = 0;
1209 /* We have to hide it here since it was made dynamic
1210 global with extra bits when the symbol info was
1211 copied from the old dynamic definition. */
1212 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1213 }
1214 h = vh;
1215 }
1216 else
1217 h = *sym_hash;
1218 }
1219
1220 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1221 && bfd_is_und_section (sec))
1222 {
1223 /* If the new symbol is undefined and the old symbol was
1224 also undefined before, we need to make sure
1225 _bfd_generic_link_add_one_symbol doesn't mess
1226 up the linker hash table undefs list. Since the old
1227 definition came from a dynamic object, it is still on the
1228 undefs list. */
1229 h->root.type = bfd_link_hash_undefined;
1230 h->root.u.undef.abfd = abfd;
1231 }
1232 else
1233 {
1234 h->root.type = bfd_link_hash_new;
1235 h->root.u.undef.abfd = NULL;
1236 }
1237
1238 if (h->def_dynamic)
1239 {
1240 h->def_dynamic = 0;
1241 h->ref_dynamic = 1;
1242 h->dynamic_def = 1;
1243 }
1244 /* FIXME: Should we check type and size for protected symbol? */
1245 h->size = 0;
1246 h->type = 0;
1247 return TRUE;
1248 }
1249
1250 if (bind == STB_GNU_UNIQUE)
1251 h->unique_global = 1;
1252
1253 /* If a new weak symbol definition comes from a regular file and the
1254 old symbol comes from a dynamic library, we treat the new one as
1255 strong. Similarly, an old weak symbol definition from a regular
1256 file is treated as strong when the new symbol comes from a dynamic
1257 library. Further, an old weak symbol from a dynamic library is
1258 treated as strong if the new symbol is from a dynamic library.
1259 This reflects the way glibc's ld.so works.
1260
1261 Do this before setting *type_change_ok or *size_change_ok so that
1262 we warn properly when dynamic library symbols are overridden. */
1263
1264 if (newdef && !newdyn && olddyn)
1265 newweak = FALSE;
1266 if (olddef && newdyn)
1267 oldweak = FALSE;
1268
1269 /* Allow changes between different types of function symbol. */
1270 if (newfunc && oldfunc)
1271 *type_change_ok = TRUE;
1272
1273 /* It's OK to change the type if either the existing symbol or the
1274 new symbol is weak. A type change is also OK if the old symbol
1275 is undefined and the new symbol is defined. */
1276
1277 if (oldweak
1278 || newweak
1279 || (newdef
1280 && h->root.type == bfd_link_hash_undefined))
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the size if either the existing symbol or the
1284 new symbol is weak, or if the old symbol is undefined. */
1285
1286 if (*type_change_ok
1287 || h->root.type == bfd_link_hash_undefined)
1288 *size_change_ok = TRUE;
1289
1290 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1291 symbol, respectively, appears to be a common symbol in a dynamic
1292 object. If a symbol appears in an uninitialized section, and is
1293 not weak, and is not a function, then it may be a common symbol
1294 which was resolved when the dynamic object was created. We want
1295 to treat such symbols specially, because they raise special
1296 considerations when setting the symbol size: if the symbol
1297 appears as a common symbol in a regular object, and the size in
1298 the regular object is larger, we must make sure that we use the
1299 larger size. This problematic case can always be avoided in C,
1300 but it must be handled correctly when using Fortran shared
1301 libraries.
1302
1303 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1304 likewise for OLDDYNCOMMON and OLDDEF.
1305
1306 Note that this test is just a heuristic, and that it is quite
1307 possible to have an uninitialized symbol in a shared object which
1308 is really a definition, rather than a common symbol. This could
1309 lead to some minor confusion when the symbol really is a common
1310 symbol in some regular object. However, I think it will be
1311 harmless. */
1312
1313 if (newdyn
1314 && newdef
1315 && !newweak
1316 && (sec->flags & SEC_ALLOC) != 0
1317 && (sec->flags & SEC_LOAD) == 0
1318 && sym->st_size > 0
1319 && !newfunc)
1320 newdyncommon = TRUE;
1321 else
1322 newdyncommon = FALSE;
1323
1324 if (olddyn
1325 && olddef
1326 && h->root.type == bfd_link_hash_defined
1327 && h->def_dynamic
1328 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1329 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 && h->size > 0
1331 && !oldfunc)
1332 olddyncommon = TRUE;
1333 else
1334 olddyncommon = FALSE;
1335
1336 /* We now know everything about the old and new symbols. We ask the
1337 backend to check if we can merge them. */
1338 if (bed->merge_symbol
1339 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1340 pold_alignment, skip, override,
1341 type_change_ok, size_change_ok,
1342 &newdyn, &newdef, &newdyncommon, &newweak,
1343 abfd, &sec,
1344 &olddyn, &olddef, &olddyncommon, &oldweak,
1345 oldbfd, &oldsec))
1346 return FALSE;
1347
1348 /* If both the old and the new symbols look like common symbols in a
1349 dynamic object, set the size of the symbol to the larger of the
1350 two. */
1351
1352 if (olddyncommon
1353 && newdyncommon
1354 && sym->st_size != h->size)
1355 {
1356 /* Since we think we have two common symbols, issue a multiple
1357 common warning if desired. Note that we only warn if the
1358 size is different. If the size is the same, we simply let
1359 the old symbol override the new one as normally happens with
1360 symbols defined in dynamic objects. */
1361
1362 if (! ((*info->callbacks->multiple_common)
1363 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1364 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1365 return FALSE;
1366
1367 if (sym->st_size > h->size)
1368 h->size = sym->st_size;
1369
1370 *size_change_ok = TRUE;
1371 }
1372
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1379
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1386
1387 if (newdyn
1388 && newdef
1389 && (olddef
1390 || (h->root.type == bfd_link_hash_common
1391 && (newweak || newfunc))))
1392 {
1393 *override = TRUE;
1394 newdef = FALSE;
1395 newdyncommon = FALSE;
1396
1397 *psec = sec = bfd_und_section_ptr;
1398 *size_change_ok = TRUE;
1399
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1405
1406 if (h->root.type == bfd_link_hash_common)
1407 *type_change_ok = TRUE;
1408 }
1409
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 right thing. */
1415
1416 if (newdyncommon
1417 && h->root.type == bfd_link_hash_common)
1418 {
1419 *override = TRUE;
1420 newdef = FALSE;
1421 newdyncommon = FALSE;
1422 *pvalue = sym->st_size;
1423 *psec = sec = bed->common_section (oldsec);
1424 *size_change_ok = TRUE;
1425 }
1426
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef && olddef && newweak)
1429 {
1430 *skip = TRUE;
1431
1432 /* Merge st_other. If the symbol already has a dynamic index,
1433 but visibility says it should not be visible, turn it into a
1434 local symbol. */
1435 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1436 if (h->dynindx != -1)
1437 switch (ELF_ST_VISIBILITY (h->other))
1438 {
1439 case STV_INTERNAL:
1440 case STV_HIDDEN:
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 break;
1443 }
1444 }
1445
1446 /* If the old symbol is from a dynamic object, and the new symbol is
1447 a definition which is not from a dynamic object, then the new
1448 symbol overrides the old symbol. Symbols from regular files
1449 always take precedence over symbols from dynamic objects, even if
1450 they are defined after the dynamic object in the link.
1451
1452 As above, we again permit a common symbol in a regular object to
1453 override a definition in a shared object if the shared object
1454 symbol is a function or is weak. */
1455
1456 flip = NULL;
1457 if (!newdyn
1458 && (newdef
1459 || (bfd_is_com_section (sec)
1460 && (oldweak || oldfunc)))
1461 && olddyn
1462 && olddef
1463 && h->def_dynamic)
1464 {
1465 /* Change the hash table entry to undefined, and let
1466 _bfd_generic_link_add_one_symbol do the right thing with the
1467 new definition. */
1468
1469 h->root.type = bfd_link_hash_undefined;
1470 h->root.u.undef.abfd = h->root.u.def.section->owner;
1471 *size_change_ok = TRUE;
1472
1473 olddef = FALSE;
1474 olddyncommon = FALSE;
1475
1476 /* We again permit a type change when a common symbol may be
1477 overriding a function. */
1478
1479 if (bfd_is_com_section (sec))
1480 {
1481 if (oldfunc)
1482 {
1483 /* If a common symbol overrides a function, make sure
1484 that it isn't defined dynamically nor has type
1485 function. */
1486 h->def_dynamic = 0;
1487 h->type = STT_NOTYPE;
1488 }
1489 *type_change_ok = TRUE;
1490 }
1491
1492 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1493 flip = *sym_hash;
1494 else
1495 /* This union may have been set to be non-NULL when this symbol
1496 was seen in a dynamic object. We must force the union to be
1497 NULL, so that it is correct for a regular symbol. */
1498 h->verinfo.vertree = NULL;
1499 }
1500
1501 /* Handle the special case of a new common symbol merging with an
1502 old symbol that looks like it might be a common symbol defined in
1503 a shared object. Note that we have already handled the case in
1504 which a new common symbol should simply override the definition
1505 in the shared library. */
1506
1507 if (! newdyn
1508 && bfd_is_com_section (sec)
1509 && olddyncommon)
1510 {
1511 /* It would be best if we could set the hash table entry to a
1512 common symbol, but we don't know what to use for the section
1513 or the alignment. */
1514 if (! ((*info->callbacks->multiple_common)
1515 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1516 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1517 return FALSE;
1518
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1521
1522 if (h->size > *pvalue)
1523 *pvalue = h->size;
1524
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1529
1530 olddef = FALSE;
1531 olddyncommon = FALSE;
1532
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1535
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1538
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 flip = *sym_hash;
1541 else
1542 h->verinfo.vertree = NULL;
1543 }
1544
1545 if (flip != NULL)
1546 {
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1555 if (h->def_dynamic)
1556 {
1557 h->def_dynamic = 0;
1558 flip->ref_dynamic = 1;
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1569
1570 static bfd_boolean
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1574 const char *name,
1575 Elf_Internal_Sym *sym,
1576 asection **psec,
1577 bfd_vma *value,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1580 {
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1583 bfd_boolean skip;
1584 char *shortname;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1590 char *p;
1591 size_t len, shortlen;
1592 asection *sec;
1593
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1600 return TRUE;
1601
1602 if (override)
1603 {
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 FALSE, FALSE);
1608 BFD_ASSERT (hi != NULL);
1609 if (hi == h)
1610 return TRUE;
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1613 {
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1615 if (hi == h)
1616 return TRUE;
1617 }
1618 }
1619
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1623
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1627 return FALSE;
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1630
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 goto nondefault;
1645
1646 if (! override)
1647 {
1648 bh = &hi->root;
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1652 return FALSE;
1653 hi = (struct elf_link_hash_entry *) bh;
1654 }
1655 else
1656 {
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1662
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1666
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1674
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 hi->ref_dynamic = 1;
1685 if (hi->ref_regular
1686 || hi->def_regular)
1687 {
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1689 return FALSE;
1690 }
1691 }
1692
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1695 hi = h;
1696 }
1697
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 {
1708 struct elf_link_hash_entry *ht;
1709
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712
1713 /* See if the new flags lead us to realize that the symbol must
1714 be dynamic. */
1715 if (! *dynsym)
1716 {
1717 if (! dynamic)
1718 {
1719 if (! info->executable
1720 || hi->ref_dynamic)
1721 *dynsym = TRUE;
1722 }
1723 else
1724 {
1725 if (hi->ref_regular)
1726 *dynsym = TRUE;
1727 }
1728 }
1729 }
1730
1731 /* We also need to define an indirection from the nondefault version
1732 of the symbol. */
1733
1734 nondefault:
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1738 return FALSE;
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1745 sec = *psec;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1749 return FALSE;
1750
1751 if (skip)
1752 return TRUE;
1753
1754 if (override)
1755 {
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1763 abfd, shortname);
1764 }
1765 else
1766 {
1767 bh = &hi->root;
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 return FALSE;
1772 hi = (struct elf_link_hash_entry *) bh;
1773
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1777
1778 if (hi->root.type == bfd_link_hash_indirect)
1779 {
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781
1782 /* See if the new flags lead us to realize that the symbol
1783 must be dynamic. */
1784 if (! *dynsym)
1785 {
1786 if (! dynamic)
1787 {
1788 if (! info->executable
1789 || hi->ref_dynamic)
1790 *dynsym = TRUE;
1791 }
1792 else
1793 {
1794 if (hi->ref_regular)
1795 *dynsym = TRUE;
1796 }
1797 }
1798 }
1799 }
1800
1801 return TRUE;
1802 }
1803 \f
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1806
1807 static bfd_boolean
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 {
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1811
1812 /* Ignore this if we won't export it. */
1813 if (!eif->info->export_dynamic && !h->dynamic)
1814 return TRUE;
1815
1816 /* Ignore indirect symbols. These are added by the versioning code. */
1817 if (h->root.type == bfd_link_hash_indirect)
1818 return TRUE;
1819
1820 if (h->root.type == bfd_link_hash_warning)
1821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1822
1823 if (h->dynindx == -1
1824 && (h->def_regular
1825 || h->ref_regular))
1826 {
1827 bfd_boolean hide;
1828
1829 if (eif->verdefs == NULL
1830 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1831 && !hide))
1832 {
1833 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1834 {
1835 eif->failed = TRUE;
1836 return FALSE;
1837 }
1838 }
1839 }
1840
1841 return TRUE;
1842 }
1843 \f
1844 /* Look through the symbols which are defined in other shared
1845 libraries and referenced here. Update the list of version
1846 dependencies. This will be put into the .gnu.version_r section.
1847 This function is called via elf_link_hash_traverse. */
1848
1849 static bfd_boolean
1850 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1851 void *data)
1852 {
1853 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1854 Elf_Internal_Verneed *t;
1855 Elf_Internal_Vernaux *a;
1856 bfd_size_type amt;
1857
1858 if (h->root.type == bfd_link_hash_warning)
1859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1860
1861 /* We only care about symbols defined in shared objects with version
1862 information. */
1863 if (!h->def_dynamic
1864 || h->def_regular
1865 || h->dynindx == -1
1866 || h->verinfo.verdef == NULL)
1867 return TRUE;
1868
1869 /* See if we already know about this version. */
1870 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1871 t != NULL;
1872 t = t->vn_nextref)
1873 {
1874 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1875 continue;
1876
1877 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1878 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1879 return TRUE;
1880
1881 break;
1882 }
1883
1884 /* This is a new version. Add it to tree we are building. */
1885
1886 if (t == NULL)
1887 {
1888 amt = sizeof *t;
1889 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1890 if (t == NULL)
1891 {
1892 rinfo->failed = TRUE;
1893 return FALSE;
1894 }
1895
1896 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1897 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1898 elf_tdata (rinfo->info->output_bfd)->verref = t;
1899 }
1900
1901 amt = sizeof *a;
1902 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1903 if (a == NULL)
1904 {
1905 rinfo->failed = TRUE;
1906 return FALSE;
1907 }
1908
1909 /* Note that we are copying a string pointer here, and testing it
1910 above. If bfd_elf_string_from_elf_section is ever changed to
1911 discard the string data when low in memory, this will have to be
1912 fixed. */
1913 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1914
1915 a->vna_flags = h->verinfo.verdef->vd_flags;
1916 a->vna_nextptr = t->vn_auxptr;
1917
1918 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1919 ++rinfo->vers;
1920
1921 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1922
1923 t->vn_auxptr = a;
1924
1925 return TRUE;
1926 }
1927
1928 /* Figure out appropriate versions for all the symbols. We may not
1929 have the version number script until we have read all of the input
1930 files, so until that point we don't know which symbols should be
1931 local. This function is called via elf_link_hash_traverse. */
1932
1933 static bfd_boolean
1934 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1935 {
1936 struct elf_info_failed *sinfo;
1937 struct bfd_link_info *info;
1938 const struct elf_backend_data *bed;
1939 struct elf_info_failed eif;
1940 char *p;
1941 bfd_size_type amt;
1942
1943 sinfo = (struct elf_info_failed *) data;
1944 info = sinfo->info;
1945
1946 if (h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948
1949 /* Fix the symbol flags. */
1950 eif.failed = FALSE;
1951 eif.info = info;
1952 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1953 {
1954 if (eif.failed)
1955 sinfo->failed = TRUE;
1956 return FALSE;
1957 }
1958
1959 /* We only need version numbers for symbols defined in regular
1960 objects. */
1961 if (!h->def_regular)
1962 return TRUE;
1963
1964 bed = get_elf_backend_data (info->output_bfd);
1965 p = strchr (h->root.root.string, ELF_VER_CHR);
1966 if (p != NULL && h->verinfo.vertree == NULL)
1967 {
1968 struct bfd_elf_version_tree *t;
1969 bfd_boolean hidden;
1970
1971 hidden = TRUE;
1972
1973 /* There are two consecutive ELF_VER_CHR characters if this is
1974 not a hidden symbol. */
1975 ++p;
1976 if (*p == ELF_VER_CHR)
1977 {
1978 hidden = FALSE;
1979 ++p;
1980 }
1981
1982 /* If there is no version string, we can just return out. */
1983 if (*p == '\0')
1984 {
1985 if (hidden)
1986 h->hidden = 1;
1987 return TRUE;
1988 }
1989
1990 /* Look for the version. If we find it, it is no longer weak. */
1991 for (t = sinfo->verdefs; t != NULL; t = t->next)
1992 {
1993 if (strcmp (t->name, p) == 0)
1994 {
1995 size_t len;
1996 char *alc;
1997 struct bfd_elf_version_expr *d;
1998
1999 len = p - h->root.root.string;
2000 alc = (char *) bfd_malloc (len);
2001 if (alc == NULL)
2002 {
2003 sinfo->failed = TRUE;
2004 return FALSE;
2005 }
2006 memcpy (alc, h->root.root.string, len - 1);
2007 alc[len - 1] = '\0';
2008 if (alc[len - 2] == ELF_VER_CHR)
2009 alc[len - 2] = '\0';
2010
2011 h->verinfo.vertree = t;
2012 t->used = TRUE;
2013 d = NULL;
2014
2015 if (t->globals.list != NULL)
2016 d = (*t->match) (&t->globals, NULL, alc);
2017
2018 /* See if there is anything to force this symbol to
2019 local scope. */
2020 if (d == NULL && t->locals.list != NULL)
2021 {
2022 d = (*t->match) (&t->locals, NULL, alc);
2023 if (d != NULL
2024 && h->dynindx != -1
2025 && ! info->export_dynamic)
2026 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2027 }
2028
2029 free (alc);
2030 break;
2031 }
2032 }
2033
2034 /* If we are building an application, we need to create a
2035 version node for this version. */
2036 if (t == NULL && info->executable)
2037 {
2038 struct bfd_elf_version_tree **pp;
2039 int version_index;
2040
2041 /* If we aren't going to export this symbol, we don't need
2042 to worry about it. */
2043 if (h->dynindx == -1)
2044 return TRUE;
2045
2046 amt = sizeof *t;
2047 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2048 if (t == NULL)
2049 {
2050 sinfo->failed = TRUE;
2051 return FALSE;
2052 }
2053
2054 t->name = p;
2055 t->name_indx = (unsigned int) -1;
2056 t->used = TRUE;
2057
2058 version_index = 1;
2059 /* Don't count anonymous version tag. */
2060 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2061 version_index = 0;
2062 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2063 ++version_index;
2064 t->vernum = version_index;
2065
2066 *pp = t;
2067
2068 h->verinfo.vertree = t;
2069 }
2070 else if (t == NULL)
2071 {
2072 /* We could not find the version for a symbol when
2073 generating a shared archive. Return an error. */
2074 (*_bfd_error_handler)
2075 (_("%B: version node not found for symbol %s"),
2076 info->output_bfd, h->root.root.string);
2077 bfd_set_error (bfd_error_bad_value);
2078 sinfo->failed = TRUE;
2079 return FALSE;
2080 }
2081
2082 if (hidden)
2083 h->hidden = 1;
2084 }
2085
2086 /* If we don't have a version for this symbol, see if we can find
2087 something. */
2088 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2089 {
2090 bfd_boolean hide;
2091
2092 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2093 h->root.root.string, &hide);
2094 if (h->verinfo.vertree != NULL && hide)
2095 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2096 }
2097
2098 return TRUE;
2099 }
2100 \f
2101 /* Read and swap the relocs from the section indicated by SHDR. This
2102 may be either a REL or a RELA section. The relocations are
2103 translated into RELA relocations and stored in INTERNAL_RELOCS,
2104 which should have already been allocated to contain enough space.
2105 The EXTERNAL_RELOCS are a buffer where the external form of the
2106 relocations should be stored.
2107
2108 Returns FALSE if something goes wrong. */
2109
2110 static bfd_boolean
2111 elf_link_read_relocs_from_section (bfd *abfd,
2112 asection *sec,
2113 Elf_Internal_Shdr *shdr,
2114 void *external_relocs,
2115 Elf_Internal_Rela *internal_relocs)
2116 {
2117 const struct elf_backend_data *bed;
2118 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2119 const bfd_byte *erela;
2120 const bfd_byte *erelaend;
2121 Elf_Internal_Rela *irela;
2122 Elf_Internal_Shdr *symtab_hdr;
2123 size_t nsyms;
2124
2125 /* Position ourselves at the start of the section. */
2126 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2127 return FALSE;
2128
2129 /* Read the relocations. */
2130 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2131 return FALSE;
2132
2133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2134 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2135
2136 bed = get_elf_backend_data (abfd);
2137
2138 /* Convert the external relocations to the internal format. */
2139 if (shdr->sh_entsize == bed->s->sizeof_rel)
2140 swap_in = bed->s->swap_reloc_in;
2141 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2142 swap_in = bed->s->swap_reloca_in;
2143 else
2144 {
2145 bfd_set_error (bfd_error_wrong_format);
2146 return FALSE;
2147 }
2148
2149 erela = (const bfd_byte *) external_relocs;
2150 erelaend = erela + shdr->sh_size;
2151 irela = internal_relocs;
2152 while (erela < erelaend)
2153 {
2154 bfd_vma r_symndx;
2155
2156 (*swap_in) (abfd, erela, irela);
2157 r_symndx = ELF32_R_SYM (irela->r_info);
2158 if (bed->s->arch_size == 64)
2159 r_symndx >>= 24;
2160 if (nsyms > 0)
2161 {
2162 if ((size_t) r_symndx >= nsyms)
2163 {
2164 (*_bfd_error_handler)
2165 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2166 " for offset 0x%lx in section `%A'"),
2167 abfd, sec,
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2170 return FALSE;
2171 }
2172 }
2173 else if (r_symndx != 0)
2174 {
2175 (*_bfd_error_handler)
2176 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2177 " when the object file has no symbol table"),
2178 abfd, sec,
2179 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2180 bfd_set_error (bfd_error_bad_value);
2181 return FALSE;
2182 }
2183 irela += bed->s->int_rels_per_ext_rel;
2184 erela += shdr->sh_entsize;
2185 }
2186
2187 return TRUE;
2188 }
2189
2190 /* Read and swap the relocs for a section O. They may have been
2191 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2192 not NULL, they are used as buffers to read into. They are known to
2193 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2194 the return value is allocated using either malloc or bfd_alloc,
2195 according to the KEEP_MEMORY argument. If O has two relocation
2196 sections (both REL and RELA relocations), then the REL_HDR
2197 relocations will appear first in INTERNAL_RELOCS, followed by the
2198 REL_HDR2 relocations. */
2199
2200 Elf_Internal_Rela *
2201 _bfd_elf_link_read_relocs (bfd *abfd,
2202 asection *o,
2203 void *external_relocs,
2204 Elf_Internal_Rela *internal_relocs,
2205 bfd_boolean keep_memory)
2206 {
2207 Elf_Internal_Shdr *rel_hdr;
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211
2212 if (elf_section_data (o)->relocs != NULL)
2213 return elf_section_data (o)->relocs;
2214
2215 if (o->reloc_count == 0)
2216 return NULL;
2217
2218 rel_hdr = &elf_section_data (o)->rel_hdr;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = rel_hdr->sh_size;
2237
2238 if (elf_section_data (o)->rel_hdr2)
2239 size += elf_section_data (o)->rel_hdr2->sh_size;
2240 alloc1 = bfd_malloc (size);
2241 if (alloc1 == NULL)
2242 goto error_return;
2243 external_relocs = alloc1;
2244 }
2245
2246 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2247 external_relocs,
2248 internal_relocs))
2249 goto error_return;
2250 if (elf_section_data (o)->rel_hdr2
2251 && (!elf_link_read_relocs_from_section
2252 (abfd, o,
2253 elf_section_data (o)->rel_hdr2,
2254 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2255 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2256 * bed->s->int_rels_per_ext_rel))))
2257 goto error_return;
2258
2259 /* Cache the results for next time, if we can. */
2260 if (keep_memory)
2261 elf_section_data (o)->relocs = internal_relocs;
2262
2263 if (alloc1 != NULL)
2264 free (alloc1);
2265
2266 /* Don't free alloc2, since if it was allocated we are passing it
2267 back (under the name of internal_relocs). */
2268
2269 return internal_relocs;
2270
2271 error_return:
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274 if (alloc2 != NULL)
2275 {
2276 if (keep_memory)
2277 bfd_release (abfd, alloc2);
2278 else
2279 free (alloc2);
2280 }
2281 return NULL;
2282 }
2283
2284 /* Compute the size of, and allocate space for, REL_HDR which is the
2285 section header for a section containing relocations for O. */
2286
2287 static bfd_boolean
2288 _bfd_elf_link_size_reloc_section (bfd *abfd,
2289 Elf_Internal_Shdr *rel_hdr,
2290 asection *o)
2291 {
2292 bfd_size_type reloc_count;
2293 bfd_size_type num_rel_hashes;
2294
2295 /* Figure out how many relocations there will be. */
2296 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2297 reloc_count = elf_section_data (o)->rel_count;
2298 else
2299 reloc_count = elf_section_data (o)->rel_count2;
2300
2301 num_rel_hashes = o->reloc_count;
2302 if (num_rel_hashes < reloc_count)
2303 num_rel_hashes = reloc_count;
2304
2305 /* That allows us to calculate the size of the section. */
2306 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2307
2308 /* The contents field must last into write_object_contents, so we
2309 allocate it with bfd_alloc rather than malloc. Also since we
2310 cannot be sure that the contents will actually be filled in,
2311 we zero the allocated space. */
2312 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2313 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 return FALSE;
2315
2316 /* We only allocate one set of hash entries, so we only do it the
2317 first time we are called. */
2318 if (elf_section_data (o)->rel_hashes == NULL
2319 && num_rel_hashes)
2320 {
2321 struct elf_link_hash_entry **p;
2322
2323 p = (struct elf_link_hash_entry **)
2324 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2325 if (p == NULL)
2326 return FALSE;
2327
2328 elf_section_data (o)->rel_hashes = p;
2329 }
2330
2331 return TRUE;
2332 }
2333
2334 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2335 originated from the section given by INPUT_REL_HDR) to the
2336 OUTPUT_BFD. */
2337
2338 bfd_boolean
2339 _bfd_elf_link_output_relocs (bfd *output_bfd,
2340 asection *input_section,
2341 Elf_Internal_Shdr *input_rel_hdr,
2342 Elf_Internal_Rela *internal_relocs,
2343 struct elf_link_hash_entry **rel_hash
2344 ATTRIBUTE_UNUSED)
2345 {
2346 Elf_Internal_Rela *irela;
2347 Elf_Internal_Rela *irelaend;
2348 bfd_byte *erel;
2349 Elf_Internal_Shdr *output_rel_hdr;
2350 asection *output_section;
2351 unsigned int *rel_countp = NULL;
2352 const struct elf_backend_data *bed;
2353 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2354
2355 output_section = input_section->output_section;
2356 output_rel_hdr = NULL;
2357
2358 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2359 == input_rel_hdr->sh_entsize)
2360 {
2361 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2362 rel_countp = &elf_section_data (output_section)->rel_count;
2363 }
2364 else if (elf_section_data (output_section)->rel_hdr2
2365 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2366 == input_rel_hdr->sh_entsize))
2367 {
2368 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2369 rel_countp = &elf_section_data (output_section)->rel_count2;
2370 }
2371 else
2372 {
2373 (*_bfd_error_handler)
2374 (_("%B: relocation size mismatch in %B section %A"),
2375 output_bfd, input_section->owner, input_section);
2376 bfd_set_error (bfd_error_wrong_format);
2377 return FALSE;
2378 }
2379
2380 bed = get_elf_backend_data (output_bfd);
2381 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2382 swap_out = bed->s->swap_reloc_out;
2383 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2384 swap_out = bed->s->swap_reloca_out;
2385 else
2386 abort ();
2387
2388 erel = output_rel_hdr->contents;
2389 erel += *rel_countp * input_rel_hdr->sh_entsize;
2390 irela = internal_relocs;
2391 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2392 * bed->s->int_rels_per_ext_rel);
2393 while (irela < irelaend)
2394 {
2395 (*swap_out) (output_bfd, irela, erel);
2396 irela += bed->s->int_rels_per_ext_rel;
2397 erel += input_rel_hdr->sh_entsize;
2398 }
2399
2400 /* Bump the counter, so that we know where to add the next set of
2401 relocations. */
2402 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2403
2404 return TRUE;
2405 }
2406 \f
2407 /* Make weak undefined symbols in PIE dynamic. */
2408
2409 bfd_boolean
2410 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2411 struct elf_link_hash_entry *h)
2412 {
2413 if (info->pie
2414 && h->dynindx == -1
2415 && h->root.type == bfd_link_hash_undefweak)
2416 return bfd_elf_link_record_dynamic_symbol (info, h);
2417
2418 return TRUE;
2419 }
2420
2421 /* Fix up the flags for a symbol. This handles various cases which
2422 can only be fixed after all the input files are seen. This is
2423 currently called by both adjust_dynamic_symbol and
2424 assign_sym_version, which is unnecessary but perhaps more robust in
2425 the face of future changes. */
2426
2427 static bfd_boolean
2428 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2429 struct elf_info_failed *eif)
2430 {
2431 const struct elf_backend_data *bed;
2432
2433 /* If this symbol was mentioned in a non-ELF file, try to set
2434 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2435 permit a non-ELF file to correctly refer to a symbol defined in
2436 an ELF dynamic object. */
2437 if (h->non_elf)
2438 {
2439 while (h->root.type == bfd_link_hash_indirect)
2440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2441
2442 if (h->root.type != bfd_link_hash_defined
2443 && h->root.type != bfd_link_hash_defweak)
2444 {
2445 h->ref_regular = 1;
2446 h->ref_regular_nonweak = 1;
2447 }
2448 else
2449 {
2450 if (h->root.u.def.section->owner != NULL
2451 && (bfd_get_flavour (h->root.u.def.section->owner)
2452 == bfd_target_elf_flavour))
2453 {
2454 h->ref_regular = 1;
2455 h->ref_regular_nonweak = 1;
2456 }
2457 else
2458 h->def_regular = 1;
2459 }
2460
2461 if (h->dynindx == -1
2462 && (h->def_dynamic
2463 || h->ref_dynamic))
2464 {
2465 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2466 {
2467 eif->failed = TRUE;
2468 return FALSE;
2469 }
2470 }
2471 }
2472 else
2473 {
2474 /* Unfortunately, NON_ELF is only correct if the symbol
2475 was first seen in a non-ELF file. Fortunately, if the symbol
2476 was first seen in an ELF file, we're probably OK unless the
2477 symbol was defined in a non-ELF file. Catch that case here.
2478 FIXME: We're still in trouble if the symbol was first seen in
2479 a dynamic object, and then later in a non-ELF regular object. */
2480 if ((h->root.type == bfd_link_hash_defined
2481 || h->root.type == bfd_link_hash_defweak)
2482 && !h->def_regular
2483 && (h->root.u.def.section->owner != NULL
2484 ? (bfd_get_flavour (h->root.u.def.section->owner)
2485 != bfd_target_elf_flavour)
2486 : (bfd_is_abs_section (h->root.u.def.section)
2487 && !h->def_dynamic)))
2488 h->def_regular = 1;
2489 }
2490
2491 /* Backend specific symbol fixup. */
2492 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2493 if (bed->elf_backend_fixup_symbol
2494 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2495 return FALSE;
2496
2497 /* If this is a final link, and the symbol was defined as a common
2498 symbol in a regular object file, and there was no definition in
2499 any dynamic object, then the linker will have allocated space for
2500 the symbol in a common section but the DEF_REGULAR
2501 flag will not have been set. */
2502 if (h->root.type == bfd_link_hash_defined
2503 && !h->def_regular
2504 && h->ref_regular
2505 && !h->def_dynamic
2506 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2507 h->def_regular = 1;
2508
2509 /* If -Bsymbolic was used (which means to bind references to global
2510 symbols to the definition within the shared object), and this
2511 symbol was defined in a regular object, then it actually doesn't
2512 need a PLT entry. Likewise, if the symbol has non-default
2513 visibility. If the symbol has hidden or internal visibility, we
2514 will force it local. */
2515 if (h->needs_plt
2516 && eif->info->shared
2517 && is_elf_hash_table (eif->info->hash)
2518 && (SYMBOLIC_BIND (eif->info, h)
2519 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2520 && h->def_regular)
2521 {
2522 bfd_boolean force_local;
2523
2524 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2525 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2526 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2527 }
2528
2529 /* If a weak undefined symbol has non-default visibility, we also
2530 hide it from the dynamic linker. */
2531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2532 && h->root.type == bfd_link_hash_undefweak)
2533 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2534
2535 /* If this is a weak defined symbol in a dynamic object, and we know
2536 the real definition in the dynamic object, copy interesting flags
2537 over to the real definition. */
2538 if (h->u.weakdef != NULL)
2539 {
2540 struct elf_link_hash_entry *weakdef;
2541
2542 weakdef = h->u.weakdef;
2543 if (h->root.type == bfd_link_hash_indirect)
2544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2545
2546 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2547 || h->root.type == bfd_link_hash_defweak);
2548 BFD_ASSERT (weakdef->def_dynamic);
2549
2550 /* If the real definition is defined by a regular object file,
2551 don't do anything special. See the longer description in
2552 _bfd_elf_adjust_dynamic_symbol, below. */
2553 if (weakdef->def_regular)
2554 h->u.weakdef = NULL;
2555 else
2556 {
2557 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2558 || weakdef->root.type == bfd_link_hash_defweak);
2559 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2560 }
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Make the backend pick a good value for a dynamic symbol. This is
2567 called via elf_link_hash_traverse, and also calls itself
2568 recursively. */
2569
2570 static bfd_boolean
2571 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2572 {
2573 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2574 bfd *dynobj;
2575 const struct elf_backend_data *bed;
2576
2577 if (! is_elf_hash_table (eif->info->hash))
2578 return FALSE;
2579
2580 if (h->root.type == bfd_link_hash_warning)
2581 {
2582 h->got = elf_hash_table (eif->info)->init_got_offset;
2583 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2584
2585 /* When warning symbols are created, they **replace** the "real"
2586 entry in the hash table, thus we never get to see the real
2587 symbol in a hash traversal. So look at it now. */
2588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2589 }
2590
2591 /* Ignore indirect symbols. These are added by the versioning code. */
2592 if (h->root.type == bfd_link_hash_indirect)
2593 return TRUE;
2594
2595 /* Fix the symbol flags. */
2596 if (! _bfd_elf_fix_symbol_flags (h, eif))
2597 return FALSE;
2598
2599 /* If this symbol does not require a PLT entry, and it is not
2600 defined by a dynamic object, or is not referenced by a regular
2601 object, ignore it. We do have to handle a weak defined symbol,
2602 even if no regular object refers to it, if we decided to add it
2603 to the dynamic symbol table. FIXME: Do we normally need to worry
2604 about symbols which are defined by one dynamic object and
2605 referenced by another one? */
2606 if (!h->needs_plt
2607 && h->type != STT_GNU_IFUNC
2608 && (h->def_regular
2609 || !h->def_dynamic
2610 || (!h->ref_regular
2611 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2612 {
2613 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2614 return TRUE;
2615 }
2616
2617 /* If we've already adjusted this symbol, don't do it again. This
2618 can happen via a recursive call. */
2619 if (h->dynamic_adjusted)
2620 return TRUE;
2621
2622 /* Don't look at this symbol again. Note that we must set this
2623 after checking the above conditions, because we may look at a
2624 symbol once, decide not to do anything, and then get called
2625 recursively later after REF_REGULAR is set below. */
2626 h->dynamic_adjusted = 1;
2627
2628 /* If this is a weak definition, and we know a real definition, and
2629 the real symbol is not itself defined by a regular object file,
2630 then get a good value for the real definition. We handle the
2631 real symbol first, for the convenience of the backend routine.
2632
2633 Note that there is a confusing case here. If the real definition
2634 is defined by a regular object file, we don't get the real symbol
2635 from the dynamic object, but we do get the weak symbol. If the
2636 processor backend uses a COPY reloc, then if some routine in the
2637 dynamic object changes the real symbol, we will not see that
2638 change in the corresponding weak symbol. This is the way other
2639 ELF linkers work as well, and seems to be a result of the shared
2640 library model.
2641
2642 I will clarify this issue. Most SVR4 shared libraries define the
2643 variable _timezone and define timezone as a weak synonym. The
2644 tzset call changes _timezone. If you write
2645 extern int timezone;
2646 int _timezone = 5;
2647 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2648 you might expect that, since timezone is a synonym for _timezone,
2649 the same number will print both times. However, if the processor
2650 backend uses a COPY reloc, then actually timezone will be copied
2651 into your process image, and, since you define _timezone
2652 yourself, _timezone will not. Thus timezone and _timezone will
2653 wind up at different memory locations. The tzset call will set
2654 _timezone, leaving timezone unchanged. */
2655
2656 if (h->u.weakdef != NULL)
2657 {
2658 /* If we get to this point, we know there is an implicit
2659 reference by a regular object file via the weak symbol H.
2660 FIXME: Is this really true? What if the traversal finds
2661 H->U.WEAKDEF before it finds H? */
2662 h->u.weakdef->ref_regular = 1;
2663
2664 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2665 return FALSE;
2666 }
2667
2668 /* If a symbol has no type and no size and does not require a PLT
2669 entry, then we are probably about to do the wrong thing here: we
2670 are probably going to create a COPY reloc for an empty object.
2671 This case can arise when a shared object is built with assembly
2672 code, and the assembly code fails to set the symbol type. */
2673 if (h->size == 0
2674 && h->type == STT_NOTYPE
2675 && !h->needs_plt)
2676 (*_bfd_error_handler)
2677 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2678 h->root.root.string);
2679
2680 dynobj = elf_hash_table (eif->info)->dynobj;
2681 bed = get_elf_backend_data (dynobj);
2682
2683 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2684 {
2685 eif->failed = TRUE;
2686 return FALSE;
2687 }
2688
2689 return TRUE;
2690 }
2691
2692 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 DYNBSS. */
2694
2695 bfd_boolean
2696 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2697 asection *dynbss)
2698 {
2699 unsigned int power_of_two;
2700 bfd_vma mask;
2701 asection *sec = h->root.u.def.section;
2702
2703 /* The section aligment of definition is the maximum alignment
2704 requirement of symbols defined in the section. Since we don't
2705 know the symbol alignment requirement, we start with the
2706 maximum alignment and check low bits of the symbol address
2707 for the minimum alignment. */
2708 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2709 mask = ((bfd_vma) 1 << power_of_two) - 1;
2710 while ((h->root.u.def.value & mask) != 0)
2711 {
2712 mask >>= 1;
2713 --power_of_two;
2714 }
2715
2716 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2717 dynbss))
2718 {
2719 /* Adjust the section alignment if needed. */
2720 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2721 power_of_two))
2722 return FALSE;
2723 }
2724
2725 /* We make sure that the symbol will be aligned properly. */
2726 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2727
2728 /* Define the symbol as being at this point in DYNBSS. */
2729 h->root.u.def.section = dynbss;
2730 h->root.u.def.value = dynbss->size;
2731
2732 /* Increment the size of DYNBSS to make room for the symbol. */
2733 dynbss->size += h->size;
2734
2735 return TRUE;
2736 }
2737
2738 /* Adjust all external symbols pointing into SEC_MERGE sections
2739 to reflect the object merging within the sections. */
2740
2741 static bfd_boolean
2742 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2743 {
2744 asection *sec;
2745
2746 if (h->root.type == bfd_link_hash_warning)
2747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2748
2749 if ((h->root.type == bfd_link_hash_defined
2750 || h->root.type == bfd_link_hash_defweak)
2751 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2752 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2753 {
2754 bfd *output_bfd = (bfd *) data;
2755
2756 h->root.u.def.value =
2757 _bfd_merged_section_offset (output_bfd,
2758 &h->root.u.def.section,
2759 elf_section_data (sec)->sec_info,
2760 h->root.u.def.value);
2761 }
2762
2763 return TRUE;
2764 }
2765
2766 /* Returns false if the symbol referred to by H should be considered
2767 to resolve local to the current module, and true if it should be
2768 considered to bind dynamically. */
2769
2770 bfd_boolean
2771 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2772 struct bfd_link_info *info,
2773 bfd_boolean ignore_protected)
2774 {
2775 bfd_boolean binding_stays_local_p;
2776 const struct elf_backend_data *bed;
2777 struct elf_link_hash_table *hash_table;
2778
2779 if (h == NULL)
2780 return FALSE;
2781
2782 while (h->root.type == bfd_link_hash_indirect
2783 || h->root.type == bfd_link_hash_warning)
2784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2785
2786 /* If it was forced local, then clearly it's not dynamic. */
2787 if (h->dynindx == -1)
2788 return FALSE;
2789 if (h->forced_local)
2790 return FALSE;
2791
2792 /* Identify the cases where name binding rules say that a
2793 visible symbol resolves locally. */
2794 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2795
2796 switch (ELF_ST_VISIBILITY (h->other))
2797 {
2798 case STV_INTERNAL:
2799 case STV_HIDDEN:
2800 return FALSE;
2801
2802 case STV_PROTECTED:
2803 hash_table = elf_hash_table (info);
2804 if (!is_elf_hash_table (hash_table))
2805 return FALSE;
2806
2807 bed = get_elf_backend_data (hash_table->dynobj);
2808
2809 /* Proper resolution for function pointer equality may require
2810 that these symbols perhaps be resolved dynamically, even though
2811 we should be resolving them to the current module. */
2812 if (!ignore_protected || !bed->is_function_type (h->type))
2813 binding_stays_local_p = TRUE;
2814 break;
2815
2816 default:
2817 break;
2818 }
2819
2820 /* If it isn't defined locally, then clearly it's dynamic. */
2821 if (!h->def_regular)
2822 return TRUE;
2823
2824 /* Otherwise, the symbol is dynamic if binding rules don't tell
2825 us that it remains local. */
2826 return !binding_stays_local_p;
2827 }
2828
2829 /* Return true if the symbol referred to by H should be considered
2830 to resolve local to the current module, and false otherwise. Differs
2831 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2832 undefined symbols and weak symbols. */
2833
2834 bfd_boolean
2835 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2836 struct bfd_link_info *info,
2837 bfd_boolean local_protected)
2838 {
2839 const struct elf_backend_data *bed;
2840 struct elf_link_hash_table *hash_table;
2841
2842 /* If it's a local sym, of course we resolve locally. */
2843 if (h == NULL)
2844 return TRUE;
2845
2846 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2847 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2848 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 return TRUE;
2850
2851 /* Common symbols that become definitions don't get the DEF_REGULAR
2852 flag set, so test it first, and don't bail out. */
2853 if (ELF_COMMON_DEF_P (h))
2854 /* Do nothing. */;
2855 /* If we don't have a definition in a regular file, then we can't
2856 resolve locally. The sym is either undefined or dynamic. */
2857 else if (!h->def_regular)
2858 return FALSE;
2859
2860 /* Forced local symbols resolve locally. */
2861 if (h->forced_local)
2862 return TRUE;
2863
2864 /* As do non-dynamic symbols. */
2865 if (h->dynindx == -1)
2866 return TRUE;
2867
2868 /* At this point, we know the symbol is defined and dynamic. In an
2869 executable it must resolve locally, likewise when building symbolic
2870 shared libraries. */
2871 if (info->executable || SYMBOLIC_BIND (info, h))
2872 return TRUE;
2873
2874 /* Now deal with defined dynamic symbols in shared libraries. Ones
2875 with default visibility might not resolve locally. */
2876 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 return FALSE;
2878
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return TRUE;
2882
2883 bed = get_elf_backend_data (hash_table->dynobj);
2884
2885 /* STV_PROTECTED non-function symbols are local. */
2886 if (!bed->is_function_type (h->type))
2887 return TRUE;
2888
2889 /* Function pointer equality tests may require that STV_PROTECTED
2890 symbols be treated as dynamic symbols, even when we know that the
2891 dynamic linker will resolve them locally. */
2892 return local_protected;
2893 }
2894
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2897
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2900 {
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2903
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 break;
2907 tls = sec;
2908
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2912
2913 elf_hash_table (info)->tls_sec = tls;
2914
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2917 if (tls != NULL)
2918 tls->alignment_power = align;
2919
2920 return tls;
2921 }
2922
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2924 static bfd_boolean
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2927 {
2928 const struct elf_backend_data *bed;
2929
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2933 return FALSE;
2934
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2938 return FALSE;
2939
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2942 return FALSE;
2943
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2947 return FALSE;
2948
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2953
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2955
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2959 return FALSE;
2960
2961 return TRUE;
2962 }
2963
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2967 static bfd_boolean
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2969 {
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2977 bfd_boolean result;
2978
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (abfd == NULL)
2981 return FALSE;
2982
2983 if (! bfd_check_format (abfd, bfd_object))
2984 return FALSE;
2985
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2991 return FALSE;
2992
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2996 else
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2998
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3000
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3004 {
3005 extsymcount = symcount;
3006 extsymoff = 0;
3007 }
3008 else
3009 {
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3012 }
3013
3014 if (extsymcount == 0)
3015 return FALSE;
3016
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3019 NULL, NULL, NULL);
3020 if (isymbuf == NULL)
3021 return FALSE;
3022
3023 /* Scan the symbol table looking for SYMDEF. */
3024 result = FALSE;
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 {
3027 const char *name;
3028
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3030 isym->st_name);
3031 if (name == NULL)
3032 break;
3033
3034 if (strcmp (name, symdef->name) == 0)
3035 {
3036 result = is_global_data_symbol_definition (abfd, isym);
3037 break;
3038 }
3039 }
3040
3041 free (isymbuf);
3042
3043 return result;
3044 }
3045 \f
3046 /* Add an entry to the .dynamic table. */
3047
3048 bfd_boolean
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 bfd_vma tag,
3051 bfd_vma val)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3055 asection *s;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3059
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3062 return FALSE;
3063
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3067
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3071 return FALSE;
3072
3073 dyn.d_tag = tag;
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3076
3077 s->size = newsize;
3078 s->contents = newcontents;
3079
3080 return TRUE;
3081 }
3082
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3086
3087 static int
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3090 const char *soname,
3091 bfd_boolean do_it)
3092 {
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3096
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3098 return -1;
3099
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3104 return -1;
3105
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3107 {
3108 asection *sdyn;
3109 const struct elf_backend_data *bed;
3110 bfd_byte *extdyn;
3111
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3114 if (sdyn != NULL)
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3118 {
3119 Elf_Internal_Dyn dyn;
3120
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3124 {
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3126 return 1;
3127 }
3128 }
3129 }
3130
3131 if (do_it)
3132 {
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3134 return -1;
3135
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 return -1;
3138 }
3139 else
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3142
3143 return 0;
3144 }
3145
3146 static bfd_boolean
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3148 {
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3151 return TRUE;
3152
3153 return FALSE;
3154 }
3155
3156 /* Sort symbol by value and section. */
3157 static int
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3159 {
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3163
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3167 if (vdiff != 0)
3168 return vdiff > 0 ? 1 : -1;
3169 else
3170 {
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3172 if (sdiff != 0)
3173 return sdiff > 0 ? 1 : -1;
3174 }
3175 return 0;
3176 }
3177
3178 /* This function is used to adjust offsets into .dynstr for
3179 dynamic symbols. This is called via elf_link_hash_traverse. */
3180
3181 static bfd_boolean
3182 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3183 {
3184 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3185
3186 if (h->root.type == bfd_link_hash_warning)
3187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3188
3189 if (h->dynindx != -1)
3190 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3191 return TRUE;
3192 }
3193
3194 /* Assign string offsets in .dynstr, update all structures referencing
3195 them. */
3196
3197 static bfd_boolean
3198 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3199 {
3200 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3201 struct elf_link_local_dynamic_entry *entry;
3202 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3203 bfd *dynobj = hash_table->dynobj;
3204 asection *sdyn;
3205 bfd_size_type size;
3206 const struct elf_backend_data *bed;
3207 bfd_byte *extdyn;
3208
3209 _bfd_elf_strtab_finalize (dynstr);
3210 size = _bfd_elf_strtab_size (dynstr);
3211
3212 bed = get_elf_backend_data (dynobj);
3213 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3214 BFD_ASSERT (sdyn != NULL);
3215
3216 /* Update all .dynamic entries referencing .dynstr strings. */
3217 for (extdyn = sdyn->contents;
3218 extdyn < sdyn->contents + sdyn->size;
3219 extdyn += bed->s->sizeof_dyn)
3220 {
3221 Elf_Internal_Dyn dyn;
3222
3223 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3224 switch (dyn.d_tag)
3225 {
3226 case DT_STRSZ:
3227 dyn.d_un.d_val = size;
3228 break;
3229 case DT_NEEDED:
3230 case DT_SONAME:
3231 case DT_RPATH:
3232 case DT_RUNPATH:
3233 case DT_FILTER:
3234 case DT_AUXILIARY:
3235 case DT_AUDIT:
3236 case DT_DEPAUDIT:
3237 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3238 break;
3239 default:
3240 continue;
3241 }
3242 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243 }
3244
3245 /* Now update local dynamic symbols. */
3246 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3247 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3248 entry->isym.st_name);
3249
3250 /* And the rest of dynamic symbols. */
3251 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3252
3253 /* Adjust version definitions. */
3254 if (elf_tdata (output_bfd)->cverdefs)
3255 {
3256 asection *s;
3257 bfd_byte *p;
3258 bfd_size_type i;
3259 Elf_Internal_Verdef def;
3260 Elf_Internal_Verdaux defaux;
3261
3262 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3263 p = s->contents;
3264 do
3265 {
3266 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3267 &def);
3268 p += sizeof (Elf_External_Verdef);
3269 if (def.vd_aux != sizeof (Elf_External_Verdef))
3270 continue;
3271 for (i = 0; i < def.vd_cnt; ++i)
3272 {
3273 _bfd_elf_swap_verdaux_in (output_bfd,
3274 (Elf_External_Verdaux *) p, &defaux);
3275 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3276 defaux.vda_name);
3277 _bfd_elf_swap_verdaux_out (output_bfd,
3278 &defaux, (Elf_External_Verdaux *) p);
3279 p += sizeof (Elf_External_Verdaux);
3280 }
3281 }
3282 while (def.vd_next);
3283 }
3284
3285 /* Adjust version references. */
3286 if (elf_tdata (output_bfd)->verref)
3287 {
3288 asection *s;
3289 bfd_byte *p;
3290 bfd_size_type i;
3291 Elf_Internal_Verneed need;
3292 Elf_Internal_Vernaux needaux;
3293
3294 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3295 p = s->contents;
3296 do
3297 {
3298 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3299 &need);
3300 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3301 _bfd_elf_swap_verneed_out (output_bfd, &need,
3302 (Elf_External_Verneed *) p);
3303 p += sizeof (Elf_External_Verneed);
3304 for (i = 0; i < need.vn_cnt; ++i)
3305 {
3306 _bfd_elf_swap_vernaux_in (output_bfd,
3307 (Elf_External_Vernaux *) p, &needaux);
3308 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3309 needaux.vna_name);
3310 _bfd_elf_swap_vernaux_out (output_bfd,
3311 &needaux,
3312 (Elf_External_Vernaux *) p);
3313 p += sizeof (Elf_External_Vernaux);
3314 }
3315 }
3316 while (need.vn_next);
3317 }
3318
3319 return TRUE;
3320 }
3321 \f
3322 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323 The default is to only match when the INPUT and OUTPUT are exactly
3324 the same target. */
3325
3326 bfd_boolean
3327 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3328 const bfd_target *output)
3329 {
3330 return input == output;
3331 }
3332
3333 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334 This version is used when different targets for the same architecture
3335 are virtually identical. */
3336
3337 bfd_boolean
3338 _bfd_elf_relocs_compatible (const bfd_target *input,
3339 const bfd_target *output)
3340 {
3341 const struct elf_backend_data *obed, *ibed;
3342
3343 if (input == output)
3344 return TRUE;
3345
3346 ibed = xvec_get_elf_backend_data (input);
3347 obed = xvec_get_elf_backend_data (output);
3348
3349 if (ibed->arch != obed->arch)
3350 return FALSE;
3351
3352 /* If both backends are using this function, deem them compatible. */
3353 return ibed->relocs_compatible == obed->relocs_compatible;
3354 }
3355
3356 /* Add symbols from an ELF object file to the linker hash table. */
3357
3358 static bfd_boolean
3359 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3360 {
3361 Elf_Internal_Ehdr *ehdr;
3362 Elf_Internal_Shdr *hdr;
3363 bfd_size_type symcount;
3364 bfd_size_type extsymcount;
3365 bfd_size_type extsymoff;
3366 struct elf_link_hash_entry **sym_hash;
3367 bfd_boolean dynamic;
3368 Elf_External_Versym *extversym = NULL;
3369 Elf_External_Versym *ever;
3370 struct elf_link_hash_entry *weaks;
3371 struct elf_link_hash_entry **nondeflt_vers = NULL;
3372 bfd_size_type nondeflt_vers_cnt = 0;
3373 Elf_Internal_Sym *isymbuf = NULL;
3374 Elf_Internal_Sym *isym;
3375 Elf_Internal_Sym *isymend;
3376 const struct elf_backend_data *bed;
3377 bfd_boolean add_needed;
3378 struct elf_link_hash_table *htab;
3379 bfd_size_type amt;
3380 void *alloc_mark = NULL;
3381 struct bfd_hash_entry **old_table = NULL;
3382 unsigned int old_size = 0;
3383 unsigned int old_count = 0;
3384 void *old_tab = NULL;
3385 void *old_hash;
3386 void *old_ent;
3387 struct bfd_link_hash_entry *old_undefs = NULL;
3388 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3389 long old_dynsymcount = 0;
3390 size_t tabsize = 0;
3391 size_t hashsize = 0;
3392
3393 htab = elf_hash_table (info);
3394 bed = get_elf_backend_data (abfd);
3395
3396 if ((abfd->flags & DYNAMIC) == 0)
3397 dynamic = FALSE;
3398 else
3399 {
3400 dynamic = TRUE;
3401
3402 /* You can't use -r against a dynamic object. Also, there's no
3403 hope of using a dynamic object which does not exactly match
3404 the format of the output file. */
3405 if (info->relocatable
3406 || !is_elf_hash_table (htab)
3407 || info->output_bfd->xvec != abfd->xvec)
3408 {
3409 if (info->relocatable)
3410 bfd_set_error (bfd_error_invalid_operation);
3411 else
3412 bfd_set_error (bfd_error_wrong_format);
3413 goto error_return;
3414 }
3415 }
3416
3417 ehdr = elf_elfheader (abfd);
3418 if (info->warn_alternate_em
3419 && bed->elf_machine_code != ehdr->e_machine
3420 && ((bed->elf_machine_alt1 != 0
3421 && ehdr->e_machine == bed->elf_machine_alt1)
3422 || (bed->elf_machine_alt2 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt2)))
3424 info->callbacks->einfo
3425 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426 ehdr->e_machine, abfd, bed->elf_machine_code);
3427
3428 /* As a GNU extension, any input sections which are named
3429 .gnu.warning.SYMBOL are treated as warning symbols for the given
3430 symbol. This differs from .gnu.warning sections, which generate
3431 warnings when they are included in an output file. */
3432 if (info->executable)
3433 {
3434 asection *s;
3435
3436 for (s = abfd->sections; s != NULL; s = s->next)
3437 {
3438 const char *name;
3439
3440 name = bfd_get_section_name (abfd, s);
3441 if (CONST_STRNEQ (name, ".gnu.warning."))
3442 {
3443 char *msg;
3444 bfd_size_type sz;
3445
3446 name += sizeof ".gnu.warning." - 1;
3447
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3456 link. */
3457 if (dynamic)
3458 {
3459 struct elf_link_hash_entry *h;
3460
3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3462
3463 /* FIXME: What about bfd_link_hash_common? */
3464 if (h != NULL
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3467 {
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3471 s->size = 0;
3472 continue;
3473 }
3474 }
3475
3476 sz = s->size;
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3478 if (msg == NULL)
3479 goto error_return;
3480
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3482 goto error_return;
3483
3484 msg[sz] = '\0';
3485
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3489 goto error_return;
3490
3491 if (! info->relocatable)
3492 {
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3495 s->size = 0;
3496
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3500 }
3501 }
3502 }
3503 }
3504
3505 add_needed = TRUE;
3506 if (! dynamic)
3507 {
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3513 if (info->shared
3514 && is_elf_hash_table (htab)
3515 && info->output_bfd->xvec == abfd->xvec
3516 && !htab->dynamic_sections_created)
3517 {
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3519 goto error_return;
3520 }
3521 }
3522 else if (!is_elf_hash_table (htab))
3523 goto error_return;
3524 else
3525 {
3526 asection *s;
3527 const char *soname = NULL;
3528 char *audit = NULL;
3529 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3530 int ret;
3531
3532 /* ld --just-symbols and dynamic objects don't mix very well.
3533 ld shouldn't allow it. */
3534 if ((s = abfd->sections) != NULL
3535 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3536 abort ();
3537
3538 /* If this dynamic lib was specified on the command line with
3539 --as-needed in effect, then we don't want to add a DT_NEEDED
3540 tag unless the lib is actually used. Similary for libs brought
3541 in by another lib's DT_NEEDED. When --no-add-needed is used
3542 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3543 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 all. */
3545 add_needed = (elf_dyn_lib_class (abfd)
3546 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3547 | DYN_NO_NEEDED)) == 0;
3548
3549 s = bfd_get_section_by_name (abfd, ".dynamic");
3550 if (s != NULL)
3551 {
3552 bfd_byte *dynbuf;
3553 bfd_byte *extdyn;
3554 unsigned int elfsec;
3555 unsigned long shlink;
3556
3557 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3558 {
3559 error_free_dyn:
3560 free (dynbuf);
3561 goto error_return;
3562 }
3563
3564 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3565 if (elfsec == SHN_BAD)
3566 goto error_free_dyn;
3567 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3568
3569 for (extdyn = dynbuf;
3570 extdyn < dynbuf + s->size;
3571 extdyn += bed->s->sizeof_dyn)
3572 {
3573 Elf_Internal_Dyn dyn;
3574
3575 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3576 if (dyn.d_tag == DT_SONAME)
3577 {
3578 unsigned int tagv = dyn.d_un.d_val;
3579 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (soname == NULL)
3581 goto error_free_dyn;
3582 }
3583 if (dyn.d_tag == DT_NEEDED)
3584 {
3585 struct bfd_link_needed_list *n, **pn;
3586 char *fnm, *anm;
3587 unsigned int tagv = dyn.d_un.d_val;
3588
3589 amt = sizeof (struct bfd_link_needed_list);
3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
3595 anm = (char *) bfd_alloc (abfd, amt);
3596 if (anm == NULL)
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3599 n->name = anm;
3600 n->by = abfd;
3601 n->next = NULL;
3602 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3603 ;
3604 *pn = n;
3605 }
3606 if (dyn.d_tag == DT_RUNPATH)
3607 {
3608 struct bfd_link_needed_list *n, **pn;
3609 char *fnm, *anm;
3610 unsigned int tagv = dyn.d_un.d_val;
3611
3612 amt = sizeof (struct bfd_link_needed_list);
3613 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3614 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 if (n == NULL || fnm == NULL)
3616 goto error_free_dyn;
3617 amt = strlen (fnm) + 1;
3618 anm = (char *) bfd_alloc (abfd, amt);
3619 if (anm == NULL)
3620 goto error_free_dyn;
3621 memcpy (anm, fnm, amt);
3622 n->name = anm;
3623 n->by = abfd;
3624 n->next = NULL;
3625 for (pn = & runpath;
3626 *pn != NULL;
3627 pn = &(*pn)->next)
3628 ;
3629 *pn = n;
3630 }
3631 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3632 if (!runpath && dyn.d_tag == DT_RPATH)
3633 {
3634 struct bfd_link_needed_list *n, **pn;
3635 char *fnm, *anm;
3636 unsigned int tagv = dyn.d_un.d_val;
3637
3638 amt = sizeof (struct bfd_link_needed_list);
3639 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3640 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 if (n == NULL || fnm == NULL)
3642 goto error_free_dyn;
3643 amt = strlen (fnm) + 1;
3644 anm = (char *) bfd_alloc (abfd, amt);
3645 if (anm == NULL)
3646 goto error_free_dyn;
3647 memcpy (anm, fnm, amt);
3648 n->name = anm;
3649 n->by = abfd;
3650 n->next = NULL;
3651 for (pn = & rpath;
3652 *pn != NULL;
3653 pn = &(*pn)->next)
3654 ;
3655 *pn = n;
3656 }
3657 if (dyn.d_tag == DT_AUDIT)
3658 {
3659 unsigned int tagv = dyn.d_un.d_val;
3660 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3661 }
3662 }
3663
3664 free (dynbuf);
3665 }
3666
3667 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3668 frees all more recently bfd_alloc'd blocks as well. */
3669 if (runpath)
3670 rpath = runpath;
3671
3672 if (rpath)
3673 {
3674 struct bfd_link_needed_list **pn;
3675 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3676 ;
3677 *pn = rpath;
3678 }
3679
3680 /* We do not want to include any of the sections in a dynamic
3681 object in the output file. We hack by simply clobbering the
3682 list of sections in the BFD. This could be handled more
3683 cleanly by, say, a new section flag; the existing
3684 SEC_NEVER_LOAD flag is not the one we want, because that one
3685 still implies that the section takes up space in the output
3686 file. */
3687 bfd_section_list_clear (abfd);
3688
3689 /* Find the name to use in a DT_NEEDED entry that refers to this
3690 object. If the object has a DT_SONAME entry, we use it.
3691 Otherwise, if the generic linker stuck something in
3692 elf_dt_name, we use that. Otherwise, we just use the file
3693 name. */
3694 if (soname == NULL || *soname == '\0')
3695 {
3696 soname = elf_dt_name (abfd);
3697 if (soname == NULL || *soname == '\0')
3698 soname = bfd_get_filename (abfd);
3699 }
3700
3701 /* Save the SONAME because sometimes the linker emulation code
3702 will need to know it. */
3703 elf_dt_name (abfd) = soname;
3704
3705 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3706 if (ret < 0)
3707 goto error_return;
3708
3709 /* If we have already included this dynamic object in the
3710 link, just ignore it. There is no reason to include a
3711 particular dynamic object more than once. */
3712 if (ret > 0)
3713 return TRUE;
3714
3715 /* Save the DT_AUDIT entry for the linker emulation code. */
3716 elf_dt_audit (abfd) = audit;
3717 }
3718
3719 /* If this is a dynamic object, we always link against the .dynsym
3720 symbol table, not the .symtab symbol table. The dynamic linker
3721 will only see the .dynsym symbol table, so there is no reason to
3722 look at .symtab for a dynamic object. */
3723
3724 if (! dynamic || elf_dynsymtab (abfd) == 0)
3725 hdr = &elf_tdata (abfd)->symtab_hdr;
3726 else
3727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3728
3729 symcount = hdr->sh_size / bed->s->sizeof_sym;
3730
3731 /* The sh_info field of the symtab header tells us where the
3732 external symbols start. We don't care about the local symbols at
3733 this point. */
3734 if (elf_bad_symtab (abfd))
3735 {
3736 extsymcount = symcount;
3737 extsymoff = 0;
3738 }
3739 else
3740 {
3741 extsymcount = symcount - hdr->sh_info;
3742 extsymoff = hdr->sh_info;
3743 }
3744
3745 sym_hash = NULL;
3746 if (extsymcount != 0)
3747 {
3748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3749 NULL, NULL, NULL);
3750 if (isymbuf == NULL)
3751 goto error_return;
3752
3753 /* We store a pointer to the hash table entry for each external
3754 symbol. */
3755 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3756 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3757 if (sym_hash == NULL)
3758 goto error_free_sym;
3759 elf_sym_hashes (abfd) = sym_hash;
3760 }
3761
3762 if (dynamic)
3763 {
3764 /* Read in any version definitions. */
3765 if (!_bfd_elf_slurp_version_tables (abfd,
3766 info->default_imported_symver))
3767 goto error_free_sym;
3768
3769 /* Read in the symbol versions, but don't bother to convert them
3770 to internal format. */
3771 if (elf_dynversym (abfd) != 0)
3772 {
3773 Elf_Internal_Shdr *versymhdr;
3774
3775 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3776 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3777 if (extversym == NULL)
3778 goto error_free_sym;
3779 amt = versymhdr->sh_size;
3780 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3781 || bfd_bread (extversym, amt, abfd) != amt)
3782 goto error_free_vers;
3783 }
3784 }
3785
3786 /* If we are loading an as-needed shared lib, save the symbol table
3787 state before we start adding symbols. If the lib turns out
3788 to be unneeded, restore the state. */
3789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3790 {
3791 unsigned int i;
3792 size_t entsize;
3793
3794 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3795 {
3796 struct bfd_hash_entry *p;
3797 struct elf_link_hash_entry *h;
3798
3799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3800 {
3801 h = (struct elf_link_hash_entry *) p;
3802 entsize += htab->root.table.entsize;
3803 if (h->root.type == bfd_link_hash_warning)
3804 entsize += htab->root.table.entsize;
3805 }
3806 }
3807
3808 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3809 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3810 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3811 if (old_tab == NULL)
3812 goto error_free_vers;
3813
3814 /* Remember the current objalloc pointer, so that all mem for
3815 symbols added can later be reclaimed. */
3816 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3817 if (alloc_mark == NULL)
3818 goto error_free_vers;
3819
3820 /* Make a special call to the linker "notice" function to
3821 tell it that we are about to handle an as-needed lib. */
3822 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3823 notice_as_needed))
3824 goto error_free_vers;
3825
3826 /* Clone the symbol table and sym hashes. Remember some
3827 pointers into the symbol table, and dynamic symbol count. */
3828 old_hash = (char *) old_tab + tabsize;
3829 old_ent = (char *) old_hash + hashsize;
3830 memcpy (old_tab, htab->root.table.table, tabsize);
3831 memcpy (old_hash, sym_hash, hashsize);
3832 old_undefs = htab->root.undefs;
3833 old_undefs_tail = htab->root.undefs_tail;
3834 old_table = htab->root.table.table;
3835 old_size = htab->root.table.size;
3836 old_count = htab->root.table.count;
3837 old_dynsymcount = htab->dynsymcount;
3838
3839 for (i = 0; i < htab->root.table.size; i++)
3840 {
3841 struct bfd_hash_entry *p;
3842 struct elf_link_hash_entry *h;
3843
3844 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3845 {
3846 memcpy (old_ent, p, htab->root.table.entsize);
3847 old_ent = (char *) old_ent + htab->root.table.entsize;
3848 h = (struct elf_link_hash_entry *) p;
3849 if (h->root.type == bfd_link_hash_warning)
3850 {
3851 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3852 old_ent = (char *) old_ent + htab->root.table.entsize;
3853 }
3854 }
3855 }
3856 }
3857
3858 weaks = NULL;
3859 ever = extversym != NULL ? extversym + extsymoff : NULL;
3860 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3861 isym < isymend;
3862 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3863 {
3864 int bind;
3865 bfd_vma value;
3866 asection *sec, *new_sec;
3867 flagword flags;
3868 const char *name;
3869 struct elf_link_hash_entry *h;
3870 bfd_boolean definition;
3871 bfd_boolean size_change_ok;
3872 bfd_boolean type_change_ok;
3873 bfd_boolean new_weakdef;
3874 bfd_boolean override;
3875 bfd_boolean common;
3876 unsigned int old_alignment;
3877 bfd *old_bfd;
3878 bfd * undef_bfd = NULL;
3879
3880 override = FALSE;
3881
3882 flags = BSF_NO_FLAGS;
3883 sec = NULL;
3884 value = isym->st_value;
3885 *sym_hash = NULL;
3886 common = bed->common_definition (isym);
3887
3888 bind = ELF_ST_BIND (isym->st_info);
3889 switch (bind)
3890 {
3891 case STB_LOCAL:
3892 /* This should be impossible, since ELF requires that all
3893 global symbols follow all local symbols, and that sh_info
3894 point to the first global symbol. Unfortunately, Irix 5
3895 screws this up. */
3896 continue;
3897
3898 case STB_GLOBAL:
3899 if (isym->st_shndx != SHN_UNDEF && !common)
3900 flags = BSF_GLOBAL;
3901 break;
3902
3903 case STB_WEAK:
3904 flags = BSF_WEAK;
3905 break;
3906
3907 case STB_GNU_UNIQUE:
3908 flags = BSF_GNU_UNIQUE;
3909 break;
3910
3911 default:
3912 /* Leave it up to the processor backend. */
3913 break;
3914 }
3915
3916 if (isym->st_shndx == SHN_UNDEF)
3917 sec = bfd_und_section_ptr;
3918 else if (isym->st_shndx == SHN_ABS)
3919 sec = bfd_abs_section_ptr;
3920 else if (isym->st_shndx == SHN_COMMON)
3921 {
3922 sec = bfd_com_section_ptr;
3923 /* What ELF calls the size we call the value. What ELF
3924 calls the value we call the alignment. */
3925 value = isym->st_size;
3926 }
3927 else
3928 {
3929 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3930 if (sec == NULL)
3931 sec = bfd_abs_section_ptr;
3932 else if (sec->kept_section)
3933 {
3934 /* Symbols from discarded section are undefined. We keep
3935 its visibility. */
3936 sec = bfd_und_section_ptr;
3937 isym->st_shndx = SHN_UNDEF;
3938 }
3939 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3940 value -= sec->vma;
3941 }
3942
3943 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3944 isym->st_name);
3945 if (name == NULL)
3946 goto error_free_vers;
3947
3948 if (isym->st_shndx == SHN_COMMON
3949 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3950 && !info->relocatable)
3951 {
3952 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3953
3954 if (tcomm == NULL)
3955 {
3956 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3957 (SEC_ALLOC
3958 | SEC_IS_COMMON
3959 | SEC_LINKER_CREATED
3960 | SEC_THREAD_LOCAL));
3961 if (tcomm == NULL)
3962 goto error_free_vers;
3963 }
3964 sec = tcomm;
3965 }
3966 else if (bed->elf_add_symbol_hook)
3967 {
3968 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3969 &sec, &value))
3970 goto error_free_vers;
3971
3972 /* The hook function sets the name to NULL if this symbol
3973 should be skipped for some reason. */
3974 if (name == NULL)
3975 continue;
3976 }
3977
3978 /* Sanity check that all possibilities were handled. */
3979 if (sec == NULL)
3980 {
3981 bfd_set_error (bfd_error_bad_value);
3982 goto error_free_vers;
3983 }
3984
3985 if (bfd_is_und_section (sec)
3986 || bfd_is_com_section (sec))
3987 definition = FALSE;
3988 else
3989 definition = TRUE;
3990
3991 size_change_ok = FALSE;
3992 type_change_ok = bed->type_change_ok;
3993 old_alignment = 0;
3994 old_bfd = NULL;
3995 new_sec = sec;
3996
3997 if (is_elf_hash_table (htab))
3998 {
3999 Elf_Internal_Versym iver;
4000 unsigned int vernum = 0;
4001 bfd_boolean skip;
4002
4003 /* If this is a definition of a symbol which was previously
4004 referenced in a non-weak manner then make a note of the bfd
4005 that contained the reference. This is used if we need to
4006 refer to the source of the reference later on. */
4007 if (! bfd_is_und_section (sec))
4008 {
4009 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4010
4011 if (h != NULL
4012 && h->root.type == bfd_link_hash_undefined
4013 && h->root.u.undef.abfd)
4014 undef_bfd = h->root.u.undef.abfd;
4015 }
4016
4017 if (ever == NULL)
4018 {
4019 if (info->default_imported_symver)
4020 /* Use the default symbol version created earlier. */
4021 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4022 else
4023 iver.vs_vers = 0;
4024 }
4025 else
4026 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027
4028 vernum = iver.vs_vers & VERSYM_VERSION;
4029
4030 /* If this is a hidden symbol, or if it is not version
4031 1, we append the version name to the symbol name.
4032 However, we do not modify a non-hidden absolute symbol
4033 if it is not a function, because it might be the version
4034 symbol itself. FIXME: What if it isn't? */
4035 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 || (vernum > 1
4037 && (!bfd_is_abs_section (sec)
4038 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4039 {
4040 const char *verstr;
4041 size_t namelen, verlen, newlen;
4042 char *newname, *p;
4043
4044 if (isym->st_shndx != SHN_UNDEF)
4045 {
4046 if (vernum > elf_tdata (abfd)->cverdefs)
4047 verstr = NULL;
4048 else if (vernum > 1)
4049 verstr =
4050 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4051 else
4052 verstr = "";
4053
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid version %u (max %d)"),
4058 abfd, name, vernum,
4059 elf_tdata (abfd)->cverdefs);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4062 }
4063 }
4064 else
4065 {
4066 /* We cannot simply test for the number of
4067 entries in the VERNEED section since the
4068 numbers for the needed versions do not start
4069 at 0. */
4070 Elf_Internal_Verneed *t;
4071
4072 verstr = NULL;
4073 for (t = elf_tdata (abfd)->verref;
4074 t != NULL;
4075 t = t->vn_nextref)
4076 {
4077 Elf_Internal_Vernaux *a;
4078
4079 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 {
4081 if (a->vna_other == vernum)
4082 {
4083 verstr = a->vna_nodename;
4084 break;
4085 }
4086 }
4087 if (a != NULL)
4088 break;
4089 }
4090 if (verstr == NULL)
4091 {
4092 (*_bfd_error_handler)
4093 (_("%B: %s: invalid needed version %d"),
4094 abfd, name, vernum);
4095 bfd_set_error (bfd_error_bad_value);
4096 goto error_free_vers;
4097 }
4098 }
4099
4100 namelen = strlen (name);
4101 verlen = strlen (verstr);
4102 newlen = namelen + verlen + 2;
4103 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4104 && isym->st_shndx != SHN_UNDEF)
4105 ++newlen;
4106
4107 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4108 if (newname == NULL)
4109 goto error_free_vers;
4110 memcpy (newname, name, namelen);
4111 p = newname + namelen;
4112 *p++ = ELF_VER_CHR;
4113 /* If this is a defined non-hidden version symbol,
4114 we add another @ to the name. This indicates the
4115 default version of the symbol. */
4116 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4117 && isym->st_shndx != SHN_UNDEF)
4118 *p++ = ELF_VER_CHR;
4119 memcpy (p, verstr, verlen + 1);
4120
4121 name = newname;
4122 }
4123
4124 /* If necessary, make a second attempt to locate the bfd
4125 containing an unresolved, non-weak reference to the
4126 current symbol. */
4127 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4128 {
4129 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4130
4131 if (h != NULL
4132 && h->root.type == bfd_link_hash_undefined
4133 && h->root.u.undef.abfd)
4134 undef_bfd = h->root.u.undef.abfd;
4135 }
4136
4137 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4138 &value, &old_alignment,
4139 sym_hash, &skip, &override,
4140 &type_change_ok, &size_change_ok))
4141 goto error_free_vers;
4142
4143 if (skip)
4144 continue;
4145
4146 if (override)
4147 definition = FALSE;
4148
4149 h = *sym_hash;
4150 while (h->root.type == bfd_link_hash_indirect
4151 || h->root.type == bfd_link_hash_warning)
4152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4153
4154 /* Remember the old alignment if this is a common symbol, so
4155 that we don't reduce the alignment later on. We can't
4156 check later, because _bfd_generic_link_add_one_symbol
4157 will set a default for the alignment which we want to
4158 override. We also remember the old bfd where the existing
4159 definition comes from. */
4160 switch (h->root.type)
4161 {
4162 default:
4163 break;
4164
4165 case bfd_link_hash_defined:
4166 case bfd_link_hash_defweak:
4167 old_bfd = h->root.u.def.section->owner;
4168 break;
4169
4170 case bfd_link_hash_common:
4171 old_bfd = h->root.u.c.p->section->owner;
4172 old_alignment = h->root.u.c.p->alignment_power;
4173 break;
4174 }
4175
4176 if (elf_tdata (abfd)->verdef != NULL
4177 && ! override
4178 && vernum > 1
4179 && definition)
4180 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4181 }
4182
4183 if (! (_bfd_generic_link_add_one_symbol
4184 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4185 (struct bfd_link_hash_entry **) sym_hash)))
4186 goto error_free_vers;
4187
4188 h = *sym_hash;
4189 while (h->root.type == bfd_link_hash_indirect
4190 || h->root.type == bfd_link_hash_warning)
4191 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4192
4193 *sym_hash = h;
4194 if (is_elf_hash_table (htab))
4195 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4196
4197 new_weakdef = FALSE;
4198 if (dynamic
4199 && definition
4200 && (flags & BSF_WEAK) != 0
4201 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4202 && is_elf_hash_table (htab)
4203 && h->u.weakdef == NULL)
4204 {
4205 /* Keep a list of all weak defined non function symbols from
4206 a dynamic object, using the weakdef field. Later in this
4207 function we will set the weakdef field to the correct
4208 value. We only put non-function symbols from dynamic
4209 objects on this list, because that happens to be the only
4210 time we need to know the normal symbol corresponding to a
4211 weak symbol, and the information is time consuming to
4212 figure out. If the weakdef field is not already NULL,
4213 then this symbol was already defined by some previous
4214 dynamic object, and we will be using that previous
4215 definition anyhow. */
4216
4217 h->u.weakdef = weaks;
4218 weaks = h;
4219 new_weakdef = TRUE;
4220 }
4221
4222 /* Set the alignment of a common symbol. */
4223 if ((common || bfd_is_com_section (sec))
4224 && h->root.type == bfd_link_hash_common)
4225 {
4226 unsigned int align;
4227
4228 if (common)
4229 align = bfd_log2 (isym->st_value);
4230 else
4231 {
4232 /* The new symbol is a common symbol in a shared object.
4233 We need to get the alignment from the section. */
4234 align = new_sec->alignment_power;
4235 }
4236 if (align > old_alignment
4237 /* Permit an alignment power of zero if an alignment of one
4238 is specified and no other alignments have been specified. */
4239 || (isym->st_value == 1 && old_alignment == 0))
4240 h->root.u.c.p->alignment_power = align;
4241 else
4242 h->root.u.c.p->alignment_power = old_alignment;
4243 }
4244
4245 if (is_elf_hash_table (htab))
4246 {
4247 bfd_boolean dynsym;
4248
4249 /* Check the alignment when a common symbol is involved. This
4250 can change when a common symbol is overridden by a normal
4251 definition or a common symbol is ignored due to the old
4252 normal definition. We need to make sure the maximum
4253 alignment is maintained. */
4254 if ((old_alignment || common)
4255 && h->root.type != bfd_link_hash_common)
4256 {
4257 unsigned int common_align;
4258 unsigned int normal_align;
4259 unsigned int symbol_align;
4260 bfd *normal_bfd;
4261 bfd *common_bfd;
4262
4263 symbol_align = ffs (h->root.u.def.value) - 1;
4264 if (h->root.u.def.section->owner != NULL
4265 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4266 {
4267 normal_align = h->root.u.def.section->alignment_power;
4268 if (normal_align > symbol_align)
4269 normal_align = symbol_align;
4270 }
4271 else
4272 normal_align = symbol_align;
4273
4274 if (old_alignment)
4275 {
4276 common_align = old_alignment;
4277 common_bfd = old_bfd;
4278 normal_bfd = abfd;
4279 }
4280 else
4281 {
4282 common_align = bfd_log2 (isym->st_value);
4283 common_bfd = abfd;
4284 normal_bfd = old_bfd;
4285 }
4286
4287 if (normal_align < common_align)
4288 {
4289 /* PR binutils/2735 */
4290 if (normal_bfd == NULL)
4291 (*_bfd_error_handler)
4292 (_("Warning: alignment %u of common symbol `%s' in %B"
4293 " is greater than the alignment (%u) of its section %A"),
4294 common_bfd, h->root.u.def.section,
4295 1 << common_align, name, 1 << normal_align);
4296 else
4297 (*_bfd_error_handler)
4298 (_("Warning: alignment %u of symbol `%s' in %B"
4299 " is smaller than %u in %B"),
4300 normal_bfd, common_bfd,
4301 1 << normal_align, name, 1 << common_align);
4302 }
4303 }
4304
4305 /* Remember the symbol size if it isn't undefined. */
4306 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4307 && (definition || h->size == 0))
4308 {
4309 if (h->size != 0
4310 && h->size != isym->st_size
4311 && ! size_change_ok)
4312 (*_bfd_error_handler)
4313 (_("Warning: size of symbol `%s' changed"
4314 " from %lu in %B to %lu in %B"),
4315 old_bfd, abfd,
4316 name, (unsigned long) h->size,
4317 (unsigned long) isym->st_size);
4318
4319 h->size = isym->st_size;
4320 }
4321
4322 /* If this is a common symbol, then we always want H->SIZE
4323 to be the size of the common symbol. The code just above
4324 won't fix the size if a common symbol becomes larger. We
4325 don't warn about a size change here, because that is
4326 covered by --warn-common. Allow changed between different
4327 function types. */
4328 if (h->root.type == bfd_link_hash_common)
4329 h->size = h->root.u.c.size;
4330
4331 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4332 && (definition || h->type == STT_NOTYPE))
4333 {
4334 unsigned int type = ELF_ST_TYPE (isym->st_info);
4335
4336 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4337 symbol. */
4338 if (type == STT_GNU_IFUNC
4339 && (abfd->flags & DYNAMIC) != 0)
4340 type = STT_FUNC;
4341
4342 if (h->type != type)
4343 {
4344 if (h->type != STT_NOTYPE && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, type);
4349
4350 h->type = type;
4351 }
4352 }
4353
4354 /* Merge st_other field. */
4355 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4356
4357 /* Set a flag in the hash table entry indicating the type of
4358 reference or definition we just found. Keep a count of
4359 the number of dynamic symbols we find. A dynamic symbol
4360 is one which is referenced or defined by both a regular
4361 object and a shared object. */
4362 dynsym = FALSE;
4363 if (! dynamic)
4364 {
4365 if (! definition)
4366 {
4367 h->ref_regular = 1;
4368 if (bind != STB_WEAK)
4369 h->ref_regular_nonweak = 1;
4370 }
4371 else
4372 {
4373 h->def_regular = 1;
4374 if (h->def_dynamic)
4375 {
4376 h->def_dynamic = 0;
4377 h->ref_dynamic = 1;
4378 h->dynamic_def = 1;
4379 }
4380 }
4381 if (! info->executable
4382 || h->def_dynamic
4383 || h->ref_dynamic)
4384 dynsym = TRUE;
4385 }
4386 else
4387 {
4388 if (! definition)
4389 h->ref_dynamic = 1;
4390 else
4391 h->def_dynamic = 1;
4392 if (h->def_regular
4393 || h->ref_regular
4394 || (h->u.weakdef != NULL
4395 && ! new_weakdef
4396 && h->u.weakdef->dynindx != -1))
4397 dynsym = TRUE;
4398 }
4399
4400 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4401 {
4402 /* We don't want to make debug symbol dynamic. */
4403 dynsym = FALSE;
4404 }
4405
4406 /* Check to see if we need to add an indirect symbol for
4407 the default name. */
4408 if (definition || h->root.type == bfd_link_hash_common)
4409 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4410 &sec, &value, &dynsym,
4411 override))
4412 goto error_free_vers;
4413
4414 if (definition && !dynamic)
4415 {
4416 char *p = strchr (name, ELF_VER_CHR);
4417 if (p != NULL && p[1] != ELF_VER_CHR)
4418 {
4419 /* Queue non-default versions so that .symver x, x@FOO
4420 aliases can be checked. */
4421 if (!nondeflt_vers)
4422 {
4423 amt = ((isymend - isym + 1)
4424 * sizeof (struct elf_link_hash_entry *));
4425 nondeflt_vers =
4426 (struct elf_link_hash_entry **) bfd_malloc (amt);
4427 if (!nondeflt_vers)
4428 goto error_free_vers;
4429 }
4430 nondeflt_vers[nondeflt_vers_cnt++] = h;
4431 }
4432 }
4433
4434 if (dynsym && h->dynindx == -1)
4435 {
4436 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4437 goto error_free_vers;
4438 if (h->u.weakdef != NULL
4439 && ! new_weakdef
4440 && h->u.weakdef->dynindx == -1)
4441 {
4442 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4443 goto error_free_vers;
4444 }
4445 }
4446 else if (dynsym && h->dynindx != -1)
4447 /* If the symbol already has a dynamic index, but
4448 visibility says it should not be visible, turn it into
4449 a local symbol. */
4450 switch (ELF_ST_VISIBILITY (h->other))
4451 {
4452 case STV_INTERNAL:
4453 case STV_HIDDEN:
4454 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4455 dynsym = FALSE;
4456 break;
4457 }
4458
4459 if (!add_needed
4460 && definition
4461 && ((dynsym
4462 && h->ref_regular)
4463 || (h->ref_dynamic
4464 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4465 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4466 {
4467 int ret;
4468 const char *soname = elf_dt_name (abfd);
4469
4470 /* A symbol from a library loaded via DT_NEEDED of some
4471 other library is referenced by a regular object.
4472 Add a DT_NEEDED entry for it. Issue an error if
4473 --no-add-needed is used and the reference was not
4474 a weak one. */
4475 if (undef_bfd != NULL
4476 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4477 {
4478 (*_bfd_error_handler)
4479 (_("%B: undefined reference to symbol '%s'"),
4480 undef_bfd, name);
4481 (*_bfd_error_handler)
4482 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4483 abfd, name);
4484 bfd_set_error (bfd_error_invalid_operation);
4485 goto error_free_vers;
4486 }
4487
4488 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4489 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4490
4491 add_needed = TRUE;
4492 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4493 if (ret < 0)
4494 goto error_free_vers;
4495
4496 BFD_ASSERT (ret == 0);
4497 }
4498 }
4499 }
4500
4501 if (extversym != NULL)
4502 {
4503 free (extversym);
4504 extversym = NULL;
4505 }
4506
4507 if (isymbuf != NULL)
4508 {
4509 free (isymbuf);
4510 isymbuf = NULL;
4511 }
4512
4513 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4514 {
4515 unsigned int i;
4516
4517 /* Restore the symbol table. */
4518 if (bed->as_needed_cleanup)
4519 (*bed->as_needed_cleanup) (abfd, info);
4520 old_hash = (char *) old_tab + tabsize;
4521 old_ent = (char *) old_hash + hashsize;
4522 sym_hash = elf_sym_hashes (abfd);
4523 htab->root.table.table = old_table;
4524 htab->root.table.size = old_size;
4525 htab->root.table.count = old_count;
4526 memcpy (htab->root.table.table, old_tab, tabsize);
4527 memcpy (sym_hash, old_hash, hashsize);
4528 htab->root.undefs = old_undefs;
4529 htab->root.undefs_tail = old_undefs_tail;
4530 for (i = 0; i < htab->root.table.size; i++)
4531 {
4532 struct bfd_hash_entry *p;
4533 struct elf_link_hash_entry *h;
4534
4535 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4536 {
4537 h = (struct elf_link_hash_entry *) p;
4538 if (h->root.type == bfd_link_hash_warning)
4539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4540 if (h->dynindx >= old_dynsymcount)
4541 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4542
4543 memcpy (p, old_ent, htab->root.table.entsize);
4544 old_ent = (char *) old_ent + htab->root.table.entsize;
4545 h = (struct elf_link_hash_entry *) p;
4546 if (h->root.type == bfd_link_hash_warning)
4547 {
4548 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4549 old_ent = (char *) old_ent + htab->root.table.entsize;
4550 }
4551 }
4552 }
4553
4554 /* Make a special call to the linker "notice" function to
4555 tell it that symbols added for crefs may need to be removed. */
4556 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4557 notice_not_needed))
4558 goto error_free_vers;
4559
4560 free (old_tab);
4561 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4562 alloc_mark);
4563 if (nondeflt_vers != NULL)
4564 free (nondeflt_vers);
4565 return TRUE;
4566 }
4567
4568 if (old_tab != NULL)
4569 {
4570 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4571 notice_needed))
4572 goto error_free_vers;
4573 free (old_tab);
4574 old_tab = NULL;
4575 }
4576
4577 /* Now that all the symbols from this input file are created, handle
4578 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4579 if (nondeflt_vers != NULL)
4580 {
4581 bfd_size_type cnt, symidx;
4582
4583 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4584 {
4585 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4586 char *shortname, *p;
4587
4588 p = strchr (h->root.root.string, ELF_VER_CHR);
4589 if (p == NULL
4590 || (h->root.type != bfd_link_hash_defined
4591 && h->root.type != bfd_link_hash_defweak))
4592 continue;
4593
4594 amt = p - h->root.root.string;
4595 shortname = (char *) bfd_malloc (amt + 1);
4596 if (!shortname)
4597 goto error_free_vers;
4598 memcpy (shortname, h->root.root.string, amt);
4599 shortname[amt] = '\0';
4600
4601 hi = (struct elf_link_hash_entry *)
4602 bfd_link_hash_lookup (&htab->root, shortname,
4603 FALSE, FALSE, FALSE);
4604 if (hi != NULL
4605 && hi->root.type == h->root.type
4606 && hi->root.u.def.value == h->root.u.def.value
4607 && hi->root.u.def.section == h->root.u.def.section)
4608 {
4609 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4610 hi->root.type = bfd_link_hash_indirect;
4611 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4612 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4613 sym_hash = elf_sym_hashes (abfd);
4614 if (sym_hash)
4615 for (symidx = 0; symidx < extsymcount; ++symidx)
4616 if (sym_hash[symidx] == hi)
4617 {
4618 sym_hash[symidx] = h;
4619 break;
4620 }
4621 }
4622 free (shortname);
4623 }
4624 free (nondeflt_vers);
4625 nondeflt_vers = NULL;
4626 }
4627
4628 /* Now set the weakdefs field correctly for all the weak defined
4629 symbols we found. The only way to do this is to search all the
4630 symbols. Since we only need the information for non functions in
4631 dynamic objects, that's the only time we actually put anything on
4632 the list WEAKS. We need this information so that if a regular
4633 object refers to a symbol defined weakly in a dynamic object, the
4634 real symbol in the dynamic object is also put in the dynamic
4635 symbols; we also must arrange for both symbols to point to the
4636 same memory location. We could handle the general case of symbol
4637 aliasing, but a general symbol alias can only be generated in
4638 assembler code, handling it correctly would be very time
4639 consuming, and other ELF linkers don't handle general aliasing
4640 either. */
4641 if (weaks != NULL)
4642 {
4643 struct elf_link_hash_entry **hpp;
4644 struct elf_link_hash_entry **hppend;
4645 struct elf_link_hash_entry **sorted_sym_hash;
4646 struct elf_link_hash_entry *h;
4647 size_t sym_count;
4648
4649 /* Since we have to search the whole symbol list for each weak
4650 defined symbol, search time for N weak defined symbols will be
4651 O(N^2). Binary search will cut it down to O(NlogN). */
4652 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4653 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4654 if (sorted_sym_hash == NULL)
4655 goto error_return;
4656 sym_hash = sorted_sym_hash;
4657 hpp = elf_sym_hashes (abfd);
4658 hppend = hpp + extsymcount;
4659 sym_count = 0;
4660 for (; hpp < hppend; hpp++)
4661 {
4662 h = *hpp;
4663 if (h != NULL
4664 && h->root.type == bfd_link_hash_defined
4665 && !bed->is_function_type (h->type))
4666 {
4667 *sym_hash = h;
4668 sym_hash++;
4669 sym_count++;
4670 }
4671 }
4672
4673 qsort (sorted_sym_hash, sym_count,
4674 sizeof (struct elf_link_hash_entry *),
4675 elf_sort_symbol);
4676
4677 while (weaks != NULL)
4678 {
4679 struct elf_link_hash_entry *hlook;
4680 asection *slook;
4681 bfd_vma vlook;
4682 long ilook;
4683 size_t i, j, idx;
4684
4685 hlook = weaks;
4686 weaks = hlook->u.weakdef;
4687 hlook->u.weakdef = NULL;
4688
4689 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4690 || hlook->root.type == bfd_link_hash_defweak
4691 || hlook->root.type == bfd_link_hash_common
4692 || hlook->root.type == bfd_link_hash_indirect);
4693 slook = hlook->root.u.def.section;
4694 vlook = hlook->root.u.def.value;
4695
4696 ilook = -1;
4697 i = 0;
4698 j = sym_count;
4699 while (i < j)
4700 {
4701 bfd_signed_vma vdiff;
4702 idx = (i + j) / 2;
4703 h = sorted_sym_hash [idx];
4704 vdiff = vlook - h->root.u.def.value;
4705 if (vdiff < 0)
4706 j = idx;
4707 else if (vdiff > 0)
4708 i = idx + 1;
4709 else
4710 {
4711 long sdiff = slook->id - h->root.u.def.section->id;
4712 if (sdiff < 0)
4713 j = idx;
4714 else if (sdiff > 0)
4715 i = idx + 1;
4716 else
4717 {
4718 ilook = idx;
4719 break;
4720 }
4721 }
4722 }
4723
4724 /* We didn't find a value/section match. */
4725 if (ilook == -1)
4726 continue;
4727
4728 for (i = ilook; i < sym_count; i++)
4729 {
4730 h = sorted_sym_hash [i];
4731
4732 /* Stop if value or section doesn't match. */
4733 if (h->root.u.def.value != vlook
4734 || h->root.u.def.section != slook)
4735 break;
4736 else if (h != hlook)
4737 {
4738 hlook->u.weakdef = h;
4739
4740 /* If the weak definition is in the list of dynamic
4741 symbols, make sure the real definition is put
4742 there as well. */
4743 if (hlook->dynindx != -1 && h->dynindx == -1)
4744 {
4745 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4746 {
4747 err_free_sym_hash:
4748 free (sorted_sym_hash);
4749 goto error_return;
4750 }
4751 }
4752
4753 /* If the real definition is in the list of dynamic
4754 symbols, make sure the weak definition is put
4755 there as well. If we don't do this, then the
4756 dynamic loader might not merge the entries for the
4757 real definition and the weak definition. */
4758 if (h->dynindx != -1 && hlook->dynindx == -1)
4759 {
4760 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4761 goto err_free_sym_hash;
4762 }
4763 break;
4764 }
4765 }
4766 }
4767
4768 free (sorted_sym_hash);
4769 }
4770
4771 if (bed->check_directives
4772 && !(*bed->check_directives) (abfd, info))
4773 return FALSE;
4774
4775 /* If this object is the same format as the output object, and it is
4776 not a shared library, then let the backend look through the
4777 relocs.
4778
4779 This is required to build global offset table entries and to
4780 arrange for dynamic relocs. It is not required for the
4781 particular common case of linking non PIC code, even when linking
4782 against shared libraries, but unfortunately there is no way of
4783 knowing whether an object file has been compiled PIC or not.
4784 Looking through the relocs is not particularly time consuming.
4785 The problem is that we must either (1) keep the relocs in memory,
4786 which causes the linker to require additional runtime memory or
4787 (2) read the relocs twice from the input file, which wastes time.
4788 This would be a good case for using mmap.
4789
4790 I have no idea how to handle linking PIC code into a file of a
4791 different format. It probably can't be done. */
4792 if (! dynamic
4793 && is_elf_hash_table (htab)
4794 && bed->check_relocs != NULL
4795 && elf_object_id (abfd) == elf_hash_table_id (htab)
4796 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4797 {
4798 asection *o;
4799
4800 for (o = abfd->sections; o != NULL; o = o->next)
4801 {
4802 Elf_Internal_Rela *internal_relocs;
4803 bfd_boolean ok;
4804
4805 if ((o->flags & SEC_RELOC) == 0
4806 || o->reloc_count == 0
4807 || ((info->strip == strip_all || info->strip == strip_debugger)
4808 && (o->flags & SEC_DEBUGGING) != 0)
4809 || bfd_is_abs_section (o->output_section))
4810 continue;
4811
4812 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4813 info->keep_memory);
4814 if (internal_relocs == NULL)
4815 goto error_return;
4816
4817 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4818
4819 if (elf_section_data (o)->relocs != internal_relocs)
4820 free (internal_relocs);
4821
4822 if (! ok)
4823 goto error_return;
4824 }
4825 }
4826
4827 /* If this is a non-traditional link, try to optimize the handling
4828 of the .stab/.stabstr sections. */
4829 if (! dynamic
4830 && ! info->traditional_format
4831 && is_elf_hash_table (htab)
4832 && (info->strip != strip_all && info->strip != strip_debugger))
4833 {
4834 asection *stabstr;
4835
4836 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4837 if (stabstr != NULL)
4838 {
4839 bfd_size_type string_offset = 0;
4840 asection *stab;
4841
4842 for (stab = abfd->sections; stab; stab = stab->next)
4843 if (CONST_STRNEQ (stab->name, ".stab")
4844 && (!stab->name[5] ||
4845 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4846 && (stab->flags & SEC_MERGE) == 0
4847 && !bfd_is_abs_section (stab->output_section))
4848 {
4849 struct bfd_elf_section_data *secdata;
4850
4851 secdata = elf_section_data (stab);
4852 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4853 stabstr, &secdata->sec_info,
4854 &string_offset))
4855 goto error_return;
4856 if (secdata->sec_info)
4857 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4858 }
4859 }
4860 }
4861
4862 if (is_elf_hash_table (htab) && add_needed)
4863 {
4864 /* Add this bfd to the loaded list. */
4865 struct elf_link_loaded_list *n;
4866
4867 n = (struct elf_link_loaded_list *)
4868 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4869 if (n == NULL)
4870 goto error_return;
4871 n->abfd = abfd;
4872 n->next = htab->loaded;
4873 htab->loaded = n;
4874 }
4875
4876 return TRUE;
4877
4878 error_free_vers:
4879 if (old_tab != NULL)
4880 free (old_tab);
4881 if (nondeflt_vers != NULL)
4882 free (nondeflt_vers);
4883 if (extversym != NULL)
4884 free (extversym);
4885 error_free_sym:
4886 if (isymbuf != NULL)
4887 free (isymbuf);
4888 error_return:
4889 return FALSE;
4890 }
4891
4892 /* Return the linker hash table entry of a symbol that might be
4893 satisfied by an archive symbol. Return -1 on error. */
4894
4895 struct elf_link_hash_entry *
4896 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4897 struct bfd_link_info *info,
4898 const char *name)
4899 {
4900 struct elf_link_hash_entry *h;
4901 char *p, *copy;
4902 size_t len, first;
4903
4904 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4905 if (h != NULL)
4906 return h;
4907
4908 /* If this is a default version (the name contains @@), look up the
4909 symbol again with only one `@' as well as without the version.
4910 The effect is that references to the symbol with and without the
4911 version will be matched by the default symbol in the archive. */
4912
4913 p = strchr (name, ELF_VER_CHR);
4914 if (p == NULL || p[1] != ELF_VER_CHR)
4915 return h;
4916
4917 /* First check with only one `@'. */
4918 len = strlen (name);
4919 copy = (char *) bfd_alloc (abfd, len);
4920 if (copy == NULL)
4921 return (struct elf_link_hash_entry *) 0 - 1;
4922
4923 first = p - name + 1;
4924 memcpy (copy, name, first);
4925 memcpy (copy + first, name + first + 1, len - first);
4926
4927 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4928 if (h == NULL)
4929 {
4930 /* We also need to check references to the symbol without the
4931 version. */
4932 copy[first - 1] = '\0';
4933 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4934 FALSE, FALSE, FALSE);
4935 }
4936
4937 bfd_release (abfd, copy);
4938 return h;
4939 }
4940
4941 /* Add symbols from an ELF archive file to the linker hash table. We
4942 don't use _bfd_generic_link_add_archive_symbols because of a
4943 problem which arises on UnixWare. The UnixWare libc.so is an
4944 archive which includes an entry libc.so.1 which defines a bunch of
4945 symbols. The libc.so archive also includes a number of other
4946 object files, which also define symbols, some of which are the same
4947 as those defined in libc.so.1. Correct linking requires that we
4948 consider each object file in turn, and include it if it defines any
4949 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4950 this; it looks through the list of undefined symbols, and includes
4951 any object file which defines them. When this algorithm is used on
4952 UnixWare, it winds up pulling in libc.so.1 early and defining a
4953 bunch of symbols. This means that some of the other objects in the
4954 archive are not included in the link, which is incorrect since they
4955 precede libc.so.1 in the archive.
4956
4957 Fortunately, ELF archive handling is simpler than that done by
4958 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4959 oddities. In ELF, if we find a symbol in the archive map, and the
4960 symbol is currently undefined, we know that we must pull in that
4961 object file.
4962
4963 Unfortunately, we do have to make multiple passes over the symbol
4964 table until nothing further is resolved. */
4965
4966 static bfd_boolean
4967 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4968 {
4969 symindex c;
4970 bfd_boolean *defined = NULL;
4971 bfd_boolean *included = NULL;
4972 carsym *symdefs;
4973 bfd_boolean loop;
4974 bfd_size_type amt;
4975 const struct elf_backend_data *bed;
4976 struct elf_link_hash_entry * (*archive_symbol_lookup)
4977 (bfd *, struct bfd_link_info *, const char *);
4978
4979 if (! bfd_has_map (abfd))
4980 {
4981 /* An empty archive is a special case. */
4982 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4983 return TRUE;
4984 bfd_set_error (bfd_error_no_armap);
4985 return FALSE;
4986 }
4987
4988 /* Keep track of all symbols we know to be already defined, and all
4989 files we know to be already included. This is to speed up the
4990 second and subsequent passes. */
4991 c = bfd_ardata (abfd)->symdef_count;
4992 if (c == 0)
4993 return TRUE;
4994 amt = c;
4995 amt *= sizeof (bfd_boolean);
4996 defined = (bfd_boolean *) bfd_zmalloc (amt);
4997 included = (bfd_boolean *) bfd_zmalloc (amt);
4998 if (defined == NULL || included == NULL)
4999 goto error_return;
5000
5001 symdefs = bfd_ardata (abfd)->symdefs;
5002 bed = get_elf_backend_data (abfd);
5003 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5004
5005 do
5006 {
5007 file_ptr last;
5008 symindex i;
5009 carsym *symdef;
5010 carsym *symdefend;
5011
5012 loop = FALSE;
5013 last = -1;
5014
5015 symdef = symdefs;
5016 symdefend = symdef + c;
5017 for (i = 0; symdef < symdefend; symdef++, i++)
5018 {
5019 struct elf_link_hash_entry *h;
5020 bfd *element;
5021 struct bfd_link_hash_entry *undefs_tail;
5022 symindex mark;
5023
5024 if (defined[i] || included[i])
5025 continue;
5026 if (symdef->file_offset == last)
5027 {
5028 included[i] = TRUE;
5029 continue;
5030 }
5031
5032 h = archive_symbol_lookup (abfd, info, symdef->name);
5033 if (h == (struct elf_link_hash_entry *) 0 - 1)
5034 goto error_return;
5035
5036 if (h == NULL)
5037 continue;
5038
5039 if (h->root.type == bfd_link_hash_common)
5040 {
5041 /* We currently have a common symbol. The archive map contains
5042 a reference to this symbol, so we may want to include it. We
5043 only want to include it however, if this archive element
5044 contains a definition of the symbol, not just another common
5045 declaration of it.
5046
5047 Unfortunately some archivers (including GNU ar) will put
5048 declarations of common symbols into their archive maps, as
5049 well as real definitions, so we cannot just go by the archive
5050 map alone. Instead we must read in the element's symbol
5051 table and check that to see what kind of symbol definition
5052 this is. */
5053 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5054 continue;
5055 }
5056 else if (h->root.type != bfd_link_hash_undefined)
5057 {
5058 if (h->root.type != bfd_link_hash_undefweak)
5059 defined[i] = TRUE;
5060 continue;
5061 }
5062
5063 /* We need to include this archive member. */
5064 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5065 if (element == NULL)
5066 goto error_return;
5067
5068 if (! bfd_check_format (element, bfd_object))
5069 goto error_return;
5070
5071 /* Doublecheck that we have not included this object
5072 already--it should be impossible, but there may be
5073 something wrong with the archive. */
5074 if (element->archive_pass != 0)
5075 {
5076 bfd_set_error (bfd_error_bad_value);
5077 goto error_return;
5078 }
5079 element->archive_pass = 1;
5080
5081 undefs_tail = info->hash->undefs_tail;
5082
5083 if (! (*info->callbacks->add_archive_element) (info, element,
5084 symdef->name))
5085 goto error_return;
5086 if (! bfd_link_add_symbols (element, info))
5087 goto error_return;
5088
5089 /* If there are any new undefined symbols, we need to make
5090 another pass through the archive in order to see whether
5091 they can be defined. FIXME: This isn't perfect, because
5092 common symbols wind up on undefs_tail and because an
5093 undefined symbol which is defined later on in this pass
5094 does not require another pass. This isn't a bug, but it
5095 does make the code less efficient than it could be. */
5096 if (undefs_tail != info->hash->undefs_tail)
5097 loop = TRUE;
5098
5099 /* Look backward to mark all symbols from this object file
5100 which we have already seen in this pass. */
5101 mark = i;
5102 do
5103 {
5104 included[mark] = TRUE;
5105 if (mark == 0)
5106 break;
5107 --mark;
5108 }
5109 while (symdefs[mark].file_offset == symdef->file_offset);
5110
5111 /* We mark subsequent symbols from this object file as we go
5112 on through the loop. */
5113 last = symdef->file_offset;
5114 }
5115 }
5116 while (loop);
5117
5118 free (defined);
5119 free (included);
5120
5121 return TRUE;
5122
5123 error_return:
5124 if (defined != NULL)
5125 free (defined);
5126 if (included != NULL)
5127 free (included);
5128 return FALSE;
5129 }
5130
5131 /* Given an ELF BFD, add symbols to the global hash table as
5132 appropriate. */
5133
5134 bfd_boolean
5135 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5136 {
5137 switch (bfd_get_format (abfd))
5138 {
5139 case bfd_object:
5140 return elf_link_add_object_symbols (abfd, info);
5141 case bfd_archive:
5142 return elf_link_add_archive_symbols (abfd, info);
5143 default:
5144 bfd_set_error (bfd_error_wrong_format);
5145 return FALSE;
5146 }
5147 }
5148 \f
5149 struct hash_codes_info
5150 {
5151 unsigned long *hashcodes;
5152 bfd_boolean error;
5153 };
5154
5155 /* This function will be called though elf_link_hash_traverse to store
5156 all hash value of the exported symbols in an array. */
5157
5158 static bfd_boolean
5159 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5160 {
5161 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5162 const char *name;
5163 char *p;
5164 unsigned long ha;
5165 char *alc = NULL;
5166
5167 if (h->root.type == bfd_link_hash_warning)
5168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5169
5170 /* Ignore indirect symbols. These are added by the versioning code. */
5171 if (h->dynindx == -1)
5172 return TRUE;
5173
5174 name = h->root.root.string;
5175 p = strchr (name, ELF_VER_CHR);
5176 if (p != NULL)
5177 {
5178 alc = (char *) bfd_malloc (p - name + 1);
5179 if (alc == NULL)
5180 {
5181 inf->error = TRUE;
5182 return FALSE;
5183 }
5184 memcpy (alc, name, p - name);
5185 alc[p - name] = '\0';
5186 name = alc;
5187 }
5188
5189 /* Compute the hash value. */
5190 ha = bfd_elf_hash (name);
5191
5192 /* Store the found hash value in the array given as the argument. */
5193 *(inf->hashcodes)++ = ha;
5194
5195 /* And store it in the struct so that we can put it in the hash table
5196 later. */
5197 h->u.elf_hash_value = ha;
5198
5199 if (alc != NULL)
5200 free (alc);
5201
5202 return TRUE;
5203 }
5204
5205 struct collect_gnu_hash_codes
5206 {
5207 bfd *output_bfd;
5208 const struct elf_backend_data *bed;
5209 unsigned long int nsyms;
5210 unsigned long int maskbits;
5211 unsigned long int *hashcodes;
5212 unsigned long int *hashval;
5213 unsigned long int *indx;
5214 unsigned long int *counts;
5215 bfd_vma *bitmask;
5216 bfd_byte *contents;
5217 long int min_dynindx;
5218 unsigned long int bucketcount;
5219 unsigned long int symindx;
5220 long int local_indx;
5221 long int shift1, shift2;
5222 unsigned long int mask;
5223 bfd_boolean error;
5224 };
5225
5226 /* This function will be called though elf_link_hash_traverse to store
5227 all hash value of the exported symbols in an array. */
5228
5229 static bfd_boolean
5230 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5231 {
5232 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5233 const char *name;
5234 char *p;
5235 unsigned long ha;
5236 char *alc = NULL;
5237
5238 if (h->root.type == bfd_link_hash_warning)
5239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5240
5241 /* Ignore indirect symbols. These are added by the versioning code. */
5242 if (h->dynindx == -1)
5243 return TRUE;
5244
5245 /* Ignore also local symbols and undefined symbols. */
5246 if (! (*s->bed->elf_hash_symbol) (h))
5247 return TRUE;
5248
5249 name = h->root.root.string;
5250 p = strchr (name, ELF_VER_CHR);
5251 if (p != NULL)
5252 {
5253 alc = (char *) bfd_malloc (p - name + 1);
5254 if (alc == NULL)
5255 {
5256 s->error = TRUE;
5257 return FALSE;
5258 }
5259 memcpy (alc, name, p - name);
5260 alc[p - name] = '\0';
5261 name = alc;
5262 }
5263
5264 /* Compute the hash value. */
5265 ha = bfd_elf_gnu_hash (name);
5266
5267 /* Store the found hash value in the array for compute_bucket_count,
5268 and also for .dynsym reordering purposes. */
5269 s->hashcodes[s->nsyms] = ha;
5270 s->hashval[h->dynindx] = ha;
5271 ++s->nsyms;
5272 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5273 s->min_dynindx = h->dynindx;
5274
5275 if (alc != NULL)
5276 free (alc);
5277
5278 return TRUE;
5279 }
5280
5281 /* This function will be called though elf_link_hash_traverse to do
5282 final dynaminc symbol renumbering. */
5283
5284 static bfd_boolean
5285 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5286 {
5287 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5288 unsigned long int bucket;
5289 unsigned long int val;
5290
5291 if (h->root.type == bfd_link_hash_warning)
5292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5293
5294 /* Ignore indirect symbols. */
5295 if (h->dynindx == -1)
5296 return TRUE;
5297
5298 /* Ignore also local symbols and undefined symbols. */
5299 if (! (*s->bed->elf_hash_symbol) (h))
5300 {
5301 if (h->dynindx >= s->min_dynindx)
5302 h->dynindx = s->local_indx++;
5303 return TRUE;
5304 }
5305
5306 bucket = s->hashval[h->dynindx] % s->bucketcount;
5307 val = (s->hashval[h->dynindx] >> s->shift1)
5308 & ((s->maskbits >> s->shift1) - 1);
5309 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5310 s->bitmask[val]
5311 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5312 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5313 if (s->counts[bucket] == 1)
5314 /* Last element terminates the chain. */
5315 val |= 1;
5316 bfd_put_32 (s->output_bfd, val,
5317 s->contents + (s->indx[bucket] - s->symindx) * 4);
5318 --s->counts[bucket];
5319 h->dynindx = s->indx[bucket]++;
5320 return TRUE;
5321 }
5322
5323 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5324
5325 bfd_boolean
5326 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5327 {
5328 return !(h->forced_local
5329 || h->root.type == bfd_link_hash_undefined
5330 || h->root.type == bfd_link_hash_undefweak
5331 || ((h->root.type == bfd_link_hash_defined
5332 || h->root.type == bfd_link_hash_defweak)
5333 && h->root.u.def.section->output_section == NULL));
5334 }
5335
5336 /* Array used to determine the number of hash table buckets to use
5337 based on the number of symbols there are. If there are fewer than
5338 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5339 fewer than 37 we use 17 buckets, and so forth. We never use more
5340 than 32771 buckets. */
5341
5342 static const size_t elf_buckets[] =
5343 {
5344 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5345 16411, 32771, 0
5346 };
5347
5348 /* Compute bucket count for hashing table. We do not use a static set
5349 of possible tables sizes anymore. Instead we determine for all
5350 possible reasonable sizes of the table the outcome (i.e., the
5351 number of collisions etc) and choose the best solution. The
5352 weighting functions are not too simple to allow the table to grow
5353 without bounds. Instead one of the weighting factors is the size.
5354 Therefore the result is always a good payoff between few collisions
5355 (= short chain lengths) and table size. */
5356 static size_t
5357 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5358 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5359 unsigned long int nsyms,
5360 int gnu_hash)
5361 {
5362 size_t best_size = 0;
5363 unsigned long int i;
5364
5365 /* We have a problem here. The following code to optimize the table
5366 size requires an integer type with more the 32 bits. If
5367 BFD_HOST_U_64_BIT is set we know about such a type. */
5368 #ifdef BFD_HOST_U_64_BIT
5369 if (info->optimize)
5370 {
5371 size_t minsize;
5372 size_t maxsize;
5373 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5374 bfd *dynobj = elf_hash_table (info)->dynobj;
5375 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5376 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5377 unsigned long int *counts;
5378 bfd_size_type amt;
5379 unsigned int no_improvement_count = 0;
5380
5381 /* Possible optimization parameters: if we have NSYMS symbols we say
5382 that the hashing table must at least have NSYMS/4 and at most
5383 2*NSYMS buckets. */
5384 minsize = nsyms / 4;
5385 if (minsize == 0)
5386 minsize = 1;
5387 best_size = maxsize = nsyms * 2;
5388 if (gnu_hash)
5389 {
5390 if (minsize < 2)
5391 minsize = 2;
5392 if ((best_size & 31) == 0)
5393 ++best_size;
5394 }
5395
5396 /* Create array where we count the collisions in. We must use bfd_malloc
5397 since the size could be large. */
5398 amt = maxsize;
5399 amt *= sizeof (unsigned long int);
5400 counts = (unsigned long int *) bfd_malloc (amt);
5401 if (counts == NULL)
5402 return 0;
5403
5404 /* Compute the "optimal" size for the hash table. The criteria is a
5405 minimal chain length. The minor criteria is (of course) the size
5406 of the table. */
5407 for (i = minsize; i < maxsize; ++i)
5408 {
5409 /* Walk through the array of hashcodes and count the collisions. */
5410 BFD_HOST_U_64_BIT max;
5411 unsigned long int j;
5412 unsigned long int fact;
5413
5414 if (gnu_hash && (i & 31) == 0)
5415 continue;
5416
5417 memset (counts, '\0', i * sizeof (unsigned long int));
5418
5419 /* Determine how often each hash bucket is used. */
5420 for (j = 0; j < nsyms; ++j)
5421 ++counts[hashcodes[j] % i];
5422
5423 /* For the weight function we need some information about the
5424 pagesize on the target. This is information need not be 100%
5425 accurate. Since this information is not available (so far) we
5426 define it here to a reasonable default value. If it is crucial
5427 to have a better value some day simply define this value. */
5428 # ifndef BFD_TARGET_PAGESIZE
5429 # define BFD_TARGET_PAGESIZE (4096)
5430 # endif
5431
5432 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5433 and the chains. */
5434 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5435
5436 # if 1
5437 /* Variant 1: optimize for short chains. We add the squares
5438 of all the chain lengths (which favors many small chain
5439 over a few long chains). */
5440 for (j = 0; j < i; ++j)
5441 max += counts[j] * counts[j];
5442
5443 /* This adds penalties for the overall size of the table. */
5444 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5445 max *= fact * fact;
5446 # else
5447 /* Variant 2: Optimize a lot more for small table. Here we
5448 also add squares of the size but we also add penalties for
5449 empty slots (the +1 term). */
5450 for (j = 0; j < i; ++j)
5451 max += (1 + counts[j]) * (1 + counts[j]);
5452
5453 /* The overall size of the table is considered, but not as
5454 strong as in variant 1, where it is squared. */
5455 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5456 max *= fact;
5457 # endif
5458
5459 /* Compare with current best results. */
5460 if (max < best_chlen)
5461 {
5462 best_chlen = max;
5463 best_size = i;
5464 no_improvement_count = 0;
5465 }
5466 /* PR 11843: Avoid futile long searches for the best bucket size
5467 when there are a large number of symbols. */
5468 else if (++no_improvement_count == 100)
5469 break;
5470 }
5471
5472 free (counts);
5473 }
5474 else
5475 #endif /* defined (BFD_HOST_U_64_BIT) */
5476 {
5477 /* This is the fallback solution if no 64bit type is available or if we
5478 are not supposed to spend much time on optimizations. We select the
5479 bucket count using a fixed set of numbers. */
5480 for (i = 0; elf_buckets[i] != 0; i++)
5481 {
5482 best_size = elf_buckets[i];
5483 if (nsyms < elf_buckets[i + 1])
5484 break;
5485 }
5486 if (gnu_hash && best_size < 2)
5487 best_size = 2;
5488 }
5489
5490 return best_size;
5491 }
5492
5493 /* Size any SHT_GROUP section for ld -r. */
5494
5495 bfd_boolean
5496 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5497 {
5498 bfd *ibfd;
5499
5500 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5501 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5502 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5503 return FALSE;
5504 return TRUE;
5505 }
5506
5507 /* Set up the sizes and contents of the ELF dynamic sections. This is
5508 called by the ELF linker emulation before_allocation routine. We
5509 must set the sizes of the sections before the linker sets the
5510 addresses of the various sections. */
5511
5512 bfd_boolean
5513 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5514 const char *soname,
5515 const char *rpath,
5516 const char *filter_shlib,
5517 const char *audit,
5518 const char *depaudit,
5519 const char * const *auxiliary_filters,
5520 struct bfd_link_info *info,
5521 asection **sinterpptr,
5522 struct bfd_elf_version_tree *verdefs)
5523 {
5524 bfd_size_type soname_indx;
5525 bfd *dynobj;
5526 const struct elf_backend_data *bed;
5527 struct elf_info_failed asvinfo;
5528
5529 *sinterpptr = NULL;
5530
5531 soname_indx = (bfd_size_type) -1;
5532
5533 if (!is_elf_hash_table (info->hash))
5534 return TRUE;
5535
5536 bed = get_elf_backend_data (output_bfd);
5537 if (info->execstack)
5538 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5539 else if (info->noexecstack)
5540 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5541 else
5542 {
5543 bfd *inputobj;
5544 asection *notesec = NULL;
5545 int exec = 0;
5546
5547 for (inputobj = info->input_bfds;
5548 inputobj;
5549 inputobj = inputobj->link_next)
5550 {
5551 asection *s;
5552
5553 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5554 continue;
5555 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5556 if (s)
5557 {
5558 if (s->flags & SEC_CODE)
5559 exec = PF_X;
5560 notesec = s;
5561 }
5562 else if (bed->default_execstack)
5563 exec = PF_X;
5564 }
5565 if (notesec)
5566 {
5567 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5568 if (exec && info->relocatable
5569 && notesec->output_section != bfd_abs_section_ptr)
5570 notesec->output_section->flags |= SEC_CODE;
5571 }
5572 }
5573
5574 /* Any syms created from now on start with -1 in
5575 got.refcount/offset and plt.refcount/offset. */
5576 elf_hash_table (info)->init_got_refcount
5577 = elf_hash_table (info)->init_got_offset;
5578 elf_hash_table (info)->init_plt_refcount
5579 = elf_hash_table (info)->init_plt_offset;
5580
5581 if (info->relocatable
5582 && !_bfd_elf_size_group_sections (info))
5583 return FALSE;
5584
5585 /* The backend may have to create some sections regardless of whether
5586 we're dynamic or not. */
5587 if (bed->elf_backend_always_size_sections
5588 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5589 return FALSE;
5590
5591 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5592 return FALSE;
5593
5594 dynobj = elf_hash_table (info)->dynobj;
5595
5596 /* If there were no dynamic objects in the link, there is nothing to
5597 do here. */
5598 if (dynobj == NULL)
5599 return TRUE;
5600
5601 if (elf_hash_table (info)->dynamic_sections_created)
5602 {
5603 struct elf_info_failed eif;
5604 struct elf_link_hash_entry *h;
5605 asection *dynstr;
5606 struct bfd_elf_version_tree *t;
5607 struct bfd_elf_version_expr *d;
5608 asection *s;
5609 bfd_boolean all_defined;
5610
5611 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5612 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5613
5614 if (soname != NULL)
5615 {
5616 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5617 soname, TRUE);
5618 if (soname_indx == (bfd_size_type) -1
5619 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5620 return FALSE;
5621 }
5622
5623 if (info->symbolic)
5624 {
5625 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5626 return FALSE;
5627 info->flags |= DF_SYMBOLIC;
5628 }
5629
5630 if (rpath != NULL)
5631 {
5632 bfd_size_type indx;
5633
5634 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5635 TRUE);
5636 if (indx == (bfd_size_type) -1
5637 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5638 return FALSE;
5639
5640 if (info->new_dtags)
5641 {
5642 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5643 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5644 return FALSE;
5645 }
5646 }
5647
5648 if (filter_shlib != NULL)
5649 {
5650 bfd_size_type indx;
5651
5652 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5653 filter_shlib, TRUE);
5654 if (indx == (bfd_size_type) -1
5655 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5656 return FALSE;
5657 }
5658
5659 if (auxiliary_filters != NULL)
5660 {
5661 const char * const *p;
5662
5663 for (p = auxiliary_filters; *p != NULL; p++)
5664 {
5665 bfd_size_type indx;
5666
5667 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5668 *p, TRUE);
5669 if (indx == (bfd_size_type) -1
5670 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5671 return FALSE;
5672 }
5673 }
5674
5675 if (audit != NULL)
5676 {
5677 bfd_size_type indx;
5678
5679 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5680 TRUE);
5681 if (indx == (bfd_size_type) -1
5682 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5683 return FALSE;
5684 }
5685
5686 if (depaudit != NULL)
5687 {
5688 bfd_size_type indx;
5689
5690 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5691 TRUE);
5692 if (indx == (bfd_size_type) -1
5693 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5694 return FALSE;
5695 }
5696
5697 eif.info = info;
5698 eif.verdefs = verdefs;
5699 eif.failed = FALSE;
5700
5701 /* If we are supposed to export all symbols into the dynamic symbol
5702 table (this is not the normal case), then do so. */
5703 if (info->export_dynamic
5704 || (info->executable && info->dynamic))
5705 {
5706 elf_link_hash_traverse (elf_hash_table (info),
5707 _bfd_elf_export_symbol,
5708 &eif);
5709 if (eif.failed)
5710 return FALSE;
5711 }
5712
5713 /* Make all global versions with definition. */
5714 for (t = verdefs; t != NULL; t = t->next)
5715 for (d = t->globals.list; d != NULL; d = d->next)
5716 if (!d->symver && d->literal)
5717 {
5718 const char *verstr, *name;
5719 size_t namelen, verlen, newlen;
5720 char *newname, *p;
5721 struct elf_link_hash_entry *newh;
5722
5723 name = d->pattern;
5724 namelen = strlen (name);
5725 verstr = t->name;
5726 verlen = strlen (verstr);
5727 newlen = namelen + verlen + 3;
5728
5729 newname = (char *) bfd_malloc (newlen);
5730 if (newname == NULL)
5731 return FALSE;
5732 memcpy (newname, name, namelen);
5733
5734 /* Check the hidden versioned definition. */
5735 p = newname + namelen;
5736 *p++ = ELF_VER_CHR;
5737 memcpy (p, verstr, verlen + 1);
5738 newh = elf_link_hash_lookup (elf_hash_table (info),
5739 newname, FALSE, FALSE,
5740 FALSE);
5741 if (newh == NULL
5742 || (newh->root.type != bfd_link_hash_defined
5743 && newh->root.type != bfd_link_hash_defweak))
5744 {
5745 /* Check the default versioned definition. */
5746 *p++ = ELF_VER_CHR;
5747 memcpy (p, verstr, verlen + 1);
5748 newh = elf_link_hash_lookup (elf_hash_table (info),
5749 newname, FALSE, FALSE,
5750 FALSE);
5751 }
5752 free (newname);
5753
5754 /* Mark this version if there is a definition and it is
5755 not defined in a shared object. */
5756 if (newh != NULL
5757 && !newh->def_dynamic
5758 && (newh->root.type == bfd_link_hash_defined
5759 || newh->root.type == bfd_link_hash_defweak))
5760 d->symver = 1;
5761 }
5762
5763 /* Attach all the symbols to their version information. */
5764 asvinfo.info = info;
5765 asvinfo.verdefs = verdefs;
5766 asvinfo.failed = FALSE;
5767
5768 elf_link_hash_traverse (elf_hash_table (info),
5769 _bfd_elf_link_assign_sym_version,
5770 &asvinfo);
5771 if (asvinfo.failed)
5772 return FALSE;
5773
5774 if (!info->allow_undefined_version)
5775 {
5776 /* Check if all global versions have a definition. */
5777 all_defined = TRUE;
5778 for (t = verdefs; t != NULL; t = t->next)
5779 for (d = t->globals.list; d != NULL; d = d->next)
5780 if (d->literal && !d->symver && !d->script)
5781 {
5782 (*_bfd_error_handler)
5783 (_("%s: undefined version: %s"),
5784 d->pattern, t->name);
5785 all_defined = FALSE;
5786 }
5787
5788 if (!all_defined)
5789 {
5790 bfd_set_error (bfd_error_bad_value);
5791 return FALSE;
5792 }
5793 }
5794
5795 /* Find all symbols which were defined in a dynamic object and make
5796 the backend pick a reasonable value for them. */
5797 elf_link_hash_traverse (elf_hash_table (info),
5798 _bfd_elf_adjust_dynamic_symbol,
5799 &eif);
5800 if (eif.failed)
5801 return FALSE;
5802
5803 /* Add some entries to the .dynamic section. We fill in some of the
5804 values later, in bfd_elf_final_link, but we must add the entries
5805 now so that we know the final size of the .dynamic section. */
5806
5807 /* If there are initialization and/or finalization functions to
5808 call then add the corresponding DT_INIT/DT_FINI entries. */
5809 h = (info->init_function
5810 ? elf_link_hash_lookup (elf_hash_table (info),
5811 info->init_function, FALSE,
5812 FALSE, FALSE)
5813 : NULL);
5814 if (h != NULL
5815 && (h->ref_regular
5816 || h->def_regular))
5817 {
5818 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5819 return FALSE;
5820 }
5821 h = (info->fini_function
5822 ? elf_link_hash_lookup (elf_hash_table (info),
5823 info->fini_function, FALSE,
5824 FALSE, FALSE)
5825 : NULL);
5826 if (h != NULL
5827 && (h->ref_regular
5828 || h->def_regular))
5829 {
5830 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5831 return FALSE;
5832 }
5833
5834 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5835 if (s != NULL && s->linker_has_input)
5836 {
5837 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5838 if (! info->executable)
5839 {
5840 bfd *sub;
5841 asection *o;
5842
5843 for (sub = info->input_bfds; sub != NULL;
5844 sub = sub->link_next)
5845 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5846 for (o = sub->sections; o != NULL; o = o->next)
5847 if (elf_section_data (o)->this_hdr.sh_type
5848 == SHT_PREINIT_ARRAY)
5849 {
5850 (*_bfd_error_handler)
5851 (_("%B: .preinit_array section is not allowed in DSO"),
5852 sub);
5853 break;
5854 }
5855
5856 bfd_set_error (bfd_error_nonrepresentable_section);
5857 return FALSE;
5858 }
5859
5860 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5861 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5862 return FALSE;
5863 }
5864 s = bfd_get_section_by_name (output_bfd, ".init_array");
5865 if (s != NULL && s->linker_has_input)
5866 {
5867 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5868 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5869 return FALSE;
5870 }
5871 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5872 if (s != NULL && s->linker_has_input)
5873 {
5874 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5875 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5876 return FALSE;
5877 }
5878
5879 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5880 /* If .dynstr is excluded from the link, we don't want any of
5881 these tags. Strictly, we should be checking each section
5882 individually; This quick check covers for the case where
5883 someone does a /DISCARD/ : { *(*) }. */
5884 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5885 {
5886 bfd_size_type strsize;
5887
5888 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5889 if ((info->emit_hash
5890 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5891 || (info->emit_gnu_hash
5892 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5893 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5894 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5895 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5896 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5897 bed->s->sizeof_sym))
5898 return FALSE;
5899 }
5900 }
5901
5902 /* The backend must work out the sizes of all the other dynamic
5903 sections. */
5904 if (bed->elf_backend_size_dynamic_sections
5905 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5906 return FALSE;
5907
5908 if (elf_hash_table (info)->dynamic_sections_created)
5909 {
5910 unsigned long section_sym_count;
5911 asection *s;
5912
5913 /* Set up the version definition section. */
5914 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5915 BFD_ASSERT (s != NULL);
5916
5917 /* We may have created additional version definitions if we are
5918 just linking a regular application. */
5919 verdefs = asvinfo.verdefs;
5920
5921 /* Skip anonymous version tag. */
5922 if (verdefs != NULL && verdefs->vernum == 0)
5923 verdefs = verdefs->next;
5924
5925 if (verdefs == NULL && !info->create_default_symver)
5926 s->flags |= SEC_EXCLUDE;
5927 else
5928 {
5929 unsigned int cdefs;
5930 bfd_size_type size;
5931 struct bfd_elf_version_tree *t;
5932 bfd_byte *p;
5933 Elf_Internal_Verdef def;
5934 Elf_Internal_Verdaux defaux;
5935 struct bfd_link_hash_entry *bh;
5936 struct elf_link_hash_entry *h;
5937 const char *name;
5938
5939 cdefs = 0;
5940 size = 0;
5941
5942 /* Make space for the base version. */
5943 size += sizeof (Elf_External_Verdef);
5944 size += sizeof (Elf_External_Verdaux);
5945 ++cdefs;
5946
5947 /* Make space for the default version. */
5948 if (info->create_default_symver)
5949 {
5950 size += sizeof (Elf_External_Verdef);
5951 ++cdefs;
5952 }
5953
5954 for (t = verdefs; t != NULL; t = t->next)
5955 {
5956 struct bfd_elf_version_deps *n;
5957
5958 /* Don't emit base version twice. */
5959 if (t->vernum == 0)
5960 continue;
5961
5962 size += sizeof (Elf_External_Verdef);
5963 size += sizeof (Elf_External_Verdaux);
5964 ++cdefs;
5965
5966 for (n = t->deps; n != NULL; n = n->next)
5967 size += sizeof (Elf_External_Verdaux);
5968 }
5969
5970 s->size = size;
5971 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5972 if (s->contents == NULL && s->size != 0)
5973 return FALSE;
5974
5975 /* Fill in the version definition section. */
5976
5977 p = s->contents;
5978
5979 def.vd_version = VER_DEF_CURRENT;
5980 def.vd_flags = VER_FLG_BASE;
5981 def.vd_ndx = 1;
5982 def.vd_cnt = 1;
5983 if (info->create_default_symver)
5984 {
5985 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5986 def.vd_next = sizeof (Elf_External_Verdef);
5987 }
5988 else
5989 {
5990 def.vd_aux = sizeof (Elf_External_Verdef);
5991 def.vd_next = (sizeof (Elf_External_Verdef)
5992 + sizeof (Elf_External_Verdaux));
5993 }
5994
5995 if (soname_indx != (bfd_size_type) -1)
5996 {
5997 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5998 soname_indx);
5999 def.vd_hash = bfd_elf_hash (soname);
6000 defaux.vda_name = soname_indx;
6001 name = soname;
6002 }
6003 else
6004 {
6005 bfd_size_type indx;
6006
6007 name = lbasename (output_bfd->filename);
6008 def.vd_hash = bfd_elf_hash (name);
6009 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6010 name, FALSE);
6011 if (indx == (bfd_size_type) -1)
6012 return FALSE;
6013 defaux.vda_name = indx;
6014 }
6015 defaux.vda_next = 0;
6016
6017 _bfd_elf_swap_verdef_out (output_bfd, &def,
6018 (Elf_External_Verdef *) p);
6019 p += sizeof (Elf_External_Verdef);
6020 if (info->create_default_symver)
6021 {
6022 /* Add a symbol representing this version. */
6023 bh = NULL;
6024 if (! (_bfd_generic_link_add_one_symbol
6025 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6026 0, NULL, FALSE,
6027 get_elf_backend_data (dynobj)->collect, &bh)))
6028 return FALSE;
6029 h = (struct elf_link_hash_entry *) bh;
6030 h->non_elf = 0;
6031 h->def_regular = 1;
6032 h->type = STT_OBJECT;
6033 h->verinfo.vertree = NULL;
6034
6035 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6036 return FALSE;
6037
6038 /* Create a duplicate of the base version with the same
6039 aux block, but different flags. */
6040 def.vd_flags = 0;
6041 def.vd_ndx = 2;
6042 def.vd_aux = sizeof (Elf_External_Verdef);
6043 if (verdefs)
6044 def.vd_next = (sizeof (Elf_External_Verdef)
6045 + sizeof (Elf_External_Verdaux));
6046 else
6047 def.vd_next = 0;
6048 _bfd_elf_swap_verdef_out (output_bfd, &def,
6049 (Elf_External_Verdef *) p);
6050 p += sizeof (Elf_External_Verdef);
6051 }
6052 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6053 (Elf_External_Verdaux *) p);
6054 p += sizeof (Elf_External_Verdaux);
6055
6056 for (t = verdefs; t != NULL; t = t->next)
6057 {
6058 unsigned int cdeps;
6059 struct bfd_elf_version_deps *n;
6060
6061 /* Don't emit the base version twice. */
6062 if (t->vernum == 0)
6063 continue;
6064
6065 cdeps = 0;
6066 for (n = t->deps; n != NULL; n = n->next)
6067 ++cdeps;
6068
6069 /* Add a symbol representing this version. */
6070 bh = NULL;
6071 if (! (_bfd_generic_link_add_one_symbol
6072 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6073 0, NULL, FALSE,
6074 get_elf_backend_data (dynobj)->collect, &bh)))
6075 return FALSE;
6076 h = (struct elf_link_hash_entry *) bh;
6077 h->non_elf = 0;
6078 h->def_regular = 1;
6079 h->type = STT_OBJECT;
6080 h->verinfo.vertree = t;
6081
6082 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6083 return FALSE;
6084
6085 def.vd_version = VER_DEF_CURRENT;
6086 def.vd_flags = 0;
6087 if (t->globals.list == NULL
6088 && t->locals.list == NULL
6089 && ! t->used)
6090 def.vd_flags |= VER_FLG_WEAK;
6091 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6092 def.vd_cnt = cdeps + 1;
6093 def.vd_hash = bfd_elf_hash (t->name);
6094 def.vd_aux = sizeof (Elf_External_Verdef);
6095 def.vd_next = 0;
6096
6097 /* If a basever node is next, it *must* be the last node in
6098 the chain, otherwise Verdef construction breaks. */
6099 if (t->next != NULL && t->next->vernum == 0)
6100 BFD_ASSERT (t->next->next == NULL);
6101
6102 if (t->next != NULL && t->next->vernum != 0)
6103 def.vd_next = (sizeof (Elf_External_Verdef)
6104 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6105
6106 _bfd_elf_swap_verdef_out (output_bfd, &def,
6107 (Elf_External_Verdef *) p);
6108 p += sizeof (Elf_External_Verdef);
6109
6110 defaux.vda_name = h->dynstr_index;
6111 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6112 h->dynstr_index);
6113 defaux.vda_next = 0;
6114 if (t->deps != NULL)
6115 defaux.vda_next = sizeof (Elf_External_Verdaux);
6116 t->name_indx = defaux.vda_name;
6117
6118 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6119 (Elf_External_Verdaux *) p);
6120 p += sizeof (Elf_External_Verdaux);
6121
6122 for (n = t->deps; n != NULL; n = n->next)
6123 {
6124 if (n->version_needed == NULL)
6125 {
6126 /* This can happen if there was an error in the
6127 version script. */
6128 defaux.vda_name = 0;
6129 }
6130 else
6131 {
6132 defaux.vda_name = n->version_needed->name_indx;
6133 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6134 defaux.vda_name);
6135 }
6136 if (n->next == NULL)
6137 defaux.vda_next = 0;
6138 else
6139 defaux.vda_next = sizeof (Elf_External_Verdaux);
6140
6141 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6142 (Elf_External_Verdaux *) p);
6143 p += sizeof (Elf_External_Verdaux);
6144 }
6145 }
6146
6147 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6148 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6149 return FALSE;
6150
6151 elf_tdata (output_bfd)->cverdefs = cdefs;
6152 }
6153
6154 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6155 {
6156 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6157 return FALSE;
6158 }
6159 else if (info->flags & DF_BIND_NOW)
6160 {
6161 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6162 return FALSE;
6163 }
6164
6165 if (info->flags_1)
6166 {
6167 if (info->executable)
6168 info->flags_1 &= ~ (DF_1_INITFIRST
6169 | DF_1_NODELETE
6170 | DF_1_NOOPEN);
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6172 return FALSE;
6173 }
6174
6175 /* Work out the size of the version reference section. */
6176
6177 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6178 BFD_ASSERT (s != NULL);
6179 {
6180 struct elf_find_verdep_info sinfo;
6181
6182 sinfo.info = info;
6183 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6184 if (sinfo.vers == 0)
6185 sinfo.vers = 1;
6186 sinfo.failed = FALSE;
6187
6188 elf_link_hash_traverse (elf_hash_table (info),
6189 _bfd_elf_link_find_version_dependencies,
6190 &sinfo);
6191 if (sinfo.failed)
6192 return FALSE;
6193
6194 if (elf_tdata (output_bfd)->verref == NULL)
6195 s->flags |= SEC_EXCLUDE;
6196 else
6197 {
6198 Elf_Internal_Verneed *t;
6199 unsigned int size;
6200 unsigned int crefs;
6201 bfd_byte *p;
6202
6203 /* Build the version dependency section. */
6204 size = 0;
6205 crefs = 0;
6206 for (t = elf_tdata (output_bfd)->verref;
6207 t != NULL;
6208 t = t->vn_nextref)
6209 {
6210 Elf_Internal_Vernaux *a;
6211
6212 size += sizeof (Elf_External_Verneed);
6213 ++crefs;
6214 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6215 size += sizeof (Elf_External_Vernaux);
6216 }
6217
6218 s->size = size;
6219 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6220 if (s->contents == NULL)
6221 return FALSE;
6222
6223 p = s->contents;
6224 for (t = elf_tdata (output_bfd)->verref;
6225 t != NULL;
6226 t = t->vn_nextref)
6227 {
6228 unsigned int caux;
6229 Elf_Internal_Vernaux *a;
6230 bfd_size_type indx;
6231
6232 caux = 0;
6233 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6234 ++caux;
6235
6236 t->vn_version = VER_NEED_CURRENT;
6237 t->vn_cnt = caux;
6238 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6239 elf_dt_name (t->vn_bfd) != NULL
6240 ? elf_dt_name (t->vn_bfd)
6241 : lbasename (t->vn_bfd->filename),
6242 FALSE);
6243 if (indx == (bfd_size_type) -1)
6244 return FALSE;
6245 t->vn_file = indx;
6246 t->vn_aux = sizeof (Elf_External_Verneed);
6247 if (t->vn_nextref == NULL)
6248 t->vn_next = 0;
6249 else
6250 t->vn_next = (sizeof (Elf_External_Verneed)
6251 + caux * sizeof (Elf_External_Vernaux));
6252
6253 _bfd_elf_swap_verneed_out (output_bfd, t,
6254 (Elf_External_Verneed *) p);
6255 p += sizeof (Elf_External_Verneed);
6256
6257 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6258 {
6259 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6260 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6261 a->vna_nodename, FALSE);
6262 if (indx == (bfd_size_type) -1)
6263 return FALSE;
6264 a->vna_name = indx;
6265 if (a->vna_nextptr == NULL)
6266 a->vna_next = 0;
6267 else
6268 a->vna_next = sizeof (Elf_External_Vernaux);
6269
6270 _bfd_elf_swap_vernaux_out (output_bfd, a,
6271 (Elf_External_Vernaux *) p);
6272 p += sizeof (Elf_External_Vernaux);
6273 }
6274 }
6275
6276 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6277 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6278 return FALSE;
6279
6280 elf_tdata (output_bfd)->cverrefs = crefs;
6281 }
6282 }
6283
6284 if ((elf_tdata (output_bfd)->cverrefs == 0
6285 && elf_tdata (output_bfd)->cverdefs == 0)
6286 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6287 &section_sym_count) == 0)
6288 {
6289 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6290 s->flags |= SEC_EXCLUDE;
6291 }
6292 }
6293 return TRUE;
6294 }
6295
6296 /* Find the first non-excluded output section. We'll use its
6297 section symbol for some emitted relocs. */
6298 void
6299 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6300 {
6301 asection *s;
6302
6303 for (s = output_bfd->sections; s != NULL; s = s->next)
6304 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6305 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6306 {
6307 elf_hash_table (info)->text_index_section = s;
6308 break;
6309 }
6310 }
6311
6312 /* Find two non-excluded output sections, one for code, one for data.
6313 We'll use their section symbols for some emitted relocs. */
6314 void
6315 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6316 {
6317 asection *s;
6318
6319 /* Data first, since setting text_index_section changes
6320 _bfd_elf_link_omit_section_dynsym. */
6321 for (s = output_bfd->sections; s != NULL; s = s->next)
6322 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6323 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6324 {
6325 elf_hash_table (info)->data_index_section = s;
6326 break;
6327 }
6328
6329 for (s = output_bfd->sections; s != NULL; s = s->next)
6330 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6331 == (SEC_ALLOC | SEC_READONLY))
6332 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6333 {
6334 elf_hash_table (info)->text_index_section = s;
6335 break;
6336 }
6337
6338 if (elf_hash_table (info)->text_index_section == NULL)
6339 elf_hash_table (info)->text_index_section
6340 = elf_hash_table (info)->data_index_section;
6341 }
6342
6343 bfd_boolean
6344 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6345 {
6346 const struct elf_backend_data *bed;
6347
6348 if (!is_elf_hash_table (info->hash))
6349 return TRUE;
6350
6351 bed = get_elf_backend_data (output_bfd);
6352 (*bed->elf_backend_init_index_section) (output_bfd, info);
6353
6354 if (elf_hash_table (info)->dynamic_sections_created)
6355 {
6356 bfd *dynobj;
6357 asection *s;
6358 bfd_size_type dynsymcount;
6359 unsigned long section_sym_count;
6360 unsigned int dtagcount;
6361
6362 dynobj = elf_hash_table (info)->dynobj;
6363
6364 /* Assign dynsym indicies. In a shared library we generate a
6365 section symbol for each output section, which come first.
6366 Next come all of the back-end allocated local dynamic syms,
6367 followed by the rest of the global symbols. */
6368
6369 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6370 &section_sym_count);
6371
6372 /* Work out the size of the symbol version section. */
6373 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6374 BFD_ASSERT (s != NULL);
6375 if (dynsymcount != 0
6376 && (s->flags & SEC_EXCLUDE) == 0)
6377 {
6378 s->size = dynsymcount * sizeof (Elf_External_Versym);
6379 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6380 if (s->contents == NULL)
6381 return FALSE;
6382
6383 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6384 return FALSE;
6385 }
6386
6387 /* Set the size of the .dynsym and .hash sections. We counted
6388 the number of dynamic symbols in elf_link_add_object_symbols.
6389 We will build the contents of .dynsym and .hash when we build
6390 the final symbol table, because until then we do not know the
6391 correct value to give the symbols. We built the .dynstr
6392 section as we went along in elf_link_add_object_symbols. */
6393 s = bfd_get_section_by_name (dynobj, ".dynsym");
6394 BFD_ASSERT (s != NULL);
6395 s->size = dynsymcount * bed->s->sizeof_sym;
6396
6397 if (dynsymcount != 0)
6398 {
6399 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6400 if (s->contents == NULL)
6401 return FALSE;
6402
6403 /* The first entry in .dynsym is a dummy symbol.
6404 Clear all the section syms, in case we don't output them all. */
6405 ++section_sym_count;
6406 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6407 }
6408
6409 elf_hash_table (info)->bucketcount = 0;
6410
6411 /* Compute the size of the hashing table. As a side effect this
6412 computes the hash values for all the names we export. */
6413 if (info->emit_hash)
6414 {
6415 unsigned long int *hashcodes;
6416 struct hash_codes_info hashinf;
6417 bfd_size_type amt;
6418 unsigned long int nsyms;
6419 size_t bucketcount;
6420 size_t hash_entry_size;
6421
6422 /* Compute the hash values for all exported symbols. At the same
6423 time store the values in an array so that we could use them for
6424 optimizations. */
6425 amt = dynsymcount * sizeof (unsigned long int);
6426 hashcodes = (unsigned long int *) bfd_malloc (amt);
6427 if (hashcodes == NULL)
6428 return FALSE;
6429 hashinf.hashcodes = hashcodes;
6430 hashinf.error = FALSE;
6431
6432 /* Put all hash values in HASHCODES. */
6433 elf_link_hash_traverse (elf_hash_table (info),
6434 elf_collect_hash_codes, &hashinf);
6435 if (hashinf.error)
6436 {
6437 free (hashcodes);
6438 return FALSE;
6439 }
6440
6441 nsyms = hashinf.hashcodes - hashcodes;
6442 bucketcount
6443 = compute_bucket_count (info, hashcodes, nsyms, 0);
6444 free (hashcodes);
6445
6446 if (bucketcount == 0)
6447 return FALSE;
6448
6449 elf_hash_table (info)->bucketcount = bucketcount;
6450
6451 s = bfd_get_section_by_name (dynobj, ".hash");
6452 BFD_ASSERT (s != NULL);
6453 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6454 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6455 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6456 if (s->contents == NULL)
6457 return FALSE;
6458
6459 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6460 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6461 s->contents + hash_entry_size);
6462 }
6463
6464 if (info->emit_gnu_hash)
6465 {
6466 size_t i, cnt;
6467 unsigned char *contents;
6468 struct collect_gnu_hash_codes cinfo;
6469 bfd_size_type amt;
6470 size_t bucketcount;
6471
6472 memset (&cinfo, 0, sizeof (cinfo));
6473
6474 /* Compute the hash values for all exported symbols. At the same
6475 time store the values in an array so that we could use them for
6476 optimizations. */
6477 amt = dynsymcount * 2 * sizeof (unsigned long int);
6478 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6479 if (cinfo.hashcodes == NULL)
6480 return FALSE;
6481
6482 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6483 cinfo.min_dynindx = -1;
6484 cinfo.output_bfd = output_bfd;
6485 cinfo.bed = bed;
6486
6487 /* Put all hash values in HASHCODES. */
6488 elf_link_hash_traverse (elf_hash_table (info),
6489 elf_collect_gnu_hash_codes, &cinfo);
6490 if (cinfo.error)
6491 {
6492 free (cinfo.hashcodes);
6493 return FALSE;
6494 }
6495
6496 bucketcount
6497 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6498
6499 if (bucketcount == 0)
6500 {
6501 free (cinfo.hashcodes);
6502 return FALSE;
6503 }
6504
6505 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6506 BFD_ASSERT (s != NULL);
6507
6508 if (cinfo.nsyms == 0)
6509 {
6510 /* Empty .gnu.hash section is special. */
6511 BFD_ASSERT (cinfo.min_dynindx == -1);
6512 free (cinfo.hashcodes);
6513 s->size = 5 * 4 + bed->s->arch_size / 8;
6514 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6515 if (contents == NULL)
6516 return FALSE;
6517 s->contents = contents;
6518 /* 1 empty bucket. */
6519 bfd_put_32 (output_bfd, 1, contents);
6520 /* SYMIDX above the special symbol 0. */
6521 bfd_put_32 (output_bfd, 1, contents + 4);
6522 /* Just one word for bitmask. */
6523 bfd_put_32 (output_bfd, 1, contents + 8);
6524 /* Only hash fn bloom filter. */
6525 bfd_put_32 (output_bfd, 0, contents + 12);
6526 /* No hashes are valid - empty bitmask. */
6527 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6528 /* No hashes in the only bucket. */
6529 bfd_put_32 (output_bfd, 0,
6530 contents + 16 + bed->s->arch_size / 8);
6531 }
6532 else
6533 {
6534 unsigned long int maskwords, maskbitslog2;
6535 BFD_ASSERT (cinfo.min_dynindx != -1);
6536
6537 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6538 if (maskbitslog2 < 3)
6539 maskbitslog2 = 5;
6540 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6541 maskbitslog2 = maskbitslog2 + 3;
6542 else
6543 maskbitslog2 = maskbitslog2 + 2;
6544 if (bed->s->arch_size == 64)
6545 {
6546 if (maskbitslog2 == 5)
6547 maskbitslog2 = 6;
6548 cinfo.shift1 = 6;
6549 }
6550 else
6551 cinfo.shift1 = 5;
6552 cinfo.mask = (1 << cinfo.shift1) - 1;
6553 cinfo.shift2 = maskbitslog2;
6554 cinfo.maskbits = 1 << maskbitslog2;
6555 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6556 amt = bucketcount * sizeof (unsigned long int) * 2;
6557 amt += maskwords * sizeof (bfd_vma);
6558 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6559 if (cinfo.bitmask == NULL)
6560 {
6561 free (cinfo.hashcodes);
6562 return FALSE;
6563 }
6564
6565 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6566 cinfo.indx = cinfo.counts + bucketcount;
6567 cinfo.symindx = dynsymcount - cinfo.nsyms;
6568 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6569
6570 /* Determine how often each hash bucket is used. */
6571 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6572 for (i = 0; i < cinfo.nsyms; ++i)
6573 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6574
6575 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6576 if (cinfo.counts[i] != 0)
6577 {
6578 cinfo.indx[i] = cnt;
6579 cnt += cinfo.counts[i];
6580 }
6581 BFD_ASSERT (cnt == dynsymcount);
6582 cinfo.bucketcount = bucketcount;
6583 cinfo.local_indx = cinfo.min_dynindx;
6584
6585 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6586 s->size += cinfo.maskbits / 8;
6587 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6588 if (contents == NULL)
6589 {
6590 free (cinfo.bitmask);
6591 free (cinfo.hashcodes);
6592 return FALSE;
6593 }
6594
6595 s->contents = contents;
6596 bfd_put_32 (output_bfd, bucketcount, contents);
6597 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6598 bfd_put_32 (output_bfd, maskwords, contents + 8);
6599 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6600 contents += 16 + cinfo.maskbits / 8;
6601
6602 for (i = 0; i < bucketcount; ++i)
6603 {
6604 if (cinfo.counts[i] == 0)
6605 bfd_put_32 (output_bfd, 0, contents);
6606 else
6607 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6608 contents += 4;
6609 }
6610
6611 cinfo.contents = contents;
6612
6613 /* Renumber dynamic symbols, populate .gnu.hash section. */
6614 elf_link_hash_traverse (elf_hash_table (info),
6615 elf_renumber_gnu_hash_syms, &cinfo);
6616
6617 contents = s->contents + 16;
6618 for (i = 0; i < maskwords; ++i)
6619 {
6620 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6621 contents);
6622 contents += bed->s->arch_size / 8;
6623 }
6624
6625 free (cinfo.bitmask);
6626 free (cinfo.hashcodes);
6627 }
6628 }
6629
6630 s = bfd_get_section_by_name (dynobj, ".dynstr");
6631 BFD_ASSERT (s != NULL);
6632
6633 elf_finalize_dynstr (output_bfd, info);
6634
6635 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6636
6637 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6639 return FALSE;
6640 }
6641
6642 return TRUE;
6643 }
6644 \f
6645 /* Indicate that we are only retrieving symbol values from this
6646 section. */
6647
6648 void
6649 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6650 {
6651 if (is_elf_hash_table (info->hash))
6652 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6653 _bfd_generic_link_just_syms (sec, info);
6654 }
6655
6656 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6657
6658 static void
6659 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6660 asection *sec)
6661 {
6662 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6663 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6664 }
6665
6666 /* Finish SHF_MERGE section merging. */
6667
6668 bfd_boolean
6669 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6670 {
6671 bfd *ibfd;
6672 asection *sec;
6673
6674 if (!is_elf_hash_table (info->hash))
6675 return FALSE;
6676
6677 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6678 if ((ibfd->flags & DYNAMIC) == 0)
6679 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6680 if ((sec->flags & SEC_MERGE) != 0
6681 && !bfd_is_abs_section (sec->output_section))
6682 {
6683 struct bfd_elf_section_data *secdata;
6684
6685 secdata = elf_section_data (sec);
6686 if (! _bfd_add_merge_section (abfd,
6687 &elf_hash_table (info)->merge_info,
6688 sec, &secdata->sec_info))
6689 return FALSE;
6690 else if (secdata->sec_info)
6691 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6692 }
6693
6694 if (elf_hash_table (info)->merge_info != NULL)
6695 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6696 merge_sections_remove_hook);
6697 return TRUE;
6698 }
6699
6700 /* Create an entry in an ELF linker hash table. */
6701
6702 struct bfd_hash_entry *
6703 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6704 struct bfd_hash_table *table,
6705 const char *string)
6706 {
6707 /* Allocate the structure if it has not already been allocated by a
6708 subclass. */
6709 if (entry == NULL)
6710 {
6711 entry = (struct bfd_hash_entry *)
6712 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6713 if (entry == NULL)
6714 return entry;
6715 }
6716
6717 /* Call the allocation method of the superclass. */
6718 entry = _bfd_link_hash_newfunc (entry, table, string);
6719 if (entry != NULL)
6720 {
6721 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6722 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6723
6724 /* Set local fields. */
6725 ret->indx = -1;
6726 ret->dynindx = -1;
6727 ret->got = htab->init_got_refcount;
6728 ret->plt = htab->init_plt_refcount;
6729 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6730 - offsetof (struct elf_link_hash_entry, size)));
6731 /* Assume that we have been called by a non-ELF symbol reader.
6732 This flag is then reset by the code which reads an ELF input
6733 file. This ensures that a symbol created by a non-ELF symbol
6734 reader will have the flag set correctly. */
6735 ret->non_elf = 1;
6736 }
6737
6738 return entry;
6739 }
6740
6741 /* Copy data from an indirect symbol to its direct symbol, hiding the
6742 old indirect symbol. Also used for copying flags to a weakdef. */
6743
6744 void
6745 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6746 struct elf_link_hash_entry *dir,
6747 struct elf_link_hash_entry *ind)
6748 {
6749 struct elf_link_hash_table *htab;
6750
6751 /* Copy down any references that we may have already seen to the
6752 symbol which just became indirect. */
6753
6754 dir->ref_dynamic |= ind->ref_dynamic;
6755 dir->ref_regular |= ind->ref_regular;
6756 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6757 dir->non_got_ref |= ind->non_got_ref;
6758 dir->needs_plt |= ind->needs_plt;
6759 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6760
6761 if (ind->root.type != bfd_link_hash_indirect)
6762 return;
6763
6764 /* Copy over the global and procedure linkage table refcount entries.
6765 These may have been already set up by a check_relocs routine. */
6766 htab = elf_hash_table (info);
6767 if (ind->got.refcount > htab->init_got_refcount.refcount)
6768 {
6769 if (dir->got.refcount < 0)
6770 dir->got.refcount = 0;
6771 dir->got.refcount += ind->got.refcount;
6772 ind->got.refcount = htab->init_got_refcount.refcount;
6773 }
6774
6775 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6776 {
6777 if (dir->plt.refcount < 0)
6778 dir->plt.refcount = 0;
6779 dir->plt.refcount += ind->plt.refcount;
6780 ind->plt.refcount = htab->init_plt_refcount.refcount;
6781 }
6782
6783 if (ind->dynindx != -1)
6784 {
6785 if (dir->dynindx != -1)
6786 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6787 dir->dynindx = ind->dynindx;
6788 dir->dynstr_index = ind->dynstr_index;
6789 ind->dynindx = -1;
6790 ind->dynstr_index = 0;
6791 }
6792 }
6793
6794 void
6795 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6796 struct elf_link_hash_entry *h,
6797 bfd_boolean force_local)
6798 {
6799 /* STT_GNU_IFUNC symbol must go through PLT. */
6800 if (h->type != STT_GNU_IFUNC)
6801 {
6802 h->plt = elf_hash_table (info)->init_plt_offset;
6803 h->needs_plt = 0;
6804 }
6805 if (force_local)
6806 {
6807 h->forced_local = 1;
6808 if (h->dynindx != -1)
6809 {
6810 h->dynindx = -1;
6811 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6812 h->dynstr_index);
6813 }
6814 }
6815 }
6816
6817 /* Initialize an ELF linker hash table. */
6818
6819 bfd_boolean
6820 _bfd_elf_link_hash_table_init
6821 (struct elf_link_hash_table *table,
6822 bfd *abfd,
6823 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6824 struct bfd_hash_table *,
6825 const char *),
6826 unsigned int entsize,
6827 enum elf_target_id target_id)
6828 {
6829 bfd_boolean ret;
6830 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6831
6832 memset (table, 0, sizeof * table);
6833 table->init_got_refcount.refcount = can_refcount - 1;
6834 table->init_plt_refcount.refcount = can_refcount - 1;
6835 table->init_got_offset.offset = -(bfd_vma) 1;
6836 table->init_plt_offset.offset = -(bfd_vma) 1;
6837 /* The first dynamic symbol is a dummy. */
6838 table->dynsymcount = 1;
6839
6840 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6841
6842 table->root.type = bfd_link_elf_hash_table;
6843 table->hash_table_id = target_id;
6844
6845 return ret;
6846 }
6847
6848 /* Create an ELF linker hash table. */
6849
6850 struct bfd_link_hash_table *
6851 _bfd_elf_link_hash_table_create (bfd *abfd)
6852 {
6853 struct elf_link_hash_table *ret;
6854 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6855
6856 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6857 if (ret == NULL)
6858 return NULL;
6859
6860 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6861 sizeof (struct elf_link_hash_entry),
6862 GENERIC_ELF_DATA))
6863 {
6864 free (ret);
6865 return NULL;
6866 }
6867
6868 return &ret->root;
6869 }
6870
6871 /* This is a hook for the ELF emulation code in the generic linker to
6872 tell the backend linker what file name to use for the DT_NEEDED
6873 entry for a dynamic object. */
6874
6875 void
6876 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6877 {
6878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6879 && bfd_get_format (abfd) == bfd_object)
6880 elf_dt_name (abfd) = name;
6881 }
6882
6883 int
6884 bfd_elf_get_dyn_lib_class (bfd *abfd)
6885 {
6886 int lib_class;
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 lib_class = elf_dyn_lib_class (abfd);
6890 else
6891 lib_class = 0;
6892 return lib_class;
6893 }
6894
6895 void
6896 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6897 {
6898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6899 && bfd_get_format (abfd) == bfd_object)
6900 elf_dyn_lib_class (abfd) = lib_class;
6901 }
6902
6903 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6904 the linker ELF emulation code. */
6905
6906 struct bfd_link_needed_list *
6907 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6908 struct bfd_link_info *info)
6909 {
6910 if (! is_elf_hash_table (info->hash))
6911 return NULL;
6912 return elf_hash_table (info)->needed;
6913 }
6914
6915 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6916 hook for the linker ELF emulation code. */
6917
6918 struct bfd_link_needed_list *
6919 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6920 struct bfd_link_info *info)
6921 {
6922 if (! is_elf_hash_table (info->hash))
6923 return NULL;
6924 return elf_hash_table (info)->runpath;
6925 }
6926
6927 /* Get the name actually used for a dynamic object for a link. This
6928 is the SONAME entry if there is one. Otherwise, it is the string
6929 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6930
6931 const char *
6932 bfd_elf_get_dt_soname (bfd *abfd)
6933 {
6934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6935 && bfd_get_format (abfd) == bfd_object)
6936 return elf_dt_name (abfd);
6937 return NULL;
6938 }
6939
6940 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6941 the ELF linker emulation code. */
6942
6943 bfd_boolean
6944 bfd_elf_get_bfd_needed_list (bfd *abfd,
6945 struct bfd_link_needed_list **pneeded)
6946 {
6947 asection *s;
6948 bfd_byte *dynbuf = NULL;
6949 unsigned int elfsec;
6950 unsigned long shlink;
6951 bfd_byte *extdyn, *extdynend;
6952 size_t extdynsize;
6953 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6954
6955 *pneeded = NULL;
6956
6957 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6958 || bfd_get_format (abfd) != bfd_object)
6959 return TRUE;
6960
6961 s = bfd_get_section_by_name (abfd, ".dynamic");
6962 if (s == NULL || s->size == 0)
6963 return TRUE;
6964
6965 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6966 goto error_return;
6967
6968 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6969 if (elfsec == SHN_BAD)
6970 goto error_return;
6971
6972 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6973
6974 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6975 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6976
6977 extdyn = dynbuf;
6978 extdynend = extdyn + s->size;
6979 for (; extdyn < extdynend; extdyn += extdynsize)
6980 {
6981 Elf_Internal_Dyn dyn;
6982
6983 (*swap_dyn_in) (abfd, extdyn, &dyn);
6984
6985 if (dyn.d_tag == DT_NULL)
6986 break;
6987
6988 if (dyn.d_tag == DT_NEEDED)
6989 {
6990 const char *string;
6991 struct bfd_link_needed_list *l;
6992 unsigned int tagv = dyn.d_un.d_val;
6993 bfd_size_type amt;
6994
6995 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6996 if (string == NULL)
6997 goto error_return;
6998
6999 amt = sizeof *l;
7000 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7001 if (l == NULL)
7002 goto error_return;
7003
7004 l->by = abfd;
7005 l->name = string;
7006 l->next = *pneeded;
7007 *pneeded = l;
7008 }
7009 }
7010
7011 free (dynbuf);
7012
7013 return TRUE;
7014
7015 error_return:
7016 if (dynbuf != NULL)
7017 free (dynbuf);
7018 return FALSE;
7019 }
7020
7021 struct elf_symbuf_symbol
7022 {
7023 unsigned long st_name; /* Symbol name, index in string tbl */
7024 unsigned char st_info; /* Type and binding attributes */
7025 unsigned char st_other; /* Visibilty, and target specific */
7026 };
7027
7028 struct elf_symbuf_head
7029 {
7030 struct elf_symbuf_symbol *ssym;
7031 bfd_size_type count;
7032 unsigned int st_shndx;
7033 };
7034
7035 struct elf_symbol
7036 {
7037 union
7038 {
7039 Elf_Internal_Sym *isym;
7040 struct elf_symbuf_symbol *ssym;
7041 } u;
7042 const char *name;
7043 };
7044
7045 /* Sort references to symbols by ascending section number. */
7046
7047 static int
7048 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7049 {
7050 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7051 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7052
7053 return s1->st_shndx - s2->st_shndx;
7054 }
7055
7056 static int
7057 elf_sym_name_compare (const void *arg1, const void *arg2)
7058 {
7059 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7060 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7061 return strcmp (s1->name, s2->name);
7062 }
7063
7064 static struct elf_symbuf_head *
7065 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7066 {
7067 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7068 struct elf_symbuf_symbol *ssym;
7069 struct elf_symbuf_head *ssymbuf, *ssymhead;
7070 bfd_size_type i, shndx_count, total_size;
7071
7072 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7073 if (indbuf == NULL)
7074 return NULL;
7075
7076 for (ind = indbuf, i = 0; i < symcount; i++)
7077 if (isymbuf[i].st_shndx != SHN_UNDEF)
7078 *ind++ = &isymbuf[i];
7079 indbufend = ind;
7080
7081 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7082 elf_sort_elf_symbol);
7083
7084 shndx_count = 0;
7085 if (indbufend > indbuf)
7086 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7087 if (ind[0]->st_shndx != ind[1]->st_shndx)
7088 shndx_count++;
7089
7090 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7091 + (indbufend - indbuf) * sizeof (*ssym));
7092 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7093 if (ssymbuf == NULL)
7094 {
7095 free (indbuf);
7096 return NULL;
7097 }
7098
7099 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7100 ssymbuf->ssym = NULL;
7101 ssymbuf->count = shndx_count;
7102 ssymbuf->st_shndx = 0;
7103 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7104 {
7105 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7106 {
7107 ssymhead++;
7108 ssymhead->ssym = ssym;
7109 ssymhead->count = 0;
7110 ssymhead->st_shndx = (*ind)->st_shndx;
7111 }
7112 ssym->st_name = (*ind)->st_name;
7113 ssym->st_info = (*ind)->st_info;
7114 ssym->st_other = (*ind)->st_other;
7115 ssymhead->count++;
7116 }
7117 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7118 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7119 == total_size));
7120
7121 free (indbuf);
7122 return ssymbuf;
7123 }
7124
7125 /* Check if 2 sections define the same set of local and global
7126 symbols. */
7127
7128 static bfd_boolean
7129 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7130 struct bfd_link_info *info)
7131 {
7132 bfd *bfd1, *bfd2;
7133 const struct elf_backend_data *bed1, *bed2;
7134 Elf_Internal_Shdr *hdr1, *hdr2;
7135 bfd_size_type symcount1, symcount2;
7136 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7137 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7138 Elf_Internal_Sym *isym, *isymend;
7139 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7140 bfd_size_type count1, count2, i;
7141 unsigned int shndx1, shndx2;
7142 bfd_boolean result;
7143
7144 bfd1 = sec1->owner;
7145 bfd2 = sec2->owner;
7146
7147 /* Both sections have to be in ELF. */
7148 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7149 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7150 return FALSE;
7151
7152 if (elf_section_type (sec1) != elf_section_type (sec2))
7153 return FALSE;
7154
7155 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7156 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7157 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7158 return FALSE;
7159
7160 bed1 = get_elf_backend_data (bfd1);
7161 bed2 = get_elf_backend_data (bfd2);
7162 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7163 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7164 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7165 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7166
7167 if (symcount1 == 0 || symcount2 == 0)
7168 return FALSE;
7169
7170 result = FALSE;
7171 isymbuf1 = NULL;
7172 isymbuf2 = NULL;
7173 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7174 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7175
7176 if (ssymbuf1 == NULL)
7177 {
7178 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7179 NULL, NULL, NULL);
7180 if (isymbuf1 == NULL)
7181 goto done;
7182
7183 if (!info->reduce_memory_overheads)
7184 elf_tdata (bfd1)->symbuf = ssymbuf1
7185 = elf_create_symbuf (symcount1, isymbuf1);
7186 }
7187
7188 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7189 {
7190 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7191 NULL, NULL, NULL);
7192 if (isymbuf2 == NULL)
7193 goto done;
7194
7195 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7196 elf_tdata (bfd2)->symbuf = ssymbuf2
7197 = elf_create_symbuf (symcount2, isymbuf2);
7198 }
7199
7200 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7201 {
7202 /* Optimized faster version. */
7203 bfd_size_type lo, hi, mid;
7204 struct elf_symbol *symp;
7205 struct elf_symbuf_symbol *ssym, *ssymend;
7206
7207 lo = 0;
7208 hi = ssymbuf1->count;
7209 ssymbuf1++;
7210 count1 = 0;
7211 while (lo < hi)
7212 {
7213 mid = (lo + hi) / 2;
7214 if (shndx1 < ssymbuf1[mid].st_shndx)
7215 hi = mid;
7216 else if (shndx1 > ssymbuf1[mid].st_shndx)
7217 lo = mid + 1;
7218 else
7219 {
7220 count1 = ssymbuf1[mid].count;
7221 ssymbuf1 += mid;
7222 break;
7223 }
7224 }
7225
7226 lo = 0;
7227 hi = ssymbuf2->count;
7228 ssymbuf2++;
7229 count2 = 0;
7230 while (lo < hi)
7231 {
7232 mid = (lo + hi) / 2;
7233 if (shndx2 < ssymbuf2[mid].st_shndx)
7234 hi = mid;
7235 else if (shndx2 > ssymbuf2[mid].st_shndx)
7236 lo = mid + 1;
7237 else
7238 {
7239 count2 = ssymbuf2[mid].count;
7240 ssymbuf2 += mid;
7241 break;
7242 }
7243 }
7244
7245 if (count1 == 0 || count2 == 0 || count1 != count2)
7246 goto done;
7247
7248 symtable1 = (struct elf_symbol *)
7249 bfd_malloc (count1 * sizeof (struct elf_symbol));
7250 symtable2 = (struct elf_symbol *)
7251 bfd_malloc (count2 * sizeof (struct elf_symbol));
7252 if (symtable1 == NULL || symtable2 == NULL)
7253 goto done;
7254
7255 symp = symtable1;
7256 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7257 ssym < ssymend; ssym++, symp++)
7258 {
7259 symp->u.ssym = ssym;
7260 symp->name = bfd_elf_string_from_elf_section (bfd1,
7261 hdr1->sh_link,
7262 ssym->st_name);
7263 }
7264
7265 symp = symtable2;
7266 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7267 ssym < ssymend; ssym++, symp++)
7268 {
7269 symp->u.ssym = ssym;
7270 symp->name = bfd_elf_string_from_elf_section (bfd2,
7271 hdr2->sh_link,
7272 ssym->st_name);
7273 }
7274
7275 /* Sort symbol by name. */
7276 qsort (symtable1, count1, sizeof (struct elf_symbol),
7277 elf_sym_name_compare);
7278 qsort (symtable2, count1, sizeof (struct elf_symbol),
7279 elf_sym_name_compare);
7280
7281 for (i = 0; i < count1; i++)
7282 /* Two symbols must have the same binding, type and name. */
7283 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7284 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7285 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7286 goto done;
7287
7288 result = TRUE;
7289 goto done;
7290 }
7291
7292 symtable1 = (struct elf_symbol *)
7293 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7294 symtable2 = (struct elf_symbol *)
7295 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7296 if (symtable1 == NULL || symtable2 == NULL)
7297 goto done;
7298
7299 /* Count definitions in the section. */
7300 count1 = 0;
7301 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7302 if (isym->st_shndx == shndx1)
7303 symtable1[count1++].u.isym = isym;
7304
7305 count2 = 0;
7306 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7307 if (isym->st_shndx == shndx2)
7308 symtable2[count2++].u.isym = isym;
7309
7310 if (count1 == 0 || count2 == 0 || count1 != count2)
7311 goto done;
7312
7313 for (i = 0; i < count1; i++)
7314 symtable1[i].name
7315 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7316 symtable1[i].u.isym->st_name);
7317
7318 for (i = 0; i < count2; i++)
7319 symtable2[i].name
7320 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7321 symtable2[i].u.isym->st_name);
7322
7323 /* Sort symbol by name. */
7324 qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326 qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7328
7329 for (i = 0; i < count1; i++)
7330 /* Two symbols must have the same binding, type and name. */
7331 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7332 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7333 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7334 goto done;
7335
7336 result = TRUE;
7337
7338 done:
7339 if (symtable1)
7340 free (symtable1);
7341 if (symtable2)
7342 free (symtable2);
7343 if (isymbuf1)
7344 free (isymbuf1);
7345 if (isymbuf2)
7346 free (isymbuf2);
7347
7348 return result;
7349 }
7350
7351 /* Return TRUE if 2 section types are compatible. */
7352
7353 bfd_boolean
7354 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7355 bfd *bbfd, const asection *bsec)
7356 {
7357 if (asec == NULL
7358 || bsec == NULL
7359 || abfd->xvec->flavour != bfd_target_elf_flavour
7360 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7361 return TRUE;
7362
7363 return elf_section_type (asec) == elf_section_type (bsec);
7364 }
7365 \f
7366 /* Final phase of ELF linker. */
7367
7368 /* A structure we use to avoid passing large numbers of arguments. */
7369
7370 struct elf_final_link_info
7371 {
7372 /* General link information. */
7373 struct bfd_link_info *info;
7374 /* Output BFD. */
7375 bfd *output_bfd;
7376 /* Symbol string table. */
7377 struct bfd_strtab_hash *symstrtab;
7378 /* .dynsym section. */
7379 asection *dynsym_sec;
7380 /* .hash section. */
7381 asection *hash_sec;
7382 /* symbol version section (.gnu.version). */
7383 asection *symver_sec;
7384 /* Buffer large enough to hold contents of any section. */
7385 bfd_byte *contents;
7386 /* Buffer large enough to hold external relocs of any section. */
7387 void *external_relocs;
7388 /* Buffer large enough to hold internal relocs of any section. */
7389 Elf_Internal_Rela *internal_relocs;
7390 /* Buffer large enough to hold external local symbols of any input
7391 BFD. */
7392 bfd_byte *external_syms;
7393 /* And a buffer for symbol section indices. */
7394 Elf_External_Sym_Shndx *locsym_shndx;
7395 /* Buffer large enough to hold internal local symbols of any input
7396 BFD. */
7397 Elf_Internal_Sym *internal_syms;
7398 /* Array large enough to hold a symbol index for each local symbol
7399 of any input BFD. */
7400 long *indices;
7401 /* Array large enough to hold a section pointer for each local
7402 symbol of any input BFD. */
7403 asection **sections;
7404 /* Buffer to hold swapped out symbols. */
7405 bfd_byte *symbuf;
7406 /* And one for symbol section indices. */
7407 Elf_External_Sym_Shndx *symshndxbuf;
7408 /* Number of swapped out symbols in buffer. */
7409 size_t symbuf_count;
7410 /* Number of symbols which fit in symbuf. */
7411 size_t symbuf_size;
7412 /* And same for symshndxbuf. */
7413 size_t shndxbuf_size;
7414 };
7415
7416 /* This struct is used to pass information to elf_link_output_extsym. */
7417
7418 struct elf_outext_info
7419 {
7420 bfd_boolean failed;
7421 bfd_boolean localsyms;
7422 struct elf_final_link_info *finfo;
7423 };
7424
7425
7426 /* Support for evaluating a complex relocation.
7427
7428 Complex relocations are generalized, self-describing relocations. The
7429 implementation of them consists of two parts: complex symbols, and the
7430 relocations themselves.
7431
7432 The relocations are use a reserved elf-wide relocation type code (R_RELC
7433 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7434 information (start bit, end bit, word width, etc) into the addend. This
7435 information is extracted from CGEN-generated operand tables within gas.
7436
7437 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7438 internal) representing prefix-notation expressions, including but not
7439 limited to those sorts of expressions normally encoded as addends in the
7440 addend field. The symbol mangling format is:
7441
7442 <node> := <literal>
7443 | <unary-operator> ':' <node>
7444 | <binary-operator> ':' <node> ':' <node>
7445 ;
7446
7447 <literal> := 's' <digits=N> ':' <N character symbol name>
7448 | 'S' <digits=N> ':' <N character section name>
7449 | '#' <hexdigits>
7450 ;
7451
7452 <binary-operator> := as in C
7453 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7454
7455 static void
7456 set_symbol_value (bfd *bfd_with_globals,
7457 Elf_Internal_Sym *isymbuf,
7458 size_t locsymcount,
7459 size_t symidx,
7460 bfd_vma val)
7461 {
7462 struct elf_link_hash_entry **sym_hashes;
7463 struct elf_link_hash_entry *h;
7464 size_t extsymoff = locsymcount;
7465
7466 if (symidx < locsymcount)
7467 {
7468 Elf_Internal_Sym *sym;
7469
7470 sym = isymbuf + symidx;
7471 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7472 {
7473 /* It is a local symbol: move it to the
7474 "absolute" section and give it a value. */
7475 sym->st_shndx = SHN_ABS;
7476 sym->st_value = val;
7477 return;
7478 }
7479 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7480 extsymoff = 0;
7481 }
7482
7483 /* It is a global symbol: set its link type
7484 to "defined" and give it a value. */
7485
7486 sym_hashes = elf_sym_hashes (bfd_with_globals);
7487 h = sym_hashes [symidx - extsymoff];
7488 while (h->root.type == bfd_link_hash_indirect
7489 || h->root.type == bfd_link_hash_warning)
7490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7491 h->root.type = bfd_link_hash_defined;
7492 h->root.u.def.value = val;
7493 h->root.u.def.section = bfd_abs_section_ptr;
7494 }
7495
7496 static bfd_boolean
7497 resolve_symbol (const char *name,
7498 bfd *input_bfd,
7499 struct elf_final_link_info *finfo,
7500 bfd_vma *result,
7501 Elf_Internal_Sym *isymbuf,
7502 size_t locsymcount)
7503 {
7504 Elf_Internal_Sym *sym;
7505 struct bfd_link_hash_entry *global_entry;
7506 const char *candidate = NULL;
7507 Elf_Internal_Shdr *symtab_hdr;
7508 size_t i;
7509
7510 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7511
7512 for (i = 0; i < locsymcount; ++ i)
7513 {
7514 sym = isymbuf + i;
7515
7516 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7517 continue;
7518
7519 candidate = bfd_elf_string_from_elf_section (input_bfd,
7520 symtab_hdr->sh_link,
7521 sym->st_name);
7522 #ifdef DEBUG
7523 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7524 name, candidate, (unsigned long) sym->st_value);
7525 #endif
7526 if (candidate && strcmp (candidate, name) == 0)
7527 {
7528 asection *sec = finfo->sections [i];
7529
7530 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7531 *result += sec->output_offset + sec->output_section->vma;
7532 #ifdef DEBUG
7533 printf ("Found symbol with value %8.8lx\n",
7534 (unsigned long) *result);
7535 #endif
7536 return TRUE;
7537 }
7538 }
7539
7540 /* Hmm, haven't found it yet. perhaps it is a global. */
7541 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7542 FALSE, FALSE, TRUE);
7543 if (!global_entry)
7544 return FALSE;
7545
7546 if (global_entry->type == bfd_link_hash_defined
7547 || global_entry->type == bfd_link_hash_defweak)
7548 {
7549 *result = (global_entry->u.def.value
7550 + global_entry->u.def.section->output_section->vma
7551 + global_entry->u.def.section->output_offset);
7552 #ifdef DEBUG
7553 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7554 global_entry->root.string, (unsigned long) *result);
7555 #endif
7556 return TRUE;
7557 }
7558
7559 return FALSE;
7560 }
7561
7562 static bfd_boolean
7563 resolve_section (const char *name,
7564 asection *sections,
7565 bfd_vma *result)
7566 {
7567 asection *curr;
7568 unsigned int len;
7569
7570 for (curr = sections; curr; curr = curr->next)
7571 if (strcmp (curr->name, name) == 0)
7572 {
7573 *result = curr->vma;
7574 return TRUE;
7575 }
7576
7577 /* Hmm. still haven't found it. try pseudo-section names. */
7578 for (curr = sections; curr; curr = curr->next)
7579 {
7580 len = strlen (curr->name);
7581 if (len > strlen (name))
7582 continue;
7583
7584 if (strncmp (curr->name, name, len) == 0)
7585 {
7586 if (strncmp (".end", name + len, 4) == 0)
7587 {
7588 *result = curr->vma + curr->size;
7589 return TRUE;
7590 }
7591
7592 /* Insert more pseudo-section names here, if you like. */
7593 }
7594 }
7595
7596 return FALSE;
7597 }
7598
7599 static void
7600 undefined_reference (const char *reftype, const char *name)
7601 {
7602 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7603 reftype, name);
7604 }
7605
7606 static bfd_boolean
7607 eval_symbol (bfd_vma *result,
7608 const char **symp,
7609 bfd *input_bfd,
7610 struct elf_final_link_info *finfo,
7611 bfd_vma dot,
7612 Elf_Internal_Sym *isymbuf,
7613 size_t locsymcount,
7614 int signed_p)
7615 {
7616 size_t len;
7617 size_t symlen;
7618 bfd_vma a;
7619 bfd_vma b;
7620 char symbuf[4096];
7621 const char *sym = *symp;
7622 const char *symend;
7623 bfd_boolean symbol_is_section = FALSE;
7624
7625 len = strlen (sym);
7626 symend = sym + len;
7627
7628 if (len < 1 || len > sizeof (symbuf))
7629 {
7630 bfd_set_error (bfd_error_invalid_operation);
7631 return FALSE;
7632 }
7633
7634 switch (* sym)
7635 {
7636 case '.':
7637 *result = dot;
7638 *symp = sym + 1;
7639 return TRUE;
7640
7641 case '#':
7642 ++sym;
7643 *result = strtoul (sym, (char **) symp, 16);
7644 return TRUE;
7645
7646 case 'S':
7647 symbol_is_section = TRUE;
7648 case 's':
7649 ++sym;
7650 symlen = strtol (sym, (char **) symp, 10);
7651 sym = *symp + 1; /* Skip the trailing ':'. */
7652
7653 if (symend < sym || symlen + 1 > sizeof (symbuf))
7654 {
7655 bfd_set_error (bfd_error_invalid_operation);
7656 return FALSE;
7657 }
7658
7659 memcpy (symbuf, sym, symlen);
7660 symbuf[symlen] = '\0';
7661 *symp = sym + symlen;
7662
7663 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7664 the symbol as a section, or vice-versa. so we're pretty liberal in our
7665 interpretation here; section means "try section first", not "must be a
7666 section", and likewise with symbol. */
7667
7668 if (symbol_is_section)
7669 {
7670 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7671 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7672 isymbuf, locsymcount))
7673 {
7674 undefined_reference ("section", symbuf);
7675 return FALSE;
7676 }
7677 }
7678 else
7679 {
7680 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7681 isymbuf, locsymcount)
7682 && !resolve_section (symbuf, finfo->output_bfd->sections,
7683 result))
7684 {
7685 undefined_reference ("symbol", symbuf);
7686 return FALSE;
7687 }
7688 }
7689
7690 return TRUE;
7691
7692 /* All that remains are operators. */
7693
7694 #define UNARY_OP(op) \
7695 if (strncmp (sym, #op, strlen (#op)) == 0) \
7696 { \
7697 sym += strlen (#op); \
7698 if (*sym == ':') \
7699 ++sym; \
7700 *symp = sym; \
7701 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7702 isymbuf, locsymcount, signed_p)) \
7703 return FALSE; \
7704 if (signed_p) \
7705 *result = op ((bfd_signed_vma) a); \
7706 else \
7707 *result = op a; \
7708 return TRUE; \
7709 }
7710
7711 #define BINARY_OP(op) \
7712 if (strncmp (sym, #op, strlen (#op)) == 0) \
7713 { \
7714 sym += strlen (#op); \
7715 if (*sym == ':') \
7716 ++sym; \
7717 *symp = sym; \
7718 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7719 isymbuf, locsymcount, signed_p)) \
7720 return FALSE; \
7721 ++*symp; \
7722 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7723 isymbuf, locsymcount, signed_p)) \
7724 return FALSE; \
7725 if (signed_p) \
7726 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7727 else \
7728 *result = a op b; \
7729 return TRUE; \
7730 }
7731
7732 default:
7733 UNARY_OP (0-);
7734 BINARY_OP (<<);
7735 BINARY_OP (>>);
7736 BINARY_OP (==);
7737 BINARY_OP (!=);
7738 BINARY_OP (<=);
7739 BINARY_OP (>=);
7740 BINARY_OP (&&);
7741 BINARY_OP (||);
7742 UNARY_OP (~);
7743 UNARY_OP (!);
7744 BINARY_OP (*);
7745 BINARY_OP (/);
7746 BINARY_OP (%);
7747 BINARY_OP (^);
7748 BINARY_OP (|);
7749 BINARY_OP (&);
7750 BINARY_OP (+);
7751 BINARY_OP (-);
7752 BINARY_OP (<);
7753 BINARY_OP (>);
7754 #undef UNARY_OP
7755 #undef BINARY_OP
7756 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7757 bfd_set_error (bfd_error_invalid_operation);
7758 return FALSE;
7759 }
7760 }
7761
7762 static void
7763 put_value (bfd_vma size,
7764 unsigned long chunksz,
7765 bfd *input_bfd,
7766 bfd_vma x,
7767 bfd_byte *location)
7768 {
7769 location += (size - chunksz);
7770
7771 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7772 {
7773 switch (chunksz)
7774 {
7775 default:
7776 case 0:
7777 abort ();
7778 case 1:
7779 bfd_put_8 (input_bfd, x, location);
7780 break;
7781 case 2:
7782 bfd_put_16 (input_bfd, x, location);
7783 break;
7784 case 4:
7785 bfd_put_32 (input_bfd, x, location);
7786 break;
7787 case 8:
7788 #ifdef BFD64
7789 bfd_put_64 (input_bfd, x, location);
7790 #else
7791 abort ();
7792 #endif
7793 break;
7794 }
7795 }
7796 }
7797
7798 static bfd_vma
7799 get_value (bfd_vma size,
7800 unsigned long chunksz,
7801 bfd *input_bfd,
7802 bfd_byte *location)
7803 {
7804 bfd_vma x = 0;
7805
7806 for (; size; size -= chunksz, location += chunksz)
7807 {
7808 switch (chunksz)
7809 {
7810 default:
7811 case 0:
7812 abort ();
7813 case 1:
7814 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7815 break;
7816 case 2:
7817 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7818 break;
7819 case 4:
7820 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7821 break;
7822 case 8:
7823 #ifdef BFD64
7824 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7825 #else
7826 abort ();
7827 #endif
7828 break;
7829 }
7830 }
7831 return x;
7832 }
7833
7834 static void
7835 decode_complex_addend (unsigned long *start, /* in bits */
7836 unsigned long *oplen, /* in bits */
7837 unsigned long *len, /* in bits */
7838 unsigned long *wordsz, /* in bytes */
7839 unsigned long *chunksz, /* in bytes */
7840 unsigned long *lsb0_p,
7841 unsigned long *signed_p,
7842 unsigned long *trunc_p,
7843 unsigned long encoded)
7844 {
7845 * start = encoded & 0x3F;
7846 * len = (encoded >> 6) & 0x3F;
7847 * oplen = (encoded >> 12) & 0x3F;
7848 * wordsz = (encoded >> 18) & 0xF;
7849 * chunksz = (encoded >> 22) & 0xF;
7850 * lsb0_p = (encoded >> 27) & 1;
7851 * signed_p = (encoded >> 28) & 1;
7852 * trunc_p = (encoded >> 29) & 1;
7853 }
7854
7855 bfd_reloc_status_type
7856 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7857 asection *input_section ATTRIBUTE_UNUSED,
7858 bfd_byte *contents,
7859 Elf_Internal_Rela *rel,
7860 bfd_vma relocation)
7861 {
7862 bfd_vma shift, x, mask;
7863 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7864 bfd_reloc_status_type r;
7865
7866 /* Perform this reloc, since it is complex.
7867 (this is not to say that it necessarily refers to a complex
7868 symbol; merely that it is a self-describing CGEN based reloc.
7869 i.e. the addend has the complete reloc information (bit start, end,
7870 word size, etc) encoded within it.). */
7871
7872 decode_complex_addend (&start, &oplen, &len, &wordsz,
7873 &chunksz, &lsb0_p, &signed_p,
7874 &trunc_p, rel->r_addend);
7875
7876 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7877
7878 if (lsb0_p)
7879 shift = (start + 1) - len;
7880 else
7881 shift = (8 * wordsz) - (start + len);
7882
7883 /* FIXME: octets_per_byte. */
7884 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7885
7886 #ifdef DEBUG
7887 printf ("Doing complex reloc: "
7888 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7889 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7890 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7891 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7892 oplen, x, mask, relocation);
7893 #endif
7894
7895 r = bfd_reloc_ok;
7896 if (! trunc_p)
7897 /* Now do an overflow check. */
7898 r = bfd_check_overflow ((signed_p
7899 ? complain_overflow_signed
7900 : complain_overflow_unsigned),
7901 len, 0, (8 * wordsz),
7902 relocation);
7903
7904 /* Do the deed. */
7905 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7906
7907 #ifdef DEBUG
7908 printf (" relocation: %8.8lx\n"
7909 " shifted mask: %8.8lx\n"
7910 " shifted/masked reloc: %8.8lx\n"
7911 " result: %8.8lx\n",
7912 relocation, (mask << shift),
7913 ((relocation & mask) << shift), x);
7914 #endif
7915 /* FIXME: octets_per_byte. */
7916 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7917 return r;
7918 }
7919
7920 /* When performing a relocatable link, the input relocations are
7921 preserved. But, if they reference global symbols, the indices
7922 referenced must be updated. Update all the relocations in
7923 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7924
7925 static void
7926 elf_link_adjust_relocs (bfd *abfd,
7927 Elf_Internal_Shdr *rel_hdr,
7928 unsigned int count,
7929 struct elf_link_hash_entry **rel_hash)
7930 {
7931 unsigned int i;
7932 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7933 bfd_byte *erela;
7934 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7935 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7936 bfd_vma r_type_mask;
7937 int r_sym_shift;
7938
7939 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7940 {
7941 swap_in = bed->s->swap_reloc_in;
7942 swap_out = bed->s->swap_reloc_out;
7943 }
7944 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7945 {
7946 swap_in = bed->s->swap_reloca_in;
7947 swap_out = bed->s->swap_reloca_out;
7948 }
7949 else
7950 abort ();
7951
7952 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7953 abort ();
7954
7955 if (bed->s->arch_size == 32)
7956 {
7957 r_type_mask = 0xff;
7958 r_sym_shift = 8;
7959 }
7960 else
7961 {
7962 r_type_mask = 0xffffffff;
7963 r_sym_shift = 32;
7964 }
7965
7966 erela = rel_hdr->contents;
7967 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7968 {
7969 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7970 unsigned int j;
7971
7972 if (*rel_hash == NULL)
7973 continue;
7974
7975 BFD_ASSERT ((*rel_hash)->indx >= 0);
7976
7977 (*swap_in) (abfd, erela, irela);
7978 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7979 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7980 | (irela[j].r_info & r_type_mask));
7981 (*swap_out) (abfd, irela, erela);
7982 }
7983 }
7984
7985 struct elf_link_sort_rela
7986 {
7987 union {
7988 bfd_vma offset;
7989 bfd_vma sym_mask;
7990 } u;
7991 enum elf_reloc_type_class type;
7992 /* We use this as an array of size int_rels_per_ext_rel. */
7993 Elf_Internal_Rela rela[1];
7994 };
7995
7996 static int
7997 elf_link_sort_cmp1 (const void *A, const void *B)
7998 {
7999 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8000 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8001 int relativea, relativeb;
8002
8003 relativea = a->type == reloc_class_relative;
8004 relativeb = b->type == reloc_class_relative;
8005
8006 if (relativea < relativeb)
8007 return 1;
8008 if (relativea > relativeb)
8009 return -1;
8010 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8011 return -1;
8012 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8013 return 1;
8014 if (a->rela->r_offset < b->rela->r_offset)
8015 return -1;
8016 if (a->rela->r_offset > b->rela->r_offset)
8017 return 1;
8018 return 0;
8019 }
8020
8021 static int
8022 elf_link_sort_cmp2 (const void *A, const void *B)
8023 {
8024 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8025 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8026 int copya, copyb;
8027
8028 if (a->u.offset < b->u.offset)
8029 return -1;
8030 if (a->u.offset > b->u.offset)
8031 return 1;
8032 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8033 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8034 if (copya < copyb)
8035 return -1;
8036 if (copya > copyb)
8037 return 1;
8038 if (a->rela->r_offset < b->rela->r_offset)
8039 return -1;
8040 if (a->rela->r_offset > b->rela->r_offset)
8041 return 1;
8042 return 0;
8043 }
8044
8045 static size_t
8046 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8047 {
8048 asection *dynamic_relocs;
8049 asection *rela_dyn;
8050 asection *rel_dyn;
8051 bfd_size_type count, size;
8052 size_t i, ret, sort_elt, ext_size;
8053 bfd_byte *sort, *s_non_relative, *p;
8054 struct elf_link_sort_rela *sq;
8055 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8056 int i2e = bed->s->int_rels_per_ext_rel;
8057 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8058 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8059 struct bfd_link_order *lo;
8060 bfd_vma r_sym_mask;
8061 bfd_boolean use_rela;
8062
8063 /* Find a dynamic reloc section. */
8064 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8065 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8066 if (rela_dyn != NULL && rela_dyn->size > 0
8067 && rel_dyn != NULL && rel_dyn->size > 0)
8068 {
8069 bfd_boolean use_rela_initialised = FALSE;
8070
8071 /* This is just here to stop gcc from complaining.
8072 It's initialization checking code is not perfect. */
8073 use_rela = TRUE;
8074
8075 /* Both sections are present. Examine the sizes
8076 of the indirect sections to help us choose. */
8077 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8078 if (lo->type == bfd_indirect_link_order)
8079 {
8080 asection *o = lo->u.indirect.section;
8081
8082 if ((o->size % bed->s->sizeof_rela) == 0)
8083 {
8084 if ((o->size % bed->s->sizeof_rel) == 0)
8085 /* Section size is divisible by both rel and rela sizes.
8086 It is of no help to us. */
8087 ;
8088 else
8089 {
8090 /* Section size is only divisible by rela. */
8091 if (use_rela_initialised && (use_rela == FALSE))
8092 {
8093 _bfd_error_handler
8094 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8095 bfd_set_error (bfd_error_invalid_operation);
8096 return 0;
8097 }
8098 else
8099 {
8100 use_rela = TRUE;
8101 use_rela_initialised = TRUE;
8102 }
8103 }
8104 }
8105 else if ((o->size % bed->s->sizeof_rel) == 0)
8106 {
8107 /* Section size is only divisible by rel. */
8108 if (use_rela_initialised && (use_rela == TRUE))
8109 {
8110 _bfd_error_handler
8111 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8112 bfd_set_error (bfd_error_invalid_operation);
8113 return 0;
8114 }
8115 else
8116 {
8117 use_rela = FALSE;
8118 use_rela_initialised = TRUE;
8119 }
8120 }
8121 else
8122 {
8123 /* The section size is not divisible by either - something is wrong. */
8124 _bfd_error_handler
8125 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8126 bfd_set_error (bfd_error_invalid_operation);
8127 return 0;
8128 }
8129 }
8130
8131 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8132 if (lo->type == bfd_indirect_link_order)
8133 {
8134 asection *o = lo->u.indirect.section;
8135
8136 if ((o->size % bed->s->sizeof_rela) == 0)
8137 {
8138 if ((o->size % bed->s->sizeof_rel) == 0)
8139 /* Section size is divisible by both rel and rela sizes.
8140 It is of no help to us. */
8141 ;
8142 else
8143 {
8144 /* Section size is only divisible by rela. */
8145 if (use_rela_initialised && (use_rela == FALSE))
8146 {
8147 _bfd_error_handler
8148 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8149 bfd_set_error (bfd_error_invalid_operation);
8150 return 0;
8151 }
8152 else
8153 {
8154 use_rela = TRUE;
8155 use_rela_initialised = TRUE;
8156 }
8157 }
8158 }
8159 else if ((o->size % bed->s->sizeof_rel) == 0)
8160 {
8161 /* Section size is only divisible by rel. */
8162 if (use_rela_initialised && (use_rela == TRUE))
8163 {
8164 _bfd_error_handler
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return 0;
8168 }
8169 else
8170 {
8171 use_rela = FALSE;
8172 use_rela_initialised = TRUE;
8173 }
8174 }
8175 else
8176 {
8177 /* The section size is not divisible by either - something is wrong. */
8178 _bfd_error_handler
8179 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8180 bfd_set_error (bfd_error_invalid_operation);
8181 return 0;
8182 }
8183 }
8184
8185 if (! use_rela_initialised)
8186 /* Make a guess. */
8187 use_rela = TRUE;
8188 }
8189 else if (rela_dyn != NULL && rela_dyn->size > 0)
8190 use_rela = TRUE;
8191 else if (rel_dyn != NULL && rel_dyn->size > 0)
8192 use_rela = FALSE;
8193 else
8194 return 0;
8195
8196 if (use_rela)
8197 {
8198 dynamic_relocs = rela_dyn;
8199 ext_size = bed->s->sizeof_rela;
8200 swap_in = bed->s->swap_reloca_in;
8201 swap_out = bed->s->swap_reloca_out;
8202 }
8203 else
8204 {
8205 dynamic_relocs = rel_dyn;
8206 ext_size = bed->s->sizeof_rel;
8207 swap_in = bed->s->swap_reloc_in;
8208 swap_out = bed->s->swap_reloc_out;
8209 }
8210
8211 size = 0;
8212 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8213 if (lo->type == bfd_indirect_link_order)
8214 size += lo->u.indirect.section->size;
8215
8216 if (size != dynamic_relocs->size)
8217 return 0;
8218
8219 sort_elt = (sizeof (struct elf_link_sort_rela)
8220 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8221
8222 count = dynamic_relocs->size / ext_size;
8223 if (count == 0)
8224 return 0;
8225 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8226
8227 if (sort == NULL)
8228 {
8229 (*info->callbacks->warning)
8230 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8231 return 0;
8232 }
8233
8234 if (bed->s->arch_size == 32)
8235 r_sym_mask = ~(bfd_vma) 0xff;
8236 else
8237 r_sym_mask = ~(bfd_vma) 0xffffffff;
8238
8239 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8240 if (lo->type == bfd_indirect_link_order)
8241 {
8242 bfd_byte *erel, *erelend;
8243 asection *o = lo->u.indirect.section;
8244
8245 if (o->contents == NULL && o->size != 0)
8246 {
8247 /* This is a reloc section that is being handled as a normal
8248 section. See bfd_section_from_shdr. We can't combine
8249 relocs in this case. */
8250 free (sort);
8251 return 0;
8252 }
8253 erel = o->contents;
8254 erelend = o->contents + o->size;
8255 /* FIXME: octets_per_byte. */
8256 p = sort + o->output_offset / ext_size * sort_elt;
8257
8258 while (erel < erelend)
8259 {
8260 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8261
8262 (*swap_in) (abfd, erel, s->rela);
8263 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8264 s->u.sym_mask = r_sym_mask;
8265 p += sort_elt;
8266 erel += ext_size;
8267 }
8268 }
8269
8270 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8271
8272 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8273 {
8274 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8275 if (s->type != reloc_class_relative)
8276 break;
8277 }
8278 ret = i;
8279 s_non_relative = p;
8280
8281 sq = (struct elf_link_sort_rela *) s_non_relative;
8282 for (; i < count; i++, p += sort_elt)
8283 {
8284 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8285 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8286 sq = sp;
8287 sp->u.offset = sq->rela->r_offset;
8288 }
8289
8290 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8291
8292 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8293 if (lo->type == bfd_indirect_link_order)
8294 {
8295 bfd_byte *erel, *erelend;
8296 asection *o = lo->u.indirect.section;
8297
8298 erel = o->contents;
8299 erelend = o->contents + o->size;
8300 /* FIXME: octets_per_byte. */
8301 p = sort + o->output_offset / ext_size * sort_elt;
8302 while (erel < erelend)
8303 {
8304 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8305 (*swap_out) (abfd, s->rela, erel);
8306 p += sort_elt;
8307 erel += ext_size;
8308 }
8309 }
8310
8311 free (sort);
8312 *psec = dynamic_relocs;
8313 return ret;
8314 }
8315
8316 /* Flush the output symbols to the file. */
8317
8318 static bfd_boolean
8319 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8320 const struct elf_backend_data *bed)
8321 {
8322 if (finfo->symbuf_count > 0)
8323 {
8324 Elf_Internal_Shdr *hdr;
8325 file_ptr pos;
8326 bfd_size_type amt;
8327
8328 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8329 pos = hdr->sh_offset + hdr->sh_size;
8330 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8331 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8332 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8333 return FALSE;
8334
8335 hdr->sh_size += amt;
8336 finfo->symbuf_count = 0;
8337 }
8338
8339 return TRUE;
8340 }
8341
8342 /* Add a symbol to the output symbol table. */
8343
8344 static int
8345 elf_link_output_sym (struct elf_final_link_info *finfo,
8346 const char *name,
8347 Elf_Internal_Sym *elfsym,
8348 asection *input_sec,
8349 struct elf_link_hash_entry *h)
8350 {
8351 bfd_byte *dest;
8352 Elf_External_Sym_Shndx *destshndx;
8353 int (*output_symbol_hook)
8354 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8355 struct elf_link_hash_entry *);
8356 const struct elf_backend_data *bed;
8357
8358 bed = get_elf_backend_data (finfo->output_bfd);
8359 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8360 if (output_symbol_hook != NULL)
8361 {
8362 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8363 if (ret != 1)
8364 return ret;
8365 }
8366
8367 if (name == NULL || *name == '\0')
8368 elfsym->st_name = 0;
8369 else if (input_sec->flags & SEC_EXCLUDE)
8370 elfsym->st_name = 0;
8371 else
8372 {
8373 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8374 name, TRUE, FALSE);
8375 if (elfsym->st_name == (unsigned long) -1)
8376 return 0;
8377 }
8378
8379 if (finfo->symbuf_count >= finfo->symbuf_size)
8380 {
8381 if (! elf_link_flush_output_syms (finfo, bed))
8382 return 0;
8383 }
8384
8385 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8386 destshndx = finfo->symshndxbuf;
8387 if (destshndx != NULL)
8388 {
8389 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8390 {
8391 bfd_size_type amt;
8392
8393 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8394 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8395 amt * 2);
8396 if (destshndx == NULL)
8397 return 0;
8398 finfo->symshndxbuf = destshndx;
8399 memset ((char *) destshndx + amt, 0, amt);
8400 finfo->shndxbuf_size *= 2;
8401 }
8402 destshndx += bfd_get_symcount (finfo->output_bfd);
8403 }
8404
8405 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8406 finfo->symbuf_count += 1;
8407 bfd_get_symcount (finfo->output_bfd) += 1;
8408
8409 return 1;
8410 }
8411
8412 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8413
8414 static bfd_boolean
8415 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8416 {
8417 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8418 && sym->st_shndx < SHN_LORESERVE)
8419 {
8420 /* The gABI doesn't support dynamic symbols in output sections
8421 beyond 64k. */
8422 (*_bfd_error_handler)
8423 (_("%B: Too many sections: %d (>= %d)"),
8424 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8425 bfd_set_error (bfd_error_nonrepresentable_section);
8426 return FALSE;
8427 }
8428 return TRUE;
8429 }
8430
8431 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8432 allowing an unsatisfied unversioned symbol in the DSO to match a
8433 versioned symbol that would normally require an explicit version.
8434 We also handle the case that a DSO references a hidden symbol
8435 which may be satisfied by a versioned symbol in another DSO. */
8436
8437 static bfd_boolean
8438 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8439 const struct elf_backend_data *bed,
8440 struct elf_link_hash_entry *h)
8441 {
8442 bfd *abfd;
8443 struct elf_link_loaded_list *loaded;
8444
8445 if (!is_elf_hash_table (info->hash))
8446 return FALSE;
8447
8448 switch (h->root.type)
8449 {
8450 default:
8451 abfd = NULL;
8452 break;
8453
8454 case bfd_link_hash_undefined:
8455 case bfd_link_hash_undefweak:
8456 abfd = h->root.u.undef.abfd;
8457 if ((abfd->flags & DYNAMIC) == 0
8458 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8459 return FALSE;
8460 break;
8461
8462 case bfd_link_hash_defined:
8463 case bfd_link_hash_defweak:
8464 abfd = h->root.u.def.section->owner;
8465 break;
8466
8467 case bfd_link_hash_common:
8468 abfd = h->root.u.c.p->section->owner;
8469 break;
8470 }
8471 BFD_ASSERT (abfd != NULL);
8472
8473 for (loaded = elf_hash_table (info)->loaded;
8474 loaded != NULL;
8475 loaded = loaded->next)
8476 {
8477 bfd *input;
8478 Elf_Internal_Shdr *hdr;
8479 bfd_size_type symcount;
8480 bfd_size_type extsymcount;
8481 bfd_size_type extsymoff;
8482 Elf_Internal_Shdr *versymhdr;
8483 Elf_Internal_Sym *isym;
8484 Elf_Internal_Sym *isymend;
8485 Elf_Internal_Sym *isymbuf;
8486 Elf_External_Versym *ever;
8487 Elf_External_Versym *extversym;
8488
8489 input = loaded->abfd;
8490
8491 /* We check each DSO for a possible hidden versioned definition. */
8492 if (input == abfd
8493 || (input->flags & DYNAMIC) == 0
8494 || elf_dynversym (input) == 0)
8495 continue;
8496
8497 hdr = &elf_tdata (input)->dynsymtab_hdr;
8498
8499 symcount = hdr->sh_size / bed->s->sizeof_sym;
8500 if (elf_bad_symtab (input))
8501 {
8502 extsymcount = symcount;
8503 extsymoff = 0;
8504 }
8505 else
8506 {
8507 extsymcount = symcount - hdr->sh_info;
8508 extsymoff = hdr->sh_info;
8509 }
8510
8511 if (extsymcount == 0)
8512 continue;
8513
8514 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8515 NULL, NULL, NULL);
8516 if (isymbuf == NULL)
8517 return FALSE;
8518
8519 /* Read in any version definitions. */
8520 versymhdr = &elf_tdata (input)->dynversym_hdr;
8521 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8522 if (extversym == NULL)
8523 goto error_ret;
8524
8525 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8526 || (bfd_bread (extversym, versymhdr->sh_size, input)
8527 != versymhdr->sh_size))
8528 {
8529 free (extversym);
8530 error_ret:
8531 free (isymbuf);
8532 return FALSE;
8533 }
8534
8535 ever = extversym + extsymoff;
8536 isymend = isymbuf + extsymcount;
8537 for (isym = isymbuf; isym < isymend; isym++, ever++)
8538 {
8539 const char *name;
8540 Elf_Internal_Versym iver;
8541 unsigned short version_index;
8542
8543 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8544 || isym->st_shndx == SHN_UNDEF)
8545 continue;
8546
8547 name = bfd_elf_string_from_elf_section (input,
8548 hdr->sh_link,
8549 isym->st_name);
8550 if (strcmp (name, h->root.root.string) != 0)
8551 continue;
8552
8553 _bfd_elf_swap_versym_in (input, ever, &iver);
8554
8555 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8556 && !(h->def_regular
8557 && h->forced_local))
8558 {
8559 /* If we have a non-hidden versioned sym, then it should
8560 have provided a definition for the undefined sym unless
8561 it is defined in a non-shared object and forced local.
8562 */
8563 abort ();
8564 }
8565
8566 version_index = iver.vs_vers & VERSYM_VERSION;
8567 if (version_index == 1 || version_index == 2)
8568 {
8569 /* This is the base or first version. We can use it. */
8570 free (extversym);
8571 free (isymbuf);
8572 return TRUE;
8573 }
8574 }
8575
8576 free (extversym);
8577 free (isymbuf);
8578 }
8579
8580 return FALSE;
8581 }
8582
8583 /* Add an external symbol to the symbol table. This is called from
8584 the hash table traversal routine. When generating a shared object,
8585 we go through the symbol table twice. The first time we output
8586 anything that might have been forced to local scope in a version
8587 script. The second time we output the symbols that are still
8588 global symbols. */
8589
8590 static bfd_boolean
8591 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8592 {
8593 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8594 struct elf_final_link_info *finfo = eoinfo->finfo;
8595 bfd_boolean strip;
8596 Elf_Internal_Sym sym;
8597 asection *input_sec;
8598 const struct elf_backend_data *bed;
8599 long indx;
8600 int ret;
8601
8602 if (h->root.type == bfd_link_hash_warning)
8603 {
8604 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8605 if (h->root.type == bfd_link_hash_new)
8606 return TRUE;
8607 }
8608
8609 /* Decide whether to output this symbol in this pass. */
8610 if (eoinfo->localsyms)
8611 {
8612 if (!h->forced_local)
8613 return TRUE;
8614 }
8615 else
8616 {
8617 if (h->forced_local)
8618 return TRUE;
8619 }
8620
8621 bed = get_elf_backend_data (finfo->output_bfd);
8622
8623 if (h->root.type == bfd_link_hash_undefined)
8624 {
8625 /* If we have an undefined symbol reference here then it must have
8626 come from a shared library that is being linked in. (Undefined
8627 references in regular files have already been handled unless
8628 they are in unreferenced sections which are removed by garbage
8629 collection). */
8630 bfd_boolean ignore_undef = FALSE;
8631
8632 /* Some symbols may be special in that the fact that they're
8633 undefined can be safely ignored - let backend determine that. */
8634 if (bed->elf_backend_ignore_undef_symbol)
8635 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8636
8637 /* If we are reporting errors for this situation then do so now. */
8638 if (ignore_undef == FALSE
8639 && h->ref_dynamic
8640 && (!h->ref_regular || finfo->info->gc_sections)
8641 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8642 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8643 {
8644 if (! (finfo->info->callbacks->undefined_symbol
8645 (finfo->info, h->root.root.string,
8646 h->ref_regular ? NULL : h->root.u.undef.abfd,
8647 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8648 {
8649 eoinfo->failed = TRUE;
8650 return FALSE;
8651 }
8652 }
8653 }
8654
8655 /* We should also warn if a forced local symbol is referenced from
8656 shared libraries. */
8657 if (! finfo->info->relocatable
8658 && (! finfo->info->shared)
8659 && h->forced_local
8660 && h->ref_dynamic
8661 && !h->dynamic_def
8662 && !h->dynamic_weak
8663 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8664 {
8665 (*_bfd_error_handler)
8666 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8667 finfo->output_bfd,
8668 h->root.u.def.section == bfd_abs_section_ptr
8669 ? finfo->output_bfd : h->root.u.def.section->owner,
8670 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8671 ? "internal"
8672 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8673 ? "hidden" : "local",
8674 h->root.root.string);
8675 eoinfo->failed = TRUE;
8676 return FALSE;
8677 }
8678
8679 /* We don't want to output symbols that have never been mentioned by
8680 a regular file, or that we have been told to strip. However, if
8681 h->indx is set to -2, the symbol is used by a reloc and we must
8682 output it. */
8683 if (h->indx == -2)
8684 strip = FALSE;
8685 else if ((h->def_dynamic
8686 || h->ref_dynamic
8687 || h->root.type == bfd_link_hash_new)
8688 && !h->def_regular
8689 && !h->ref_regular)
8690 strip = TRUE;
8691 else if (finfo->info->strip == strip_all)
8692 strip = TRUE;
8693 else if (finfo->info->strip == strip_some
8694 && bfd_hash_lookup (finfo->info->keep_hash,
8695 h->root.root.string, FALSE, FALSE) == NULL)
8696 strip = TRUE;
8697 else if (finfo->info->strip_discarded
8698 && (h->root.type == bfd_link_hash_defined
8699 || h->root.type == bfd_link_hash_defweak)
8700 && elf_discarded_section (h->root.u.def.section))
8701 strip = TRUE;
8702 else
8703 strip = FALSE;
8704
8705 /* If we're stripping it, and it's not a dynamic symbol, there's
8706 nothing else to do unless it is a forced local symbol or a
8707 STT_GNU_IFUNC symbol. */
8708 if (strip
8709 && h->dynindx == -1
8710 && h->type != STT_GNU_IFUNC
8711 && !h->forced_local)
8712 return TRUE;
8713
8714 sym.st_value = 0;
8715 sym.st_size = h->size;
8716 sym.st_other = h->other;
8717 if (h->forced_local)
8718 {
8719 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8720 /* Turn off visibility on local symbol. */
8721 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8722 }
8723 else if (h->unique_global)
8724 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8725 else if (h->root.type == bfd_link_hash_undefweak
8726 || h->root.type == bfd_link_hash_defweak)
8727 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8728 else
8729 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8730
8731 switch (h->root.type)
8732 {
8733 default:
8734 case bfd_link_hash_new:
8735 case bfd_link_hash_warning:
8736 abort ();
8737 return FALSE;
8738
8739 case bfd_link_hash_undefined:
8740 case bfd_link_hash_undefweak:
8741 input_sec = bfd_und_section_ptr;
8742 sym.st_shndx = SHN_UNDEF;
8743 break;
8744
8745 case bfd_link_hash_defined:
8746 case bfd_link_hash_defweak:
8747 {
8748 input_sec = h->root.u.def.section;
8749 if (input_sec->output_section != NULL)
8750 {
8751 sym.st_shndx =
8752 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8753 input_sec->output_section);
8754 if (sym.st_shndx == SHN_BAD)
8755 {
8756 (*_bfd_error_handler)
8757 (_("%B: could not find output section %A for input section %A"),
8758 finfo->output_bfd, input_sec->output_section, input_sec);
8759 eoinfo->failed = TRUE;
8760 return FALSE;
8761 }
8762
8763 /* ELF symbols in relocatable files are section relative,
8764 but in nonrelocatable files they are virtual
8765 addresses. */
8766 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8767 if (! finfo->info->relocatable)
8768 {
8769 sym.st_value += input_sec->output_section->vma;
8770 if (h->type == STT_TLS)
8771 {
8772 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8773 if (tls_sec != NULL)
8774 sym.st_value -= tls_sec->vma;
8775 else
8776 {
8777 /* The TLS section may have been garbage collected. */
8778 BFD_ASSERT (finfo->info->gc_sections
8779 && !input_sec->gc_mark);
8780 }
8781 }
8782 }
8783 }
8784 else
8785 {
8786 BFD_ASSERT (input_sec->owner == NULL
8787 || (input_sec->owner->flags & DYNAMIC) != 0);
8788 sym.st_shndx = SHN_UNDEF;
8789 input_sec = bfd_und_section_ptr;
8790 }
8791 }
8792 break;
8793
8794 case bfd_link_hash_common:
8795 input_sec = h->root.u.c.p->section;
8796 sym.st_shndx = bed->common_section_index (input_sec);
8797 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8798 break;
8799
8800 case bfd_link_hash_indirect:
8801 /* These symbols are created by symbol versioning. They point
8802 to the decorated version of the name. For example, if the
8803 symbol foo@@GNU_1.2 is the default, which should be used when
8804 foo is used with no version, then we add an indirect symbol
8805 foo which points to foo@@GNU_1.2. We ignore these symbols,
8806 since the indirected symbol is already in the hash table. */
8807 return TRUE;
8808 }
8809
8810 /* Give the processor backend a chance to tweak the symbol value,
8811 and also to finish up anything that needs to be done for this
8812 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8813 forced local syms when non-shared is due to a historical quirk.
8814 STT_GNU_IFUNC symbol must go through PLT. */
8815 if ((h->type == STT_GNU_IFUNC
8816 && h->def_regular
8817 && !finfo->info->relocatable)
8818 || ((h->dynindx != -1
8819 || h->forced_local)
8820 && ((finfo->info->shared
8821 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8822 || h->root.type != bfd_link_hash_undefweak))
8823 || !h->forced_local)
8824 && elf_hash_table (finfo->info)->dynamic_sections_created))
8825 {
8826 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8827 (finfo->output_bfd, finfo->info, h, &sym)))
8828 {
8829 eoinfo->failed = TRUE;
8830 return FALSE;
8831 }
8832 }
8833
8834 /* If we are marking the symbol as undefined, and there are no
8835 non-weak references to this symbol from a regular object, then
8836 mark the symbol as weak undefined; if there are non-weak
8837 references, mark the symbol as strong. We can't do this earlier,
8838 because it might not be marked as undefined until the
8839 finish_dynamic_symbol routine gets through with it. */
8840 if (sym.st_shndx == SHN_UNDEF
8841 && h->ref_regular
8842 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8843 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8844 {
8845 int bindtype;
8846 unsigned int type = ELF_ST_TYPE (sym.st_info);
8847
8848 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8849 if (type == STT_GNU_IFUNC)
8850 type = STT_FUNC;
8851
8852 if (h->ref_regular_nonweak)
8853 bindtype = STB_GLOBAL;
8854 else
8855 bindtype = STB_WEAK;
8856 sym.st_info = ELF_ST_INFO (bindtype, type);
8857 }
8858
8859 /* If this is a symbol defined in a dynamic library, don't use the
8860 symbol size from the dynamic library. Relinking an executable
8861 against a new library may introduce gratuitous changes in the
8862 executable's symbols if we keep the size. */
8863 if (sym.st_shndx == SHN_UNDEF
8864 && !h->def_regular
8865 && h->def_dynamic)
8866 sym.st_size = 0;
8867
8868 /* If a non-weak symbol with non-default visibility is not defined
8869 locally, it is a fatal error. */
8870 if (! finfo->info->relocatable
8871 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8872 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8873 && h->root.type == bfd_link_hash_undefined
8874 && !h->def_regular)
8875 {
8876 (*_bfd_error_handler)
8877 (_("%B: %s symbol `%s' isn't defined"),
8878 finfo->output_bfd,
8879 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8880 ? "protected"
8881 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8882 ? "internal" : "hidden",
8883 h->root.root.string);
8884 eoinfo->failed = TRUE;
8885 return FALSE;
8886 }
8887
8888 /* If this symbol should be put in the .dynsym section, then put it
8889 there now. We already know the symbol index. We also fill in
8890 the entry in the .hash section. */
8891 if (h->dynindx != -1
8892 && elf_hash_table (finfo->info)->dynamic_sections_created)
8893 {
8894 bfd_byte *esym;
8895
8896 sym.st_name = h->dynstr_index;
8897 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8898 if (! check_dynsym (finfo->output_bfd, &sym))
8899 {
8900 eoinfo->failed = TRUE;
8901 return FALSE;
8902 }
8903 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8904
8905 if (finfo->hash_sec != NULL)
8906 {
8907 size_t hash_entry_size;
8908 bfd_byte *bucketpos;
8909 bfd_vma chain;
8910 size_t bucketcount;
8911 size_t bucket;
8912
8913 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8914 bucket = h->u.elf_hash_value % bucketcount;
8915
8916 hash_entry_size
8917 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8918 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8919 + (bucket + 2) * hash_entry_size);
8920 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8921 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8922 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8923 ((bfd_byte *) finfo->hash_sec->contents
8924 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8925 }
8926
8927 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8928 {
8929 Elf_Internal_Versym iversym;
8930 Elf_External_Versym *eversym;
8931
8932 if (!h->def_regular)
8933 {
8934 if (h->verinfo.verdef == NULL)
8935 iversym.vs_vers = 0;
8936 else
8937 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8938 }
8939 else
8940 {
8941 if (h->verinfo.vertree == NULL)
8942 iversym.vs_vers = 1;
8943 else
8944 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8945 if (finfo->info->create_default_symver)
8946 iversym.vs_vers++;
8947 }
8948
8949 if (h->hidden)
8950 iversym.vs_vers |= VERSYM_HIDDEN;
8951
8952 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8953 eversym += h->dynindx;
8954 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8955 }
8956 }
8957
8958 /* If we're stripping it, then it was just a dynamic symbol, and
8959 there's nothing else to do. */
8960 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8961 return TRUE;
8962
8963 indx = bfd_get_symcount (finfo->output_bfd);
8964 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8965 if (ret == 0)
8966 {
8967 eoinfo->failed = TRUE;
8968 return FALSE;
8969 }
8970 else if (ret == 1)
8971 h->indx = indx;
8972 else if (h->indx == -2)
8973 abort();
8974
8975 return TRUE;
8976 }
8977
8978 /* Return TRUE if special handling is done for relocs in SEC against
8979 symbols defined in discarded sections. */
8980
8981 static bfd_boolean
8982 elf_section_ignore_discarded_relocs (asection *sec)
8983 {
8984 const struct elf_backend_data *bed;
8985
8986 switch (sec->sec_info_type)
8987 {
8988 case ELF_INFO_TYPE_STABS:
8989 case ELF_INFO_TYPE_EH_FRAME:
8990 return TRUE;
8991 default:
8992 break;
8993 }
8994
8995 bed = get_elf_backend_data (sec->owner);
8996 if (bed->elf_backend_ignore_discarded_relocs != NULL
8997 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8998 return TRUE;
8999
9000 return FALSE;
9001 }
9002
9003 /* Return a mask saying how ld should treat relocations in SEC against
9004 symbols defined in discarded sections. If this function returns
9005 COMPLAIN set, ld will issue a warning message. If this function
9006 returns PRETEND set, and the discarded section was link-once and the
9007 same size as the kept link-once section, ld will pretend that the
9008 symbol was actually defined in the kept section. Otherwise ld will
9009 zero the reloc (at least that is the intent, but some cooperation by
9010 the target dependent code is needed, particularly for REL targets). */
9011
9012 unsigned int
9013 _bfd_elf_default_action_discarded (asection *sec)
9014 {
9015 if (sec->flags & SEC_DEBUGGING)
9016 return PRETEND;
9017
9018 if (strcmp (".eh_frame", sec->name) == 0)
9019 return 0;
9020
9021 if (strcmp (".gcc_except_table", sec->name) == 0)
9022 return 0;
9023
9024 return COMPLAIN | PRETEND;
9025 }
9026
9027 /* Find a match between a section and a member of a section group. */
9028
9029 static asection *
9030 match_group_member (asection *sec, asection *group,
9031 struct bfd_link_info *info)
9032 {
9033 asection *first = elf_next_in_group (group);
9034 asection *s = first;
9035
9036 while (s != NULL)
9037 {
9038 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9039 return s;
9040
9041 s = elf_next_in_group (s);
9042 if (s == first)
9043 break;
9044 }
9045
9046 return NULL;
9047 }
9048
9049 /* Check if the kept section of a discarded section SEC can be used
9050 to replace it. Return the replacement if it is OK. Otherwise return
9051 NULL. */
9052
9053 asection *
9054 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9055 {
9056 asection *kept;
9057
9058 kept = sec->kept_section;
9059 if (kept != NULL)
9060 {
9061 if ((kept->flags & SEC_GROUP) != 0)
9062 kept = match_group_member (sec, kept, info);
9063 if (kept != NULL
9064 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9065 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9066 kept = NULL;
9067 sec->kept_section = kept;
9068 }
9069 return kept;
9070 }
9071
9072 /* Link an input file into the linker output file. This function
9073 handles all the sections and relocations of the input file at once.
9074 This is so that we only have to read the local symbols once, and
9075 don't have to keep them in memory. */
9076
9077 static bfd_boolean
9078 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9079 {
9080 int (*relocate_section)
9081 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9082 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9083 bfd *output_bfd;
9084 Elf_Internal_Shdr *symtab_hdr;
9085 size_t locsymcount;
9086 size_t extsymoff;
9087 Elf_Internal_Sym *isymbuf;
9088 Elf_Internal_Sym *isym;
9089 Elf_Internal_Sym *isymend;
9090 long *pindex;
9091 asection **ppsection;
9092 asection *o;
9093 const struct elf_backend_data *bed;
9094 struct elf_link_hash_entry **sym_hashes;
9095
9096 output_bfd = finfo->output_bfd;
9097 bed = get_elf_backend_data (output_bfd);
9098 relocate_section = bed->elf_backend_relocate_section;
9099
9100 /* If this is a dynamic object, we don't want to do anything here:
9101 we don't want the local symbols, and we don't want the section
9102 contents. */
9103 if ((input_bfd->flags & DYNAMIC) != 0)
9104 return TRUE;
9105
9106 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9107 if (elf_bad_symtab (input_bfd))
9108 {
9109 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9110 extsymoff = 0;
9111 }
9112 else
9113 {
9114 locsymcount = symtab_hdr->sh_info;
9115 extsymoff = symtab_hdr->sh_info;
9116 }
9117
9118 /* Read the local symbols. */
9119 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9120 if (isymbuf == NULL && locsymcount != 0)
9121 {
9122 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9123 finfo->internal_syms,
9124 finfo->external_syms,
9125 finfo->locsym_shndx);
9126 if (isymbuf == NULL)
9127 return FALSE;
9128 }
9129
9130 /* Find local symbol sections and adjust values of symbols in
9131 SEC_MERGE sections. Write out those local symbols we know are
9132 going into the output file. */
9133 isymend = isymbuf + locsymcount;
9134 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9135 isym < isymend;
9136 isym++, pindex++, ppsection++)
9137 {
9138 asection *isec;
9139 const char *name;
9140 Elf_Internal_Sym osym;
9141 long indx;
9142 int ret;
9143
9144 *pindex = -1;
9145
9146 if (elf_bad_symtab (input_bfd))
9147 {
9148 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9149 {
9150 *ppsection = NULL;
9151 continue;
9152 }
9153 }
9154
9155 if (isym->st_shndx == SHN_UNDEF)
9156 isec = bfd_und_section_ptr;
9157 else if (isym->st_shndx == SHN_ABS)
9158 isec = bfd_abs_section_ptr;
9159 else if (isym->st_shndx == SHN_COMMON)
9160 isec = bfd_com_section_ptr;
9161 else
9162 {
9163 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9164 if (isec == NULL)
9165 {
9166 /* Don't attempt to output symbols with st_shnx in the
9167 reserved range other than SHN_ABS and SHN_COMMON. */
9168 *ppsection = NULL;
9169 continue;
9170 }
9171 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9172 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9173 isym->st_value =
9174 _bfd_merged_section_offset (output_bfd, &isec,
9175 elf_section_data (isec)->sec_info,
9176 isym->st_value);
9177 }
9178
9179 *ppsection = isec;
9180
9181 /* Don't output the first, undefined, symbol. */
9182 if (ppsection == finfo->sections)
9183 continue;
9184
9185 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9186 {
9187 /* We never output section symbols. Instead, we use the
9188 section symbol of the corresponding section in the output
9189 file. */
9190 continue;
9191 }
9192
9193 /* If we are stripping all symbols, we don't want to output this
9194 one. */
9195 if (finfo->info->strip == strip_all)
9196 continue;
9197
9198 /* If we are discarding all local symbols, we don't want to
9199 output this one. If we are generating a relocatable output
9200 file, then some of the local symbols may be required by
9201 relocs; we output them below as we discover that they are
9202 needed. */
9203 if (finfo->info->discard == discard_all)
9204 continue;
9205
9206 /* If this symbol is defined in a section which we are
9207 discarding, we don't need to keep it. */
9208 if (isym->st_shndx != SHN_UNDEF
9209 && isym->st_shndx < SHN_LORESERVE
9210 && bfd_section_removed_from_list (output_bfd,
9211 isec->output_section))
9212 continue;
9213
9214 /* Get the name of the symbol. */
9215 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9216 isym->st_name);
9217 if (name == NULL)
9218 return FALSE;
9219
9220 /* See if we are discarding symbols with this name. */
9221 if ((finfo->info->strip == strip_some
9222 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9223 == NULL))
9224 || (((finfo->info->discard == discard_sec_merge
9225 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9226 || finfo->info->discard == discard_l)
9227 && bfd_is_local_label_name (input_bfd, name)))
9228 continue;
9229
9230 osym = *isym;
9231
9232 /* Adjust the section index for the output file. */
9233 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9234 isec->output_section);
9235 if (osym.st_shndx == SHN_BAD)
9236 return FALSE;
9237
9238 /* ELF symbols in relocatable files are section relative, but
9239 in executable files they are virtual addresses. Note that
9240 this code assumes that all ELF sections have an associated
9241 BFD section with a reasonable value for output_offset; below
9242 we assume that they also have a reasonable value for
9243 output_section. Any special sections must be set up to meet
9244 these requirements. */
9245 osym.st_value += isec->output_offset;
9246 if (! finfo->info->relocatable)
9247 {
9248 osym.st_value += isec->output_section->vma;
9249 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9250 {
9251 /* STT_TLS symbols are relative to PT_TLS segment base. */
9252 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9253 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9254 }
9255 }
9256
9257 indx = bfd_get_symcount (output_bfd);
9258 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9259 if (ret == 0)
9260 return FALSE;
9261 else if (ret == 1)
9262 *pindex = indx;
9263 }
9264
9265 /* Relocate the contents of each section. */
9266 sym_hashes = elf_sym_hashes (input_bfd);
9267 for (o = input_bfd->sections; o != NULL; o = o->next)
9268 {
9269 bfd_byte *contents;
9270
9271 if (! o->linker_mark)
9272 {
9273 /* This section was omitted from the link. */
9274 continue;
9275 }
9276
9277 if (finfo->info->relocatable
9278 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9279 {
9280 /* Deal with the group signature symbol. */
9281 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9282 unsigned long symndx = sec_data->this_hdr.sh_info;
9283 asection *osec = o->output_section;
9284
9285 if (symndx >= locsymcount
9286 || (elf_bad_symtab (input_bfd)
9287 && finfo->sections[symndx] == NULL))
9288 {
9289 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9290 while (h->root.type == bfd_link_hash_indirect
9291 || h->root.type == bfd_link_hash_warning)
9292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9293 /* Arrange for symbol to be output. */
9294 h->indx = -2;
9295 elf_section_data (osec)->this_hdr.sh_info = -2;
9296 }
9297 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9298 {
9299 /* We'll use the output section target_index. */
9300 asection *sec = finfo->sections[symndx]->output_section;
9301 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9302 }
9303 else
9304 {
9305 if (finfo->indices[symndx] == -1)
9306 {
9307 /* Otherwise output the local symbol now. */
9308 Elf_Internal_Sym sym = isymbuf[symndx];
9309 asection *sec = finfo->sections[symndx]->output_section;
9310 const char *name;
9311 long indx;
9312 int ret;
9313
9314 name = bfd_elf_string_from_elf_section (input_bfd,
9315 symtab_hdr->sh_link,
9316 sym.st_name);
9317 if (name == NULL)
9318 return FALSE;
9319
9320 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9321 sec);
9322 if (sym.st_shndx == SHN_BAD)
9323 return FALSE;
9324
9325 sym.st_value += o->output_offset;
9326
9327 indx = bfd_get_symcount (output_bfd);
9328 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9329 if (ret == 0)
9330 return FALSE;
9331 else if (ret == 1)
9332 finfo->indices[symndx] = indx;
9333 else
9334 abort ();
9335 }
9336 elf_section_data (osec)->this_hdr.sh_info
9337 = finfo->indices[symndx];
9338 }
9339 }
9340
9341 if ((o->flags & SEC_HAS_CONTENTS) == 0
9342 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9343 continue;
9344
9345 if ((o->flags & SEC_LINKER_CREATED) != 0)
9346 {
9347 /* Section was created by _bfd_elf_link_create_dynamic_sections
9348 or somesuch. */
9349 continue;
9350 }
9351
9352 /* Get the contents of the section. They have been cached by a
9353 relaxation routine. Note that o is a section in an input
9354 file, so the contents field will not have been set by any of
9355 the routines which work on output files. */
9356 if (elf_section_data (o)->this_hdr.contents != NULL)
9357 contents = elf_section_data (o)->this_hdr.contents;
9358 else
9359 {
9360 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9361
9362 contents = finfo->contents;
9363 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9364 return FALSE;
9365 }
9366
9367 if ((o->flags & SEC_RELOC) != 0)
9368 {
9369 Elf_Internal_Rela *internal_relocs;
9370 Elf_Internal_Rela *rel, *relend;
9371 bfd_vma r_type_mask;
9372 int r_sym_shift;
9373 int action_discarded;
9374 int ret;
9375
9376 /* Get the swapped relocs. */
9377 internal_relocs
9378 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9379 finfo->internal_relocs, FALSE);
9380 if (internal_relocs == NULL
9381 && o->reloc_count > 0)
9382 return FALSE;
9383
9384 if (bed->s->arch_size == 32)
9385 {
9386 r_type_mask = 0xff;
9387 r_sym_shift = 8;
9388 }
9389 else
9390 {
9391 r_type_mask = 0xffffffff;
9392 r_sym_shift = 32;
9393 }
9394
9395 action_discarded = -1;
9396 if (!elf_section_ignore_discarded_relocs (o))
9397 action_discarded = (*bed->action_discarded) (o);
9398
9399 /* Run through the relocs evaluating complex reloc symbols and
9400 looking for relocs against symbols from discarded sections
9401 or section symbols from removed link-once sections.
9402 Complain about relocs against discarded sections. Zero
9403 relocs against removed link-once sections. */
9404
9405 rel = internal_relocs;
9406 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9407 for ( ; rel < relend; rel++)
9408 {
9409 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9410 unsigned int s_type;
9411 asection **ps, *sec;
9412 struct elf_link_hash_entry *h = NULL;
9413 const char *sym_name;
9414
9415 if (r_symndx == STN_UNDEF)
9416 continue;
9417
9418 if (r_symndx >= locsymcount
9419 || (elf_bad_symtab (input_bfd)
9420 && finfo->sections[r_symndx] == NULL))
9421 {
9422 h = sym_hashes[r_symndx - extsymoff];
9423
9424 /* Badly formatted input files can contain relocs that
9425 reference non-existant symbols. Check here so that
9426 we do not seg fault. */
9427 if (h == NULL)
9428 {
9429 char buffer [32];
9430
9431 sprintf_vma (buffer, rel->r_info);
9432 (*_bfd_error_handler)
9433 (_("error: %B contains a reloc (0x%s) for section %A "
9434 "that references a non-existent global symbol"),
9435 input_bfd, o, buffer);
9436 bfd_set_error (bfd_error_bad_value);
9437 return FALSE;
9438 }
9439
9440 while (h->root.type == bfd_link_hash_indirect
9441 || h->root.type == bfd_link_hash_warning)
9442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9443
9444 s_type = h->type;
9445
9446 ps = NULL;
9447 if (h->root.type == bfd_link_hash_defined
9448 || h->root.type == bfd_link_hash_defweak)
9449 ps = &h->root.u.def.section;
9450
9451 sym_name = h->root.root.string;
9452 }
9453 else
9454 {
9455 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9456
9457 s_type = ELF_ST_TYPE (sym->st_info);
9458 ps = &finfo->sections[r_symndx];
9459 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9460 sym, *ps);
9461 }
9462
9463 if ((s_type == STT_RELC || s_type == STT_SRELC)
9464 && !finfo->info->relocatable)
9465 {
9466 bfd_vma val;
9467 bfd_vma dot = (rel->r_offset
9468 + o->output_offset + o->output_section->vma);
9469 #ifdef DEBUG
9470 printf ("Encountered a complex symbol!");
9471 printf (" (input_bfd %s, section %s, reloc %ld\n",
9472 input_bfd->filename, o->name, rel - internal_relocs);
9473 printf (" symbol: idx %8.8lx, name %s\n",
9474 r_symndx, sym_name);
9475 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9476 (unsigned long) rel->r_info,
9477 (unsigned long) rel->r_offset);
9478 #endif
9479 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9480 isymbuf, locsymcount, s_type == STT_SRELC))
9481 return FALSE;
9482
9483 /* Symbol evaluated OK. Update to absolute value. */
9484 set_symbol_value (input_bfd, isymbuf, locsymcount,
9485 r_symndx, val);
9486 continue;
9487 }
9488
9489 if (action_discarded != -1 && ps != NULL)
9490 {
9491 /* Complain if the definition comes from a
9492 discarded section. */
9493 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9494 {
9495 BFD_ASSERT (r_symndx != 0);
9496 if (action_discarded & COMPLAIN)
9497 (*finfo->info->callbacks->einfo)
9498 (_("%X`%s' referenced in section `%A' of %B: "
9499 "defined in discarded section `%A' of %B\n"),
9500 sym_name, o, input_bfd, sec, sec->owner);
9501
9502 /* Try to do the best we can to support buggy old
9503 versions of gcc. Pretend that the symbol is
9504 really defined in the kept linkonce section.
9505 FIXME: This is quite broken. Modifying the
9506 symbol here means we will be changing all later
9507 uses of the symbol, not just in this section. */
9508 if (action_discarded & PRETEND)
9509 {
9510 asection *kept;
9511
9512 kept = _bfd_elf_check_kept_section (sec,
9513 finfo->info);
9514 if (kept != NULL)
9515 {
9516 *ps = kept;
9517 continue;
9518 }
9519 }
9520 }
9521 }
9522 }
9523
9524 /* Relocate the section by invoking a back end routine.
9525
9526 The back end routine is responsible for adjusting the
9527 section contents as necessary, and (if using Rela relocs
9528 and generating a relocatable output file) adjusting the
9529 reloc addend as necessary.
9530
9531 The back end routine does not have to worry about setting
9532 the reloc address or the reloc symbol index.
9533
9534 The back end routine is given a pointer to the swapped in
9535 internal symbols, and can access the hash table entries
9536 for the external symbols via elf_sym_hashes (input_bfd).
9537
9538 When generating relocatable output, the back end routine
9539 must handle STB_LOCAL/STT_SECTION symbols specially. The
9540 output symbol is going to be a section symbol
9541 corresponding to the output section, which will require
9542 the addend to be adjusted. */
9543
9544 ret = (*relocate_section) (output_bfd, finfo->info,
9545 input_bfd, o, contents,
9546 internal_relocs,
9547 isymbuf,
9548 finfo->sections);
9549 if (!ret)
9550 return FALSE;
9551
9552 if (ret == 2
9553 || finfo->info->relocatable
9554 || finfo->info->emitrelocations)
9555 {
9556 Elf_Internal_Rela *irela;
9557 Elf_Internal_Rela *irelaend;
9558 bfd_vma last_offset;
9559 struct elf_link_hash_entry **rel_hash;
9560 struct elf_link_hash_entry **rel_hash_list;
9561 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9562 unsigned int next_erel;
9563 bfd_boolean rela_normal;
9564
9565 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9566 rela_normal = (bed->rela_normal
9567 && (input_rel_hdr->sh_entsize
9568 == bed->s->sizeof_rela));
9569
9570 /* Adjust the reloc addresses and symbol indices. */
9571
9572 irela = internal_relocs;
9573 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9574 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9575 + elf_section_data (o->output_section)->rel_count
9576 + elf_section_data (o->output_section)->rel_count2);
9577 rel_hash_list = rel_hash;
9578 last_offset = o->output_offset;
9579 if (!finfo->info->relocatable)
9580 last_offset += o->output_section->vma;
9581 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9582 {
9583 unsigned long r_symndx;
9584 asection *sec;
9585 Elf_Internal_Sym sym;
9586
9587 if (next_erel == bed->s->int_rels_per_ext_rel)
9588 {
9589 rel_hash++;
9590 next_erel = 0;
9591 }
9592
9593 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9594 finfo->info, o,
9595 irela->r_offset);
9596 if (irela->r_offset >= (bfd_vma) -2)
9597 {
9598 /* This is a reloc for a deleted entry or somesuch.
9599 Turn it into an R_*_NONE reloc, at the same
9600 offset as the last reloc. elf_eh_frame.c and
9601 bfd_elf_discard_info rely on reloc offsets
9602 being ordered. */
9603 irela->r_offset = last_offset;
9604 irela->r_info = 0;
9605 irela->r_addend = 0;
9606 continue;
9607 }
9608
9609 irela->r_offset += o->output_offset;
9610
9611 /* Relocs in an executable have to be virtual addresses. */
9612 if (!finfo->info->relocatable)
9613 irela->r_offset += o->output_section->vma;
9614
9615 last_offset = irela->r_offset;
9616
9617 r_symndx = irela->r_info >> r_sym_shift;
9618 if (r_symndx == STN_UNDEF)
9619 continue;
9620
9621 if (r_symndx >= locsymcount
9622 || (elf_bad_symtab (input_bfd)
9623 && finfo->sections[r_symndx] == NULL))
9624 {
9625 struct elf_link_hash_entry *rh;
9626 unsigned long indx;
9627
9628 /* This is a reloc against a global symbol. We
9629 have not yet output all the local symbols, so
9630 we do not know the symbol index of any global
9631 symbol. We set the rel_hash entry for this
9632 reloc to point to the global hash table entry
9633 for this symbol. The symbol index is then
9634 set at the end of bfd_elf_final_link. */
9635 indx = r_symndx - extsymoff;
9636 rh = elf_sym_hashes (input_bfd)[indx];
9637 while (rh->root.type == bfd_link_hash_indirect
9638 || rh->root.type == bfd_link_hash_warning)
9639 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9640
9641 /* Setting the index to -2 tells
9642 elf_link_output_extsym that this symbol is
9643 used by a reloc. */
9644 BFD_ASSERT (rh->indx < 0);
9645 rh->indx = -2;
9646
9647 *rel_hash = rh;
9648
9649 continue;
9650 }
9651
9652 /* This is a reloc against a local symbol. */
9653
9654 *rel_hash = NULL;
9655 sym = isymbuf[r_symndx];
9656 sec = finfo->sections[r_symndx];
9657 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9658 {
9659 /* I suppose the backend ought to fill in the
9660 section of any STT_SECTION symbol against a
9661 processor specific section. */
9662 r_symndx = 0;
9663 if (bfd_is_abs_section (sec))
9664 ;
9665 else if (sec == NULL || sec->owner == NULL)
9666 {
9667 bfd_set_error (bfd_error_bad_value);
9668 return FALSE;
9669 }
9670 else
9671 {
9672 asection *osec = sec->output_section;
9673
9674 /* If we have discarded a section, the output
9675 section will be the absolute section. In
9676 case of discarded SEC_MERGE sections, use
9677 the kept section. relocate_section should
9678 have already handled discarded linkonce
9679 sections. */
9680 if (bfd_is_abs_section (osec)
9681 && sec->kept_section != NULL
9682 && sec->kept_section->output_section != NULL)
9683 {
9684 osec = sec->kept_section->output_section;
9685 irela->r_addend -= osec->vma;
9686 }
9687
9688 if (!bfd_is_abs_section (osec))
9689 {
9690 r_symndx = osec->target_index;
9691 if (r_symndx == 0)
9692 {
9693 struct elf_link_hash_table *htab;
9694 asection *oi;
9695
9696 htab = elf_hash_table (finfo->info);
9697 oi = htab->text_index_section;
9698 if ((osec->flags & SEC_READONLY) == 0
9699 && htab->data_index_section != NULL)
9700 oi = htab->data_index_section;
9701
9702 if (oi != NULL)
9703 {
9704 irela->r_addend += osec->vma - oi->vma;
9705 r_symndx = oi->target_index;
9706 }
9707 }
9708
9709 BFD_ASSERT (r_symndx != 0);
9710 }
9711 }
9712
9713 /* Adjust the addend according to where the
9714 section winds up in the output section. */
9715 if (rela_normal)
9716 irela->r_addend += sec->output_offset;
9717 }
9718 else
9719 {
9720 if (finfo->indices[r_symndx] == -1)
9721 {
9722 unsigned long shlink;
9723 const char *name;
9724 asection *osec;
9725 long indx;
9726
9727 if (finfo->info->strip == strip_all)
9728 {
9729 /* You can't do ld -r -s. */
9730 bfd_set_error (bfd_error_invalid_operation);
9731 return FALSE;
9732 }
9733
9734 /* This symbol was skipped earlier, but
9735 since it is needed by a reloc, we
9736 must output it now. */
9737 shlink = symtab_hdr->sh_link;
9738 name = (bfd_elf_string_from_elf_section
9739 (input_bfd, shlink, sym.st_name));
9740 if (name == NULL)
9741 return FALSE;
9742
9743 osec = sec->output_section;
9744 sym.st_shndx =
9745 _bfd_elf_section_from_bfd_section (output_bfd,
9746 osec);
9747 if (sym.st_shndx == SHN_BAD)
9748 return FALSE;
9749
9750 sym.st_value += sec->output_offset;
9751 if (! finfo->info->relocatable)
9752 {
9753 sym.st_value += osec->vma;
9754 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9755 {
9756 /* STT_TLS symbols are relative to PT_TLS
9757 segment base. */
9758 BFD_ASSERT (elf_hash_table (finfo->info)
9759 ->tls_sec != NULL);
9760 sym.st_value -= (elf_hash_table (finfo->info)
9761 ->tls_sec->vma);
9762 }
9763 }
9764
9765 indx = bfd_get_symcount (output_bfd);
9766 ret = elf_link_output_sym (finfo, name, &sym, sec,
9767 NULL);
9768 if (ret == 0)
9769 return FALSE;
9770 else if (ret == 1)
9771 finfo->indices[r_symndx] = indx;
9772 else
9773 abort ();
9774 }
9775
9776 r_symndx = finfo->indices[r_symndx];
9777 }
9778
9779 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9780 | (irela->r_info & r_type_mask));
9781 }
9782
9783 /* Swap out the relocs. */
9784 if (input_rel_hdr->sh_size != 0
9785 && !bed->elf_backend_emit_relocs (output_bfd, o,
9786 input_rel_hdr,
9787 internal_relocs,
9788 rel_hash_list))
9789 return FALSE;
9790
9791 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9792 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9793 {
9794 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9795 * bed->s->int_rels_per_ext_rel);
9796 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9797 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9798 input_rel_hdr2,
9799 internal_relocs,
9800 rel_hash_list))
9801 return FALSE;
9802 }
9803 }
9804 }
9805
9806 /* Write out the modified section contents. */
9807 if (bed->elf_backend_write_section
9808 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9809 contents))
9810 {
9811 /* Section written out. */
9812 }
9813 else switch (o->sec_info_type)
9814 {
9815 case ELF_INFO_TYPE_STABS:
9816 if (! (_bfd_write_section_stabs
9817 (output_bfd,
9818 &elf_hash_table (finfo->info)->stab_info,
9819 o, &elf_section_data (o)->sec_info, contents)))
9820 return FALSE;
9821 break;
9822 case ELF_INFO_TYPE_MERGE:
9823 if (! _bfd_write_merged_section (output_bfd, o,
9824 elf_section_data (o)->sec_info))
9825 return FALSE;
9826 break;
9827 case ELF_INFO_TYPE_EH_FRAME:
9828 {
9829 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9830 o, contents))
9831 return FALSE;
9832 }
9833 break;
9834 default:
9835 {
9836 /* FIXME: octets_per_byte. */
9837 if (! (o->flags & SEC_EXCLUDE)
9838 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9839 && ! bfd_set_section_contents (output_bfd, o->output_section,
9840 contents,
9841 (file_ptr) o->output_offset,
9842 o->size))
9843 return FALSE;
9844 }
9845 break;
9846 }
9847 }
9848
9849 return TRUE;
9850 }
9851
9852 /* Generate a reloc when linking an ELF file. This is a reloc
9853 requested by the linker, and does not come from any input file. This
9854 is used to build constructor and destructor tables when linking
9855 with -Ur. */
9856
9857 static bfd_boolean
9858 elf_reloc_link_order (bfd *output_bfd,
9859 struct bfd_link_info *info,
9860 asection *output_section,
9861 struct bfd_link_order *link_order)
9862 {
9863 reloc_howto_type *howto;
9864 long indx;
9865 bfd_vma offset;
9866 bfd_vma addend;
9867 struct elf_link_hash_entry **rel_hash_ptr;
9868 Elf_Internal_Shdr *rel_hdr;
9869 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9870 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9871 bfd_byte *erel;
9872 unsigned int i;
9873
9874 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9875 if (howto == NULL)
9876 {
9877 bfd_set_error (bfd_error_bad_value);
9878 return FALSE;
9879 }
9880
9881 addend = link_order->u.reloc.p->addend;
9882
9883 /* Figure out the symbol index. */
9884 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9885 + elf_section_data (output_section)->rel_count
9886 + elf_section_data (output_section)->rel_count2);
9887 if (link_order->type == bfd_section_reloc_link_order)
9888 {
9889 indx = link_order->u.reloc.p->u.section->target_index;
9890 BFD_ASSERT (indx != 0);
9891 *rel_hash_ptr = NULL;
9892 }
9893 else
9894 {
9895 struct elf_link_hash_entry *h;
9896
9897 /* Treat a reloc against a defined symbol as though it were
9898 actually against the section. */
9899 h = ((struct elf_link_hash_entry *)
9900 bfd_wrapped_link_hash_lookup (output_bfd, info,
9901 link_order->u.reloc.p->u.name,
9902 FALSE, FALSE, TRUE));
9903 if (h != NULL
9904 && (h->root.type == bfd_link_hash_defined
9905 || h->root.type == bfd_link_hash_defweak))
9906 {
9907 asection *section;
9908
9909 section = h->root.u.def.section;
9910 indx = section->output_section->target_index;
9911 *rel_hash_ptr = NULL;
9912 /* It seems that we ought to add the symbol value to the
9913 addend here, but in practice it has already been added
9914 because it was passed to constructor_callback. */
9915 addend += section->output_section->vma + section->output_offset;
9916 }
9917 else if (h != NULL)
9918 {
9919 /* Setting the index to -2 tells elf_link_output_extsym that
9920 this symbol is used by a reloc. */
9921 h->indx = -2;
9922 *rel_hash_ptr = h;
9923 indx = 0;
9924 }
9925 else
9926 {
9927 if (! ((*info->callbacks->unattached_reloc)
9928 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9929 return FALSE;
9930 indx = 0;
9931 }
9932 }
9933
9934 /* If this is an inplace reloc, we must write the addend into the
9935 object file. */
9936 if (howto->partial_inplace && addend != 0)
9937 {
9938 bfd_size_type size;
9939 bfd_reloc_status_type rstat;
9940 bfd_byte *buf;
9941 bfd_boolean ok;
9942 const char *sym_name;
9943
9944 size = (bfd_size_type) bfd_get_reloc_size (howto);
9945 buf = (bfd_byte *) bfd_zmalloc (size);
9946 if (buf == NULL)
9947 return FALSE;
9948 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9949 switch (rstat)
9950 {
9951 case bfd_reloc_ok:
9952 break;
9953
9954 default:
9955 case bfd_reloc_outofrange:
9956 abort ();
9957
9958 case bfd_reloc_overflow:
9959 if (link_order->type == bfd_section_reloc_link_order)
9960 sym_name = bfd_section_name (output_bfd,
9961 link_order->u.reloc.p->u.section);
9962 else
9963 sym_name = link_order->u.reloc.p->u.name;
9964 if (! ((*info->callbacks->reloc_overflow)
9965 (info, NULL, sym_name, howto->name, addend, NULL,
9966 NULL, (bfd_vma) 0)))
9967 {
9968 free (buf);
9969 return FALSE;
9970 }
9971 break;
9972 }
9973 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9974 link_order->offset, size);
9975 free (buf);
9976 if (! ok)
9977 return FALSE;
9978 }
9979
9980 /* The address of a reloc is relative to the section in a
9981 relocatable file, and is a virtual address in an executable
9982 file. */
9983 offset = link_order->offset;
9984 if (! info->relocatable)
9985 offset += output_section->vma;
9986
9987 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9988 {
9989 irel[i].r_offset = offset;
9990 irel[i].r_info = 0;
9991 irel[i].r_addend = 0;
9992 }
9993 if (bed->s->arch_size == 32)
9994 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9995 else
9996 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9997
9998 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9999 erel = rel_hdr->contents;
10000 if (rel_hdr->sh_type == SHT_REL)
10001 {
10002 erel += (elf_section_data (output_section)->rel_count
10003 * bed->s->sizeof_rel);
10004 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10005 }
10006 else
10007 {
10008 irel[0].r_addend = addend;
10009 erel += (elf_section_data (output_section)->rel_count
10010 * bed->s->sizeof_rela);
10011 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10012 }
10013
10014 ++elf_section_data (output_section)->rel_count;
10015
10016 return TRUE;
10017 }
10018
10019
10020 /* Get the output vma of the section pointed to by the sh_link field. */
10021
10022 static bfd_vma
10023 elf_get_linked_section_vma (struct bfd_link_order *p)
10024 {
10025 Elf_Internal_Shdr **elf_shdrp;
10026 asection *s;
10027 int elfsec;
10028
10029 s = p->u.indirect.section;
10030 elf_shdrp = elf_elfsections (s->owner);
10031 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10032 elfsec = elf_shdrp[elfsec]->sh_link;
10033 /* PR 290:
10034 The Intel C compiler generates SHT_IA_64_UNWIND with
10035 SHF_LINK_ORDER. But it doesn't set the sh_link or
10036 sh_info fields. Hence we could get the situation
10037 where elfsec is 0. */
10038 if (elfsec == 0)
10039 {
10040 const struct elf_backend_data *bed
10041 = get_elf_backend_data (s->owner);
10042 if (bed->link_order_error_handler)
10043 bed->link_order_error_handler
10044 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10045 return 0;
10046 }
10047 else
10048 {
10049 s = elf_shdrp[elfsec]->bfd_section;
10050 return s->output_section->vma + s->output_offset;
10051 }
10052 }
10053
10054
10055 /* Compare two sections based on the locations of the sections they are
10056 linked to. Used by elf_fixup_link_order. */
10057
10058 static int
10059 compare_link_order (const void * a, const void * b)
10060 {
10061 bfd_vma apos;
10062 bfd_vma bpos;
10063
10064 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10065 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10066 if (apos < bpos)
10067 return -1;
10068 return apos > bpos;
10069 }
10070
10071
10072 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10073 order as their linked sections. Returns false if this could not be done
10074 because an output section includes both ordered and unordered
10075 sections. Ideally we'd do this in the linker proper. */
10076
10077 static bfd_boolean
10078 elf_fixup_link_order (bfd *abfd, asection *o)
10079 {
10080 int seen_linkorder;
10081 int seen_other;
10082 int n;
10083 struct bfd_link_order *p;
10084 bfd *sub;
10085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10086 unsigned elfsec;
10087 struct bfd_link_order **sections;
10088 asection *s, *other_sec, *linkorder_sec;
10089 bfd_vma offset;
10090
10091 other_sec = NULL;
10092 linkorder_sec = NULL;
10093 seen_other = 0;
10094 seen_linkorder = 0;
10095 for (p = o->map_head.link_order; p != NULL; p = p->next)
10096 {
10097 if (p->type == bfd_indirect_link_order)
10098 {
10099 s = p->u.indirect.section;
10100 sub = s->owner;
10101 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10102 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10103 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10104 && elfsec < elf_numsections (sub)
10105 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10106 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10107 {
10108 seen_linkorder++;
10109 linkorder_sec = s;
10110 }
10111 else
10112 {
10113 seen_other++;
10114 other_sec = s;
10115 }
10116 }
10117 else
10118 seen_other++;
10119
10120 if (seen_other && seen_linkorder)
10121 {
10122 if (other_sec && linkorder_sec)
10123 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10124 o, linkorder_sec,
10125 linkorder_sec->owner, other_sec,
10126 other_sec->owner);
10127 else
10128 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10129 o);
10130 bfd_set_error (bfd_error_bad_value);
10131 return FALSE;
10132 }
10133 }
10134
10135 if (!seen_linkorder)
10136 return TRUE;
10137
10138 sections = (struct bfd_link_order **)
10139 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10140 if (sections == NULL)
10141 return FALSE;
10142 seen_linkorder = 0;
10143
10144 for (p = o->map_head.link_order; p != NULL; p = p->next)
10145 {
10146 sections[seen_linkorder++] = p;
10147 }
10148 /* Sort the input sections in the order of their linked section. */
10149 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10150 compare_link_order);
10151
10152 /* Change the offsets of the sections. */
10153 offset = 0;
10154 for (n = 0; n < seen_linkorder; n++)
10155 {
10156 s = sections[n]->u.indirect.section;
10157 offset &= ~(bfd_vma) 0 << s->alignment_power;
10158 s->output_offset = offset;
10159 sections[n]->offset = offset;
10160 /* FIXME: octets_per_byte. */
10161 offset += sections[n]->size;
10162 }
10163
10164 free (sections);
10165 return TRUE;
10166 }
10167
10168
10169 /* Do the final step of an ELF link. */
10170
10171 bfd_boolean
10172 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10173 {
10174 bfd_boolean dynamic;
10175 bfd_boolean emit_relocs;
10176 bfd *dynobj;
10177 struct elf_final_link_info finfo;
10178 asection *o;
10179 struct bfd_link_order *p;
10180 bfd *sub;
10181 bfd_size_type max_contents_size;
10182 bfd_size_type max_external_reloc_size;
10183 bfd_size_type max_internal_reloc_count;
10184 bfd_size_type max_sym_count;
10185 bfd_size_type max_sym_shndx_count;
10186 file_ptr off;
10187 Elf_Internal_Sym elfsym;
10188 unsigned int i;
10189 Elf_Internal_Shdr *symtab_hdr;
10190 Elf_Internal_Shdr *symtab_shndx_hdr;
10191 Elf_Internal_Shdr *symstrtab_hdr;
10192 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10193 struct elf_outext_info eoinfo;
10194 bfd_boolean merged;
10195 size_t relativecount = 0;
10196 asection *reldyn = 0;
10197 bfd_size_type amt;
10198 asection *attr_section = NULL;
10199 bfd_vma attr_size = 0;
10200 const char *std_attrs_section;
10201
10202 if (! is_elf_hash_table (info->hash))
10203 return FALSE;
10204
10205 if (info->shared)
10206 abfd->flags |= DYNAMIC;
10207
10208 dynamic = elf_hash_table (info)->dynamic_sections_created;
10209 dynobj = elf_hash_table (info)->dynobj;
10210
10211 emit_relocs = (info->relocatable
10212 || info->emitrelocations);
10213
10214 finfo.info = info;
10215 finfo.output_bfd = abfd;
10216 finfo.symstrtab = _bfd_elf_stringtab_init ();
10217 if (finfo.symstrtab == NULL)
10218 return FALSE;
10219
10220 if (! dynamic)
10221 {
10222 finfo.dynsym_sec = NULL;
10223 finfo.hash_sec = NULL;
10224 finfo.symver_sec = NULL;
10225 }
10226 else
10227 {
10228 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10229 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10230 BFD_ASSERT (finfo.dynsym_sec != NULL);
10231 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10232 /* Note that it is OK if symver_sec is NULL. */
10233 }
10234
10235 finfo.contents = NULL;
10236 finfo.external_relocs = NULL;
10237 finfo.internal_relocs = NULL;
10238 finfo.external_syms = NULL;
10239 finfo.locsym_shndx = NULL;
10240 finfo.internal_syms = NULL;
10241 finfo.indices = NULL;
10242 finfo.sections = NULL;
10243 finfo.symbuf = NULL;
10244 finfo.symshndxbuf = NULL;
10245 finfo.symbuf_count = 0;
10246 finfo.shndxbuf_size = 0;
10247
10248 /* The object attributes have been merged. Remove the input
10249 sections from the link, and set the contents of the output
10250 secton. */
10251 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10252 for (o = abfd->sections; o != NULL; o = o->next)
10253 {
10254 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10255 || strcmp (o->name, ".gnu.attributes") == 0)
10256 {
10257 for (p = o->map_head.link_order; p != NULL; p = p->next)
10258 {
10259 asection *input_section;
10260
10261 if (p->type != bfd_indirect_link_order)
10262 continue;
10263 input_section = p->u.indirect.section;
10264 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10265 elf_link_input_bfd ignores this section. */
10266 input_section->flags &= ~SEC_HAS_CONTENTS;
10267 }
10268
10269 attr_size = bfd_elf_obj_attr_size (abfd);
10270 if (attr_size)
10271 {
10272 bfd_set_section_size (abfd, o, attr_size);
10273 attr_section = o;
10274 /* Skip this section later on. */
10275 o->map_head.link_order = NULL;
10276 }
10277 else
10278 o->flags |= SEC_EXCLUDE;
10279 }
10280 }
10281
10282 /* Count up the number of relocations we will output for each output
10283 section, so that we know the sizes of the reloc sections. We
10284 also figure out some maximum sizes. */
10285 max_contents_size = 0;
10286 max_external_reloc_size = 0;
10287 max_internal_reloc_count = 0;
10288 max_sym_count = 0;
10289 max_sym_shndx_count = 0;
10290 merged = FALSE;
10291 for (o = abfd->sections; o != NULL; o = o->next)
10292 {
10293 struct bfd_elf_section_data *esdo = elf_section_data (o);
10294 o->reloc_count = 0;
10295
10296 for (p = o->map_head.link_order; p != NULL; p = p->next)
10297 {
10298 unsigned int reloc_count = 0;
10299 struct bfd_elf_section_data *esdi = NULL;
10300 unsigned int *rel_count1;
10301
10302 if (p->type == bfd_section_reloc_link_order
10303 || p->type == bfd_symbol_reloc_link_order)
10304 reloc_count = 1;
10305 else if (p->type == bfd_indirect_link_order)
10306 {
10307 asection *sec;
10308
10309 sec = p->u.indirect.section;
10310 esdi = elf_section_data (sec);
10311
10312 /* Mark all sections which are to be included in the
10313 link. This will normally be every section. We need
10314 to do this so that we can identify any sections which
10315 the linker has decided to not include. */
10316 sec->linker_mark = TRUE;
10317
10318 if (sec->flags & SEC_MERGE)
10319 merged = TRUE;
10320
10321 if (info->relocatable || info->emitrelocations)
10322 reloc_count = sec->reloc_count;
10323 else if (bed->elf_backend_count_relocs)
10324 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10325
10326 if (sec->rawsize > max_contents_size)
10327 max_contents_size = sec->rawsize;
10328 if (sec->size > max_contents_size)
10329 max_contents_size = sec->size;
10330
10331 /* We are interested in just local symbols, not all
10332 symbols. */
10333 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10334 && (sec->owner->flags & DYNAMIC) == 0)
10335 {
10336 size_t sym_count;
10337
10338 if (elf_bad_symtab (sec->owner))
10339 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10340 / bed->s->sizeof_sym);
10341 else
10342 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10343
10344 if (sym_count > max_sym_count)
10345 max_sym_count = sym_count;
10346
10347 if (sym_count > max_sym_shndx_count
10348 && elf_symtab_shndx (sec->owner) != 0)
10349 max_sym_shndx_count = sym_count;
10350
10351 if ((sec->flags & SEC_RELOC) != 0)
10352 {
10353 size_t ext_size;
10354
10355 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10356 if (ext_size > max_external_reloc_size)
10357 max_external_reloc_size = ext_size;
10358 if (sec->reloc_count > max_internal_reloc_count)
10359 max_internal_reloc_count = sec->reloc_count;
10360 }
10361 }
10362 }
10363
10364 if (reloc_count == 0)
10365 continue;
10366
10367 o->reloc_count += reloc_count;
10368
10369 /* MIPS may have a mix of REL and RELA relocs on sections.
10370 To support this curious ABI we keep reloc counts in
10371 elf_section_data too. We must be careful to add the
10372 relocations from the input section to the right output
10373 count. FIXME: Get rid of one count. We have
10374 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10375 rel_count1 = &esdo->rel_count;
10376 if (esdi != NULL)
10377 {
10378 bfd_boolean same_size;
10379 bfd_size_type entsize1;
10380
10381 entsize1 = esdi->rel_hdr.sh_entsize;
10382 /* PR 9827: If the header size has not been set yet then
10383 assume that it will match the output section's reloc type. */
10384 if (entsize1 == 0)
10385 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10386 else
10387 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10388 || entsize1 == bed->s->sizeof_rela);
10389 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10390
10391 if (!same_size)
10392 rel_count1 = &esdo->rel_count2;
10393
10394 if (esdi->rel_hdr2 != NULL)
10395 {
10396 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10397 unsigned int alt_count;
10398 unsigned int *rel_count2;
10399
10400 BFD_ASSERT (entsize2 != entsize1
10401 && (entsize2 == bed->s->sizeof_rel
10402 || entsize2 == bed->s->sizeof_rela));
10403
10404 rel_count2 = &esdo->rel_count2;
10405 if (!same_size)
10406 rel_count2 = &esdo->rel_count;
10407
10408 /* The following is probably too simplistic if the
10409 backend counts output relocs unusually. */
10410 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10411 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10412 *rel_count2 += alt_count;
10413 reloc_count -= alt_count;
10414 }
10415 }
10416 *rel_count1 += reloc_count;
10417 }
10418
10419 if (o->reloc_count > 0)
10420 o->flags |= SEC_RELOC;
10421 else
10422 {
10423 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10424 set it (this is probably a bug) and if it is set
10425 assign_section_numbers will create a reloc section. */
10426 o->flags &=~ SEC_RELOC;
10427 }
10428
10429 /* If the SEC_ALLOC flag is not set, force the section VMA to
10430 zero. This is done in elf_fake_sections as well, but forcing
10431 the VMA to 0 here will ensure that relocs against these
10432 sections are handled correctly. */
10433 if ((o->flags & SEC_ALLOC) == 0
10434 && ! o->user_set_vma)
10435 o->vma = 0;
10436 }
10437
10438 if (! info->relocatable && merged)
10439 elf_link_hash_traverse (elf_hash_table (info),
10440 _bfd_elf_link_sec_merge_syms, abfd);
10441
10442 /* Figure out the file positions for everything but the symbol table
10443 and the relocs. We set symcount to force assign_section_numbers
10444 to create a symbol table. */
10445 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10446 BFD_ASSERT (! abfd->output_has_begun);
10447 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10448 goto error_return;
10449
10450 /* Set sizes, and assign file positions for reloc sections. */
10451 for (o = abfd->sections; o != NULL; o = o->next)
10452 {
10453 if ((o->flags & SEC_RELOC) != 0)
10454 {
10455 if (!(_bfd_elf_link_size_reloc_section
10456 (abfd, &elf_section_data (o)->rel_hdr, o)))
10457 goto error_return;
10458
10459 if (elf_section_data (o)->rel_hdr2
10460 && !(_bfd_elf_link_size_reloc_section
10461 (abfd, elf_section_data (o)->rel_hdr2, o)))
10462 goto error_return;
10463 }
10464
10465 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10466 to count upwards while actually outputting the relocations. */
10467 elf_section_data (o)->rel_count = 0;
10468 elf_section_data (o)->rel_count2 = 0;
10469 }
10470
10471 _bfd_elf_assign_file_positions_for_relocs (abfd);
10472
10473 /* We have now assigned file positions for all the sections except
10474 .symtab and .strtab. We start the .symtab section at the current
10475 file position, and write directly to it. We build the .strtab
10476 section in memory. */
10477 bfd_get_symcount (abfd) = 0;
10478 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10479 /* sh_name is set in prep_headers. */
10480 symtab_hdr->sh_type = SHT_SYMTAB;
10481 /* sh_flags, sh_addr and sh_size all start off zero. */
10482 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10483 /* sh_link is set in assign_section_numbers. */
10484 /* sh_info is set below. */
10485 /* sh_offset is set just below. */
10486 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10487
10488 off = elf_tdata (abfd)->next_file_pos;
10489 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10490
10491 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10492 incorrect. We do not yet know the size of the .symtab section.
10493 We correct next_file_pos below, after we do know the size. */
10494
10495 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10496 continuously seeking to the right position in the file. */
10497 if (! info->keep_memory || max_sym_count < 20)
10498 finfo.symbuf_size = 20;
10499 else
10500 finfo.symbuf_size = max_sym_count;
10501 amt = finfo.symbuf_size;
10502 amt *= bed->s->sizeof_sym;
10503 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10504 if (finfo.symbuf == NULL)
10505 goto error_return;
10506 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10507 {
10508 /* Wild guess at number of output symbols. realloc'd as needed. */
10509 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10510 finfo.shndxbuf_size = amt;
10511 amt *= sizeof (Elf_External_Sym_Shndx);
10512 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10513 if (finfo.symshndxbuf == NULL)
10514 goto error_return;
10515 }
10516
10517 /* Start writing out the symbol table. The first symbol is always a
10518 dummy symbol. */
10519 if (info->strip != strip_all
10520 || emit_relocs)
10521 {
10522 elfsym.st_value = 0;
10523 elfsym.st_size = 0;
10524 elfsym.st_info = 0;
10525 elfsym.st_other = 0;
10526 elfsym.st_shndx = SHN_UNDEF;
10527 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10528 NULL) != 1)
10529 goto error_return;
10530 }
10531
10532 /* Output a symbol for each section. We output these even if we are
10533 discarding local symbols, since they are used for relocs. These
10534 symbols have no names. We store the index of each one in the
10535 index field of the section, so that we can find it again when
10536 outputting relocs. */
10537 if (info->strip != strip_all
10538 || emit_relocs)
10539 {
10540 elfsym.st_size = 0;
10541 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10542 elfsym.st_other = 0;
10543 elfsym.st_value = 0;
10544 for (i = 1; i < elf_numsections (abfd); i++)
10545 {
10546 o = bfd_section_from_elf_index (abfd, i);
10547 if (o != NULL)
10548 {
10549 o->target_index = bfd_get_symcount (abfd);
10550 elfsym.st_shndx = i;
10551 if (!info->relocatable)
10552 elfsym.st_value = o->vma;
10553 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10554 goto error_return;
10555 }
10556 }
10557 }
10558
10559 /* Allocate some memory to hold information read in from the input
10560 files. */
10561 if (max_contents_size != 0)
10562 {
10563 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10564 if (finfo.contents == NULL)
10565 goto error_return;
10566 }
10567
10568 if (max_external_reloc_size != 0)
10569 {
10570 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10571 if (finfo.external_relocs == NULL)
10572 goto error_return;
10573 }
10574
10575 if (max_internal_reloc_count != 0)
10576 {
10577 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10578 amt *= sizeof (Elf_Internal_Rela);
10579 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10580 if (finfo.internal_relocs == NULL)
10581 goto error_return;
10582 }
10583
10584 if (max_sym_count != 0)
10585 {
10586 amt = max_sym_count * bed->s->sizeof_sym;
10587 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10588 if (finfo.external_syms == NULL)
10589 goto error_return;
10590
10591 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10592 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10593 if (finfo.internal_syms == NULL)
10594 goto error_return;
10595
10596 amt = max_sym_count * sizeof (long);
10597 finfo.indices = (long int *) bfd_malloc (amt);
10598 if (finfo.indices == NULL)
10599 goto error_return;
10600
10601 amt = max_sym_count * sizeof (asection *);
10602 finfo.sections = (asection **) bfd_malloc (amt);
10603 if (finfo.sections == NULL)
10604 goto error_return;
10605 }
10606
10607 if (max_sym_shndx_count != 0)
10608 {
10609 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10610 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10611 if (finfo.locsym_shndx == NULL)
10612 goto error_return;
10613 }
10614
10615 if (elf_hash_table (info)->tls_sec)
10616 {
10617 bfd_vma base, end = 0;
10618 asection *sec;
10619
10620 for (sec = elf_hash_table (info)->tls_sec;
10621 sec && (sec->flags & SEC_THREAD_LOCAL);
10622 sec = sec->next)
10623 {
10624 bfd_size_type size = sec->size;
10625
10626 if (size == 0
10627 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10628 {
10629 struct bfd_link_order *ord = sec->map_tail.link_order;
10630
10631 if (ord != NULL)
10632 size = ord->offset + ord->size;
10633 }
10634 end = sec->vma + size;
10635 }
10636 base = elf_hash_table (info)->tls_sec->vma;
10637 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10638 elf_hash_table (info)->tls_size = end - base;
10639 }
10640
10641 /* Reorder SHF_LINK_ORDER sections. */
10642 for (o = abfd->sections; o != NULL; o = o->next)
10643 {
10644 if (!elf_fixup_link_order (abfd, o))
10645 return FALSE;
10646 }
10647
10648 /* Since ELF permits relocations to be against local symbols, we
10649 must have the local symbols available when we do the relocations.
10650 Since we would rather only read the local symbols once, and we
10651 would rather not keep them in memory, we handle all the
10652 relocations for a single input file at the same time.
10653
10654 Unfortunately, there is no way to know the total number of local
10655 symbols until we have seen all of them, and the local symbol
10656 indices precede the global symbol indices. This means that when
10657 we are generating relocatable output, and we see a reloc against
10658 a global symbol, we can not know the symbol index until we have
10659 finished examining all the local symbols to see which ones we are
10660 going to output. To deal with this, we keep the relocations in
10661 memory, and don't output them until the end of the link. This is
10662 an unfortunate waste of memory, but I don't see a good way around
10663 it. Fortunately, it only happens when performing a relocatable
10664 link, which is not the common case. FIXME: If keep_memory is set
10665 we could write the relocs out and then read them again; I don't
10666 know how bad the memory loss will be. */
10667
10668 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10669 sub->output_has_begun = FALSE;
10670 for (o = abfd->sections; o != NULL; o = o->next)
10671 {
10672 for (p = o->map_head.link_order; p != NULL; p = p->next)
10673 {
10674 if (p->type == bfd_indirect_link_order
10675 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10676 == bfd_target_elf_flavour)
10677 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10678 {
10679 if (! sub->output_has_begun)
10680 {
10681 if (! elf_link_input_bfd (&finfo, sub))
10682 goto error_return;
10683 sub->output_has_begun = TRUE;
10684 }
10685 }
10686 else if (p->type == bfd_section_reloc_link_order
10687 || p->type == bfd_symbol_reloc_link_order)
10688 {
10689 if (! elf_reloc_link_order (abfd, info, o, p))
10690 goto error_return;
10691 }
10692 else
10693 {
10694 if (! _bfd_default_link_order (abfd, info, o, p))
10695 goto error_return;
10696 }
10697 }
10698 }
10699
10700 /* Free symbol buffer if needed. */
10701 if (!info->reduce_memory_overheads)
10702 {
10703 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10704 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10705 && elf_tdata (sub)->symbuf)
10706 {
10707 free (elf_tdata (sub)->symbuf);
10708 elf_tdata (sub)->symbuf = NULL;
10709 }
10710 }
10711
10712 /* Output any global symbols that got converted to local in a
10713 version script or due to symbol visibility. We do this in a
10714 separate step since ELF requires all local symbols to appear
10715 prior to any global symbols. FIXME: We should only do this if
10716 some global symbols were, in fact, converted to become local.
10717 FIXME: Will this work correctly with the Irix 5 linker? */
10718 eoinfo.failed = FALSE;
10719 eoinfo.finfo = &finfo;
10720 eoinfo.localsyms = TRUE;
10721 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10722 &eoinfo);
10723 if (eoinfo.failed)
10724 return FALSE;
10725
10726 /* If backend needs to output some local symbols not present in the hash
10727 table, do it now. */
10728 if (bed->elf_backend_output_arch_local_syms)
10729 {
10730 typedef int (*out_sym_func)
10731 (void *, const char *, Elf_Internal_Sym *, asection *,
10732 struct elf_link_hash_entry *);
10733
10734 if (! ((*bed->elf_backend_output_arch_local_syms)
10735 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10736 return FALSE;
10737 }
10738
10739 /* That wrote out all the local symbols. Finish up the symbol table
10740 with the global symbols. Even if we want to strip everything we
10741 can, we still need to deal with those global symbols that got
10742 converted to local in a version script. */
10743
10744 /* The sh_info field records the index of the first non local symbol. */
10745 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10746
10747 if (dynamic
10748 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10749 {
10750 Elf_Internal_Sym sym;
10751 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10752 long last_local = 0;
10753
10754 /* Write out the section symbols for the output sections. */
10755 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10756 {
10757 asection *s;
10758
10759 sym.st_size = 0;
10760 sym.st_name = 0;
10761 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10762 sym.st_other = 0;
10763
10764 for (s = abfd->sections; s != NULL; s = s->next)
10765 {
10766 int indx;
10767 bfd_byte *dest;
10768 long dynindx;
10769
10770 dynindx = elf_section_data (s)->dynindx;
10771 if (dynindx <= 0)
10772 continue;
10773 indx = elf_section_data (s)->this_idx;
10774 BFD_ASSERT (indx > 0);
10775 sym.st_shndx = indx;
10776 if (! check_dynsym (abfd, &sym))
10777 return FALSE;
10778 sym.st_value = s->vma;
10779 dest = dynsym + dynindx * bed->s->sizeof_sym;
10780 if (last_local < dynindx)
10781 last_local = dynindx;
10782 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10783 }
10784 }
10785
10786 /* Write out the local dynsyms. */
10787 if (elf_hash_table (info)->dynlocal)
10788 {
10789 struct elf_link_local_dynamic_entry *e;
10790 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10791 {
10792 asection *s;
10793 bfd_byte *dest;
10794
10795 /* Copy the internal symbol and turn off visibility.
10796 Note that we saved a word of storage and overwrote
10797 the original st_name with the dynstr_index. */
10798 sym = e->isym;
10799 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10800
10801 s = bfd_section_from_elf_index (e->input_bfd,
10802 e->isym.st_shndx);
10803 if (s != NULL)
10804 {
10805 sym.st_shndx =
10806 elf_section_data (s->output_section)->this_idx;
10807 if (! check_dynsym (abfd, &sym))
10808 return FALSE;
10809 sym.st_value = (s->output_section->vma
10810 + s->output_offset
10811 + e->isym.st_value);
10812 }
10813
10814 if (last_local < e->dynindx)
10815 last_local = e->dynindx;
10816
10817 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10818 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10819 }
10820 }
10821
10822 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10823 last_local + 1;
10824 }
10825
10826 /* We get the global symbols from the hash table. */
10827 eoinfo.failed = FALSE;
10828 eoinfo.localsyms = FALSE;
10829 eoinfo.finfo = &finfo;
10830 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10831 &eoinfo);
10832 if (eoinfo.failed)
10833 return FALSE;
10834
10835 /* If backend needs to output some symbols not present in the hash
10836 table, do it now. */
10837 if (bed->elf_backend_output_arch_syms)
10838 {
10839 typedef int (*out_sym_func)
10840 (void *, const char *, Elf_Internal_Sym *, asection *,
10841 struct elf_link_hash_entry *);
10842
10843 if (! ((*bed->elf_backend_output_arch_syms)
10844 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10845 return FALSE;
10846 }
10847
10848 /* Flush all symbols to the file. */
10849 if (! elf_link_flush_output_syms (&finfo, bed))
10850 return FALSE;
10851
10852 /* Now we know the size of the symtab section. */
10853 off += symtab_hdr->sh_size;
10854
10855 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10856 if (symtab_shndx_hdr->sh_name != 0)
10857 {
10858 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10859 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10860 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10861 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10862 symtab_shndx_hdr->sh_size = amt;
10863
10864 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10865 off, TRUE);
10866
10867 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10868 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10869 return FALSE;
10870 }
10871
10872
10873 /* Finish up and write out the symbol string table (.strtab)
10874 section. */
10875 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10876 /* sh_name was set in prep_headers. */
10877 symstrtab_hdr->sh_type = SHT_STRTAB;
10878 symstrtab_hdr->sh_flags = 0;
10879 symstrtab_hdr->sh_addr = 0;
10880 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10881 symstrtab_hdr->sh_entsize = 0;
10882 symstrtab_hdr->sh_link = 0;
10883 symstrtab_hdr->sh_info = 0;
10884 /* sh_offset is set just below. */
10885 symstrtab_hdr->sh_addralign = 1;
10886
10887 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10888 elf_tdata (abfd)->next_file_pos = off;
10889
10890 if (bfd_get_symcount (abfd) > 0)
10891 {
10892 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10893 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10894 return FALSE;
10895 }
10896
10897 /* Adjust the relocs to have the correct symbol indices. */
10898 for (o = abfd->sections; o != NULL; o = o->next)
10899 {
10900 if ((o->flags & SEC_RELOC) == 0)
10901 continue;
10902
10903 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10904 elf_section_data (o)->rel_count,
10905 elf_section_data (o)->rel_hashes);
10906 if (elf_section_data (o)->rel_hdr2 != NULL)
10907 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10908 elf_section_data (o)->rel_count2,
10909 (elf_section_data (o)->rel_hashes
10910 + elf_section_data (o)->rel_count));
10911
10912 /* Set the reloc_count field to 0 to prevent write_relocs from
10913 trying to swap the relocs out itself. */
10914 o->reloc_count = 0;
10915 }
10916
10917 if (dynamic && info->combreloc && dynobj != NULL)
10918 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10919
10920 /* If we are linking against a dynamic object, or generating a
10921 shared library, finish up the dynamic linking information. */
10922 if (dynamic)
10923 {
10924 bfd_byte *dyncon, *dynconend;
10925
10926 /* Fix up .dynamic entries. */
10927 o = bfd_get_section_by_name (dynobj, ".dynamic");
10928 BFD_ASSERT (o != NULL);
10929
10930 dyncon = o->contents;
10931 dynconend = o->contents + o->size;
10932 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10933 {
10934 Elf_Internal_Dyn dyn;
10935 const char *name;
10936 unsigned int type;
10937
10938 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10939
10940 switch (dyn.d_tag)
10941 {
10942 default:
10943 continue;
10944 case DT_NULL:
10945 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10946 {
10947 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10948 {
10949 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10950 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10951 default: continue;
10952 }
10953 dyn.d_un.d_val = relativecount;
10954 relativecount = 0;
10955 break;
10956 }
10957 continue;
10958
10959 case DT_INIT:
10960 name = info->init_function;
10961 goto get_sym;
10962 case DT_FINI:
10963 name = info->fini_function;
10964 get_sym:
10965 {
10966 struct elf_link_hash_entry *h;
10967
10968 h = elf_link_hash_lookup (elf_hash_table (info), name,
10969 FALSE, FALSE, TRUE);
10970 if (h != NULL
10971 && (h->root.type == bfd_link_hash_defined
10972 || h->root.type == bfd_link_hash_defweak))
10973 {
10974 dyn.d_un.d_ptr = h->root.u.def.value;
10975 o = h->root.u.def.section;
10976 if (o->output_section != NULL)
10977 dyn.d_un.d_ptr += (o->output_section->vma
10978 + o->output_offset);
10979 else
10980 {
10981 /* The symbol is imported from another shared
10982 library and does not apply to this one. */
10983 dyn.d_un.d_ptr = 0;
10984 }
10985 break;
10986 }
10987 }
10988 continue;
10989
10990 case DT_PREINIT_ARRAYSZ:
10991 name = ".preinit_array";
10992 goto get_size;
10993 case DT_INIT_ARRAYSZ:
10994 name = ".init_array";
10995 goto get_size;
10996 case DT_FINI_ARRAYSZ:
10997 name = ".fini_array";
10998 get_size:
10999 o = bfd_get_section_by_name (abfd, name);
11000 if (o == NULL)
11001 {
11002 (*_bfd_error_handler)
11003 (_("%B: could not find output section %s"), abfd, name);
11004 goto error_return;
11005 }
11006 if (o->size == 0)
11007 (*_bfd_error_handler)
11008 (_("warning: %s section has zero size"), name);
11009 dyn.d_un.d_val = o->size;
11010 break;
11011
11012 case DT_PREINIT_ARRAY:
11013 name = ".preinit_array";
11014 goto get_vma;
11015 case DT_INIT_ARRAY:
11016 name = ".init_array";
11017 goto get_vma;
11018 case DT_FINI_ARRAY:
11019 name = ".fini_array";
11020 goto get_vma;
11021
11022 case DT_HASH:
11023 name = ".hash";
11024 goto get_vma;
11025 case DT_GNU_HASH:
11026 name = ".gnu.hash";
11027 goto get_vma;
11028 case DT_STRTAB:
11029 name = ".dynstr";
11030 goto get_vma;
11031 case DT_SYMTAB:
11032 name = ".dynsym";
11033 goto get_vma;
11034 case DT_VERDEF:
11035 name = ".gnu.version_d";
11036 goto get_vma;
11037 case DT_VERNEED:
11038 name = ".gnu.version_r";
11039 goto get_vma;
11040 case DT_VERSYM:
11041 name = ".gnu.version";
11042 get_vma:
11043 o = bfd_get_section_by_name (abfd, name);
11044 if (o == NULL)
11045 {
11046 (*_bfd_error_handler)
11047 (_("%B: could not find output section %s"), abfd, name);
11048 goto error_return;
11049 }
11050 dyn.d_un.d_ptr = o->vma;
11051 break;
11052
11053 case DT_REL:
11054 case DT_RELA:
11055 case DT_RELSZ:
11056 case DT_RELASZ:
11057 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11058 type = SHT_REL;
11059 else
11060 type = SHT_RELA;
11061 dyn.d_un.d_val = 0;
11062 dyn.d_un.d_ptr = 0;
11063 for (i = 1; i < elf_numsections (abfd); i++)
11064 {
11065 Elf_Internal_Shdr *hdr;
11066
11067 hdr = elf_elfsections (abfd)[i];
11068 if (hdr->sh_type == type
11069 && (hdr->sh_flags & SHF_ALLOC) != 0)
11070 {
11071 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11072 dyn.d_un.d_val += hdr->sh_size;
11073 else
11074 {
11075 if (dyn.d_un.d_ptr == 0
11076 || hdr->sh_addr < dyn.d_un.d_ptr)
11077 dyn.d_un.d_ptr = hdr->sh_addr;
11078 }
11079 }
11080 }
11081 break;
11082 }
11083 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11084 }
11085 }
11086
11087 /* If we have created any dynamic sections, then output them. */
11088 if (dynobj != NULL)
11089 {
11090 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11091 goto error_return;
11092
11093 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11094 if (info->warn_shared_textrel && info->shared)
11095 {
11096 bfd_byte *dyncon, *dynconend;
11097
11098 /* Fix up .dynamic entries. */
11099 o = bfd_get_section_by_name (dynobj, ".dynamic");
11100 BFD_ASSERT (o != NULL);
11101
11102 dyncon = o->contents;
11103 dynconend = o->contents + o->size;
11104 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11105 {
11106 Elf_Internal_Dyn dyn;
11107
11108 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11109
11110 if (dyn.d_tag == DT_TEXTREL)
11111 {
11112 info->callbacks->einfo
11113 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11114 break;
11115 }
11116 }
11117 }
11118
11119 for (o = dynobj->sections; o != NULL; o = o->next)
11120 {
11121 if ((o->flags & SEC_HAS_CONTENTS) == 0
11122 || o->size == 0
11123 || o->output_section == bfd_abs_section_ptr)
11124 continue;
11125 if ((o->flags & SEC_LINKER_CREATED) == 0)
11126 {
11127 /* At this point, we are only interested in sections
11128 created by _bfd_elf_link_create_dynamic_sections. */
11129 continue;
11130 }
11131 if (elf_hash_table (info)->stab_info.stabstr == o)
11132 continue;
11133 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11134 continue;
11135 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11136 != SHT_STRTAB)
11137 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11138 {
11139 /* FIXME: octets_per_byte. */
11140 if (! bfd_set_section_contents (abfd, o->output_section,
11141 o->contents,
11142 (file_ptr) o->output_offset,
11143 o->size))
11144 goto error_return;
11145 }
11146 else
11147 {
11148 /* The contents of the .dynstr section are actually in a
11149 stringtab. */
11150 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11151 if (bfd_seek (abfd, off, SEEK_SET) != 0
11152 || ! _bfd_elf_strtab_emit (abfd,
11153 elf_hash_table (info)->dynstr))
11154 goto error_return;
11155 }
11156 }
11157 }
11158
11159 if (info->relocatable)
11160 {
11161 bfd_boolean failed = FALSE;
11162
11163 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11164 if (failed)
11165 goto error_return;
11166 }
11167
11168 /* If we have optimized stabs strings, output them. */
11169 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11170 {
11171 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11172 goto error_return;
11173 }
11174
11175 if (info->eh_frame_hdr)
11176 {
11177 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11178 goto error_return;
11179 }
11180
11181 if (finfo.symstrtab != NULL)
11182 _bfd_stringtab_free (finfo.symstrtab);
11183 if (finfo.contents != NULL)
11184 free (finfo.contents);
11185 if (finfo.external_relocs != NULL)
11186 free (finfo.external_relocs);
11187 if (finfo.internal_relocs != NULL)
11188 free (finfo.internal_relocs);
11189 if (finfo.external_syms != NULL)
11190 free (finfo.external_syms);
11191 if (finfo.locsym_shndx != NULL)
11192 free (finfo.locsym_shndx);
11193 if (finfo.internal_syms != NULL)
11194 free (finfo.internal_syms);
11195 if (finfo.indices != NULL)
11196 free (finfo.indices);
11197 if (finfo.sections != NULL)
11198 free (finfo.sections);
11199 if (finfo.symbuf != NULL)
11200 free (finfo.symbuf);
11201 if (finfo.symshndxbuf != NULL)
11202 free (finfo.symshndxbuf);
11203 for (o = abfd->sections; o != NULL; o = o->next)
11204 {
11205 if ((o->flags & SEC_RELOC) != 0
11206 && elf_section_data (o)->rel_hashes != NULL)
11207 free (elf_section_data (o)->rel_hashes);
11208 }
11209
11210 elf_tdata (abfd)->linker = TRUE;
11211
11212 if (attr_section)
11213 {
11214 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11215 if (contents == NULL)
11216 return FALSE; /* Bail out and fail. */
11217 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11218 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11219 free (contents);
11220 }
11221
11222 return TRUE;
11223
11224 error_return:
11225 if (finfo.symstrtab != NULL)
11226 _bfd_stringtab_free (finfo.symstrtab);
11227 if (finfo.contents != NULL)
11228 free (finfo.contents);
11229 if (finfo.external_relocs != NULL)
11230 free (finfo.external_relocs);
11231 if (finfo.internal_relocs != NULL)
11232 free (finfo.internal_relocs);
11233 if (finfo.external_syms != NULL)
11234 free (finfo.external_syms);
11235 if (finfo.locsym_shndx != NULL)
11236 free (finfo.locsym_shndx);
11237 if (finfo.internal_syms != NULL)
11238 free (finfo.internal_syms);
11239 if (finfo.indices != NULL)
11240 free (finfo.indices);
11241 if (finfo.sections != NULL)
11242 free (finfo.sections);
11243 if (finfo.symbuf != NULL)
11244 free (finfo.symbuf);
11245 if (finfo.symshndxbuf != NULL)
11246 free (finfo.symshndxbuf);
11247 for (o = abfd->sections; o != NULL; o = o->next)
11248 {
11249 if ((o->flags & SEC_RELOC) != 0
11250 && elf_section_data (o)->rel_hashes != NULL)
11251 free (elf_section_data (o)->rel_hashes);
11252 }
11253
11254 return FALSE;
11255 }
11256 \f
11257 /* Initialize COOKIE for input bfd ABFD. */
11258
11259 static bfd_boolean
11260 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11261 struct bfd_link_info *info, bfd *abfd)
11262 {
11263 Elf_Internal_Shdr *symtab_hdr;
11264 const struct elf_backend_data *bed;
11265
11266 bed = get_elf_backend_data (abfd);
11267 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11268
11269 cookie->abfd = abfd;
11270 cookie->sym_hashes = elf_sym_hashes (abfd);
11271 cookie->bad_symtab = elf_bad_symtab (abfd);
11272 if (cookie->bad_symtab)
11273 {
11274 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11275 cookie->extsymoff = 0;
11276 }
11277 else
11278 {
11279 cookie->locsymcount = symtab_hdr->sh_info;
11280 cookie->extsymoff = symtab_hdr->sh_info;
11281 }
11282
11283 if (bed->s->arch_size == 32)
11284 cookie->r_sym_shift = 8;
11285 else
11286 cookie->r_sym_shift = 32;
11287
11288 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11289 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11290 {
11291 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11292 cookie->locsymcount, 0,
11293 NULL, NULL, NULL);
11294 if (cookie->locsyms == NULL)
11295 {
11296 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11297 return FALSE;
11298 }
11299 if (info->keep_memory)
11300 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11301 }
11302 return TRUE;
11303 }
11304
11305 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11306
11307 static void
11308 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11309 {
11310 Elf_Internal_Shdr *symtab_hdr;
11311
11312 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11313 if (cookie->locsyms != NULL
11314 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11315 free (cookie->locsyms);
11316 }
11317
11318 /* Initialize the relocation information in COOKIE for input section SEC
11319 of input bfd ABFD. */
11320
11321 static bfd_boolean
11322 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11323 struct bfd_link_info *info, bfd *abfd,
11324 asection *sec)
11325 {
11326 const struct elf_backend_data *bed;
11327
11328 if (sec->reloc_count == 0)
11329 {
11330 cookie->rels = NULL;
11331 cookie->relend = NULL;
11332 }
11333 else
11334 {
11335 bed = get_elf_backend_data (abfd);
11336
11337 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11338 info->keep_memory);
11339 if (cookie->rels == NULL)
11340 return FALSE;
11341 cookie->rel = cookie->rels;
11342 cookie->relend = (cookie->rels
11343 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11344 }
11345 cookie->rel = cookie->rels;
11346 return TRUE;
11347 }
11348
11349 /* Free the memory allocated by init_reloc_cookie_rels,
11350 if appropriate. */
11351
11352 static void
11353 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11354 asection *sec)
11355 {
11356 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11357 free (cookie->rels);
11358 }
11359
11360 /* Initialize the whole of COOKIE for input section SEC. */
11361
11362 static bfd_boolean
11363 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11364 struct bfd_link_info *info,
11365 asection *sec)
11366 {
11367 if (!init_reloc_cookie (cookie, info, sec->owner))
11368 goto error1;
11369 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11370 goto error2;
11371 return TRUE;
11372
11373 error2:
11374 fini_reloc_cookie (cookie, sec->owner);
11375 error1:
11376 return FALSE;
11377 }
11378
11379 /* Free the memory allocated by init_reloc_cookie_for_section,
11380 if appropriate. */
11381
11382 static void
11383 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11384 asection *sec)
11385 {
11386 fini_reloc_cookie_rels (cookie, sec);
11387 fini_reloc_cookie (cookie, sec->owner);
11388 }
11389 \f
11390 /* Garbage collect unused sections. */
11391
11392 /* Default gc_mark_hook. */
11393
11394 asection *
11395 _bfd_elf_gc_mark_hook (asection *sec,
11396 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11397 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11398 struct elf_link_hash_entry *h,
11399 Elf_Internal_Sym *sym)
11400 {
11401 const char *sec_name;
11402
11403 if (h != NULL)
11404 {
11405 switch (h->root.type)
11406 {
11407 case bfd_link_hash_defined:
11408 case bfd_link_hash_defweak:
11409 return h->root.u.def.section;
11410
11411 case bfd_link_hash_common:
11412 return h->root.u.c.p->section;
11413
11414 case bfd_link_hash_undefined:
11415 case bfd_link_hash_undefweak:
11416 /* To work around a glibc bug, keep all XXX input sections
11417 when there is an as yet undefined reference to __start_XXX
11418 or __stop_XXX symbols. The linker will later define such
11419 symbols for orphan input sections that have a name
11420 representable as a C identifier. */
11421 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11422 sec_name = h->root.root.string + 8;
11423 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11424 sec_name = h->root.root.string + 7;
11425 else
11426 sec_name = NULL;
11427
11428 if (sec_name && *sec_name != '\0')
11429 {
11430 bfd *i;
11431
11432 for (i = info->input_bfds; i; i = i->link_next)
11433 {
11434 sec = bfd_get_section_by_name (i, sec_name);
11435 if (sec)
11436 sec->flags |= SEC_KEEP;
11437 }
11438 }
11439 break;
11440
11441 default:
11442 break;
11443 }
11444 }
11445 else
11446 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11447
11448 return NULL;
11449 }
11450
11451 /* COOKIE->rel describes a relocation against section SEC, which is
11452 a section we've decided to keep. Return the section that contains
11453 the relocation symbol, or NULL if no section contains it. */
11454
11455 asection *
11456 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11457 elf_gc_mark_hook_fn gc_mark_hook,
11458 struct elf_reloc_cookie *cookie)
11459 {
11460 unsigned long r_symndx;
11461 struct elf_link_hash_entry *h;
11462
11463 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11464 if (r_symndx == 0)
11465 return NULL;
11466
11467 if (r_symndx >= cookie->locsymcount
11468 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11469 {
11470 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11471 while (h->root.type == bfd_link_hash_indirect
11472 || h->root.type == bfd_link_hash_warning)
11473 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11474 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11475 }
11476
11477 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11478 &cookie->locsyms[r_symndx]);
11479 }
11480
11481 /* COOKIE->rel describes a relocation against section SEC, which is
11482 a section we've decided to keep. Mark the section that contains
11483 the relocation symbol. */
11484
11485 bfd_boolean
11486 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11487 asection *sec,
11488 elf_gc_mark_hook_fn gc_mark_hook,
11489 struct elf_reloc_cookie *cookie)
11490 {
11491 asection *rsec;
11492
11493 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11494 if (rsec && !rsec->gc_mark)
11495 {
11496 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11497 rsec->gc_mark = 1;
11498 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11499 return FALSE;
11500 }
11501 return TRUE;
11502 }
11503
11504 /* The mark phase of garbage collection. For a given section, mark
11505 it and any sections in this section's group, and all the sections
11506 which define symbols to which it refers. */
11507
11508 bfd_boolean
11509 _bfd_elf_gc_mark (struct bfd_link_info *info,
11510 asection *sec,
11511 elf_gc_mark_hook_fn gc_mark_hook)
11512 {
11513 bfd_boolean ret;
11514 asection *group_sec, *eh_frame;
11515
11516 sec->gc_mark = 1;
11517
11518 /* Mark all the sections in the group. */
11519 group_sec = elf_section_data (sec)->next_in_group;
11520 if (group_sec && !group_sec->gc_mark)
11521 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11522 return FALSE;
11523
11524 /* Look through the section relocs. */
11525 ret = TRUE;
11526 eh_frame = elf_eh_frame_section (sec->owner);
11527 if ((sec->flags & SEC_RELOC) != 0
11528 && sec->reloc_count > 0
11529 && sec != eh_frame)
11530 {
11531 struct elf_reloc_cookie cookie;
11532
11533 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11534 ret = FALSE;
11535 else
11536 {
11537 for (; cookie.rel < cookie.relend; cookie.rel++)
11538 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11539 {
11540 ret = FALSE;
11541 break;
11542 }
11543 fini_reloc_cookie_for_section (&cookie, sec);
11544 }
11545 }
11546
11547 if (ret && eh_frame && elf_fde_list (sec))
11548 {
11549 struct elf_reloc_cookie cookie;
11550
11551 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11552 ret = FALSE;
11553 else
11554 {
11555 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11556 gc_mark_hook, &cookie))
11557 ret = FALSE;
11558 fini_reloc_cookie_for_section (&cookie, eh_frame);
11559 }
11560 }
11561
11562 return ret;
11563 }
11564
11565 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11566
11567 struct elf_gc_sweep_symbol_info
11568 {
11569 struct bfd_link_info *info;
11570 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11571 bfd_boolean);
11572 };
11573
11574 static bfd_boolean
11575 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11576 {
11577 if (h->root.type == bfd_link_hash_warning)
11578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11579
11580 if ((h->root.type == bfd_link_hash_defined
11581 || h->root.type == bfd_link_hash_defweak)
11582 && !h->root.u.def.section->gc_mark
11583 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11584 {
11585 struct elf_gc_sweep_symbol_info *inf =
11586 (struct elf_gc_sweep_symbol_info *) data;
11587 (*inf->hide_symbol) (inf->info, h, TRUE);
11588 }
11589
11590 return TRUE;
11591 }
11592
11593 /* The sweep phase of garbage collection. Remove all garbage sections. */
11594
11595 typedef bfd_boolean (*gc_sweep_hook_fn)
11596 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11597
11598 static bfd_boolean
11599 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11600 {
11601 bfd *sub;
11602 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11603 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11604 unsigned long section_sym_count;
11605 struct elf_gc_sweep_symbol_info sweep_info;
11606
11607 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11608 {
11609 asection *o;
11610
11611 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11612 continue;
11613
11614 for (o = sub->sections; o != NULL; o = o->next)
11615 {
11616 /* When any section in a section group is kept, we keep all
11617 sections in the section group. If the first member of
11618 the section group is excluded, we will also exclude the
11619 group section. */
11620 if (o->flags & SEC_GROUP)
11621 {
11622 asection *first = elf_next_in_group (o);
11623 o->gc_mark = first->gc_mark;
11624 }
11625 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11626 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11627 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11628 {
11629 /* Keep debug, special and SHT_NOTE sections. */
11630 o->gc_mark = 1;
11631 }
11632
11633 if (o->gc_mark)
11634 continue;
11635
11636 /* Skip sweeping sections already excluded. */
11637 if (o->flags & SEC_EXCLUDE)
11638 continue;
11639
11640 /* Since this is early in the link process, it is simple
11641 to remove a section from the output. */
11642 o->flags |= SEC_EXCLUDE;
11643
11644 if (info->print_gc_sections && o->size != 0)
11645 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11646
11647 /* But we also have to update some of the relocation
11648 info we collected before. */
11649 if (gc_sweep_hook
11650 && (o->flags & SEC_RELOC) != 0
11651 && o->reloc_count > 0
11652 && !bfd_is_abs_section (o->output_section))
11653 {
11654 Elf_Internal_Rela *internal_relocs;
11655 bfd_boolean r;
11656
11657 internal_relocs
11658 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11659 info->keep_memory);
11660 if (internal_relocs == NULL)
11661 return FALSE;
11662
11663 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11664
11665 if (elf_section_data (o)->relocs != internal_relocs)
11666 free (internal_relocs);
11667
11668 if (!r)
11669 return FALSE;
11670 }
11671 }
11672 }
11673
11674 /* Remove the symbols that were in the swept sections from the dynamic
11675 symbol table. GCFIXME: Anyone know how to get them out of the
11676 static symbol table as well? */
11677 sweep_info.info = info;
11678 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11679 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11680 &sweep_info);
11681
11682 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11683 return TRUE;
11684 }
11685
11686 /* Propagate collected vtable information. This is called through
11687 elf_link_hash_traverse. */
11688
11689 static bfd_boolean
11690 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11691 {
11692 if (h->root.type == bfd_link_hash_warning)
11693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11694
11695 /* Those that are not vtables. */
11696 if (h->vtable == NULL || h->vtable->parent == NULL)
11697 return TRUE;
11698
11699 /* Those vtables that do not have parents, we cannot merge. */
11700 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11701 return TRUE;
11702
11703 /* If we've already been done, exit. */
11704 if (h->vtable->used && h->vtable->used[-1])
11705 return TRUE;
11706
11707 /* Make sure the parent's table is up to date. */
11708 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11709
11710 if (h->vtable->used == NULL)
11711 {
11712 /* None of this table's entries were referenced. Re-use the
11713 parent's table. */
11714 h->vtable->used = h->vtable->parent->vtable->used;
11715 h->vtable->size = h->vtable->parent->vtable->size;
11716 }
11717 else
11718 {
11719 size_t n;
11720 bfd_boolean *cu, *pu;
11721
11722 /* Or the parent's entries into ours. */
11723 cu = h->vtable->used;
11724 cu[-1] = TRUE;
11725 pu = h->vtable->parent->vtable->used;
11726 if (pu != NULL)
11727 {
11728 const struct elf_backend_data *bed;
11729 unsigned int log_file_align;
11730
11731 bed = get_elf_backend_data (h->root.u.def.section->owner);
11732 log_file_align = bed->s->log_file_align;
11733 n = h->vtable->parent->vtable->size >> log_file_align;
11734 while (n--)
11735 {
11736 if (*pu)
11737 *cu = TRUE;
11738 pu++;
11739 cu++;
11740 }
11741 }
11742 }
11743
11744 return TRUE;
11745 }
11746
11747 static bfd_boolean
11748 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11749 {
11750 asection *sec;
11751 bfd_vma hstart, hend;
11752 Elf_Internal_Rela *relstart, *relend, *rel;
11753 const struct elf_backend_data *bed;
11754 unsigned int log_file_align;
11755
11756 if (h->root.type == bfd_link_hash_warning)
11757 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11758
11759 /* Take care of both those symbols that do not describe vtables as
11760 well as those that are not loaded. */
11761 if (h->vtable == NULL || h->vtable->parent == NULL)
11762 return TRUE;
11763
11764 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11765 || h->root.type == bfd_link_hash_defweak);
11766
11767 sec = h->root.u.def.section;
11768 hstart = h->root.u.def.value;
11769 hend = hstart + h->size;
11770
11771 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11772 if (!relstart)
11773 return *(bfd_boolean *) okp = FALSE;
11774 bed = get_elf_backend_data (sec->owner);
11775 log_file_align = bed->s->log_file_align;
11776
11777 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11778
11779 for (rel = relstart; rel < relend; ++rel)
11780 if (rel->r_offset >= hstart && rel->r_offset < hend)
11781 {
11782 /* If the entry is in use, do nothing. */
11783 if (h->vtable->used
11784 && (rel->r_offset - hstart) < h->vtable->size)
11785 {
11786 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11787 if (h->vtable->used[entry])
11788 continue;
11789 }
11790 /* Otherwise, kill it. */
11791 rel->r_offset = rel->r_info = rel->r_addend = 0;
11792 }
11793
11794 return TRUE;
11795 }
11796
11797 /* Mark sections containing dynamically referenced symbols. When
11798 building shared libraries, we must assume that any visible symbol is
11799 referenced. */
11800
11801 bfd_boolean
11802 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11803 {
11804 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11805
11806 if (h->root.type == bfd_link_hash_warning)
11807 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11808
11809 if ((h->root.type == bfd_link_hash_defined
11810 || h->root.type == bfd_link_hash_defweak)
11811 && (h->ref_dynamic
11812 || (!info->executable
11813 && h->def_regular
11814 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11815 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11816 h->root.u.def.section->flags |= SEC_KEEP;
11817
11818 return TRUE;
11819 }
11820
11821 /* Keep all sections containing symbols undefined on the command-line,
11822 and the section containing the entry symbol. */
11823
11824 void
11825 _bfd_elf_gc_keep (struct bfd_link_info *info)
11826 {
11827 struct bfd_sym_chain *sym;
11828
11829 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11830 {
11831 struct elf_link_hash_entry *h;
11832
11833 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11834 FALSE, FALSE, FALSE);
11835
11836 if (h != NULL
11837 && (h->root.type == bfd_link_hash_defined
11838 || h->root.type == bfd_link_hash_defweak)
11839 && !bfd_is_abs_section (h->root.u.def.section))
11840 h->root.u.def.section->flags |= SEC_KEEP;
11841 }
11842 }
11843
11844 /* Do mark and sweep of unused sections. */
11845
11846 bfd_boolean
11847 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11848 {
11849 bfd_boolean ok = TRUE;
11850 bfd *sub;
11851 elf_gc_mark_hook_fn gc_mark_hook;
11852 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11853
11854 if (!bed->can_gc_sections
11855 || !is_elf_hash_table (info->hash))
11856 {
11857 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11858 return TRUE;
11859 }
11860
11861 bed->gc_keep (info);
11862
11863 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11864 at the .eh_frame section if we can mark the FDEs individually. */
11865 _bfd_elf_begin_eh_frame_parsing (info);
11866 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11867 {
11868 asection *sec;
11869 struct elf_reloc_cookie cookie;
11870
11871 sec = bfd_get_section_by_name (sub, ".eh_frame");
11872 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11873 {
11874 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11875 if (elf_section_data (sec)->sec_info)
11876 elf_eh_frame_section (sub) = sec;
11877 fini_reloc_cookie_for_section (&cookie, sec);
11878 }
11879 }
11880 _bfd_elf_end_eh_frame_parsing (info);
11881
11882 /* Apply transitive closure to the vtable entry usage info. */
11883 elf_link_hash_traverse (elf_hash_table (info),
11884 elf_gc_propagate_vtable_entries_used,
11885 &ok);
11886 if (!ok)
11887 return FALSE;
11888
11889 /* Kill the vtable relocations that were not used. */
11890 elf_link_hash_traverse (elf_hash_table (info),
11891 elf_gc_smash_unused_vtentry_relocs,
11892 &ok);
11893 if (!ok)
11894 return FALSE;
11895
11896 /* Mark dynamically referenced symbols. */
11897 if (elf_hash_table (info)->dynamic_sections_created)
11898 elf_link_hash_traverse (elf_hash_table (info),
11899 bed->gc_mark_dynamic_ref,
11900 info);
11901
11902 /* Grovel through relocs to find out who stays ... */
11903 gc_mark_hook = bed->gc_mark_hook;
11904 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11905 {
11906 asection *o;
11907
11908 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11909 continue;
11910
11911 for (o = sub->sections; o != NULL; o = o->next)
11912 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11913 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11914 return FALSE;
11915 }
11916
11917 /* Allow the backend to mark additional target specific sections. */
11918 if (bed->gc_mark_extra_sections)
11919 bed->gc_mark_extra_sections (info, gc_mark_hook);
11920
11921 /* ... and mark SEC_EXCLUDE for those that go. */
11922 return elf_gc_sweep (abfd, info);
11923 }
11924 \f
11925 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11926
11927 bfd_boolean
11928 bfd_elf_gc_record_vtinherit (bfd *abfd,
11929 asection *sec,
11930 struct elf_link_hash_entry *h,
11931 bfd_vma offset)
11932 {
11933 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11934 struct elf_link_hash_entry **search, *child;
11935 bfd_size_type extsymcount;
11936 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11937
11938 /* The sh_info field of the symtab header tells us where the
11939 external symbols start. We don't care about the local symbols at
11940 this point. */
11941 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11942 if (!elf_bad_symtab (abfd))
11943 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11944
11945 sym_hashes = elf_sym_hashes (abfd);
11946 sym_hashes_end = sym_hashes + extsymcount;
11947
11948 /* Hunt down the child symbol, which is in this section at the same
11949 offset as the relocation. */
11950 for (search = sym_hashes; search != sym_hashes_end; ++search)
11951 {
11952 if ((child = *search) != NULL
11953 && (child->root.type == bfd_link_hash_defined
11954 || child->root.type == bfd_link_hash_defweak)
11955 && child->root.u.def.section == sec
11956 && child->root.u.def.value == offset)
11957 goto win;
11958 }
11959
11960 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11961 abfd, sec, (unsigned long) offset);
11962 bfd_set_error (bfd_error_invalid_operation);
11963 return FALSE;
11964
11965 win:
11966 if (!child->vtable)
11967 {
11968 child->vtable = (struct elf_link_virtual_table_entry *)
11969 bfd_zalloc (abfd, sizeof (*child->vtable));
11970 if (!child->vtable)
11971 return FALSE;
11972 }
11973 if (!h)
11974 {
11975 /* This *should* only be the absolute section. It could potentially
11976 be that someone has defined a non-global vtable though, which
11977 would be bad. It isn't worth paging in the local symbols to be
11978 sure though; that case should simply be handled by the assembler. */
11979
11980 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11981 }
11982 else
11983 child->vtable->parent = h;
11984
11985 return TRUE;
11986 }
11987
11988 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11989
11990 bfd_boolean
11991 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11992 asection *sec ATTRIBUTE_UNUSED,
11993 struct elf_link_hash_entry *h,
11994 bfd_vma addend)
11995 {
11996 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11997 unsigned int log_file_align = bed->s->log_file_align;
11998
11999 if (!h->vtable)
12000 {
12001 h->vtable = (struct elf_link_virtual_table_entry *)
12002 bfd_zalloc (abfd, sizeof (*h->vtable));
12003 if (!h->vtable)
12004 return FALSE;
12005 }
12006
12007 if (addend >= h->vtable->size)
12008 {
12009 size_t size, bytes, file_align;
12010 bfd_boolean *ptr = h->vtable->used;
12011
12012 /* While the symbol is undefined, we have to be prepared to handle
12013 a zero size. */
12014 file_align = 1 << log_file_align;
12015 if (h->root.type == bfd_link_hash_undefined)
12016 size = addend + file_align;
12017 else
12018 {
12019 size = h->size;
12020 if (addend >= size)
12021 {
12022 /* Oops! We've got a reference past the defined end of
12023 the table. This is probably a bug -- shall we warn? */
12024 size = addend + file_align;
12025 }
12026 }
12027 size = (size + file_align - 1) & -file_align;
12028
12029 /* Allocate one extra entry for use as a "done" flag for the
12030 consolidation pass. */
12031 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12032
12033 if (ptr)
12034 {
12035 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12036
12037 if (ptr != NULL)
12038 {
12039 size_t oldbytes;
12040
12041 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12042 * sizeof (bfd_boolean));
12043 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12044 }
12045 }
12046 else
12047 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12048
12049 if (ptr == NULL)
12050 return FALSE;
12051
12052 /* And arrange for that done flag to be at index -1. */
12053 h->vtable->used = ptr + 1;
12054 h->vtable->size = size;
12055 }
12056
12057 h->vtable->used[addend >> log_file_align] = TRUE;
12058
12059 return TRUE;
12060 }
12061
12062 struct alloc_got_off_arg {
12063 bfd_vma gotoff;
12064 struct bfd_link_info *info;
12065 };
12066
12067 /* We need a special top-level link routine to convert got reference counts
12068 to real got offsets. */
12069
12070 static bfd_boolean
12071 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12072 {
12073 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12074 bfd *obfd = gofarg->info->output_bfd;
12075 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12076
12077 if (h->root.type == bfd_link_hash_warning)
12078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12079
12080 if (h->got.refcount > 0)
12081 {
12082 h->got.offset = gofarg->gotoff;
12083 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12084 }
12085 else
12086 h->got.offset = (bfd_vma) -1;
12087
12088 return TRUE;
12089 }
12090
12091 /* And an accompanying bit to work out final got entry offsets once
12092 we're done. Should be called from final_link. */
12093
12094 bfd_boolean
12095 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12096 struct bfd_link_info *info)
12097 {
12098 bfd *i;
12099 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12100 bfd_vma gotoff;
12101 struct alloc_got_off_arg gofarg;
12102
12103 BFD_ASSERT (abfd == info->output_bfd);
12104
12105 if (! is_elf_hash_table (info->hash))
12106 return FALSE;
12107
12108 /* The GOT offset is relative to the .got section, but the GOT header is
12109 put into the .got.plt section, if the backend uses it. */
12110 if (bed->want_got_plt)
12111 gotoff = 0;
12112 else
12113 gotoff = bed->got_header_size;
12114
12115 /* Do the local .got entries first. */
12116 for (i = info->input_bfds; i; i = i->link_next)
12117 {
12118 bfd_signed_vma *local_got;
12119 bfd_size_type j, locsymcount;
12120 Elf_Internal_Shdr *symtab_hdr;
12121
12122 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12123 continue;
12124
12125 local_got = elf_local_got_refcounts (i);
12126 if (!local_got)
12127 continue;
12128
12129 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12130 if (elf_bad_symtab (i))
12131 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12132 else
12133 locsymcount = symtab_hdr->sh_info;
12134
12135 for (j = 0; j < locsymcount; ++j)
12136 {
12137 if (local_got[j] > 0)
12138 {
12139 local_got[j] = gotoff;
12140 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12141 }
12142 else
12143 local_got[j] = (bfd_vma) -1;
12144 }
12145 }
12146
12147 /* Then the global .got entries. .plt refcounts are handled by
12148 adjust_dynamic_symbol */
12149 gofarg.gotoff = gotoff;
12150 gofarg.info = info;
12151 elf_link_hash_traverse (elf_hash_table (info),
12152 elf_gc_allocate_got_offsets,
12153 &gofarg);
12154 return TRUE;
12155 }
12156
12157 /* Many folk need no more in the way of final link than this, once
12158 got entry reference counting is enabled. */
12159
12160 bfd_boolean
12161 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12162 {
12163 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12164 return FALSE;
12165
12166 /* Invoke the regular ELF backend linker to do all the work. */
12167 return bfd_elf_final_link (abfd, info);
12168 }
12169
12170 bfd_boolean
12171 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12172 {
12173 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12174
12175 if (rcookie->bad_symtab)
12176 rcookie->rel = rcookie->rels;
12177
12178 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12179 {
12180 unsigned long r_symndx;
12181
12182 if (! rcookie->bad_symtab)
12183 if (rcookie->rel->r_offset > offset)
12184 return FALSE;
12185 if (rcookie->rel->r_offset != offset)
12186 continue;
12187
12188 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12189 if (r_symndx == SHN_UNDEF)
12190 return TRUE;
12191
12192 if (r_symndx >= rcookie->locsymcount
12193 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12194 {
12195 struct elf_link_hash_entry *h;
12196
12197 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12198
12199 while (h->root.type == bfd_link_hash_indirect
12200 || h->root.type == bfd_link_hash_warning)
12201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12202
12203 if ((h->root.type == bfd_link_hash_defined
12204 || h->root.type == bfd_link_hash_defweak)
12205 && elf_discarded_section (h->root.u.def.section))
12206 return TRUE;
12207 else
12208 return FALSE;
12209 }
12210 else
12211 {
12212 /* It's not a relocation against a global symbol,
12213 but it could be a relocation against a local
12214 symbol for a discarded section. */
12215 asection *isec;
12216 Elf_Internal_Sym *isym;
12217
12218 /* Need to: get the symbol; get the section. */
12219 isym = &rcookie->locsyms[r_symndx];
12220 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12221 if (isec != NULL && elf_discarded_section (isec))
12222 return TRUE;
12223 }
12224 return FALSE;
12225 }
12226 return FALSE;
12227 }
12228
12229 /* Discard unneeded references to discarded sections.
12230 Returns TRUE if any section's size was changed. */
12231 /* This function assumes that the relocations are in sorted order,
12232 which is true for all known assemblers. */
12233
12234 bfd_boolean
12235 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12236 {
12237 struct elf_reloc_cookie cookie;
12238 asection *stab, *eh;
12239 const struct elf_backend_data *bed;
12240 bfd *abfd;
12241 bfd_boolean ret = FALSE;
12242
12243 if (info->traditional_format
12244 || !is_elf_hash_table (info->hash))
12245 return FALSE;
12246
12247 _bfd_elf_begin_eh_frame_parsing (info);
12248 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12249 {
12250 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12251 continue;
12252
12253 bed = get_elf_backend_data (abfd);
12254
12255 if ((abfd->flags & DYNAMIC) != 0)
12256 continue;
12257
12258 eh = NULL;
12259 if (!info->relocatable)
12260 {
12261 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12262 if (eh != NULL
12263 && (eh->size == 0
12264 || bfd_is_abs_section (eh->output_section)))
12265 eh = NULL;
12266 }
12267
12268 stab = bfd_get_section_by_name (abfd, ".stab");
12269 if (stab != NULL
12270 && (stab->size == 0
12271 || bfd_is_abs_section (stab->output_section)
12272 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12273 stab = NULL;
12274
12275 if (stab == NULL
12276 && eh == NULL
12277 && bed->elf_backend_discard_info == NULL)
12278 continue;
12279
12280 if (!init_reloc_cookie (&cookie, info, abfd))
12281 return FALSE;
12282
12283 if (stab != NULL
12284 && stab->reloc_count > 0
12285 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12286 {
12287 if (_bfd_discard_section_stabs (abfd, stab,
12288 elf_section_data (stab)->sec_info,
12289 bfd_elf_reloc_symbol_deleted_p,
12290 &cookie))
12291 ret = TRUE;
12292 fini_reloc_cookie_rels (&cookie, stab);
12293 }
12294
12295 if (eh != NULL
12296 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12297 {
12298 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12299 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12300 bfd_elf_reloc_symbol_deleted_p,
12301 &cookie))
12302 ret = TRUE;
12303 fini_reloc_cookie_rels (&cookie, eh);
12304 }
12305
12306 if (bed->elf_backend_discard_info != NULL
12307 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12308 ret = TRUE;
12309
12310 fini_reloc_cookie (&cookie, abfd);
12311 }
12312 _bfd_elf_end_eh_frame_parsing (info);
12313
12314 if (info->eh_frame_hdr
12315 && !info->relocatable
12316 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12317 ret = TRUE;
12318
12319 return ret;
12320 }
12321
12322 /* For a SHT_GROUP section, return the group signature. For other
12323 sections, return the normal section name. */
12324
12325 static const char *
12326 section_signature (asection *sec)
12327 {
12328 if ((sec->flags & SEC_GROUP) != 0
12329 && elf_next_in_group (sec) != NULL
12330 && elf_group_name (elf_next_in_group (sec)) != NULL)
12331 return elf_group_name (elf_next_in_group (sec));
12332 return sec->name;
12333 }
12334
12335 void
12336 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12337 struct bfd_link_info *info)
12338 {
12339 flagword flags;
12340 const char *name, *p;
12341 struct bfd_section_already_linked *l;
12342 struct bfd_section_already_linked_hash_entry *already_linked_list;
12343
12344 if (sec->output_section == bfd_abs_section_ptr)
12345 return;
12346
12347 flags = sec->flags;
12348
12349 /* Return if it isn't a linkonce section. A comdat group section
12350 also has SEC_LINK_ONCE set. */
12351 if ((flags & SEC_LINK_ONCE) == 0)
12352 return;
12353
12354 /* Don't put group member sections on our list of already linked
12355 sections. They are handled as a group via their group section. */
12356 if (elf_sec_group (sec) != NULL)
12357 return;
12358
12359 /* FIXME: When doing a relocatable link, we may have trouble
12360 copying relocations in other sections that refer to local symbols
12361 in the section being discarded. Those relocations will have to
12362 be converted somehow; as of this writing I'm not sure that any of
12363 the backends handle that correctly.
12364
12365 It is tempting to instead not discard link once sections when
12366 doing a relocatable link (technically, they should be discarded
12367 whenever we are building constructors). However, that fails,
12368 because the linker winds up combining all the link once sections
12369 into a single large link once section, which defeats the purpose
12370 of having link once sections in the first place.
12371
12372 Also, not merging link once sections in a relocatable link
12373 causes trouble for MIPS ELF, which relies on link once semantics
12374 to handle the .reginfo section correctly. */
12375
12376 name = section_signature (sec);
12377
12378 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12379 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12380 p++;
12381 else
12382 p = name;
12383
12384 already_linked_list = bfd_section_already_linked_table_lookup (p);
12385
12386 for (l = already_linked_list->entry; l != NULL; l = l->next)
12387 {
12388 /* We may have 2 different types of sections on the list: group
12389 sections and linkonce sections. Match like sections. */
12390 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12391 && strcmp (name, section_signature (l->sec)) == 0
12392 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12393 {
12394 /* The section has already been linked. See if we should
12395 issue a warning. */
12396 switch (flags & SEC_LINK_DUPLICATES)
12397 {
12398 default:
12399 abort ();
12400
12401 case SEC_LINK_DUPLICATES_DISCARD:
12402 break;
12403
12404 case SEC_LINK_DUPLICATES_ONE_ONLY:
12405 (*_bfd_error_handler)
12406 (_("%B: ignoring duplicate section `%A'"),
12407 abfd, sec);
12408 break;
12409
12410 case SEC_LINK_DUPLICATES_SAME_SIZE:
12411 if (sec->size != l->sec->size)
12412 (*_bfd_error_handler)
12413 (_("%B: duplicate section `%A' has different size"),
12414 abfd, sec);
12415 break;
12416
12417 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12418 if (sec->size != l->sec->size)
12419 (*_bfd_error_handler)
12420 (_("%B: duplicate section `%A' has different size"),
12421 abfd, sec);
12422 else if (sec->size != 0)
12423 {
12424 bfd_byte *sec_contents, *l_sec_contents;
12425
12426 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12427 (*_bfd_error_handler)
12428 (_("%B: warning: could not read contents of section `%A'"),
12429 abfd, sec);
12430 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12431 &l_sec_contents))
12432 (*_bfd_error_handler)
12433 (_("%B: warning: could not read contents of section `%A'"),
12434 l->sec->owner, l->sec);
12435 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12436 (*_bfd_error_handler)
12437 (_("%B: warning: duplicate section `%A' has different contents"),
12438 abfd, sec);
12439
12440 if (sec_contents)
12441 free (sec_contents);
12442 if (l_sec_contents)
12443 free (l_sec_contents);
12444 }
12445 break;
12446 }
12447
12448 /* Set the output_section field so that lang_add_section
12449 does not create a lang_input_section structure for this
12450 section. Since there might be a symbol in the section
12451 being discarded, we must retain a pointer to the section
12452 which we are really going to use. */
12453 sec->output_section = bfd_abs_section_ptr;
12454 sec->kept_section = l->sec;
12455
12456 if (flags & SEC_GROUP)
12457 {
12458 asection *first = elf_next_in_group (sec);
12459 asection *s = first;
12460
12461 while (s != NULL)
12462 {
12463 s->output_section = bfd_abs_section_ptr;
12464 /* Record which group discards it. */
12465 s->kept_section = l->sec;
12466 s = elf_next_in_group (s);
12467 /* These lists are circular. */
12468 if (s == first)
12469 break;
12470 }
12471 }
12472
12473 return;
12474 }
12475 }
12476
12477 /* A single member comdat group section may be discarded by a
12478 linkonce section and vice versa. */
12479
12480 if ((flags & SEC_GROUP) != 0)
12481 {
12482 asection *first = elf_next_in_group (sec);
12483
12484 if (first != NULL && elf_next_in_group (first) == first)
12485 /* Check this single member group against linkonce sections. */
12486 for (l = already_linked_list->entry; l != NULL; l = l->next)
12487 if ((l->sec->flags & SEC_GROUP) == 0
12488 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12489 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12490 {
12491 first->output_section = bfd_abs_section_ptr;
12492 first->kept_section = l->sec;
12493 sec->output_section = bfd_abs_section_ptr;
12494 break;
12495 }
12496 }
12497 else
12498 /* Check this linkonce section against single member groups. */
12499 for (l = already_linked_list->entry; l != NULL; l = l->next)
12500 if (l->sec->flags & SEC_GROUP)
12501 {
12502 asection *first = elf_next_in_group (l->sec);
12503
12504 if (first != NULL
12505 && elf_next_in_group (first) == first
12506 && bfd_elf_match_symbols_in_sections (first, sec, info))
12507 {
12508 sec->output_section = bfd_abs_section_ptr;
12509 sec->kept_section = first;
12510 break;
12511 }
12512 }
12513
12514 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12515 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12516 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12517 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12518 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12519 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12520 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12521 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12522 The reverse order cannot happen as there is never a bfd with only the
12523 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12524 matter as here were are looking only for cross-bfd sections. */
12525
12526 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12527 for (l = already_linked_list->entry; l != NULL; l = l->next)
12528 if ((l->sec->flags & SEC_GROUP) == 0
12529 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12530 {
12531 if (abfd != l->sec->owner)
12532 sec->output_section = bfd_abs_section_ptr;
12533 break;
12534 }
12535
12536 /* This is the first section with this name. Record it. */
12537 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12538 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12539 }
12540
12541 bfd_boolean
12542 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12543 {
12544 return sym->st_shndx == SHN_COMMON;
12545 }
12546
12547 unsigned int
12548 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12549 {
12550 return SHN_COMMON;
12551 }
12552
12553 asection *
12554 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12555 {
12556 return bfd_com_section_ptr;
12557 }
12558
12559 bfd_vma
12560 _bfd_elf_default_got_elt_size (bfd *abfd,
12561 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12562 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12563 bfd *ibfd ATTRIBUTE_UNUSED,
12564 unsigned long symndx ATTRIBUTE_UNUSED)
12565 {
12566 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12567 return bed->s->arch_size / 8;
12568 }
12569
12570 /* Routines to support the creation of dynamic relocs. */
12571
12572 /* Return true if NAME is a name of a relocation
12573 section associated with section S. */
12574
12575 static bfd_boolean
12576 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12577 {
12578 if (rela)
12579 return CONST_STRNEQ (name, ".rela")
12580 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12581
12582 return CONST_STRNEQ (name, ".rel")
12583 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12584 }
12585
12586 /* Returns the name of the dynamic reloc section associated with SEC. */
12587
12588 static const char *
12589 get_dynamic_reloc_section_name (bfd * abfd,
12590 asection * sec,
12591 bfd_boolean is_rela)
12592 {
12593 const char * name;
12594 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12595 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12596
12597 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12598 if (name == NULL)
12599 return NULL;
12600
12601 if (! is_reloc_section (is_rela, name, sec))
12602 {
12603 static bfd_boolean complained = FALSE;
12604
12605 if (! complained)
12606 {
12607 (*_bfd_error_handler)
12608 (_("%B: bad relocation section name `%s\'"), abfd, name);
12609 complained = TRUE;
12610 }
12611 name = NULL;
12612 }
12613
12614 return name;
12615 }
12616
12617 /* Returns the dynamic reloc section associated with SEC.
12618 If necessary compute the name of the dynamic reloc section based
12619 on SEC's name (looked up in ABFD's string table) and the setting
12620 of IS_RELA. */
12621
12622 asection *
12623 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12624 asection * sec,
12625 bfd_boolean is_rela)
12626 {
12627 asection * reloc_sec = elf_section_data (sec)->sreloc;
12628
12629 if (reloc_sec == NULL)
12630 {
12631 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12632
12633 if (name != NULL)
12634 {
12635 reloc_sec = bfd_get_section_by_name (abfd, name);
12636
12637 if (reloc_sec != NULL)
12638 elf_section_data (sec)->sreloc = reloc_sec;
12639 }
12640 }
12641
12642 return reloc_sec;
12643 }
12644
12645 /* Returns the dynamic reloc section associated with SEC. If the
12646 section does not exist it is created and attached to the DYNOBJ
12647 bfd and stored in the SRELOC field of SEC's elf_section_data
12648 structure.
12649
12650 ALIGNMENT is the alignment for the newly created section and
12651 IS_RELA defines whether the name should be .rela.<SEC's name>
12652 or .rel.<SEC's name>. The section name is looked up in the
12653 string table associated with ABFD. */
12654
12655 asection *
12656 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12657 bfd * dynobj,
12658 unsigned int alignment,
12659 bfd * abfd,
12660 bfd_boolean is_rela)
12661 {
12662 asection * reloc_sec = elf_section_data (sec)->sreloc;
12663
12664 if (reloc_sec == NULL)
12665 {
12666 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12667
12668 if (name == NULL)
12669 return NULL;
12670
12671 reloc_sec = bfd_get_section_by_name (dynobj, name);
12672
12673 if (reloc_sec == NULL)
12674 {
12675 flagword flags;
12676
12677 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12678 if ((sec->flags & SEC_ALLOC) != 0)
12679 flags |= SEC_ALLOC | SEC_LOAD;
12680
12681 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12682 if (reloc_sec != NULL)
12683 {
12684 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12685 reloc_sec = NULL;
12686 }
12687 }
12688
12689 elf_section_data (sec)->sreloc = reloc_sec;
12690 }
12691
12692 return reloc_sec;
12693 }
12694
12695 /* Copy the ELF symbol type associated with a linker hash entry. */
12696 void
12697 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12698 struct bfd_link_hash_entry * hdest,
12699 struct bfd_link_hash_entry * hsrc)
12700 {
12701 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12702 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12703
12704 ehdest->type = ehsrc->type;
12705 }
This page took 0.291358 seconds and 4 git commands to generate.