RISC-V: PR27158, fixed UJ/SB types and added CSS/CL/CS types for .insn.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 #ifdef HAVE_LIMITS_H
36 #include <limits.h>
37 #endif
38 #ifndef CHAR_BIT
39 #define CHAR_BIT 8
40 #endif
41
42 /* This struct is used to pass information to routines called via
43 elf_link_hash_traverse which must return failure. */
44
45 struct elf_info_failed
46 {
47 struct bfd_link_info *info;
48 bfd_boolean failed;
49 };
50
51 /* This structure is used to pass information to
52 _bfd_elf_link_find_version_dependencies. */
53
54 struct elf_find_verdep_info
55 {
56 /* General link information. */
57 struct bfd_link_info *info;
58 /* The number of dependencies. */
59 unsigned int vers;
60 /* Whether we had a failure. */
61 bfd_boolean failed;
62 };
63
64 static bfd_boolean _bfd_elf_fix_symbol_flags
65 (struct elf_link_hash_entry *, struct elf_info_failed *);
66
67 asection *
68 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
69 unsigned long r_symndx,
70 bfd_boolean discard)
71 {
72 if (r_symndx >= cookie->locsymcount
73 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
74 {
75 struct elf_link_hash_entry *h;
76
77 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
78
79 while (h->root.type == bfd_link_hash_indirect
80 || h->root.type == bfd_link_hash_warning)
81 h = (struct elf_link_hash_entry *) h->root.u.i.link;
82
83 if ((h->root.type == bfd_link_hash_defined
84 || h->root.type == bfd_link_hash_defweak)
85 && discarded_section (h->root.u.def.section))
86 return h->root.u.def.section;
87 else
88 return NULL;
89 }
90 else
91 {
92 /* It's not a relocation against a global symbol,
93 but it could be a relocation against a local
94 symbol for a discarded section. */
95 asection *isec;
96 Elf_Internal_Sym *isym;
97
98 /* Need to: get the symbol; get the section. */
99 isym = &cookie->locsyms[r_symndx];
100 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
101 if (isec != NULL
102 && discard ? discarded_section (isec) : 1)
103 return isec;
104 }
105 return NULL;
106 }
107
108 /* Define a symbol in a dynamic linkage section. */
109
110 struct elf_link_hash_entry *
111 _bfd_elf_define_linkage_sym (bfd *abfd,
112 struct bfd_link_info *info,
113 asection *sec,
114 const char *name)
115 {
116 struct elf_link_hash_entry *h;
117 struct bfd_link_hash_entry *bh;
118 const struct elf_backend_data *bed;
119
120 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
121 if (h != NULL)
122 {
123 /* Zap symbol defined in an as-needed lib that wasn't linked.
124 This is a symptom of a larger problem: Absolute symbols
125 defined in shared libraries can't be overridden, because we
126 lose the link to the bfd which is via the symbol section. */
127 h->root.type = bfd_link_hash_new;
128 bh = &h->root;
129 }
130 else
131 bh = NULL;
132
133 bed = get_elf_backend_data (abfd);
134 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
135 sec, 0, NULL, FALSE, bed->collect,
136 &bh))
137 return NULL;
138 h = (struct elf_link_hash_entry *) bh;
139 BFD_ASSERT (h != NULL);
140 h->def_regular = 1;
141 h->non_elf = 0;
142 h->root.linker_def = 1;
143 h->type = STT_OBJECT;
144 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
145 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
146
147 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
148 return h;
149 }
150
151 bfd_boolean
152 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
153 {
154 flagword flags;
155 asection *s;
156 struct elf_link_hash_entry *h;
157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
158 struct elf_link_hash_table *htab = elf_hash_table (info);
159
160 /* This function may be called more than once. */
161 if (htab->sgot != NULL)
162 return TRUE;
163
164 flags = bed->dynamic_sec_flags;
165
166 s = bfd_make_section_anyway_with_flags (abfd,
167 (bed->rela_plts_and_copies_p
168 ? ".rela.got" : ".rel.got"),
169 (bed->dynamic_sec_flags
170 | SEC_READONLY));
171 if (s == NULL
172 || !bfd_set_section_alignment (s, bed->s->log_file_align))
173 return FALSE;
174 htab->srelgot = s;
175
176 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (s, bed->s->log_file_align))
179 return FALSE;
180 htab->sgot = s;
181
182 if (bed->want_got_plt)
183 {
184 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
185 if (s == NULL
186 || !bfd_set_section_alignment (s, bed->s->log_file_align))
187 return FALSE;
188 htab->sgotplt = s;
189 }
190
191 /* The first bit of the global offset table is the header. */
192 s->size += bed->got_header_size;
193
194 if (bed->want_got_sym)
195 {
196 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
197 (or .got.plt) section. We don't do this in the linker script
198 because we don't want to define the symbol if we are not creating
199 a global offset table. */
200 h = _bfd_elf_define_linkage_sym (abfd, info, s,
201 "_GLOBAL_OFFSET_TABLE_");
202 elf_hash_table (info)->hgot = h;
203 if (h == NULL)
204 return FALSE;
205 }
206
207 return TRUE;
208 }
209 \f
210 /* Create a strtab to hold the dynamic symbol names. */
211 static bfd_boolean
212 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
213 {
214 struct elf_link_hash_table *hash_table;
215
216 hash_table = elf_hash_table (info);
217 if (hash_table->dynobj == NULL)
218 {
219 /* We may not set dynobj, an input file holding linker created
220 dynamic sections to abfd, which may be a dynamic object with
221 its own dynamic sections. We need to find a normal input file
222 to hold linker created sections if possible. */
223 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
224 {
225 bfd *ibfd;
226 asection *s;
227 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
228 if ((ibfd->flags
229 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
230 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
231 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
232 && !((s = ibfd->sections) != NULL
233 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
234 {
235 abfd = ibfd;
236 break;
237 }
238 }
239 hash_table->dynobj = abfd;
240 }
241
242 if (hash_table->dynstr == NULL)
243 {
244 hash_table->dynstr = _bfd_elf_strtab_init ();
245 if (hash_table->dynstr == NULL)
246 return FALSE;
247 }
248 return TRUE;
249 }
250
251 /* Create some sections which will be filled in with dynamic linking
252 information. ABFD is an input file which requires dynamic sections
253 to be created. The dynamic sections take up virtual memory space
254 when the final executable is run, so we need to create them before
255 addresses are assigned to the output sections. We work out the
256 actual contents and size of these sections later. */
257
258 bfd_boolean
259 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
260 {
261 flagword flags;
262 asection *s;
263 const struct elf_backend_data *bed;
264 struct elf_link_hash_entry *h;
265
266 if (! is_elf_hash_table (info->hash))
267 return FALSE;
268
269 if (elf_hash_table (info)->dynamic_sections_created)
270 return TRUE;
271
272 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
273 return FALSE;
274
275 abfd = elf_hash_table (info)->dynobj;
276 bed = get_elf_backend_data (abfd);
277
278 flags = bed->dynamic_sec_flags;
279
280 /* A dynamically linked executable has a .interp section, but a
281 shared library does not. */
282 if (bfd_link_executable (info) && !info->nointerp)
283 {
284 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288 }
289
290 /* Create sections to hold version informations. These are removed
291 if they are not needed. */
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || !bfd_set_section_alignment (s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || !bfd_set_section_alignment (s, 1))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || !bfd_set_section_alignment (s, bed->s->log_file_align))
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
311 flags | SEC_READONLY);
312 if (s == NULL
313 || !bfd_set_section_alignment (s, bed->s->log_file_align))
314 return FALSE;
315 elf_hash_table (info)->dynsym = s;
316
317 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
318 flags | SEC_READONLY);
319 if (s == NULL)
320 return FALSE;
321
322 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
323 if (s == NULL
324 || !bfd_set_section_alignment (s, bed->s->log_file_align))
325 return FALSE;
326
327 /* The special symbol _DYNAMIC is always set to the start of the
328 .dynamic section. We could set _DYNAMIC in a linker script, but we
329 only want to define it if we are, in fact, creating a .dynamic
330 section. We don't want to define it if there is no .dynamic
331 section, since on some ELF platforms the start up code examines it
332 to decide how to initialize the process. */
333 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
334 elf_hash_table (info)->hdynamic = h;
335 if (h == NULL)
336 return FALSE;
337
338 if (info->emit_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || !bfd_set_section_alignment (s, bed->s->log_file_align))
344 return FALSE;
345 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
346 }
347
348 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
349 {
350 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
351 flags | SEC_READONLY);
352 if (s == NULL
353 || !bfd_set_section_alignment (s, bed->s->log_file_align))
354 return FALSE;
355 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
356 4 32-bit words followed by variable count of 64-bit words, then
357 variable count of 32-bit words. */
358 if (bed->s->arch_size == 64)
359 elf_section_data (s)->this_hdr.sh_entsize = 0;
360 else
361 elf_section_data (s)->this_hdr.sh_entsize = 4;
362 }
363
364 /* Let the backend create the rest of the sections. This lets the
365 backend set the right flags. The backend will normally create
366 the .got and .plt sections. */
367 if (bed->elf_backend_create_dynamic_sections == NULL
368 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
369 return FALSE;
370
371 elf_hash_table (info)->dynamic_sections_created = TRUE;
372
373 return TRUE;
374 }
375
376 /* Create dynamic sections when linking against a dynamic object. */
377
378 bfd_boolean
379 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
380 {
381 flagword flags, pltflags;
382 struct elf_link_hash_entry *h;
383 asection *s;
384 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
385 struct elf_link_hash_table *htab = elf_hash_table (info);
386
387 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
388 .rel[a].bss sections. */
389 flags = bed->dynamic_sec_flags;
390
391 pltflags = flags;
392 if (bed->plt_not_loaded)
393 /* We do not clear SEC_ALLOC here because we still want the OS to
394 allocate space for the section; it's just that there's nothing
395 to read in from the object file. */
396 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
397 else
398 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
399 if (bed->plt_readonly)
400 pltflags |= SEC_READONLY;
401
402 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
403 if (s == NULL
404 || !bfd_set_section_alignment (s, bed->plt_alignment))
405 return FALSE;
406 htab->splt = s;
407
408 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
409 .plt section. */
410 if (bed->want_plt_sym)
411 {
412 h = _bfd_elf_define_linkage_sym (abfd, info, s,
413 "_PROCEDURE_LINKAGE_TABLE_");
414 elf_hash_table (info)->hplt = h;
415 if (h == NULL)
416 return FALSE;
417 }
418
419 s = bfd_make_section_anyway_with_flags (abfd,
420 (bed->rela_plts_and_copies_p
421 ? ".rela.plt" : ".rel.plt"),
422 flags | SEC_READONLY);
423 if (s == NULL
424 || !bfd_set_section_alignment (s, bed->s->log_file_align))
425 return FALSE;
426 htab->srelplt = s;
427
428 if (! _bfd_elf_create_got_section (abfd, info))
429 return FALSE;
430
431 if (bed->want_dynbss)
432 {
433 /* The .dynbss section is a place to put symbols which are defined
434 by dynamic objects, are referenced by regular objects, and are
435 not functions. We must allocate space for them in the process
436 image and use a R_*_COPY reloc to tell the dynamic linker to
437 initialize them at run time. The linker script puts the .dynbss
438 section into the .bss section of the final image. */
439 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
440 SEC_ALLOC | SEC_LINKER_CREATED);
441 if (s == NULL)
442 return FALSE;
443 htab->sdynbss = s;
444
445 if (bed->want_dynrelro)
446 {
447 /* Similarly, but for symbols that were originally in read-only
448 sections. This section doesn't really need to have contents,
449 but make it like other .data.rel.ro sections. */
450 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 flags);
452 if (s == NULL)
453 return FALSE;
454 htab->sdynrelro = s;
455 }
456
457 /* The .rel[a].bss section holds copy relocs. This section is not
458 normally needed. We need to create it here, though, so that the
459 linker will map it to an output section. We can't just create it
460 only if we need it, because we will not know whether we need it
461 until we have seen all the input files, and the first time the
462 main linker code calls BFD after examining all the input files
463 (size_dynamic_sections) the input sections have already been
464 mapped to the output sections. If the section turns out not to
465 be needed, we can discard it later. We will never need this
466 section when generating a shared object, since they do not use
467 copy relocs. */
468 if (bfd_link_executable (info))
469 {
470 s = bfd_make_section_anyway_with_flags (abfd,
471 (bed->rela_plts_and_copies_p
472 ? ".rela.bss" : ".rel.bss"),
473 flags | SEC_READONLY);
474 if (s == NULL
475 || !bfd_set_section_alignment (s, bed->s->log_file_align))
476 return FALSE;
477 htab->srelbss = s;
478
479 if (bed->want_dynrelro)
480 {
481 s = (bfd_make_section_anyway_with_flags
482 (abfd, (bed->rela_plts_and_copies_p
483 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
484 flags | SEC_READONLY));
485 if (s == NULL
486 || !bfd_set_section_alignment (s, bed->s->log_file_align))
487 return FALSE;
488 htab->sreldynrelro = s;
489 }
490 }
491 }
492
493 return TRUE;
494 }
495 \f
496 /* Record a new dynamic symbol. We record the dynamic symbols as we
497 read the input files, since we need to have a list of all of them
498 before we can determine the final sizes of the output sections.
499 Note that we may actually call this function even though we are not
500 going to output any dynamic symbols; in some cases we know that a
501 symbol should be in the dynamic symbol table, but only if there is
502 one. */
503
504 bfd_boolean
505 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
506 struct elf_link_hash_entry *h)
507 {
508 if (h->dynindx == -1)
509 {
510 struct elf_strtab_hash *dynstr;
511 char *p;
512 const char *name;
513 size_t indx;
514
515 if (h->root.type == bfd_link_hash_defined
516 || h->root.type == bfd_link_hash_defweak)
517 {
518 /* An IR symbol should not be made dynamic. */
519 if (h->root.u.def.section != NULL
520 && h->root.u.def.section->owner != NULL
521 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
522 return TRUE;
523 }
524
525 /* XXX: The ABI draft says the linker must turn hidden and
526 internal symbols into STB_LOCAL symbols when producing the
527 DSO. However, if ld.so honors st_other in the dynamic table,
528 this would not be necessary. */
529 switch (ELF_ST_VISIBILITY (h->other))
530 {
531 case STV_INTERNAL:
532 case STV_HIDDEN:
533 if (h->root.type != bfd_link_hash_undefined
534 && h->root.type != bfd_link_hash_undefweak)
535 {
536 h->forced_local = 1;
537 if (!elf_hash_table (info)->is_relocatable_executable
538 || ((h->root.type == bfd_link_hash_defined
539 || h->root.type == bfd_link_hash_defweak)
540 && h->root.u.def.section->owner != NULL
541 && h->root.u.def.section->owner->no_export)
542 || (h->root.type == bfd_link_hash_common
543 && h->root.u.c.p->section->owner != NULL
544 && h->root.u.c.p->section->owner->no_export))
545 return TRUE;
546 }
547
548 default:
549 break;
550 }
551
552 h->dynindx = elf_hash_table (info)->dynsymcount;
553 ++elf_hash_table (info)->dynsymcount;
554
555 dynstr = elf_hash_table (info)->dynstr;
556 if (dynstr == NULL)
557 {
558 /* Create a strtab to hold the dynamic symbol names. */
559 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
560 if (dynstr == NULL)
561 return FALSE;
562 }
563
564 /* We don't put any version information in the dynamic string
565 table. */
566 name = h->root.root.string;
567 p = strchr (name, ELF_VER_CHR);
568 if (p != NULL)
569 /* We know that the p points into writable memory. In fact,
570 there are only a few symbols that have read-only names, being
571 those like _GLOBAL_OFFSET_TABLE_ that are created specially
572 by the backends. Most symbols will have names pointing into
573 an ELF string table read from a file, or to objalloc memory. */
574 *p = 0;
575
576 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
577
578 if (p != NULL)
579 *p = ELF_VER_CHR;
580
581 if (indx == (size_t) -1)
582 return FALSE;
583 h->dynstr_index = indx;
584 }
585
586 return TRUE;
587 }
588 \f
589 /* Mark a symbol dynamic. */
590
591 static void
592 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
593 struct elf_link_hash_entry *h,
594 Elf_Internal_Sym *sym)
595 {
596 struct bfd_elf_dynamic_list *d = info->dynamic_list;
597
598 /* It may be called more than once on the same H. */
599 if(h->dynamic || bfd_link_relocatable (info))
600 return;
601
602 if ((info->dynamic_data
603 && (h->type == STT_OBJECT
604 || h->type == STT_COMMON
605 || (sym != NULL
606 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
607 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
608 || (d != NULL
609 && h->non_elf
610 && (*d->match) (&d->head, NULL, h->root.root.string)))
611 {
612 h->dynamic = 1;
613 /* NB: If a symbol is made dynamic by --dynamic-list, it has
614 non-IR reference. */
615 h->root.non_ir_ref_dynamic = 1;
616 }
617 }
618
619 /* Record an assignment to a symbol made by a linker script. We need
620 this in case some dynamic object refers to this symbol. */
621
622 bfd_boolean
623 bfd_elf_record_link_assignment (bfd *output_bfd,
624 struct bfd_link_info *info,
625 const char *name,
626 bfd_boolean provide,
627 bfd_boolean hidden)
628 {
629 struct elf_link_hash_entry *h, *hv;
630 struct elf_link_hash_table *htab;
631 const struct elf_backend_data *bed;
632
633 if (!is_elf_hash_table (info->hash))
634 return TRUE;
635
636 htab = elf_hash_table (info);
637 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
638 if (h == NULL)
639 return provide;
640
641 if (h->root.type == bfd_link_hash_warning)
642 h = (struct elf_link_hash_entry *) h->root.u.i.link;
643
644 if (h->versioned == unknown)
645 {
646 /* Set versioned if symbol version is unknown. */
647 char *version = strrchr (name, ELF_VER_CHR);
648 if (version)
649 {
650 if (version > name && version[-1] != ELF_VER_CHR)
651 h->versioned = versioned_hidden;
652 else
653 h->versioned = versioned;
654 }
655 }
656
657 /* Symbols defined in a linker script but not referenced anywhere
658 else will have non_elf set. */
659 if (h->non_elf)
660 {
661 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
662 h->non_elf = 0;
663 }
664
665 switch (h->root.type)
666 {
667 case bfd_link_hash_defined:
668 case bfd_link_hash_defweak:
669 case bfd_link_hash_common:
670 break;
671 case bfd_link_hash_undefweak:
672 case bfd_link_hash_undefined:
673 /* Since we're defining the symbol, don't let it seem to have not
674 been defined. record_dynamic_symbol and size_dynamic_sections
675 may depend on this. */
676 h->root.type = bfd_link_hash_new;
677 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
678 bfd_link_repair_undef_list (&htab->root);
679 break;
680 case bfd_link_hash_new:
681 break;
682 case bfd_link_hash_indirect:
683 /* We had a versioned symbol in a dynamic library. We make the
684 the versioned symbol point to this one. */
685 bed = get_elf_backend_data (output_bfd);
686 hv = h;
687 while (hv->root.type == bfd_link_hash_indirect
688 || hv->root.type == bfd_link_hash_warning)
689 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
690 /* We don't need to update h->root.u since linker will set them
691 later. */
692 h->root.type = bfd_link_hash_undefined;
693 hv->root.type = bfd_link_hash_indirect;
694 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
695 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
696 break;
697 default:
698 BFD_FAIL ();
699 return FALSE;
700 }
701
702 /* If this symbol is being provided by the linker script, and it is
703 currently defined by a dynamic object, but not by a regular
704 object, then mark it as undefined so that the generic linker will
705 force the correct value. */
706 if (provide
707 && h->def_dynamic
708 && !h->def_regular)
709 h->root.type = bfd_link_hash_undefined;
710
711 /* If this symbol is currently defined by a dynamic object, but not
712 by a regular object, then clear out any version information because
713 the symbol will not be associated with the dynamic object any
714 more. */
715 if (h->def_dynamic && !h->def_regular)
716 h->verinfo.verdef = NULL;
717
718 /* Make sure this symbol is not garbage collected. */
719 h->mark = 1;
720
721 h->def_regular = 1;
722
723 if (hidden)
724 {
725 bed = get_elf_backend_data (output_bfd);
726 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
727 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
728 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
729 }
730
731 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
732 and executables. */
733 if (!bfd_link_relocatable (info)
734 && h->dynindx != -1
735 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
736 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
737 h->forced_local = 1;
738
739 if ((h->def_dynamic
740 || h->ref_dynamic
741 || bfd_link_dll (info)
742 || elf_hash_table (info)->is_relocatable_executable)
743 && !h->forced_local
744 && h->dynindx == -1)
745 {
746 if (! bfd_elf_link_record_dynamic_symbol (info, h))
747 return FALSE;
748
749 /* If this is a weak defined symbol, and we know a corresponding
750 real symbol from the same dynamic object, make sure the real
751 symbol is also made into a dynamic symbol. */
752 if (h->is_weakalias)
753 {
754 struct elf_link_hash_entry *def = weakdef (h);
755
756 if (def->dynindx == -1
757 && !bfd_elf_link_record_dynamic_symbol (info, def))
758 return FALSE;
759 }
760 }
761
762 return TRUE;
763 }
764
765 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
766 success, and 2 on a failure caused by attempting to record a symbol
767 in a discarded section, eg. a discarded link-once section symbol. */
768
769 int
770 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
771 bfd *input_bfd,
772 long input_indx)
773 {
774 size_t amt;
775 struct elf_link_local_dynamic_entry *entry;
776 struct elf_link_hash_table *eht;
777 struct elf_strtab_hash *dynstr;
778 size_t dynstr_index;
779 char *name;
780 Elf_External_Sym_Shndx eshndx;
781 char esym[sizeof (Elf64_External_Sym)];
782
783 if (! is_elf_hash_table (info->hash))
784 return 0;
785
786 /* See if the entry exists already. */
787 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
788 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
789 return 1;
790
791 amt = sizeof (*entry);
792 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
793 if (entry == NULL)
794 return 0;
795
796 /* Go find the symbol, so that we can find it's name. */
797 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
798 1, input_indx, &entry->isym, esym, &eshndx))
799 {
800 bfd_release (input_bfd, entry);
801 return 0;
802 }
803
804 if (entry->isym.st_shndx != SHN_UNDEF
805 && entry->isym.st_shndx < SHN_LORESERVE)
806 {
807 asection *s;
808
809 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
810 if (s == NULL || bfd_is_abs_section (s->output_section))
811 {
812 /* We can still bfd_release here as nothing has done another
813 bfd_alloc. We can't do this later in this function. */
814 bfd_release (input_bfd, entry);
815 return 2;
816 }
817 }
818
819 name = (bfd_elf_string_from_elf_section
820 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
821 entry->isym.st_name));
822
823 dynstr = elf_hash_table (info)->dynstr;
824 if (dynstr == NULL)
825 {
826 /* Create a strtab to hold the dynamic symbol names. */
827 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
828 if (dynstr == NULL)
829 return 0;
830 }
831
832 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
833 if (dynstr_index == (size_t) -1)
834 return 0;
835 entry->isym.st_name = dynstr_index;
836
837 eht = elf_hash_table (info);
838
839 entry->next = eht->dynlocal;
840 eht->dynlocal = entry;
841 entry->input_bfd = input_bfd;
842 entry->input_indx = input_indx;
843 eht->dynsymcount++;
844
845 /* Whatever binding the symbol had before, it's now local. */
846 entry->isym.st_info
847 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
848
849 /* The dynindx will be set at the end of size_dynamic_sections. */
850
851 return 1;
852 }
853
854 /* Return the dynindex of a local dynamic symbol. */
855
856 long
857 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
858 bfd *input_bfd,
859 long input_indx)
860 {
861 struct elf_link_local_dynamic_entry *e;
862
863 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
864 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
865 return e->dynindx;
866 return -1;
867 }
868
869 /* This function is used to renumber the dynamic symbols, if some of
870 them are removed because they are marked as local. This is called
871 via elf_link_hash_traverse. */
872
873 static bfd_boolean
874 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
875 void *data)
876 {
877 size_t *count = (size_t *) data;
878
879 if (h->forced_local)
880 return TRUE;
881
882 if (h->dynindx != -1)
883 h->dynindx = ++(*count);
884
885 return TRUE;
886 }
887
888
889 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
890 STB_LOCAL binding. */
891
892 static bfd_boolean
893 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
894 void *data)
895 {
896 size_t *count = (size_t *) data;
897
898 if (!h->forced_local)
899 return TRUE;
900
901 if (h->dynindx != -1)
902 h->dynindx = ++(*count);
903
904 return TRUE;
905 }
906
907 /* Return true if the dynamic symbol for a given section should be
908 omitted when creating a shared library. */
909 bfd_boolean
910 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
911 struct bfd_link_info *info,
912 asection *p)
913 {
914 struct elf_link_hash_table *htab;
915 asection *ip;
916
917 switch (elf_section_data (p)->this_hdr.sh_type)
918 {
919 case SHT_PROGBITS:
920 case SHT_NOBITS:
921 /* If sh_type is yet undecided, assume it could be
922 SHT_PROGBITS/SHT_NOBITS. */
923 case SHT_NULL:
924 htab = elf_hash_table (info);
925 if (htab->text_index_section != NULL)
926 return p != htab->text_index_section && p != htab->data_index_section;
927
928 return (htab->dynobj != NULL
929 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
930 && ip->output_section == p);
931
932 /* There shouldn't be section relative relocations
933 against any other section. */
934 default:
935 return TRUE;
936 }
937 }
938
939 bfd_boolean
940 _bfd_elf_omit_section_dynsym_all
941 (bfd *output_bfd ATTRIBUTE_UNUSED,
942 struct bfd_link_info *info ATTRIBUTE_UNUSED,
943 asection *p ATTRIBUTE_UNUSED)
944 {
945 return TRUE;
946 }
947
948 /* Assign dynsym indices. In a shared library we generate a section
949 symbol for each output section, which come first. Next come symbols
950 which have been forced to local binding. Then all of the back-end
951 allocated local dynamic syms, followed by the rest of the global
952 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
953 (This prevents the early call before elf_backend_init_index_section
954 and strip_excluded_output_sections setting dynindx for sections
955 that are stripped.) */
956
957 static unsigned long
958 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
959 struct bfd_link_info *info,
960 unsigned long *section_sym_count)
961 {
962 unsigned long dynsymcount = 0;
963 bfd_boolean do_sec = section_sym_count != NULL;
964
965 if (bfd_link_pic (info)
966 || elf_hash_table (info)->is_relocatable_executable)
967 {
968 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
969 asection *p;
970 for (p = output_bfd->sections; p ; p = p->next)
971 if ((p->flags & SEC_EXCLUDE) == 0
972 && (p->flags & SEC_ALLOC) != 0
973 && elf_hash_table (info)->dynamic_relocs
974 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
975 {
976 ++dynsymcount;
977 if (do_sec)
978 elf_section_data (p)->dynindx = dynsymcount;
979 }
980 else if (do_sec)
981 elf_section_data (p)->dynindx = 0;
982 }
983 if (do_sec)
984 *section_sym_count = dynsymcount;
985
986 elf_link_hash_traverse (elf_hash_table (info),
987 elf_link_renumber_local_hash_table_dynsyms,
988 &dynsymcount);
989
990 if (elf_hash_table (info)->dynlocal)
991 {
992 struct elf_link_local_dynamic_entry *p;
993 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
994 p->dynindx = ++dynsymcount;
995 }
996 elf_hash_table (info)->local_dynsymcount = dynsymcount;
997
998 elf_link_hash_traverse (elf_hash_table (info),
999 elf_link_renumber_hash_table_dynsyms,
1000 &dynsymcount);
1001
1002 /* There is an unused NULL entry at the head of the table which we
1003 must account for in our count even if the table is empty since it
1004 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1005 .dynamic section. */
1006 dynsymcount++;
1007
1008 elf_hash_table (info)->dynsymcount = dynsymcount;
1009 return dynsymcount;
1010 }
1011
1012 /* Merge st_other field. */
1013
1014 static void
1015 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1016 unsigned int st_other, asection *sec,
1017 bfd_boolean definition, bfd_boolean dynamic)
1018 {
1019 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1020
1021 /* If st_other has a processor-specific meaning, specific
1022 code might be needed here. */
1023 if (bed->elf_backend_merge_symbol_attribute)
1024 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1025 dynamic);
1026
1027 if (!dynamic)
1028 {
1029 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1030 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1031
1032 /* Keep the most constraining visibility. Leave the remainder
1033 of the st_other field to elf_backend_merge_symbol_attribute. */
1034 if (symvis - 1 < hvis - 1)
1035 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1036 }
1037 else if (definition
1038 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1039 && (sec->flags & SEC_READONLY) == 0)
1040 h->protected_def = 1;
1041 }
1042
1043 /* This function is called when we want to merge a new symbol with an
1044 existing symbol. It handles the various cases which arise when we
1045 find a definition in a dynamic object, or when there is already a
1046 definition in a dynamic object. The new symbol is described by
1047 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1048 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1049 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1050 of an old common symbol. We set OVERRIDE if the old symbol is
1051 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1052 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1053 to change. By OK to change, we mean that we shouldn't warn if the
1054 type or size does change. */
1055
1056 static bfd_boolean
1057 _bfd_elf_merge_symbol (bfd *abfd,
1058 struct bfd_link_info *info,
1059 const char *name,
1060 Elf_Internal_Sym *sym,
1061 asection **psec,
1062 bfd_vma *pvalue,
1063 struct elf_link_hash_entry **sym_hash,
1064 bfd **poldbfd,
1065 bfd_boolean *pold_weak,
1066 unsigned int *pold_alignment,
1067 bfd_boolean *skip,
1068 bfd **override,
1069 bfd_boolean *type_change_ok,
1070 bfd_boolean *size_change_ok,
1071 bfd_boolean *matched)
1072 {
1073 asection *sec, *oldsec;
1074 struct elf_link_hash_entry *h;
1075 struct elf_link_hash_entry *hi;
1076 struct elf_link_hash_entry *flip;
1077 int bind;
1078 bfd *oldbfd;
1079 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1080 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1081 const struct elf_backend_data *bed;
1082 char *new_version;
1083 bfd_boolean default_sym = *matched;
1084
1085 *skip = FALSE;
1086 *override = NULL;
1087
1088 sec = *psec;
1089 bind = ELF_ST_BIND (sym->st_info);
1090
1091 if (! bfd_is_und_section (sec))
1092 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1093 else
1094 h = ((struct elf_link_hash_entry *)
1095 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1096 if (h == NULL)
1097 return FALSE;
1098 *sym_hash = h;
1099
1100 bed = get_elf_backend_data (abfd);
1101
1102 /* NEW_VERSION is the symbol version of the new symbol. */
1103 if (h->versioned != unversioned)
1104 {
1105 /* Symbol version is unknown or versioned. */
1106 new_version = strrchr (name, ELF_VER_CHR);
1107 if (new_version)
1108 {
1109 if (h->versioned == unknown)
1110 {
1111 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1112 h->versioned = versioned_hidden;
1113 else
1114 h->versioned = versioned;
1115 }
1116 new_version += 1;
1117 if (new_version[0] == '\0')
1118 new_version = NULL;
1119 }
1120 else
1121 h->versioned = unversioned;
1122 }
1123 else
1124 new_version = NULL;
1125
1126 /* For merging, we only care about real symbols. But we need to make
1127 sure that indirect symbol dynamic flags are updated. */
1128 hi = h;
1129 while (h->root.type == bfd_link_hash_indirect
1130 || h->root.type == bfd_link_hash_warning)
1131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1132
1133 if (!*matched)
1134 {
1135 if (hi == h || h->root.type == bfd_link_hash_new)
1136 *matched = TRUE;
1137 else
1138 {
1139 /* OLD_HIDDEN is true if the existing symbol is only visible
1140 to the symbol with the same symbol version. NEW_HIDDEN is
1141 true if the new symbol is only visible to the symbol with
1142 the same symbol version. */
1143 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1144 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1145 if (!old_hidden && !new_hidden)
1146 /* The new symbol matches the existing symbol if both
1147 aren't hidden. */
1148 *matched = TRUE;
1149 else
1150 {
1151 /* OLD_VERSION is the symbol version of the existing
1152 symbol. */
1153 char *old_version;
1154
1155 if (h->versioned >= versioned)
1156 old_version = strrchr (h->root.root.string,
1157 ELF_VER_CHR) + 1;
1158 else
1159 old_version = NULL;
1160
1161 /* The new symbol matches the existing symbol if they
1162 have the same symbol version. */
1163 *matched = (old_version == new_version
1164 || (old_version != NULL
1165 && new_version != NULL
1166 && strcmp (old_version, new_version) == 0));
1167 }
1168 }
1169 }
1170
1171 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1172 existing symbol. */
1173
1174 oldbfd = NULL;
1175 oldsec = NULL;
1176 switch (h->root.type)
1177 {
1178 default:
1179 break;
1180
1181 case bfd_link_hash_undefined:
1182 case bfd_link_hash_undefweak:
1183 oldbfd = h->root.u.undef.abfd;
1184 break;
1185
1186 case bfd_link_hash_defined:
1187 case bfd_link_hash_defweak:
1188 oldbfd = h->root.u.def.section->owner;
1189 oldsec = h->root.u.def.section;
1190 break;
1191
1192 case bfd_link_hash_common:
1193 oldbfd = h->root.u.c.p->section->owner;
1194 oldsec = h->root.u.c.p->section;
1195 if (pold_alignment)
1196 *pold_alignment = h->root.u.c.p->alignment_power;
1197 break;
1198 }
1199 if (poldbfd && *poldbfd == NULL)
1200 *poldbfd = oldbfd;
1201
1202 /* Differentiate strong and weak symbols. */
1203 newweak = bind == STB_WEAK;
1204 oldweak = (h->root.type == bfd_link_hash_defweak
1205 || h->root.type == bfd_link_hash_undefweak);
1206 if (pold_weak)
1207 *pold_weak = oldweak;
1208
1209 /* We have to check it for every instance since the first few may be
1210 references and not all compilers emit symbol type for undefined
1211 symbols. */
1212 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1213
1214 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1215 respectively, is from a dynamic object. */
1216
1217 newdyn = (abfd->flags & DYNAMIC) != 0;
1218
1219 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1220 syms and defined syms in dynamic libraries respectively.
1221 ref_dynamic on the other hand can be set for a symbol defined in
1222 a dynamic library, and def_dynamic may not be set; When the
1223 definition in a dynamic lib is overridden by a definition in the
1224 executable use of the symbol in the dynamic lib becomes a
1225 reference to the executable symbol. */
1226 if (newdyn)
1227 {
1228 if (bfd_is_und_section (sec))
1229 {
1230 if (bind != STB_WEAK)
1231 {
1232 h->ref_dynamic_nonweak = 1;
1233 hi->ref_dynamic_nonweak = 1;
1234 }
1235 }
1236 else
1237 {
1238 /* Update the existing symbol only if they match. */
1239 if (*matched)
1240 h->dynamic_def = 1;
1241 hi->dynamic_def = 1;
1242 }
1243 }
1244
1245 /* If we just created the symbol, mark it as being an ELF symbol.
1246 Other than that, there is nothing to do--there is no merge issue
1247 with a newly defined symbol--so we just return. */
1248
1249 if (h->root.type == bfd_link_hash_new)
1250 {
1251 h->non_elf = 0;
1252 return TRUE;
1253 }
1254
1255 /* In cases involving weak versioned symbols, we may wind up trying
1256 to merge a symbol with itself. Catch that here, to avoid the
1257 confusion that results if we try to override a symbol with
1258 itself. The additional tests catch cases like
1259 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1260 dynamic object, which we do want to handle here. */
1261 if (abfd == oldbfd
1262 && (newweak || oldweak)
1263 && ((abfd->flags & DYNAMIC) == 0
1264 || !h->def_regular))
1265 return TRUE;
1266
1267 olddyn = FALSE;
1268 if (oldbfd != NULL)
1269 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1270 else if (oldsec != NULL)
1271 {
1272 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1273 indices used by MIPS ELF. */
1274 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1275 }
1276
1277 /* Handle a case where plugin_notice won't be called and thus won't
1278 set the non_ir_ref flags on the first pass over symbols. */
1279 if (oldbfd != NULL
1280 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1281 && newdyn != olddyn)
1282 {
1283 h->root.non_ir_ref_dynamic = TRUE;
1284 hi->root.non_ir_ref_dynamic = TRUE;
1285 }
1286
1287 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1288 respectively, appear to be a definition rather than reference. */
1289
1290 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1291
1292 olddef = (h->root.type != bfd_link_hash_undefined
1293 && h->root.type != bfd_link_hash_undefweak
1294 && h->root.type != bfd_link_hash_common);
1295
1296 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1297 respectively, appear to be a function. */
1298
1299 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1300 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1301
1302 oldfunc = (h->type != STT_NOTYPE
1303 && bed->is_function_type (h->type));
1304
1305 if (!(newfunc && oldfunc)
1306 && ELF_ST_TYPE (sym->st_info) != h->type
1307 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1308 && h->type != STT_NOTYPE
1309 && (newdef || bfd_is_com_section (sec))
1310 && (olddef || h->root.type == bfd_link_hash_common))
1311 {
1312 /* If creating a default indirect symbol ("foo" or "foo@") from
1313 a dynamic versioned definition ("foo@@") skip doing so if
1314 there is an existing regular definition with a different
1315 type. We don't want, for example, a "time" variable in the
1316 executable overriding a "time" function in a shared library. */
1317 if (newdyn
1318 && !olddyn)
1319 {
1320 *skip = TRUE;
1321 return TRUE;
1322 }
1323
1324 /* When adding a symbol from a regular object file after we have
1325 created indirect symbols, undo the indirection and any
1326 dynamic state. */
1327 if (hi != h
1328 && !newdyn
1329 && olddyn)
1330 {
1331 h = hi;
1332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1333 h->forced_local = 0;
1334 h->ref_dynamic = 0;
1335 h->def_dynamic = 0;
1336 h->dynamic_def = 0;
1337 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1338 {
1339 h->root.type = bfd_link_hash_undefined;
1340 h->root.u.undef.abfd = abfd;
1341 }
1342 else
1343 {
1344 h->root.type = bfd_link_hash_new;
1345 h->root.u.undef.abfd = NULL;
1346 }
1347 return TRUE;
1348 }
1349 }
1350
1351 /* Check TLS symbols. We don't check undefined symbols introduced
1352 by "ld -u" which have no type (and oldbfd NULL), and we don't
1353 check symbols from plugins because they also have no type. */
1354 if (oldbfd != NULL
1355 && (oldbfd->flags & BFD_PLUGIN) == 0
1356 && (abfd->flags & BFD_PLUGIN) == 0
1357 && ELF_ST_TYPE (sym->st_info) != h->type
1358 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1359 {
1360 bfd *ntbfd, *tbfd;
1361 bfd_boolean ntdef, tdef;
1362 asection *ntsec, *tsec;
1363
1364 if (h->type == STT_TLS)
1365 {
1366 ntbfd = abfd;
1367 ntsec = sec;
1368 ntdef = newdef;
1369 tbfd = oldbfd;
1370 tsec = oldsec;
1371 tdef = olddef;
1372 }
1373 else
1374 {
1375 ntbfd = oldbfd;
1376 ntsec = oldsec;
1377 ntdef = olddef;
1378 tbfd = abfd;
1379 tsec = sec;
1380 tdef = newdef;
1381 }
1382
1383 if (tdef && ntdef)
1384 _bfd_error_handler
1385 /* xgettext:c-format */
1386 (_("%s: TLS definition in %pB section %pA "
1387 "mismatches non-TLS definition in %pB section %pA"),
1388 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1389 else if (!tdef && !ntdef)
1390 _bfd_error_handler
1391 /* xgettext:c-format */
1392 (_("%s: TLS reference in %pB "
1393 "mismatches non-TLS reference in %pB"),
1394 h->root.root.string, tbfd, ntbfd);
1395 else if (tdef)
1396 _bfd_error_handler
1397 /* xgettext:c-format */
1398 (_("%s: TLS definition in %pB section %pA "
1399 "mismatches non-TLS reference in %pB"),
1400 h->root.root.string, tbfd, tsec, ntbfd);
1401 else
1402 _bfd_error_handler
1403 /* xgettext:c-format */
1404 (_("%s: TLS reference in %pB "
1405 "mismatches non-TLS definition in %pB section %pA"),
1406 h->root.root.string, tbfd, ntbfd, ntsec);
1407
1408 bfd_set_error (bfd_error_bad_value);
1409 return FALSE;
1410 }
1411
1412 /* If the old symbol has non-default visibility, we ignore the new
1413 definition from a dynamic object. */
1414 if (newdyn
1415 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1416 && !bfd_is_und_section (sec))
1417 {
1418 *skip = TRUE;
1419 /* Make sure this symbol is dynamic. */
1420 h->ref_dynamic = 1;
1421 hi->ref_dynamic = 1;
1422 /* A protected symbol has external availability. Make sure it is
1423 recorded as dynamic.
1424
1425 FIXME: Should we check type and size for protected symbol? */
1426 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1427 return bfd_elf_link_record_dynamic_symbol (info, h);
1428 else
1429 return TRUE;
1430 }
1431 else if (!newdyn
1432 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1433 && h->def_dynamic)
1434 {
1435 /* If the new symbol with non-default visibility comes from a
1436 relocatable file and the old definition comes from a dynamic
1437 object, we remove the old definition. */
1438 if (hi->root.type == bfd_link_hash_indirect)
1439 {
1440 /* Handle the case where the old dynamic definition is
1441 default versioned. We need to copy the symbol info from
1442 the symbol with default version to the normal one if it
1443 was referenced before. */
1444 if (h->ref_regular)
1445 {
1446 hi->root.type = h->root.type;
1447 h->root.type = bfd_link_hash_indirect;
1448 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1449
1450 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1451 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1452 {
1453 /* If the new symbol is hidden or internal, completely undo
1454 any dynamic link state. */
1455 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1456 h->forced_local = 0;
1457 h->ref_dynamic = 0;
1458 }
1459 else
1460 h->ref_dynamic = 1;
1461
1462 h->def_dynamic = 0;
1463 /* FIXME: Should we check type and size for protected symbol? */
1464 h->size = 0;
1465 h->type = 0;
1466
1467 h = hi;
1468 }
1469 else
1470 h = hi;
1471 }
1472
1473 /* If the old symbol was undefined before, then it will still be
1474 on the undefs list. If the new symbol is undefined or
1475 common, we can't make it bfd_link_hash_new here, because new
1476 undefined or common symbols will be added to the undefs list
1477 by _bfd_generic_link_add_one_symbol. Symbols may not be
1478 added twice to the undefs list. Also, if the new symbol is
1479 undefweak then we don't want to lose the strong undef. */
1480 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1481 {
1482 h->root.type = bfd_link_hash_undefined;
1483 h->root.u.undef.abfd = abfd;
1484 }
1485 else
1486 {
1487 h->root.type = bfd_link_hash_new;
1488 h->root.u.undef.abfd = NULL;
1489 }
1490
1491 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1492 {
1493 /* If the new symbol is hidden or internal, completely undo
1494 any dynamic link state. */
1495 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1496 h->forced_local = 0;
1497 h->ref_dynamic = 0;
1498 }
1499 else
1500 h->ref_dynamic = 1;
1501 h->def_dynamic = 0;
1502 /* FIXME: Should we check type and size for protected symbol? */
1503 h->size = 0;
1504 h->type = 0;
1505 return TRUE;
1506 }
1507
1508 /* If a new weak symbol definition comes from a regular file and the
1509 old symbol comes from a dynamic library, we treat the new one as
1510 strong. Similarly, an old weak symbol definition from a regular
1511 file is treated as strong when the new symbol comes from a dynamic
1512 library. Further, an old weak symbol from a dynamic library is
1513 treated as strong if the new symbol is from a dynamic library.
1514 This reflects the way glibc's ld.so works.
1515
1516 Also allow a weak symbol to override a linker script symbol
1517 defined by an early pass over the script. This is done so the
1518 linker knows the symbol is defined in an object file, for the
1519 DEFINED script function.
1520
1521 Do this before setting *type_change_ok or *size_change_ok so that
1522 we warn properly when dynamic library symbols are overridden. */
1523
1524 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1525 newweak = FALSE;
1526 if (olddef && newdyn)
1527 oldweak = FALSE;
1528
1529 /* Allow changes between different types of function symbol. */
1530 if (newfunc && oldfunc)
1531 *type_change_ok = TRUE;
1532
1533 /* It's OK to change the type if either the existing symbol or the
1534 new symbol is weak. A type change is also OK if the old symbol
1535 is undefined and the new symbol is defined. */
1536
1537 if (oldweak
1538 || newweak
1539 || (newdef
1540 && h->root.type == bfd_link_hash_undefined))
1541 *type_change_ok = TRUE;
1542
1543 /* It's OK to change the size if either the existing symbol or the
1544 new symbol is weak, or if the old symbol is undefined. */
1545
1546 if (*type_change_ok
1547 || h->root.type == bfd_link_hash_undefined)
1548 *size_change_ok = TRUE;
1549
1550 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1551 symbol, respectively, appears to be a common symbol in a dynamic
1552 object. If a symbol appears in an uninitialized section, and is
1553 not weak, and is not a function, then it may be a common symbol
1554 which was resolved when the dynamic object was created. We want
1555 to treat such symbols specially, because they raise special
1556 considerations when setting the symbol size: if the symbol
1557 appears as a common symbol in a regular object, and the size in
1558 the regular object is larger, we must make sure that we use the
1559 larger size. This problematic case can always be avoided in C,
1560 but it must be handled correctly when using Fortran shared
1561 libraries.
1562
1563 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1564 likewise for OLDDYNCOMMON and OLDDEF.
1565
1566 Note that this test is just a heuristic, and that it is quite
1567 possible to have an uninitialized symbol in a shared object which
1568 is really a definition, rather than a common symbol. This could
1569 lead to some minor confusion when the symbol really is a common
1570 symbol in some regular object. However, I think it will be
1571 harmless. */
1572
1573 if (newdyn
1574 && newdef
1575 && !newweak
1576 && (sec->flags & SEC_ALLOC) != 0
1577 && (sec->flags & SEC_LOAD) == 0
1578 && sym->st_size > 0
1579 && !newfunc)
1580 newdyncommon = TRUE;
1581 else
1582 newdyncommon = FALSE;
1583
1584 if (olddyn
1585 && olddef
1586 && h->root.type == bfd_link_hash_defined
1587 && h->def_dynamic
1588 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1589 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1590 && h->size > 0
1591 && !oldfunc)
1592 olddyncommon = TRUE;
1593 else
1594 olddyncommon = FALSE;
1595
1596 /* We now know everything about the old and new symbols. We ask the
1597 backend to check if we can merge them. */
1598 if (bed->merge_symbol != NULL)
1599 {
1600 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1601 return FALSE;
1602 sec = *psec;
1603 }
1604
1605 /* There are multiple definitions of a normal symbol. Skip the
1606 default symbol as well as definition from an IR object. */
1607 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1608 && !default_sym && h->def_regular
1609 && !(oldbfd != NULL
1610 && (oldbfd->flags & BFD_PLUGIN) != 0
1611 && (abfd->flags & BFD_PLUGIN) == 0))
1612 {
1613 /* Handle a multiple definition. */
1614 (*info->callbacks->multiple_definition) (info, &h->root,
1615 abfd, sec, *pvalue);
1616 *skip = TRUE;
1617 return TRUE;
1618 }
1619
1620 /* If both the old and the new symbols look like common symbols in a
1621 dynamic object, set the size of the symbol to the larger of the
1622 two. */
1623
1624 if (olddyncommon
1625 && newdyncommon
1626 && sym->st_size != h->size)
1627 {
1628 /* Since we think we have two common symbols, issue a multiple
1629 common warning if desired. Note that we only warn if the
1630 size is different. If the size is the same, we simply let
1631 the old symbol override the new one as normally happens with
1632 symbols defined in dynamic objects. */
1633
1634 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1635 bfd_link_hash_common, sym->st_size);
1636 if (sym->st_size > h->size)
1637 h->size = sym->st_size;
1638
1639 *size_change_ok = TRUE;
1640 }
1641
1642 /* If we are looking at a dynamic object, and we have found a
1643 definition, we need to see if the symbol was already defined by
1644 some other object. If so, we want to use the existing
1645 definition, and we do not want to report a multiple symbol
1646 definition error; we do this by clobbering *PSEC to be
1647 bfd_und_section_ptr.
1648
1649 We treat a common symbol as a definition if the symbol in the
1650 shared library is a function, since common symbols always
1651 represent variables; this can cause confusion in principle, but
1652 any such confusion would seem to indicate an erroneous program or
1653 shared library. We also permit a common symbol in a regular
1654 object to override a weak symbol in a shared object. */
1655
1656 if (newdyn
1657 && newdef
1658 && (olddef
1659 || (h->root.type == bfd_link_hash_common
1660 && (newweak || newfunc))))
1661 {
1662 *override = abfd;
1663 newdef = FALSE;
1664 newdyncommon = FALSE;
1665
1666 *psec = sec = bfd_und_section_ptr;
1667 *size_change_ok = TRUE;
1668
1669 /* If we get here when the old symbol is a common symbol, then
1670 we are explicitly letting it override a weak symbol or
1671 function in a dynamic object, and we don't want to warn about
1672 a type change. If the old symbol is a defined symbol, a type
1673 change warning may still be appropriate. */
1674
1675 if (h->root.type == bfd_link_hash_common)
1676 *type_change_ok = TRUE;
1677 }
1678
1679 /* Handle the special case of an old common symbol merging with a
1680 new symbol which looks like a common symbol in a shared object.
1681 We change *PSEC and *PVALUE to make the new symbol look like a
1682 common symbol, and let _bfd_generic_link_add_one_symbol do the
1683 right thing. */
1684
1685 if (newdyncommon
1686 && h->root.type == bfd_link_hash_common)
1687 {
1688 *override = oldbfd;
1689 newdef = FALSE;
1690 newdyncommon = FALSE;
1691 *pvalue = sym->st_size;
1692 *psec = sec = bed->common_section (oldsec);
1693 *size_change_ok = TRUE;
1694 }
1695
1696 /* Skip weak definitions of symbols that are already defined. */
1697 if (newdef && olddef && newweak)
1698 {
1699 /* Don't skip new non-IR weak syms. */
1700 if (!(oldbfd != NULL
1701 && (oldbfd->flags & BFD_PLUGIN) != 0
1702 && (abfd->flags & BFD_PLUGIN) == 0))
1703 {
1704 newdef = FALSE;
1705 *skip = TRUE;
1706 }
1707
1708 /* Merge st_other. If the symbol already has a dynamic index,
1709 but visibility says it should not be visible, turn it into a
1710 local symbol. */
1711 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1712 if (h->dynindx != -1)
1713 switch (ELF_ST_VISIBILITY (h->other))
1714 {
1715 case STV_INTERNAL:
1716 case STV_HIDDEN:
1717 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1718 break;
1719 }
1720 }
1721
1722 /* If the old symbol is from a dynamic object, and the new symbol is
1723 a definition which is not from a dynamic object, then the new
1724 symbol overrides the old symbol. Symbols from regular files
1725 always take precedence over symbols from dynamic objects, even if
1726 they are defined after the dynamic object in the link.
1727
1728 As above, we again permit a common symbol in a regular object to
1729 override a definition in a shared object if the shared object
1730 symbol is a function or is weak. */
1731
1732 flip = NULL;
1733 if (!newdyn
1734 && (newdef
1735 || (bfd_is_com_section (sec)
1736 && (oldweak || oldfunc)))
1737 && olddyn
1738 && olddef
1739 && h->def_dynamic)
1740 {
1741 /* Change the hash table entry to undefined, and let
1742 _bfd_generic_link_add_one_symbol do the right thing with the
1743 new definition. */
1744
1745 h->root.type = bfd_link_hash_undefined;
1746 h->root.u.undef.abfd = h->root.u.def.section->owner;
1747 *size_change_ok = TRUE;
1748
1749 olddef = FALSE;
1750 olddyncommon = FALSE;
1751
1752 /* We again permit a type change when a common symbol may be
1753 overriding a function. */
1754
1755 if (bfd_is_com_section (sec))
1756 {
1757 if (oldfunc)
1758 {
1759 /* If a common symbol overrides a function, make sure
1760 that it isn't defined dynamically nor has type
1761 function. */
1762 h->def_dynamic = 0;
1763 h->type = STT_NOTYPE;
1764 }
1765 *type_change_ok = TRUE;
1766 }
1767
1768 if (hi->root.type == bfd_link_hash_indirect)
1769 flip = hi;
1770 else
1771 /* This union may have been set to be non-NULL when this symbol
1772 was seen in a dynamic object. We must force the union to be
1773 NULL, so that it is correct for a regular symbol. */
1774 h->verinfo.vertree = NULL;
1775 }
1776
1777 /* Handle the special case of a new common symbol merging with an
1778 old symbol that looks like it might be a common symbol defined in
1779 a shared object. Note that we have already handled the case in
1780 which a new common symbol should simply override the definition
1781 in the shared library. */
1782
1783 if (! newdyn
1784 && bfd_is_com_section (sec)
1785 && olddyncommon)
1786 {
1787 /* It would be best if we could set the hash table entry to a
1788 common symbol, but we don't know what to use for the section
1789 or the alignment. */
1790 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1791 bfd_link_hash_common, sym->st_size);
1792
1793 /* If the presumed common symbol in the dynamic object is
1794 larger, pretend that the new symbol has its size. */
1795
1796 if (h->size > *pvalue)
1797 *pvalue = h->size;
1798
1799 /* We need to remember the alignment required by the symbol
1800 in the dynamic object. */
1801 BFD_ASSERT (pold_alignment);
1802 *pold_alignment = h->root.u.def.section->alignment_power;
1803
1804 olddef = FALSE;
1805 olddyncommon = FALSE;
1806
1807 h->root.type = bfd_link_hash_undefined;
1808 h->root.u.undef.abfd = h->root.u.def.section->owner;
1809
1810 *size_change_ok = TRUE;
1811 *type_change_ok = TRUE;
1812
1813 if (hi->root.type == bfd_link_hash_indirect)
1814 flip = hi;
1815 else
1816 h->verinfo.vertree = NULL;
1817 }
1818
1819 if (flip != NULL)
1820 {
1821 /* Handle the case where we had a versioned symbol in a dynamic
1822 library and now find a definition in a normal object. In this
1823 case, we make the versioned symbol point to the normal one. */
1824 flip->root.type = h->root.type;
1825 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1826 h->root.type = bfd_link_hash_indirect;
1827 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1828 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1829 if (h->def_dynamic)
1830 {
1831 h->def_dynamic = 0;
1832 flip->ref_dynamic = 1;
1833 }
1834 }
1835
1836 return TRUE;
1837 }
1838
1839 /* This function is called to create an indirect symbol from the
1840 default for the symbol with the default version if needed. The
1841 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1842 set DYNSYM if the new indirect symbol is dynamic. */
1843
1844 static bfd_boolean
1845 _bfd_elf_add_default_symbol (bfd *abfd,
1846 struct bfd_link_info *info,
1847 struct elf_link_hash_entry *h,
1848 const char *name,
1849 Elf_Internal_Sym *sym,
1850 asection *sec,
1851 bfd_vma value,
1852 bfd **poldbfd,
1853 bfd_boolean *dynsym)
1854 {
1855 bfd_boolean type_change_ok;
1856 bfd_boolean size_change_ok;
1857 bfd_boolean skip;
1858 char *shortname;
1859 struct elf_link_hash_entry *hi;
1860 struct bfd_link_hash_entry *bh;
1861 const struct elf_backend_data *bed;
1862 bfd_boolean collect;
1863 bfd_boolean dynamic;
1864 bfd *override;
1865 char *p;
1866 size_t len, shortlen;
1867 asection *tmp_sec;
1868 bfd_boolean matched;
1869
1870 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1871 return TRUE;
1872
1873 /* If this symbol has a version, and it is the default version, we
1874 create an indirect symbol from the default name to the fully
1875 decorated name. This will cause external references which do not
1876 specify a version to be bound to this version of the symbol. */
1877 p = strchr (name, ELF_VER_CHR);
1878 if (h->versioned == unknown)
1879 {
1880 if (p == NULL)
1881 {
1882 h->versioned = unversioned;
1883 return TRUE;
1884 }
1885 else
1886 {
1887 if (p[1] != ELF_VER_CHR)
1888 {
1889 h->versioned = versioned_hidden;
1890 return TRUE;
1891 }
1892 else
1893 h->versioned = versioned;
1894 }
1895 }
1896 else
1897 {
1898 /* PR ld/19073: We may see an unversioned definition after the
1899 default version. */
1900 if (p == NULL)
1901 return TRUE;
1902 }
1903
1904 bed = get_elf_backend_data (abfd);
1905 collect = bed->collect;
1906 dynamic = (abfd->flags & DYNAMIC) != 0;
1907
1908 shortlen = p - name;
1909 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1910 if (shortname == NULL)
1911 return FALSE;
1912 memcpy (shortname, name, shortlen);
1913 shortname[shortlen] = '\0';
1914
1915 /* We are going to create a new symbol. Merge it with any existing
1916 symbol with this name. For the purposes of the merge, act as
1917 though we were defining the symbol we just defined, although we
1918 actually going to define an indirect symbol. */
1919 type_change_ok = FALSE;
1920 size_change_ok = FALSE;
1921 matched = TRUE;
1922 tmp_sec = sec;
1923 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1924 &hi, poldbfd, NULL, NULL, &skip, &override,
1925 &type_change_ok, &size_change_ok, &matched))
1926 return FALSE;
1927
1928 if (skip)
1929 goto nondefault;
1930
1931 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1932 {
1933 /* If the undecorated symbol will have a version added by a
1934 script different to H, then don't indirect to/from the
1935 undecorated symbol. This isn't ideal because we may not yet
1936 have seen symbol versions, if given by a script on the
1937 command line rather than via --version-script. */
1938 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1939 {
1940 bfd_boolean hide;
1941
1942 hi->verinfo.vertree
1943 = bfd_find_version_for_sym (info->version_info,
1944 hi->root.root.string, &hide);
1945 if (hi->verinfo.vertree != NULL && hide)
1946 {
1947 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1948 goto nondefault;
1949 }
1950 }
1951 if (hi->verinfo.vertree != NULL
1952 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1953 goto nondefault;
1954 }
1955
1956 if (! override)
1957 {
1958 /* Add the default symbol if not performing a relocatable link. */
1959 if (! bfd_link_relocatable (info))
1960 {
1961 bh = &hi->root;
1962 if (bh->type == bfd_link_hash_defined
1963 && bh->u.def.section->owner != NULL
1964 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1965 {
1966 /* Mark the previous definition from IR object as
1967 undefined so that the generic linker will override
1968 it. */
1969 bh->type = bfd_link_hash_undefined;
1970 bh->u.undef.abfd = bh->u.def.section->owner;
1971 }
1972 if (! (_bfd_generic_link_add_one_symbol
1973 (info, abfd, shortname, BSF_INDIRECT,
1974 bfd_ind_section_ptr,
1975 0, name, FALSE, collect, &bh)))
1976 return FALSE;
1977 hi = (struct elf_link_hash_entry *) bh;
1978 }
1979 }
1980 else
1981 {
1982 /* In this case the symbol named SHORTNAME is overriding the
1983 indirect symbol we want to add. We were planning on making
1984 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1985 is the name without a version. NAME is the fully versioned
1986 name, and it is the default version.
1987
1988 Overriding means that we already saw a definition for the
1989 symbol SHORTNAME in a regular object, and it is overriding
1990 the symbol defined in the dynamic object.
1991
1992 When this happens, we actually want to change NAME, the
1993 symbol we just added, to refer to SHORTNAME. This will cause
1994 references to NAME in the shared object to become references
1995 to SHORTNAME in the regular object. This is what we expect
1996 when we override a function in a shared object: that the
1997 references in the shared object will be mapped to the
1998 definition in the regular object. */
1999
2000 while (hi->root.type == bfd_link_hash_indirect
2001 || hi->root.type == bfd_link_hash_warning)
2002 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2003
2004 h->root.type = bfd_link_hash_indirect;
2005 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2006 if (h->def_dynamic)
2007 {
2008 h->def_dynamic = 0;
2009 hi->ref_dynamic = 1;
2010 if (hi->ref_regular
2011 || hi->def_regular)
2012 {
2013 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2014 return FALSE;
2015 }
2016 }
2017
2018 /* Now set HI to H, so that the following code will set the
2019 other fields correctly. */
2020 hi = h;
2021 }
2022
2023 /* Check if HI is a warning symbol. */
2024 if (hi->root.type == bfd_link_hash_warning)
2025 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2026
2027 /* If there is a duplicate definition somewhere, then HI may not
2028 point to an indirect symbol. We will have reported an error to
2029 the user in that case. */
2030
2031 if (hi->root.type == bfd_link_hash_indirect)
2032 {
2033 struct elf_link_hash_entry *ht;
2034
2035 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2036 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2037
2038 /* If we first saw a reference to SHORTNAME with non-default
2039 visibility, merge that visibility to the @@VER symbol. */
2040 elf_merge_st_other (abfd, ht, hi->other, sec, TRUE, dynamic);
2041
2042 /* A reference to the SHORTNAME symbol from a dynamic library
2043 will be satisfied by the versioned symbol at runtime. In
2044 effect, we have a reference to the versioned symbol. */
2045 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2046 hi->dynamic_def |= ht->dynamic_def;
2047
2048 /* See if the new flags lead us to realize that the symbol must
2049 be dynamic. */
2050 if (! *dynsym)
2051 {
2052 if (! dynamic)
2053 {
2054 if (! bfd_link_executable (info)
2055 || hi->def_dynamic
2056 || hi->ref_dynamic)
2057 *dynsym = TRUE;
2058 }
2059 else
2060 {
2061 if (hi->ref_regular)
2062 *dynsym = TRUE;
2063 }
2064 }
2065 }
2066
2067 /* We also need to define an indirection from the nondefault version
2068 of the symbol. */
2069
2070 nondefault:
2071 len = strlen (name);
2072 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2073 if (shortname == NULL)
2074 return FALSE;
2075 memcpy (shortname, name, shortlen);
2076 memcpy (shortname + shortlen, p + 1, len - shortlen);
2077
2078 /* Once again, merge with any existing symbol. */
2079 type_change_ok = FALSE;
2080 size_change_ok = FALSE;
2081 tmp_sec = sec;
2082 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2083 &hi, poldbfd, NULL, NULL, &skip, &override,
2084 &type_change_ok, &size_change_ok, &matched))
2085 return FALSE;
2086
2087 if (skip)
2088 {
2089 if (!dynamic
2090 && h->root.type == bfd_link_hash_defweak
2091 && hi->root.type == bfd_link_hash_defined)
2092 {
2093 /* We are handling a weak sym@@ver and attempting to define
2094 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2095 new weak sym@ver because there is already a strong sym@ver.
2096 However, sym@ver and sym@@ver are really the same symbol.
2097 The existing strong sym@ver ought to override sym@@ver. */
2098 h->root.type = bfd_link_hash_defined;
2099 h->root.u.def.section = hi->root.u.def.section;
2100 h->root.u.def.value = hi->root.u.def.value;
2101 hi->root.type = bfd_link_hash_indirect;
2102 hi->root.u.i.link = &h->root;
2103 }
2104 else
2105 return TRUE;
2106 }
2107 else if (override)
2108 {
2109 /* Here SHORTNAME is a versioned name, so we don't expect to see
2110 the type of override we do in the case above unless it is
2111 overridden by a versioned definition. */
2112 if (hi->root.type != bfd_link_hash_defined
2113 && hi->root.type != bfd_link_hash_defweak)
2114 _bfd_error_handler
2115 /* xgettext:c-format */
2116 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2117 abfd, shortname);
2118 return TRUE;
2119 }
2120 else
2121 {
2122 bh = &hi->root;
2123 if (! (_bfd_generic_link_add_one_symbol
2124 (info, abfd, shortname, BSF_INDIRECT,
2125 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2126 return FALSE;
2127 hi = (struct elf_link_hash_entry *) bh;
2128 }
2129
2130 /* If there is a duplicate definition somewhere, then HI may not
2131 point to an indirect symbol. We will have reported an error
2132 to the user in that case. */
2133 if (hi->root.type == bfd_link_hash_indirect)
2134 {
2135 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2136 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2137 hi->dynamic_def |= h->dynamic_def;
2138
2139 /* If we first saw a reference to @VER symbol with
2140 non-default visibility, merge that visibility to the
2141 @@VER symbol. */
2142 elf_merge_st_other (abfd, h, hi->other, sec, TRUE, dynamic);
2143
2144 /* See if the new flags lead us to realize that the symbol
2145 must be dynamic. */
2146 if (! *dynsym)
2147 {
2148 if (! dynamic)
2149 {
2150 if (! bfd_link_executable (info)
2151 || hi->ref_dynamic)
2152 *dynsym = TRUE;
2153 }
2154 else
2155 {
2156 if (hi->ref_regular)
2157 *dynsym = TRUE;
2158 }
2159 }
2160 }
2161
2162 return TRUE;
2163 }
2164 \f
2165 /* This routine is used to export all defined symbols into the dynamic
2166 symbol table. It is called via elf_link_hash_traverse. */
2167
2168 static bfd_boolean
2169 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2170 {
2171 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2172
2173 /* Ignore indirect symbols. These are added by the versioning code. */
2174 if (h->root.type == bfd_link_hash_indirect)
2175 return TRUE;
2176
2177 /* Ignore this if we won't export it. */
2178 if (!eif->info->export_dynamic && !h->dynamic)
2179 return TRUE;
2180
2181 if (h->dynindx == -1
2182 && (h->def_regular || h->ref_regular)
2183 && ! bfd_hide_sym_by_version (eif->info->version_info,
2184 h->root.root.string))
2185 {
2186 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2187 {
2188 eif->failed = TRUE;
2189 return FALSE;
2190 }
2191 }
2192
2193 return TRUE;
2194 }
2195 \f
2196 /* Look through the symbols which are defined in other shared
2197 libraries and referenced here. Update the list of version
2198 dependencies. This will be put into the .gnu.version_r section.
2199 This function is called via elf_link_hash_traverse. */
2200
2201 static bfd_boolean
2202 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2203 void *data)
2204 {
2205 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2206 Elf_Internal_Verneed *t;
2207 Elf_Internal_Vernaux *a;
2208 size_t amt;
2209
2210 /* We only care about symbols defined in shared objects with version
2211 information. */
2212 if (!h->def_dynamic
2213 || h->def_regular
2214 || h->dynindx == -1
2215 || h->verinfo.verdef == NULL
2216 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2217 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2218 return TRUE;
2219
2220 /* See if we already know about this version. */
2221 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2222 t != NULL;
2223 t = t->vn_nextref)
2224 {
2225 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2226 continue;
2227
2228 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2229 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2230 return TRUE;
2231
2232 break;
2233 }
2234
2235 /* This is a new version. Add it to tree we are building. */
2236
2237 if (t == NULL)
2238 {
2239 amt = sizeof *t;
2240 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2241 if (t == NULL)
2242 {
2243 rinfo->failed = TRUE;
2244 return FALSE;
2245 }
2246
2247 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2248 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2249 elf_tdata (rinfo->info->output_bfd)->verref = t;
2250 }
2251
2252 amt = sizeof *a;
2253 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2254 if (a == NULL)
2255 {
2256 rinfo->failed = TRUE;
2257 return FALSE;
2258 }
2259
2260 /* Note that we are copying a string pointer here, and testing it
2261 above. If bfd_elf_string_from_elf_section is ever changed to
2262 discard the string data when low in memory, this will have to be
2263 fixed. */
2264 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2265
2266 a->vna_flags = h->verinfo.verdef->vd_flags;
2267 a->vna_nextptr = t->vn_auxptr;
2268
2269 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2270 ++rinfo->vers;
2271
2272 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2273
2274 t->vn_auxptr = a;
2275
2276 return TRUE;
2277 }
2278
2279 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2280 hidden. Set *T_P to NULL if there is no match. */
2281
2282 static bfd_boolean
2283 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2284 struct elf_link_hash_entry *h,
2285 const char *version_p,
2286 struct bfd_elf_version_tree **t_p,
2287 bfd_boolean *hide)
2288 {
2289 struct bfd_elf_version_tree *t;
2290
2291 /* Look for the version. If we find it, it is no longer weak. */
2292 for (t = info->version_info; t != NULL; t = t->next)
2293 {
2294 if (strcmp (t->name, version_p) == 0)
2295 {
2296 size_t len;
2297 char *alc;
2298 struct bfd_elf_version_expr *d;
2299
2300 len = version_p - h->root.root.string;
2301 alc = (char *) bfd_malloc (len);
2302 if (alc == NULL)
2303 return FALSE;
2304 memcpy (alc, h->root.root.string, len - 1);
2305 alc[len - 1] = '\0';
2306 if (alc[len - 2] == ELF_VER_CHR)
2307 alc[len - 2] = '\0';
2308
2309 h->verinfo.vertree = t;
2310 t->used = TRUE;
2311 d = NULL;
2312
2313 if (t->globals.list != NULL)
2314 d = (*t->match) (&t->globals, NULL, alc);
2315
2316 /* See if there is anything to force this symbol to
2317 local scope. */
2318 if (d == NULL && t->locals.list != NULL)
2319 {
2320 d = (*t->match) (&t->locals, NULL, alc);
2321 if (d != NULL
2322 && h->dynindx != -1
2323 && ! info->export_dynamic)
2324 *hide = TRUE;
2325 }
2326
2327 free (alc);
2328 break;
2329 }
2330 }
2331
2332 *t_p = t;
2333
2334 return TRUE;
2335 }
2336
2337 /* Return TRUE if the symbol H is hidden by version script. */
2338
2339 bfd_boolean
2340 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2341 struct elf_link_hash_entry *h)
2342 {
2343 const char *p;
2344 bfd_boolean hide = FALSE;
2345 const struct elf_backend_data *bed
2346 = get_elf_backend_data (info->output_bfd);
2347
2348 /* Version script only hides symbols defined in regular objects. */
2349 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2350 return TRUE;
2351
2352 p = strchr (h->root.root.string, ELF_VER_CHR);
2353 if (p != NULL && h->verinfo.vertree == NULL)
2354 {
2355 struct bfd_elf_version_tree *t;
2356
2357 ++p;
2358 if (*p == ELF_VER_CHR)
2359 ++p;
2360
2361 if (*p != '\0'
2362 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2363 && hide)
2364 {
2365 if (hide)
2366 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2367 return TRUE;
2368 }
2369 }
2370
2371 /* If we don't have a version for this symbol, see if we can find
2372 something. */
2373 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2374 {
2375 h->verinfo.vertree
2376 = bfd_find_version_for_sym (info->version_info,
2377 h->root.root.string, &hide);
2378 if (h->verinfo.vertree != NULL && hide)
2379 {
2380 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2381 return TRUE;
2382 }
2383 }
2384
2385 return FALSE;
2386 }
2387
2388 /* Figure out appropriate versions for all the symbols. We may not
2389 have the version number script until we have read all of the input
2390 files, so until that point we don't know which symbols should be
2391 local. This function is called via elf_link_hash_traverse. */
2392
2393 static bfd_boolean
2394 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2395 {
2396 struct elf_info_failed *sinfo;
2397 struct bfd_link_info *info;
2398 const struct elf_backend_data *bed;
2399 struct elf_info_failed eif;
2400 char *p;
2401 bfd_boolean hide;
2402
2403 sinfo = (struct elf_info_failed *) data;
2404 info = sinfo->info;
2405
2406 /* Fix the symbol flags. */
2407 eif.failed = FALSE;
2408 eif.info = info;
2409 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2410 {
2411 if (eif.failed)
2412 sinfo->failed = TRUE;
2413 return FALSE;
2414 }
2415
2416 bed = get_elf_backend_data (info->output_bfd);
2417
2418 /* We only need version numbers for symbols defined in regular
2419 objects. */
2420 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2421 {
2422 /* Hide symbols defined in discarded input sections. */
2423 if ((h->root.type == bfd_link_hash_defined
2424 || h->root.type == bfd_link_hash_defweak)
2425 && discarded_section (h->root.u.def.section))
2426 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2427 return TRUE;
2428 }
2429
2430 hide = FALSE;
2431 p = strchr (h->root.root.string, ELF_VER_CHR);
2432 if (p != NULL && h->verinfo.vertree == NULL)
2433 {
2434 struct bfd_elf_version_tree *t;
2435
2436 ++p;
2437 if (*p == ELF_VER_CHR)
2438 ++p;
2439
2440 /* If there is no version string, we can just return out. */
2441 if (*p == '\0')
2442 return TRUE;
2443
2444 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2445 {
2446 sinfo->failed = TRUE;
2447 return FALSE;
2448 }
2449
2450 if (hide)
2451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2452
2453 /* If we are building an application, we need to create a
2454 version node for this version. */
2455 if (t == NULL && bfd_link_executable (info))
2456 {
2457 struct bfd_elf_version_tree **pp;
2458 int version_index;
2459
2460 /* If we aren't going to export this symbol, we don't need
2461 to worry about it. */
2462 if (h->dynindx == -1)
2463 return TRUE;
2464
2465 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2466 sizeof *t);
2467 if (t == NULL)
2468 {
2469 sinfo->failed = TRUE;
2470 return FALSE;
2471 }
2472
2473 t->name = p;
2474 t->name_indx = (unsigned int) -1;
2475 t->used = TRUE;
2476
2477 version_index = 1;
2478 /* Don't count anonymous version tag. */
2479 if (sinfo->info->version_info != NULL
2480 && sinfo->info->version_info->vernum == 0)
2481 version_index = 0;
2482 for (pp = &sinfo->info->version_info;
2483 *pp != NULL;
2484 pp = &(*pp)->next)
2485 ++version_index;
2486 t->vernum = version_index;
2487
2488 *pp = t;
2489
2490 h->verinfo.vertree = t;
2491 }
2492 else if (t == NULL)
2493 {
2494 /* We could not find the version for a symbol when
2495 generating a shared archive. Return an error. */
2496 _bfd_error_handler
2497 /* xgettext:c-format */
2498 (_("%pB: version node not found for symbol %s"),
2499 info->output_bfd, h->root.root.string);
2500 bfd_set_error (bfd_error_bad_value);
2501 sinfo->failed = TRUE;
2502 return FALSE;
2503 }
2504 }
2505
2506 /* If we don't have a version for this symbol, see if we can find
2507 something. */
2508 if (!hide
2509 && h->verinfo.vertree == NULL
2510 && sinfo->info->version_info != NULL)
2511 {
2512 h->verinfo.vertree
2513 = bfd_find_version_for_sym (sinfo->info->version_info,
2514 h->root.root.string, &hide);
2515 if (h->verinfo.vertree != NULL && hide)
2516 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2517 }
2518
2519 return TRUE;
2520 }
2521 \f
2522 /* Read and swap the relocs from the section indicated by SHDR. This
2523 may be either a REL or a RELA section. The relocations are
2524 translated into RELA relocations and stored in INTERNAL_RELOCS,
2525 which should have already been allocated to contain enough space.
2526 The EXTERNAL_RELOCS are a buffer where the external form of the
2527 relocations should be stored.
2528
2529 Returns FALSE if something goes wrong. */
2530
2531 static bfd_boolean
2532 elf_link_read_relocs_from_section (bfd *abfd,
2533 asection *sec,
2534 Elf_Internal_Shdr *shdr,
2535 void *external_relocs,
2536 Elf_Internal_Rela *internal_relocs)
2537 {
2538 const struct elf_backend_data *bed;
2539 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2540 const bfd_byte *erela;
2541 const bfd_byte *erelaend;
2542 Elf_Internal_Rela *irela;
2543 Elf_Internal_Shdr *symtab_hdr;
2544 size_t nsyms;
2545
2546 /* Position ourselves at the start of the section. */
2547 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2548 return FALSE;
2549
2550 /* Read the relocations. */
2551 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2552 return FALSE;
2553
2554 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2555 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2556
2557 bed = get_elf_backend_data (abfd);
2558
2559 /* Convert the external relocations to the internal format. */
2560 if (shdr->sh_entsize == bed->s->sizeof_rel)
2561 swap_in = bed->s->swap_reloc_in;
2562 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2563 swap_in = bed->s->swap_reloca_in;
2564 else
2565 {
2566 bfd_set_error (bfd_error_wrong_format);
2567 return FALSE;
2568 }
2569
2570 erela = (const bfd_byte *) external_relocs;
2571 /* Setting erelaend like this and comparing with <= handles case of
2572 a fuzzed object with sh_size not a multiple of sh_entsize. */
2573 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2574 irela = internal_relocs;
2575 while (erela <= erelaend)
2576 {
2577 bfd_vma r_symndx;
2578
2579 (*swap_in) (abfd, erela, irela);
2580 r_symndx = ELF32_R_SYM (irela->r_info);
2581 if (bed->s->arch_size == 64)
2582 r_symndx >>= 24;
2583 if (nsyms > 0)
2584 {
2585 if ((size_t) r_symndx >= nsyms)
2586 {
2587 _bfd_error_handler
2588 /* xgettext:c-format */
2589 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2590 " for offset %#" PRIx64 " in section `%pA'"),
2591 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2592 (uint64_t) irela->r_offset, sec);
2593 bfd_set_error (bfd_error_bad_value);
2594 return FALSE;
2595 }
2596 }
2597 else if (r_symndx != STN_UNDEF)
2598 {
2599 _bfd_error_handler
2600 /* xgettext:c-format */
2601 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2602 " for offset %#" PRIx64 " in section `%pA'"
2603 " when the object file has no symbol table"),
2604 abfd, (uint64_t) r_symndx,
2605 (uint64_t) irela->r_offset, sec);
2606 bfd_set_error (bfd_error_bad_value);
2607 return FALSE;
2608 }
2609 irela += bed->s->int_rels_per_ext_rel;
2610 erela += shdr->sh_entsize;
2611 }
2612
2613 return TRUE;
2614 }
2615
2616 /* Read and swap the relocs for a section O. They may have been
2617 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2618 not NULL, they are used as buffers to read into. They are known to
2619 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2620 the return value is allocated using either malloc or bfd_alloc,
2621 according to the KEEP_MEMORY argument. If O has two relocation
2622 sections (both REL and RELA relocations), then the REL_HDR
2623 relocations will appear first in INTERNAL_RELOCS, followed by the
2624 RELA_HDR relocations. */
2625
2626 Elf_Internal_Rela *
2627 _bfd_elf_link_read_relocs (bfd *abfd,
2628 asection *o,
2629 void *external_relocs,
2630 Elf_Internal_Rela *internal_relocs,
2631 bfd_boolean keep_memory)
2632 {
2633 void *alloc1 = NULL;
2634 Elf_Internal_Rela *alloc2 = NULL;
2635 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2636 struct bfd_elf_section_data *esdo = elf_section_data (o);
2637 Elf_Internal_Rela *internal_rela_relocs;
2638
2639 if (esdo->relocs != NULL)
2640 return esdo->relocs;
2641
2642 if (o->reloc_count == 0)
2643 return NULL;
2644
2645 if (internal_relocs == NULL)
2646 {
2647 bfd_size_type size;
2648
2649 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2650 if (keep_memory)
2651 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2652 else
2653 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2654 if (internal_relocs == NULL)
2655 goto error_return;
2656 }
2657
2658 if (external_relocs == NULL)
2659 {
2660 bfd_size_type size = 0;
2661
2662 if (esdo->rel.hdr)
2663 size += esdo->rel.hdr->sh_size;
2664 if (esdo->rela.hdr)
2665 size += esdo->rela.hdr->sh_size;
2666
2667 alloc1 = bfd_malloc (size);
2668 if (alloc1 == NULL)
2669 goto error_return;
2670 external_relocs = alloc1;
2671 }
2672
2673 internal_rela_relocs = internal_relocs;
2674 if (esdo->rel.hdr)
2675 {
2676 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2677 external_relocs,
2678 internal_relocs))
2679 goto error_return;
2680 external_relocs = (((bfd_byte *) external_relocs)
2681 + esdo->rel.hdr->sh_size);
2682 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2683 * bed->s->int_rels_per_ext_rel);
2684 }
2685
2686 if (esdo->rela.hdr
2687 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2688 external_relocs,
2689 internal_rela_relocs)))
2690 goto error_return;
2691
2692 /* Cache the results for next time, if we can. */
2693 if (keep_memory)
2694 esdo->relocs = internal_relocs;
2695
2696 free (alloc1);
2697
2698 /* Don't free alloc2, since if it was allocated we are passing it
2699 back (under the name of internal_relocs). */
2700
2701 return internal_relocs;
2702
2703 error_return:
2704 free (alloc1);
2705 if (alloc2 != NULL)
2706 {
2707 if (keep_memory)
2708 bfd_release (abfd, alloc2);
2709 else
2710 free (alloc2);
2711 }
2712 return NULL;
2713 }
2714
2715 /* Compute the size of, and allocate space for, REL_HDR which is the
2716 section header for a section containing relocations for O. */
2717
2718 static bfd_boolean
2719 _bfd_elf_link_size_reloc_section (bfd *abfd,
2720 struct bfd_elf_section_reloc_data *reldata)
2721 {
2722 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2723
2724 /* That allows us to calculate the size of the section. */
2725 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2726
2727 /* The contents field must last into write_object_contents, so we
2728 allocate it with bfd_alloc rather than malloc. Also since we
2729 cannot be sure that the contents will actually be filled in,
2730 we zero the allocated space. */
2731 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2732 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2733 return FALSE;
2734
2735 if (reldata->hashes == NULL && reldata->count)
2736 {
2737 struct elf_link_hash_entry **p;
2738
2739 p = ((struct elf_link_hash_entry **)
2740 bfd_zmalloc (reldata->count * sizeof (*p)));
2741 if (p == NULL)
2742 return FALSE;
2743
2744 reldata->hashes = p;
2745 }
2746
2747 return TRUE;
2748 }
2749
2750 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2751 originated from the section given by INPUT_REL_HDR) to the
2752 OUTPUT_BFD. */
2753
2754 bfd_boolean
2755 _bfd_elf_link_output_relocs (bfd *output_bfd,
2756 asection *input_section,
2757 Elf_Internal_Shdr *input_rel_hdr,
2758 Elf_Internal_Rela *internal_relocs,
2759 struct elf_link_hash_entry **rel_hash
2760 ATTRIBUTE_UNUSED)
2761 {
2762 Elf_Internal_Rela *irela;
2763 Elf_Internal_Rela *irelaend;
2764 bfd_byte *erel;
2765 struct bfd_elf_section_reloc_data *output_reldata;
2766 asection *output_section;
2767 const struct elf_backend_data *bed;
2768 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2769 struct bfd_elf_section_data *esdo;
2770
2771 output_section = input_section->output_section;
2772
2773 bed = get_elf_backend_data (output_bfd);
2774 esdo = elf_section_data (output_section);
2775 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2776 {
2777 output_reldata = &esdo->rel;
2778 swap_out = bed->s->swap_reloc_out;
2779 }
2780 else if (esdo->rela.hdr
2781 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2782 {
2783 output_reldata = &esdo->rela;
2784 swap_out = bed->s->swap_reloca_out;
2785 }
2786 else
2787 {
2788 _bfd_error_handler
2789 /* xgettext:c-format */
2790 (_("%pB: relocation size mismatch in %pB section %pA"),
2791 output_bfd, input_section->owner, input_section);
2792 bfd_set_error (bfd_error_wrong_format);
2793 return FALSE;
2794 }
2795
2796 erel = output_reldata->hdr->contents;
2797 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2798 irela = internal_relocs;
2799 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2800 * bed->s->int_rels_per_ext_rel);
2801 while (irela < irelaend)
2802 {
2803 (*swap_out) (output_bfd, irela, erel);
2804 irela += bed->s->int_rels_per_ext_rel;
2805 erel += input_rel_hdr->sh_entsize;
2806 }
2807
2808 /* Bump the counter, so that we know where to add the next set of
2809 relocations. */
2810 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2811
2812 return TRUE;
2813 }
2814 \f
2815 /* Make weak undefined symbols in PIE dynamic. */
2816
2817 bfd_boolean
2818 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2819 struct elf_link_hash_entry *h)
2820 {
2821 if (bfd_link_pie (info)
2822 && h->dynindx == -1
2823 && h->root.type == bfd_link_hash_undefweak)
2824 return bfd_elf_link_record_dynamic_symbol (info, h);
2825
2826 return TRUE;
2827 }
2828
2829 /* Fix up the flags for a symbol. This handles various cases which
2830 can only be fixed after all the input files are seen. This is
2831 currently called by both adjust_dynamic_symbol and
2832 assign_sym_version, which is unnecessary but perhaps more robust in
2833 the face of future changes. */
2834
2835 static bfd_boolean
2836 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2837 struct elf_info_failed *eif)
2838 {
2839 const struct elf_backend_data *bed;
2840
2841 /* If this symbol was mentioned in a non-ELF file, try to set
2842 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2843 permit a non-ELF file to correctly refer to a symbol defined in
2844 an ELF dynamic object. */
2845 if (h->non_elf)
2846 {
2847 while (h->root.type == bfd_link_hash_indirect)
2848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2849
2850 if (h->root.type != bfd_link_hash_defined
2851 && h->root.type != bfd_link_hash_defweak)
2852 {
2853 h->ref_regular = 1;
2854 h->ref_regular_nonweak = 1;
2855 }
2856 else
2857 {
2858 if (h->root.u.def.section->owner != NULL
2859 && (bfd_get_flavour (h->root.u.def.section->owner)
2860 == bfd_target_elf_flavour))
2861 {
2862 h->ref_regular = 1;
2863 h->ref_regular_nonweak = 1;
2864 }
2865 else
2866 h->def_regular = 1;
2867 }
2868
2869 if (h->dynindx == -1
2870 && (h->def_dynamic
2871 || h->ref_dynamic))
2872 {
2873 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2874 {
2875 eif->failed = TRUE;
2876 return FALSE;
2877 }
2878 }
2879 }
2880 else
2881 {
2882 /* Unfortunately, NON_ELF is only correct if the symbol
2883 was first seen in a non-ELF file. Fortunately, if the symbol
2884 was first seen in an ELF file, we're probably OK unless the
2885 symbol was defined in a non-ELF file. Catch that case here.
2886 FIXME: We're still in trouble if the symbol was first seen in
2887 a dynamic object, and then later in a non-ELF regular object. */
2888 if ((h->root.type == bfd_link_hash_defined
2889 || h->root.type == bfd_link_hash_defweak)
2890 && !h->def_regular
2891 && (h->root.u.def.section->owner != NULL
2892 ? (bfd_get_flavour (h->root.u.def.section->owner)
2893 != bfd_target_elf_flavour)
2894 : (bfd_is_abs_section (h->root.u.def.section)
2895 && !h->def_dynamic)))
2896 h->def_regular = 1;
2897 }
2898
2899 /* Backend specific symbol fixup. */
2900 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2901 if (bed->elf_backend_fixup_symbol
2902 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2903 return FALSE;
2904
2905 /* If this is a final link, and the symbol was defined as a common
2906 symbol in a regular object file, and there was no definition in
2907 any dynamic object, then the linker will have allocated space for
2908 the symbol in a common section but the DEF_REGULAR
2909 flag will not have been set. */
2910 if (h->root.type == bfd_link_hash_defined
2911 && !h->def_regular
2912 && h->ref_regular
2913 && !h->def_dynamic
2914 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2915 h->def_regular = 1;
2916
2917 /* Symbols defined in discarded sections shouldn't be dynamic. */
2918 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2919 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2920
2921 /* If a weak undefined symbol has non-default visibility, we also
2922 hide it from the dynamic linker. */
2923 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2924 && h->root.type == bfd_link_hash_undefweak)
2925 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2926
2927 /* A hidden versioned symbol in executable should be forced local if
2928 it is is locally defined, not referenced by shared library and not
2929 exported. */
2930 else if (bfd_link_executable (eif->info)
2931 && h->versioned == versioned_hidden
2932 && !eif->info->export_dynamic
2933 && !h->dynamic
2934 && !h->ref_dynamic
2935 && h->def_regular)
2936 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2937
2938 /* If -Bsymbolic was used (which means to bind references to global
2939 symbols to the definition within the shared object), and this
2940 symbol was defined in a regular object, then it actually doesn't
2941 need a PLT entry. Likewise, if the symbol has non-default
2942 visibility. If the symbol has hidden or internal visibility, we
2943 will force it local. */
2944 else if (h->needs_plt
2945 && bfd_link_pic (eif->info)
2946 && is_elf_hash_table (eif->info->hash)
2947 && (SYMBOLIC_BIND (eif->info, h)
2948 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2949 && h->def_regular)
2950 {
2951 bfd_boolean force_local;
2952
2953 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2954 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2955 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2956 }
2957
2958 /* If this is a weak defined symbol in a dynamic object, and we know
2959 the real definition in the dynamic object, copy interesting flags
2960 over to the real definition. */
2961 if (h->is_weakalias)
2962 {
2963 struct elf_link_hash_entry *def = weakdef (h);
2964
2965 /* If the real definition is defined by a regular object file,
2966 don't do anything special. See the longer description in
2967 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2968 bfd_link_hash_defined as it was when put on the alias list
2969 then it must have originally been a versioned symbol (for
2970 which a non-versioned indirect symbol is created) and later
2971 a definition for the non-versioned symbol is found. In that
2972 case the indirection is flipped with the versioned symbol
2973 becoming an indirect pointing at the non-versioned symbol.
2974 Thus, not an alias any more. */
2975 if (def->def_regular
2976 || def->root.type != bfd_link_hash_defined)
2977 {
2978 h = def;
2979 while ((h = h->u.alias) != def)
2980 h->is_weakalias = 0;
2981 }
2982 else
2983 {
2984 while (h->root.type == bfd_link_hash_indirect)
2985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2986 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2987 || h->root.type == bfd_link_hash_defweak);
2988 BFD_ASSERT (def->def_dynamic);
2989 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2990 }
2991 }
2992
2993 return TRUE;
2994 }
2995
2996 /* Make the backend pick a good value for a dynamic symbol. This is
2997 called via elf_link_hash_traverse, and also calls itself
2998 recursively. */
2999
3000 static bfd_boolean
3001 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3002 {
3003 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3004 struct elf_link_hash_table *htab;
3005 const struct elf_backend_data *bed;
3006
3007 if (! is_elf_hash_table (eif->info->hash))
3008 return FALSE;
3009
3010 /* Ignore indirect symbols. These are added by the versioning code. */
3011 if (h->root.type == bfd_link_hash_indirect)
3012 return TRUE;
3013
3014 /* Fix the symbol flags. */
3015 if (! _bfd_elf_fix_symbol_flags (h, eif))
3016 return FALSE;
3017
3018 htab = elf_hash_table (eif->info);
3019 bed = get_elf_backend_data (htab->dynobj);
3020
3021 if (h->root.type == bfd_link_hash_undefweak)
3022 {
3023 if (eif->info->dynamic_undefined_weak == 0)
3024 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
3025 else if (eif->info->dynamic_undefined_weak > 0
3026 && h->ref_regular
3027 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3028 && !bfd_hide_sym_by_version (eif->info->version_info,
3029 h->root.root.string))
3030 {
3031 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3032 {
3033 eif->failed = TRUE;
3034 return FALSE;
3035 }
3036 }
3037 }
3038
3039 /* If this symbol does not require a PLT entry, and it is not
3040 defined by a dynamic object, or is not referenced by a regular
3041 object, ignore it. We do have to handle a weak defined symbol,
3042 even if no regular object refers to it, if we decided to add it
3043 to the dynamic symbol table. FIXME: Do we normally need to worry
3044 about symbols which are defined by one dynamic object and
3045 referenced by another one? */
3046 if (!h->needs_plt
3047 && h->type != STT_GNU_IFUNC
3048 && (h->def_regular
3049 || !h->def_dynamic
3050 || (!h->ref_regular
3051 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3052 {
3053 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3054 return TRUE;
3055 }
3056
3057 /* If we've already adjusted this symbol, don't do it again. This
3058 can happen via a recursive call. */
3059 if (h->dynamic_adjusted)
3060 return TRUE;
3061
3062 /* Don't look at this symbol again. Note that we must set this
3063 after checking the above conditions, because we may look at a
3064 symbol once, decide not to do anything, and then get called
3065 recursively later after REF_REGULAR is set below. */
3066 h->dynamic_adjusted = 1;
3067
3068 /* If this is a weak definition, and we know a real definition, and
3069 the real symbol is not itself defined by a regular object file,
3070 then get a good value for the real definition. We handle the
3071 real symbol first, for the convenience of the backend routine.
3072
3073 Note that there is a confusing case here. If the real definition
3074 is defined by a regular object file, we don't get the real symbol
3075 from the dynamic object, but we do get the weak symbol. If the
3076 processor backend uses a COPY reloc, then if some routine in the
3077 dynamic object changes the real symbol, we will not see that
3078 change in the corresponding weak symbol. This is the way other
3079 ELF linkers work as well, and seems to be a result of the shared
3080 library model.
3081
3082 I will clarify this issue. Most SVR4 shared libraries define the
3083 variable _timezone and define timezone as a weak synonym. The
3084 tzset call changes _timezone. If you write
3085 extern int timezone;
3086 int _timezone = 5;
3087 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3088 you might expect that, since timezone is a synonym for _timezone,
3089 the same number will print both times. However, if the processor
3090 backend uses a COPY reloc, then actually timezone will be copied
3091 into your process image, and, since you define _timezone
3092 yourself, _timezone will not. Thus timezone and _timezone will
3093 wind up at different memory locations. The tzset call will set
3094 _timezone, leaving timezone unchanged. */
3095
3096 if (h->is_weakalias)
3097 {
3098 struct elf_link_hash_entry *def = weakdef (h);
3099
3100 /* If we get to this point, there is an implicit reference to
3101 the alias by a regular object file via the weak symbol H. */
3102 def->ref_regular = 1;
3103
3104 /* Ensure that the backend adjust_dynamic_symbol function sees
3105 the strong alias before H by recursively calling ourselves. */
3106 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3107 return FALSE;
3108 }
3109
3110 /* If a symbol has no type and no size and does not require a PLT
3111 entry, then we are probably about to do the wrong thing here: we
3112 are probably going to create a COPY reloc for an empty object.
3113 This case can arise when a shared object is built with assembly
3114 code, and the assembly code fails to set the symbol type. */
3115 if (h->size == 0
3116 && h->type == STT_NOTYPE
3117 && !h->needs_plt)
3118 _bfd_error_handler
3119 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3120 h->root.root.string);
3121
3122 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3123 {
3124 eif->failed = TRUE;
3125 return FALSE;
3126 }
3127
3128 return TRUE;
3129 }
3130
3131 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3132 DYNBSS. */
3133
3134 bfd_boolean
3135 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3136 struct elf_link_hash_entry *h,
3137 asection *dynbss)
3138 {
3139 unsigned int power_of_two;
3140 bfd_vma mask;
3141 asection *sec = h->root.u.def.section;
3142
3143 /* The section alignment of the definition is the maximum alignment
3144 requirement of symbols defined in the section. Since we don't
3145 know the symbol alignment requirement, we start with the
3146 maximum alignment and check low bits of the symbol address
3147 for the minimum alignment. */
3148 power_of_two = bfd_section_alignment (sec);
3149 mask = ((bfd_vma) 1 << power_of_two) - 1;
3150 while ((h->root.u.def.value & mask) != 0)
3151 {
3152 mask >>= 1;
3153 --power_of_two;
3154 }
3155
3156 if (power_of_two > bfd_section_alignment (dynbss))
3157 {
3158 /* Adjust the section alignment if needed. */
3159 if (!bfd_set_section_alignment (dynbss, power_of_two))
3160 return FALSE;
3161 }
3162
3163 /* We make sure that the symbol will be aligned properly. */
3164 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3165
3166 /* Define the symbol as being at this point in DYNBSS. */
3167 h->root.u.def.section = dynbss;
3168 h->root.u.def.value = dynbss->size;
3169
3170 /* Increment the size of DYNBSS to make room for the symbol. */
3171 dynbss->size += h->size;
3172
3173 /* No error if extern_protected_data is true. */
3174 if (h->protected_def
3175 && (!info->extern_protected_data
3176 || (info->extern_protected_data < 0
3177 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3178 info->callbacks->einfo
3179 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3180 h->root.root.string);
3181
3182 return TRUE;
3183 }
3184
3185 /* Adjust all external symbols pointing into SEC_MERGE sections
3186 to reflect the object merging within the sections. */
3187
3188 static bfd_boolean
3189 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3190 {
3191 asection *sec;
3192
3193 if ((h->root.type == bfd_link_hash_defined
3194 || h->root.type == bfd_link_hash_defweak)
3195 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3196 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3197 {
3198 bfd *output_bfd = (bfd *) data;
3199
3200 h->root.u.def.value =
3201 _bfd_merged_section_offset (output_bfd,
3202 &h->root.u.def.section,
3203 elf_section_data (sec)->sec_info,
3204 h->root.u.def.value);
3205 }
3206
3207 return TRUE;
3208 }
3209
3210 /* Returns false if the symbol referred to by H should be considered
3211 to resolve local to the current module, and true if it should be
3212 considered to bind dynamically. */
3213
3214 bfd_boolean
3215 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3216 struct bfd_link_info *info,
3217 bfd_boolean not_local_protected)
3218 {
3219 bfd_boolean binding_stays_local_p;
3220 const struct elf_backend_data *bed;
3221 struct elf_link_hash_table *hash_table;
3222
3223 if (h == NULL)
3224 return FALSE;
3225
3226 while (h->root.type == bfd_link_hash_indirect
3227 || h->root.type == bfd_link_hash_warning)
3228 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3229
3230 /* If it was forced local, then clearly it's not dynamic. */
3231 if (h->dynindx == -1)
3232 return FALSE;
3233 if (h->forced_local)
3234 return FALSE;
3235
3236 /* Identify the cases where name binding rules say that a
3237 visible symbol resolves locally. */
3238 binding_stays_local_p = (bfd_link_executable (info)
3239 || SYMBOLIC_BIND (info, h));
3240
3241 switch (ELF_ST_VISIBILITY (h->other))
3242 {
3243 case STV_INTERNAL:
3244 case STV_HIDDEN:
3245 return FALSE;
3246
3247 case STV_PROTECTED:
3248 hash_table = elf_hash_table (info);
3249 if (!is_elf_hash_table (hash_table))
3250 return FALSE;
3251
3252 bed = get_elf_backend_data (hash_table->dynobj);
3253
3254 /* Proper resolution for function pointer equality may require
3255 that these symbols perhaps be resolved dynamically, even though
3256 we should be resolving them to the current module. */
3257 if (!not_local_protected || !bed->is_function_type (h->type))
3258 binding_stays_local_p = TRUE;
3259 break;
3260
3261 default:
3262 break;
3263 }
3264
3265 /* If it isn't defined locally, then clearly it's dynamic. */
3266 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3267 return TRUE;
3268
3269 /* Otherwise, the symbol is dynamic if binding rules don't tell
3270 us that it remains local. */
3271 return !binding_stays_local_p;
3272 }
3273
3274 /* Return true if the symbol referred to by H should be considered
3275 to resolve local to the current module, and false otherwise. Differs
3276 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3277 undefined symbols. The two functions are virtually identical except
3278 for the place where dynindx == -1 is tested. If that test is true,
3279 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3280 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3281 defined symbols.
3282 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3283 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3284 treatment of undefined weak symbols. For those that do not make
3285 undefined weak symbols dynamic, both functions may return false. */
3286
3287 bfd_boolean
3288 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3289 struct bfd_link_info *info,
3290 bfd_boolean local_protected)
3291 {
3292 const struct elf_backend_data *bed;
3293 struct elf_link_hash_table *hash_table;
3294
3295 /* If it's a local sym, of course we resolve locally. */
3296 if (h == NULL)
3297 return TRUE;
3298
3299 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3300 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3301 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3302 return TRUE;
3303
3304 /* Forced local symbols resolve locally. */
3305 if (h->forced_local)
3306 return TRUE;
3307
3308 /* Common symbols that become definitions don't get the DEF_REGULAR
3309 flag set, so test it first, and don't bail out. */
3310 if (ELF_COMMON_DEF_P (h))
3311 /* Do nothing. */;
3312 /* If we don't have a definition in a regular file, then we can't
3313 resolve locally. The sym is either undefined or dynamic. */
3314 else if (!h->def_regular)
3315 return FALSE;
3316
3317 /* Non-dynamic symbols resolve locally. */
3318 if (h->dynindx == -1)
3319 return TRUE;
3320
3321 /* At this point, we know the symbol is defined and dynamic. In an
3322 executable it must resolve locally, likewise when building symbolic
3323 shared libraries. */
3324 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3325 return TRUE;
3326
3327 /* Now deal with defined dynamic symbols in shared libraries. Ones
3328 with default visibility might not resolve locally. */
3329 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3330 return FALSE;
3331
3332 hash_table = elf_hash_table (info);
3333 if (!is_elf_hash_table (hash_table))
3334 return TRUE;
3335
3336 bed = get_elf_backend_data (hash_table->dynobj);
3337
3338 /* If extern_protected_data is false, STV_PROTECTED non-function
3339 symbols are local. */
3340 if ((!info->extern_protected_data
3341 || (info->extern_protected_data < 0
3342 && !bed->extern_protected_data))
3343 && !bed->is_function_type (h->type))
3344 return TRUE;
3345
3346 /* Function pointer equality tests may require that STV_PROTECTED
3347 symbols be treated as dynamic symbols. If the address of a
3348 function not defined in an executable is set to that function's
3349 plt entry in the executable, then the address of the function in
3350 a shared library must also be the plt entry in the executable. */
3351 return local_protected;
3352 }
3353
3354 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3355 aligned. Returns the first TLS output section. */
3356
3357 struct bfd_section *
3358 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3359 {
3360 struct bfd_section *sec, *tls;
3361 unsigned int align = 0;
3362
3363 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3364 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3365 break;
3366 tls = sec;
3367
3368 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3369 if (sec->alignment_power > align)
3370 align = sec->alignment_power;
3371
3372 elf_hash_table (info)->tls_sec = tls;
3373
3374 /* Ensure the alignment of the first section (usually .tdata) is the largest
3375 alignment, so that the tls segment starts aligned. */
3376 if (tls != NULL)
3377 tls->alignment_power = align;
3378
3379 return tls;
3380 }
3381
3382 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3383 static bfd_boolean
3384 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3385 Elf_Internal_Sym *sym)
3386 {
3387 const struct elf_backend_data *bed;
3388
3389 /* Local symbols do not count, but target specific ones might. */
3390 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3391 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3392 return FALSE;
3393
3394 bed = get_elf_backend_data (abfd);
3395 /* Function symbols do not count. */
3396 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3397 return FALSE;
3398
3399 /* If the section is undefined, then so is the symbol. */
3400 if (sym->st_shndx == SHN_UNDEF)
3401 return FALSE;
3402
3403 /* If the symbol is defined in the common section, then
3404 it is a common definition and so does not count. */
3405 if (bed->common_definition (sym))
3406 return FALSE;
3407
3408 /* If the symbol is in a target specific section then we
3409 must rely upon the backend to tell us what it is. */
3410 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3411 /* FIXME - this function is not coded yet:
3412
3413 return _bfd_is_global_symbol_definition (abfd, sym);
3414
3415 Instead for now assume that the definition is not global,
3416 Even if this is wrong, at least the linker will behave
3417 in the same way that it used to do. */
3418 return FALSE;
3419
3420 return TRUE;
3421 }
3422
3423 /* Search the symbol table of the archive element of the archive ABFD
3424 whose archive map contains a mention of SYMDEF, and determine if
3425 the symbol is defined in this element. */
3426 static bfd_boolean
3427 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3428 {
3429 Elf_Internal_Shdr * hdr;
3430 size_t symcount;
3431 size_t extsymcount;
3432 size_t extsymoff;
3433 Elf_Internal_Sym *isymbuf;
3434 Elf_Internal_Sym *isym;
3435 Elf_Internal_Sym *isymend;
3436 bfd_boolean result;
3437
3438 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3439 if (abfd == NULL)
3440 return FALSE;
3441
3442 if (! bfd_check_format (abfd, bfd_object))
3443 return FALSE;
3444
3445 /* Select the appropriate symbol table. If we don't know if the
3446 object file is an IR object, give linker LTO plugin a chance to
3447 get the correct symbol table. */
3448 if (abfd->plugin_format == bfd_plugin_yes
3449 #if BFD_SUPPORTS_PLUGINS
3450 || (abfd->plugin_format == bfd_plugin_unknown
3451 && bfd_link_plugin_object_p (abfd))
3452 #endif
3453 )
3454 {
3455 /* Use the IR symbol table if the object has been claimed by
3456 plugin. */
3457 abfd = abfd->plugin_dummy_bfd;
3458 hdr = &elf_tdata (abfd)->symtab_hdr;
3459 }
3460 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3461 hdr = &elf_tdata (abfd)->symtab_hdr;
3462 else
3463 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3464
3465 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3466
3467 /* The sh_info field of the symtab header tells us where the
3468 external symbols start. We don't care about the local symbols. */
3469 if (elf_bad_symtab (abfd))
3470 {
3471 extsymcount = symcount;
3472 extsymoff = 0;
3473 }
3474 else
3475 {
3476 extsymcount = symcount - hdr->sh_info;
3477 extsymoff = hdr->sh_info;
3478 }
3479
3480 if (extsymcount == 0)
3481 return FALSE;
3482
3483 /* Read in the symbol table. */
3484 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3485 NULL, NULL, NULL);
3486 if (isymbuf == NULL)
3487 return FALSE;
3488
3489 /* Scan the symbol table looking for SYMDEF. */
3490 result = FALSE;
3491 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3492 {
3493 const char *name;
3494
3495 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3496 isym->st_name);
3497 if (name == NULL)
3498 break;
3499
3500 if (strcmp (name, symdef->name) == 0)
3501 {
3502 result = is_global_data_symbol_definition (abfd, isym);
3503 break;
3504 }
3505 }
3506
3507 free (isymbuf);
3508
3509 return result;
3510 }
3511 \f
3512 /* Add an entry to the .dynamic table. */
3513
3514 bfd_boolean
3515 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3516 bfd_vma tag,
3517 bfd_vma val)
3518 {
3519 struct elf_link_hash_table *hash_table;
3520 const struct elf_backend_data *bed;
3521 asection *s;
3522 bfd_size_type newsize;
3523 bfd_byte *newcontents;
3524 Elf_Internal_Dyn dyn;
3525
3526 hash_table = elf_hash_table (info);
3527 if (! is_elf_hash_table (hash_table))
3528 return FALSE;
3529
3530 if (tag == DT_RELA || tag == DT_REL)
3531 hash_table->dynamic_relocs = TRUE;
3532
3533 bed = get_elf_backend_data (hash_table->dynobj);
3534 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3535 BFD_ASSERT (s != NULL);
3536
3537 newsize = s->size + bed->s->sizeof_dyn;
3538 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3539 if (newcontents == NULL)
3540 return FALSE;
3541
3542 dyn.d_tag = tag;
3543 dyn.d_un.d_val = val;
3544 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3545
3546 s->size = newsize;
3547 s->contents = newcontents;
3548
3549 return TRUE;
3550 }
3551
3552 /* Strip zero-sized dynamic sections. */
3553
3554 bfd_boolean
3555 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3556 {
3557 struct elf_link_hash_table *hash_table;
3558 const struct elf_backend_data *bed;
3559 asection *s, *sdynamic, **pp;
3560 asection *rela_dyn, *rel_dyn;
3561 Elf_Internal_Dyn dyn;
3562 bfd_byte *extdyn, *next;
3563 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3564 bfd_boolean strip_zero_sized;
3565 bfd_boolean strip_zero_sized_plt;
3566
3567 if (bfd_link_relocatable (info))
3568 return TRUE;
3569
3570 hash_table = elf_hash_table (info);
3571 if (!is_elf_hash_table (hash_table))
3572 return FALSE;
3573
3574 if (!hash_table->dynobj)
3575 return TRUE;
3576
3577 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3578 if (!sdynamic)
3579 return TRUE;
3580
3581 bed = get_elf_backend_data (hash_table->dynobj);
3582 swap_dyn_in = bed->s->swap_dyn_in;
3583
3584 strip_zero_sized = FALSE;
3585 strip_zero_sized_plt = FALSE;
3586
3587 /* Strip zero-sized dynamic sections. */
3588 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3589 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3590 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3591 if (s->size == 0
3592 && (s == rela_dyn
3593 || s == rel_dyn
3594 || s == hash_table->srelplt->output_section
3595 || s == hash_table->splt->output_section))
3596 {
3597 *pp = s->next;
3598 info->output_bfd->section_count--;
3599 strip_zero_sized = TRUE;
3600 if (s == rela_dyn)
3601 s = rela_dyn;
3602 if (s == rel_dyn)
3603 s = rel_dyn;
3604 else if (s == hash_table->splt->output_section)
3605 {
3606 s = hash_table->splt;
3607 strip_zero_sized_plt = TRUE;
3608 }
3609 else
3610 s = hash_table->srelplt;
3611 s->flags |= SEC_EXCLUDE;
3612 s->output_section = bfd_abs_section_ptr;
3613 }
3614 else
3615 pp = &s->next;
3616
3617 if (strip_zero_sized_plt)
3618 for (extdyn = sdynamic->contents;
3619 extdyn < sdynamic->contents + sdynamic->size;
3620 extdyn = next)
3621 {
3622 next = extdyn + bed->s->sizeof_dyn;
3623 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3624 switch (dyn.d_tag)
3625 {
3626 default:
3627 break;
3628 case DT_JMPREL:
3629 case DT_PLTRELSZ:
3630 case DT_PLTREL:
3631 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3632 the procedure linkage table (the .plt section) has been
3633 removed. */
3634 memmove (extdyn, next,
3635 sdynamic->size - (next - sdynamic->contents));
3636 next = extdyn;
3637 }
3638 }
3639
3640 if (strip_zero_sized)
3641 {
3642 /* Regenerate program headers. */
3643 elf_seg_map (info->output_bfd) = NULL;
3644 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3645 }
3646
3647 return TRUE;
3648 }
3649
3650 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3651 1 if a DT_NEEDED tag already exists, and 0 on success. */
3652
3653 int
3654 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3655 {
3656 struct elf_link_hash_table *hash_table;
3657 size_t strindex;
3658 const char *soname;
3659
3660 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3661 return -1;
3662
3663 hash_table = elf_hash_table (info);
3664 soname = elf_dt_name (abfd);
3665 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3666 if (strindex == (size_t) -1)
3667 return -1;
3668
3669 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3670 {
3671 asection *sdyn;
3672 const struct elf_backend_data *bed;
3673 bfd_byte *extdyn;
3674
3675 bed = get_elf_backend_data (hash_table->dynobj);
3676 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3677 if (sdyn != NULL)
3678 for (extdyn = sdyn->contents;
3679 extdyn < sdyn->contents + sdyn->size;
3680 extdyn += bed->s->sizeof_dyn)
3681 {
3682 Elf_Internal_Dyn dyn;
3683
3684 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3685 if (dyn.d_tag == DT_NEEDED
3686 && dyn.d_un.d_val == strindex)
3687 {
3688 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3689 return 1;
3690 }
3691 }
3692 }
3693
3694 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3695 return -1;
3696
3697 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3698 return -1;
3699
3700 return 0;
3701 }
3702
3703 /* Return true if SONAME is on the needed list between NEEDED and STOP
3704 (or the end of list if STOP is NULL), and needed by a library that
3705 will be loaded. */
3706
3707 static bfd_boolean
3708 on_needed_list (const char *soname,
3709 struct bfd_link_needed_list *needed,
3710 struct bfd_link_needed_list *stop)
3711 {
3712 struct bfd_link_needed_list *look;
3713 for (look = needed; look != stop; look = look->next)
3714 if (strcmp (soname, look->name) == 0
3715 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3716 /* If needed by a library that itself is not directly
3717 needed, recursively check whether that library is
3718 indirectly needed. Since we add DT_NEEDED entries to
3719 the end of the list, library dependencies appear after
3720 the library. Therefore search prior to the current
3721 LOOK, preventing possible infinite recursion. */
3722 || on_needed_list (elf_dt_name (look->by), needed, look)))
3723 return TRUE;
3724
3725 return FALSE;
3726 }
3727
3728 /* Sort symbol by value, section, size, and type. */
3729 static int
3730 elf_sort_symbol (const void *arg1, const void *arg2)
3731 {
3732 const struct elf_link_hash_entry *h1;
3733 const struct elf_link_hash_entry *h2;
3734 bfd_signed_vma vdiff;
3735 int sdiff;
3736 const char *n1;
3737 const char *n2;
3738
3739 h1 = *(const struct elf_link_hash_entry **) arg1;
3740 h2 = *(const struct elf_link_hash_entry **) arg2;
3741 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3742 if (vdiff != 0)
3743 return vdiff > 0 ? 1 : -1;
3744
3745 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3746 if (sdiff != 0)
3747 return sdiff;
3748
3749 /* Sort so that sized symbols are selected over zero size symbols. */
3750 vdiff = h1->size - h2->size;
3751 if (vdiff != 0)
3752 return vdiff > 0 ? 1 : -1;
3753
3754 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3755 if (h1->type != h2->type)
3756 return h1->type - h2->type;
3757
3758 /* If symbols are properly sized and typed, and multiple strong
3759 aliases are not defined in a shared library by the user we
3760 shouldn't get here. Unfortunately linker script symbols like
3761 __bss_start sometimes match a user symbol defined at the start of
3762 .bss without proper size and type. We'd like to preference the
3763 user symbol over reserved system symbols. Sort on leading
3764 underscores. */
3765 n1 = h1->root.root.string;
3766 n2 = h2->root.root.string;
3767 while (*n1 == *n2)
3768 {
3769 if (*n1 == 0)
3770 break;
3771 ++n1;
3772 ++n2;
3773 }
3774 if (*n1 == '_')
3775 return -1;
3776 if (*n2 == '_')
3777 return 1;
3778
3779 /* Final sort on name selects user symbols like '_u' over reserved
3780 system symbols like '_Z' and also will avoid qsort instability. */
3781 return *n1 - *n2;
3782 }
3783
3784 /* This function is used to adjust offsets into .dynstr for
3785 dynamic symbols. This is called via elf_link_hash_traverse. */
3786
3787 static bfd_boolean
3788 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3789 {
3790 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3791
3792 if (h->dynindx != -1)
3793 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3794 return TRUE;
3795 }
3796
3797 /* Assign string offsets in .dynstr, update all structures referencing
3798 them. */
3799
3800 static bfd_boolean
3801 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3804 struct elf_link_local_dynamic_entry *entry;
3805 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3806 bfd *dynobj = hash_table->dynobj;
3807 asection *sdyn;
3808 bfd_size_type size;
3809 const struct elf_backend_data *bed;
3810 bfd_byte *extdyn;
3811
3812 _bfd_elf_strtab_finalize (dynstr);
3813 size = _bfd_elf_strtab_size (dynstr);
3814
3815 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3816
3817 if (info->callbacks->examine_strtab)
3818 info->callbacks->examine_strtab (dynstr);
3819
3820 bed = get_elf_backend_data (dynobj);
3821 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3822 BFD_ASSERT (sdyn != NULL);
3823
3824 /* Update all .dynamic entries referencing .dynstr strings. */
3825 for (extdyn = sdyn->contents;
3826 extdyn < sdyn->contents + sdyn->size;
3827 extdyn += bed->s->sizeof_dyn)
3828 {
3829 Elf_Internal_Dyn dyn;
3830
3831 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3832 switch (dyn.d_tag)
3833 {
3834 case DT_STRSZ:
3835 dyn.d_un.d_val = size;
3836 break;
3837 case DT_NEEDED:
3838 case DT_SONAME:
3839 case DT_RPATH:
3840 case DT_RUNPATH:
3841 case DT_FILTER:
3842 case DT_AUXILIARY:
3843 case DT_AUDIT:
3844 case DT_DEPAUDIT:
3845 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3846 break;
3847 default:
3848 continue;
3849 }
3850 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3851 }
3852
3853 /* Now update local dynamic symbols. */
3854 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3855 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3856 entry->isym.st_name);
3857
3858 /* And the rest of dynamic symbols. */
3859 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3860
3861 /* Adjust version definitions. */
3862 if (elf_tdata (output_bfd)->cverdefs)
3863 {
3864 asection *s;
3865 bfd_byte *p;
3866 size_t i;
3867 Elf_Internal_Verdef def;
3868 Elf_Internal_Verdaux defaux;
3869
3870 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3871 p = s->contents;
3872 do
3873 {
3874 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3875 &def);
3876 p += sizeof (Elf_External_Verdef);
3877 if (def.vd_aux != sizeof (Elf_External_Verdef))
3878 continue;
3879 for (i = 0; i < def.vd_cnt; ++i)
3880 {
3881 _bfd_elf_swap_verdaux_in (output_bfd,
3882 (Elf_External_Verdaux *) p, &defaux);
3883 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3884 defaux.vda_name);
3885 _bfd_elf_swap_verdaux_out (output_bfd,
3886 &defaux, (Elf_External_Verdaux *) p);
3887 p += sizeof (Elf_External_Verdaux);
3888 }
3889 }
3890 while (def.vd_next);
3891 }
3892
3893 /* Adjust version references. */
3894 if (elf_tdata (output_bfd)->verref)
3895 {
3896 asection *s;
3897 bfd_byte *p;
3898 size_t i;
3899 Elf_Internal_Verneed need;
3900 Elf_Internal_Vernaux needaux;
3901
3902 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3903 p = s->contents;
3904 do
3905 {
3906 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3907 &need);
3908 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3909 _bfd_elf_swap_verneed_out (output_bfd, &need,
3910 (Elf_External_Verneed *) p);
3911 p += sizeof (Elf_External_Verneed);
3912 for (i = 0; i < need.vn_cnt; ++i)
3913 {
3914 _bfd_elf_swap_vernaux_in (output_bfd,
3915 (Elf_External_Vernaux *) p, &needaux);
3916 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3917 needaux.vna_name);
3918 _bfd_elf_swap_vernaux_out (output_bfd,
3919 &needaux,
3920 (Elf_External_Vernaux *) p);
3921 p += sizeof (Elf_External_Vernaux);
3922 }
3923 }
3924 while (need.vn_next);
3925 }
3926
3927 return TRUE;
3928 }
3929 \f
3930 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3931 The default is to only match when the INPUT and OUTPUT are exactly
3932 the same target. */
3933
3934 bfd_boolean
3935 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3936 const bfd_target *output)
3937 {
3938 return input == output;
3939 }
3940
3941 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3942 This version is used when different targets for the same architecture
3943 are virtually identical. */
3944
3945 bfd_boolean
3946 _bfd_elf_relocs_compatible (const bfd_target *input,
3947 const bfd_target *output)
3948 {
3949 const struct elf_backend_data *obed, *ibed;
3950
3951 if (input == output)
3952 return TRUE;
3953
3954 ibed = xvec_get_elf_backend_data (input);
3955 obed = xvec_get_elf_backend_data (output);
3956
3957 if (ibed->arch != obed->arch)
3958 return FALSE;
3959
3960 /* If both backends are using this function, deem them compatible. */
3961 return ibed->relocs_compatible == obed->relocs_compatible;
3962 }
3963
3964 /* Make a special call to the linker "notice" function to tell it that
3965 we are about to handle an as-needed lib, or have finished
3966 processing the lib. */
3967
3968 bfd_boolean
3969 _bfd_elf_notice_as_needed (bfd *ibfd,
3970 struct bfd_link_info *info,
3971 enum notice_asneeded_action act)
3972 {
3973 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3974 }
3975
3976 /* Check relocations an ELF object file. */
3977
3978 bfd_boolean
3979 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3980 {
3981 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3982 struct elf_link_hash_table *htab = elf_hash_table (info);
3983
3984 /* If this object is the same format as the output object, and it is
3985 not a shared library, then let the backend look through the
3986 relocs.
3987
3988 This is required to build global offset table entries and to
3989 arrange for dynamic relocs. It is not required for the
3990 particular common case of linking non PIC code, even when linking
3991 against shared libraries, but unfortunately there is no way of
3992 knowing whether an object file has been compiled PIC or not.
3993 Looking through the relocs is not particularly time consuming.
3994 The problem is that we must either (1) keep the relocs in memory,
3995 which causes the linker to require additional runtime memory or
3996 (2) read the relocs twice from the input file, which wastes time.
3997 This would be a good case for using mmap.
3998
3999 I have no idea how to handle linking PIC code into a file of a
4000 different format. It probably can't be done. */
4001 if ((abfd->flags & DYNAMIC) == 0
4002 && is_elf_hash_table (htab)
4003 && bed->check_relocs != NULL
4004 && elf_object_id (abfd) == elf_hash_table_id (htab)
4005 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4006 {
4007 asection *o;
4008
4009 for (o = abfd->sections; o != NULL; o = o->next)
4010 {
4011 Elf_Internal_Rela *internal_relocs;
4012 bfd_boolean ok;
4013
4014 /* Don't check relocations in excluded sections. Don't do
4015 anything special with non-loaded, non-alloced sections.
4016 In particular, any relocs in such sections should not
4017 affect GOT and PLT reference counting (ie. we don't
4018 allow them to create GOT or PLT entries), there's no
4019 possibility or desire to optimize TLS relocs, and
4020 there's not much point in propagating relocs to shared
4021 libs that the dynamic linker won't relocate. */
4022 if ((o->flags & SEC_ALLOC) == 0
4023 || (o->flags & SEC_RELOC) == 0
4024 || (o->flags & SEC_EXCLUDE) != 0
4025 || o->reloc_count == 0
4026 || ((info->strip == strip_all || info->strip == strip_debugger)
4027 && (o->flags & SEC_DEBUGGING) != 0)
4028 || bfd_is_abs_section (o->output_section))
4029 continue;
4030
4031 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4032 info->keep_memory);
4033 if (internal_relocs == NULL)
4034 return FALSE;
4035
4036 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4037
4038 if (elf_section_data (o)->relocs != internal_relocs)
4039 free (internal_relocs);
4040
4041 if (! ok)
4042 return FALSE;
4043 }
4044 }
4045
4046 return TRUE;
4047 }
4048
4049 /* Add symbols from an ELF object file to the linker hash table. */
4050
4051 static bfd_boolean
4052 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4053 {
4054 Elf_Internal_Ehdr *ehdr;
4055 Elf_Internal_Shdr *hdr;
4056 size_t symcount;
4057 size_t extsymcount;
4058 size_t extsymoff;
4059 struct elf_link_hash_entry **sym_hash;
4060 bfd_boolean dynamic;
4061 Elf_External_Versym *extversym = NULL;
4062 Elf_External_Versym *extversym_end = NULL;
4063 Elf_External_Versym *ever;
4064 struct elf_link_hash_entry *weaks;
4065 struct elf_link_hash_entry **nondeflt_vers = NULL;
4066 size_t nondeflt_vers_cnt = 0;
4067 Elf_Internal_Sym *isymbuf = NULL;
4068 Elf_Internal_Sym *isym;
4069 Elf_Internal_Sym *isymend;
4070 const struct elf_backend_data *bed;
4071 bfd_boolean add_needed;
4072 struct elf_link_hash_table *htab;
4073 void *alloc_mark = NULL;
4074 struct bfd_hash_entry **old_table = NULL;
4075 unsigned int old_size = 0;
4076 unsigned int old_count = 0;
4077 void *old_tab = NULL;
4078 void *old_ent;
4079 struct bfd_link_hash_entry *old_undefs = NULL;
4080 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4081 void *old_strtab = NULL;
4082 size_t tabsize = 0;
4083 asection *s;
4084 bfd_boolean just_syms;
4085
4086 htab = elf_hash_table (info);
4087 bed = get_elf_backend_data (abfd);
4088
4089 if ((abfd->flags & DYNAMIC) == 0)
4090 dynamic = FALSE;
4091 else
4092 {
4093 dynamic = TRUE;
4094
4095 /* You can't use -r against a dynamic object. Also, there's no
4096 hope of using a dynamic object which does not exactly match
4097 the format of the output file. */
4098 if (bfd_link_relocatable (info)
4099 || !is_elf_hash_table (htab)
4100 || info->output_bfd->xvec != abfd->xvec)
4101 {
4102 if (bfd_link_relocatable (info))
4103 bfd_set_error (bfd_error_invalid_operation);
4104 else
4105 bfd_set_error (bfd_error_wrong_format);
4106 goto error_return;
4107 }
4108 }
4109
4110 ehdr = elf_elfheader (abfd);
4111 if (info->warn_alternate_em
4112 && bed->elf_machine_code != ehdr->e_machine
4113 && ((bed->elf_machine_alt1 != 0
4114 && ehdr->e_machine == bed->elf_machine_alt1)
4115 || (bed->elf_machine_alt2 != 0
4116 && ehdr->e_machine == bed->elf_machine_alt2)))
4117 _bfd_error_handler
4118 /* xgettext:c-format */
4119 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4120 ehdr->e_machine, abfd, bed->elf_machine_code);
4121
4122 /* As a GNU extension, any input sections which are named
4123 .gnu.warning.SYMBOL are treated as warning symbols for the given
4124 symbol. This differs from .gnu.warning sections, which generate
4125 warnings when they are included in an output file. */
4126 /* PR 12761: Also generate this warning when building shared libraries. */
4127 for (s = abfd->sections; s != NULL; s = s->next)
4128 {
4129 const char *name;
4130
4131 name = bfd_section_name (s);
4132 if (CONST_STRNEQ (name, ".gnu.warning."))
4133 {
4134 char *msg;
4135 bfd_size_type sz;
4136
4137 name += sizeof ".gnu.warning." - 1;
4138
4139 /* If this is a shared object, then look up the symbol
4140 in the hash table. If it is there, and it is already
4141 been defined, then we will not be using the entry
4142 from this shared object, so we don't need to warn.
4143 FIXME: If we see the definition in a regular object
4144 later on, we will warn, but we shouldn't. The only
4145 fix is to keep track of what warnings we are supposed
4146 to emit, and then handle them all at the end of the
4147 link. */
4148 if (dynamic)
4149 {
4150 struct elf_link_hash_entry *h;
4151
4152 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4153
4154 /* FIXME: What about bfd_link_hash_common? */
4155 if (h != NULL
4156 && (h->root.type == bfd_link_hash_defined
4157 || h->root.type == bfd_link_hash_defweak))
4158 continue;
4159 }
4160
4161 sz = s->size;
4162 msg = (char *) bfd_alloc (abfd, sz + 1);
4163 if (msg == NULL)
4164 goto error_return;
4165
4166 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4167 goto error_return;
4168
4169 msg[sz] = '\0';
4170
4171 if (! (_bfd_generic_link_add_one_symbol
4172 (info, abfd, name, BSF_WARNING, s, 0, msg,
4173 FALSE, bed->collect, NULL)))
4174 goto error_return;
4175
4176 if (bfd_link_executable (info))
4177 {
4178 /* Clobber the section size so that the warning does
4179 not get copied into the output file. */
4180 s->size = 0;
4181
4182 /* Also set SEC_EXCLUDE, so that symbols defined in
4183 the warning section don't get copied to the output. */
4184 s->flags |= SEC_EXCLUDE;
4185 }
4186 }
4187 }
4188
4189 just_syms = ((s = abfd->sections) != NULL
4190 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4191
4192 add_needed = TRUE;
4193 if (! dynamic)
4194 {
4195 /* If we are creating a shared library, create all the dynamic
4196 sections immediately. We need to attach them to something,
4197 so we attach them to this BFD, provided it is the right
4198 format and is not from ld --just-symbols. Always create the
4199 dynamic sections for -E/--dynamic-list. FIXME: If there
4200 are no input BFD's of the same format as the output, we can't
4201 make a shared library. */
4202 if (!just_syms
4203 && (bfd_link_pic (info)
4204 || (!bfd_link_relocatable (info)
4205 && info->nointerp
4206 && (info->export_dynamic || info->dynamic)))
4207 && is_elf_hash_table (htab)
4208 && info->output_bfd->xvec == abfd->xvec
4209 && !htab->dynamic_sections_created)
4210 {
4211 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4212 goto error_return;
4213 }
4214 }
4215 else if (!is_elf_hash_table (htab))
4216 goto error_return;
4217 else
4218 {
4219 const char *soname = NULL;
4220 char *audit = NULL;
4221 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4222 const Elf_Internal_Phdr *phdr;
4223 struct elf_link_loaded_list *loaded_lib;
4224
4225 /* ld --just-symbols and dynamic objects don't mix very well.
4226 ld shouldn't allow it. */
4227 if (just_syms)
4228 abort ();
4229
4230 /* If this dynamic lib was specified on the command line with
4231 --as-needed in effect, then we don't want to add a DT_NEEDED
4232 tag unless the lib is actually used. Similary for libs brought
4233 in by another lib's DT_NEEDED. When --no-add-needed is used
4234 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4235 any dynamic library in DT_NEEDED tags in the dynamic lib at
4236 all. */
4237 add_needed = (elf_dyn_lib_class (abfd)
4238 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4239 | DYN_NO_NEEDED)) == 0;
4240
4241 s = bfd_get_section_by_name (abfd, ".dynamic");
4242 if (s != NULL)
4243 {
4244 bfd_byte *dynbuf;
4245 bfd_byte *extdyn;
4246 unsigned int elfsec;
4247 unsigned long shlink;
4248
4249 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4250 {
4251 error_free_dyn:
4252 free (dynbuf);
4253 goto error_return;
4254 }
4255
4256 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4257 if (elfsec == SHN_BAD)
4258 goto error_free_dyn;
4259 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4260
4261 for (extdyn = dynbuf;
4262 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4263 extdyn += bed->s->sizeof_dyn)
4264 {
4265 Elf_Internal_Dyn dyn;
4266
4267 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4268 if (dyn.d_tag == DT_SONAME)
4269 {
4270 unsigned int tagv = dyn.d_un.d_val;
4271 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4272 if (soname == NULL)
4273 goto error_free_dyn;
4274 }
4275 if (dyn.d_tag == DT_NEEDED)
4276 {
4277 struct bfd_link_needed_list *n, **pn;
4278 char *fnm, *anm;
4279 unsigned int tagv = dyn.d_un.d_val;
4280 size_t amt = sizeof (struct bfd_link_needed_list);
4281
4282 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4283 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4284 if (n == NULL || fnm == NULL)
4285 goto error_free_dyn;
4286 amt = strlen (fnm) + 1;
4287 anm = (char *) bfd_alloc (abfd, amt);
4288 if (anm == NULL)
4289 goto error_free_dyn;
4290 memcpy (anm, fnm, amt);
4291 n->name = anm;
4292 n->by = abfd;
4293 n->next = NULL;
4294 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4295 ;
4296 *pn = n;
4297 }
4298 if (dyn.d_tag == DT_RUNPATH)
4299 {
4300 struct bfd_link_needed_list *n, **pn;
4301 char *fnm, *anm;
4302 unsigned int tagv = dyn.d_un.d_val;
4303 size_t amt = sizeof (struct bfd_link_needed_list);
4304
4305 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4306 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4307 if (n == NULL || fnm == NULL)
4308 goto error_free_dyn;
4309 amt = strlen (fnm) + 1;
4310 anm = (char *) bfd_alloc (abfd, amt);
4311 if (anm == NULL)
4312 goto error_free_dyn;
4313 memcpy (anm, fnm, amt);
4314 n->name = anm;
4315 n->by = abfd;
4316 n->next = NULL;
4317 for (pn = & runpath;
4318 *pn != NULL;
4319 pn = &(*pn)->next)
4320 ;
4321 *pn = n;
4322 }
4323 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4324 if (!runpath && dyn.d_tag == DT_RPATH)
4325 {
4326 struct bfd_link_needed_list *n, **pn;
4327 char *fnm, *anm;
4328 unsigned int tagv = dyn.d_un.d_val;
4329 size_t amt = sizeof (struct bfd_link_needed_list);
4330
4331 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4332 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4333 if (n == NULL || fnm == NULL)
4334 goto error_free_dyn;
4335 amt = strlen (fnm) + 1;
4336 anm = (char *) bfd_alloc (abfd, amt);
4337 if (anm == NULL)
4338 goto error_free_dyn;
4339 memcpy (anm, fnm, amt);
4340 n->name = anm;
4341 n->by = abfd;
4342 n->next = NULL;
4343 for (pn = & rpath;
4344 *pn != NULL;
4345 pn = &(*pn)->next)
4346 ;
4347 *pn = n;
4348 }
4349 if (dyn.d_tag == DT_AUDIT)
4350 {
4351 unsigned int tagv = dyn.d_un.d_val;
4352 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4353 }
4354 }
4355
4356 free (dynbuf);
4357 }
4358
4359 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4360 frees all more recently bfd_alloc'd blocks as well. */
4361 if (runpath)
4362 rpath = runpath;
4363
4364 if (rpath)
4365 {
4366 struct bfd_link_needed_list **pn;
4367 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4368 ;
4369 *pn = rpath;
4370 }
4371
4372 /* If we have a PT_GNU_RELRO program header, mark as read-only
4373 all sections contained fully therein. This makes relro
4374 shared library sections appear as they will at run-time. */
4375 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4376 while (phdr-- > elf_tdata (abfd)->phdr)
4377 if (phdr->p_type == PT_GNU_RELRO)
4378 {
4379 for (s = abfd->sections; s != NULL; s = s->next)
4380 {
4381 unsigned int opb = bfd_octets_per_byte (abfd, s);
4382
4383 if ((s->flags & SEC_ALLOC) != 0
4384 && s->vma * opb >= phdr->p_vaddr
4385 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4386 s->flags |= SEC_READONLY;
4387 }
4388 break;
4389 }
4390
4391 /* We do not want to include any of the sections in a dynamic
4392 object in the output file. We hack by simply clobbering the
4393 list of sections in the BFD. This could be handled more
4394 cleanly by, say, a new section flag; the existing
4395 SEC_NEVER_LOAD flag is not the one we want, because that one
4396 still implies that the section takes up space in the output
4397 file. */
4398 bfd_section_list_clear (abfd);
4399
4400 /* Find the name to use in a DT_NEEDED entry that refers to this
4401 object. If the object has a DT_SONAME entry, we use it.
4402 Otherwise, if the generic linker stuck something in
4403 elf_dt_name, we use that. Otherwise, we just use the file
4404 name. */
4405 if (soname == NULL || *soname == '\0')
4406 {
4407 soname = elf_dt_name (abfd);
4408 if (soname == NULL || *soname == '\0')
4409 soname = bfd_get_filename (abfd);
4410 }
4411
4412 /* Save the SONAME because sometimes the linker emulation code
4413 will need to know it. */
4414 elf_dt_name (abfd) = soname;
4415
4416 /* If we have already included this dynamic object in the
4417 link, just ignore it. There is no reason to include a
4418 particular dynamic object more than once. */
4419 for (loaded_lib = htab->dyn_loaded;
4420 loaded_lib != NULL;
4421 loaded_lib = loaded_lib->next)
4422 {
4423 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4424 return TRUE;
4425 }
4426
4427 /* Create dynamic sections for backends that require that be done
4428 before setup_gnu_properties. */
4429 if (add_needed
4430 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4431 return FALSE;
4432
4433 /* Save the DT_AUDIT entry for the linker emulation code. */
4434 elf_dt_audit (abfd) = audit;
4435 }
4436
4437 /* If this is a dynamic object, we always link against the .dynsym
4438 symbol table, not the .symtab symbol table. The dynamic linker
4439 will only see the .dynsym symbol table, so there is no reason to
4440 look at .symtab for a dynamic object. */
4441
4442 if (! dynamic || elf_dynsymtab (abfd) == 0)
4443 hdr = &elf_tdata (abfd)->symtab_hdr;
4444 else
4445 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4446
4447 symcount = hdr->sh_size / bed->s->sizeof_sym;
4448
4449 /* The sh_info field of the symtab header tells us where the
4450 external symbols start. We don't care about the local symbols at
4451 this point. */
4452 if (elf_bad_symtab (abfd))
4453 {
4454 extsymcount = symcount;
4455 extsymoff = 0;
4456 }
4457 else
4458 {
4459 extsymcount = symcount - hdr->sh_info;
4460 extsymoff = hdr->sh_info;
4461 }
4462
4463 sym_hash = elf_sym_hashes (abfd);
4464 if (extsymcount != 0)
4465 {
4466 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4467 NULL, NULL, NULL);
4468 if (isymbuf == NULL)
4469 goto error_return;
4470
4471 if (sym_hash == NULL)
4472 {
4473 /* We store a pointer to the hash table entry for each
4474 external symbol. */
4475 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4476 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4477 if (sym_hash == NULL)
4478 goto error_free_sym;
4479 elf_sym_hashes (abfd) = sym_hash;
4480 }
4481 }
4482
4483 if (dynamic)
4484 {
4485 /* Read in any version definitions. */
4486 if (!_bfd_elf_slurp_version_tables (abfd,
4487 info->default_imported_symver))
4488 goto error_free_sym;
4489
4490 /* Read in the symbol versions, but don't bother to convert them
4491 to internal format. */
4492 if (elf_dynversym (abfd) != 0)
4493 {
4494 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4495 bfd_size_type amt = versymhdr->sh_size;
4496
4497 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4498 goto error_free_sym;
4499 extversym = (Elf_External_Versym *)
4500 _bfd_malloc_and_read (abfd, amt, amt);
4501 if (extversym == NULL)
4502 goto error_free_sym;
4503 extversym_end = extversym + amt / sizeof (*extversym);
4504 }
4505 }
4506
4507 /* If we are loading an as-needed shared lib, save the symbol table
4508 state before we start adding symbols. If the lib turns out
4509 to be unneeded, restore the state. */
4510 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4511 {
4512 unsigned int i;
4513 size_t entsize;
4514
4515 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4516 {
4517 struct bfd_hash_entry *p;
4518 struct elf_link_hash_entry *h;
4519
4520 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4521 {
4522 h = (struct elf_link_hash_entry *) p;
4523 entsize += htab->root.table.entsize;
4524 if (h->root.type == bfd_link_hash_warning)
4525 {
4526 entsize += htab->root.table.entsize;
4527 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4528 }
4529 if (h->root.type == bfd_link_hash_common)
4530 entsize += sizeof (*h->root.u.c.p);
4531 }
4532 }
4533
4534 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4535 old_tab = bfd_malloc (tabsize + entsize);
4536 if (old_tab == NULL)
4537 goto error_free_vers;
4538
4539 /* Remember the current objalloc pointer, so that all mem for
4540 symbols added can later be reclaimed. */
4541 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4542 if (alloc_mark == NULL)
4543 goto error_free_vers;
4544
4545 /* Make a special call to the linker "notice" function to
4546 tell it that we are about to handle an as-needed lib. */
4547 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4548 goto error_free_vers;
4549
4550 /* Clone the symbol table. Remember some pointers into the
4551 symbol table, and dynamic symbol count. */
4552 old_ent = (char *) old_tab + tabsize;
4553 memcpy (old_tab, htab->root.table.table, tabsize);
4554 old_undefs = htab->root.undefs;
4555 old_undefs_tail = htab->root.undefs_tail;
4556 old_table = htab->root.table.table;
4557 old_size = htab->root.table.size;
4558 old_count = htab->root.table.count;
4559 old_strtab = NULL;
4560 if (htab->dynstr != NULL)
4561 {
4562 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4563 if (old_strtab == NULL)
4564 goto error_free_vers;
4565 }
4566
4567 for (i = 0; i < htab->root.table.size; i++)
4568 {
4569 struct bfd_hash_entry *p;
4570 struct elf_link_hash_entry *h;
4571
4572 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4573 {
4574 h = (struct elf_link_hash_entry *) p;
4575 memcpy (old_ent, h, htab->root.table.entsize);
4576 old_ent = (char *) old_ent + htab->root.table.entsize;
4577 if (h->root.type == bfd_link_hash_warning)
4578 {
4579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4580 memcpy (old_ent, h, htab->root.table.entsize);
4581 old_ent = (char *) old_ent + htab->root.table.entsize;
4582 }
4583 if (h->root.type == bfd_link_hash_common)
4584 {
4585 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4586 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4587 }
4588 }
4589 }
4590 }
4591
4592 weaks = NULL;
4593 if (extversym == NULL)
4594 ever = NULL;
4595 else if (extversym + extsymoff < extversym_end)
4596 ever = extversym + extsymoff;
4597 else
4598 {
4599 /* xgettext:c-format */
4600 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4601 abfd, (long) extsymoff,
4602 (long) (extversym_end - extversym) / sizeof (* extversym));
4603 bfd_set_error (bfd_error_bad_value);
4604 goto error_free_vers;
4605 }
4606
4607 if (!bfd_link_relocatable (info)
4608 && abfd->lto_slim_object)
4609 {
4610 _bfd_error_handler
4611 (_("%pB: plugin needed to handle lto object"), abfd);
4612 }
4613
4614 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4615 isym < isymend;
4616 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4617 {
4618 int bind;
4619 bfd_vma value;
4620 asection *sec, *new_sec;
4621 flagword flags;
4622 const char *name;
4623 struct elf_link_hash_entry *h;
4624 struct elf_link_hash_entry *hi;
4625 bfd_boolean definition;
4626 bfd_boolean size_change_ok;
4627 bfd_boolean type_change_ok;
4628 bfd_boolean new_weak;
4629 bfd_boolean old_weak;
4630 bfd *override;
4631 bfd_boolean common;
4632 bfd_boolean discarded;
4633 unsigned int old_alignment;
4634 unsigned int shindex;
4635 bfd *old_bfd;
4636 bfd_boolean matched;
4637
4638 override = NULL;
4639
4640 flags = BSF_NO_FLAGS;
4641 sec = NULL;
4642 value = isym->st_value;
4643 common = bed->common_definition (isym);
4644 if (common && info->inhibit_common_definition)
4645 {
4646 /* Treat common symbol as undefined for --no-define-common. */
4647 isym->st_shndx = SHN_UNDEF;
4648 common = FALSE;
4649 }
4650 discarded = FALSE;
4651
4652 bind = ELF_ST_BIND (isym->st_info);
4653 switch (bind)
4654 {
4655 case STB_LOCAL:
4656 /* This should be impossible, since ELF requires that all
4657 global symbols follow all local symbols, and that sh_info
4658 point to the first global symbol. Unfortunately, Irix 5
4659 screws this up. */
4660 if (elf_bad_symtab (abfd))
4661 continue;
4662
4663 /* If we aren't prepared to handle locals within the globals
4664 then we'll likely segfault on a NULL symbol hash if the
4665 symbol is ever referenced in relocations. */
4666 shindex = elf_elfheader (abfd)->e_shstrndx;
4667 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4668 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4669 " (>= sh_info of %lu)"),
4670 abfd, name, (long) (isym - isymbuf + extsymoff),
4671 (long) extsymoff);
4672
4673 /* Dynamic object relocations are not processed by ld, so
4674 ld won't run into the problem mentioned above. */
4675 if (dynamic)
4676 continue;
4677 bfd_set_error (bfd_error_bad_value);
4678 goto error_free_vers;
4679
4680 case STB_GLOBAL:
4681 if (isym->st_shndx != SHN_UNDEF && !common)
4682 flags = BSF_GLOBAL;
4683 break;
4684
4685 case STB_WEAK:
4686 flags = BSF_WEAK;
4687 break;
4688
4689 case STB_GNU_UNIQUE:
4690 flags = BSF_GNU_UNIQUE;
4691 break;
4692
4693 default:
4694 /* Leave it up to the processor backend. */
4695 break;
4696 }
4697
4698 if (isym->st_shndx == SHN_UNDEF)
4699 sec = bfd_und_section_ptr;
4700 else if (isym->st_shndx == SHN_ABS)
4701 sec = bfd_abs_section_ptr;
4702 else if (isym->st_shndx == SHN_COMMON)
4703 {
4704 sec = bfd_com_section_ptr;
4705 /* What ELF calls the size we call the value. What ELF
4706 calls the value we call the alignment. */
4707 value = isym->st_size;
4708 }
4709 else
4710 {
4711 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4712 if (sec == NULL)
4713 sec = bfd_abs_section_ptr;
4714 else if (discarded_section (sec))
4715 {
4716 /* Symbols from discarded section are undefined. We keep
4717 its visibility. */
4718 sec = bfd_und_section_ptr;
4719 discarded = TRUE;
4720 isym->st_shndx = SHN_UNDEF;
4721 }
4722 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4723 value -= sec->vma;
4724 }
4725
4726 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4727 isym->st_name);
4728 if (name == NULL)
4729 goto error_free_vers;
4730
4731 if (isym->st_shndx == SHN_COMMON
4732 && (abfd->flags & BFD_PLUGIN) != 0)
4733 {
4734 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4735
4736 if (xc == NULL)
4737 {
4738 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4739 | SEC_EXCLUDE);
4740 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4741 if (xc == NULL)
4742 goto error_free_vers;
4743 }
4744 sec = xc;
4745 }
4746 else if (isym->st_shndx == SHN_COMMON
4747 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4748 && !bfd_link_relocatable (info))
4749 {
4750 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4751
4752 if (tcomm == NULL)
4753 {
4754 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4755 | SEC_LINKER_CREATED);
4756 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4757 if (tcomm == NULL)
4758 goto error_free_vers;
4759 }
4760 sec = tcomm;
4761 }
4762 else if (bed->elf_add_symbol_hook)
4763 {
4764 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4765 &sec, &value))
4766 goto error_free_vers;
4767
4768 /* The hook function sets the name to NULL if this symbol
4769 should be skipped for some reason. */
4770 if (name == NULL)
4771 continue;
4772 }
4773
4774 /* Sanity check that all possibilities were handled. */
4775 if (sec == NULL)
4776 abort ();
4777
4778 /* Silently discard TLS symbols from --just-syms. There's
4779 no way to combine a static TLS block with a new TLS block
4780 for this executable. */
4781 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4782 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4783 continue;
4784
4785 if (bfd_is_und_section (sec)
4786 || bfd_is_com_section (sec))
4787 definition = FALSE;
4788 else
4789 definition = TRUE;
4790
4791 size_change_ok = FALSE;
4792 type_change_ok = bed->type_change_ok;
4793 old_weak = FALSE;
4794 matched = FALSE;
4795 old_alignment = 0;
4796 old_bfd = NULL;
4797 new_sec = sec;
4798
4799 if (is_elf_hash_table (htab))
4800 {
4801 Elf_Internal_Versym iver;
4802 unsigned int vernum = 0;
4803 bfd_boolean skip;
4804
4805 if (ever == NULL)
4806 {
4807 if (info->default_imported_symver)
4808 /* Use the default symbol version created earlier. */
4809 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4810 else
4811 iver.vs_vers = 0;
4812 }
4813 else if (ever >= extversym_end)
4814 {
4815 /* xgettext:c-format */
4816 _bfd_error_handler (_("%pB: not enough version information"),
4817 abfd);
4818 bfd_set_error (bfd_error_bad_value);
4819 goto error_free_vers;
4820 }
4821 else
4822 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4823
4824 vernum = iver.vs_vers & VERSYM_VERSION;
4825
4826 /* If this is a hidden symbol, or if it is not version
4827 1, we append the version name to the symbol name.
4828 However, we do not modify a non-hidden absolute symbol
4829 if it is not a function, because it might be the version
4830 symbol itself. FIXME: What if it isn't? */
4831 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4832 || (vernum > 1
4833 && (!bfd_is_abs_section (sec)
4834 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4835 {
4836 const char *verstr;
4837 size_t namelen, verlen, newlen;
4838 char *newname, *p;
4839
4840 if (isym->st_shndx != SHN_UNDEF)
4841 {
4842 if (vernum > elf_tdata (abfd)->cverdefs)
4843 verstr = NULL;
4844 else if (vernum > 1)
4845 verstr =
4846 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4847 else
4848 verstr = "";
4849
4850 if (verstr == NULL)
4851 {
4852 _bfd_error_handler
4853 /* xgettext:c-format */
4854 (_("%pB: %s: invalid version %u (max %d)"),
4855 abfd, name, vernum,
4856 elf_tdata (abfd)->cverdefs);
4857 bfd_set_error (bfd_error_bad_value);
4858 goto error_free_vers;
4859 }
4860 }
4861 else
4862 {
4863 /* We cannot simply test for the number of
4864 entries in the VERNEED section since the
4865 numbers for the needed versions do not start
4866 at 0. */
4867 Elf_Internal_Verneed *t;
4868
4869 verstr = NULL;
4870 for (t = elf_tdata (abfd)->verref;
4871 t != NULL;
4872 t = t->vn_nextref)
4873 {
4874 Elf_Internal_Vernaux *a;
4875
4876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4877 {
4878 if (a->vna_other == vernum)
4879 {
4880 verstr = a->vna_nodename;
4881 break;
4882 }
4883 }
4884 if (a != NULL)
4885 break;
4886 }
4887 if (verstr == NULL)
4888 {
4889 _bfd_error_handler
4890 /* xgettext:c-format */
4891 (_("%pB: %s: invalid needed version %d"),
4892 abfd, name, vernum);
4893 bfd_set_error (bfd_error_bad_value);
4894 goto error_free_vers;
4895 }
4896 }
4897
4898 namelen = strlen (name);
4899 verlen = strlen (verstr);
4900 newlen = namelen + verlen + 2;
4901 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4902 && isym->st_shndx != SHN_UNDEF)
4903 ++newlen;
4904
4905 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4906 if (newname == NULL)
4907 goto error_free_vers;
4908 memcpy (newname, name, namelen);
4909 p = newname + namelen;
4910 *p++ = ELF_VER_CHR;
4911 /* If this is a defined non-hidden version symbol,
4912 we add another @ to the name. This indicates the
4913 default version of the symbol. */
4914 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4915 && isym->st_shndx != SHN_UNDEF)
4916 *p++ = ELF_VER_CHR;
4917 memcpy (p, verstr, verlen + 1);
4918
4919 name = newname;
4920 }
4921
4922 /* If this symbol has default visibility and the user has
4923 requested we not re-export it, then mark it as hidden. */
4924 if (!bfd_is_und_section (sec)
4925 && !dynamic
4926 && abfd->no_export
4927 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4928 isym->st_other = (STV_HIDDEN
4929 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4930
4931 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4932 sym_hash, &old_bfd, &old_weak,
4933 &old_alignment, &skip, &override,
4934 &type_change_ok, &size_change_ok,
4935 &matched))
4936 goto error_free_vers;
4937
4938 if (skip)
4939 continue;
4940
4941 /* Override a definition only if the new symbol matches the
4942 existing one. */
4943 if (override && matched)
4944 definition = FALSE;
4945
4946 h = *sym_hash;
4947 while (h->root.type == bfd_link_hash_indirect
4948 || h->root.type == bfd_link_hash_warning)
4949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4950
4951 if (elf_tdata (abfd)->verdef != NULL
4952 && vernum > 1
4953 && definition)
4954 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4955 }
4956
4957 if (! (_bfd_generic_link_add_one_symbol
4958 (info, override ? override : abfd, name, flags, sec, value,
4959 NULL, FALSE, bed->collect,
4960 (struct bfd_link_hash_entry **) sym_hash)))
4961 goto error_free_vers;
4962
4963 h = *sym_hash;
4964 /* We need to make sure that indirect symbol dynamic flags are
4965 updated. */
4966 hi = h;
4967 while (h->root.type == bfd_link_hash_indirect
4968 || h->root.type == bfd_link_hash_warning)
4969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4970
4971 /* Setting the index to -3 tells elf_link_output_extsym that
4972 this symbol is defined in a discarded section. */
4973 if (discarded)
4974 h->indx = -3;
4975
4976 *sym_hash = h;
4977
4978 new_weak = (flags & BSF_WEAK) != 0;
4979 if (dynamic
4980 && definition
4981 && new_weak
4982 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4983 && is_elf_hash_table (htab)
4984 && h->u.alias == NULL)
4985 {
4986 /* Keep a list of all weak defined non function symbols from
4987 a dynamic object, using the alias field. Later in this
4988 function we will set the alias field to the correct
4989 value. We only put non-function symbols from dynamic
4990 objects on this list, because that happens to be the only
4991 time we need to know the normal symbol corresponding to a
4992 weak symbol, and the information is time consuming to
4993 figure out. If the alias field is not already NULL,
4994 then this symbol was already defined by some previous
4995 dynamic object, and we will be using that previous
4996 definition anyhow. */
4997
4998 h->u.alias = weaks;
4999 weaks = h;
5000 }
5001
5002 /* Set the alignment of a common symbol. */
5003 if ((common || bfd_is_com_section (sec))
5004 && h->root.type == bfd_link_hash_common)
5005 {
5006 unsigned int align;
5007
5008 if (common)
5009 align = bfd_log2 (isym->st_value);
5010 else
5011 {
5012 /* The new symbol is a common symbol in a shared object.
5013 We need to get the alignment from the section. */
5014 align = new_sec->alignment_power;
5015 }
5016 if (align > old_alignment)
5017 h->root.u.c.p->alignment_power = align;
5018 else
5019 h->root.u.c.p->alignment_power = old_alignment;
5020 }
5021
5022 if (is_elf_hash_table (htab))
5023 {
5024 /* Set a flag in the hash table entry indicating the type of
5025 reference or definition we just found. A dynamic symbol
5026 is one which is referenced or defined by both a regular
5027 object and a shared object. */
5028 bfd_boolean dynsym = FALSE;
5029
5030 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5031 if ((abfd->flags & BFD_PLUGIN) != 0)
5032 ;
5033 else if (!dynamic)
5034 {
5035 if (! definition)
5036 {
5037 h->ref_regular = 1;
5038 if (bind != STB_WEAK)
5039 h->ref_regular_nonweak = 1;
5040 }
5041 else
5042 {
5043 h->def_regular = 1;
5044 if (h->def_dynamic)
5045 {
5046 h->def_dynamic = 0;
5047 h->ref_dynamic = 1;
5048 }
5049 }
5050 }
5051 else
5052 {
5053 if (! definition)
5054 {
5055 h->ref_dynamic = 1;
5056 hi->ref_dynamic = 1;
5057 }
5058 else
5059 {
5060 h->def_dynamic = 1;
5061 hi->def_dynamic = 1;
5062 }
5063 }
5064
5065 /* If an indirect symbol has been forced local, don't
5066 make the real symbol dynamic. */
5067 if (h != hi && hi->forced_local)
5068 ;
5069 else if (!dynamic)
5070 {
5071 if (bfd_link_dll (info)
5072 || h->def_dynamic
5073 || h->ref_dynamic)
5074 dynsym = TRUE;
5075 }
5076 else
5077 {
5078 if (h->def_regular
5079 || h->ref_regular
5080 || (h->is_weakalias
5081 && weakdef (h)->dynindx != -1))
5082 dynsym = TRUE;
5083 }
5084
5085 /* Check to see if we need to add an indirect symbol for
5086 the default name. */
5087 if ((definition
5088 || (!override && h->root.type == bfd_link_hash_common))
5089 && !(hi != h
5090 && hi->versioned == versioned_hidden))
5091 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5092 sec, value, &old_bfd, &dynsym))
5093 goto error_free_vers;
5094
5095 /* Check the alignment when a common symbol is involved. This
5096 can change when a common symbol is overridden by a normal
5097 definition or a common symbol is ignored due to the old
5098 normal definition. We need to make sure the maximum
5099 alignment is maintained. */
5100 if ((old_alignment || common)
5101 && h->root.type != bfd_link_hash_common)
5102 {
5103 unsigned int common_align;
5104 unsigned int normal_align;
5105 unsigned int symbol_align;
5106 bfd *normal_bfd;
5107 bfd *common_bfd;
5108
5109 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5110 || h->root.type == bfd_link_hash_defweak);
5111
5112 symbol_align = ffs (h->root.u.def.value) - 1;
5113 if (h->root.u.def.section->owner != NULL
5114 && (h->root.u.def.section->owner->flags
5115 & (DYNAMIC | BFD_PLUGIN)) == 0)
5116 {
5117 normal_align = h->root.u.def.section->alignment_power;
5118 if (normal_align > symbol_align)
5119 normal_align = symbol_align;
5120 }
5121 else
5122 normal_align = symbol_align;
5123
5124 if (old_alignment)
5125 {
5126 common_align = old_alignment;
5127 common_bfd = old_bfd;
5128 normal_bfd = abfd;
5129 }
5130 else
5131 {
5132 common_align = bfd_log2 (isym->st_value);
5133 common_bfd = abfd;
5134 normal_bfd = old_bfd;
5135 }
5136
5137 if (normal_align < common_align)
5138 {
5139 /* PR binutils/2735 */
5140 if (normal_bfd == NULL)
5141 _bfd_error_handler
5142 /* xgettext:c-format */
5143 (_("warning: alignment %u of common symbol `%s' in %pB is"
5144 " greater than the alignment (%u) of its section %pA"),
5145 1 << common_align, name, common_bfd,
5146 1 << normal_align, h->root.u.def.section);
5147 else
5148 _bfd_error_handler
5149 /* xgettext:c-format */
5150 (_("warning: alignment %u of symbol `%s' in %pB"
5151 " is smaller than %u in %pB"),
5152 1 << normal_align, name, normal_bfd,
5153 1 << common_align, common_bfd);
5154 }
5155 }
5156
5157 /* Remember the symbol size if it isn't undefined. */
5158 if (isym->st_size != 0
5159 && isym->st_shndx != SHN_UNDEF
5160 && (definition || h->size == 0))
5161 {
5162 if (h->size != 0
5163 && h->size != isym->st_size
5164 && ! size_change_ok)
5165 _bfd_error_handler
5166 /* xgettext:c-format */
5167 (_("warning: size of symbol `%s' changed"
5168 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5169 name, (uint64_t) h->size, old_bfd,
5170 (uint64_t) isym->st_size, abfd);
5171
5172 h->size = isym->st_size;
5173 }
5174
5175 /* If this is a common symbol, then we always want H->SIZE
5176 to be the size of the common symbol. The code just above
5177 won't fix the size if a common symbol becomes larger. We
5178 don't warn about a size change here, because that is
5179 covered by --warn-common. Allow changes between different
5180 function types. */
5181 if (h->root.type == bfd_link_hash_common)
5182 h->size = h->root.u.c.size;
5183
5184 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5185 && ((definition && !new_weak)
5186 || (old_weak && h->root.type == bfd_link_hash_common)
5187 || h->type == STT_NOTYPE))
5188 {
5189 unsigned int type = ELF_ST_TYPE (isym->st_info);
5190
5191 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5192 symbol. */
5193 if (type == STT_GNU_IFUNC
5194 && (abfd->flags & DYNAMIC) != 0)
5195 type = STT_FUNC;
5196
5197 if (h->type != type)
5198 {
5199 if (h->type != STT_NOTYPE && ! type_change_ok)
5200 /* xgettext:c-format */
5201 _bfd_error_handler
5202 (_("warning: type of symbol `%s' changed"
5203 " from %d to %d in %pB"),
5204 name, h->type, type, abfd);
5205
5206 h->type = type;
5207 }
5208 }
5209
5210 /* Merge st_other field. */
5211 elf_merge_st_other (abfd, h, isym->st_other, sec,
5212 definition, dynamic);
5213
5214 /* We don't want to make debug symbol dynamic. */
5215 if (definition
5216 && (sec->flags & SEC_DEBUGGING)
5217 && !bfd_link_relocatable (info))
5218 dynsym = FALSE;
5219
5220 /* Nor should we make plugin symbols dynamic. */
5221 if ((abfd->flags & BFD_PLUGIN) != 0)
5222 dynsym = FALSE;
5223
5224 if (definition)
5225 {
5226 h->target_internal = isym->st_target_internal;
5227 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5228 }
5229
5230 if (definition && !dynamic)
5231 {
5232 char *p = strchr (name, ELF_VER_CHR);
5233 if (p != NULL && p[1] != ELF_VER_CHR)
5234 {
5235 /* Queue non-default versions so that .symver x, x@FOO
5236 aliases can be checked. */
5237 if (!nondeflt_vers)
5238 {
5239 size_t amt = ((isymend - isym + 1)
5240 * sizeof (struct elf_link_hash_entry *));
5241 nondeflt_vers
5242 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5243 if (!nondeflt_vers)
5244 goto error_free_vers;
5245 }
5246 nondeflt_vers[nondeflt_vers_cnt++] = h;
5247 }
5248 }
5249
5250 if (dynsym && h->dynindx == -1)
5251 {
5252 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5253 goto error_free_vers;
5254 if (h->is_weakalias
5255 && weakdef (h)->dynindx == -1)
5256 {
5257 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5258 goto error_free_vers;
5259 }
5260 }
5261 else if (h->dynindx != -1)
5262 /* If the symbol already has a dynamic index, but
5263 visibility says it should not be visible, turn it into
5264 a local symbol. */
5265 switch (ELF_ST_VISIBILITY (h->other))
5266 {
5267 case STV_INTERNAL:
5268 case STV_HIDDEN:
5269 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5270 dynsym = FALSE;
5271 break;
5272 }
5273
5274 if (!add_needed
5275 && matched
5276 && definition
5277 && h->root.type != bfd_link_hash_indirect
5278 && ((dynsym
5279 && h->ref_regular_nonweak)
5280 || (old_bfd != NULL
5281 && (old_bfd->flags & BFD_PLUGIN) != 0
5282 && !info->lto_all_symbols_read
5283 && bind != STB_WEAK)
5284 || (h->ref_dynamic_nonweak
5285 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5286 && !on_needed_list (elf_dt_name (abfd),
5287 htab->needed, NULL))))
5288 {
5289 const char *soname = elf_dt_name (abfd);
5290
5291 info->callbacks->minfo ("%!", soname, old_bfd,
5292 h->root.root.string);
5293
5294 /* A symbol from a library loaded via DT_NEEDED of some
5295 other library is referenced by a regular object.
5296 Add a DT_NEEDED entry for it. Issue an error if
5297 --no-add-needed is used and the reference was not
5298 a weak one. */
5299 if (old_bfd != NULL
5300 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5301 {
5302 _bfd_error_handler
5303 /* xgettext:c-format */
5304 (_("%pB: undefined reference to symbol '%s'"),
5305 old_bfd, name);
5306 bfd_set_error (bfd_error_missing_dso);
5307 goto error_free_vers;
5308 }
5309
5310 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5311 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5312
5313 /* Create dynamic sections for backends that require
5314 that be done before setup_gnu_properties. */
5315 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5316 return FALSE;
5317 add_needed = TRUE;
5318 }
5319 }
5320 }
5321
5322 if (info->lto_plugin_active
5323 && !bfd_link_relocatable (info)
5324 && (abfd->flags & BFD_PLUGIN) == 0
5325 && !just_syms
5326 && extsymcount)
5327 {
5328 int r_sym_shift;
5329
5330 if (bed->s->arch_size == 32)
5331 r_sym_shift = 8;
5332 else
5333 r_sym_shift = 32;
5334
5335 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5336 referenced in regular objects so that linker plugin will get
5337 the correct symbol resolution. */
5338
5339 sym_hash = elf_sym_hashes (abfd);
5340 for (s = abfd->sections; s != NULL; s = s->next)
5341 {
5342 Elf_Internal_Rela *internal_relocs;
5343 Elf_Internal_Rela *rel, *relend;
5344
5345 /* Don't check relocations in excluded sections. */
5346 if ((s->flags & SEC_RELOC) == 0
5347 || s->reloc_count == 0
5348 || (s->flags & SEC_EXCLUDE) != 0
5349 || ((info->strip == strip_all
5350 || info->strip == strip_debugger)
5351 && (s->flags & SEC_DEBUGGING) != 0))
5352 continue;
5353
5354 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5355 NULL,
5356 info->keep_memory);
5357 if (internal_relocs == NULL)
5358 goto error_free_vers;
5359
5360 rel = internal_relocs;
5361 relend = rel + s->reloc_count;
5362 for ( ; rel < relend; rel++)
5363 {
5364 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5365 struct elf_link_hash_entry *h;
5366
5367 /* Skip local symbols. */
5368 if (r_symndx < extsymoff)
5369 continue;
5370
5371 h = sym_hash[r_symndx - extsymoff];
5372 if (h != NULL)
5373 h->root.non_ir_ref_regular = 1;
5374 }
5375
5376 if (elf_section_data (s)->relocs != internal_relocs)
5377 free (internal_relocs);
5378 }
5379 }
5380
5381 free (extversym);
5382 extversym = NULL;
5383 free (isymbuf);
5384 isymbuf = NULL;
5385
5386 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5387 {
5388 unsigned int i;
5389
5390 /* Restore the symbol table. */
5391 old_ent = (char *) old_tab + tabsize;
5392 memset (elf_sym_hashes (abfd), 0,
5393 extsymcount * sizeof (struct elf_link_hash_entry *));
5394 htab->root.table.table = old_table;
5395 htab->root.table.size = old_size;
5396 htab->root.table.count = old_count;
5397 memcpy (htab->root.table.table, old_tab, tabsize);
5398 htab->root.undefs = old_undefs;
5399 htab->root.undefs_tail = old_undefs_tail;
5400 if (htab->dynstr != NULL)
5401 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5402 free (old_strtab);
5403 old_strtab = NULL;
5404 for (i = 0; i < htab->root.table.size; i++)
5405 {
5406 struct bfd_hash_entry *p;
5407 struct elf_link_hash_entry *h;
5408 unsigned int non_ir_ref_dynamic;
5409
5410 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5411 {
5412 /* Preserve non_ir_ref_dynamic so that this symbol
5413 will be exported when the dynamic lib becomes needed
5414 in the second pass. */
5415 h = (struct elf_link_hash_entry *) p;
5416 if (h->root.type == bfd_link_hash_warning)
5417 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5418 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5419
5420 h = (struct elf_link_hash_entry *) p;
5421 memcpy (h, old_ent, htab->root.table.entsize);
5422 old_ent = (char *) old_ent + htab->root.table.entsize;
5423 if (h->root.type == bfd_link_hash_warning)
5424 {
5425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5426 memcpy (h, old_ent, htab->root.table.entsize);
5427 old_ent = (char *) old_ent + htab->root.table.entsize;
5428 }
5429 if (h->root.type == bfd_link_hash_common)
5430 {
5431 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5432 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5433 }
5434 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5435 }
5436 }
5437
5438 /* Make a special call to the linker "notice" function to
5439 tell it that symbols added for crefs may need to be removed. */
5440 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5441 goto error_free_vers;
5442
5443 free (old_tab);
5444 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5445 alloc_mark);
5446 free (nondeflt_vers);
5447 return TRUE;
5448 }
5449
5450 if (old_tab != NULL)
5451 {
5452 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5453 goto error_free_vers;
5454 free (old_tab);
5455 old_tab = NULL;
5456 }
5457
5458 /* Now that all the symbols from this input file are created, if
5459 not performing a relocatable link, handle .symver foo, foo@BAR
5460 such that any relocs against foo become foo@BAR. */
5461 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5462 {
5463 size_t cnt, symidx;
5464
5465 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5466 {
5467 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5468 char *shortname, *p;
5469 size_t amt;
5470
5471 p = strchr (h->root.root.string, ELF_VER_CHR);
5472 if (p == NULL
5473 || (h->root.type != bfd_link_hash_defined
5474 && h->root.type != bfd_link_hash_defweak))
5475 continue;
5476
5477 amt = p - h->root.root.string;
5478 shortname = (char *) bfd_malloc (amt + 1);
5479 if (!shortname)
5480 goto error_free_vers;
5481 memcpy (shortname, h->root.root.string, amt);
5482 shortname[amt] = '\0';
5483
5484 hi = (struct elf_link_hash_entry *)
5485 bfd_link_hash_lookup (&htab->root, shortname,
5486 FALSE, FALSE, FALSE);
5487 if (hi != NULL
5488 && hi->root.type == h->root.type
5489 && hi->root.u.def.value == h->root.u.def.value
5490 && hi->root.u.def.section == h->root.u.def.section)
5491 {
5492 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5493 hi->root.type = bfd_link_hash_indirect;
5494 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5495 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5496 sym_hash = elf_sym_hashes (abfd);
5497 if (sym_hash)
5498 for (symidx = 0; symidx < extsymcount; ++symidx)
5499 if (sym_hash[symidx] == hi)
5500 {
5501 sym_hash[symidx] = h;
5502 break;
5503 }
5504 }
5505 free (shortname);
5506 }
5507 free (nondeflt_vers);
5508 nondeflt_vers = NULL;
5509 }
5510
5511 /* Now set the alias field correctly for all the weak defined
5512 symbols we found. The only way to do this is to search all the
5513 symbols. Since we only need the information for non functions in
5514 dynamic objects, that's the only time we actually put anything on
5515 the list WEAKS. We need this information so that if a regular
5516 object refers to a symbol defined weakly in a dynamic object, the
5517 real symbol in the dynamic object is also put in the dynamic
5518 symbols; we also must arrange for both symbols to point to the
5519 same memory location. We could handle the general case of symbol
5520 aliasing, but a general symbol alias can only be generated in
5521 assembler code, handling it correctly would be very time
5522 consuming, and other ELF linkers don't handle general aliasing
5523 either. */
5524 if (weaks != NULL)
5525 {
5526 struct elf_link_hash_entry **hpp;
5527 struct elf_link_hash_entry **hppend;
5528 struct elf_link_hash_entry **sorted_sym_hash;
5529 struct elf_link_hash_entry *h;
5530 size_t sym_count, amt;
5531
5532 /* Since we have to search the whole symbol list for each weak
5533 defined symbol, search time for N weak defined symbols will be
5534 O(N^2). Binary search will cut it down to O(NlogN). */
5535 amt = extsymcount * sizeof (*sorted_sym_hash);
5536 sorted_sym_hash = bfd_malloc (amt);
5537 if (sorted_sym_hash == NULL)
5538 goto error_return;
5539 sym_hash = sorted_sym_hash;
5540 hpp = elf_sym_hashes (abfd);
5541 hppend = hpp + extsymcount;
5542 sym_count = 0;
5543 for (; hpp < hppend; hpp++)
5544 {
5545 h = *hpp;
5546 if (h != NULL
5547 && h->root.type == bfd_link_hash_defined
5548 && !bed->is_function_type (h->type))
5549 {
5550 *sym_hash = h;
5551 sym_hash++;
5552 sym_count++;
5553 }
5554 }
5555
5556 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5557 elf_sort_symbol);
5558
5559 while (weaks != NULL)
5560 {
5561 struct elf_link_hash_entry *hlook;
5562 asection *slook;
5563 bfd_vma vlook;
5564 size_t i, j, idx = 0;
5565
5566 hlook = weaks;
5567 weaks = hlook->u.alias;
5568 hlook->u.alias = NULL;
5569
5570 if (hlook->root.type != bfd_link_hash_defined
5571 && hlook->root.type != bfd_link_hash_defweak)
5572 continue;
5573
5574 slook = hlook->root.u.def.section;
5575 vlook = hlook->root.u.def.value;
5576
5577 i = 0;
5578 j = sym_count;
5579 while (i != j)
5580 {
5581 bfd_signed_vma vdiff;
5582 idx = (i + j) / 2;
5583 h = sorted_sym_hash[idx];
5584 vdiff = vlook - h->root.u.def.value;
5585 if (vdiff < 0)
5586 j = idx;
5587 else if (vdiff > 0)
5588 i = idx + 1;
5589 else
5590 {
5591 int sdiff = slook->id - h->root.u.def.section->id;
5592 if (sdiff < 0)
5593 j = idx;
5594 else if (sdiff > 0)
5595 i = idx + 1;
5596 else
5597 break;
5598 }
5599 }
5600
5601 /* We didn't find a value/section match. */
5602 if (i == j)
5603 continue;
5604
5605 /* With multiple aliases, or when the weak symbol is already
5606 strongly defined, we have multiple matching symbols and
5607 the binary search above may land on any of them. Step
5608 one past the matching symbol(s). */
5609 while (++idx != j)
5610 {
5611 h = sorted_sym_hash[idx];
5612 if (h->root.u.def.section != slook
5613 || h->root.u.def.value != vlook)
5614 break;
5615 }
5616
5617 /* Now look back over the aliases. Since we sorted by size
5618 as well as value and section, we'll choose the one with
5619 the largest size. */
5620 while (idx-- != i)
5621 {
5622 h = sorted_sym_hash[idx];
5623
5624 /* Stop if value or section doesn't match. */
5625 if (h->root.u.def.section != slook
5626 || h->root.u.def.value != vlook)
5627 break;
5628 else if (h != hlook)
5629 {
5630 struct elf_link_hash_entry *t;
5631
5632 hlook->u.alias = h;
5633 hlook->is_weakalias = 1;
5634 t = h;
5635 if (t->u.alias != NULL)
5636 while (t->u.alias != h)
5637 t = t->u.alias;
5638 t->u.alias = hlook;
5639
5640 /* If the weak definition is in the list of dynamic
5641 symbols, make sure the real definition is put
5642 there as well. */
5643 if (hlook->dynindx != -1 && h->dynindx == -1)
5644 {
5645 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5646 {
5647 err_free_sym_hash:
5648 free (sorted_sym_hash);
5649 goto error_return;
5650 }
5651 }
5652
5653 /* If the real definition is in the list of dynamic
5654 symbols, make sure the weak definition is put
5655 there as well. If we don't do this, then the
5656 dynamic loader might not merge the entries for the
5657 real definition and the weak definition. */
5658 if (h->dynindx != -1 && hlook->dynindx == -1)
5659 {
5660 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5661 goto err_free_sym_hash;
5662 }
5663 break;
5664 }
5665 }
5666 }
5667
5668 free (sorted_sym_hash);
5669 }
5670
5671 if (bed->check_directives
5672 && !(*bed->check_directives) (abfd, info))
5673 return FALSE;
5674
5675 /* If this is a non-traditional link, try to optimize the handling
5676 of the .stab/.stabstr sections. */
5677 if (! dynamic
5678 && ! info->traditional_format
5679 && is_elf_hash_table (htab)
5680 && (info->strip != strip_all && info->strip != strip_debugger))
5681 {
5682 asection *stabstr;
5683
5684 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5685 if (stabstr != NULL)
5686 {
5687 bfd_size_type string_offset = 0;
5688 asection *stab;
5689
5690 for (stab = abfd->sections; stab; stab = stab->next)
5691 if (CONST_STRNEQ (stab->name, ".stab")
5692 && (!stab->name[5] ||
5693 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5694 && (stab->flags & SEC_MERGE) == 0
5695 && !bfd_is_abs_section (stab->output_section))
5696 {
5697 struct bfd_elf_section_data *secdata;
5698
5699 secdata = elf_section_data (stab);
5700 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5701 stabstr, &secdata->sec_info,
5702 &string_offset))
5703 goto error_return;
5704 if (secdata->sec_info)
5705 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5706 }
5707 }
5708 }
5709
5710 if (dynamic && add_needed)
5711 {
5712 /* Add this bfd to the loaded list. */
5713 struct elf_link_loaded_list *n;
5714
5715 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5716 if (n == NULL)
5717 goto error_return;
5718 n->abfd = abfd;
5719 n->next = htab->dyn_loaded;
5720 htab->dyn_loaded = n;
5721 }
5722 if (dynamic && !add_needed
5723 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5724 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5725
5726 return TRUE;
5727
5728 error_free_vers:
5729 free (old_tab);
5730 free (old_strtab);
5731 free (nondeflt_vers);
5732 free (extversym);
5733 error_free_sym:
5734 free (isymbuf);
5735 error_return:
5736 return FALSE;
5737 }
5738
5739 /* Return the linker hash table entry of a symbol that might be
5740 satisfied by an archive symbol. Return -1 on error. */
5741
5742 struct elf_link_hash_entry *
5743 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5744 struct bfd_link_info *info,
5745 const char *name)
5746 {
5747 struct elf_link_hash_entry *h;
5748 char *p, *copy;
5749 size_t len, first;
5750
5751 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5752 if (h != NULL)
5753 return h;
5754
5755 /* If this is a default version (the name contains @@), look up the
5756 symbol again with only one `@' as well as without the version.
5757 The effect is that references to the symbol with and without the
5758 version will be matched by the default symbol in the archive. */
5759
5760 p = strchr (name, ELF_VER_CHR);
5761 if (p == NULL || p[1] != ELF_VER_CHR)
5762 return h;
5763
5764 /* First check with only one `@'. */
5765 len = strlen (name);
5766 copy = (char *) bfd_alloc (abfd, len);
5767 if (copy == NULL)
5768 return (struct elf_link_hash_entry *) -1;
5769
5770 first = p - name + 1;
5771 memcpy (copy, name, first);
5772 memcpy (copy + first, name + first + 1, len - first);
5773
5774 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5775 if (h == NULL)
5776 {
5777 /* We also need to check references to the symbol without the
5778 version. */
5779 copy[first - 1] = '\0';
5780 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5781 FALSE, FALSE, TRUE);
5782 }
5783
5784 bfd_release (abfd, copy);
5785 return h;
5786 }
5787
5788 /* Add symbols from an ELF archive file to the linker hash table. We
5789 don't use _bfd_generic_link_add_archive_symbols because we need to
5790 handle versioned symbols.
5791
5792 Fortunately, ELF archive handling is simpler than that done by
5793 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5794 oddities. In ELF, if we find a symbol in the archive map, and the
5795 symbol is currently undefined, we know that we must pull in that
5796 object file.
5797
5798 Unfortunately, we do have to make multiple passes over the symbol
5799 table until nothing further is resolved. */
5800
5801 static bfd_boolean
5802 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5803 {
5804 symindex c;
5805 unsigned char *included = NULL;
5806 carsym *symdefs;
5807 bfd_boolean loop;
5808 size_t amt;
5809 const struct elf_backend_data *bed;
5810 struct elf_link_hash_entry * (*archive_symbol_lookup)
5811 (bfd *, struct bfd_link_info *, const char *);
5812
5813 if (! bfd_has_map (abfd))
5814 {
5815 /* An empty archive is a special case. */
5816 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5817 return TRUE;
5818 bfd_set_error (bfd_error_no_armap);
5819 return FALSE;
5820 }
5821
5822 /* Keep track of all symbols we know to be already defined, and all
5823 files we know to be already included. This is to speed up the
5824 second and subsequent passes. */
5825 c = bfd_ardata (abfd)->symdef_count;
5826 if (c == 0)
5827 return TRUE;
5828 amt = c * sizeof (*included);
5829 included = (unsigned char *) bfd_zmalloc (amt);
5830 if (included == NULL)
5831 return FALSE;
5832
5833 symdefs = bfd_ardata (abfd)->symdefs;
5834 bed = get_elf_backend_data (abfd);
5835 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5836
5837 do
5838 {
5839 file_ptr last;
5840 symindex i;
5841 carsym *symdef;
5842 carsym *symdefend;
5843
5844 loop = FALSE;
5845 last = -1;
5846
5847 symdef = symdefs;
5848 symdefend = symdef + c;
5849 for (i = 0; symdef < symdefend; symdef++, i++)
5850 {
5851 struct elf_link_hash_entry *h;
5852 bfd *element;
5853 struct bfd_link_hash_entry *undefs_tail;
5854 symindex mark;
5855
5856 if (included[i])
5857 continue;
5858 if (symdef->file_offset == last)
5859 {
5860 included[i] = TRUE;
5861 continue;
5862 }
5863
5864 h = archive_symbol_lookup (abfd, info, symdef->name);
5865 if (h == (struct elf_link_hash_entry *) -1)
5866 goto error_return;
5867
5868 if (h == NULL)
5869 continue;
5870
5871 if (h->root.type == bfd_link_hash_undefined)
5872 {
5873 /* If the archive element has already been loaded then one
5874 of the symbols defined by that element might have been
5875 made undefined due to being in a discarded section. */
5876 if (h->indx == -3)
5877 continue;
5878 }
5879 else if (h->root.type == bfd_link_hash_common)
5880 {
5881 /* We currently have a common symbol. The archive map contains
5882 a reference to this symbol, so we may want to include it. We
5883 only want to include it however, if this archive element
5884 contains a definition of the symbol, not just another common
5885 declaration of it.
5886
5887 Unfortunately some archivers (including GNU ar) will put
5888 declarations of common symbols into their archive maps, as
5889 well as real definitions, so we cannot just go by the archive
5890 map alone. Instead we must read in the element's symbol
5891 table and check that to see what kind of symbol definition
5892 this is. */
5893 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5894 continue;
5895 }
5896 else
5897 {
5898 if (h->root.type != bfd_link_hash_undefweak)
5899 /* Symbol must be defined. Don't check it again. */
5900 included[i] = TRUE;
5901 continue;
5902 }
5903
5904 /* We need to include this archive member. */
5905 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5906 if (element == NULL)
5907 goto error_return;
5908
5909 if (! bfd_check_format (element, bfd_object))
5910 goto error_return;
5911
5912 undefs_tail = info->hash->undefs_tail;
5913
5914 if (!(*info->callbacks
5915 ->add_archive_element) (info, element, symdef->name, &element))
5916 continue;
5917 if (!bfd_link_add_symbols (element, info))
5918 goto error_return;
5919
5920 /* If there are any new undefined symbols, we need to make
5921 another pass through the archive in order to see whether
5922 they can be defined. FIXME: This isn't perfect, because
5923 common symbols wind up on undefs_tail and because an
5924 undefined symbol which is defined later on in this pass
5925 does not require another pass. This isn't a bug, but it
5926 does make the code less efficient than it could be. */
5927 if (undefs_tail != info->hash->undefs_tail)
5928 loop = TRUE;
5929
5930 /* Look backward to mark all symbols from this object file
5931 which we have already seen in this pass. */
5932 mark = i;
5933 do
5934 {
5935 included[mark] = TRUE;
5936 if (mark == 0)
5937 break;
5938 --mark;
5939 }
5940 while (symdefs[mark].file_offset == symdef->file_offset);
5941
5942 /* We mark subsequent symbols from this object file as we go
5943 on through the loop. */
5944 last = symdef->file_offset;
5945 }
5946 }
5947 while (loop);
5948
5949 free (included);
5950 return TRUE;
5951
5952 error_return:
5953 free (included);
5954 return FALSE;
5955 }
5956
5957 /* Given an ELF BFD, add symbols to the global hash table as
5958 appropriate. */
5959
5960 bfd_boolean
5961 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5962 {
5963 switch (bfd_get_format (abfd))
5964 {
5965 case bfd_object:
5966 return elf_link_add_object_symbols (abfd, info);
5967 case bfd_archive:
5968 return elf_link_add_archive_symbols (abfd, info);
5969 default:
5970 bfd_set_error (bfd_error_wrong_format);
5971 return FALSE;
5972 }
5973 }
5974 \f
5975 struct hash_codes_info
5976 {
5977 unsigned long *hashcodes;
5978 bfd_boolean error;
5979 };
5980
5981 /* This function will be called though elf_link_hash_traverse to store
5982 all hash value of the exported symbols in an array. */
5983
5984 static bfd_boolean
5985 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5986 {
5987 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5988 const char *name;
5989 unsigned long ha;
5990 char *alc = NULL;
5991
5992 /* Ignore indirect symbols. These are added by the versioning code. */
5993 if (h->dynindx == -1)
5994 return TRUE;
5995
5996 name = h->root.root.string;
5997 if (h->versioned >= versioned)
5998 {
5999 char *p = strchr (name, ELF_VER_CHR);
6000 if (p != NULL)
6001 {
6002 alc = (char *) bfd_malloc (p - name + 1);
6003 if (alc == NULL)
6004 {
6005 inf->error = TRUE;
6006 return FALSE;
6007 }
6008 memcpy (alc, name, p - name);
6009 alc[p - name] = '\0';
6010 name = alc;
6011 }
6012 }
6013
6014 /* Compute the hash value. */
6015 ha = bfd_elf_hash (name);
6016
6017 /* Store the found hash value in the array given as the argument. */
6018 *(inf->hashcodes)++ = ha;
6019
6020 /* And store it in the struct so that we can put it in the hash table
6021 later. */
6022 h->u.elf_hash_value = ha;
6023
6024 free (alc);
6025 return TRUE;
6026 }
6027
6028 struct collect_gnu_hash_codes
6029 {
6030 bfd *output_bfd;
6031 const struct elf_backend_data *bed;
6032 unsigned long int nsyms;
6033 unsigned long int maskbits;
6034 unsigned long int *hashcodes;
6035 unsigned long int *hashval;
6036 unsigned long int *indx;
6037 unsigned long int *counts;
6038 bfd_vma *bitmask;
6039 bfd_byte *contents;
6040 bfd_size_type xlat;
6041 long int min_dynindx;
6042 unsigned long int bucketcount;
6043 unsigned long int symindx;
6044 long int local_indx;
6045 long int shift1, shift2;
6046 unsigned long int mask;
6047 bfd_boolean error;
6048 };
6049
6050 /* This function will be called though elf_link_hash_traverse to store
6051 all hash value of the exported symbols in an array. */
6052
6053 static bfd_boolean
6054 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6055 {
6056 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6057 const char *name;
6058 unsigned long ha;
6059 char *alc = NULL;
6060
6061 /* Ignore indirect symbols. These are added by the versioning code. */
6062 if (h->dynindx == -1)
6063 return TRUE;
6064
6065 /* Ignore also local symbols and undefined symbols. */
6066 if (! (*s->bed->elf_hash_symbol) (h))
6067 return TRUE;
6068
6069 name = h->root.root.string;
6070 if (h->versioned >= versioned)
6071 {
6072 char *p = strchr (name, ELF_VER_CHR);
6073 if (p != NULL)
6074 {
6075 alc = (char *) bfd_malloc (p - name + 1);
6076 if (alc == NULL)
6077 {
6078 s->error = TRUE;
6079 return FALSE;
6080 }
6081 memcpy (alc, name, p - name);
6082 alc[p - name] = '\0';
6083 name = alc;
6084 }
6085 }
6086
6087 /* Compute the hash value. */
6088 ha = bfd_elf_gnu_hash (name);
6089
6090 /* Store the found hash value in the array for compute_bucket_count,
6091 and also for .dynsym reordering purposes. */
6092 s->hashcodes[s->nsyms] = ha;
6093 s->hashval[h->dynindx] = ha;
6094 ++s->nsyms;
6095 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6096 s->min_dynindx = h->dynindx;
6097
6098 free (alc);
6099 return TRUE;
6100 }
6101
6102 /* This function will be called though elf_link_hash_traverse to do
6103 final dynamic symbol renumbering in case of .gnu.hash.
6104 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6105 to the translation table. */
6106
6107 static bfd_boolean
6108 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6109 {
6110 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6111 unsigned long int bucket;
6112 unsigned long int val;
6113
6114 /* Ignore indirect symbols. */
6115 if (h->dynindx == -1)
6116 return TRUE;
6117
6118 /* Ignore also local symbols and undefined symbols. */
6119 if (! (*s->bed->elf_hash_symbol) (h))
6120 {
6121 if (h->dynindx >= s->min_dynindx)
6122 {
6123 if (s->bed->record_xhash_symbol != NULL)
6124 {
6125 (*s->bed->record_xhash_symbol) (h, 0);
6126 s->local_indx++;
6127 }
6128 else
6129 h->dynindx = s->local_indx++;
6130 }
6131 return TRUE;
6132 }
6133
6134 bucket = s->hashval[h->dynindx] % s->bucketcount;
6135 val = (s->hashval[h->dynindx] >> s->shift1)
6136 & ((s->maskbits >> s->shift1) - 1);
6137 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6138 s->bitmask[val]
6139 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6140 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6141 if (s->counts[bucket] == 1)
6142 /* Last element terminates the chain. */
6143 val |= 1;
6144 bfd_put_32 (s->output_bfd, val,
6145 s->contents + (s->indx[bucket] - s->symindx) * 4);
6146 --s->counts[bucket];
6147 if (s->bed->record_xhash_symbol != NULL)
6148 {
6149 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6150
6151 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6152 }
6153 else
6154 h->dynindx = s->indx[bucket]++;
6155 return TRUE;
6156 }
6157
6158 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6159
6160 bfd_boolean
6161 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6162 {
6163 return !(h->forced_local
6164 || h->root.type == bfd_link_hash_undefined
6165 || h->root.type == bfd_link_hash_undefweak
6166 || ((h->root.type == bfd_link_hash_defined
6167 || h->root.type == bfd_link_hash_defweak)
6168 && h->root.u.def.section->output_section == NULL));
6169 }
6170
6171 /* Array used to determine the number of hash table buckets to use
6172 based on the number of symbols there are. If there are fewer than
6173 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6174 fewer than 37 we use 17 buckets, and so forth. We never use more
6175 than 32771 buckets. */
6176
6177 static const size_t elf_buckets[] =
6178 {
6179 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6180 16411, 32771, 0
6181 };
6182
6183 /* Compute bucket count for hashing table. We do not use a static set
6184 of possible tables sizes anymore. Instead we determine for all
6185 possible reasonable sizes of the table the outcome (i.e., the
6186 number of collisions etc) and choose the best solution. The
6187 weighting functions are not too simple to allow the table to grow
6188 without bounds. Instead one of the weighting factors is the size.
6189 Therefore the result is always a good payoff between few collisions
6190 (= short chain lengths) and table size. */
6191 static size_t
6192 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6193 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6194 unsigned long int nsyms,
6195 int gnu_hash)
6196 {
6197 size_t best_size = 0;
6198 unsigned long int i;
6199
6200 /* We have a problem here. The following code to optimize the table
6201 size requires an integer type with more the 32 bits. If
6202 BFD_HOST_U_64_BIT is set we know about such a type. */
6203 #ifdef BFD_HOST_U_64_BIT
6204 if (info->optimize)
6205 {
6206 size_t minsize;
6207 size_t maxsize;
6208 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6209 bfd *dynobj = elf_hash_table (info)->dynobj;
6210 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6211 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6212 unsigned long int *counts;
6213 bfd_size_type amt;
6214 unsigned int no_improvement_count = 0;
6215
6216 /* Possible optimization parameters: if we have NSYMS symbols we say
6217 that the hashing table must at least have NSYMS/4 and at most
6218 2*NSYMS buckets. */
6219 minsize = nsyms / 4;
6220 if (minsize == 0)
6221 minsize = 1;
6222 best_size = maxsize = nsyms * 2;
6223 if (gnu_hash)
6224 {
6225 if (minsize < 2)
6226 minsize = 2;
6227 if ((best_size & 31) == 0)
6228 ++best_size;
6229 }
6230
6231 /* Create array where we count the collisions in. We must use bfd_malloc
6232 since the size could be large. */
6233 amt = maxsize;
6234 amt *= sizeof (unsigned long int);
6235 counts = (unsigned long int *) bfd_malloc (amt);
6236 if (counts == NULL)
6237 return 0;
6238
6239 /* Compute the "optimal" size for the hash table. The criteria is a
6240 minimal chain length. The minor criteria is (of course) the size
6241 of the table. */
6242 for (i = minsize; i < maxsize; ++i)
6243 {
6244 /* Walk through the array of hashcodes and count the collisions. */
6245 BFD_HOST_U_64_BIT max;
6246 unsigned long int j;
6247 unsigned long int fact;
6248
6249 if (gnu_hash && (i & 31) == 0)
6250 continue;
6251
6252 memset (counts, '\0', i * sizeof (unsigned long int));
6253
6254 /* Determine how often each hash bucket is used. */
6255 for (j = 0; j < nsyms; ++j)
6256 ++counts[hashcodes[j] % i];
6257
6258 /* For the weight function we need some information about the
6259 pagesize on the target. This is information need not be 100%
6260 accurate. Since this information is not available (so far) we
6261 define it here to a reasonable default value. If it is crucial
6262 to have a better value some day simply define this value. */
6263 # ifndef BFD_TARGET_PAGESIZE
6264 # define BFD_TARGET_PAGESIZE (4096)
6265 # endif
6266
6267 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6268 and the chains. */
6269 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6270
6271 # if 1
6272 /* Variant 1: optimize for short chains. We add the squares
6273 of all the chain lengths (which favors many small chain
6274 over a few long chains). */
6275 for (j = 0; j < i; ++j)
6276 max += counts[j] * counts[j];
6277
6278 /* This adds penalties for the overall size of the table. */
6279 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6280 max *= fact * fact;
6281 # else
6282 /* Variant 2: Optimize a lot more for small table. Here we
6283 also add squares of the size but we also add penalties for
6284 empty slots (the +1 term). */
6285 for (j = 0; j < i; ++j)
6286 max += (1 + counts[j]) * (1 + counts[j]);
6287
6288 /* The overall size of the table is considered, but not as
6289 strong as in variant 1, where it is squared. */
6290 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6291 max *= fact;
6292 # endif
6293
6294 /* Compare with current best results. */
6295 if (max < best_chlen)
6296 {
6297 best_chlen = max;
6298 best_size = i;
6299 no_improvement_count = 0;
6300 }
6301 /* PR 11843: Avoid futile long searches for the best bucket size
6302 when there are a large number of symbols. */
6303 else if (++no_improvement_count == 100)
6304 break;
6305 }
6306
6307 free (counts);
6308 }
6309 else
6310 #endif /* defined (BFD_HOST_U_64_BIT) */
6311 {
6312 /* This is the fallback solution if no 64bit type is available or if we
6313 are not supposed to spend much time on optimizations. We select the
6314 bucket count using a fixed set of numbers. */
6315 for (i = 0; elf_buckets[i] != 0; i++)
6316 {
6317 best_size = elf_buckets[i];
6318 if (nsyms < elf_buckets[i + 1])
6319 break;
6320 }
6321 if (gnu_hash && best_size < 2)
6322 best_size = 2;
6323 }
6324
6325 return best_size;
6326 }
6327
6328 /* Size any SHT_GROUP section for ld -r. */
6329
6330 bfd_boolean
6331 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6332 {
6333 bfd *ibfd;
6334 asection *s;
6335
6336 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6337 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6338 && (s = ibfd->sections) != NULL
6339 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6340 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6341 return FALSE;
6342 return TRUE;
6343 }
6344
6345 /* Set a default stack segment size. The value in INFO wins. If it
6346 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6347 undefined it is initialized. */
6348
6349 bfd_boolean
6350 bfd_elf_stack_segment_size (bfd *output_bfd,
6351 struct bfd_link_info *info,
6352 const char *legacy_symbol,
6353 bfd_vma default_size)
6354 {
6355 struct elf_link_hash_entry *h = NULL;
6356
6357 /* Look for legacy symbol. */
6358 if (legacy_symbol)
6359 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6360 FALSE, FALSE, FALSE);
6361 if (h && (h->root.type == bfd_link_hash_defined
6362 || h->root.type == bfd_link_hash_defweak)
6363 && h->def_regular
6364 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6365 {
6366 /* The symbol has no type if specified on the command line. */
6367 h->type = STT_OBJECT;
6368 if (info->stacksize)
6369 /* xgettext:c-format */
6370 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6371 output_bfd, legacy_symbol);
6372 else if (h->root.u.def.section != bfd_abs_section_ptr)
6373 /* xgettext:c-format */
6374 _bfd_error_handler (_("%pB: %s not absolute"),
6375 output_bfd, legacy_symbol);
6376 else
6377 info->stacksize = h->root.u.def.value;
6378 }
6379
6380 if (!info->stacksize)
6381 /* If the user didn't set a size, or explicitly inhibit the
6382 size, set it now. */
6383 info->stacksize = default_size;
6384
6385 /* Provide the legacy symbol, if it is referenced. */
6386 if (h && (h->root.type == bfd_link_hash_undefined
6387 || h->root.type == bfd_link_hash_undefweak))
6388 {
6389 struct bfd_link_hash_entry *bh = NULL;
6390
6391 if (!(_bfd_generic_link_add_one_symbol
6392 (info, output_bfd, legacy_symbol,
6393 BSF_GLOBAL, bfd_abs_section_ptr,
6394 info->stacksize >= 0 ? info->stacksize : 0,
6395 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6396 return FALSE;
6397
6398 h = (struct elf_link_hash_entry *) bh;
6399 h->def_regular = 1;
6400 h->type = STT_OBJECT;
6401 }
6402
6403 return TRUE;
6404 }
6405
6406 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6407
6408 struct elf_gc_sweep_symbol_info
6409 {
6410 struct bfd_link_info *info;
6411 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6412 bfd_boolean);
6413 };
6414
6415 static bfd_boolean
6416 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6417 {
6418 if (!h->mark
6419 && (((h->root.type == bfd_link_hash_defined
6420 || h->root.type == bfd_link_hash_defweak)
6421 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6422 && h->root.u.def.section->gc_mark))
6423 || h->root.type == bfd_link_hash_undefined
6424 || h->root.type == bfd_link_hash_undefweak))
6425 {
6426 struct elf_gc_sweep_symbol_info *inf;
6427
6428 inf = (struct elf_gc_sweep_symbol_info *) data;
6429 (*inf->hide_symbol) (inf->info, h, TRUE);
6430 h->def_regular = 0;
6431 h->ref_regular = 0;
6432 h->ref_regular_nonweak = 0;
6433 }
6434
6435 return TRUE;
6436 }
6437
6438 /* Set up the sizes and contents of the ELF dynamic sections. This is
6439 called by the ELF linker emulation before_allocation routine. We
6440 must set the sizes of the sections before the linker sets the
6441 addresses of the various sections. */
6442
6443 bfd_boolean
6444 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6445 const char *soname,
6446 const char *rpath,
6447 const char *filter_shlib,
6448 const char *audit,
6449 const char *depaudit,
6450 const char * const *auxiliary_filters,
6451 struct bfd_link_info *info,
6452 asection **sinterpptr)
6453 {
6454 bfd *dynobj;
6455 const struct elf_backend_data *bed;
6456
6457 *sinterpptr = NULL;
6458
6459 if (!is_elf_hash_table (info->hash))
6460 return TRUE;
6461
6462 dynobj = elf_hash_table (info)->dynobj;
6463
6464 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6465 {
6466 struct bfd_elf_version_tree *verdefs;
6467 struct elf_info_failed asvinfo;
6468 struct bfd_elf_version_tree *t;
6469 struct bfd_elf_version_expr *d;
6470 asection *s;
6471 size_t soname_indx;
6472
6473 /* If we are supposed to export all symbols into the dynamic symbol
6474 table (this is not the normal case), then do so. */
6475 if (info->export_dynamic
6476 || (bfd_link_executable (info) && info->dynamic))
6477 {
6478 struct elf_info_failed eif;
6479
6480 eif.info = info;
6481 eif.failed = FALSE;
6482 elf_link_hash_traverse (elf_hash_table (info),
6483 _bfd_elf_export_symbol,
6484 &eif);
6485 if (eif.failed)
6486 return FALSE;
6487 }
6488
6489 if (soname != NULL)
6490 {
6491 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6492 soname, TRUE);
6493 if (soname_indx == (size_t) -1
6494 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6495 return FALSE;
6496 }
6497 else
6498 soname_indx = (size_t) -1;
6499
6500 /* Make all global versions with definition. */
6501 for (t = info->version_info; t != NULL; t = t->next)
6502 for (d = t->globals.list; d != NULL; d = d->next)
6503 if (!d->symver && d->literal)
6504 {
6505 const char *verstr, *name;
6506 size_t namelen, verlen, newlen;
6507 char *newname, *p, leading_char;
6508 struct elf_link_hash_entry *newh;
6509
6510 leading_char = bfd_get_symbol_leading_char (output_bfd);
6511 name = d->pattern;
6512 namelen = strlen (name) + (leading_char != '\0');
6513 verstr = t->name;
6514 verlen = strlen (verstr);
6515 newlen = namelen + verlen + 3;
6516
6517 newname = (char *) bfd_malloc (newlen);
6518 if (newname == NULL)
6519 return FALSE;
6520 newname[0] = leading_char;
6521 memcpy (newname + (leading_char != '\0'), name, namelen);
6522
6523 /* Check the hidden versioned definition. */
6524 p = newname + namelen;
6525 *p++ = ELF_VER_CHR;
6526 memcpy (p, verstr, verlen + 1);
6527 newh = elf_link_hash_lookup (elf_hash_table (info),
6528 newname, FALSE, FALSE,
6529 FALSE);
6530 if (newh == NULL
6531 || (newh->root.type != bfd_link_hash_defined
6532 && newh->root.type != bfd_link_hash_defweak))
6533 {
6534 /* Check the default versioned definition. */
6535 *p++ = ELF_VER_CHR;
6536 memcpy (p, verstr, verlen + 1);
6537 newh = elf_link_hash_lookup (elf_hash_table (info),
6538 newname, FALSE, FALSE,
6539 FALSE);
6540 }
6541 free (newname);
6542
6543 /* Mark this version if there is a definition and it is
6544 not defined in a shared object. */
6545 if (newh != NULL
6546 && !newh->def_dynamic
6547 && (newh->root.type == bfd_link_hash_defined
6548 || newh->root.type == bfd_link_hash_defweak))
6549 d->symver = 1;
6550 }
6551
6552 /* Attach all the symbols to their version information. */
6553 asvinfo.info = info;
6554 asvinfo.failed = FALSE;
6555
6556 elf_link_hash_traverse (elf_hash_table (info),
6557 _bfd_elf_link_assign_sym_version,
6558 &asvinfo);
6559 if (asvinfo.failed)
6560 return FALSE;
6561
6562 if (!info->allow_undefined_version)
6563 {
6564 /* Check if all global versions have a definition. */
6565 bfd_boolean all_defined = TRUE;
6566 for (t = info->version_info; t != NULL; t = t->next)
6567 for (d = t->globals.list; d != NULL; d = d->next)
6568 if (d->literal && !d->symver && !d->script)
6569 {
6570 _bfd_error_handler
6571 (_("%s: undefined version: %s"),
6572 d->pattern, t->name);
6573 all_defined = FALSE;
6574 }
6575
6576 if (!all_defined)
6577 {
6578 bfd_set_error (bfd_error_bad_value);
6579 return FALSE;
6580 }
6581 }
6582
6583 /* Set up the version definition section. */
6584 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6585 BFD_ASSERT (s != NULL);
6586
6587 /* We may have created additional version definitions if we are
6588 just linking a regular application. */
6589 verdefs = info->version_info;
6590
6591 /* Skip anonymous version tag. */
6592 if (verdefs != NULL && verdefs->vernum == 0)
6593 verdefs = verdefs->next;
6594
6595 if (verdefs == NULL && !info->create_default_symver)
6596 s->flags |= SEC_EXCLUDE;
6597 else
6598 {
6599 unsigned int cdefs;
6600 bfd_size_type size;
6601 bfd_byte *p;
6602 Elf_Internal_Verdef def;
6603 Elf_Internal_Verdaux defaux;
6604 struct bfd_link_hash_entry *bh;
6605 struct elf_link_hash_entry *h;
6606 const char *name;
6607
6608 cdefs = 0;
6609 size = 0;
6610
6611 /* Make space for the base version. */
6612 size += sizeof (Elf_External_Verdef);
6613 size += sizeof (Elf_External_Verdaux);
6614 ++cdefs;
6615
6616 /* Make space for the default version. */
6617 if (info->create_default_symver)
6618 {
6619 size += sizeof (Elf_External_Verdef);
6620 ++cdefs;
6621 }
6622
6623 for (t = verdefs; t != NULL; t = t->next)
6624 {
6625 struct bfd_elf_version_deps *n;
6626
6627 /* Don't emit base version twice. */
6628 if (t->vernum == 0)
6629 continue;
6630
6631 size += sizeof (Elf_External_Verdef);
6632 size += sizeof (Elf_External_Verdaux);
6633 ++cdefs;
6634
6635 for (n = t->deps; n != NULL; n = n->next)
6636 size += sizeof (Elf_External_Verdaux);
6637 }
6638
6639 s->size = size;
6640 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6641 if (s->contents == NULL && s->size != 0)
6642 return FALSE;
6643
6644 /* Fill in the version definition section. */
6645
6646 p = s->contents;
6647
6648 def.vd_version = VER_DEF_CURRENT;
6649 def.vd_flags = VER_FLG_BASE;
6650 def.vd_ndx = 1;
6651 def.vd_cnt = 1;
6652 if (info->create_default_symver)
6653 {
6654 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6655 def.vd_next = sizeof (Elf_External_Verdef);
6656 }
6657 else
6658 {
6659 def.vd_aux = sizeof (Elf_External_Verdef);
6660 def.vd_next = (sizeof (Elf_External_Verdef)
6661 + sizeof (Elf_External_Verdaux));
6662 }
6663
6664 if (soname_indx != (size_t) -1)
6665 {
6666 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6667 soname_indx);
6668 def.vd_hash = bfd_elf_hash (soname);
6669 defaux.vda_name = soname_indx;
6670 name = soname;
6671 }
6672 else
6673 {
6674 size_t indx;
6675
6676 name = lbasename (bfd_get_filename (output_bfd));
6677 def.vd_hash = bfd_elf_hash (name);
6678 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6679 name, FALSE);
6680 if (indx == (size_t) -1)
6681 return FALSE;
6682 defaux.vda_name = indx;
6683 }
6684 defaux.vda_next = 0;
6685
6686 _bfd_elf_swap_verdef_out (output_bfd, &def,
6687 (Elf_External_Verdef *) p);
6688 p += sizeof (Elf_External_Verdef);
6689 if (info->create_default_symver)
6690 {
6691 /* Add a symbol representing this version. */
6692 bh = NULL;
6693 if (! (_bfd_generic_link_add_one_symbol
6694 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6695 0, NULL, FALSE,
6696 get_elf_backend_data (dynobj)->collect, &bh)))
6697 return FALSE;
6698 h = (struct elf_link_hash_entry *) bh;
6699 h->non_elf = 0;
6700 h->def_regular = 1;
6701 h->type = STT_OBJECT;
6702 h->verinfo.vertree = NULL;
6703
6704 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6705 return FALSE;
6706
6707 /* Create a duplicate of the base version with the same
6708 aux block, but different flags. */
6709 def.vd_flags = 0;
6710 def.vd_ndx = 2;
6711 def.vd_aux = sizeof (Elf_External_Verdef);
6712 if (verdefs)
6713 def.vd_next = (sizeof (Elf_External_Verdef)
6714 + sizeof (Elf_External_Verdaux));
6715 else
6716 def.vd_next = 0;
6717 _bfd_elf_swap_verdef_out (output_bfd, &def,
6718 (Elf_External_Verdef *) p);
6719 p += sizeof (Elf_External_Verdef);
6720 }
6721 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6722 (Elf_External_Verdaux *) p);
6723 p += sizeof (Elf_External_Verdaux);
6724
6725 for (t = verdefs; t != NULL; t = t->next)
6726 {
6727 unsigned int cdeps;
6728 struct bfd_elf_version_deps *n;
6729
6730 /* Don't emit the base version twice. */
6731 if (t->vernum == 0)
6732 continue;
6733
6734 cdeps = 0;
6735 for (n = t->deps; n != NULL; n = n->next)
6736 ++cdeps;
6737
6738 /* Add a symbol representing this version. */
6739 bh = NULL;
6740 if (! (_bfd_generic_link_add_one_symbol
6741 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6742 0, NULL, FALSE,
6743 get_elf_backend_data (dynobj)->collect, &bh)))
6744 return FALSE;
6745 h = (struct elf_link_hash_entry *) bh;
6746 h->non_elf = 0;
6747 h->def_regular = 1;
6748 h->type = STT_OBJECT;
6749 h->verinfo.vertree = t;
6750
6751 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6752 return FALSE;
6753
6754 def.vd_version = VER_DEF_CURRENT;
6755 def.vd_flags = 0;
6756 if (t->globals.list == NULL
6757 && t->locals.list == NULL
6758 && ! t->used)
6759 def.vd_flags |= VER_FLG_WEAK;
6760 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6761 def.vd_cnt = cdeps + 1;
6762 def.vd_hash = bfd_elf_hash (t->name);
6763 def.vd_aux = sizeof (Elf_External_Verdef);
6764 def.vd_next = 0;
6765
6766 /* If a basever node is next, it *must* be the last node in
6767 the chain, otherwise Verdef construction breaks. */
6768 if (t->next != NULL && t->next->vernum == 0)
6769 BFD_ASSERT (t->next->next == NULL);
6770
6771 if (t->next != NULL && t->next->vernum != 0)
6772 def.vd_next = (sizeof (Elf_External_Verdef)
6773 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6774
6775 _bfd_elf_swap_verdef_out (output_bfd, &def,
6776 (Elf_External_Verdef *) p);
6777 p += sizeof (Elf_External_Verdef);
6778
6779 defaux.vda_name = h->dynstr_index;
6780 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6781 h->dynstr_index);
6782 defaux.vda_next = 0;
6783 if (t->deps != NULL)
6784 defaux.vda_next = sizeof (Elf_External_Verdaux);
6785 t->name_indx = defaux.vda_name;
6786
6787 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6788 (Elf_External_Verdaux *) p);
6789 p += sizeof (Elf_External_Verdaux);
6790
6791 for (n = t->deps; n != NULL; n = n->next)
6792 {
6793 if (n->version_needed == NULL)
6794 {
6795 /* This can happen if there was an error in the
6796 version script. */
6797 defaux.vda_name = 0;
6798 }
6799 else
6800 {
6801 defaux.vda_name = n->version_needed->name_indx;
6802 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6803 defaux.vda_name);
6804 }
6805 if (n->next == NULL)
6806 defaux.vda_next = 0;
6807 else
6808 defaux.vda_next = sizeof (Elf_External_Verdaux);
6809
6810 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6811 (Elf_External_Verdaux *) p);
6812 p += sizeof (Elf_External_Verdaux);
6813 }
6814 }
6815
6816 elf_tdata (output_bfd)->cverdefs = cdefs;
6817 }
6818 }
6819
6820 bed = get_elf_backend_data (output_bfd);
6821
6822 if (info->gc_sections && bed->can_gc_sections)
6823 {
6824 struct elf_gc_sweep_symbol_info sweep_info;
6825
6826 /* Remove the symbols that were in the swept sections from the
6827 dynamic symbol table. */
6828 sweep_info.info = info;
6829 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6830 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6831 &sweep_info);
6832 }
6833
6834 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6835 {
6836 asection *s;
6837 struct elf_find_verdep_info sinfo;
6838
6839 /* Work out the size of the version reference section. */
6840
6841 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6842 BFD_ASSERT (s != NULL);
6843
6844 sinfo.info = info;
6845 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6846 if (sinfo.vers == 0)
6847 sinfo.vers = 1;
6848 sinfo.failed = FALSE;
6849
6850 elf_link_hash_traverse (elf_hash_table (info),
6851 _bfd_elf_link_find_version_dependencies,
6852 &sinfo);
6853 if (sinfo.failed)
6854 return FALSE;
6855
6856 if (elf_tdata (output_bfd)->verref == NULL)
6857 s->flags |= SEC_EXCLUDE;
6858 else
6859 {
6860 Elf_Internal_Verneed *vn;
6861 unsigned int size;
6862 unsigned int crefs;
6863 bfd_byte *p;
6864
6865 /* Build the version dependency section. */
6866 size = 0;
6867 crefs = 0;
6868 for (vn = elf_tdata (output_bfd)->verref;
6869 vn != NULL;
6870 vn = vn->vn_nextref)
6871 {
6872 Elf_Internal_Vernaux *a;
6873
6874 size += sizeof (Elf_External_Verneed);
6875 ++crefs;
6876 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6877 size += sizeof (Elf_External_Vernaux);
6878 }
6879
6880 s->size = size;
6881 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6882 if (s->contents == NULL)
6883 return FALSE;
6884
6885 p = s->contents;
6886 for (vn = elf_tdata (output_bfd)->verref;
6887 vn != NULL;
6888 vn = vn->vn_nextref)
6889 {
6890 unsigned int caux;
6891 Elf_Internal_Vernaux *a;
6892 size_t indx;
6893
6894 caux = 0;
6895 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6896 ++caux;
6897
6898 vn->vn_version = VER_NEED_CURRENT;
6899 vn->vn_cnt = caux;
6900 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6901 elf_dt_name (vn->vn_bfd) != NULL
6902 ? elf_dt_name (vn->vn_bfd)
6903 : lbasename (bfd_get_filename
6904 (vn->vn_bfd)),
6905 FALSE);
6906 if (indx == (size_t) -1)
6907 return FALSE;
6908 vn->vn_file = indx;
6909 vn->vn_aux = sizeof (Elf_External_Verneed);
6910 if (vn->vn_nextref == NULL)
6911 vn->vn_next = 0;
6912 else
6913 vn->vn_next = (sizeof (Elf_External_Verneed)
6914 + caux * sizeof (Elf_External_Vernaux));
6915
6916 _bfd_elf_swap_verneed_out (output_bfd, vn,
6917 (Elf_External_Verneed *) p);
6918 p += sizeof (Elf_External_Verneed);
6919
6920 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6921 {
6922 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6923 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6924 a->vna_nodename, FALSE);
6925 if (indx == (size_t) -1)
6926 return FALSE;
6927 a->vna_name = indx;
6928 if (a->vna_nextptr == NULL)
6929 a->vna_next = 0;
6930 else
6931 a->vna_next = sizeof (Elf_External_Vernaux);
6932
6933 _bfd_elf_swap_vernaux_out (output_bfd, a,
6934 (Elf_External_Vernaux *) p);
6935 p += sizeof (Elf_External_Vernaux);
6936 }
6937 }
6938
6939 elf_tdata (output_bfd)->cverrefs = crefs;
6940 }
6941 }
6942
6943 /* Any syms created from now on start with -1 in
6944 got.refcount/offset and plt.refcount/offset. */
6945 elf_hash_table (info)->init_got_refcount
6946 = elf_hash_table (info)->init_got_offset;
6947 elf_hash_table (info)->init_plt_refcount
6948 = elf_hash_table (info)->init_plt_offset;
6949
6950 if (bfd_link_relocatable (info)
6951 && !_bfd_elf_size_group_sections (info))
6952 return FALSE;
6953
6954 /* The backend may have to create some sections regardless of whether
6955 we're dynamic or not. */
6956 if (bed->elf_backend_always_size_sections
6957 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6958 return FALSE;
6959
6960 /* Determine any GNU_STACK segment requirements, after the backend
6961 has had a chance to set a default segment size. */
6962 if (info->execstack)
6963 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6964 else if (info->noexecstack)
6965 elf_stack_flags (output_bfd) = PF_R | PF_W;
6966 else
6967 {
6968 bfd *inputobj;
6969 asection *notesec = NULL;
6970 int exec = 0;
6971
6972 for (inputobj = info->input_bfds;
6973 inputobj;
6974 inputobj = inputobj->link.next)
6975 {
6976 asection *s;
6977
6978 if (inputobj->flags
6979 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6980 continue;
6981 s = inputobj->sections;
6982 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6983 continue;
6984
6985 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6986 if (s)
6987 {
6988 if (s->flags & SEC_CODE)
6989 exec = PF_X;
6990 notesec = s;
6991 }
6992 else if (bed->default_execstack)
6993 exec = PF_X;
6994 }
6995 if (notesec || info->stacksize > 0)
6996 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6997 if (notesec && exec && bfd_link_relocatable (info)
6998 && notesec->output_section != bfd_abs_section_ptr)
6999 notesec->output_section->flags |= SEC_CODE;
7000 }
7001
7002 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7003 {
7004 struct elf_info_failed eif;
7005 struct elf_link_hash_entry *h;
7006 asection *dynstr;
7007 asection *s;
7008
7009 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7010 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7011
7012 if (info->symbolic)
7013 {
7014 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7015 return FALSE;
7016 info->flags |= DF_SYMBOLIC;
7017 }
7018
7019 if (rpath != NULL)
7020 {
7021 size_t indx;
7022 bfd_vma tag;
7023
7024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7025 TRUE);
7026 if (indx == (size_t) -1)
7027 return FALSE;
7028
7029 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7030 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7031 return FALSE;
7032 }
7033
7034 if (filter_shlib != NULL)
7035 {
7036 size_t indx;
7037
7038 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7039 filter_shlib, TRUE);
7040 if (indx == (size_t) -1
7041 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7042 return FALSE;
7043 }
7044
7045 if (auxiliary_filters != NULL)
7046 {
7047 const char * const *p;
7048
7049 for (p = auxiliary_filters; *p != NULL; p++)
7050 {
7051 size_t indx;
7052
7053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7054 *p, TRUE);
7055 if (indx == (size_t) -1
7056 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7057 return FALSE;
7058 }
7059 }
7060
7061 if (audit != NULL)
7062 {
7063 size_t indx;
7064
7065 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7066 TRUE);
7067 if (indx == (size_t) -1
7068 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7069 return FALSE;
7070 }
7071
7072 if (depaudit != NULL)
7073 {
7074 size_t indx;
7075
7076 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7077 TRUE);
7078 if (indx == (size_t) -1
7079 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7080 return FALSE;
7081 }
7082
7083 eif.info = info;
7084 eif.failed = FALSE;
7085
7086 /* Find all symbols which were defined in a dynamic object and make
7087 the backend pick a reasonable value for them. */
7088 elf_link_hash_traverse (elf_hash_table (info),
7089 _bfd_elf_adjust_dynamic_symbol,
7090 &eif);
7091 if (eif.failed)
7092 return FALSE;
7093
7094 /* Add some entries to the .dynamic section. We fill in some of the
7095 values later, in bfd_elf_final_link, but we must add the entries
7096 now so that we know the final size of the .dynamic section. */
7097
7098 /* If there are initialization and/or finalization functions to
7099 call then add the corresponding DT_INIT/DT_FINI entries. */
7100 h = (info->init_function
7101 ? elf_link_hash_lookup (elf_hash_table (info),
7102 info->init_function, FALSE,
7103 FALSE, FALSE)
7104 : NULL);
7105 if (h != NULL
7106 && (h->ref_regular
7107 || h->def_regular))
7108 {
7109 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7110 return FALSE;
7111 }
7112 h = (info->fini_function
7113 ? elf_link_hash_lookup (elf_hash_table (info),
7114 info->fini_function, FALSE,
7115 FALSE, FALSE)
7116 : NULL);
7117 if (h != NULL
7118 && (h->ref_regular
7119 || h->def_regular))
7120 {
7121 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7122 return FALSE;
7123 }
7124
7125 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7126 if (s != NULL && s->linker_has_input)
7127 {
7128 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7129 if (! bfd_link_executable (info))
7130 {
7131 bfd *sub;
7132 asection *o;
7133
7134 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7135 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7136 && (o = sub->sections) != NULL
7137 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7138 for (o = sub->sections; o != NULL; o = o->next)
7139 if (elf_section_data (o)->this_hdr.sh_type
7140 == SHT_PREINIT_ARRAY)
7141 {
7142 _bfd_error_handler
7143 (_("%pB: .preinit_array section is not allowed in DSO"),
7144 sub);
7145 break;
7146 }
7147
7148 bfd_set_error (bfd_error_nonrepresentable_section);
7149 return FALSE;
7150 }
7151
7152 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7153 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7154 return FALSE;
7155 }
7156 s = bfd_get_section_by_name (output_bfd, ".init_array");
7157 if (s != NULL && s->linker_has_input)
7158 {
7159 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7160 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7161 return FALSE;
7162 }
7163 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7164 if (s != NULL && s->linker_has_input)
7165 {
7166 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7167 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7168 return FALSE;
7169 }
7170
7171 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7172 /* If .dynstr is excluded from the link, we don't want any of
7173 these tags. Strictly, we should be checking each section
7174 individually; This quick check covers for the case where
7175 someone does a /DISCARD/ : { *(*) }. */
7176 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7177 {
7178 bfd_size_type strsize;
7179
7180 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7181 if ((info->emit_hash
7182 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7183 || (info->emit_gnu_hash
7184 && (bed->record_xhash_symbol == NULL
7185 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7186 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7187 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7188 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7189 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7190 bed->s->sizeof_sym)
7191 || (info->gnu_flags_1
7192 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7193 info->gnu_flags_1)))
7194 return FALSE;
7195 }
7196 }
7197
7198 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7199 return FALSE;
7200
7201 /* The backend must work out the sizes of all the other dynamic
7202 sections. */
7203 if (dynobj != NULL
7204 && bed->elf_backend_size_dynamic_sections != NULL
7205 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7206 return FALSE;
7207
7208 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7209 {
7210 if (elf_tdata (output_bfd)->cverdefs)
7211 {
7212 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7213
7214 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7215 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7216 return FALSE;
7217 }
7218
7219 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7220 {
7221 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7222 return FALSE;
7223 }
7224 else if (info->flags & DF_BIND_NOW)
7225 {
7226 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7227 return FALSE;
7228 }
7229
7230 if (info->flags_1)
7231 {
7232 if (bfd_link_executable (info))
7233 info->flags_1 &= ~ (DF_1_INITFIRST
7234 | DF_1_NODELETE
7235 | DF_1_NOOPEN);
7236 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7237 return FALSE;
7238 }
7239
7240 if (elf_tdata (output_bfd)->cverrefs)
7241 {
7242 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7243
7244 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7245 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7246 return FALSE;
7247 }
7248
7249 if ((elf_tdata (output_bfd)->cverrefs == 0
7250 && elf_tdata (output_bfd)->cverdefs == 0)
7251 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7252 {
7253 asection *s;
7254
7255 s = bfd_get_linker_section (dynobj, ".gnu.version");
7256 s->flags |= SEC_EXCLUDE;
7257 }
7258 }
7259 return TRUE;
7260 }
7261
7262 /* Find the first non-excluded output section. We'll use its
7263 section symbol for some emitted relocs. */
7264 void
7265 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7266 {
7267 asection *s;
7268 asection *found = NULL;
7269
7270 for (s = output_bfd->sections; s != NULL; s = s->next)
7271 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7272 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7273 {
7274 found = s;
7275 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7276 break;
7277 }
7278 elf_hash_table (info)->text_index_section = found;
7279 }
7280
7281 /* Find two non-excluded output sections, one for code, one for data.
7282 We'll use their section symbols for some emitted relocs. */
7283 void
7284 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7285 {
7286 asection *s;
7287 asection *found = NULL;
7288
7289 /* Data first, since setting text_index_section changes
7290 _bfd_elf_omit_section_dynsym_default. */
7291 for (s = output_bfd->sections; s != NULL; s = s->next)
7292 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7293 && !(s->flags & SEC_READONLY)
7294 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7295 {
7296 found = s;
7297 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7298 break;
7299 }
7300 elf_hash_table (info)->data_index_section = found;
7301
7302 for (s = output_bfd->sections; s != NULL; s = s->next)
7303 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7304 && (s->flags & SEC_READONLY)
7305 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7306 {
7307 found = s;
7308 break;
7309 }
7310 elf_hash_table (info)->text_index_section = found;
7311 }
7312
7313 #define GNU_HASH_SECTION_NAME(bed) \
7314 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7315
7316 bfd_boolean
7317 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7318 {
7319 const struct elf_backend_data *bed;
7320 unsigned long section_sym_count;
7321 bfd_size_type dynsymcount = 0;
7322
7323 if (!is_elf_hash_table (info->hash))
7324 return TRUE;
7325
7326 bed = get_elf_backend_data (output_bfd);
7327 (*bed->elf_backend_init_index_section) (output_bfd, info);
7328
7329 /* Assign dynsym indices. In a shared library we generate a section
7330 symbol for each output section, which come first. Next come all
7331 of the back-end allocated local dynamic syms, followed by the rest
7332 of the global symbols.
7333
7334 This is usually not needed for static binaries, however backends
7335 can request to always do it, e.g. the MIPS backend uses dynamic
7336 symbol counts to lay out GOT, which will be produced in the
7337 presence of GOT relocations even in static binaries (holding fixed
7338 data in that case, to satisfy those relocations). */
7339
7340 if (elf_hash_table (info)->dynamic_sections_created
7341 || bed->always_renumber_dynsyms)
7342 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7343 &section_sym_count);
7344
7345 if (elf_hash_table (info)->dynamic_sections_created)
7346 {
7347 bfd *dynobj;
7348 asection *s;
7349 unsigned int dtagcount;
7350
7351 dynobj = elf_hash_table (info)->dynobj;
7352
7353 /* Work out the size of the symbol version section. */
7354 s = bfd_get_linker_section (dynobj, ".gnu.version");
7355 BFD_ASSERT (s != NULL);
7356 if ((s->flags & SEC_EXCLUDE) == 0)
7357 {
7358 s->size = dynsymcount * sizeof (Elf_External_Versym);
7359 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7360 if (s->contents == NULL)
7361 return FALSE;
7362
7363 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7364 return FALSE;
7365 }
7366
7367 /* Set the size of the .dynsym and .hash sections. We counted
7368 the number of dynamic symbols in elf_link_add_object_symbols.
7369 We will build the contents of .dynsym and .hash when we build
7370 the final symbol table, because until then we do not know the
7371 correct value to give the symbols. We built the .dynstr
7372 section as we went along in elf_link_add_object_symbols. */
7373 s = elf_hash_table (info)->dynsym;
7374 BFD_ASSERT (s != NULL);
7375 s->size = dynsymcount * bed->s->sizeof_sym;
7376
7377 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7378 if (s->contents == NULL)
7379 return FALSE;
7380
7381 /* The first entry in .dynsym is a dummy symbol. Clear all the
7382 section syms, in case we don't output them all. */
7383 ++section_sym_count;
7384 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7385
7386 elf_hash_table (info)->bucketcount = 0;
7387
7388 /* Compute the size of the hashing table. As a side effect this
7389 computes the hash values for all the names we export. */
7390 if (info->emit_hash)
7391 {
7392 unsigned long int *hashcodes;
7393 struct hash_codes_info hashinf;
7394 bfd_size_type amt;
7395 unsigned long int nsyms;
7396 size_t bucketcount;
7397 size_t hash_entry_size;
7398
7399 /* Compute the hash values for all exported symbols. At the same
7400 time store the values in an array so that we could use them for
7401 optimizations. */
7402 amt = dynsymcount * sizeof (unsigned long int);
7403 hashcodes = (unsigned long int *) bfd_malloc (amt);
7404 if (hashcodes == NULL)
7405 return FALSE;
7406 hashinf.hashcodes = hashcodes;
7407 hashinf.error = FALSE;
7408
7409 /* Put all hash values in HASHCODES. */
7410 elf_link_hash_traverse (elf_hash_table (info),
7411 elf_collect_hash_codes, &hashinf);
7412 if (hashinf.error)
7413 {
7414 free (hashcodes);
7415 return FALSE;
7416 }
7417
7418 nsyms = hashinf.hashcodes - hashcodes;
7419 bucketcount
7420 = compute_bucket_count (info, hashcodes, nsyms, 0);
7421 free (hashcodes);
7422
7423 if (bucketcount == 0 && nsyms > 0)
7424 return FALSE;
7425
7426 elf_hash_table (info)->bucketcount = bucketcount;
7427
7428 s = bfd_get_linker_section (dynobj, ".hash");
7429 BFD_ASSERT (s != NULL);
7430 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7431 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7432 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7433 if (s->contents == NULL)
7434 return FALSE;
7435
7436 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7437 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7438 s->contents + hash_entry_size);
7439 }
7440
7441 if (info->emit_gnu_hash)
7442 {
7443 size_t i, cnt;
7444 unsigned char *contents;
7445 struct collect_gnu_hash_codes cinfo;
7446 bfd_size_type amt;
7447 size_t bucketcount;
7448
7449 memset (&cinfo, 0, sizeof (cinfo));
7450
7451 /* Compute the hash values for all exported symbols. At the same
7452 time store the values in an array so that we could use them for
7453 optimizations. */
7454 amt = dynsymcount * 2 * sizeof (unsigned long int);
7455 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7456 if (cinfo.hashcodes == NULL)
7457 return FALSE;
7458
7459 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7460 cinfo.min_dynindx = -1;
7461 cinfo.output_bfd = output_bfd;
7462 cinfo.bed = bed;
7463
7464 /* Put all hash values in HASHCODES. */
7465 elf_link_hash_traverse (elf_hash_table (info),
7466 elf_collect_gnu_hash_codes, &cinfo);
7467 if (cinfo.error)
7468 {
7469 free (cinfo.hashcodes);
7470 return FALSE;
7471 }
7472
7473 bucketcount
7474 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7475
7476 if (bucketcount == 0)
7477 {
7478 free (cinfo.hashcodes);
7479 return FALSE;
7480 }
7481
7482 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7483 BFD_ASSERT (s != NULL);
7484
7485 if (cinfo.nsyms == 0)
7486 {
7487 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7488 BFD_ASSERT (cinfo.min_dynindx == -1);
7489 free (cinfo.hashcodes);
7490 s->size = 5 * 4 + bed->s->arch_size / 8;
7491 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7492 if (contents == NULL)
7493 return FALSE;
7494 s->contents = contents;
7495 /* 1 empty bucket. */
7496 bfd_put_32 (output_bfd, 1, contents);
7497 /* SYMIDX above the special symbol 0. */
7498 bfd_put_32 (output_bfd, 1, contents + 4);
7499 /* Just one word for bitmask. */
7500 bfd_put_32 (output_bfd, 1, contents + 8);
7501 /* Only hash fn bloom filter. */
7502 bfd_put_32 (output_bfd, 0, contents + 12);
7503 /* No hashes are valid - empty bitmask. */
7504 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7505 /* No hashes in the only bucket. */
7506 bfd_put_32 (output_bfd, 0,
7507 contents + 16 + bed->s->arch_size / 8);
7508 }
7509 else
7510 {
7511 unsigned long int maskwords, maskbitslog2, x;
7512 BFD_ASSERT (cinfo.min_dynindx != -1);
7513
7514 x = cinfo.nsyms;
7515 maskbitslog2 = 1;
7516 while ((x >>= 1) != 0)
7517 ++maskbitslog2;
7518 if (maskbitslog2 < 3)
7519 maskbitslog2 = 5;
7520 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7521 maskbitslog2 = maskbitslog2 + 3;
7522 else
7523 maskbitslog2 = maskbitslog2 + 2;
7524 if (bed->s->arch_size == 64)
7525 {
7526 if (maskbitslog2 == 5)
7527 maskbitslog2 = 6;
7528 cinfo.shift1 = 6;
7529 }
7530 else
7531 cinfo.shift1 = 5;
7532 cinfo.mask = (1 << cinfo.shift1) - 1;
7533 cinfo.shift2 = maskbitslog2;
7534 cinfo.maskbits = 1 << maskbitslog2;
7535 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7536 amt = bucketcount * sizeof (unsigned long int) * 2;
7537 amt += maskwords * sizeof (bfd_vma);
7538 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7539 if (cinfo.bitmask == NULL)
7540 {
7541 free (cinfo.hashcodes);
7542 return FALSE;
7543 }
7544
7545 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7546 cinfo.indx = cinfo.counts + bucketcount;
7547 cinfo.symindx = dynsymcount - cinfo.nsyms;
7548 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7549
7550 /* Determine how often each hash bucket is used. */
7551 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7552 for (i = 0; i < cinfo.nsyms; ++i)
7553 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7554
7555 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7556 if (cinfo.counts[i] != 0)
7557 {
7558 cinfo.indx[i] = cnt;
7559 cnt += cinfo.counts[i];
7560 }
7561 BFD_ASSERT (cnt == dynsymcount);
7562 cinfo.bucketcount = bucketcount;
7563 cinfo.local_indx = cinfo.min_dynindx;
7564
7565 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7566 s->size += cinfo.maskbits / 8;
7567 if (bed->record_xhash_symbol != NULL)
7568 s->size += cinfo.nsyms * 4;
7569 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7570 if (contents == NULL)
7571 {
7572 free (cinfo.bitmask);
7573 free (cinfo.hashcodes);
7574 return FALSE;
7575 }
7576
7577 s->contents = contents;
7578 bfd_put_32 (output_bfd, bucketcount, contents);
7579 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7580 bfd_put_32 (output_bfd, maskwords, contents + 8);
7581 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7582 contents += 16 + cinfo.maskbits / 8;
7583
7584 for (i = 0; i < bucketcount; ++i)
7585 {
7586 if (cinfo.counts[i] == 0)
7587 bfd_put_32 (output_bfd, 0, contents);
7588 else
7589 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7590 contents += 4;
7591 }
7592
7593 cinfo.contents = contents;
7594
7595 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7596 /* Renumber dynamic symbols, if populating .gnu.hash section.
7597 If using .MIPS.xhash, populate the translation table. */
7598 elf_link_hash_traverse (elf_hash_table (info),
7599 elf_gnu_hash_process_symidx, &cinfo);
7600
7601 contents = s->contents + 16;
7602 for (i = 0; i < maskwords; ++i)
7603 {
7604 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7605 contents);
7606 contents += bed->s->arch_size / 8;
7607 }
7608
7609 free (cinfo.bitmask);
7610 free (cinfo.hashcodes);
7611 }
7612 }
7613
7614 s = bfd_get_linker_section (dynobj, ".dynstr");
7615 BFD_ASSERT (s != NULL);
7616
7617 elf_finalize_dynstr (output_bfd, info);
7618
7619 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7620
7621 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7622 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7623 return FALSE;
7624 }
7625
7626 return TRUE;
7627 }
7628 \f
7629 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7630
7631 static void
7632 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7633 asection *sec)
7634 {
7635 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7636 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7637 }
7638
7639 /* Finish SHF_MERGE section merging. */
7640
7641 bfd_boolean
7642 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7643 {
7644 bfd *ibfd;
7645 asection *sec;
7646
7647 if (!is_elf_hash_table (info->hash))
7648 return FALSE;
7649
7650 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7651 if ((ibfd->flags & DYNAMIC) == 0
7652 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7653 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7654 == get_elf_backend_data (obfd)->s->elfclass))
7655 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7656 if ((sec->flags & SEC_MERGE) != 0
7657 && !bfd_is_abs_section (sec->output_section))
7658 {
7659 struct bfd_elf_section_data *secdata;
7660
7661 secdata = elf_section_data (sec);
7662 if (! _bfd_add_merge_section (obfd,
7663 &elf_hash_table (info)->merge_info,
7664 sec, &secdata->sec_info))
7665 return FALSE;
7666 else if (secdata->sec_info)
7667 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7668 }
7669
7670 if (elf_hash_table (info)->merge_info != NULL)
7671 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7672 merge_sections_remove_hook);
7673 return TRUE;
7674 }
7675
7676 /* Create an entry in an ELF linker hash table. */
7677
7678 struct bfd_hash_entry *
7679 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7680 struct bfd_hash_table *table,
7681 const char *string)
7682 {
7683 /* Allocate the structure if it has not already been allocated by a
7684 subclass. */
7685 if (entry == NULL)
7686 {
7687 entry = (struct bfd_hash_entry *)
7688 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7689 if (entry == NULL)
7690 return entry;
7691 }
7692
7693 /* Call the allocation method of the superclass. */
7694 entry = _bfd_link_hash_newfunc (entry, table, string);
7695 if (entry != NULL)
7696 {
7697 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7698 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7699
7700 /* Set local fields. */
7701 ret->indx = -1;
7702 ret->dynindx = -1;
7703 ret->got = htab->init_got_refcount;
7704 ret->plt = htab->init_plt_refcount;
7705 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7706 - offsetof (struct elf_link_hash_entry, size)));
7707 /* Assume that we have been called by a non-ELF symbol reader.
7708 This flag is then reset by the code which reads an ELF input
7709 file. This ensures that a symbol created by a non-ELF symbol
7710 reader will have the flag set correctly. */
7711 ret->non_elf = 1;
7712 }
7713
7714 return entry;
7715 }
7716
7717 /* Copy data from an indirect symbol to its direct symbol, hiding the
7718 old indirect symbol. Also used for copying flags to a weakdef. */
7719
7720 void
7721 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7722 struct elf_link_hash_entry *dir,
7723 struct elf_link_hash_entry *ind)
7724 {
7725 struct elf_link_hash_table *htab;
7726
7727 if (ind->dyn_relocs != NULL)
7728 {
7729 if (dir->dyn_relocs != NULL)
7730 {
7731 struct elf_dyn_relocs **pp;
7732 struct elf_dyn_relocs *p;
7733
7734 /* Add reloc counts against the indirect sym to the direct sym
7735 list. Merge any entries against the same section. */
7736 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7737 {
7738 struct elf_dyn_relocs *q;
7739
7740 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7741 if (q->sec == p->sec)
7742 {
7743 q->pc_count += p->pc_count;
7744 q->count += p->count;
7745 *pp = p->next;
7746 break;
7747 }
7748 if (q == NULL)
7749 pp = &p->next;
7750 }
7751 *pp = dir->dyn_relocs;
7752 }
7753
7754 dir->dyn_relocs = ind->dyn_relocs;
7755 ind->dyn_relocs = NULL;
7756 }
7757
7758 /* Copy down any references that we may have already seen to the
7759 symbol which just became indirect. */
7760
7761 if (dir->versioned != versioned_hidden)
7762 dir->ref_dynamic |= ind->ref_dynamic;
7763 dir->ref_regular |= ind->ref_regular;
7764 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7765 dir->non_got_ref |= ind->non_got_ref;
7766 dir->needs_plt |= ind->needs_plt;
7767 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7768
7769 if (ind->root.type != bfd_link_hash_indirect)
7770 return;
7771
7772 /* Copy over the global and procedure linkage table refcount entries.
7773 These may have been already set up by a check_relocs routine. */
7774 htab = elf_hash_table (info);
7775 if (ind->got.refcount > htab->init_got_refcount.refcount)
7776 {
7777 if (dir->got.refcount < 0)
7778 dir->got.refcount = 0;
7779 dir->got.refcount += ind->got.refcount;
7780 ind->got.refcount = htab->init_got_refcount.refcount;
7781 }
7782
7783 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7784 {
7785 if (dir->plt.refcount < 0)
7786 dir->plt.refcount = 0;
7787 dir->plt.refcount += ind->plt.refcount;
7788 ind->plt.refcount = htab->init_plt_refcount.refcount;
7789 }
7790
7791 if (ind->dynindx != -1)
7792 {
7793 if (dir->dynindx != -1)
7794 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7795 dir->dynindx = ind->dynindx;
7796 dir->dynstr_index = ind->dynstr_index;
7797 ind->dynindx = -1;
7798 ind->dynstr_index = 0;
7799 }
7800 }
7801
7802 void
7803 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7804 struct elf_link_hash_entry *h,
7805 bfd_boolean force_local)
7806 {
7807 /* STT_GNU_IFUNC symbol must go through PLT. */
7808 if (h->type != STT_GNU_IFUNC)
7809 {
7810 h->plt = elf_hash_table (info)->init_plt_offset;
7811 h->needs_plt = 0;
7812 }
7813 if (force_local)
7814 {
7815 h->forced_local = 1;
7816 if (h->dynindx != -1)
7817 {
7818 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7819 h->dynstr_index);
7820 h->dynindx = -1;
7821 h->dynstr_index = 0;
7822 }
7823 }
7824 }
7825
7826 /* Hide a symbol. */
7827
7828 void
7829 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7830 struct bfd_link_info *info,
7831 struct bfd_link_hash_entry *h)
7832 {
7833 if (is_elf_hash_table (info->hash))
7834 {
7835 const struct elf_backend_data *bed
7836 = get_elf_backend_data (output_bfd);
7837 struct elf_link_hash_entry *eh
7838 = (struct elf_link_hash_entry *) h;
7839 bed->elf_backend_hide_symbol (info, eh, TRUE);
7840 eh->def_dynamic = 0;
7841 eh->ref_dynamic = 0;
7842 eh->dynamic_def = 0;
7843 }
7844 }
7845
7846 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7847 caller. */
7848
7849 bfd_boolean
7850 _bfd_elf_link_hash_table_init
7851 (struct elf_link_hash_table *table,
7852 bfd *abfd,
7853 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7854 struct bfd_hash_table *,
7855 const char *),
7856 unsigned int entsize,
7857 enum elf_target_id target_id)
7858 {
7859 bfd_boolean ret;
7860 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7861
7862 table->init_got_refcount.refcount = can_refcount - 1;
7863 table->init_plt_refcount.refcount = can_refcount - 1;
7864 table->init_got_offset.offset = -(bfd_vma) 1;
7865 table->init_plt_offset.offset = -(bfd_vma) 1;
7866 /* The first dynamic symbol is a dummy. */
7867 table->dynsymcount = 1;
7868
7869 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7870
7871 table->root.type = bfd_link_elf_hash_table;
7872 table->hash_table_id = target_id;
7873 table->target_os = get_elf_backend_data (abfd)->target_os;
7874
7875 return ret;
7876 }
7877
7878 /* Create an ELF linker hash table. */
7879
7880 struct bfd_link_hash_table *
7881 _bfd_elf_link_hash_table_create (bfd *abfd)
7882 {
7883 struct elf_link_hash_table *ret;
7884 size_t amt = sizeof (struct elf_link_hash_table);
7885
7886 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7887 if (ret == NULL)
7888 return NULL;
7889
7890 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7891 sizeof (struct elf_link_hash_entry),
7892 GENERIC_ELF_DATA))
7893 {
7894 free (ret);
7895 return NULL;
7896 }
7897 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7898
7899 return &ret->root;
7900 }
7901
7902 /* Destroy an ELF linker hash table. */
7903
7904 void
7905 _bfd_elf_link_hash_table_free (bfd *obfd)
7906 {
7907 struct elf_link_hash_table *htab;
7908
7909 htab = (struct elf_link_hash_table *) obfd->link.hash;
7910 if (htab->dynstr != NULL)
7911 _bfd_elf_strtab_free (htab->dynstr);
7912 _bfd_merge_sections_free (htab->merge_info);
7913 _bfd_generic_link_hash_table_free (obfd);
7914 }
7915
7916 /* This is a hook for the ELF emulation code in the generic linker to
7917 tell the backend linker what file name to use for the DT_NEEDED
7918 entry for a dynamic object. */
7919
7920 void
7921 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7922 {
7923 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7924 && bfd_get_format (abfd) == bfd_object)
7925 elf_dt_name (abfd) = name;
7926 }
7927
7928 int
7929 bfd_elf_get_dyn_lib_class (bfd *abfd)
7930 {
7931 int lib_class;
7932 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7933 && bfd_get_format (abfd) == bfd_object)
7934 lib_class = elf_dyn_lib_class (abfd);
7935 else
7936 lib_class = 0;
7937 return lib_class;
7938 }
7939
7940 void
7941 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7942 {
7943 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7944 && bfd_get_format (abfd) == bfd_object)
7945 elf_dyn_lib_class (abfd) = lib_class;
7946 }
7947
7948 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7949 the linker ELF emulation code. */
7950
7951 struct bfd_link_needed_list *
7952 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7953 struct bfd_link_info *info)
7954 {
7955 if (! is_elf_hash_table (info->hash))
7956 return NULL;
7957 return elf_hash_table (info)->needed;
7958 }
7959
7960 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7961 hook for the linker ELF emulation code. */
7962
7963 struct bfd_link_needed_list *
7964 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7965 struct bfd_link_info *info)
7966 {
7967 if (! is_elf_hash_table (info->hash))
7968 return NULL;
7969 return elf_hash_table (info)->runpath;
7970 }
7971
7972 /* Get the name actually used for a dynamic object for a link. This
7973 is the SONAME entry if there is one. Otherwise, it is the string
7974 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7975
7976 const char *
7977 bfd_elf_get_dt_soname (bfd *abfd)
7978 {
7979 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7980 && bfd_get_format (abfd) == bfd_object)
7981 return elf_dt_name (abfd);
7982 return NULL;
7983 }
7984
7985 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7986 the ELF linker emulation code. */
7987
7988 bfd_boolean
7989 bfd_elf_get_bfd_needed_list (bfd *abfd,
7990 struct bfd_link_needed_list **pneeded)
7991 {
7992 asection *s;
7993 bfd_byte *dynbuf = NULL;
7994 unsigned int elfsec;
7995 unsigned long shlink;
7996 bfd_byte *extdyn, *extdynend;
7997 size_t extdynsize;
7998 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7999
8000 *pneeded = NULL;
8001
8002 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
8003 || bfd_get_format (abfd) != bfd_object)
8004 return TRUE;
8005
8006 s = bfd_get_section_by_name (abfd, ".dynamic");
8007 if (s == NULL || s->size == 0)
8008 return TRUE;
8009
8010 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8011 goto error_return;
8012
8013 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8014 if (elfsec == SHN_BAD)
8015 goto error_return;
8016
8017 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8018
8019 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8020 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8021
8022 extdyn = dynbuf;
8023 extdynend = extdyn + s->size;
8024 for (; extdyn < extdynend; extdyn += extdynsize)
8025 {
8026 Elf_Internal_Dyn dyn;
8027
8028 (*swap_dyn_in) (abfd, extdyn, &dyn);
8029
8030 if (dyn.d_tag == DT_NULL)
8031 break;
8032
8033 if (dyn.d_tag == DT_NEEDED)
8034 {
8035 const char *string;
8036 struct bfd_link_needed_list *l;
8037 unsigned int tagv = dyn.d_un.d_val;
8038 size_t amt;
8039
8040 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8041 if (string == NULL)
8042 goto error_return;
8043
8044 amt = sizeof *l;
8045 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8046 if (l == NULL)
8047 goto error_return;
8048
8049 l->by = abfd;
8050 l->name = string;
8051 l->next = *pneeded;
8052 *pneeded = l;
8053 }
8054 }
8055
8056 free (dynbuf);
8057
8058 return TRUE;
8059
8060 error_return:
8061 free (dynbuf);
8062 return FALSE;
8063 }
8064
8065 struct elf_symbuf_symbol
8066 {
8067 unsigned long st_name; /* Symbol name, index in string tbl */
8068 unsigned char st_info; /* Type and binding attributes */
8069 unsigned char st_other; /* Visibilty, and target specific */
8070 };
8071
8072 struct elf_symbuf_head
8073 {
8074 struct elf_symbuf_symbol *ssym;
8075 size_t count;
8076 unsigned int st_shndx;
8077 };
8078
8079 struct elf_symbol
8080 {
8081 union
8082 {
8083 Elf_Internal_Sym *isym;
8084 struct elf_symbuf_symbol *ssym;
8085 void *p;
8086 } u;
8087 const char *name;
8088 };
8089
8090 /* Sort references to symbols by ascending section number. */
8091
8092 static int
8093 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8094 {
8095 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8096 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8097
8098 if (s1->st_shndx != s2->st_shndx)
8099 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8100 /* Final sort by the address of the sym in the symbuf ensures
8101 a stable sort. */
8102 if (s1 != s2)
8103 return s1 > s2 ? 1 : -1;
8104 return 0;
8105 }
8106
8107 static int
8108 elf_sym_name_compare (const void *arg1, const void *arg2)
8109 {
8110 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8111 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8112 int ret = strcmp (s1->name, s2->name);
8113 if (ret != 0)
8114 return ret;
8115 if (s1->u.p != s2->u.p)
8116 return s1->u.p > s2->u.p ? 1 : -1;
8117 return 0;
8118 }
8119
8120 static struct elf_symbuf_head *
8121 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8122 {
8123 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8124 struct elf_symbuf_symbol *ssym;
8125 struct elf_symbuf_head *ssymbuf, *ssymhead;
8126 size_t i, shndx_count, total_size, amt;
8127
8128 amt = symcount * sizeof (*indbuf);
8129 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8130 if (indbuf == NULL)
8131 return NULL;
8132
8133 /* NB: When checking if 2 sections define the same set of local and
8134 global symbols, ignore both undefined and section symbols in the
8135 symbol table. */
8136 for (ind = indbuf, i = 0; i < symcount; i++)
8137 if (isymbuf[i].st_shndx != SHN_UNDEF
8138 && ELF_ST_TYPE (isymbuf[i].st_info) != STT_SECTION)
8139 *ind++ = &isymbuf[i];
8140 indbufend = ind;
8141
8142 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8143 elf_sort_elf_symbol);
8144
8145 shndx_count = 0;
8146 if (indbufend > indbuf)
8147 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8148 if (ind[0]->st_shndx != ind[1]->st_shndx)
8149 shndx_count++;
8150
8151 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8152 + (indbufend - indbuf) * sizeof (*ssym));
8153 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8154 if (ssymbuf == NULL)
8155 {
8156 free (indbuf);
8157 return NULL;
8158 }
8159
8160 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8161 ssymbuf->ssym = NULL;
8162 ssymbuf->count = shndx_count;
8163 ssymbuf->st_shndx = 0;
8164 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8165 {
8166 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8167 {
8168 ssymhead++;
8169 ssymhead->ssym = ssym;
8170 ssymhead->count = 0;
8171 ssymhead->st_shndx = (*ind)->st_shndx;
8172 }
8173 ssym->st_name = (*ind)->st_name;
8174 ssym->st_info = (*ind)->st_info;
8175 ssym->st_other = (*ind)->st_other;
8176 ssymhead->count++;
8177 }
8178 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8179 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8180 == total_size));
8181
8182 free (indbuf);
8183 return ssymbuf;
8184 }
8185
8186 /* Check if 2 sections define the same set of local and global
8187 symbols. */
8188
8189 static bfd_boolean
8190 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8191 struct bfd_link_info *info)
8192 {
8193 bfd *bfd1, *bfd2;
8194 const struct elf_backend_data *bed1, *bed2;
8195 Elf_Internal_Shdr *hdr1, *hdr2;
8196 size_t symcount1, symcount2;
8197 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8198 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8199 Elf_Internal_Sym *isym, *isymend;
8200 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8201 size_t count1, count2, i;
8202 unsigned int shndx1, shndx2;
8203 bfd_boolean result;
8204
8205 bfd1 = sec1->owner;
8206 bfd2 = sec2->owner;
8207
8208 /* Both sections have to be in ELF. */
8209 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8210 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8211 return FALSE;
8212
8213 if (elf_section_type (sec1) != elf_section_type (sec2))
8214 return FALSE;
8215
8216 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8217 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8218 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8219 return FALSE;
8220
8221 bed1 = get_elf_backend_data (bfd1);
8222 bed2 = get_elf_backend_data (bfd2);
8223 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8224 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8225 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8226 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8227
8228 if (symcount1 == 0 || symcount2 == 0)
8229 return FALSE;
8230
8231 result = FALSE;
8232 isymbuf1 = NULL;
8233 isymbuf2 = NULL;
8234 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8235 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8236
8237 if (ssymbuf1 == NULL)
8238 {
8239 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8240 NULL, NULL, NULL);
8241 if (isymbuf1 == NULL)
8242 goto done;
8243
8244 if (info != NULL && !info->reduce_memory_overheads)
8245 {
8246 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8247 elf_tdata (bfd1)->symbuf = ssymbuf1;
8248 }
8249 }
8250
8251 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8252 {
8253 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8254 NULL, NULL, NULL);
8255 if (isymbuf2 == NULL)
8256 goto done;
8257
8258 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8259 {
8260 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8261 elf_tdata (bfd2)->symbuf = ssymbuf2;
8262 }
8263 }
8264
8265 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8266 {
8267 /* Optimized faster version. */
8268 size_t lo, hi, mid;
8269 struct elf_symbol *symp;
8270 struct elf_symbuf_symbol *ssym, *ssymend;
8271
8272 lo = 0;
8273 hi = ssymbuf1->count;
8274 ssymbuf1++;
8275 count1 = 0;
8276 while (lo < hi)
8277 {
8278 mid = (lo + hi) / 2;
8279 if (shndx1 < ssymbuf1[mid].st_shndx)
8280 hi = mid;
8281 else if (shndx1 > ssymbuf1[mid].st_shndx)
8282 lo = mid + 1;
8283 else
8284 {
8285 count1 = ssymbuf1[mid].count;
8286 ssymbuf1 += mid;
8287 break;
8288 }
8289 }
8290
8291 lo = 0;
8292 hi = ssymbuf2->count;
8293 ssymbuf2++;
8294 count2 = 0;
8295 while (lo < hi)
8296 {
8297 mid = (lo + hi) / 2;
8298 if (shndx2 < ssymbuf2[mid].st_shndx)
8299 hi = mid;
8300 else if (shndx2 > ssymbuf2[mid].st_shndx)
8301 lo = mid + 1;
8302 else
8303 {
8304 count2 = ssymbuf2[mid].count;
8305 ssymbuf2 += mid;
8306 break;
8307 }
8308 }
8309
8310 if (count1 == 0 || count2 == 0 || count1 != count2)
8311 goto done;
8312
8313 symtable1
8314 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8315 symtable2
8316 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8317 if (symtable1 == NULL || symtable2 == NULL)
8318 goto done;
8319
8320 symp = symtable1;
8321 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8322 ssym < ssymend; ssym++, symp++)
8323 {
8324 symp->u.ssym = ssym;
8325 symp->name = bfd_elf_string_from_elf_section (bfd1,
8326 hdr1->sh_link,
8327 ssym->st_name);
8328 }
8329
8330 symp = symtable2;
8331 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8332 ssym < ssymend; ssym++, symp++)
8333 {
8334 symp->u.ssym = ssym;
8335 symp->name = bfd_elf_string_from_elf_section (bfd2,
8336 hdr2->sh_link,
8337 ssym->st_name);
8338 }
8339
8340 /* Sort symbol by name. */
8341 qsort (symtable1, count1, sizeof (struct elf_symbol),
8342 elf_sym_name_compare);
8343 qsort (symtable2, count1, sizeof (struct elf_symbol),
8344 elf_sym_name_compare);
8345
8346 for (i = 0; i < count1; i++)
8347 /* Two symbols must have the same binding, type and name. */
8348 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8349 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8350 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8351 goto done;
8352
8353 result = TRUE;
8354 goto done;
8355 }
8356
8357 symtable1 = (struct elf_symbol *)
8358 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8359 symtable2 = (struct elf_symbol *)
8360 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8361 if (symtable1 == NULL || symtable2 == NULL)
8362 goto done;
8363
8364 /* Count definitions in the section. */
8365 count1 = 0;
8366 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8367 if (isym->st_shndx == shndx1)
8368 symtable1[count1++].u.isym = isym;
8369
8370 count2 = 0;
8371 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8372 if (isym->st_shndx == shndx2)
8373 symtable2[count2++].u.isym = isym;
8374
8375 if (count1 == 0 || count2 == 0 || count1 != count2)
8376 goto done;
8377
8378 for (i = 0; i < count1; i++)
8379 symtable1[i].name
8380 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8381 symtable1[i].u.isym->st_name);
8382
8383 for (i = 0; i < count2; i++)
8384 symtable2[i].name
8385 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8386 symtable2[i].u.isym->st_name);
8387
8388 /* Sort symbol by name. */
8389 qsort (symtable1, count1, sizeof (struct elf_symbol),
8390 elf_sym_name_compare);
8391 qsort (symtable2, count1, sizeof (struct elf_symbol),
8392 elf_sym_name_compare);
8393
8394 for (i = 0; i < count1; i++)
8395 /* Two symbols must have the same binding, type and name. */
8396 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8397 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8398 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8399 goto done;
8400
8401 result = TRUE;
8402
8403 done:
8404 free (symtable1);
8405 free (symtable2);
8406 free (isymbuf1);
8407 free (isymbuf2);
8408
8409 return result;
8410 }
8411
8412 /* Return TRUE if 2 section types are compatible. */
8413
8414 bfd_boolean
8415 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8416 bfd *bbfd, const asection *bsec)
8417 {
8418 if (asec == NULL
8419 || bsec == NULL
8420 || abfd->xvec->flavour != bfd_target_elf_flavour
8421 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8422 return TRUE;
8423
8424 return elf_section_type (asec) == elf_section_type (bsec);
8425 }
8426 \f
8427 /* Final phase of ELF linker. */
8428
8429 /* A structure we use to avoid passing large numbers of arguments. */
8430
8431 struct elf_final_link_info
8432 {
8433 /* General link information. */
8434 struct bfd_link_info *info;
8435 /* Output BFD. */
8436 bfd *output_bfd;
8437 /* Symbol string table. */
8438 struct elf_strtab_hash *symstrtab;
8439 /* .hash section. */
8440 asection *hash_sec;
8441 /* symbol version section (.gnu.version). */
8442 asection *symver_sec;
8443 /* Buffer large enough to hold contents of any section. */
8444 bfd_byte *contents;
8445 /* Buffer large enough to hold external relocs of any section. */
8446 void *external_relocs;
8447 /* Buffer large enough to hold internal relocs of any section. */
8448 Elf_Internal_Rela *internal_relocs;
8449 /* Buffer large enough to hold external local symbols of any input
8450 BFD. */
8451 bfd_byte *external_syms;
8452 /* And a buffer for symbol section indices. */
8453 Elf_External_Sym_Shndx *locsym_shndx;
8454 /* Buffer large enough to hold internal local symbols of any input
8455 BFD. */
8456 Elf_Internal_Sym *internal_syms;
8457 /* Array large enough to hold a symbol index for each local symbol
8458 of any input BFD. */
8459 long *indices;
8460 /* Array large enough to hold a section pointer for each local
8461 symbol of any input BFD. */
8462 asection **sections;
8463 /* Buffer for SHT_SYMTAB_SHNDX section. */
8464 Elf_External_Sym_Shndx *symshndxbuf;
8465 /* Number of STT_FILE syms seen. */
8466 size_t filesym_count;
8467 /* Local symbol hash table. */
8468 struct bfd_hash_table local_hash_table;
8469 };
8470
8471 struct local_hash_entry
8472 {
8473 /* Base hash table entry structure. */
8474 struct bfd_hash_entry root;
8475 /* Size of the local symbol name. */
8476 size_t size;
8477 /* Number of the duplicated local symbol names. */
8478 long count;
8479 };
8480
8481 /* Create an entry in the local symbol hash table. */
8482
8483 static struct bfd_hash_entry *
8484 local_hash_newfunc (struct bfd_hash_entry *entry,
8485 struct bfd_hash_table *table,
8486 const char *string)
8487 {
8488
8489 /* Allocate the structure if it has not already been allocated by a
8490 subclass. */
8491 if (entry == NULL)
8492 {
8493 entry = bfd_hash_allocate (table,
8494 sizeof (struct local_hash_entry));
8495 if (entry == NULL)
8496 return entry;
8497 }
8498
8499 /* Call the allocation method of the superclass. */
8500 entry = bfd_hash_newfunc (entry, table, string);
8501 if (entry != NULL)
8502 {
8503 ((struct local_hash_entry *) entry)->count = 0;
8504 ((struct local_hash_entry *) entry)->size = 0;
8505 }
8506
8507 return entry;
8508 }
8509
8510 /* This struct is used to pass information to elf_link_output_extsym. */
8511
8512 struct elf_outext_info
8513 {
8514 bfd_boolean failed;
8515 bfd_boolean localsyms;
8516 bfd_boolean file_sym_done;
8517 struct elf_final_link_info *flinfo;
8518 };
8519
8520
8521 /* Support for evaluating a complex relocation.
8522
8523 Complex relocations are generalized, self-describing relocations. The
8524 implementation of them consists of two parts: complex symbols, and the
8525 relocations themselves.
8526
8527 The relocations use a reserved elf-wide relocation type code (R_RELC
8528 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8529 information (start bit, end bit, word width, etc) into the addend. This
8530 information is extracted from CGEN-generated operand tables within gas.
8531
8532 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8533 internal) representing prefix-notation expressions, including but not
8534 limited to those sorts of expressions normally encoded as addends in the
8535 addend field. The symbol mangling format is:
8536
8537 <node> := <literal>
8538 | <unary-operator> ':' <node>
8539 | <binary-operator> ':' <node> ':' <node>
8540 ;
8541
8542 <literal> := 's' <digits=N> ':' <N character symbol name>
8543 | 'S' <digits=N> ':' <N character section name>
8544 | '#' <hexdigits>
8545 ;
8546
8547 <binary-operator> := as in C
8548 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8549
8550 static void
8551 set_symbol_value (bfd *bfd_with_globals,
8552 Elf_Internal_Sym *isymbuf,
8553 size_t locsymcount,
8554 size_t symidx,
8555 bfd_vma val)
8556 {
8557 struct elf_link_hash_entry **sym_hashes;
8558 struct elf_link_hash_entry *h;
8559 size_t extsymoff = locsymcount;
8560
8561 if (symidx < locsymcount)
8562 {
8563 Elf_Internal_Sym *sym;
8564
8565 sym = isymbuf + symidx;
8566 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8567 {
8568 /* It is a local symbol: move it to the
8569 "absolute" section and give it a value. */
8570 sym->st_shndx = SHN_ABS;
8571 sym->st_value = val;
8572 return;
8573 }
8574 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8575 extsymoff = 0;
8576 }
8577
8578 /* It is a global symbol: set its link type
8579 to "defined" and give it a value. */
8580
8581 sym_hashes = elf_sym_hashes (bfd_with_globals);
8582 h = sym_hashes [symidx - extsymoff];
8583 while (h->root.type == bfd_link_hash_indirect
8584 || h->root.type == bfd_link_hash_warning)
8585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8586 h->root.type = bfd_link_hash_defined;
8587 h->root.u.def.value = val;
8588 h->root.u.def.section = bfd_abs_section_ptr;
8589 }
8590
8591 static bfd_boolean
8592 resolve_symbol (const char *name,
8593 bfd *input_bfd,
8594 struct elf_final_link_info *flinfo,
8595 bfd_vma *result,
8596 Elf_Internal_Sym *isymbuf,
8597 size_t locsymcount)
8598 {
8599 Elf_Internal_Sym *sym;
8600 struct bfd_link_hash_entry *global_entry;
8601 const char *candidate = NULL;
8602 Elf_Internal_Shdr *symtab_hdr;
8603 size_t i;
8604
8605 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8606
8607 for (i = 0; i < locsymcount; ++ i)
8608 {
8609 sym = isymbuf + i;
8610
8611 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8612 continue;
8613
8614 candidate = bfd_elf_string_from_elf_section (input_bfd,
8615 symtab_hdr->sh_link,
8616 sym->st_name);
8617 #ifdef DEBUG
8618 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8619 name, candidate, (unsigned long) sym->st_value);
8620 #endif
8621 if (candidate && strcmp (candidate, name) == 0)
8622 {
8623 asection *sec = flinfo->sections [i];
8624
8625 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8626 *result += sec->output_offset + sec->output_section->vma;
8627 #ifdef DEBUG
8628 printf ("Found symbol with value %8.8lx\n",
8629 (unsigned long) *result);
8630 #endif
8631 return TRUE;
8632 }
8633 }
8634
8635 /* Hmm, haven't found it yet. perhaps it is a global. */
8636 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8637 FALSE, FALSE, TRUE);
8638 if (!global_entry)
8639 return FALSE;
8640
8641 if (global_entry->type == bfd_link_hash_defined
8642 || global_entry->type == bfd_link_hash_defweak)
8643 {
8644 *result = (global_entry->u.def.value
8645 + global_entry->u.def.section->output_section->vma
8646 + global_entry->u.def.section->output_offset);
8647 #ifdef DEBUG
8648 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8649 global_entry->root.string, (unsigned long) *result);
8650 #endif
8651 return TRUE;
8652 }
8653
8654 return FALSE;
8655 }
8656
8657 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8658 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8659 names like "foo.end" which is the end address of section "foo". */
8660
8661 static bfd_boolean
8662 resolve_section (const char *name,
8663 asection *sections,
8664 bfd_vma *result,
8665 bfd * abfd)
8666 {
8667 asection *curr;
8668 unsigned int len;
8669
8670 for (curr = sections; curr; curr = curr->next)
8671 if (strcmp (curr->name, name) == 0)
8672 {
8673 *result = curr->vma;
8674 return TRUE;
8675 }
8676
8677 /* Hmm. still haven't found it. try pseudo-section names. */
8678 /* FIXME: This could be coded more efficiently... */
8679 for (curr = sections; curr; curr = curr->next)
8680 {
8681 len = strlen (curr->name);
8682 if (len > strlen (name))
8683 continue;
8684
8685 if (strncmp (curr->name, name, len) == 0)
8686 {
8687 if (strncmp (".end", name + len, 4) == 0)
8688 {
8689 *result = (curr->vma
8690 + curr->size / bfd_octets_per_byte (abfd, curr));
8691 return TRUE;
8692 }
8693
8694 /* Insert more pseudo-section names here, if you like. */
8695 }
8696 }
8697
8698 return FALSE;
8699 }
8700
8701 static void
8702 undefined_reference (const char *reftype, const char *name)
8703 {
8704 /* xgettext:c-format */
8705 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8706 reftype, name);
8707 bfd_set_error (bfd_error_bad_value);
8708 }
8709
8710 static bfd_boolean
8711 eval_symbol (bfd_vma *result,
8712 const char **symp,
8713 bfd *input_bfd,
8714 struct elf_final_link_info *flinfo,
8715 bfd_vma dot,
8716 Elf_Internal_Sym *isymbuf,
8717 size_t locsymcount,
8718 int signed_p)
8719 {
8720 size_t len;
8721 size_t symlen;
8722 bfd_vma a;
8723 bfd_vma b;
8724 char symbuf[4096];
8725 const char *sym = *symp;
8726 const char *symend;
8727 bfd_boolean symbol_is_section = FALSE;
8728
8729 len = strlen (sym);
8730 symend = sym + len;
8731
8732 if (len < 1 || len > sizeof (symbuf))
8733 {
8734 bfd_set_error (bfd_error_invalid_operation);
8735 return FALSE;
8736 }
8737
8738 switch (* sym)
8739 {
8740 case '.':
8741 *result = dot;
8742 *symp = sym + 1;
8743 return TRUE;
8744
8745 case '#':
8746 ++sym;
8747 *result = strtoul (sym, (char **) symp, 16);
8748 return TRUE;
8749
8750 case 'S':
8751 symbol_is_section = TRUE;
8752 /* Fall through. */
8753 case 's':
8754 ++sym;
8755 symlen = strtol (sym, (char **) symp, 10);
8756 sym = *symp + 1; /* Skip the trailing ':'. */
8757
8758 if (symend < sym || symlen + 1 > sizeof (symbuf))
8759 {
8760 bfd_set_error (bfd_error_invalid_operation);
8761 return FALSE;
8762 }
8763
8764 memcpy (symbuf, sym, symlen);
8765 symbuf[symlen] = '\0';
8766 *symp = sym + symlen;
8767
8768 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8769 the symbol as a section, or vice-versa. so we're pretty liberal in our
8770 interpretation here; section means "try section first", not "must be a
8771 section", and likewise with symbol. */
8772
8773 if (symbol_is_section)
8774 {
8775 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8776 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8777 isymbuf, locsymcount))
8778 {
8779 undefined_reference ("section", symbuf);
8780 return FALSE;
8781 }
8782 }
8783 else
8784 {
8785 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8786 isymbuf, locsymcount)
8787 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8788 result, input_bfd))
8789 {
8790 undefined_reference ("symbol", symbuf);
8791 return FALSE;
8792 }
8793 }
8794
8795 return TRUE;
8796
8797 /* All that remains are operators. */
8798
8799 #define UNARY_OP(op) \
8800 if (strncmp (sym, #op, strlen (#op)) == 0) \
8801 { \
8802 sym += strlen (#op); \
8803 if (*sym == ':') \
8804 ++sym; \
8805 *symp = sym; \
8806 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8807 isymbuf, locsymcount, signed_p)) \
8808 return FALSE; \
8809 if (signed_p) \
8810 *result = op ((bfd_signed_vma) a); \
8811 else \
8812 *result = op a; \
8813 return TRUE; \
8814 }
8815
8816 #define BINARY_OP_HEAD(op) \
8817 if (strncmp (sym, #op, strlen (#op)) == 0) \
8818 { \
8819 sym += strlen (#op); \
8820 if (*sym == ':') \
8821 ++sym; \
8822 *symp = sym; \
8823 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8824 isymbuf, locsymcount, signed_p)) \
8825 return FALSE; \
8826 ++*symp; \
8827 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8828 isymbuf, locsymcount, signed_p)) \
8829 return FALSE;
8830 #define BINARY_OP_TAIL(op) \
8831 if (signed_p) \
8832 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8833 else \
8834 *result = a op b; \
8835 return TRUE; \
8836 }
8837 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8838
8839 default:
8840 UNARY_OP (0-);
8841 BINARY_OP_HEAD (<<);
8842 if (b >= sizeof (a) * CHAR_BIT)
8843 {
8844 *result = 0;
8845 return TRUE;
8846 }
8847 signed_p = 0;
8848 BINARY_OP_TAIL (<<);
8849 BINARY_OP_HEAD (>>);
8850 if (b >= sizeof (a) * CHAR_BIT)
8851 {
8852 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
8853 return TRUE;
8854 }
8855 BINARY_OP_TAIL (>>);
8856 BINARY_OP (==);
8857 BINARY_OP (!=);
8858 BINARY_OP (<=);
8859 BINARY_OP (>=);
8860 BINARY_OP (&&);
8861 BINARY_OP (||);
8862 UNARY_OP (~);
8863 UNARY_OP (!);
8864 BINARY_OP (*);
8865 BINARY_OP_HEAD (/);
8866 if (b == 0)
8867 {
8868 _bfd_error_handler (_("division by zero"));
8869 bfd_set_error (bfd_error_bad_value);
8870 return FALSE;
8871 }
8872 BINARY_OP_TAIL (/);
8873 BINARY_OP_HEAD (%);
8874 if (b == 0)
8875 {
8876 _bfd_error_handler (_("division by zero"));
8877 bfd_set_error (bfd_error_bad_value);
8878 return FALSE;
8879 }
8880 BINARY_OP_TAIL (%);
8881 BINARY_OP (^);
8882 BINARY_OP (|);
8883 BINARY_OP (&);
8884 BINARY_OP (+);
8885 BINARY_OP (-);
8886 BINARY_OP (<);
8887 BINARY_OP (>);
8888 #undef UNARY_OP
8889 #undef BINARY_OP
8890 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8891 bfd_set_error (bfd_error_invalid_operation);
8892 return FALSE;
8893 }
8894 }
8895
8896 static void
8897 put_value (bfd_vma size,
8898 unsigned long chunksz,
8899 bfd *input_bfd,
8900 bfd_vma x,
8901 bfd_byte *location)
8902 {
8903 location += (size - chunksz);
8904
8905 for (; size; size -= chunksz, location -= chunksz)
8906 {
8907 switch (chunksz)
8908 {
8909 case 1:
8910 bfd_put_8 (input_bfd, x, location);
8911 x >>= 8;
8912 break;
8913 case 2:
8914 bfd_put_16 (input_bfd, x, location);
8915 x >>= 16;
8916 break;
8917 case 4:
8918 bfd_put_32 (input_bfd, x, location);
8919 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8920 x >>= 16;
8921 x >>= 16;
8922 break;
8923 #ifdef BFD64
8924 case 8:
8925 bfd_put_64 (input_bfd, x, location);
8926 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8927 x >>= 32;
8928 x >>= 32;
8929 break;
8930 #endif
8931 default:
8932 abort ();
8933 break;
8934 }
8935 }
8936 }
8937
8938 static bfd_vma
8939 get_value (bfd_vma size,
8940 unsigned long chunksz,
8941 bfd *input_bfd,
8942 bfd_byte *location)
8943 {
8944 int shift;
8945 bfd_vma x = 0;
8946
8947 /* Sanity checks. */
8948 BFD_ASSERT (chunksz <= sizeof (x)
8949 && size >= chunksz
8950 && chunksz != 0
8951 && (size % chunksz) == 0
8952 && input_bfd != NULL
8953 && location != NULL);
8954
8955 if (chunksz == sizeof (x))
8956 {
8957 BFD_ASSERT (size == chunksz);
8958
8959 /* Make sure that we do not perform an undefined shift operation.
8960 We know that size == chunksz so there will only be one iteration
8961 of the loop below. */
8962 shift = 0;
8963 }
8964 else
8965 shift = 8 * chunksz;
8966
8967 for (; size; size -= chunksz, location += chunksz)
8968 {
8969 switch (chunksz)
8970 {
8971 case 1:
8972 x = (x << shift) | bfd_get_8 (input_bfd, location);
8973 break;
8974 case 2:
8975 x = (x << shift) | bfd_get_16 (input_bfd, location);
8976 break;
8977 case 4:
8978 x = (x << shift) | bfd_get_32 (input_bfd, location);
8979 break;
8980 #ifdef BFD64
8981 case 8:
8982 x = (x << shift) | bfd_get_64 (input_bfd, location);
8983 break;
8984 #endif
8985 default:
8986 abort ();
8987 }
8988 }
8989 return x;
8990 }
8991
8992 static void
8993 decode_complex_addend (unsigned long *start, /* in bits */
8994 unsigned long *oplen, /* in bits */
8995 unsigned long *len, /* in bits */
8996 unsigned long *wordsz, /* in bytes */
8997 unsigned long *chunksz, /* in bytes */
8998 unsigned long *lsb0_p,
8999 unsigned long *signed_p,
9000 unsigned long *trunc_p,
9001 unsigned long encoded)
9002 {
9003 * start = encoded & 0x3F;
9004 * len = (encoded >> 6) & 0x3F;
9005 * oplen = (encoded >> 12) & 0x3F;
9006 * wordsz = (encoded >> 18) & 0xF;
9007 * chunksz = (encoded >> 22) & 0xF;
9008 * lsb0_p = (encoded >> 27) & 1;
9009 * signed_p = (encoded >> 28) & 1;
9010 * trunc_p = (encoded >> 29) & 1;
9011 }
9012
9013 bfd_reloc_status_type
9014 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9015 asection *input_section,
9016 bfd_byte *contents,
9017 Elf_Internal_Rela *rel,
9018 bfd_vma relocation)
9019 {
9020 bfd_vma shift, x, mask;
9021 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9022 bfd_reloc_status_type r;
9023 bfd_size_type octets;
9024
9025 /* Perform this reloc, since it is complex.
9026 (this is not to say that it necessarily refers to a complex
9027 symbol; merely that it is a self-describing CGEN based reloc.
9028 i.e. the addend has the complete reloc information (bit start, end,
9029 word size, etc) encoded within it.). */
9030
9031 decode_complex_addend (&start, &oplen, &len, &wordsz,
9032 &chunksz, &lsb0_p, &signed_p,
9033 &trunc_p, rel->r_addend);
9034
9035 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9036
9037 if (lsb0_p)
9038 shift = (start + 1) - len;
9039 else
9040 shift = (8 * wordsz) - (start + len);
9041
9042 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9043 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9044
9045 #ifdef DEBUG
9046 printf ("Doing complex reloc: "
9047 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9048 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9049 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9050 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9051 oplen, (unsigned long) x, (unsigned long) mask,
9052 (unsigned long) relocation);
9053 #endif
9054
9055 r = bfd_reloc_ok;
9056 if (! trunc_p)
9057 /* Now do an overflow check. */
9058 r = bfd_check_overflow ((signed_p
9059 ? complain_overflow_signed
9060 : complain_overflow_unsigned),
9061 len, 0, (8 * wordsz),
9062 relocation);
9063
9064 /* Do the deed. */
9065 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9066
9067 #ifdef DEBUG
9068 printf (" relocation: %8.8lx\n"
9069 " shifted mask: %8.8lx\n"
9070 " shifted/masked reloc: %8.8lx\n"
9071 " result: %8.8lx\n",
9072 (unsigned long) relocation, (unsigned long) (mask << shift),
9073 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9074 #endif
9075 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9076 return r;
9077 }
9078
9079 /* Functions to read r_offset from external (target order) reloc
9080 entry. Faster than bfd_getl32 et al, because we let the compiler
9081 know the value is aligned. */
9082
9083 static bfd_vma
9084 ext32l_r_offset (const void *p)
9085 {
9086 union aligned32
9087 {
9088 uint32_t v;
9089 unsigned char c[4];
9090 };
9091 const union aligned32 *a
9092 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9093
9094 uint32_t aval = ( (uint32_t) a->c[0]
9095 | (uint32_t) a->c[1] << 8
9096 | (uint32_t) a->c[2] << 16
9097 | (uint32_t) a->c[3] << 24);
9098 return aval;
9099 }
9100
9101 static bfd_vma
9102 ext32b_r_offset (const void *p)
9103 {
9104 union aligned32
9105 {
9106 uint32_t v;
9107 unsigned char c[4];
9108 };
9109 const union aligned32 *a
9110 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9111
9112 uint32_t aval = ( (uint32_t) a->c[0] << 24
9113 | (uint32_t) a->c[1] << 16
9114 | (uint32_t) a->c[2] << 8
9115 | (uint32_t) a->c[3]);
9116 return aval;
9117 }
9118
9119 #ifdef BFD_HOST_64_BIT
9120 static bfd_vma
9121 ext64l_r_offset (const void *p)
9122 {
9123 union aligned64
9124 {
9125 uint64_t v;
9126 unsigned char c[8];
9127 };
9128 const union aligned64 *a
9129 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9130
9131 uint64_t aval = ( (uint64_t) a->c[0]
9132 | (uint64_t) a->c[1] << 8
9133 | (uint64_t) a->c[2] << 16
9134 | (uint64_t) a->c[3] << 24
9135 | (uint64_t) a->c[4] << 32
9136 | (uint64_t) a->c[5] << 40
9137 | (uint64_t) a->c[6] << 48
9138 | (uint64_t) a->c[7] << 56);
9139 return aval;
9140 }
9141
9142 static bfd_vma
9143 ext64b_r_offset (const void *p)
9144 {
9145 union aligned64
9146 {
9147 uint64_t v;
9148 unsigned char c[8];
9149 };
9150 const union aligned64 *a
9151 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9152
9153 uint64_t aval = ( (uint64_t) a->c[0] << 56
9154 | (uint64_t) a->c[1] << 48
9155 | (uint64_t) a->c[2] << 40
9156 | (uint64_t) a->c[3] << 32
9157 | (uint64_t) a->c[4] << 24
9158 | (uint64_t) a->c[5] << 16
9159 | (uint64_t) a->c[6] << 8
9160 | (uint64_t) a->c[7]);
9161 return aval;
9162 }
9163 #endif
9164
9165 /* When performing a relocatable link, the input relocations are
9166 preserved. But, if they reference global symbols, the indices
9167 referenced must be updated. Update all the relocations found in
9168 RELDATA. */
9169
9170 static bfd_boolean
9171 elf_link_adjust_relocs (bfd *abfd,
9172 asection *sec,
9173 struct bfd_elf_section_reloc_data *reldata,
9174 bfd_boolean sort,
9175 struct bfd_link_info *info)
9176 {
9177 unsigned int i;
9178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9179 bfd_byte *erela;
9180 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9181 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9182 bfd_vma r_type_mask;
9183 int r_sym_shift;
9184 unsigned int count = reldata->count;
9185 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9186
9187 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9188 {
9189 swap_in = bed->s->swap_reloc_in;
9190 swap_out = bed->s->swap_reloc_out;
9191 }
9192 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9193 {
9194 swap_in = bed->s->swap_reloca_in;
9195 swap_out = bed->s->swap_reloca_out;
9196 }
9197 else
9198 abort ();
9199
9200 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9201 abort ();
9202
9203 if (bed->s->arch_size == 32)
9204 {
9205 r_type_mask = 0xff;
9206 r_sym_shift = 8;
9207 }
9208 else
9209 {
9210 r_type_mask = 0xffffffff;
9211 r_sym_shift = 32;
9212 }
9213
9214 erela = reldata->hdr->contents;
9215 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9216 {
9217 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9218 unsigned int j;
9219
9220 if (*rel_hash == NULL)
9221 continue;
9222
9223 if ((*rel_hash)->indx == -2
9224 && info->gc_sections
9225 && ! info->gc_keep_exported)
9226 {
9227 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9228 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9229 abfd, sec,
9230 (*rel_hash)->root.root.string);
9231 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9232 abfd, sec);
9233 bfd_set_error (bfd_error_invalid_operation);
9234 return FALSE;
9235 }
9236 BFD_ASSERT ((*rel_hash)->indx >= 0);
9237
9238 (*swap_in) (abfd, erela, irela);
9239 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9240 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9241 | (irela[j].r_info & r_type_mask));
9242 (*swap_out) (abfd, irela, erela);
9243 }
9244
9245 if (bed->elf_backend_update_relocs)
9246 (*bed->elf_backend_update_relocs) (sec, reldata);
9247
9248 if (sort && count != 0)
9249 {
9250 bfd_vma (*ext_r_off) (const void *);
9251 bfd_vma r_off;
9252 size_t elt_size;
9253 bfd_byte *base, *end, *p, *loc;
9254 bfd_byte *buf = NULL;
9255
9256 if (bed->s->arch_size == 32)
9257 {
9258 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9259 ext_r_off = ext32l_r_offset;
9260 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9261 ext_r_off = ext32b_r_offset;
9262 else
9263 abort ();
9264 }
9265 else
9266 {
9267 #ifdef BFD_HOST_64_BIT
9268 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9269 ext_r_off = ext64l_r_offset;
9270 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9271 ext_r_off = ext64b_r_offset;
9272 else
9273 #endif
9274 abort ();
9275 }
9276
9277 /* Must use a stable sort here. A modified insertion sort,
9278 since the relocs are mostly sorted already. */
9279 elt_size = reldata->hdr->sh_entsize;
9280 base = reldata->hdr->contents;
9281 end = base + count * elt_size;
9282 if (elt_size > sizeof (Elf64_External_Rela))
9283 abort ();
9284
9285 /* Ensure the first element is lowest. This acts as a sentinel,
9286 speeding the main loop below. */
9287 r_off = (*ext_r_off) (base);
9288 for (p = loc = base; (p += elt_size) < end; )
9289 {
9290 bfd_vma r_off2 = (*ext_r_off) (p);
9291 if (r_off > r_off2)
9292 {
9293 r_off = r_off2;
9294 loc = p;
9295 }
9296 }
9297 if (loc != base)
9298 {
9299 /* Don't just swap *base and *loc as that changes the order
9300 of the original base[0] and base[1] if they happen to
9301 have the same r_offset. */
9302 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9303 memcpy (onebuf, loc, elt_size);
9304 memmove (base + elt_size, base, loc - base);
9305 memcpy (base, onebuf, elt_size);
9306 }
9307
9308 for (p = base + elt_size; (p += elt_size) < end; )
9309 {
9310 /* base to p is sorted, *p is next to insert. */
9311 r_off = (*ext_r_off) (p);
9312 /* Search the sorted region for location to insert. */
9313 loc = p - elt_size;
9314 while (r_off < (*ext_r_off) (loc))
9315 loc -= elt_size;
9316 loc += elt_size;
9317 if (loc != p)
9318 {
9319 /* Chances are there is a run of relocs to insert here,
9320 from one of more input files. Files are not always
9321 linked in order due to the way elf_link_input_bfd is
9322 called. See pr17666. */
9323 size_t sortlen = p - loc;
9324 bfd_vma r_off2 = (*ext_r_off) (loc);
9325 size_t runlen = elt_size;
9326 size_t buf_size = 96 * 1024;
9327 while (p + runlen < end
9328 && (sortlen <= buf_size
9329 || runlen + elt_size <= buf_size)
9330 && r_off2 > (*ext_r_off) (p + runlen))
9331 runlen += elt_size;
9332 if (buf == NULL)
9333 {
9334 buf = bfd_malloc (buf_size);
9335 if (buf == NULL)
9336 return FALSE;
9337 }
9338 if (runlen < sortlen)
9339 {
9340 memcpy (buf, p, runlen);
9341 memmove (loc + runlen, loc, sortlen);
9342 memcpy (loc, buf, runlen);
9343 }
9344 else
9345 {
9346 memcpy (buf, loc, sortlen);
9347 memmove (loc, p, runlen);
9348 memcpy (loc + runlen, buf, sortlen);
9349 }
9350 p += runlen - elt_size;
9351 }
9352 }
9353 /* Hashes are no longer valid. */
9354 free (reldata->hashes);
9355 reldata->hashes = NULL;
9356 free (buf);
9357 }
9358 return TRUE;
9359 }
9360
9361 struct elf_link_sort_rela
9362 {
9363 union {
9364 bfd_vma offset;
9365 bfd_vma sym_mask;
9366 } u;
9367 enum elf_reloc_type_class type;
9368 /* We use this as an array of size int_rels_per_ext_rel. */
9369 Elf_Internal_Rela rela[1];
9370 };
9371
9372 /* qsort stability here and for cmp2 is only an issue if multiple
9373 dynamic relocations are emitted at the same address. But targets
9374 that apply a series of dynamic relocations each operating on the
9375 result of the prior relocation can't use -z combreloc as
9376 implemented anyway. Such schemes tend to be broken by sorting on
9377 symbol index. That leaves dynamic NONE relocs as the only other
9378 case where ld might emit multiple relocs at the same address, and
9379 those are only emitted due to target bugs. */
9380
9381 static int
9382 elf_link_sort_cmp1 (const void *A, const void *B)
9383 {
9384 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9385 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9386 int relativea, relativeb;
9387
9388 relativea = a->type == reloc_class_relative;
9389 relativeb = b->type == reloc_class_relative;
9390
9391 if (relativea < relativeb)
9392 return 1;
9393 if (relativea > relativeb)
9394 return -1;
9395 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9396 return -1;
9397 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9398 return 1;
9399 if (a->rela->r_offset < b->rela->r_offset)
9400 return -1;
9401 if (a->rela->r_offset > b->rela->r_offset)
9402 return 1;
9403 return 0;
9404 }
9405
9406 static int
9407 elf_link_sort_cmp2 (const void *A, const void *B)
9408 {
9409 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9410 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9411
9412 if (a->type < b->type)
9413 return -1;
9414 if (a->type > b->type)
9415 return 1;
9416 if (a->u.offset < b->u.offset)
9417 return -1;
9418 if (a->u.offset > b->u.offset)
9419 return 1;
9420 if (a->rela->r_offset < b->rela->r_offset)
9421 return -1;
9422 if (a->rela->r_offset > b->rela->r_offset)
9423 return 1;
9424 return 0;
9425 }
9426
9427 static size_t
9428 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9429 {
9430 asection *dynamic_relocs;
9431 asection *rela_dyn;
9432 asection *rel_dyn;
9433 bfd_size_type count, size;
9434 size_t i, ret, sort_elt, ext_size;
9435 bfd_byte *sort, *s_non_relative, *p;
9436 struct elf_link_sort_rela *sq;
9437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9438 int i2e = bed->s->int_rels_per_ext_rel;
9439 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9440 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9441 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9442 struct bfd_link_order *lo;
9443 bfd_vma r_sym_mask;
9444 bfd_boolean use_rela;
9445
9446 /* Find a dynamic reloc section. */
9447 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9448 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9449 if (rela_dyn != NULL && rela_dyn->size > 0
9450 && rel_dyn != NULL && rel_dyn->size > 0)
9451 {
9452 bfd_boolean use_rela_initialised = FALSE;
9453
9454 /* This is just here to stop gcc from complaining.
9455 Its initialization checking code is not perfect. */
9456 use_rela = TRUE;
9457
9458 /* Both sections are present. Examine the sizes
9459 of the indirect sections to help us choose. */
9460 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9461 if (lo->type == bfd_indirect_link_order)
9462 {
9463 asection *o = lo->u.indirect.section;
9464
9465 if ((o->size % bed->s->sizeof_rela) == 0)
9466 {
9467 if ((o->size % bed->s->sizeof_rel) == 0)
9468 /* Section size is divisible by both rel and rela sizes.
9469 It is of no help to us. */
9470 ;
9471 else
9472 {
9473 /* Section size is only divisible by rela. */
9474 if (use_rela_initialised && !use_rela)
9475 {
9476 _bfd_error_handler (_("%pB: unable to sort relocs - "
9477 "they are in more than one size"),
9478 abfd);
9479 bfd_set_error (bfd_error_invalid_operation);
9480 return 0;
9481 }
9482 else
9483 {
9484 use_rela = TRUE;
9485 use_rela_initialised = TRUE;
9486 }
9487 }
9488 }
9489 else if ((o->size % bed->s->sizeof_rel) == 0)
9490 {
9491 /* Section size is only divisible by rel. */
9492 if (use_rela_initialised && use_rela)
9493 {
9494 _bfd_error_handler (_("%pB: unable to sort relocs - "
9495 "they are in more than one size"),
9496 abfd);
9497 bfd_set_error (bfd_error_invalid_operation);
9498 return 0;
9499 }
9500 else
9501 {
9502 use_rela = FALSE;
9503 use_rela_initialised = TRUE;
9504 }
9505 }
9506 else
9507 {
9508 /* The section size is not divisible by either -
9509 something is wrong. */
9510 _bfd_error_handler (_("%pB: unable to sort relocs - "
9511 "they are of an unknown size"), abfd);
9512 bfd_set_error (bfd_error_invalid_operation);
9513 return 0;
9514 }
9515 }
9516
9517 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9518 if (lo->type == bfd_indirect_link_order)
9519 {
9520 asection *o = lo->u.indirect.section;
9521
9522 if ((o->size % bed->s->sizeof_rela) == 0)
9523 {
9524 if ((o->size % bed->s->sizeof_rel) == 0)
9525 /* Section size is divisible by both rel and rela sizes.
9526 It is of no help to us. */
9527 ;
9528 else
9529 {
9530 /* Section size is only divisible by rela. */
9531 if (use_rela_initialised && !use_rela)
9532 {
9533 _bfd_error_handler (_("%pB: unable to sort relocs - "
9534 "they are in more than one size"),
9535 abfd);
9536 bfd_set_error (bfd_error_invalid_operation);
9537 return 0;
9538 }
9539 else
9540 {
9541 use_rela = TRUE;
9542 use_rela_initialised = TRUE;
9543 }
9544 }
9545 }
9546 else if ((o->size % bed->s->sizeof_rel) == 0)
9547 {
9548 /* Section size is only divisible by rel. */
9549 if (use_rela_initialised && use_rela)
9550 {
9551 _bfd_error_handler (_("%pB: unable to sort relocs - "
9552 "they are in more than one size"),
9553 abfd);
9554 bfd_set_error (bfd_error_invalid_operation);
9555 return 0;
9556 }
9557 else
9558 {
9559 use_rela = FALSE;
9560 use_rela_initialised = TRUE;
9561 }
9562 }
9563 else
9564 {
9565 /* The section size is not divisible by either -
9566 something is wrong. */
9567 _bfd_error_handler (_("%pB: unable to sort relocs - "
9568 "they are of an unknown size"), abfd);
9569 bfd_set_error (bfd_error_invalid_operation);
9570 return 0;
9571 }
9572 }
9573
9574 if (! use_rela_initialised)
9575 /* Make a guess. */
9576 use_rela = TRUE;
9577 }
9578 else if (rela_dyn != NULL && rela_dyn->size > 0)
9579 use_rela = TRUE;
9580 else if (rel_dyn != NULL && rel_dyn->size > 0)
9581 use_rela = FALSE;
9582 else
9583 return 0;
9584
9585 if (use_rela)
9586 {
9587 dynamic_relocs = rela_dyn;
9588 ext_size = bed->s->sizeof_rela;
9589 swap_in = bed->s->swap_reloca_in;
9590 swap_out = bed->s->swap_reloca_out;
9591 }
9592 else
9593 {
9594 dynamic_relocs = rel_dyn;
9595 ext_size = bed->s->sizeof_rel;
9596 swap_in = bed->s->swap_reloc_in;
9597 swap_out = bed->s->swap_reloc_out;
9598 }
9599
9600 size = 0;
9601 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9602 if (lo->type == bfd_indirect_link_order)
9603 size += lo->u.indirect.section->size;
9604
9605 if (size != dynamic_relocs->size)
9606 return 0;
9607
9608 sort_elt = (sizeof (struct elf_link_sort_rela)
9609 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9610
9611 count = dynamic_relocs->size / ext_size;
9612 if (count == 0)
9613 return 0;
9614 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9615
9616 if (sort == NULL)
9617 {
9618 (*info->callbacks->warning)
9619 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9620 return 0;
9621 }
9622
9623 if (bed->s->arch_size == 32)
9624 r_sym_mask = ~(bfd_vma) 0xff;
9625 else
9626 r_sym_mask = ~(bfd_vma) 0xffffffff;
9627
9628 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9629 if (lo->type == bfd_indirect_link_order)
9630 {
9631 bfd_byte *erel, *erelend;
9632 asection *o = lo->u.indirect.section;
9633
9634 if (o->contents == NULL && o->size != 0)
9635 {
9636 /* This is a reloc section that is being handled as a normal
9637 section. See bfd_section_from_shdr. We can't combine
9638 relocs in this case. */
9639 free (sort);
9640 return 0;
9641 }
9642 erel = o->contents;
9643 erelend = o->contents + o->size;
9644 p = sort + o->output_offset * opb / ext_size * sort_elt;
9645
9646 while (erel < erelend)
9647 {
9648 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9649
9650 (*swap_in) (abfd, erel, s->rela);
9651 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9652 s->u.sym_mask = r_sym_mask;
9653 p += sort_elt;
9654 erel += ext_size;
9655 }
9656 }
9657
9658 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9659
9660 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9661 {
9662 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9663 if (s->type != reloc_class_relative)
9664 break;
9665 }
9666 ret = i;
9667 s_non_relative = p;
9668
9669 sq = (struct elf_link_sort_rela *) s_non_relative;
9670 for (; i < count; i++, p += sort_elt)
9671 {
9672 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9673 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9674 sq = sp;
9675 sp->u.offset = sq->rela->r_offset;
9676 }
9677
9678 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9679
9680 struct elf_link_hash_table *htab = elf_hash_table (info);
9681 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9682 {
9683 /* We have plt relocs in .rela.dyn. */
9684 sq = (struct elf_link_sort_rela *) sort;
9685 for (i = 0; i < count; i++)
9686 if (sq[count - i - 1].type != reloc_class_plt)
9687 break;
9688 if (i != 0 && htab->srelplt->size == i * ext_size)
9689 {
9690 struct bfd_link_order **plo;
9691 /* Put srelplt link_order last. This is so the output_offset
9692 set in the next loop is correct for DT_JMPREL. */
9693 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9694 if ((*plo)->type == bfd_indirect_link_order
9695 && (*plo)->u.indirect.section == htab->srelplt)
9696 {
9697 lo = *plo;
9698 *plo = lo->next;
9699 }
9700 else
9701 plo = &(*plo)->next;
9702 *plo = lo;
9703 lo->next = NULL;
9704 dynamic_relocs->map_tail.link_order = lo;
9705 }
9706 }
9707
9708 p = sort;
9709 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9710 if (lo->type == bfd_indirect_link_order)
9711 {
9712 bfd_byte *erel, *erelend;
9713 asection *o = lo->u.indirect.section;
9714
9715 erel = o->contents;
9716 erelend = o->contents + o->size;
9717 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9718 while (erel < erelend)
9719 {
9720 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9721 (*swap_out) (abfd, s->rela, erel);
9722 p += sort_elt;
9723 erel += ext_size;
9724 }
9725 }
9726
9727 free (sort);
9728 *psec = dynamic_relocs;
9729 return ret;
9730 }
9731
9732 /* Add a symbol to the output symbol string table. */
9733
9734 static int
9735 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9736 const char *name,
9737 Elf_Internal_Sym *elfsym,
9738 asection *input_sec,
9739 struct elf_link_hash_entry *h)
9740 {
9741 int (*output_symbol_hook)
9742 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9743 struct elf_link_hash_entry *);
9744 struct elf_link_hash_table *hash_table;
9745 const struct elf_backend_data *bed;
9746 bfd_size_type strtabsize;
9747
9748 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9749
9750 bed = get_elf_backend_data (flinfo->output_bfd);
9751 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9752 if (output_symbol_hook != NULL)
9753 {
9754 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9755 if (ret != 1)
9756 return ret;
9757 }
9758
9759 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9760 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9761 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9762 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9763
9764 if (name == NULL
9765 || *name == '\0'
9766 || (input_sec->flags & SEC_EXCLUDE))
9767 elfsym->st_name = (unsigned long) -1;
9768 else
9769 {
9770 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9771 to get the final offset for st_name. */
9772 char *versioned_name = (char *) name;
9773 if (h != NULL)
9774 {
9775 if (h->versioned == versioned && h->def_dynamic)
9776 {
9777 /* Keep only one '@' for versioned symbols defined in
9778 shared objects. */
9779 char *version = strrchr (name, ELF_VER_CHR);
9780 char *base_end = strchr (name, ELF_VER_CHR);
9781 if (version != base_end)
9782 {
9783 size_t base_len;
9784 size_t len = strlen (name);
9785 versioned_name = bfd_alloc (flinfo->output_bfd, len);
9786 if (versioned_name == NULL)
9787 return 0;
9788 base_len = base_end - name;
9789 memcpy (versioned_name, name, base_len);
9790 memcpy (versioned_name + base_len, version,
9791 len - base_len);
9792 }
9793 }
9794 }
9795 else if (flinfo->info->unique_symbol
9796 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
9797 {
9798 struct local_hash_entry *lh;
9799 switch (ELF_ST_TYPE (elfsym->st_info))
9800 {
9801 case STT_FILE:
9802 case STT_SECTION:
9803 break;
9804 default:
9805 lh = (struct local_hash_entry *) bfd_hash_lookup
9806 (&flinfo->local_hash_table, name, TRUE, FALSE);
9807 if (lh == NULL)
9808 return 0;
9809 if (lh->count)
9810 {
9811 /* Append ".COUNT" to duplicated local symbols. */
9812 size_t count_len;
9813 size_t base_len = lh->size;
9814 char buf[30];
9815 sprintf (buf, "%lx", lh->count);
9816 if (!base_len)
9817 {
9818 base_len = strlen (name);
9819 lh->size = base_len;
9820 }
9821 count_len = strlen (buf);
9822 versioned_name = bfd_alloc (flinfo->output_bfd,
9823 base_len + count_len + 2);
9824 if (versioned_name == NULL)
9825 return 0;
9826 memcpy (versioned_name, name, base_len);
9827 versioned_name[base_len] = '.';
9828 memcpy (versioned_name + base_len + 1, buf,
9829 count_len + 1);
9830 }
9831 lh->count++;
9832 break;
9833 }
9834 }
9835 elfsym->st_name
9836 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9837 versioned_name, FALSE);
9838 if (elfsym->st_name == (unsigned long) -1)
9839 return 0;
9840 }
9841
9842 hash_table = elf_hash_table (flinfo->info);
9843 strtabsize = hash_table->strtabsize;
9844 if (strtabsize <= hash_table->strtabcount)
9845 {
9846 strtabsize += strtabsize;
9847 hash_table->strtabsize = strtabsize;
9848 strtabsize *= sizeof (*hash_table->strtab);
9849 hash_table->strtab
9850 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9851 strtabsize);
9852 if (hash_table->strtab == NULL)
9853 return 0;
9854 }
9855 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9856 hash_table->strtab[hash_table->strtabcount].dest_index
9857 = hash_table->strtabcount;
9858 hash_table->strtab[hash_table->strtabcount].destshndx_index
9859 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9860
9861 flinfo->output_bfd->symcount += 1;
9862 hash_table->strtabcount += 1;
9863
9864 return 1;
9865 }
9866
9867 /* Swap symbols out to the symbol table and flush the output symbols to
9868 the file. */
9869
9870 static bfd_boolean
9871 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9872 {
9873 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9874 size_t amt;
9875 size_t i;
9876 const struct elf_backend_data *bed;
9877 bfd_byte *symbuf;
9878 Elf_Internal_Shdr *hdr;
9879 file_ptr pos;
9880 bfd_boolean ret;
9881
9882 if (!hash_table->strtabcount)
9883 return TRUE;
9884
9885 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9886
9887 bed = get_elf_backend_data (flinfo->output_bfd);
9888
9889 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9890 symbuf = (bfd_byte *) bfd_malloc (amt);
9891 if (symbuf == NULL)
9892 return FALSE;
9893
9894 if (flinfo->symshndxbuf)
9895 {
9896 amt = sizeof (Elf_External_Sym_Shndx);
9897 amt *= bfd_get_symcount (flinfo->output_bfd);
9898 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9899 if (flinfo->symshndxbuf == NULL)
9900 {
9901 free (symbuf);
9902 return FALSE;
9903 }
9904 }
9905
9906 /* Now swap out the symbols. */
9907 for (i = 0; i < hash_table->strtabcount; i++)
9908 {
9909 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9910 if (elfsym->sym.st_name == (unsigned long) -1)
9911 elfsym->sym.st_name = 0;
9912 else
9913 elfsym->sym.st_name
9914 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9915 elfsym->sym.st_name);
9916
9917 /* Inform the linker of the addition of this symbol. */
9918
9919 if (flinfo->info->callbacks->ctf_new_symbol)
9920 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
9921 &elfsym->sym);
9922
9923 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9924 ((bfd_byte *) symbuf
9925 + (elfsym->dest_index
9926 * bed->s->sizeof_sym)),
9927 (flinfo->symshndxbuf
9928 + elfsym->destshndx_index));
9929 }
9930
9931 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9932 pos = hdr->sh_offset + hdr->sh_size;
9933 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9934 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9935 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9936 {
9937 hdr->sh_size += amt;
9938 ret = TRUE;
9939 }
9940 else
9941 ret = FALSE;
9942
9943 free (symbuf);
9944
9945 free (hash_table->strtab);
9946 hash_table->strtab = NULL;
9947
9948 return ret;
9949 }
9950
9951 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9952
9953 static bfd_boolean
9954 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9955 {
9956 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9957 && sym->st_shndx < SHN_LORESERVE)
9958 {
9959 /* The gABI doesn't support dynamic symbols in output sections
9960 beyond 64k. */
9961 _bfd_error_handler
9962 /* xgettext:c-format */
9963 (_("%pB: too many sections: %d (>= %d)"),
9964 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9965 bfd_set_error (bfd_error_nonrepresentable_section);
9966 return FALSE;
9967 }
9968 return TRUE;
9969 }
9970
9971 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9972 allowing an unsatisfied unversioned symbol in the DSO to match a
9973 versioned symbol that would normally require an explicit version.
9974 We also handle the case that a DSO references a hidden symbol
9975 which may be satisfied by a versioned symbol in another DSO. */
9976
9977 static bfd_boolean
9978 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9979 const struct elf_backend_data *bed,
9980 struct elf_link_hash_entry *h)
9981 {
9982 bfd *abfd;
9983 struct elf_link_loaded_list *loaded;
9984
9985 if (!is_elf_hash_table (info->hash))
9986 return FALSE;
9987
9988 /* Check indirect symbol. */
9989 while (h->root.type == bfd_link_hash_indirect)
9990 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9991
9992 switch (h->root.type)
9993 {
9994 default:
9995 abfd = NULL;
9996 break;
9997
9998 case bfd_link_hash_undefined:
9999 case bfd_link_hash_undefweak:
10000 abfd = h->root.u.undef.abfd;
10001 if (abfd == NULL
10002 || (abfd->flags & DYNAMIC) == 0
10003 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
10004 return FALSE;
10005 break;
10006
10007 case bfd_link_hash_defined:
10008 case bfd_link_hash_defweak:
10009 abfd = h->root.u.def.section->owner;
10010 break;
10011
10012 case bfd_link_hash_common:
10013 abfd = h->root.u.c.p->section->owner;
10014 break;
10015 }
10016 BFD_ASSERT (abfd != NULL);
10017
10018 for (loaded = elf_hash_table (info)->dyn_loaded;
10019 loaded != NULL;
10020 loaded = loaded->next)
10021 {
10022 bfd *input;
10023 Elf_Internal_Shdr *hdr;
10024 size_t symcount;
10025 size_t extsymcount;
10026 size_t extsymoff;
10027 Elf_Internal_Shdr *versymhdr;
10028 Elf_Internal_Sym *isym;
10029 Elf_Internal_Sym *isymend;
10030 Elf_Internal_Sym *isymbuf;
10031 Elf_External_Versym *ever;
10032 Elf_External_Versym *extversym;
10033
10034 input = loaded->abfd;
10035
10036 /* We check each DSO for a possible hidden versioned definition. */
10037 if (input == abfd
10038 || elf_dynversym (input) == 0)
10039 continue;
10040
10041 hdr = &elf_tdata (input)->dynsymtab_hdr;
10042
10043 symcount = hdr->sh_size / bed->s->sizeof_sym;
10044 if (elf_bad_symtab (input))
10045 {
10046 extsymcount = symcount;
10047 extsymoff = 0;
10048 }
10049 else
10050 {
10051 extsymcount = symcount - hdr->sh_info;
10052 extsymoff = hdr->sh_info;
10053 }
10054
10055 if (extsymcount == 0)
10056 continue;
10057
10058 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10059 NULL, NULL, NULL);
10060 if (isymbuf == NULL)
10061 return FALSE;
10062
10063 /* Read in any version definitions. */
10064 versymhdr = &elf_tdata (input)->dynversym_hdr;
10065 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10066 || (extversym = (Elf_External_Versym *)
10067 _bfd_malloc_and_read (input, versymhdr->sh_size,
10068 versymhdr->sh_size)) == NULL)
10069 {
10070 free (isymbuf);
10071 return FALSE;
10072 }
10073
10074 ever = extversym + extsymoff;
10075 isymend = isymbuf + extsymcount;
10076 for (isym = isymbuf; isym < isymend; isym++, ever++)
10077 {
10078 const char *name;
10079 Elf_Internal_Versym iver;
10080 unsigned short version_index;
10081
10082 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10083 || isym->st_shndx == SHN_UNDEF)
10084 continue;
10085
10086 name = bfd_elf_string_from_elf_section (input,
10087 hdr->sh_link,
10088 isym->st_name);
10089 if (strcmp (name, h->root.root.string) != 0)
10090 continue;
10091
10092 _bfd_elf_swap_versym_in (input, ever, &iver);
10093
10094 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10095 && !(h->def_regular
10096 && h->forced_local))
10097 {
10098 /* If we have a non-hidden versioned sym, then it should
10099 have provided a definition for the undefined sym unless
10100 it is defined in a non-shared object and forced local.
10101 */
10102 abort ();
10103 }
10104
10105 version_index = iver.vs_vers & VERSYM_VERSION;
10106 if (version_index == 1 || version_index == 2)
10107 {
10108 /* This is the base or first version. We can use it. */
10109 free (extversym);
10110 free (isymbuf);
10111 return TRUE;
10112 }
10113 }
10114
10115 free (extversym);
10116 free (isymbuf);
10117 }
10118
10119 return FALSE;
10120 }
10121
10122 /* Convert ELF common symbol TYPE. */
10123
10124 static int
10125 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10126 {
10127 /* Commom symbol can only appear in relocatable link. */
10128 if (!bfd_link_relocatable (info))
10129 abort ();
10130 switch (info->elf_stt_common)
10131 {
10132 case unchanged:
10133 break;
10134 case elf_stt_common:
10135 type = STT_COMMON;
10136 break;
10137 case no_elf_stt_common:
10138 type = STT_OBJECT;
10139 break;
10140 }
10141 return type;
10142 }
10143
10144 /* Add an external symbol to the symbol table. This is called from
10145 the hash table traversal routine. When generating a shared object,
10146 we go through the symbol table twice. The first time we output
10147 anything that might have been forced to local scope in a version
10148 script. The second time we output the symbols that are still
10149 global symbols. */
10150
10151 static bfd_boolean
10152 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10153 {
10154 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10155 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10156 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10157 bfd_boolean strip;
10158 Elf_Internal_Sym sym;
10159 asection *input_sec;
10160 const struct elf_backend_data *bed;
10161 long indx;
10162 int ret;
10163 unsigned int type;
10164
10165 if (h->root.type == bfd_link_hash_warning)
10166 {
10167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10168 if (h->root.type == bfd_link_hash_new)
10169 return TRUE;
10170 }
10171
10172 /* Decide whether to output this symbol in this pass. */
10173 if (eoinfo->localsyms)
10174 {
10175 if (!h->forced_local)
10176 return TRUE;
10177 }
10178 else
10179 {
10180 if (h->forced_local)
10181 return TRUE;
10182 }
10183
10184 bed = get_elf_backend_data (flinfo->output_bfd);
10185
10186 if (h->root.type == bfd_link_hash_undefined)
10187 {
10188 /* If we have an undefined symbol reference here then it must have
10189 come from a shared library that is being linked in. (Undefined
10190 references in regular files have already been handled unless
10191 they are in unreferenced sections which are removed by garbage
10192 collection). */
10193 bfd_boolean ignore_undef = FALSE;
10194
10195 /* Some symbols may be special in that the fact that they're
10196 undefined can be safely ignored - let backend determine that. */
10197 if (bed->elf_backend_ignore_undef_symbol)
10198 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10199
10200 /* If we are reporting errors for this situation then do so now. */
10201 if (!ignore_undef
10202 && h->ref_dynamic_nonweak
10203 && (!h->ref_regular || flinfo->info->gc_sections)
10204 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10205 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10206 {
10207 flinfo->info->callbacks->undefined_symbol
10208 (flinfo->info, h->root.root.string,
10209 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10210 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10211 && !flinfo->info->warn_unresolved_syms);
10212 }
10213
10214 /* Strip a global symbol defined in a discarded section. */
10215 if (h->indx == -3)
10216 return TRUE;
10217 }
10218
10219 /* We should also warn if a forced local symbol is referenced from
10220 shared libraries. */
10221 if (bfd_link_executable (flinfo->info)
10222 && h->forced_local
10223 && h->ref_dynamic
10224 && h->def_regular
10225 && !h->dynamic_def
10226 && h->ref_dynamic_nonweak
10227 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10228 {
10229 bfd *def_bfd;
10230 const char *msg;
10231 struct elf_link_hash_entry *hi = h;
10232
10233 /* Check indirect symbol. */
10234 while (hi->root.type == bfd_link_hash_indirect)
10235 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10236
10237 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10238 /* xgettext:c-format */
10239 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10240 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10241 /* xgettext:c-format */
10242 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10243 else
10244 /* xgettext:c-format */
10245 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10246 def_bfd = flinfo->output_bfd;
10247 if (hi->root.u.def.section != bfd_abs_section_ptr)
10248 def_bfd = hi->root.u.def.section->owner;
10249 _bfd_error_handler (msg, flinfo->output_bfd,
10250 h->root.root.string, def_bfd);
10251 bfd_set_error (bfd_error_bad_value);
10252 eoinfo->failed = TRUE;
10253 return FALSE;
10254 }
10255
10256 /* We don't want to output symbols that have never been mentioned by
10257 a regular file, or that we have been told to strip. However, if
10258 h->indx is set to -2, the symbol is used by a reloc and we must
10259 output it. */
10260 strip = FALSE;
10261 if (h->indx == -2)
10262 ;
10263 else if ((h->def_dynamic
10264 || h->ref_dynamic
10265 || h->root.type == bfd_link_hash_new)
10266 && !h->def_regular
10267 && !h->ref_regular)
10268 strip = TRUE;
10269 else if (flinfo->info->strip == strip_all)
10270 strip = TRUE;
10271 else if (flinfo->info->strip == strip_some
10272 && bfd_hash_lookup (flinfo->info->keep_hash,
10273 h->root.root.string, FALSE, FALSE) == NULL)
10274 strip = TRUE;
10275 else if ((h->root.type == bfd_link_hash_defined
10276 || h->root.type == bfd_link_hash_defweak)
10277 && ((flinfo->info->strip_discarded
10278 && discarded_section (h->root.u.def.section))
10279 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10280 && h->root.u.def.section->owner != NULL
10281 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10282 strip = TRUE;
10283 else if ((h->root.type == bfd_link_hash_undefined
10284 || h->root.type == bfd_link_hash_undefweak)
10285 && h->root.u.undef.abfd != NULL
10286 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10287 strip = TRUE;
10288
10289 type = h->type;
10290
10291 /* If we're stripping it, and it's not a dynamic symbol, there's
10292 nothing else to do. However, if it is a forced local symbol or
10293 an ifunc symbol we need to give the backend finish_dynamic_symbol
10294 function a chance to make it dynamic. */
10295 if (strip
10296 && h->dynindx == -1
10297 && type != STT_GNU_IFUNC
10298 && !h->forced_local)
10299 return TRUE;
10300
10301 sym.st_value = 0;
10302 sym.st_size = h->size;
10303 sym.st_other = h->other;
10304 switch (h->root.type)
10305 {
10306 default:
10307 case bfd_link_hash_new:
10308 case bfd_link_hash_warning:
10309 abort ();
10310 return FALSE;
10311
10312 case bfd_link_hash_undefined:
10313 case bfd_link_hash_undefweak:
10314 input_sec = bfd_und_section_ptr;
10315 sym.st_shndx = SHN_UNDEF;
10316 break;
10317
10318 case bfd_link_hash_defined:
10319 case bfd_link_hash_defweak:
10320 {
10321 input_sec = h->root.u.def.section;
10322 if (input_sec->output_section != NULL)
10323 {
10324 sym.st_shndx =
10325 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10326 input_sec->output_section);
10327 if (sym.st_shndx == SHN_BAD)
10328 {
10329 _bfd_error_handler
10330 /* xgettext:c-format */
10331 (_("%pB: could not find output section %pA for input section %pA"),
10332 flinfo->output_bfd, input_sec->output_section, input_sec);
10333 bfd_set_error (bfd_error_nonrepresentable_section);
10334 eoinfo->failed = TRUE;
10335 return FALSE;
10336 }
10337
10338 /* ELF symbols in relocatable files are section relative,
10339 but in nonrelocatable files they are virtual
10340 addresses. */
10341 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10342 if (!bfd_link_relocatable (flinfo->info))
10343 {
10344 sym.st_value += input_sec->output_section->vma;
10345 if (h->type == STT_TLS)
10346 {
10347 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10348 if (tls_sec != NULL)
10349 sym.st_value -= tls_sec->vma;
10350 }
10351 }
10352 }
10353 else
10354 {
10355 BFD_ASSERT (input_sec->owner == NULL
10356 || (input_sec->owner->flags & DYNAMIC) != 0);
10357 sym.st_shndx = SHN_UNDEF;
10358 input_sec = bfd_und_section_ptr;
10359 }
10360 }
10361 break;
10362
10363 case bfd_link_hash_common:
10364 input_sec = h->root.u.c.p->section;
10365 sym.st_shndx = bed->common_section_index (input_sec);
10366 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10367 break;
10368
10369 case bfd_link_hash_indirect:
10370 /* These symbols are created by symbol versioning. They point
10371 to the decorated version of the name. For example, if the
10372 symbol foo@@GNU_1.2 is the default, which should be used when
10373 foo is used with no version, then we add an indirect symbol
10374 foo which points to foo@@GNU_1.2. We ignore these symbols,
10375 since the indirected symbol is already in the hash table. */
10376 return TRUE;
10377 }
10378
10379 if (type == STT_COMMON || type == STT_OBJECT)
10380 switch (h->root.type)
10381 {
10382 case bfd_link_hash_common:
10383 type = elf_link_convert_common_type (flinfo->info, type);
10384 break;
10385 case bfd_link_hash_defined:
10386 case bfd_link_hash_defweak:
10387 if (bed->common_definition (&sym))
10388 type = elf_link_convert_common_type (flinfo->info, type);
10389 else
10390 type = STT_OBJECT;
10391 break;
10392 case bfd_link_hash_undefined:
10393 case bfd_link_hash_undefweak:
10394 break;
10395 default:
10396 abort ();
10397 }
10398
10399 if (h->forced_local)
10400 {
10401 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10402 /* Turn off visibility on local symbol. */
10403 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10404 }
10405 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10406 else if (h->unique_global && h->def_regular)
10407 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10408 else if (h->root.type == bfd_link_hash_undefweak
10409 || h->root.type == bfd_link_hash_defweak)
10410 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10411 else
10412 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10413 sym.st_target_internal = h->target_internal;
10414
10415 /* Give the processor backend a chance to tweak the symbol value,
10416 and also to finish up anything that needs to be done for this
10417 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10418 forced local syms when non-shared is due to a historical quirk.
10419 STT_GNU_IFUNC symbol must go through PLT. */
10420 if ((h->type == STT_GNU_IFUNC
10421 && h->def_regular
10422 && !bfd_link_relocatable (flinfo->info))
10423 || ((h->dynindx != -1
10424 || h->forced_local)
10425 && ((bfd_link_pic (flinfo->info)
10426 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10427 || h->root.type != bfd_link_hash_undefweak))
10428 || !h->forced_local)
10429 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10430 {
10431 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10432 (flinfo->output_bfd, flinfo->info, h, &sym)))
10433 {
10434 eoinfo->failed = TRUE;
10435 return FALSE;
10436 }
10437 }
10438
10439 /* If we are marking the symbol as undefined, and there are no
10440 non-weak references to this symbol from a regular object, then
10441 mark the symbol as weak undefined; if there are non-weak
10442 references, mark the symbol as strong. We can't do this earlier,
10443 because it might not be marked as undefined until the
10444 finish_dynamic_symbol routine gets through with it. */
10445 if (sym.st_shndx == SHN_UNDEF
10446 && h->ref_regular
10447 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10448 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10449 {
10450 int bindtype;
10451 type = ELF_ST_TYPE (sym.st_info);
10452
10453 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10454 if (type == STT_GNU_IFUNC)
10455 type = STT_FUNC;
10456
10457 if (h->ref_regular_nonweak)
10458 bindtype = STB_GLOBAL;
10459 else
10460 bindtype = STB_WEAK;
10461 sym.st_info = ELF_ST_INFO (bindtype, type);
10462 }
10463
10464 /* If this is a symbol defined in a dynamic library, don't use the
10465 symbol size from the dynamic library. Relinking an executable
10466 against a new library may introduce gratuitous changes in the
10467 executable's symbols if we keep the size. */
10468 if (sym.st_shndx == SHN_UNDEF
10469 && !h->def_regular
10470 && h->def_dynamic)
10471 sym.st_size = 0;
10472
10473 /* If a non-weak symbol with non-default visibility is not defined
10474 locally, it is a fatal error. */
10475 if (!bfd_link_relocatable (flinfo->info)
10476 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10477 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10478 && h->root.type == bfd_link_hash_undefined
10479 && !h->def_regular)
10480 {
10481 const char *msg;
10482
10483 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10484 /* xgettext:c-format */
10485 msg = _("%pB: protected symbol `%s' isn't defined");
10486 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10487 /* xgettext:c-format */
10488 msg = _("%pB: internal symbol `%s' isn't defined");
10489 else
10490 /* xgettext:c-format */
10491 msg = _("%pB: hidden symbol `%s' isn't defined");
10492 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10493 bfd_set_error (bfd_error_bad_value);
10494 eoinfo->failed = TRUE;
10495 return FALSE;
10496 }
10497
10498 /* If this symbol should be put in the .dynsym section, then put it
10499 there now. We already know the symbol index. We also fill in
10500 the entry in the .hash section. */
10501 if (h->dynindx != -1
10502 && elf_hash_table (flinfo->info)->dynamic_sections_created
10503 && elf_hash_table (flinfo->info)->dynsym != NULL
10504 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10505 {
10506 bfd_byte *esym;
10507
10508 /* Since there is no version information in the dynamic string,
10509 if there is no version info in symbol version section, we will
10510 have a run-time problem if not linking executable, referenced
10511 by shared library, or not bound locally. */
10512 if (h->verinfo.verdef == NULL
10513 && (!bfd_link_executable (flinfo->info)
10514 || h->ref_dynamic
10515 || !h->def_regular))
10516 {
10517 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10518
10519 if (p && p [1] != '\0')
10520 {
10521 _bfd_error_handler
10522 /* xgettext:c-format */
10523 (_("%pB: no symbol version section for versioned symbol `%s'"),
10524 flinfo->output_bfd, h->root.root.string);
10525 eoinfo->failed = TRUE;
10526 return FALSE;
10527 }
10528 }
10529
10530 sym.st_name = h->dynstr_index;
10531 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10532 + h->dynindx * bed->s->sizeof_sym);
10533 if (!check_dynsym (flinfo->output_bfd, &sym))
10534 {
10535 eoinfo->failed = TRUE;
10536 return FALSE;
10537 }
10538
10539 /* Inform the linker of the addition of this symbol. */
10540
10541 if (flinfo->info->callbacks->ctf_new_dynsym)
10542 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10543
10544 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10545
10546 if (flinfo->hash_sec != NULL)
10547 {
10548 size_t hash_entry_size;
10549 bfd_byte *bucketpos;
10550 bfd_vma chain;
10551 size_t bucketcount;
10552 size_t bucket;
10553
10554 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10555 bucket = h->u.elf_hash_value % bucketcount;
10556
10557 hash_entry_size
10558 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10559 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10560 + (bucket + 2) * hash_entry_size);
10561 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10562 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10563 bucketpos);
10564 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10565 ((bfd_byte *) flinfo->hash_sec->contents
10566 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10567 }
10568
10569 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10570 {
10571 Elf_Internal_Versym iversym;
10572 Elf_External_Versym *eversym;
10573
10574 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10575 {
10576 if (h->verinfo.verdef == NULL
10577 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10578 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10579 iversym.vs_vers = 1;
10580 else
10581 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10582 }
10583 else
10584 {
10585 if (h->verinfo.vertree == NULL)
10586 iversym.vs_vers = 1;
10587 else
10588 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10589 if (flinfo->info->create_default_symver)
10590 iversym.vs_vers++;
10591 }
10592
10593 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10594 defined locally. */
10595 if (h->versioned == versioned_hidden && h->def_regular)
10596 iversym.vs_vers |= VERSYM_HIDDEN;
10597
10598 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10599 eversym += h->dynindx;
10600 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10601 }
10602 }
10603
10604 /* If the symbol is undefined, and we didn't output it to .dynsym,
10605 strip it from .symtab too. Obviously we can't do this for
10606 relocatable output or when needed for --emit-relocs. */
10607 else if (input_sec == bfd_und_section_ptr
10608 && h->indx != -2
10609 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10610 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10611 && !bfd_link_relocatable (flinfo->info))
10612 return TRUE;
10613
10614 /* Also strip others that we couldn't earlier due to dynamic symbol
10615 processing. */
10616 if (strip)
10617 return TRUE;
10618 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10619 return TRUE;
10620
10621 /* Output a FILE symbol so that following locals are not associated
10622 with the wrong input file. We need one for forced local symbols
10623 if we've seen more than one FILE symbol or when we have exactly
10624 one FILE symbol but global symbols are present in a file other
10625 than the one with the FILE symbol. We also need one if linker
10626 defined symbols are present. In practice these conditions are
10627 always met, so just emit the FILE symbol unconditionally. */
10628 if (eoinfo->localsyms
10629 && !eoinfo->file_sym_done
10630 && eoinfo->flinfo->filesym_count != 0)
10631 {
10632 Elf_Internal_Sym fsym;
10633
10634 memset (&fsym, 0, sizeof (fsym));
10635 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10636 fsym.st_shndx = SHN_ABS;
10637 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10638 bfd_und_section_ptr, NULL))
10639 return FALSE;
10640
10641 eoinfo->file_sym_done = TRUE;
10642 }
10643
10644 indx = bfd_get_symcount (flinfo->output_bfd);
10645 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10646 input_sec, h);
10647 if (ret == 0)
10648 {
10649 eoinfo->failed = TRUE;
10650 return FALSE;
10651 }
10652 else if (ret == 1)
10653 h->indx = indx;
10654 else if (h->indx == -2)
10655 abort();
10656
10657 return TRUE;
10658 }
10659
10660 /* Return TRUE if special handling is done for relocs in SEC against
10661 symbols defined in discarded sections. */
10662
10663 static bfd_boolean
10664 elf_section_ignore_discarded_relocs (asection *sec)
10665 {
10666 const struct elf_backend_data *bed;
10667
10668 switch (sec->sec_info_type)
10669 {
10670 case SEC_INFO_TYPE_STABS:
10671 case SEC_INFO_TYPE_EH_FRAME:
10672 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10673 return TRUE;
10674 default:
10675 break;
10676 }
10677
10678 bed = get_elf_backend_data (sec->owner);
10679 if (bed->elf_backend_ignore_discarded_relocs != NULL
10680 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10681 return TRUE;
10682
10683 return FALSE;
10684 }
10685
10686 /* Return a mask saying how ld should treat relocations in SEC against
10687 symbols defined in discarded sections. If this function returns
10688 COMPLAIN set, ld will issue a warning message. If this function
10689 returns PRETEND set, and the discarded section was link-once and the
10690 same size as the kept link-once section, ld will pretend that the
10691 symbol was actually defined in the kept section. Otherwise ld will
10692 zero the reloc (at least that is the intent, but some cooperation by
10693 the target dependent code is needed, particularly for REL targets). */
10694
10695 unsigned int
10696 _bfd_elf_default_action_discarded (asection *sec)
10697 {
10698 if (sec->flags & SEC_DEBUGGING)
10699 return PRETEND;
10700
10701 if (strcmp (".eh_frame", sec->name) == 0)
10702 return 0;
10703
10704 if (strcmp (".gcc_except_table", sec->name) == 0)
10705 return 0;
10706
10707 return COMPLAIN | PRETEND;
10708 }
10709
10710 /* Find a match between a section and a member of a section group. */
10711
10712 static asection *
10713 match_group_member (asection *sec, asection *group,
10714 struct bfd_link_info *info)
10715 {
10716 asection *first = elf_next_in_group (group);
10717 asection *s = first;
10718
10719 while (s != NULL)
10720 {
10721 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10722 return s;
10723
10724 s = elf_next_in_group (s);
10725 if (s == first)
10726 break;
10727 }
10728
10729 return NULL;
10730 }
10731
10732 /* Check if the kept section of a discarded section SEC can be used
10733 to replace it. Return the replacement if it is OK. Otherwise return
10734 NULL. */
10735
10736 asection *
10737 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10738 {
10739 asection *kept;
10740
10741 kept = sec->kept_section;
10742 if (kept != NULL)
10743 {
10744 if ((kept->flags & SEC_GROUP) != 0)
10745 kept = match_group_member (sec, kept, info);
10746 if (kept != NULL)
10747 {
10748 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10749 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
10750 kept = NULL;
10751 else
10752 {
10753 /* Get the real kept section. */
10754 asection *next;
10755 for (next = kept->kept_section;
10756 next != NULL;
10757 next = next->kept_section)
10758 kept = next;
10759 }
10760 }
10761 sec->kept_section = kept;
10762 }
10763 return kept;
10764 }
10765
10766 /* Link an input file into the linker output file. This function
10767 handles all the sections and relocations of the input file at once.
10768 This is so that we only have to read the local symbols once, and
10769 don't have to keep them in memory. */
10770
10771 static bfd_boolean
10772 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10773 {
10774 int (*relocate_section)
10775 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10776 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10777 bfd *output_bfd;
10778 Elf_Internal_Shdr *symtab_hdr;
10779 size_t locsymcount;
10780 size_t extsymoff;
10781 Elf_Internal_Sym *isymbuf;
10782 Elf_Internal_Sym *isym;
10783 Elf_Internal_Sym *isymend;
10784 long *pindex;
10785 asection **ppsection;
10786 asection *o;
10787 const struct elf_backend_data *bed;
10788 struct elf_link_hash_entry **sym_hashes;
10789 bfd_size_type address_size;
10790 bfd_vma r_type_mask;
10791 int r_sym_shift;
10792 bfd_boolean have_file_sym = FALSE;
10793
10794 output_bfd = flinfo->output_bfd;
10795 bed = get_elf_backend_data (output_bfd);
10796 relocate_section = bed->elf_backend_relocate_section;
10797
10798 /* If this is a dynamic object, we don't want to do anything here:
10799 we don't want the local symbols, and we don't want the section
10800 contents. */
10801 if ((input_bfd->flags & DYNAMIC) != 0)
10802 return TRUE;
10803
10804 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10805 if (elf_bad_symtab (input_bfd))
10806 {
10807 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10808 extsymoff = 0;
10809 }
10810 else
10811 {
10812 locsymcount = symtab_hdr->sh_info;
10813 extsymoff = symtab_hdr->sh_info;
10814 }
10815
10816 /* Enable GNU OSABI features in the output BFD that are used in the input
10817 BFD. */
10818 if (bed->elf_osabi == ELFOSABI_NONE
10819 || bed->elf_osabi == ELFOSABI_GNU
10820 || bed->elf_osabi == ELFOSABI_FREEBSD)
10821 elf_tdata (output_bfd)->has_gnu_osabi
10822 |= (elf_tdata (input_bfd)->has_gnu_osabi
10823 & (bfd_link_relocatable (flinfo->info)
10824 ? -1 : ~elf_gnu_osabi_retain));
10825
10826 /* Read the local symbols. */
10827 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10828 if (isymbuf == NULL && locsymcount != 0)
10829 {
10830 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10831 flinfo->internal_syms,
10832 flinfo->external_syms,
10833 flinfo->locsym_shndx);
10834 if (isymbuf == NULL)
10835 return FALSE;
10836 }
10837
10838 /* Find local symbol sections and adjust values of symbols in
10839 SEC_MERGE sections. Write out those local symbols we know are
10840 going into the output file. */
10841 isymend = isymbuf + locsymcount;
10842 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10843 isym < isymend;
10844 isym++, pindex++, ppsection++)
10845 {
10846 asection *isec;
10847 const char *name;
10848 Elf_Internal_Sym osym;
10849 long indx;
10850 int ret;
10851
10852 *pindex = -1;
10853
10854 if (elf_bad_symtab (input_bfd))
10855 {
10856 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10857 {
10858 *ppsection = NULL;
10859 continue;
10860 }
10861 }
10862
10863 if (isym->st_shndx == SHN_UNDEF)
10864 isec = bfd_und_section_ptr;
10865 else if (isym->st_shndx == SHN_ABS)
10866 isec = bfd_abs_section_ptr;
10867 else if (isym->st_shndx == SHN_COMMON)
10868 isec = bfd_com_section_ptr;
10869 else
10870 {
10871 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10872 if (isec == NULL)
10873 {
10874 /* Don't attempt to output symbols with st_shnx in the
10875 reserved range other than SHN_ABS and SHN_COMMON. */
10876 isec = bfd_und_section_ptr;
10877 }
10878 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10879 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10880 isym->st_value =
10881 _bfd_merged_section_offset (output_bfd, &isec,
10882 elf_section_data (isec)->sec_info,
10883 isym->st_value);
10884 }
10885
10886 *ppsection = isec;
10887
10888 /* Don't output the first, undefined, symbol. In fact, don't
10889 output any undefined local symbol. */
10890 if (isec == bfd_und_section_ptr)
10891 continue;
10892
10893 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10894 {
10895 /* We never output section symbols. Instead, we use the
10896 section symbol of the corresponding section in the output
10897 file. */
10898 continue;
10899 }
10900
10901 /* If we are stripping all symbols, we don't want to output this
10902 one. */
10903 if (flinfo->info->strip == strip_all)
10904 continue;
10905
10906 /* If we are discarding all local symbols, we don't want to
10907 output this one. If we are generating a relocatable output
10908 file, then some of the local symbols may be required by
10909 relocs; we output them below as we discover that they are
10910 needed. */
10911 if (flinfo->info->discard == discard_all)
10912 continue;
10913
10914 /* If this symbol is defined in a section which we are
10915 discarding, we don't need to keep it. */
10916 if (isym->st_shndx != SHN_UNDEF
10917 && isym->st_shndx < SHN_LORESERVE
10918 && isec->output_section == NULL
10919 && flinfo->info->non_contiguous_regions
10920 && flinfo->info->non_contiguous_regions_warnings)
10921 {
10922 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10923 "discards section `%s' from '%s'\n"),
10924 isec->name, bfd_get_filename (isec->owner));
10925 continue;
10926 }
10927
10928 if (isym->st_shndx != SHN_UNDEF
10929 && isym->st_shndx < SHN_LORESERVE
10930 && bfd_section_removed_from_list (output_bfd,
10931 isec->output_section))
10932 continue;
10933
10934 /* Get the name of the symbol. */
10935 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10936 isym->st_name);
10937 if (name == NULL)
10938 return FALSE;
10939
10940 /* See if we are discarding symbols with this name. */
10941 if ((flinfo->info->strip == strip_some
10942 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10943 == NULL))
10944 || (((flinfo->info->discard == discard_sec_merge
10945 && (isec->flags & SEC_MERGE)
10946 && !bfd_link_relocatable (flinfo->info))
10947 || flinfo->info->discard == discard_l)
10948 && bfd_is_local_label_name (input_bfd, name)))
10949 continue;
10950
10951 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10952 {
10953 if (input_bfd->lto_output)
10954 /* -flto puts a temp file name here. This means builds
10955 are not reproducible. Discard the symbol. */
10956 continue;
10957 have_file_sym = TRUE;
10958 flinfo->filesym_count += 1;
10959 }
10960 if (!have_file_sym)
10961 {
10962 /* In the absence of debug info, bfd_find_nearest_line uses
10963 FILE symbols to determine the source file for local
10964 function symbols. Provide a FILE symbol here if input
10965 files lack such, so that their symbols won't be
10966 associated with a previous input file. It's not the
10967 source file, but the best we can do. */
10968 const char *filename;
10969 have_file_sym = TRUE;
10970 flinfo->filesym_count += 1;
10971 memset (&osym, 0, sizeof (osym));
10972 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10973 osym.st_shndx = SHN_ABS;
10974 if (input_bfd->lto_output)
10975 filename = NULL;
10976 else
10977 filename = lbasename (bfd_get_filename (input_bfd));
10978 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
10979 bfd_abs_section_ptr, NULL))
10980 return FALSE;
10981 }
10982
10983 osym = *isym;
10984
10985 /* Adjust the section index for the output file. */
10986 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10987 isec->output_section);
10988 if (osym.st_shndx == SHN_BAD)
10989 return FALSE;
10990
10991 /* ELF symbols in relocatable files are section relative, but
10992 in executable files they are virtual addresses. Note that
10993 this code assumes that all ELF sections have an associated
10994 BFD section with a reasonable value for output_offset; below
10995 we assume that they also have a reasonable value for
10996 output_section. Any special sections must be set up to meet
10997 these requirements. */
10998 osym.st_value += isec->output_offset;
10999 if (!bfd_link_relocatable (flinfo->info))
11000 {
11001 osym.st_value += isec->output_section->vma;
11002 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
11003 {
11004 /* STT_TLS symbols are relative to PT_TLS segment base. */
11005 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
11006 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
11007 else
11008 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11009 STT_NOTYPE);
11010 }
11011 }
11012
11013 indx = bfd_get_symcount (output_bfd);
11014 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11015 if (ret == 0)
11016 return FALSE;
11017 else if (ret == 1)
11018 *pindex = indx;
11019 }
11020
11021 if (bed->s->arch_size == 32)
11022 {
11023 r_type_mask = 0xff;
11024 r_sym_shift = 8;
11025 address_size = 4;
11026 }
11027 else
11028 {
11029 r_type_mask = 0xffffffff;
11030 r_sym_shift = 32;
11031 address_size = 8;
11032 }
11033
11034 /* Relocate the contents of each section. */
11035 sym_hashes = elf_sym_hashes (input_bfd);
11036 for (o = input_bfd->sections; o != NULL; o = o->next)
11037 {
11038 bfd_byte *contents;
11039
11040 if (! o->linker_mark)
11041 {
11042 /* This section was omitted from the link. */
11043 continue;
11044 }
11045
11046 if (!flinfo->info->resolve_section_groups
11047 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11048 {
11049 /* Deal with the group signature symbol. */
11050 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11051 unsigned long symndx = sec_data->this_hdr.sh_info;
11052 asection *osec = o->output_section;
11053
11054 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11055 if (symndx >= locsymcount
11056 || (elf_bad_symtab (input_bfd)
11057 && flinfo->sections[symndx] == NULL))
11058 {
11059 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11060 while (h->root.type == bfd_link_hash_indirect
11061 || h->root.type == bfd_link_hash_warning)
11062 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11063 /* Arrange for symbol to be output. */
11064 h->indx = -2;
11065 elf_section_data (osec)->this_hdr.sh_info = -2;
11066 }
11067 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11068 {
11069 /* We'll use the output section target_index. */
11070 asection *sec = flinfo->sections[symndx]->output_section;
11071 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11072 }
11073 else
11074 {
11075 if (flinfo->indices[symndx] == -1)
11076 {
11077 /* Otherwise output the local symbol now. */
11078 Elf_Internal_Sym sym = isymbuf[symndx];
11079 asection *sec = flinfo->sections[symndx]->output_section;
11080 const char *name;
11081 long indx;
11082 int ret;
11083
11084 name = bfd_elf_string_from_elf_section (input_bfd,
11085 symtab_hdr->sh_link,
11086 sym.st_name);
11087 if (name == NULL)
11088 return FALSE;
11089
11090 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11091 sec);
11092 if (sym.st_shndx == SHN_BAD)
11093 return FALSE;
11094
11095 sym.st_value += o->output_offset;
11096
11097 indx = bfd_get_symcount (output_bfd);
11098 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11099 NULL);
11100 if (ret == 0)
11101 return FALSE;
11102 else if (ret == 1)
11103 flinfo->indices[symndx] = indx;
11104 else
11105 abort ();
11106 }
11107 elf_section_data (osec)->this_hdr.sh_info
11108 = flinfo->indices[symndx];
11109 }
11110 }
11111
11112 if ((o->flags & SEC_HAS_CONTENTS) == 0
11113 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11114 continue;
11115
11116 if ((o->flags & SEC_LINKER_CREATED) != 0)
11117 {
11118 /* Section was created by _bfd_elf_link_create_dynamic_sections
11119 or somesuch. */
11120 continue;
11121 }
11122
11123 /* Get the contents of the section. They have been cached by a
11124 relaxation routine. Note that o is a section in an input
11125 file, so the contents field will not have been set by any of
11126 the routines which work on output files. */
11127 if (elf_section_data (o)->this_hdr.contents != NULL)
11128 {
11129 contents = elf_section_data (o)->this_hdr.contents;
11130 if (bed->caches_rawsize
11131 && o->rawsize != 0
11132 && o->rawsize < o->size)
11133 {
11134 memcpy (flinfo->contents, contents, o->rawsize);
11135 contents = flinfo->contents;
11136 }
11137 }
11138 else
11139 {
11140 contents = flinfo->contents;
11141 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11142 return FALSE;
11143 }
11144
11145 if ((o->flags & SEC_RELOC) != 0)
11146 {
11147 Elf_Internal_Rela *internal_relocs;
11148 Elf_Internal_Rela *rel, *relend;
11149 int action_discarded;
11150 int ret;
11151
11152 /* Get the swapped relocs. */
11153 internal_relocs
11154 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
11155 flinfo->internal_relocs, FALSE);
11156 if (internal_relocs == NULL
11157 && o->reloc_count > 0)
11158 return FALSE;
11159
11160 /* We need to reverse-copy input .ctors/.dtors sections if
11161 they are placed in .init_array/.finit_array for output. */
11162 if (o->size > address_size
11163 && ((strncmp (o->name, ".ctors", 6) == 0
11164 && strcmp (o->output_section->name,
11165 ".init_array") == 0)
11166 || (strncmp (o->name, ".dtors", 6) == 0
11167 && strcmp (o->output_section->name,
11168 ".fini_array") == 0))
11169 && (o->name[6] == 0 || o->name[6] == '.'))
11170 {
11171 if (o->size * bed->s->int_rels_per_ext_rel
11172 != o->reloc_count * address_size)
11173 {
11174 _bfd_error_handler
11175 /* xgettext:c-format */
11176 (_("error: %pB: size of section %pA is not "
11177 "multiple of address size"),
11178 input_bfd, o);
11179 bfd_set_error (bfd_error_bad_value);
11180 return FALSE;
11181 }
11182 o->flags |= SEC_ELF_REVERSE_COPY;
11183 }
11184
11185 action_discarded = -1;
11186 if (!elf_section_ignore_discarded_relocs (o))
11187 action_discarded = (*bed->action_discarded) (o);
11188
11189 /* Run through the relocs evaluating complex reloc symbols and
11190 looking for relocs against symbols from discarded sections
11191 or section symbols from removed link-once sections.
11192 Complain about relocs against discarded sections. Zero
11193 relocs against removed link-once sections. */
11194
11195 rel = internal_relocs;
11196 relend = rel + o->reloc_count;
11197 for ( ; rel < relend; rel++)
11198 {
11199 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11200 unsigned int s_type;
11201 asection **ps, *sec;
11202 struct elf_link_hash_entry *h = NULL;
11203 const char *sym_name;
11204
11205 if (r_symndx == STN_UNDEF)
11206 continue;
11207
11208 if (r_symndx >= locsymcount
11209 || (elf_bad_symtab (input_bfd)
11210 && flinfo->sections[r_symndx] == NULL))
11211 {
11212 h = sym_hashes[r_symndx - extsymoff];
11213
11214 /* Badly formatted input files can contain relocs that
11215 reference non-existant symbols. Check here so that
11216 we do not seg fault. */
11217 if (h == NULL)
11218 {
11219 _bfd_error_handler
11220 /* xgettext:c-format */
11221 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11222 "that references a non-existent global symbol"),
11223 input_bfd, (uint64_t) rel->r_info, o);
11224 bfd_set_error (bfd_error_bad_value);
11225 return FALSE;
11226 }
11227
11228 while (h->root.type == bfd_link_hash_indirect
11229 || h->root.type == bfd_link_hash_warning)
11230 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11231
11232 s_type = h->type;
11233
11234 /* If a plugin symbol is referenced from a non-IR file,
11235 mark the symbol as undefined. Note that the
11236 linker may attach linker created dynamic sections
11237 to the plugin bfd. Symbols defined in linker
11238 created sections are not plugin symbols. */
11239 if ((h->root.non_ir_ref_regular
11240 || h->root.non_ir_ref_dynamic)
11241 && (h->root.type == bfd_link_hash_defined
11242 || h->root.type == bfd_link_hash_defweak)
11243 && (h->root.u.def.section->flags
11244 & SEC_LINKER_CREATED) == 0
11245 && h->root.u.def.section->owner != NULL
11246 && (h->root.u.def.section->owner->flags
11247 & BFD_PLUGIN) != 0)
11248 {
11249 h->root.type = bfd_link_hash_undefined;
11250 h->root.u.undef.abfd = h->root.u.def.section->owner;
11251 }
11252
11253 ps = NULL;
11254 if (h->root.type == bfd_link_hash_defined
11255 || h->root.type == bfd_link_hash_defweak)
11256 ps = &h->root.u.def.section;
11257
11258 sym_name = h->root.root.string;
11259 }
11260 else
11261 {
11262 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11263
11264 s_type = ELF_ST_TYPE (sym->st_info);
11265 ps = &flinfo->sections[r_symndx];
11266 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11267 sym, *ps);
11268 }
11269
11270 if ((s_type == STT_RELC || s_type == STT_SRELC)
11271 && !bfd_link_relocatable (flinfo->info))
11272 {
11273 bfd_vma val;
11274 bfd_vma dot = (rel->r_offset
11275 + o->output_offset + o->output_section->vma);
11276 #ifdef DEBUG
11277 printf ("Encountered a complex symbol!");
11278 printf (" (input_bfd %s, section %s, reloc %ld\n",
11279 bfd_get_filename (input_bfd), o->name,
11280 (long) (rel - internal_relocs));
11281 printf (" symbol: idx %8.8lx, name %s\n",
11282 r_symndx, sym_name);
11283 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11284 (unsigned long) rel->r_info,
11285 (unsigned long) rel->r_offset);
11286 #endif
11287 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11288 isymbuf, locsymcount, s_type == STT_SRELC))
11289 return FALSE;
11290
11291 /* Symbol evaluated OK. Update to absolute value. */
11292 set_symbol_value (input_bfd, isymbuf, locsymcount,
11293 r_symndx, val);
11294 continue;
11295 }
11296
11297 if (action_discarded != -1 && ps != NULL)
11298 {
11299 /* Complain if the definition comes from a
11300 discarded section. */
11301 if ((sec = *ps) != NULL && discarded_section (sec))
11302 {
11303 BFD_ASSERT (r_symndx != STN_UNDEF);
11304 if (action_discarded & COMPLAIN)
11305 (*flinfo->info->callbacks->einfo)
11306 /* xgettext:c-format */
11307 (_("%X`%s' referenced in section `%pA' of %pB: "
11308 "defined in discarded section `%pA' of %pB\n"),
11309 sym_name, o, input_bfd, sec, sec->owner);
11310
11311 /* Try to do the best we can to support buggy old
11312 versions of gcc. Pretend that the symbol is
11313 really defined in the kept linkonce section.
11314 FIXME: This is quite broken. Modifying the
11315 symbol here means we will be changing all later
11316 uses of the symbol, not just in this section. */
11317 if (action_discarded & PRETEND)
11318 {
11319 asection *kept;
11320
11321 kept = _bfd_elf_check_kept_section (sec,
11322 flinfo->info);
11323 if (kept != NULL)
11324 {
11325 *ps = kept;
11326 continue;
11327 }
11328 }
11329 }
11330 }
11331 }
11332
11333 /* Relocate the section by invoking a back end routine.
11334
11335 The back end routine is responsible for adjusting the
11336 section contents as necessary, and (if using Rela relocs
11337 and generating a relocatable output file) adjusting the
11338 reloc addend as necessary.
11339
11340 The back end routine does not have to worry about setting
11341 the reloc address or the reloc symbol index.
11342
11343 The back end routine is given a pointer to the swapped in
11344 internal symbols, and can access the hash table entries
11345 for the external symbols via elf_sym_hashes (input_bfd).
11346
11347 When generating relocatable output, the back end routine
11348 must handle STB_LOCAL/STT_SECTION symbols specially. The
11349 output symbol is going to be a section symbol
11350 corresponding to the output section, which will require
11351 the addend to be adjusted. */
11352
11353 ret = (*relocate_section) (output_bfd, flinfo->info,
11354 input_bfd, o, contents,
11355 internal_relocs,
11356 isymbuf,
11357 flinfo->sections);
11358 if (!ret)
11359 return FALSE;
11360
11361 if (ret == 2
11362 || bfd_link_relocatable (flinfo->info)
11363 || flinfo->info->emitrelocations)
11364 {
11365 Elf_Internal_Rela *irela;
11366 Elf_Internal_Rela *irelaend, *irelamid;
11367 bfd_vma last_offset;
11368 struct elf_link_hash_entry **rel_hash;
11369 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11370 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11371 unsigned int next_erel;
11372 bfd_boolean rela_normal;
11373 struct bfd_elf_section_data *esdi, *esdo;
11374
11375 esdi = elf_section_data (o);
11376 esdo = elf_section_data (o->output_section);
11377 rela_normal = FALSE;
11378
11379 /* Adjust the reloc addresses and symbol indices. */
11380
11381 irela = internal_relocs;
11382 irelaend = irela + o->reloc_count;
11383 rel_hash = esdo->rel.hashes + esdo->rel.count;
11384 /* We start processing the REL relocs, if any. When we reach
11385 IRELAMID in the loop, we switch to the RELA relocs. */
11386 irelamid = irela;
11387 if (esdi->rel.hdr != NULL)
11388 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11389 * bed->s->int_rels_per_ext_rel);
11390 rel_hash_list = rel_hash;
11391 rela_hash_list = NULL;
11392 last_offset = o->output_offset;
11393 if (!bfd_link_relocatable (flinfo->info))
11394 last_offset += o->output_section->vma;
11395 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11396 {
11397 unsigned long r_symndx;
11398 asection *sec;
11399 Elf_Internal_Sym sym;
11400
11401 if (next_erel == bed->s->int_rels_per_ext_rel)
11402 {
11403 rel_hash++;
11404 next_erel = 0;
11405 }
11406
11407 if (irela == irelamid)
11408 {
11409 rel_hash = esdo->rela.hashes + esdo->rela.count;
11410 rela_hash_list = rel_hash;
11411 rela_normal = bed->rela_normal;
11412 }
11413
11414 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11415 flinfo->info, o,
11416 irela->r_offset);
11417 if (irela->r_offset >= (bfd_vma) -2)
11418 {
11419 /* This is a reloc for a deleted entry or somesuch.
11420 Turn it into an R_*_NONE reloc, at the same
11421 offset as the last reloc. elf_eh_frame.c and
11422 bfd_elf_discard_info rely on reloc offsets
11423 being ordered. */
11424 irela->r_offset = last_offset;
11425 irela->r_info = 0;
11426 irela->r_addend = 0;
11427 continue;
11428 }
11429
11430 irela->r_offset += o->output_offset;
11431
11432 /* Relocs in an executable have to be virtual addresses. */
11433 if (!bfd_link_relocatable (flinfo->info))
11434 irela->r_offset += o->output_section->vma;
11435
11436 last_offset = irela->r_offset;
11437
11438 r_symndx = irela->r_info >> r_sym_shift;
11439 if (r_symndx == STN_UNDEF)
11440 continue;
11441
11442 if (r_symndx >= locsymcount
11443 || (elf_bad_symtab (input_bfd)
11444 && flinfo->sections[r_symndx] == NULL))
11445 {
11446 struct elf_link_hash_entry *rh;
11447 unsigned long indx;
11448
11449 /* This is a reloc against a global symbol. We
11450 have not yet output all the local symbols, so
11451 we do not know the symbol index of any global
11452 symbol. We set the rel_hash entry for this
11453 reloc to point to the global hash table entry
11454 for this symbol. The symbol index is then
11455 set at the end of bfd_elf_final_link. */
11456 indx = r_symndx - extsymoff;
11457 rh = elf_sym_hashes (input_bfd)[indx];
11458 while (rh->root.type == bfd_link_hash_indirect
11459 || rh->root.type == bfd_link_hash_warning)
11460 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11461
11462 /* Setting the index to -2 tells
11463 elf_link_output_extsym that this symbol is
11464 used by a reloc. */
11465 BFD_ASSERT (rh->indx < 0);
11466 rh->indx = -2;
11467 *rel_hash = rh;
11468
11469 continue;
11470 }
11471
11472 /* This is a reloc against a local symbol. */
11473
11474 *rel_hash = NULL;
11475 sym = isymbuf[r_symndx];
11476 sec = flinfo->sections[r_symndx];
11477 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11478 {
11479 /* I suppose the backend ought to fill in the
11480 section of any STT_SECTION symbol against a
11481 processor specific section. */
11482 r_symndx = STN_UNDEF;
11483 if (bfd_is_abs_section (sec))
11484 ;
11485 else if (sec == NULL || sec->owner == NULL)
11486 {
11487 bfd_set_error (bfd_error_bad_value);
11488 return FALSE;
11489 }
11490 else
11491 {
11492 asection *osec = sec->output_section;
11493
11494 /* If we have discarded a section, the output
11495 section will be the absolute section. In
11496 case of discarded SEC_MERGE sections, use
11497 the kept section. relocate_section should
11498 have already handled discarded linkonce
11499 sections. */
11500 if (bfd_is_abs_section (osec)
11501 && sec->kept_section != NULL
11502 && sec->kept_section->output_section != NULL)
11503 {
11504 osec = sec->kept_section->output_section;
11505 irela->r_addend -= osec->vma;
11506 }
11507
11508 if (!bfd_is_abs_section (osec))
11509 {
11510 r_symndx = osec->target_index;
11511 if (r_symndx == STN_UNDEF)
11512 {
11513 irela->r_addend += osec->vma;
11514 osec = _bfd_nearby_section (output_bfd, osec,
11515 osec->vma);
11516 irela->r_addend -= osec->vma;
11517 r_symndx = osec->target_index;
11518 }
11519 }
11520 }
11521
11522 /* Adjust the addend according to where the
11523 section winds up in the output section. */
11524 if (rela_normal)
11525 irela->r_addend += sec->output_offset;
11526 }
11527 else
11528 {
11529 if (flinfo->indices[r_symndx] == -1)
11530 {
11531 unsigned long shlink;
11532 const char *name;
11533 asection *osec;
11534 long indx;
11535
11536 if (flinfo->info->strip == strip_all)
11537 {
11538 /* You can't do ld -r -s. */
11539 bfd_set_error (bfd_error_invalid_operation);
11540 return FALSE;
11541 }
11542
11543 /* This symbol was skipped earlier, but
11544 since it is needed by a reloc, we
11545 must output it now. */
11546 shlink = symtab_hdr->sh_link;
11547 name = (bfd_elf_string_from_elf_section
11548 (input_bfd, shlink, sym.st_name));
11549 if (name == NULL)
11550 return FALSE;
11551
11552 osec = sec->output_section;
11553 sym.st_shndx =
11554 _bfd_elf_section_from_bfd_section (output_bfd,
11555 osec);
11556 if (sym.st_shndx == SHN_BAD)
11557 return FALSE;
11558
11559 sym.st_value += sec->output_offset;
11560 if (!bfd_link_relocatable (flinfo->info))
11561 {
11562 sym.st_value += osec->vma;
11563 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11564 {
11565 struct elf_link_hash_table *htab
11566 = elf_hash_table (flinfo->info);
11567
11568 /* STT_TLS symbols are relative to PT_TLS
11569 segment base. */
11570 if (htab->tls_sec != NULL)
11571 sym.st_value -= htab->tls_sec->vma;
11572 else
11573 sym.st_info
11574 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11575 STT_NOTYPE);
11576 }
11577 }
11578
11579 indx = bfd_get_symcount (output_bfd);
11580 ret = elf_link_output_symstrtab (flinfo, name,
11581 &sym, sec,
11582 NULL);
11583 if (ret == 0)
11584 return FALSE;
11585 else if (ret == 1)
11586 flinfo->indices[r_symndx] = indx;
11587 else
11588 abort ();
11589 }
11590
11591 r_symndx = flinfo->indices[r_symndx];
11592 }
11593
11594 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11595 | (irela->r_info & r_type_mask));
11596 }
11597
11598 /* Swap out the relocs. */
11599 input_rel_hdr = esdi->rel.hdr;
11600 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11601 {
11602 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11603 input_rel_hdr,
11604 internal_relocs,
11605 rel_hash_list))
11606 return FALSE;
11607 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11608 * bed->s->int_rels_per_ext_rel);
11609 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11610 }
11611
11612 input_rela_hdr = esdi->rela.hdr;
11613 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11614 {
11615 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11616 input_rela_hdr,
11617 internal_relocs,
11618 rela_hash_list))
11619 return FALSE;
11620 }
11621 }
11622 }
11623
11624 /* Write out the modified section contents. */
11625 if (bed->elf_backend_write_section
11626 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11627 contents))
11628 {
11629 /* Section written out. */
11630 }
11631 else switch (o->sec_info_type)
11632 {
11633 case SEC_INFO_TYPE_STABS:
11634 if (! (_bfd_write_section_stabs
11635 (output_bfd,
11636 &elf_hash_table (flinfo->info)->stab_info,
11637 o, &elf_section_data (o)->sec_info, contents)))
11638 return FALSE;
11639 break;
11640 case SEC_INFO_TYPE_MERGE:
11641 if (! _bfd_write_merged_section (output_bfd, o,
11642 elf_section_data (o)->sec_info))
11643 return FALSE;
11644 break;
11645 case SEC_INFO_TYPE_EH_FRAME:
11646 {
11647 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11648 o, contents))
11649 return FALSE;
11650 }
11651 break;
11652 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11653 {
11654 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11655 flinfo->info,
11656 o, contents))
11657 return FALSE;
11658 }
11659 break;
11660 default:
11661 {
11662 if (! (o->flags & SEC_EXCLUDE))
11663 {
11664 file_ptr offset = (file_ptr) o->output_offset;
11665 bfd_size_type todo = o->size;
11666
11667 offset *= bfd_octets_per_byte (output_bfd, o);
11668
11669 if ((o->flags & SEC_ELF_REVERSE_COPY))
11670 {
11671 /* Reverse-copy input section to output. */
11672 do
11673 {
11674 todo -= address_size;
11675 if (! bfd_set_section_contents (output_bfd,
11676 o->output_section,
11677 contents + todo,
11678 offset,
11679 address_size))
11680 return FALSE;
11681 if (todo == 0)
11682 break;
11683 offset += address_size;
11684 }
11685 while (1);
11686 }
11687 else if (! bfd_set_section_contents (output_bfd,
11688 o->output_section,
11689 contents,
11690 offset, todo))
11691 return FALSE;
11692 }
11693 }
11694 break;
11695 }
11696 }
11697
11698 return TRUE;
11699 }
11700
11701 /* Generate a reloc when linking an ELF file. This is a reloc
11702 requested by the linker, and does not come from any input file. This
11703 is used to build constructor and destructor tables when linking
11704 with -Ur. */
11705
11706 static bfd_boolean
11707 elf_reloc_link_order (bfd *output_bfd,
11708 struct bfd_link_info *info,
11709 asection *output_section,
11710 struct bfd_link_order *link_order)
11711 {
11712 reloc_howto_type *howto;
11713 long indx;
11714 bfd_vma offset;
11715 bfd_vma addend;
11716 struct bfd_elf_section_reloc_data *reldata;
11717 struct elf_link_hash_entry **rel_hash_ptr;
11718 Elf_Internal_Shdr *rel_hdr;
11719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11720 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11721 bfd_byte *erel;
11722 unsigned int i;
11723 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11724
11725 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11726 if (howto == NULL)
11727 {
11728 bfd_set_error (bfd_error_bad_value);
11729 return FALSE;
11730 }
11731
11732 addend = link_order->u.reloc.p->addend;
11733
11734 if (esdo->rel.hdr)
11735 reldata = &esdo->rel;
11736 else if (esdo->rela.hdr)
11737 reldata = &esdo->rela;
11738 else
11739 {
11740 reldata = NULL;
11741 BFD_ASSERT (0);
11742 }
11743
11744 /* Figure out the symbol index. */
11745 rel_hash_ptr = reldata->hashes + reldata->count;
11746 if (link_order->type == bfd_section_reloc_link_order)
11747 {
11748 indx = link_order->u.reloc.p->u.section->target_index;
11749 BFD_ASSERT (indx != 0);
11750 *rel_hash_ptr = NULL;
11751 }
11752 else
11753 {
11754 struct elf_link_hash_entry *h;
11755
11756 /* Treat a reloc against a defined symbol as though it were
11757 actually against the section. */
11758 h = ((struct elf_link_hash_entry *)
11759 bfd_wrapped_link_hash_lookup (output_bfd, info,
11760 link_order->u.reloc.p->u.name,
11761 FALSE, FALSE, TRUE));
11762 if (h != NULL
11763 && (h->root.type == bfd_link_hash_defined
11764 || h->root.type == bfd_link_hash_defweak))
11765 {
11766 asection *section;
11767
11768 section = h->root.u.def.section;
11769 indx = section->output_section->target_index;
11770 *rel_hash_ptr = NULL;
11771 /* It seems that we ought to add the symbol value to the
11772 addend here, but in practice it has already been added
11773 because it was passed to constructor_callback. */
11774 addend += section->output_section->vma + section->output_offset;
11775 }
11776 else if (h != NULL)
11777 {
11778 /* Setting the index to -2 tells elf_link_output_extsym that
11779 this symbol is used by a reloc. */
11780 h->indx = -2;
11781 *rel_hash_ptr = h;
11782 indx = 0;
11783 }
11784 else
11785 {
11786 (*info->callbacks->unattached_reloc)
11787 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11788 indx = 0;
11789 }
11790 }
11791
11792 /* If this is an inplace reloc, we must write the addend into the
11793 object file. */
11794 if (howto->partial_inplace && addend != 0)
11795 {
11796 bfd_size_type size;
11797 bfd_reloc_status_type rstat;
11798 bfd_byte *buf;
11799 bfd_boolean ok;
11800 const char *sym_name;
11801 bfd_size_type octets;
11802
11803 size = (bfd_size_type) bfd_get_reloc_size (howto);
11804 buf = (bfd_byte *) bfd_zmalloc (size);
11805 if (buf == NULL && size != 0)
11806 return FALSE;
11807 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11808 switch (rstat)
11809 {
11810 case bfd_reloc_ok:
11811 break;
11812
11813 default:
11814 case bfd_reloc_outofrange:
11815 abort ();
11816
11817 case bfd_reloc_overflow:
11818 if (link_order->type == bfd_section_reloc_link_order)
11819 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11820 else
11821 sym_name = link_order->u.reloc.p->u.name;
11822 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11823 howto->name, addend, NULL, NULL,
11824 (bfd_vma) 0);
11825 break;
11826 }
11827
11828 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11829 output_section);
11830 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11831 octets, size);
11832 free (buf);
11833 if (! ok)
11834 return FALSE;
11835 }
11836
11837 /* The address of a reloc is relative to the section in a
11838 relocatable file, and is a virtual address in an executable
11839 file. */
11840 offset = link_order->offset;
11841 if (! bfd_link_relocatable (info))
11842 offset += output_section->vma;
11843
11844 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11845 {
11846 irel[i].r_offset = offset;
11847 irel[i].r_info = 0;
11848 irel[i].r_addend = 0;
11849 }
11850 if (bed->s->arch_size == 32)
11851 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11852 else
11853 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11854
11855 rel_hdr = reldata->hdr;
11856 erel = rel_hdr->contents;
11857 if (rel_hdr->sh_type == SHT_REL)
11858 {
11859 erel += reldata->count * bed->s->sizeof_rel;
11860 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11861 }
11862 else
11863 {
11864 irel[0].r_addend = addend;
11865 erel += reldata->count * bed->s->sizeof_rela;
11866 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11867 }
11868
11869 ++reldata->count;
11870
11871 return TRUE;
11872 }
11873
11874 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11875 Returns TRUE upon success, FALSE otherwise. */
11876
11877 static bfd_boolean
11878 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11879 {
11880 bfd_boolean ret = FALSE;
11881 bfd *implib_bfd;
11882 const struct elf_backend_data *bed;
11883 flagword flags;
11884 enum bfd_architecture arch;
11885 unsigned int mach;
11886 asymbol **sympp = NULL;
11887 long symsize;
11888 long symcount;
11889 long src_count;
11890 elf_symbol_type *osymbuf;
11891 size_t amt;
11892
11893 implib_bfd = info->out_implib_bfd;
11894 bed = get_elf_backend_data (abfd);
11895
11896 if (!bfd_set_format (implib_bfd, bfd_object))
11897 return FALSE;
11898
11899 /* Use flag from executable but make it a relocatable object. */
11900 flags = bfd_get_file_flags (abfd);
11901 flags &= ~HAS_RELOC;
11902 if (!bfd_set_start_address (implib_bfd, 0)
11903 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11904 return FALSE;
11905
11906 /* Copy architecture of output file to import library file. */
11907 arch = bfd_get_arch (abfd);
11908 mach = bfd_get_mach (abfd);
11909 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11910 && (abfd->target_defaulted
11911 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11912 return FALSE;
11913
11914 /* Get symbol table size. */
11915 symsize = bfd_get_symtab_upper_bound (abfd);
11916 if (symsize < 0)
11917 return FALSE;
11918
11919 /* Read in the symbol table. */
11920 sympp = (asymbol **) bfd_malloc (symsize);
11921 if (sympp == NULL)
11922 return FALSE;
11923
11924 symcount = bfd_canonicalize_symtab (abfd, sympp);
11925 if (symcount < 0)
11926 goto free_sym_buf;
11927
11928 /* Allow the BFD backend to copy any private header data it
11929 understands from the output BFD to the import library BFD. */
11930 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11931 goto free_sym_buf;
11932
11933 /* Filter symbols to appear in the import library. */
11934 if (bed->elf_backend_filter_implib_symbols)
11935 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11936 symcount);
11937 else
11938 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11939 if (symcount == 0)
11940 {
11941 bfd_set_error (bfd_error_no_symbols);
11942 _bfd_error_handler (_("%pB: no symbol found for import library"),
11943 implib_bfd);
11944 goto free_sym_buf;
11945 }
11946
11947
11948 /* Make symbols absolute. */
11949 amt = symcount * sizeof (*osymbuf);
11950 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11951 if (osymbuf == NULL)
11952 goto free_sym_buf;
11953
11954 for (src_count = 0; src_count < symcount; src_count++)
11955 {
11956 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11957 sizeof (*osymbuf));
11958 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11959 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11960 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11961 osymbuf[src_count].internal_elf_sym.st_value =
11962 osymbuf[src_count].symbol.value;
11963 sympp[src_count] = &osymbuf[src_count].symbol;
11964 }
11965
11966 bfd_set_symtab (implib_bfd, sympp, symcount);
11967
11968 /* Allow the BFD backend to copy any private data it understands
11969 from the output BFD to the import library BFD. This is done last
11970 to permit the routine to look at the filtered symbol table. */
11971 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11972 goto free_sym_buf;
11973
11974 if (!bfd_close (implib_bfd))
11975 goto free_sym_buf;
11976
11977 ret = TRUE;
11978
11979 free_sym_buf:
11980 free (sympp);
11981 return ret;
11982 }
11983
11984 static void
11985 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11986 {
11987 asection *o;
11988
11989 if (flinfo->symstrtab != NULL)
11990 _bfd_elf_strtab_free (flinfo->symstrtab);
11991 free (flinfo->contents);
11992 free (flinfo->external_relocs);
11993 free (flinfo->internal_relocs);
11994 free (flinfo->external_syms);
11995 free (flinfo->locsym_shndx);
11996 free (flinfo->internal_syms);
11997 free (flinfo->indices);
11998 free (flinfo->sections);
11999 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12000 free (flinfo->symshndxbuf);
12001 for (o = obfd->sections; o != NULL; o = o->next)
12002 {
12003 struct bfd_elf_section_data *esdo = elf_section_data (o);
12004 free (esdo->rel.hashes);
12005 free (esdo->rela.hashes);
12006 }
12007 }
12008
12009 /* Do the final step of an ELF link. */
12010
12011 bfd_boolean
12012 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12013 {
12014 bfd_boolean dynamic;
12015 bfd_boolean emit_relocs;
12016 bfd *dynobj;
12017 struct elf_final_link_info flinfo;
12018 asection *o;
12019 struct bfd_link_order *p;
12020 bfd *sub;
12021 bfd_size_type max_contents_size;
12022 bfd_size_type max_external_reloc_size;
12023 bfd_size_type max_internal_reloc_count;
12024 bfd_size_type max_sym_count;
12025 bfd_size_type max_sym_shndx_count;
12026 Elf_Internal_Sym elfsym;
12027 unsigned int i;
12028 Elf_Internal_Shdr *symtab_hdr;
12029 Elf_Internal_Shdr *symtab_shndx_hdr;
12030 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12031 struct elf_outext_info eoinfo;
12032 bfd_boolean merged;
12033 size_t relativecount = 0;
12034 asection *reldyn = 0;
12035 bfd_size_type amt;
12036 asection *attr_section = NULL;
12037 bfd_vma attr_size = 0;
12038 const char *std_attrs_section;
12039 struct elf_link_hash_table *htab = elf_hash_table (info);
12040 bfd_boolean sections_removed;
12041 bfd_boolean ret;
12042
12043 if (!is_elf_hash_table (htab))
12044 return FALSE;
12045
12046 if (bfd_link_pic (info))
12047 abfd->flags |= DYNAMIC;
12048
12049 dynamic = htab->dynamic_sections_created;
12050 dynobj = htab->dynobj;
12051
12052 emit_relocs = (bfd_link_relocatable (info)
12053 || info->emitrelocations);
12054
12055 memset (&flinfo, 0, sizeof (flinfo));
12056 flinfo.info = info;
12057 flinfo.output_bfd = abfd;
12058 flinfo.symstrtab = _bfd_elf_strtab_init ();
12059 if (flinfo.symstrtab == NULL)
12060 return FALSE;
12061
12062 if (! dynamic)
12063 {
12064 flinfo.hash_sec = NULL;
12065 flinfo.symver_sec = NULL;
12066 }
12067 else
12068 {
12069 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12070 /* Note that dynsym_sec can be NULL (on VMS). */
12071 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12072 /* Note that it is OK if symver_sec is NULL. */
12073 }
12074
12075 if (info->unique_symbol
12076 && !bfd_hash_table_init (&flinfo.local_hash_table,
12077 local_hash_newfunc,
12078 sizeof (struct local_hash_entry)))
12079 return FALSE;
12080
12081 /* The object attributes have been merged. Remove the input
12082 sections from the link, and set the contents of the output
12083 section. */
12084 sections_removed = FALSE;
12085 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12086 for (o = abfd->sections; o != NULL; o = o->next)
12087 {
12088 bfd_boolean remove_section = FALSE;
12089
12090 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12091 || strcmp (o->name, ".gnu.attributes") == 0)
12092 {
12093 for (p = o->map_head.link_order; p != NULL; p = p->next)
12094 {
12095 asection *input_section;
12096
12097 if (p->type != bfd_indirect_link_order)
12098 continue;
12099 input_section = p->u.indirect.section;
12100 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12101 elf_link_input_bfd ignores this section. */
12102 input_section->flags &= ~SEC_HAS_CONTENTS;
12103 }
12104
12105 attr_size = bfd_elf_obj_attr_size (abfd);
12106 bfd_set_section_size (o, attr_size);
12107 /* Skip this section later on. */
12108 o->map_head.link_order = NULL;
12109 if (attr_size)
12110 attr_section = o;
12111 else
12112 remove_section = TRUE;
12113 }
12114 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12115 {
12116 /* Remove empty group section from linker output. */
12117 remove_section = TRUE;
12118 }
12119 if (remove_section)
12120 {
12121 o->flags |= SEC_EXCLUDE;
12122 bfd_section_list_remove (abfd, o);
12123 abfd->section_count--;
12124 sections_removed = TRUE;
12125 }
12126 }
12127 if (sections_removed)
12128 _bfd_fix_excluded_sec_syms (abfd, info);
12129
12130 /* Count up the number of relocations we will output for each output
12131 section, so that we know the sizes of the reloc sections. We
12132 also figure out some maximum sizes. */
12133 max_contents_size = 0;
12134 max_external_reloc_size = 0;
12135 max_internal_reloc_count = 0;
12136 max_sym_count = 0;
12137 max_sym_shndx_count = 0;
12138 merged = FALSE;
12139 for (o = abfd->sections; o != NULL; o = o->next)
12140 {
12141 struct bfd_elf_section_data *esdo = elf_section_data (o);
12142 o->reloc_count = 0;
12143
12144 for (p = o->map_head.link_order; p != NULL; p = p->next)
12145 {
12146 unsigned int reloc_count = 0;
12147 unsigned int additional_reloc_count = 0;
12148 struct bfd_elf_section_data *esdi = NULL;
12149
12150 if (p->type == bfd_section_reloc_link_order
12151 || p->type == bfd_symbol_reloc_link_order)
12152 reloc_count = 1;
12153 else if (p->type == bfd_indirect_link_order)
12154 {
12155 asection *sec;
12156
12157 sec = p->u.indirect.section;
12158
12159 /* Mark all sections which are to be included in the
12160 link. This will normally be every section. We need
12161 to do this so that we can identify any sections which
12162 the linker has decided to not include. */
12163 sec->linker_mark = TRUE;
12164
12165 if (sec->flags & SEC_MERGE)
12166 merged = TRUE;
12167
12168 if (sec->rawsize > max_contents_size)
12169 max_contents_size = sec->rawsize;
12170 if (sec->size > max_contents_size)
12171 max_contents_size = sec->size;
12172
12173 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12174 && (sec->owner->flags & DYNAMIC) == 0)
12175 {
12176 size_t sym_count;
12177
12178 /* We are interested in just local symbols, not all
12179 symbols. */
12180 if (elf_bad_symtab (sec->owner))
12181 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12182 / bed->s->sizeof_sym);
12183 else
12184 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12185
12186 if (sym_count > max_sym_count)
12187 max_sym_count = sym_count;
12188
12189 if (sym_count > max_sym_shndx_count
12190 && elf_symtab_shndx_list (sec->owner) != NULL)
12191 max_sym_shndx_count = sym_count;
12192
12193 if (esdo->this_hdr.sh_type == SHT_REL
12194 || esdo->this_hdr.sh_type == SHT_RELA)
12195 /* Some backends use reloc_count in relocation sections
12196 to count particular types of relocs. Of course,
12197 reloc sections themselves can't have relocations. */
12198 ;
12199 else if (emit_relocs)
12200 {
12201 reloc_count = sec->reloc_count;
12202 if (bed->elf_backend_count_additional_relocs)
12203 {
12204 int c;
12205 c = (*bed->elf_backend_count_additional_relocs) (sec);
12206 additional_reloc_count += c;
12207 }
12208 }
12209 else if (bed->elf_backend_count_relocs)
12210 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12211
12212 esdi = elf_section_data (sec);
12213
12214 if ((sec->flags & SEC_RELOC) != 0)
12215 {
12216 size_t ext_size = 0;
12217
12218 if (esdi->rel.hdr != NULL)
12219 ext_size = esdi->rel.hdr->sh_size;
12220 if (esdi->rela.hdr != NULL)
12221 ext_size += esdi->rela.hdr->sh_size;
12222
12223 if (ext_size > max_external_reloc_size)
12224 max_external_reloc_size = ext_size;
12225 if (sec->reloc_count > max_internal_reloc_count)
12226 max_internal_reloc_count = sec->reloc_count;
12227 }
12228 }
12229 }
12230
12231 if (reloc_count == 0)
12232 continue;
12233
12234 reloc_count += additional_reloc_count;
12235 o->reloc_count += reloc_count;
12236
12237 if (p->type == bfd_indirect_link_order && emit_relocs)
12238 {
12239 if (esdi->rel.hdr)
12240 {
12241 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12242 esdo->rel.count += additional_reloc_count;
12243 }
12244 if (esdi->rela.hdr)
12245 {
12246 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12247 esdo->rela.count += additional_reloc_count;
12248 }
12249 }
12250 else
12251 {
12252 if (o->use_rela_p)
12253 esdo->rela.count += reloc_count;
12254 else
12255 esdo->rel.count += reloc_count;
12256 }
12257 }
12258
12259 if (o->reloc_count > 0)
12260 o->flags |= SEC_RELOC;
12261 else
12262 {
12263 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12264 set it (this is probably a bug) and if it is set
12265 assign_section_numbers will create a reloc section. */
12266 o->flags &=~ SEC_RELOC;
12267 }
12268
12269 /* If the SEC_ALLOC flag is not set, force the section VMA to
12270 zero. This is done in elf_fake_sections as well, but forcing
12271 the VMA to 0 here will ensure that relocs against these
12272 sections are handled correctly. */
12273 if ((o->flags & SEC_ALLOC) == 0
12274 && ! o->user_set_vma)
12275 o->vma = 0;
12276 }
12277
12278 if (! bfd_link_relocatable (info) && merged)
12279 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12280
12281 /* Figure out the file positions for everything but the symbol table
12282 and the relocs. We set symcount to force assign_section_numbers
12283 to create a symbol table. */
12284 abfd->symcount = info->strip != strip_all || emit_relocs;
12285 BFD_ASSERT (! abfd->output_has_begun);
12286 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12287 goto error_return;
12288
12289 /* Set sizes, and assign file positions for reloc sections. */
12290 for (o = abfd->sections; o != NULL; o = o->next)
12291 {
12292 struct bfd_elf_section_data *esdo = elf_section_data (o);
12293 if ((o->flags & SEC_RELOC) != 0)
12294 {
12295 if (esdo->rel.hdr
12296 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12297 goto error_return;
12298
12299 if (esdo->rela.hdr
12300 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12301 goto error_return;
12302 }
12303
12304 /* _bfd_elf_compute_section_file_positions makes temporary use
12305 of target_index. Reset it. */
12306 o->target_index = 0;
12307
12308 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12309 to count upwards while actually outputting the relocations. */
12310 esdo->rel.count = 0;
12311 esdo->rela.count = 0;
12312
12313 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12314 && !bfd_section_is_ctf (o))
12315 {
12316 /* Cache the section contents so that they can be compressed
12317 later. Use bfd_malloc since it will be freed by
12318 bfd_compress_section_contents. */
12319 unsigned char *contents = esdo->this_hdr.contents;
12320 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12321 abort ();
12322 contents
12323 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12324 if (contents == NULL)
12325 goto error_return;
12326 esdo->this_hdr.contents = contents;
12327 }
12328 }
12329
12330 /* We have now assigned file positions for all the sections except .symtab,
12331 .strtab, and non-loaded reloc and compressed debugging sections. We start
12332 the .symtab section at the current file position, and write directly to it.
12333 We build the .strtab section in memory. */
12334 abfd->symcount = 0;
12335 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12336 /* sh_name is set in prep_headers. */
12337 symtab_hdr->sh_type = SHT_SYMTAB;
12338 /* sh_flags, sh_addr and sh_size all start off zero. */
12339 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12340 /* sh_link is set in assign_section_numbers. */
12341 /* sh_info is set below. */
12342 /* sh_offset is set just below. */
12343 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12344
12345 if (max_sym_count < 20)
12346 max_sym_count = 20;
12347 htab->strtabsize = max_sym_count;
12348 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12349 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12350 if (htab->strtab == NULL)
12351 goto error_return;
12352 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12353 flinfo.symshndxbuf
12354 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12355 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12356
12357 if (info->strip != strip_all || emit_relocs)
12358 {
12359 file_ptr off = elf_next_file_pos (abfd);
12360
12361 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12362
12363 /* Note that at this point elf_next_file_pos (abfd) is
12364 incorrect. We do not yet know the size of the .symtab section.
12365 We correct next_file_pos below, after we do know the size. */
12366
12367 /* Start writing out the symbol table. The first symbol is always a
12368 dummy symbol. */
12369 elfsym.st_value = 0;
12370 elfsym.st_size = 0;
12371 elfsym.st_info = 0;
12372 elfsym.st_other = 0;
12373 elfsym.st_shndx = SHN_UNDEF;
12374 elfsym.st_target_internal = 0;
12375 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12376 bfd_und_section_ptr, NULL) != 1)
12377 goto error_return;
12378
12379 /* Output a symbol for each section if asked or they are used for
12380 relocs. These symbols usually have no names. We store the
12381 index of each one in the index field of the section, so that
12382 we can find it again when outputting relocs. */
12383
12384 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12385 {
12386 bfd_boolean name_local_sections
12387 = (bed->elf_backend_name_local_section_symbols
12388 && bed->elf_backend_name_local_section_symbols (abfd));
12389 const char *name = NULL;
12390
12391 elfsym.st_size = 0;
12392 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12393 elfsym.st_other = 0;
12394 elfsym.st_value = 0;
12395 elfsym.st_target_internal = 0;
12396 for (i = 1; i < elf_numsections (abfd); i++)
12397 {
12398 o = bfd_section_from_elf_index (abfd, i);
12399 if (o != NULL)
12400 {
12401 o->target_index = bfd_get_symcount (abfd);
12402 elfsym.st_shndx = i;
12403 if (!bfd_link_relocatable (info))
12404 elfsym.st_value = o->vma;
12405 if (name_local_sections)
12406 name = o->name;
12407 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12408 NULL) != 1)
12409 goto error_return;
12410 }
12411 }
12412 }
12413 }
12414
12415 /* On some targets like Irix 5 the symbol split between local and global
12416 ones recorded in the sh_info field needs to be done between section
12417 and all other symbols. */
12418 if (bed->elf_backend_elfsym_local_is_section
12419 && bed->elf_backend_elfsym_local_is_section (abfd))
12420 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12421
12422 /* Allocate some memory to hold information read in from the input
12423 files. */
12424 if (max_contents_size != 0)
12425 {
12426 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12427 if (flinfo.contents == NULL)
12428 goto error_return;
12429 }
12430
12431 if (max_external_reloc_size != 0)
12432 {
12433 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12434 if (flinfo.external_relocs == NULL)
12435 goto error_return;
12436 }
12437
12438 if (max_internal_reloc_count != 0)
12439 {
12440 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12441 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12442 if (flinfo.internal_relocs == NULL)
12443 goto error_return;
12444 }
12445
12446 if (max_sym_count != 0)
12447 {
12448 amt = max_sym_count * bed->s->sizeof_sym;
12449 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12450 if (flinfo.external_syms == NULL)
12451 goto error_return;
12452
12453 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12454 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12455 if (flinfo.internal_syms == NULL)
12456 goto error_return;
12457
12458 amt = max_sym_count * sizeof (long);
12459 flinfo.indices = (long int *) bfd_malloc (amt);
12460 if (flinfo.indices == NULL)
12461 goto error_return;
12462
12463 amt = max_sym_count * sizeof (asection *);
12464 flinfo.sections = (asection **) bfd_malloc (amt);
12465 if (flinfo.sections == NULL)
12466 goto error_return;
12467 }
12468
12469 if (max_sym_shndx_count != 0)
12470 {
12471 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12472 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12473 if (flinfo.locsym_shndx == NULL)
12474 goto error_return;
12475 }
12476
12477 if (htab->tls_sec)
12478 {
12479 bfd_vma base, end = 0; /* Both bytes. */
12480 asection *sec;
12481
12482 for (sec = htab->tls_sec;
12483 sec && (sec->flags & SEC_THREAD_LOCAL);
12484 sec = sec->next)
12485 {
12486 bfd_size_type size = sec->size;
12487 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12488
12489 if (size == 0
12490 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12491 {
12492 struct bfd_link_order *ord = sec->map_tail.link_order;
12493
12494 if (ord != NULL)
12495 size = ord->offset * opb + ord->size;
12496 }
12497 end = sec->vma + size / opb;
12498 }
12499 base = htab->tls_sec->vma;
12500 /* Only align end of TLS section if static TLS doesn't have special
12501 alignment requirements. */
12502 if (bed->static_tls_alignment == 1)
12503 end = align_power (end, htab->tls_sec->alignment_power);
12504 htab->tls_size = end - base;
12505 }
12506
12507 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12508 return FALSE;
12509
12510 /* Since ELF permits relocations to be against local symbols, we
12511 must have the local symbols available when we do the relocations.
12512 Since we would rather only read the local symbols once, and we
12513 would rather not keep them in memory, we handle all the
12514 relocations for a single input file at the same time.
12515
12516 Unfortunately, there is no way to know the total number of local
12517 symbols until we have seen all of them, and the local symbol
12518 indices precede the global symbol indices. This means that when
12519 we are generating relocatable output, and we see a reloc against
12520 a global symbol, we can not know the symbol index until we have
12521 finished examining all the local symbols to see which ones we are
12522 going to output. To deal with this, we keep the relocations in
12523 memory, and don't output them until the end of the link. This is
12524 an unfortunate waste of memory, but I don't see a good way around
12525 it. Fortunately, it only happens when performing a relocatable
12526 link, which is not the common case. FIXME: If keep_memory is set
12527 we could write the relocs out and then read them again; I don't
12528 know how bad the memory loss will be. */
12529
12530 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12531 sub->output_has_begun = FALSE;
12532 for (o = abfd->sections; o != NULL; o = o->next)
12533 {
12534 for (p = o->map_head.link_order; p != NULL; p = p->next)
12535 {
12536 if (p->type == bfd_indirect_link_order
12537 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12538 == bfd_target_elf_flavour)
12539 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12540 {
12541 if (! sub->output_has_begun)
12542 {
12543 if (! elf_link_input_bfd (&flinfo, sub))
12544 goto error_return;
12545 sub->output_has_begun = TRUE;
12546 }
12547 }
12548 else if (p->type == bfd_section_reloc_link_order
12549 || p->type == bfd_symbol_reloc_link_order)
12550 {
12551 if (! elf_reloc_link_order (abfd, info, o, p))
12552 goto error_return;
12553 }
12554 else
12555 {
12556 if (! _bfd_default_link_order (abfd, info, o, p))
12557 {
12558 if (p->type == bfd_indirect_link_order
12559 && (bfd_get_flavour (sub)
12560 == bfd_target_elf_flavour)
12561 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12562 != bed->s->elfclass))
12563 {
12564 const char *iclass, *oclass;
12565
12566 switch (bed->s->elfclass)
12567 {
12568 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12569 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12570 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12571 default: abort ();
12572 }
12573
12574 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12575 {
12576 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12577 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12578 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12579 default: abort ();
12580 }
12581
12582 bfd_set_error (bfd_error_wrong_format);
12583 _bfd_error_handler
12584 /* xgettext:c-format */
12585 (_("%pB: file class %s incompatible with %s"),
12586 sub, iclass, oclass);
12587 }
12588
12589 goto error_return;
12590 }
12591 }
12592 }
12593 }
12594
12595 /* Free symbol buffer if needed. */
12596 if (!info->reduce_memory_overheads)
12597 {
12598 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12599 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12600 {
12601 free (elf_tdata (sub)->symbuf);
12602 elf_tdata (sub)->symbuf = NULL;
12603 }
12604 }
12605
12606 ret = TRUE;
12607
12608 /* Output any global symbols that got converted to local in a
12609 version script or due to symbol visibility. We do this in a
12610 separate step since ELF requires all local symbols to appear
12611 prior to any global symbols. FIXME: We should only do this if
12612 some global symbols were, in fact, converted to become local.
12613 FIXME: Will this work correctly with the Irix 5 linker? */
12614 eoinfo.failed = FALSE;
12615 eoinfo.flinfo = &flinfo;
12616 eoinfo.localsyms = TRUE;
12617 eoinfo.file_sym_done = FALSE;
12618 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12619 if (eoinfo.failed)
12620 {
12621 ret = FALSE;
12622 goto return_local_hash_table;
12623 }
12624
12625 /* If backend needs to output some local symbols not present in the hash
12626 table, do it now. */
12627 if (bed->elf_backend_output_arch_local_syms
12628 && (info->strip != strip_all || emit_relocs))
12629 {
12630 typedef int (*out_sym_func)
12631 (void *, const char *, Elf_Internal_Sym *, asection *,
12632 struct elf_link_hash_entry *);
12633
12634 if (! ((*bed->elf_backend_output_arch_local_syms)
12635 (abfd, info, &flinfo,
12636 (out_sym_func) elf_link_output_symstrtab)))
12637 {
12638 ret = FALSE;
12639 goto return_local_hash_table;
12640 }
12641 }
12642
12643 /* That wrote out all the local symbols. Finish up the symbol table
12644 with the global symbols. Even if we want to strip everything we
12645 can, we still need to deal with those global symbols that got
12646 converted to local in a version script. */
12647
12648 /* The sh_info field records the index of the first non local symbol. */
12649 if (!symtab_hdr->sh_info)
12650 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12651
12652 if (dynamic
12653 && htab->dynsym != NULL
12654 && htab->dynsym->output_section != bfd_abs_section_ptr)
12655 {
12656 Elf_Internal_Sym sym;
12657 bfd_byte *dynsym = htab->dynsym->contents;
12658
12659 o = htab->dynsym->output_section;
12660 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12661
12662 /* Write out the section symbols for the output sections. */
12663 if (bfd_link_pic (info)
12664 || htab->is_relocatable_executable)
12665 {
12666 asection *s;
12667
12668 sym.st_size = 0;
12669 sym.st_name = 0;
12670 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12671 sym.st_other = 0;
12672 sym.st_target_internal = 0;
12673
12674 for (s = abfd->sections; s != NULL; s = s->next)
12675 {
12676 int indx;
12677 bfd_byte *dest;
12678 long dynindx;
12679
12680 dynindx = elf_section_data (s)->dynindx;
12681 if (dynindx <= 0)
12682 continue;
12683 indx = elf_section_data (s)->this_idx;
12684 BFD_ASSERT (indx > 0);
12685 sym.st_shndx = indx;
12686 if (! check_dynsym (abfd, &sym))
12687 {
12688 ret = FALSE;
12689 goto return_local_hash_table;
12690 }
12691 sym.st_value = s->vma;
12692 dest = dynsym + dynindx * bed->s->sizeof_sym;
12693
12694 /* Inform the linker of the addition of this symbol. */
12695
12696 if (info->callbacks->ctf_new_dynsym)
12697 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12698
12699 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12700 }
12701 }
12702
12703 /* Write out the local dynsyms. */
12704 if (htab->dynlocal)
12705 {
12706 struct elf_link_local_dynamic_entry *e;
12707 for (e = htab->dynlocal; e ; e = e->next)
12708 {
12709 asection *s;
12710 bfd_byte *dest;
12711
12712 /* Copy the internal symbol and turn off visibility.
12713 Note that we saved a word of storage and overwrote
12714 the original st_name with the dynstr_index. */
12715 sym = e->isym;
12716 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12717 sym.st_shndx = SHN_UNDEF;
12718
12719 s = bfd_section_from_elf_index (e->input_bfd,
12720 e->isym.st_shndx);
12721 if (s != NULL
12722 && s->output_section != NULL
12723 && elf_section_data (s->output_section) != NULL)
12724 {
12725 sym.st_shndx =
12726 elf_section_data (s->output_section)->this_idx;
12727 if (! check_dynsym (abfd, &sym))
12728 {
12729 ret = FALSE;
12730 goto return_local_hash_table;
12731 }
12732 sym.st_value = (s->output_section->vma
12733 + s->output_offset
12734 + e->isym.st_value);
12735 }
12736
12737 /* Inform the linker of the addition of this symbol. */
12738
12739 if (info->callbacks->ctf_new_dynsym)
12740 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
12741
12742 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12743 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12744 }
12745 }
12746 }
12747
12748 /* We get the global symbols from the hash table. */
12749 eoinfo.failed = FALSE;
12750 eoinfo.localsyms = FALSE;
12751 eoinfo.flinfo = &flinfo;
12752 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12753 if (eoinfo.failed)
12754 {
12755 ret = FALSE;
12756 goto return_local_hash_table;
12757 }
12758
12759 /* If backend needs to output some symbols not present in the hash
12760 table, do it now. */
12761 if (bed->elf_backend_output_arch_syms
12762 && (info->strip != strip_all || emit_relocs))
12763 {
12764 typedef int (*out_sym_func)
12765 (void *, const char *, Elf_Internal_Sym *, asection *,
12766 struct elf_link_hash_entry *);
12767
12768 if (! ((*bed->elf_backend_output_arch_syms)
12769 (abfd, info, &flinfo,
12770 (out_sym_func) elf_link_output_symstrtab)))
12771 {
12772 ret = FALSE;
12773 goto return_local_hash_table;
12774 }
12775 }
12776
12777 /* Finalize the .strtab section. */
12778 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12779
12780 /* Swap out the .strtab section. */
12781 if (!elf_link_swap_symbols_out (&flinfo))
12782 {
12783 ret = FALSE;
12784 goto return_local_hash_table;
12785 }
12786
12787 /* Now we know the size of the symtab section. */
12788 if (bfd_get_symcount (abfd) > 0)
12789 {
12790 /* Finish up and write out the symbol string table (.strtab)
12791 section. */
12792 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12793 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12794
12795 if (elf_symtab_shndx_list (abfd))
12796 {
12797 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12798
12799 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12800 {
12801 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12802 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12803 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12804 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12805 symtab_shndx_hdr->sh_size = amt;
12806
12807 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12808 off, TRUE);
12809
12810 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12811 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12812 {
12813 ret = FALSE;
12814 goto return_local_hash_table;
12815 }
12816 }
12817 }
12818
12819 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12820 /* sh_name was set in prep_headers. */
12821 symstrtab_hdr->sh_type = SHT_STRTAB;
12822 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12823 symstrtab_hdr->sh_addr = 0;
12824 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12825 symstrtab_hdr->sh_entsize = 0;
12826 symstrtab_hdr->sh_link = 0;
12827 symstrtab_hdr->sh_info = 0;
12828 /* sh_offset is set just below. */
12829 symstrtab_hdr->sh_addralign = 1;
12830
12831 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12832 off, TRUE);
12833 elf_next_file_pos (abfd) = off;
12834
12835 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12836 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12837 {
12838 ret = FALSE;
12839 goto return_local_hash_table;
12840 }
12841 }
12842
12843 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12844 {
12845 _bfd_error_handler (_("%pB: failed to generate import library"),
12846 info->out_implib_bfd);
12847 ret = FALSE;
12848 goto return_local_hash_table;
12849 }
12850
12851 /* Adjust the relocs to have the correct symbol indices. */
12852 for (o = abfd->sections; o != NULL; o = o->next)
12853 {
12854 struct bfd_elf_section_data *esdo = elf_section_data (o);
12855 bfd_boolean sort;
12856
12857 if ((o->flags & SEC_RELOC) == 0)
12858 continue;
12859
12860 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12861 if (esdo->rel.hdr != NULL
12862 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12863 {
12864 ret = FALSE;
12865 goto return_local_hash_table;
12866 }
12867 if (esdo->rela.hdr != NULL
12868 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12869 {
12870 ret = FALSE;
12871 goto return_local_hash_table;
12872 }
12873
12874 /* Set the reloc_count field to 0 to prevent write_relocs from
12875 trying to swap the relocs out itself. */
12876 o->reloc_count = 0;
12877 }
12878
12879 if (dynamic && info->combreloc && dynobj != NULL)
12880 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12881
12882 /* If we are linking against a dynamic object, or generating a
12883 shared library, finish up the dynamic linking information. */
12884 if (dynamic)
12885 {
12886 bfd_byte *dyncon, *dynconend;
12887
12888 /* Fix up .dynamic entries. */
12889 o = bfd_get_linker_section (dynobj, ".dynamic");
12890 BFD_ASSERT (o != NULL);
12891
12892 dyncon = o->contents;
12893 dynconend = o->contents + o->size;
12894 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12895 {
12896 Elf_Internal_Dyn dyn;
12897 const char *name;
12898 unsigned int type;
12899 bfd_size_type sh_size;
12900 bfd_vma sh_addr;
12901
12902 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12903
12904 switch (dyn.d_tag)
12905 {
12906 default:
12907 continue;
12908 case DT_NULL:
12909 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12910 {
12911 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12912 {
12913 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12914 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12915 default: continue;
12916 }
12917 dyn.d_un.d_val = relativecount;
12918 relativecount = 0;
12919 break;
12920 }
12921 continue;
12922
12923 case DT_INIT:
12924 name = info->init_function;
12925 goto get_sym;
12926 case DT_FINI:
12927 name = info->fini_function;
12928 get_sym:
12929 {
12930 struct elf_link_hash_entry *h;
12931
12932 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12933 if (h != NULL
12934 && (h->root.type == bfd_link_hash_defined
12935 || h->root.type == bfd_link_hash_defweak))
12936 {
12937 dyn.d_un.d_ptr = h->root.u.def.value;
12938 o = h->root.u.def.section;
12939 if (o->output_section != NULL)
12940 dyn.d_un.d_ptr += (o->output_section->vma
12941 + o->output_offset);
12942 else
12943 {
12944 /* The symbol is imported from another shared
12945 library and does not apply to this one. */
12946 dyn.d_un.d_ptr = 0;
12947 }
12948 break;
12949 }
12950 }
12951 continue;
12952
12953 case DT_PREINIT_ARRAYSZ:
12954 name = ".preinit_array";
12955 goto get_out_size;
12956 case DT_INIT_ARRAYSZ:
12957 name = ".init_array";
12958 goto get_out_size;
12959 case DT_FINI_ARRAYSZ:
12960 name = ".fini_array";
12961 get_out_size:
12962 o = bfd_get_section_by_name (abfd, name);
12963 if (o == NULL)
12964 {
12965 _bfd_error_handler
12966 (_("could not find section %s"), name);
12967 goto error_return;
12968 }
12969 if (o->size == 0)
12970 _bfd_error_handler
12971 (_("warning: %s section has zero size"), name);
12972 dyn.d_un.d_val = o->size;
12973 break;
12974
12975 case DT_PREINIT_ARRAY:
12976 name = ".preinit_array";
12977 goto get_out_vma;
12978 case DT_INIT_ARRAY:
12979 name = ".init_array";
12980 goto get_out_vma;
12981 case DT_FINI_ARRAY:
12982 name = ".fini_array";
12983 get_out_vma:
12984 o = bfd_get_section_by_name (abfd, name);
12985 goto do_vma;
12986
12987 case DT_HASH:
12988 name = ".hash";
12989 goto get_vma;
12990 case DT_GNU_HASH:
12991 name = ".gnu.hash";
12992 goto get_vma;
12993 case DT_STRTAB:
12994 name = ".dynstr";
12995 goto get_vma;
12996 case DT_SYMTAB:
12997 name = ".dynsym";
12998 goto get_vma;
12999 case DT_VERDEF:
13000 name = ".gnu.version_d";
13001 goto get_vma;
13002 case DT_VERNEED:
13003 name = ".gnu.version_r";
13004 goto get_vma;
13005 case DT_VERSYM:
13006 name = ".gnu.version";
13007 get_vma:
13008 o = bfd_get_linker_section (dynobj, name);
13009 do_vma:
13010 if (o == NULL || bfd_is_abs_section (o->output_section))
13011 {
13012 _bfd_error_handler
13013 (_("could not find section %s"), name);
13014 goto error_return;
13015 }
13016 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13017 {
13018 _bfd_error_handler
13019 (_("warning: section '%s' is being made into a note"), name);
13020 bfd_set_error (bfd_error_nonrepresentable_section);
13021 goto error_return;
13022 }
13023 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13024 break;
13025
13026 case DT_REL:
13027 case DT_RELA:
13028 case DT_RELSZ:
13029 case DT_RELASZ:
13030 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13031 type = SHT_REL;
13032 else
13033 type = SHT_RELA;
13034 sh_size = 0;
13035 sh_addr = 0;
13036 for (i = 1; i < elf_numsections (abfd); i++)
13037 {
13038 Elf_Internal_Shdr *hdr;
13039
13040 hdr = elf_elfsections (abfd)[i];
13041 if (hdr->sh_type == type
13042 && (hdr->sh_flags & SHF_ALLOC) != 0)
13043 {
13044 sh_size += hdr->sh_size;
13045 if (sh_addr == 0
13046 || sh_addr > hdr->sh_addr)
13047 sh_addr = hdr->sh_addr;
13048 }
13049 }
13050
13051 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13052 {
13053 unsigned int opb = bfd_octets_per_byte (abfd, o);
13054
13055 /* Don't count procedure linkage table relocs in the
13056 overall reloc count. */
13057 sh_size -= htab->srelplt->size;
13058 if (sh_size == 0)
13059 /* If the size is zero, make the address zero too.
13060 This is to avoid a glibc bug. If the backend
13061 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13062 zero, then we'll put DT_RELA at the end of
13063 DT_JMPREL. glibc will interpret the end of
13064 DT_RELA matching the end of DT_JMPREL as the
13065 case where DT_RELA includes DT_JMPREL, and for
13066 LD_BIND_NOW will decide that processing DT_RELA
13067 will process the PLT relocs too. Net result:
13068 No PLT relocs applied. */
13069 sh_addr = 0;
13070
13071 /* If .rela.plt is the first .rela section, exclude
13072 it from DT_RELA. */
13073 else if (sh_addr == (htab->srelplt->output_section->vma
13074 + htab->srelplt->output_offset) * opb)
13075 sh_addr += htab->srelplt->size;
13076 }
13077
13078 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13079 dyn.d_un.d_val = sh_size;
13080 else
13081 dyn.d_un.d_ptr = sh_addr;
13082 break;
13083 }
13084 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13085 }
13086 }
13087
13088 /* If we have created any dynamic sections, then output them. */
13089 if (dynobj != NULL)
13090 {
13091 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13092 goto error_return;
13093
13094 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13095 if (bfd_link_textrel_check (info)
13096 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
13097 {
13098 bfd_byte *dyncon, *dynconend;
13099
13100 dyncon = o->contents;
13101 dynconend = o->contents + o->size;
13102 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13103 {
13104 Elf_Internal_Dyn dyn;
13105
13106 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13107
13108 if (dyn.d_tag == DT_TEXTREL)
13109 {
13110 if (info->textrel_check == textrel_check_error)
13111 info->callbacks->einfo
13112 (_("%P%X: read-only segment has dynamic relocations\n"));
13113 else if (bfd_link_dll (info))
13114 info->callbacks->einfo
13115 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13116 else
13117 info->callbacks->einfo
13118 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13119 break;
13120 }
13121 }
13122 }
13123
13124 for (o = dynobj->sections; o != NULL; o = o->next)
13125 {
13126 if ((o->flags & SEC_HAS_CONTENTS) == 0
13127 || o->size == 0
13128 || o->output_section == bfd_abs_section_ptr)
13129 continue;
13130 if ((o->flags & SEC_LINKER_CREATED) == 0)
13131 {
13132 /* At this point, we are only interested in sections
13133 created by _bfd_elf_link_create_dynamic_sections. */
13134 continue;
13135 }
13136 if (htab->stab_info.stabstr == o)
13137 continue;
13138 if (htab->eh_info.hdr_sec == o)
13139 continue;
13140 if (strcmp (o->name, ".dynstr") != 0)
13141 {
13142 bfd_size_type octets = ((file_ptr) o->output_offset
13143 * bfd_octets_per_byte (abfd, o));
13144 if (!bfd_set_section_contents (abfd, o->output_section,
13145 o->contents, octets, o->size))
13146 goto error_return;
13147 }
13148 else
13149 {
13150 /* The contents of the .dynstr section are actually in a
13151 stringtab. */
13152 file_ptr off;
13153
13154 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13155 if (bfd_seek (abfd, off, SEEK_SET) != 0
13156 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13157 goto error_return;
13158 }
13159 }
13160 }
13161
13162 if (!info->resolve_section_groups)
13163 {
13164 bfd_boolean failed = FALSE;
13165
13166 BFD_ASSERT (bfd_link_relocatable (info));
13167 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13168 if (failed)
13169 goto error_return;
13170 }
13171
13172 /* If we have optimized stabs strings, output them. */
13173 if (htab->stab_info.stabstr != NULL)
13174 {
13175 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13176 goto error_return;
13177 }
13178
13179 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13180 goto error_return;
13181
13182 if (info->callbacks->emit_ctf)
13183 info->callbacks->emit_ctf ();
13184
13185 elf_final_link_free (abfd, &flinfo);
13186
13187 if (attr_section)
13188 {
13189 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13190 if (contents == NULL)
13191 {
13192 /* Bail out and fail. */
13193 ret = FALSE;
13194 goto return_local_hash_table;
13195 }
13196 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13197 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13198 free (contents);
13199 }
13200
13201 return_local_hash_table:
13202 if (info->unique_symbol)
13203 bfd_hash_table_free (&flinfo.local_hash_table);
13204 return ret;
13205
13206 error_return:
13207 elf_final_link_free (abfd, &flinfo);
13208 ret = FALSE;
13209 goto return_local_hash_table;
13210 }
13211 \f
13212 /* Initialize COOKIE for input bfd ABFD. */
13213
13214 static bfd_boolean
13215 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13216 struct bfd_link_info *info, bfd *abfd)
13217 {
13218 Elf_Internal_Shdr *symtab_hdr;
13219 const struct elf_backend_data *bed;
13220
13221 bed = get_elf_backend_data (abfd);
13222 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13223
13224 cookie->abfd = abfd;
13225 cookie->sym_hashes = elf_sym_hashes (abfd);
13226 cookie->bad_symtab = elf_bad_symtab (abfd);
13227 if (cookie->bad_symtab)
13228 {
13229 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13230 cookie->extsymoff = 0;
13231 }
13232 else
13233 {
13234 cookie->locsymcount = symtab_hdr->sh_info;
13235 cookie->extsymoff = symtab_hdr->sh_info;
13236 }
13237
13238 if (bed->s->arch_size == 32)
13239 cookie->r_sym_shift = 8;
13240 else
13241 cookie->r_sym_shift = 32;
13242
13243 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13244 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13245 {
13246 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13247 cookie->locsymcount, 0,
13248 NULL, NULL, NULL);
13249 if (cookie->locsyms == NULL)
13250 {
13251 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13252 return FALSE;
13253 }
13254 if (info->keep_memory)
13255 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13256 }
13257 return TRUE;
13258 }
13259
13260 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13261
13262 static void
13263 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13264 {
13265 Elf_Internal_Shdr *symtab_hdr;
13266
13267 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13268 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13269 free (cookie->locsyms);
13270 }
13271
13272 /* Initialize the relocation information in COOKIE for input section SEC
13273 of input bfd ABFD. */
13274
13275 static bfd_boolean
13276 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13277 struct bfd_link_info *info, bfd *abfd,
13278 asection *sec)
13279 {
13280 if (sec->reloc_count == 0)
13281 {
13282 cookie->rels = NULL;
13283 cookie->relend = NULL;
13284 }
13285 else
13286 {
13287 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13288 info->keep_memory);
13289 if (cookie->rels == NULL)
13290 return FALSE;
13291 cookie->rel = cookie->rels;
13292 cookie->relend = cookie->rels + sec->reloc_count;
13293 }
13294 cookie->rel = cookie->rels;
13295 return TRUE;
13296 }
13297
13298 /* Free the memory allocated by init_reloc_cookie_rels,
13299 if appropriate. */
13300
13301 static void
13302 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13303 asection *sec)
13304 {
13305 if (elf_section_data (sec)->relocs != cookie->rels)
13306 free (cookie->rels);
13307 }
13308
13309 /* Initialize the whole of COOKIE for input section SEC. */
13310
13311 static bfd_boolean
13312 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13313 struct bfd_link_info *info,
13314 asection *sec)
13315 {
13316 if (!init_reloc_cookie (cookie, info, sec->owner))
13317 goto error1;
13318 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13319 goto error2;
13320 return TRUE;
13321
13322 error2:
13323 fini_reloc_cookie (cookie, sec->owner);
13324 error1:
13325 return FALSE;
13326 }
13327
13328 /* Free the memory allocated by init_reloc_cookie_for_section,
13329 if appropriate. */
13330
13331 static void
13332 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13333 asection *sec)
13334 {
13335 fini_reloc_cookie_rels (cookie, sec);
13336 fini_reloc_cookie (cookie, sec->owner);
13337 }
13338 \f
13339 /* Garbage collect unused sections. */
13340
13341 /* Default gc_mark_hook. */
13342
13343 asection *
13344 _bfd_elf_gc_mark_hook (asection *sec,
13345 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13346 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13347 struct elf_link_hash_entry *h,
13348 Elf_Internal_Sym *sym)
13349 {
13350 if (h != NULL)
13351 {
13352 switch (h->root.type)
13353 {
13354 case bfd_link_hash_defined:
13355 case bfd_link_hash_defweak:
13356 return h->root.u.def.section;
13357
13358 case bfd_link_hash_common:
13359 return h->root.u.c.p->section;
13360
13361 default:
13362 break;
13363 }
13364 }
13365 else
13366 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13367
13368 return NULL;
13369 }
13370
13371 /* Return the debug definition section. */
13372
13373 static asection *
13374 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13375 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13376 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13377 struct elf_link_hash_entry *h,
13378 Elf_Internal_Sym *sym)
13379 {
13380 if (h != NULL)
13381 {
13382 /* Return the global debug definition section. */
13383 if ((h->root.type == bfd_link_hash_defined
13384 || h->root.type == bfd_link_hash_defweak)
13385 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13386 return h->root.u.def.section;
13387 }
13388 else
13389 {
13390 /* Return the local debug definition section. */
13391 asection *isec = bfd_section_from_elf_index (sec->owner,
13392 sym->st_shndx);
13393 if ((isec->flags & SEC_DEBUGGING) != 0)
13394 return isec;
13395 }
13396
13397 return NULL;
13398 }
13399
13400 /* COOKIE->rel describes a relocation against section SEC, which is
13401 a section we've decided to keep. Return the section that contains
13402 the relocation symbol, or NULL if no section contains it. */
13403
13404 asection *
13405 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13406 elf_gc_mark_hook_fn gc_mark_hook,
13407 struct elf_reloc_cookie *cookie,
13408 bfd_boolean *start_stop)
13409 {
13410 unsigned long r_symndx;
13411 struct elf_link_hash_entry *h, *hw;
13412
13413 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13414 if (r_symndx == STN_UNDEF)
13415 return NULL;
13416
13417 if (r_symndx >= cookie->locsymcount
13418 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13419 {
13420 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13421 if (h == NULL)
13422 {
13423 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13424 sec->owner);
13425 return NULL;
13426 }
13427 while (h->root.type == bfd_link_hash_indirect
13428 || h->root.type == bfd_link_hash_warning)
13429 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13430 h->mark = 1;
13431 /* Keep all aliases of the symbol too. If an object symbol
13432 needs to be copied into .dynbss then all of its aliases
13433 should be present as dynamic symbols, not just the one used
13434 on the copy relocation. */
13435 hw = h;
13436 while (hw->is_weakalias)
13437 {
13438 hw = hw->u.alias;
13439 hw->mark = 1;
13440 }
13441
13442 if (start_stop != NULL)
13443 {
13444 /* To work around a glibc bug, mark XXX input sections
13445 when there is a reference to __start_XXX or __stop_XXX
13446 symbols. */
13447 if (h->start_stop)
13448 {
13449 asection *s = h->u2.start_stop_section;
13450 *start_stop = !s->gc_mark;
13451 return s;
13452 }
13453 }
13454
13455 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13456 }
13457
13458 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13459 &cookie->locsyms[r_symndx]);
13460 }
13461
13462 /* COOKIE->rel describes a relocation against section SEC, which is
13463 a section we've decided to keep. Mark the section that contains
13464 the relocation symbol. */
13465
13466 bfd_boolean
13467 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13468 asection *sec,
13469 elf_gc_mark_hook_fn gc_mark_hook,
13470 struct elf_reloc_cookie *cookie)
13471 {
13472 asection *rsec;
13473 bfd_boolean start_stop = FALSE;
13474
13475 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13476 while (rsec != NULL)
13477 {
13478 if (!rsec->gc_mark)
13479 {
13480 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13481 || (rsec->owner->flags & DYNAMIC) != 0)
13482 rsec->gc_mark = 1;
13483 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13484 return FALSE;
13485 }
13486 if (!start_stop)
13487 break;
13488 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13489 }
13490 return TRUE;
13491 }
13492
13493 /* The mark phase of garbage collection. For a given section, mark
13494 it and any sections in this section's group, and all the sections
13495 which define symbols to which it refers. */
13496
13497 bfd_boolean
13498 _bfd_elf_gc_mark (struct bfd_link_info *info,
13499 asection *sec,
13500 elf_gc_mark_hook_fn gc_mark_hook)
13501 {
13502 bfd_boolean ret;
13503 asection *group_sec, *eh_frame;
13504
13505 sec->gc_mark = 1;
13506
13507 /* Mark all the sections in the group. */
13508 group_sec = elf_section_data (sec)->next_in_group;
13509 if (group_sec && !group_sec->gc_mark)
13510 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13511 return FALSE;
13512
13513 /* Look through the section relocs. */
13514 ret = TRUE;
13515 eh_frame = elf_eh_frame_section (sec->owner);
13516 if ((sec->flags & SEC_RELOC) != 0
13517 && sec->reloc_count > 0
13518 && sec != eh_frame)
13519 {
13520 struct elf_reloc_cookie cookie;
13521
13522 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13523 ret = FALSE;
13524 else
13525 {
13526 for (; cookie.rel < cookie.relend; cookie.rel++)
13527 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13528 {
13529 ret = FALSE;
13530 break;
13531 }
13532 fini_reloc_cookie_for_section (&cookie, sec);
13533 }
13534 }
13535
13536 if (ret && eh_frame && elf_fde_list (sec))
13537 {
13538 struct elf_reloc_cookie cookie;
13539
13540 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13541 ret = FALSE;
13542 else
13543 {
13544 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13545 gc_mark_hook, &cookie))
13546 ret = FALSE;
13547 fini_reloc_cookie_for_section (&cookie, eh_frame);
13548 }
13549 }
13550
13551 eh_frame = elf_section_eh_frame_entry (sec);
13552 if (ret && eh_frame && !eh_frame->gc_mark)
13553 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13554 ret = FALSE;
13555
13556 return ret;
13557 }
13558
13559 /* Scan and mark sections in a special or debug section group. */
13560
13561 static void
13562 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13563 {
13564 /* Point to first section of section group. */
13565 asection *ssec;
13566 /* Used to iterate the section group. */
13567 asection *msec;
13568
13569 bfd_boolean is_special_grp = TRUE;
13570 bfd_boolean is_debug_grp = TRUE;
13571
13572 /* First scan to see if group contains any section other than debug
13573 and special section. */
13574 ssec = msec = elf_next_in_group (grp);
13575 do
13576 {
13577 if ((msec->flags & SEC_DEBUGGING) == 0)
13578 is_debug_grp = FALSE;
13579
13580 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13581 is_special_grp = FALSE;
13582
13583 msec = elf_next_in_group (msec);
13584 }
13585 while (msec != ssec);
13586
13587 /* If this is a pure debug section group or pure special section group,
13588 keep all sections in this group. */
13589 if (is_debug_grp || is_special_grp)
13590 {
13591 do
13592 {
13593 msec->gc_mark = 1;
13594 msec = elf_next_in_group (msec);
13595 }
13596 while (msec != ssec);
13597 }
13598 }
13599
13600 /* Keep debug and special sections. */
13601
13602 bfd_boolean
13603 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13604 elf_gc_mark_hook_fn mark_hook)
13605 {
13606 bfd *ibfd;
13607
13608 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13609 {
13610 asection *isec;
13611 bfd_boolean some_kept;
13612 bfd_boolean debug_frag_seen;
13613 bfd_boolean has_kept_debug_info;
13614
13615 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13616 continue;
13617 isec = ibfd->sections;
13618 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13619 continue;
13620
13621 /* Ensure all linker created sections are kept,
13622 see if any other section is already marked,
13623 and note if we have any fragmented debug sections. */
13624 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13625 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13626 {
13627 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13628 isec->gc_mark = 1;
13629 else if (isec->gc_mark
13630 && (isec->flags & SEC_ALLOC) != 0
13631 && elf_section_type (isec) != SHT_NOTE)
13632 some_kept = TRUE;
13633 else
13634 {
13635 /* Since all sections, except for backend specific ones,
13636 have been garbage collected, call mark_hook on this
13637 section if any of its linked-to sections is marked. */
13638 asection *linked_to_sec;
13639 for (linked_to_sec = elf_linked_to_section (isec);
13640 linked_to_sec != NULL && !linked_to_sec->linker_mark;
13641 linked_to_sec = elf_linked_to_section (linked_to_sec))
13642 {
13643 if (linked_to_sec->gc_mark)
13644 {
13645 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13646 return FALSE;
13647 break;
13648 }
13649 linked_to_sec->linker_mark = 1;
13650 }
13651 for (linked_to_sec = elf_linked_to_section (isec);
13652 linked_to_sec != NULL && linked_to_sec->linker_mark;
13653 linked_to_sec = elf_linked_to_section (linked_to_sec))
13654 linked_to_sec->linker_mark = 0;
13655 }
13656
13657 if (!debug_frag_seen
13658 && (isec->flags & SEC_DEBUGGING)
13659 && CONST_STRNEQ (isec->name, ".debug_line."))
13660 debug_frag_seen = TRUE;
13661 else if (strcmp (bfd_section_name (isec),
13662 "__patchable_function_entries") == 0
13663 && elf_linked_to_section (isec) == NULL)
13664 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13665 "need linked-to section "
13666 "for --gc-sections\n"),
13667 isec->owner, isec);
13668 }
13669
13670 /* If no non-note alloc section in this file will be kept, then
13671 we can toss out the debug and special sections. */
13672 if (!some_kept)
13673 continue;
13674
13675 /* Keep debug and special sections like .comment when they are
13676 not part of a group. Also keep section groups that contain
13677 just debug sections or special sections. NB: Sections with
13678 linked-to section has been handled above. */
13679 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13680 {
13681 if ((isec->flags & SEC_GROUP) != 0)
13682 _bfd_elf_gc_mark_debug_special_section_group (isec);
13683 else if (((isec->flags & SEC_DEBUGGING) != 0
13684 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13685 && elf_next_in_group (isec) == NULL
13686 && elf_linked_to_section (isec) == NULL)
13687 isec->gc_mark = 1;
13688 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13689 has_kept_debug_info = TRUE;
13690 }
13691
13692 /* Look for CODE sections which are going to be discarded,
13693 and find and discard any fragmented debug sections which
13694 are associated with that code section. */
13695 if (debug_frag_seen)
13696 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13697 if ((isec->flags & SEC_CODE) != 0
13698 && isec->gc_mark == 0)
13699 {
13700 unsigned int ilen;
13701 asection *dsec;
13702
13703 ilen = strlen (isec->name);
13704
13705 /* Association is determined by the name of the debug
13706 section containing the name of the code section as
13707 a suffix. For example .debug_line.text.foo is a
13708 debug section associated with .text.foo. */
13709 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13710 {
13711 unsigned int dlen;
13712
13713 if (dsec->gc_mark == 0
13714 || (dsec->flags & SEC_DEBUGGING) == 0)
13715 continue;
13716
13717 dlen = strlen (dsec->name);
13718
13719 if (dlen > ilen
13720 && strncmp (dsec->name + (dlen - ilen),
13721 isec->name, ilen) == 0)
13722 dsec->gc_mark = 0;
13723 }
13724 }
13725
13726 /* Mark debug sections referenced by kept debug sections. */
13727 if (has_kept_debug_info)
13728 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13729 if (isec->gc_mark
13730 && (isec->flags & SEC_DEBUGGING) != 0)
13731 if (!_bfd_elf_gc_mark (info, isec,
13732 elf_gc_mark_debug_section))
13733 return FALSE;
13734 }
13735 return TRUE;
13736 }
13737
13738 static bfd_boolean
13739 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13740 {
13741 bfd *sub;
13742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13743
13744 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13745 {
13746 asection *o;
13747
13748 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13749 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13750 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13751 continue;
13752 o = sub->sections;
13753 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13754 continue;
13755
13756 for (o = sub->sections; o != NULL; o = o->next)
13757 {
13758 /* When any section in a section group is kept, we keep all
13759 sections in the section group. If the first member of
13760 the section group is excluded, we will also exclude the
13761 group section. */
13762 if (o->flags & SEC_GROUP)
13763 {
13764 asection *first = elf_next_in_group (o);
13765 o->gc_mark = first->gc_mark;
13766 }
13767
13768 if (o->gc_mark)
13769 continue;
13770
13771 /* Skip sweeping sections already excluded. */
13772 if (o->flags & SEC_EXCLUDE)
13773 continue;
13774
13775 /* Since this is early in the link process, it is simple
13776 to remove a section from the output. */
13777 o->flags |= SEC_EXCLUDE;
13778
13779 if (info->print_gc_sections && o->size != 0)
13780 /* xgettext:c-format */
13781 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13782 o, sub);
13783 }
13784 }
13785
13786 return TRUE;
13787 }
13788
13789 /* Propagate collected vtable information. This is called through
13790 elf_link_hash_traverse. */
13791
13792 static bfd_boolean
13793 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13794 {
13795 /* Those that are not vtables. */
13796 if (h->start_stop
13797 || h->u2.vtable == NULL
13798 || h->u2.vtable->parent == NULL)
13799 return TRUE;
13800
13801 /* Those vtables that do not have parents, we cannot merge. */
13802 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13803 return TRUE;
13804
13805 /* If we've already been done, exit. */
13806 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13807 return TRUE;
13808
13809 /* Make sure the parent's table is up to date. */
13810 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13811
13812 if (h->u2.vtable->used == NULL)
13813 {
13814 /* None of this table's entries were referenced. Re-use the
13815 parent's table. */
13816 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13817 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13818 }
13819 else
13820 {
13821 size_t n;
13822 bfd_boolean *cu, *pu;
13823
13824 /* Or the parent's entries into ours. */
13825 cu = h->u2.vtable->used;
13826 cu[-1] = TRUE;
13827 pu = h->u2.vtable->parent->u2.vtable->used;
13828 if (pu != NULL)
13829 {
13830 const struct elf_backend_data *bed;
13831 unsigned int log_file_align;
13832
13833 bed = get_elf_backend_data (h->root.u.def.section->owner);
13834 log_file_align = bed->s->log_file_align;
13835 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13836 while (n--)
13837 {
13838 if (*pu)
13839 *cu = TRUE;
13840 pu++;
13841 cu++;
13842 }
13843 }
13844 }
13845
13846 return TRUE;
13847 }
13848
13849 static bfd_boolean
13850 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13851 {
13852 asection *sec;
13853 bfd_vma hstart, hend;
13854 Elf_Internal_Rela *relstart, *relend, *rel;
13855 const struct elf_backend_data *bed;
13856 unsigned int log_file_align;
13857
13858 /* Take care of both those symbols that do not describe vtables as
13859 well as those that are not loaded. */
13860 if (h->start_stop
13861 || h->u2.vtable == NULL
13862 || h->u2.vtable->parent == NULL)
13863 return TRUE;
13864
13865 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13866 || h->root.type == bfd_link_hash_defweak);
13867
13868 sec = h->root.u.def.section;
13869 hstart = h->root.u.def.value;
13870 hend = hstart + h->size;
13871
13872 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13873 if (!relstart)
13874 return *(bfd_boolean *) okp = FALSE;
13875 bed = get_elf_backend_data (sec->owner);
13876 log_file_align = bed->s->log_file_align;
13877
13878 relend = relstart + sec->reloc_count;
13879
13880 for (rel = relstart; rel < relend; ++rel)
13881 if (rel->r_offset >= hstart && rel->r_offset < hend)
13882 {
13883 /* If the entry is in use, do nothing. */
13884 if (h->u2.vtable->used
13885 && (rel->r_offset - hstart) < h->u2.vtable->size)
13886 {
13887 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13888 if (h->u2.vtable->used[entry])
13889 continue;
13890 }
13891 /* Otherwise, kill it. */
13892 rel->r_offset = rel->r_info = rel->r_addend = 0;
13893 }
13894
13895 return TRUE;
13896 }
13897
13898 /* Mark sections containing dynamically referenced symbols. When
13899 building shared libraries, we must assume that any visible symbol is
13900 referenced. */
13901
13902 bfd_boolean
13903 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13904 {
13905 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13906 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13907
13908 if ((h->root.type == bfd_link_hash_defined
13909 || h->root.type == bfd_link_hash_defweak)
13910 && ((h->ref_dynamic && !h->forced_local)
13911 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13912 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13913 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13914 && (!bfd_link_executable (info)
13915 || info->gc_keep_exported
13916 || info->export_dynamic
13917 || (h->dynamic
13918 && d != NULL
13919 && (*d->match) (&d->head, NULL, h->root.root.string)))
13920 && (h->versioned >= versioned
13921 || !bfd_hide_sym_by_version (info->version_info,
13922 h->root.root.string)))))
13923 h->root.u.def.section->flags |= SEC_KEEP;
13924
13925 return TRUE;
13926 }
13927
13928 /* Keep all sections containing symbols undefined on the command-line,
13929 and the section containing the entry symbol. */
13930
13931 void
13932 _bfd_elf_gc_keep (struct bfd_link_info *info)
13933 {
13934 struct bfd_sym_chain *sym;
13935
13936 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13937 {
13938 struct elf_link_hash_entry *h;
13939
13940 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13941 FALSE, FALSE, FALSE);
13942
13943 if (h != NULL
13944 && (h->root.type == bfd_link_hash_defined
13945 || h->root.type == bfd_link_hash_defweak)
13946 && !bfd_is_const_section (h->root.u.def.section))
13947 h->root.u.def.section->flags |= SEC_KEEP;
13948 }
13949 }
13950
13951 bfd_boolean
13952 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13953 struct bfd_link_info *info)
13954 {
13955 bfd *ibfd = info->input_bfds;
13956
13957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13958 {
13959 asection *sec;
13960 struct elf_reloc_cookie cookie;
13961
13962 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13963 continue;
13964 sec = ibfd->sections;
13965 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13966 continue;
13967
13968 if (!init_reloc_cookie (&cookie, info, ibfd))
13969 return FALSE;
13970
13971 for (sec = ibfd->sections; sec; sec = sec->next)
13972 {
13973 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13974 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13975 {
13976 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13977 fini_reloc_cookie_rels (&cookie, sec);
13978 }
13979 }
13980 }
13981 return TRUE;
13982 }
13983
13984 /* Do mark and sweep of unused sections. */
13985
13986 bfd_boolean
13987 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13988 {
13989 bfd_boolean ok = TRUE;
13990 bfd *sub;
13991 elf_gc_mark_hook_fn gc_mark_hook;
13992 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13993 struct elf_link_hash_table *htab;
13994
13995 if (!bed->can_gc_sections
13996 || !is_elf_hash_table (info->hash))
13997 {
13998 _bfd_error_handler(_("warning: gc-sections option ignored"));
13999 return TRUE;
14000 }
14001
14002 bed->gc_keep (info);
14003 htab = elf_hash_table (info);
14004
14005 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14006 at the .eh_frame section if we can mark the FDEs individually. */
14007 for (sub = info->input_bfds;
14008 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14009 sub = sub->link.next)
14010 {
14011 asection *sec;
14012 struct elf_reloc_cookie cookie;
14013
14014 sec = sub->sections;
14015 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14016 continue;
14017 sec = bfd_get_section_by_name (sub, ".eh_frame");
14018 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14019 {
14020 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14021 if (elf_section_data (sec)->sec_info
14022 && (sec->flags & SEC_LINKER_CREATED) == 0)
14023 elf_eh_frame_section (sub) = sec;
14024 fini_reloc_cookie_for_section (&cookie, sec);
14025 sec = bfd_get_next_section_by_name (NULL, sec);
14026 }
14027 }
14028
14029 /* Apply transitive closure to the vtable entry usage info. */
14030 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14031 if (!ok)
14032 return FALSE;
14033
14034 /* Kill the vtable relocations that were not used. */
14035 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
14036 if (!ok)
14037 return FALSE;
14038
14039 /* Mark dynamically referenced symbols. */
14040 if (htab->dynamic_sections_created || info->gc_keep_exported)
14041 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14042
14043 /* Grovel through relocs to find out who stays ... */
14044 gc_mark_hook = bed->gc_mark_hook;
14045 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14046 {
14047 asection *o;
14048
14049 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14050 || elf_object_id (sub) != elf_hash_table_id (htab)
14051 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14052 continue;
14053
14054 o = sub->sections;
14055 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14056 continue;
14057
14058 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14059 Also treat note sections as a root, if the section is not part
14060 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14061 well as FINI_ARRAY sections for ld -r. */
14062 for (o = sub->sections; o != NULL; o = o->next)
14063 if (!o->gc_mark
14064 && (o->flags & SEC_EXCLUDE) == 0
14065 && ((o->flags & SEC_KEEP) != 0
14066 || (bfd_link_relocatable (info)
14067 && ((elf_section_data (o)->this_hdr.sh_type
14068 == SHT_PREINIT_ARRAY)
14069 || (elf_section_data (o)->this_hdr.sh_type
14070 == SHT_INIT_ARRAY)
14071 || (elf_section_data (o)->this_hdr.sh_type
14072 == SHT_FINI_ARRAY)))
14073 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14074 && elf_next_in_group (o) == NULL
14075 && elf_linked_to_section (o) == NULL)
14076 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14077 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14078 {
14079 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14080 return FALSE;
14081 }
14082 }
14083
14084 /* Allow the backend to mark additional target specific sections. */
14085 bed->gc_mark_extra_sections (info, gc_mark_hook);
14086
14087 /* ... and mark SEC_EXCLUDE for those that go. */
14088 return elf_gc_sweep (abfd, info);
14089 }
14090 \f
14091 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14092
14093 bfd_boolean
14094 bfd_elf_gc_record_vtinherit (bfd *abfd,
14095 asection *sec,
14096 struct elf_link_hash_entry *h,
14097 bfd_vma offset)
14098 {
14099 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14100 struct elf_link_hash_entry **search, *child;
14101 size_t extsymcount;
14102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14103
14104 /* The sh_info field of the symtab header tells us where the
14105 external symbols start. We don't care about the local symbols at
14106 this point. */
14107 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14108 if (!elf_bad_symtab (abfd))
14109 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14110
14111 sym_hashes = elf_sym_hashes (abfd);
14112 sym_hashes_end = sym_hashes + extsymcount;
14113
14114 /* Hunt down the child symbol, which is in this section at the same
14115 offset as the relocation. */
14116 for (search = sym_hashes; search != sym_hashes_end; ++search)
14117 {
14118 if ((child = *search) != NULL
14119 && (child->root.type == bfd_link_hash_defined
14120 || child->root.type == bfd_link_hash_defweak)
14121 && child->root.u.def.section == sec
14122 && child->root.u.def.value == offset)
14123 goto win;
14124 }
14125
14126 /* xgettext:c-format */
14127 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14128 abfd, sec, (uint64_t) offset);
14129 bfd_set_error (bfd_error_invalid_operation);
14130 return FALSE;
14131
14132 win:
14133 if (!child->u2.vtable)
14134 {
14135 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14136 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14137 if (!child->u2.vtable)
14138 return FALSE;
14139 }
14140 if (!h)
14141 {
14142 /* This *should* only be the absolute section. It could potentially
14143 be that someone has defined a non-global vtable though, which
14144 would be bad. It isn't worth paging in the local symbols to be
14145 sure though; that case should simply be handled by the assembler. */
14146
14147 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14148 }
14149 else
14150 child->u2.vtable->parent = h;
14151
14152 return TRUE;
14153 }
14154
14155 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14156
14157 bfd_boolean
14158 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14159 struct elf_link_hash_entry *h,
14160 bfd_vma addend)
14161 {
14162 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14163 unsigned int log_file_align = bed->s->log_file_align;
14164
14165 if (!h)
14166 {
14167 /* xgettext:c-format */
14168 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14169 abfd, sec);
14170 bfd_set_error (bfd_error_bad_value);
14171 return FALSE;
14172 }
14173
14174 if (!h->u2.vtable)
14175 {
14176 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14177 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14178 if (!h->u2.vtable)
14179 return FALSE;
14180 }
14181
14182 if (addend >= h->u2.vtable->size)
14183 {
14184 size_t size, bytes, file_align;
14185 bfd_boolean *ptr = h->u2.vtable->used;
14186
14187 /* While the symbol is undefined, we have to be prepared to handle
14188 a zero size. */
14189 file_align = 1 << log_file_align;
14190 if (h->root.type == bfd_link_hash_undefined)
14191 size = addend + file_align;
14192 else
14193 {
14194 size = h->size;
14195 if (addend >= size)
14196 {
14197 /* Oops! We've got a reference past the defined end of
14198 the table. This is probably a bug -- shall we warn? */
14199 size = addend + file_align;
14200 }
14201 }
14202 size = (size + file_align - 1) & -file_align;
14203
14204 /* Allocate one extra entry for use as a "done" flag for the
14205 consolidation pass. */
14206 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14207
14208 if (ptr)
14209 {
14210 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14211
14212 if (ptr != NULL)
14213 {
14214 size_t oldbytes;
14215
14216 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14217 * sizeof (bfd_boolean));
14218 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14219 }
14220 }
14221 else
14222 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14223
14224 if (ptr == NULL)
14225 return FALSE;
14226
14227 /* And arrange for that done flag to be at index -1. */
14228 h->u2.vtable->used = ptr + 1;
14229 h->u2.vtable->size = size;
14230 }
14231
14232 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14233
14234 return TRUE;
14235 }
14236
14237 /* Map an ELF section header flag to its corresponding string. */
14238 typedef struct
14239 {
14240 char *flag_name;
14241 flagword flag_value;
14242 } elf_flags_to_name_table;
14243
14244 static const elf_flags_to_name_table elf_flags_to_names [] =
14245 {
14246 { "SHF_WRITE", SHF_WRITE },
14247 { "SHF_ALLOC", SHF_ALLOC },
14248 { "SHF_EXECINSTR", SHF_EXECINSTR },
14249 { "SHF_MERGE", SHF_MERGE },
14250 { "SHF_STRINGS", SHF_STRINGS },
14251 { "SHF_INFO_LINK", SHF_INFO_LINK},
14252 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14253 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14254 { "SHF_GROUP", SHF_GROUP },
14255 { "SHF_TLS", SHF_TLS },
14256 { "SHF_MASKOS", SHF_MASKOS },
14257 { "SHF_EXCLUDE", SHF_EXCLUDE },
14258 };
14259
14260 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14261 bfd_boolean
14262 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14263 struct flag_info *flaginfo,
14264 asection *section)
14265 {
14266 const bfd_vma sh_flags = elf_section_flags (section);
14267
14268 if (!flaginfo->flags_initialized)
14269 {
14270 bfd *obfd = info->output_bfd;
14271 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14272 struct flag_info_list *tf = flaginfo->flag_list;
14273 int with_hex = 0;
14274 int without_hex = 0;
14275
14276 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14277 {
14278 unsigned i;
14279 flagword (*lookup) (char *);
14280
14281 lookup = bed->elf_backend_lookup_section_flags_hook;
14282 if (lookup != NULL)
14283 {
14284 flagword hexval = (*lookup) ((char *) tf->name);
14285
14286 if (hexval != 0)
14287 {
14288 if (tf->with == with_flags)
14289 with_hex |= hexval;
14290 else if (tf->with == without_flags)
14291 without_hex |= hexval;
14292 tf->valid = TRUE;
14293 continue;
14294 }
14295 }
14296 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14297 {
14298 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14299 {
14300 if (tf->with == with_flags)
14301 with_hex |= elf_flags_to_names[i].flag_value;
14302 else if (tf->with == without_flags)
14303 without_hex |= elf_flags_to_names[i].flag_value;
14304 tf->valid = TRUE;
14305 break;
14306 }
14307 }
14308 if (!tf->valid)
14309 {
14310 info->callbacks->einfo
14311 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14312 return FALSE;
14313 }
14314 }
14315 flaginfo->flags_initialized = TRUE;
14316 flaginfo->only_with_flags |= with_hex;
14317 flaginfo->not_with_flags |= without_hex;
14318 }
14319
14320 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14321 return FALSE;
14322
14323 if ((flaginfo->not_with_flags & sh_flags) != 0)
14324 return FALSE;
14325
14326 return TRUE;
14327 }
14328
14329 struct alloc_got_off_arg {
14330 bfd_vma gotoff;
14331 struct bfd_link_info *info;
14332 };
14333
14334 /* We need a special top-level link routine to convert got reference counts
14335 to real got offsets. */
14336
14337 static bfd_boolean
14338 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14339 {
14340 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14341 bfd *obfd = gofarg->info->output_bfd;
14342 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14343
14344 if (h->got.refcount > 0)
14345 {
14346 h->got.offset = gofarg->gotoff;
14347 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14348 }
14349 else
14350 h->got.offset = (bfd_vma) -1;
14351
14352 return TRUE;
14353 }
14354
14355 /* And an accompanying bit to work out final got entry offsets once
14356 we're done. Should be called from final_link. */
14357
14358 bfd_boolean
14359 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14360 struct bfd_link_info *info)
14361 {
14362 bfd *i;
14363 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14364 bfd_vma gotoff;
14365 struct alloc_got_off_arg gofarg;
14366
14367 BFD_ASSERT (abfd == info->output_bfd);
14368
14369 if (! is_elf_hash_table (info->hash))
14370 return FALSE;
14371
14372 /* The GOT offset is relative to the .got section, but the GOT header is
14373 put into the .got.plt section, if the backend uses it. */
14374 if (bed->want_got_plt)
14375 gotoff = 0;
14376 else
14377 gotoff = bed->got_header_size;
14378
14379 /* Do the local .got entries first. */
14380 for (i = info->input_bfds; i; i = i->link.next)
14381 {
14382 bfd_signed_vma *local_got;
14383 size_t j, locsymcount;
14384 Elf_Internal_Shdr *symtab_hdr;
14385
14386 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14387 continue;
14388
14389 local_got = elf_local_got_refcounts (i);
14390 if (!local_got)
14391 continue;
14392
14393 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14394 if (elf_bad_symtab (i))
14395 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14396 else
14397 locsymcount = symtab_hdr->sh_info;
14398
14399 for (j = 0; j < locsymcount; ++j)
14400 {
14401 if (local_got[j] > 0)
14402 {
14403 local_got[j] = gotoff;
14404 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14405 }
14406 else
14407 local_got[j] = (bfd_vma) -1;
14408 }
14409 }
14410
14411 /* Then the global .got entries. .plt refcounts are handled by
14412 adjust_dynamic_symbol */
14413 gofarg.gotoff = gotoff;
14414 gofarg.info = info;
14415 elf_link_hash_traverse (elf_hash_table (info),
14416 elf_gc_allocate_got_offsets,
14417 &gofarg);
14418 return TRUE;
14419 }
14420
14421 /* Many folk need no more in the way of final link than this, once
14422 got entry reference counting is enabled. */
14423
14424 bfd_boolean
14425 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14426 {
14427 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14428 return FALSE;
14429
14430 /* Invoke the regular ELF backend linker to do all the work. */
14431 return bfd_elf_final_link (abfd, info);
14432 }
14433
14434 bfd_boolean
14435 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14436 {
14437 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14438
14439 if (rcookie->bad_symtab)
14440 rcookie->rel = rcookie->rels;
14441
14442 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14443 {
14444 unsigned long r_symndx;
14445
14446 if (! rcookie->bad_symtab)
14447 if (rcookie->rel->r_offset > offset)
14448 return FALSE;
14449 if (rcookie->rel->r_offset != offset)
14450 continue;
14451
14452 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14453 if (r_symndx == STN_UNDEF)
14454 return TRUE;
14455
14456 if (r_symndx >= rcookie->locsymcount
14457 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14458 {
14459 struct elf_link_hash_entry *h;
14460
14461 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14462
14463 while (h->root.type == bfd_link_hash_indirect
14464 || h->root.type == bfd_link_hash_warning)
14465 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14466
14467 if ((h->root.type == bfd_link_hash_defined
14468 || h->root.type == bfd_link_hash_defweak)
14469 && (h->root.u.def.section->owner != rcookie->abfd
14470 || h->root.u.def.section->kept_section != NULL
14471 || discarded_section (h->root.u.def.section)))
14472 return TRUE;
14473 }
14474 else
14475 {
14476 /* It's not a relocation against a global symbol,
14477 but it could be a relocation against a local
14478 symbol for a discarded section. */
14479 asection *isec;
14480 Elf_Internal_Sym *isym;
14481
14482 /* Need to: get the symbol; get the section. */
14483 isym = &rcookie->locsyms[r_symndx];
14484 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14485 if (isec != NULL
14486 && (isec->kept_section != NULL
14487 || discarded_section (isec)))
14488 return TRUE;
14489 }
14490 return FALSE;
14491 }
14492 return FALSE;
14493 }
14494
14495 /* Discard unneeded references to discarded sections.
14496 Returns -1 on error, 1 if any section's size was changed, 0 if
14497 nothing changed. This function assumes that the relocations are in
14498 sorted order, which is true for all known assemblers. */
14499
14500 int
14501 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14502 {
14503 struct elf_reloc_cookie cookie;
14504 asection *o;
14505 bfd *abfd;
14506 int changed = 0;
14507
14508 if (info->traditional_format
14509 || !is_elf_hash_table (info->hash))
14510 return 0;
14511
14512 o = bfd_get_section_by_name (output_bfd, ".stab");
14513 if (o != NULL)
14514 {
14515 asection *i;
14516
14517 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14518 {
14519 if (i->size == 0
14520 || i->reloc_count == 0
14521 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14522 continue;
14523
14524 abfd = i->owner;
14525 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14526 continue;
14527
14528 if (!init_reloc_cookie_for_section (&cookie, info, i))
14529 return -1;
14530
14531 if (_bfd_discard_section_stabs (abfd, i,
14532 elf_section_data (i)->sec_info,
14533 bfd_elf_reloc_symbol_deleted_p,
14534 &cookie))
14535 changed = 1;
14536
14537 fini_reloc_cookie_for_section (&cookie, i);
14538 }
14539 }
14540
14541 o = NULL;
14542 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14543 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14544 if (o != NULL)
14545 {
14546 asection *i;
14547 int eh_changed = 0;
14548 unsigned int eh_alignment; /* Octets. */
14549
14550 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14551 {
14552 if (i->size == 0)
14553 continue;
14554
14555 abfd = i->owner;
14556 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14557 continue;
14558
14559 if (!init_reloc_cookie_for_section (&cookie, info, i))
14560 return -1;
14561
14562 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14563 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14564 bfd_elf_reloc_symbol_deleted_p,
14565 &cookie))
14566 {
14567 eh_changed = 1;
14568 if (i->size != i->rawsize)
14569 changed = 1;
14570 }
14571
14572 fini_reloc_cookie_for_section (&cookie, i);
14573 }
14574
14575 eh_alignment = ((1 << o->alignment_power)
14576 * bfd_octets_per_byte (output_bfd, o));
14577 /* Skip over zero terminator, and prevent empty sections from
14578 adding alignment padding at the end. */
14579 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14580 if (i->size == 0)
14581 i->flags |= SEC_EXCLUDE;
14582 else if (i->size > 4)
14583 break;
14584 /* The last non-empty eh_frame section doesn't need padding. */
14585 if (i != NULL)
14586 i = i->map_tail.s;
14587 /* Any prior sections must pad the last FDE out to the output
14588 section alignment. Otherwise we might have zero padding
14589 between sections, which would be seen as a terminator. */
14590 for (; i != NULL; i = i->map_tail.s)
14591 if (i->size == 4)
14592 /* All but the last zero terminator should have been removed. */
14593 BFD_FAIL ();
14594 else
14595 {
14596 bfd_size_type size
14597 = (i->size + eh_alignment - 1) & -eh_alignment;
14598 if (i->size != size)
14599 {
14600 i->size = size;
14601 changed = 1;
14602 eh_changed = 1;
14603 }
14604 }
14605 if (eh_changed)
14606 elf_link_hash_traverse (elf_hash_table (info),
14607 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14608 }
14609
14610 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14611 {
14612 const struct elf_backend_data *bed;
14613 asection *s;
14614
14615 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14616 continue;
14617 s = abfd->sections;
14618 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14619 continue;
14620
14621 bed = get_elf_backend_data (abfd);
14622
14623 if (bed->elf_backend_discard_info != NULL)
14624 {
14625 if (!init_reloc_cookie (&cookie, info, abfd))
14626 return -1;
14627
14628 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14629 changed = 1;
14630
14631 fini_reloc_cookie (&cookie, abfd);
14632 }
14633 }
14634
14635 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14636 _bfd_elf_end_eh_frame_parsing (info);
14637
14638 if (info->eh_frame_hdr_type
14639 && !bfd_link_relocatable (info)
14640 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14641 changed = 1;
14642
14643 return changed;
14644 }
14645
14646 bfd_boolean
14647 _bfd_elf_section_already_linked (bfd *abfd,
14648 asection *sec,
14649 struct bfd_link_info *info)
14650 {
14651 flagword flags;
14652 const char *name, *key;
14653 struct bfd_section_already_linked *l;
14654 struct bfd_section_already_linked_hash_entry *already_linked_list;
14655
14656 if (sec->output_section == bfd_abs_section_ptr)
14657 return FALSE;
14658
14659 flags = sec->flags;
14660
14661 /* Return if it isn't a linkonce section. A comdat group section
14662 also has SEC_LINK_ONCE set. */
14663 if ((flags & SEC_LINK_ONCE) == 0)
14664 return FALSE;
14665
14666 /* Don't put group member sections on our list of already linked
14667 sections. They are handled as a group via their group section. */
14668 if (elf_sec_group (sec) != NULL)
14669 return FALSE;
14670
14671 /* For a SHT_GROUP section, use the group signature as the key. */
14672 name = sec->name;
14673 if ((flags & SEC_GROUP) != 0
14674 && elf_next_in_group (sec) != NULL
14675 && elf_group_name (elf_next_in_group (sec)) != NULL)
14676 key = elf_group_name (elf_next_in_group (sec));
14677 else
14678 {
14679 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14680 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14681 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14682 key++;
14683 else
14684 /* Must be a user linkonce section that doesn't follow gcc's
14685 naming convention. In this case we won't be matching
14686 single member groups. */
14687 key = name;
14688 }
14689
14690 already_linked_list = bfd_section_already_linked_table_lookup (key);
14691
14692 for (l = already_linked_list->entry; l != NULL; l = l->next)
14693 {
14694 /* We may have 2 different types of sections on the list: group
14695 sections with a signature of <key> (<key> is some string),
14696 and linkonce sections named .gnu.linkonce.<type>.<key>.
14697 Match like sections. LTO plugin sections are an exception.
14698 They are always named .gnu.linkonce.t.<key> and match either
14699 type of section. */
14700 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14701 && ((flags & SEC_GROUP) != 0
14702 || strcmp (name, l->sec->name) == 0))
14703 || (l->sec->owner->flags & BFD_PLUGIN) != 0
14704 || (sec->owner->flags & BFD_PLUGIN) != 0)
14705 {
14706 /* The section has already been linked. See if we should
14707 issue a warning. */
14708 if (!_bfd_handle_already_linked (sec, l, info))
14709 return FALSE;
14710
14711 if (flags & SEC_GROUP)
14712 {
14713 asection *first = elf_next_in_group (sec);
14714 asection *s = first;
14715
14716 while (s != NULL)
14717 {
14718 s->output_section = bfd_abs_section_ptr;
14719 /* Record which group discards it. */
14720 s->kept_section = l->sec;
14721 s = elf_next_in_group (s);
14722 /* These lists are circular. */
14723 if (s == first)
14724 break;
14725 }
14726 }
14727
14728 return TRUE;
14729 }
14730 }
14731
14732 /* A single member comdat group section may be discarded by a
14733 linkonce section and vice versa. */
14734 if ((flags & SEC_GROUP) != 0)
14735 {
14736 asection *first = elf_next_in_group (sec);
14737
14738 if (first != NULL && elf_next_in_group (first) == first)
14739 /* Check this single member group against linkonce sections. */
14740 for (l = already_linked_list->entry; l != NULL; l = l->next)
14741 if ((l->sec->flags & SEC_GROUP) == 0
14742 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14743 {
14744 first->output_section = bfd_abs_section_ptr;
14745 first->kept_section = l->sec;
14746 sec->output_section = bfd_abs_section_ptr;
14747 break;
14748 }
14749 }
14750 else
14751 /* Check this linkonce section against single member groups. */
14752 for (l = already_linked_list->entry; l != NULL; l = l->next)
14753 if (l->sec->flags & SEC_GROUP)
14754 {
14755 asection *first = elf_next_in_group (l->sec);
14756
14757 if (first != NULL
14758 && elf_next_in_group (first) == first
14759 && bfd_elf_match_symbols_in_sections (first, sec, info))
14760 {
14761 sec->output_section = bfd_abs_section_ptr;
14762 sec->kept_section = first;
14763 break;
14764 }
14765 }
14766
14767 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14768 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14769 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14770 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14771 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14772 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14773 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14774 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14775 The reverse order cannot happen as there is never a bfd with only the
14776 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14777 matter as here were are looking only for cross-bfd sections. */
14778
14779 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14780 for (l = already_linked_list->entry; l != NULL; l = l->next)
14781 if ((l->sec->flags & SEC_GROUP) == 0
14782 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14783 {
14784 if (abfd != l->sec->owner)
14785 sec->output_section = bfd_abs_section_ptr;
14786 break;
14787 }
14788
14789 /* This is the first section with this name. Record it. */
14790 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14791 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14792 return sec->output_section == bfd_abs_section_ptr;
14793 }
14794
14795 bfd_boolean
14796 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14797 {
14798 return sym->st_shndx == SHN_COMMON;
14799 }
14800
14801 unsigned int
14802 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14803 {
14804 return SHN_COMMON;
14805 }
14806
14807 asection *
14808 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14809 {
14810 return bfd_com_section_ptr;
14811 }
14812
14813 bfd_vma
14814 _bfd_elf_default_got_elt_size (bfd *abfd,
14815 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14816 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14817 bfd *ibfd ATTRIBUTE_UNUSED,
14818 unsigned long symndx ATTRIBUTE_UNUSED)
14819 {
14820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14821 return bed->s->arch_size / 8;
14822 }
14823
14824 /* Routines to support the creation of dynamic relocs. */
14825
14826 /* Returns the name of the dynamic reloc section associated with SEC. */
14827
14828 static const char *
14829 get_dynamic_reloc_section_name (bfd * abfd,
14830 asection * sec,
14831 bfd_boolean is_rela)
14832 {
14833 char *name;
14834 const char *old_name = bfd_section_name (sec);
14835 const char *prefix = is_rela ? ".rela" : ".rel";
14836
14837 if (old_name == NULL)
14838 return NULL;
14839
14840 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14841 sprintf (name, "%s%s", prefix, old_name);
14842
14843 return name;
14844 }
14845
14846 /* Returns the dynamic reloc section associated with SEC.
14847 If necessary compute the name of the dynamic reloc section based
14848 on SEC's name (looked up in ABFD's string table) and the setting
14849 of IS_RELA. */
14850
14851 asection *
14852 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14853 asection * sec,
14854 bfd_boolean is_rela)
14855 {
14856 asection * reloc_sec = elf_section_data (sec)->sreloc;
14857
14858 if (reloc_sec == NULL)
14859 {
14860 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14861
14862 if (name != NULL)
14863 {
14864 reloc_sec = bfd_get_linker_section (abfd, name);
14865
14866 if (reloc_sec != NULL)
14867 elf_section_data (sec)->sreloc = reloc_sec;
14868 }
14869 }
14870
14871 return reloc_sec;
14872 }
14873
14874 /* Returns the dynamic reloc section associated with SEC. If the
14875 section does not exist it is created and attached to the DYNOBJ
14876 bfd and stored in the SRELOC field of SEC's elf_section_data
14877 structure.
14878
14879 ALIGNMENT is the alignment for the newly created section and
14880 IS_RELA defines whether the name should be .rela.<SEC's name>
14881 or .rel.<SEC's name>. The section name is looked up in the
14882 string table associated with ABFD. */
14883
14884 asection *
14885 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14886 bfd *dynobj,
14887 unsigned int alignment,
14888 bfd *abfd,
14889 bfd_boolean is_rela)
14890 {
14891 asection * reloc_sec = elf_section_data (sec)->sreloc;
14892
14893 if (reloc_sec == NULL)
14894 {
14895 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14896
14897 if (name == NULL)
14898 return NULL;
14899
14900 reloc_sec = bfd_get_linker_section (dynobj, name);
14901
14902 if (reloc_sec == NULL)
14903 {
14904 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14905 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14906 if ((sec->flags & SEC_ALLOC) != 0)
14907 flags |= SEC_ALLOC | SEC_LOAD;
14908
14909 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14910 if (reloc_sec != NULL)
14911 {
14912 /* _bfd_elf_get_sec_type_attr chooses a section type by
14913 name. Override as it may be wrong, eg. for a user
14914 section named "auto" we'll get ".relauto" which is
14915 seen to be a .rela section. */
14916 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14917 if (!bfd_set_section_alignment (reloc_sec, alignment))
14918 reloc_sec = NULL;
14919 }
14920 }
14921
14922 elf_section_data (sec)->sreloc = reloc_sec;
14923 }
14924
14925 return reloc_sec;
14926 }
14927
14928 /* Copy the ELF symbol type and other attributes for a linker script
14929 assignment from HSRC to HDEST. Generally this should be treated as
14930 if we found a strong non-dynamic definition for HDEST (except that
14931 ld ignores multiple definition errors). */
14932 void
14933 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14934 struct bfd_link_hash_entry *hdest,
14935 struct bfd_link_hash_entry *hsrc)
14936 {
14937 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14938 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14939 Elf_Internal_Sym isym;
14940
14941 ehdest->type = ehsrc->type;
14942 ehdest->target_internal = ehsrc->target_internal;
14943
14944 isym.st_other = ehsrc->other;
14945 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, TRUE, FALSE);
14946 }
14947
14948 /* Append a RELA relocation REL to section S in BFD. */
14949
14950 void
14951 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14952 {
14953 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14954 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14955 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14956 bed->s->swap_reloca_out (abfd, rel, loc);
14957 }
14958
14959 /* Append a REL relocation REL to section S in BFD. */
14960
14961 void
14962 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14963 {
14964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14965 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14966 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14967 bed->s->swap_reloc_out (abfd, rel, loc);
14968 }
14969
14970 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14971
14972 struct bfd_link_hash_entry *
14973 bfd_elf_define_start_stop (struct bfd_link_info *info,
14974 const char *symbol, asection *sec)
14975 {
14976 struct elf_link_hash_entry *h;
14977
14978 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14979 FALSE, FALSE, TRUE);
14980 /* NB: Common symbols will be turned into definition later. */
14981 if (h != NULL
14982 && (h->root.type == bfd_link_hash_undefined
14983 || h->root.type == bfd_link_hash_undefweak
14984 || ((h->ref_regular || h->def_dynamic)
14985 && !h->def_regular
14986 && h->root.type != bfd_link_hash_common)))
14987 {
14988 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14989 h->verinfo.verdef = NULL;
14990 h->root.type = bfd_link_hash_defined;
14991 h->root.u.def.section = sec;
14992 h->root.u.def.value = 0;
14993 h->def_regular = 1;
14994 h->def_dynamic = 0;
14995 h->start_stop = 1;
14996 h->u2.start_stop_section = sec;
14997 if (symbol[0] == '.')
14998 {
14999 /* .startof. and .sizeof. symbols are local. */
15000 const struct elf_backend_data *bed;
15001 bed = get_elf_backend_data (info->output_bfd);
15002 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
15003 }
15004 else
15005 {
15006 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15007 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15008 | info->start_stop_visibility);
15009 if (was_dynamic)
15010 bfd_elf_link_record_dynamic_symbol (info, h);
15011 }
15012 return &h->root;
15013 }
15014 return NULL;
15015 }
15016
15017 /* Find dynamic relocs for H that apply to read-only sections. */
15018
15019 asection *
15020 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15021 {
15022 struct elf_dyn_relocs *p;
15023
15024 for (p = h->dyn_relocs; p != NULL; p = p->next)
15025 {
15026 asection *s = p->sec->output_section;
15027
15028 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15029 return p->sec;
15030 }
15031 return NULL;
15032 }
15033
15034 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15035 read-only sections. */
15036
15037 bfd_boolean
15038 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15039 {
15040 asection *sec;
15041
15042 if (h->root.type == bfd_link_hash_indirect)
15043 return TRUE;
15044
15045 sec = _bfd_elf_readonly_dynrelocs (h);
15046 if (sec != NULL)
15047 {
15048 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15049
15050 info->flags |= DF_TEXTREL;
15051 /* xgettext:c-format */
15052 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15053 "in read-only section `%pA'\n"),
15054 sec->owner, h->root.root.string, sec);
15055
15056 if (bfd_link_textrel_check (info))
15057 /* xgettext:c-format */
15058 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15059 "in read-only section `%pA'\n"),
15060 sec->owner, h->root.root.string, sec);
15061
15062 /* Not an error, just cut short the traversal. */
15063 return FALSE;
15064 }
15065 return TRUE;
15066 }
15067
15068 /* Add dynamic tags. */
15069
15070 bfd_boolean
15071 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15072 bfd_boolean need_dynamic_reloc)
15073 {
15074 struct elf_link_hash_table *htab = elf_hash_table (info);
15075
15076 if (htab->dynamic_sections_created)
15077 {
15078 /* Add some entries to the .dynamic section. We fill in the
15079 values later, in finish_dynamic_sections, but we must add
15080 the entries now so that we get the correct size for the
15081 .dynamic section. The DT_DEBUG entry is filled in by the
15082 dynamic linker and used by the debugger. */
15083 #define add_dynamic_entry(TAG, VAL) \
15084 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15085
15086 const struct elf_backend_data *bed
15087 = get_elf_backend_data (output_bfd);
15088
15089 if (bfd_link_executable (info))
15090 {
15091 if (!add_dynamic_entry (DT_DEBUG, 0))
15092 return FALSE;
15093 }
15094
15095 if (htab->dt_pltgot_required || htab->splt->size != 0)
15096 {
15097 /* DT_PLTGOT is used by prelink even if there is no PLT
15098 relocation. */
15099 if (!add_dynamic_entry (DT_PLTGOT, 0))
15100 return FALSE;
15101 }
15102
15103 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15104 {
15105 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15106 || !add_dynamic_entry (DT_PLTREL,
15107 (bed->rela_plts_and_copies_p
15108 ? DT_RELA : DT_REL))
15109 || !add_dynamic_entry (DT_JMPREL, 0))
15110 return FALSE;
15111 }
15112
15113 if (htab->tlsdesc_plt
15114 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15115 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15116 return FALSE;
15117
15118 if (need_dynamic_reloc)
15119 {
15120 if (bed->rela_plts_and_copies_p)
15121 {
15122 if (!add_dynamic_entry (DT_RELA, 0)
15123 || !add_dynamic_entry (DT_RELASZ, 0)
15124 || !add_dynamic_entry (DT_RELAENT,
15125 bed->s->sizeof_rela))
15126 return FALSE;
15127 }
15128 else
15129 {
15130 if (!add_dynamic_entry (DT_REL, 0)
15131 || !add_dynamic_entry (DT_RELSZ, 0)
15132 || !add_dynamic_entry (DT_RELENT,
15133 bed->s->sizeof_rel))
15134 return FALSE;
15135 }
15136
15137 /* If any dynamic relocs apply to a read-only section,
15138 then we need a DT_TEXTREL entry. */
15139 if ((info->flags & DF_TEXTREL) == 0)
15140 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15141 info);
15142
15143 if ((info->flags & DF_TEXTREL) != 0)
15144 {
15145 if (htab->ifunc_resolvers)
15146 info->callbacks->einfo
15147 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15148 "may result in a segfault at runtime; recompile with %s\n"),
15149 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15150
15151 if (!add_dynamic_entry (DT_TEXTREL, 0))
15152 return FALSE;
15153 }
15154 }
15155 }
15156 #undef add_dynamic_entry
15157
15158 return TRUE;
15159 }
This page took 0.543466 seconds and 4 git commands to generate.