Set bfd_error in _bfd_elf_adjust_dynamic_copy
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 /* Define a symbol in a dynamic linkage section. */
58
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
62 asection *sec,
63 const char *name)
64 {
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
68
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
70 if (h != NULL)
71 {
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
77 }
78
79 bh = &h->root;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
81 sec, 0, NULL, FALSE,
82 get_elf_backend_data (abfd)->collect,
83 &bh))
84 return NULL;
85 h = (struct elf_link_hash_entry *) bh;
86 h->def_regular = 1;
87 h->non_elf = 0;
88 h->type = STT_OBJECT;
89 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
108 if (s != NULL)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 asection *s;
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
260 if (h == NULL)
261 return FALSE;
262
263 if (info->emit_hash)
264 {
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
269 return FALSE;
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
271 }
272
273 if (info->emit_gnu_hash)
274 {
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
277 if (s == NULL
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
279 return FALSE;
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
285 else
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
287 }
288
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
294 return FALSE;
295
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
297
298 return TRUE;
299 }
300
301 /* Create dynamic sections when linking against a dynamic object. */
302
303 bfd_boolean
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
305 {
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
308 asection *s;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
311
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
315
316 pltflags = flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
322 else
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
326
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
328 if (s == NULL
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 return FALSE;
331 htab->splt = s;
332
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
334 .plt section. */
335 if (bed->want_plt_sym)
336 {
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
340 if (h == NULL)
341 return FALSE;
342 }
343
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
348 if (s == NULL
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 return FALSE;
351 htab->srelplt = s;
352
353 if (! _bfd_elf_create_got_section (abfd, info))
354 return FALSE;
355
356 if (bed->want_dynbss)
357 {
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
366 if (s == NULL)
367 return FALSE;
368
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
379 copy relocs. */
380 if (! info->shared)
381 {
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
386 if (s == NULL
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
388 return FALSE;
389 }
390 }
391
392 return TRUE;
393 }
394 \f
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
401 one. */
402
403 bfd_boolean
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
406 {
407 if (h->dynindx == -1)
408 {
409 struct elf_strtab_hash *dynstr;
410 char *p;
411 const char *name;
412 bfd_size_type indx;
413
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
419 {
420 case STV_INTERNAL:
421 case STV_HIDDEN:
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
424 {
425 h->forced_local = 1;
426 if (!elf_hash_table (info)->is_relocatable_executable)
427 return TRUE;
428 }
429
430 default:
431 break;
432 }
433
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
436
437 dynstr = elf_hash_table (info)->dynstr;
438 if (dynstr == NULL)
439 {
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 if (dynstr == NULL)
443 return FALSE;
444 }
445
446 /* We don't put any version information in the dynamic string
447 table. */
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
450 if (p != NULL)
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
456 *p = 0;
457
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459
460 if (p != NULL)
461 *p = ELF_VER_CHR;
462
463 if (indx == (bfd_size_type) -1)
464 return FALSE;
465 h->dynstr_index = indx;
466 }
467
468 return TRUE;
469 }
470 \f
471 /* Mark a symbol dynamic. */
472
473 static void
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
477 {
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
479
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
482 return;
483
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
486 || (sym != NULL
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
488 || (d != NULL
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 h->dynamic = 1;
492 }
493
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
496
497 bfd_boolean
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
500 const char *name,
501 bfd_boolean provide,
502 bfd_boolean hidden)
503 {
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
507
508 if (!is_elf_hash_table (info->hash))
509 return TRUE;
510
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 if (h == NULL)
514 return provide;
515
516 switch (h->root.type)
517 {
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
521 break;
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
530 break;
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
533 h->non_elf = 0;
534 break;
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
539 hv = h;
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
544 later. */
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
549 break;
550 case bfd_link_hash_warning:
551 abort ();
552 break;
553 }
554
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
559 if (provide
560 && h->def_dynamic
561 && !h->def_regular)
562 h->root.type = bfd_link_hash_undefined;
563
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
568 if (!provide
569 && h->def_dynamic
570 && !h->def_regular)
571 h->verinfo.verdef = NULL;
572
573 h->def_regular = 1;
574
575 if (hidden)
576 {
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
581 }
582
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 and executables. */
585 if (!info->relocatable
586 && h->dynindx != -1
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
589 h->forced_local = 1;
590
591 if ((h->def_dynamic
592 || h->ref_dynamic
593 || info->shared
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
595 && h->dynindx == -1)
596 {
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
598 return FALSE;
599
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
605 {
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
607 return FALSE;
608 }
609 }
610
611 return TRUE;
612 }
613
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
617
618 int
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 bfd *input_bfd,
621 long input_indx)
622 {
623 bfd_size_type amt;
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
628 char *name;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
631
632 if (! is_elf_hash_table (info->hash))
633 return 0;
634
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
638 return 1;
639
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
642 if (entry == NULL)
643 return 0;
644
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
648 {
649 bfd_release (input_bfd, entry);
650 return 0;
651 }
652
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
655 {
656 asection *s;
657
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
660 {
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
664 return 2;
665 }
666 }
667
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
671
672 dynstr = elf_hash_table (info)->dynstr;
673 if (dynstr == NULL)
674 {
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 if (dynstr == NULL)
678 return 0;
679 }
680
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
683 return 0;
684 entry->isym.st_name = dynstr_index;
685
686 eht = elf_hash_table (info);
687
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
692 eht->dynsymcount++;
693
694 /* Whatever binding the symbol had before, it's now local. */
695 entry->isym.st_info
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697
698 /* The dynindx will be set at the end of size_dynamic_sections. */
699
700 return 1;
701 }
702
703 /* Return the dynindex of a local dynamic symbol. */
704
705 long
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
707 bfd *input_bfd,
708 long input_indx)
709 {
710 struct elf_link_local_dynamic_entry *e;
711
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 return e->dynindx;
715 return -1;
716 }
717
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
721
722 static bfd_boolean
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
724 void *data)
725 {
726 size_t *count = (size_t *) data;
727
728 if (h->forced_local)
729 return TRUE;
730
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
733
734 return TRUE;
735 }
736
737
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
740
741 static bfd_boolean
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
743 void *data)
744 {
745 size_t *count = (size_t *) data;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764
765 switch (elf_section_data (p)->this_hdr.sh_type)
766 {
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
775
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
778
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
782 {
783 asection *ip;
784
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
787 && ip->output_section == p)
788 return TRUE;
789 }
790 return FALSE;
791
792 /* There shouldn't be section relative relocations
793 against any other section. */
794 default:
795 return TRUE;
796 }
797 }
798
799 /* Assign dynsym indices. In a shared library we generate a section
800 symbol for each output section, which come first. Next come symbols
801 which have been forced to local binding. Then all of the back-end
802 allocated local dynamic syms, followed by the rest of the global
803 symbols. */
804
805 static unsigned long
806 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
807 struct bfd_link_info *info,
808 unsigned long *section_sym_count)
809 {
810 unsigned long dynsymcount = 0;
811
812 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 {
814 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 asection *p;
816 for (p = output_bfd->sections; p ; p = p->next)
817 if ((p->flags & SEC_EXCLUDE) == 0
818 && (p->flags & SEC_ALLOC) != 0
819 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
820 elf_section_data (p)->dynindx = ++dynsymcount;
821 else
822 elf_section_data (p)->dynindx = 0;
823 }
824 *section_sym_count = dynsymcount;
825
826 elf_link_hash_traverse (elf_hash_table (info),
827 elf_link_renumber_local_hash_table_dynsyms,
828 &dynsymcount);
829
830 if (elf_hash_table (info)->dynlocal)
831 {
832 struct elf_link_local_dynamic_entry *p;
833 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
834 p->dynindx = ++dynsymcount;
835 }
836
837 elf_link_hash_traverse (elf_hash_table (info),
838 elf_link_renumber_hash_table_dynsyms,
839 &dynsymcount);
840
841 /* There is an unused NULL entry at the head of the table which
842 we must account for in our count. Unless there weren't any
843 symbols, which means we'll have no table at all. */
844 if (dynsymcount != 0)
845 ++dynsymcount;
846
847 elf_hash_table (info)->dynsymcount = dynsymcount;
848 return dynsymcount;
849 }
850
851 /* Merge st_other field. */
852
853 static void
854 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
855 const Elf_Internal_Sym *isym,
856 bfd_boolean definition, bfd_boolean dynamic)
857 {
858 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859
860 /* If st_other has a processor-specific meaning, specific
861 code might be needed here. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 if (!dynamic)
867 {
868 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
869 unsigned hvis = ELF_ST_VISIBILITY (h->other);
870
871 /* Keep the most constraining visibility. Leave the remainder
872 of the st_other field to elf_backend_merge_symbol_attribute. */
873 if (symvis - 1 < hvis - 1)
874 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
875 }
876 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
877 h->protected_def = 1;
878 }
879
880 /* This function is called when we want to merge a new symbol with an
881 existing symbol. It handles the various cases which arise when we
882 find a definition in a dynamic object, or when there is already a
883 definition in a dynamic object. The new symbol is described by
884 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
885 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
886 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
887 of an old common symbol. We set OVERRIDE if the old symbol is
888 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
889 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
890 to change. By OK to change, we mean that we shouldn't warn if the
891 type or size does change. */
892
893 static bfd_boolean
894 _bfd_elf_merge_symbol (bfd *abfd,
895 struct bfd_link_info *info,
896 const char *name,
897 Elf_Internal_Sym *sym,
898 asection **psec,
899 bfd_vma *pvalue,
900 struct elf_link_hash_entry **sym_hash,
901 bfd **poldbfd,
902 bfd_boolean *pold_weak,
903 unsigned int *pold_alignment,
904 bfd_boolean *skip,
905 bfd_boolean *override,
906 bfd_boolean *type_change_ok,
907 bfd_boolean *size_change_ok)
908 {
909 asection *sec, *oldsec;
910 struct elf_link_hash_entry *h;
911 struct elf_link_hash_entry *hi;
912 struct elf_link_hash_entry *flip;
913 int bind;
914 bfd *oldbfd;
915 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
916 bfd_boolean newweak, oldweak, newfunc, oldfunc;
917 const struct elf_backend_data *bed;
918
919 *skip = FALSE;
920 *override = FALSE;
921
922 sec = *psec;
923 bind = ELF_ST_BIND (sym->st_info);
924
925 if (! bfd_is_und_section (sec))
926 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
927 else
928 h = ((struct elf_link_hash_entry *)
929 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
930 if (h == NULL)
931 return FALSE;
932 *sym_hash = h;
933
934 bed = get_elf_backend_data (abfd);
935
936 /* For merging, we only care about real symbols. But we need to make
937 sure that indirect symbol dynamic flags are updated. */
938 hi = h;
939 while (h->root.type == bfd_link_hash_indirect
940 || h->root.type == bfd_link_hash_warning)
941 h = (struct elf_link_hash_entry *) h->root.u.i.link;
942
943 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
944 existing symbol. */
945
946 oldbfd = NULL;
947 oldsec = NULL;
948 switch (h->root.type)
949 {
950 default:
951 break;
952
953 case bfd_link_hash_undefined:
954 case bfd_link_hash_undefweak:
955 oldbfd = h->root.u.undef.abfd;
956 break;
957
958 case bfd_link_hash_defined:
959 case bfd_link_hash_defweak:
960 oldbfd = h->root.u.def.section->owner;
961 oldsec = h->root.u.def.section;
962 break;
963
964 case bfd_link_hash_common:
965 oldbfd = h->root.u.c.p->section->owner;
966 oldsec = h->root.u.c.p->section;
967 if (pold_alignment)
968 *pold_alignment = h->root.u.c.p->alignment_power;
969 break;
970 }
971 if (poldbfd && *poldbfd == NULL)
972 *poldbfd = oldbfd;
973
974 /* Differentiate strong and weak symbols. */
975 newweak = bind == STB_WEAK;
976 oldweak = (h->root.type == bfd_link_hash_defweak
977 || h->root.type == bfd_link_hash_undefweak);
978 if (pold_weak)
979 *pold_weak = oldweak;
980
981 /* This code is for coping with dynamic objects, and is only useful
982 if we are doing an ELF link. */
983 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
984 return TRUE;
985
986 /* We have to check it for every instance since the first few may be
987 references and not all compilers emit symbol type for undefined
988 symbols. */
989 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
990
991 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
992 respectively, is from a dynamic object. */
993
994 newdyn = (abfd->flags & DYNAMIC) != 0;
995
996 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
997 syms and defined syms in dynamic libraries respectively.
998 ref_dynamic on the other hand can be set for a symbol defined in
999 a dynamic library, and def_dynamic may not be set; When the
1000 definition in a dynamic lib is overridden by a definition in the
1001 executable use of the symbol in the dynamic lib becomes a
1002 reference to the executable symbol. */
1003 if (newdyn)
1004 {
1005 if (bfd_is_und_section (sec))
1006 {
1007 if (bind != STB_WEAK)
1008 {
1009 h->ref_dynamic_nonweak = 1;
1010 hi->ref_dynamic_nonweak = 1;
1011 }
1012 }
1013 else
1014 {
1015 h->dynamic_def = 1;
1016 hi->dynamic_def = 1;
1017 }
1018 }
1019
1020 /* If we just created the symbol, mark it as being an ELF symbol.
1021 Other than that, there is nothing to do--there is no merge issue
1022 with a newly defined symbol--so we just return. */
1023
1024 if (h->root.type == bfd_link_hash_new)
1025 {
1026 h->non_elf = 0;
1027 return TRUE;
1028 }
1029
1030 /* In cases involving weak versioned symbols, we may wind up trying
1031 to merge a symbol with itself. Catch that here, to avoid the
1032 confusion that results if we try to override a symbol with
1033 itself. The additional tests catch cases like
1034 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1035 dynamic object, which we do want to handle here. */
1036 if (abfd == oldbfd
1037 && (newweak || oldweak)
1038 && ((abfd->flags & DYNAMIC) == 0
1039 || !h->def_regular))
1040 return TRUE;
1041
1042 olddyn = FALSE;
1043 if (oldbfd != NULL)
1044 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1045 else if (oldsec != NULL)
1046 {
1047 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1048 indices used by MIPS ELF. */
1049 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1050 }
1051
1052 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1053 respectively, appear to be a definition rather than reference. */
1054
1055 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1056
1057 olddef = (h->root.type != bfd_link_hash_undefined
1058 && h->root.type != bfd_link_hash_undefweak
1059 && h->root.type != bfd_link_hash_common);
1060
1061 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1062 respectively, appear to be a function. */
1063
1064 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1065 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1066
1067 oldfunc = (h->type != STT_NOTYPE
1068 && bed->is_function_type (h->type));
1069
1070 /* When we try to create a default indirect symbol from the dynamic
1071 definition with the default version, we skip it if its type and
1072 the type of existing regular definition mismatch. */
1073 if (pold_alignment == NULL
1074 && newdyn
1075 && newdef
1076 && !olddyn
1077 && (((olddef || h->root.type == bfd_link_hash_common)
1078 && ELF_ST_TYPE (sym->st_info) != h->type
1079 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1080 && h->type != STT_NOTYPE
1081 && !(newfunc && oldfunc))
1082 || (olddef
1083 && ((h->type == STT_GNU_IFUNC)
1084 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1085 {
1086 *skip = TRUE;
1087 return TRUE;
1088 }
1089
1090 /* Check TLS symbols. We don't check undefined symbols introduced
1091 by "ld -u" which have no type (and oldbfd NULL), and we don't
1092 check symbols from plugins because they also have no type. */
1093 if (oldbfd != NULL
1094 && (oldbfd->flags & BFD_PLUGIN) == 0
1095 && (abfd->flags & BFD_PLUGIN) == 0
1096 && ELF_ST_TYPE (sym->st_info) != h->type
1097 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1098 {
1099 bfd *ntbfd, *tbfd;
1100 bfd_boolean ntdef, tdef;
1101 asection *ntsec, *tsec;
1102
1103 if (h->type == STT_TLS)
1104 {
1105 ntbfd = abfd;
1106 ntsec = sec;
1107 ntdef = newdef;
1108 tbfd = oldbfd;
1109 tsec = oldsec;
1110 tdef = olddef;
1111 }
1112 else
1113 {
1114 ntbfd = oldbfd;
1115 ntsec = oldsec;
1116 ntdef = olddef;
1117 tbfd = abfd;
1118 tsec = sec;
1119 tdef = newdef;
1120 }
1121
1122 if (tdef && ntdef)
1123 (*_bfd_error_handler)
1124 (_("%s: TLS definition in %B section %A "
1125 "mismatches non-TLS definition in %B section %A"),
1126 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1127 else if (!tdef && !ntdef)
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B "
1130 "mismatches non-TLS reference in %B"),
1131 tbfd, ntbfd, h->root.root.string);
1132 else if (tdef)
1133 (*_bfd_error_handler)
1134 (_("%s: TLS definition in %B section %A "
1135 "mismatches non-TLS reference in %B"),
1136 tbfd, tsec, ntbfd, h->root.root.string);
1137 else
1138 (*_bfd_error_handler)
1139 (_("%s: TLS reference in %B "
1140 "mismatches non-TLS definition in %B section %A"),
1141 tbfd, ntbfd, ntsec, h->root.root.string);
1142
1143 bfd_set_error (bfd_error_bad_value);
1144 return FALSE;
1145 }
1146
1147 /* If the old symbol has non-default visibility, we ignore the new
1148 definition from a dynamic object. */
1149 if (newdyn
1150 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1151 && !bfd_is_und_section (sec))
1152 {
1153 *skip = TRUE;
1154 /* Make sure this symbol is dynamic. */
1155 h->ref_dynamic = 1;
1156 hi->ref_dynamic = 1;
1157 /* A protected symbol has external availability. Make sure it is
1158 recorded as dynamic.
1159
1160 FIXME: Should we check type and size for protected symbol? */
1161 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1162 return bfd_elf_link_record_dynamic_symbol (info, h);
1163 else
1164 return TRUE;
1165 }
1166 else if (!newdyn
1167 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1168 && h->def_dynamic)
1169 {
1170 /* If the new symbol with non-default visibility comes from a
1171 relocatable file and the old definition comes from a dynamic
1172 object, we remove the old definition. */
1173 if (hi->root.type == bfd_link_hash_indirect)
1174 {
1175 /* Handle the case where the old dynamic definition is
1176 default versioned. We need to copy the symbol info from
1177 the symbol with default version to the normal one if it
1178 was referenced before. */
1179 if (h->ref_regular)
1180 {
1181 hi->root.type = h->root.type;
1182 h->root.type = bfd_link_hash_indirect;
1183 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1184
1185 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1186 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1187 {
1188 /* If the new symbol is hidden or internal, completely undo
1189 any dynamic link state. */
1190 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1191 h->forced_local = 0;
1192 h->ref_dynamic = 0;
1193 }
1194 else
1195 h->ref_dynamic = 1;
1196
1197 h->def_dynamic = 0;
1198 /* FIXME: Should we check type and size for protected symbol? */
1199 h->size = 0;
1200 h->type = 0;
1201
1202 h = hi;
1203 }
1204 else
1205 h = hi;
1206 }
1207
1208 /* If the old symbol was undefined before, then it will still be
1209 on the undefs list. If the new symbol is undefined or
1210 common, we can't make it bfd_link_hash_new here, because new
1211 undefined or common symbols will be added to the undefs list
1212 by _bfd_generic_link_add_one_symbol. Symbols may not be
1213 added twice to the undefs list. Also, if the new symbol is
1214 undefweak then we don't want to lose the strong undef. */
1215 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1216 {
1217 h->root.type = bfd_link_hash_undefined;
1218 h->root.u.undef.abfd = abfd;
1219 }
1220 else
1221 {
1222 h->root.type = bfd_link_hash_new;
1223 h->root.u.undef.abfd = NULL;
1224 }
1225
1226 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1227 {
1228 /* If the new symbol is hidden or internal, completely undo
1229 any dynamic link state. */
1230 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1231 h->forced_local = 0;
1232 h->ref_dynamic = 0;
1233 }
1234 else
1235 h->ref_dynamic = 1;
1236 h->def_dynamic = 0;
1237 /* FIXME: Should we check type and size for protected symbol? */
1238 h->size = 0;
1239 h->type = 0;
1240 return TRUE;
1241 }
1242
1243 /* If a new weak symbol definition comes from a regular file and the
1244 old symbol comes from a dynamic library, we treat the new one as
1245 strong. Similarly, an old weak symbol definition from a regular
1246 file is treated as strong when the new symbol comes from a dynamic
1247 library. Further, an old weak symbol from a dynamic library is
1248 treated as strong if the new symbol is from a dynamic library.
1249 This reflects the way glibc's ld.so works.
1250
1251 Do this before setting *type_change_ok or *size_change_ok so that
1252 we warn properly when dynamic library symbols are overridden. */
1253
1254 if (newdef && !newdyn && olddyn)
1255 newweak = FALSE;
1256 if (olddef && newdyn)
1257 oldweak = FALSE;
1258
1259 /* Allow changes between different types of function symbol. */
1260 if (newfunc && oldfunc)
1261 *type_change_ok = TRUE;
1262
1263 /* It's OK to change the type if either the existing symbol or the
1264 new symbol is weak. A type change is also OK if the old symbol
1265 is undefined and the new symbol is defined. */
1266
1267 if (oldweak
1268 || newweak
1269 || (newdef
1270 && h->root.type == bfd_link_hash_undefined))
1271 *type_change_ok = TRUE;
1272
1273 /* It's OK to change the size if either the existing symbol or the
1274 new symbol is weak, or if the old symbol is undefined. */
1275
1276 if (*type_change_ok
1277 || h->root.type == bfd_link_hash_undefined)
1278 *size_change_ok = TRUE;
1279
1280 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1281 symbol, respectively, appears to be a common symbol in a dynamic
1282 object. If a symbol appears in an uninitialized section, and is
1283 not weak, and is not a function, then it may be a common symbol
1284 which was resolved when the dynamic object was created. We want
1285 to treat such symbols specially, because they raise special
1286 considerations when setting the symbol size: if the symbol
1287 appears as a common symbol in a regular object, and the size in
1288 the regular object is larger, we must make sure that we use the
1289 larger size. This problematic case can always be avoided in C,
1290 but it must be handled correctly when using Fortran shared
1291 libraries.
1292
1293 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1294 likewise for OLDDYNCOMMON and OLDDEF.
1295
1296 Note that this test is just a heuristic, and that it is quite
1297 possible to have an uninitialized symbol in a shared object which
1298 is really a definition, rather than a common symbol. This could
1299 lead to some minor confusion when the symbol really is a common
1300 symbol in some regular object. However, I think it will be
1301 harmless. */
1302
1303 if (newdyn
1304 && newdef
1305 && !newweak
1306 && (sec->flags & SEC_ALLOC) != 0
1307 && (sec->flags & SEC_LOAD) == 0
1308 && sym->st_size > 0
1309 && !newfunc)
1310 newdyncommon = TRUE;
1311 else
1312 newdyncommon = FALSE;
1313
1314 if (olddyn
1315 && olddef
1316 && h->root.type == bfd_link_hash_defined
1317 && h->def_dynamic
1318 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1319 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1320 && h->size > 0
1321 && !oldfunc)
1322 olddyncommon = TRUE;
1323 else
1324 olddyncommon = FALSE;
1325
1326 /* We now know everything about the old and new symbols. We ask the
1327 backend to check if we can merge them. */
1328 if (bed->merge_symbol != NULL)
1329 {
1330 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1331 return FALSE;
1332 sec = *psec;
1333 }
1334
1335 /* If both the old and the new symbols look like common symbols in a
1336 dynamic object, set the size of the symbol to the larger of the
1337 two. */
1338
1339 if (olddyncommon
1340 && newdyncommon
1341 && sym->st_size != h->size)
1342 {
1343 /* Since we think we have two common symbols, issue a multiple
1344 common warning if desired. Note that we only warn if the
1345 size is different. If the size is the same, we simply let
1346 the old symbol override the new one as normally happens with
1347 symbols defined in dynamic objects. */
1348
1349 if (! ((*info->callbacks->multiple_common)
1350 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1351 return FALSE;
1352
1353 if (sym->st_size > h->size)
1354 h->size = sym->st_size;
1355
1356 *size_change_ok = TRUE;
1357 }
1358
1359 /* If we are looking at a dynamic object, and we have found a
1360 definition, we need to see if the symbol was already defined by
1361 some other object. If so, we want to use the existing
1362 definition, and we do not want to report a multiple symbol
1363 definition error; we do this by clobbering *PSEC to be
1364 bfd_und_section_ptr.
1365
1366 We treat a common symbol as a definition if the symbol in the
1367 shared library is a function, since common symbols always
1368 represent variables; this can cause confusion in principle, but
1369 any such confusion would seem to indicate an erroneous program or
1370 shared library. We also permit a common symbol in a regular
1371 object to override a weak symbol in a shared object. */
1372
1373 if (newdyn
1374 && newdef
1375 && (olddef
1376 || (h->root.type == bfd_link_hash_common
1377 && (newweak || newfunc))))
1378 {
1379 *override = TRUE;
1380 newdef = FALSE;
1381 newdyncommon = FALSE;
1382
1383 *psec = sec = bfd_und_section_ptr;
1384 *size_change_ok = TRUE;
1385
1386 /* If we get here when the old symbol is a common symbol, then
1387 we are explicitly letting it override a weak symbol or
1388 function in a dynamic object, and we don't want to warn about
1389 a type change. If the old symbol is a defined symbol, a type
1390 change warning may still be appropriate. */
1391
1392 if (h->root.type == bfd_link_hash_common)
1393 *type_change_ok = TRUE;
1394 }
1395
1396 /* Handle the special case of an old common symbol merging with a
1397 new symbol which looks like a common symbol in a shared object.
1398 We change *PSEC and *PVALUE to make the new symbol look like a
1399 common symbol, and let _bfd_generic_link_add_one_symbol do the
1400 right thing. */
1401
1402 if (newdyncommon
1403 && h->root.type == bfd_link_hash_common)
1404 {
1405 *override = TRUE;
1406 newdef = FALSE;
1407 newdyncommon = FALSE;
1408 *pvalue = sym->st_size;
1409 *psec = sec = bed->common_section (oldsec);
1410 *size_change_ok = TRUE;
1411 }
1412
1413 /* Skip weak definitions of symbols that are already defined. */
1414 if (newdef && olddef && newweak)
1415 {
1416 /* Don't skip new non-IR weak syms. */
1417 if (!(oldbfd != NULL
1418 && (oldbfd->flags & BFD_PLUGIN) != 0
1419 && (abfd->flags & BFD_PLUGIN) == 0))
1420 {
1421 newdef = FALSE;
1422 *skip = TRUE;
1423 }
1424
1425 /* Merge st_other. If the symbol already has a dynamic index,
1426 but visibility says it should not be visible, turn it into a
1427 local symbol. */
1428 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1429 if (h->dynindx != -1)
1430 switch (ELF_ST_VISIBILITY (h->other))
1431 {
1432 case STV_INTERNAL:
1433 case STV_HIDDEN:
1434 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1435 break;
1436 }
1437 }
1438
1439 /* If the old symbol is from a dynamic object, and the new symbol is
1440 a definition which is not from a dynamic object, then the new
1441 symbol overrides the old symbol. Symbols from regular files
1442 always take precedence over symbols from dynamic objects, even if
1443 they are defined after the dynamic object in the link.
1444
1445 As above, we again permit a common symbol in a regular object to
1446 override a definition in a shared object if the shared object
1447 symbol is a function or is weak. */
1448
1449 flip = NULL;
1450 if (!newdyn
1451 && (newdef
1452 || (bfd_is_com_section (sec)
1453 && (oldweak || oldfunc)))
1454 && olddyn
1455 && olddef
1456 && h->def_dynamic)
1457 {
1458 /* Change the hash table entry to undefined, and let
1459 _bfd_generic_link_add_one_symbol do the right thing with the
1460 new definition. */
1461
1462 h->root.type = bfd_link_hash_undefined;
1463 h->root.u.undef.abfd = h->root.u.def.section->owner;
1464 *size_change_ok = TRUE;
1465
1466 olddef = FALSE;
1467 olddyncommon = FALSE;
1468
1469 /* We again permit a type change when a common symbol may be
1470 overriding a function. */
1471
1472 if (bfd_is_com_section (sec))
1473 {
1474 if (oldfunc)
1475 {
1476 /* If a common symbol overrides a function, make sure
1477 that it isn't defined dynamically nor has type
1478 function. */
1479 h->def_dynamic = 0;
1480 h->type = STT_NOTYPE;
1481 }
1482 *type_change_ok = TRUE;
1483 }
1484
1485 if (hi->root.type == bfd_link_hash_indirect)
1486 flip = hi;
1487 else
1488 /* This union may have been set to be non-NULL when this symbol
1489 was seen in a dynamic object. We must force the union to be
1490 NULL, so that it is correct for a regular symbol. */
1491 h->verinfo.vertree = NULL;
1492 }
1493
1494 /* Handle the special case of a new common symbol merging with an
1495 old symbol that looks like it might be a common symbol defined in
1496 a shared object. Note that we have already handled the case in
1497 which a new common symbol should simply override the definition
1498 in the shared library. */
1499
1500 if (! newdyn
1501 && bfd_is_com_section (sec)
1502 && olddyncommon)
1503 {
1504 /* It would be best if we could set the hash table entry to a
1505 common symbol, but we don't know what to use for the section
1506 or the alignment. */
1507 if (! ((*info->callbacks->multiple_common)
1508 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1509 return FALSE;
1510
1511 /* If the presumed common symbol in the dynamic object is
1512 larger, pretend that the new symbol has its size. */
1513
1514 if (h->size > *pvalue)
1515 *pvalue = h->size;
1516
1517 /* We need to remember the alignment required by the symbol
1518 in the dynamic object. */
1519 BFD_ASSERT (pold_alignment);
1520 *pold_alignment = h->root.u.def.section->alignment_power;
1521
1522 olddef = FALSE;
1523 olddyncommon = FALSE;
1524
1525 h->root.type = bfd_link_hash_undefined;
1526 h->root.u.undef.abfd = h->root.u.def.section->owner;
1527
1528 *size_change_ok = TRUE;
1529 *type_change_ok = TRUE;
1530
1531 if (hi->root.type == bfd_link_hash_indirect)
1532 flip = hi;
1533 else
1534 h->verinfo.vertree = NULL;
1535 }
1536
1537 if (flip != NULL)
1538 {
1539 /* Handle the case where we had a versioned symbol in a dynamic
1540 library and now find a definition in a normal object. In this
1541 case, we make the versioned symbol point to the normal one. */
1542 flip->root.type = h->root.type;
1543 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1544 h->root.type = bfd_link_hash_indirect;
1545 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1546 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1547 if (h->def_dynamic)
1548 {
1549 h->def_dynamic = 0;
1550 flip->ref_dynamic = 1;
1551 }
1552 }
1553
1554 return TRUE;
1555 }
1556
1557 /* This function is called to create an indirect symbol from the
1558 default for the symbol with the default version if needed. The
1559 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1560 set DYNSYM if the new indirect symbol is dynamic. */
1561
1562 static bfd_boolean
1563 _bfd_elf_add_default_symbol (bfd *abfd,
1564 struct bfd_link_info *info,
1565 struct elf_link_hash_entry *h,
1566 const char *name,
1567 Elf_Internal_Sym *sym,
1568 asection *sec,
1569 bfd_vma value,
1570 bfd **poldbfd,
1571 bfd_boolean *dynsym)
1572 {
1573 bfd_boolean type_change_ok;
1574 bfd_boolean size_change_ok;
1575 bfd_boolean skip;
1576 char *shortname;
1577 struct elf_link_hash_entry *hi;
1578 struct bfd_link_hash_entry *bh;
1579 const struct elf_backend_data *bed;
1580 bfd_boolean collect;
1581 bfd_boolean dynamic;
1582 bfd_boolean override;
1583 char *p;
1584 size_t len, shortlen;
1585 asection *tmp_sec;
1586
1587 /* If this symbol has a version, and it is the default version, we
1588 create an indirect symbol from the default name to the fully
1589 decorated name. This will cause external references which do not
1590 specify a version to be bound to this version of the symbol. */
1591 p = strchr (name, ELF_VER_CHR);
1592 if (p == NULL || p[1] != ELF_VER_CHR)
1593 return TRUE;
1594
1595 bed = get_elf_backend_data (abfd);
1596 collect = bed->collect;
1597 dynamic = (abfd->flags & DYNAMIC) != 0;
1598
1599 shortlen = p - name;
1600 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1601 if (shortname == NULL)
1602 return FALSE;
1603 memcpy (shortname, name, shortlen);
1604 shortname[shortlen] = '\0';
1605
1606 /* We are going to create a new symbol. Merge it with any existing
1607 symbol with this name. For the purposes of the merge, act as
1608 though we were defining the symbol we just defined, although we
1609 actually going to define an indirect symbol. */
1610 type_change_ok = FALSE;
1611 size_change_ok = FALSE;
1612 tmp_sec = sec;
1613 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1614 &hi, poldbfd, NULL, NULL, &skip, &override,
1615 &type_change_ok, &size_change_ok))
1616 return FALSE;
1617
1618 if (skip)
1619 goto nondefault;
1620
1621 if (! override)
1622 {
1623 bh = &hi->root;
1624 if (! (_bfd_generic_link_add_one_symbol
1625 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1626 0, name, FALSE, collect, &bh)))
1627 return FALSE;
1628 hi = (struct elf_link_hash_entry *) bh;
1629 }
1630 else
1631 {
1632 /* In this case the symbol named SHORTNAME is overriding the
1633 indirect symbol we want to add. We were planning on making
1634 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1635 is the name without a version. NAME is the fully versioned
1636 name, and it is the default version.
1637
1638 Overriding means that we already saw a definition for the
1639 symbol SHORTNAME in a regular object, and it is overriding
1640 the symbol defined in the dynamic object.
1641
1642 When this happens, we actually want to change NAME, the
1643 symbol we just added, to refer to SHORTNAME. This will cause
1644 references to NAME in the shared object to become references
1645 to SHORTNAME in the regular object. This is what we expect
1646 when we override a function in a shared object: that the
1647 references in the shared object will be mapped to the
1648 definition in the regular object. */
1649
1650 while (hi->root.type == bfd_link_hash_indirect
1651 || hi->root.type == bfd_link_hash_warning)
1652 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1653
1654 h->root.type = bfd_link_hash_indirect;
1655 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1656 if (h->def_dynamic)
1657 {
1658 h->def_dynamic = 0;
1659 hi->ref_dynamic = 1;
1660 if (hi->ref_regular
1661 || hi->def_regular)
1662 {
1663 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1664 return FALSE;
1665 }
1666 }
1667
1668 /* Now set HI to H, so that the following code will set the
1669 other fields correctly. */
1670 hi = h;
1671 }
1672
1673 /* Check if HI is a warning symbol. */
1674 if (hi->root.type == bfd_link_hash_warning)
1675 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1676
1677 /* If there is a duplicate definition somewhere, then HI may not
1678 point to an indirect symbol. We will have reported an error to
1679 the user in that case. */
1680
1681 if (hi->root.type == bfd_link_hash_indirect)
1682 {
1683 struct elf_link_hash_entry *ht;
1684
1685 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1686 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1687
1688 /* A reference to the SHORTNAME symbol from a dynamic library
1689 will be satisfied by the versioned symbol at runtime. In
1690 effect, we have a reference to the versioned symbol. */
1691 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1692 hi->dynamic_def |= ht->dynamic_def;
1693
1694 /* See if the new flags lead us to realize that the symbol must
1695 be dynamic. */
1696 if (! *dynsym)
1697 {
1698 if (! dynamic)
1699 {
1700 if (! info->executable
1701 || hi->def_dynamic
1702 || hi->ref_dynamic)
1703 *dynsym = TRUE;
1704 }
1705 else
1706 {
1707 if (hi->ref_regular)
1708 *dynsym = TRUE;
1709 }
1710 }
1711 }
1712
1713 /* We also need to define an indirection from the nondefault version
1714 of the symbol. */
1715
1716 nondefault:
1717 len = strlen (name);
1718 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1719 if (shortname == NULL)
1720 return FALSE;
1721 memcpy (shortname, name, shortlen);
1722 memcpy (shortname + shortlen, p + 1, len - shortlen);
1723
1724 /* Once again, merge with any existing symbol. */
1725 type_change_ok = FALSE;
1726 size_change_ok = FALSE;
1727 tmp_sec = sec;
1728 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1729 &hi, poldbfd, NULL, NULL, &skip, &override,
1730 &type_change_ok, &size_change_ok))
1731 return FALSE;
1732
1733 if (skip)
1734 return TRUE;
1735
1736 if (override)
1737 {
1738 /* Here SHORTNAME is a versioned name, so we don't expect to see
1739 the type of override we do in the case above unless it is
1740 overridden by a versioned definition. */
1741 if (hi->root.type != bfd_link_hash_defined
1742 && hi->root.type != bfd_link_hash_defweak)
1743 (*_bfd_error_handler)
1744 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1745 abfd, shortname);
1746 }
1747 else
1748 {
1749 bh = &hi->root;
1750 if (! (_bfd_generic_link_add_one_symbol
1751 (info, abfd, shortname, BSF_INDIRECT,
1752 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1753 return FALSE;
1754 hi = (struct elf_link_hash_entry *) bh;
1755
1756 /* If there is a duplicate definition somewhere, then HI may not
1757 point to an indirect symbol. We will have reported an error
1758 to the user in that case. */
1759
1760 if (hi->root.type == bfd_link_hash_indirect)
1761 {
1762 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1763 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1764 hi->dynamic_def |= h->dynamic_def;
1765
1766 /* See if the new flags lead us to realize that the symbol
1767 must be dynamic. */
1768 if (! *dynsym)
1769 {
1770 if (! dynamic)
1771 {
1772 if (! info->executable
1773 || hi->ref_dynamic)
1774 *dynsym = TRUE;
1775 }
1776 else
1777 {
1778 if (hi->ref_regular)
1779 *dynsym = TRUE;
1780 }
1781 }
1782 }
1783 }
1784
1785 return TRUE;
1786 }
1787 \f
1788 /* This routine is used to export all defined symbols into the dynamic
1789 symbol table. It is called via elf_link_hash_traverse. */
1790
1791 static bfd_boolean
1792 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1793 {
1794 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1795
1796 /* Ignore indirect symbols. These are added by the versioning code. */
1797 if (h->root.type == bfd_link_hash_indirect)
1798 return TRUE;
1799
1800 /* Ignore this if we won't export it. */
1801 if (!eif->info->export_dynamic && !h->dynamic)
1802 return TRUE;
1803
1804 if (h->dynindx == -1
1805 && (h->def_regular || h->ref_regular)
1806 && ! bfd_hide_sym_by_version (eif->info->version_info,
1807 h->root.root.string))
1808 {
1809 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1810 {
1811 eif->failed = TRUE;
1812 return FALSE;
1813 }
1814 }
1815
1816 return TRUE;
1817 }
1818 \f
1819 /* Look through the symbols which are defined in other shared
1820 libraries and referenced here. Update the list of version
1821 dependencies. This will be put into the .gnu.version_r section.
1822 This function is called via elf_link_hash_traverse. */
1823
1824 static bfd_boolean
1825 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1826 void *data)
1827 {
1828 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1829 Elf_Internal_Verneed *t;
1830 Elf_Internal_Vernaux *a;
1831 bfd_size_type amt;
1832
1833 /* We only care about symbols defined in shared objects with version
1834 information. */
1835 if (!h->def_dynamic
1836 || h->def_regular
1837 || h->dynindx == -1
1838 || h->verinfo.verdef == NULL
1839 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1840 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1841 return TRUE;
1842
1843 /* See if we already know about this version. */
1844 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1845 t != NULL;
1846 t = t->vn_nextref)
1847 {
1848 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1849 continue;
1850
1851 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1852 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1853 return TRUE;
1854
1855 break;
1856 }
1857
1858 /* This is a new version. Add it to tree we are building. */
1859
1860 if (t == NULL)
1861 {
1862 amt = sizeof *t;
1863 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1864 if (t == NULL)
1865 {
1866 rinfo->failed = TRUE;
1867 return FALSE;
1868 }
1869
1870 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1871 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1872 elf_tdata (rinfo->info->output_bfd)->verref = t;
1873 }
1874
1875 amt = sizeof *a;
1876 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1877 if (a == NULL)
1878 {
1879 rinfo->failed = TRUE;
1880 return FALSE;
1881 }
1882
1883 /* Note that we are copying a string pointer here, and testing it
1884 above. If bfd_elf_string_from_elf_section is ever changed to
1885 discard the string data when low in memory, this will have to be
1886 fixed. */
1887 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1888
1889 a->vna_flags = h->verinfo.verdef->vd_flags;
1890 a->vna_nextptr = t->vn_auxptr;
1891
1892 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1893 ++rinfo->vers;
1894
1895 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1896
1897 t->vn_auxptr = a;
1898
1899 return TRUE;
1900 }
1901
1902 /* Figure out appropriate versions for all the symbols. We may not
1903 have the version number script until we have read all of the input
1904 files, so until that point we don't know which symbols should be
1905 local. This function is called via elf_link_hash_traverse. */
1906
1907 static bfd_boolean
1908 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1909 {
1910 struct elf_info_failed *sinfo;
1911 struct bfd_link_info *info;
1912 const struct elf_backend_data *bed;
1913 struct elf_info_failed eif;
1914 char *p;
1915 bfd_size_type amt;
1916
1917 sinfo = (struct elf_info_failed *) data;
1918 info = sinfo->info;
1919
1920 /* Fix the symbol flags. */
1921 eif.failed = FALSE;
1922 eif.info = info;
1923 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1924 {
1925 if (eif.failed)
1926 sinfo->failed = TRUE;
1927 return FALSE;
1928 }
1929
1930 /* We only need version numbers for symbols defined in regular
1931 objects. */
1932 if (!h->def_regular)
1933 return TRUE;
1934
1935 bed = get_elf_backend_data (info->output_bfd);
1936 p = strchr (h->root.root.string, ELF_VER_CHR);
1937 if (p != NULL && h->verinfo.vertree == NULL)
1938 {
1939 struct bfd_elf_version_tree *t;
1940 bfd_boolean hidden;
1941
1942 hidden = TRUE;
1943
1944 /* There are two consecutive ELF_VER_CHR characters if this is
1945 not a hidden symbol. */
1946 ++p;
1947 if (*p == ELF_VER_CHR)
1948 {
1949 hidden = FALSE;
1950 ++p;
1951 }
1952
1953 /* If there is no version string, we can just return out. */
1954 if (*p == '\0')
1955 {
1956 if (hidden)
1957 h->hidden = 1;
1958 return TRUE;
1959 }
1960
1961 /* Look for the version. If we find it, it is no longer weak. */
1962 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1963 {
1964 if (strcmp (t->name, p) == 0)
1965 {
1966 size_t len;
1967 char *alc;
1968 struct bfd_elf_version_expr *d;
1969
1970 len = p - h->root.root.string;
1971 alc = (char *) bfd_malloc (len);
1972 if (alc == NULL)
1973 {
1974 sinfo->failed = TRUE;
1975 return FALSE;
1976 }
1977 memcpy (alc, h->root.root.string, len - 1);
1978 alc[len - 1] = '\0';
1979 if (alc[len - 2] == ELF_VER_CHR)
1980 alc[len - 2] = '\0';
1981
1982 h->verinfo.vertree = t;
1983 t->used = TRUE;
1984 d = NULL;
1985
1986 if (t->globals.list != NULL)
1987 d = (*t->match) (&t->globals, NULL, alc);
1988
1989 /* See if there is anything to force this symbol to
1990 local scope. */
1991 if (d == NULL && t->locals.list != NULL)
1992 {
1993 d = (*t->match) (&t->locals, NULL, alc);
1994 if (d != NULL
1995 && h->dynindx != -1
1996 && ! info->export_dynamic)
1997 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1998 }
1999
2000 free (alc);
2001 break;
2002 }
2003 }
2004
2005 /* If we are building an application, we need to create a
2006 version node for this version. */
2007 if (t == NULL && info->executable)
2008 {
2009 struct bfd_elf_version_tree **pp;
2010 int version_index;
2011
2012 /* If we aren't going to export this symbol, we don't need
2013 to worry about it. */
2014 if (h->dynindx == -1)
2015 return TRUE;
2016
2017 amt = sizeof *t;
2018 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2019 if (t == NULL)
2020 {
2021 sinfo->failed = TRUE;
2022 return FALSE;
2023 }
2024
2025 t->name = p;
2026 t->name_indx = (unsigned int) -1;
2027 t->used = TRUE;
2028
2029 version_index = 1;
2030 /* Don't count anonymous version tag. */
2031 if (sinfo->info->version_info != NULL
2032 && sinfo->info->version_info->vernum == 0)
2033 version_index = 0;
2034 for (pp = &sinfo->info->version_info;
2035 *pp != NULL;
2036 pp = &(*pp)->next)
2037 ++version_index;
2038 t->vernum = version_index;
2039
2040 *pp = t;
2041
2042 h->verinfo.vertree = t;
2043 }
2044 else if (t == NULL)
2045 {
2046 /* We could not find the version for a symbol when
2047 generating a shared archive. Return an error. */
2048 (*_bfd_error_handler)
2049 (_("%B: version node not found for symbol %s"),
2050 info->output_bfd, h->root.root.string);
2051 bfd_set_error (bfd_error_bad_value);
2052 sinfo->failed = TRUE;
2053 return FALSE;
2054 }
2055
2056 if (hidden)
2057 h->hidden = 1;
2058 }
2059
2060 /* If we don't have a version for this symbol, see if we can find
2061 something. */
2062 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2063 {
2064 bfd_boolean hide;
2065
2066 h->verinfo.vertree
2067 = bfd_find_version_for_sym (sinfo->info->version_info,
2068 h->root.root.string, &hide);
2069 if (h->verinfo.vertree != NULL && hide)
2070 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2071 }
2072
2073 return TRUE;
2074 }
2075 \f
2076 /* Read and swap the relocs from the section indicated by SHDR. This
2077 may be either a REL or a RELA section. The relocations are
2078 translated into RELA relocations and stored in INTERNAL_RELOCS,
2079 which should have already been allocated to contain enough space.
2080 The EXTERNAL_RELOCS are a buffer where the external form of the
2081 relocations should be stored.
2082
2083 Returns FALSE if something goes wrong. */
2084
2085 static bfd_boolean
2086 elf_link_read_relocs_from_section (bfd *abfd,
2087 asection *sec,
2088 Elf_Internal_Shdr *shdr,
2089 void *external_relocs,
2090 Elf_Internal_Rela *internal_relocs)
2091 {
2092 const struct elf_backend_data *bed;
2093 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2094 const bfd_byte *erela;
2095 const bfd_byte *erelaend;
2096 Elf_Internal_Rela *irela;
2097 Elf_Internal_Shdr *symtab_hdr;
2098 size_t nsyms;
2099
2100 /* Position ourselves at the start of the section. */
2101 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2102 return FALSE;
2103
2104 /* Read the relocations. */
2105 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2106 return FALSE;
2107
2108 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2109 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2110
2111 bed = get_elf_backend_data (abfd);
2112
2113 /* Convert the external relocations to the internal format. */
2114 if (shdr->sh_entsize == bed->s->sizeof_rel)
2115 swap_in = bed->s->swap_reloc_in;
2116 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2117 swap_in = bed->s->swap_reloca_in;
2118 else
2119 {
2120 bfd_set_error (bfd_error_wrong_format);
2121 return FALSE;
2122 }
2123
2124 erela = (const bfd_byte *) external_relocs;
2125 erelaend = erela + shdr->sh_size;
2126 irela = internal_relocs;
2127 while (erela < erelaend)
2128 {
2129 bfd_vma r_symndx;
2130
2131 (*swap_in) (abfd, erela, irela);
2132 r_symndx = ELF32_R_SYM (irela->r_info);
2133 if (bed->s->arch_size == 64)
2134 r_symndx >>= 24;
2135 if (nsyms > 0)
2136 {
2137 if ((size_t) r_symndx >= nsyms)
2138 {
2139 (*_bfd_error_handler)
2140 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2141 " for offset 0x%lx in section `%A'"),
2142 abfd, sec,
2143 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2144 bfd_set_error (bfd_error_bad_value);
2145 return FALSE;
2146 }
2147 }
2148 else if (r_symndx != STN_UNDEF)
2149 {
2150 (*_bfd_error_handler)
2151 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2152 " when the object file has no symbol table"),
2153 abfd, sec,
2154 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2155 bfd_set_error (bfd_error_bad_value);
2156 return FALSE;
2157 }
2158 irela += bed->s->int_rels_per_ext_rel;
2159 erela += shdr->sh_entsize;
2160 }
2161
2162 return TRUE;
2163 }
2164
2165 /* Read and swap the relocs for a section O. They may have been
2166 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2167 not NULL, they are used as buffers to read into. They are known to
2168 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2169 the return value is allocated using either malloc or bfd_alloc,
2170 according to the KEEP_MEMORY argument. If O has two relocation
2171 sections (both REL and RELA relocations), then the REL_HDR
2172 relocations will appear first in INTERNAL_RELOCS, followed by the
2173 RELA_HDR relocations. */
2174
2175 Elf_Internal_Rela *
2176 _bfd_elf_link_read_relocs (bfd *abfd,
2177 asection *o,
2178 void *external_relocs,
2179 Elf_Internal_Rela *internal_relocs,
2180 bfd_boolean keep_memory)
2181 {
2182 void *alloc1 = NULL;
2183 Elf_Internal_Rela *alloc2 = NULL;
2184 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2185 struct bfd_elf_section_data *esdo = elf_section_data (o);
2186 Elf_Internal_Rela *internal_rela_relocs;
2187
2188 if (esdo->relocs != NULL)
2189 return esdo->relocs;
2190
2191 if (o->reloc_count == 0)
2192 return NULL;
2193
2194 if (internal_relocs == NULL)
2195 {
2196 bfd_size_type size;
2197
2198 size = o->reloc_count;
2199 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2200 if (keep_memory)
2201 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2202 else
2203 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2204 if (internal_relocs == NULL)
2205 goto error_return;
2206 }
2207
2208 if (external_relocs == NULL)
2209 {
2210 bfd_size_type size = 0;
2211
2212 if (esdo->rel.hdr)
2213 size += esdo->rel.hdr->sh_size;
2214 if (esdo->rela.hdr)
2215 size += esdo->rela.hdr->sh_size;
2216
2217 alloc1 = bfd_malloc (size);
2218 if (alloc1 == NULL)
2219 goto error_return;
2220 external_relocs = alloc1;
2221 }
2222
2223 internal_rela_relocs = internal_relocs;
2224 if (esdo->rel.hdr)
2225 {
2226 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2227 external_relocs,
2228 internal_relocs))
2229 goto error_return;
2230 external_relocs = (((bfd_byte *) external_relocs)
2231 + esdo->rel.hdr->sh_size);
2232 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2233 * bed->s->int_rels_per_ext_rel);
2234 }
2235
2236 if (esdo->rela.hdr
2237 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2238 external_relocs,
2239 internal_rela_relocs)))
2240 goto error_return;
2241
2242 /* Cache the results for next time, if we can. */
2243 if (keep_memory)
2244 esdo->relocs = internal_relocs;
2245
2246 if (alloc1 != NULL)
2247 free (alloc1);
2248
2249 /* Don't free alloc2, since if it was allocated we are passing it
2250 back (under the name of internal_relocs). */
2251
2252 return internal_relocs;
2253
2254 error_return:
2255 if (alloc1 != NULL)
2256 free (alloc1);
2257 if (alloc2 != NULL)
2258 {
2259 if (keep_memory)
2260 bfd_release (abfd, alloc2);
2261 else
2262 free (alloc2);
2263 }
2264 return NULL;
2265 }
2266
2267 /* Compute the size of, and allocate space for, REL_HDR which is the
2268 section header for a section containing relocations for O. */
2269
2270 static bfd_boolean
2271 _bfd_elf_link_size_reloc_section (bfd *abfd,
2272 struct bfd_elf_section_reloc_data *reldata)
2273 {
2274 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2275
2276 /* That allows us to calculate the size of the section. */
2277 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2278
2279 /* The contents field must last into write_object_contents, so we
2280 allocate it with bfd_alloc rather than malloc. Also since we
2281 cannot be sure that the contents will actually be filled in,
2282 we zero the allocated space. */
2283 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2284 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2285 return FALSE;
2286
2287 if (reldata->hashes == NULL && reldata->count)
2288 {
2289 struct elf_link_hash_entry **p;
2290
2291 p = (struct elf_link_hash_entry **)
2292 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2293 if (p == NULL)
2294 return FALSE;
2295
2296 reldata->hashes = p;
2297 }
2298
2299 return TRUE;
2300 }
2301
2302 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2303 originated from the section given by INPUT_REL_HDR) to the
2304 OUTPUT_BFD. */
2305
2306 bfd_boolean
2307 _bfd_elf_link_output_relocs (bfd *output_bfd,
2308 asection *input_section,
2309 Elf_Internal_Shdr *input_rel_hdr,
2310 Elf_Internal_Rela *internal_relocs,
2311 struct elf_link_hash_entry **rel_hash
2312 ATTRIBUTE_UNUSED)
2313 {
2314 Elf_Internal_Rela *irela;
2315 Elf_Internal_Rela *irelaend;
2316 bfd_byte *erel;
2317 struct bfd_elf_section_reloc_data *output_reldata;
2318 asection *output_section;
2319 const struct elf_backend_data *bed;
2320 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2321 struct bfd_elf_section_data *esdo;
2322
2323 output_section = input_section->output_section;
2324
2325 bed = get_elf_backend_data (output_bfd);
2326 esdo = elf_section_data (output_section);
2327 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 {
2329 output_reldata = &esdo->rel;
2330 swap_out = bed->s->swap_reloc_out;
2331 }
2332 else if (esdo->rela.hdr
2333 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2334 {
2335 output_reldata = &esdo->rela;
2336 swap_out = bed->s->swap_reloca_out;
2337 }
2338 else
2339 {
2340 (*_bfd_error_handler)
2341 (_("%B: relocation size mismatch in %B section %A"),
2342 output_bfd, input_section->owner, input_section);
2343 bfd_set_error (bfd_error_wrong_format);
2344 return FALSE;
2345 }
2346
2347 erel = output_reldata->hdr->contents;
2348 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2349 irela = internal_relocs;
2350 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2351 * bed->s->int_rels_per_ext_rel);
2352 while (irela < irelaend)
2353 {
2354 (*swap_out) (output_bfd, irela, erel);
2355 irela += bed->s->int_rels_per_ext_rel;
2356 erel += input_rel_hdr->sh_entsize;
2357 }
2358
2359 /* Bump the counter, so that we know where to add the next set of
2360 relocations. */
2361 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2362
2363 return TRUE;
2364 }
2365 \f
2366 /* Make weak undefined symbols in PIE dynamic. */
2367
2368 bfd_boolean
2369 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2370 struct elf_link_hash_entry *h)
2371 {
2372 if (info->pie
2373 && h->dynindx == -1
2374 && h->root.type == bfd_link_hash_undefweak)
2375 return bfd_elf_link_record_dynamic_symbol (info, h);
2376
2377 return TRUE;
2378 }
2379
2380 /* Fix up the flags for a symbol. This handles various cases which
2381 can only be fixed after all the input files are seen. This is
2382 currently called by both adjust_dynamic_symbol and
2383 assign_sym_version, which is unnecessary but perhaps more robust in
2384 the face of future changes. */
2385
2386 static bfd_boolean
2387 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2388 struct elf_info_failed *eif)
2389 {
2390 const struct elf_backend_data *bed;
2391
2392 /* If this symbol was mentioned in a non-ELF file, try to set
2393 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2394 permit a non-ELF file to correctly refer to a symbol defined in
2395 an ELF dynamic object. */
2396 if (h->non_elf)
2397 {
2398 while (h->root.type == bfd_link_hash_indirect)
2399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2400
2401 if (h->root.type != bfd_link_hash_defined
2402 && h->root.type != bfd_link_hash_defweak)
2403 {
2404 h->ref_regular = 1;
2405 h->ref_regular_nonweak = 1;
2406 }
2407 else
2408 {
2409 if (h->root.u.def.section->owner != NULL
2410 && (bfd_get_flavour (h->root.u.def.section->owner)
2411 == bfd_target_elf_flavour))
2412 {
2413 h->ref_regular = 1;
2414 h->ref_regular_nonweak = 1;
2415 }
2416 else
2417 h->def_regular = 1;
2418 }
2419
2420 if (h->dynindx == -1
2421 && (h->def_dynamic
2422 || h->ref_dynamic))
2423 {
2424 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2425 {
2426 eif->failed = TRUE;
2427 return FALSE;
2428 }
2429 }
2430 }
2431 else
2432 {
2433 /* Unfortunately, NON_ELF is only correct if the symbol
2434 was first seen in a non-ELF file. Fortunately, if the symbol
2435 was first seen in an ELF file, we're probably OK unless the
2436 symbol was defined in a non-ELF file. Catch that case here.
2437 FIXME: We're still in trouble if the symbol was first seen in
2438 a dynamic object, and then later in a non-ELF regular object. */
2439 if ((h->root.type == bfd_link_hash_defined
2440 || h->root.type == bfd_link_hash_defweak)
2441 && !h->def_regular
2442 && (h->root.u.def.section->owner != NULL
2443 ? (bfd_get_flavour (h->root.u.def.section->owner)
2444 != bfd_target_elf_flavour)
2445 : (bfd_is_abs_section (h->root.u.def.section)
2446 && !h->def_dynamic)))
2447 h->def_regular = 1;
2448 }
2449
2450 /* Backend specific symbol fixup. */
2451 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2452 if (bed->elf_backend_fixup_symbol
2453 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2454 return FALSE;
2455
2456 /* If this is a final link, and the symbol was defined as a common
2457 symbol in a regular object file, and there was no definition in
2458 any dynamic object, then the linker will have allocated space for
2459 the symbol in a common section but the DEF_REGULAR
2460 flag will not have been set. */
2461 if (h->root.type == bfd_link_hash_defined
2462 && !h->def_regular
2463 && h->ref_regular
2464 && !h->def_dynamic
2465 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2466 h->def_regular = 1;
2467
2468 /* If -Bsymbolic was used (which means to bind references to global
2469 symbols to the definition within the shared object), and this
2470 symbol was defined in a regular object, then it actually doesn't
2471 need a PLT entry. Likewise, if the symbol has non-default
2472 visibility. If the symbol has hidden or internal visibility, we
2473 will force it local. */
2474 if (h->needs_plt
2475 && eif->info->shared
2476 && is_elf_hash_table (eif->info->hash)
2477 && (SYMBOLIC_BIND (eif->info, h)
2478 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2479 && h->def_regular)
2480 {
2481 bfd_boolean force_local;
2482
2483 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2484 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2485 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2486 }
2487
2488 /* If a weak undefined symbol has non-default visibility, we also
2489 hide it from the dynamic linker. */
2490 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2491 && h->root.type == bfd_link_hash_undefweak)
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2493
2494 /* If this is a weak defined symbol in a dynamic object, and we know
2495 the real definition in the dynamic object, copy interesting flags
2496 over to the real definition. */
2497 if (h->u.weakdef != NULL)
2498 {
2499 /* If the real definition is defined by a regular object file,
2500 don't do anything special. See the longer description in
2501 _bfd_elf_adjust_dynamic_symbol, below. */
2502 if (h->u.weakdef->def_regular)
2503 h->u.weakdef = NULL;
2504 else
2505 {
2506 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2507
2508 while (h->root.type == bfd_link_hash_indirect)
2509 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2510
2511 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2512 || h->root.type == bfd_link_hash_defweak);
2513 BFD_ASSERT (weakdef->def_dynamic);
2514 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2515 || weakdef->root.type == bfd_link_hash_defweak);
2516 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2517 }
2518 }
2519
2520 return TRUE;
2521 }
2522
2523 /* Make the backend pick a good value for a dynamic symbol. This is
2524 called via elf_link_hash_traverse, and also calls itself
2525 recursively. */
2526
2527 static bfd_boolean
2528 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2529 {
2530 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2531 bfd *dynobj;
2532 const struct elf_backend_data *bed;
2533
2534 if (! is_elf_hash_table (eif->info->hash))
2535 return FALSE;
2536
2537 /* Ignore indirect symbols. These are added by the versioning code. */
2538 if (h->root.type == bfd_link_hash_indirect)
2539 return TRUE;
2540
2541 /* Fix the symbol flags. */
2542 if (! _bfd_elf_fix_symbol_flags (h, eif))
2543 return FALSE;
2544
2545 /* If this symbol does not require a PLT entry, and it is not
2546 defined by a dynamic object, or is not referenced by a regular
2547 object, ignore it. We do have to handle a weak defined symbol,
2548 even if no regular object refers to it, if we decided to add it
2549 to the dynamic symbol table. FIXME: Do we normally need to worry
2550 about symbols which are defined by one dynamic object and
2551 referenced by another one? */
2552 if (!h->needs_plt
2553 && h->type != STT_GNU_IFUNC
2554 && (h->def_regular
2555 || !h->def_dynamic
2556 || (!h->ref_regular
2557 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2558 {
2559 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2560 return TRUE;
2561 }
2562
2563 /* If we've already adjusted this symbol, don't do it again. This
2564 can happen via a recursive call. */
2565 if (h->dynamic_adjusted)
2566 return TRUE;
2567
2568 /* Don't look at this symbol again. Note that we must set this
2569 after checking the above conditions, because we may look at a
2570 symbol once, decide not to do anything, and then get called
2571 recursively later after REF_REGULAR is set below. */
2572 h->dynamic_adjusted = 1;
2573
2574 /* If this is a weak definition, and we know a real definition, and
2575 the real symbol is not itself defined by a regular object file,
2576 then get a good value for the real definition. We handle the
2577 real symbol first, for the convenience of the backend routine.
2578
2579 Note that there is a confusing case here. If the real definition
2580 is defined by a regular object file, we don't get the real symbol
2581 from the dynamic object, but we do get the weak symbol. If the
2582 processor backend uses a COPY reloc, then if some routine in the
2583 dynamic object changes the real symbol, we will not see that
2584 change in the corresponding weak symbol. This is the way other
2585 ELF linkers work as well, and seems to be a result of the shared
2586 library model.
2587
2588 I will clarify this issue. Most SVR4 shared libraries define the
2589 variable _timezone and define timezone as a weak synonym. The
2590 tzset call changes _timezone. If you write
2591 extern int timezone;
2592 int _timezone = 5;
2593 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2594 you might expect that, since timezone is a synonym for _timezone,
2595 the same number will print both times. However, if the processor
2596 backend uses a COPY reloc, then actually timezone will be copied
2597 into your process image, and, since you define _timezone
2598 yourself, _timezone will not. Thus timezone and _timezone will
2599 wind up at different memory locations. The tzset call will set
2600 _timezone, leaving timezone unchanged. */
2601
2602 if (h->u.weakdef != NULL)
2603 {
2604 /* If we get to this point, there is an implicit reference to
2605 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2606 h->u.weakdef->ref_regular = 1;
2607
2608 /* Ensure that the backend adjust_dynamic_symbol function sees
2609 H->U.WEAKDEF before H by recursively calling ourselves. */
2610 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2611 return FALSE;
2612 }
2613
2614 /* If a symbol has no type and no size and does not require a PLT
2615 entry, then we are probably about to do the wrong thing here: we
2616 are probably going to create a COPY reloc for an empty object.
2617 This case can arise when a shared object is built with assembly
2618 code, and the assembly code fails to set the symbol type. */
2619 if (h->size == 0
2620 && h->type == STT_NOTYPE
2621 && !h->needs_plt)
2622 (*_bfd_error_handler)
2623 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2624 h->root.root.string);
2625
2626 dynobj = elf_hash_table (eif->info)->dynobj;
2627 bed = get_elf_backend_data (dynobj);
2628
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2643 struct elf_link_hash_entry *h,
2644 asection *dynbss)
2645 {
2646 unsigned int power_of_two;
2647 bfd_vma mask;
2648 asection *sec = h->root.u.def.section;
2649
2650 /* The section aligment of definition is the maximum alignment
2651 requirement of symbols defined in the section. Since we don't
2652 know the symbol alignment requirement, we start with the
2653 maximum alignment and check low bits of the symbol address
2654 for the minimum alignment. */
2655 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2656 mask = ((bfd_vma) 1 << power_of_two) - 1;
2657 while ((h->root.u.def.value & mask) != 0)
2658 {
2659 mask >>= 1;
2660 --power_of_two;
2661 }
2662
2663 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2664 dynbss))
2665 {
2666 /* Adjust the section alignment if needed. */
2667 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2668 power_of_two))
2669 return FALSE;
2670 }
2671
2672 /* We make sure that the symbol will be aligned properly. */
2673 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2674
2675 /* Define the symbol as being at this point in DYNBSS. */
2676 h->root.u.def.section = dynbss;
2677 h->root.u.def.value = dynbss->size;
2678
2679 /* Increment the size of DYNBSS to make room for the symbol. */
2680 dynbss->size += h->size;
2681
2682 if (h->protected_def)
2683 {
2684 info->callbacks->einfo
2685 (_("%P: copy reloc against protected `%T' is invalid\n"),
2686 h->root.root.string);
2687 bfd_set_error (bfd_error_bad_value);
2688 return FALSE;
2689 }
2690
2691 return TRUE;
2692 }
2693
2694 /* Adjust all external symbols pointing into SEC_MERGE sections
2695 to reflect the object merging within the sections. */
2696
2697 static bfd_boolean
2698 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2699 {
2700 asection *sec;
2701
2702 if ((h->root.type == bfd_link_hash_defined
2703 || h->root.type == bfd_link_hash_defweak)
2704 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2705 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2706 {
2707 bfd *output_bfd = (bfd *) data;
2708
2709 h->root.u.def.value =
2710 _bfd_merged_section_offset (output_bfd,
2711 &h->root.u.def.section,
2712 elf_section_data (sec)->sec_info,
2713 h->root.u.def.value);
2714 }
2715
2716 return TRUE;
2717 }
2718
2719 /* Returns false if the symbol referred to by H should be considered
2720 to resolve local to the current module, and true if it should be
2721 considered to bind dynamically. */
2722
2723 bfd_boolean
2724 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2725 struct bfd_link_info *info,
2726 bfd_boolean not_local_protected)
2727 {
2728 bfd_boolean binding_stays_local_p;
2729 const struct elf_backend_data *bed;
2730 struct elf_link_hash_table *hash_table;
2731
2732 if (h == NULL)
2733 return FALSE;
2734
2735 while (h->root.type == bfd_link_hash_indirect
2736 || h->root.type == bfd_link_hash_warning)
2737 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2738
2739 /* If it was forced local, then clearly it's not dynamic. */
2740 if (h->dynindx == -1)
2741 return FALSE;
2742 if (h->forced_local)
2743 return FALSE;
2744
2745 /* Identify the cases where name binding rules say that a
2746 visible symbol resolves locally. */
2747 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2748
2749 switch (ELF_ST_VISIBILITY (h->other))
2750 {
2751 case STV_INTERNAL:
2752 case STV_HIDDEN:
2753 return FALSE;
2754
2755 case STV_PROTECTED:
2756 hash_table = elf_hash_table (info);
2757 if (!is_elf_hash_table (hash_table))
2758 return FALSE;
2759
2760 bed = get_elf_backend_data (hash_table->dynobj);
2761
2762 /* Proper resolution for function pointer equality may require
2763 that these symbols perhaps be resolved dynamically, even though
2764 we should be resolving them to the current module. */
2765 if (!not_local_protected || !bed->is_function_type (h->type))
2766 binding_stays_local_p = TRUE;
2767 break;
2768
2769 default:
2770 break;
2771 }
2772
2773 /* If it isn't defined locally, then clearly it's dynamic. */
2774 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2775 return TRUE;
2776
2777 /* Otherwise, the symbol is dynamic if binding rules don't tell
2778 us that it remains local. */
2779 return !binding_stays_local_p;
2780 }
2781
2782 /* Return true if the symbol referred to by H should be considered
2783 to resolve local to the current module, and false otherwise. Differs
2784 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2785 undefined symbols. The two functions are virtually identical except
2786 for the place where forced_local and dynindx == -1 are tested. If
2787 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2788 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2789 the symbol is local only for defined symbols.
2790 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2791 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2792 treatment of undefined weak symbols. For those that do not make
2793 undefined weak symbols dynamic, both functions may return false. */
2794
2795 bfd_boolean
2796 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2797 struct bfd_link_info *info,
2798 bfd_boolean local_protected)
2799 {
2800 const struct elf_backend_data *bed;
2801 struct elf_link_hash_table *hash_table;
2802
2803 /* If it's a local sym, of course we resolve locally. */
2804 if (h == NULL)
2805 return TRUE;
2806
2807 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2808 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2809 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2810 return TRUE;
2811
2812 /* Common symbols that become definitions don't get the DEF_REGULAR
2813 flag set, so test it first, and don't bail out. */
2814 if (ELF_COMMON_DEF_P (h))
2815 /* Do nothing. */;
2816 /* If we don't have a definition in a regular file, then we can't
2817 resolve locally. The sym is either undefined or dynamic. */
2818 else if (!h->def_regular)
2819 return FALSE;
2820
2821 /* Forced local symbols resolve locally. */
2822 if (h->forced_local)
2823 return TRUE;
2824
2825 /* As do non-dynamic symbols. */
2826 if (h->dynindx == -1)
2827 return TRUE;
2828
2829 /* At this point, we know the symbol is defined and dynamic. In an
2830 executable it must resolve locally, likewise when building symbolic
2831 shared libraries. */
2832 if (info->executable || SYMBOLIC_BIND (info, h))
2833 return TRUE;
2834
2835 /* Now deal with defined dynamic symbols in shared libraries. Ones
2836 with default visibility might not resolve locally. */
2837 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2838 return FALSE;
2839
2840 hash_table = elf_hash_table (info);
2841 if (!is_elf_hash_table (hash_table))
2842 return TRUE;
2843
2844 bed = get_elf_backend_data (hash_table->dynobj);
2845
2846 /* STV_PROTECTED non-function symbols are local. */
2847 if (!bed->is_function_type (h->type))
2848 return TRUE;
2849
2850 /* Function pointer equality tests may require that STV_PROTECTED
2851 symbols be treated as dynamic symbols. If the address of a
2852 function not defined in an executable is set to that function's
2853 plt entry in the executable, then the address of the function in
2854 a shared library must also be the plt entry in the executable. */
2855 return local_protected;
2856 }
2857
2858 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2859 aligned. Returns the first TLS output section. */
2860
2861 struct bfd_section *
2862 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2863 {
2864 struct bfd_section *sec, *tls;
2865 unsigned int align = 0;
2866
2867 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2868 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2869 break;
2870 tls = sec;
2871
2872 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2873 if (sec->alignment_power > align)
2874 align = sec->alignment_power;
2875
2876 elf_hash_table (info)->tls_sec = tls;
2877
2878 /* Ensure the alignment of the first section is the largest alignment,
2879 so that the tls segment starts aligned. */
2880 if (tls != NULL)
2881 tls->alignment_power = align;
2882
2883 return tls;
2884 }
2885
2886 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2887 static bfd_boolean
2888 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2889 Elf_Internal_Sym *sym)
2890 {
2891 const struct elf_backend_data *bed;
2892
2893 /* Local symbols do not count, but target specific ones might. */
2894 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2895 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2896 return FALSE;
2897
2898 bed = get_elf_backend_data (abfd);
2899 /* Function symbols do not count. */
2900 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2901 return FALSE;
2902
2903 /* If the section is undefined, then so is the symbol. */
2904 if (sym->st_shndx == SHN_UNDEF)
2905 return FALSE;
2906
2907 /* If the symbol is defined in the common section, then
2908 it is a common definition and so does not count. */
2909 if (bed->common_definition (sym))
2910 return FALSE;
2911
2912 /* If the symbol is in a target specific section then we
2913 must rely upon the backend to tell us what it is. */
2914 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2915 /* FIXME - this function is not coded yet:
2916
2917 return _bfd_is_global_symbol_definition (abfd, sym);
2918
2919 Instead for now assume that the definition is not global,
2920 Even if this is wrong, at least the linker will behave
2921 in the same way that it used to do. */
2922 return FALSE;
2923
2924 return TRUE;
2925 }
2926
2927 /* Search the symbol table of the archive element of the archive ABFD
2928 whose archive map contains a mention of SYMDEF, and determine if
2929 the symbol is defined in this element. */
2930 static bfd_boolean
2931 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2932 {
2933 Elf_Internal_Shdr * hdr;
2934 bfd_size_type symcount;
2935 bfd_size_type extsymcount;
2936 bfd_size_type extsymoff;
2937 Elf_Internal_Sym *isymbuf;
2938 Elf_Internal_Sym *isym;
2939 Elf_Internal_Sym *isymend;
2940 bfd_boolean result;
2941
2942 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2943 if (abfd == NULL)
2944 return FALSE;
2945
2946 if (! bfd_check_format (abfd, bfd_object))
2947 return FALSE;
2948
2949 /* Select the appropriate symbol table. */
2950 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2951 hdr = &elf_tdata (abfd)->symtab_hdr;
2952 else
2953 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2954
2955 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2956
2957 /* The sh_info field of the symtab header tells us where the
2958 external symbols start. We don't care about the local symbols. */
2959 if (elf_bad_symtab (abfd))
2960 {
2961 extsymcount = symcount;
2962 extsymoff = 0;
2963 }
2964 else
2965 {
2966 extsymcount = symcount - hdr->sh_info;
2967 extsymoff = hdr->sh_info;
2968 }
2969
2970 if (extsymcount == 0)
2971 return FALSE;
2972
2973 /* Read in the symbol table. */
2974 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2975 NULL, NULL, NULL);
2976 if (isymbuf == NULL)
2977 return FALSE;
2978
2979 /* Scan the symbol table looking for SYMDEF. */
2980 result = FALSE;
2981 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2982 {
2983 const char *name;
2984
2985 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2986 isym->st_name);
2987 if (name == NULL)
2988 break;
2989
2990 if (strcmp (name, symdef->name) == 0)
2991 {
2992 result = is_global_data_symbol_definition (abfd, isym);
2993 break;
2994 }
2995 }
2996
2997 free (isymbuf);
2998
2999 return result;
3000 }
3001 \f
3002 /* Add an entry to the .dynamic table. */
3003
3004 bfd_boolean
3005 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3006 bfd_vma tag,
3007 bfd_vma val)
3008 {
3009 struct elf_link_hash_table *hash_table;
3010 const struct elf_backend_data *bed;
3011 asection *s;
3012 bfd_size_type newsize;
3013 bfd_byte *newcontents;
3014 Elf_Internal_Dyn dyn;
3015
3016 hash_table = elf_hash_table (info);
3017 if (! is_elf_hash_table (hash_table))
3018 return FALSE;
3019
3020 bed = get_elf_backend_data (hash_table->dynobj);
3021 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3022 BFD_ASSERT (s != NULL);
3023
3024 newsize = s->size + bed->s->sizeof_dyn;
3025 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3026 if (newcontents == NULL)
3027 return FALSE;
3028
3029 dyn.d_tag = tag;
3030 dyn.d_un.d_val = val;
3031 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3032
3033 s->size = newsize;
3034 s->contents = newcontents;
3035
3036 return TRUE;
3037 }
3038
3039 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3040 otherwise just check whether one already exists. Returns -1 on error,
3041 1 if a DT_NEEDED tag already exists, and 0 on success. */
3042
3043 static int
3044 elf_add_dt_needed_tag (bfd *abfd,
3045 struct bfd_link_info *info,
3046 const char *soname,
3047 bfd_boolean do_it)
3048 {
3049 struct elf_link_hash_table *hash_table;
3050 bfd_size_type strindex;
3051
3052 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3053 return -1;
3054
3055 hash_table = elf_hash_table (info);
3056 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3057 if (strindex == (bfd_size_type) -1)
3058 return -1;
3059
3060 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3061 {
3062 asection *sdyn;
3063 const struct elf_backend_data *bed;
3064 bfd_byte *extdyn;
3065
3066 bed = get_elf_backend_data (hash_table->dynobj);
3067 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3068 if (sdyn != NULL)
3069 for (extdyn = sdyn->contents;
3070 extdyn < sdyn->contents + sdyn->size;
3071 extdyn += bed->s->sizeof_dyn)
3072 {
3073 Elf_Internal_Dyn dyn;
3074
3075 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3076 if (dyn.d_tag == DT_NEEDED
3077 && dyn.d_un.d_val == strindex)
3078 {
3079 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3080 return 1;
3081 }
3082 }
3083 }
3084
3085 if (do_it)
3086 {
3087 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3088 return -1;
3089
3090 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3091 return -1;
3092 }
3093 else
3094 /* We were just checking for existence of the tag. */
3095 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3096
3097 return 0;
3098 }
3099
3100 static bfd_boolean
3101 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3102 {
3103 for (; needed != NULL; needed = needed->next)
3104 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3105 && strcmp (soname, needed->name) == 0)
3106 return TRUE;
3107
3108 return FALSE;
3109 }
3110
3111 /* Sort symbol by value, section, and size. */
3112 static int
3113 elf_sort_symbol (const void *arg1, const void *arg2)
3114 {
3115 const struct elf_link_hash_entry *h1;
3116 const struct elf_link_hash_entry *h2;
3117 bfd_signed_vma vdiff;
3118
3119 h1 = *(const struct elf_link_hash_entry **) arg1;
3120 h2 = *(const struct elf_link_hash_entry **) arg2;
3121 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3122 if (vdiff != 0)
3123 return vdiff > 0 ? 1 : -1;
3124 else
3125 {
3126 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3127 if (sdiff != 0)
3128 return sdiff > 0 ? 1 : -1;
3129 }
3130 vdiff = h1->size - h2->size;
3131 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3132 }
3133
3134 /* This function is used to adjust offsets into .dynstr for
3135 dynamic symbols. This is called via elf_link_hash_traverse. */
3136
3137 static bfd_boolean
3138 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3139 {
3140 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3141
3142 if (h->dynindx != -1)
3143 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3144 return TRUE;
3145 }
3146
3147 /* Assign string offsets in .dynstr, update all structures referencing
3148 them. */
3149
3150 static bfd_boolean
3151 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3152 {
3153 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3154 struct elf_link_local_dynamic_entry *entry;
3155 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3156 bfd *dynobj = hash_table->dynobj;
3157 asection *sdyn;
3158 bfd_size_type size;
3159 const struct elf_backend_data *bed;
3160 bfd_byte *extdyn;
3161
3162 _bfd_elf_strtab_finalize (dynstr);
3163 size = _bfd_elf_strtab_size (dynstr);
3164
3165 bed = get_elf_backend_data (dynobj);
3166 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3167 BFD_ASSERT (sdyn != NULL);
3168
3169 /* Update all .dynamic entries referencing .dynstr strings. */
3170 for (extdyn = sdyn->contents;
3171 extdyn < sdyn->contents + sdyn->size;
3172 extdyn += bed->s->sizeof_dyn)
3173 {
3174 Elf_Internal_Dyn dyn;
3175
3176 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3177 switch (dyn.d_tag)
3178 {
3179 case DT_STRSZ:
3180 dyn.d_un.d_val = size;
3181 break;
3182 case DT_NEEDED:
3183 case DT_SONAME:
3184 case DT_RPATH:
3185 case DT_RUNPATH:
3186 case DT_FILTER:
3187 case DT_AUXILIARY:
3188 case DT_AUDIT:
3189 case DT_DEPAUDIT:
3190 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3191 break;
3192 default:
3193 continue;
3194 }
3195 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3196 }
3197
3198 /* Now update local dynamic symbols. */
3199 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3200 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3201 entry->isym.st_name);
3202
3203 /* And the rest of dynamic symbols. */
3204 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3205
3206 /* Adjust version definitions. */
3207 if (elf_tdata (output_bfd)->cverdefs)
3208 {
3209 asection *s;
3210 bfd_byte *p;
3211 bfd_size_type i;
3212 Elf_Internal_Verdef def;
3213 Elf_Internal_Verdaux defaux;
3214
3215 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3216 p = s->contents;
3217 do
3218 {
3219 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3220 &def);
3221 p += sizeof (Elf_External_Verdef);
3222 if (def.vd_aux != sizeof (Elf_External_Verdef))
3223 continue;
3224 for (i = 0; i < def.vd_cnt; ++i)
3225 {
3226 _bfd_elf_swap_verdaux_in (output_bfd,
3227 (Elf_External_Verdaux *) p, &defaux);
3228 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3229 defaux.vda_name);
3230 _bfd_elf_swap_verdaux_out (output_bfd,
3231 &defaux, (Elf_External_Verdaux *) p);
3232 p += sizeof (Elf_External_Verdaux);
3233 }
3234 }
3235 while (def.vd_next);
3236 }
3237
3238 /* Adjust version references. */
3239 if (elf_tdata (output_bfd)->verref)
3240 {
3241 asection *s;
3242 bfd_byte *p;
3243 bfd_size_type i;
3244 Elf_Internal_Verneed need;
3245 Elf_Internal_Vernaux needaux;
3246
3247 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3248 p = s->contents;
3249 do
3250 {
3251 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3252 &need);
3253 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3254 _bfd_elf_swap_verneed_out (output_bfd, &need,
3255 (Elf_External_Verneed *) p);
3256 p += sizeof (Elf_External_Verneed);
3257 for (i = 0; i < need.vn_cnt; ++i)
3258 {
3259 _bfd_elf_swap_vernaux_in (output_bfd,
3260 (Elf_External_Vernaux *) p, &needaux);
3261 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3262 needaux.vna_name);
3263 _bfd_elf_swap_vernaux_out (output_bfd,
3264 &needaux,
3265 (Elf_External_Vernaux *) p);
3266 p += sizeof (Elf_External_Vernaux);
3267 }
3268 }
3269 while (need.vn_next);
3270 }
3271
3272 return TRUE;
3273 }
3274 \f
3275 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3276 The default is to only match when the INPUT and OUTPUT are exactly
3277 the same target. */
3278
3279 bfd_boolean
3280 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3281 const bfd_target *output)
3282 {
3283 return input == output;
3284 }
3285
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 This version is used when different targets for the same architecture
3288 are virtually identical. */
3289
3290 bfd_boolean
3291 _bfd_elf_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3293 {
3294 const struct elf_backend_data *obed, *ibed;
3295
3296 if (input == output)
3297 return TRUE;
3298
3299 ibed = xvec_get_elf_backend_data (input);
3300 obed = xvec_get_elf_backend_data (output);
3301
3302 if (ibed->arch != obed->arch)
3303 return FALSE;
3304
3305 /* If both backends are using this function, deem them compatible. */
3306 return ibed->relocs_compatible == obed->relocs_compatible;
3307 }
3308
3309 /* Make a special call to the linker "notice" function to tell it that
3310 we are about to handle an as-needed lib, or have finished
3311 processing the lib. */
3312
3313 bfd_boolean
3314 _bfd_elf_notice_as_needed (bfd *ibfd,
3315 struct bfd_link_info *info,
3316 enum notice_asneeded_action act)
3317 {
3318 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3319 }
3320
3321 /* Add symbols from an ELF object file to the linker hash table. */
3322
3323 static bfd_boolean
3324 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3325 {
3326 Elf_Internal_Ehdr *ehdr;
3327 Elf_Internal_Shdr *hdr;
3328 bfd_size_type symcount;
3329 bfd_size_type extsymcount;
3330 bfd_size_type extsymoff;
3331 struct elf_link_hash_entry **sym_hash;
3332 bfd_boolean dynamic;
3333 Elf_External_Versym *extversym = NULL;
3334 Elf_External_Versym *ever;
3335 struct elf_link_hash_entry *weaks;
3336 struct elf_link_hash_entry **nondeflt_vers = NULL;
3337 bfd_size_type nondeflt_vers_cnt = 0;
3338 Elf_Internal_Sym *isymbuf = NULL;
3339 Elf_Internal_Sym *isym;
3340 Elf_Internal_Sym *isymend;
3341 const struct elf_backend_data *bed;
3342 bfd_boolean add_needed;
3343 struct elf_link_hash_table *htab;
3344 bfd_size_type amt;
3345 void *alloc_mark = NULL;
3346 struct bfd_hash_entry **old_table = NULL;
3347 unsigned int old_size = 0;
3348 unsigned int old_count = 0;
3349 void *old_tab = NULL;
3350 void *old_ent;
3351 struct bfd_link_hash_entry *old_undefs = NULL;
3352 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3353 long old_dynsymcount = 0;
3354 bfd_size_type old_dynstr_size = 0;
3355 size_t tabsize = 0;
3356 asection *s;
3357 bfd_boolean just_syms;
3358
3359 htab = elf_hash_table (info);
3360 bed = get_elf_backend_data (abfd);
3361
3362 if ((abfd->flags & DYNAMIC) == 0)
3363 dynamic = FALSE;
3364 else
3365 {
3366 dynamic = TRUE;
3367
3368 /* You can't use -r against a dynamic object. Also, there's no
3369 hope of using a dynamic object which does not exactly match
3370 the format of the output file. */
3371 if (info->relocatable
3372 || !is_elf_hash_table (htab)
3373 || info->output_bfd->xvec != abfd->xvec)
3374 {
3375 if (info->relocatable)
3376 bfd_set_error (bfd_error_invalid_operation);
3377 else
3378 bfd_set_error (bfd_error_wrong_format);
3379 goto error_return;
3380 }
3381 }
3382
3383 ehdr = elf_elfheader (abfd);
3384 if (info->warn_alternate_em
3385 && bed->elf_machine_code != ehdr->e_machine
3386 && ((bed->elf_machine_alt1 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt1)
3388 || (bed->elf_machine_alt2 != 0
3389 && ehdr->e_machine == bed->elf_machine_alt2)))
3390 info->callbacks->einfo
3391 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3392 ehdr->e_machine, abfd, bed->elf_machine_code);
3393
3394 /* As a GNU extension, any input sections which are named
3395 .gnu.warning.SYMBOL are treated as warning symbols for the given
3396 symbol. This differs from .gnu.warning sections, which generate
3397 warnings when they are included in an output file. */
3398 /* PR 12761: Also generate this warning when building shared libraries. */
3399 for (s = abfd->sections; s != NULL; s = s->next)
3400 {
3401 const char *name;
3402
3403 name = bfd_get_section_name (abfd, s);
3404 if (CONST_STRNEQ (name, ".gnu.warning."))
3405 {
3406 char *msg;
3407 bfd_size_type sz;
3408
3409 name += sizeof ".gnu.warning." - 1;
3410
3411 /* If this is a shared object, then look up the symbol
3412 in the hash table. If it is there, and it is already
3413 been defined, then we will not be using the entry
3414 from this shared object, so we don't need to warn.
3415 FIXME: If we see the definition in a regular object
3416 later on, we will warn, but we shouldn't. The only
3417 fix is to keep track of what warnings we are supposed
3418 to emit, and then handle them all at the end of the
3419 link. */
3420 if (dynamic)
3421 {
3422 struct elf_link_hash_entry *h;
3423
3424 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3425
3426 /* FIXME: What about bfd_link_hash_common? */
3427 if (h != NULL
3428 && (h->root.type == bfd_link_hash_defined
3429 || h->root.type == bfd_link_hash_defweak))
3430 continue;
3431 }
3432
3433 sz = s->size;
3434 msg = (char *) bfd_alloc (abfd, sz + 1);
3435 if (msg == NULL)
3436 goto error_return;
3437
3438 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3439 goto error_return;
3440
3441 msg[sz] = '\0';
3442
3443 if (! (_bfd_generic_link_add_one_symbol
3444 (info, abfd, name, BSF_WARNING, s, 0, msg,
3445 FALSE, bed->collect, NULL)))
3446 goto error_return;
3447
3448 if (!info->relocatable && info->executable)
3449 {
3450 /* Clobber the section size so that the warning does
3451 not get copied into the output file. */
3452 s->size = 0;
3453
3454 /* Also set SEC_EXCLUDE, so that symbols defined in
3455 the warning section don't get copied to the output. */
3456 s->flags |= SEC_EXCLUDE;
3457 }
3458 }
3459 }
3460
3461 just_syms = ((s = abfd->sections) != NULL
3462 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3463
3464 add_needed = TRUE;
3465 if (! dynamic)
3466 {
3467 /* If we are creating a shared library, create all the dynamic
3468 sections immediately. We need to attach them to something,
3469 so we attach them to this BFD, provided it is the right
3470 format and is not from ld --just-symbols. FIXME: If there
3471 are no input BFD's of the same format as the output, we can't
3472 make a shared library. */
3473 if (!just_syms
3474 && info->shared
3475 && is_elf_hash_table (htab)
3476 && info->output_bfd->xvec == abfd->xvec
3477 && !htab->dynamic_sections_created)
3478 {
3479 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3480 goto error_return;
3481 }
3482 }
3483 else if (!is_elf_hash_table (htab))
3484 goto error_return;
3485 else
3486 {
3487 const char *soname = NULL;
3488 char *audit = NULL;
3489 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3490 int ret;
3491
3492 /* ld --just-symbols and dynamic objects don't mix very well.
3493 ld shouldn't allow it. */
3494 if (just_syms)
3495 abort ();
3496
3497 /* If this dynamic lib was specified on the command line with
3498 --as-needed in effect, then we don't want to add a DT_NEEDED
3499 tag unless the lib is actually used. Similary for libs brought
3500 in by another lib's DT_NEEDED. When --no-add-needed is used
3501 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3502 any dynamic library in DT_NEEDED tags in the dynamic lib at
3503 all. */
3504 add_needed = (elf_dyn_lib_class (abfd)
3505 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3506 | DYN_NO_NEEDED)) == 0;
3507
3508 s = bfd_get_section_by_name (abfd, ".dynamic");
3509 if (s != NULL)
3510 {
3511 bfd_byte *dynbuf;
3512 bfd_byte *extdyn;
3513 unsigned int elfsec;
3514 unsigned long shlink;
3515
3516 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3517 {
3518 error_free_dyn:
3519 free (dynbuf);
3520 goto error_return;
3521 }
3522
3523 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3524 if (elfsec == SHN_BAD)
3525 goto error_free_dyn;
3526 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3527
3528 for (extdyn = dynbuf;
3529 extdyn < dynbuf + s->size;
3530 extdyn += bed->s->sizeof_dyn)
3531 {
3532 Elf_Internal_Dyn dyn;
3533
3534 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3535 if (dyn.d_tag == DT_SONAME)
3536 {
3537 unsigned int tagv = dyn.d_un.d_val;
3538 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3539 if (soname == NULL)
3540 goto error_free_dyn;
3541 }
3542 if (dyn.d_tag == DT_NEEDED)
3543 {
3544 struct bfd_link_needed_list *n, **pn;
3545 char *fnm, *anm;
3546 unsigned int tagv = dyn.d_un.d_val;
3547
3548 amt = sizeof (struct bfd_link_needed_list);
3549 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3550 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3551 if (n == NULL || fnm == NULL)
3552 goto error_free_dyn;
3553 amt = strlen (fnm) + 1;
3554 anm = (char *) bfd_alloc (abfd, amt);
3555 if (anm == NULL)
3556 goto error_free_dyn;
3557 memcpy (anm, fnm, amt);
3558 n->name = anm;
3559 n->by = abfd;
3560 n->next = NULL;
3561 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3562 ;
3563 *pn = n;
3564 }
3565 if (dyn.d_tag == DT_RUNPATH)
3566 {
3567 struct bfd_link_needed_list *n, **pn;
3568 char *fnm, *anm;
3569 unsigned int tagv = dyn.d_un.d_val;
3570
3571 amt = sizeof (struct bfd_link_needed_list);
3572 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3573 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (n == NULL || fnm == NULL)
3575 goto error_free_dyn;
3576 amt = strlen (fnm) + 1;
3577 anm = (char *) bfd_alloc (abfd, amt);
3578 if (anm == NULL)
3579 goto error_free_dyn;
3580 memcpy (anm, fnm, amt);
3581 n->name = anm;
3582 n->by = abfd;
3583 n->next = NULL;
3584 for (pn = & runpath;
3585 *pn != NULL;
3586 pn = &(*pn)->next)
3587 ;
3588 *pn = n;
3589 }
3590 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3591 if (!runpath && dyn.d_tag == DT_RPATH)
3592 {
3593 struct bfd_link_needed_list *n, **pn;
3594 char *fnm, *anm;
3595 unsigned int tagv = dyn.d_un.d_val;
3596
3597 amt = sizeof (struct bfd_link_needed_list);
3598 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3599 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3600 if (n == NULL || fnm == NULL)
3601 goto error_free_dyn;
3602 amt = strlen (fnm) + 1;
3603 anm = (char *) bfd_alloc (abfd, amt);
3604 if (anm == NULL)
3605 goto error_free_dyn;
3606 memcpy (anm, fnm, amt);
3607 n->name = anm;
3608 n->by = abfd;
3609 n->next = NULL;
3610 for (pn = & rpath;
3611 *pn != NULL;
3612 pn = &(*pn)->next)
3613 ;
3614 *pn = n;
3615 }
3616 if (dyn.d_tag == DT_AUDIT)
3617 {
3618 unsigned int tagv = dyn.d_un.d_val;
3619 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3620 }
3621 }
3622
3623 free (dynbuf);
3624 }
3625
3626 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3627 frees all more recently bfd_alloc'd blocks as well. */
3628 if (runpath)
3629 rpath = runpath;
3630
3631 if (rpath)
3632 {
3633 struct bfd_link_needed_list **pn;
3634 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3635 ;
3636 *pn = rpath;
3637 }
3638
3639 /* We do not want to include any of the sections in a dynamic
3640 object in the output file. We hack by simply clobbering the
3641 list of sections in the BFD. This could be handled more
3642 cleanly by, say, a new section flag; the existing
3643 SEC_NEVER_LOAD flag is not the one we want, because that one
3644 still implies that the section takes up space in the output
3645 file. */
3646 bfd_section_list_clear (abfd);
3647
3648 /* Find the name to use in a DT_NEEDED entry that refers to this
3649 object. If the object has a DT_SONAME entry, we use it.
3650 Otherwise, if the generic linker stuck something in
3651 elf_dt_name, we use that. Otherwise, we just use the file
3652 name. */
3653 if (soname == NULL || *soname == '\0')
3654 {
3655 soname = elf_dt_name (abfd);
3656 if (soname == NULL || *soname == '\0')
3657 soname = bfd_get_filename (abfd);
3658 }
3659
3660 /* Save the SONAME because sometimes the linker emulation code
3661 will need to know it. */
3662 elf_dt_name (abfd) = soname;
3663
3664 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3665 if (ret < 0)
3666 goto error_return;
3667
3668 /* If we have already included this dynamic object in the
3669 link, just ignore it. There is no reason to include a
3670 particular dynamic object more than once. */
3671 if (ret > 0)
3672 return TRUE;
3673
3674 /* Save the DT_AUDIT entry for the linker emulation code. */
3675 elf_dt_audit (abfd) = audit;
3676 }
3677
3678 /* If this is a dynamic object, we always link against the .dynsym
3679 symbol table, not the .symtab symbol table. The dynamic linker
3680 will only see the .dynsym symbol table, so there is no reason to
3681 look at .symtab for a dynamic object. */
3682
3683 if (! dynamic || elf_dynsymtab (abfd) == 0)
3684 hdr = &elf_tdata (abfd)->symtab_hdr;
3685 else
3686 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3687
3688 symcount = hdr->sh_size / bed->s->sizeof_sym;
3689
3690 /* The sh_info field of the symtab header tells us where the
3691 external symbols start. We don't care about the local symbols at
3692 this point. */
3693 if (elf_bad_symtab (abfd))
3694 {
3695 extsymcount = symcount;
3696 extsymoff = 0;
3697 }
3698 else
3699 {
3700 extsymcount = symcount - hdr->sh_info;
3701 extsymoff = hdr->sh_info;
3702 }
3703
3704 sym_hash = elf_sym_hashes (abfd);
3705 if (extsymcount != 0)
3706 {
3707 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3708 NULL, NULL, NULL);
3709 if (isymbuf == NULL)
3710 goto error_return;
3711
3712 if (sym_hash == NULL)
3713 {
3714 /* We store a pointer to the hash table entry for each
3715 external symbol. */
3716 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3717 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3718 if (sym_hash == NULL)
3719 goto error_free_sym;
3720 elf_sym_hashes (abfd) = sym_hash;
3721 }
3722 }
3723
3724 if (dynamic)
3725 {
3726 /* Read in any version definitions. */
3727 if (!_bfd_elf_slurp_version_tables (abfd,
3728 info->default_imported_symver))
3729 goto error_free_sym;
3730
3731 /* Read in the symbol versions, but don't bother to convert them
3732 to internal format. */
3733 if (elf_dynversym (abfd) != 0)
3734 {
3735 Elf_Internal_Shdr *versymhdr;
3736
3737 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3738 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3739 if (extversym == NULL)
3740 goto error_free_sym;
3741 amt = versymhdr->sh_size;
3742 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3743 || bfd_bread (extversym, amt, abfd) != amt)
3744 goto error_free_vers;
3745 }
3746 }
3747
3748 /* If we are loading an as-needed shared lib, save the symbol table
3749 state before we start adding symbols. If the lib turns out
3750 to be unneeded, restore the state. */
3751 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3752 {
3753 unsigned int i;
3754 size_t entsize;
3755
3756 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3757 {
3758 struct bfd_hash_entry *p;
3759 struct elf_link_hash_entry *h;
3760
3761 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3762 {
3763 h = (struct elf_link_hash_entry *) p;
3764 entsize += htab->root.table.entsize;
3765 if (h->root.type == bfd_link_hash_warning)
3766 entsize += htab->root.table.entsize;
3767 }
3768 }
3769
3770 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3771 old_tab = bfd_malloc (tabsize + entsize);
3772 if (old_tab == NULL)
3773 goto error_free_vers;
3774
3775 /* Remember the current objalloc pointer, so that all mem for
3776 symbols added can later be reclaimed. */
3777 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3778 if (alloc_mark == NULL)
3779 goto error_free_vers;
3780
3781 /* Make a special call to the linker "notice" function to
3782 tell it that we are about to handle an as-needed lib. */
3783 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3784 goto error_free_vers;
3785
3786 /* Clone the symbol table. Remember some pointers into the
3787 symbol table, and dynamic symbol count. */
3788 old_ent = (char *) old_tab + tabsize;
3789 memcpy (old_tab, htab->root.table.table, tabsize);
3790 old_undefs = htab->root.undefs;
3791 old_undefs_tail = htab->root.undefs_tail;
3792 old_table = htab->root.table.table;
3793 old_size = htab->root.table.size;
3794 old_count = htab->root.table.count;
3795 old_dynsymcount = htab->dynsymcount;
3796 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3797
3798 for (i = 0; i < htab->root.table.size; i++)
3799 {
3800 struct bfd_hash_entry *p;
3801 struct elf_link_hash_entry *h;
3802
3803 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3804 {
3805 memcpy (old_ent, p, htab->root.table.entsize);
3806 old_ent = (char *) old_ent + htab->root.table.entsize;
3807 h = (struct elf_link_hash_entry *) p;
3808 if (h->root.type == bfd_link_hash_warning)
3809 {
3810 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3811 old_ent = (char *) old_ent + htab->root.table.entsize;
3812 }
3813 }
3814 }
3815 }
3816
3817 weaks = NULL;
3818 ever = extversym != NULL ? extversym + extsymoff : NULL;
3819 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3820 isym < isymend;
3821 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3822 {
3823 int bind;
3824 bfd_vma value;
3825 asection *sec, *new_sec;
3826 flagword flags;
3827 const char *name;
3828 struct elf_link_hash_entry *h;
3829 struct elf_link_hash_entry *hi;
3830 bfd_boolean definition;
3831 bfd_boolean size_change_ok;
3832 bfd_boolean type_change_ok;
3833 bfd_boolean new_weakdef;
3834 bfd_boolean new_weak;
3835 bfd_boolean old_weak;
3836 bfd_boolean override;
3837 bfd_boolean common;
3838 unsigned int old_alignment;
3839 bfd *old_bfd;
3840
3841 override = FALSE;
3842
3843 flags = BSF_NO_FLAGS;
3844 sec = NULL;
3845 value = isym->st_value;
3846 common = bed->common_definition (isym);
3847
3848 bind = ELF_ST_BIND (isym->st_info);
3849 switch (bind)
3850 {
3851 case STB_LOCAL:
3852 /* This should be impossible, since ELF requires that all
3853 global symbols follow all local symbols, and that sh_info
3854 point to the first global symbol. Unfortunately, Irix 5
3855 screws this up. */
3856 continue;
3857
3858 case STB_GLOBAL:
3859 if (isym->st_shndx != SHN_UNDEF && !common)
3860 flags = BSF_GLOBAL;
3861 break;
3862
3863 case STB_WEAK:
3864 flags = BSF_WEAK;
3865 break;
3866
3867 case STB_GNU_UNIQUE:
3868 flags = BSF_GNU_UNIQUE;
3869 break;
3870
3871 default:
3872 /* Leave it up to the processor backend. */
3873 break;
3874 }
3875
3876 if (isym->st_shndx == SHN_UNDEF)
3877 sec = bfd_und_section_ptr;
3878 else if (isym->st_shndx == SHN_ABS)
3879 sec = bfd_abs_section_ptr;
3880 else if (isym->st_shndx == SHN_COMMON)
3881 {
3882 sec = bfd_com_section_ptr;
3883 /* What ELF calls the size we call the value. What ELF
3884 calls the value we call the alignment. */
3885 value = isym->st_size;
3886 }
3887 else
3888 {
3889 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3890 if (sec == NULL)
3891 sec = bfd_abs_section_ptr;
3892 else if (discarded_section (sec))
3893 {
3894 /* Symbols from discarded section are undefined. We keep
3895 its visibility. */
3896 sec = bfd_und_section_ptr;
3897 isym->st_shndx = SHN_UNDEF;
3898 }
3899 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3900 value -= sec->vma;
3901 }
3902
3903 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3904 isym->st_name);
3905 if (name == NULL)
3906 goto error_free_vers;
3907
3908 if (isym->st_shndx == SHN_COMMON
3909 && (abfd->flags & BFD_PLUGIN) != 0)
3910 {
3911 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3912
3913 if (xc == NULL)
3914 {
3915 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3916 | SEC_EXCLUDE);
3917 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3918 if (xc == NULL)
3919 goto error_free_vers;
3920 }
3921 sec = xc;
3922 }
3923 else if (isym->st_shndx == SHN_COMMON
3924 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3925 && !info->relocatable)
3926 {
3927 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3928
3929 if (tcomm == NULL)
3930 {
3931 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3932 | SEC_LINKER_CREATED);
3933 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3934 if (tcomm == NULL)
3935 goto error_free_vers;
3936 }
3937 sec = tcomm;
3938 }
3939 else if (bed->elf_add_symbol_hook)
3940 {
3941 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3942 &sec, &value))
3943 goto error_free_vers;
3944
3945 /* The hook function sets the name to NULL if this symbol
3946 should be skipped for some reason. */
3947 if (name == NULL)
3948 continue;
3949 }
3950
3951 /* Sanity check that all possibilities were handled. */
3952 if (sec == NULL)
3953 {
3954 bfd_set_error (bfd_error_bad_value);
3955 goto error_free_vers;
3956 }
3957
3958 /* Silently discard TLS symbols from --just-syms. There's
3959 no way to combine a static TLS block with a new TLS block
3960 for this executable. */
3961 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3962 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3963 continue;
3964
3965 if (bfd_is_und_section (sec)
3966 || bfd_is_com_section (sec))
3967 definition = FALSE;
3968 else
3969 definition = TRUE;
3970
3971 size_change_ok = FALSE;
3972 type_change_ok = bed->type_change_ok;
3973 old_weak = FALSE;
3974 old_alignment = 0;
3975 old_bfd = NULL;
3976 new_sec = sec;
3977
3978 if (is_elf_hash_table (htab))
3979 {
3980 Elf_Internal_Versym iver;
3981 unsigned int vernum = 0;
3982 bfd_boolean skip;
3983
3984 if (ever == NULL)
3985 {
3986 if (info->default_imported_symver)
3987 /* Use the default symbol version created earlier. */
3988 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3989 else
3990 iver.vs_vers = 0;
3991 }
3992 else
3993 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3994
3995 vernum = iver.vs_vers & VERSYM_VERSION;
3996
3997 /* If this is a hidden symbol, or if it is not version
3998 1, we append the version name to the symbol name.
3999 However, we do not modify a non-hidden absolute symbol
4000 if it is not a function, because it might be the version
4001 symbol itself. FIXME: What if it isn't? */
4002 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4003 || (vernum > 1
4004 && (!bfd_is_abs_section (sec)
4005 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4006 {
4007 const char *verstr;
4008 size_t namelen, verlen, newlen;
4009 char *newname, *p;
4010
4011 if (isym->st_shndx != SHN_UNDEF)
4012 {
4013 if (vernum > elf_tdata (abfd)->cverdefs)
4014 verstr = NULL;
4015 else if (vernum > 1)
4016 verstr =
4017 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4018 else
4019 verstr = "";
4020
4021 if (verstr == NULL)
4022 {
4023 (*_bfd_error_handler)
4024 (_("%B: %s: invalid version %u (max %d)"),
4025 abfd, name, vernum,
4026 elf_tdata (abfd)->cverdefs);
4027 bfd_set_error (bfd_error_bad_value);
4028 goto error_free_vers;
4029 }
4030 }
4031 else
4032 {
4033 /* We cannot simply test for the number of
4034 entries in the VERNEED section since the
4035 numbers for the needed versions do not start
4036 at 0. */
4037 Elf_Internal_Verneed *t;
4038
4039 verstr = NULL;
4040 for (t = elf_tdata (abfd)->verref;
4041 t != NULL;
4042 t = t->vn_nextref)
4043 {
4044 Elf_Internal_Vernaux *a;
4045
4046 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4047 {
4048 if (a->vna_other == vernum)
4049 {
4050 verstr = a->vna_nodename;
4051 break;
4052 }
4053 }
4054 if (a != NULL)
4055 break;
4056 }
4057 if (verstr == NULL)
4058 {
4059 (*_bfd_error_handler)
4060 (_("%B: %s: invalid needed version %d"),
4061 abfd, name, vernum);
4062 bfd_set_error (bfd_error_bad_value);
4063 goto error_free_vers;
4064 }
4065 }
4066
4067 namelen = strlen (name);
4068 verlen = strlen (verstr);
4069 newlen = namelen + verlen + 2;
4070 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4071 && isym->st_shndx != SHN_UNDEF)
4072 ++newlen;
4073
4074 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4075 if (newname == NULL)
4076 goto error_free_vers;
4077 memcpy (newname, name, namelen);
4078 p = newname + namelen;
4079 *p++ = ELF_VER_CHR;
4080 /* If this is a defined non-hidden version symbol,
4081 we add another @ to the name. This indicates the
4082 default version of the symbol. */
4083 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4084 && isym->st_shndx != SHN_UNDEF)
4085 *p++ = ELF_VER_CHR;
4086 memcpy (p, verstr, verlen + 1);
4087
4088 name = newname;
4089 }
4090
4091 /* If this symbol has default visibility and the user has
4092 requested we not re-export it, then mark it as hidden. */
4093 if (definition
4094 && !dynamic
4095 && (abfd->no_export
4096 || (abfd->my_archive && abfd->my_archive->no_export))
4097 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4098 isym->st_other = (STV_HIDDEN
4099 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4100
4101 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4102 sym_hash, &old_bfd, &old_weak,
4103 &old_alignment, &skip, &override,
4104 &type_change_ok, &size_change_ok))
4105 goto error_free_vers;
4106
4107 if (skip)
4108 continue;
4109
4110 if (override)
4111 definition = FALSE;
4112
4113 h = *sym_hash;
4114 while (h->root.type == bfd_link_hash_indirect
4115 || h->root.type == bfd_link_hash_warning)
4116 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4117
4118 if (elf_tdata (abfd)->verdef != NULL
4119 && vernum > 1
4120 && definition)
4121 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4122 }
4123
4124 if (! (_bfd_generic_link_add_one_symbol
4125 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4126 (struct bfd_link_hash_entry **) sym_hash)))
4127 goto error_free_vers;
4128
4129 h = *sym_hash;
4130 /* We need to make sure that indirect symbol dynamic flags are
4131 updated. */
4132 hi = h;
4133 while (h->root.type == bfd_link_hash_indirect
4134 || h->root.type == bfd_link_hash_warning)
4135 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4136
4137 *sym_hash = h;
4138
4139 new_weak = (flags & BSF_WEAK) != 0;
4140 new_weakdef = FALSE;
4141 if (dynamic
4142 && definition
4143 && new_weak
4144 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4145 && is_elf_hash_table (htab)
4146 && h->u.weakdef == NULL)
4147 {
4148 /* Keep a list of all weak defined non function symbols from
4149 a dynamic object, using the weakdef field. Later in this
4150 function we will set the weakdef field to the correct
4151 value. We only put non-function symbols from dynamic
4152 objects on this list, because that happens to be the only
4153 time we need to know the normal symbol corresponding to a
4154 weak symbol, and the information is time consuming to
4155 figure out. If the weakdef field is not already NULL,
4156 then this symbol was already defined by some previous
4157 dynamic object, and we will be using that previous
4158 definition anyhow. */
4159
4160 h->u.weakdef = weaks;
4161 weaks = h;
4162 new_weakdef = TRUE;
4163 }
4164
4165 /* Set the alignment of a common symbol. */
4166 if ((common || bfd_is_com_section (sec))
4167 && h->root.type == bfd_link_hash_common)
4168 {
4169 unsigned int align;
4170
4171 if (common)
4172 align = bfd_log2 (isym->st_value);
4173 else
4174 {
4175 /* The new symbol is a common symbol in a shared object.
4176 We need to get the alignment from the section. */
4177 align = new_sec->alignment_power;
4178 }
4179 if (align > old_alignment)
4180 h->root.u.c.p->alignment_power = align;
4181 else
4182 h->root.u.c.p->alignment_power = old_alignment;
4183 }
4184
4185 if (is_elf_hash_table (htab))
4186 {
4187 /* Set a flag in the hash table entry indicating the type of
4188 reference or definition we just found. A dynamic symbol
4189 is one which is referenced or defined by both a regular
4190 object and a shared object. */
4191 bfd_boolean dynsym = FALSE;
4192
4193 /* Plugin symbols aren't normal. Don't set def_regular or
4194 ref_regular for them, or make them dynamic. */
4195 if ((abfd->flags & BFD_PLUGIN) != 0)
4196 ;
4197 else if (! dynamic)
4198 {
4199 if (! definition)
4200 {
4201 h->ref_regular = 1;
4202 if (bind != STB_WEAK)
4203 h->ref_regular_nonweak = 1;
4204 }
4205 else
4206 {
4207 h->def_regular = 1;
4208 if (h->def_dynamic)
4209 {
4210 h->def_dynamic = 0;
4211 h->ref_dynamic = 1;
4212 }
4213 }
4214
4215 /* If the indirect symbol has been forced local, don't
4216 make the real symbol dynamic. */
4217 if ((h == hi || !hi->forced_local)
4218 && (! info->executable
4219 || h->def_dynamic
4220 || h->ref_dynamic))
4221 dynsym = TRUE;
4222 }
4223 else
4224 {
4225 if (! definition)
4226 {
4227 h->ref_dynamic = 1;
4228 hi->ref_dynamic = 1;
4229 }
4230 else
4231 {
4232 h->def_dynamic = 1;
4233 hi->def_dynamic = 1;
4234 }
4235
4236 /* If the indirect symbol has been forced local, don't
4237 make the real symbol dynamic. */
4238 if ((h == hi || !hi->forced_local)
4239 && (h->def_regular
4240 || h->ref_regular
4241 || (h->u.weakdef != NULL
4242 && ! new_weakdef
4243 && h->u.weakdef->dynindx != -1)))
4244 dynsym = TRUE;
4245 }
4246
4247 /* Check to see if we need to add an indirect symbol for
4248 the default name. */
4249 if (definition
4250 || (!override && h->root.type == bfd_link_hash_common))
4251 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4252 sec, value, &old_bfd, &dynsym))
4253 goto error_free_vers;
4254
4255 /* Check the alignment when a common symbol is involved. This
4256 can change when a common symbol is overridden by a normal
4257 definition or a common symbol is ignored due to the old
4258 normal definition. We need to make sure the maximum
4259 alignment is maintained. */
4260 if ((old_alignment || common)
4261 && h->root.type != bfd_link_hash_common)
4262 {
4263 unsigned int common_align;
4264 unsigned int normal_align;
4265 unsigned int symbol_align;
4266 bfd *normal_bfd;
4267 bfd *common_bfd;
4268
4269 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4270 || h->root.type == bfd_link_hash_defweak);
4271
4272 symbol_align = ffs (h->root.u.def.value) - 1;
4273 if (h->root.u.def.section->owner != NULL
4274 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4275 {
4276 normal_align = h->root.u.def.section->alignment_power;
4277 if (normal_align > symbol_align)
4278 normal_align = symbol_align;
4279 }
4280 else
4281 normal_align = symbol_align;
4282
4283 if (old_alignment)
4284 {
4285 common_align = old_alignment;
4286 common_bfd = old_bfd;
4287 normal_bfd = abfd;
4288 }
4289 else
4290 {
4291 common_align = bfd_log2 (isym->st_value);
4292 common_bfd = abfd;
4293 normal_bfd = old_bfd;
4294 }
4295
4296 if (normal_align < common_align)
4297 {
4298 /* PR binutils/2735 */
4299 if (normal_bfd == NULL)
4300 (*_bfd_error_handler)
4301 (_("Warning: alignment %u of common symbol `%s' in %B is"
4302 " greater than the alignment (%u) of its section %A"),
4303 common_bfd, h->root.u.def.section,
4304 1 << common_align, name, 1 << normal_align);
4305 else
4306 (*_bfd_error_handler)
4307 (_("Warning: alignment %u of symbol `%s' in %B"
4308 " is smaller than %u in %B"),
4309 normal_bfd, common_bfd,
4310 1 << normal_align, name, 1 << common_align);
4311 }
4312 }
4313
4314 /* Remember the symbol size if it isn't undefined. */
4315 if (isym->st_size != 0
4316 && isym->st_shndx != SHN_UNDEF
4317 && (definition || h->size == 0))
4318 {
4319 if (h->size != 0
4320 && h->size != isym->st_size
4321 && ! size_change_ok)
4322 (*_bfd_error_handler)
4323 (_("Warning: size of symbol `%s' changed"
4324 " from %lu in %B to %lu in %B"),
4325 old_bfd, abfd,
4326 name, (unsigned long) h->size,
4327 (unsigned long) isym->st_size);
4328
4329 h->size = isym->st_size;
4330 }
4331
4332 /* If this is a common symbol, then we always want H->SIZE
4333 to be the size of the common symbol. The code just above
4334 won't fix the size if a common symbol becomes larger. We
4335 don't warn about a size change here, because that is
4336 covered by --warn-common. Allow changes between different
4337 function types. */
4338 if (h->root.type == bfd_link_hash_common)
4339 h->size = h->root.u.c.size;
4340
4341 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4342 && ((definition && !new_weak)
4343 || (old_weak && h->root.type == bfd_link_hash_common)
4344 || h->type == STT_NOTYPE))
4345 {
4346 unsigned int type = ELF_ST_TYPE (isym->st_info);
4347
4348 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4349 symbol. */
4350 if (type == STT_GNU_IFUNC
4351 && (abfd->flags & DYNAMIC) != 0)
4352 type = STT_FUNC;
4353
4354 if (h->type != type)
4355 {
4356 if (h->type != STT_NOTYPE && ! type_change_ok)
4357 (*_bfd_error_handler)
4358 (_("Warning: type of symbol `%s' changed"
4359 " from %d to %d in %B"),
4360 abfd, name, h->type, type);
4361
4362 h->type = type;
4363 }
4364 }
4365
4366 /* Merge st_other field. */
4367 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4368
4369 /* We don't want to make debug symbol dynamic. */
4370 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4371 dynsym = FALSE;
4372
4373 /* Nor should we make plugin symbols dynamic. */
4374 if ((abfd->flags & BFD_PLUGIN) != 0)
4375 dynsym = FALSE;
4376
4377 if (definition)
4378 {
4379 h->target_internal = isym->st_target_internal;
4380 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4381 }
4382
4383 if (definition && !dynamic)
4384 {
4385 char *p = strchr (name, ELF_VER_CHR);
4386 if (p != NULL && p[1] != ELF_VER_CHR)
4387 {
4388 /* Queue non-default versions so that .symver x, x@FOO
4389 aliases can be checked. */
4390 if (!nondeflt_vers)
4391 {
4392 amt = ((isymend - isym + 1)
4393 * sizeof (struct elf_link_hash_entry *));
4394 nondeflt_vers =
4395 (struct elf_link_hash_entry **) bfd_malloc (amt);
4396 if (!nondeflt_vers)
4397 goto error_free_vers;
4398 }
4399 nondeflt_vers[nondeflt_vers_cnt++] = h;
4400 }
4401 }
4402
4403 if (dynsym && h->dynindx == -1)
4404 {
4405 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4406 goto error_free_vers;
4407 if (h->u.weakdef != NULL
4408 && ! new_weakdef
4409 && h->u.weakdef->dynindx == -1)
4410 {
4411 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4412 goto error_free_vers;
4413 }
4414 }
4415 else if (dynsym && h->dynindx != -1)
4416 /* If the symbol already has a dynamic index, but
4417 visibility says it should not be visible, turn it into
4418 a local symbol. */
4419 switch (ELF_ST_VISIBILITY (h->other))
4420 {
4421 case STV_INTERNAL:
4422 case STV_HIDDEN:
4423 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4424 dynsym = FALSE;
4425 break;
4426 }
4427
4428 /* Don't add DT_NEEDED for references from the dummy bfd. */
4429 if (!add_needed
4430 && definition
4431 && ((dynsym
4432 && h->ref_regular_nonweak
4433 && (old_bfd == NULL
4434 || (old_bfd->flags & BFD_PLUGIN) == 0))
4435 || (h->ref_dynamic_nonweak
4436 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4437 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4438 {
4439 int ret;
4440 const char *soname = elf_dt_name (abfd);
4441
4442 info->callbacks->minfo ("%!", soname, old_bfd,
4443 h->root.root.string);
4444
4445 /* A symbol from a library loaded via DT_NEEDED of some
4446 other library is referenced by a regular object.
4447 Add a DT_NEEDED entry for it. Issue an error if
4448 --no-add-needed is used and the reference was not
4449 a weak one. */
4450 if (old_bfd != NULL
4451 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4452 {
4453 (*_bfd_error_handler)
4454 (_("%B: undefined reference to symbol '%s'"),
4455 old_bfd, name);
4456 bfd_set_error (bfd_error_missing_dso);
4457 goto error_free_vers;
4458 }
4459
4460 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4461 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4462
4463 add_needed = TRUE;
4464 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4465 if (ret < 0)
4466 goto error_free_vers;
4467
4468 BFD_ASSERT (ret == 0);
4469 }
4470 }
4471 }
4472
4473 if (extversym != NULL)
4474 {
4475 free (extversym);
4476 extversym = NULL;
4477 }
4478
4479 if (isymbuf != NULL)
4480 {
4481 free (isymbuf);
4482 isymbuf = NULL;
4483 }
4484
4485 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4486 {
4487 unsigned int i;
4488
4489 /* Restore the symbol table. */
4490 old_ent = (char *) old_tab + tabsize;
4491 memset (elf_sym_hashes (abfd), 0,
4492 extsymcount * sizeof (struct elf_link_hash_entry *));
4493 htab->root.table.table = old_table;
4494 htab->root.table.size = old_size;
4495 htab->root.table.count = old_count;
4496 memcpy (htab->root.table.table, old_tab, tabsize);
4497 htab->root.undefs = old_undefs;
4498 htab->root.undefs_tail = old_undefs_tail;
4499 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4500 for (i = 0; i < htab->root.table.size; i++)
4501 {
4502 struct bfd_hash_entry *p;
4503 struct elf_link_hash_entry *h;
4504 bfd_size_type size;
4505 unsigned int alignment_power;
4506
4507 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4508 {
4509 h = (struct elf_link_hash_entry *) p;
4510 if (h->root.type == bfd_link_hash_warning)
4511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4512 if (h->dynindx >= old_dynsymcount
4513 && h->dynstr_index < old_dynstr_size)
4514 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4515
4516 /* Preserve the maximum alignment and size for common
4517 symbols even if this dynamic lib isn't on DT_NEEDED
4518 since it can still be loaded at run time by another
4519 dynamic lib. */
4520 if (h->root.type == bfd_link_hash_common)
4521 {
4522 size = h->root.u.c.size;
4523 alignment_power = h->root.u.c.p->alignment_power;
4524 }
4525 else
4526 {
4527 size = 0;
4528 alignment_power = 0;
4529 }
4530 memcpy (p, old_ent, htab->root.table.entsize);
4531 old_ent = (char *) old_ent + htab->root.table.entsize;
4532 h = (struct elf_link_hash_entry *) p;
4533 if (h->root.type == bfd_link_hash_warning)
4534 {
4535 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4536 old_ent = (char *) old_ent + htab->root.table.entsize;
4537 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4538 }
4539 if (h->root.type == bfd_link_hash_common)
4540 {
4541 if (size > h->root.u.c.size)
4542 h->root.u.c.size = size;
4543 if (alignment_power > h->root.u.c.p->alignment_power)
4544 h->root.u.c.p->alignment_power = alignment_power;
4545 }
4546 }
4547 }
4548
4549 /* Make a special call to the linker "notice" function to
4550 tell it that symbols added for crefs may need to be removed. */
4551 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4552 goto error_free_vers;
4553
4554 free (old_tab);
4555 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4556 alloc_mark);
4557 if (nondeflt_vers != NULL)
4558 free (nondeflt_vers);
4559 return TRUE;
4560 }
4561
4562 if (old_tab != NULL)
4563 {
4564 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4565 goto error_free_vers;
4566 free (old_tab);
4567 old_tab = NULL;
4568 }
4569
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers != NULL)
4573 {
4574 bfd_size_type cnt, symidx;
4575
4576 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4577 {
4578 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4579 char *shortname, *p;
4580
4581 p = strchr (h->root.root.string, ELF_VER_CHR);
4582 if (p == NULL
4583 || (h->root.type != bfd_link_hash_defined
4584 && h->root.type != bfd_link_hash_defweak))
4585 continue;
4586
4587 amt = p - h->root.root.string;
4588 shortname = (char *) bfd_malloc (amt + 1);
4589 if (!shortname)
4590 goto error_free_vers;
4591 memcpy (shortname, h->root.root.string, amt);
4592 shortname[amt] = '\0';
4593
4594 hi = (struct elf_link_hash_entry *)
4595 bfd_link_hash_lookup (&htab->root, shortname,
4596 FALSE, FALSE, FALSE);
4597 if (hi != NULL
4598 && hi->root.type == h->root.type
4599 && hi->root.u.def.value == h->root.u.def.value
4600 && hi->root.u.def.section == h->root.u.def.section)
4601 {
4602 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4603 hi->root.type = bfd_link_hash_indirect;
4604 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4606 sym_hash = elf_sym_hashes (abfd);
4607 if (sym_hash)
4608 for (symidx = 0; symidx < extsymcount; ++symidx)
4609 if (sym_hash[symidx] == hi)
4610 {
4611 sym_hash[symidx] = h;
4612 break;
4613 }
4614 }
4615 free (shortname);
4616 }
4617 free (nondeflt_vers);
4618 nondeflt_vers = NULL;
4619 }
4620
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4633 either. */
4634 if (weaks != NULL)
4635 {
4636 struct elf_link_hash_entry **hpp;
4637 struct elf_link_hash_entry **hppend;
4638 struct elf_link_hash_entry **sorted_sym_hash;
4639 struct elf_link_hash_entry *h;
4640 size_t sym_count;
4641
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4646 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4647 if (sorted_sym_hash == NULL)
4648 goto error_return;
4649 sym_hash = sorted_sym_hash;
4650 hpp = elf_sym_hashes (abfd);
4651 hppend = hpp + extsymcount;
4652 sym_count = 0;
4653 for (; hpp < hppend; hpp++)
4654 {
4655 h = *hpp;
4656 if (h != NULL
4657 && h->root.type == bfd_link_hash_defined
4658 && !bed->is_function_type (h->type))
4659 {
4660 *sym_hash = h;
4661 sym_hash++;
4662 sym_count++;
4663 }
4664 }
4665
4666 qsort (sorted_sym_hash, sym_count,
4667 sizeof (struct elf_link_hash_entry *),
4668 elf_sort_symbol);
4669
4670 while (weaks != NULL)
4671 {
4672 struct elf_link_hash_entry *hlook;
4673 asection *slook;
4674 bfd_vma vlook;
4675 size_t i, j, idx = 0;
4676
4677 hlook = weaks;
4678 weaks = hlook->u.weakdef;
4679 hlook->u.weakdef = NULL;
4680
4681 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4682 || hlook->root.type == bfd_link_hash_defweak
4683 || hlook->root.type == bfd_link_hash_common
4684 || hlook->root.type == bfd_link_hash_indirect);
4685 slook = hlook->root.u.def.section;
4686 vlook = hlook->root.u.def.value;
4687
4688 i = 0;
4689 j = sym_count;
4690 while (i != j)
4691 {
4692 bfd_signed_vma vdiff;
4693 idx = (i + j) / 2;
4694 h = sorted_sym_hash[idx];
4695 vdiff = vlook - h->root.u.def.value;
4696 if (vdiff < 0)
4697 j = idx;
4698 else if (vdiff > 0)
4699 i = idx + 1;
4700 else
4701 {
4702 long sdiff = slook->id - h->root.u.def.section->id;
4703 if (sdiff < 0)
4704 j = idx;
4705 else if (sdiff > 0)
4706 i = idx + 1;
4707 else
4708 break;
4709 }
4710 }
4711
4712 /* We didn't find a value/section match. */
4713 if (i == j)
4714 continue;
4715
4716 /* With multiple aliases, or when the weak symbol is already
4717 strongly defined, we have multiple matching symbols and
4718 the binary search above may land on any of them. Step
4719 one past the matching symbol(s). */
4720 while (++idx != j)
4721 {
4722 h = sorted_sym_hash[idx];
4723 if (h->root.u.def.section != slook
4724 || h->root.u.def.value != vlook)
4725 break;
4726 }
4727
4728 /* Now look back over the aliases. Since we sorted by size
4729 as well as value and section, we'll choose the one with
4730 the largest size. */
4731 while (idx-- != i)
4732 {
4733 h = sorted_sym_hash[idx];
4734
4735 /* Stop if value or section doesn't match. */
4736 if (h->root.u.def.section != slook
4737 || h->root.u.def.value != vlook)
4738 break;
4739 else if (h != hlook)
4740 {
4741 hlook->u.weakdef = h;
4742
4743 /* If the weak definition is in the list of dynamic
4744 symbols, make sure the real definition is put
4745 there as well. */
4746 if (hlook->dynindx != -1 && h->dynindx == -1)
4747 {
4748 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4749 {
4750 err_free_sym_hash:
4751 free (sorted_sym_hash);
4752 goto error_return;
4753 }
4754 }
4755
4756 /* If the real definition is in the list of dynamic
4757 symbols, make sure the weak definition is put
4758 there as well. If we don't do this, then the
4759 dynamic loader might not merge the entries for the
4760 real definition and the weak definition. */
4761 if (h->dynindx != -1 && hlook->dynindx == -1)
4762 {
4763 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4764 goto err_free_sym_hash;
4765 }
4766 break;
4767 }
4768 }
4769 }
4770
4771 free (sorted_sym_hash);
4772 }
4773
4774 if (bed->check_directives
4775 && !(*bed->check_directives) (abfd, info))
4776 return FALSE;
4777
4778 /* If this object is the same format as the output object, and it is
4779 not a shared library, then let the backend look through the
4780 relocs.
4781
4782 This is required to build global offset table entries and to
4783 arrange for dynamic relocs. It is not required for the
4784 particular common case of linking non PIC code, even when linking
4785 against shared libraries, but unfortunately there is no way of
4786 knowing whether an object file has been compiled PIC or not.
4787 Looking through the relocs is not particularly time consuming.
4788 The problem is that we must either (1) keep the relocs in memory,
4789 which causes the linker to require additional runtime memory or
4790 (2) read the relocs twice from the input file, which wastes time.
4791 This would be a good case for using mmap.
4792
4793 I have no idea how to handle linking PIC code into a file of a
4794 different format. It probably can't be done. */
4795 if (! dynamic
4796 && is_elf_hash_table (htab)
4797 && bed->check_relocs != NULL
4798 && elf_object_id (abfd) == elf_hash_table_id (htab)
4799 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4800 {
4801 asection *o;
4802
4803 for (o = abfd->sections; o != NULL; o = o->next)
4804 {
4805 Elf_Internal_Rela *internal_relocs;
4806 bfd_boolean ok;
4807
4808 if ((o->flags & SEC_RELOC) == 0
4809 || o->reloc_count == 0
4810 || ((info->strip == strip_all || info->strip == strip_debugger)
4811 && (o->flags & SEC_DEBUGGING) != 0)
4812 || bfd_is_abs_section (o->output_section))
4813 continue;
4814
4815 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4816 info->keep_memory);
4817 if (internal_relocs == NULL)
4818 goto error_return;
4819
4820 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4821
4822 if (elf_section_data (o)->relocs != internal_relocs)
4823 free (internal_relocs);
4824
4825 if (! ok)
4826 goto error_return;
4827 }
4828 }
4829
4830 /* If this is a non-traditional link, try to optimize the handling
4831 of the .stab/.stabstr sections. */
4832 if (! dynamic
4833 && ! info->traditional_format
4834 && is_elf_hash_table (htab)
4835 && (info->strip != strip_all && info->strip != strip_debugger))
4836 {
4837 asection *stabstr;
4838
4839 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4840 if (stabstr != NULL)
4841 {
4842 bfd_size_type string_offset = 0;
4843 asection *stab;
4844
4845 for (stab = abfd->sections; stab; stab = stab->next)
4846 if (CONST_STRNEQ (stab->name, ".stab")
4847 && (!stab->name[5] ||
4848 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4849 && (stab->flags & SEC_MERGE) == 0
4850 && !bfd_is_abs_section (stab->output_section))
4851 {
4852 struct bfd_elf_section_data *secdata;
4853
4854 secdata = elf_section_data (stab);
4855 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4856 stabstr, &secdata->sec_info,
4857 &string_offset))
4858 goto error_return;
4859 if (secdata->sec_info)
4860 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4861 }
4862 }
4863 }
4864
4865 if (is_elf_hash_table (htab) && add_needed)
4866 {
4867 /* Add this bfd to the loaded list. */
4868 struct elf_link_loaded_list *n;
4869
4870 n = (struct elf_link_loaded_list *)
4871 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4872 if (n == NULL)
4873 goto error_return;
4874 n->abfd = abfd;
4875 n->next = htab->loaded;
4876 htab->loaded = n;
4877 }
4878
4879 return TRUE;
4880
4881 error_free_vers:
4882 if (old_tab != NULL)
4883 free (old_tab);
4884 if (nondeflt_vers != NULL)
4885 free (nondeflt_vers);
4886 if (extversym != NULL)
4887 free (extversym);
4888 error_free_sym:
4889 if (isymbuf != NULL)
4890 free (isymbuf);
4891 error_return:
4892 return FALSE;
4893 }
4894
4895 /* Return the linker hash table entry of a symbol that might be
4896 satisfied by an archive symbol. Return -1 on error. */
4897
4898 struct elf_link_hash_entry *
4899 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4900 struct bfd_link_info *info,
4901 const char *name)
4902 {
4903 struct elf_link_hash_entry *h;
4904 char *p, *copy;
4905 size_t len, first;
4906
4907 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4908 if (h != NULL)
4909 return h;
4910
4911 /* If this is a default version (the name contains @@), look up the
4912 symbol again with only one `@' as well as without the version.
4913 The effect is that references to the symbol with and without the
4914 version will be matched by the default symbol in the archive. */
4915
4916 p = strchr (name, ELF_VER_CHR);
4917 if (p == NULL || p[1] != ELF_VER_CHR)
4918 return h;
4919
4920 /* First check with only one `@'. */
4921 len = strlen (name);
4922 copy = (char *) bfd_alloc (abfd, len);
4923 if (copy == NULL)
4924 return (struct elf_link_hash_entry *) 0 - 1;
4925
4926 first = p - name + 1;
4927 memcpy (copy, name, first);
4928 memcpy (copy + first, name + first + 1, len - first);
4929
4930 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4931 if (h == NULL)
4932 {
4933 /* We also need to check references to the symbol without the
4934 version. */
4935 copy[first - 1] = '\0';
4936 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4937 FALSE, FALSE, TRUE);
4938 }
4939
4940 bfd_release (abfd, copy);
4941 return h;
4942 }
4943
4944 /* Add symbols from an ELF archive file to the linker hash table. We
4945 don't use _bfd_generic_link_add_archive_symbols because we need to
4946 handle versioned symbols.
4947
4948 Fortunately, ELF archive handling is simpler than that done by
4949 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4950 oddities. In ELF, if we find a symbol in the archive map, and the
4951 symbol is currently undefined, we know that we must pull in that
4952 object file.
4953
4954 Unfortunately, we do have to make multiple passes over the symbol
4955 table until nothing further is resolved. */
4956
4957 static bfd_boolean
4958 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4959 {
4960 symindex c;
4961 unsigned char *included = NULL;
4962 carsym *symdefs;
4963 bfd_boolean loop;
4964 bfd_size_type amt;
4965 const struct elf_backend_data *bed;
4966 struct elf_link_hash_entry * (*archive_symbol_lookup)
4967 (bfd *, struct bfd_link_info *, const char *);
4968
4969 if (! bfd_has_map (abfd))
4970 {
4971 /* An empty archive is a special case. */
4972 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4973 return TRUE;
4974 bfd_set_error (bfd_error_no_armap);
4975 return FALSE;
4976 }
4977
4978 /* Keep track of all symbols we know to be already defined, and all
4979 files we know to be already included. This is to speed up the
4980 second and subsequent passes. */
4981 c = bfd_ardata (abfd)->symdef_count;
4982 if (c == 0)
4983 return TRUE;
4984 amt = c;
4985 amt *= sizeof (*included);
4986 included = (unsigned char *) bfd_zmalloc (amt);
4987 if (included == NULL)
4988 return FALSE;
4989
4990 symdefs = bfd_ardata (abfd)->symdefs;
4991 bed = get_elf_backend_data (abfd);
4992 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4993
4994 do
4995 {
4996 file_ptr last;
4997 symindex i;
4998 carsym *symdef;
4999 carsym *symdefend;
5000
5001 loop = FALSE;
5002 last = -1;
5003
5004 symdef = symdefs;
5005 symdefend = symdef + c;
5006 for (i = 0; symdef < symdefend; symdef++, i++)
5007 {
5008 struct elf_link_hash_entry *h;
5009 bfd *element;
5010 struct bfd_link_hash_entry *undefs_tail;
5011 symindex mark;
5012
5013 if (included[i])
5014 continue;
5015 if (symdef->file_offset == last)
5016 {
5017 included[i] = TRUE;
5018 continue;
5019 }
5020
5021 h = archive_symbol_lookup (abfd, info, symdef->name);
5022 if (h == (struct elf_link_hash_entry *) 0 - 1)
5023 goto error_return;
5024
5025 if (h == NULL)
5026 continue;
5027
5028 if (h->root.type == bfd_link_hash_common)
5029 {
5030 /* We currently have a common symbol. The archive map contains
5031 a reference to this symbol, so we may want to include it. We
5032 only want to include it however, if this archive element
5033 contains a definition of the symbol, not just another common
5034 declaration of it.
5035
5036 Unfortunately some archivers (including GNU ar) will put
5037 declarations of common symbols into their archive maps, as
5038 well as real definitions, so we cannot just go by the archive
5039 map alone. Instead we must read in the element's symbol
5040 table and check that to see what kind of symbol definition
5041 this is. */
5042 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5043 continue;
5044 }
5045 else if (h->root.type != bfd_link_hash_undefined)
5046 {
5047 if (h->root.type != bfd_link_hash_undefweak)
5048 /* Symbol must be defined. Don't check it again. */
5049 included[i] = TRUE;
5050 continue;
5051 }
5052
5053 /* We need to include this archive member. */
5054 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5055 if (element == NULL)
5056 goto error_return;
5057
5058 if (! bfd_check_format (element, bfd_object))
5059 goto error_return;
5060
5061 undefs_tail = info->hash->undefs_tail;
5062
5063 if (!(*info->callbacks
5064 ->add_archive_element) (info, element, symdef->name, &element))
5065 goto error_return;
5066 if (!bfd_link_add_symbols (element, info))
5067 goto error_return;
5068
5069 /* If there are any new undefined symbols, we need to make
5070 another pass through the archive in order to see whether
5071 they can be defined. FIXME: This isn't perfect, because
5072 common symbols wind up on undefs_tail and because an
5073 undefined symbol which is defined later on in this pass
5074 does not require another pass. This isn't a bug, but it
5075 does make the code less efficient than it could be. */
5076 if (undefs_tail != info->hash->undefs_tail)
5077 loop = TRUE;
5078
5079 /* Look backward to mark all symbols from this object file
5080 which we have already seen in this pass. */
5081 mark = i;
5082 do
5083 {
5084 included[mark] = TRUE;
5085 if (mark == 0)
5086 break;
5087 --mark;
5088 }
5089 while (symdefs[mark].file_offset == symdef->file_offset);
5090
5091 /* We mark subsequent symbols from this object file as we go
5092 on through the loop. */
5093 last = symdef->file_offset;
5094 }
5095 }
5096 while (loop);
5097
5098 free (included);
5099
5100 return TRUE;
5101
5102 error_return:
5103 if (included != NULL)
5104 free (included);
5105 return FALSE;
5106 }
5107
5108 /* Given an ELF BFD, add symbols to the global hash table as
5109 appropriate. */
5110
5111 bfd_boolean
5112 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5113 {
5114 switch (bfd_get_format (abfd))
5115 {
5116 case bfd_object:
5117 return elf_link_add_object_symbols (abfd, info);
5118 case bfd_archive:
5119 return elf_link_add_archive_symbols (abfd, info);
5120 default:
5121 bfd_set_error (bfd_error_wrong_format);
5122 return FALSE;
5123 }
5124 }
5125 \f
5126 struct hash_codes_info
5127 {
5128 unsigned long *hashcodes;
5129 bfd_boolean error;
5130 };
5131
5132 /* This function will be called though elf_link_hash_traverse to store
5133 all hash value of the exported symbols in an array. */
5134
5135 static bfd_boolean
5136 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5137 {
5138 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5139 const char *name;
5140 char *p;
5141 unsigned long ha;
5142 char *alc = NULL;
5143
5144 /* Ignore indirect symbols. These are added by the versioning code. */
5145 if (h->dynindx == -1)
5146 return TRUE;
5147
5148 name = h->root.root.string;
5149 p = strchr (name, ELF_VER_CHR);
5150 if (p != NULL)
5151 {
5152 alc = (char *) bfd_malloc (p - name + 1);
5153 if (alc == NULL)
5154 {
5155 inf->error = TRUE;
5156 return FALSE;
5157 }
5158 memcpy (alc, name, p - name);
5159 alc[p - name] = '\0';
5160 name = alc;
5161 }
5162
5163 /* Compute the hash value. */
5164 ha = bfd_elf_hash (name);
5165
5166 /* Store the found hash value in the array given as the argument. */
5167 *(inf->hashcodes)++ = ha;
5168
5169 /* And store it in the struct so that we can put it in the hash table
5170 later. */
5171 h->u.elf_hash_value = ha;
5172
5173 if (alc != NULL)
5174 free (alc);
5175
5176 return TRUE;
5177 }
5178
5179 struct collect_gnu_hash_codes
5180 {
5181 bfd *output_bfd;
5182 const struct elf_backend_data *bed;
5183 unsigned long int nsyms;
5184 unsigned long int maskbits;
5185 unsigned long int *hashcodes;
5186 unsigned long int *hashval;
5187 unsigned long int *indx;
5188 unsigned long int *counts;
5189 bfd_vma *bitmask;
5190 bfd_byte *contents;
5191 long int min_dynindx;
5192 unsigned long int bucketcount;
5193 unsigned long int symindx;
5194 long int local_indx;
5195 long int shift1, shift2;
5196 unsigned long int mask;
5197 bfd_boolean error;
5198 };
5199
5200 /* This function will be called though elf_link_hash_traverse to store
5201 all hash value of the exported symbols in an array. */
5202
5203 static bfd_boolean
5204 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5205 {
5206 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5207 const char *name;
5208 char *p;
5209 unsigned long ha;
5210 char *alc = NULL;
5211
5212 /* Ignore indirect symbols. These are added by the versioning code. */
5213 if (h->dynindx == -1)
5214 return TRUE;
5215
5216 /* Ignore also local symbols and undefined symbols. */
5217 if (! (*s->bed->elf_hash_symbol) (h))
5218 return TRUE;
5219
5220 name = h->root.root.string;
5221 p = strchr (name, ELF_VER_CHR);
5222 if (p != NULL)
5223 {
5224 alc = (char *) bfd_malloc (p - name + 1);
5225 if (alc == NULL)
5226 {
5227 s->error = TRUE;
5228 return FALSE;
5229 }
5230 memcpy (alc, name, p - name);
5231 alc[p - name] = '\0';
5232 name = alc;
5233 }
5234
5235 /* Compute the hash value. */
5236 ha = bfd_elf_gnu_hash (name);
5237
5238 /* Store the found hash value in the array for compute_bucket_count,
5239 and also for .dynsym reordering purposes. */
5240 s->hashcodes[s->nsyms] = ha;
5241 s->hashval[h->dynindx] = ha;
5242 ++s->nsyms;
5243 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5244 s->min_dynindx = h->dynindx;
5245
5246 if (alc != NULL)
5247 free (alc);
5248
5249 return TRUE;
5250 }
5251
5252 /* This function will be called though elf_link_hash_traverse to do
5253 final dynaminc symbol renumbering. */
5254
5255 static bfd_boolean
5256 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5257 {
5258 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5259 unsigned long int bucket;
5260 unsigned long int val;
5261
5262 /* Ignore indirect symbols. */
5263 if (h->dynindx == -1)
5264 return TRUE;
5265
5266 /* Ignore also local symbols and undefined symbols. */
5267 if (! (*s->bed->elf_hash_symbol) (h))
5268 {
5269 if (h->dynindx >= s->min_dynindx)
5270 h->dynindx = s->local_indx++;
5271 return TRUE;
5272 }
5273
5274 bucket = s->hashval[h->dynindx] % s->bucketcount;
5275 val = (s->hashval[h->dynindx] >> s->shift1)
5276 & ((s->maskbits >> s->shift1) - 1);
5277 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5278 s->bitmask[val]
5279 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5280 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5281 if (s->counts[bucket] == 1)
5282 /* Last element terminates the chain. */
5283 val |= 1;
5284 bfd_put_32 (s->output_bfd, val,
5285 s->contents + (s->indx[bucket] - s->symindx) * 4);
5286 --s->counts[bucket];
5287 h->dynindx = s->indx[bucket]++;
5288 return TRUE;
5289 }
5290
5291 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5292
5293 bfd_boolean
5294 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5295 {
5296 return !(h->forced_local
5297 || h->root.type == bfd_link_hash_undefined
5298 || h->root.type == bfd_link_hash_undefweak
5299 || ((h->root.type == bfd_link_hash_defined
5300 || h->root.type == bfd_link_hash_defweak)
5301 && h->root.u.def.section->output_section == NULL));
5302 }
5303
5304 /* Array used to determine the number of hash table buckets to use
5305 based on the number of symbols there are. If there are fewer than
5306 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5307 fewer than 37 we use 17 buckets, and so forth. We never use more
5308 than 32771 buckets. */
5309
5310 static const size_t elf_buckets[] =
5311 {
5312 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5313 16411, 32771, 0
5314 };
5315
5316 /* Compute bucket count for hashing table. We do not use a static set
5317 of possible tables sizes anymore. Instead we determine for all
5318 possible reasonable sizes of the table the outcome (i.e., the
5319 number of collisions etc) and choose the best solution. The
5320 weighting functions are not too simple to allow the table to grow
5321 without bounds. Instead one of the weighting factors is the size.
5322 Therefore the result is always a good payoff between few collisions
5323 (= short chain lengths) and table size. */
5324 static size_t
5325 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5326 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5327 unsigned long int nsyms,
5328 int gnu_hash)
5329 {
5330 size_t best_size = 0;
5331 unsigned long int i;
5332
5333 /* We have a problem here. The following code to optimize the table
5334 size requires an integer type with more the 32 bits. If
5335 BFD_HOST_U_64_BIT is set we know about such a type. */
5336 #ifdef BFD_HOST_U_64_BIT
5337 if (info->optimize)
5338 {
5339 size_t minsize;
5340 size_t maxsize;
5341 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5342 bfd *dynobj = elf_hash_table (info)->dynobj;
5343 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5344 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5345 unsigned long int *counts;
5346 bfd_size_type amt;
5347 unsigned int no_improvement_count = 0;
5348
5349 /* Possible optimization parameters: if we have NSYMS symbols we say
5350 that the hashing table must at least have NSYMS/4 and at most
5351 2*NSYMS buckets. */
5352 minsize = nsyms / 4;
5353 if (minsize == 0)
5354 minsize = 1;
5355 best_size = maxsize = nsyms * 2;
5356 if (gnu_hash)
5357 {
5358 if (minsize < 2)
5359 minsize = 2;
5360 if ((best_size & 31) == 0)
5361 ++best_size;
5362 }
5363
5364 /* Create array where we count the collisions in. We must use bfd_malloc
5365 since the size could be large. */
5366 amt = maxsize;
5367 amt *= sizeof (unsigned long int);
5368 counts = (unsigned long int *) bfd_malloc (amt);
5369 if (counts == NULL)
5370 return 0;
5371
5372 /* Compute the "optimal" size for the hash table. The criteria is a
5373 minimal chain length. The minor criteria is (of course) the size
5374 of the table. */
5375 for (i = minsize; i < maxsize; ++i)
5376 {
5377 /* Walk through the array of hashcodes and count the collisions. */
5378 BFD_HOST_U_64_BIT max;
5379 unsigned long int j;
5380 unsigned long int fact;
5381
5382 if (gnu_hash && (i & 31) == 0)
5383 continue;
5384
5385 memset (counts, '\0', i * sizeof (unsigned long int));
5386
5387 /* Determine how often each hash bucket is used. */
5388 for (j = 0; j < nsyms; ++j)
5389 ++counts[hashcodes[j] % i];
5390
5391 /* For the weight function we need some information about the
5392 pagesize on the target. This is information need not be 100%
5393 accurate. Since this information is not available (so far) we
5394 define it here to a reasonable default value. If it is crucial
5395 to have a better value some day simply define this value. */
5396 # ifndef BFD_TARGET_PAGESIZE
5397 # define BFD_TARGET_PAGESIZE (4096)
5398 # endif
5399
5400 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5401 and the chains. */
5402 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5403
5404 # if 1
5405 /* Variant 1: optimize for short chains. We add the squares
5406 of all the chain lengths (which favors many small chain
5407 over a few long chains). */
5408 for (j = 0; j < i; ++j)
5409 max += counts[j] * counts[j];
5410
5411 /* This adds penalties for the overall size of the table. */
5412 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5413 max *= fact * fact;
5414 # else
5415 /* Variant 2: Optimize a lot more for small table. Here we
5416 also add squares of the size but we also add penalties for
5417 empty slots (the +1 term). */
5418 for (j = 0; j < i; ++j)
5419 max += (1 + counts[j]) * (1 + counts[j]);
5420
5421 /* The overall size of the table is considered, but not as
5422 strong as in variant 1, where it is squared. */
5423 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5424 max *= fact;
5425 # endif
5426
5427 /* Compare with current best results. */
5428 if (max < best_chlen)
5429 {
5430 best_chlen = max;
5431 best_size = i;
5432 no_improvement_count = 0;
5433 }
5434 /* PR 11843: Avoid futile long searches for the best bucket size
5435 when there are a large number of symbols. */
5436 else if (++no_improvement_count == 100)
5437 break;
5438 }
5439
5440 free (counts);
5441 }
5442 else
5443 #endif /* defined (BFD_HOST_U_64_BIT) */
5444 {
5445 /* This is the fallback solution if no 64bit type is available or if we
5446 are not supposed to spend much time on optimizations. We select the
5447 bucket count using a fixed set of numbers. */
5448 for (i = 0; elf_buckets[i] != 0; i++)
5449 {
5450 best_size = elf_buckets[i];
5451 if (nsyms < elf_buckets[i + 1])
5452 break;
5453 }
5454 if (gnu_hash && best_size < 2)
5455 best_size = 2;
5456 }
5457
5458 return best_size;
5459 }
5460
5461 /* Size any SHT_GROUP section for ld -r. */
5462
5463 bfd_boolean
5464 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5465 {
5466 bfd *ibfd;
5467
5468 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5469 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5470 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5471 return FALSE;
5472 return TRUE;
5473 }
5474
5475 /* Set a default stack segment size. The value in INFO wins. If it
5476 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5477 undefined it is initialized. */
5478
5479 bfd_boolean
5480 bfd_elf_stack_segment_size (bfd *output_bfd,
5481 struct bfd_link_info *info,
5482 const char *legacy_symbol,
5483 bfd_vma default_size)
5484 {
5485 struct elf_link_hash_entry *h = NULL;
5486
5487 /* Look for legacy symbol. */
5488 if (legacy_symbol)
5489 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5490 FALSE, FALSE, FALSE);
5491 if (h && (h->root.type == bfd_link_hash_defined
5492 || h->root.type == bfd_link_hash_defweak)
5493 && h->def_regular
5494 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5495 {
5496 /* The symbol has no type if specified on the command line. */
5497 h->type = STT_OBJECT;
5498 if (info->stacksize)
5499 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5500 output_bfd, legacy_symbol);
5501 else if (h->root.u.def.section != bfd_abs_section_ptr)
5502 (*_bfd_error_handler) (_("%B: %s not absolute"),
5503 output_bfd, legacy_symbol);
5504 else
5505 info->stacksize = h->root.u.def.value;
5506 }
5507
5508 if (!info->stacksize)
5509 /* If the user didn't set a size, or explicitly inhibit the
5510 size, set it now. */
5511 info->stacksize = default_size;
5512
5513 /* Provide the legacy symbol, if it is referenced. */
5514 if (h && (h->root.type == bfd_link_hash_undefined
5515 || h->root.type == bfd_link_hash_undefweak))
5516 {
5517 struct bfd_link_hash_entry *bh = NULL;
5518
5519 if (!(_bfd_generic_link_add_one_symbol
5520 (info, output_bfd, legacy_symbol,
5521 BSF_GLOBAL, bfd_abs_section_ptr,
5522 info->stacksize >= 0 ? info->stacksize : 0,
5523 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5524 return FALSE;
5525
5526 h = (struct elf_link_hash_entry *) bh;
5527 h->def_regular = 1;
5528 h->type = STT_OBJECT;
5529 }
5530
5531 return TRUE;
5532 }
5533
5534 /* Set up the sizes and contents of the ELF dynamic sections. This is
5535 called by the ELF linker emulation before_allocation routine. We
5536 must set the sizes of the sections before the linker sets the
5537 addresses of the various sections. */
5538
5539 bfd_boolean
5540 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5541 const char *soname,
5542 const char *rpath,
5543 const char *filter_shlib,
5544 const char *audit,
5545 const char *depaudit,
5546 const char * const *auxiliary_filters,
5547 struct bfd_link_info *info,
5548 asection **sinterpptr)
5549 {
5550 bfd_size_type soname_indx;
5551 bfd *dynobj;
5552 const struct elf_backend_data *bed;
5553 struct elf_info_failed asvinfo;
5554
5555 *sinterpptr = NULL;
5556
5557 soname_indx = (bfd_size_type) -1;
5558
5559 if (!is_elf_hash_table (info->hash))
5560 return TRUE;
5561
5562 bed = get_elf_backend_data (output_bfd);
5563
5564 /* Any syms created from now on start with -1 in
5565 got.refcount/offset and plt.refcount/offset. */
5566 elf_hash_table (info)->init_got_refcount
5567 = elf_hash_table (info)->init_got_offset;
5568 elf_hash_table (info)->init_plt_refcount
5569 = elf_hash_table (info)->init_plt_offset;
5570
5571 if (info->relocatable
5572 && !_bfd_elf_size_group_sections (info))
5573 return FALSE;
5574
5575 /* The backend may have to create some sections regardless of whether
5576 we're dynamic or not. */
5577 if (bed->elf_backend_always_size_sections
5578 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5579 return FALSE;
5580
5581 /* Determine any GNU_STACK segment requirements, after the backend
5582 has had a chance to set a default segment size. */
5583 if (info->execstack)
5584 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5585 else if (info->noexecstack)
5586 elf_stack_flags (output_bfd) = PF_R | PF_W;
5587 else
5588 {
5589 bfd *inputobj;
5590 asection *notesec = NULL;
5591 int exec = 0;
5592
5593 for (inputobj = info->input_bfds;
5594 inputobj;
5595 inputobj = inputobj->link.next)
5596 {
5597 asection *s;
5598
5599 if (inputobj->flags
5600 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5601 continue;
5602 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5603 if (s)
5604 {
5605 if (s->flags & SEC_CODE)
5606 exec = PF_X;
5607 notesec = s;
5608 }
5609 else if (bed->default_execstack)
5610 exec = PF_X;
5611 }
5612 if (notesec || info->stacksize > 0)
5613 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5614 if (notesec && exec && info->relocatable
5615 && notesec->output_section != bfd_abs_section_ptr)
5616 notesec->output_section->flags |= SEC_CODE;
5617 }
5618
5619 dynobj = elf_hash_table (info)->dynobj;
5620
5621 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5622 {
5623 struct elf_info_failed eif;
5624 struct elf_link_hash_entry *h;
5625 asection *dynstr;
5626 struct bfd_elf_version_tree *t;
5627 struct bfd_elf_version_expr *d;
5628 asection *s;
5629 bfd_boolean all_defined;
5630
5631 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5632 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5633
5634 if (soname != NULL)
5635 {
5636 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5637 soname, TRUE);
5638 if (soname_indx == (bfd_size_type) -1
5639 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5640 return FALSE;
5641 }
5642
5643 if (info->symbolic)
5644 {
5645 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5646 return FALSE;
5647 info->flags |= DF_SYMBOLIC;
5648 }
5649
5650 if (rpath != NULL)
5651 {
5652 bfd_size_type indx;
5653 bfd_vma tag;
5654
5655 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5656 TRUE);
5657 if (indx == (bfd_size_type) -1)
5658 return FALSE;
5659
5660 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5661 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5662 return FALSE;
5663 }
5664
5665 if (filter_shlib != NULL)
5666 {
5667 bfd_size_type indx;
5668
5669 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5670 filter_shlib, TRUE);
5671 if (indx == (bfd_size_type) -1
5672 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5673 return FALSE;
5674 }
5675
5676 if (auxiliary_filters != NULL)
5677 {
5678 const char * const *p;
5679
5680 for (p = auxiliary_filters; *p != NULL; p++)
5681 {
5682 bfd_size_type indx;
5683
5684 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5685 *p, TRUE);
5686 if (indx == (bfd_size_type) -1
5687 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5688 return FALSE;
5689 }
5690 }
5691
5692 if (audit != NULL)
5693 {
5694 bfd_size_type indx;
5695
5696 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5697 TRUE);
5698 if (indx == (bfd_size_type) -1
5699 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5700 return FALSE;
5701 }
5702
5703 if (depaudit != NULL)
5704 {
5705 bfd_size_type indx;
5706
5707 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5708 TRUE);
5709 if (indx == (bfd_size_type) -1
5710 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5711 return FALSE;
5712 }
5713
5714 eif.info = info;
5715 eif.failed = FALSE;
5716
5717 /* If we are supposed to export all symbols into the dynamic symbol
5718 table (this is not the normal case), then do so. */
5719 if (info->export_dynamic
5720 || (info->executable && info->dynamic))
5721 {
5722 elf_link_hash_traverse (elf_hash_table (info),
5723 _bfd_elf_export_symbol,
5724 &eif);
5725 if (eif.failed)
5726 return FALSE;
5727 }
5728
5729 /* Make all global versions with definition. */
5730 for (t = info->version_info; t != NULL; t = t->next)
5731 for (d = t->globals.list; d != NULL; d = d->next)
5732 if (!d->symver && d->literal)
5733 {
5734 const char *verstr, *name;
5735 size_t namelen, verlen, newlen;
5736 char *newname, *p, leading_char;
5737 struct elf_link_hash_entry *newh;
5738
5739 leading_char = bfd_get_symbol_leading_char (output_bfd);
5740 name = d->pattern;
5741 namelen = strlen (name) + (leading_char != '\0');
5742 verstr = t->name;
5743 verlen = strlen (verstr);
5744 newlen = namelen + verlen + 3;
5745
5746 newname = (char *) bfd_malloc (newlen);
5747 if (newname == NULL)
5748 return FALSE;
5749 newname[0] = leading_char;
5750 memcpy (newname + (leading_char != '\0'), name, namelen);
5751
5752 /* Check the hidden versioned definition. */
5753 p = newname + namelen;
5754 *p++ = ELF_VER_CHR;
5755 memcpy (p, verstr, verlen + 1);
5756 newh = elf_link_hash_lookup (elf_hash_table (info),
5757 newname, FALSE, FALSE,
5758 FALSE);
5759 if (newh == NULL
5760 || (newh->root.type != bfd_link_hash_defined
5761 && newh->root.type != bfd_link_hash_defweak))
5762 {
5763 /* Check the default versioned definition. */
5764 *p++ = ELF_VER_CHR;
5765 memcpy (p, verstr, verlen + 1);
5766 newh = elf_link_hash_lookup (elf_hash_table (info),
5767 newname, FALSE, FALSE,
5768 FALSE);
5769 }
5770 free (newname);
5771
5772 /* Mark this version if there is a definition and it is
5773 not defined in a shared object. */
5774 if (newh != NULL
5775 && !newh->def_dynamic
5776 && (newh->root.type == bfd_link_hash_defined
5777 || newh->root.type == bfd_link_hash_defweak))
5778 d->symver = 1;
5779 }
5780
5781 /* Attach all the symbols to their version information. */
5782 asvinfo.info = info;
5783 asvinfo.failed = FALSE;
5784
5785 elf_link_hash_traverse (elf_hash_table (info),
5786 _bfd_elf_link_assign_sym_version,
5787 &asvinfo);
5788 if (asvinfo.failed)
5789 return FALSE;
5790
5791 if (!info->allow_undefined_version)
5792 {
5793 /* Check if all global versions have a definition. */
5794 all_defined = TRUE;
5795 for (t = info->version_info; t != NULL; t = t->next)
5796 for (d = t->globals.list; d != NULL; d = d->next)
5797 if (d->literal && !d->symver && !d->script)
5798 {
5799 (*_bfd_error_handler)
5800 (_("%s: undefined version: %s"),
5801 d->pattern, t->name);
5802 all_defined = FALSE;
5803 }
5804
5805 if (!all_defined)
5806 {
5807 bfd_set_error (bfd_error_bad_value);
5808 return FALSE;
5809 }
5810 }
5811
5812 /* Find all symbols which were defined in a dynamic object and make
5813 the backend pick a reasonable value for them. */
5814 elf_link_hash_traverse (elf_hash_table (info),
5815 _bfd_elf_adjust_dynamic_symbol,
5816 &eif);
5817 if (eif.failed)
5818 return FALSE;
5819
5820 /* Add some entries to the .dynamic section. We fill in some of the
5821 values later, in bfd_elf_final_link, but we must add the entries
5822 now so that we know the final size of the .dynamic section. */
5823
5824 /* If there are initialization and/or finalization functions to
5825 call then add the corresponding DT_INIT/DT_FINI entries. */
5826 h = (info->init_function
5827 ? elf_link_hash_lookup (elf_hash_table (info),
5828 info->init_function, FALSE,
5829 FALSE, FALSE)
5830 : NULL);
5831 if (h != NULL
5832 && (h->ref_regular
5833 || h->def_regular))
5834 {
5835 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5836 return FALSE;
5837 }
5838 h = (info->fini_function
5839 ? elf_link_hash_lookup (elf_hash_table (info),
5840 info->fini_function, FALSE,
5841 FALSE, FALSE)
5842 : NULL);
5843 if (h != NULL
5844 && (h->ref_regular
5845 || h->def_regular))
5846 {
5847 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5848 return FALSE;
5849 }
5850
5851 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5852 if (s != NULL && s->linker_has_input)
5853 {
5854 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5855 if (! info->executable)
5856 {
5857 bfd *sub;
5858 asection *o;
5859
5860 for (sub = info->input_bfds; sub != NULL;
5861 sub = sub->link.next)
5862 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5863 for (o = sub->sections; o != NULL; o = o->next)
5864 if (elf_section_data (o)->this_hdr.sh_type
5865 == SHT_PREINIT_ARRAY)
5866 {
5867 (*_bfd_error_handler)
5868 (_("%B: .preinit_array section is not allowed in DSO"),
5869 sub);
5870 break;
5871 }
5872
5873 bfd_set_error (bfd_error_nonrepresentable_section);
5874 return FALSE;
5875 }
5876
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5879 return FALSE;
5880 }
5881 s = bfd_get_section_by_name (output_bfd, ".init_array");
5882 if (s != NULL && s->linker_has_input)
5883 {
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5886 return FALSE;
5887 }
5888 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5889 if (s != NULL && s->linker_has_input)
5890 {
5891 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5893 return FALSE;
5894 }
5895
5896 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5897 /* If .dynstr is excluded from the link, we don't want any of
5898 these tags. Strictly, we should be checking each section
5899 individually; This quick check covers for the case where
5900 someone does a /DISCARD/ : { *(*) }. */
5901 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5902 {
5903 bfd_size_type strsize;
5904
5905 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5906 if ((info->emit_hash
5907 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5908 || (info->emit_gnu_hash
5909 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5910 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5911 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5912 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5913 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5914 bed->s->sizeof_sym))
5915 return FALSE;
5916 }
5917 }
5918
5919 /* The backend must work out the sizes of all the other dynamic
5920 sections. */
5921 if (dynobj != NULL
5922 && bed->elf_backend_size_dynamic_sections != NULL
5923 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5924 return FALSE;
5925
5926 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5927 return FALSE;
5928
5929 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5930 {
5931 unsigned long section_sym_count;
5932 struct bfd_elf_version_tree *verdefs;
5933 asection *s;
5934
5935 /* Set up the version definition section. */
5936 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5937 BFD_ASSERT (s != NULL);
5938
5939 /* We may have created additional version definitions if we are
5940 just linking a regular application. */
5941 verdefs = info->version_info;
5942
5943 /* Skip anonymous version tag. */
5944 if (verdefs != NULL && verdefs->vernum == 0)
5945 verdefs = verdefs->next;
5946
5947 if (verdefs == NULL && !info->create_default_symver)
5948 s->flags |= SEC_EXCLUDE;
5949 else
5950 {
5951 unsigned int cdefs;
5952 bfd_size_type size;
5953 struct bfd_elf_version_tree *t;
5954 bfd_byte *p;
5955 Elf_Internal_Verdef def;
5956 Elf_Internal_Verdaux defaux;
5957 struct bfd_link_hash_entry *bh;
5958 struct elf_link_hash_entry *h;
5959 const char *name;
5960
5961 cdefs = 0;
5962 size = 0;
5963
5964 /* Make space for the base version. */
5965 size += sizeof (Elf_External_Verdef);
5966 size += sizeof (Elf_External_Verdaux);
5967 ++cdefs;
5968
5969 /* Make space for the default version. */
5970 if (info->create_default_symver)
5971 {
5972 size += sizeof (Elf_External_Verdef);
5973 ++cdefs;
5974 }
5975
5976 for (t = verdefs; t != NULL; t = t->next)
5977 {
5978 struct bfd_elf_version_deps *n;
5979
5980 /* Don't emit base version twice. */
5981 if (t->vernum == 0)
5982 continue;
5983
5984 size += sizeof (Elf_External_Verdef);
5985 size += sizeof (Elf_External_Verdaux);
5986 ++cdefs;
5987
5988 for (n = t->deps; n != NULL; n = n->next)
5989 size += sizeof (Elf_External_Verdaux);
5990 }
5991
5992 s->size = size;
5993 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5994 if (s->contents == NULL && s->size != 0)
5995 return FALSE;
5996
5997 /* Fill in the version definition section. */
5998
5999 p = s->contents;
6000
6001 def.vd_version = VER_DEF_CURRENT;
6002 def.vd_flags = VER_FLG_BASE;
6003 def.vd_ndx = 1;
6004 def.vd_cnt = 1;
6005 if (info->create_default_symver)
6006 {
6007 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6008 def.vd_next = sizeof (Elf_External_Verdef);
6009 }
6010 else
6011 {
6012 def.vd_aux = sizeof (Elf_External_Verdef);
6013 def.vd_next = (sizeof (Elf_External_Verdef)
6014 + sizeof (Elf_External_Verdaux));
6015 }
6016
6017 if (soname_indx != (bfd_size_type) -1)
6018 {
6019 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6020 soname_indx);
6021 def.vd_hash = bfd_elf_hash (soname);
6022 defaux.vda_name = soname_indx;
6023 name = soname;
6024 }
6025 else
6026 {
6027 bfd_size_type indx;
6028
6029 name = lbasename (output_bfd->filename);
6030 def.vd_hash = bfd_elf_hash (name);
6031 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6032 name, FALSE);
6033 if (indx == (bfd_size_type) -1)
6034 return FALSE;
6035 defaux.vda_name = indx;
6036 }
6037 defaux.vda_next = 0;
6038
6039 _bfd_elf_swap_verdef_out (output_bfd, &def,
6040 (Elf_External_Verdef *) p);
6041 p += sizeof (Elf_External_Verdef);
6042 if (info->create_default_symver)
6043 {
6044 /* Add a symbol representing this version. */
6045 bh = NULL;
6046 if (! (_bfd_generic_link_add_one_symbol
6047 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6048 0, NULL, FALSE,
6049 get_elf_backend_data (dynobj)->collect, &bh)))
6050 return FALSE;
6051 h = (struct elf_link_hash_entry *) bh;
6052 h->non_elf = 0;
6053 h->def_regular = 1;
6054 h->type = STT_OBJECT;
6055 h->verinfo.vertree = NULL;
6056
6057 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6058 return FALSE;
6059
6060 /* Create a duplicate of the base version with the same
6061 aux block, but different flags. */
6062 def.vd_flags = 0;
6063 def.vd_ndx = 2;
6064 def.vd_aux = sizeof (Elf_External_Verdef);
6065 if (verdefs)
6066 def.vd_next = (sizeof (Elf_External_Verdef)
6067 + sizeof (Elf_External_Verdaux));
6068 else
6069 def.vd_next = 0;
6070 _bfd_elf_swap_verdef_out (output_bfd, &def,
6071 (Elf_External_Verdef *) p);
6072 p += sizeof (Elf_External_Verdef);
6073 }
6074 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6075 (Elf_External_Verdaux *) p);
6076 p += sizeof (Elf_External_Verdaux);
6077
6078 for (t = verdefs; t != NULL; t = t->next)
6079 {
6080 unsigned int cdeps;
6081 struct bfd_elf_version_deps *n;
6082
6083 /* Don't emit the base version twice. */
6084 if (t->vernum == 0)
6085 continue;
6086
6087 cdeps = 0;
6088 for (n = t->deps; n != NULL; n = n->next)
6089 ++cdeps;
6090
6091 /* Add a symbol representing this version. */
6092 bh = NULL;
6093 if (! (_bfd_generic_link_add_one_symbol
6094 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6095 0, NULL, FALSE,
6096 get_elf_backend_data (dynobj)->collect, &bh)))
6097 return FALSE;
6098 h = (struct elf_link_hash_entry *) bh;
6099 h->non_elf = 0;
6100 h->def_regular = 1;
6101 h->type = STT_OBJECT;
6102 h->verinfo.vertree = t;
6103
6104 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6105 return FALSE;
6106
6107 def.vd_version = VER_DEF_CURRENT;
6108 def.vd_flags = 0;
6109 if (t->globals.list == NULL
6110 && t->locals.list == NULL
6111 && ! t->used)
6112 def.vd_flags |= VER_FLG_WEAK;
6113 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6114 def.vd_cnt = cdeps + 1;
6115 def.vd_hash = bfd_elf_hash (t->name);
6116 def.vd_aux = sizeof (Elf_External_Verdef);
6117 def.vd_next = 0;
6118
6119 /* If a basever node is next, it *must* be the last node in
6120 the chain, otherwise Verdef construction breaks. */
6121 if (t->next != NULL && t->next->vernum == 0)
6122 BFD_ASSERT (t->next->next == NULL);
6123
6124 if (t->next != NULL && t->next->vernum != 0)
6125 def.vd_next = (sizeof (Elf_External_Verdef)
6126 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6127
6128 _bfd_elf_swap_verdef_out (output_bfd, &def,
6129 (Elf_External_Verdef *) p);
6130 p += sizeof (Elf_External_Verdef);
6131
6132 defaux.vda_name = h->dynstr_index;
6133 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6134 h->dynstr_index);
6135 defaux.vda_next = 0;
6136 if (t->deps != NULL)
6137 defaux.vda_next = sizeof (Elf_External_Verdaux);
6138 t->name_indx = defaux.vda_name;
6139
6140 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6141 (Elf_External_Verdaux *) p);
6142 p += sizeof (Elf_External_Verdaux);
6143
6144 for (n = t->deps; n != NULL; n = n->next)
6145 {
6146 if (n->version_needed == NULL)
6147 {
6148 /* This can happen if there was an error in the
6149 version script. */
6150 defaux.vda_name = 0;
6151 }
6152 else
6153 {
6154 defaux.vda_name = n->version_needed->name_indx;
6155 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6156 defaux.vda_name);
6157 }
6158 if (n->next == NULL)
6159 defaux.vda_next = 0;
6160 else
6161 defaux.vda_next = sizeof (Elf_External_Verdaux);
6162
6163 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6164 (Elf_External_Verdaux *) p);
6165 p += sizeof (Elf_External_Verdaux);
6166 }
6167 }
6168
6169 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6170 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6171 return FALSE;
6172
6173 elf_tdata (output_bfd)->cverdefs = cdefs;
6174 }
6175
6176 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6177 {
6178 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6179 return FALSE;
6180 }
6181 else if (info->flags & DF_BIND_NOW)
6182 {
6183 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6184 return FALSE;
6185 }
6186
6187 if (info->flags_1)
6188 {
6189 if (info->executable)
6190 info->flags_1 &= ~ (DF_1_INITFIRST
6191 | DF_1_NODELETE
6192 | DF_1_NOOPEN);
6193 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6194 return FALSE;
6195 }
6196
6197 /* Work out the size of the version reference section. */
6198
6199 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6200 BFD_ASSERT (s != NULL);
6201 {
6202 struct elf_find_verdep_info sinfo;
6203
6204 sinfo.info = info;
6205 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6206 if (sinfo.vers == 0)
6207 sinfo.vers = 1;
6208 sinfo.failed = FALSE;
6209
6210 elf_link_hash_traverse (elf_hash_table (info),
6211 _bfd_elf_link_find_version_dependencies,
6212 &sinfo);
6213 if (sinfo.failed)
6214 return FALSE;
6215
6216 if (elf_tdata (output_bfd)->verref == NULL)
6217 s->flags |= SEC_EXCLUDE;
6218 else
6219 {
6220 Elf_Internal_Verneed *t;
6221 unsigned int size;
6222 unsigned int crefs;
6223 bfd_byte *p;
6224
6225 /* Build the version dependency section. */
6226 size = 0;
6227 crefs = 0;
6228 for (t = elf_tdata (output_bfd)->verref;
6229 t != NULL;
6230 t = t->vn_nextref)
6231 {
6232 Elf_Internal_Vernaux *a;
6233
6234 size += sizeof (Elf_External_Verneed);
6235 ++crefs;
6236 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6237 size += sizeof (Elf_External_Vernaux);
6238 }
6239
6240 s->size = size;
6241 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6242 if (s->contents == NULL)
6243 return FALSE;
6244
6245 p = s->contents;
6246 for (t = elf_tdata (output_bfd)->verref;
6247 t != NULL;
6248 t = t->vn_nextref)
6249 {
6250 unsigned int caux;
6251 Elf_Internal_Vernaux *a;
6252 bfd_size_type indx;
6253
6254 caux = 0;
6255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 ++caux;
6257
6258 t->vn_version = VER_NEED_CURRENT;
6259 t->vn_cnt = caux;
6260 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6261 elf_dt_name (t->vn_bfd) != NULL
6262 ? elf_dt_name (t->vn_bfd)
6263 : lbasename (t->vn_bfd->filename),
6264 FALSE);
6265 if (indx == (bfd_size_type) -1)
6266 return FALSE;
6267 t->vn_file = indx;
6268 t->vn_aux = sizeof (Elf_External_Verneed);
6269 if (t->vn_nextref == NULL)
6270 t->vn_next = 0;
6271 else
6272 t->vn_next = (sizeof (Elf_External_Verneed)
6273 + caux * sizeof (Elf_External_Vernaux));
6274
6275 _bfd_elf_swap_verneed_out (output_bfd, t,
6276 (Elf_External_Verneed *) p);
6277 p += sizeof (Elf_External_Verneed);
6278
6279 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6280 {
6281 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6282 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6283 a->vna_nodename, FALSE);
6284 if (indx == (bfd_size_type) -1)
6285 return FALSE;
6286 a->vna_name = indx;
6287 if (a->vna_nextptr == NULL)
6288 a->vna_next = 0;
6289 else
6290 a->vna_next = sizeof (Elf_External_Vernaux);
6291
6292 _bfd_elf_swap_vernaux_out (output_bfd, a,
6293 (Elf_External_Vernaux *) p);
6294 p += sizeof (Elf_External_Vernaux);
6295 }
6296 }
6297
6298 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6299 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6300 return FALSE;
6301
6302 elf_tdata (output_bfd)->cverrefs = crefs;
6303 }
6304 }
6305
6306 if ((elf_tdata (output_bfd)->cverrefs == 0
6307 && elf_tdata (output_bfd)->cverdefs == 0)
6308 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6309 &section_sym_count) == 0)
6310 {
6311 s = bfd_get_linker_section (dynobj, ".gnu.version");
6312 s->flags |= SEC_EXCLUDE;
6313 }
6314 }
6315 return TRUE;
6316 }
6317
6318 /* Find the first non-excluded output section. We'll use its
6319 section symbol for some emitted relocs. */
6320 void
6321 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6322 {
6323 asection *s;
6324
6325 for (s = output_bfd->sections; s != NULL; s = s->next)
6326 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6327 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6328 {
6329 elf_hash_table (info)->text_index_section = s;
6330 break;
6331 }
6332 }
6333
6334 /* Find two non-excluded output sections, one for code, one for data.
6335 We'll use their section symbols for some emitted relocs. */
6336 void
6337 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6338 {
6339 asection *s;
6340
6341 /* Data first, since setting text_index_section changes
6342 _bfd_elf_link_omit_section_dynsym. */
6343 for (s = output_bfd->sections; s != NULL; s = s->next)
6344 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6345 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6346 {
6347 elf_hash_table (info)->data_index_section = s;
6348 break;
6349 }
6350
6351 for (s = output_bfd->sections; s != NULL; s = s->next)
6352 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6353 == (SEC_ALLOC | SEC_READONLY))
6354 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6355 {
6356 elf_hash_table (info)->text_index_section = s;
6357 break;
6358 }
6359
6360 if (elf_hash_table (info)->text_index_section == NULL)
6361 elf_hash_table (info)->text_index_section
6362 = elf_hash_table (info)->data_index_section;
6363 }
6364
6365 bfd_boolean
6366 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6367 {
6368 const struct elf_backend_data *bed;
6369
6370 if (!is_elf_hash_table (info->hash))
6371 return TRUE;
6372
6373 bed = get_elf_backend_data (output_bfd);
6374 (*bed->elf_backend_init_index_section) (output_bfd, info);
6375
6376 if (elf_hash_table (info)->dynamic_sections_created)
6377 {
6378 bfd *dynobj;
6379 asection *s;
6380 bfd_size_type dynsymcount;
6381 unsigned long section_sym_count;
6382 unsigned int dtagcount;
6383
6384 dynobj = elf_hash_table (info)->dynobj;
6385
6386 /* Assign dynsym indicies. In a shared library we generate a
6387 section symbol for each output section, which come first.
6388 Next come all of the back-end allocated local dynamic syms,
6389 followed by the rest of the global symbols. */
6390
6391 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6392 &section_sym_count);
6393
6394 /* Work out the size of the symbol version section. */
6395 s = bfd_get_linker_section (dynobj, ".gnu.version");
6396 BFD_ASSERT (s != NULL);
6397 if (dynsymcount != 0
6398 && (s->flags & SEC_EXCLUDE) == 0)
6399 {
6400 s->size = dynsymcount * sizeof (Elf_External_Versym);
6401 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6402 if (s->contents == NULL)
6403 return FALSE;
6404
6405 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6406 return FALSE;
6407 }
6408
6409 /* Set the size of the .dynsym and .hash sections. We counted
6410 the number of dynamic symbols in elf_link_add_object_symbols.
6411 We will build the contents of .dynsym and .hash when we build
6412 the final symbol table, because until then we do not know the
6413 correct value to give the symbols. We built the .dynstr
6414 section as we went along in elf_link_add_object_symbols. */
6415 s = bfd_get_linker_section (dynobj, ".dynsym");
6416 BFD_ASSERT (s != NULL);
6417 s->size = dynsymcount * bed->s->sizeof_sym;
6418
6419 if (dynsymcount != 0)
6420 {
6421 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6422 if (s->contents == NULL)
6423 return FALSE;
6424
6425 /* The first entry in .dynsym is a dummy symbol.
6426 Clear all the section syms, in case we don't output them all. */
6427 ++section_sym_count;
6428 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6429 }
6430
6431 elf_hash_table (info)->bucketcount = 0;
6432
6433 /* Compute the size of the hashing table. As a side effect this
6434 computes the hash values for all the names we export. */
6435 if (info->emit_hash)
6436 {
6437 unsigned long int *hashcodes;
6438 struct hash_codes_info hashinf;
6439 bfd_size_type amt;
6440 unsigned long int nsyms;
6441 size_t bucketcount;
6442 size_t hash_entry_size;
6443
6444 /* Compute the hash values for all exported symbols. At the same
6445 time store the values in an array so that we could use them for
6446 optimizations. */
6447 amt = dynsymcount * sizeof (unsigned long int);
6448 hashcodes = (unsigned long int *) bfd_malloc (amt);
6449 if (hashcodes == NULL)
6450 return FALSE;
6451 hashinf.hashcodes = hashcodes;
6452 hashinf.error = FALSE;
6453
6454 /* Put all hash values in HASHCODES. */
6455 elf_link_hash_traverse (elf_hash_table (info),
6456 elf_collect_hash_codes, &hashinf);
6457 if (hashinf.error)
6458 {
6459 free (hashcodes);
6460 return FALSE;
6461 }
6462
6463 nsyms = hashinf.hashcodes - hashcodes;
6464 bucketcount
6465 = compute_bucket_count (info, hashcodes, nsyms, 0);
6466 free (hashcodes);
6467
6468 if (bucketcount == 0)
6469 return FALSE;
6470
6471 elf_hash_table (info)->bucketcount = bucketcount;
6472
6473 s = bfd_get_linker_section (dynobj, ".hash");
6474 BFD_ASSERT (s != NULL);
6475 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6476 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6477 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6478 if (s->contents == NULL)
6479 return FALSE;
6480
6481 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6482 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6483 s->contents + hash_entry_size);
6484 }
6485
6486 if (info->emit_gnu_hash)
6487 {
6488 size_t i, cnt;
6489 unsigned char *contents;
6490 struct collect_gnu_hash_codes cinfo;
6491 bfd_size_type amt;
6492 size_t bucketcount;
6493
6494 memset (&cinfo, 0, sizeof (cinfo));
6495
6496 /* Compute the hash values for all exported symbols. At the same
6497 time store the values in an array so that we could use them for
6498 optimizations. */
6499 amt = dynsymcount * 2 * sizeof (unsigned long int);
6500 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6501 if (cinfo.hashcodes == NULL)
6502 return FALSE;
6503
6504 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6505 cinfo.min_dynindx = -1;
6506 cinfo.output_bfd = output_bfd;
6507 cinfo.bed = bed;
6508
6509 /* Put all hash values in HASHCODES. */
6510 elf_link_hash_traverse (elf_hash_table (info),
6511 elf_collect_gnu_hash_codes, &cinfo);
6512 if (cinfo.error)
6513 {
6514 free (cinfo.hashcodes);
6515 return FALSE;
6516 }
6517
6518 bucketcount
6519 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6520
6521 if (bucketcount == 0)
6522 {
6523 free (cinfo.hashcodes);
6524 return FALSE;
6525 }
6526
6527 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6528 BFD_ASSERT (s != NULL);
6529
6530 if (cinfo.nsyms == 0)
6531 {
6532 /* Empty .gnu.hash section is special. */
6533 BFD_ASSERT (cinfo.min_dynindx == -1);
6534 free (cinfo.hashcodes);
6535 s->size = 5 * 4 + bed->s->arch_size / 8;
6536 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6537 if (contents == NULL)
6538 return FALSE;
6539 s->contents = contents;
6540 /* 1 empty bucket. */
6541 bfd_put_32 (output_bfd, 1, contents);
6542 /* SYMIDX above the special symbol 0. */
6543 bfd_put_32 (output_bfd, 1, contents + 4);
6544 /* Just one word for bitmask. */
6545 bfd_put_32 (output_bfd, 1, contents + 8);
6546 /* Only hash fn bloom filter. */
6547 bfd_put_32 (output_bfd, 0, contents + 12);
6548 /* No hashes are valid - empty bitmask. */
6549 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6550 /* No hashes in the only bucket. */
6551 bfd_put_32 (output_bfd, 0,
6552 contents + 16 + bed->s->arch_size / 8);
6553 }
6554 else
6555 {
6556 unsigned long int maskwords, maskbitslog2, x;
6557 BFD_ASSERT (cinfo.min_dynindx != -1);
6558
6559 x = cinfo.nsyms;
6560 maskbitslog2 = 1;
6561 while ((x >>= 1) != 0)
6562 ++maskbitslog2;
6563 if (maskbitslog2 < 3)
6564 maskbitslog2 = 5;
6565 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6566 maskbitslog2 = maskbitslog2 + 3;
6567 else
6568 maskbitslog2 = maskbitslog2 + 2;
6569 if (bed->s->arch_size == 64)
6570 {
6571 if (maskbitslog2 == 5)
6572 maskbitslog2 = 6;
6573 cinfo.shift1 = 6;
6574 }
6575 else
6576 cinfo.shift1 = 5;
6577 cinfo.mask = (1 << cinfo.shift1) - 1;
6578 cinfo.shift2 = maskbitslog2;
6579 cinfo.maskbits = 1 << maskbitslog2;
6580 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6581 amt = bucketcount * sizeof (unsigned long int) * 2;
6582 amt += maskwords * sizeof (bfd_vma);
6583 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6584 if (cinfo.bitmask == NULL)
6585 {
6586 free (cinfo.hashcodes);
6587 return FALSE;
6588 }
6589
6590 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6591 cinfo.indx = cinfo.counts + bucketcount;
6592 cinfo.symindx = dynsymcount - cinfo.nsyms;
6593 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6594
6595 /* Determine how often each hash bucket is used. */
6596 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6597 for (i = 0; i < cinfo.nsyms; ++i)
6598 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6599
6600 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6601 if (cinfo.counts[i] != 0)
6602 {
6603 cinfo.indx[i] = cnt;
6604 cnt += cinfo.counts[i];
6605 }
6606 BFD_ASSERT (cnt == dynsymcount);
6607 cinfo.bucketcount = bucketcount;
6608 cinfo.local_indx = cinfo.min_dynindx;
6609
6610 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6611 s->size += cinfo.maskbits / 8;
6612 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6613 if (contents == NULL)
6614 {
6615 free (cinfo.bitmask);
6616 free (cinfo.hashcodes);
6617 return FALSE;
6618 }
6619
6620 s->contents = contents;
6621 bfd_put_32 (output_bfd, bucketcount, contents);
6622 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6623 bfd_put_32 (output_bfd, maskwords, contents + 8);
6624 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6625 contents += 16 + cinfo.maskbits / 8;
6626
6627 for (i = 0; i < bucketcount; ++i)
6628 {
6629 if (cinfo.counts[i] == 0)
6630 bfd_put_32 (output_bfd, 0, contents);
6631 else
6632 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6633 contents += 4;
6634 }
6635
6636 cinfo.contents = contents;
6637
6638 /* Renumber dynamic symbols, populate .gnu.hash section. */
6639 elf_link_hash_traverse (elf_hash_table (info),
6640 elf_renumber_gnu_hash_syms, &cinfo);
6641
6642 contents = s->contents + 16;
6643 for (i = 0; i < maskwords; ++i)
6644 {
6645 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6646 contents);
6647 contents += bed->s->arch_size / 8;
6648 }
6649
6650 free (cinfo.bitmask);
6651 free (cinfo.hashcodes);
6652 }
6653 }
6654
6655 s = bfd_get_linker_section (dynobj, ".dynstr");
6656 BFD_ASSERT (s != NULL);
6657
6658 elf_finalize_dynstr (output_bfd, info);
6659
6660 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6661
6662 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6663 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6664 return FALSE;
6665 }
6666
6667 return TRUE;
6668 }
6669 \f
6670 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6671
6672 static void
6673 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6674 asection *sec)
6675 {
6676 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6677 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6678 }
6679
6680 /* Finish SHF_MERGE section merging. */
6681
6682 bfd_boolean
6683 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6684 {
6685 bfd *ibfd;
6686 asection *sec;
6687
6688 if (!is_elf_hash_table (info->hash))
6689 return FALSE;
6690
6691 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6692 if ((ibfd->flags & DYNAMIC) == 0)
6693 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6694 if ((sec->flags & SEC_MERGE) != 0
6695 && !bfd_is_abs_section (sec->output_section))
6696 {
6697 struct bfd_elf_section_data *secdata;
6698
6699 secdata = elf_section_data (sec);
6700 if (! _bfd_add_merge_section (abfd,
6701 &elf_hash_table (info)->merge_info,
6702 sec, &secdata->sec_info))
6703 return FALSE;
6704 else if (secdata->sec_info)
6705 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6706 }
6707
6708 if (elf_hash_table (info)->merge_info != NULL)
6709 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6710 merge_sections_remove_hook);
6711 return TRUE;
6712 }
6713
6714 /* Create an entry in an ELF linker hash table. */
6715
6716 struct bfd_hash_entry *
6717 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6718 struct bfd_hash_table *table,
6719 const char *string)
6720 {
6721 /* Allocate the structure if it has not already been allocated by a
6722 subclass. */
6723 if (entry == NULL)
6724 {
6725 entry = (struct bfd_hash_entry *)
6726 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6727 if (entry == NULL)
6728 return entry;
6729 }
6730
6731 /* Call the allocation method of the superclass. */
6732 entry = _bfd_link_hash_newfunc (entry, table, string);
6733 if (entry != NULL)
6734 {
6735 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6736 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6737
6738 /* Set local fields. */
6739 ret->indx = -1;
6740 ret->dynindx = -1;
6741 ret->got = htab->init_got_refcount;
6742 ret->plt = htab->init_plt_refcount;
6743 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6744 - offsetof (struct elf_link_hash_entry, size)));
6745 /* Assume that we have been called by a non-ELF symbol reader.
6746 This flag is then reset by the code which reads an ELF input
6747 file. This ensures that a symbol created by a non-ELF symbol
6748 reader will have the flag set correctly. */
6749 ret->non_elf = 1;
6750 }
6751
6752 return entry;
6753 }
6754
6755 /* Copy data from an indirect symbol to its direct symbol, hiding the
6756 old indirect symbol. Also used for copying flags to a weakdef. */
6757
6758 void
6759 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6760 struct elf_link_hash_entry *dir,
6761 struct elf_link_hash_entry *ind)
6762 {
6763 struct elf_link_hash_table *htab;
6764
6765 /* Copy down any references that we may have already seen to the
6766 symbol which just became indirect. */
6767
6768 dir->ref_dynamic |= ind->ref_dynamic;
6769 dir->ref_regular |= ind->ref_regular;
6770 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6771 dir->non_got_ref |= ind->non_got_ref;
6772 dir->needs_plt |= ind->needs_plt;
6773 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6774
6775 if (ind->root.type != bfd_link_hash_indirect)
6776 return;
6777
6778 /* Copy over the global and procedure linkage table refcount entries.
6779 These may have been already set up by a check_relocs routine. */
6780 htab = elf_hash_table (info);
6781 if (ind->got.refcount > htab->init_got_refcount.refcount)
6782 {
6783 if (dir->got.refcount < 0)
6784 dir->got.refcount = 0;
6785 dir->got.refcount += ind->got.refcount;
6786 ind->got.refcount = htab->init_got_refcount.refcount;
6787 }
6788
6789 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6790 {
6791 if (dir->plt.refcount < 0)
6792 dir->plt.refcount = 0;
6793 dir->plt.refcount += ind->plt.refcount;
6794 ind->plt.refcount = htab->init_plt_refcount.refcount;
6795 }
6796
6797 if (ind->dynindx != -1)
6798 {
6799 if (dir->dynindx != -1)
6800 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6801 dir->dynindx = ind->dynindx;
6802 dir->dynstr_index = ind->dynstr_index;
6803 ind->dynindx = -1;
6804 ind->dynstr_index = 0;
6805 }
6806 }
6807
6808 void
6809 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6810 struct elf_link_hash_entry *h,
6811 bfd_boolean force_local)
6812 {
6813 /* STT_GNU_IFUNC symbol must go through PLT. */
6814 if (h->type != STT_GNU_IFUNC)
6815 {
6816 h->plt = elf_hash_table (info)->init_plt_offset;
6817 h->needs_plt = 0;
6818 }
6819 if (force_local)
6820 {
6821 h->forced_local = 1;
6822 if (h->dynindx != -1)
6823 {
6824 h->dynindx = -1;
6825 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6826 h->dynstr_index);
6827 }
6828 }
6829 }
6830
6831 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6832 caller. */
6833
6834 bfd_boolean
6835 _bfd_elf_link_hash_table_init
6836 (struct elf_link_hash_table *table,
6837 bfd *abfd,
6838 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6839 struct bfd_hash_table *,
6840 const char *),
6841 unsigned int entsize,
6842 enum elf_target_id target_id)
6843 {
6844 bfd_boolean ret;
6845 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6846
6847 table->init_got_refcount.refcount = can_refcount - 1;
6848 table->init_plt_refcount.refcount = can_refcount - 1;
6849 table->init_got_offset.offset = -(bfd_vma) 1;
6850 table->init_plt_offset.offset = -(bfd_vma) 1;
6851 /* The first dynamic symbol is a dummy. */
6852 table->dynsymcount = 1;
6853
6854 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6855
6856 table->root.type = bfd_link_elf_hash_table;
6857 table->hash_table_id = target_id;
6858
6859 return ret;
6860 }
6861
6862 /* Create an ELF linker hash table. */
6863
6864 struct bfd_link_hash_table *
6865 _bfd_elf_link_hash_table_create (bfd *abfd)
6866 {
6867 struct elf_link_hash_table *ret;
6868 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6869
6870 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6871 if (ret == NULL)
6872 return NULL;
6873
6874 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6875 sizeof (struct elf_link_hash_entry),
6876 GENERIC_ELF_DATA))
6877 {
6878 free (ret);
6879 return NULL;
6880 }
6881 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6882
6883 return &ret->root;
6884 }
6885
6886 /* Destroy an ELF linker hash table. */
6887
6888 void
6889 _bfd_elf_link_hash_table_free (bfd *obfd)
6890 {
6891 struct elf_link_hash_table *htab;
6892
6893 htab = (struct elf_link_hash_table *) obfd->link.hash;
6894 if (htab->dynstr != NULL)
6895 _bfd_elf_strtab_free (htab->dynstr);
6896 _bfd_merge_sections_free (htab->merge_info);
6897 _bfd_generic_link_hash_table_free (obfd);
6898 }
6899
6900 /* This is a hook for the ELF emulation code in the generic linker to
6901 tell the backend linker what file name to use for the DT_NEEDED
6902 entry for a dynamic object. */
6903
6904 void
6905 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6906 {
6907 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6908 && bfd_get_format (abfd) == bfd_object)
6909 elf_dt_name (abfd) = name;
6910 }
6911
6912 int
6913 bfd_elf_get_dyn_lib_class (bfd *abfd)
6914 {
6915 int lib_class;
6916 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6917 && bfd_get_format (abfd) == bfd_object)
6918 lib_class = elf_dyn_lib_class (abfd);
6919 else
6920 lib_class = 0;
6921 return lib_class;
6922 }
6923
6924 void
6925 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6926 {
6927 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6928 && bfd_get_format (abfd) == bfd_object)
6929 elf_dyn_lib_class (abfd) = lib_class;
6930 }
6931
6932 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6933 the linker ELF emulation code. */
6934
6935 struct bfd_link_needed_list *
6936 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6937 struct bfd_link_info *info)
6938 {
6939 if (! is_elf_hash_table (info->hash))
6940 return NULL;
6941 return elf_hash_table (info)->needed;
6942 }
6943
6944 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6945 hook for the linker ELF emulation code. */
6946
6947 struct bfd_link_needed_list *
6948 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6949 struct bfd_link_info *info)
6950 {
6951 if (! is_elf_hash_table (info->hash))
6952 return NULL;
6953 return elf_hash_table (info)->runpath;
6954 }
6955
6956 /* Get the name actually used for a dynamic object for a link. This
6957 is the SONAME entry if there is one. Otherwise, it is the string
6958 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6959
6960 const char *
6961 bfd_elf_get_dt_soname (bfd *abfd)
6962 {
6963 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6964 && bfd_get_format (abfd) == bfd_object)
6965 return elf_dt_name (abfd);
6966 return NULL;
6967 }
6968
6969 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6970 the ELF linker emulation code. */
6971
6972 bfd_boolean
6973 bfd_elf_get_bfd_needed_list (bfd *abfd,
6974 struct bfd_link_needed_list **pneeded)
6975 {
6976 asection *s;
6977 bfd_byte *dynbuf = NULL;
6978 unsigned int elfsec;
6979 unsigned long shlink;
6980 bfd_byte *extdyn, *extdynend;
6981 size_t extdynsize;
6982 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6983
6984 *pneeded = NULL;
6985
6986 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6987 || bfd_get_format (abfd) != bfd_object)
6988 return TRUE;
6989
6990 s = bfd_get_section_by_name (abfd, ".dynamic");
6991 if (s == NULL || s->size == 0)
6992 return TRUE;
6993
6994 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6995 goto error_return;
6996
6997 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6998 if (elfsec == SHN_BAD)
6999 goto error_return;
7000
7001 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7002
7003 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7004 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7005
7006 extdyn = dynbuf;
7007 extdynend = extdyn + s->size;
7008 for (; extdyn < extdynend; extdyn += extdynsize)
7009 {
7010 Elf_Internal_Dyn dyn;
7011
7012 (*swap_dyn_in) (abfd, extdyn, &dyn);
7013
7014 if (dyn.d_tag == DT_NULL)
7015 break;
7016
7017 if (dyn.d_tag == DT_NEEDED)
7018 {
7019 const char *string;
7020 struct bfd_link_needed_list *l;
7021 unsigned int tagv = dyn.d_un.d_val;
7022 bfd_size_type amt;
7023
7024 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7025 if (string == NULL)
7026 goto error_return;
7027
7028 amt = sizeof *l;
7029 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7030 if (l == NULL)
7031 goto error_return;
7032
7033 l->by = abfd;
7034 l->name = string;
7035 l->next = *pneeded;
7036 *pneeded = l;
7037 }
7038 }
7039
7040 free (dynbuf);
7041
7042 return TRUE;
7043
7044 error_return:
7045 if (dynbuf != NULL)
7046 free (dynbuf);
7047 return FALSE;
7048 }
7049
7050 struct elf_symbuf_symbol
7051 {
7052 unsigned long st_name; /* Symbol name, index in string tbl */
7053 unsigned char st_info; /* Type and binding attributes */
7054 unsigned char st_other; /* Visibilty, and target specific */
7055 };
7056
7057 struct elf_symbuf_head
7058 {
7059 struct elf_symbuf_symbol *ssym;
7060 bfd_size_type count;
7061 unsigned int st_shndx;
7062 };
7063
7064 struct elf_symbol
7065 {
7066 union
7067 {
7068 Elf_Internal_Sym *isym;
7069 struct elf_symbuf_symbol *ssym;
7070 } u;
7071 const char *name;
7072 };
7073
7074 /* Sort references to symbols by ascending section number. */
7075
7076 static int
7077 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7078 {
7079 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7080 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7081
7082 return s1->st_shndx - s2->st_shndx;
7083 }
7084
7085 static int
7086 elf_sym_name_compare (const void *arg1, const void *arg2)
7087 {
7088 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7089 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7090 return strcmp (s1->name, s2->name);
7091 }
7092
7093 static struct elf_symbuf_head *
7094 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7095 {
7096 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7097 struct elf_symbuf_symbol *ssym;
7098 struct elf_symbuf_head *ssymbuf, *ssymhead;
7099 bfd_size_type i, shndx_count, total_size;
7100
7101 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7102 if (indbuf == NULL)
7103 return NULL;
7104
7105 for (ind = indbuf, i = 0; i < symcount; i++)
7106 if (isymbuf[i].st_shndx != SHN_UNDEF)
7107 *ind++ = &isymbuf[i];
7108 indbufend = ind;
7109
7110 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7111 elf_sort_elf_symbol);
7112
7113 shndx_count = 0;
7114 if (indbufend > indbuf)
7115 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7116 if (ind[0]->st_shndx != ind[1]->st_shndx)
7117 shndx_count++;
7118
7119 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7120 + (indbufend - indbuf) * sizeof (*ssym));
7121 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7122 if (ssymbuf == NULL)
7123 {
7124 free (indbuf);
7125 return NULL;
7126 }
7127
7128 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7129 ssymbuf->ssym = NULL;
7130 ssymbuf->count = shndx_count;
7131 ssymbuf->st_shndx = 0;
7132 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7133 {
7134 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7135 {
7136 ssymhead++;
7137 ssymhead->ssym = ssym;
7138 ssymhead->count = 0;
7139 ssymhead->st_shndx = (*ind)->st_shndx;
7140 }
7141 ssym->st_name = (*ind)->st_name;
7142 ssym->st_info = (*ind)->st_info;
7143 ssym->st_other = (*ind)->st_other;
7144 ssymhead->count++;
7145 }
7146 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7147 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7148 == total_size));
7149
7150 free (indbuf);
7151 return ssymbuf;
7152 }
7153
7154 /* Check if 2 sections define the same set of local and global
7155 symbols. */
7156
7157 static bfd_boolean
7158 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7159 struct bfd_link_info *info)
7160 {
7161 bfd *bfd1, *bfd2;
7162 const struct elf_backend_data *bed1, *bed2;
7163 Elf_Internal_Shdr *hdr1, *hdr2;
7164 bfd_size_type symcount1, symcount2;
7165 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7166 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7167 Elf_Internal_Sym *isym, *isymend;
7168 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7169 bfd_size_type count1, count2, i;
7170 unsigned int shndx1, shndx2;
7171 bfd_boolean result;
7172
7173 bfd1 = sec1->owner;
7174 bfd2 = sec2->owner;
7175
7176 /* Both sections have to be in ELF. */
7177 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7178 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7179 return FALSE;
7180
7181 if (elf_section_type (sec1) != elf_section_type (sec2))
7182 return FALSE;
7183
7184 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7185 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7186 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7187 return FALSE;
7188
7189 bed1 = get_elf_backend_data (bfd1);
7190 bed2 = get_elf_backend_data (bfd2);
7191 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7192 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7193 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7194 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7195
7196 if (symcount1 == 0 || symcount2 == 0)
7197 return FALSE;
7198
7199 result = FALSE;
7200 isymbuf1 = NULL;
7201 isymbuf2 = NULL;
7202 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7203 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7204
7205 if (ssymbuf1 == NULL)
7206 {
7207 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7208 NULL, NULL, NULL);
7209 if (isymbuf1 == NULL)
7210 goto done;
7211
7212 if (!info->reduce_memory_overheads)
7213 elf_tdata (bfd1)->symbuf = ssymbuf1
7214 = elf_create_symbuf (symcount1, isymbuf1);
7215 }
7216
7217 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7218 {
7219 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7220 NULL, NULL, NULL);
7221 if (isymbuf2 == NULL)
7222 goto done;
7223
7224 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7225 elf_tdata (bfd2)->symbuf = ssymbuf2
7226 = elf_create_symbuf (symcount2, isymbuf2);
7227 }
7228
7229 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7230 {
7231 /* Optimized faster version. */
7232 bfd_size_type lo, hi, mid;
7233 struct elf_symbol *symp;
7234 struct elf_symbuf_symbol *ssym, *ssymend;
7235
7236 lo = 0;
7237 hi = ssymbuf1->count;
7238 ssymbuf1++;
7239 count1 = 0;
7240 while (lo < hi)
7241 {
7242 mid = (lo + hi) / 2;
7243 if (shndx1 < ssymbuf1[mid].st_shndx)
7244 hi = mid;
7245 else if (shndx1 > ssymbuf1[mid].st_shndx)
7246 lo = mid + 1;
7247 else
7248 {
7249 count1 = ssymbuf1[mid].count;
7250 ssymbuf1 += mid;
7251 break;
7252 }
7253 }
7254
7255 lo = 0;
7256 hi = ssymbuf2->count;
7257 ssymbuf2++;
7258 count2 = 0;
7259 while (lo < hi)
7260 {
7261 mid = (lo + hi) / 2;
7262 if (shndx2 < ssymbuf2[mid].st_shndx)
7263 hi = mid;
7264 else if (shndx2 > ssymbuf2[mid].st_shndx)
7265 lo = mid + 1;
7266 else
7267 {
7268 count2 = ssymbuf2[mid].count;
7269 ssymbuf2 += mid;
7270 break;
7271 }
7272 }
7273
7274 if (count1 == 0 || count2 == 0 || count1 != count2)
7275 goto done;
7276
7277 symtable1 = (struct elf_symbol *)
7278 bfd_malloc (count1 * sizeof (struct elf_symbol));
7279 symtable2 = (struct elf_symbol *)
7280 bfd_malloc (count2 * sizeof (struct elf_symbol));
7281 if (symtable1 == NULL || symtable2 == NULL)
7282 goto done;
7283
7284 symp = symtable1;
7285 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7286 ssym < ssymend; ssym++, symp++)
7287 {
7288 symp->u.ssym = ssym;
7289 symp->name = bfd_elf_string_from_elf_section (bfd1,
7290 hdr1->sh_link,
7291 ssym->st_name);
7292 }
7293
7294 symp = symtable2;
7295 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7296 ssym < ssymend; ssym++, symp++)
7297 {
7298 symp->u.ssym = ssym;
7299 symp->name = bfd_elf_string_from_elf_section (bfd2,
7300 hdr2->sh_link,
7301 ssym->st_name);
7302 }
7303
7304 /* Sort symbol by name. */
7305 qsort (symtable1, count1, sizeof (struct elf_symbol),
7306 elf_sym_name_compare);
7307 qsort (symtable2, count1, sizeof (struct elf_symbol),
7308 elf_sym_name_compare);
7309
7310 for (i = 0; i < count1; i++)
7311 /* Two symbols must have the same binding, type and name. */
7312 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7313 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7314 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7315 goto done;
7316
7317 result = TRUE;
7318 goto done;
7319 }
7320
7321 symtable1 = (struct elf_symbol *)
7322 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7323 symtable2 = (struct elf_symbol *)
7324 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7325 if (symtable1 == NULL || symtable2 == NULL)
7326 goto done;
7327
7328 /* Count definitions in the section. */
7329 count1 = 0;
7330 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7331 if (isym->st_shndx == shndx1)
7332 symtable1[count1++].u.isym = isym;
7333
7334 count2 = 0;
7335 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7336 if (isym->st_shndx == shndx2)
7337 symtable2[count2++].u.isym = isym;
7338
7339 if (count1 == 0 || count2 == 0 || count1 != count2)
7340 goto done;
7341
7342 for (i = 0; i < count1; i++)
7343 symtable1[i].name
7344 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7345 symtable1[i].u.isym->st_name);
7346
7347 for (i = 0; i < count2; i++)
7348 symtable2[i].name
7349 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7350 symtable2[i].u.isym->st_name);
7351
7352 /* Sort symbol by name. */
7353 qsort (symtable1, count1, sizeof (struct elf_symbol),
7354 elf_sym_name_compare);
7355 qsort (symtable2, count1, sizeof (struct elf_symbol),
7356 elf_sym_name_compare);
7357
7358 for (i = 0; i < count1; i++)
7359 /* Two symbols must have the same binding, type and name. */
7360 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7361 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7362 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7363 goto done;
7364
7365 result = TRUE;
7366
7367 done:
7368 if (symtable1)
7369 free (symtable1);
7370 if (symtable2)
7371 free (symtable2);
7372 if (isymbuf1)
7373 free (isymbuf1);
7374 if (isymbuf2)
7375 free (isymbuf2);
7376
7377 return result;
7378 }
7379
7380 /* Return TRUE if 2 section types are compatible. */
7381
7382 bfd_boolean
7383 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7384 bfd *bbfd, const asection *bsec)
7385 {
7386 if (asec == NULL
7387 || bsec == NULL
7388 || abfd->xvec->flavour != bfd_target_elf_flavour
7389 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7390 return TRUE;
7391
7392 return elf_section_type (asec) == elf_section_type (bsec);
7393 }
7394 \f
7395 /* Final phase of ELF linker. */
7396
7397 /* A structure we use to avoid passing large numbers of arguments. */
7398
7399 struct elf_final_link_info
7400 {
7401 /* General link information. */
7402 struct bfd_link_info *info;
7403 /* Output BFD. */
7404 bfd *output_bfd;
7405 /* Symbol string table. */
7406 struct bfd_strtab_hash *symstrtab;
7407 /* .dynsym section. */
7408 asection *dynsym_sec;
7409 /* .hash section. */
7410 asection *hash_sec;
7411 /* symbol version section (.gnu.version). */
7412 asection *symver_sec;
7413 /* Buffer large enough to hold contents of any section. */
7414 bfd_byte *contents;
7415 /* Buffer large enough to hold external relocs of any section. */
7416 void *external_relocs;
7417 /* Buffer large enough to hold internal relocs of any section. */
7418 Elf_Internal_Rela *internal_relocs;
7419 /* Buffer large enough to hold external local symbols of any input
7420 BFD. */
7421 bfd_byte *external_syms;
7422 /* And a buffer for symbol section indices. */
7423 Elf_External_Sym_Shndx *locsym_shndx;
7424 /* Buffer large enough to hold internal local symbols of any input
7425 BFD. */
7426 Elf_Internal_Sym *internal_syms;
7427 /* Array large enough to hold a symbol index for each local symbol
7428 of any input BFD. */
7429 long *indices;
7430 /* Array large enough to hold a section pointer for each local
7431 symbol of any input BFD. */
7432 asection **sections;
7433 /* Buffer to hold swapped out symbols. */
7434 bfd_byte *symbuf;
7435 /* And one for symbol section indices. */
7436 Elf_External_Sym_Shndx *symshndxbuf;
7437 /* Number of swapped out symbols in buffer. */
7438 size_t symbuf_count;
7439 /* Number of symbols which fit in symbuf. */
7440 size_t symbuf_size;
7441 /* And same for symshndxbuf. */
7442 size_t shndxbuf_size;
7443 /* Number of STT_FILE syms seen. */
7444 size_t filesym_count;
7445 };
7446
7447 /* This struct is used to pass information to elf_link_output_extsym. */
7448
7449 struct elf_outext_info
7450 {
7451 bfd_boolean failed;
7452 bfd_boolean localsyms;
7453 bfd_boolean need_second_pass;
7454 bfd_boolean second_pass;
7455 bfd_boolean file_sym_done;
7456 struct elf_final_link_info *flinfo;
7457 };
7458
7459
7460 /* Support for evaluating a complex relocation.
7461
7462 Complex relocations are generalized, self-describing relocations. The
7463 implementation of them consists of two parts: complex symbols, and the
7464 relocations themselves.
7465
7466 The relocations are use a reserved elf-wide relocation type code (R_RELC
7467 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7468 information (start bit, end bit, word width, etc) into the addend. This
7469 information is extracted from CGEN-generated operand tables within gas.
7470
7471 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7472 internal) representing prefix-notation expressions, including but not
7473 limited to those sorts of expressions normally encoded as addends in the
7474 addend field. The symbol mangling format is:
7475
7476 <node> := <literal>
7477 | <unary-operator> ':' <node>
7478 | <binary-operator> ':' <node> ':' <node>
7479 ;
7480
7481 <literal> := 's' <digits=N> ':' <N character symbol name>
7482 | 'S' <digits=N> ':' <N character section name>
7483 | '#' <hexdigits>
7484 ;
7485
7486 <binary-operator> := as in C
7487 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7488
7489 static void
7490 set_symbol_value (bfd *bfd_with_globals,
7491 Elf_Internal_Sym *isymbuf,
7492 size_t locsymcount,
7493 size_t symidx,
7494 bfd_vma val)
7495 {
7496 struct elf_link_hash_entry **sym_hashes;
7497 struct elf_link_hash_entry *h;
7498 size_t extsymoff = locsymcount;
7499
7500 if (symidx < locsymcount)
7501 {
7502 Elf_Internal_Sym *sym;
7503
7504 sym = isymbuf + symidx;
7505 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7506 {
7507 /* It is a local symbol: move it to the
7508 "absolute" section and give it a value. */
7509 sym->st_shndx = SHN_ABS;
7510 sym->st_value = val;
7511 return;
7512 }
7513 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7514 extsymoff = 0;
7515 }
7516
7517 /* It is a global symbol: set its link type
7518 to "defined" and give it a value. */
7519
7520 sym_hashes = elf_sym_hashes (bfd_with_globals);
7521 h = sym_hashes [symidx - extsymoff];
7522 while (h->root.type == bfd_link_hash_indirect
7523 || h->root.type == bfd_link_hash_warning)
7524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7525 h->root.type = bfd_link_hash_defined;
7526 h->root.u.def.value = val;
7527 h->root.u.def.section = bfd_abs_section_ptr;
7528 }
7529
7530 static bfd_boolean
7531 resolve_symbol (const char *name,
7532 bfd *input_bfd,
7533 struct elf_final_link_info *flinfo,
7534 bfd_vma *result,
7535 Elf_Internal_Sym *isymbuf,
7536 size_t locsymcount)
7537 {
7538 Elf_Internal_Sym *sym;
7539 struct bfd_link_hash_entry *global_entry;
7540 const char *candidate = NULL;
7541 Elf_Internal_Shdr *symtab_hdr;
7542 size_t i;
7543
7544 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7545
7546 for (i = 0; i < locsymcount; ++ i)
7547 {
7548 sym = isymbuf + i;
7549
7550 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7551 continue;
7552
7553 candidate = bfd_elf_string_from_elf_section (input_bfd,
7554 symtab_hdr->sh_link,
7555 sym->st_name);
7556 #ifdef DEBUG
7557 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7558 name, candidate, (unsigned long) sym->st_value);
7559 #endif
7560 if (candidate && strcmp (candidate, name) == 0)
7561 {
7562 asection *sec = flinfo->sections [i];
7563
7564 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7565 *result += sec->output_offset + sec->output_section->vma;
7566 #ifdef DEBUG
7567 printf ("Found symbol with value %8.8lx\n",
7568 (unsigned long) *result);
7569 #endif
7570 return TRUE;
7571 }
7572 }
7573
7574 /* Hmm, haven't found it yet. perhaps it is a global. */
7575 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7576 FALSE, FALSE, TRUE);
7577 if (!global_entry)
7578 return FALSE;
7579
7580 if (global_entry->type == bfd_link_hash_defined
7581 || global_entry->type == bfd_link_hash_defweak)
7582 {
7583 *result = (global_entry->u.def.value
7584 + global_entry->u.def.section->output_section->vma
7585 + global_entry->u.def.section->output_offset);
7586 #ifdef DEBUG
7587 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7588 global_entry->root.string, (unsigned long) *result);
7589 #endif
7590 return TRUE;
7591 }
7592
7593 return FALSE;
7594 }
7595
7596 static bfd_boolean
7597 resolve_section (const char *name,
7598 asection *sections,
7599 bfd_vma *result)
7600 {
7601 asection *curr;
7602 unsigned int len;
7603
7604 for (curr = sections; curr; curr = curr->next)
7605 if (strcmp (curr->name, name) == 0)
7606 {
7607 *result = curr->vma;
7608 return TRUE;
7609 }
7610
7611 /* Hmm. still haven't found it. try pseudo-section names. */
7612 for (curr = sections; curr; curr = curr->next)
7613 {
7614 len = strlen (curr->name);
7615 if (len > strlen (name))
7616 continue;
7617
7618 if (strncmp (curr->name, name, len) == 0)
7619 {
7620 if (strncmp (".end", name + len, 4) == 0)
7621 {
7622 *result = curr->vma + curr->size;
7623 return TRUE;
7624 }
7625
7626 /* Insert more pseudo-section names here, if you like. */
7627 }
7628 }
7629
7630 return FALSE;
7631 }
7632
7633 static void
7634 undefined_reference (const char *reftype, const char *name)
7635 {
7636 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7637 reftype, name);
7638 }
7639
7640 static bfd_boolean
7641 eval_symbol (bfd_vma *result,
7642 const char **symp,
7643 bfd *input_bfd,
7644 struct elf_final_link_info *flinfo,
7645 bfd_vma dot,
7646 Elf_Internal_Sym *isymbuf,
7647 size_t locsymcount,
7648 int signed_p)
7649 {
7650 size_t len;
7651 size_t symlen;
7652 bfd_vma a;
7653 bfd_vma b;
7654 char symbuf[4096];
7655 const char *sym = *symp;
7656 const char *symend;
7657 bfd_boolean symbol_is_section = FALSE;
7658
7659 len = strlen (sym);
7660 symend = sym + len;
7661
7662 if (len < 1 || len > sizeof (symbuf))
7663 {
7664 bfd_set_error (bfd_error_invalid_operation);
7665 return FALSE;
7666 }
7667
7668 switch (* sym)
7669 {
7670 case '.':
7671 *result = dot;
7672 *symp = sym + 1;
7673 return TRUE;
7674
7675 case '#':
7676 ++sym;
7677 *result = strtoul (sym, (char **) symp, 16);
7678 return TRUE;
7679
7680 case 'S':
7681 symbol_is_section = TRUE;
7682 case 's':
7683 ++sym;
7684 symlen = strtol (sym, (char **) symp, 10);
7685 sym = *symp + 1; /* Skip the trailing ':'. */
7686
7687 if (symend < sym || symlen + 1 > sizeof (symbuf))
7688 {
7689 bfd_set_error (bfd_error_invalid_operation);
7690 return FALSE;
7691 }
7692
7693 memcpy (symbuf, sym, symlen);
7694 symbuf[symlen] = '\0';
7695 *symp = sym + symlen;
7696
7697 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7698 the symbol as a section, or vice-versa. so we're pretty liberal in our
7699 interpretation here; section means "try section first", not "must be a
7700 section", and likewise with symbol. */
7701
7702 if (symbol_is_section)
7703 {
7704 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7705 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7706 isymbuf, locsymcount))
7707 {
7708 undefined_reference ("section", symbuf);
7709 return FALSE;
7710 }
7711 }
7712 else
7713 {
7714 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7715 isymbuf, locsymcount)
7716 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7717 result))
7718 {
7719 undefined_reference ("symbol", symbuf);
7720 return FALSE;
7721 }
7722 }
7723
7724 return TRUE;
7725
7726 /* All that remains are operators. */
7727
7728 #define UNARY_OP(op) \
7729 if (strncmp (sym, #op, strlen (#op)) == 0) \
7730 { \
7731 sym += strlen (#op); \
7732 if (*sym == ':') \
7733 ++sym; \
7734 *symp = sym; \
7735 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7736 isymbuf, locsymcount, signed_p)) \
7737 return FALSE; \
7738 if (signed_p) \
7739 *result = op ((bfd_signed_vma) a); \
7740 else \
7741 *result = op a; \
7742 return TRUE; \
7743 }
7744
7745 #define BINARY_OP(op) \
7746 if (strncmp (sym, #op, strlen (#op)) == 0) \
7747 { \
7748 sym += strlen (#op); \
7749 if (*sym == ':') \
7750 ++sym; \
7751 *symp = sym; \
7752 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7753 isymbuf, locsymcount, signed_p)) \
7754 return FALSE; \
7755 ++*symp; \
7756 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7757 isymbuf, locsymcount, signed_p)) \
7758 return FALSE; \
7759 if (signed_p) \
7760 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7761 else \
7762 *result = a op b; \
7763 return TRUE; \
7764 }
7765
7766 default:
7767 UNARY_OP (0-);
7768 BINARY_OP (<<);
7769 BINARY_OP (>>);
7770 BINARY_OP (==);
7771 BINARY_OP (!=);
7772 BINARY_OP (<=);
7773 BINARY_OP (>=);
7774 BINARY_OP (&&);
7775 BINARY_OP (||);
7776 UNARY_OP (~);
7777 UNARY_OP (!);
7778 BINARY_OP (*);
7779 BINARY_OP (/);
7780 BINARY_OP (%);
7781 BINARY_OP (^);
7782 BINARY_OP (|);
7783 BINARY_OP (&);
7784 BINARY_OP (+);
7785 BINARY_OP (-);
7786 BINARY_OP (<);
7787 BINARY_OP (>);
7788 #undef UNARY_OP
7789 #undef BINARY_OP
7790 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7791 bfd_set_error (bfd_error_invalid_operation);
7792 return FALSE;
7793 }
7794 }
7795
7796 static void
7797 put_value (bfd_vma size,
7798 unsigned long chunksz,
7799 bfd *input_bfd,
7800 bfd_vma x,
7801 bfd_byte *location)
7802 {
7803 location += (size - chunksz);
7804
7805 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7806 {
7807 switch (chunksz)
7808 {
7809 default:
7810 case 0:
7811 abort ();
7812 case 1:
7813 bfd_put_8 (input_bfd, x, location);
7814 break;
7815 case 2:
7816 bfd_put_16 (input_bfd, x, location);
7817 break;
7818 case 4:
7819 bfd_put_32 (input_bfd, x, location);
7820 break;
7821 case 8:
7822 #ifdef BFD64
7823 bfd_put_64 (input_bfd, x, location);
7824 #else
7825 abort ();
7826 #endif
7827 break;
7828 }
7829 }
7830 }
7831
7832 static bfd_vma
7833 get_value (bfd_vma size,
7834 unsigned long chunksz,
7835 bfd *input_bfd,
7836 bfd_byte *location)
7837 {
7838 int shift;
7839 bfd_vma x = 0;
7840
7841 /* Sanity checks. */
7842 BFD_ASSERT (chunksz <= sizeof (x)
7843 && size >= chunksz
7844 && chunksz != 0
7845 && (size % chunksz) == 0
7846 && input_bfd != NULL
7847 && location != NULL);
7848
7849 if (chunksz == sizeof (x))
7850 {
7851 BFD_ASSERT (size == chunksz);
7852
7853 /* Make sure that we do not perform an undefined shift operation.
7854 We know that size == chunksz so there will only be one iteration
7855 of the loop below. */
7856 shift = 0;
7857 }
7858 else
7859 shift = 8 * chunksz;
7860
7861 for (; size; size -= chunksz, location += chunksz)
7862 {
7863 switch (chunksz)
7864 {
7865 case 1:
7866 x = (x << shift) | bfd_get_8 (input_bfd, location);
7867 break;
7868 case 2:
7869 x = (x << shift) | bfd_get_16 (input_bfd, location);
7870 break;
7871 case 4:
7872 x = (x << shift) | bfd_get_32 (input_bfd, location);
7873 break;
7874 #ifdef BFD64
7875 case 8:
7876 x = (x << shift) | bfd_get_64 (input_bfd, location);
7877 break;
7878 #endif
7879 default:
7880 abort ();
7881 }
7882 }
7883 return x;
7884 }
7885
7886 static void
7887 decode_complex_addend (unsigned long *start, /* in bits */
7888 unsigned long *oplen, /* in bits */
7889 unsigned long *len, /* in bits */
7890 unsigned long *wordsz, /* in bytes */
7891 unsigned long *chunksz, /* in bytes */
7892 unsigned long *lsb0_p,
7893 unsigned long *signed_p,
7894 unsigned long *trunc_p,
7895 unsigned long encoded)
7896 {
7897 * start = encoded & 0x3F;
7898 * len = (encoded >> 6) & 0x3F;
7899 * oplen = (encoded >> 12) & 0x3F;
7900 * wordsz = (encoded >> 18) & 0xF;
7901 * chunksz = (encoded >> 22) & 0xF;
7902 * lsb0_p = (encoded >> 27) & 1;
7903 * signed_p = (encoded >> 28) & 1;
7904 * trunc_p = (encoded >> 29) & 1;
7905 }
7906
7907 bfd_reloc_status_type
7908 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7909 asection *input_section ATTRIBUTE_UNUSED,
7910 bfd_byte *contents,
7911 Elf_Internal_Rela *rel,
7912 bfd_vma relocation)
7913 {
7914 bfd_vma shift, x, mask;
7915 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7916 bfd_reloc_status_type r;
7917
7918 /* Perform this reloc, since it is complex.
7919 (this is not to say that it necessarily refers to a complex
7920 symbol; merely that it is a self-describing CGEN based reloc.
7921 i.e. the addend has the complete reloc information (bit start, end,
7922 word size, etc) encoded within it.). */
7923
7924 decode_complex_addend (&start, &oplen, &len, &wordsz,
7925 &chunksz, &lsb0_p, &signed_p,
7926 &trunc_p, rel->r_addend);
7927
7928 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7929
7930 if (lsb0_p)
7931 shift = (start + 1) - len;
7932 else
7933 shift = (8 * wordsz) - (start + len);
7934
7935 /* FIXME: octets_per_byte. */
7936 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7937
7938 #ifdef DEBUG
7939 printf ("Doing complex reloc: "
7940 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7941 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7942 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7943 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7944 oplen, (unsigned long) x, (unsigned long) mask,
7945 (unsigned long) relocation);
7946 #endif
7947
7948 r = bfd_reloc_ok;
7949 if (! trunc_p)
7950 /* Now do an overflow check. */
7951 r = bfd_check_overflow ((signed_p
7952 ? complain_overflow_signed
7953 : complain_overflow_unsigned),
7954 len, 0, (8 * wordsz),
7955 relocation);
7956
7957 /* Do the deed. */
7958 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7959
7960 #ifdef DEBUG
7961 printf (" relocation: %8.8lx\n"
7962 " shifted mask: %8.8lx\n"
7963 " shifted/masked reloc: %8.8lx\n"
7964 " result: %8.8lx\n",
7965 (unsigned long) relocation, (unsigned long) (mask << shift),
7966 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7967 #endif
7968 /* FIXME: octets_per_byte. */
7969 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7970 return r;
7971 }
7972
7973 /* qsort comparison functions sorting external relocs by r_offset. */
7974
7975 static int
7976 cmp_ext32l_r_offset (const void *p, const void *q)
7977 {
7978 union aligned32
7979 {
7980 uint32_t v;
7981 unsigned char c[4];
7982 };
7983 const union aligned32 *a
7984 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7985 const union aligned32 *b
7986 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7987
7988 uint32_t aval = ( (uint32_t) a->c[0]
7989 | (uint32_t) a->c[1] << 8
7990 | (uint32_t) a->c[2] << 16
7991 | (uint32_t) a->c[3] << 24);
7992 uint32_t bval = ( (uint32_t) b->c[0]
7993 | (uint32_t) b->c[1] << 8
7994 | (uint32_t) b->c[2] << 16
7995 | (uint32_t) b->c[3] << 24);
7996 if (aval < bval)
7997 return -1;
7998 else if (aval > bval)
7999 return 1;
8000 return 0;
8001 }
8002
8003 static int
8004 cmp_ext32b_r_offset (const void *p, const void *q)
8005 {
8006 union aligned32
8007 {
8008 uint32_t v;
8009 unsigned char c[4];
8010 };
8011 const union aligned32 *a
8012 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8013 const union aligned32 *b
8014 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8015
8016 uint32_t aval = ( (uint32_t) a->c[0] << 24
8017 | (uint32_t) a->c[1] << 16
8018 | (uint32_t) a->c[2] << 8
8019 | (uint32_t) a->c[3]);
8020 uint32_t bval = ( (uint32_t) b->c[0] << 24
8021 | (uint32_t) b->c[1] << 16
8022 | (uint32_t) b->c[2] << 8
8023 | (uint32_t) b->c[3]);
8024 if (aval < bval)
8025 return -1;
8026 else if (aval > bval)
8027 return 1;
8028 return 0;
8029 }
8030
8031 #ifdef BFD_HOST_64_BIT
8032 static int
8033 cmp_ext64l_r_offset (const void *p, const void *q)
8034 {
8035 union aligned64
8036 {
8037 uint64_t v;
8038 unsigned char c[8];
8039 };
8040 const union aligned64 *a
8041 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8042 const union aligned64 *b
8043 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8044
8045 uint64_t aval = ( (uint64_t) a->c[0]
8046 | (uint64_t) a->c[1] << 8
8047 | (uint64_t) a->c[2] << 16
8048 | (uint64_t) a->c[3] << 24
8049 | (uint64_t) a->c[4] << 32
8050 | (uint64_t) a->c[5] << 40
8051 | (uint64_t) a->c[6] << 48
8052 | (uint64_t) a->c[7] << 56);
8053 uint64_t bval = ( (uint64_t) b->c[0]
8054 | (uint64_t) b->c[1] << 8
8055 | (uint64_t) b->c[2] << 16
8056 | (uint64_t) b->c[3] << 24
8057 | (uint64_t) b->c[4] << 32
8058 | (uint64_t) b->c[5] << 40
8059 | (uint64_t) b->c[6] << 48
8060 | (uint64_t) b->c[7] << 56);
8061 if (aval < bval)
8062 return -1;
8063 else if (aval > bval)
8064 return 1;
8065 return 0;
8066 }
8067
8068 static int
8069 cmp_ext64b_r_offset (const void *p, const void *q)
8070 {
8071 union aligned64
8072 {
8073 uint64_t v;
8074 unsigned char c[8];
8075 };
8076 const union aligned64 *a
8077 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8078 const union aligned64 *b
8079 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8080
8081 uint64_t aval = ( (uint64_t) a->c[0] << 56
8082 | (uint64_t) a->c[1] << 48
8083 | (uint64_t) a->c[2] << 40
8084 | (uint64_t) a->c[3] << 32
8085 | (uint64_t) a->c[4] << 24
8086 | (uint64_t) a->c[5] << 16
8087 | (uint64_t) a->c[6] << 8
8088 | (uint64_t) a->c[7]);
8089 uint64_t bval = ( (uint64_t) b->c[0] << 56
8090 | (uint64_t) b->c[1] << 48
8091 | (uint64_t) b->c[2] << 40
8092 | (uint64_t) b->c[3] << 32
8093 | (uint64_t) b->c[4] << 24
8094 | (uint64_t) b->c[5] << 16
8095 | (uint64_t) b->c[6] << 8
8096 | (uint64_t) b->c[7]);
8097 if (aval < bval)
8098 return -1;
8099 else if (aval > bval)
8100 return 1;
8101 return 0;
8102 }
8103 #endif
8104
8105 /* When performing a relocatable link, the input relocations are
8106 preserved. But, if they reference global symbols, the indices
8107 referenced must be updated. Update all the relocations found in
8108 RELDATA. */
8109
8110 static void
8111 elf_link_adjust_relocs (bfd *abfd,
8112 struct bfd_elf_section_reloc_data *reldata,
8113 bfd_boolean sort)
8114 {
8115 unsigned int i;
8116 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8117 bfd_byte *erela;
8118 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8119 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8120 bfd_vma r_type_mask;
8121 int r_sym_shift;
8122 unsigned int count = reldata->count;
8123 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8124
8125 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8126 {
8127 swap_in = bed->s->swap_reloc_in;
8128 swap_out = bed->s->swap_reloc_out;
8129 }
8130 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8131 {
8132 swap_in = bed->s->swap_reloca_in;
8133 swap_out = bed->s->swap_reloca_out;
8134 }
8135 else
8136 abort ();
8137
8138 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8139 abort ();
8140
8141 if (bed->s->arch_size == 32)
8142 {
8143 r_type_mask = 0xff;
8144 r_sym_shift = 8;
8145 }
8146 else
8147 {
8148 r_type_mask = 0xffffffff;
8149 r_sym_shift = 32;
8150 }
8151
8152 erela = reldata->hdr->contents;
8153 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8154 {
8155 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8156 unsigned int j;
8157
8158 if (*rel_hash == NULL)
8159 continue;
8160
8161 BFD_ASSERT ((*rel_hash)->indx >= 0);
8162
8163 (*swap_in) (abfd, erela, irela);
8164 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8165 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8166 | (irela[j].r_info & r_type_mask));
8167 (*swap_out) (abfd, irela, erela);
8168 }
8169
8170 if (sort)
8171 {
8172 int (*compare) (const void *, const void *);
8173
8174 if (bed->s->arch_size == 32)
8175 {
8176 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8177 compare = cmp_ext32l_r_offset;
8178 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8179 compare = cmp_ext32b_r_offset;
8180 else
8181 abort ();
8182 }
8183 else
8184 {
8185 #ifdef BFD_HOST_64_BIT
8186 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8187 compare = cmp_ext64l_r_offset;
8188 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8189 compare = cmp_ext64b_r_offset;
8190 else
8191 #endif
8192 abort ();
8193 }
8194 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8195 free (reldata->hashes);
8196 reldata->hashes = NULL;
8197 }
8198 }
8199
8200 struct elf_link_sort_rela
8201 {
8202 union {
8203 bfd_vma offset;
8204 bfd_vma sym_mask;
8205 } u;
8206 enum elf_reloc_type_class type;
8207 /* We use this as an array of size int_rels_per_ext_rel. */
8208 Elf_Internal_Rela rela[1];
8209 };
8210
8211 static int
8212 elf_link_sort_cmp1 (const void *A, const void *B)
8213 {
8214 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8215 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8216 int relativea, relativeb;
8217
8218 relativea = a->type == reloc_class_relative;
8219 relativeb = b->type == reloc_class_relative;
8220
8221 if (relativea < relativeb)
8222 return 1;
8223 if (relativea > relativeb)
8224 return -1;
8225 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8226 return -1;
8227 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8228 return 1;
8229 if (a->rela->r_offset < b->rela->r_offset)
8230 return -1;
8231 if (a->rela->r_offset > b->rela->r_offset)
8232 return 1;
8233 return 0;
8234 }
8235
8236 static int
8237 elf_link_sort_cmp2 (const void *A, const void *B)
8238 {
8239 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8240 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8241
8242 if (a->type < b->type)
8243 return -1;
8244 if (a->type > b->type)
8245 return 1;
8246 if (a->u.offset < b->u.offset)
8247 return -1;
8248 if (a->u.offset > b->u.offset)
8249 return 1;
8250 if (a->rela->r_offset < b->rela->r_offset)
8251 return -1;
8252 if (a->rela->r_offset > b->rela->r_offset)
8253 return 1;
8254 return 0;
8255 }
8256
8257 static size_t
8258 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8259 {
8260 asection *dynamic_relocs;
8261 asection *rela_dyn;
8262 asection *rel_dyn;
8263 bfd_size_type count, size;
8264 size_t i, ret, sort_elt, ext_size;
8265 bfd_byte *sort, *s_non_relative, *p;
8266 struct elf_link_sort_rela *sq;
8267 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8268 int i2e = bed->s->int_rels_per_ext_rel;
8269 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8270 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8271 struct bfd_link_order *lo;
8272 bfd_vma r_sym_mask;
8273 bfd_boolean use_rela;
8274
8275 /* Find a dynamic reloc section. */
8276 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8277 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8278 if (rela_dyn != NULL && rela_dyn->size > 0
8279 && rel_dyn != NULL && rel_dyn->size > 0)
8280 {
8281 bfd_boolean use_rela_initialised = FALSE;
8282
8283 /* This is just here to stop gcc from complaining.
8284 It's initialization checking code is not perfect. */
8285 use_rela = TRUE;
8286
8287 /* Both sections are present. Examine the sizes
8288 of the indirect sections to help us choose. */
8289 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8290 if (lo->type == bfd_indirect_link_order)
8291 {
8292 asection *o = lo->u.indirect.section;
8293
8294 if ((o->size % bed->s->sizeof_rela) == 0)
8295 {
8296 if ((o->size % bed->s->sizeof_rel) == 0)
8297 /* Section size is divisible by both rel and rela sizes.
8298 It is of no help to us. */
8299 ;
8300 else
8301 {
8302 /* Section size is only divisible by rela. */
8303 if (use_rela_initialised && (use_rela == FALSE))
8304 {
8305 _bfd_error_handler
8306 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8307 bfd_set_error (bfd_error_invalid_operation);
8308 return 0;
8309 }
8310 else
8311 {
8312 use_rela = TRUE;
8313 use_rela_initialised = TRUE;
8314 }
8315 }
8316 }
8317 else if ((o->size % bed->s->sizeof_rel) == 0)
8318 {
8319 /* Section size is only divisible by rel. */
8320 if (use_rela_initialised && (use_rela == TRUE))
8321 {
8322 _bfd_error_handler
8323 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8324 bfd_set_error (bfd_error_invalid_operation);
8325 return 0;
8326 }
8327 else
8328 {
8329 use_rela = FALSE;
8330 use_rela_initialised = TRUE;
8331 }
8332 }
8333 else
8334 {
8335 /* The section size is not divisible by either - something is wrong. */
8336 _bfd_error_handler
8337 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8338 bfd_set_error (bfd_error_invalid_operation);
8339 return 0;
8340 }
8341 }
8342
8343 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8344 if (lo->type == bfd_indirect_link_order)
8345 {
8346 asection *o = lo->u.indirect.section;
8347
8348 if ((o->size % bed->s->sizeof_rela) == 0)
8349 {
8350 if ((o->size % bed->s->sizeof_rel) == 0)
8351 /* Section size is divisible by both rel and rela sizes.
8352 It is of no help to us. */
8353 ;
8354 else
8355 {
8356 /* Section size is only divisible by rela. */
8357 if (use_rela_initialised && (use_rela == FALSE))
8358 {
8359 _bfd_error_handler
8360 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8361 bfd_set_error (bfd_error_invalid_operation);
8362 return 0;
8363 }
8364 else
8365 {
8366 use_rela = TRUE;
8367 use_rela_initialised = TRUE;
8368 }
8369 }
8370 }
8371 else if ((o->size % bed->s->sizeof_rel) == 0)
8372 {
8373 /* Section size is only divisible by rel. */
8374 if (use_rela_initialised && (use_rela == TRUE))
8375 {
8376 _bfd_error_handler
8377 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8378 bfd_set_error (bfd_error_invalid_operation);
8379 return 0;
8380 }
8381 else
8382 {
8383 use_rela = FALSE;
8384 use_rela_initialised = TRUE;
8385 }
8386 }
8387 else
8388 {
8389 /* The section size is not divisible by either - something is wrong. */
8390 _bfd_error_handler
8391 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8392 bfd_set_error (bfd_error_invalid_operation);
8393 return 0;
8394 }
8395 }
8396
8397 if (! use_rela_initialised)
8398 /* Make a guess. */
8399 use_rela = TRUE;
8400 }
8401 else if (rela_dyn != NULL && rela_dyn->size > 0)
8402 use_rela = TRUE;
8403 else if (rel_dyn != NULL && rel_dyn->size > 0)
8404 use_rela = FALSE;
8405 else
8406 return 0;
8407
8408 if (use_rela)
8409 {
8410 dynamic_relocs = rela_dyn;
8411 ext_size = bed->s->sizeof_rela;
8412 swap_in = bed->s->swap_reloca_in;
8413 swap_out = bed->s->swap_reloca_out;
8414 }
8415 else
8416 {
8417 dynamic_relocs = rel_dyn;
8418 ext_size = bed->s->sizeof_rel;
8419 swap_in = bed->s->swap_reloc_in;
8420 swap_out = bed->s->swap_reloc_out;
8421 }
8422
8423 size = 0;
8424 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8425 if (lo->type == bfd_indirect_link_order)
8426 size += lo->u.indirect.section->size;
8427
8428 if (size != dynamic_relocs->size)
8429 return 0;
8430
8431 sort_elt = (sizeof (struct elf_link_sort_rela)
8432 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8433
8434 count = dynamic_relocs->size / ext_size;
8435 if (count == 0)
8436 return 0;
8437 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8438
8439 if (sort == NULL)
8440 {
8441 (*info->callbacks->warning)
8442 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8443 return 0;
8444 }
8445
8446 if (bed->s->arch_size == 32)
8447 r_sym_mask = ~(bfd_vma) 0xff;
8448 else
8449 r_sym_mask = ~(bfd_vma) 0xffffffff;
8450
8451 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8452 if (lo->type == bfd_indirect_link_order)
8453 {
8454 bfd_byte *erel, *erelend;
8455 asection *o = lo->u.indirect.section;
8456
8457 if (o->contents == NULL && o->size != 0)
8458 {
8459 /* This is a reloc section that is being handled as a normal
8460 section. See bfd_section_from_shdr. We can't combine
8461 relocs in this case. */
8462 free (sort);
8463 return 0;
8464 }
8465 erel = o->contents;
8466 erelend = o->contents + o->size;
8467 /* FIXME: octets_per_byte. */
8468 p = sort + o->output_offset / ext_size * sort_elt;
8469
8470 while (erel < erelend)
8471 {
8472 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8473
8474 (*swap_in) (abfd, erel, s->rela);
8475 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8476 s->u.sym_mask = r_sym_mask;
8477 p += sort_elt;
8478 erel += ext_size;
8479 }
8480 }
8481
8482 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8483
8484 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8485 {
8486 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8487 if (s->type != reloc_class_relative)
8488 break;
8489 }
8490 ret = i;
8491 s_non_relative = p;
8492
8493 sq = (struct elf_link_sort_rela *) s_non_relative;
8494 for (; i < count; i++, p += sort_elt)
8495 {
8496 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8497 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8498 sq = sp;
8499 sp->u.offset = sq->rela->r_offset;
8500 }
8501
8502 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8503
8504 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8505 if (lo->type == bfd_indirect_link_order)
8506 {
8507 bfd_byte *erel, *erelend;
8508 asection *o = lo->u.indirect.section;
8509
8510 erel = o->contents;
8511 erelend = o->contents + o->size;
8512 /* FIXME: octets_per_byte. */
8513 p = sort + o->output_offset / ext_size * sort_elt;
8514 while (erel < erelend)
8515 {
8516 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8517 (*swap_out) (abfd, s->rela, erel);
8518 p += sort_elt;
8519 erel += ext_size;
8520 }
8521 }
8522
8523 free (sort);
8524 *psec = dynamic_relocs;
8525 return ret;
8526 }
8527
8528 /* Flush the output symbols to the file. */
8529
8530 static bfd_boolean
8531 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8532 const struct elf_backend_data *bed)
8533 {
8534 if (flinfo->symbuf_count > 0)
8535 {
8536 Elf_Internal_Shdr *hdr;
8537 file_ptr pos;
8538 bfd_size_type amt;
8539
8540 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8541 pos = hdr->sh_offset + hdr->sh_size;
8542 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8543 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8544 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8545 return FALSE;
8546
8547 hdr->sh_size += amt;
8548 flinfo->symbuf_count = 0;
8549 }
8550
8551 return TRUE;
8552 }
8553
8554 /* Add a symbol to the output symbol table. */
8555
8556 static int
8557 elf_link_output_sym (struct elf_final_link_info *flinfo,
8558 const char *name,
8559 Elf_Internal_Sym *elfsym,
8560 asection *input_sec,
8561 struct elf_link_hash_entry *h)
8562 {
8563 bfd_byte *dest;
8564 Elf_External_Sym_Shndx *destshndx;
8565 int (*output_symbol_hook)
8566 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8567 struct elf_link_hash_entry *);
8568 const struct elf_backend_data *bed;
8569
8570 bed = get_elf_backend_data (flinfo->output_bfd);
8571 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8572 if (output_symbol_hook != NULL)
8573 {
8574 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8575 if (ret != 1)
8576 return ret;
8577 }
8578
8579 if (name == NULL || *name == '\0')
8580 elfsym->st_name = 0;
8581 else if (input_sec->flags & SEC_EXCLUDE)
8582 elfsym->st_name = 0;
8583 else
8584 {
8585 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8586 name, TRUE, FALSE);
8587 if (elfsym->st_name == (unsigned long) -1)
8588 return 0;
8589 }
8590
8591 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8592 {
8593 if (! elf_link_flush_output_syms (flinfo, bed))
8594 return 0;
8595 }
8596
8597 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8598 destshndx = flinfo->symshndxbuf;
8599 if (destshndx != NULL)
8600 {
8601 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8602 {
8603 bfd_size_type amt;
8604
8605 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8606 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8607 amt * 2);
8608 if (destshndx == NULL)
8609 return 0;
8610 flinfo->symshndxbuf = destshndx;
8611 memset ((char *) destshndx + amt, 0, amt);
8612 flinfo->shndxbuf_size *= 2;
8613 }
8614 destshndx += bfd_get_symcount (flinfo->output_bfd);
8615 }
8616
8617 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8618 flinfo->symbuf_count += 1;
8619 bfd_get_symcount (flinfo->output_bfd) += 1;
8620
8621 return 1;
8622 }
8623
8624 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8625
8626 static bfd_boolean
8627 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8628 {
8629 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8630 && sym->st_shndx < SHN_LORESERVE)
8631 {
8632 /* The gABI doesn't support dynamic symbols in output sections
8633 beyond 64k. */
8634 (*_bfd_error_handler)
8635 (_("%B: Too many sections: %d (>= %d)"),
8636 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8637 bfd_set_error (bfd_error_nonrepresentable_section);
8638 return FALSE;
8639 }
8640 return TRUE;
8641 }
8642
8643 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8644 allowing an unsatisfied unversioned symbol in the DSO to match a
8645 versioned symbol that would normally require an explicit version.
8646 We also handle the case that a DSO references a hidden symbol
8647 which may be satisfied by a versioned symbol in another DSO. */
8648
8649 static bfd_boolean
8650 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8651 const struct elf_backend_data *bed,
8652 struct elf_link_hash_entry *h)
8653 {
8654 bfd *abfd;
8655 struct elf_link_loaded_list *loaded;
8656
8657 if (!is_elf_hash_table (info->hash))
8658 return FALSE;
8659
8660 /* Check indirect symbol. */
8661 while (h->root.type == bfd_link_hash_indirect)
8662 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8663
8664 switch (h->root.type)
8665 {
8666 default:
8667 abfd = NULL;
8668 break;
8669
8670 case bfd_link_hash_undefined:
8671 case bfd_link_hash_undefweak:
8672 abfd = h->root.u.undef.abfd;
8673 if ((abfd->flags & DYNAMIC) == 0
8674 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8675 return FALSE;
8676 break;
8677
8678 case bfd_link_hash_defined:
8679 case bfd_link_hash_defweak:
8680 abfd = h->root.u.def.section->owner;
8681 break;
8682
8683 case bfd_link_hash_common:
8684 abfd = h->root.u.c.p->section->owner;
8685 break;
8686 }
8687 BFD_ASSERT (abfd != NULL);
8688
8689 for (loaded = elf_hash_table (info)->loaded;
8690 loaded != NULL;
8691 loaded = loaded->next)
8692 {
8693 bfd *input;
8694 Elf_Internal_Shdr *hdr;
8695 bfd_size_type symcount;
8696 bfd_size_type extsymcount;
8697 bfd_size_type extsymoff;
8698 Elf_Internal_Shdr *versymhdr;
8699 Elf_Internal_Sym *isym;
8700 Elf_Internal_Sym *isymend;
8701 Elf_Internal_Sym *isymbuf;
8702 Elf_External_Versym *ever;
8703 Elf_External_Versym *extversym;
8704
8705 input = loaded->abfd;
8706
8707 /* We check each DSO for a possible hidden versioned definition. */
8708 if (input == abfd
8709 || (input->flags & DYNAMIC) == 0
8710 || elf_dynversym (input) == 0)
8711 continue;
8712
8713 hdr = &elf_tdata (input)->dynsymtab_hdr;
8714
8715 symcount = hdr->sh_size / bed->s->sizeof_sym;
8716 if (elf_bad_symtab (input))
8717 {
8718 extsymcount = symcount;
8719 extsymoff = 0;
8720 }
8721 else
8722 {
8723 extsymcount = symcount - hdr->sh_info;
8724 extsymoff = hdr->sh_info;
8725 }
8726
8727 if (extsymcount == 0)
8728 continue;
8729
8730 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8731 NULL, NULL, NULL);
8732 if (isymbuf == NULL)
8733 return FALSE;
8734
8735 /* Read in any version definitions. */
8736 versymhdr = &elf_tdata (input)->dynversym_hdr;
8737 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8738 if (extversym == NULL)
8739 goto error_ret;
8740
8741 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8742 || (bfd_bread (extversym, versymhdr->sh_size, input)
8743 != versymhdr->sh_size))
8744 {
8745 free (extversym);
8746 error_ret:
8747 free (isymbuf);
8748 return FALSE;
8749 }
8750
8751 ever = extversym + extsymoff;
8752 isymend = isymbuf + extsymcount;
8753 for (isym = isymbuf; isym < isymend; isym++, ever++)
8754 {
8755 const char *name;
8756 Elf_Internal_Versym iver;
8757 unsigned short version_index;
8758
8759 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8760 || isym->st_shndx == SHN_UNDEF)
8761 continue;
8762
8763 name = bfd_elf_string_from_elf_section (input,
8764 hdr->sh_link,
8765 isym->st_name);
8766 if (strcmp (name, h->root.root.string) != 0)
8767 continue;
8768
8769 _bfd_elf_swap_versym_in (input, ever, &iver);
8770
8771 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8772 && !(h->def_regular
8773 && h->forced_local))
8774 {
8775 /* If we have a non-hidden versioned sym, then it should
8776 have provided a definition for the undefined sym unless
8777 it is defined in a non-shared object and forced local.
8778 */
8779 abort ();
8780 }
8781
8782 version_index = iver.vs_vers & VERSYM_VERSION;
8783 if (version_index == 1 || version_index == 2)
8784 {
8785 /* This is the base or first version. We can use it. */
8786 free (extversym);
8787 free (isymbuf);
8788 return TRUE;
8789 }
8790 }
8791
8792 free (extversym);
8793 free (isymbuf);
8794 }
8795
8796 return FALSE;
8797 }
8798
8799 /* Add an external symbol to the symbol table. This is called from
8800 the hash table traversal routine. When generating a shared object,
8801 we go through the symbol table twice. The first time we output
8802 anything that might have been forced to local scope in a version
8803 script. The second time we output the symbols that are still
8804 global symbols. */
8805
8806 static bfd_boolean
8807 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8808 {
8809 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8810 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8811 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8812 bfd_boolean strip;
8813 Elf_Internal_Sym sym;
8814 asection *input_sec;
8815 const struct elf_backend_data *bed;
8816 long indx;
8817 int ret;
8818
8819 if (h->root.type == bfd_link_hash_warning)
8820 {
8821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8822 if (h->root.type == bfd_link_hash_new)
8823 return TRUE;
8824 }
8825
8826 /* Decide whether to output this symbol in this pass. */
8827 if (eoinfo->localsyms)
8828 {
8829 if (!h->forced_local)
8830 return TRUE;
8831 if (eoinfo->second_pass
8832 && !((h->root.type == bfd_link_hash_defined
8833 || h->root.type == bfd_link_hash_defweak)
8834 && h->root.u.def.section->output_section != NULL))
8835 return TRUE;
8836
8837 if (!eoinfo->file_sym_done
8838 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8839 : eoinfo->flinfo->filesym_count > 1))
8840 {
8841 /* Output a FILE symbol so that following locals are not associated
8842 with the wrong input file. */
8843 memset (&sym, 0, sizeof (sym));
8844 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8845 sym.st_shndx = SHN_ABS;
8846 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8847 bfd_und_section_ptr, NULL))
8848 return FALSE;
8849
8850 eoinfo->file_sym_done = TRUE;
8851 }
8852 }
8853 else
8854 {
8855 if (h->forced_local)
8856 return TRUE;
8857 }
8858
8859 bed = get_elf_backend_data (flinfo->output_bfd);
8860
8861 if (h->root.type == bfd_link_hash_undefined)
8862 {
8863 /* If we have an undefined symbol reference here then it must have
8864 come from a shared library that is being linked in. (Undefined
8865 references in regular files have already been handled unless
8866 they are in unreferenced sections which are removed by garbage
8867 collection). */
8868 bfd_boolean ignore_undef = FALSE;
8869
8870 /* Some symbols may be special in that the fact that they're
8871 undefined can be safely ignored - let backend determine that. */
8872 if (bed->elf_backend_ignore_undef_symbol)
8873 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8874
8875 /* If we are reporting errors for this situation then do so now. */
8876 if (!ignore_undef
8877 && h->ref_dynamic
8878 && (!h->ref_regular || flinfo->info->gc_sections)
8879 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8880 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8881 {
8882 if (!(flinfo->info->callbacks->undefined_symbol
8883 (flinfo->info, h->root.root.string,
8884 h->ref_regular ? NULL : h->root.u.undef.abfd,
8885 NULL, 0,
8886 (flinfo->info->unresolved_syms_in_shared_libs
8887 == RM_GENERATE_ERROR))))
8888 {
8889 bfd_set_error (bfd_error_bad_value);
8890 eoinfo->failed = TRUE;
8891 return FALSE;
8892 }
8893 }
8894 }
8895
8896 /* We should also warn if a forced local symbol is referenced from
8897 shared libraries. */
8898 if (!flinfo->info->relocatable
8899 && flinfo->info->executable
8900 && h->forced_local
8901 && h->ref_dynamic
8902 && h->def_regular
8903 && !h->dynamic_def
8904 && h->ref_dynamic_nonweak
8905 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8906 {
8907 bfd *def_bfd;
8908 const char *msg;
8909 struct elf_link_hash_entry *hi = h;
8910
8911 /* Check indirect symbol. */
8912 while (hi->root.type == bfd_link_hash_indirect)
8913 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8914
8915 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8916 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8917 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8918 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8919 else
8920 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8921 def_bfd = flinfo->output_bfd;
8922 if (hi->root.u.def.section != bfd_abs_section_ptr)
8923 def_bfd = hi->root.u.def.section->owner;
8924 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8925 h->root.root.string);
8926 bfd_set_error (bfd_error_bad_value);
8927 eoinfo->failed = TRUE;
8928 return FALSE;
8929 }
8930
8931 /* We don't want to output symbols that have never been mentioned by
8932 a regular file, or that we have been told to strip. However, if
8933 h->indx is set to -2, the symbol is used by a reloc and we must
8934 output it. */
8935 if (h->indx == -2)
8936 strip = FALSE;
8937 else if ((h->def_dynamic
8938 || h->ref_dynamic
8939 || h->root.type == bfd_link_hash_new)
8940 && !h->def_regular
8941 && !h->ref_regular)
8942 strip = TRUE;
8943 else if (flinfo->info->strip == strip_all)
8944 strip = TRUE;
8945 else if (flinfo->info->strip == strip_some
8946 && bfd_hash_lookup (flinfo->info->keep_hash,
8947 h->root.root.string, FALSE, FALSE) == NULL)
8948 strip = TRUE;
8949 else if ((h->root.type == bfd_link_hash_defined
8950 || h->root.type == bfd_link_hash_defweak)
8951 && ((flinfo->info->strip_discarded
8952 && discarded_section (h->root.u.def.section))
8953 || (h->root.u.def.section->owner != NULL
8954 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8955 strip = TRUE;
8956 else if ((h->root.type == bfd_link_hash_undefined
8957 || h->root.type == bfd_link_hash_undefweak)
8958 && h->root.u.undef.abfd != NULL
8959 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8960 strip = TRUE;
8961 else
8962 strip = FALSE;
8963
8964 /* If we're stripping it, and it's not a dynamic symbol, there's
8965 nothing else to do unless it is a forced local symbol or a
8966 STT_GNU_IFUNC symbol. */
8967 if (strip
8968 && h->dynindx == -1
8969 && h->type != STT_GNU_IFUNC
8970 && !h->forced_local)
8971 return TRUE;
8972
8973 sym.st_value = 0;
8974 sym.st_size = h->size;
8975 sym.st_other = h->other;
8976 if (h->forced_local)
8977 {
8978 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8979 /* Turn off visibility on local symbol. */
8980 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8981 }
8982 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8983 else if (h->unique_global && h->def_regular)
8984 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8985 else if (h->root.type == bfd_link_hash_undefweak
8986 || h->root.type == bfd_link_hash_defweak)
8987 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8988 else
8989 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8990 sym.st_target_internal = h->target_internal;
8991
8992 switch (h->root.type)
8993 {
8994 default:
8995 case bfd_link_hash_new:
8996 case bfd_link_hash_warning:
8997 abort ();
8998 return FALSE;
8999
9000 case bfd_link_hash_undefined:
9001 case bfd_link_hash_undefweak:
9002 input_sec = bfd_und_section_ptr;
9003 sym.st_shndx = SHN_UNDEF;
9004 break;
9005
9006 case bfd_link_hash_defined:
9007 case bfd_link_hash_defweak:
9008 {
9009 input_sec = h->root.u.def.section;
9010 if (input_sec->output_section != NULL)
9011 {
9012 if (eoinfo->localsyms && flinfo->filesym_count == 1)
9013 {
9014 bfd_boolean second_pass_sym
9015 = (input_sec->owner == flinfo->output_bfd
9016 || input_sec->owner == NULL
9017 || (input_sec->flags & SEC_LINKER_CREATED) != 0
9018 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
9019
9020 eoinfo->need_second_pass |= second_pass_sym;
9021 if (eoinfo->second_pass != second_pass_sym)
9022 return TRUE;
9023 }
9024
9025 sym.st_shndx =
9026 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9027 input_sec->output_section);
9028 if (sym.st_shndx == SHN_BAD)
9029 {
9030 (*_bfd_error_handler)
9031 (_("%B: could not find output section %A for input section %A"),
9032 flinfo->output_bfd, input_sec->output_section, input_sec);
9033 bfd_set_error (bfd_error_nonrepresentable_section);
9034 eoinfo->failed = TRUE;
9035 return FALSE;
9036 }
9037
9038 /* ELF symbols in relocatable files are section relative,
9039 but in nonrelocatable files they are virtual
9040 addresses. */
9041 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9042 if (!flinfo->info->relocatable)
9043 {
9044 sym.st_value += input_sec->output_section->vma;
9045 if (h->type == STT_TLS)
9046 {
9047 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9048 if (tls_sec != NULL)
9049 sym.st_value -= tls_sec->vma;
9050 else
9051 {
9052 /* The TLS section may have been garbage collected. */
9053 BFD_ASSERT (flinfo->info->gc_sections
9054 && !input_sec->gc_mark);
9055 }
9056 }
9057 }
9058 }
9059 else
9060 {
9061 BFD_ASSERT (input_sec->owner == NULL
9062 || (input_sec->owner->flags & DYNAMIC) != 0);
9063 sym.st_shndx = SHN_UNDEF;
9064 input_sec = bfd_und_section_ptr;
9065 }
9066 }
9067 break;
9068
9069 case bfd_link_hash_common:
9070 input_sec = h->root.u.c.p->section;
9071 sym.st_shndx = bed->common_section_index (input_sec);
9072 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9073 break;
9074
9075 case bfd_link_hash_indirect:
9076 /* These symbols are created by symbol versioning. They point
9077 to the decorated version of the name. For example, if the
9078 symbol foo@@GNU_1.2 is the default, which should be used when
9079 foo is used with no version, then we add an indirect symbol
9080 foo which points to foo@@GNU_1.2. We ignore these symbols,
9081 since the indirected symbol is already in the hash table. */
9082 return TRUE;
9083 }
9084
9085 /* Give the processor backend a chance to tweak the symbol value,
9086 and also to finish up anything that needs to be done for this
9087 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9088 forced local syms when non-shared is due to a historical quirk.
9089 STT_GNU_IFUNC symbol must go through PLT. */
9090 if ((h->type == STT_GNU_IFUNC
9091 && h->def_regular
9092 && !flinfo->info->relocatable)
9093 || ((h->dynindx != -1
9094 || h->forced_local)
9095 && ((flinfo->info->shared
9096 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9097 || h->root.type != bfd_link_hash_undefweak))
9098 || !h->forced_local)
9099 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9100 {
9101 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9102 (flinfo->output_bfd, flinfo->info, h, &sym)))
9103 {
9104 eoinfo->failed = TRUE;
9105 return FALSE;
9106 }
9107 }
9108
9109 /* If we are marking the symbol as undefined, and there are no
9110 non-weak references to this symbol from a regular object, then
9111 mark the symbol as weak undefined; if there are non-weak
9112 references, mark the symbol as strong. We can't do this earlier,
9113 because it might not be marked as undefined until the
9114 finish_dynamic_symbol routine gets through with it. */
9115 if (sym.st_shndx == SHN_UNDEF
9116 && h->ref_regular
9117 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9118 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9119 {
9120 int bindtype;
9121 unsigned int type = ELF_ST_TYPE (sym.st_info);
9122
9123 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9124 if (type == STT_GNU_IFUNC)
9125 type = STT_FUNC;
9126
9127 if (h->ref_regular_nonweak)
9128 bindtype = STB_GLOBAL;
9129 else
9130 bindtype = STB_WEAK;
9131 sym.st_info = ELF_ST_INFO (bindtype, type);
9132 }
9133
9134 /* If this is a symbol defined in a dynamic library, don't use the
9135 symbol size from the dynamic library. Relinking an executable
9136 against a new library may introduce gratuitous changes in the
9137 executable's symbols if we keep the size. */
9138 if (sym.st_shndx == SHN_UNDEF
9139 && !h->def_regular
9140 && h->def_dynamic)
9141 sym.st_size = 0;
9142
9143 /* If a non-weak symbol with non-default visibility is not defined
9144 locally, it is a fatal error. */
9145 if (!flinfo->info->relocatable
9146 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9147 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9148 && h->root.type == bfd_link_hash_undefined
9149 && !h->def_regular)
9150 {
9151 const char *msg;
9152
9153 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9154 msg = _("%B: protected symbol `%s' isn't defined");
9155 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9156 msg = _("%B: internal symbol `%s' isn't defined");
9157 else
9158 msg = _("%B: hidden symbol `%s' isn't defined");
9159 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9160 bfd_set_error (bfd_error_bad_value);
9161 eoinfo->failed = TRUE;
9162 return FALSE;
9163 }
9164
9165 /* If this symbol should be put in the .dynsym section, then put it
9166 there now. We already know the symbol index. We also fill in
9167 the entry in the .hash section. */
9168 if (flinfo->dynsym_sec != NULL
9169 && h->dynindx != -1
9170 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9171 {
9172 bfd_byte *esym;
9173
9174 /* Since there is no version information in the dynamic string,
9175 if there is no version info in symbol version section, we will
9176 have a run-time problem. */
9177 if (h->verinfo.verdef == NULL)
9178 {
9179 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9180
9181 if (p && p [1] != '\0')
9182 {
9183 (*_bfd_error_handler)
9184 (_("%B: No symbol version section for versioned symbol `%s'"),
9185 flinfo->output_bfd, h->root.root.string);
9186 eoinfo->failed = TRUE;
9187 return FALSE;
9188 }
9189 }
9190
9191 sym.st_name = h->dynstr_index;
9192 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9193 if (!check_dynsym (flinfo->output_bfd, &sym))
9194 {
9195 eoinfo->failed = TRUE;
9196 return FALSE;
9197 }
9198 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9199
9200 if (flinfo->hash_sec != NULL)
9201 {
9202 size_t hash_entry_size;
9203 bfd_byte *bucketpos;
9204 bfd_vma chain;
9205 size_t bucketcount;
9206 size_t bucket;
9207
9208 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9209 bucket = h->u.elf_hash_value % bucketcount;
9210
9211 hash_entry_size
9212 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9213 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9214 + (bucket + 2) * hash_entry_size);
9215 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9216 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9217 bucketpos);
9218 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9219 ((bfd_byte *) flinfo->hash_sec->contents
9220 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9221 }
9222
9223 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9224 {
9225 Elf_Internal_Versym iversym;
9226 Elf_External_Versym *eversym;
9227
9228 if (!h->def_regular)
9229 {
9230 if (h->verinfo.verdef == NULL
9231 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9232 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9233 iversym.vs_vers = 0;
9234 else
9235 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9236 }
9237 else
9238 {
9239 if (h->verinfo.vertree == NULL)
9240 iversym.vs_vers = 1;
9241 else
9242 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9243 if (flinfo->info->create_default_symver)
9244 iversym.vs_vers++;
9245 }
9246
9247 if (h->hidden)
9248 iversym.vs_vers |= VERSYM_HIDDEN;
9249
9250 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9251 eversym += h->dynindx;
9252 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9253 }
9254 }
9255
9256 /* If we're stripping it, then it was just a dynamic symbol, and
9257 there's nothing else to do. */
9258 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9259 return TRUE;
9260
9261 indx = bfd_get_symcount (flinfo->output_bfd);
9262 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9263 if (ret == 0)
9264 {
9265 eoinfo->failed = TRUE;
9266 return FALSE;
9267 }
9268 else if (ret == 1)
9269 h->indx = indx;
9270 else if (h->indx == -2)
9271 abort();
9272
9273 return TRUE;
9274 }
9275
9276 /* Return TRUE if special handling is done for relocs in SEC against
9277 symbols defined in discarded sections. */
9278
9279 static bfd_boolean
9280 elf_section_ignore_discarded_relocs (asection *sec)
9281 {
9282 const struct elf_backend_data *bed;
9283
9284 switch (sec->sec_info_type)
9285 {
9286 case SEC_INFO_TYPE_STABS:
9287 case SEC_INFO_TYPE_EH_FRAME:
9288 return TRUE;
9289 default:
9290 break;
9291 }
9292
9293 bed = get_elf_backend_data (sec->owner);
9294 if (bed->elf_backend_ignore_discarded_relocs != NULL
9295 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9296 return TRUE;
9297
9298 return FALSE;
9299 }
9300
9301 /* Return a mask saying how ld should treat relocations in SEC against
9302 symbols defined in discarded sections. If this function returns
9303 COMPLAIN set, ld will issue a warning message. If this function
9304 returns PRETEND set, and the discarded section was link-once and the
9305 same size as the kept link-once section, ld will pretend that the
9306 symbol was actually defined in the kept section. Otherwise ld will
9307 zero the reloc (at least that is the intent, but some cooperation by
9308 the target dependent code is needed, particularly for REL targets). */
9309
9310 unsigned int
9311 _bfd_elf_default_action_discarded (asection *sec)
9312 {
9313 if (sec->flags & SEC_DEBUGGING)
9314 return PRETEND;
9315
9316 if (strcmp (".eh_frame", sec->name) == 0)
9317 return 0;
9318
9319 if (strcmp (".gcc_except_table", sec->name) == 0)
9320 return 0;
9321
9322 return COMPLAIN | PRETEND;
9323 }
9324
9325 /* Find a match between a section and a member of a section group. */
9326
9327 static asection *
9328 match_group_member (asection *sec, asection *group,
9329 struct bfd_link_info *info)
9330 {
9331 asection *first = elf_next_in_group (group);
9332 asection *s = first;
9333
9334 while (s != NULL)
9335 {
9336 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9337 return s;
9338
9339 s = elf_next_in_group (s);
9340 if (s == first)
9341 break;
9342 }
9343
9344 return NULL;
9345 }
9346
9347 /* Check if the kept section of a discarded section SEC can be used
9348 to replace it. Return the replacement if it is OK. Otherwise return
9349 NULL. */
9350
9351 asection *
9352 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9353 {
9354 asection *kept;
9355
9356 kept = sec->kept_section;
9357 if (kept != NULL)
9358 {
9359 if ((kept->flags & SEC_GROUP) != 0)
9360 kept = match_group_member (sec, kept, info);
9361 if (kept != NULL
9362 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9363 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9364 kept = NULL;
9365 sec->kept_section = kept;
9366 }
9367 return kept;
9368 }
9369
9370 /* Link an input file into the linker output file. This function
9371 handles all the sections and relocations of the input file at once.
9372 This is so that we only have to read the local symbols once, and
9373 don't have to keep them in memory. */
9374
9375 static bfd_boolean
9376 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9377 {
9378 int (*relocate_section)
9379 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9380 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9381 bfd *output_bfd;
9382 Elf_Internal_Shdr *symtab_hdr;
9383 size_t locsymcount;
9384 size_t extsymoff;
9385 Elf_Internal_Sym *isymbuf;
9386 Elf_Internal_Sym *isym;
9387 Elf_Internal_Sym *isymend;
9388 long *pindex;
9389 asection **ppsection;
9390 asection *o;
9391 const struct elf_backend_data *bed;
9392 struct elf_link_hash_entry **sym_hashes;
9393 bfd_size_type address_size;
9394 bfd_vma r_type_mask;
9395 int r_sym_shift;
9396 bfd_boolean have_file_sym = FALSE;
9397
9398 output_bfd = flinfo->output_bfd;
9399 bed = get_elf_backend_data (output_bfd);
9400 relocate_section = bed->elf_backend_relocate_section;
9401
9402 /* If this is a dynamic object, we don't want to do anything here:
9403 we don't want the local symbols, and we don't want the section
9404 contents. */
9405 if ((input_bfd->flags & DYNAMIC) != 0)
9406 return TRUE;
9407
9408 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9409 if (elf_bad_symtab (input_bfd))
9410 {
9411 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9412 extsymoff = 0;
9413 }
9414 else
9415 {
9416 locsymcount = symtab_hdr->sh_info;
9417 extsymoff = symtab_hdr->sh_info;
9418 }
9419
9420 /* Read the local symbols. */
9421 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9422 if (isymbuf == NULL && locsymcount != 0)
9423 {
9424 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9425 flinfo->internal_syms,
9426 flinfo->external_syms,
9427 flinfo->locsym_shndx);
9428 if (isymbuf == NULL)
9429 return FALSE;
9430 }
9431
9432 /* Find local symbol sections and adjust values of symbols in
9433 SEC_MERGE sections. Write out those local symbols we know are
9434 going into the output file. */
9435 isymend = isymbuf + locsymcount;
9436 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9437 isym < isymend;
9438 isym++, pindex++, ppsection++)
9439 {
9440 asection *isec;
9441 const char *name;
9442 Elf_Internal_Sym osym;
9443 long indx;
9444 int ret;
9445
9446 *pindex = -1;
9447
9448 if (elf_bad_symtab (input_bfd))
9449 {
9450 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9451 {
9452 *ppsection = NULL;
9453 continue;
9454 }
9455 }
9456
9457 if (isym->st_shndx == SHN_UNDEF)
9458 isec = bfd_und_section_ptr;
9459 else if (isym->st_shndx == SHN_ABS)
9460 isec = bfd_abs_section_ptr;
9461 else if (isym->st_shndx == SHN_COMMON)
9462 isec = bfd_com_section_ptr;
9463 else
9464 {
9465 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9466 if (isec == NULL)
9467 {
9468 /* Don't attempt to output symbols with st_shnx in the
9469 reserved range other than SHN_ABS and SHN_COMMON. */
9470 *ppsection = NULL;
9471 continue;
9472 }
9473 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9474 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9475 isym->st_value =
9476 _bfd_merged_section_offset (output_bfd, &isec,
9477 elf_section_data (isec)->sec_info,
9478 isym->st_value);
9479 }
9480
9481 *ppsection = isec;
9482
9483 /* Don't output the first, undefined, symbol. */
9484 if (ppsection == flinfo->sections)
9485 continue;
9486
9487 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9488 {
9489 /* We never output section symbols. Instead, we use the
9490 section symbol of the corresponding section in the output
9491 file. */
9492 continue;
9493 }
9494
9495 /* If we are stripping all symbols, we don't want to output this
9496 one. */
9497 if (flinfo->info->strip == strip_all)
9498 continue;
9499
9500 /* If we are discarding all local symbols, we don't want to
9501 output this one. If we are generating a relocatable output
9502 file, then some of the local symbols may be required by
9503 relocs; we output them below as we discover that they are
9504 needed. */
9505 if (flinfo->info->discard == discard_all)
9506 continue;
9507
9508 /* If this symbol is defined in a section which we are
9509 discarding, we don't need to keep it. */
9510 if (isym->st_shndx != SHN_UNDEF
9511 && isym->st_shndx < SHN_LORESERVE
9512 && bfd_section_removed_from_list (output_bfd,
9513 isec->output_section))
9514 continue;
9515
9516 /* Get the name of the symbol. */
9517 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9518 isym->st_name);
9519 if (name == NULL)
9520 return FALSE;
9521
9522 /* See if we are discarding symbols with this name. */
9523 if ((flinfo->info->strip == strip_some
9524 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9525 == NULL))
9526 || (((flinfo->info->discard == discard_sec_merge
9527 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9528 || flinfo->info->discard == discard_l)
9529 && bfd_is_local_label_name (input_bfd, name)))
9530 continue;
9531
9532 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9533 {
9534 have_file_sym = TRUE;
9535 flinfo->filesym_count += 1;
9536 }
9537 if (!have_file_sym)
9538 {
9539 /* In the absence of debug info, bfd_find_nearest_line uses
9540 FILE symbols to determine the source file for local
9541 function symbols. Provide a FILE symbol here if input
9542 files lack such, so that their symbols won't be
9543 associated with a previous input file. It's not the
9544 source file, but the best we can do. */
9545 have_file_sym = TRUE;
9546 flinfo->filesym_count += 1;
9547 memset (&osym, 0, sizeof (osym));
9548 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9549 osym.st_shndx = SHN_ABS;
9550 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9551 bfd_abs_section_ptr, NULL))
9552 return FALSE;
9553 }
9554
9555 osym = *isym;
9556
9557 /* Adjust the section index for the output file. */
9558 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9559 isec->output_section);
9560 if (osym.st_shndx == SHN_BAD)
9561 return FALSE;
9562
9563 /* ELF symbols in relocatable files are section relative, but
9564 in executable files they are virtual addresses. Note that
9565 this code assumes that all ELF sections have an associated
9566 BFD section with a reasonable value for output_offset; below
9567 we assume that they also have a reasonable value for
9568 output_section. Any special sections must be set up to meet
9569 these requirements. */
9570 osym.st_value += isec->output_offset;
9571 if (!flinfo->info->relocatable)
9572 {
9573 osym.st_value += isec->output_section->vma;
9574 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9575 {
9576 /* STT_TLS symbols are relative to PT_TLS segment base. */
9577 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9578 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9579 }
9580 }
9581
9582 indx = bfd_get_symcount (output_bfd);
9583 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9584 if (ret == 0)
9585 return FALSE;
9586 else if (ret == 1)
9587 *pindex = indx;
9588 }
9589
9590 if (bed->s->arch_size == 32)
9591 {
9592 r_type_mask = 0xff;
9593 r_sym_shift = 8;
9594 address_size = 4;
9595 }
9596 else
9597 {
9598 r_type_mask = 0xffffffff;
9599 r_sym_shift = 32;
9600 address_size = 8;
9601 }
9602
9603 /* Relocate the contents of each section. */
9604 sym_hashes = elf_sym_hashes (input_bfd);
9605 for (o = input_bfd->sections; o != NULL; o = o->next)
9606 {
9607 bfd_byte *contents;
9608
9609 if (! o->linker_mark)
9610 {
9611 /* This section was omitted from the link. */
9612 continue;
9613 }
9614
9615 if (flinfo->info->relocatable
9616 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9617 {
9618 /* Deal with the group signature symbol. */
9619 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9620 unsigned long symndx = sec_data->this_hdr.sh_info;
9621 asection *osec = o->output_section;
9622
9623 if (symndx >= locsymcount
9624 || (elf_bad_symtab (input_bfd)
9625 && flinfo->sections[symndx] == NULL))
9626 {
9627 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9628 while (h->root.type == bfd_link_hash_indirect
9629 || h->root.type == bfd_link_hash_warning)
9630 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9631 /* Arrange for symbol to be output. */
9632 h->indx = -2;
9633 elf_section_data (osec)->this_hdr.sh_info = -2;
9634 }
9635 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9636 {
9637 /* We'll use the output section target_index. */
9638 asection *sec = flinfo->sections[symndx]->output_section;
9639 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9640 }
9641 else
9642 {
9643 if (flinfo->indices[symndx] == -1)
9644 {
9645 /* Otherwise output the local symbol now. */
9646 Elf_Internal_Sym sym = isymbuf[symndx];
9647 asection *sec = flinfo->sections[symndx]->output_section;
9648 const char *name;
9649 long indx;
9650 int ret;
9651
9652 name = bfd_elf_string_from_elf_section (input_bfd,
9653 symtab_hdr->sh_link,
9654 sym.st_name);
9655 if (name == NULL)
9656 return FALSE;
9657
9658 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9659 sec);
9660 if (sym.st_shndx == SHN_BAD)
9661 return FALSE;
9662
9663 sym.st_value += o->output_offset;
9664
9665 indx = bfd_get_symcount (output_bfd);
9666 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9667 if (ret == 0)
9668 return FALSE;
9669 else if (ret == 1)
9670 flinfo->indices[symndx] = indx;
9671 else
9672 abort ();
9673 }
9674 elf_section_data (osec)->this_hdr.sh_info
9675 = flinfo->indices[symndx];
9676 }
9677 }
9678
9679 if ((o->flags & SEC_HAS_CONTENTS) == 0
9680 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9681 continue;
9682
9683 if ((o->flags & SEC_LINKER_CREATED) != 0)
9684 {
9685 /* Section was created by _bfd_elf_link_create_dynamic_sections
9686 or somesuch. */
9687 continue;
9688 }
9689
9690 /* Get the contents of the section. They have been cached by a
9691 relaxation routine. Note that o is a section in an input
9692 file, so the contents field will not have been set by any of
9693 the routines which work on output files. */
9694 if (elf_section_data (o)->this_hdr.contents != NULL)
9695 {
9696 contents = elf_section_data (o)->this_hdr.contents;
9697 if (bed->caches_rawsize
9698 && o->rawsize != 0
9699 && o->rawsize < o->size)
9700 {
9701 memcpy (flinfo->contents, contents, o->rawsize);
9702 contents = flinfo->contents;
9703 }
9704 }
9705 else
9706 {
9707 contents = flinfo->contents;
9708 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9709 return FALSE;
9710 }
9711
9712 if ((o->flags & SEC_RELOC) != 0)
9713 {
9714 Elf_Internal_Rela *internal_relocs;
9715 Elf_Internal_Rela *rel, *relend;
9716 int action_discarded;
9717 int ret;
9718
9719 /* Get the swapped relocs. */
9720 internal_relocs
9721 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9722 flinfo->internal_relocs, FALSE);
9723 if (internal_relocs == NULL
9724 && o->reloc_count > 0)
9725 return FALSE;
9726
9727 /* We need to reverse-copy input .ctors/.dtors sections if
9728 they are placed in .init_array/.finit_array for output. */
9729 if (o->size > address_size
9730 && ((strncmp (o->name, ".ctors", 6) == 0
9731 && strcmp (o->output_section->name,
9732 ".init_array") == 0)
9733 || (strncmp (o->name, ".dtors", 6) == 0
9734 && strcmp (o->output_section->name,
9735 ".fini_array") == 0))
9736 && (o->name[6] == 0 || o->name[6] == '.'))
9737 {
9738 if (o->size != o->reloc_count * address_size)
9739 {
9740 (*_bfd_error_handler)
9741 (_("error: %B: size of section %A is not "
9742 "multiple of address size"),
9743 input_bfd, o);
9744 bfd_set_error (bfd_error_on_input);
9745 return FALSE;
9746 }
9747 o->flags |= SEC_ELF_REVERSE_COPY;
9748 }
9749
9750 action_discarded = -1;
9751 if (!elf_section_ignore_discarded_relocs (o))
9752 action_discarded = (*bed->action_discarded) (o);
9753
9754 /* Run through the relocs evaluating complex reloc symbols and
9755 looking for relocs against symbols from discarded sections
9756 or section symbols from removed link-once sections.
9757 Complain about relocs against discarded sections. Zero
9758 relocs against removed link-once sections. */
9759
9760 rel = internal_relocs;
9761 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9762 for ( ; rel < relend; rel++)
9763 {
9764 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9765 unsigned int s_type;
9766 asection **ps, *sec;
9767 struct elf_link_hash_entry *h = NULL;
9768 const char *sym_name;
9769
9770 if (r_symndx == STN_UNDEF)
9771 continue;
9772
9773 if (r_symndx >= locsymcount
9774 || (elf_bad_symtab (input_bfd)
9775 && flinfo->sections[r_symndx] == NULL))
9776 {
9777 h = sym_hashes[r_symndx - extsymoff];
9778
9779 /* Badly formatted input files can contain relocs that
9780 reference non-existant symbols. Check here so that
9781 we do not seg fault. */
9782 if (h == NULL)
9783 {
9784 char buffer [32];
9785
9786 sprintf_vma (buffer, rel->r_info);
9787 (*_bfd_error_handler)
9788 (_("error: %B contains a reloc (0x%s) for section %A "
9789 "that references a non-existent global symbol"),
9790 input_bfd, o, buffer);
9791 bfd_set_error (bfd_error_bad_value);
9792 return FALSE;
9793 }
9794
9795 while (h->root.type == bfd_link_hash_indirect
9796 || h->root.type == bfd_link_hash_warning)
9797 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9798
9799 s_type = h->type;
9800
9801 ps = NULL;
9802 if (h->root.type == bfd_link_hash_defined
9803 || h->root.type == bfd_link_hash_defweak)
9804 ps = &h->root.u.def.section;
9805
9806 sym_name = h->root.root.string;
9807 }
9808 else
9809 {
9810 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9811
9812 s_type = ELF_ST_TYPE (sym->st_info);
9813 ps = &flinfo->sections[r_symndx];
9814 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9815 sym, *ps);
9816 }
9817
9818 if ((s_type == STT_RELC || s_type == STT_SRELC)
9819 && !flinfo->info->relocatable)
9820 {
9821 bfd_vma val;
9822 bfd_vma dot = (rel->r_offset
9823 + o->output_offset + o->output_section->vma);
9824 #ifdef DEBUG
9825 printf ("Encountered a complex symbol!");
9826 printf (" (input_bfd %s, section %s, reloc %ld\n",
9827 input_bfd->filename, o->name,
9828 (long) (rel - internal_relocs));
9829 printf (" symbol: idx %8.8lx, name %s\n",
9830 r_symndx, sym_name);
9831 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9832 (unsigned long) rel->r_info,
9833 (unsigned long) rel->r_offset);
9834 #endif
9835 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9836 isymbuf, locsymcount, s_type == STT_SRELC))
9837 return FALSE;
9838
9839 /* Symbol evaluated OK. Update to absolute value. */
9840 set_symbol_value (input_bfd, isymbuf, locsymcount,
9841 r_symndx, val);
9842 continue;
9843 }
9844
9845 if (action_discarded != -1 && ps != NULL)
9846 {
9847 /* Complain if the definition comes from a
9848 discarded section. */
9849 if ((sec = *ps) != NULL && discarded_section (sec))
9850 {
9851 BFD_ASSERT (r_symndx != STN_UNDEF);
9852 if (action_discarded & COMPLAIN)
9853 (*flinfo->info->callbacks->einfo)
9854 (_("%X`%s' referenced in section `%A' of %B: "
9855 "defined in discarded section `%A' of %B\n"),
9856 sym_name, o, input_bfd, sec, sec->owner);
9857
9858 /* Try to do the best we can to support buggy old
9859 versions of gcc. Pretend that the symbol is
9860 really defined in the kept linkonce section.
9861 FIXME: This is quite broken. Modifying the
9862 symbol here means we will be changing all later
9863 uses of the symbol, not just in this section. */
9864 if (action_discarded & PRETEND)
9865 {
9866 asection *kept;
9867
9868 kept = _bfd_elf_check_kept_section (sec,
9869 flinfo->info);
9870 if (kept != NULL)
9871 {
9872 *ps = kept;
9873 continue;
9874 }
9875 }
9876 }
9877 }
9878 }
9879
9880 /* Relocate the section by invoking a back end routine.
9881
9882 The back end routine is responsible for adjusting the
9883 section contents as necessary, and (if using Rela relocs
9884 and generating a relocatable output file) adjusting the
9885 reloc addend as necessary.
9886
9887 The back end routine does not have to worry about setting
9888 the reloc address or the reloc symbol index.
9889
9890 The back end routine is given a pointer to the swapped in
9891 internal symbols, and can access the hash table entries
9892 for the external symbols via elf_sym_hashes (input_bfd).
9893
9894 When generating relocatable output, the back end routine
9895 must handle STB_LOCAL/STT_SECTION symbols specially. The
9896 output symbol is going to be a section symbol
9897 corresponding to the output section, which will require
9898 the addend to be adjusted. */
9899
9900 ret = (*relocate_section) (output_bfd, flinfo->info,
9901 input_bfd, o, contents,
9902 internal_relocs,
9903 isymbuf,
9904 flinfo->sections);
9905 if (!ret)
9906 return FALSE;
9907
9908 if (ret == 2
9909 || flinfo->info->relocatable
9910 || flinfo->info->emitrelocations)
9911 {
9912 Elf_Internal_Rela *irela;
9913 Elf_Internal_Rela *irelaend, *irelamid;
9914 bfd_vma last_offset;
9915 struct elf_link_hash_entry **rel_hash;
9916 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9917 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9918 unsigned int next_erel;
9919 bfd_boolean rela_normal;
9920 struct bfd_elf_section_data *esdi, *esdo;
9921
9922 esdi = elf_section_data (o);
9923 esdo = elf_section_data (o->output_section);
9924 rela_normal = FALSE;
9925
9926 /* Adjust the reloc addresses and symbol indices. */
9927
9928 irela = internal_relocs;
9929 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9930 rel_hash = esdo->rel.hashes + esdo->rel.count;
9931 /* We start processing the REL relocs, if any. When we reach
9932 IRELAMID in the loop, we switch to the RELA relocs. */
9933 irelamid = irela;
9934 if (esdi->rel.hdr != NULL)
9935 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9936 * bed->s->int_rels_per_ext_rel);
9937 rel_hash_list = rel_hash;
9938 rela_hash_list = NULL;
9939 last_offset = o->output_offset;
9940 if (!flinfo->info->relocatable)
9941 last_offset += o->output_section->vma;
9942 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9943 {
9944 unsigned long r_symndx;
9945 asection *sec;
9946 Elf_Internal_Sym sym;
9947
9948 if (next_erel == bed->s->int_rels_per_ext_rel)
9949 {
9950 rel_hash++;
9951 next_erel = 0;
9952 }
9953
9954 if (irela == irelamid)
9955 {
9956 rel_hash = esdo->rela.hashes + esdo->rela.count;
9957 rela_hash_list = rel_hash;
9958 rela_normal = bed->rela_normal;
9959 }
9960
9961 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9962 flinfo->info, o,
9963 irela->r_offset);
9964 if (irela->r_offset >= (bfd_vma) -2)
9965 {
9966 /* This is a reloc for a deleted entry or somesuch.
9967 Turn it into an R_*_NONE reloc, at the same
9968 offset as the last reloc. elf_eh_frame.c and
9969 bfd_elf_discard_info rely on reloc offsets
9970 being ordered. */
9971 irela->r_offset = last_offset;
9972 irela->r_info = 0;
9973 irela->r_addend = 0;
9974 continue;
9975 }
9976
9977 irela->r_offset += o->output_offset;
9978
9979 /* Relocs in an executable have to be virtual addresses. */
9980 if (!flinfo->info->relocatable)
9981 irela->r_offset += o->output_section->vma;
9982
9983 last_offset = irela->r_offset;
9984
9985 r_symndx = irela->r_info >> r_sym_shift;
9986 if (r_symndx == STN_UNDEF)
9987 continue;
9988
9989 if (r_symndx >= locsymcount
9990 || (elf_bad_symtab (input_bfd)
9991 && flinfo->sections[r_symndx] == NULL))
9992 {
9993 struct elf_link_hash_entry *rh;
9994 unsigned long indx;
9995
9996 /* This is a reloc against a global symbol. We
9997 have not yet output all the local symbols, so
9998 we do not know the symbol index of any global
9999 symbol. We set the rel_hash entry for this
10000 reloc to point to the global hash table entry
10001 for this symbol. The symbol index is then
10002 set at the end of bfd_elf_final_link. */
10003 indx = r_symndx - extsymoff;
10004 rh = elf_sym_hashes (input_bfd)[indx];
10005 while (rh->root.type == bfd_link_hash_indirect
10006 || rh->root.type == bfd_link_hash_warning)
10007 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10008
10009 /* Setting the index to -2 tells
10010 elf_link_output_extsym that this symbol is
10011 used by a reloc. */
10012 BFD_ASSERT (rh->indx < 0);
10013 rh->indx = -2;
10014
10015 *rel_hash = rh;
10016
10017 continue;
10018 }
10019
10020 /* This is a reloc against a local symbol. */
10021
10022 *rel_hash = NULL;
10023 sym = isymbuf[r_symndx];
10024 sec = flinfo->sections[r_symndx];
10025 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10026 {
10027 /* I suppose the backend ought to fill in the
10028 section of any STT_SECTION symbol against a
10029 processor specific section. */
10030 r_symndx = STN_UNDEF;
10031 if (bfd_is_abs_section (sec))
10032 ;
10033 else if (sec == NULL || sec->owner == NULL)
10034 {
10035 bfd_set_error (bfd_error_bad_value);
10036 return FALSE;
10037 }
10038 else
10039 {
10040 asection *osec = sec->output_section;
10041
10042 /* If we have discarded a section, the output
10043 section will be the absolute section. In
10044 case of discarded SEC_MERGE sections, use
10045 the kept section. relocate_section should
10046 have already handled discarded linkonce
10047 sections. */
10048 if (bfd_is_abs_section (osec)
10049 && sec->kept_section != NULL
10050 && sec->kept_section->output_section != NULL)
10051 {
10052 osec = sec->kept_section->output_section;
10053 irela->r_addend -= osec->vma;
10054 }
10055
10056 if (!bfd_is_abs_section (osec))
10057 {
10058 r_symndx = osec->target_index;
10059 if (r_symndx == STN_UNDEF)
10060 {
10061 irela->r_addend += osec->vma;
10062 osec = _bfd_nearby_section (output_bfd, osec,
10063 osec->vma);
10064 irela->r_addend -= osec->vma;
10065 r_symndx = osec->target_index;
10066 }
10067 }
10068 }
10069
10070 /* Adjust the addend according to where the
10071 section winds up in the output section. */
10072 if (rela_normal)
10073 irela->r_addend += sec->output_offset;
10074 }
10075 else
10076 {
10077 if (flinfo->indices[r_symndx] == -1)
10078 {
10079 unsigned long shlink;
10080 const char *name;
10081 asection *osec;
10082 long indx;
10083
10084 if (flinfo->info->strip == strip_all)
10085 {
10086 /* You can't do ld -r -s. */
10087 bfd_set_error (bfd_error_invalid_operation);
10088 return FALSE;
10089 }
10090
10091 /* This symbol was skipped earlier, but
10092 since it is needed by a reloc, we
10093 must output it now. */
10094 shlink = symtab_hdr->sh_link;
10095 name = (bfd_elf_string_from_elf_section
10096 (input_bfd, shlink, sym.st_name));
10097 if (name == NULL)
10098 return FALSE;
10099
10100 osec = sec->output_section;
10101 sym.st_shndx =
10102 _bfd_elf_section_from_bfd_section (output_bfd,
10103 osec);
10104 if (sym.st_shndx == SHN_BAD)
10105 return FALSE;
10106
10107 sym.st_value += sec->output_offset;
10108 if (!flinfo->info->relocatable)
10109 {
10110 sym.st_value += osec->vma;
10111 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10112 {
10113 /* STT_TLS symbols are relative to PT_TLS
10114 segment base. */
10115 BFD_ASSERT (elf_hash_table (flinfo->info)
10116 ->tls_sec != NULL);
10117 sym.st_value -= (elf_hash_table (flinfo->info)
10118 ->tls_sec->vma);
10119 }
10120 }
10121
10122 indx = bfd_get_symcount (output_bfd);
10123 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10124 NULL);
10125 if (ret == 0)
10126 return FALSE;
10127 else if (ret == 1)
10128 flinfo->indices[r_symndx] = indx;
10129 else
10130 abort ();
10131 }
10132
10133 r_symndx = flinfo->indices[r_symndx];
10134 }
10135
10136 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10137 | (irela->r_info & r_type_mask));
10138 }
10139
10140 /* Swap out the relocs. */
10141 input_rel_hdr = esdi->rel.hdr;
10142 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10143 {
10144 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10145 input_rel_hdr,
10146 internal_relocs,
10147 rel_hash_list))
10148 return FALSE;
10149 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10150 * bed->s->int_rels_per_ext_rel);
10151 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10152 }
10153
10154 input_rela_hdr = esdi->rela.hdr;
10155 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10156 {
10157 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10158 input_rela_hdr,
10159 internal_relocs,
10160 rela_hash_list))
10161 return FALSE;
10162 }
10163 }
10164 }
10165
10166 /* Write out the modified section contents. */
10167 if (bed->elf_backend_write_section
10168 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10169 contents))
10170 {
10171 /* Section written out. */
10172 }
10173 else switch (o->sec_info_type)
10174 {
10175 case SEC_INFO_TYPE_STABS:
10176 if (! (_bfd_write_section_stabs
10177 (output_bfd,
10178 &elf_hash_table (flinfo->info)->stab_info,
10179 o, &elf_section_data (o)->sec_info, contents)))
10180 return FALSE;
10181 break;
10182 case SEC_INFO_TYPE_MERGE:
10183 if (! _bfd_write_merged_section (output_bfd, o,
10184 elf_section_data (o)->sec_info))
10185 return FALSE;
10186 break;
10187 case SEC_INFO_TYPE_EH_FRAME:
10188 {
10189 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10190 o, contents))
10191 return FALSE;
10192 }
10193 break;
10194 default:
10195 {
10196 /* FIXME: octets_per_byte. */
10197 if (! (o->flags & SEC_EXCLUDE))
10198 {
10199 file_ptr offset = (file_ptr) o->output_offset;
10200 bfd_size_type todo = o->size;
10201 if ((o->flags & SEC_ELF_REVERSE_COPY))
10202 {
10203 /* Reverse-copy input section to output. */
10204 do
10205 {
10206 todo -= address_size;
10207 if (! bfd_set_section_contents (output_bfd,
10208 o->output_section,
10209 contents + todo,
10210 offset,
10211 address_size))
10212 return FALSE;
10213 if (todo == 0)
10214 break;
10215 offset += address_size;
10216 }
10217 while (1);
10218 }
10219 else if (! bfd_set_section_contents (output_bfd,
10220 o->output_section,
10221 contents,
10222 offset, todo))
10223 return FALSE;
10224 }
10225 }
10226 break;
10227 }
10228 }
10229
10230 return TRUE;
10231 }
10232
10233 /* Generate a reloc when linking an ELF file. This is a reloc
10234 requested by the linker, and does not come from any input file. This
10235 is used to build constructor and destructor tables when linking
10236 with -Ur. */
10237
10238 static bfd_boolean
10239 elf_reloc_link_order (bfd *output_bfd,
10240 struct bfd_link_info *info,
10241 asection *output_section,
10242 struct bfd_link_order *link_order)
10243 {
10244 reloc_howto_type *howto;
10245 long indx;
10246 bfd_vma offset;
10247 bfd_vma addend;
10248 struct bfd_elf_section_reloc_data *reldata;
10249 struct elf_link_hash_entry **rel_hash_ptr;
10250 Elf_Internal_Shdr *rel_hdr;
10251 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10252 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10253 bfd_byte *erel;
10254 unsigned int i;
10255 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10256
10257 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10258 if (howto == NULL)
10259 {
10260 bfd_set_error (bfd_error_bad_value);
10261 return FALSE;
10262 }
10263
10264 addend = link_order->u.reloc.p->addend;
10265
10266 if (esdo->rel.hdr)
10267 reldata = &esdo->rel;
10268 else if (esdo->rela.hdr)
10269 reldata = &esdo->rela;
10270 else
10271 {
10272 reldata = NULL;
10273 BFD_ASSERT (0);
10274 }
10275
10276 /* Figure out the symbol index. */
10277 rel_hash_ptr = reldata->hashes + reldata->count;
10278 if (link_order->type == bfd_section_reloc_link_order)
10279 {
10280 indx = link_order->u.reloc.p->u.section->target_index;
10281 BFD_ASSERT (indx != 0);
10282 *rel_hash_ptr = NULL;
10283 }
10284 else
10285 {
10286 struct elf_link_hash_entry *h;
10287
10288 /* Treat a reloc against a defined symbol as though it were
10289 actually against the section. */
10290 h = ((struct elf_link_hash_entry *)
10291 bfd_wrapped_link_hash_lookup (output_bfd, info,
10292 link_order->u.reloc.p->u.name,
10293 FALSE, FALSE, TRUE));
10294 if (h != NULL
10295 && (h->root.type == bfd_link_hash_defined
10296 || h->root.type == bfd_link_hash_defweak))
10297 {
10298 asection *section;
10299
10300 section = h->root.u.def.section;
10301 indx = section->output_section->target_index;
10302 *rel_hash_ptr = NULL;
10303 /* It seems that we ought to add the symbol value to the
10304 addend here, but in practice it has already been added
10305 because it was passed to constructor_callback. */
10306 addend += section->output_section->vma + section->output_offset;
10307 }
10308 else if (h != NULL)
10309 {
10310 /* Setting the index to -2 tells elf_link_output_extsym that
10311 this symbol is used by a reloc. */
10312 h->indx = -2;
10313 *rel_hash_ptr = h;
10314 indx = 0;
10315 }
10316 else
10317 {
10318 if (! ((*info->callbacks->unattached_reloc)
10319 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10320 return FALSE;
10321 indx = 0;
10322 }
10323 }
10324
10325 /* If this is an inplace reloc, we must write the addend into the
10326 object file. */
10327 if (howto->partial_inplace && addend != 0)
10328 {
10329 bfd_size_type size;
10330 bfd_reloc_status_type rstat;
10331 bfd_byte *buf;
10332 bfd_boolean ok;
10333 const char *sym_name;
10334
10335 size = (bfd_size_type) bfd_get_reloc_size (howto);
10336 buf = (bfd_byte *) bfd_zmalloc (size);
10337 if (buf == NULL)
10338 return FALSE;
10339 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10340 switch (rstat)
10341 {
10342 case bfd_reloc_ok:
10343 break;
10344
10345 default:
10346 case bfd_reloc_outofrange:
10347 abort ();
10348
10349 case bfd_reloc_overflow:
10350 if (link_order->type == bfd_section_reloc_link_order)
10351 sym_name = bfd_section_name (output_bfd,
10352 link_order->u.reloc.p->u.section);
10353 else
10354 sym_name = link_order->u.reloc.p->u.name;
10355 if (! ((*info->callbacks->reloc_overflow)
10356 (info, NULL, sym_name, howto->name, addend, NULL,
10357 NULL, (bfd_vma) 0)))
10358 {
10359 free (buf);
10360 return FALSE;
10361 }
10362 break;
10363 }
10364 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10365 link_order->offset, size);
10366 free (buf);
10367 if (! ok)
10368 return FALSE;
10369 }
10370
10371 /* The address of a reloc is relative to the section in a
10372 relocatable file, and is a virtual address in an executable
10373 file. */
10374 offset = link_order->offset;
10375 if (! info->relocatable)
10376 offset += output_section->vma;
10377
10378 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10379 {
10380 irel[i].r_offset = offset;
10381 irel[i].r_info = 0;
10382 irel[i].r_addend = 0;
10383 }
10384 if (bed->s->arch_size == 32)
10385 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10386 else
10387 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10388
10389 rel_hdr = reldata->hdr;
10390 erel = rel_hdr->contents;
10391 if (rel_hdr->sh_type == SHT_REL)
10392 {
10393 erel += reldata->count * bed->s->sizeof_rel;
10394 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10395 }
10396 else
10397 {
10398 irel[0].r_addend = addend;
10399 erel += reldata->count * bed->s->sizeof_rela;
10400 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10401 }
10402
10403 ++reldata->count;
10404
10405 return TRUE;
10406 }
10407
10408
10409 /* Get the output vma of the section pointed to by the sh_link field. */
10410
10411 static bfd_vma
10412 elf_get_linked_section_vma (struct bfd_link_order *p)
10413 {
10414 Elf_Internal_Shdr **elf_shdrp;
10415 asection *s;
10416 int elfsec;
10417
10418 s = p->u.indirect.section;
10419 elf_shdrp = elf_elfsections (s->owner);
10420 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10421 elfsec = elf_shdrp[elfsec]->sh_link;
10422 /* PR 290:
10423 The Intel C compiler generates SHT_IA_64_UNWIND with
10424 SHF_LINK_ORDER. But it doesn't set the sh_link or
10425 sh_info fields. Hence we could get the situation
10426 where elfsec is 0. */
10427 if (elfsec == 0)
10428 {
10429 const struct elf_backend_data *bed
10430 = get_elf_backend_data (s->owner);
10431 if (bed->link_order_error_handler)
10432 bed->link_order_error_handler
10433 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10434 return 0;
10435 }
10436 else
10437 {
10438 s = elf_shdrp[elfsec]->bfd_section;
10439 return s->output_section->vma + s->output_offset;
10440 }
10441 }
10442
10443
10444 /* Compare two sections based on the locations of the sections they are
10445 linked to. Used by elf_fixup_link_order. */
10446
10447 static int
10448 compare_link_order (const void * a, const void * b)
10449 {
10450 bfd_vma apos;
10451 bfd_vma bpos;
10452
10453 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10454 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10455 if (apos < bpos)
10456 return -1;
10457 return apos > bpos;
10458 }
10459
10460
10461 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10462 order as their linked sections. Returns false if this could not be done
10463 because an output section includes both ordered and unordered
10464 sections. Ideally we'd do this in the linker proper. */
10465
10466 static bfd_boolean
10467 elf_fixup_link_order (bfd *abfd, asection *o)
10468 {
10469 int seen_linkorder;
10470 int seen_other;
10471 int n;
10472 struct bfd_link_order *p;
10473 bfd *sub;
10474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10475 unsigned elfsec;
10476 struct bfd_link_order **sections;
10477 asection *s, *other_sec, *linkorder_sec;
10478 bfd_vma offset;
10479
10480 other_sec = NULL;
10481 linkorder_sec = NULL;
10482 seen_other = 0;
10483 seen_linkorder = 0;
10484 for (p = o->map_head.link_order; p != NULL; p = p->next)
10485 {
10486 if (p->type == bfd_indirect_link_order)
10487 {
10488 s = p->u.indirect.section;
10489 sub = s->owner;
10490 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10491 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10492 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10493 && elfsec < elf_numsections (sub)
10494 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10495 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10496 {
10497 seen_linkorder++;
10498 linkorder_sec = s;
10499 }
10500 else
10501 {
10502 seen_other++;
10503 other_sec = s;
10504 }
10505 }
10506 else
10507 seen_other++;
10508
10509 if (seen_other && seen_linkorder)
10510 {
10511 if (other_sec && linkorder_sec)
10512 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10513 o, linkorder_sec,
10514 linkorder_sec->owner, other_sec,
10515 other_sec->owner);
10516 else
10517 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10518 o);
10519 bfd_set_error (bfd_error_bad_value);
10520 return FALSE;
10521 }
10522 }
10523
10524 if (!seen_linkorder)
10525 return TRUE;
10526
10527 sections = (struct bfd_link_order **)
10528 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10529 if (sections == NULL)
10530 return FALSE;
10531 seen_linkorder = 0;
10532
10533 for (p = o->map_head.link_order; p != NULL; p = p->next)
10534 {
10535 sections[seen_linkorder++] = p;
10536 }
10537 /* Sort the input sections in the order of their linked section. */
10538 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10539 compare_link_order);
10540
10541 /* Change the offsets of the sections. */
10542 offset = 0;
10543 for (n = 0; n < seen_linkorder; n++)
10544 {
10545 s = sections[n]->u.indirect.section;
10546 offset &= ~(bfd_vma) 0 << s->alignment_power;
10547 s->output_offset = offset;
10548 sections[n]->offset = offset;
10549 /* FIXME: octets_per_byte. */
10550 offset += sections[n]->size;
10551 }
10552
10553 free (sections);
10554 return TRUE;
10555 }
10556
10557 static void
10558 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10559 {
10560 asection *o;
10561
10562 if (flinfo->symstrtab != NULL)
10563 _bfd_stringtab_free (flinfo->symstrtab);
10564 if (flinfo->contents != NULL)
10565 free (flinfo->contents);
10566 if (flinfo->external_relocs != NULL)
10567 free (flinfo->external_relocs);
10568 if (flinfo->internal_relocs != NULL)
10569 free (flinfo->internal_relocs);
10570 if (flinfo->external_syms != NULL)
10571 free (flinfo->external_syms);
10572 if (flinfo->locsym_shndx != NULL)
10573 free (flinfo->locsym_shndx);
10574 if (flinfo->internal_syms != NULL)
10575 free (flinfo->internal_syms);
10576 if (flinfo->indices != NULL)
10577 free (flinfo->indices);
10578 if (flinfo->sections != NULL)
10579 free (flinfo->sections);
10580 if (flinfo->symbuf != NULL)
10581 free (flinfo->symbuf);
10582 if (flinfo->symshndxbuf != NULL)
10583 free (flinfo->symshndxbuf);
10584 for (o = obfd->sections; o != NULL; o = o->next)
10585 {
10586 struct bfd_elf_section_data *esdo = elf_section_data (o);
10587 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10588 free (esdo->rel.hashes);
10589 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10590 free (esdo->rela.hashes);
10591 }
10592 }
10593
10594 /* Do the final step of an ELF link. */
10595
10596 bfd_boolean
10597 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10598 {
10599 bfd_boolean dynamic;
10600 bfd_boolean emit_relocs;
10601 bfd *dynobj;
10602 struct elf_final_link_info flinfo;
10603 asection *o;
10604 struct bfd_link_order *p;
10605 bfd *sub;
10606 bfd_size_type max_contents_size;
10607 bfd_size_type max_external_reloc_size;
10608 bfd_size_type max_internal_reloc_count;
10609 bfd_size_type max_sym_count;
10610 bfd_size_type max_sym_shndx_count;
10611 file_ptr off;
10612 Elf_Internal_Sym elfsym;
10613 unsigned int i;
10614 Elf_Internal_Shdr *symtab_hdr;
10615 Elf_Internal_Shdr *symtab_shndx_hdr;
10616 Elf_Internal_Shdr *symstrtab_hdr;
10617 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10618 struct elf_outext_info eoinfo;
10619 bfd_boolean merged;
10620 size_t relativecount = 0;
10621 asection *reldyn = 0;
10622 bfd_size_type amt;
10623 asection *attr_section = NULL;
10624 bfd_vma attr_size = 0;
10625 const char *std_attrs_section;
10626
10627 if (! is_elf_hash_table (info->hash))
10628 return FALSE;
10629
10630 if (info->shared)
10631 abfd->flags |= DYNAMIC;
10632
10633 dynamic = elf_hash_table (info)->dynamic_sections_created;
10634 dynobj = elf_hash_table (info)->dynobj;
10635
10636 emit_relocs = (info->relocatable
10637 || info->emitrelocations);
10638
10639 flinfo.info = info;
10640 flinfo.output_bfd = abfd;
10641 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10642 if (flinfo.symstrtab == NULL)
10643 return FALSE;
10644
10645 if (! dynamic)
10646 {
10647 flinfo.dynsym_sec = NULL;
10648 flinfo.hash_sec = NULL;
10649 flinfo.symver_sec = NULL;
10650 }
10651 else
10652 {
10653 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10654 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10655 /* Note that dynsym_sec can be NULL (on VMS). */
10656 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10657 /* Note that it is OK if symver_sec is NULL. */
10658 }
10659
10660 flinfo.contents = NULL;
10661 flinfo.external_relocs = NULL;
10662 flinfo.internal_relocs = NULL;
10663 flinfo.external_syms = NULL;
10664 flinfo.locsym_shndx = NULL;
10665 flinfo.internal_syms = NULL;
10666 flinfo.indices = NULL;
10667 flinfo.sections = NULL;
10668 flinfo.symbuf = NULL;
10669 flinfo.symshndxbuf = NULL;
10670 flinfo.symbuf_count = 0;
10671 flinfo.shndxbuf_size = 0;
10672 flinfo.filesym_count = 0;
10673
10674 /* The object attributes have been merged. Remove the input
10675 sections from the link, and set the contents of the output
10676 secton. */
10677 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10678 for (o = abfd->sections; o != NULL; o = o->next)
10679 {
10680 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10681 || strcmp (o->name, ".gnu.attributes") == 0)
10682 {
10683 for (p = o->map_head.link_order; p != NULL; p = p->next)
10684 {
10685 asection *input_section;
10686
10687 if (p->type != bfd_indirect_link_order)
10688 continue;
10689 input_section = p->u.indirect.section;
10690 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10691 elf_link_input_bfd ignores this section. */
10692 input_section->flags &= ~SEC_HAS_CONTENTS;
10693 }
10694
10695 attr_size = bfd_elf_obj_attr_size (abfd);
10696 if (attr_size)
10697 {
10698 bfd_set_section_size (abfd, o, attr_size);
10699 attr_section = o;
10700 /* Skip this section later on. */
10701 o->map_head.link_order = NULL;
10702 }
10703 else
10704 o->flags |= SEC_EXCLUDE;
10705 }
10706 }
10707
10708 /* Count up the number of relocations we will output for each output
10709 section, so that we know the sizes of the reloc sections. We
10710 also figure out some maximum sizes. */
10711 max_contents_size = 0;
10712 max_external_reloc_size = 0;
10713 max_internal_reloc_count = 0;
10714 max_sym_count = 0;
10715 max_sym_shndx_count = 0;
10716 merged = FALSE;
10717 for (o = abfd->sections; o != NULL; o = o->next)
10718 {
10719 struct bfd_elf_section_data *esdo = elf_section_data (o);
10720 o->reloc_count = 0;
10721
10722 for (p = o->map_head.link_order; p != NULL; p = p->next)
10723 {
10724 unsigned int reloc_count = 0;
10725 struct bfd_elf_section_data *esdi = NULL;
10726
10727 if (p->type == bfd_section_reloc_link_order
10728 || p->type == bfd_symbol_reloc_link_order)
10729 reloc_count = 1;
10730 else if (p->type == bfd_indirect_link_order)
10731 {
10732 asection *sec;
10733
10734 sec = p->u.indirect.section;
10735 esdi = elf_section_data (sec);
10736
10737 /* Mark all sections which are to be included in the
10738 link. This will normally be every section. We need
10739 to do this so that we can identify any sections which
10740 the linker has decided to not include. */
10741 sec->linker_mark = TRUE;
10742
10743 if (sec->flags & SEC_MERGE)
10744 merged = TRUE;
10745
10746 if (esdo->this_hdr.sh_type == SHT_REL
10747 || esdo->this_hdr.sh_type == SHT_RELA)
10748 /* Some backends use reloc_count in relocation sections
10749 to count particular types of relocs. Of course,
10750 reloc sections themselves can't have relocations. */
10751 reloc_count = 0;
10752 else if (info->relocatable || info->emitrelocations)
10753 reloc_count = sec->reloc_count;
10754 else if (bed->elf_backend_count_relocs)
10755 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10756
10757 if (sec->rawsize > max_contents_size)
10758 max_contents_size = sec->rawsize;
10759 if (sec->size > max_contents_size)
10760 max_contents_size = sec->size;
10761
10762 /* We are interested in just local symbols, not all
10763 symbols. */
10764 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10765 && (sec->owner->flags & DYNAMIC) == 0)
10766 {
10767 size_t sym_count;
10768
10769 if (elf_bad_symtab (sec->owner))
10770 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10771 / bed->s->sizeof_sym);
10772 else
10773 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10774
10775 if (sym_count > max_sym_count)
10776 max_sym_count = sym_count;
10777
10778 if (sym_count > max_sym_shndx_count
10779 && elf_symtab_shndx (sec->owner) != 0)
10780 max_sym_shndx_count = sym_count;
10781
10782 if ((sec->flags & SEC_RELOC) != 0)
10783 {
10784 size_t ext_size = 0;
10785
10786 if (esdi->rel.hdr != NULL)
10787 ext_size = esdi->rel.hdr->sh_size;
10788 if (esdi->rela.hdr != NULL)
10789 ext_size += esdi->rela.hdr->sh_size;
10790
10791 if (ext_size > max_external_reloc_size)
10792 max_external_reloc_size = ext_size;
10793 if (sec->reloc_count > max_internal_reloc_count)
10794 max_internal_reloc_count = sec->reloc_count;
10795 }
10796 }
10797 }
10798
10799 if (reloc_count == 0)
10800 continue;
10801
10802 o->reloc_count += reloc_count;
10803
10804 if (p->type == bfd_indirect_link_order
10805 && (info->relocatable || info->emitrelocations))
10806 {
10807 if (esdi->rel.hdr)
10808 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10809 if (esdi->rela.hdr)
10810 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10811 }
10812 else
10813 {
10814 if (o->use_rela_p)
10815 esdo->rela.count += reloc_count;
10816 else
10817 esdo->rel.count += reloc_count;
10818 }
10819 }
10820
10821 if (o->reloc_count > 0)
10822 o->flags |= SEC_RELOC;
10823 else
10824 {
10825 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10826 set it (this is probably a bug) and if it is set
10827 assign_section_numbers will create a reloc section. */
10828 o->flags &=~ SEC_RELOC;
10829 }
10830
10831 /* If the SEC_ALLOC flag is not set, force the section VMA to
10832 zero. This is done in elf_fake_sections as well, but forcing
10833 the VMA to 0 here will ensure that relocs against these
10834 sections are handled correctly. */
10835 if ((o->flags & SEC_ALLOC) == 0
10836 && ! o->user_set_vma)
10837 o->vma = 0;
10838 }
10839
10840 if (! info->relocatable && merged)
10841 elf_link_hash_traverse (elf_hash_table (info),
10842 _bfd_elf_link_sec_merge_syms, abfd);
10843
10844 /* Figure out the file positions for everything but the symbol table
10845 and the relocs. We set symcount to force assign_section_numbers
10846 to create a symbol table. */
10847 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10848 BFD_ASSERT (! abfd->output_has_begun);
10849 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10850 goto error_return;
10851
10852 /* Set sizes, and assign file positions for reloc sections. */
10853 for (o = abfd->sections; o != NULL; o = o->next)
10854 {
10855 struct bfd_elf_section_data *esdo = elf_section_data (o);
10856 if ((o->flags & SEC_RELOC) != 0)
10857 {
10858 if (esdo->rel.hdr
10859 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10860 goto error_return;
10861
10862 if (esdo->rela.hdr
10863 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10864 goto error_return;
10865 }
10866
10867 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10868 to count upwards while actually outputting the relocations. */
10869 esdo->rel.count = 0;
10870 esdo->rela.count = 0;
10871 }
10872
10873 /* We have now assigned file positions for all the sections except
10874 .symtab, .strtab, and non-loaded reloc sections. We start the
10875 .symtab section at the current file position, and write directly
10876 to it. We build the .strtab section in memory. */
10877 bfd_get_symcount (abfd) = 0;
10878 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10879 /* sh_name is set in prep_headers. */
10880 symtab_hdr->sh_type = SHT_SYMTAB;
10881 /* sh_flags, sh_addr and sh_size all start off zero. */
10882 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10883 /* sh_link is set in assign_section_numbers. */
10884 /* sh_info is set below. */
10885 /* sh_offset is set just below. */
10886 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10887
10888 off = elf_next_file_pos (abfd);
10889 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10890
10891 /* Note that at this point elf_next_file_pos (abfd) is
10892 incorrect. We do not yet know the size of the .symtab section.
10893 We correct next_file_pos below, after we do know the size. */
10894
10895 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10896 continuously seeking to the right position in the file. */
10897 if (! info->keep_memory || max_sym_count < 20)
10898 flinfo.symbuf_size = 20;
10899 else
10900 flinfo.symbuf_size = max_sym_count;
10901 amt = flinfo.symbuf_size;
10902 amt *= bed->s->sizeof_sym;
10903 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10904 if (flinfo.symbuf == NULL)
10905 goto error_return;
10906 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10907 {
10908 /* Wild guess at number of output symbols. realloc'd as needed. */
10909 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10910 flinfo.shndxbuf_size = amt;
10911 amt *= sizeof (Elf_External_Sym_Shndx);
10912 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10913 if (flinfo.symshndxbuf == NULL)
10914 goto error_return;
10915 }
10916
10917 /* Start writing out the symbol table. The first symbol is always a
10918 dummy symbol. */
10919 if (info->strip != strip_all
10920 || emit_relocs)
10921 {
10922 elfsym.st_value = 0;
10923 elfsym.st_size = 0;
10924 elfsym.st_info = 0;
10925 elfsym.st_other = 0;
10926 elfsym.st_shndx = SHN_UNDEF;
10927 elfsym.st_target_internal = 0;
10928 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10929 NULL) != 1)
10930 goto error_return;
10931 }
10932
10933 /* Output a symbol for each section. We output these even if we are
10934 discarding local symbols, since they are used for relocs. These
10935 symbols have no names. We store the index of each one in the
10936 index field of the section, so that we can find it again when
10937 outputting relocs. */
10938 if (info->strip != strip_all
10939 || emit_relocs)
10940 {
10941 elfsym.st_size = 0;
10942 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10943 elfsym.st_other = 0;
10944 elfsym.st_value = 0;
10945 elfsym.st_target_internal = 0;
10946 for (i = 1; i < elf_numsections (abfd); i++)
10947 {
10948 o = bfd_section_from_elf_index (abfd, i);
10949 if (o != NULL)
10950 {
10951 o->target_index = bfd_get_symcount (abfd);
10952 elfsym.st_shndx = i;
10953 if (!info->relocatable)
10954 elfsym.st_value = o->vma;
10955 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10956 goto error_return;
10957 }
10958 }
10959 }
10960
10961 /* Allocate some memory to hold information read in from the input
10962 files. */
10963 if (max_contents_size != 0)
10964 {
10965 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10966 if (flinfo.contents == NULL)
10967 goto error_return;
10968 }
10969
10970 if (max_external_reloc_size != 0)
10971 {
10972 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10973 if (flinfo.external_relocs == NULL)
10974 goto error_return;
10975 }
10976
10977 if (max_internal_reloc_count != 0)
10978 {
10979 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10980 amt *= sizeof (Elf_Internal_Rela);
10981 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10982 if (flinfo.internal_relocs == NULL)
10983 goto error_return;
10984 }
10985
10986 if (max_sym_count != 0)
10987 {
10988 amt = max_sym_count * bed->s->sizeof_sym;
10989 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10990 if (flinfo.external_syms == NULL)
10991 goto error_return;
10992
10993 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10994 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10995 if (flinfo.internal_syms == NULL)
10996 goto error_return;
10997
10998 amt = max_sym_count * sizeof (long);
10999 flinfo.indices = (long int *) bfd_malloc (amt);
11000 if (flinfo.indices == NULL)
11001 goto error_return;
11002
11003 amt = max_sym_count * sizeof (asection *);
11004 flinfo.sections = (asection **) bfd_malloc (amt);
11005 if (flinfo.sections == NULL)
11006 goto error_return;
11007 }
11008
11009 if (max_sym_shndx_count != 0)
11010 {
11011 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11012 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11013 if (flinfo.locsym_shndx == NULL)
11014 goto error_return;
11015 }
11016
11017 if (elf_hash_table (info)->tls_sec)
11018 {
11019 bfd_vma base, end = 0;
11020 asection *sec;
11021
11022 for (sec = elf_hash_table (info)->tls_sec;
11023 sec && (sec->flags & SEC_THREAD_LOCAL);
11024 sec = sec->next)
11025 {
11026 bfd_size_type size = sec->size;
11027
11028 if (size == 0
11029 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11030 {
11031 struct bfd_link_order *ord = sec->map_tail.link_order;
11032
11033 if (ord != NULL)
11034 size = ord->offset + ord->size;
11035 }
11036 end = sec->vma + size;
11037 }
11038 base = elf_hash_table (info)->tls_sec->vma;
11039 /* Only align end of TLS section if static TLS doesn't have special
11040 alignment requirements. */
11041 if (bed->static_tls_alignment == 1)
11042 end = align_power (end,
11043 elf_hash_table (info)->tls_sec->alignment_power);
11044 elf_hash_table (info)->tls_size = end - base;
11045 }
11046
11047 /* Reorder SHF_LINK_ORDER sections. */
11048 for (o = abfd->sections; o != NULL; o = o->next)
11049 {
11050 if (!elf_fixup_link_order (abfd, o))
11051 return FALSE;
11052 }
11053
11054 /* Since ELF permits relocations to be against local symbols, we
11055 must have the local symbols available when we do the relocations.
11056 Since we would rather only read the local symbols once, and we
11057 would rather not keep them in memory, we handle all the
11058 relocations for a single input file at the same time.
11059
11060 Unfortunately, there is no way to know the total number of local
11061 symbols until we have seen all of them, and the local symbol
11062 indices precede the global symbol indices. This means that when
11063 we are generating relocatable output, and we see a reloc against
11064 a global symbol, we can not know the symbol index until we have
11065 finished examining all the local symbols to see which ones we are
11066 going to output. To deal with this, we keep the relocations in
11067 memory, and don't output them until the end of the link. This is
11068 an unfortunate waste of memory, but I don't see a good way around
11069 it. Fortunately, it only happens when performing a relocatable
11070 link, which is not the common case. FIXME: If keep_memory is set
11071 we could write the relocs out and then read them again; I don't
11072 know how bad the memory loss will be. */
11073
11074 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11075 sub->output_has_begun = FALSE;
11076 for (o = abfd->sections; o != NULL; o = o->next)
11077 {
11078 for (p = o->map_head.link_order; p != NULL; p = p->next)
11079 {
11080 if (p->type == bfd_indirect_link_order
11081 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11082 == bfd_target_elf_flavour)
11083 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11084 {
11085 if (! sub->output_has_begun)
11086 {
11087 if (! elf_link_input_bfd (&flinfo, sub))
11088 goto error_return;
11089 sub->output_has_begun = TRUE;
11090 }
11091 }
11092 else if (p->type == bfd_section_reloc_link_order
11093 || p->type == bfd_symbol_reloc_link_order)
11094 {
11095 if (! elf_reloc_link_order (abfd, info, o, p))
11096 goto error_return;
11097 }
11098 else
11099 {
11100 if (! _bfd_default_link_order (abfd, info, o, p))
11101 {
11102 if (p->type == bfd_indirect_link_order
11103 && (bfd_get_flavour (sub)
11104 == bfd_target_elf_flavour)
11105 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11106 != bed->s->elfclass))
11107 {
11108 const char *iclass, *oclass;
11109
11110 if (bed->s->elfclass == ELFCLASS64)
11111 {
11112 iclass = "ELFCLASS32";
11113 oclass = "ELFCLASS64";
11114 }
11115 else
11116 {
11117 iclass = "ELFCLASS64";
11118 oclass = "ELFCLASS32";
11119 }
11120
11121 bfd_set_error (bfd_error_wrong_format);
11122 (*_bfd_error_handler)
11123 (_("%B: file class %s incompatible with %s"),
11124 sub, iclass, oclass);
11125 }
11126
11127 goto error_return;
11128 }
11129 }
11130 }
11131 }
11132
11133 /* Free symbol buffer if needed. */
11134 if (!info->reduce_memory_overheads)
11135 {
11136 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11137 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11138 && elf_tdata (sub)->symbuf)
11139 {
11140 free (elf_tdata (sub)->symbuf);
11141 elf_tdata (sub)->symbuf = NULL;
11142 }
11143 }
11144
11145 /* Output any global symbols that got converted to local in a
11146 version script or due to symbol visibility. We do this in a
11147 separate step since ELF requires all local symbols to appear
11148 prior to any global symbols. FIXME: We should only do this if
11149 some global symbols were, in fact, converted to become local.
11150 FIXME: Will this work correctly with the Irix 5 linker? */
11151 eoinfo.failed = FALSE;
11152 eoinfo.flinfo = &flinfo;
11153 eoinfo.localsyms = TRUE;
11154 eoinfo.need_second_pass = FALSE;
11155 eoinfo.second_pass = FALSE;
11156 eoinfo.file_sym_done = FALSE;
11157 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11158 if (eoinfo.failed)
11159 return FALSE;
11160
11161 if (eoinfo.need_second_pass)
11162 {
11163 eoinfo.second_pass = TRUE;
11164 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11165 if (eoinfo.failed)
11166 return FALSE;
11167 }
11168
11169 /* If backend needs to output some local symbols not present in the hash
11170 table, do it now. */
11171 if (bed->elf_backend_output_arch_local_syms)
11172 {
11173 typedef int (*out_sym_func)
11174 (void *, const char *, Elf_Internal_Sym *, asection *,
11175 struct elf_link_hash_entry *);
11176
11177 if (! ((*bed->elf_backend_output_arch_local_syms)
11178 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11179 return FALSE;
11180 }
11181
11182 /* That wrote out all the local symbols. Finish up the symbol table
11183 with the global symbols. Even if we want to strip everything we
11184 can, we still need to deal with those global symbols that got
11185 converted to local in a version script. */
11186
11187 /* The sh_info field records the index of the first non local symbol. */
11188 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11189
11190 if (dynamic
11191 && flinfo.dynsym_sec != NULL
11192 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11193 {
11194 Elf_Internal_Sym sym;
11195 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11196 long last_local = 0;
11197
11198 /* Write out the section symbols for the output sections. */
11199 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11200 {
11201 asection *s;
11202
11203 sym.st_size = 0;
11204 sym.st_name = 0;
11205 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11206 sym.st_other = 0;
11207 sym.st_target_internal = 0;
11208
11209 for (s = abfd->sections; s != NULL; s = s->next)
11210 {
11211 int indx;
11212 bfd_byte *dest;
11213 long dynindx;
11214
11215 dynindx = elf_section_data (s)->dynindx;
11216 if (dynindx <= 0)
11217 continue;
11218 indx = elf_section_data (s)->this_idx;
11219 BFD_ASSERT (indx > 0);
11220 sym.st_shndx = indx;
11221 if (! check_dynsym (abfd, &sym))
11222 return FALSE;
11223 sym.st_value = s->vma;
11224 dest = dynsym + dynindx * bed->s->sizeof_sym;
11225 if (last_local < dynindx)
11226 last_local = dynindx;
11227 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11228 }
11229 }
11230
11231 /* Write out the local dynsyms. */
11232 if (elf_hash_table (info)->dynlocal)
11233 {
11234 struct elf_link_local_dynamic_entry *e;
11235 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11236 {
11237 asection *s;
11238 bfd_byte *dest;
11239
11240 /* Copy the internal symbol and turn off visibility.
11241 Note that we saved a word of storage and overwrote
11242 the original st_name with the dynstr_index. */
11243 sym = e->isym;
11244 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11245
11246 s = bfd_section_from_elf_index (e->input_bfd,
11247 e->isym.st_shndx);
11248 if (s != NULL)
11249 {
11250 sym.st_shndx =
11251 elf_section_data (s->output_section)->this_idx;
11252 if (! check_dynsym (abfd, &sym))
11253 return FALSE;
11254 sym.st_value = (s->output_section->vma
11255 + s->output_offset
11256 + e->isym.st_value);
11257 }
11258
11259 if (last_local < e->dynindx)
11260 last_local = e->dynindx;
11261
11262 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11263 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11264 }
11265 }
11266
11267 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11268 last_local + 1;
11269 }
11270
11271 /* We get the global symbols from the hash table. */
11272 eoinfo.failed = FALSE;
11273 eoinfo.localsyms = FALSE;
11274 eoinfo.flinfo = &flinfo;
11275 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11276 if (eoinfo.failed)
11277 return FALSE;
11278
11279 /* If backend needs to output some symbols not present in the hash
11280 table, do it now. */
11281 if (bed->elf_backend_output_arch_syms)
11282 {
11283 typedef int (*out_sym_func)
11284 (void *, const char *, Elf_Internal_Sym *, asection *,
11285 struct elf_link_hash_entry *);
11286
11287 if (! ((*bed->elf_backend_output_arch_syms)
11288 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11289 return FALSE;
11290 }
11291
11292 /* Flush all symbols to the file. */
11293 if (! elf_link_flush_output_syms (&flinfo, bed))
11294 return FALSE;
11295
11296 /* Now we know the size of the symtab section. */
11297 off += symtab_hdr->sh_size;
11298
11299 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11300 if (symtab_shndx_hdr->sh_name != 0)
11301 {
11302 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11303 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11304 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11305 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11306 symtab_shndx_hdr->sh_size = amt;
11307
11308 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11309 off, TRUE);
11310
11311 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11312 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11313 return FALSE;
11314 }
11315
11316
11317 /* Finish up and write out the symbol string table (.strtab)
11318 section. */
11319 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11320 /* sh_name was set in prep_headers. */
11321 symstrtab_hdr->sh_type = SHT_STRTAB;
11322 symstrtab_hdr->sh_flags = 0;
11323 symstrtab_hdr->sh_addr = 0;
11324 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11325 symstrtab_hdr->sh_entsize = 0;
11326 symstrtab_hdr->sh_link = 0;
11327 symstrtab_hdr->sh_info = 0;
11328 /* sh_offset is set just below. */
11329 symstrtab_hdr->sh_addralign = 1;
11330
11331 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11332 elf_next_file_pos (abfd) = off;
11333
11334 if (bfd_get_symcount (abfd) > 0)
11335 {
11336 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11337 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11338 return FALSE;
11339 }
11340
11341 /* Adjust the relocs to have the correct symbol indices. */
11342 for (o = abfd->sections; o != NULL; o = o->next)
11343 {
11344 struct bfd_elf_section_data *esdo = elf_section_data (o);
11345 bfd_boolean sort;
11346 if ((o->flags & SEC_RELOC) == 0)
11347 continue;
11348
11349 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11350 if (esdo->rel.hdr != NULL)
11351 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11352 if (esdo->rela.hdr != NULL)
11353 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11354
11355 /* Set the reloc_count field to 0 to prevent write_relocs from
11356 trying to swap the relocs out itself. */
11357 o->reloc_count = 0;
11358 }
11359
11360 if (dynamic && info->combreloc && dynobj != NULL)
11361 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11362
11363 /* If we are linking against a dynamic object, or generating a
11364 shared library, finish up the dynamic linking information. */
11365 if (dynamic)
11366 {
11367 bfd_byte *dyncon, *dynconend;
11368
11369 /* Fix up .dynamic entries. */
11370 o = bfd_get_linker_section (dynobj, ".dynamic");
11371 BFD_ASSERT (o != NULL);
11372
11373 dyncon = o->contents;
11374 dynconend = o->contents + o->size;
11375 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11376 {
11377 Elf_Internal_Dyn dyn;
11378 const char *name;
11379 unsigned int type;
11380
11381 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11382
11383 switch (dyn.d_tag)
11384 {
11385 default:
11386 continue;
11387 case DT_NULL:
11388 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11389 {
11390 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11391 {
11392 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11393 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11394 default: continue;
11395 }
11396 dyn.d_un.d_val = relativecount;
11397 relativecount = 0;
11398 break;
11399 }
11400 continue;
11401
11402 case DT_INIT:
11403 name = info->init_function;
11404 goto get_sym;
11405 case DT_FINI:
11406 name = info->fini_function;
11407 get_sym:
11408 {
11409 struct elf_link_hash_entry *h;
11410
11411 h = elf_link_hash_lookup (elf_hash_table (info), name,
11412 FALSE, FALSE, TRUE);
11413 if (h != NULL
11414 && (h->root.type == bfd_link_hash_defined
11415 || h->root.type == bfd_link_hash_defweak))
11416 {
11417 dyn.d_un.d_ptr = h->root.u.def.value;
11418 o = h->root.u.def.section;
11419 if (o->output_section != NULL)
11420 dyn.d_un.d_ptr += (o->output_section->vma
11421 + o->output_offset);
11422 else
11423 {
11424 /* The symbol is imported from another shared
11425 library and does not apply to this one. */
11426 dyn.d_un.d_ptr = 0;
11427 }
11428 break;
11429 }
11430 }
11431 continue;
11432
11433 case DT_PREINIT_ARRAYSZ:
11434 name = ".preinit_array";
11435 goto get_size;
11436 case DT_INIT_ARRAYSZ:
11437 name = ".init_array";
11438 goto get_size;
11439 case DT_FINI_ARRAYSZ:
11440 name = ".fini_array";
11441 get_size:
11442 o = bfd_get_section_by_name (abfd, name);
11443 if (o == NULL)
11444 {
11445 (*_bfd_error_handler)
11446 (_("%B: could not find output section %s"), abfd, name);
11447 goto error_return;
11448 }
11449 if (o->size == 0)
11450 (*_bfd_error_handler)
11451 (_("warning: %s section has zero size"), name);
11452 dyn.d_un.d_val = o->size;
11453 break;
11454
11455 case DT_PREINIT_ARRAY:
11456 name = ".preinit_array";
11457 goto get_vma;
11458 case DT_INIT_ARRAY:
11459 name = ".init_array";
11460 goto get_vma;
11461 case DT_FINI_ARRAY:
11462 name = ".fini_array";
11463 goto get_vma;
11464
11465 case DT_HASH:
11466 name = ".hash";
11467 goto get_vma;
11468 case DT_GNU_HASH:
11469 name = ".gnu.hash";
11470 goto get_vma;
11471 case DT_STRTAB:
11472 name = ".dynstr";
11473 goto get_vma;
11474 case DT_SYMTAB:
11475 name = ".dynsym";
11476 goto get_vma;
11477 case DT_VERDEF:
11478 name = ".gnu.version_d";
11479 goto get_vma;
11480 case DT_VERNEED:
11481 name = ".gnu.version_r";
11482 goto get_vma;
11483 case DT_VERSYM:
11484 name = ".gnu.version";
11485 get_vma:
11486 o = bfd_get_section_by_name (abfd, name);
11487 if (o == NULL)
11488 {
11489 (*_bfd_error_handler)
11490 (_("%B: could not find output section %s"), abfd, name);
11491 goto error_return;
11492 }
11493 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11494 {
11495 (*_bfd_error_handler)
11496 (_("warning: section '%s' is being made into a note"), name);
11497 bfd_set_error (bfd_error_nonrepresentable_section);
11498 goto error_return;
11499 }
11500 dyn.d_un.d_ptr = o->vma;
11501 break;
11502
11503 case DT_REL:
11504 case DT_RELA:
11505 case DT_RELSZ:
11506 case DT_RELASZ:
11507 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11508 type = SHT_REL;
11509 else
11510 type = SHT_RELA;
11511 dyn.d_un.d_val = 0;
11512 dyn.d_un.d_ptr = 0;
11513 for (i = 1; i < elf_numsections (abfd); i++)
11514 {
11515 Elf_Internal_Shdr *hdr;
11516
11517 hdr = elf_elfsections (abfd)[i];
11518 if (hdr->sh_type == type
11519 && (hdr->sh_flags & SHF_ALLOC) != 0)
11520 {
11521 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11522 dyn.d_un.d_val += hdr->sh_size;
11523 else
11524 {
11525 if (dyn.d_un.d_ptr == 0
11526 || hdr->sh_addr < dyn.d_un.d_ptr)
11527 dyn.d_un.d_ptr = hdr->sh_addr;
11528 }
11529 }
11530 }
11531 break;
11532 }
11533 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11534 }
11535 }
11536
11537 /* If we have created any dynamic sections, then output them. */
11538 if (dynobj != NULL)
11539 {
11540 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11541 goto error_return;
11542
11543 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11544 if (((info->warn_shared_textrel && info->shared)
11545 || info->error_textrel)
11546 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11547 {
11548 bfd_byte *dyncon, *dynconend;
11549
11550 dyncon = o->contents;
11551 dynconend = o->contents + o->size;
11552 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11553 {
11554 Elf_Internal_Dyn dyn;
11555
11556 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11557
11558 if (dyn.d_tag == DT_TEXTREL)
11559 {
11560 if (info->error_textrel)
11561 info->callbacks->einfo
11562 (_("%P%X: read-only segment has dynamic relocations.\n"));
11563 else
11564 info->callbacks->einfo
11565 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11566 break;
11567 }
11568 }
11569 }
11570
11571 for (o = dynobj->sections; o != NULL; o = o->next)
11572 {
11573 if ((o->flags & SEC_HAS_CONTENTS) == 0
11574 || o->size == 0
11575 || o->output_section == bfd_abs_section_ptr)
11576 continue;
11577 if ((o->flags & SEC_LINKER_CREATED) == 0)
11578 {
11579 /* At this point, we are only interested in sections
11580 created by _bfd_elf_link_create_dynamic_sections. */
11581 continue;
11582 }
11583 if (elf_hash_table (info)->stab_info.stabstr == o)
11584 continue;
11585 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11586 continue;
11587 if (strcmp (o->name, ".dynstr") != 0)
11588 {
11589 /* FIXME: octets_per_byte. */
11590 if (! bfd_set_section_contents (abfd, o->output_section,
11591 o->contents,
11592 (file_ptr) o->output_offset,
11593 o->size))
11594 goto error_return;
11595 }
11596 else
11597 {
11598 /* The contents of the .dynstr section are actually in a
11599 stringtab. */
11600 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11601 if (bfd_seek (abfd, off, SEEK_SET) != 0
11602 || ! _bfd_elf_strtab_emit (abfd,
11603 elf_hash_table (info)->dynstr))
11604 goto error_return;
11605 }
11606 }
11607 }
11608
11609 if (info->relocatable)
11610 {
11611 bfd_boolean failed = FALSE;
11612
11613 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11614 if (failed)
11615 goto error_return;
11616 }
11617
11618 /* If we have optimized stabs strings, output them. */
11619 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11620 {
11621 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11622 goto error_return;
11623 }
11624
11625 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11626 goto error_return;
11627
11628 elf_final_link_free (abfd, &flinfo);
11629
11630 elf_linker (abfd) = TRUE;
11631
11632 if (attr_section)
11633 {
11634 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11635 if (contents == NULL)
11636 return FALSE; /* Bail out and fail. */
11637 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11638 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11639 free (contents);
11640 }
11641
11642 return TRUE;
11643
11644 error_return:
11645 elf_final_link_free (abfd, &flinfo);
11646 return FALSE;
11647 }
11648 \f
11649 /* Initialize COOKIE for input bfd ABFD. */
11650
11651 static bfd_boolean
11652 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11653 struct bfd_link_info *info, bfd *abfd)
11654 {
11655 Elf_Internal_Shdr *symtab_hdr;
11656 const struct elf_backend_data *bed;
11657
11658 bed = get_elf_backend_data (abfd);
11659 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11660
11661 cookie->abfd = abfd;
11662 cookie->sym_hashes = elf_sym_hashes (abfd);
11663 cookie->bad_symtab = elf_bad_symtab (abfd);
11664 if (cookie->bad_symtab)
11665 {
11666 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11667 cookie->extsymoff = 0;
11668 }
11669 else
11670 {
11671 cookie->locsymcount = symtab_hdr->sh_info;
11672 cookie->extsymoff = symtab_hdr->sh_info;
11673 }
11674
11675 if (bed->s->arch_size == 32)
11676 cookie->r_sym_shift = 8;
11677 else
11678 cookie->r_sym_shift = 32;
11679
11680 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11681 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11682 {
11683 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11684 cookie->locsymcount, 0,
11685 NULL, NULL, NULL);
11686 if (cookie->locsyms == NULL)
11687 {
11688 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11689 return FALSE;
11690 }
11691 if (info->keep_memory)
11692 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11693 }
11694 return TRUE;
11695 }
11696
11697 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11698
11699 static void
11700 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11701 {
11702 Elf_Internal_Shdr *symtab_hdr;
11703
11704 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11705 if (cookie->locsyms != NULL
11706 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11707 free (cookie->locsyms);
11708 }
11709
11710 /* Initialize the relocation information in COOKIE for input section SEC
11711 of input bfd ABFD. */
11712
11713 static bfd_boolean
11714 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11715 struct bfd_link_info *info, bfd *abfd,
11716 asection *sec)
11717 {
11718 const struct elf_backend_data *bed;
11719
11720 if (sec->reloc_count == 0)
11721 {
11722 cookie->rels = NULL;
11723 cookie->relend = NULL;
11724 }
11725 else
11726 {
11727 bed = get_elf_backend_data (abfd);
11728
11729 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11730 info->keep_memory);
11731 if (cookie->rels == NULL)
11732 return FALSE;
11733 cookie->rel = cookie->rels;
11734 cookie->relend = (cookie->rels
11735 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11736 }
11737 cookie->rel = cookie->rels;
11738 return TRUE;
11739 }
11740
11741 /* Free the memory allocated by init_reloc_cookie_rels,
11742 if appropriate. */
11743
11744 static void
11745 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11746 asection *sec)
11747 {
11748 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11749 free (cookie->rels);
11750 }
11751
11752 /* Initialize the whole of COOKIE for input section SEC. */
11753
11754 static bfd_boolean
11755 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11756 struct bfd_link_info *info,
11757 asection *sec)
11758 {
11759 if (!init_reloc_cookie (cookie, info, sec->owner))
11760 goto error1;
11761 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11762 goto error2;
11763 return TRUE;
11764
11765 error2:
11766 fini_reloc_cookie (cookie, sec->owner);
11767 error1:
11768 return FALSE;
11769 }
11770
11771 /* Free the memory allocated by init_reloc_cookie_for_section,
11772 if appropriate. */
11773
11774 static void
11775 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11776 asection *sec)
11777 {
11778 fini_reloc_cookie_rels (cookie, sec);
11779 fini_reloc_cookie (cookie, sec->owner);
11780 }
11781 \f
11782 /* Garbage collect unused sections. */
11783
11784 /* Default gc_mark_hook. */
11785
11786 asection *
11787 _bfd_elf_gc_mark_hook (asection *sec,
11788 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11789 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11790 struct elf_link_hash_entry *h,
11791 Elf_Internal_Sym *sym)
11792 {
11793 const char *sec_name;
11794
11795 if (h != NULL)
11796 {
11797 switch (h->root.type)
11798 {
11799 case bfd_link_hash_defined:
11800 case bfd_link_hash_defweak:
11801 return h->root.u.def.section;
11802
11803 case bfd_link_hash_common:
11804 return h->root.u.c.p->section;
11805
11806 case bfd_link_hash_undefined:
11807 case bfd_link_hash_undefweak:
11808 /* To work around a glibc bug, keep all XXX input sections
11809 when there is an as yet undefined reference to __start_XXX
11810 or __stop_XXX symbols. The linker will later define such
11811 symbols for orphan input sections that have a name
11812 representable as a C identifier. */
11813 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11814 sec_name = h->root.root.string + 8;
11815 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11816 sec_name = h->root.root.string + 7;
11817 else
11818 sec_name = NULL;
11819
11820 if (sec_name && *sec_name != '\0')
11821 {
11822 bfd *i;
11823
11824 for (i = info->input_bfds; i; i = i->link.next)
11825 {
11826 sec = bfd_get_section_by_name (i, sec_name);
11827 if (sec)
11828 sec->flags |= SEC_KEEP;
11829 }
11830 }
11831 break;
11832
11833 default:
11834 break;
11835 }
11836 }
11837 else
11838 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11839
11840 return NULL;
11841 }
11842
11843 /* COOKIE->rel describes a relocation against section SEC, which is
11844 a section we've decided to keep. Return the section that contains
11845 the relocation symbol, or NULL if no section contains it. */
11846
11847 asection *
11848 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11849 elf_gc_mark_hook_fn gc_mark_hook,
11850 struct elf_reloc_cookie *cookie)
11851 {
11852 unsigned long r_symndx;
11853 struct elf_link_hash_entry *h;
11854
11855 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11856 if (r_symndx == STN_UNDEF)
11857 return NULL;
11858
11859 if (r_symndx >= cookie->locsymcount
11860 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11861 {
11862 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11863 while (h->root.type == bfd_link_hash_indirect
11864 || h->root.type == bfd_link_hash_warning)
11865 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11866 h->mark = 1;
11867 /* If this symbol is weak and there is a non-weak definition, we
11868 keep the non-weak definition because many backends put
11869 dynamic reloc info on the non-weak definition for code
11870 handling copy relocs. */
11871 if (h->u.weakdef != NULL)
11872 h->u.weakdef->mark = 1;
11873 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11874 }
11875
11876 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11877 &cookie->locsyms[r_symndx]);
11878 }
11879
11880 /* COOKIE->rel describes a relocation against section SEC, which is
11881 a section we've decided to keep. Mark the section that contains
11882 the relocation symbol. */
11883
11884 bfd_boolean
11885 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11886 asection *sec,
11887 elf_gc_mark_hook_fn gc_mark_hook,
11888 struct elf_reloc_cookie *cookie)
11889 {
11890 asection *rsec;
11891
11892 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11893 if (rsec && !rsec->gc_mark)
11894 {
11895 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11896 || (rsec->owner->flags & DYNAMIC) != 0)
11897 rsec->gc_mark = 1;
11898 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11899 return FALSE;
11900 }
11901 return TRUE;
11902 }
11903
11904 /* The mark phase of garbage collection. For a given section, mark
11905 it and any sections in this section's group, and all the sections
11906 which define symbols to which it refers. */
11907
11908 bfd_boolean
11909 _bfd_elf_gc_mark (struct bfd_link_info *info,
11910 asection *sec,
11911 elf_gc_mark_hook_fn gc_mark_hook)
11912 {
11913 bfd_boolean ret;
11914 asection *group_sec, *eh_frame;
11915
11916 sec->gc_mark = 1;
11917
11918 /* Mark all the sections in the group. */
11919 group_sec = elf_section_data (sec)->next_in_group;
11920 if (group_sec && !group_sec->gc_mark)
11921 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11922 return FALSE;
11923
11924 /* Look through the section relocs. */
11925 ret = TRUE;
11926 eh_frame = elf_eh_frame_section (sec->owner);
11927 if ((sec->flags & SEC_RELOC) != 0
11928 && sec->reloc_count > 0
11929 && sec != eh_frame)
11930 {
11931 struct elf_reloc_cookie cookie;
11932
11933 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11934 ret = FALSE;
11935 else
11936 {
11937 for (; cookie.rel < cookie.relend; cookie.rel++)
11938 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11939 {
11940 ret = FALSE;
11941 break;
11942 }
11943 fini_reloc_cookie_for_section (&cookie, sec);
11944 }
11945 }
11946
11947 if (ret && eh_frame && elf_fde_list (sec))
11948 {
11949 struct elf_reloc_cookie cookie;
11950
11951 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11952 ret = FALSE;
11953 else
11954 {
11955 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11956 gc_mark_hook, &cookie))
11957 ret = FALSE;
11958 fini_reloc_cookie_for_section (&cookie, eh_frame);
11959 }
11960 }
11961
11962 return ret;
11963 }
11964
11965 /* Keep debug and special sections. */
11966
11967 bfd_boolean
11968 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11969 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11970 {
11971 bfd *ibfd;
11972
11973 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11974 {
11975 asection *isec;
11976 bfd_boolean some_kept;
11977 bfd_boolean debug_frag_seen;
11978
11979 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11980 continue;
11981
11982 /* Ensure all linker created sections are kept,
11983 see if any other section is already marked,
11984 and note if we have any fragmented debug sections. */
11985 debug_frag_seen = some_kept = FALSE;
11986 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11987 {
11988 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11989 isec->gc_mark = 1;
11990 else if (isec->gc_mark)
11991 some_kept = TRUE;
11992
11993 if (debug_frag_seen == FALSE
11994 && (isec->flags & SEC_DEBUGGING)
11995 && CONST_STRNEQ (isec->name, ".debug_line."))
11996 debug_frag_seen = TRUE;
11997 }
11998
11999 /* If no section in this file will be kept, then we can
12000 toss out the debug and special sections. */
12001 if (!some_kept)
12002 continue;
12003
12004 /* Keep debug and special sections like .comment when they are
12005 not part of a group, or when we have single-member groups. */
12006 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12007 if ((elf_next_in_group (isec) == NULL
12008 || elf_next_in_group (isec) == isec)
12009 && ((isec->flags & SEC_DEBUGGING) != 0
12010 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
12011 isec->gc_mark = 1;
12012
12013 if (! debug_frag_seen)
12014 continue;
12015
12016 /* Look for CODE sections which are going to be discarded,
12017 and find and discard any fragmented debug sections which
12018 are associated with that code section. */
12019 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12020 if ((isec->flags & SEC_CODE) != 0
12021 && isec->gc_mark == 0)
12022 {
12023 unsigned int ilen;
12024 asection *dsec;
12025
12026 ilen = strlen (isec->name);
12027
12028 /* Association is determined by the name of the debug section
12029 containing the name of the code section as a suffix. For
12030 example .debug_line.text.foo is a debug section associated
12031 with .text.foo. */
12032 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12033 {
12034 unsigned int dlen;
12035
12036 if (dsec->gc_mark == 0
12037 || (dsec->flags & SEC_DEBUGGING) == 0)
12038 continue;
12039
12040 dlen = strlen (dsec->name);
12041
12042 if (dlen > ilen
12043 && strncmp (dsec->name + (dlen - ilen),
12044 isec->name, ilen) == 0)
12045 {
12046 dsec->gc_mark = 0;
12047 break;
12048 }
12049 }
12050 }
12051 }
12052 return TRUE;
12053 }
12054
12055 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12056
12057 struct elf_gc_sweep_symbol_info
12058 {
12059 struct bfd_link_info *info;
12060 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12061 bfd_boolean);
12062 };
12063
12064 static bfd_boolean
12065 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12066 {
12067 if (!h->mark
12068 && (((h->root.type == bfd_link_hash_defined
12069 || h->root.type == bfd_link_hash_defweak)
12070 && !(h->def_regular
12071 && h->root.u.def.section->gc_mark))
12072 || h->root.type == bfd_link_hash_undefined
12073 || h->root.type == bfd_link_hash_undefweak))
12074 {
12075 struct elf_gc_sweep_symbol_info *inf;
12076
12077 inf = (struct elf_gc_sweep_symbol_info *) data;
12078 (*inf->hide_symbol) (inf->info, h, TRUE);
12079 h->def_regular = 0;
12080 h->ref_regular = 0;
12081 h->ref_regular_nonweak = 0;
12082 }
12083
12084 return TRUE;
12085 }
12086
12087 /* The sweep phase of garbage collection. Remove all garbage sections. */
12088
12089 typedef bfd_boolean (*gc_sweep_hook_fn)
12090 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12091
12092 static bfd_boolean
12093 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12094 {
12095 bfd *sub;
12096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12097 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12098 unsigned long section_sym_count;
12099 struct elf_gc_sweep_symbol_info sweep_info;
12100
12101 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12102 {
12103 asection *o;
12104
12105 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12106 continue;
12107
12108 for (o = sub->sections; o != NULL; o = o->next)
12109 {
12110 /* When any section in a section group is kept, we keep all
12111 sections in the section group. If the first member of
12112 the section group is excluded, we will also exclude the
12113 group section. */
12114 if (o->flags & SEC_GROUP)
12115 {
12116 asection *first = elf_next_in_group (o);
12117 o->gc_mark = first->gc_mark;
12118 }
12119
12120 if (o->gc_mark)
12121 continue;
12122
12123 /* Skip sweeping sections already excluded. */
12124 if (o->flags & SEC_EXCLUDE)
12125 continue;
12126
12127 /* Since this is early in the link process, it is simple
12128 to remove a section from the output. */
12129 o->flags |= SEC_EXCLUDE;
12130
12131 if (info->print_gc_sections && o->size != 0)
12132 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12133
12134 /* But we also have to update some of the relocation
12135 info we collected before. */
12136 if (gc_sweep_hook
12137 && (o->flags & SEC_RELOC) != 0
12138 && o->reloc_count != 0
12139 && !((info->strip == strip_all || info->strip == strip_debugger)
12140 && (o->flags & SEC_DEBUGGING) != 0)
12141 && !bfd_is_abs_section (o->output_section))
12142 {
12143 Elf_Internal_Rela *internal_relocs;
12144 bfd_boolean r;
12145
12146 internal_relocs
12147 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12148 info->keep_memory);
12149 if (internal_relocs == NULL)
12150 return FALSE;
12151
12152 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12153
12154 if (elf_section_data (o)->relocs != internal_relocs)
12155 free (internal_relocs);
12156
12157 if (!r)
12158 return FALSE;
12159 }
12160 }
12161 }
12162
12163 /* Remove the symbols that were in the swept sections from the dynamic
12164 symbol table. GCFIXME: Anyone know how to get them out of the
12165 static symbol table as well? */
12166 sweep_info.info = info;
12167 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12168 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12169 &sweep_info);
12170
12171 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12172 return TRUE;
12173 }
12174
12175 /* Propagate collected vtable information. This is called through
12176 elf_link_hash_traverse. */
12177
12178 static bfd_boolean
12179 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12180 {
12181 /* Those that are not vtables. */
12182 if (h->vtable == NULL || h->vtable->parent == NULL)
12183 return TRUE;
12184
12185 /* Those vtables that do not have parents, we cannot merge. */
12186 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12187 return TRUE;
12188
12189 /* If we've already been done, exit. */
12190 if (h->vtable->used && h->vtable->used[-1])
12191 return TRUE;
12192
12193 /* Make sure the parent's table is up to date. */
12194 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12195
12196 if (h->vtable->used == NULL)
12197 {
12198 /* None of this table's entries were referenced. Re-use the
12199 parent's table. */
12200 h->vtable->used = h->vtable->parent->vtable->used;
12201 h->vtable->size = h->vtable->parent->vtable->size;
12202 }
12203 else
12204 {
12205 size_t n;
12206 bfd_boolean *cu, *pu;
12207
12208 /* Or the parent's entries into ours. */
12209 cu = h->vtable->used;
12210 cu[-1] = TRUE;
12211 pu = h->vtable->parent->vtable->used;
12212 if (pu != NULL)
12213 {
12214 const struct elf_backend_data *bed;
12215 unsigned int log_file_align;
12216
12217 bed = get_elf_backend_data (h->root.u.def.section->owner);
12218 log_file_align = bed->s->log_file_align;
12219 n = h->vtable->parent->vtable->size >> log_file_align;
12220 while (n--)
12221 {
12222 if (*pu)
12223 *cu = TRUE;
12224 pu++;
12225 cu++;
12226 }
12227 }
12228 }
12229
12230 return TRUE;
12231 }
12232
12233 static bfd_boolean
12234 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12235 {
12236 asection *sec;
12237 bfd_vma hstart, hend;
12238 Elf_Internal_Rela *relstart, *relend, *rel;
12239 const struct elf_backend_data *bed;
12240 unsigned int log_file_align;
12241
12242 /* Take care of both those symbols that do not describe vtables as
12243 well as those that are not loaded. */
12244 if (h->vtable == NULL || h->vtable->parent == NULL)
12245 return TRUE;
12246
12247 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12248 || h->root.type == bfd_link_hash_defweak);
12249
12250 sec = h->root.u.def.section;
12251 hstart = h->root.u.def.value;
12252 hend = hstart + h->size;
12253
12254 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12255 if (!relstart)
12256 return *(bfd_boolean *) okp = FALSE;
12257 bed = get_elf_backend_data (sec->owner);
12258 log_file_align = bed->s->log_file_align;
12259
12260 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12261
12262 for (rel = relstart; rel < relend; ++rel)
12263 if (rel->r_offset >= hstart && rel->r_offset < hend)
12264 {
12265 /* If the entry is in use, do nothing. */
12266 if (h->vtable->used
12267 && (rel->r_offset - hstart) < h->vtable->size)
12268 {
12269 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12270 if (h->vtable->used[entry])
12271 continue;
12272 }
12273 /* Otherwise, kill it. */
12274 rel->r_offset = rel->r_info = rel->r_addend = 0;
12275 }
12276
12277 return TRUE;
12278 }
12279
12280 /* Mark sections containing dynamically referenced symbols. When
12281 building shared libraries, we must assume that any visible symbol is
12282 referenced. */
12283
12284 bfd_boolean
12285 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12286 {
12287 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12288 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12289
12290 if ((h->root.type == bfd_link_hash_defined
12291 || h->root.type == bfd_link_hash_defweak)
12292 && (h->ref_dynamic
12293 || (h->def_regular
12294 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12295 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12296 && (!info->executable
12297 || info->export_dynamic
12298 || (h->dynamic
12299 && d != NULL
12300 && (*d->match) (&d->head, NULL, h->root.root.string)))
12301 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12302 || !bfd_hide_sym_by_version (info->version_info,
12303 h->root.root.string)))))
12304 h->root.u.def.section->flags |= SEC_KEEP;
12305
12306 return TRUE;
12307 }
12308
12309 /* Keep all sections containing symbols undefined on the command-line,
12310 and the section containing the entry symbol. */
12311
12312 void
12313 _bfd_elf_gc_keep (struct bfd_link_info *info)
12314 {
12315 struct bfd_sym_chain *sym;
12316
12317 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12318 {
12319 struct elf_link_hash_entry *h;
12320
12321 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12322 FALSE, FALSE, FALSE);
12323
12324 if (h != NULL
12325 && (h->root.type == bfd_link_hash_defined
12326 || h->root.type == bfd_link_hash_defweak)
12327 && !bfd_is_abs_section (h->root.u.def.section))
12328 h->root.u.def.section->flags |= SEC_KEEP;
12329 }
12330 }
12331
12332 /* Do mark and sweep of unused sections. */
12333
12334 bfd_boolean
12335 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12336 {
12337 bfd_boolean ok = TRUE;
12338 bfd *sub;
12339 elf_gc_mark_hook_fn gc_mark_hook;
12340 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12341 struct elf_link_hash_table *htab;
12342
12343 if (!bed->can_gc_sections
12344 || !is_elf_hash_table (info->hash))
12345 {
12346 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12347 return TRUE;
12348 }
12349
12350 bed->gc_keep (info);
12351 htab = elf_hash_table (info);
12352
12353 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12354 at the .eh_frame section if we can mark the FDEs individually. */
12355 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12356 {
12357 asection *sec;
12358 struct elf_reloc_cookie cookie;
12359
12360 sec = bfd_get_section_by_name (sub, ".eh_frame");
12361 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12362 {
12363 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12364 if (elf_section_data (sec)->sec_info
12365 && (sec->flags & SEC_LINKER_CREATED) == 0)
12366 elf_eh_frame_section (sub) = sec;
12367 fini_reloc_cookie_for_section (&cookie, sec);
12368 sec = bfd_get_next_section_by_name (sec);
12369 }
12370 }
12371
12372 /* Apply transitive closure to the vtable entry usage info. */
12373 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12374 if (!ok)
12375 return FALSE;
12376
12377 /* Kill the vtable relocations that were not used. */
12378 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12379 if (!ok)
12380 return FALSE;
12381
12382 /* Mark dynamically referenced symbols. */
12383 if (htab->dynamic_sections_created)
12384 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12385
12386 /* Grovel through relocs to find out who stays ... */
12387 gc_mark_hook = bed->gc_mark_hook;
12388 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12389 {
12390 asection *o;
12391
12392 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12393 continue;
12394
12395 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12396 Also treat note sections as a root, if the section is not part
12397 of a group. */
12398 for (o = sub->sections; o != NULL; o = o->next)
12399 if (!o->gc_mark
12400 && (o->flags & SEC_EXCLUDE) == 0
12401 && ((o->flags & SEC_KEEP) != 0
12402 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12403 && elf_next_in_group (o) == NULL )))
12404 {
12405 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12406 return FALSE;
12407 }
12408 }
12409
12410 /* Allow the backend to mark additional target specific sections. */
12411 bed->gc_mark_extra_sections (info, gc_mark_hook);
12412
12413 /* ... and mark SEC_EXCLUDE for those that go. */
12414 return elf_gc_sweep (abfd, info);
12415 }
12416 \f
12417 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12418
12419 bfd_boolean
12420 bfd_elf_gc_record_vtinherit (bfd *abfd,
12421 asection *sec,
12422 struct elf_link_hash_entry *h,
12423 bfd_vma offset)
12424 {
12425 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12426 struct elf_link_hash_entry **search, *child;
12427 bfd_size_type extsymcount;
12428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12429
12430 /* The sh_info field of the symtab header tells us where the
12431 external symbols start. We don't care about the local symbols at
12432 this point. */
12433 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12434 if (!elf_bad_symtab (abfd))
12435 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12436
12437 sym_hashes = elf_sym_hashes (abfd);
12438 sym_hashes_end = sym_hashes + extsymcount;
12439
12440 /* Hunt down the child symbol, which is in this section at the same
12441 offset as the relocation. */
12442 for (search = sym_hashes; search != sym_hashes_end; ++search)
12443 {
12444 if ((child = *search) != NULL
12445 && (child->root.type == bfd_link_hash_defined
12446 || child->root.type == bfd_link_hash_defweak)
12447 && child->root.u.def.section == sec
12448 && child->root.u.def.value == offset)
12449 goto win;
12450 }
12451
12452 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12453 abfd, sec, (unsigned long) offset);
12454 bfd_set_error (bfd_error_invalid_operation);
12455 return FALSE;
12456
12457 win:
12458 if (!child->vtable)
12459 {
12460 child->vtable = (struct elf_link_virtual_table_entry *)
12461 bfd_zalloc (abfd, sizeof (*child->vtable));
12462 if (!child->vtable)
12463 return FALSE;
12464 }
12465 if (!h)
12466 {
12467 /* This *should* only be the absolute section. It could potentially
12468 be that someone has defined a non-global vtable though, which
12469 would be bad. It isn't worth paging in the local symbols to be
12470 sure though; that case should simply be handled by the assembler. */
12471
12472 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12473 }
12474 else
12475 child->vtable->parent = h;
12476
12477 return TRUE;
12478 }
12479
12480 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12481
12482 bfd_boolean
12483 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12484 asection *sec ATTRIBUTE_UNUSED,
12485 struct elf_link_hash_entry *h,
12486 bfd_vma addend)
12487 {
12488 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12489 unsigned int log_file_align = bed->s->log_file_align;
12490
12491 if (!h->vtable)
12492 {
12493 h->vtable = (struct elf_link_virtual_table_entry *)
12494 bfd_zalloc (abfd, sizeof (*h->vtable));
12495 if (!h->vtable)
12496 return FALSE;
12497 }
12498
12499 if (addend >= h->vtable->size)
12500 {
12501 size_t size, bytes, file_align;
12502 bfd_boolean *ptr = h->vtable->used;
12503
12504 /* While the symbol is undefined, we have to be prepared to handle
12505 a zero size. */
12506 file_align = 1 << log_file_align;
12507 if (h->root.type == bfd_link_hash_undefined)
12508 size = addend + file_align;
12509 else
12510 {
12511 size = h->size;
12512 if (addend >= size)
12513 {
12514 /* Oops! We've got a reference past the defined end of
12515 the table. This is probably a bug -- shall we warn? */
12516 size = addend + file_align;
12517 }
12518 }
12519 size = (size + file_align - 1) & -file_align;
12520
12521 /* Allocate one extra entry for use as a "done" flag for the
12522 consolidation pass. */
12523 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12524
12525 if (ptr)
12526 {
12527 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12528
12529 if (ptr != NULL)
12530 {
12531 size_t oldbytes;
12532
12533 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12534 * sizeof (bfd_boolean));
12535 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12536 }
12537 }
12538 else
12539 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12540
12541 if (ptr == NULL)
12542 return FALSE;
12543
12544 /* And arrange for that done flag to be at index -1. */
12545 h->vtable->used = ptr + 1;
12546 h->vtable->size = size;
12547 }
12548
12549 h->vtable->used[addend >> log_file_align] = TRUE;
12550
12551 return TRUE;
12552 }
12553
12554 /* Map an ELF section header flag to its corresponding string. */
12555 typedef struct
12556 {
12557 char *flag_name;
12558 flagword flag_value;
12559 } elf_flags_to_name_table;
12560
12561 static elf_flags_to_name_table elf_flags_to_names [] =
12562 {
12563 { "SHF_WRITE", SHF_WRITE },
12564 { "SHF_ALLOC", SHF_ALLOC },
12565 { "SHF_EXECINSTR", SHF_EXECINSTR },
12566 { "SHF_MERGE", SHF_MERGE },
12567 { "SHF_STRINGS", SHF_STRINGS },
12568 { "SHF_INFO_LINK", SHF_INFO_LINK},
12569 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12570 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12571 { "SHF_GROUP", SHF_GROUP },
12572 { "SHF_TLS", SHF_TLS },
12573 { "SHF_MASKOS", SHF_MASKOS },
12574 { "SHF_EXCLUDE", SHF_EXCLUDE },
12575 };
12576
12577 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12578 bfd_boolean
12579 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12580 struct flag_info *flaginfo,
12581 asection *section)
12582 {
12583 const bfd_vma sh_flags = elf_section_flags (section);
12584
12585 if (!flaginfo->flags_initialized)
12586 {
12587 bfd *obfd = info->output_bfd;
12588 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12589 struct flag_info_list *tf = flaginfo->flag_list;
12590 int with_hex = 0;
12591 int without_hex = 0;
12592
12593 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12594 {
12595 unsigned i;
12596 flagword (*lookup) (char *);
12597
12598 lookup = bed->elf_backend_lookup_section_flags_hook;
12599 if (lookup != NULL)
12600 {
12601 flagword hexval = (*lookup) ((char *) tf->name);
12602
12603 if (hexval != 0)
12604 {
12605 if (tf->with == with_flags)
12606 with_hex |= hexval;
12607 else if (tf->with == without_flags)
12608 without_hex |= hexval;
12609 tf->valid = TRUE;
12610 continue;
12611 }
12612 }
12613 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12614 {
12615 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12616 {
12617 if (tf->with == with_flags)
12618 with_hex |= elf_flags_to_names[i].flag_value;
12619 else if (tf->with == without_flags)
12620 without_hex |= elf_flags_to_names[i].flag_value;
12621 tf->valid = TRUE;
12622 break;
12623 }
12624 }
12625 if (!tf->valid)
12626 {
12627 info->callbacks->einfo
12628 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12629 return FALSE;
12630 }
12631 }
12632 flaginfo->flags_initialized = TRUE;
12633 flaginfo->only_with_flags |= with_hex;
12634 flaginfo->not_with_flags |= without_hex;
12635 }
12636
12637 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12638 return FALSE;
12639
12640 if ((flaginfo->not_with_flags & sh_flags) != 0)
12641 return FALSE;
12642
12643 return TRUE;
12644 }
12645
12646 struct alloc_got_off_arg {
12647 bfd_vma gotoff;
12648 struct bfd_link_info *info;
12649 };
12650
12651 /* We need a special top-level link routine to convert got reference counts
12652 to real got offsets. */
12653
12654 static bfd_boolean
12655 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12656 {
12657 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12658 bfd *obfd = gofarg->info->output_bfd;
12659 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12660
12661 if (h->got.refcount > 0)
12662 {
12663 h->got.offset = gofarg->gotoff;
12664 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12665 }
12666 else
12667 h->got.offset = (bfd_vma) -1;
12668
12669 return TRUE;
12670 }
12671
12672 /* And an accompanying bit to work out final got entry offsets once
12673 we're done. Should be called from final_link. */
12674
12675 bfd_boolean
12676 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12677 struct bfd_link_info *info)
12678 {
12679 bfd *i;
12680 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12681 bfd_vma gotoff;
12682 struct alloc_got_off_arg gofarg;
12683
12684 BFD_ASSERT (abfd == info->output_bfd);
12685
12686 if (! is_elf_hash_table (info->hash))
12687 return FALSE;
12688
12689 /* The GOT offset is relative to the .got section, but the GOT header is
12690 put into the .got.plt section, if the backend uses it. */
12691 if (bed->want_got_plt)
12692 gotoff = 0;
12693 else
12694 gotoff = bed->got_header_size;
12695
12696 /* Do the local .got entries first. */
12697 for (i = info->input_bfds; i; i = i->link.next)
12698 {
12699 bfd_signed_vma *local_got;
12700 bfd_size_type j, locsymcount;
12701 Elf_Internal_Shdr *symtab_hdr;
12702
12703 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12704 continue;
12705
12706 local_got = elf_local_got_refcounts (i);
12707 if (!local_got)
12708 continue;
12709
12710 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12711 if (elf_bad_symtab (i))
12712 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12713 else
12714 locsymcount = symtab_hdr->sh_info;
12715
12716 for (j = 0; j < locsymcount; ++j)
12717 {
12718 if (local_got[j] > 0)
12719 {
12720 local_got[j] = gotoff;
12721 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12722 }
12723 else
12724 local_got[j] = (bfd_vma) -1;
12725 }
12726 }
12727
12728 /* Then the global .got entries. .plt refcounts are handled by
12729 adjust_dynamic_symbol */
12730 gofarg.gotoff = gotoff;
12731 gofarg.info = info;
12732 elf_link_hash_traverse (elf_hash_table (info),
12733 elf_gc_allocate_got_offsets,
12734 &gofarg);
12735 return TRUE;
12736 }
12737
12738 /* Many folk need no more in the way of final link than this, once
12739 got entry reference counting is enabled. */
12740
12741 bfd_boolean
12742 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12743 {
12744 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12745 return FALSE;
12746
12747 /* Invoke the regular ELF backend linker to do all the work. */
12748 return bfd_elf_final_link (abfd, info);
12749 }
12750
12751 bfd_boolean
12752 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12753 {
12754 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12755
12756 if (rcookie->bad_symtab)
12757 rcookie->rel = rcookie->rels;
12758
12759 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12760 {
12761 unsigned long r_symndx;
12762
12763 if (! rcookie->bad_symtab)
12764 if (rcookie->rel->r_offset > offset)
12765 return FALSE;
12766 if (rcookie->rel->r_offset != offset)
12767 continue;
12768
12769 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12770 if (r_symndx == STN_UNDEF)
12771 return TRUE;
12772
12773 if (r_symndx >= rcookie->locsymcount
12774 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12775 {
12776 struct elf_link_hash_entry *h;
12777
12778 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12779
12780 while (h->root.type == bfd_link_hash_indirect
12781 || h->root.type == bfd_link_hash_warning)
12782 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12783
12784 if ((h->root.type == bfd_link_hash_defined
12785 || h->root.type == bfd_link_hash_defweak)
12786 && (h->root.u.def.section->owner != rcookie->abfd
12787 || h->root.u.def.section->kept_section != NULL
12788 || discarded_section (h->root.u.def.section)))
12789 return TRUE;
12790 }
12791 else
12792 {
12793 /* It's not a relocation against a global symbol,
12794 but it could be a relocation against a local
12795 symbol for a discarded section. */
12796 asection *isec;
12797 Elf_Internal_Sym *isym;
12798
12799 /* Need to: get the symbol; get the section. */
12800 isym = &rcookie->locsyms[r_symndx];
12801 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12802 if (isec != NULL
12803 && (isec->kept_section != NULL
12804 || discarded_section (isec)))
12805 return TRUE;
12806 }
12807 return FALSE;
12808 }
12809 return FALSE;
12810 }
12811
12812 /* Discard unneeded references to discarded sections.
12813 Returns -1 on error, 1 if any section's size was changed, 0 if
12814 nothing changed. This function assumes that the relocations are in
12815 sorted order, which is true for all known assemblers. */
12816
12817 int
12818 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12819 {
12820 struct elf_reloc_cookie cookie;
12821 asection *o;
12822 bfd *abfd;
12823 int changed = 0;
12824
12825 if (info->traditional_format
12826 || !is_elf_hash_table (info->hash))
12827 return 0;
12828
12829 o = bfd_get_section_by_name (output_bfd, ".stab");
12830 if (o != NULL)
12831 {
12832 asection *i;
12833
12834 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12835 {
12836 if (i->size == 0
12837 || i->reloc_count == 0
12838 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12839 continue;
12840
12841 abfd = i->owner;
12842 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12843 continue;
12844
12845 if (!init_reloc_cookie_for_section (&cookie, info, i))
12846 return -1;
12847
12848 if (_bfd_discard_section_stabs (abfd, i,
12849 elf_section_data (i)->sec_info,
12850 bfd_elf_reloc_symbol_deleted_p,
12851 &cookie))
12852 changed = 1;
12853
12854 fini_reloc_cookie_for_section (&cookie, i);
12855 }
12856 }
12857
12858 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12859 if (o != NULL)
12860 {
12861 asection *i;
12862
12863 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12864 {
12865 if (i->size == 0)
12866 continue;
12867
12868 abfd = i->owner;
12869 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12870 continue;
12871
12872 if (!init_reloc_cookie_for_section (&cookie, info, i))
12873 return -1;
12874
12875 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12876 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12877 bfd_elf_reloc_symbol_deleted_p,
12878 &cookie))
12879 changed = 1;
12880
12881 fini_reloc_cookie_for_section (&cookie, i);
12882 }
12883 }
12884
12885 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12886 {
12887 const struct elf_backend_data *bed;
12888
12889 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12890 continue;
12891
12892 bed = get_elf_backend_data (abfd);
12893
12894 if (bed->elf_backend_discard_info != NULL)
12895 {
12896 if (!init_reloc_cookie (&cookie, info, abfd))
12897 return -1;
12898
12899 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12900 changed = 1;
12901
12902 fini_reloc_cookie (&cookie, abfd);
12903 }
12904 }
12905
12906 if (info->eh_frame_hdr
12907 && !info->relocatable
12908 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12909 changed = 1;
12910
12911 return changed;
12912 }
12913
12914 bfd_boolean
12915 _bfd_elf_section_already_linked (bfd *abfd,
12916 asection *sec,
12917 struct bfd_link_info *info)
12918 {
12919 flagword flags;
12920 const char *name, *key;
12921 struct bfd_section_already_linked *l;
12922 struct bfd_section_already_linked_hash_entry *already_linked_list;
12923
12924 if (sec->output_section == bfd_abs_section_ptr)
12925 return FALSE;
12926
12927 flags = sec->flags;
12928
12929 /* Return if it isn't a linkonce section. A comdat group section
12930 also has SEC_LINK_ONCE set. */
12931 if ((flags & SEC_LINK_ONCE) == 0)
12932 return FALSE;
12933
12934 /* Don't put group member sections on our list of already linked
12935 sections. They are handled as a group via their group section. */
12936 if (elf_sec_group (sec) != NULL)
12937 return FALSE;
12938
12939 /* For a SHT_GROUP section, use the group signature as the key. */
12940 name = sec->name;
12941 if ((flags & SEC_GROUP) != 0
12942 && elf_next_in_group (sec) != NULL
12943 && elf_group_name (elf_next_in_group (sec)) != NULL)
12944 key = elf_group_name (elf_next_in_group (sec));
12945 else
12946 {
12947 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12948 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12949 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12950 key++;
12951 else
12952 /* Must be a user linkonce section that doesn't follow gcc's
12953 naming convention. In this case we won't be matching
12954 single member groups. */
12955 key = name;
12956 }
12957
12958 already_linked_list = bfd_section_already_linked_table_lookup (key);
12959
12960 for (l = already_linked_list->entry; l != NULL; l = l->next)
12961 {
12962 /* We may have 2 different types of sections on the list: group
12963 sections with a signature of <key> (<key> is some string),
12964 and linkonce sections named .gnu.linkonce.<type>.<key>.
12965 Match like sections. LTO plugin sections are an exception.
12966 They are always named .gnu.linkonce.t.<key> and match either
12967 type of section. */
12968 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12969 && ((flags & SEC_GROUP) != 0
12970 || strcmp (name, l->sec->name) == 0))
12971 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12972 {
12973 /* The section has already been linked. See if we should
12974 issue a warning. */
12975 if (!_bfd_handle_already_linked (sec, l, info))
12976 return FALSE;
12977
12978 if (flags & SEC_GROUP)
12979 {
12980 asection *first = elf_next_in_group (sec);
12981 asection *s = first;
12982
12983 while (s != NULL)
12984 {
12985 s->output_section = bfd_abs_section_ptr;
12986 /* Record which group discards it. */
12987 s->kept_section = l->sec;
12988 s = elf_next_in_group (s);
12989 /* These lists are circular. */
12990 if (s == first)
12991 break;
12992 }
12993 }
12994
12995 return TRUE;
12996 }
12997 }
12998
12999 /* A single member comdat group section may be discarded by a
13000 linkonce section and vice versa. */
13001 if ((flags & SEC_GROUP) != 0)
13002 {
13003 asection *first = elf_next_in_group (sec);
13004
13005 if (first != NULL && elf_next_in_group (first) == first)
13006 /* Check this single member group against linkonce sections. */
13007 for (l = already_linked_list->entry; l != NULL; l = l->next)
13008 if ((l->sec->flags & SEC_GROUP) == 0
13009 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13010 {
13011 first->output_section = bfd_abs_section_ptr;
13012 first->kept_section = l->sec;
13013 sec->output_section = bfd_abs_section_ptr;
13014 break;
13015 }
13016 }
13017 else
13018 /* Check this linkonce section against single member groups. */
13019 for (l = already_linked_list->entry; l != NULL; l = l->next)
13020 if (l->sec->flags & SEC_GROUP)
13021 {
13022 asection *first = elf_next_in_group (l->sec);
13023
13024 if (first != NULL
13025 && elf_next_in_group (first) == first
13026 && bfd_elf_match_symbols_in_sections (first, sec, info))
13027 {
13028 sec->output_section = bfd_abs_section_ptr;
13029 sec->kept_section = first;
13030 break;
13031 }
13032 }
13033
13034 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13035 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13036 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13037 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13038 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13039 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13040 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13041 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13042 The reverse order cannot happen as there is never a bfd with only the
13043 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13044 matter as here were are looking only for cross-bfd sections. */
13045
13046 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13047 for (l = already_linked_list->entry; l != NULL; l = l->next)
13048 if ((l->sec->flags & SEC_GROUP) == 0
13049 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13050 {
13051 if (abfd != l->sec->owner)
13052 sec->output_section = bfd_abs_section_ptr;
13053 break;
13054 }
13055
13056 /* This is the first section with this name. Record it. */
13057 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13058 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13059 return sec->output_section == bfd_abs_section_ptr;
13060 }
13061
13062 bfd_boolean
13063 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13064 {
13065 return sym->st_shndx == SHN_COMMON;
13066 }
13067
13068 unsigned int
13069 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13070 {
13071 return SHN_COMMON;
13072 }
13073
13074 asection *
13075 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13076 {
13077 return bfd_com_section_ptr;
13078 }
13079
13080 bfd_vma
13081 _bfd_elf_default_got_elt_size (bfd *abfd,
13082 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13083 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13084 bfd *ibfd ATTRIBUTE_UNUSED,
13085 unsigned long symndx ATTRIBUTE_UNUSED)
13086 {
13087 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13088 return bed->s->arch_size / 8;
13089 }
13090
13091 /* Routines to support the creation of dynamic relocs. */
13092
13093 /* Returns the name of the dynamic reloc section associated with SEC. */
13094
13095 static const char *
13096 get_dynamic_reloc_section_name (bfd * abfd,
13097 asection * sec,
13098 bfd_boolean is_rela)
13099 {
13100 char *name;
13101 const char *old_name = bfd_get_section_name (NULL, sec);
13102 const char *prefix = is_rela ? ".rela" : ".rel";
13103
13104 if (old_name == NULL)
13105 return NULL;
13106
13107 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13108 sprintf (name, "%s%s", prefix, old_name);
13109
13110 return name;
13111 }
13112
13113 /* Returns the dynamic reloc section associated with SEC.
13114 If necessary compute the name of the dynamic reloc section based
13115 on SEC's name (looked up in ABFD's string table) and the setting
13116 of IS_RELA. */
13117
13118 asection *
13119 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13120 asection * sec,
13121 bfd_boolean is_rela)
13122 {
13123 asection * reloc_sec = elf_section_data (sec)->sreloc;
13124
13125 if (reloc_sec == NULL)
13126 {
13127 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13128
13129 if (name != NULL)
13130 {
13131 reloc_sec = bfd_get_linker_section (abfd, name);
13132
13133 if (reloc_sec != NULL)
13134 elf_section_data (sec)->sreloc = reloc_sec;
13135 }
13136 }
13137
13138 return reloc_sec;
13139 }
13140
13141 /* Returns the dynamic reloc section associated with SEC. If the
13142 section does not exist it is created and attached to the DYNOBJ
13143 bfd and stored in the SRELOC field of SEC's elf_section_data
13144 structure.
13145
13146 ALIGNMENT is the alignment for the newly created section and
13147 IS_RELA defines whether the name should be .rela.<SEC's name>
13148 or .rel.<SEC's name>. The section name is looked up in the
13149 string table associated with ABFD. */
13150
13151 asection *
13152 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13153 bfd * dynobj,
13154 unsigned int alignment,
13155 bfd * abfd,
13156 bfd_boolean is_rela)
13157 {
13158 asection * reloc_sec = elf_section_data (sec)->sreloc;
13159
13160 if (reloc_sec == NULL)
13161 {
13162 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13163
13164 if (name == NULL)
13165 return NULL;
13166
13167 reloc_sec = bfd_get_linker_section (dynobj, name);
13168
13169 if (reloc_sec == NULL)
13170 {
13171 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13172 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13173 if ((sec->flags & SEC_ALLOC) != 0)
13174 flags |= SEC_ALLOC | SEC_LOAD;
13175
13176 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13177 if (reloc_sec != NULL)
13178 {
13179 /* _bfd_elf_get_sec_type_attr chooses a section type by
13180 name. Override as it may be wrong, eg. for a user
13181 section named "auto" we'll get ".relauto" which is
13182 seen to be a .rela section. */
13183 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13184 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13185 reloc_sec = NULL;
13186 }
13187 }
13188
13189 elf_section_data (sec)->sreloc = reloc_sec;
13190 }
13191
13192 return reloc_sec;
13193 }
13194
13195 /* Copy the ELF symbol type and other attributes for a linker script
13196 assignment from HSRC to HDEST. Generally this should be treated as
13197 if we found a strong non-dynamic definition for HDEST (except that
13198 ld ignores multiple definition errors). */
13199 void
13200 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13201 struct bfd_link_hash_entry *hdest,
13202 struct bfd_link_hash_entry *hsrc)
13203 {
13204 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13205 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13206 Elf_Internal_Sym isym;
13207
13208 ehdest->type = ehsrc->type;
13209 ehdest->target_internal = ehsrc->target_internal;
13210
13211 isym.st_other = ehsrc->other;
13212 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13213 }
13214
13215 /* Append a RELA relocation REL to section S in BFD. */
13216
13217 void
13218 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13219 {
13220 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13221 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13222 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13223 bed->s->swap_reloca_out (abfd, rel, loc);
13224 }
13225
13226 /* Append a REL relocation REL to section S in BFD. */
13227
13228 void
13229 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13230 {
13231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13232 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13233 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13234 bed->s->swap_reloc_out (abfd, rel, loc);
13235 }
This page took 0.614997 seconds and 4 git commands to generate.