daily update
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1036
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1083 {
1084 *skip = TRUE;
1085 return TRUE;
1086 }
1087
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1093 {
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1097
1098 if (h->type == STT_TLS)
1099 {
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1106 }
1107 else
1108 {
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1115 }
1116
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1133
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1136 }
1137
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1142 {
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1146 {
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1151 {
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1154 }
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1157 }
1158 }
1159
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1165 {
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1171
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1177 }
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1181 {
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186 {
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1192 {
1193 struct elf_link_hash_entry *vh = *sym_hash;
1194
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201 {
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1205 }
1206 else
1207 {
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214 }
1215 h = vh;
1216 }
1217 else
1218 h = *sym_hash;
1219 }
1220
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1223 {
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1232 }
1233 else
1234 {
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1237 }
1238
1239 if (h->def_dynamic)
1240 {
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1244 }
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1249 }
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1557 {
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1560 }
1561 }
1562
1563 return TRUE;
1564 }
1565
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1570
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1581 {
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1594
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1602
1603 if (override)
1604 {
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1614 {
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1618 }
1619 }
1620
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1624
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1631
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1643
1644 if (skip)
1645 goto nondefault;
1646
1647 if (! override)
1648 {
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1655 }
1656 else
1657 {
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1663
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1667
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1675
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1683 {
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1688 {
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1691 }
1692 }
1693
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1697 }
1698
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1706
1707 if (hi->root.type == bfd_link_hash_indirect)
1708 {
1709 struct elf_link_hash_entry *ht;
1710
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1717 {
1718 if (! dynamic)
1719 {
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1786 {
1787 if (! dynamic)
1788 {
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1792 }
1793 else
1794 {
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1797 }
1798 }
1799 }
1800 }
1801
1802 return TRUE;
1803 }
1804 \f
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1807
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 {
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812
1813 /* Ignore this if we won't export it. */
1814 if (!eif->info->export_dynamic && !h->dynamic)
1815 return TRUE;
1816
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h->root.type == bfd_link_hash_indirect)
1819 return TRUE;
1820
1821 if (h->root.type == bfd_link_hash_warning)
1822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1823
1824 if (h->dynindx == -1
1825 && (h->def_regular
1826 || h->ref_regular))
1827 {
1828 bfd_boolean hide;
1829
1830 if (eif->verdefs == NULL
1831 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 && !hide))
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1835 {
1836 eif->failed = TRUE;
1837 return FALSE;
1838 }
1839 }
1840 }
1841
1842 return TRUE;
1843 }
1844 \f
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1849
1850 static bfd_boolean
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 void *data)
1853 {
1854 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1855 Elf_Internal_Verneed *t;
1856 Elf_Internal_Vernaux *a;
1857 bfd_size_type amt;
1858
1859 if (h->root.type == bfd_link_hash_warning)
1860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1861
1862 /* We only care about symbols defined in shared objects with version
1863 information. */
1864 if (!h->def_dynamic
1865 || h->def_regular
1866 || h->dynindx == -1
1867 || h->verinfo.verdef == NULL)
1868 return TRUE;
1869
1870 /* See if we already know about this version. */
1871 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1872 t != NULL;
1873 t = t->vn_nextref)
1874 {
1875 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 continue;
1877
1878 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1879 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1880 return TRUE;
1881
1882 break;
1883 }
1884
1885 /* This is a new version. Add it to tree we are building. */
1886
1887 if (t == NULL)
1888 {
1889 amt = sizeof *t;
1890 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (t == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1898 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1899 elf_tdata (rinfo->info->output_bfd)->verref = t;
1900 }
1901
1902 amt = sizeof *a;
1903 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1904 if (a == NULL)
1905 {
1906 rinfo->failed = TRUE;
1907 return FALSE;
1908 }
1909
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1913 fixed. */
1914 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1915
1916 a->vna_flags = h->verinfo.verdef->vd_flags;
1917 a->vna_nextptr = t->vn_auxptr;
1918
1919 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 ++rinfo->vers;
1921
1922 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1923
1924 t->vn_auxptr = a;
1925
1926 return TRUE;
1927 }
1928
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1933
1934 static bfd_boolean
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1936 {
1937 struct elf_info_failed *sinfo;
1938 struct bfd_link_info *info;
1939 const struct elf_backend_data *bed;
1940 struct elf_info_failed eif;
1941 char *p;
1942 bfd_size_type amt;
1943
1944 sinfo = (struct elf_info_failed *) data;
1945 info = sinfo->info;
1946
1947 if (h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1949
1950 /* Fix the symbol flags. */
1951 eif.failed = FALSE;
1952 eif.info = info;
1953 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1954 {
1955 if (eif.failed)
1956 sinfo->failed = TRUE;
1957 return FALSE;
1958 }
1959
1960 /* We only need version numbers for symbols defined in regular
1961 objects. */
1962 if (!h->def_regular)
1963 return TRUE;
1964
1965 bed = get_elf_backend_data (info->output_bfd);
1966 p = strchr (h->root.root.string, ELF_VER_CHR);
1967 if (p != NULL && h->verinfo.vertree == NULL)
1968 {
1969 struct bfd_elf_version_tree *t;
1970 bfd_boolean hidden;
1971
1972 hidden = TRUE;
1973
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1976 ++p;
1977 if (*p == ELF_VER_CHR)
1978 {
1979 hidden = FALSE;
1980 ++p;
1981 }
1982
1983 /* If there is no version string, we can just return out. */
1984 if (*p == '\0')
1985 {
1986 if (hidden)
1987 h->hidden = 1;
1988 return TRUE;
1989 }
1990
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t = sinfo->verdefs; t != NULL; t = t->next)
1993 {
1994 if (strcmp (t->name, p) == 0)
1995 {
1996 size_t len;
1997 char *alc;
1998 struct bfd_elf_version_expr *d;
1999
2000 len = p - h->root.root.string;
2001 alc = (char *) bfd_malloc (len);
2002 if (alc == NULL)
2003 {
2004 sinfo->failed = TRUE;
2005 return FALSE;
2006 }
2007 memcpy (alc, h->root.root.string, len - 1);
2008 alc[len - 1] = '\0';
2009 if (alc[len - 2] == ELF_VER_CHR)
2010 alc[len - 2] = '\0';
2011
2012 h->verinfo.vertree = t;
2013 t->used = TRUE;
2014 d = NULL;
2015
2016 if (t->globals.list != NULL)
2017 d = (*t->match) (&t->globals, NULL, alc);
2018
2019 /* See if there is anything to force this symbol to
2020 local scope. */
2021 if (d == NULL && t->locals.list != NULL)
2022 {
2023 d = (*t->match) (&t->locals, NULL, alc);
2024 if (d != NULL
2025 && h->dynindx != -1
2026 && ! info->export_dynamic)
2027 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2028 }
2029
2030 free (alc);
2031 break;
2032 }
2033 }
2034
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t == NULL && info->executable)
2038 {
2039 struct bfd_elf_version_tree **pp;
2040 int version_index;
2041
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h->dynindx == -1)
2045 return TRUE;
2046
2047 amt = sizeof *t;
2048 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2049 if (t == NULL)
2050 {
2051 sinfo->failed = TRUE;
2052 return FALSE;
2053 }
2054
2055 t->name = p;
2056 t->name_indx = (unsigned int) -1;
2057 t->used = TRUE;
2058
2059 version_index = 1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2064 ++version_index;
2065 t->vernum = version_index;
2066
2067 *pp = t;
2068
2069 h->verinfo.vertree = t;
2070 }
2071 else if (t == NULL)
2072 {
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler)
2076 (_("%B: version node not found for symbol %s"),
2077 info->output_bfd, h->root.root.string);
2078 bfd_set_error (bfd_error_bad_value);
2079 sinfo->failed = TRUE;
2080 return FALSE;
2081 }
2082
2083 if (hidden)
2084 h->hidden = 1;
2085 }
2086
2087 /* If we don't have a version for this symbol, see if we can find
2088 something. */
2089 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2090 {
2091 bfd_boolean hide;
2092
2093 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2097 }
2098
2099 return TRUE;
2100 }
2101 \f
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2108
2109 Returns FALSE if something goes wrong. */
2110
2111 static bfd_boolean
2112 elf_link_read_relocs_from_section (bfd *abfd,
2113 asection *sec,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2117 {
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2124 size_t nsyms;
2125
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 return FALSE;
2129
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 return FALSE;
2133
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2136
2137 bed = get_elf_backend_data (abfd);
2138
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2144 else
2145 {
2146 bfd_set_error (bfd_error_wrong_format);
2147 return FALSE;
2148 }
2149
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2154 {
2155 bfd_vma r_symndx;
2156
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2160 r_symndx >>= 24;
2161 if (nsyms > 0)
2162 {
2163 if ((size_t) r_symndx >= nsyms)
2164 {
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2172 }
2173 }
2174 else if (r_symndx != STN_UNDEF)
2175 {
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2179 abfd, sec,
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2183 }
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2186 }
2187
2188 return TRUE;
2189 }
2190
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2200
2201 Elf_Internal_Rela *
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2203 asection *o,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2207 {
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 struct bfd_elf_section_data *esdo = elf_section_data (o);
2212 Elf_Internal_Rela *internal_rela_relocs;
2213
2214 if (esdo->relocs != NULL)
2215 return esdo->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = 0;
2237
2238 if (esdo->rel.hdr)
2239 size += esdo->rel.hdr->sh_size;
2240 if (esdo->rela.hdr)
2241 size += esdo->rela.hdr->sh_size;
2242
2243 alloc1 = bfd_malloc (size);
2244 if (alloc1 == NULL)
2245 goto error_return;
2246 external_relocs = alloc1;
2247 }
2248
2249 internal_rela_relocs = internal_relocs;
2250 if (esdo->rel.hdr)
2251 {
2252 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2253 external_relocs,
2254 internal_relocs))
2255 goto error_return;
2256 external_relocs = (((bfd_byte *) external_relocs)
2257 + esdo->rel.hdr->sh_size);
2258 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2259 * bed->s->int_rels_per_ext_rel);
2260 }
2261
2262 if (esdo->rela.hdr
2263 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2264 external_relocs,
2265 internal_rela_relocs)))
2266 goto error_return;
2267
2268 /* Cache the results for next time, if we can. */
2269 if (keep_memory)
2270 esdo->relocs = internal_relocs;
2271
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2277
2278 return internal_relocs;
2279
2280 error_return:
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283 if (alloc2 != NULL)
2284 {
2285 if (keep_memory)
2286 bfd_release (abfd, alloc2);
2287 else
2288 free (alloc2);
2289 }
2290 return NULL;
2291 }
2292
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2295
2296 static bfd_boolean
2297 _bfd_elf_link_size_reloc_section (bfd *abfd,
2298 struct bfd_elf_section_reloc_data *reldata)
2299 {
2300 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2301
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2304
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2311 return FALSE;
2312
2313 if (reldata->hashes == NULL && reldata->count)
2314 {
2315 struct elf_link_hash_entry **p;
2316
2317 p = (struct elf_link_hash_entry **)
2318 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2319 if (p == NULL)
2320 return FALSE;
2321
2322 reldata->hashes = p;
2323 }
2324
2325 return TRUE;
2326 }
2327
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2330 OUTPUT_BFD. */
2331
2332 bfd_boolean
2333 _bfd_elf_link_output_relocs (bfd *output_bfd,
2334 asection *input_section,
2335 Elf_Internal_Shdr *input_rel_hdr,
2336 Elf_Internal_Rela *internal_relocs,
2337 struct elf_link_hash_entry **rel_hash
2338 ATTRIBUTE_UNUSED)
2339 {
2340 Elf_Internal_Rela *irela;
2341 Elf_Internal_Rela *irelaend;
2342 bfd_byte *erel;
2343 struct bfd_elf_section_reloc_data *output_reldata;
2344 asection *output_section;
2345 const struct elf_backend_data *bed;
2346 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2347 struct bfd_elf_section_data *esdo;
2348
2349 output_section = input_section->output_section;
2350
2351 bed = get_elf_backend_data (output_bfd);
2352 esdo = elf_section_data (output_section);
2353 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2354 {
2355 output_reldata = &esdo->rel;
2356 swap_out = bed->s->swap_reloc_out;
2357 }
2358 else if (esdo->rela.hdr
2359 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rela;
2362 swap_out = bed->s->swap_reloca_out;
2363 }
2364 else
2365 {
2366 (*_bfd_error_handler)
2367 (_("%B: relocation size mismatch in %B section %A"),
2368 output_bfd, input_section->owner, input_section);
2369 bfd_set_error (bfd_error_wrong_format);
2370 return FALSE;
2371 }
2372
2373 erel = output_reldata->hdr->contents;
2374 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2375 irela = internal_relocs;
2376 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2377 * bed->s->int_rels_per_ext_rel);
2378 while (irela < irelaend)
2379 {
2380 (*swap_out) (output_bfd, irela, erel);
2381 irela += bed->s->int_rels_per_ext_rel;
2382 erel += input_rel_hdr->sh_entsize;
2383 }
2384
2385 /* Bump the counter, so that we know where to add the next set of
2386 relocations. */
2387 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2388
2389 return TRUE;
2390 }
2391 \f
2392 /* Make weak undefined symbols in PIE dynamic. */
2393
2394 bfd_boolean
2395 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2397 {
2398 if (info->pie
2399 && h->dynindx == -1
2400 && h->root.type == bfd_link_hash_undefweak)
2401 return bfd_elf_link_record_dynamic_symbol (info, h);
2402
2403 return TRUE;
2404 }
2405
2406 /* Fix up the flags for a symbol. This handles various cases which
2407 can only be fixed after all the input files are seen. This is
2408 currently called by both adjust_dynamic_symbol and
2409 assign_sym_version, which is unnecessary but perhaps more robust in
2410 the face of future changes. */
2411
2412 static bfd_boolean
2413 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2414 struct elf_info_failed *eif)
2415 {
2416 const struct elf_backend_data *bed;
2417
2418 /* If this symbol was mentioned in a non-ELF file, try to set
2419 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2420 permit a non-ELF file to correctly refer to a symbol defined in
2421 an ELF dynamic object. */
2422 if (h->non_elf)
2423 {
2424 while (h->root.type == bfd_link_hash_indirect)
2425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2426
2427 if (h->root.type != bfd_link_hash_defined
2428 && h->root.type != bfd_link_hash_defweak)
2429 {
2430 h->ref_regular = 1;
2431 h->ref_regular_nonweak = 1;
2432 }
2433 else
2434 {
2435 if (h->root.u.def.section->owner != NULL
2436 && (bfd_get_flavour (h->root.u.def.section->owner)
2437 == bfd_target_elf_flavour))
2438 {
2439 h->ref_regular = 1;
2440 h->ref_regular_nonweak = 1;
2441 }
2442 else
2443 h->def_regular = 1;
2444 }
2445
2446 if (h->dynindx == -1
2447 && (h->def_dynamic
2448 || h->ref_dynamic))
2449 {
2450 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2451 {
2452 eif->failed = TRUE;
2453 return FALSE;
2454 }
2455 }
2456 }
2457 else
2458 {
2459 /* Unfortunately, NON_ELF is only correct if the symbol
2460 was first seen in a non-ELF file. Fortunately, if the symbol
2461 was first seen in an ELF file, we're probably OK unless the
2462 symbol was defined in a non-ELF file. Catch that case here.
2463 FIXME: We're still in trouble if the symbol was first seen in
2464 a dynamic object, and then later in a non-ELF regular object. */
2465 if ((h->root.type == bfd_link_hash_defined
2466 || h->root.type == bfd_link_hash_defweak)
2467 && !h->def_regular
2468 && (h->root.u.def.section->owner != NULL
2469 ? (bfd_get_flavour (h->root.u.def.section->owner)
2470 != bfd_target_elf_flavour)
2471 : (bfd_is_abs_section (h->root.u.def.section)
2472 && !h->def_dynamic)))
2473 h->def_regular = 1;
2474 }
2475
2476 /* Backend specific symbol fixup. */
2477 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2478 if (bed->elf_backend_fixup_symbol
2479 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2480 return FALSE;
2481
2482 /* If this is a final link, and the symbol was defined as a common
2483 symbol in a regular object file, and there was no definition in
2484 any dynamic object, then the linker will have allocated space for
2485 the symbol in a common section but the DEF_REGULAR
2486 flag will not have been set. */
2487 if (h->root.type == bfd_link_hash_defined
2488 && !h->def_regular
2489 && h->ref_regular
2490 && !h->def_dynamic
2491 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2492 h->def_regular = 1;
2493
2494 /* If -Bsymbolic was used (which means to bind references to global
2495 symbols to the definition within the shared object), and this
2496 symbol was defined in a regular object, then it actually doesn't
2497 need a PLT entry. Likewise, if the symbol has non-default
2498 visibility. If the symbol has hidden or internal visibility, we
2499 will force it local. */
2500 if (h->needs_plt
2501 && eif->info->shared
2502 && is_elf_hash_table (eif->info->hash)
2503 && (SYMBOLIC_BIND (eif->info, h)
2504 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2505 && h->def_regular)
2506 {
2507 bfd_boolean force_local;
2508
2509 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2510 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2511 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2512 }
2513
2514 /* If a weak undefined symbol has non-default visibility, we also
2515 hide it from the dynamic linker. */
2516 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2517 && h->root.type == bfd_link_hash_undefweak)
2518 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2519
2520 /* If this is a weak defined symbol in a dynamic object, and we know
2521 the real definition in the dynamic object, copy interesting flags
2522 over to the real definition. */
2523 if (h->u.weakdef != NULL)
2524 {
2525 struct elf_link_hash_entry *weakdef;
2526
2527 weakdef = h->u.weakdef;
2528 if (h->root.type == bfd_link_hash_indirect)
2529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2530
2531 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2532 || h->root.type == bfd_link_hash_defweak);
2533 BFD_ASSERT (weakdef->def_dynamic);
2534
2535 /* If the real definition is defined by a regular object file,
2536 don't do anything special. See the longer description in
2537 _bfd_elf_adjust_dynamic_symbol, below. */
2538 if (weakdef->def_regular)
2539 h->u.weakdef = NULL;
2540 else
2541 {
2542 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2543 || weakdef->root.type == bfd_link_hash_defweak);
2544 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2545 }
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Make the backend pick a good value for a dynamic symbol. This is
2552 called via elf_link_hash_traverse, and also calls itself
2553 recursively. */
2554
2555 static bfd_boolean
2556 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2557 {
2558 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2559 bfd *dynobj;
2560 const struct elf_backend_data *bed;
2561
2562 if (! is_elf_hash_table (eif->info->hash))
2563 return FALSE;
2564
2565 if (h->root.type == bfd_link_hash_warning)
2566 {
2567 h->got = elf_hash_table (eif->info)->init_got_offset;
2568 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2569
2570 /* When warning symbols are created, they **replace** the "real"
2571 entry in the hash table, thus we never get to see the real
2572 symbol in a hash traversal. So look at it now. */
2573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2574 }
2575
2576 /* Ignore indirect symbols. These are added by the versioning code. */
2577 if (h->root.type == bfd_link_hash_indirect)
2578 return TRUE;
2579
2580 /* Fix the symbol flags. */
2581 if (! _bfd_elf_fix_symbol_flags (h, eif))
2582 return FALSE;
2583
2584 /* If this symbol does not require a PLT entry, and it is not
2585 defined by a dynamic object, or is not referenced by a regular
2586 object, ignore it. We do have to handle a weak defined symbol,
2587 even if no regular object refers to it, if we decided to add it
2588 to the dynamic symbol table. FIXME: Do we normally need to worry
2589 about symbols which are defined by one dynamic object and
2590 referenced by another one? */
2591 if (!h->needs_plt
2592 && h->type != STT_GNU_IFUNC
2593 && (h->def_regular
2594 || !h->def_dynamic
2595 || (!h->ref_regular
2596 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2597 {
2598 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2599 return TRUE;
2600 }
2601
2602 /* If we've already adjusted this symbol, don't do it again. This
2603 can happen via a recursive call. */
2604 if (h->dynamic_adjusted)
2605 return TRUE;
2606
2607 /* Don't look at this symbol again. Note that we must set this
2608 after checking the above conditions, because we may look at a
2609 symbol once, decide not to do anything, and then get called
2610 recursively later after REF_REGULAR is set below. */
2611 h->dynamic_adjusted = 1;
2612
2613 /* If this is a weak definition, and we know a real definition, and
2614 the real symbol is not itself defined by a regular object file,
2615 then get a good value for the real definition. We handle the
2616 real symbol first, for the convenience of the backend routine.
2617
2618 Note that there is a confusing case here. If the real definition
2619 is defined by a regular object file, we don't get the real symbol
2620 from the dynamic object, but we do get the weak symbol. If the
2621 processor backend uses a COPY reloc, then if some routine in the
2622 dynamic object changes the real symbol, we will not see that
2623 change in the corresponding weak symbol. This is the way other
2624 ELF linkers work as well, and seems to be a result of the shared
2625 library model.
2626
2627 I will clarify this issue. Most SVR4 shared libraries define the
2628 variable _timezone and define timezone as a weak synonym. The
2629 tzset call changes _timezone. If you write
2630 extern int timezone;
2631 int _timezone = 5;
2632 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2633 you might expect that, since timezone is a synonym for _timezone,
2634 the same number will print both times. However, if the processor
2635 backend uses a COPY reloc, then actually timezone will be copied
2636 into your process image, and, since you define _timezone
2637 yourself, _timezone will not. Thus timezone and _timezone will
2638 wind up at different memory locations. The tzset call will set
2639 _timezone, leaving timezone unchanged. */
2640
2641 if (h->u.weakdef != NULL)
2642 {
2643 /* If we get to this point, we know there is an implicit
2644 reference by a regular object file via the weak symbol H.
2645 FIXME: Is this really true? What if the traversal finds
2646 H->U.WEAKDEF before it finds H? */
2647 h->u.weakdef->ref_regular = 1;
2648
2649 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2650 return FALSE;
2651 }
2652
2653 /* If a symbol has no type and no size and does not require a PLT
2654 entry, then we are probably about to do the wrong thing here: we
2655 are probably going to create a COPY reloc for an empty object.
2656 This case can arise when a shared object is built with assembly
2657 code, and the assembly code fails to set the symbol type. */
2658 if (h->size == 0
2659 && h->type == STT_NOTYPE
2660 && !h->needs_plt)
2661 (*_bfd_error_handler)
2662 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2663 h->root.root.string);
2664
2665 dynobj = elf_hash_table (eif->info)->dynobj;
2666 bed = get_elf_backend_data (dynobj);
2667
2668 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2669 {
2670 eif->failed = TRUE;
2671 return FALSE;
2672 }
2673
2674 return TRUE;
2675 }
2676
2677 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2678 DYNBSS. */
2679
2680 bfd_boolean
2681 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2682 asection *dynbss)
2683 {
2684 unsigned int power_of_two;
2685 bfd_vma mask;
2686 asection *sec = h->root.u.def.section;
2687
2688 /* The section aligment of definition is the maximum alignment
2689 requirement of symbols defined in the section. Since we don't
2690 know the symbol alignment requirement, we start with the
2691 maximum alignment and check low bits of the symbol address
2692 for the minimum alignment. */
2693 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2694 mask = ((bfd_vma) 1 << power_of_two) - 1;
2695 while ((h->root.u.def.value & mask) != 0)
2696 {
2697 mask >>= 1;
2698 --power_of_two;
2699 }
2700
2701 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2702 dynbss))
2703 {
2704 /* Adjust the section alignment if needed. */
2705 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2706 power_of_two))
2707 return FALSE;
2708 }
2709
2710 /* We make sure that the symbol will be aligned properly. */
2711 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2712
2713 /* Define the symbol as being at this point in DYNBSS. */
2714 h->root.u.def.section = dynbss;
2715 h->root.u.def.value = dynbss->size;
2716
2717 /* Increment the size of DYNBSS to make room for the symbol. */
2718 dynbss->size += h->size;
2719
2720 return TRUE;
2721 }
2722
2723 /* Adjust all external symbols pointing into SEC_MERGE sections
2724 to reflect the object merging within the sections. */
2725
2726 static bfd_boolean
2727 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2728 {
2729 asection *sec;
2730
2731 if (h->root.type == bfd_link_hash_warning)
2732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2733
2734 if ((h->root.type == bfd_link_hash_defined
2735 || h->root.type == bfd_link_hash_defweak)
2736 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2737 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2738 {
2739 bfd *output_bfd = (bfd *) data;
2740
2741 h->root.u.def.value =
2742 _bfd_merged_section_offset (output_bfd,
2743 &h->root.u.def.section,
2744 elf_section_data (sec)->sec_info,
2745 h->root.u.def.value);
2746 }
2747
2748 return TRUE;
2749 }
2750
2751 /* Returns false if the symbol referred to by H should be considered
2752 to resolve local to the current module, and true if it should be
2753 considered to bind dynamically. */
2754
2755 bfd_boolean
2756 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2757 struct bfd_link_info *info,
2758 bfd_boolean not_local_protected)
2759 {
2760 bfd_boolean binding_stays_local_p;
2761 const struct elf_backend_data *bed;
2762 struct elf_link_hash_table *hash_table;
2763
2764 if (h == NULL)
2765 return FALSE;
2766
2767 while (h->root.type == bfd_link_hash_indirect
2768 || h->root.type == bfd_link_hash_warning)
2769 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2770
2771 /* If it was forced local, then clearly it's not dynamic. */
2772 if (h->dynindx == -1)
2773 return FALSE;
2774 if (h->forced_local)
2775 return FALSE;
2776
2777 /* Identify the cases where name binding rules say that a
2778 visible symbol resolves locally. */
2779 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2780
2781 switch (ELF_ST_VISIBILITY (h->other))
2782 {
2783 case STV_INTERNAL:
2784 case STV_HIDDEN:
2785 return FALSE;
2786
2787 case STV_PROTECTED:
2788 hash_table = elf_hash_table (info);
2789 if (!is_elf_hash_table (hash_table))
2790 return FALSE;
2791
2792 bed = get_elf_backend_data (hash_table->dynobj);
2793
2794 /* Proper resolution for function pointer equality may require
2795 that these symbols perhaps be resolved dynamically, even though
2796 we should be resolving them to the current module. */
2797 if (!not_local_protected || !bed->is_function_type (h->type))
2798 binding_stays_local_p = TRUE;
2799 break;
2800
2801 default:
2802 break;
2803 }
2804
2805 /* If it isn't defined locally, then clearly it's dynamic. */
2806 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2807 return TRUE;
2808
2809 /* Otherwise, the symbol is dynamic if binding rules don't tell
2810 us that it remains local. */
2811 return !binding_stays_local_p;
2812 }
2813
2814 /* Return true if the symbol referred to by H should be considered
2815 to resolve local to the current module, and false otherwise. Differs
2816 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2817 undefined symbols. The two functions are virtually identical except
2818 for the place where forced_local and dynindx == -1 are tested. If
2819 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2820 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2821 the symbol is local only for defined symbols.
2822 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2823 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2824 treatment of undefined weak symbols. For those that do not make
2825 undefined weak symbols dynamic, both functions may return false. */
2826
2827 bfd_boolean
2828 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2829 struct bfd_link_info *info,
2830 bfd_boolean local_protected)
2831 {
2832 const struct elf_backend_data *bed;
2833 struct elf_link_hash_table *hash_table;
2834
2835 /* If it's a local sym, of course we resolve locally. */
2836 if (h == NULL)
2837 return TRUE;
2838
2839 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2840 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2841 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2842 return TRUE;
2843
2844 /* Common symbols that become definitions don't get the DEF_REGULAR
2845 flag set, so test it first, and don't bail out. */
2846 if (ELF_COMMON_DEF_P (h))
2847 /* Do nothing. */;
2848 /* If we don't have a definition in a regular file, then we can't
2849 resolve locally. The sym is either undefined or dynamic. */
2850 else if (!h->def_regular)
2851 return FALSE;
2852
2853 /* Forced local symbols resolve locally. */
2854 if (h->forced_local)
2855 return TRUE;
2856
2857 /* As do non-dynamic symbols. */
2858 if (h->dynindx == -1)
2859 return TRUE;
2860
2861 /* At this point, we know the symbol is defined and dynamic. In an
2862 executable it must resolve locally, likewise when building symbolic
2863 shared libraries. */
2864 if (info->executable || SYMBOLIC_BIND (info, h))
2865 return TRUE;
2866
2867 /* Now deal with defined dynamic symbols in shared libraries. Ones
2868 with default visibility might not resolve locally. */
2869 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2870 return FALSE;
2871
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return TRUE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* STV_PROTECTED non-function symbols are local. */
2879 if (!bed->is_function_type (h->type))
2880 return TRUE;
2881
2882 /* Function pointer equality tests may require that STV_PROTECTED
2883 symbols be treated as dynamic symbols, even when we know that the
2884 dynamic linker will resolve them locally. */
2885 return local_protected;
2886 }
2887
2888 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2889 aligned. Returns the first TLS output section. */
2890
2891 struct bfd_section *
2892 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2893 {
2894 struct bfd_section *sec, *tls;
2895 unsigned int align = 0;
2896
2897 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2898 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2899 break;
2900 tls = sec;
2901
2902 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2903 if (sec->alignment_power > align)
2904 align = sec->alignment_power;
2905
2906 elf_hash_table (info)->tls_sec = tls;
2907
2908 /* Ensure the alignment of the first section is the largest alignment,
2909 so that the tls segment starts aligned. */
2910 if (tls != NULL)
2911 tls->alignment_power = align;
2912
2913 return tls;
2914 }
2915
2916 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2917 static bfd_boolean
2918 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2919 Elf_Internal_Sym *sym)
2920 {
2921 const struct elf_backend_data *bed;
2922
2923 /* Local symbols do not count, but target specific ones might. */
2924 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2925 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2926 return FALSE;
2927
2928 bed = get_elf_backend_data (abfd);
2929 /* Function symbols do not count. */
2930 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2931 return FALSE;
2932
2933 /* If the section is undefined, then so is the symbol. */
2934 if (sym->st_shndx == SHN_UNDEF)
2935 return FALSE;
2936
2937 /* If the symbol is defined in the common section, then
2938 it is a common definition and so does not count. */
2939 if (bed->common_definition (sym))
2940 return FALSE;
2941
2942 /* If the symbol is in a target specific section then we
2943 must rely upon the backend to tell us what it is. */
2944 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2945 /* FIXME - this function is not coded yet:
2946
2947 return _bfd_is_global_symbol_definition (abfd, sym);
2948
2949 Instead for now assume that the definition is not global,
2950 Even if this is wrong, at least the linker will behave
2951 in the same way that it used to do. */
2952 return FALSE;
2953
2954 return TRUE;
2955 }
2956
2957 /* Search the symbol table of the archive element of the archive ABFD
2958 whose archive map contains a mention of SYMDEF, and determine if
2959 the symbol is defined in this element. */
2960 static bfd_boolean
2961 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2962 {
2963 Elf_Internal_Shdr * hdr;
2964 bfd_size_type symcount;
2965 bfd_size_type extsymcount;
2966 bfd_size_type extsymoff;
2967 Elf_Internal_Sym *isymbuf;
2968 Elf_Internal_Sym *isym;
2969 Elf_Internal_Sym *isymend;
2970 bfd_boolean result;
2971
2972 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2973 if (abfd == NULL)
2974 return FALSE;
2975
2976 if (! bfd_check_format (abfd, bfd_object))
2977 return FALSE;
2978
2979 /* If we have already included the element containing this symbol in the
2980 link then we do not need to include it again. Just claim that any symbol
2981 it contains is not a definition, so that our caller will not decide to
2982 (re)include this element. */
2983 if (abfd->archive_pass)
2984 return FALSE;
2985
2986 /* Select the appropriate symbol table. */
2987 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2988 hdr = &elf_tdata (abfd)->symtab_hdr;
2989 else
2990 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2991
2992 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2993
2994 /* The sh_info field of the symtab header tells us where the
2995 external symbols start. We don't care about the local symbols. */
2996 if (elf_bad_symtab (abfd))
2997 {
2998 extsymcount = symcount;
2999 extsymoff = 0;
3000 }
3001 else
3002 {
3003 extsymcount = symcount - hdr->sh_info;
3004 extsymoff = hdr->sh_info;
3005 }
3006
3007 if (extsymcount == 0)
3008 return FALSE;
3009
3010 /* Read in the symbol table. */
3011 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3012 NULL, NULL, NULL);
3013 if (isymbuf == NULL)
3014 return FALSE;
3015
3016 /* Scan the symbol table looking for SYMDEF. */
3017 result = FALSE;
3018 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3019 {
3020 const char *name;
3021
3022 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3023 isym->st_name);
3024 if (name == NULL)
3025 break;
3026
3027 if (strcmp (name, symdef->name) == 0)
3028 {
3029 result = is_global_data_symbol_definition (abfd, isym);
3030 break;
3031 }
3032 }
3033
3034 free (isymbuf);
3035
3036 return result;
3037 }
3038 \f
3039 /* Add an entry to the .dynamic table. */
3040
3041 bfd_boolean
3042 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3043 bfd_vma tag,
3044 bfd_vma val)
3045 {
3046 struct elf_link_hash_table *hash_table;
3047 const struct elf_backend_data *bed;
3048 asection *s;
3049 bfd_size_type newsize;
3050 bfd_byte *newcontents;
3051 Elf_Internal_Dyn dyn;
3052
3053 hash_table = elf_hash_table (info);
3054 if (! is_elf_hash_table (hash_table))
3055 return FALSE;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 BFD_ASSERT (s != NULL);
3060
3061 newsize = s->size + bed->s->sizeof_dyn;
3062 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3063 if (newcontents == NULL)
3064 return FALSE;
3065
3066 dyn.d_tag = tag;
3067 dyn.d_un.d_val = val;
3068 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3069
3070 s->size = newsize;
3071 s->contents = newcontents;
3072
3073 return TRUE;
3074 }
3075
3076 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3077 otherwise just check whether one already exists. Returns -1 on error,
3078 1 if a DT_NEEDED tag already exists, and 0 on success. */
3079
3080 static int
3081 elf_add_dt_needed_tag (bfd *abfd,
3082 struct bfd_link_info *info,
3083 const char *soname,
3084 bfd_boolean do_it)
3085 {
3086 struct elf_link_hash_table *hash_table;
3087 bfd_size_type oldsize;
3088 bfd_size_type strindex;
3089
3090 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3091 return -1;
3092
3093 hash_table = elf_hash_table (info);
3094 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3095 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3096 if (strindex == (bfd_size_type) -1)
3097 return -1;
3098
3099 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3100 {
3101 asection *sdyn;
3102 const struct elf_backend_data *bed;
3103 bfd_byte *extdyn;
3104
3105 bed = get_elf_backend_data (hash_table->dynobj);
3106 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3107 if (sdyn != NULL)
3108 for (extdyn = sdyn->contents;
3109 extdyn < sdyn->contents + sdyn->size;
3110 extdyn += bed->s->sizeof_dyn)
3111 {
3112 Elf_Internal_Dyn dyn;
3113
3114 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3115 if (dyn.d_tag == DT_NEEDED
3116 && dyn.d_un.d_val == strindex)
3117 {
3118 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3119 return 1;
3120 }
3121 }
3122 }
3123
3124 if (do_it)
3125 {
3126 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3127 return -1;
3128
3129 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3130 return -1;
3131 }
3132 else
3133 /* We were just checking for existence of the tag. */
3134 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3135
3136 return 0;
3137 }
3138
3139 static bfd_boolean
3140 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3141 {
3142 for (; needed != NULL; needed = needed->next)
3143 if (strcmp (soname, needed->name) == 0)
3144 return TRUE;
3145
3146 return FALSE;
3147 }
3148
3149 /* Sort symbol by value and section. */
3150 static int
3151 elf_sort_symbol (const void *arg1, const void *arg2)
3152 {
3153 const struct elf_link_hash_entry *h1;
3154 const struct elf_link_hash_entry *h2;
3155 bfd_signed_vma vdiff;
3156
3157 h1 = *(const struct elf_link_hash_entry **) arg1;
3158 h2 = *(const struct elf_link_hash_entry **) arg2;
3159 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3160 if (vdiff != 0)
3161 return vdiff > 0 ? 1 : -1;
3162 else
3163 {
3164 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3165 if (sdiff != 0)
3166 return sdiff > 0 ? 1 : -1;
3167 }
3168 return 0;
3169 }
3170
3171 /* This function is used to adjust offsets into .dynstr for
3172 dynamic symbols. This is called via elf_link_hash_traverse. */
3173
3174 static bfd_boolean
3175 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3176 {
3177 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3178
3179 if (h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 if (h->dynindx != -1)
3183 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3184 return TRUE;
3185 }
3186
3187 /* Assign string offsets in .dynstr, update all structures referencing
3188 them. */
3189
3190 static bfd_boolean
3191 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3192 {
3193 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3194 struct elf_link_local_dynamic_entry *entry;
3195 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3196 bfd *dynobj = hash_table->dynobj;
3197 asection *sdyn;
3198 bfd_size_type size;
3199 const struct elf_backend_data *bed;
3200 bfd_byte *extdyn;
3201
3202 _bfd_elf_strtab_finalize (dynstr);
3203 size = _bfd_elf_strtab_size (dynstr);
3204
3205 bed = get_elf_backend_data (dynobj);
3206 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3207 BFD_ASSERT (sdyn != NULL);
3208
3209 /* Update all .dynamic entries referencing .dynstr strings. */
3210 for (extdyn = sdyn->contents;
3211 extdyn < sdyn->contents + sdyn->size;
3212 extdyn += bed->s->sizeof_dyn)
3213 {
3214 Elf_Internal_Dyn dyn;
3215
3216 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3217 switch (dyn.d_tag)
3218 {
3219 case DT_STRSZ:
3220 dyn.d_un.d_val = size;
3221 break;
3222 case DT_NEEDED:
3223 case DT_SONAME:
3224 case DT_RPATH:
3225 case DT_RUNPATH:
3226 case DT_FILTER:
3227 case DT_AUXILIARY:
3228 case DT_AUDIT:
3229 case DT_DEPAUDIT:
3230 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3231 break;
3232 default:
3233 continue;
3234 }
3235 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3236 }
3237
3238 /* Now update local dynamic symbols. */
3239 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3240 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3241 entry->isym.st_name);
3242
3243 /* And the rest of dynamic symbols. */
3244 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3245
3246 /* Adjust version definitions. */
3247 if (elf_tdata (output_bfd)->cverdefs)
3248 {
3249 asection *s;
3250 bfd_byte *p;
3251 bfd_size_type i;
3252 Elf_Internal_Verdef def;
3253 Elf_Internal_Verdaux defaux;
3254
3255 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3256 p = s->contents;
3257 do
3258 {
3259 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3260 &def);
3261 p += sizeof (Elf_External_Verdef);
3262 if (def.vd_aux != sizeof (Elf_External_Verdef))
3263 continue;
3264 for (i = 0; i < def.vd_cnt; ++i)
3265 {
3266 _bfd_elf_swap_verdaux_in (output_bfd,
3267 (Elf_External_Verdaux *) p, &defaux);
3268 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3269 defaux.vda_name);
3270 _bfd_elf_swap_verdaux_out (output_bfd,
3271 &defaux, (Elf_External_Verdaux *) p);
3272 p += sizeof (Elf_External_Verdaux);
3273 }
3274 }
3275 while (def.vd_next);
3276 }
3277
3278 /* Adjust version references. */
3279 if (elf_tdata (output_bfd)->verref)
3280 {
3281 asection *s;
3282 bfd_byte *p;
3283 bfd_size_type i;
3284 Elf_Internal_Verneed need;
3285 Elf_Internal_Vernaux needaux;
3286
3287 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3288 p = s->contents;
3289 do
3290 {
3291 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3292 &need);
3293 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3294 _bfd_elf_swap_verneed_out (output_bfd, &need,
3295 (Elf_External_Verneed *) p);
3296 p += sizeof (Elf_External_Verneed);
3297 for (i = 0; i < need.vn_cnt; ++i)
3298 {
3299 _bfd_elf_swap_vernaux_in (output_bfd,
3300 (Elf_External_Vernaux *) p, &needaux);
3301 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3302 needaux.vna_name);
3303 _bfd_elf_swap_vernaux_out (output_bfd,
3304 &needaux,
3305 (Elf_External_Vernaux *) p);
3306 p += sizeof (Elf_External_Vernaux);
3307 }
3308 }
3309 while (need.vn_next);
3310 }
3311
3312 return TRUE;
3313 }
3314 \f
3315 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3316 The default is to only match when the INPUT and OUTPUT are exactly
3317 the same target. */
3318
3319 bfd_boolean
3320 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3321 const bfd_target *output)
3322 {
3323 return input == output;
3324 }
3325
3326 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3327 This version is used when different targets for the same architecture
3328 are virtually identical. */
3329
3330 bfd_boolean
3331 _bfd_elf_relocs_compatible (const bfd_target *input,
3332 const bfd_target *output)
3333 {
3334 const struct elf_backend_data *obed, *ibed;
3335
3336 if (input == output)
3337 return TRUE;
3338
3339 ibed = xvec_get_elf_backend_data (input);
3340 obed = xvec_get_elf_backend_data (output);
3341
3342 if (ibed->arch != obed->arch)
3343 return FALSE;
3344
3345 /* If both backends are using this function, deem them compatible. */
3346 return ibed->relocs_compatible == obed->relocs_compatible;
3347 }
3348
3349 /* Add symbols from an ELF object file to the linker hash table. */
3350
3351 static bfd_boolean
3352 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3353 {
3354 Elf_Internal_Ehdr *ehdr;
3355 Elf_Internal_Shdr *hdr;
3356 bfd_size_type symcount;
3357 bfd_size_type extsymcount;
3358 bfd_size_type extsymoff;
3359 struct elf_link_hash_entry **sym_hash;
3360 bfd_boolean dynamic;
3361 Elf_External_Versym *extversym = NULL;
3362 Elf_External_Versym *ever;
3363 struct elf_link_hash_entry *weaks;
3364 struct elf_link_hash_entry **nondeflt_vers = NULL;
3365 bfd_size_type nondeflt_vers_cnt = 0;
3366 Elf_Internal_Sym *isymbuf = NULL;
3367 Elf_Internal_Sym *isym;
3368 Elf_Internal_Sym *isymend;
3369 const struct elf_backend_data *bed;
3370 bfd_boolean add_needed;
3371 struct elf_link_hash_table *htab;
3372 bfd_size_type amt;
3373 void *alloc_mark = NULL;
3374 struct bfd_hash_entry **old_table = NULL;
3375 unsigned int old_size = 0;
3376 unsigned int old_count = 0;
3377 void *old_tab = NULL;
3378 void *old_hash;
3379 void *old_ent;
3380 struct bfd_link_hash_entry *old_undefs = NULL;
3381 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3382 long old_dynsymcount = 0;
3383 size_t tabsize = 0;
3384 size_t hashsize = 0;
3385
3386 htab = elf_hash_table (info);
3387 bed = get_elf_backend_data (abfd);
3388
3389 if ((abfd->flags & DYNAMIC) == 0)
3390 dynamic = FALSE;
3391 else
3392 {
3393 dynamic = TRUE;
3394
3395 /* You can't use -r against a dynamic object. Also, there's no
3396 hope of using a dynamic object which does not exactly match
3397 the format of the output file. */
3398 if (info->relocatable
3399 || !is_elf_hash_table (htab)
3400 || info->output_bfd->xvec != abfd->xvec)
3401 {
3402 if (info->relocatable)
3403 bfd_set_error (bfd_error_invalid_operation);
3404 else
3405 bfd_set_error (bfd_error_wrong_format);
3406 goto error_return;
3407 }
3408 }
3409
3410 ehdr = elf_elfheader (abfd);
3411 if (info->warn_alternate_em
3412 && bed->elf_machine_code != ehdr->e_machine
3413 && ((bed->elf_machine_alt1 != 0
3414 && ehdr->e_machine == bed->elf_machine_alt1)
3415 || (bed->elf_machine_alt2 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt2)))
3417 info->callbacks->einfo
3418 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3419 ehdr->e_machine, abfd, bed->elf_machine_code);
3420
3421 /* As a GNU extension, any input sections which are named
3422 .gnu.warning.SYMBOL are treated as warning symbols for the given
3423 symbol. This differs from .gnu.warning sections, which generate
3424 warnings when they are included in an output file. */
3425 if (info->executable)
3426 {
3427 asection *s;
3428
3429 for (s = abfd->sections; s != NULL; s = s->next)
3430 {
3431 const char *name;
3432
3433 name = bfd_get_section_name (abfd, s);
3434 if (CONST_STRNEQ (name, ".gnu.warning."))
3435 {
3436 char *msg;
3437 bfd_size_type sz;
3438
3439 name += sizeof ".gnu.warning." - 1;
3440
3441 /* If this is a shared object, then look up the symbol
3442 in the hash table. If it is there, and it is already
3443 been defined, then we will not be using the entry
3444 from this shared object, so we don't need to warn.
3445 FIXME: If we see the definition in a regular object
3446 later on, we will warn, but we shouldn't. The only
3447 fix is to keep track of what warnings we are supposed
3448 to emit, and then handle them all at the end of the
3449 link. */
3450 if (dynamic)
3451 {
3452 struct elf_link_hash_entry *h;
3453
3454 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3455
3456 /* FIXME: What about bfd_link_hash_common? */
3457 if (h != NULL
3458 && (h->root.type == bfd_link_hash_defined
3459 || h->root.type == bfd_link_hash_defweak))
3460 {
3461 /* We don't want to issue this warning. Clobber
3462 the section size so that the warning does not
3463 get copied into the output file. */
3464 s->size = 0;
3465 continue;
3466 }
3467 }
3468
3469 sz = s->size;
3470 msg = (char *) bfd_alloc (abfd, sz + 1);
3471 if (msg == NULL)
3472 goto error_return;
3473
3474 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3475 goto error_return;
3476
3477 msg[sz] = '\0';
3478
3479 if (! (_bfd_generic_link_add_one_symbol
3480 (info, abfd, name, BSF_WARNING, s, 0, msg,
3481 FALSE, bed->collect, NULL)))
3482 goto error_return;
3483
3484 if (! info->relocatable)
3485 {
3486 /* Clobber the section size so that the warning does
3487 not get copied into the output file. */
3488 s->size = 0;
3489
3490 /* Also set SEC_EXCLUDE, so that symbols defined in
3491 the warning section don't get copied to the output. */
3492 s->flags |= SEC_EXCLUDE;
3493 }
3494 }
3495 }
3496 }
3497
3498 add_needed = TRUE;
3499 if (! dynamic)
3500 {
3501 /* If we are creating a shared library, create all the dynamic
3502 sections immediately. We need to attach them to something,
3503 so we attach them to this BFD, provided it is the right
3504 format. FIXME: If there are no input BFD's of the same
3505 format as the output, we can't make a shared library. */
3506 if (info->shared
3507 && is_elf_hash_table (htab)
3508 && info->output_bfd->xvec == abfd->xvec
3509 && !htab->dynamic_sections_created)
3510 {
3511 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3512 goto error_return;
3513 }
3514 }
3515 else if (!is_elf_hash_table (htab))
3516 goto error_return;
3517 else
3518 {
3519 asection *s;
3520 const char *soname = NULL;
3521 char *audit = NULL;
3522 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3523 int ret;
3524
3525 /* ld --just-symbols and dynamic objects don't mix very well.
3526 ld shouldn't allow it. */
3527 if ((s = abfd->sections) != NULL
3528 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3529 abort ();
3530
3531 /* If this dynamic lib was specified on the command line with
3532 --as-needed in effect, then we don't want to add a DT_NEEDED
3533 tag unless the lib is actually used. Similary for libs brought
3534 in by another lib's DT_NEEDED. When --no-add-needed is used
3535 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3536 any dynamic library in DT_NEEDED tags in the dynamic lib at
3537 all. */
3538 add_needed = (elf_dyn_lib_class (abfd)
3539 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3540 | DYN_NO_NEEDED)) == 0;
3541
3542 s = bfd_get_section_by_name (abfd, ".dynamic");
3543 if (s != NULL)
3544 {
3545 bfd_byte *dynbuf;
3546 bfd_byte *extdyn;
3547 unsigned int elfsec;
3548 unsigned long shlink;
3549
3550 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3551 {
3552 error_free_dyn:
3553 free (dynbuf);
3554 goto error_return;
3555 }
3556
3557 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3558 if (elfsec == SHN_BAD)
3559 goto error_free_dyn;
3560 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3561
3562 for (extdyn = dynbuf;
3563 extdyn < dynbuf + s->size;
3564 extdyn += bed->s->sizeof_dyn)
3565 {
3566 Elf_Internal_Dyn dyn;
3567
3568 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3569 if (dyn.d_tag == DT_SONAME)
3570 {
3571 unsigned int tagv = dyn.d_un.d_val;
3572 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3573 if (soname == NULL)
3574 goto error_free_dyn;
3575 }
3576 if (dyn.d_tag == DT_NEEDED)
3577 {
3578 struct bfd_link_needed_list *n, **pn;
3579 char *fnm, *anm;
3580 unsigned int tagv = dyn.d_un.d_val;
3581
3582 amt = sizeof (struct bfd_link_needed_list);
3583 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3584 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3585 if (n == NULL || fnm == NULL)
3586 goto error_free_dyn;
3587 amt = strlen (fnm) + 1;
3588 anm = (char *) bfd_alloc (abfd, amt);
3589 if (anm == NULL)
3590 goto error_free_dyn;
3591 memcpy (anm, fnm, amt);
3592 n->name = anm;
3593 n->by = abfd;
3594 n->next = NULL;
3595 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3596 ;
3597 *pn = n;
3598 }
3599 if (dyn.d_tag == DT_RUNPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & runpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3625 if (!runpath && dyn.d_tag == DT_RPATH)
3626 {
3627 struct bfd_link_needed_list *n, **pn;
3628 char *fnm, *anm;
3629 unsigned int tagv = dyn.d_un.d_val;
3630
3631 amt = sizeof (struct bfd_link_needed_list);
3632 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3633 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3634 if (n == NULL || fnm == NULL)
3635 goto error_free_dyn;
3636 amt = strlen (fnm) + 1;
3637 anm = (char *) bfd_alloc (abfd, amt);
3638 if (anm == NULL)
3639 goto error_free_dyn;
3640 memcpy (anm, fnm, amt);
3641 n->name = anm;
3642 n->by = abfd;
3643 n->next = NULL;
3644 for (pn = & rpath;
3645 *pn != NULL;
3646 pn = &(*pn)->next)
3647 ;
3648 *pn = n;
3649 }
3650 if (dyn.d_tag == DT_AUDIT)
3651 {
3652 unsigned int tagv = dyn.d_un.d_val;
3653 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3654 }
3655 }
3656
3657 free (dynbuf);
3658 }
3659
3660 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3661 frees all more recently bfd_alloc'd blocks as well. */
3662 if (runpath)
3663 rpath = runpath;
3664
3665 if (rpath)
3666 {
3667 struct bfd_link_needed_list **pn;
3668 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3669 ;
3670 *pn = rpath;
3671 }
3672
3673 /* We do not want to include any of the sections in a dynamic
3674 object in the output file. We hack by simply clobbering the
3675 list of sections in the BFD. This could be handled more
3676 cleanly by, say, a new section flag; the existing
3677 SEC_NEVER_LOAD flag is not the one we want, because that one
3678 still implies that the section takes up space in the output
3679 file. */
3680 bfd_section_list_clear (abfd);
3681
3682 /* Find the name to use in a DT_NEEDED entry that refers to this
3683 object. If the object has a DT_SONAME entry, we use it.
3684 Otherwise, if the generic linker stuck something in
3685 elf_dt_name, we use that. Otherwise, we just use the file
3686 name. */
3687 if (soname == NULL || *soname == '\0')
3688 {
3689 soname = elf_dt_name (abfd);
3690 if (soname == NULL || *soname == '\0')
3691 soname = bfd_get_filename (abfd);
3692 }
3693
3694 /* Save the SONAME because sometimes the linker emulation code
3695 will need to know it. */
3696 elf_dt_name (abfd) = soname;
3697
3698 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3699 if (ret < 0)
3700 goto error_return;
3701
3702 /* If we have already included this dynamic object in the
3703 link, just ignore it. There is no reason to include a
3704 particular dynamic object more than once. */
3705 if (ret > 0)
3706 return TRUE;
3707
3708 /* Save the DT_AUDIT entry for the linker emulation code. */
3709 elf_dt_audit (abfd) = audit;
3710 }
3711
3712 /* If this is a dynamic object, we always link against the .dynsym
3713 symbol table, not the .symtab symbol table. The dynamic linker
3714 will only see the .dynsym symbol table, so there is no reason to
3715 look at .symtab for a dynamic object. */
3716
3717 if (! dynamic || elf_dynsymtab (abfd) == 0)
3718 hdr = &elf_tdata (abfd)->symtab_hdr;
3719 else
3720 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3721
3722 symcount = hdr->sh_size / bed->s->sizeof_sym;
3723
3724 /* The sh_info field of the symtab header tells us where the
3725 external symbols start. We don't care about the local symbols at
3726 this point. */
3727 if (elf_bad_symtab (abfd))
3728 {
3729 extsymcount = symcount;
3730 extsymoff = 0;
3731 }
3732 else
3733 {
3734 extsymcount = symcount - hdr->sh_info;
3735 extsymoff = hdr->sh_info;
3736 }
3737
3738 sym_hash = NULL;
3739 if (extsymcount != 0)
3740 {
3741 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3742 NULL, NULL, NULL);
3743 if (isymbuf == NULL)
3744 goto error_return;
3745
3746 /* We store a pointer to the hash table entry for each external
3747 symbol. */
3748 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3749 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3750 if (sym_hash == NULL)
3751 goto error_free_sym;
3752 elf_sym_hashes (abfd) = sym_hash;
3753 }
3754
3755 if (dynamic)
3756 {
3757 /* Read in any version definitions. */
3758 if (!_bfd_elf_slurp_version_tables (abfd,
3759 info->default_imported_symver))
3760 goto error_free_sym;
3761
3762 /* Read in the symbol versions, but don't bother to convert them
3763 to internal format. */
3764 if (elf_dynversym (abfd) != 0)
3765 {
3766 Elf_Internal_Shdr *versymhdr;
3767
3768 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3769 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3770 if (extversym == NULL)
3771 goto error_free_sym;
3772 amt = versymhdr->sh_size;
3773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3774 || bfd_bread (extversym, amt, abfd) != amt)
3775 goto error_free_vers;
3776 }
3777 }
3778
3779 /* If we are loading an as-needed shared lib, save the symbol table
3780 state before we start adding symbols. If the lib turns out
3781 to be unneeded, restore the state. */
3782 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3783 {
3784 unsigned int i;
3785 size_t entsize;
3786
3787 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3788 {
3789 struct bfd_hash_entry *p;
3790 struct elf_link_hash_entry *h;
3791
3792 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3793 {
3794 h = (struct elf_link_hash_entry *) p;
3795 entsize += htab->root.table.entsize;
3796 if (h->root.type == bfd_link_hash_warning)
3797 entsize += htab->root.table.entsize;
3798 }
3799 }
3800
3801 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3802 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3803 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3804 if (old_tab == NULL)
3805 goto error_free_vers;
3806
3807 /* Remember the current objalloc pointer, so that all mem for
3808 symbols added can later be reclaimed. */
3809 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3810 if (alloc_mark == NULL)
3811 goto error_free_vers;
3812
3813 /* Make a special call to the linker "notice" function to
3814 tell it that we are about to handle an as-needed lib. */
3815 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3816 notice_as_needed))
3817 goto error_free_vers;
3818
3819 /* Clone the symbol table and sym hashes. Remember some
3820 pointers into the symbol table, and dynamic symbol count. */
3821 old_hash = (char *) old_tab + tabsize;
3822 old_ent = (char *) old_hash + hashsize;
3823 memcpy (old_tab, htab->root.table.table, tabsize);
3824 memcpy (old_hash, sym_hash, hashsize);
3825 old_undefs = htab->root.undefs;
3826 old_undefs_tail = htab->root.undefs_tail;
3827 old_table = htab->root.table.table;
3828 old_size = htab->root.table.size;
3829 old_count = htab->root.table.count;
3830 old_dynsymcount = htab->dynsymcount;
3831
3832 for (i = 0; i < htab->root.table.size; i++)
3833 {
3834 struct bfd_hash_entry *p;
3835 struct elf_link_hash_entry *h;
3836
3837 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3838 {
3839 memcpy (old_ent, p, htab->root.table.entsize);
3840 old_ent = (char *) old_ent + htab->root.table.entsize;
3841 h = (struct elf_link_hash_entry *) p;
3842 if (h->root.type == bfd_link_hash_warning)
3843 {
3844 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3845 old_ent = (char *) old_ent + htab->root.table.entsize;
3846 }
3847 }
3848 }
3849 }
3850
3851 weaks = NULL;
3852 ever = extversym != NULL ? extversym + extsymoff : NULL;
3853 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3854 isym < isymend;
3855 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3856 {
3857 int bind;
3858 bfd_vma value;
3859 asection *sec, *new_sec;
3860 flagword flags;
3861 const char *name;
3862 struct elf_link_hash_entry *h;
3863 bfd_boolean definition;
3864 bfd_boolean size_change_ok;
3865 bfd_boolean type_change_ok;
3866 bfd_boolean new_weakdef;
3867 bfd_boolean override;
3868 bfd_boolean common;
3869 unsigned int old_alignment;
3870 bfd *old_bfd;
3871 bfd * undef_bfd = NULL;
3872
3873 override = FALSE;
3874
3875 flags = BSF_NO_FLAGS;
3876 sec = NULL;
3877 value = isym->st_value;
3878 *sym_hash = NULL;
3879 common = bed->common_definition (isym);
3880
3881 bind = ELF_ST_BIND (isym->st_info);
3882 switch (bind)
3883 {
3884 case STB_LOCAL:
3885 /* This should be impossible, since ELF requires that all
3886 global symbols follow all local symbols, and that sh_info
3887 point to the first global symbol. Unfortunately, Irix 5
3888 screws this up. */
3889 continue;
3890
3891 case STB_GLOBAL:
3892 if (isym->st_shndx != SHN_UNDEF && !common)
3893 flags = BSF_GLOBAL;
3894 break;
3895
3896 case STB_WEAK:
3897 flags = BSF_WEAK;
3898 break;
3899
3900 case STB_GNU_UNIQUE:
3901 flags = BSF_GNU_UNIQUE;
3902 break;
3903
3904 default:
3905 /* Leave it up to the processor backend. */
3906 break;
3907 }
3908
3909 if (isym->st_shndx == SHN_UNDEF)
3910 sec = bfd_und_section_ptr;
3911 else if (isym->st_shndx == SHN_ABS)
3912 sec = bfd_abs_section_ptr;
3913 else if (isym->st_shndx == SHN_COMMON)
3914 {
3915 sec = bfd_com_section_ptr;
3916 /* What ELF calls the size we call the value. What ELF
3917 calls the value we call the alignment. */
3918 value = isym->st_size;
3919 }
3920 else
3921 {
3922 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3923 if (sec == NULL)
3924 sec = bfd_abs_section_ptr;
3925 else if (sec->kept_section)
3926 {
3927 /* Symbols from discarded section are undefined. We keep
3928 its visibility. */
3929 sec = bfd_und_section_ptr;
3930 isym->st_shndx = SHN_UNDEF;
3931 }
3932 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3933 value -= sec->vma;
3934 }
3935
3936 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3937 isym->st_name);
3938 if (name == NULL)
3939 goto error_free_vers;
3940
3941 if (isym->st_shndx == SHN_COMMON
3942 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3943 && !info->relocatable)
3944 {
3945 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3946
3947 if (tcomm == NULL)
3948 {
3949 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3950 (SEC_ALLOC
3951 | SEC_IS_COMMON
3952 | SEC_LINKER_CREATED
3953 | SEC_THREAD_LOCAL));
3954 if (tcomm == NULL)
3955 goto error_free_vers;
3956 }
3957 sec = tcomm;
3958 }
3959 else if (bed->elf_add_symbol_hook)
3960 {
3961 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3962 &sec, &value))
3963 goto error_free_vers;
3964
3965 /* The hook function sets the name to NULL if this symbol
3966 should be skipped for some reason. */
3967 if (name == NULL)
3968 continue;
3969 }
3970
3971 /* Sanity check that all possibilities were handled. */
3972 if (sec == NULL)
3973 {
3974 bfd_set_error (bfd_error_bad_value);
3975 goto error_free_vers;
3976 }
3977
3978 if (bfd_is_und_section (sec)
3979 || bfd_is_com_section (sec))
3980 definition = FALSE;
3981 else
3982 definition = TRUE;
3983
3984 size_change_ok = FALSE;
3985 type_change_ok = bed->type_change_ok;
3986 old_alignment = 0;
3987 old_bfd = NULL;
3988 new_sec = sec;
3989
3990 if (is_elf_hash_table (htab))
3991 {
3992 Elf_Internal_Versym iver;
3993 unsigned int vernum = 0;
3994 bfd_boolean skip;
3995
3996 /* If this is a definition of a symbol which was previously
3997 referenced in a non-weak manner then make a note of the bfd
3998 that contained the reference. This is used if we need to
3999 refer to the source of the reference later on. */
4000 if (! bfd_is_und_section (sec))
4001 {
4002 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4003
4004 if (h != NULL
4005 && h->root.type == bfd_link_hash_undefined
4006 && h->root.u.undef.abfd)
4007 undef_bfd = h->root.u.undef.abfd;
4008 }
4009
4010 if (ever == NULL)
4011 {
4012 if (info->default_imported_symver)
4013 /* Use the default symbol version created earlier. */
4014 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4015 else
4016 iver.vs_vers = 0;
4017 }
4018 else
4019 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4020
4021 vernum = iver.vs_vers & VERSYM_VERSION;
4022
4023 /* If this is a hidden symbol, or if it is not version
4024 1, we append the version name to the symbol name.
4025 However, we do not modify a non-hidden absolute symbol
4026 if it is not a function, because it might be the version
4027 symbol itself. FIXME: What if it isn't? */
4028 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4029 || (vernum > 1
4030 && (!bfd_is_abs_section (sec)
4031 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4032 {
4033 const char *verstr;
4034 size_t namelen, verlen, newlen;
4035 char *newname, *p;
4036
4037 if (isym->st_shndx != SHN_UNDEF)
4038 {
4039 if (vernum > elf_tdata (abfd)->cverdefs)
4040 verstr = NULL;
4041 else if (vernum > 1)
4042 verstr =
4043 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4044 else
4045 verstr = "";
4046
4047 if (verstr == NULL)
4048 {
4049 (*_bfd_error_handler)
4050 (_("%B: %s: invalid version %u (max %d)"),
4051 abfd, name, vernum,
4052 elf_tdata (abfd)->cverdefs);
4053 bfd_set_error (bfd_error_bad_value);
4054 goto error_free_vers;
4055 }
4056 }
4057 else
4058 {
4059 /* We cannot simply test for the number of
4060 entries in the VERNEED section since the
4061 numbers for the needed versions do not start
4062 at 0. */
4063 Elf_Internal_Verneed *t;
4064
4065 verstr = NULL;
4066 for (t = elf_tdata (abfd)->verref;
4067 t != NULL;
4068 t = t->vn_nextref)
4069 {
4070 Elf_Internal_Vernaux *a;
4071
4072 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4073 {
4074 if (a->vna_other == vernum)
4075 {
4076 verstr = a->vna_nodename;
4077 break;
4078 }
4079 }
4080 if (a != NULL)
4081 break;
4082 }
4083 if (verstr == NULL)
4084 {
4085 (*_bfd_error_handler)
4086 (_("%B: %s: invalid needed version %d"),
4087 abfd, name, vernum);
4088 bfd_set_error (bfd_error_bad_value);
4089 goto error_free_vers;
4090 }
4091 }
4092
4093 namelen = strlen (name);
4094 verlen = strlen (verstr);
4095 newlen = namelen + verlen + 2;
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 ++newlen;
4099
4100 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4101 if (newname == NULL)
4102 goto error_free_vers;
4103 memcpy (newname, name, namelen);
4104 p = newname + namelen;
4105 *p++ = ELF_VER_CHR;
4106 /* If this is a defined non-hidden version symbol,
4107 we add another @ to the name. This indicates the
4108 default version of the symbol. */
4109 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4110 && isym->st_shndx != SHN_UNDEF)
4111 *p++ = ELF_VER_CHR;
4112 memcpy (p, verstr, verlen + 1);
4113
4114 name = newname;
4115 }
4116
4117 /* If necessary, make a second attempt to locate the bfd
4118 containing an unresolved, non-weak reference to the
4119 current symbol. */
4120 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4121 {
4122 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4123
4124 if (h != NULL
4125 && h->root.type == bfd_link_hash_undefined
4126 && h->root.u.undef.abfd)
4127 undef_bfd = h->root.u.undef.abfd;
4128 }
4129
4130 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4131 &value, &old_alignment,
4132 sym_hash, &skip, &override,
4133 &type_change_ok, &size_change_ok))
4134 goto error_free_vers;
4135
4136 if (skip)
4137 continue;
4138
4139 if (override)
4140 definition = FALSE;
4141
4142 h = *sym_hash;
4143 while (h->root.type == bfd_link_hash_indirect
4144 || h->root.type == bfd_link_hash_warning)
4145 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4146
4147 /* Remember the old alignment if this is a common symbol, so
4148 that we don't reduce the alignment later on. We can't
4149 check later, because _bfd_generic_link_add_one_symbol
4150 will set a default for the alignment which we want to
4151 override. We also remember the old bfd where the existing
4152 definition comes from. */
4153 switch (h->root.type)
4154 {
4155 default:
4156 break;
4157
4158 case bfd_link_hash_defined:
4159 case bfd_link_hash_defweak:
4160 old_bfd = h->root.u.def.section->owner;
4161 break;
4162
4163 case bfd_link_hash_common:
4164 old_bfd = h->root.u.c.p->section->owner;
4165 old_alignment = h->root.u.c.p->alignment_power;
4166 break;
4167 }
4168
4169 if (elf_tdata (abfd)->verdef != NULL
4170 && ! override
4171 && vernum > 1
4172 && definition)
4173 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4174 }
4175
4176 if (! (_bfd_generic_link_add_one_symbol
4177 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4178 (struct bfd_link_hash_entry **) sym_hash)))
4179 goto error_free_vers;
4180
4181 h = *sym_hash;
4182 while (h->root.type == bfd_link_hash_indirect
4183 || h->root.type == bfd_link_hash_warning)
4184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4185
4186 *sym_hash = h;
4187 if (is_elf_hash_table (htab))
4188 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4189
4190 new_weakdef = FALSE;
4191 if (dynamic
4192 && definition
4193 && (flags & BSF_WEAK) != 0
4194 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4195 && is_elf_hash_table (htab)
4196 && h->u.weakdef == NULL)
4197 {
4198 /* Keep a list of all weak defined non function symbols from
4199 a dynamic object, using the weakdef field. Later in this
4200 function we will set the weakdef field to the correct
4201 value. We only put non-function symbols from dynamic
4202 objects on this list, because that happens to be the only
4203 time we need to know the normal symbol corresponding to a
4204 weak symbol, and the information is time consuming to
4205 figure out. If the weakdef field is not already NULL,
4206 then this symbol was already defined by some previous
4207 dynamic object, and we will be using that previous
4208 definition anyhow. */
4209
4210 h->u.weakdef = weaks;
4211 weaks = h;
4212 new_weakdef = TRUE;
4213 }
4214
4215 /* Set the alignment of a common symbol. */
4216 if ((common || bfd_is_com_section (sec))
4217 && h->root.type == bfd_link_hash_common)
4218 {
4219 unsigned int align;
4220
4221 if (common)
4222 align = bfd_log2 (isym->st_value);
4223 else
4224 {
4225 /* The new symbol is a common symbol in a shared object.
4226 We need to get the alignment from the section. */
4227 align = new_sec->alignment_power;
4228 }
4229 if (align > old_alignment
4230 /* Permit an alignment power of zero if an alignment of one
4231 is specified and no other alignments have been specified. */
4232 || (isym->st_value == 1 && old_alignment == 0))
4233 h->root.u.c.p->alignment_power = align;
4234 else
4235 h->root.u.c.p->alignment_power = old_alignment;
4236 }
4237
4238 if (is_elf_hash_table (htab))
4239 {
4240 bfd_boolean dynsym;
4241
4242 /* Check the alignment when a common symbol is involved. This
4243 can change when a common symbol is overridden by a normal
4244 definition or a common symbol is ignored due to the old
4245 normal definition. We need to make sure the maximum
4246 alignment is maintained. */
4247 if ((old_alignment || common)
4248 && h->root.type != bfd_link_hash_common)
4249 {
4250 unsigned int common_align;
4251 unsigned int normal_align;
4252 unsigned int symbol_align;
4253 bfd *normal_bfd;
4254 bfd *common_bfd;
4255
4256 symbol_align = ffs (h->root.u.def.value) - 1;
4257 if (h->root.u.def.section->owner != NULL
4258 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4259 {
4260 normal_align = h->root.u.def.section->alignment_power;
4261 if (normal_align > symbol_align)
4262 normal_align = symbol_align;
4263 }
4264 else
4265 normal_align = symbol_align;
4266
4267 if (old_alignment)
4268 {
4269 common_align = old_alignment;
4270 common_bfd = old_bfd;
4271 normal_bfd = abfd;
4272 }
4273 else
4274 {
4275 common_align = bfd_log2 (isym->st_value);
4276 common_bfd = abfd;
4277 normal_bfd = old_bfd;
4278 }
4279
4280 if (normal_align < common_align)
4281 {
4282 /* PR binutils/2735 */
4283 if (normal_bfd == NULL)
4284 (*_bfd_error_handler)
4285 (_("Warning: alignment %u of common symbol `%s' in %B"
4286 " is greater than the alignment (%u) of its section %A"),
4287 common_bfd, h->root.u.def.section,
4288 1 << common_align, name, 1 << normal_align);
4289 else
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of symbol `%s' in %B"
4292 " is smaller than %u in %B"),
4293 normal_bfd, common_bfd,
4294 1 << normal_align, name, 1 << common_align);
4295 }
4296 }
4297
4298 /* Remember the symbol size if it isn't undefined. */
4299 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4300 && (definition || h->size == 0))
4301 {
4302 if (h->size != 0
4303 && h->size != isym->st_size
4304 && ! size_change_ok)
4305 (*_bfd_error_handler)
4306 (_("Warning: size of symbol `%s' changed"
4307 " from %lu in %B to %lu in %B"),
4308 old_bfd, abfd,
4309 name, (unsigned long) h->size,
4310 (unsigned long) isym->st_size);
4311
4312 h->size = isym->st_size;
4313 }
4314
4315 /* If this is a common symbol, then we always want H->SIZE
4316 to be the size of the common symbol. The code just above
4317 won't fix the size if a common symbol becomes larger. We
4318 don't warn about a size change here, because that is
4319 covered by --warn-common. Allow changed between different
4320 function types. */
4321 if (h->root.type == bfd_link_hash_common)
4322 h->size = h->root.u.c.size;
4323
4324 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4325 && (definition || h->type == STT_NOTYPE))
4326 {
4327 unsigned int type = ELF_ST_TYPE (isym->st_info);
4328
4329 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4330 symbol. */
4331 if (type == STT_GNU_IFUNC
4332 && (abfd->flags & DYNAMIC) != 0)
4333 type = STT_FUNC;
4334
4335 if (h->type != type)
4336 {
4337 if (h->type != STT_NOTYPE && ! type_change_ok)
4338 (*_bfd_error_handler)
4339 (_("Warning: type of symbol `%s' changed"
4340 " from %d to %d in %B"),
4341 abfd, name, h->type, type);
4342
4343 h->type = type;
4344 }
4345 }
4346
4347 /* Merge st_other field. */
4348 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4349
4350 /* Set a flag in the hash table entry indicating the type of
4351 reference or definition we just found. Keep a count of
4352 the number of dynamic symbols we find. A dynamic symbol
4353 is one which is referenced or defined by both a regular
4354 object and a shared object. */
4355 dynsym = FALSE;
4356 if (! dynamic)
4357 {
4358 if (! definition)
4359 {
4360 h->ref_regular = 1;
4361 if (bind != STB_WEAK)
4362 h->ref_regular_nonweak = 1;
4363 }
4364 else
4365 {
4366 h->def_regular = 1;
4367 if (h->def_dynamic)
4368 {
4369 h->def_dynamic = 0;
4370 h->ref_dynamic = 1;
4371 h->dynamic_def = 1;
4372 }
4373 }
4374 if (! info->executable
4375 || h->def_dynamic
4376 || h->ref_dynamic)
4377 dynsym = TRUE;
4378 }
4379 else
4380 {
4381 if (! definition)
4382 h->ref_dynamic = 1;
4383 else
4384 h->def_dynamic = 1;
4385 if (h->def_regular
4386 || h->ref_regular
4387 || (h->u.weakdef != NULL
4388 && ! new_weakdef
4389 && h->u.weakdef->dynindx != -1))
4390 dynsym = TRUE;
4391 }
4392
4393 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4394 {
4395 /* We don't want to make debug symbol dynamic. */
4396 dynsym = FALSE;
4397 }
4398
4399 /* Check to see if we need to add an indirect symbol for
4400 the default name. */
4401 if (definition || h->root.type == bfd_link_hash_common)
4402 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4403 &sec, &value, &dynsym,
4404 override))
4405 goto error_free_vers;
4406
4407 if (definition && !dynamic)
4408 {
4409 char *p = strchr (name, ELF_VER_CHR);
4410 if (p != NULL && p[1] != ELF_VER_CHR)
4411 {
4412 /* Queue non-default versions so that .symver x, x@FOO
4413 aliases can be checked. */
4414 if (!nondeflt_vers)
4415 {
4416 amt = ((isymend - isym + 1)
4417 * sizeof (struct elf_link_hash_entry *));
4418 nondeflt_vers =
4419 (struct elf_link_hash_entry **) bfd_malloc (amt);
4420 if (!nondeflt_vers)
4421 goto error_free_vers;
4422 }
4423 nondeflt_vers[nondeflt_vers_cnt++] = h;
4424 }
4425 }
4426
4427 if (dynsym && h->dynindx == -1)
4428 {
4429 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4430 goto error_free_vers;
4431 if (h->u.weakdef != NULL
4432 && ! new_weakdef
4433 && h->u.weakdef->dynindx == -1)
4434 {
4435 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4436 goto error_free_vers;
4437 }
4438 }
4439 else if (dynsym && h->dynindx != -1)
4440 /* If the symbol already has a dynamic index, but
4441 visibility says it should not be visible, turn it into
4442 a local symbol. */
4443 switch (ELF_ST_VISIBILITY (h->other))
4444 {
4445 case STV_INTERNAL:
4446 case STV_HIDDEN:
4447 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4448 dynsym = FALSE;
4449 break;
4450 }
4451
4452 if (!add_needed
4453 && definition
4454 && ((dynsym
4455 && h->ref_regular)
4456 || (h->ref_dynamic
4457 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4458 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4459 {
4460 int ret;
4461 const char *soname = elf_dt_name (abfd);
4462
4463 /* A symbol from a library loaded via DT_NEEDED of some
4464 other library is referenced by a regular object.
4465 Add a DT_NEEDED entry for it. Issue an error if
4466 --no-add-needed is used and the reference was not
4467 a weak one. */
4468 if (undef_bfd != NULL
4469 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4470 {
4471 (*_bfd_error_handler)
4472 (_("%B: undefined reference to symbol '%s'"),
4473 undef_bfd, name);
4474 (*_bfd_error_handler)
4475 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4476 abfd, name);
4477 bfd_set_error (bfd_error_invalid_operation);
4478 goto error_free_vers;
4479 }
4480
4481 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4482 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4483
4484 add_needed = TRUE;
4485 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4486 if (ret < 0)
4487 goto error_free_vers;
4488
4489 BFD_ASSERT (ret == 0);
4490 }
4491 }
4492 }
4493
4494 if (extversym != NULL)
4495 {
4496 free (extversym);
4497 extversym = NULL;
4498 }
4499
4500 if (isymbuf != NULL)
4501 {
4502 free (isymbuf);
4503 isymbuf = NULL;
4504 }
4505
4506 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4507 {
4508 unsigned int i;
4509
4510 /* Restore the symbol table. */
4511 if (bed->as_needed_cleanup)
4512 (*bed->as_needed_cleanup) (abfd, info);
4513 old_hash = (char *) old_tab + tabsize;
4514 old_ent = (char *) old_hash + hashsize;
4515 sym_hash = elf_sym_hashes (abfd);
4516 htab->root.table.table = old_table;
4517 htab->root.table.size = old_size;
4518 htab->root.table.count = old_count;
4519 memcpy (htab->root.table.table, old_tab, tabsize);
4520 memcpy (sym_hash, old_hash, hashsize);
4521 htab->root.undefs = old_undefs;
4522 htab->root.undefs_tail = old_undefs_tail;
4523 for (i = 0; i < htab->root.table.size; i++)
4524 {
4525 struct bfd_hash_entry *p;
4526 struct elf_link_hash_entry *h;
4527
4528 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4529 {
4530 h = (struct elf_link_hash_entry *) p;
4531 if (h->root.type == bfd_link_hash_warning)
4532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4533 if (h->dynindx >= old_dynsymcount)
4534 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4535
4536 memcpy (p, old_ent, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 h = (struct elf_link_hash_entry *) p;
4539 if (h->root.type == bfd_link_hash_warning)
4540 {
4541 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 }
4544 }
4545 }
4546
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4550 notice_not_needed))
4551 goto error_free_vers;
4552
4553 free (old_tab);
4554 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4555 alloc_mark);
4556 if (nondeflt_vers != NULL)
4557 free (nondeflt_vers);
4558 return TRUE;
4559 }
4560
4561 if (old_tab != NULL)
4562 {
4563 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4564 notice_needed))
4565 goto error_free_vers;
4566 free (old_tab);
4567 old_tab = NULL;
4568 }
4569
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers != NULL)
4573 {
4574 bfd_size_type cnt, symidx;
4575
4576 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4577 {
4578 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4579 char *shortname, *p;
4580
4581 p = strchr (h->root.root.string, ELF_VER_CHR);
4582 if (p == NULL
4583 || (h->root.type != bfd_link_hash_defined
4584 && h->root.type != bfd_link_hash_defweak))
4585 continue;
4586
4587 amt = p - h->root.root.string;
4588 shortname = (char *) bfd_malloc (amt + 1);
4589 if (!shortname)
4590 goto error_free_vers;
4591 memcpy (shortname, h->root.root.string, amt);
4592 shortname[amt] = '\0';
4593
4594 hi = (struct elf_link_hash_entry *)
4595 bfd_link_hash_lookup (&htab->root, shortname,
4596 FALSE, FALSE, FALSE);
4597 if (hi != NULL
4598 && hi->root.type == h->root.type
4599 && hi->root.u.def.value == h->root.u.def.value
4600 && hi->root.u.def.section == h->root.u.def.section)
4601 {
4602 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4603 hi->root.type = bfd_link_hash_indirect;
4604 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4606 sym_hash = elf_sym_hashes (abfd);
4607 if (sym_hash)
4608 for (symidx = 0; symidx < extsymcount; ++symidx)
4609 if (sym_hash[symidx] == hi)
4610 {
4611 sym_hash[symidx] = h;
4612 break;
4613 }
4614 }
4615 free (shortname);
4616 }
4617 free (nondeflt_vers);
4618 nondeflt_vers = NULL;
4619 }
4620
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4633 either. */
4634 if (weaks != NULL)
4635 {
4636 struct elf_link_hash_entry **hpp;
4637 struct elf_link_hash_entry **hppend;
4638 struct elf_link_hash_entry **sorted_sym_hash;
4639 struct elf_link_hash_entry *h;
4640 size_t sym_count;
4641
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4646 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4647 if (sorted_sym_hash == NULL)
4648 goto error_return;
4649 sym_hash = sorted_sym_hash;
4650 hpp = elf_sym_hashes (abfd);
4651 hppend = hpp + extsymcount;
4652 sym_count = 0;
4653 for (; hpp < hppend; hpp++)
4654 {
4655 h = *hpp;
4656 if (h != NULL
4657 && h->root.type == bfd_link_hash_defined
4658 && !bed->is_function_type (h->type))
4659 {
4660 *sym_hash = h;
4661 sym_hash++;
4662 sym_count++;
4663 }
4664 }
4665
4666 qsort (sorted_sym_hash, sym_count,
4667 sizeof (struct elf_link_hash_entry *),
4668 elf_sort_symbol);
4669
4670 while (weaks != NULL)
4671 {
4672 struct elf_link_hash_entry *hlook;
4673 asection *slook;
4674 bfd_vma vlook;
4675 long ilook;
4676 size_t i, j, idx;
4677
4678 hlook = weaks;
4679 weaks = hlook->u.weakdef;
4680 hlook->u.weakdef = NULL;
4681
4682 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4683 || hlook->root.type == bfd_link_hash_defweak
4684 || hlook->root.type == bfd_link_hash_common
4685 || hlook->root.type == bfd_link_hash_indirect);
4686 slook = hlook->root.u.def.section;
4687 vlook = hlook->root.u.def.value;
4688
4689 ilook = -1;
4690 i = 0;
4691 j = sym_count;
4692 while (i < j)
4693 {
4694 bfd_signed_vma vdiff;
4695 idx = (i + j) / 2;
4696 h = sorted_sym_hash [idx];
4697 vdiff = vlook - h->root.u.def.value;
4698 if (vdiff < 0)
4699 j = idx;
4700 else if (vdiff > 0)
4701 i = idx + 1;
4702 else
4703 {
4704 long sdiff = slook->id - h->root.u.def.section->id;
4705 if (sdiff < 0)
4706 j = idx;
4707 else if (sdiff > 0)
4708 i = idx + 1;
4709 else
4710 {
4711 ilook = idx;
4712 break;
4713 }
4714 }
4715 }
4716
4717 /* We didn't find a value/section match. */
4718 if (ilook == -1)
4719 continue;
4720
4721 for (i = ilook; i < sym_count; i++)
4722 {
4723 h = sorted_sym_hash [i];
4724
4725 /* Stop if value or section doesn't match. */
4726 if (h->root.u.def.value != vlook
4727 || h->root.u.def.section != slook)
4728 break;
4729 else if (h != hlook)
4730 {
4731 hlook->u.weakdef = h;
4732
4733 /* If the weak definition is in the list of dynamic
4734 symbols, make sure the real definition is put
4735 there as well. */
4736 if (hlook->dynindx != -1 && h->dynindx == -1)
4737 {
4738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4739 {
4740 err_free_sym_hash:
4741 free (sorted_sym_hash);
4742 goto error_return;
4743 }
4744 }
4745
4746 /* If the real definition is in the list of dynamic
4747 symbols, make sure the weak definition is put
4748 there as well. If we don't do this, then the
4749 dynamic loader might not merge the entries for the
4750 real definition and the weak definition. */
4751 if (h->dynindx != -1 && hlook->dynindx == -1)
4752 {
4753 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4754 goto err_free_sym_hash;
4755 }
4756 break;
4757 }
4758 }
4759 }
4760
4761 free (sorted_sym_hash);
4762 }
4763
4764 if (bed->check_directives
4765 && !(*bed->check_directives) (abfd, info))
4766 return FALSE;
4767
4768 /* If this object is the same format as the output object, and it is
4769 not a shared library, then let the backend look through the
4770 relocs.
4771
4772 This is required to build global offset table entries and to
4773 arrange for dynamic relocs. It is not required for the
4774 particular common case of linking non PIC code, even when linking
4775 against shared libraries, but unfortunately there is no way of
4776 knowing whether an object file has been compiled PIC or not.
4777 Looking through the relocs is not particularly time consuming.
4778 The problem is that we must either (1) keep the relocs in memory,
4779 which causes the linker to require additional runtime memory or
4780 (2) read the relocs twice from the input file, which wastes time.
4781 This would be a good case for using mmap.
4782
4783 I have no idea how to handle linking PIC code into a file of a
4784 different format. It probably can't be done. */
4785 if (! dynamic
4786 && is_elf_hash_table (htab)
4787 && bed->check_relocs != NULL
4788 && elf_object_id (abfd) == elf_hash_table_id (htab)
4789 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4790 {
4791 asection *o;
4792
4793 for (o = abfd->sections; o != NULL; o = o->next)
4794 {
4795 Elf_Internal_Rela *internal_relocs;
4796 bfd_boolean ok;
4797
4798 if ((o->flags & SEC_RELOC) == 0
4799 || o->reloc_count == 0
4800 || ((info->strip == strip_all || info->strip == strip_debugger)
4801 && (o->flags & SEC_DEBUGGING) != 0)
4802 || bfd_is_abs_section (o->output_section))
4803 continue;
4804
4805 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4806 info->keep_memory);
4807 if (internal_relocs == NULL)
4808 goto error_return;
4809
4810 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4811
4812 if (elf_section_data (o)->relocs != internal_relocs)
4813 free (internal_relocs);
4814
4815 if (! ok)
4816 goto error_return;
4817 }
4818 }
4819
4820 /* If this is a non-traditional link, try to optimize the handling
4821 of the .stab/.stabstr sections. */
4822 if (! dynamic
4823 && ! info->traditional_format
4824 && is_elf_hash_table (htab)
4825 && (info->strip != strip_all && info->strip != strip_debugger))
4826 {
4827 asection *stabstr;
4828
4829 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4830 if (stabstr != NULL)
4831 {
4832 bfd_size_type string_offset = 0;
4833 asection *stab;
4834
4835 for (stab = abfd->sections; stab; stab = stab->next)
4836 if (CONST_STRNEQ (stab->name, ".stab")
4837 && (!stab->name[5] ||
4838 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4839 && (stab->flags & SEC_MERGE) == 0
4840 && !bfd_is_abs_section (stab->output_section))
4841 {
4842 struct bfd_elf_section_data *secdata;
4843
4844 secdata = elf_section_data (stab);
4845 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4846 stabstr, &secdata->sec_info,
4847 &string_offset))
4848 goto error_return;
4849 if (secdata->sec_info)
4850 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4851 }
4852 }
4853 }
4854
4855 if (is_elf_hash_table (htab) && add_needed)
4856 {
4857 /* Add this bfd to the loaded list. */
4858 struct elf_link_loaded_list *n;
4859
4860 n = (struct elf_link_loaded_list *)
4861 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4862 if (n == NULL)
4863 goto error_return;
4864 n->abfd = abfd;
4865 n->next = htab->loaded;
4866 htab->loaded = n;
4867 }
4868
4869 return TRUE;
4870
4871 error_free_vers:
4872 if (old_tab != NULL)
4873 free (old_tab);
4874 if (nondeflt_vers != NULL)
4875 free (nondeflt_vers);
4876 if (extversym != NULL)
4877 free (extversym);
4878 error_free_sym:
4879 if (isymbuf != NULL)
4880 free (isymbuf);
4881 error_return:
4882 return FALSE;
4883 }
4884
4885 /* Return the linker hash table entry of a symbol that might be
4886 satisfied by an archive symbol. Return -1 on error. */
4887
4888 struct elf_link_hash_entry *
4889 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4890 struct bfd_link_info *info,
4891 const char *name)
4892 {
4893 struct elf_link_hash_entry *h;
4894 char *p, *copy;
4895 size_t len, first;
4896
4897 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4898 if (h != NULL)
4899 return h;
4900
4901 /* If this is a default version (the name contains @@), look up the
4902 symbol again with only one `@' as well as without the version.
4903 The effect is that references to the symbol with and without the
4904 version will be matched by the default symbol in the archive. */
4905
4906 p = strchr (name, ELF_VER_CHR);
4907 if (p == NULL || p[1] != ELF_VER_CHR)
4908 return h;
4909
4910 /* First check with only one `@'. */
4911 len = strlen (name);
4912 copy = (char *) bfd_alloc (abfd, len);
4913 if (copy == NULL)
4914 return (struct elf_link_hash_entry *) 0 - 1;
4915
4916 first = p - name + 1;
4917 memcpy (copy, name, first);
4918 memcpy (copy + first, name + first + 1, len - first);
4919
4920 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4921 if (h == NULL)
4922 {
4923 /* We also need to check references to the symbol without the
4924 version. */
4925 copy[first - 1] = '\0';
4926 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4927 FALSE, FALSE, FALSE);
4928 }
4929
4930 bfd_release (abfd, copy);
4931 return h;
4932 }
4933
4934 /* Add symbols from an ELF archive file to the linker hash table. We
4935 don't use _bfd_generic_link_add_archive_symbols because of a
4936 problem which arises on UnixWare. The UnixWare libc.so is an
4937 archive which includes an entry libc.so.1 which defines a bunch of
4938 symbols. The libc.so archive also includes a number of other
4939 object files, which also define symbols, some of which are the same
4940 as those defined in libc.so.1. Correct linking requires that we
4941 consider each object file in turn, and include it if it defines any
4942 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4943 this; it looks through the list of undefined symbols, and includes
4944 any object file which defines them. When this algorithm is used on
4945 UnixWare, it winds up pulling in libc.so.1 early and defining a
4946 bunch of symbols. This means that some of the other objects in the
4947 archive are not included in the link, which is incorrect since they
4948 precede libc.so.1 in the archive.
4949
4950 Fortunately, ELF archive handling is simpler than that done by
4951 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4952 oddities. In ELF, if we find a symbol in the archive map, and the
4953 symbol is currently undefined, we know that we must pull in that
4954 object file.
4955
4956 Unfortunately, we do have to make multiple passes over the symbol
4957 table until nothing further is resolved. */
4958
4959 static bfd_boolean
4960 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4961 {
4962 symindex c;
4963 bfd_boolean *defined = NULL;
4964 bfd_boolean *included = NULL;
4965 carsym *symdefs;
4966 bfd_boolean loop;
4967 bfd_size_type amt;
4968 const struct elf_backend_data *bed;
4969 struct elf_link_hash_entry * (*archive_symbol_lookup)
4970 (bfd *, struct bfd_link_info *, const char *);
4971
4972 if (! bfd_has_map (abfd))
4973 {
4974 /* An empty archive is a special case. */
4975 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4976 return TRUE;
4977 bfd_set_error (bfd_error_no_armap);
4978 return FALSE;
4979 }
4980
4981 /* Keep track of all symbols we know to be already defined, and all
4982 files we know to be already included. This is to speed up the
4983 second and subsequent passes. */
4984 c = bfd_ardata (abfd)->symdef_count;
4985 if (c == 0)
4986 return TRUE;
4987 amt = c;
4988 amt *= sizeof (bfd_boolean);
4989 defined = (bfd_boolean *) bfd_zmalloc (amt);
4990 included = (bfd_boolean *) bfd_zmalloc (amt);
4991 if (defined == NULL || included == NULL)
4992 goto error_return;
4993
4994 symdefs = bfd_ardata (abfd)->symdefs;
4995 bed = get_elf_backend_data (abfd);
4996 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4997
4998 do
4999 {
5000 file_ptr last;
5001 symindex i;
5002 carsym *symdef;
5003 carsym *symdefend;
5004
5005 loop = FALSE;
5006 last = -1;
5007
5008 symdef = symdefs;
5009 symdefend = symdef + c;
5010 for (i = 0; symdef < symdefend; symdef++, i++)
5011 {
5012 struct elf_link_hash_entry *h;
5013 bfd *element;
5014 bfd *subsbfd = NULL;
5015 struct bfd_link_hash_entry *undefs_tail;
5016 symindex mark;
5017
5018 if (defined[i] || included[i])
5019 continue;
5020 if (symdef->file_offset == last)
5021 {
5022 included[i] = TRUE;
5023 continue;
5024 }
5025
5026 h = archive_symbol_lookup (abfd, info, symdef->name);
5027 if (h == (struct elf_link_hash_entry *) 0 - 1)
5028 goto error_return;
5029
5030 if (h == NULL)
5031 continue;
5032
5033 if (h->root.type == bfd_link_hash_common)
5034 {
5035 /* We currently have a common symbol. The archive map contains
5036 a reference to this symbol, so we may want to include it. We
5037 only want to include it however, if this archive element
5038 contains a definition of the symbol, not just another common
5039 declaration of it.
5040
5041 Unfortunately some archivers (including GNU ar) will put
5042 declarations of common symbols into their archive maps, as
5043 well as real definitions, so we cannot just go by the archive
5044 map alone. Instead we must read in the element's symbol
5045 table and check that to see what kind of symbol definition
5046 this is. */
5047 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5048 continue;
5049 }
5050 else if (h->root.type != bfd_link_hash_undefined)
5051 {
5052 if (h->root.type != bfd_link_hash_undefweak)
5053 defined[i] = TRUE;
5054 continue;
5055 }
5056
5057 /* We need to include this archive member. */
5058 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5059 if (element == NULL)
5060 goto error_return;
5061
5062 if (! bfd_check_format (element, bfd_object))
5063 goto error_return;
5064
5065 /* Doublecheck that we have not included this object
5066 already--it should be impossible, but there may be
5067 something wrong with the archive. */
5068 if (element->archive_pass != 0)
5069 {
5070 bfd_set_error (bfd_error_bad_value);
5071 goto error_return;
5072 }
5073 element->archive_pass = 1;
5074
5075 undefs_tail = info->hash->undefs_tail;
5076
5077 if (! (*info->callbacks->add_archive_element)
5078 (info, element, symdef->name, &subsbfd))
5079 goto error_return;
5080 /* Potentially, the add_archive_element hook may have set a
5081 substitute BFD for us. */
5082 if (! bfd_link_add_symbols (subsbfd ? subsbfd : element, info))
5083 goto error_return;
5084
5085 /* If there are any new undefined symbols, we need to make
5086 another pass through the archive in order to see whether
5087 they can be defined. FIXME: This isn't perfect, because
5088 common symbols wind up on undefs_tail and because an
5089 undefined symbol which is defined later on in this pass
5090 does not require another pass. This isn't a bug, but it
5091 does make the code less efficient than it could be. */
5092 if (undefs_tail != info->hash->undefs_tail)
5093 loop = TRUE;
5094
5095 /* Look backward to mark all symbols from this object file
5096 which we have already seen in this pass. */
5097 mark = i;
5098 do
5099 {
5100 included[mark] = TRUE;
5101 if (mark == 0)
5102 break;
5103 --mark;
5104 }
5105 while (symdefs[mark].file_offset == symdef->file_offset);
5106
5107 /* We mark subsequent symbols from this object file as we go
5108 on through the loop. */
5109 last = symdef->file_offset;
5110 }
5111 }
5112 while (loop);
5113
5114 free (defined);
5115 free (included);
5116
5117 return TRUE;
5118
5119 error_return:
5120 if (defined != NULL)
5121 free (defined);
5122 if (included != NULL)
5123 free (included);
5124 return FALSE;
5125 }
5126
5127 /* Given an ELF BFD, add symbols to the global hash table as
5128 appropriate. */
5129
5130 bfd_boolean
5131 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5132 {
5133 switch (bfd_get_format (abfd))
5134 {
5135 case bfd_object:
5136 return elf_link_add_object_symbols (abfd, info);
5137 case bfd_archive:
5138 return elf_link_add_archive_symbols (abfd, info);
5139 default:
5140 bfd_set_error (bfd_error_wrong_format);
5141 return FALSE;
5142 }
5143 }
5144 \f
5145 struct hash_codes_info
5146 {
5147 unsigned long *hashcodes;
5148 bfd_boolean error;
5149 };
5150
5151 /* This function will be called though elf_link_hash_traverse to store
5152 all hash value of the exported symbols in an array. */
5153
5154 static bfd_boolean
5155 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5156 {
5157 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5158 const char *name;
5159 char *p;
5160 unsigned long ha;
5161 char *alc = NULL;
5162
5163 if (h->root.type == bfd_link_hash_warning)
5164 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5165
5166 /* Ignore indirect symbols. These are added by the versioning code. */
5167 if (h->dynindx == -1)
5168 return TRUE;
5169
5170 name = h->root.root.string;
5171 p = strchr (name, ELF_VER_CHR);
5172 if (p != NULL)
5173 {
5174 alc = (char *) bfd_malloc (p - name + 1);
5175 if (alc == NULL)
5176 {
5177 inf->error = TRUE;
5178 return FALSE;
5179 }
5180 memcpy (alc, name, p - name);
5181 alc[p - name] = '\0';
5182 name = alc;
5183 }
5184
5185 /* Compute the hash value. */
5186 ha = bfd_elf_hash (name);
5187
5188 /* Store the found hash value in the array given as the argument. */
5189 *(inf->hashcodes)++ = ha;
5190
5191 /* And store it in the struct so that we can put it in the hash table
5192 later. */
5193 h->u.elf_hash_value = ha;
5194
5195 if (alc != NULL)
5196 free (alc);
5197
5198 return TRUE;
5199 }
5200
5201 struct collect_gnu_hash_codes
5202 {
5203 bfd *output_bfd;
5204 const struct elf_backend_data *bed;
5205 unsigned long int nsyms;
5206 unsigned long int maskbits;
5207 unsigned long int *hashcodes;
5208 unsigned long int *hashval;
5209 unsigned long int *indx;
5210 unsigned long int *counts;
5211 bfd_vma *bitmask;
5212 bfd_byte *contents;
5213 long int min_dynindx;
5214 unsigned long int bucketcount;
5215 unsigned long int symindx;
5216 long int local_indx;
5217 long int shift1, shift2;
5218 unsigned long int mask;
5219 bfd_boolean error;
5220 };
5221
5222 /* This function will be called though elf_link_hash_traverse to store
5223 all hash value of the exported symbols in an array. */
5224
5225 static bfd_boolean
5226 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5227 {
5228 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5229 const char *name;
5230 char *p;
5231 unsigned long ha;
5232 char *alc = NULL;
5233
5234 if (h->root.type == bfd_link_hash_warning)
5235 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5236
5237 /* Ignore indirect symbols. These are added by the versioning code. */
5238 if (h->dynindx == -1)
5239 return TRUE;
5240
5241 /* Ignore also local symbols and undefined symbols. */
5242 if (! (*s->bed->elf_hash_symbol) (h))
5243 return TRUE;
5244
5245 name = h->root.root.string;
5246 p = strchr (name, ELF_VER_CHR);
5247 if (p != NULL)
5248 {
5249 alc = (char *) bfd_malloc (p - name + 1);
5250 if (alc == NULL)
5251 {
5252 s->error = TRUE;
5253 return FALSE;
5254 }
5255 memcpy (alc, name, p - name);
5256 alc[p - name] = '\0';
5257 name = alc;
5258 }
5259
5260 /* Compute the hash value. */
5261 ha = bfd_elf_gnu_hash (name);
5262
5263 /* Store the found hash value in the array for compute_bucket_count,
5264 and also for .dynsym reordering purposes. */
5265 s->hashcodes[s->nsyms] = ha;
5266 s->hashval[h->dynindx] = ha;
5267 ++s->nsyms;
5268 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5269 s->min_dynindx = h->dynindx;
5270
5271 if (alc != NULL)
5272 free (alc);
5273
5274 return TRUE;
5275 }
5276
5277 /* This function will be called though elf_link_hash_traverse to do
5278 final dynaminc symbol renumbering. */
5279
5280 static bfd_boolean
5281 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5282 {
5283 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5284 unsigned long int bucket;
5285 unsigned long int val;
5286
5287 if (h->root.type == bfd_link_hash_warning)
5288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5289
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5292 return TRUE;
5293
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5296 {
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5299 return TRUE;
5300 }
5301
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5306 s->bitmask[val]
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5311 val |= 1;
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5316 return TRUE;
5317 }
5318
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5320
5321 bfd_boolean
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5323 {
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5330 }
5331
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5337
5338 static const size_t elf_buckets[] =
5339 {
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5341 16411, 32771, 0
5342 };
5343
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5352 static size_t
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5356 int gnu_hash)
5357 {
5358 size_t best_size = 0;
5359 unsigned long int i;
5360
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5365 if (info->optimize)
5366 {
5367 size_t minsize;
5368 size_t maxsize;
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5374 bfd_size_type amt;
5375 unsigned int no_improvement_count = 0;
5376
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5379 2*NSYMS buckets. */
5380 minsize = nsyms / 4;
5381 if (minsize == 0)
5382 minsize = 1;
5383 best_size = maxsize = nsyms * 2;
5384 if (gnu_hash)
5385 {
5386 if (minsize < 2)
5387 minsize = 2;
5388 if ((best_size & 31) == 0)
5389 ++best_size;
5390 }
5391
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5394 amt = maxsize;
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5397 if (counts == NULL)
5398 return 0;
5399
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5402 of the table. */
5403 for (i = minsize; i < maxsize; ++i)
5404 {
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5409
5410 if (gnu_hash && (i & 31) == 0)
5411 continue;
5412
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5414
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5418
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5426 # endif
5427
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5429 and the chains. */
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5431
5432 # if 1
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5438
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5441 max *= fact * fact;
5442 # else
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5448
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5452 max *= fact;
5453 # endif
5454
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5457 {
5458 best_chlen = max;
5459 best_size = i;
5460 no_improvement_count = 0;
5461 }
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5465 break;
5466 }
5467
5468 free (counts);
5469 }
5470 else
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5472 {
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5477 {
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5480 break;
5481 }
5482 if (gnu_hash && best_size < 2)
5483 best_size = 2;
5484 }
5485
5486 return best_size;
5487 }
5488
5489 /* Size any SHT_GROUP section for ld -r. */
5490
5491 bfd_boolean
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5493 {
5494 bfd *ibfd;
5495
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5499 return FALSE;
5500 return TRUE;
5501 }
5502
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5507
5508 bfd_boolean
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5510 const char *soname,
5511 const char *rpath,
5512 const char *filter_shlib,
5513 const char *audit,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr,
5518 struct bfd_elf_version_tree *verdefs)
5519 {
5520 bfd_size_type soname_indx;
5521 bfd *dynobj;
5522 const struct elf_backend_data *bed;
5523 struct elf_info_failed asvinfo;
5524
5525 *sinterpptr = NULL;
5526
5527 soname_indx = (bfd_size_type) -1;
5528
5529 if (!is_elf_hash_table (info->hash))
5530 return TRUE;
5531
5532 bed = get_elf_backend_data (output_bfd);
5533 if (info->execstack)
5534 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5535 else if (info->noexecstack)
5536 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5537 else
5538 {
5539 bfd *inputobj;
5540 asection *notesec = NULL;
5541 int exec = 0;
5542
5543 for (inputobj = info->input_bfds;
5544 inputobj;
5545 inputobj = inputobj->link_next)
5546 {
5547 asection *s;
5548
5549 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5550 continue;
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5552 if (s)
5553 {
5554 if (s->flags & SEC_CODE)
5555 exec = PF_X;
5556 notesec = s;
5557 }
5558 else if (bed->default_execstack)
5559 exec = PF_X;
5560 }
5561 if (notesec)
5562 {
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5567 }
5568 }
5569
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5576
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5579 return FALSE;
5580
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5585 return FALSE;
5586
5587 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5588 return FALSE;
5589
5590 dynobj = elf_hash_table (info)->dynobj;
5591
5592 /* If there were no dynamic objects in the link, there is nothing to
5593 do here. */
5594 if (dynobj == NULL)
5595 return TRUE;
5596
5597 if (elf_hash_table (info)->dynamic_sections_created)
5598 {
5599 struct elf_info_failed eif;
5600 struct elf_link_hash_entry *h;
5601 asection *dynstr;
5602 struct bfd_elf_version_tree *t;
5603 struct bfd_elf_version_expr *d;
5604 asection *s;
5605 bfd_boolean all_defined;
5606
5607 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5608 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5609
5610 if (soname != NULL)
5611 {
5612 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5613 soname, TRUE);
5614 if (soname_indx == (bfd_size_type) -1
5615 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5616 return FALSE;
5617 }
5618
5619 if (info->symbolic)
5620 {
5621 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5622 return FALSE;
5623 info->flags |= DF_SYMBOLIC;
5624 }
5625
5626 if (rpath != NULL)
5627 {
5628 bfd_size_type indx;
5629
5630 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5631 TRUE);
5632 if (indx == (bfd_size_type) -1
5633 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5634 return FALSE;
5635
5636 if (info->new_dtags)
5637 {
5638 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5640 return FALSE;
5641 }
5642 }
5643
5644 if (filter_shlib != NULL)
5645 {
5646 bfd_size_type indx;
5647
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5652 return FALSE;
5653 }
5654
5655 if (auxiliary_filters != NULL)
5656 {
5657 const char * const *p;
5658
5659 for (p = auxiliary_filters; *p != NULL; p++)
5660 {
5661 bfd_size_type indx;
5662
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5664 *p, TRUE);
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5667 return FALSE;
5668 }
5669 }
5670
5671 if (audit != NULL)
5672 {
5673 bfd_size_type indx;
5674
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5676 TRUE);
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5679 return FALSE;
5680 }
5681
5682 if (depaudit != NULL)
5683 {
5684 bfd_size_type indx;
5685
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5687 TRUE);
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5690 return FALSE;
5691 }
5692
5693 eif.info = info;
5694 eif.verdefs = verdefs;
5695 eif.failed = FALSE;
5696
5697 /* If we are supposed to export all symbols into the dynamic symbol
5698 table (this is not the normal case), then do so. */
5699 if (info->export_dynamic
5700 || (info->executable && info->dynamic))
5701 {
5702 elf_link_hash_traverse (elf_hash_table (info),
5703 _bfd_elf_export_symbol,
5704 &eif);
5705 if (eif.failed)
5706 return FALSE;
5707 }
5708
5709 /* Make all global versions with definition. */
5710 for (t = verdefs; t != NULL; t = t->next)
5711 for (d = t->globals.list; d != NULL; d = d->next)
5712 if (!d->symver && d->literal)
5713 {
5714 const char *verstr, *name;
5715 size_t namelen, verlen, newlen;
5716 char *newname, *p;
5717 struct elf_link_hash_entry *newh;
5718
5719 name = d->pattern;
5720 namelen = strlen (name);
5721 verstr = t->name;
5722 verlen = strlen (verstr);
5723 newlen = namelen + verlen + 3;
5724
5725 newname = (char *) bfd_malloc (newlen);
5726 if (newname == NULL)
5727 return FALSE;
5728 memcpy (newname, name, namelen);
5729
5730 /* Check the hidden versioned definition. */
5731 p = newname + namelen;
5732 *p++ = ELF_VER_CHR;
5733 memcpy (p, verstr, verlen + 1);
5734 newh = elf_link_hash_lookup (elf_hash_table (info),
5735 newname, FALSE, FALSE,
5736 FALSE);
5737 if (newh == NULL
5738 || (newh->root.type != bfd_link_hash_defined
5739 && newh->root.type != bfd_link_hash_defweak))
5740 {
5741 /* Check the default versioned definition. */
5742 *p++ = ELF_VER_CHR;
5743 memcpy (p, verstr, verlen + 1);
5744 newh = elf_link_hash_lookup (elf_hash_table (info),
5745 newname, FALSE, FALSE,
5746 FALSE);
5747 }
5748 free (newname);
5749
5750 /* Mark this version if there is a definition and it is
5751 not defined in a shared object. */
5752 if (newh != NULL
5753 && !newh->def_dynamic
5754 && (newh->root.type == bfd_link_hash_defined
5755 || newh->root.type == bfd_link_hash_defweak))
5756 d->symver = 1;
5757 }
5758
5759 /* Attach all the symbols to their version information. */
5760 asvinfo.info = info;
5761 asvinfo.verdefs = verdefs;
5762 asvinfo.failed = FALSE;
5763
5764 elf_link_hash_traverse (elf_hash_table (info),
5765 _bfd_elf_link_assign_sym_version,
5766 &asvinfo);
5767 if (asvinfo.failed)
5768 return FALSE;
5769
5770 if (!info->allow_undefined_version)
5771 {
5772 /* Check if all global versions have a definition. */
5773 all_defined = TRUE;
5774 for (t = verdefs; t != NULL; t = t->next)
5775 for (d = t->globals.list; d != NULL; d = d->next)
5776 if (d->literal && !d->symver && !d->script)
5777 {
5778 (*_bfd_error_handler)
5779 (_("%s: undefined version: %s"),
5780 d->pattern, t->name);
5781 all_defined = FALSE;
5782 }
5783
5784 if (!all_defined)
5785 {
5786 bfd_set_error (bfd_error_bad_value);
5787 return FALSE;
5788 }
5789 }
5790
5791 /* Find all symbols which were defined in a dynamic object and make
5792 the backend pick a reasonable value for them. */
5793 elf_link_hash_traverse (elf_hash_table (info),
5794 _bfd_elf_adjust_dynamic_symbol,
5795 &eif);
5796 if (eif.failed)
5797 return FALSE;
5798
5799 /* Add some entries to the .dynamic section. We fill in some of the
5800 values later, in bfd_elf_final_link, but we must add the entries
5801 now so that we know the final size of the .dynamic section. */
5802
5803 /* If there are initialization and/or finalization functions to
5804 call then add the corresponding DT_INIT/DT_FINI entries. */
5805 h = (info->init_function
5806 ? elf_link_hash_lookup (elf_hash_table (info),
5807 info->init_function, FALSE,
5808 FALSE, FALSE)
5809 : NULL);
5810 if (h != NULL
5811 && (h->ref_regular
5812 || h->def_regular))
5813 {
5814 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5815 return FALSE;
5816 }
5817 h = (info->fini_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->fini_function, FALSE,
5820 FALSE, FALSE)
5821 : NULL);
5822 if (h != NULL
5823 && (h->ref_regular
5824 || h->def_regular))
5825 {
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5827 return FALSE;
5828 }
5829
5830 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5831 if (s != NULL && s->linker_has_input)
5832 {
5833 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5834 if (! info->executable)
5835 {
5836 bfd *sub;
5837 asection *o;
5838
5839 for (sub = info->input_bfds; sub != NULL;
5840 sub = sub->link_next)
5841 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5842 for (o = sub->sections; o != NULL; o = o->next)
5843 if (elf_section_data (o)->this_hdr.sh_type
5844 == SHT_PREINIT_ARRAY)
5845 {
5846 (*_bfd_error_handler)
5847 (_("%B: .preinit_array section is not allowed in DSO"),
5848 sub);
5849 break;
5850 }
5851
5852 bfd_set_error (bfd_error_nonrepresentable_section);
5853 return FALSE;
5854 }
5855
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5858 return FALSE;
5859 }
5860 s = bfd_get_section_by_name (output_bfd, ".init_array");
5861 if (s != NULL && s->linker_has_input)
5862 {
5863 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5864 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5865 return FALSE;
5866 }
5867 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5868 if (s != NULL && s->linker_has_input)
5869 {
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5872 return FALSE;
5873 }
5874
5875 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5876 /* If .dynstr is excluded from the link, we don't want any of
5877 these tags. Strictly, we should be checking each section
5878 individually; This quick check covers for the case where
5879 someone does a /DISCARD/ : { *(*) }. */
5880 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5881 {
5882 bfd_size_type strsize;
5883
5884 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5885 if ((info->emit_hash
5886 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5887 || (info->emit_gnu_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5889 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5893 bed->s->sizeof_sym))
5894 return FALSE;
5895 }
5896 }
5897
5898 /* The backend must work out the sizes of all the other dynamic
5899 sections. */
5900 if (bed->elf_backend_size_dynamic_sections
5901 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5902 return FALSE;
5903
5904 if (elf_hash_table (info)->dynamic_sections_created)
5905 {
5906 unsigned long section_sym_count;
5907 asection *s;
5908
5909 /* Set up the version definition section. */
5910 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5911 BFD_ASSERT (s != NULL);
5912
5913 /* We may have created additional version definitions if we are
5914 just linking a regular application. */
5915 verdefs = asvinfo.verdefs;
5916
5917 /* Skip anonymous version tag. */
5918 if (verdefs != NULL && verdefs->vernum == 0)
5919 verdefs = verdefs->next;
5920
5921 if (verdefs == NULL && !info->create_default_symver)
5922 s->flags |= SEC_EXCLUDE;
5923 else
5924 {
5925 unsigned int cdefs;
5926 bfd_size_type size;
5927 struct bfd_elf_version_tree *t;
5928 bfd_byte *p;
5929 Elf_Internal_Verdef def;
5930 Elf_Internal_Verdaux defaux;
5931 struct bfd_link_hash_entry *bh;
5932 struct elf_link_hash_entry *h;
5933 const char *name;
5934
5935 cdefs = 0;
5936 size = 0;
5937
5938 /* Make space for the base version. */
5939 size += sizeof (Elf_External_Verdef);
5940 size += sizeof (Elf_External_Verdaux);
5941 ++cdefs;
5942
5943 /* Make space for the default version. */
5944 if (info->create_default_symver)
5945 {
5946 size += sizeof (Elf_External_Verdef);
5947 ++cdefs;
5948 }
5949
5950 for (t = verdefs; t != NULL; t = t->next)
5951 {
5952 struct bfd_elf_version_deps *n;
5953
5954 /* Don't emit base version twice. */
5955 if (t->vernum == 0)
5956 continue;
5957
5958 size += sizeof (Elf_External_Verdef);
5959 size += sizeof (Elf_External_Verdaux);
5960 ++cdefs;
5961
5962 for (n = t->deps; n != NULL; n = n->next)
5963 size += sizeof (Elf_External_Verdaux);
5964 }
5965
5966 s->size = size;
5967 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5968 if (s->contents == NULL && s->size != 0)
5969 return FALSE;
5970
5971 /* Fill in the version definition section. */
5972
5973 p = s->contents;
5974
5975 def.vd_version = VER_DEF_CURRENT;
5976 def.vd_flags = VER_FLG_BASE;
5977 def.vd_ndx = 1;
5978 def.vd_cnt = 1;
5979 if (info->create_default_symver)
5980 {
5981 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5982 def.vd_next = sizeof (Elf_External_Verdef);
5983 }
5984 else
5985 {
5986 def.vd_aux = sizeof (Elf_External_Verdef);
5987 def.vd_next = (sizeof (Elf_External_Verdef)
5988 + sizeof (Elf_External_Verdaux));
5989 }
5990
5991 if (soname_indx != (bfd_size_type) -1)
5992 {
5993 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5994 soname_indx);
5995 def.vd_hash = bfd_elf_hash (soname);
5996 defaux.vda_name = soname_indx;
5997 name = soname;
5998 }
5999 else
6000 {
6001 bfd_size_type indx;
6002
6003 name = lbasename (output_bfd->filename);
6004 def.vd_hash = bfd_elf_hash (name);
6005 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6006 name, FALSE);
6007 if (indx == (bfd_size_type) -1)
6008 return FALSE;
6009 defaux.vda_name = indx;
6010 }
6011 defaux.vda_next = 0;
6012
6013 _bfd_elf_swap_verdef_out (output_bfd, &def,
6014 (Elf_External_Verdef *) p);
6015 p += sizeof (Elf_External_Verdef);
6016 if (info->create_default_symver)
6017 {
6018 /* Add a symbol representing this version. */
6019 bh = NULL;
6020 if (! (_bfd_generic_link_add_one_symbol
6021 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6022 0, NULL, FALSE,
6023 get_elf_backend_data (dynobj)->collect, &bh)))
6024 return FALSE;
6025 h = (struct elf_link_hash_entry *) bh;
6026 h->non_elf = 0;
6027 h->def_regular = 1;
6028 h->type = STT_OBJECT;
6029 h->verinfo.vertree = NULL;
6030
6031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6032 return FALSE;
6033
6034 /* Create a duplicate of the base version with the same
6035 aux block, but different flags. */
6036 def.vd_flags = 0;
6037 def.vd_ndx = 2;
6038 def.vd_aux = sizeof (Elf_External_Verdef);
6039 if (verdefs)
6040 def.vd_next = (sizeof (Elf_External_Verdef)
6041 + sizeof (Elf_External_Verdaux));
6042 else
6043 def.vd_next = 0;
6044 _bfd_elf_swap_verdef_out (output_bfd, &def,
6045 (Elf_External_Verdef *) p);
6046 p += sizeof (Elf_External_Verdef);
6047 }
6048 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6049 (Elf_External_Verdaux *) p);
6050 p += sizeof (Elf_External_Verdaux);
6051
6052 for (t = verdefs; t != NULL; t = t->next)
6053 {
6054 unsigned int cdeps;
6055 struct bfd_elf_version_deps *n;
6056
6057 /* Don't emit the base version twice. */
6058 if (t->vernum == 0)
6059 continue;
6060
6061 cdeps = 0;
6062 for (n = t->deps; n != NULL; n = n->next)
6063 ++cdeps;
6064
6065 /* Add a symbol representing this version. */
6066 bh = NULL;
6067 if (! (_bfd_generic_link_add_one_symbol
6068 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6069 0, NULL, FALSE,
6070 get_elf_backend_data (dynobj)->collect, &bh)))
6071 return FALSE;
6072 h = (struct elf_link_hash_entry *) bh;
6073 h->non_elf = 0;
6074 h->def_regular = 1;
6075 h->type = STT_OBJECT;
6076 h->verinfo.vertree = t;
6077
6078 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6079 return FALSE;
6080
6081 def.vd_version = VER_DEF_CURRENT;
6082 def.vd_flags = 0;
6083 if (t->globals.list == NULL
6084 && t->locals.list == NULL
6085 && ! t->used)
6086 def.vd_flags |= VER_FLG_WEAK;
6087 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6088 def.vd_cnt = cdeps + 1;
6089 def.vd_hash = bfd_elf_hash (t->name);
6090 def.vd_aux = sizeof (Elf_External_Verdef);
6091 def.vd_next = 0;
6092
6093 /* If a basever node is next, it *must* be the last node in
6094 the chain, otherwise Verdef construction breaks. */
6095 if (t->next != NULL && t->next->vernum == 0)
6096 BFD_ASSERT (t->next->next == NULL);
6097
6098 if (t->next != NULL && t->next->vernum != 0)
6099 def.vd_next = (sizeof (Elf_External_Verdef)
6100 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6101
6102 _bfd_elf_swap_verdef_out (output_bfd, &def,
6103 (Elf_External_Verdef *) p);
6104 p += sizeof (Elf_External_Verdef);
6105
6106 defaux.vda_name = h->dynstr_index;
6107 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6108 h->dynstr_index);
6109 defaux.vda_next = 0;
6110 if (t->deps != NULL)
6111 defaux.vda_next = sizeof (Elf_External_Verdaux);
6112 t->name_indx = defaux.vda_name;
6113
6114 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6115 (Elf_External_Verdaux *) p);
6116 p += sizeof (Elf_External_Verdaux);
6117
6118 for (n = t->deps; n != NULL; n = n->next)
6119 {
6120 if (n->version_needed == NULL)
6121 {
6122 /* This can happen if there was an error in the
6123 version script. */
6124 defaux.vda_name = 0;
6125 }
6126 else
6127 {
6128 defaux.vda_name = n->version_needed->name_indx;
6129 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6130 defaux.vda_name);
6131 }
6132 if (n->next == NULL)
6133 defaux.vda_next = 0;
6134 else
6135 defaux.vda_next = sizeof (Elf_External_Verdaux);
6136
6137 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6138 (Elf_External_Verdaux *) p);
6139 p += sizeof (Elf_External_Verdaux);
6140 }
6141 }
6142
6143 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6144 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6145 return FALSE;
6146
6147 elf_tdata (output_bfd)->cverdefs = cdefs;
6148 }
6149
6150 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6151 {
6152 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6153 return FALSE;
6154 }
6155 else if (info->flags & DF_BIND_NOW)
6156 {
6157 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6158 return FALSE;
6159 }
6160
6161 if (info->flags_1)
6162 {
6163 if (info->executable)
6164 info->flags_1 &= ~ (DF_1_INITFIRST
6165 | DF_1_NODELETE
6166 | DF_1_NOOPEN);
6167 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6168 return FALSE;
6169 }
6170
6171 /* Work out the size of the version reference section. */
6172
6173 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6174 BFD_ASSERT (s != NULL);
6175 {
6176 struct elf_find_verdep_info sinfo;
6177
6178 sinfo.info = info;
6179 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6180 if (sinfo.vers == 0)
6181 sinfo.vers = 1;
6182 sinfo.failed = FALSE;
6183
6184 elf_link_hash_traverse (elf_hash_table (info),
6185 _bfd_elf_link_find_version_dependencies,
6186 &sinfo);
6187 if (sinfo.failed)
6188 return FALSE;
6189
6190 if (elf_tdata (output_bfd)->verref == NULL)
6191 s->flags |= SEC_EXCLUDE;
6192 else
6193 {
6194 Elf_Internal_Verneed *t;
6195 unsigned int size;
6196 unsigned int crefs;
6197 bfd_byte *p;
6198
6199 /* Build the version dependency section. */
6200 size = 0;
6201 crefs = 0;
6202 for (t = elf_tdata (output_bfd)->verref;
6203 t != NULL;
6204 t = t->vn_nextref)
6205 {
6206 Elf_Internal_Vernaux *a;
6207
6208 size += sizeof (Elf_External_Verneed);
6209 ++crefs;
6210 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6211 size += sizeof (Elf_External_Vernaux);
6212 }
6213
6214 s->size = size;
6215 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6216 if (s->contents == NULL)
6217 return FALSE;
6218
6219 p = s->contents;
6220 for (t = elf_tdata (output_bfd)->verref;
6221 t != NULL;
6222 t = t->vn_nextref)
6223 {
6224 unsigned int caux;
6225 Elf_Internal_Vernaux *a;
6226 bfd_size_type indx;
6227
6228 caux = 0;
6229 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6230 ++caux;
6231
6232 t->vn_version = VER_NEED_CURRENT;
6233 t->vn_cnt = caux;
6234 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6235 elf_dt_name (t->vn_bfd) != NULL
6236 ? elf_dt_name (t->vn_bfd)
6237 : lbasename (t->vn_bfd->filename),
6238 FALSE);
6239 if (indx == (bfd_size_type) -1)
6240 return FALSE;
6241 t->vn_file = indx;
6242 t->vn_aux = sizeof (Elf_External_Verneed);
6243 if (t->vn_nextref == NULL)
6244 t->vn_next = 0;
6245 else
6246 t->vn_next = (sizeof (Elf_External_Verneed)
6247 + caux * sizeof (Elf_External_Vernaux));
6248
6249 _bfd_elf_swap_verneed_out (output_bfd, t,
6250 (Elf_External_Verneed *) p);
6251 p += sizeof (Elf_External_Verneed);
6252
6253 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6254 {
6255 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6256 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6257 a->vna_nodename, FALSE);
6258 if (indx == (bfd_size_type) -1)
6259 return FALSE;
6260 a->vna_name = indx;
6261 if (a->vna_nextptr == NULL)
6262 a->vna_next = 0;
6263 else
6264 a->vna_next = sizeof (Elf_External_Vernaux);
6265
6266 _bfd_elf_swap_vernaux_out (output_bfd, a,
6267 (Elf_External_Vernaux *) p);
6268 p += sizeof (Elf_External_Vernaux);
6269 }
6270 }
6271
6272 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6273 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6274 return FALSE;
6275
6276 elf_tdata (output_bfd)->cverrefs = crefs;
6277 }
6278 }
6279
6280 if ((elf_tdata (output_bfd)->cverrefs == 0
6281 && elf_tdata (output_bfd)->cverdefs == 0)
6282 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6283 &section_sym_count) == 0)
6284 {
6285 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6286 s->flags |= SEC_EXCLUDE;
6287 }
6288 }
6289 return TRUE;
6290 }
6291
6292 /* Find the first non-excluded output section. We'll use its
6293 section symbol for some emitted relocs. */
6294 void
6295 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6296 {
6297 asection *s;
6298
6299 for (s = output_bfd->sections; s != NULL; s = s->next)
6300 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6301 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6302 {
6303 elf_hash_table (info)->text_index_section = s;
6304 break;
6305 }
6306 }
6307
6308 /* Find two non-excluded output sections, one for code, one for data.
6309 We'll use their section symbols for some emitted relocs. */
6310 void
6311 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6312 {
6313 asection *s;
6314
6315 /* Data first, since setting text_index_section changes
6316 _bfd_elf_link_omit_section_dynsym. */
6317 for (s = output_bfd->sections; s != NULL; s = s->next)
6318 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6319 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6320 {
6321 elf_hash_table (info)->data_index_section = s;
6322 break;
6323 }
6324
6325 for (s = output_bfd->sections; s != NULL; s = s->next)
6326 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6327 == (SEC_ALLOC | SEC_READONLY))
6328 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6329 {
6330 elf_hash_table (info)->text_index_section = s;
6331 break;
6332 }
6333
6334 if (elf_hash_table (info)->text_index_section == NULL)
6335 elf_hash_table (info)->text_index_section
6336 = elf_hash_table (info)->data_index_section;
6337 }
6338
6339 bfd_boolean
6340 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6341 {
6342 const struct elf_backend_data *bed;
6343
6344 if (!is_elf_hash_table (info->hash))
6345 return TRUE;
6346
6347 bed = get_elf_backend_data (output_bfd);
6348 (*bed->elf_backend_init_index_section) (output_bfd, info);
6349
6350 if (elf_hash_table (info)->dynamic_sections_created)
6351 {
6352 bfd *dynobj;
6353 asection *s;
6354 bfd_size_type dynsymcount;
6355 unsigned long section_sym_count;
6356 unsigned int dtagcount;
6357
6358 dynobj = elf_hash_table (info)->dynobj;
6359
6360 /* Assign dynsym indicies. In a shared library we generate a
6361 section symbol for each output section, which come first.
6362 Next come all of the back-end allocated local dynamic syms,
6363 followed by the rest of the global symbols. */
6364
6365 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6366 &section_sym_count);
6367
6368 /* Work out the size of the symbol version section. */
6369 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6370 BFD_ASSERT (s != NULL);
6371 if (dynsymcount != 0
6372 && (s->flags & SEC_EXCLUDE) == 0)
6373 {
6374 s->size = dynsymcount * sizeof (Elf_External_Versym);
6375 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6376 if (s->contents == NULL)
6377 return FALSE;
6378
6379 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6380 return FALSE;
6381 }
6382
6383 /* Set the size of the .dynsym and .hash sections. We counted
6384 the number of dynamic symbols in elf_link_add_object_symbols.
6385 We will build the contents of .dynsym and .hash when we build
6386 the final symbol table, because until then we do not know the
6387 correct value to give the symbols. We built the .dynstr
6388 section as we went along in elf_link_add_object_symbols. */
6389 s = bfd_get_section_by_name (dynobj, ".dynsym");
6390 BFD_ASSERT (s != NULL);
6391 s->size = dynsymcount * bed->s->sizeof_sym;
6392
6393 if (dynsymcount != 0)
6394 {
6395 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6396 if (s->contents == NULL)
6397 return FALSE;
6398
6399 /* The first entry in .dynsym is a dummy symbol.
6400 Clear all the section syms, in case we don't output them all. */
6401 ++section_sym_count;
6402 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6403 }
6404
6405 elf_hash_table (info)->bucketcount = 0;
6406
6407 /* Compute the size of the hashing table. As a side effect this
6408 computes the hash values for all the names we export. */
6409 if (info->emit_hash)
6410 {
6411 unsigned long int *hashcodes;
6412 struct hash_codes_info hashinf;
6413 bfd_size_type amt;
6414 unsigned long int nsyms;
6415 size_t bucketcount;
6416 size_t hash_entry_size;
6417
6418 /* Compute the hash values for all exported symbols. At the same
6419 time store the values in an array so that we could use them for
6420 optimizations. */
6421 amt = dynsymcount * sizeof (unsigned long int);
6422 hashcodes = (unsigned long int *) bfd_malloc (amt);
6423 if (hashcodes == NULL)
6424 return FALSE;
6425 hashinf.hashcodes = hashcodes;
6426 hashinf.error = FALSE;
6427
6428 /* Put all hash values in HASHCODES. */
6429 elf_link_hash_traverse (elf_hash_table (info),
6430 elf_collect_hash_codes, &hashinf);
6431 if (hashinf.error)
6432 {
6433 free (hashcodes);
6434 return FALSE;
6435 }
6436
6437 nsyms = hashinf.hashcodes - hashcodes;
6438 bucketcount
6439 = compute_bucket_count (info, hashcodes, nsyms, 0);
6440 free (hashcodes);
6441
6442 if (bucketcount == 0)
6443 return FALSE;
6444
6445 elf_hash_table (info)->bucketcount = bucketcount;
6446
6447 s = bfd_get_section_by_name (dynobj, ".hash");
6448 BFD_ASSERT (s != NULL);
6449 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6450 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6451 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6452 if (s->contents == NULL)
6453 return FALSE;
6454
6455 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6456 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6457 s->contents + hash_entry_size);
6458 }
6459
6460 if (info->emit_gnu_hash)
6461 {
6462 size_t i, cnt;
6463 unsigned char *contents;
6464 struct collect_gnu_hash_codes cinfo;
6465 bfd_size_type amt;
6466 size_t bucketcount;
6467
6468 memset (&cinfo, 0, sizeof (cinfo));
6469
6470 /* Compute the hash values for all exported symbols. At the same
6471 time store the values in an array so that we could use them for
6472 optimizations. */
6473 amt = dynsymcount * 2 * sizeof (unsigned long int);
6474 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6475 if (cinfo.hashcodes == NULL)
6476 return FALSE;
6477
6478 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6479 cinfo.min_dynindx = -1;
6480 cinfo.output_bfd = output_bfd;
6481 cinfo.bed = bed;
6482
6483 /* Put all hash values in HASHCODES. */
6484 elf_link_hash_traverse (elf_hash_table (info),
6485 elf_collect_gnu_hash_codes, &cinfo);
6486 if (cinfo.error)
6487 {
6488 free (cinfo.hashcodes);
6489 return FALSE;
6490 }
6491
6492 bucketcount
6493 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6494
6495 if (bucketcount == 0)
6496 {
6497 free (cinfo.hashcodes);
6498 return FALSE;
6499 }
6500
6501 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6502 BFD_ASSERT (s != NULL);
6503
6504 if (cinfo.nsyms == 0)
6505 {
6506 /* Empty .gnu.hash section is special. */
6507 BFD_ASSERT (cinfo.min_dynindx == -1);
6508 free (cinfo.hashcodes);
6509 s->size = 5 * 4 + bed->s->arch_size / 8;
6510 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6511 if (contents == NULL)
6512 return FALSE;
6513 s->contents = contents;
6514 /* 1 empty bucket. */
6515 bfd_put_32 (output_bfd, 1, contents);
6516 /* SYMIDX above the special symbol 0. */
6517 bfd_put_32 (output_bfd, 1, contents + 4);
6518 /* Just one word for bitmask. */
6519 bfd_put_32 (output_bfd, 1, contents + 8);
6520 /* Only hash fn bloom filter. */
6521 bfd_put_32 (output_bfd, 0, contents + 12);
6522 /* No hashes are valid - empty bitmask. */
6523 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6524 /* No hashes in the only bucket. */
6525 bfd_put_32 (output_bfd, 0,
6526 contents + 16 + bed->s->arch_size / 8);
6527 }
6528 else
6529 {
6530 unsigned long int maskwords, maskbitslog2;
6531 BFD_ASSERT (cinfo.min_dynindx != -1);
6532
6533 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6534 if (maskbitslog2 < 3)
6535 maskbitslog2 = 5;
6536 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6537 maskbitslog2 = maskbitslog2 + 3;
6538 else
6539 maskbitslog2 = maskbitslog2 + 2;
6540 if (bed->s->arch_size == 64)
6541 {
6542 if (maskbitslog2 == 5)
6543 maskbitslog2 = 6;
6544 cinfo.shift1 = 6;
6545 }
6546 else
6547 cinfo.shift1 = 5;
6548 cinfo.mask = (1 << cinfo.shift1) - 1;
6549 cinfo.shift2 = maskbitslog2;
6550 cinfo.maskbits = 1 << maskbitslog2;
6551 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6552 amt = bucketcount * sizeof (unsigned long int) * 2;
6553 amt += maskwords * sizeof (bfd_vma);
6554 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6555 if (cinfo.bitmask == NULL)
6556 {
6557 free (cinfo.hashcodes);
6558 return FALSE;
6559 }
6560
6561 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6562 cinfo.indx = cinfo.counts + bucketcount;
6563 cinfo.symindx = dynsymcount - cinfo.nsyms;
6564 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6565
6566 /* Determine how often each hash bucket is used. */
6567 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6568 for (i = 0; i < cinfo.nsyms; ++i)
6569 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6570
6571 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6572 if (cinfo.counts[i] != 0)
6573 {
6574 cinfo.indx[i] = cnt;
6575 cnt += cinfo.counts[i];
6576 }
6577 BFD_ASSERT (cnt == dynsymcount);
6578 cinfo.bucketcount = bucketcount;
6579 cinfo.local_indx = cinfo.min_dynindx;
6580
6581 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6582 s->size += cinfo.maskbits / 8;
6583 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6584 if (contents == NULL)
6585 {
6586 free (cinfo.bitmask);
6587 free (cinfo.hashcodes);
6588 return FALSE;
6589 }
6590
6591 s->contents = contents;
6592 bfd_put_32 (output_bfd, bucketcount, contents);
6593 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6594 bfd_put_32 (output_bfd, maskwords, contents + 8);
6595 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6596 contents += 16 + cinfo.maskbits / 8;
6597
6598 for (i = 0; i < bucketcount; ++i)
6599 {
6600 if (cinfo.counts[i] == 0)
6601 bfd_put_32 (output_bfd, 0, contents);
6602 else
6603 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6604 contents += 4;
6605 }
6606
6607 cinfo.contents = contents;
6608
6609 /* Renumber dynamic symbols, populate .gnu.hash section. */
6610 elf_link_hash_traverse (elf_hash_table (info),
6611 elf_renumber_gnu_hash_syms, &cinfo);
6612
6613 contents = s->contents + 16;
6614 for (i = 0; i < maskwords; ++i)
6615 {
6616 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6617 contents);
6618 contents += bed->s->arch_size / 8;
6619 }
6620
6621 free (cinfo.bitmask);
6622 free (cinfo.hashcodes);
6623 }
6624 }
6625
6626 s = bfd_get_section_by_name (dynobj, ".dynstr");
6627 BFD_ASSERT (s != NULL);
6628
6629 elf_finalize_dynstr (output_bfd, info);
6630
6631 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6632
6633 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6634 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6635 return FALSE;
6636 }
6637
6638 return TRUE;
6639 }
6640 \f
6641 /* Indicate that we are only retrieving symbol values from this
6642 section. */
6643
6644 void
6645 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6646 {
6647 if (is_elf_hash_table (info->hash))
6648 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6649 _bfd_generic_link_just_syms (sec, info);
6650 }
6651
6652 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6653
6654 static void
6655 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6656 asection *sec)
6657 {
6658 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6659 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6660 }
6661
6662 /* Finish SHF_MERGE section merging. */
6663
6664 bfd_boolean
6665 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6666 {
6667 bfd *ibfd;
6668 asection *sec;
6669
6670 if (!is_elf_hash_table (info->hash))
6671 return FALSE;
6672
6673 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6674 if ((ibfd->flags & DYNAMIC) == 0)
6675 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6676 if ((sec->flags & SEC_MERGE) != 0
6677 && !bfd_is_abs_section (sec->output_section))
6678 {
6679 struct bfd_elf_section_data *secdata;
6680
6681 secdata = elf_section_data (sec);
6682 if (! _bfd_add_merge_section (abfd,
6683 &elf_hash_table (info)->merge_info,
6684 sec, &secdata->sec_info))
6685 return FALSE;
6686 else if (secdata->sec_info)
6687 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6688 }
6689
6690 if (elf_hash_table (info)->merge_info != NULL)
6691 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6692 merge_sections_remove_hook);
6693 return TRUE;
6694 }
6695
6696 /* Create an entry in an ELF linker hash table. */
6697
6698 struct bfd_hash_entry *
6699 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6700 struct bfd_hash_table *table,
6701 const char *string)
6702 {
6703 /* Allocate the structure if it has not already been allocated by a
6704 subclass. */
6705 if (entry == NULL)
6706 {
6707 entry = (struct bfd_hash_entry *)
6708 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6709 if (entry == NULL)
6710 return entry;
6711 }
6712
6713 /* Call the allocation method of the superclass. */
6714 entry = _bfd_link_hash_newfunc (entry, table, string);
6715 if (entry != NULL)
6716 {
6717 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6718 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6719
6720 /* Set local fields. */
6721 ret->indx = -1;
6722 ret->dynindx = -1;
6723 ret->got = htab->init_got_refcount;
6724 ret->plt = htab->init_plt_refcount;
6725 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6726 - offsetof (struct elf_link_hash_entry, size)));
6727 /* Assume that we have been called by a non-ELF symbol reader.
6728 This flag is then reset by the code which reads an ELF input
6729 file. This ensures that a symbol created by a non-ELF symbol
6730 reader will have the flag set correctly. */
6731 ret->non_elf = 1;
6732 }
6733
6734 return entry;
6735 }
6736
6737 /* Copy data from an indirect symbol to its direct symbol, hiding the
6738 old indirect symbol. Also used for copying flags to a weakdef. */
6739
6740 void
6741 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6742 struct elf_link_hash_entry *dir,
6743 struct elf_link_hash_entry *ind)
6744 {
6745 struct elf_link_hash_table *htab;
6746
6747 /* Copy down any references that we may have already seen to the
6748 symbol which just became indirect. */
6749
6750 dir->ref_dynamic |= ind->ref_dynamic;
6751 dir->ref_regular |= ind->ref_regular;
6752 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6753 dir->non_got_ref |= ind->non_got_ref;
6754 dir->needs_plt |= ind->needs_plt;
6755 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6756
6757 if (ind->root.type != bfd_link_hash_indirect)
6758 return;
6759
6760 /* Copy over the global and procedure linkage table refcount entries.
6761 These may have been already set up by a check_relocs routine. */
6762 htab = elf_hash_table (info);
6763 if (ind->got.refcount > htab->init_got_refcount.refcount)
6764 {
6765 if (dir->got.refcount < 0)
6766 dir->got.refcount = 0;
6767 dir->got.refcount += ind->got.refcount;
6768 ind->got.refcount = htab->init_got_refcount.refcount;
6769 }
6770
6771 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6772 {
6773 if (dir->plt.refcount < 0)
6774 dir->plt.refcount = 0;
6775 dir->plt.refcount += ind->plt.refcount;
6776 ind->plt.refcount = htab->init_plt_refcount.refcount;
6777 }
6778
6779 if (ind->dynindx != -1)
6780 {
6781 if (dir->dynindx != -1)
6782 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6783 dir->dynindx = ind->dynindx;
6784 dir->dynstr_index = ind->dynstr_index;
6785 ind->dynindx = -1;
6786 ind->dynstr_index = 0;
6787 }
6788 }
6789
6790 void
6791 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6792 struct elf_link_hash_entry *h,
6793 bfd_boolean force_local)
6794 {
6795 /* STT_GNU_IFUNC symbol must go through PLT. */
6796 if (h->type != STT_GNU_IFUNC)
6797 {
6798 h->plt = elf_hash_table (info)->init_plt_offset;
6799 h->needs_plt = 0;
6800 }
6801 if (force_local)
6802 {
6803 h->forced_local = 1;
6804 if (h->dynindx != -1)
6805 {
6806 h->dynindx = -1;
6807 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6808 h->dynstr_index);
6809 }
6810 }
6811 }
6812
6813 /* Initialize an ELF linker hash table. */
6814
6815 bfd_boolean
6816 _bfd_elf_link_hash_table_init
6817 (struct elf_link_hash_table *table,
6818 bfd *abfd,
6819 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6820 struct bfd_hash_table *,
6821 const char *),
6822 unsigned int entsize,
6823 enum elf_target_id target_id)
6824 {
6825 bfd_boolean ret;
6826 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6827
6828 memset (table, 0, sizeof * table);
6829 table->init_got_refcount.refcount = can_refcount - 1;
6830 table->init_plt_refcount.refcount = can_refcount - 1;
6831 table->init_got_offset.offset = -(bfd_vma) 1;
6832 table->init_plt_offset.offset = -(bfd_vma) 1;
6833 /* The first dynamic symbol is a dummy. */
6834 table->dynsymcount = 1;
6835
6836 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6837
6838 table->root.type = bfd_link_elf_hash_table;
6839 table->hash_table_id = target_id;
6840
6841 return ret;
6842 }
6843
6844 /* Create an ELF linker hash table. */
6845
6846 struct bfd_link_hash_table *
6847 _bfd_elf_link_hash_table_create (bfd *abfd)
6848 {
6849 struct elf_link_hash_table *ret;
6850 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6851
6852 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6853 if (ret == NULL)
6854 return NULL;
6855
6856 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6857 sizeof (struct elf_link_hash_entry),
6858 GENERIC_ELF_DATA))
6859 {
6860 free (ret);
6861 return NULL;
6862 }
6863
6864 return &ret->root;
6865 }
6866
6867 /* This is a hook for the ELF emulation code in the generic linker to
6868 tell the backend linker what file name to use for the DT_NEEDED
6869 entry for a dynamic object. */
6870
6871 void
6872 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6873 {
6874 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6875 && bfd_get_format (abfd) == bfd_object)
6876 elf_dt_name (abfd) = name;
6877 }
6878
6879 int
6880 bfd_elf_get_dyn_lib_class (bfd *abfd)
6881 {
6882 int lib_class;
6883 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6884 && bfd_get_format (abfd) == bfd_object)
6885 lib_class = elf_dyn_lib_class (abfd);
6886 else
6887 lib_class = 0;
6888 return lib_class;
6889 }
6890
6891 void
6892 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6893 {
6894 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6895 && bfd_get_format (abfd) == bfd_object)
6896 elf_dyn_lib_class (abfd) = lib_class;
6897 }
6898
6899 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6900 the linker ELF emulation code. */
6901
6902 struct bfd_link_needed_list *
6903 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6904 struct bfd_link_info *info)
6905 {
6906 if (! is_elf_hash_table (info->hash))
6907 return NULL;
6908 return elf_hash_table (info)->needed;
6909 }
6910
6911 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6912 hook for the linker ELF emulation code. */
6913
6914 struct bfd_link_needed_list *
6915 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6916 struct bfd_link_info *info)
6917 {
6918 if (! is_elf_hash_table (info->hash))
6919 return NULL;
6920 return elf_hash_table (info)->runpath;
6921 }
6922
6923 /* Get the name actually used for a dynamic object for a link. This
6924 is the SONAME entry if there is one. Otherwise, it is the string
6925 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6926
6927 const char *
6928 bfd_elf_get_dt_soname (bfd *abfd)
6929 {
6930 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6931 && bfd_get_format (abfd) == bfd_object)
6932 return elf_dt_name (abfd);
6933 return NULL;
6934 }
6935
6936 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6937 the ELF linker emulation code. */
6938
6939 bfd_boolean
6940 bfd_elf_get_bfd_needed_list (bfd *abfd,
6941 struct bfd_link_needed_list **pneeded)
6942 {
6943 asection *s;
6944 bfd_byte *dynbuf = NULL;
6945 unsigned int elfsec;
6946 unsigned long shlink;
6947 bfd_byte *extdyn, *extdynend;
6948 size_t extdynsize;
6949 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6950
6951 *pneeded = NULL;
6952
6953 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6954 || bfd_get_format (abfd) != bfd_object)
6955 return TRUE;
6956
6957 s = bfd_get_section_by_name (abfd, ".dynamic");
6958 if (s == NULL || s->size == 0)
6959 return TRUE;
6960
6961 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6962 goto error_return;
6963
6964 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6965 if (elfsec == SHN_BAD)
6966 goto error_return;
6967
6968 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6969
6970 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6971 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6972
6973 extdyn = dynbuf;
6974 extdynend = extdyn + s->size;
6975 for (; extdyn < extdynend; extdyn += extdynsize)
6976 {
6977 Elf_Internal_Dyn dyn;
6978
6979 (*swap_dyn_in) (abfd, extdyn, &dyn);
6980
6981 if (dyn.d_tag == DT_NULL)
6982 break;
6983
6984 if (dyn.d_tag == DT_NEEDED)
6985 {
6986 const char *string;
6987 struct bfd_link_needed_list *l;
6988 unsigned int tagv = dyn.d_un.d_val;
6989 bfd_size_type amt;
6990
6991 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6992 if (string == NULL)
6993 goto error_return;
6994
6995 amt = sizeof *l;
6996 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6997 if (l == NULL)
6998 goto error_return;
6999
7000 l->by = abfd;
7001 l->name = string;
7002 l->next = *pneeded;
7003 *pneeded = l;
7004 }
7005 }
7006
7007 free (dynbuf);
7008
7009 return TRUE;
7010
7011 error_return:
7012 if (dynbuf != NULL)
7013 free (dynbuf);
7014 return FALSE;
7015 }
7016
7017 struct elf_symbuf_symbol
7018 {
7019 unsigned long st_name; /* Symbol name, index in string tbl */
7020 unsigned char st_info; /* Type and binding attributes */
7021 unsigned char st_other; /* Visibilty, and target specific */
7022 };
7023
7024 struct elf_symbuf_head
7025 {
7026 struct elf_symbuf_symbol *ssym;
7027 bfd_size_type count;
7028 unsigned int st_shndx;
7029 };
7030
7031 struct elf_symbol
7032 {
7033 union
7034 {
7035 Elf_Internal_Sym *isym;
7036 struct elf_symbuf_symbol *ssym;
7037 } u;
7038 const char *name;
7039 };
7040
7041 /* Sort references to symbols by ascending section number. */
7042
7043 static int
7044 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7045 {
7046 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7047 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7048
7049 return s1->st_shndx - s2->st_shndx;
7050 }
7051
7052 static int
7053 elf_sym_name_compare (const void *arg1, const void *arg2)
7054 {
7055 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7056 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7057 return strcmp (s1->name, s2->name);
7058 }
7059
7060 static struct elf_symbuf_head *
7061 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7062 {
7063 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7064 struct elf_symbuf_symbol *ssym;
7065 struct elf_symbuf_head *ssymbuf, *ssymhead;
7066 bfd_size_type i, shndx_count, total_size;
7067
7068 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7069 if (indbuf == NULL)
7070 return NULL;
7071
7072 for (ind = indbuf, i = 0; i < symcount; i++)
7073 if (isymbuf[i].st_shndx != SHN_UNDEF)
7074 *ind++ = &isymbuf[i];
7075 indbufend = ind;
7076
7077 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7078 elf_sort_elf_symbol);
7079
7080 shndx_count = 0;
7081 if (indbufend > indbuf)
7082 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7083 if (ind[0]->st_shndx != ind[1]->st_shndx)
7084 shndx_count++;
7085
7086 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7087 + (indbufend - indbuf) * sizeof (*ssym));
7088 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7089 if (ssymbuf == NULL)
7090 {
7091 free (indbuf);
7092 return NULL;
7093 }
7094
7095 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7096 ssymbuf->ssym = NULL;
7097 ssymbuf->count = shndx_count;
7098 ssymbuf->st_shndx = 0;
7099 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7100 {
7101 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7102 {
7103 ssymhead++;
7104 ssymhead->ssym = ssym;
7105 ssymhead->count = 0;
7106 ssymhead->st_shndx = (*ind)->st_shndx;
7107 }
7108 ssym->st_name = (*ind)->st_name;
7109 ssym->st_info = (*ind)->st_info;
7110 ssym->st_other = (*ind)->st_other;
7111 ssymhead->count++;
7112 }
7113 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7114 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7115 == total_size));
7116
7117 free (indbuf);
7118 return ssymbuf;
7119 }
7120
7121 /* Check if 2 sections define the same set of local and global
7122 symbols. */
7123
7124 static bfd_boolean
7125 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7126 struct bfd_link_info *info)
7127 {
7128 bfd *bfd1, *bfd2;
7129 const struct elf_backend_data *bed1, *bed2;
7130 Elf_Internal_Shdr *hdr1, *hdr2;
7131 bfd_size_type symcount1, symcount2;
7132 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7133 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7134 Elf_Internal_Sym *isym, *isymend;
7135 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7136 bfd_size_type count1, count2, i;
7137 unsigned int shndx1, shndx2;
7138 bfd_boolean result;
7139
7140 bfd1 = sec1->owner;
7141 bfd2 = sec2->owner;
7142
7143 /* Both sections have to be in ELF. */
7144 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7145 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7146 return FALSE;
7147
7148 if (elf_section_type (sec1) != elf_section_type (sec2))
7149 return FALSE;
7150
7151 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7152 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7153 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7154 return FALSE;
7155
7156 bed1 = get_elf_backend_data (bfd1);
7157 bed2 = get_elf_backend_data (bfd2);
7158 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7159 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7160 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7161 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7162
7163 if (symcount1 == 0 || symcount2 == 0)
7164 return FALSE;
7165
7166 result = FALSE;
7167 isymbuf1 = NULL;
7168 isymbuf2 = NULL;
7169 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7170 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7171
7172 if (ssymbuf1 == NULL)
7173 {
7174 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7175 NULL, NULL, NULL);
7176 if (isymbuf1 == NULL)
7177 goto done;
7178
7179 if (!info->reduce_memory_overheads)
7180 elf_tdata (bfd1)->symbuf = ssymbuf1
7181 = elf_create_symbuf (symcount1, isymbuf1);
7182 }
7183
7184 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7185 {
7186 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7187 NULL, NULL, NULL);
7188 if (isymbuf2 == NULL)
7189 goto done;
7190
7191 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7192 elf_tdata (bfd2)->symbuf = ssymbuf2
7193 = elf_create_symbuf (symcount2, isymbuf2);
7194 }
7195
7196 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7197 {
7198 /* Optimized faster version. */
7199 bfd_size_type lo, hi, mid;
7200 struct elf_symbol *symp;
7201 struct elf_symbuf_symbol *ssym, *ssymend;
7202
7203 lo = 0;
7204 hi = ssymbuf1->count;
7205 ssymbuf1++;
7206 count1 = 0;
7207 while (lo < hi)
7208 {
7209 mid = (lo + hi) / 2;
7210 if (shndx1 < ssymbuf1[mid].st_shndx)
7211 hi = mid;
7212 else if (shndx1 > ssymbuf1[mid].st_shndx)
7213 lo = mid + 1;
7214 else
7215 {
7216 count1 = ssymbuf1[mid].count;
7217 ssymbuf1 += mid;
7218 break;
7219 }
7220 }
7221
7222 lo = 0;
7223 hi = ssymbuf2->count;
7224 ssymbuf2++;
7225 count2 = 0;
7226 while (lo < hi)
7227 {
7228 mid = (lo + hi) / 2;
7229 if (shndx2 < ssymbuf2[mid].st_shndx)
7230 hi = mid;
7231 else if (shndx2 > ssymbuf2[mid].st_shndx)
7232 lo = mid + 1;
7233 else
7234 {
7235 count2 = ssymbuf2[mid].count;
7236 ssymbuf2 += mid;
7237 break;
7238 }
7239 }
7240
7241 if (count1 == 0 || count2 == 0 || count1 != count2)
7242 goto done;
7243
7244 symtable1 = (struct elf_symbol *)
7245 bfd_malloc (count1 * sizeof (struct elf_symbol));
7246 symtable2 = (struct elf_symbol *)
7247 bfd_malloc (count2 * sizeof (struct elf_symbol));
7248 if (symtable1 == NULL || symtable2 == NULL)
7249 goto done;
7250
7251 symp = symtable1;
7252 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7253 ssym < ssymend; ssym++, symp++)
7254 {
7255 symp->u.ssym = ssym;
7256 symp->name = bfd_elf_string_from_elf_section (bfd1,
7257 hdr1->sh_link,
7258 ssym->st_name);
7259 }
7260
7261 symp = symtable2;
7262 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7263 ssym < ssymend; ssym++, symp++)
7264 {
7265 symp->u.ssym = ssym;
7266 symp->name = bfd_elf_string_from_elf_section (bfd2,
7267 hdr2->sh_link,
7268 ssym->st_name);
7269 }
7270
7271 /* Sort symbol by name. */
7272 qsort (symtable1, count1, sizeof (struct elf_symbol),
7273 elf_sym_name_compare);
7274 qsort (symtable2, count1, sizeof (struct elf_symbol),
7275 elf_sym_name_compare);
7276
7277 for (i = 0; i < count1; i++)
7278 /* Two symbols must have the same binding, type and name. */
7279 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7280 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7281 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7282 goto done;
7283
7284 result = TRUE;
7285 goto done;
7286 }
7287
7288 symtable1 = (struct elf_symbol *)
7289 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7290 symtable2 = (struct elf_symbol *)
7291 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7292 if (symtable1 == NULL || symtable2 == NULL)
7293 goto done;
7294
7295 /* Count definitions in the section. */
7296 count1 = 0;
7297 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7298 if (isym->st_shndx == shndx1)
7299 symtable1[count1++].u.isym = isym;
7300
7301 count2 = 0;
7302 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7303 if (isym->st_shndx == shndx2)
7304 symtable2[count2++].u.isym = isym;
7305
7306 if (count1 == 0 || count2 == 0 || count1 != count2)
7307 goto done;
7308
7309 for (i = 0; i < count1; i++)
7310 symtable1[i].name
7311 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7312 symtable1[i].u.isym->st_name);
7313
7314 for (i = 0; i < count2; i++)
7315 symtable2[i].name
7316 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7317 symtable2[i].u.isym->st_name);
7318
7319 /* Sort symbol by name. */
7320 qsort (symtable1, count1, sizeof (struct elf_symbol),
7321 elf_sym_name_compare);
7322 qsort (symtable2, count1, sizeof (struct elf_symbol),
7323 elf_sym_name_compare);
7324
7325 for (i = 0; i < count1; i++)
7326 /* Two symbols must have the same binding, type and name. */
7327 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7328 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7329 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7330 goto done;
7331
7332 result = TRUE;
7333
7334 done:
7335 if (symtable1)
7336 free (symtable1);
7337 if (symtable2)
7338 free (symtable2);
7339 if (isymbuf1)
7340 free (isymbuf1);
7341 if (isymbuf2)
7342 free (isymbuf2);
7343
7344 return result;
7345 }
7346
7347 /* Return TRUE if 2 section types are compatible. */
7348
7349 bfd_boolean
7350 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7351 bfd *bbfd, const asection *bsec)
7352 {
7353 if (asec == NULL
7354 || bsec == NULL
7355 || abfd->xvec->flavour != bfd_target_elf_flavour
7356 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7357 return TRUE;
7358
7359 return elf_section_type (asec) == elf_section_type (bsec);
7360 }
7361 \f
7362 /* Final phase of ELF linker. */
7363
7364 /* A structure we use to avoid passing large numbers of arguments. */
7365
7366 struct elf_final_link_info
7367 {
7368 /* General link information. */
7369 struct bfd_link_info *info;
7370 /* Output BFD. */
7371 bfd *output_bfd;
7372 /* Symbol string table. */
7373 struct bfd_strtab_hash *symstrtab;
7374 /* .dynsym section. */
7375 asection *dynsym_sec;
7376 /* .hash section. */
7377 asection *hash_sec;
7378 /* symbol version section (.gnu.version). */
7379 asection *symver_sec;
7380 /* Buffer large enough to hold contents of any section. */
7381 bfd_byte *contents;
7382 /* Buffer large enough to hold external relocs of any section. */
7383 void *external_relocs;
7384 /* Buffer large enough to hold internal relocs of any section. */
7385 Elf_Internal_Rela *internal_relocs;
7386 /* Buffer large enough to hold external local symbols of any input
7387 BFD. */
7388 bfd_byte *external_syms;
7389 /* And a buffer for symbol section indices. */
7390 Elf_External_Sym_Shndx *locsym_shndx;
7391 /* Buffer large enough to hold internal local symbols of any input
7392 BFD. */
7393 Elf_Internal_Sym *internal_syms;
7394 /* Array large enough to hold a symbol index for each local symbol
7395 of any input BFD. */
7396 long *indices;
7397 /* Array large enough to hold a section pointer for each local
7398 symbol of any input BFD. */
7399 asection **sections;
7400 /* Buffer to hold swapped out symbols. */
7401 bfd_byte *symbuf;
7402 /* And one for symbol section indices. */
7403 Elf_External_Sym_Shndx *symshndxbuf;
7404 /* Number of swapped out symbols in buffer. */
7405 size_t symbuf_count;
7406 /* Number of symbols which fit in symbuf. */
7407 size_t symbuf_size;
7408 /* And same for symshndxbuf. */
7409 size_t shndxbuf_size;
7410 };
7411
7412 /* This struct is used to pass information to elf_link_output_extsym. */
7413
7414 struct elf_outext_info
7415 {
7416 bfd_boolean failed;
7417 bfd_boolean localsyms;
7418 struct elf_final_link_info *finfo;
7419 };
7420
7421
7422 /* Support for evaluating a complex relocation.
7423
7424 Complex relocations are generalized, self-describing relocations. The
7425 implementation of them consists of two parts: complex symbols, and the
7426 relocations themselves.
7427
7428 The relocations are use a reserved elf-wide relocation type code (R_RELC
7429 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7430 information (start bit, end bit, word width, etc) into the addend. This
7431 information is extracted from CGEN-generated operand tables within gas.
7432
7433 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7434 internal) representing prefix-notation expressions, including but not
7435 limited to those sorts of expressions normally encoded as addends in the
7436 addend field. The symbol mangling format is:
7437
7438 <node> := <literal>
7439 | <unary-operator> ':' <node>
7440 | <binary-operator> ':' <node> ':' <node>
7441 ;
7442
7443 <literal> := 's' <digits=N> ':' <N character symbol name>
7444 | 'S' <digits=N> ':' <N character section name>
7445 | '#' <hexdigits>
7446 ;
7447
7448 <binary-operator> := as in C
7449 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7450
7451 static void
7452 set_symbol_value (bfd *bfd_with_globals,
7453 Elf_Internal_Sym *isymbuf,
7454 size_t locsymcount,
7455 size_t symidx,
7456 bfd_vma val)
7457 {
7458 struct elf_link_hash_entry **sym_hashes;
7459 struct elf_link_hash_entry *h;
7460 size_t extsymoff = locsymcount;
7461
7462 if (symidx < locsymcount)
7463 {
7464 Elf_Internal_Sym *sym;
7465
7466 sym = isymbuf + symidx;
7467 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7468 {
7469 /* It is a local symbol: move it to the
7470 "absolute" section and give it a value. */
7471 sym->st_shndx = SHN_ABS;
7472 sym->st_value = val;
7473 return;
7474 }
7475 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7476 extsymoff = 0;
7477 }
7478
7479 /* It is a global symbol: set its link type
7480 to "defined" and give it a value. */
7481
7482 sym_hashes = elf_sym_hashes (bfd_with_globals);
7483 h = sym_hashes [symidx - extsymoff];
7484 while (h->root.type == bfd_link_hash_indirect
7485 || h->root.type == bfd_link_hash_warning)
7486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7487 h->root.type = bfd_link_hash_defined;
7488 h->root.u.def.value = val;
7489 h->root.u.def.section = bfd_abs_section_ptr;
7490 }
7491
7492 static bfd_boolean
7493 resolve_symbol (const char *name,
7494 bfd *input_bfd,
7495 struct elf_final_link_info *finfo,
7496 bfd_vma *result,
7497 Elf_Internal_Sym *isymbuf,
7498 size_t locsymcount)
7499 {
7500 Elf_Internal_Sym *sym;
7501 struct bfd_link_hash_entry *global_entry;
7502 const char *candidate = NULL;
7503 Elf_Internal_Shdr *symtab_hdr;
7504 size_t i;
7505
7506 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7507
7508 for (i = 0; i < locsymcount; ++ i)
7509 {
7510 sym = isymbuf + i;
7511
7512 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7513 continue;
7514
7515 candidate = bfd_elf_string_from_elf_section (input_bfd,
7516 symtab_hdr->sh_link,
7517 sym->st_name);
7518 #ifdef DEBUG
7519 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7520 name, candidate, (unsigned long) sym->st_value);
7521 #endif
7522 if (candidate && strcmp (candidate, name) == 0)
7523 {
7524 asection *sec = finfo->sections [i];
7525
7526 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7527 *result += sec->output_offset + sec->output_section->vma;
7528 #ifdef DEBUG
7529 printf ("Found symbol with value %8.8lx\n",
7530 (unsigned long) *result);
7531 #endif
7532 return TRUE;
7533 }
7534 }
7535
7536 /* Hmm, haven't found it yet. perhaps it is a global. */
7537 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7538 FALSE, FALSE, TRUE);
7539 if (!global_entry)
7540 return FALSE;
7541
7542 if (global_entry->type == bfd_link_hash_defined
7543 || global_entry->type == bfd_link_hash_defweak)
7544 {
7545 *result = (global_entry->u.def.value
7546 + global_entry->u.def.section->output_section->vma
7547 + global_entry->u.def.section->output_offset);
7548 #ifdef DEBUG
7549 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7550 global_entry->root.string, (unsigned long) *result);
7551 #endif
7552 return TRUE;
7553 }
7554
7555 return FALSE;
7556 }
7557
7558 static bfd_boolean
7559 resolve_section (const char *name,
7560 asection *sections,
7561 bfd_vma *result)
7562 {
7563 asection *curr;
7564 unsigned int len;
7565
7566 for (curr = sections; curr; curr = curr->next)
7567 if (strcmp (curr->name, name) == 0)
7568 {
7569 *result = curr->vma;
7570 return TRUE;
7571 }
7572
7573 /* Hmm. still haven't found it. try pseudo-section names. */
7574 for (curr = sections; curr; curr = curr->next)
7575 {
7576 len = strlen (curr->name);
7577 if (len > strlen (name))
7578 continue;
7579
7580 if (strncmp (curr->name, name, len) == 0)
7581 {
7582 if (strncmp (".end", name + len, 4) == 0)
7583 {
7584 *result = curr->vma + curr->size;
7585 return TRUE;
7586 }
7587
7588 /* Insert more pseudo-section names here, if you like. */
7589 }
7590 }
7591
7592 return FALSE;
7593 }
7594
7595 static void
7596 undefined_reference (const char *reftype, const char *name)
7597 {
7598 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7599 reftype, name);
7600 }
7601
7602 static bfd_boolean
7603 eval_symbol (bfd_vma *result,
7604 const char **symp,
7605 bfd *input_bfd,
7606 struct elf_final_link_info *finfo,
7607 bfd_vma dot,
7608 Elf_Internal_Sym *isymbuf,
7609 size_t locsymcount,
7610 int signed_p)
7611 {
7612 size_t len;
7613 size_t symlen;
7614 bfd_vma a;
7615 bfd_vma b;
7616 char symbuf[4096];
7617 const char *sym = *symp;
7618 const char *symend;
7619 bfd_boolean symbol_is_section = FALSE;
7620
7621 len = strlen (sym);
7622 symend = sym + len;
7623
7624 if (len < 1 || len > sizeof (symbuf))
7625 {
7626 bfd_set_error (bfd_error_invalid_operation);
7627 return FALSE;
7628 }
7629
7630 switch (* sym)
7631 {
7632 case '.':
7633 *result = dot;
7634 *symp = sym + 1;
7635 return TRUE;
7636
7637 case '#':
7638 ++sym;
7639 *result = strtoul (sym, (char **) symp, 16);
7640 return TRUE;
7641
7642 case 'S':
7643 symbol_is_section = TRUE;
7644 case 's':
7645 ++sym;
7646 symlen = strtol (sym, (char **) symp, 10);
7647 sym = *symp + 1; /* Skip the trailing ':'. */
7648
7649 if (symend < sym || symlen + 1 > sizeof (symbuf))
7650 {
7651 bfd_set_error (bfd_error_invalid_operation);
7652 return FALSE;
7653 }
7654
7655 memcpy (symbuf, sym, symlen);
7656 symbuf[symlen] = '\0';
7657 *symp = sym + symlen;
7658
7659 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7660 the symbol as a section, or vice-versa. so we're pretty liberal in our
7661 interpretation here; section means "try section first", not "must be a
7662 section", and likewise with symbol. */
7663
7664 if (symbol_is_section)
7665 {
7666 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7667 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7668 isymbuf, locsymcount))
7669 {
7670 undefined_reference ("section", symbuf);
7671 return FALSE;
7672 }
7673 }
7674 else
7675 {
7676 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7677 isymbuf, locsymcount)
7678 && !resolve_section (symbuf, finfo->output_bfd->sections,
7679 result))
7680 {
7681 undefined_reference ("symbol", symbuf);
7682 return FALSE;
7683 }
7684 }
7685
7686 return TRUE;
7687
7688 /* All that remains are operators. */
7689
7690 #define UNARY_OP(op) \
7691 if (strncmp (sym, #op, strlen (#op)) == 0) \
7692 { \
7693 sym += strlen (#op); \
7694 if (*sym == ':') \
7695 ++sym; \
7696 *symp = sym; \
7697 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7698 isymbuf, locsymcount, signed_p)) \
7699 return FALSE; \
7700 if (signed_p) \
7701 *result = op ((bfd_signed_vma) a); \
7702 else \
7703 *result = op a; \
7704 return TRUE; \
7705 }
7706
7707 #define BINARY_OP(op) \
7708 if (strncmp (sym, #op, strlen (#op)) == 0) \
7709 { \
7710 sym += strlen (#op); \
7711 if (*sym == ':') \
7712 ++sym; \
7713 *symp = sym; \
7714 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7715 isymbuf, locsymcount, signed_p)) \
7716 return FALSE; \
7717 ++*symp; \
7718 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7719 isymbuf, locsymcount, signed_p)) \
7720 return FALSE; \
7721 if (signed_p) \
7722 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7723 else \
7724 *result = a op b; \
7725 return TRUE; \
7726 }
7727
7728 default:
7729 UNARY_OP (0-);
7730 BINARY_OP (<<);
7731 BINARY_OP (>>);
7732 BINARY_OP (==);
7733 BINARY_OP (!=);
7734 BINARY_OP (<=);
7735 BINARY_OP (>=);
7736 BINARY_OP (&&);
7737 BINARY_OP (||);
7738 UNARY_OP (~);
7739 UNARY_OP (!);
7740 BINARY_OP (*);
7741 BINARY_OP (/);
7742 BINARY_OP (%);
7743 BINARY_OP (^);
7744 BINARY_OP (|);
7745 BINARY_OP (&);
7746 BINARY_OP (+);
7747 BINARY_OP (-);
7748 BINARY_OP (<);
7749 BINARY_OP (>);
7750 #undef UNARY_OP
7751 #undef BINARY_OP
7752 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7753 bfd_set_error (bfd_error_invalid_operation);
7754 return FALSE;
7755 }
7756 }
7757
7758 static void
7759 put_value (bfd_vma size,
7760 unsigned long chunksz,
7761 bfd *input_bfd,
7762 bfd_vma x,
7763 bfd_byte *location)
7764 {
7765 location += (size - chunksz);
7766
7767 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7768 {
7769 switch (chunksz)
7770 {
7771 default:
7772 case 0:
7773 abort ();
7774 case 1:
7775 bfd_put_8 (input_bfd, x, location);
7776 break;
7777 case 2:
7778 bfd_put_16 (input_bfd, x, location);
7779 break;
7780 case 4:
7781 bfd_put_32 (input_bfd, x, location);
7782 break;
7783 case 8:
7784 #ifdef BFD64
7785 bfd_put_64 (input_bfd, x, location);
7786 #else
7787 abort ();
7788 #endif
7789 break;
7790 }
7791 }
7792 }
7793
7794 static bfd_vma
7795 get_value (bfd_vma size,
7796 unsigned long chunksz,
7797 bfd *input_bfd,
7798 bfd_byte *location)
7799 {
7800 bfd_vma x = 0;
7801
7802 for (; size; size -= chunksz, location += chunksz)
7803 {
7804 switch (chunksz)
7805 {
7806 default:
7807 case 0:
7808 abort ();
7809 case 1:
7810 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7811 break;
7812 case 2:
7813 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7814 break;
7815 case 4:
7816 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7817 break;
7818 case 8:
7819 #ifdef BFD64
7820 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7821 #else
7822 abort ();
7823 #endif
7824 break;
7825 }
7826 }
7827 return x;
7828 }
7829
7830 static void
7831 decode_complex_addend (unsigned long *start, /* in bits */
7832 unsigned long *oplen, /* in bits */
7833 unsigned long *len, /* in bits */
7834 unsigned long *wordsz, /* in bytes */
7835 unsigned long *chunksz, /* in bytes */
7836 unsigned long *lsb0_p,
7837 unsigned long *signed_p,
7838 unsigned long *trunc_p,
7839 unsigned long encoded)
7840 {
7841 * start = encoded & 0x3F;
7842 * len = (encoded >> 6) & 0x3F;
7843 * oplen = (encoded >> 12) & 0x3F;
7844 * wordsz = (encoded >> 18) & 0xF;
7845 * chunksz = (encoded >> 22) & 0xF;
7846 * lsb0_p = (encoded >> 27) & 1;
7847 * signed_p = (encoded >> 28) & 1;
7848 * trunc_p = (encoded >> 29) & 1;
7849 }
7850
7851 bfd_reloc_status_type
7852 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7853 asection *input_section ATTRIBUTE_UNUSED,
7854 bfd_byte *contents,
7855 Elf_Internal_Rela *rel,
7856 bfd_vma relocation)
7857 {
7858 bfd_vma shift, x, mask;
7859 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7860 bfd_reloc_status_type r;
7861
7862 /* Perform this reloc, since it is complex.
7863 (this is not to say that it necessarily refers to a complex
7864 symbol; merely that it is a self-describing CGEN based reloc.
7865 i.e. the addend has the complete reloc information (bit start, end,
7866 word size, etc) encoded within it.). */
7867
7868 decode_complex_addend (&start, &oplen, &len, &wordsz,
7869 &chunksz, &lsb0_p, &signed_p,
7870 &trunc_p, rel->r_addend);
7871
7872 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7873
7874 if (lsb0_p)
7875 shift = (start + 1) - len;
7876 else
7877 shift = (8 * wordsz) - (start + len);
7878
7879 /* FIXME: octets_per_byte. */
7880 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7881
7882 #ifdef DEBUG
7883 printf ("Doing complex reloc: "
7884 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7885 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7886 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7887 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7888 oplen, (unsigned long) x, (unsigned long) mask,
7889 (unsigned long) relocation);
7890 #endif
7891
7892 r = bfd_reloc_ok;
7893 if (! trunc_p)
7894 /* Now do an overflow check. */
7895 r = bfd_check_overflow ((signed_p
7896 ? complain_overflow_signed
7897 : complain_overflow_unsigned),
7898 len, 0, (8 * wordsz),
7899 relocation);
7900
7901 /* Do the deed. */
7902 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7903
7904 #ifdef DEBUG
7905 printf (" relocation: %8.8lx\n"
7906 " shifted mask: %8.8lx\n"
7907 " shifted/masked reloc: %8.8lx\n"
7908 " result: %8.8lx\n",
7909 (unsigned long) relocation, (unsigned long) (mask << shift),
7910 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7911 #endif
7912 /* FIXME: octets_per_byte. */
7913 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7914 return r;
7915 }
7916
7917 /* When performing a relocatable link, the input relocations are
7918 preserved. But, if they reference global symbols, the indices
7919 referenced must be updated. Update all the relocations found in
7920 RELDATA. */
7921
7922 static void
7923 elf_link_adjust_relocs (bfd *abfd,
7924 struct bfd_elf_section_reloc_data *reldata)
7925 {
7926 unsigned int i;
7927 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7928 bfd_byte *erela;
7929 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7930 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7931 bfd_vma r_type_mask;
7932 int r_sym_shift;
7933 unsigned int count = reldata->count;
7934 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7935
7936 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7937 {
7938 swap_in = bed->s->swap_reloc_in;
7939 swap_out = bed->s->swap_reloc_out;
7940 }
7941 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7942 {
7943 swap_in = bed->s->swap_reloca_in;
7944 swap_out = bed->s->swap_reloca_out;
7945 }
7946 else
7947 abort ();
7948
7949 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7950 abort ();
7951
7952 if (bed->s->arch_size == 32)
7953 {
7954 r_type_mask = 0xff;
7955 r_sym_shift = 8;
7956 }
7957 else
7958 {
7959 r_type_mask = 0xffffffff;
7960 r_sym_shift = 32;
7961 }
7962
7963 erela = reldata->hdr->contents;
7964 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7965 {
7966 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7967 unsigned int j;
7968
7969 if (*rel_hash == NULL)
7970 continue;
7971
7972 BFD_ASSERT ((*rel_hash)->indx >= 0);
7973
7974 (*swap_in) (abfd, erela, irela);
7975 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7976 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7977 | (irela[j].r_info & r_type_mask));
7978 (*swap_out) (abfd, irela, erela);
7979 }
7980 }
7981
7982 struct elf_link_sort_rela
7983 {
7984 union {
7985 bfd_vma offset;
7986 bfd_vma sym_mask;
7987 } u;
7988 enum elf_reloc_type_class type;
7989 /* We use this as an array of size int_rels_per_ext_rel. */
7990 Elf_Internal_Rela rela[1];
7991 };
7992
7993 static int
7994 elf_link_sort_cmp1 (const void *A, const void *B)
7995 {
7996 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7997 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7998 int relativea, relativeb;
7999
8000 relativea = a->type == reloc_class_relative;
8001 relativeb = b->type == reloc_class_relative;
8002
8003 if (relativea < relativeb)
8004 return 1;
8005 if (relativea > relativeb)
8006 return -1;
8007 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8008 return -1;
8009 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8010 return 1;
8011 if (a->rela->r_offset < b->rela->r_offset)
8012 return -1;
8013 if (a->rela->r_offset > b->rela->r_offset)
8014 return 1;
8015 return 0;
8016 }
8017
8018 static int
8019 elf_link_sort_cmp2 (const void *A, const void *B)
8020 {
8021 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8022 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8023 int copya, copyb;
8024
8025 if (a->u.offset < b->u.offset)
8026 return -1;
8027 if (a->u.offset > b->u.offset)
8028 return 1;
8029 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8030 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8031 if (copya < copyb)
8032 return -1;
8033 if (copya > copyb)
8034 return 1;
8035 if (a->rela->r_offset < b->rela->r_offset)
8036 return -1;
8037 if (a->rela->r_offset > b->rela->r_offset)
8038 return 1;
8039 return 0;
8040 }
8041
8042 static size_t
8043 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8044 {
8045 asection *dynamic_relocs;
8046 asection *rela_dyn;
8047 asection *rel_dyn;
8048 bfd_size_type count, size;
8049 size_t i, ret, sort_elt, ext_size;
8050 bfd_byte *sort, *s_non_relative, *p;
8051 struct elf_link_sort_rela *sq;
8052 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8053 int i2e = bed->s->int_rels_per_ext_rel;
8054 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8055 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8056 struct bfd_link_order *lo;
8057 bfd_vma r_sym_mask;
8058 bfd_boolean use_rela;
8059
8060 /* Find a dynamic reloc section. */
8061 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8062 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8063 if (rela_dyn != NULL && rela_dyn->size > 0
8064 && rel_dyn != NULL && rel_dyn->size > 0)
8065 {
8066 bfd_boolean use_rela_initialised = FALSE;
8067
8068 /* This is just here to stop gcc from complaining.
8069 It's initialization checking code is not perfect. */
8070 use_rela = TRUE;
8071
8072 /* Both sections are present. Examine the sizes
8073 of the indirect sections to help us choose. */
8074 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8075 if (lo->type == bfd_indirect_link_order)
8076 {
8077 asection *o = lo->u.indirect.section;
8078
8079 if ((o->size % bed->s->sizeof_rela) == 0)
8080 {
8081 if ((o->size % bed->s->sizeof_rel) == 0)
8082 /* Section size is divisible by both rel and rela sizes.
8083 It is of no help to us. */
8084 ;
8085 else
8086 {
8087 /* Section size is only divisible by rela. */
8088 if (use_rela_initialised && (use_rela == FALSE))
8089 {
8090 _bfd_error_handler
8091 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8092 bfd_set_error (bfd_error_invalid_operation);
8093 return 0;
8094 }
8095 else
8096 {
8097 use_rela = TRUE;
8098 use_rela_initialised = TRUE;
8099 }
8100 }
8101 }
8102 else if ((o->size % bed->s->sizeof_rel) == 0)
8103 {
8104 /* Section size is only divisible by rel. */
8105 if (use_rela_initialised && (use_rela == TRUE))
8106 {
8107 _bfd_error_handler
8108 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8109 bfd_set_error (bfd_error_invalid_operation);
8110 return 0;
8111 }
8112 else
8113 {
8114 use_rela = FALSE;
8115 use_rela_initialised = TRUE;
8116 }
8117 }
8118 else
8119 {
8120 /* The section size is not divisible by either - something is wrong. */
8121 _bfd_error_handler
8122 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8123 bfd_set_error (bfd_error_invalid_operation);
8124 return 0;
8125 }
8126 }
8127
8128 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8129 if (lo->type == bfd_indirect_link_order)
8130 {
8131 asection *o = lo->u.indirect.section;
8132
8133 if ((o->size % bed->s->sizeof_rela) == 0)
8134 {
8135 if ((o->size % bed->s->sizeof_rel) == 0)
8136 /* Section size is divisible by both rel and rela sizes.
8137 It is of no help to us. */
8138 ;
8139 else
8140 {
8141 /* Section size is only divisible by rela. */
8142 if (use_rela_initialised && (use_rela == FALSE))
8143 {
8144 _bfd_error_handler
8145 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8146 bfd_set_error (bfd_error_invalid_operation);
8147 return 0;
8148 }
8149 else
8150 {
8151 use_rela = TRUE;
8152 use_rela_initialised = TRUE;
8153 }
8154 }
8155 }
8156 else if ((o->size % bed->s->sizeof_rel) == 0)
8157 {
8158 /* Section size is only divisible by rel. */
8159 if (use_rela_initialised && (use_rela == TRUE))
8160 {
8161 _bfd_error_handler
8162 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8163 bfd_set_error (bfd_error_invalid_operation);
8164 return 0;
8165 }
8166 else
8167 {
8168 use_rela = FALSE;
8169 use_rela_initialised = TRUE;
8170 }
8171 }
8172 else
8173 {
8174 /* The section size is not divisible by either - something is wrong. */
8175 _bfd_error_handler
8176 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8177 bfd_set_error (bfd_error_invalid_operation);
8178 return 0;
8179 }
8180 }
8181
8182 if (! use_rela_initialised)
8183 /* Make a guess. */
8184 use_rela = TRUE;
8185 }
8186 else if (rela_dyn != NULL && rela_dyn->size > 0)
8187 use_rela = TRUE;
8188 else if (rel_dyn != NULL && rel_dyn->size > 0)
8189 use_rela = FALSE;
8190 else
8191 return 0;
8192
8193 if (use_rela)
8194 {
8195 dynamic_relocs = rela_dyn;
8196 ext_size = bed->s->sizeof_rela;
8197 swap_in = bed->s->swap_reloca_in;
8198 swap_out = bed->s->swap_reloca_out;
8199 }
8200 else
8201 {
8202 dynamic_relocs = rel_dyn;
8203 ext_size = bed->s->sizeof_rel;
8204 swap_in = bed->s->swap_reloc_in;
8205 swap_out = bed->s->swap_reloc_out;
8206 }
8207
8208 size = 0;
8209 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8210 if (lo->type == bfd_indirect_link_order)
8211 size += lo->u.indirect.section->size;
8212
8213 if (size != dynamic_relocs->size)
8214 return 0;
8215
8216 sort_elt = (sizeof (struct elf_link_sort_rela)
8217 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8218
8219 count = dynamic_relocs->size / ext_size;
8220 if (count == 0)
8221 return 0;
8222 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8223
8224 if (sort == NULL)
8225 {
8226 (*info->callbacks->warning)
8227 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8228 return 0;
8229 }
8230
8231 if (bed->s->arch_size == 32)
8232 r_sym_mask = ~(bfd_vma) 0xff;
8233 else
8234 r_sym_mask = ~(bfd_vma) 0xffffffff;
8235
8236 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8237 if (lo->type == bfd_indirect_link_order)
8238 {
8239 bfd_byte *erel, *erelend;
8240 asection *o = lo->u.indirect.section;
8241
8242 if (o->contents == NULL && o->size != 0)
8243 {
8244 /* This is a reloc section that is being handled as a normal
8245 section. See bfd_section_from_shdr. We can't combine
8246 relocs in this case. */
8247 free (sort);
8248 return 0;
8249 }
8250 erel = o->contents;
8251 erelend = o->contents + o->size;
8252 /* FIXME: octets_per_byte. */
8253 p = sort + o->output_offset / ext_size * sort_elt;
8254
8255 while (erel < erelend)
8256 {
8257 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8258
8259 (*swap_in) (abfd, erel, s->rela);
8260 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8261 s->u.sym_mask = r_sym_mask;
8262 p += sort_elt;
8263 erel += ext_size;
8264 }
8265 }
8266
8267 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8268
8269 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8270 {
8271 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8272 if (s->type != reloc_class_relative)
8273 break;
8274 }
8275 ret = i;
8276 s_non_relative = p;
8277
8278 sq = (struct elf_link_sort_rela *) s_non_relative;
8279 for (; i < count; i++, p += sort_elt)
8280 {
8281 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8282 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8283 sq = sp;
8284 sp->u.offset = sq->rela->r_offset;
8285 }
8286
8287 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8288
8289 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8290 if (lo->type == bfd_indirect_link_order)
8291 {
8292 bfd_byte *erel, *erelend;
8293 asection *o = lo->u.indirect.section;
8294
8295 erel = o->contents;
8296 erelend = o->contents + o->size;
8297 /* FIXME: octets_per_byte. */
8298 p = sort + o->output_offset / ext_size * sort_elt;
8299 while (erel < erelend)
8300 {
8301 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8302 (*swap_out) (abfd, s->rela, erel);
8303 p += sort_elt;
8304 erel += ext_size;
8305 }
8306 }
8307
8308 free (sort);
8309 *psec = dynamic_relocs;
8310 return ret;
8311 }
8312
8313 /* Flush the output symbols to the file. */
8314
8315 static bfd_boolean
8316 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8317 const struct elf_backend_data *bed)
8318 {
8319 if (finfo->symbuf_count > 0)
8320 {
8321 Elf_Internal_Shdr *hdr;
8322 file_ptr pos;
8323 bfd_size_type amt;
8324
8325 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8326 pos = hdr->sh_offset + hdr->sh_size;
8327 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8328 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8329 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8330 return FALSE;
8331
8332 hdr->sh_size += amt;
8333 finfo->symbuf_count = 0;
8334 }
8335
8336 return TRUE;
8337 }
8338
8339 /* Add a symbol to the output symbol table. */
8340
8341 static int
8342 elf_link_output_sym (struct elf_final_link_info *finfo,
8343 const char *name,
8344 Elf_Internal_Sym *elfsym,
8345 asection *input_sec,
8346 struct elf_link_hash_entry *h)
8347 {
8348 bfd_byte *dest;
8349 Elf_External_Sym_Shndx *destshndx;
8350 int (*output_symbol_hook)
8351 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8352 struct elf_link_hash_entry *);
8353 const struct elf_backend_data *bed;
8354
8355 bed = get_elf_backend_data (finfo->output_bfd);
8356 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8357 if (output_symbol_hook != NULL)
8358 {
8359 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8360 if (ret != 1)
8361 return ret;
8362 }
8363
8364 if (name == NULL || *name == '\0')
8365 elfsym->st_name = 0;
8366 else if (input_sec->flags & SEC_EXCLUDE)
8367 elfsym->st_name = 0;
8368 else
8369 {
8370 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8371 name, TRUE, FALSE);
8372 if (elfsym->st_name == (unsigned long) -1)
8373 return 0;
8374 }
8375
8376 if (finfo->symbuf_count >= finfo->symbuf_size)
8377 {
8378 if (! elf_link_flush_output_syms (finfo, bed))
8379 return 0;
8380 }
8381
8382 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8383 destshndx = finfo->symshndxbuf;
8384 if (destshndx != NULL)
8385 {
8386 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8387 {
8388 bfd_size_type amt;
8389
8390 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8391 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8392 amt * 2);
8393 if (destshndx == NULL)
8394 return 0;
8395 finfo->symshndxbuf = destshndx;
8396 memset ((char *) destshndx + amt, 0, amt);
8397 finfo->shndxbuf_size *= 2;
8398 }
8399 destshndx += bfd_get_symcount (finfo->output_bfd);
8400 }
8401
8402 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8403 finfo->symbuf_count += 1;
8404 bfd_get_symcount (finfo->output_bfd) += 1;
8405
8406 return 1;
8407 }
8408
8409 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8410
8411 static bfd_boolean
8412 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8413 {
8414 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8415 && sym->st_shndx < SHN_LORESERVE)
8416 {
8417 /* The gABI doesn't support dynamic symbols in output sections
8418 beyond 64k. */
8419 (*_bfd_error_handler)
8420 (_("%B: Too many sections: %d (>= %d)"),
8421 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8422 bfd_set_error (bfd_error_nonrepresentable_section);
8423 return FALSE;
8424 }
8425 return TRUE;
8426 }
8427
8428 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8429 allowing an unsatisfied unversioned symbol in the DSO to match a
8430 versioned symbol that would normally require an explicit version.
8431 We also handle the case that a DSO references a hidden symbol
8432 which may be satisfied by a versioned symbol in another DSO. */
8433
8434 static bfd_boolean
8435 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8436 const struct elf_backend_data *bed,
8437 struct elf_link_hash_entry *h)
8438 {
8439 bfd *abfd;
8440 struct elf_link_loaded_list *loaded;
8441
8442 if (!is_elf_hash_table (info->hash))
8443 return FALSE;
8444
8445 switch (h->root.type)
8446 {
8447 default:
8448 abfd = NULL;
8449 break;
8450
8451 case bfd_link_hash_undefined:
8452 case bfd_link_hash_undefweak:
8453 abfd = h->root.u.undef.abfd;
8454 if ((abfd->flags & DYNAMIC) == 0
8455 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8456 return FALSE;
8457 break;
8458
8459 case bfd_link_hash_defined:
8460 case bfd_link_hash_defweak:
8461 abfd = h->root.u.def.section->owner;
8462 break;
8463
8464 case bfd_link_hash_common:
8465 abfd = h->root.u.c.p->section->owner;
8466 break;
8467 }
8468 BFD_ASSERT (abfd != NULL);
8469
8470 for (loaded = elf_hash_table (info)->loaded;
8471 loaded != NULL;
8472 loaded = loaded->next)
8473 {
8474 bfd *input;
8475 Elf_Internal_Shdr *hdr;
8476 bfd_size_type symcount;
8477 bfd_size_type extsymcount;
8478 bfd_size_type extsymoff;
8479 Elf_Internal_Shdr *versymhdr;
8480 Elf_Internal_Sym *isym;
8481 Elf_Internal_Sym *isymend;
8482 Elf_Internal_Sym *isymbuf;
8483 Elf_External_Versym *ever;
8484 Elf_External_Versym *extversym;
8485
8486 input = loaded->abfd;
8487
8488 /* We check each DSO for a possible hidden versioned definition. */
8489 if (input == abfd
8490 || (input->flags & DYNAMIC) == 0
8491 || elf_dynversym (input) == 0)
8492 continue;
8493
8494 hdr = &elf_tdata (input)->dynsymtab_hdr;
8495
8496 symcount = hdr->sh_size / bed->s->sizeof_sym;
8497 if (elf_bad_symtab (input))
8498 {
8499 extsymcount = symcount;
8500 extsymoff = 0;
8501 }
8502 else
8503 {
8504 extsymcount = symcount - hdr->sh_info;
8505 extsymoff = hdr->sh_info;
8506 }
8507
8508 if (extsymcount == 0)
8509 continue;
8510
8511 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8512 NULL, NULL, NULL);
8513 if (isymbuf == NULL)
8514 return FALSE;
8515
8516 /* Read in any version definitions. */
8517 versymhdr = &elf_tdata (input)->dynversym_hdr;
8518 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8519 if (extversym == NULL)
8520 goto error_ret;
8521
8522 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8523 || (bfd_bread (extversym, versymhdr->sh_size, input)
8524 != versymhdr->sh_size))
8525 {
8526 free (extversym);
8527 error_ret:
8528 free (isymbuf);
8529 return FALSE;
8530 }
8531
8532 ever = extversym + extsymoff;
8533 isymend = isymbuf + extsymcount;
8534 for (isym = isymbuf; isym < isymend; isym++, ever++)
8535 {
8536 const char *name;
8537 Elf_Internal_Versym iver;
8538 unsigned short version_index;
8539
8540 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8541 || isym->st_shndx == SHN_UNDEF)
8542 continue;
8543
8544 name = bfd_elf_string_from_elf_section (input,
8545 hdr->sh_link,
8546 isym->st_name);
8547 if (strcmp (name, h->root.root.string) != 0)
8548 continue;
8549
8550 _bfd_elf_swap_versym_in (input, ever, &iver);
8551
8552 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8553 && !(h->def_regular
8554 && h->forced_local))
8555 {
8556 /* If we have a non-hidden versioned sym, then it should
8557 have provided a definition for the undefined sym unless
8558 it is defined in a non-shared object and forced local.
8559 */
8560 abort ();
8561 }
8562
8563 version_index = iver.vs_vers & VERSYM_VERSION;
8564 if (version_index == 1 || version_index == 2)
8565 {
8566 /* This is the base or first version. We can use it. */
8567 free (extversym);
8568 free (isymbuf);
8569 return TRUE;
8570 }
8571 }
8572
8573 free (extversym);
8574 free (isymbuf);
8575 }
8576
8577 return FALSE;
8578 }
8579
8580 /* Add an external symbol to the symbol table. This is called from
8581 the hash table traversal routine. When generating a shared object,
8582 we go through the symbol table twice. The first time we output
8583 anything that might have been forced to local scope in a version
8584 script. The second time we output the symbols that are still
8585 global symbols. */
8586
8587 static bfd_boolean
8588 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8589 {
8590 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8591 struct elf_final_link_info *finfo = eoinfo->finfo;
8592 bfd_boolean strip;
8593 Elf_Internal_Sym sym;
8594 asection *input_sec;
8595 const struct elf_backend_data *bed;
8596 long indx;
8597 int ret;
8598
8599 if (h->root.type == bfd_link_hash_warning)
8600 {
8601 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8602 if (h->root.type == bfd_link_hash_new)
8603 return TRUE;
8604 }
8605
8606 /* Decide whether to output this symbol in this pass. */
8607 if (eoinfo->localsyms)
8608 {
8609 if (!h->forced_local)
8610 return TRUE;
8611 }
8612 else
8613 {
8614 if (h->forced_local)
8615 return TRUE;
8616 }
8617
8618 bed = get_elf_backend_data (finfo->output_bfd);
8619
8620 if (h->root.type == bfd_link_hash_undefined)
8621 {
8622 /* If we have an undefined symbol reference here then it must have
8623 come from a shared library that is being linked in. (Undefined
8624 references in regular files have already been handled unless
8625 they are in unreferenced sections which are removed by garbage
8626 collection). */
8627 bfd_boolean ignore_undef = FALSE;
8628
8629 /* Some symbols may be special in that the fact that they're
8630 undefined can be safely ignored - let backend determine that. */
8631 if (bed->elf_backend_ignore_undef_symbol)
8632 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8633
8634 /* If we are reporting errors for this situation then do so now. */
8635 if (!ignore_undef
8636 && h->ref_dynamic
8637 && (!h->ref_regular || finfo->info->gc_sections)
8638 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8639 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8640 {
8641 if (! (finfo->info->callbacks->undefined_symbol
8642 (finfo->info, h->root.root.string,
8643 h->ref_regular ? NULL : h->root.u.undef.abfd,
8644 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8645 {
8646 bfd_set_error (bfd_error_bad_value);
8647 eoinfo->failed = TRUE;
8648 return FALSE;
8649 }
8650 }
8651 }
8652
8653 /* We should also warn if a forced local symbol is referenced from
8654 shared libraries. */
8655 if (! finfo->info->relocatable
8656 && (! finfo->info->shared)
8657 && h->forced_local
8658 && h->ref_dynamic
8659 && !h->dynamic_def
8660 && !h->dynamic_weak
8661 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8662 {
8663 bfd *def_bfd;
8664 const char *msg;
8665
8666 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8667 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8668 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8669 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8670 else
8671 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8672 def_bfd = finfo->output_bfd;
8673 if (h->root.u.def.section != bfd_abs_section_ptr)
8674 def_bfd = h->root.u.def.section->owner;
8675 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8676 h->root.root.string);
8677 bfd_set_error (bfd_error_bad_value);
8678 eoinfo->failed = TRUE;
8679 return FALSE;
8680 }
8681
8682 /* We don't want to output symbols that have never been mentioned by
8683 a regular file, or that we have been told to strip. However, if
8684 h->indx is set to -2, the symbol is used by a reloc and we must
8685 output it. */
8686 if (h->indx == -2)
8687 strip = FALSE;
8688 else if ((h->def_dynamic
8689 || h->ref_dynamic
8690 || h->root.type == bfd_link_hash_new)
8691 && !h->def_regular
8692 && !h->ref_regular)
8693 strip = TRUE;
8694 else if (finfo->info->strip == strip_all)
8695 strip = TRUE;
8696 else if (finfo->info->strip == strip_some
8697 && bfd_hash_lookup (finfo->info->keep_hash,
8698 h->root.root.string, FALSE, FALSE) == NULL)
8699 strip = TRUE;
8700 else if (finfo->info->strip_discarded
8701 && (h->root.type == bfd_link_hash_defined
8702 || h->root.type == bfd_link_hash_defweak)
8703 && elf_discarded_section (h->root.u.def.section))
8704 strip = TRUE;
8705 else
8706 strip = FALSE;
8707
8708 /* If we're stripping it, and it's not a dynamic symbol, there's
8709 nothing else to do unless it is a forced local symbol or a
8710 STT_GNU_IFUNC symbol. */
8711 if (strip
8712 && h->dynindx == -1
8713 && h->type != STT_GNU_IFUNC
8714 && !h->forced_local)
8715 return TRUE;
8716
8717 sym.st_value = 0;
8718 sym.st_size = h->size;
8719 sym.st_other = h->other;
8720 if (h->forced_local)
8721 {
8722 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8723 /* Turn off visibility on local symbol. */
8724 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8725 }
8726 else if (h->unique_global)
8727 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8728 else if (h->root.type == bfd_link_hash_undefweak
8729 || h->root.type == bfd_link_hash_defweak)
8730 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8731 else
8732 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8733
8734 switch (h->root.type)
8735 {
8736 default:
8737 case bfd_link_hash_new:
8738 case bfd_link_hash_warning:
8739 abort ();
8740 return FALSE;
8741
8742 case bfd_link_hash_undefined:
8743 case bfd_link_hash_undefweak:
8744 input_sec = bfd_und_section_ptr;
8745 sym.st_shndx = SHN_UNDEF;
8746 break;
8747
8748 case bfd_link_hash_defined:
8749 case bfd_link_hash_defweak:
8750 {
8751 input_sec = h->root.u.def.section;
8752 if (input_sec->output_section != NULL)
8753 {
8754 sym.st_shndx =
8755 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8756 input_sec->output_section);
8757 if (sym.st_shndx == SHN_BAD)
8758 {
8759 (*_bfd_error_handler)
8760 (_("%B: could not find output section %A for input section %A"),
8761 finfo->output_bfd, input_sec->output_section, input_sec);
8762 bfd_set_error (bfd_error_nonrepresentable_section);
8763 eoinfo->failed = TRUE;
8764 return FALSE;
8765 }
8766
8767 /* ELF symbols in relocatable files are section relative,
8768 but in nonrelocatable files they are virtual
8769 addresses. */
8770 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8771 if (! finfo->info->relocatable)
8772 {
8773 sym.st_value += input_sec->output_section->vma;
8774 if (h->type == STT_TLS)
8775 {
8776 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8777 if (tls_sec != NULL)
8778 sym.st_value -= tls_sec->vma;
8779 else
8780 {
8781 /* The TLS section may have been garbage collected. */
8782 BFD_ASSERT (finfo->info->gc_sections
8783 && !input_sec->gc_mark);
8784 }
8785 }
8786 }
8787 }
8788 else
8789 {
8790 BFD_ASSERT (input_sec->owner == NULL
8791 || (input_sec->owner->flags & DYNAMIC) != 0);
8792 sym.st_shndx = SHN_UNDEF;
8793 input_sec = bfd_und_section_ptr;
8794 }
8795 }
8796 break;
8797
8798 case bfd_link_hash_common:
8799 input_sec = h->root.u.c.p->section;
8800 sym.st_shndx = bed->common_section_index (input_sec);
8801 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8802 break;
8803
8804 case bfd_link_hash_indirect:
8805 /* These symbols are created by symbol versioning. They point
8806 to the decorated version of the name. For example, if the
8807 symbol foo@@GNU_1.2 is the default, which should be used when
8808 foo is used with no version, then we add an indirect symbol
8809 foo which points to foo@@GNU_1.2. We ignore these symbols,
8810 since the indirected symbol is already in the hash table. */
8811 return TRUE;
8812 }
8813
8814 /* Give the processor backend a chance to tweak the symbol value,
8815 and also to finish up anything that needs to be done for this
8816 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8817 forced local syms when non-shared is due to a historical quirk.
8818 STT_GNU_IFUNC symbol must go through PLT. */
8819 if ((h->type == STT_GNU_IFUNC
8820 && h->def_regular
8821 && !finfo->info->relocatable)
8822 || ((h->dynindx != -1
8823 || h->forced_local)
8824 && ((finfo->info->shared
8825 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8826 || h->root.type != bfd_link_hash_undefweak))
8827 || !h->forced_local)
8828 && elf_hash_table (finfo->info)->dynamic_sections_created))
8829 {
8830 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8831 (finfo->output_bfd, finfo->info, h, &sym)))
8832 {
8833 eoinfo->failed = TRUE;
8834 return FALSE;
8835 }
8836 }
8837
8838 /* If we are marking the symbol as undefined, and there are no
8839 non-weak references to this symbol from a regular object, then
8840 mark the symbol as weak undefined; if there are non-weak
8841 references, mark the symbol as strong. We can't do this earlier,
8842 because it might not be marked as undefined until the
8843 finish_dynamic_symbol routine gets through with it. */
8844 if (sym.st_shndx == SHN_UNDEF
8845 && h->ref_regular
8846 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8847 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8848 {
8849 int bindtype;
8850 unsigned int type = ELF_ST_TYPE (sym.st_info);
8851
8852 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8853 if (type == STT_GNU_IFUNC)
8854 type = STT_FUNC;
8855
8856 if (h->ref_regular_nonweak)
8857 bindtype = STB_GLOBAL;
8858 else
8859 bindtype = STB_WEAK;
8860 sym.st_info = ELF_ST_INFO (bindtype, type);
8861 }
8862
8863 /* If this is a symbol defined in a dynamic library, don't use the
8864 symbol size from the dynamic library. Relinking an executable
8865 against a new library may introduce gratuitous changes in the
8866 executable's symbols if we keep the size. */
8867 if (sym.st_shndx == SHN_UNDEF
8868 && !h->def_regular
8869 && h->def_dynamic)
8870 sym.st_size = 0;
8871
8872 /* If a non-weak symbol with non-default visibility is not defined
8873 locally, it is a fatal error. */
8874 if (! finfo->info->relocatable
8875 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8876 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8877 && h->root.type == bfd_link_hash_undefined
8878 && !h->def_regular)
8879 {
8880 const char *msg;
8881
8882 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8883 msg = _("%B: protected symbol `%s' isn't defined");
8884 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8885 msg = _("%B: internal symbol `%s' isn't defined");
8886 else
8887 msg = _("%B: hidden symbol `%s' isn't defined");
8888 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8889 bfd_set_error (bfd_error_bad_value);
8890 eoinfo->failed = TRUE;
8891 return FALSE;
8892 }
8893
8894 /* If this symbol should be put in the .dynsym section, then put it
8895 there now. We already know the symbol index. We also fill in
8896 the entry in the .hash section. */
8897 if (h->dynindx != -1
8898 && elf_hash_table (finfo->info)->dynamic_sections_created)
8899 {
8900 bfd_byte *esym;
8901
8902 sym.st_name = h->dynstr_index;
8903 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8904 if (! check_dynsym (finfo->output_bfd, &sym))
8905 {
8906 eoinfo->failed = TRUE;
8907 return FALSE;
8908 }
8909 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8910
8911 if (finfo->hash_sec != NULL)
8912 {
8913 size_t hash_entry_size;
8914 bfd_byte *bucketpos;
8915 bfd_vma chain;
8916 size_t bucketcount;
8917 size_t bucket;
8918
8919 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8920 bucket = h->u.elf_hash_value % bucketcount;
8921
8922 hash_entry_size
8923 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8924 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8925 + (bucket + 2) * hash_entry_size);
8926 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8927 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8928 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8929 ((bfd_byte *) finfo->hash_sec->contents
8930 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8931 }
8932
8933 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8934 {
8935 Elf_Internal_Versym iversym;
8936 Elf_External_Versym *eversym;
8937
8938 if (!h->def_regular)
8939 {
8940 if (h->verinfo.verdef == NULL)
8941 iversym.vs_vers = 0;
8942 else
8943 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8944 }
8945 else
8946 {
8947 if (h->verinfo.vertree == NULL)
8948 iversym.vs_vers = 1;
8949 else
8950 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8951 if (finfo->info->create_default_symver)
8952 iversym.vs_vers++;
8953 }
8954
8955 if (h->hidden)
8956 iversym.vs_vers |= VERSYM_HIDDEN;
8957
8958 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8959 eversym += h->dynindx;
8960 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8961 }
8962 }
8963
8964 /* If we're stripping it, then it was just a dynamic symbol, and
8965 there's nothing else to do. */
8966 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8967 return TRUE;
8968
8969 indx = bfd_get_symcount (finfo->output_bfd);
8970 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8971 if (ret == 0)
8972 {
8973 eoinfo->failed = TRUE;
8974 return FALSE;
8975 }
8976 else if (ret == 1)
8977 h->indx = indx;
8978 else if (h->indx == -2)
8979 abort();
8980
8981 return TRUE;
8982 }
8983
8984 /* Return TRUE if special handling is done for relocs in SEC against
8985 symbols defined in discarded sections. */
8986
8987 static bfd_boolean
8988 elf_section_ignore_discarded_relocs (asection *sec)
8989 {
8990 const struct elf_backend_data *bed;
8991
8992 switch (sec->sec_info_type)
8993 {
8994 case ELF_INFO_TYPE_STABS:
8995 case ELF_INFO_TYPE_EH_FRAME:
8996 return TRUE;
8997 default:
8998 break;
8999 }
9000
9001 bed = get_elf_backend_data (sec->owner);
9002 if (bed->elf_backend_ignore_discarded_relocs != NULL
9003 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9004 return TRUE;
9005
9006 return FALSE;
9007 }
9008
9009 /* Return a mask saying how ld should treat relocations in SEC against
9010 symbols defined in discarded sections. If this function returns
9011 COMPLAIN set, ld will issue a warning message. If this function
9012 returns PRETEND set, and the discarded section was link-once and the
9013 same size as the kept link-once section, ld will pretend that the
9014 symbol was actually defined in the kept section. Otherwise ld will
9015 zero the reloc (at least that is the intent, but some cooperation by
9016 the target dependent code is needed, particularly for REL targets). */
9017
9018 unsigned int
9019 _bfd_elf_default_action_discarded (asection *sec)
9020 {
9021 if (sec->flags & SEC_DEBUGGING)
9022 return PRETEND;
9023
9024 if (strcmp (".eh_frame", sec->name) == 0)
9025 return 0;
9026
9027 if (strcmp (".gcc_except_table", sec->name) == 0)
9028 return 0;
9029
9030 return COMPLAIN | PRETEND;
9031 }
9032
9033 /* Find a match between a section and a member of a section group. */
9034
9035 static asection *
9036 match_group_member (asection *sec, asection *group,
9037 struct bfd_link_info *info)
9038 {
9039 asection *first = elf_next_in_group (group);
9040 asection *s = first;
9041
9042 while (s != NULL)
9043 {
9044 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9045 return s;
9046
9047 s = elf_next_in_group (s);
9048 if (s == first)
9049 break;
9050 }
9051
9052 return NULL;
9053 }
9054
9055 /* Check if the kept section of a discarded section SEC can be used
9056 to replace it. Return the replacement if it is OK. Otherwise return
9057 NULL. */
9058
9059 asection *
9060 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9061 {
9062 asection *kept;
9063
9064 kept = sec->kept_section;
9065 if (kept != NULL)
9066 {
9067 if ((kept->flags & SEC_GROUP) != 0)
9068 kept = match_group_member (sec, kept, info);
9069 if (kept != NULL
9070 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9071 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9072 kept = NULL;
9073 sec->kept_section = kept;
9074 }
9075 return kept;
9076 }
9077
9078 /* Link an input file into the linker output file. This function
9079 handles all the sections and relocations of the input file at once.
9080 This is so that we only have to read the local symbols once, and
9081 don't have to keep them in memory. */
9082
9083 static bfd_boolean
9084 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9085 {
9086 int (*relocate_section)
9087 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9088 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9089 bfd *output_bfd;
9090 Elf_Internal_Shdr *symtab_hdr;
9091 size_t locsymcount;
9092 size_t extsymoff;
9093 Elf_Internal_Sym *isymbuf;
9094 Elf_Internal_Sym *isym;
9095 Elf_Internal_Sym *isymend;
9096 long *pindex;
9097 asection **ppsection;
9098 asection *o;
9099 const struct elf_backend_data *bed;
9100 struct elf_link_hash_entry **sym_hashes;
9101
9102 output_bfd = finfo->output_bfd;
9103 bed = get_elf_backend_data (output_bfd);
9104 relocate_section = bed->elf_backend_relocate_section;
9105
9106 /* If this is a dynamic object, we don't want to do anything here:
9107 we don't want the local symbols, and we don't want the section
9108 contents. */
9109 if ((input_bfd->flags & DYNAMIC) != 0)
9110 return TRUE;
9111
9112 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9113 if (elf_bad_symtab (input_bfd))
9114 {
9115 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9116 extsymoff = 0;
9117 }
9118 else
9119 {
9120 locsymcount = symtab_hdr->sh_info;
9121 extsymoff = symtab_hdr->sh_info;
9122 }
9123
9124 /* Read the local symbols. */
9125 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9126 if (isymbuf == NULL && locsymcount != 0)
9127 {
9128 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9129 finfo->internal_syms,
9130 finfo->external_syms,
9131 finfo->locsym_shndx);
9132 if (isymbuf == NULL)
9133 return FALSE;
9134 }
9135
9136 /* Find local symbol sections and adjust values of symbols in
9137 SEC_MERGE sections. Write out those local symbols we know are
9138 going into the output file. */
9139 isymend = isymbuf + locsymcount;
9140 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9141 isym < isymend;
9142 isym++, pindex++, ppsection++)
9143 {
9144 asection *isec;
9145 const char *name;
9146 Elf_Internal_Sym osym;
9147 long indx;
9148 int ret;
9149
9150 *pindex = -1;
9151
9152 if (elf_bad_symtab (input_bfd))
9153 {
9154 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9155 {
9156 *ppsection = NULL;
9157 continue;
9158 }
9159 }
9160
9161 if (isym->st_shndx == SHN_UNDEF)
9162 isec = bfd_und_section_ptr;
9163 else if (isym->st_shndx == SHN_ABS)
9164 isec = bfd_abs_section_ptr;
9165 else if (isym->st_shndx == SHN_COMMON)
9166 isec = bfd_com_section_ptr;
9167 else
9168 {
9169 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9170 if (isec == NULL)
9171 {
9172 /* Don't attempt to output symbols with st_shnx in the
9173 reserved range other than SHN_ABS and SHN_COMMON. */
9174 *ppsection = NULL;
9175 continue;
9176 }
9177 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9178 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9179 isym->st_value =
9180 _bfd_merged_section_offset (output_bfd, &isec,
9181 elf_section_data (isec)->sec_info,
9182 isym->st_value);
9183 }
9184
9185 *ppsection = isec;
9186
9187 /* Don't output the first, undefined, symbol. */
9188 if (ppsection == finfo->sections)
9189 continue;
9190
9191 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9192 {
9193 /* We never output section symbols. Instead, we use the
9194 section symbol of the corresponding section in the output
9195 file. */
9196 continue;
9197 }
9198
9199 /* If we are stripping all symbols, we don't want to output this
9200 one. */
9201 if (finfo->info->strip == strip_all)
9202 continue;
9203
9204 /* If we are discarding all local symbols, we don't want to
9205 output this one. If we are generating a relocatable output
9206 file, then some of the local symbols may be required by
9207 relocs; we output them below as we discover that they are
9208 needed. */
9209 if (finfo->info->discard == discard_all)
9210 continue;
9211
9212 /* If this symbol is defined in a section which we are
9213 discarding, we don't need to keep it. */
9214 if (isym->st_shndx != SHN_UNDEF
9215 && isym->st_shndx < SHN_LORESERVE
9216 && bfd_section_removed_from_list (output_bfd,
9217 isec->output_section))
9218 continue;
9219
9220 /* Get the name of the symbol. */
9221 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9222 isym->st_name);
9223 if (name == NULL)
9224 return FALSE;
9225
9226 /* See if we are discarding symbols with this name. */
9227 if ((finfo->info->strip == strip_some
9228 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9229 == NULL))
9230 || (((finfo->info->discard == discard_sec_merge
9231 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9232 || finfo->info->discard == discard_l)
9233 && bfd_is_local_label_name (input_bfd, name)))
9234 continue;
9235
9236 osym = *isym;
9237
9238 /* Adjust the section index for the output file. */
9239 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9240 isec->output_section);
9241 if (osym.st_shndx == SHN_BAD)
9242 return FALSE;
9243
9244 /* ELF symbols in relocatable files are section relative, but
9245 in executable files they are virtual addresses. Note that
9246 this code assumes that all ELF sections have an associated
9247 BFD section with a reasonable value for output_offset; below
9248 we assume that they also have a reasonable value for
9249 output_section. Any special sections must be set up to meet
9250 these requirements. */
9251 osym.st_value += isec->output_offset;
9252 if (! finfo->info->relocatable)
9253 {
9254 osym.st_value += isec->output_section->vma;
9255 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9256 {
9257 /* STT_TLS symbols are relative to PT_TLS segment base. */
9258 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9259 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9260 }
9261 }
9262
9263 indx = bfd_get_symcount (output_bfd);
9264 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9265 if (ret == 0)
9266 return FALSE;
9267 else if (ret == 1)
9268 *pindex = indx;
9269 }
9270
9271 /* Relocate the contents of each section. */
9272 sym_hashes = elf_sym_hashes (input_bfd);
9273 for (o = input_bfd->sections; o != NULL; o = o->next)
9274 {
9275 bfd_byte *contents;
9276
9277 if (! o->linker_mark)
9278 {
9279 /* This section was omitted from the link. */
9280 continue;
9281 }
9282
9283 if (finfo->info->relocatable
9284 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9285 {
9286 /* Deal with the group signature symbol. */
9287 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9288 unsigned long symndx = sec_data->this_hdr.sh_info;
9289 asection *osec = o->output_section;
9290
9291 if (symndx >= locsymcount
9292 || (elf_bad_symtab (input_bfd)
9293 && finfo->sections[symndx] == NULL))
9294 {
9295 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9296 while (h->root.type == bfd_link_hash_indirect
9297 || h->root.type == bfd_link_hash_warning)
9298 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9299 /* Arrange for symbol to be output. */
9300 h->indx = -2;
9301 elf_section_data (osec)->this_hdr.sh_info = -2;
9302 }
9303 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9304 {
9305 /* We'll use the output section target_index. */
9306 asection *sec = finfo->sections[symndx]->output_section;
9307 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9308 }
9309 else
9310 {
9311 if (finfo->indices[symndx] == -1)
9312 {
9313 /* Otherwise output the local symbol now. */
9314 Elf_Internal_Sym sym = isymbuf[symndx];
9315 asection *sec = finfo->sections[symndx]->output_section;
9316 const char *name;
9317 long indx;
9318 int ret;
9319
9320 name = bfd_elf_string_from_elf_section (input_bfd,
9321 symtab_hdr->sh_link,
9322 sym.st_name);
9323 if (name == NULL)
9324 return FALSE;
9325
9326 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9327 sec);
9328 if (sym.st_shndx == SHN_BAD)
9329 return FALSE;
9330
9331 sym.st_value += o->output_offset;
9332
9333 indx = bfd_get_symcount (output_bfd);
9334 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9335 if (ret == 0)
9336 return FALSE;
9337 else if (ret == 1)
9338 finfo->indices[symndx] = indx;
9339 else
9340 abort ();
9341 }
9342 elf_section_data (osec)->this_hdr.sh_info
9343 = finfo->indices[symndx];
9344 }
9345 }
9346
9347 if ((o->flags & SEC_HAS_CONTENTS) == 0
9348 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9349 continue;
9350
9351 if ((o->flags & SEC_LINKER_CREATED) != 0)
9352 {
9353 /* Section was created by _bfd_elf_link_create_dynamic_sections
9354 or somesuch. */
9355 continue;
9356 }
9357
9358 /* Get the contents of the section. They have been cached by a
9359 relaxation routine. Note that o is a section in an input
9360 file, so the contents field will not have been set by any of
9361 the routines which work on output files. */
9362 if (elf_section_data (o)->this_hdr.contents != NULL)
9363 contents = elf_section_data (o)->this_hdr.contents;
9364 else
9365 {
9366 contents = finfo->contents;
9367 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9368 return FALSE;
9369 }
9370
9371 if ((o->flags & SEC_RELOC) != 0)
9372 {
9373 Elf_Internal_Rela *internal_relocs;
9374 Elf_Internal_Rela *rel, *relend;
9375 bfd_vma r_type_mask;
9376 int r_sym_shift;
9377 int action_discarded;
9378 int ret;
9379
9380 /* Get the swapped relocs. */
9381 internal_relocs
9382 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9383 finfo->internal_relocs, FALSE);
9384 if (internal_relocs == NULL
9385 && o->reloc_count > 0)
9386 return FALSE;
9387
9388 if (bed->s->arch_size == 32)
9389 {
9390 r_type_mask = 0xff;
9391 r_sym_shift = 8;
9392 }
9393 else
9394 {
9395 r_type_mask = 0xffffffff;
9396 r_sym_shift = 32;
9397 }
9398
9399 action_discarded = -1;
9400 if (!elf_section_ignore_discarded_relocs (o))
9401 action_discarded = (*bed->action_discarded) (o);
9402
9403 /* Run through the relocs evaluating complex reloc symbols and
9404 looking for relocs against symbols from discarded sections
9405 or section symbols from removed link-once sections.
9406 Complain about relocs against discarded sections. Zero
9407 relocs against removed link-once sections. */
9408
9409 rel = internal_relocs;
9410 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9411 for ( ; rel < relend; rel++)
9412 {
9413 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9414 unsigned int s_type;
9415 asection **ps, *sec;
9416 struct elf_link_hash_entry *h = NULL;
9417 const char *sym_name;
9418
9419 if (r_symndx == STN_UNDEF)
9420 continue;
9421
9422 if (r_symndx >= locsymcount
9423 || (elf_bad_symtab (input_bfd)
9424 && finfo->sections[r_symndx] == NULL))
9425 {
9426 h = sym_hashes[r_symndx - extsymoff];
9427
9428 /* Badly formatted input files can contain relocs that
9429 reference non-existant symbols. Check here so that
9430 we do not seg fault. */
9431 if (h == NULL)
9432 {
9433 char buffer [32];
9434
9435 sprintf_vma (buffer, rel->r_info);
9436 (*_bfd_error_handler)
9437 (_("error: %B contains a reloc (0x%s) for section %A "
9438 "that references a non-existent global symbol"),
9439 input_bfd, o, buffer);
9440 bfd_set_error (bfd_error_bad_value);
9441 return FALSE;
9442 }
9443
9444 while (h->root.type == bfd_link_hash_indirect
9445 || h->root.type == bfd_link_hash_warning)
9446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9447
9448 s_type = h->type;
9449
9450 ps = NULL;
9451 if (h->root.type == bfd_link_hash_defined
9452 || h->root.type == bfd_link_hash_defweak)
9453 ps = &h->root.u.def.section;
9454
9455 sym_name = h->root.root.string;
9456 }
9457 else
9458 {
9459 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9460
9461 s_type = ELF_ST_TYPE (sym->st_info);
9462 ps = &finfo->sections[r_symndx];
9463 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9464 sym, *ps);
9465 }
9466
9467 if ((s_type == STT_RELC || s_type == STT_SRELC)
9468 && !finfo->info->relocatable)
9469 {
9470 bfd_vma val;
9471 bfd_vma dot = (rel->r_offset
9472 + o->output_offset + o->output_section->vma);
9473 #ifdef DEBUG
9474 printf ("Encountered a complex symbol!");
9475 printf (" (input_bfd %s, section %s, reloc %ld\n",
9476 input_bfd->filename, o->name,
9477 (long) (rel - internal_relocs));
9478 printf (" symbol: idx %8.8lx, name %s\n",
9479 r_symndx, sym_name);
9480 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9481 (unsigned long) rel->r_info,
9482 (unsigned long) rel->r_offset);
9483 #endif
9484 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9485 isymbuf, locsymcount, s_type == STT_SRELC))
9486 return FALSE;
9487
9488 /* Symbol evaluated OK. Update to absolute value. */
9489 set_symbol_value (input_bfd, isymbuf, locsymcount,
9490 r_symndx, val);
9491 continue;
9492 }
9493
9494 if (action_discarded != -1 && ps != NULL)
9495 {
9496 /* Complain if the definition comes from a
9497 discarded section. */
9498 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9499 {
9500 BFD_ASSERT (r_symndx != STN_UNDEF);
9501 if (action_discarded & COMPLAIN)
9502 (*finfo->info->callbacks->einfo)
9503 (_("%X`%s' referenced in section `%A' of %B: "
9504 "defined in discarded section `%A' of %B\n"),
9505 sym_name, o, input_bfd, sec, sec->owner);
9506
9507 /* Try to do the best we can to support buggy old
9508 versions of gcc. Pretend that the symbol is
9509 really defined in the kept linkonce section.
9510 FIXME: This is quite broken. Modifying the
9511 symbol here means we will be changing all later
9512 uses of the symbol, not just in this section. */
9513 if (action_discarded & PRETEND)
9514 {
9515 asection *kept;
9516
9517 kept = _bfd_elf_check_kept_section (sec,
9518 finfo->info);
9519 if (kept != NULL)
9520 {
9521 *ps = kept;
9522 continue;
9523 }
9524 }
9525 }
9526 }
9527 }
9528
9529 /* Relocate the section by invoking a back end routine.
9530
9531 The back end routine is responsible for adjusting the
9532 section contents as necessary, and (if using Rela relocs
9533 and generating a relocatable output file) adjusting the
9534 reloc addend as necessary.
9535
9536 The back end routine does not have to worry about setting
9537 the reloc address or the reloc symbol index.
9538
9539 The back end routine is given a pointer to the swapped in
9540 internal symbols, and can access the hash table entries
9541 for the external symbols via elf_sym_hashes (input_bfd).
9542
9543 When generating relocatable output, the back end routine
9544 must handle STB_LOCAL/STT_SECTION symbols specially. The
9545 output symbol is going to be a section symbol
9546 corresponding to the output section, which will require
9547 the addend to be adjusted. */
9548
9549 ret = (*relocate_section) (output_bfd, finfo->info,
9550 input_bfd, o, contents,
9551 internal_relocs,
9552 isymbuf,
9553 finfo->sections);
9554 if (!ret)
9555 return FALSE;
9556
9557 if (ret == 2
9558 || finfo->info->relocatable
9559 || finfo->info->emitrelocations)
9560 {
9561 Elf_Internal_Rela *irela;
9562 Elf_Internal_Rela *irelaend, *irelamid;
9563 bfd_vma last_offset;
9564 struct elf_link_hash_entry **rel_hash;
9565 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9566 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9567 unsigned int next_erel;
9568 bfd_boolean rela_normal;
9569 struct bfd_elf_section_data *esdi, *esdo;
9570
9571 esdi = elf_section_data (o);
9572 esdo = elf_section_data (o->output_section);
9573 rela_normal = FALSE;
9574
9575 /* Adjust the reloc addresses and symbol indices. */
9576
9577 irela = internal_relocs;
9578 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9579 rel_hash = esdo->rel.hashes + esdo->rel.count;
9580 /* We start processing the REL relocs, if any. When we reach
9581 IRELAMID in the loop, we switch to the RELA relocs. */
9582 irelamid = irela;
9583 if (esdi->rel.hdr != NULL)
9584 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9585 * bed->s->int_rels_per_ext_rel);
9586 rel_hash_list = rel_hash;
9587 rela_hash_list = NULL;
9588 last_offset = o->output_offset;
9589 if (!finfo->info->relocatable)
9590 last_offset += o->output_section->vma;
9591 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9592 {
9593 unsigned long r_symndx;
9594 asection *sec;
9595 Elf_Internal_Sym sym;
9596
9597 if (next_erel == bed->s->int_rels_per_ext_rel)
9598 {
9599 rel_hash++;
9600 next_erel = 0;
9601 }
9602
9603 if (irela == irelamid)
9604 {
9605 rel_hash = esdo->rela.hashes + esdo->rela.count;
9606 rela_hash_list = rel_hash;
9607 rela_normal = bed->rela_normal;
9608 }
9609
9610 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9611 finfo->info, o,
9612 irela->r_offset);
9613 if (irela->r_offset >= (bfd_vma) -2)
9614 {
9615 /* This is a reloc for a deleted entry or somesuch.
9616 Turn it into an R_*_NONE reloc, at the same
9617 offset as the last reloc. elf_eh_frame.c and
9618 bfd_elf_discard_info rely on reloc offsets
9619 being ordered. */
9620 irela->r_offset = last_offset;
9621 irela->r_info = 0;
9622 irela->r_addend = 0;
9623 continue;
9624 }
9625
9626 irela->r_offset += o->output_offset;
9627
9628 /* Relocs in an executable have to be virtual addresses. */
9629 if (!finfo->info->relocatable)
9630 irela->r_offset += o->output_section->vma;
9631
9632 last_offset = irela->r_offset;
9633
9634 r_symndx = irela->r_info >> r_sym_shift;
9635 if (r_symndx == STN_UNDEF)
9636 continue;
9637
9638 if (r_symndx >= locsymcount
9639 || (elf_bad_symtab (input_bfd)
9640 && finfo->sections[r_symndx] == NULL))
9641 {
9642 struct elf_link_hash_entry *rh;
9643 unsigned long indx;
9644
9645 /* This is a reloc against a global symbol. We
9646 have not yet output all the local symbols, so
9647 we do not know the symbol index of any global
9648 symbol. We set the rel_hash entry for this
9649 reloc to point to the global hash table entry
9650 for this symbol. The symbol index is then
9651 set at the end of bfd_elf_final_link. */
9652 indx = r_symndx - extsymoff;
9653 rh = elf_sym_hashes (input_bfd)[indx];
9654 while (rh->root.type == bfd_link_hash_indirect
9655 || rh->root.type == bfd_link_hash_warning)
9656 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9657
9658 /* Setting the index to -2 tells
9659 elf_link_output_extsym that this symbol is
9660 used by a reloc. */
9661 BFD_ASSERT (rh->indx < 0);
9662 rh->indx = -2;
9663
9664 *rel_hash = rh;
9665
9666 continue;
9667 }
9668
9669 /* This is a reloc against a local symbol. */
9670
9671 *rel_hash = NULL;
9672 sym = isymbuf[r_symndx];
9673 sec = finfo->sections[r_symndx];
9674 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9675 {
9676 /* I suppose the backend ought to fill in the
9677 section of any STT_SECTION symbol against a
9678 processor specific section. */
9679 r_symndx = STN_UNDEF;
9680 if (bfd_is_abs_section (sec))
9681 ;
9682 else if (sec == NULL || sec->owner == NULL)
9683 {
9684 bfd_set_error (bfd_error_bad_value);
9685 return FALSE;
9686 }
9687 else
9688 {
9689 asection *osec = sec->output_section;
9690
9691 /* If we have discarded a section, the output
9692 section will be the absolute section. In
9693 case of discarded SEC_MERGE sections, use
9694 the kept section. relocate_section should
9695 have already handled discarded linkonce
9696 sections. */
9697 if (bfd_is_abs_section (osec)
9698 && sec->kept_section != NULL
9699 && sec->kept_section->output_section != NULL)
9700 {
9701 osec = sec->kept_section->output_section;
9702 irela->r_addend -= osec->vma;
9703 }
9704
9705 if (!bfd_is_abs_section (osec))
9706 {
9707 r_symndx = osec->target_index;
9708 if (r_symndx == STN_UNDEF)
9709 {
9710 struct elf_link_hash_table *htab;
9711 asection *oi;
9712
9713 htab = elf_hash_table (finfo->info);
9714 oi = htab->text_index_section;
9715 if ((osec->flags & SEC_READONLY) == 0
9716 && htab->data_index_section != NULL)
9717 oi = htab->data_index_section;
9718
9719 if (oi != NULL)
9720 {
9721 irela->r_addend += osec->vma - oi->vma;
9722 r_symndx = oi->target_index;
9723 }
9724 }
9725
9726 BFD_ASSERT (r_symndx != STN_UNDEF);
9727 }
9728 }
9729
9730 /* Adjust the addend according to where the
9731 section winds up in the output section. */
9732 if (rela_normal)
9733 irela->r_addend += sec->output_offset;
9734 }
9735 else
9736 {
9737 if (finfo->indices[r_symndx] == -1)
9738 {
9739 unsigned long shlink;
9740 const char *name;
9741 asection *osec;
9742 long indx;
9743
9744 if (finfo->info->strip == strip_all)
9745 {
9746 /* You can't do ld -r -s. */
9747 bfd_set_error (bfd_error_invalid_operation);
9748 return FALSE;
9749 }
9750
9751 /* This symbol was skipped earlier, but
9752 since it is needed by a reloc, we
9753 must output it now. */
9754 shlink = symtab_hdr->sh_link;
9755 name = (bfd_elf_string_from_elf_section
9756 (input_bfd, shlink, sym.st_name));
9757 if (name == NULL)
9758 return FALSE;
9759
9760 osec = sec->output_section;
9761 sym.st_shndx =
9762 _bfd_elf_section_from_bfd_section (output_bfd,
9763 osec);
9764 if (sym.st_shndx == SHN_BAD)
9765 return FALSE;
9766
9767 sym.st_value += sec->output_offset;
9768 if (! finfo->info->relocatable)
9769 {
9770 sym.st_value += osec->vma;
9771 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9772 {
9773 /* STT_TLS symbols are relative to PT_TLS
9774 segment base. */
9775 BFD_ASSERT (elf_hash_table (finfo->info)
9776 ->tls_sec != NULL);
9777 sym.st_value -= (elf_hash_table (finfo->info)
9778 ->tls_sec->vma);
9779 }
9780 }
9781
9782 indx = bfd_get_symcount (output_bfd);
9783 ret = elf_link_output_sym (finfo, name, &sym, sec,
9784 NULL);
9785 if (ret == 0)
9786 return FALSE;
9787 else if (ret == 1)
9788 finfo->indices[r_symndx] = indx;
9789 else
9790 abort ();
9791 }
9792
9793 r_symndx = finfo->indices[r_symndx];
9794 }
9795
9796 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9797 | (irela->r_info & r_type_mask));
9798 }
9799
9800 /* Swap out the relocs. */
9801 input_rel_hdr = esdi->rel.hdr;
9802 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9803 {
9804 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9805 input_rel_hdr,
9806 internal_relocs,
9807 rel_hash_list))
9808 return FALSE;
9809 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9810 * bed->s->int_rels_per_ext_rel);
9811 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9812 }
9813
9814 input_rela_hdr = esdi->rela.hdr;
9815 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9816 {
9817 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9818 input_rela_hdr,
9819 internal_relocs,
9820 rela_hash_list))
9821 return FALSE;
9822 }
9823 }
9824 }
9825
9826 /* Write out the modified section contents. */
9827 if (bed->elf_backend_write_section
9828 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9829 contents))
9830 {
9831 /* Section written out. */
9832 }
9833 else switch (o->sec_info_type)
9834 {
9835 case ELF_INFO_TYPE_STABS:
9836 if (! (_bfd_write_section_stabs
9837 (output_bfd,
9838 &elf_hash_table (finfo->info)->stab_info,
9839 o, &elf_section_data (o)->sec_info, contents)))
9840 return FALSE;
9841 break;
9842 case ELF_INFO_TYPE_MERGE:
9843 if (! _bfd_write_merged_section (output_bfd, o,
9844 elf_section_data (o)->sec_info))
9845 return FALSE;
9846 break;
9847 case ELF_INFO_TYPE_EH_FRAME:
9848 {
9849 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9850 o, contents))
9851 return FALSE;
9852 }
9853 break;
9854 default:
9855 {
9856 /* FIXME: octets_per_byte. */
9857 if (! (o->flags & SEC_EXCLUDE)
9858 && ! bfd_set_section_contents (output_bfd, o->output_section,
9859 contents,
9860 (file_ptr) o->output_offset,
9861 o->size))
9862 return FALSE;
9863 }
9864 break;
9865 }
9866 }
9867
9868 return TRUE;
9869 }
9870
9871 /* Generate a reloc when linking an ELF file. This is a reloc
9872 requested by the linker, and does not come from any input file. This
9873 is used to build constructor and destructor tables when linking
9874 with -Ur. */
9875
9876 static bfd_boolean
9877 elf_reloc_link_order (bfd *output_bfd,
9878 struct bfd_link_info *info,
9879 asection *output_section,
9880 struct bfd_link_order *link_order)
9881 {
9882 reloc_howto_type *howto;
9883 long indx;
9884 bfd_vma offset;
9885 bfd_vma addend;
9886 struct bfd_elf_section_reloc_data *reldata;
9887 struct elf_link_hash_entry **rel_hash_ptr;
9888 Elf_Internal_Shdr *rel_hdr;
9889 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9890 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9891 bfd_byte *erel;
9892 unsigned int i;
9893 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9894
9895 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9896 if (howto == NULL)
9897 {
9898 bfd_set_error (bfd_error_bad_value);
9899 return FALSE;
9900 }
9901
9902 addend = link_order->u.reloc.p->addend;
9903
9904 if (esdo->rel.hdr)
9905 reldata = &esdo->rel;
9906 else if (esdo->rela.hdr)
9907 reldata = &esdo->rela;
9908 else
9909 {
9910 reldata = NULL;
9911 BFD_ASSERT (0);
9912 }
9913
9914 /* Figure out the symbol index. */
9915 rel_hash_ptr = reldata->hashes + reldata->count;
9916 if (link_order->type == bfd_section_reloc_link_order)
9917 {
9918 indx = link_order->u.reloc.p->u.section->target_index;
9919 BFD_ASSERT (indx != 0);
9920 *rel_hash_ptr = NULL;
9921 }
9922 else
9923 {
9924 struct elf_link_hash_entry *h;
9925
9926 /* Treat a reloc against a defined symbol as though it were
9927 actually against the section. */
9928 h = ((struct elf_link_hash_entry *)
9929 bfd_wrapped_link_hash_lookup (output_bfd, info,
9930 link_order->u.reloc.p->u.name,
9931 FALSE, FALSE, TRUE));
9932 if (h != NULL
9933 && (h->root.type == bfd_link_hash_defined
9934 || h->root.type == bfd_link_hash_defweak))
9935 {
9936 asection *section;
9937
9938 section = h->root.u.def.section;
9939 indx = section->output_section->target_index;
9940 *rel_hash_ptr = NULL;
9941 /* It seems that we ought to add the symbol value to the
9942 addend here, but in practice it has already been added
9943 because it was passed to constructor_callback. */
9944 addend += section->output_section->vma + section->output_offset;
9945 }
9946 else if (h != NULL)
9947 {
9948 /* Setting the index to -2 tells elf_link_output_extsym that
9949 this symbol is used by a reloc. */
9950 h->indx = -2;
9951 *rel_hash_ptr = h;
9952 indx = 0;
9953 }
9954 else
9955 {
9956 if (! ((*info->callbacks->unattached_reloc)
9957 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9958 return FALSE;
9959 indx = 0;
9960 }
9961 }
9962
9963 /* If this is an inplace reloc, we must write the addend into the
9964 object file. */
9965 if (howto->partial_inplace && addend != 0)
9966 {
9967 bfd_size_type size;
9968 bfd_reloc_status_type rstat;
9969 bfd_byte *buf;
9970 bfd_boolean ok;
9971 const char *sym_name;
9972
9973 size = (bfd_size_type) bfd_get_reloc_size (howto);
9974 buf = (bfd_byte *) bfd_zmalloc (size);
9975 if (buf == NULL)
9976 return FALSE;
9977 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9978 switch (rstat)
9979 {
9980 case bfd_reloc_ok:
9981 break;
9982
9983 default:
9984 case bfd_reloc_outofrange:
9985 abort ();
9986
9987 case bfd_reloc_overflow:
9988 if (link_order->type == bfd_section_reloc_link_order)
9989 sym_name = bfd_section_name (output_bfd,
9990 link_order->u.reloc.p->u.section);
9991 else
9992 sym_name = link_order->u.reloc.p->u.name;
9993 if (! ((*info->callbacks->reloc_overflow)
9994 (info, NULL, sym_name, howto->name, addend, NULL,
9995 NULL, (bfd_vma) 0)))
9996 {
9997 free (buf);
9998 return FALSE;
9999 }
10000 break;
10001 }
10002 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10003 link_order->offset, size);
10004 free (buf);
10005 if (! ok)
10006 return FALSE;
10007 }
10008
10009 /* The address of a reloc is relative to the section in a
10010 relocatable file, and is a virtual address in an executable
10011 file. */
10012 offset = link_order->offset;
10013 if (! info->relocatable)
10014 offset += output_section->vma;
10015
10016 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10017 {
10018 irel[i].r_offset = offset;
10019 irel[i].r_info = 0;
10020 irel[i].r_addend = 0;
10021 }
10022 if (bed->s->arch_size == 32)
10023 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10024 else
10025 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10026
10027 rel_hdr = reldata->hdr;
10028 erel = rel_hdr->contents;
10029 if (rel_hdr->sh_type == SHT_REL)
10030 {
10031 erel += reldata->count * bed->s->sizeof_rel;
10032 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10033 }
10034 else
10035 {
10036 irel[0].r_addend = addend;
10037 erel += reldata->count * bed->s->sizeof_rela;
10038 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10039 }
10040
10041 ++reldata->count;
10042
10043 return TRUE;
10044 }
10045
10046
10047 /* Get the output vma of the section pointed to by the sh_link field. */
10048
10049 static bfd_vma
10050 elf_get_linked_section_vma (struct bfd_link_order *p)
10051 {
10052 Elf_Internal_Shdr **elf_shdrp;
10053 asection *s;
10054 int elfsec;
10055
10056 s = p->u.indirect.section;
10057 elf_shdrp = elf_elfsections (s->owner);
10058 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10059 elfsec = elf_shdrp[elfsec]->sh_link;
10060 /* PR 290:
10061 The Intel C compiler generates SHT_IA_64_UNWIND with
10062 SHF_LINK_ORDER. But it doesn't set the sh_link or
10063 sh_info fields. Hence we could get the situation
10064 where elfsec is 0. */
10065 if (elfsec == 0)
10066 {
10067 const struct elf_backend_data *bed
10068 = get_elf_backend_data (s->owner);
10069 if (bed->link_order_error_handler)
10070 bed->link_order_error_handler
10071 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10072 return 0;
10073 }
10074 else
10075 {
10076 s = elf_shdrp[elfsec]->bfd_section;
10077 return s->output_section->vma + s->output_offset;
10078 }
10079 }
10080
10081
10082 /* Compare two sections based on the locations of the sections they are
10083 linked to. Used by elf_fixup_link_order. */
10084
10085 static int
10086 compare_link_order (const void * a, const void * b)
10087 {
10088 bfd_vma apos;
10089 bfd_vma bpos;
10090
10091 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10092 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10093 if (apos < bpos)
10094 return -1;
10095 return apos > bpos;
10096 }
10097
10098
10099 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10100 order as their linked sections. Returns false if this could not be done
10101 because an output section includes both ordered and unordered
10102 sections. Ideally we'd do this in the linker proper. */
10103
10104 static bfd_boolean
10105 elf_fixup_link_order (bfd *abfd, asection *o)
10106 {
10107 int seen_linkorder;
10108 int seen_other;
10109 int n;
10110 struct bfd_link_order *p;
10111 bfd *sub;
10112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10113 unsigned elfsec;
10114 struct bfd_link_order **sections;
10115 asection *s, *other_sec, *linkorder_sec;
10116 bfd_vma offset;
10117
10118 other_sec = NULL;
10119 linkorder_sec = NULL;
10120 seen_other = 0;
10121 seen_linkorder = 0;
10122 for (p = o->map_head.link_order; p != NULL; p = p->next)
10123 {
10124 if (p->type == bfd_indirect_link_order)
10125 {
10126 s = p->u.indirect.section;
10127 sub = s->owner;
10128 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10129 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10130 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10131 && elfsec < elf_numsections (sub)
10132 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10133 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10134 {
10135 seen_linkorder++;
10136 linkorder_sec = s;
10137 }
10138 else
10139 {
10140 seen_other++;
10141 other_sec = s;
10142 }
10143 }
10144 else
10145 seen_other++;
10146
10147 if (seen_other && seen_linkorder)
10148 {
10149 if (other_sec && linkorder_sec)
10150 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10151 o, linkorder_sec,
10152 linkorder_sec->owner, other_sec,
10153 other_sec->owner);
10154 else
10155 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10156 o);
10157 bfd_set_error (bfd_error_bad_value);
10158 return FALSE;
10159 }
10160 }
10161
10162 if (!seen_linkorder)
10163 return TRUE;
10164
10165 sections = (struct bfd_link_order **)
10166 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10167 if (sections == NULL)
10168 return FALSE;
10169 seen_linkorder = 0;
10170
10171 for (p = o->map_head.link_order; p != NULL; p = p->next)
10172 {
10173 sections[seen_linkorder++] = p;
10174 }
10175 /* Sort the input sections in the order of their linked section. */
10176 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10177 compare_link_order);
10178
10179 /* Change the offsets of the sections. */
10180 offset = 0;
10181 for (n = 0; n < seen_linkorder; n++)
10182 {
10183 s = sections[n]->u.indirect.section;
10184 offset &= ~(bfd_vma) 0 << s->alignment_power;
10185 s->output_offset = offset;
10186 sections[n]->offset = offset;
10187 /* FIXME: octets_per_byte. */
10188 offset += sections[n]->size;
10189 }
10190
10191 free (sections);
10192 return TRUE;
10193 }
10194
10195
10196 /* Do the final step of an ELF link. */
10197
10198 bfd_boolean
10199 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10200 {
10201 bfd_boolean dynamic;
10202 bfd_boolean emit_relocs;
10203 bfd *dynobj;
10204 struct elf_final_link_info finfo;
10205 asection *o;
10206 struct bfd_link_order *p;
10207 bfd *sub;
10208 bfd_size_type max_contents_size;
10209 bfd_size_type max_external_reloc_size;
10210 bfd_size_type max_internal_reloc_count;
10211 bfd_size_type max_sym_count;
10212 bfd_size_type max_sym_shndx_count;
10213 file_ptr off;
10214 Elf_Internal_Sym elfsym;
10215 unsigned int i;
10216 Elf_Internal_Shdr *symtab_hdr;
10217 Elf_Internal_Shdr *symtab_shndx_hdr;
10218 Elf_Internal_Shdr *symstrtab_hdr;
10219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10220 struct elf_outext_info eoinfo;
10221 bfd_boolean merged;
10222 size_t relativecount = 0;
10223 asection *reldyn = 0;
10224 bfd_size_type amt;
10225 asection *attr_section = NULL;
10226 bfd_vma attr_size = 0;
10227 const char *std_attrs_section;
10228
10229 if (! is_elf_hash_table (info->hash))
10230 return FALSE;
10231
10232 if (info->shared)
10233 abfd->flags |= DYNAMIC;
10234
10235 dynamic = elf_hash_table (info)->dynamic_sections_created;
10236 dynobj = elf_hash_table (info)->dynobj;
10237
10238 emit_relocs = (info->relocatable
10239 || info->emitrelocations);
10240
10241 finfo.info = info;
10242 finfo.output_bfd = abfd;
10243 finfo.symstrtab = _bfd_elf_stringtab_init ();
10244 if (finfo.symstrtab == NULL)
10245 return FALSE;
10246
10247 if (! dynamic)
10248 {
10249 finfo.dynsym_sec = NULL;
10250 finfo.hash_sec = NULL;
10251 finfo.symver_sec = NULL;
10252 }
10253 else
10254 {
10255 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10256 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10257 BFD_ASSERT (finfo.dynsym_sec != NULL);
10258 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10259 /* Note that it is OK if symver_sec is NULL. */
10260 }
10261
10262 finfo.contents = NULL;
10263 finfo.external_relocs = NULL;
10264 finfo.internal_relocs = NULL;
10265 finfo.external_syms = NULL;
10266 finfo.locsym_shndx = NULL;
10267 finfo.internal_syms = NULL;
10268 finfo.indices = NULL;
10269 finfo.sections = NULL;
10270 finfo.symbuf = NULL;
10271 finfo.symshndxbuf = NULL;
10272 finfo.symbuf_count = 0;
10273 finfo.shndxbuf_size = 0;
10274
10275 /* The object attributes have been merged. Remove the input
10276 sections from the link, and set the contents of the output
10277 secton. */
10278 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10279 for (o = abfd->sections; o != NULL; o = o->next)
10280 {
10281 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10282 || strcmp (o->name, ".gnu.attributes") == 0)
10283 {
10284 for (p = o->map_head.link_order; p != NULL; p = p->next)
10285 {
10286 asection *input_section;
10287
10288 if (p->type != bfd_indirect_link_order)
10289 continue;
10290 input_section = p->u.indirect.section;
10291 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10292 elf_link_input_bfd ignores this section. */
10293 input_section->flags &= ~SEC_HAS_CONTENTS;
10294 }
10295
10296 attr_size = bfd_elf_obj_attr_size (abfd);
10297 if (attr_size)
10298 {
10299 bfd_set_section_size (abfd, o, attr_size);
10300 attr_section = o;
10301 /* Skip this section later on. */
10302 o->map_head.link_order = NULL;
10303 }
10304 else
10305 o->flags |= SEC_EXCLUDE;
10306 }
10307 }
10308
10309 /* Count up the number of relocations we will output for each output
10310 section, so that we know the sizes of the reloc sections. We
10311 also figure out some maximum sizes. */
10312 max_contents_size = 0;
10313 max_external_reloc_size = 0;
10314 max_internal_reloc_count = 0;
10315 max_sym_count = 0;
10316 max_sym_shndx_count = 0;
10317 merged = FALSE;
10318 for (o = abfd->sections; o != NULL; o = o->next)
10319 {
10320 struct bfd_elf_section_data *esdo = elf_section_data (o);
10321 o->reloc_count = 0;
10322
10323 for (p = o->map_head.link_order; p != NULL; p = p->next)
10324 {
10325 unsigned int reloc_count = 0;
10326 struct bfd_elf_section_data *esdi = NULL;
10327
10328 if (p->type == bfd_section_reloc_link_order
10329 || p->type == bfd_symbol_reloc_link_order)
10330 reloc_count = 1;
10331 else if (p->type == bfd_indirect_link_order)
10332 {
10333 asection *sec;
10334
10335 sec = p->u.indirect.section;
10336 esdi = elf_section_data (sec);
10337
10338 /* Mark all sections which are to be included in the
10339 link. This will normally be every section. We need
10340 to do this so that we can identify any sections which
10341 the linker has decided to not include. */
10342 sec->linker_mark = TRUE;
10343
10344 if (sec->flags & SEC_MERGE)
10345 merged = TRUE;
10346
10347 if (info->relocatable || info->emitrelocations)
10348 reloc_count = sec->reloc_count;
10349 else if (bed->elf_backend_count_relocs)
10350 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10351
10352 if (sec->rawsize > max_contents_size)
10353 max_contents_size = sec->rawsize;
10354 if (sec->size > max_contents_size)
10355 max_contents_size = sec->size;
10356
10357 /* We are interested in just local symbols, not all
10358 symbols. */
10359 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10360 && (sec->owner->flags & DYNAMIC) == 0)
10361 {
10362 size_t sym_count;
10363
10364 if (elf_bad_symtab (sec->owner))
10365 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10366 / bed->s->sizeof_sym);
10367 else
10368 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10369
10370 if (sym_count > max_sym_count)
10371 max_sym_count = sym_count;
10372
10373 if (sym_count > max_sym_shndx_count
10374 && elf_symtab_shndx (sec->owner) != 0)
10375 max_sym_shndx_count = sym_count;
10376
10377 if ((sec->flags & SEC_RELOC) != 0)
10378 {
10379 size_t ext_size = 0;
10380
10381 if (esdi->rel.hdr != NULL)
10382 ext_size = esdi->rel.hdr->sh_size;
10383 if (esdi->rela.hdr != NULL)
10384 ext_size += esdi->rela.hdr->sh_size;
10385
10386 if (ext_size > max_external_reloc_size)
10387 max_external_reloc_size = ext_size;
10388 if (sec->reloc_count > max_internal_reloc_count)
10389 max_internal_reloc_count = sec->reloc_count;
10390 }
10391 }
10392 }
10393
10394 if (reloc_count == 0)
10395 continue;
10396
10397 o->reloc_count += reloc_count;
10398
10399 if (p->type == bfd_indirect_link_order
10400 && (info->relocatable || info->emitrelocations))
10401 {
10402 if (esdi->rel.hdr)
10403 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10404 if (esdi->rela.hdr)
10405 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10406 }
10407 else
10408 {
10409 if (o->use_rela_p)
10410 esdo->rela.count += reloc_count;
10411 else
10412 esdo->rel.count += reloc_count;
10413 }
10414 }
10415
10416 if (o->reloc_count > 0)
10417 o->flags |= SEC_RELOC;
10418 else
10419 {
10420 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10421 set it (this is probably a bug) and if it is set
10422 assign_section_numbers will create a reloc section. */
10423 o->flags &=~ SEC_RELOC;
10424 }
10425
10426 /* If the SEC_ALLOC flag is not set, force the section VMA to
10427 zero. This is done in elf_fake_sections as well, but forcing
10428 the VMA to 0 here will ensure that relocs against these
10429 sections are handled correctly. */
10430 if ((o->flags & SEC_ALLOC) == 0
10431 && ! o->user_set_vma)
10432 o->vma = 0;
10433 }
10434
10435 if (! info->relocatable && merged)
10436 elf_link_hash_traverse (elf_hash_table (info),
10437 _bfd_elf_link_sec_merge_syms, abfd);
10438
10439 /* Figure out the file positions for everything but the symbol table
10440 and the relocs. We set symcount to force assign_section_numbers
10441 to create a symbol table. */
10442 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10443 BFD_ASSERT (! abfd->output_has_begun);
10444 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10445 goto error_return;
10446
10447 /* Set sizes, and assign file positions for reloc sections. */
10448 for (o = abfd->sections; o != NULL; o = o->next)
10449 {
10450 struct bfd_elf_section_data *esdo = elf_section_data (o);
10451 if ((o->flags & SEC_RELOC) != 0)
10452 {
10453 if (esdo->rel.hdr
10454 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10455 goto error_return;
10456
10457 if (esdo->rela.hdr
10458 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10459 goto error_return;
10460 }
10461
10462 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10463 to count upwards while actually outputting the relocations. */
10464 esdo->rel.count = 0;
10465 esdo->rela.count = 0;
10466 }
10467
10468 _bfd_elf_assign_file_positions_for_relocs (abfd);
10469
10470 /* We have now assigned file positions for all the sections except
10471 .symtab and .strtab. We start the .symtab section at the current
10472 file position, and write directly to it. We build the .strtab
10473 section in memory. */
10474 bfd_get_symcount (abfd) = 0;
10475 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10476 /* sh_name is set in prep_headers. */
10477 symtab_hdr->sh_type = SHT_SYMTAB;
10478 /* sh_flags, sh_addr and sh_size all start off zero. */
10479 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10480 /* sh_link is set in assign_section_numbers. */
10481 /* sh_info is set below. */
10482 /* sh_offset is set just below. */
10483 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10484
10485 off = elf_tdata (abfd)->next_file_pos;
10486 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10487
10488 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10489 incorrect. We do not yet know the size of the .symtab section.
10490 We correct next_file_pos below, after we do know the size. */
10491
10492 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10493 continuously seeking to the right position in the file. */
10494 if (! info->keep_memory || max_sym_count < 20)
10495 finfo.symbuf_size = 20;
10496 else
10497 finfo.symbuf_size = max_sym_count;
10498 amt = finfo.symbuf_size;
10499 amt *= bed->s->sizeof_sym;
10500 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10501 if (finfo.symbuf == NULL)
10502 goto error_return;
10503 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10504 {
10505 /* Wild guess at number of output symbols. realloc'd as needed. */
10506 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10507 finfo.shndxbuf_size = amt;
10508 amt *= sizeof (Elf_External_Sym_Shndx);
10509 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10510 if (finfo.symshndxbuf == NULL)
10511 goto error_return;
10512 }
10513
10514 /* Start writing out the symbol table. The first symbol is always a
10515 dummy symbol. */
10516 if (info->strip != strip_all
10517 || emit_relocs)
10518 {
10519 elfsym.st_value = 0;
10520 elfsym.st_size = 0;
10521 elfsym.st_info = 0;
10522 elfsym.st_other = 0;
10523 elfsym.st_shndx = SHN_UNDEF;
10524 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10525 NULL) != 1)
10526 goto error_return;
10527 }
10528
10529 /* Output a symbol for each section. We output these even if we are
10530 discarding local symbols, since they are used for relocs. These
10531 symbols have no names. We store the index of each one in the
10532 index field of the section, so that we can find it again when
10533 outputting relocs. */
10534 if (info->strip != strip_all
10535 || emit_relocs)
10536 {
10537 elfsym.st_size = 0;
10538 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10539 elfsym.st_other = 0;
10540 elfsym.st_value = 0;
10541 for (i = 1; i < elf_numsections (abfd); i++)
10542 {
10543 o = bfd_section_from_elf_index (abfd, i);
10544 if (o != NULL)
10545 {
10546 o->target_index = bfd_get_symcount (abfd);
10547 elfsym.st_shndx = i;
10548 if (!info->relocatable)
10549 elfsym.st_value = o->vma;
10550 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10551 goto error_return;
10552 }
10553 }
10554 }
10555
10556 /* Allocate some memory to hold information read in from the input
10557 files. */
10558 if (max_contents_size != 0)
10559 {
10560 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10561 if (finfo.contents == NULL)
10562 goto error_return;
10563 }
10564
10565 if (max_external_reloc_size != 0)
10566 {
10567 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10568 if (finfo.external_relocs == NULL)
10569 goto error_return;
10570 }
10571
10572 if (max_internal_reloc_count != 0)
10573 {
10574 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10575 amt *= sizeof (Elf_Internal_Rela);
10576 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10577 if (finfo.internal_relocs == NULL)
10578 goto error_return;
10579 }
10580
10581 if (max_sym_count != 0)
10582 {
10583 amt = max_sym_count * bed->s->sizeof_sym;
10584 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10585 if (finfo.external_syms == NULL)
10586 goto error_return;
10587
10588 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10589 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10590 if (finfo.internal_syms == NULL)
10591 goto error_return;
10592
10593 amt = max_sym_count * sizeof (long);
10594 finfo.indices = (long int *) bfd_malloc (amt);
10595 if (finfo.indices == NULL)
10596 goto error_return;
10597
10598 amt = max_sym_count * sizeof (asection *);
10599 finfo.sections = (asection **) bfd_malloc (amt);
10600 if (finfo.sections == NULL)
10601 goto error_return;
10602 }
10603
10604 if (max_sym_shndx_count != 0)
10605 {
10606 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10607 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10608 if (finfo.locsym_shndx == NULL)
10609 goto error_return;
10610 }
10611
10612 if (elf_hash_table (info)->tls_sec)
10613 {
10614 bfd_vma base, end = 0;
10615 asection *sec;
10616
10617 for (sec = elf_hash_table (info)->tls_sec;
10618 sec && (sec->flags & SEC_THREAD_LOCAL);
10619 sec = sec->next)
10620 {
10621 bfd_size_type size = sec->size;
10622
10623 if (size == 0
10624 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10625 {
10626 struct bfd_link_order *ord = sec->map_tail.link_order;
10627
10628 if (ord != NULL)
10629 size = ord->offset + ord->size;
10630 }
10631 end = sec->vma + size;
10632 }
10633 base = elf_hash_table (info)->tls_sec->vma;
10634 /* Only align end of TLS section if static TLS doesn't have special
10635 alignment requirements. */
10636 if (bed->static_tls_alignment == 1)
10637 end = align_power (end,
10638 elf_hash_table (info)->tls_sec->alignment_power);
10639 elf_hash_table (info)->tls_size = end - base;
10640 }
10641
10642 /* Reorder SHF_LINK_ORDER sections. */
10643 for (o = abfd->sections; o != NULL; o = o->next)
10644 {
10645 if (!elf_fixup_link_order (abfd, o))
10646 return FALSE;
10647 }
10648
10649 /* Since ELF permits relocations to be against local symbols, we
10650 must have the local symbols available when we do the relocations.
10651 Since we would rather only read the local symbols once, and we
10652 would rather not keep them in memory, we handle all the
10653 relocations for a single input file at the same time.
10654
10655 Unfortunately, there is no way to know the total number of local
10656 symbols until we have seen all of them, and the local symbol
10657 indices precede the global symbol indices. This means that when
10658 we are generating relocatable output, and we see a reloc against
10659 a global symbol, we can not know the symbol index until we have
10660 finished examining all the local symbols to see which ones we are
10661 going to output. To deal with this, we keep the relocations in
10662 memory, and don't output them until the end of the link. This is
10663 an unfortunate waste of memory, but I don't see a good way around
10664 it. Fortunately, it only happens when performing a relocatable
10665 link, which is not the common case. FIXME: If keep_memory is set
10666 we could write the relocs out and then read them again; I don't
10667 know how bad the memory loss will be. */
10668
10669 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10670 sub->output_has_begun = FALSE;
10671 for (o = abfd->sections; o != NULL; o = o->next)
10672 {
10673 for (p = o->map_head.link_order; p != NULL; p = p->next)
10674 {
10675 if (p->type == bfd_indirect_link_order
10676 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10677 == bfd_target_elf_flavour)
10678 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10679 {
10680 if (! sub->output_has_begun)
10681 {
10682 if (! elf_link_input_bfd (&finfo, sub))
10683 goto error_return;
10684 sub->output_has_begun = TRUE;
10685 }
10686 }
10687 else if (p->type == bfd_section_reloc_link_order
10688 || p->type == bfd_symbol_reloc_link_order)
10689 {
10690 if (! elf_reloc_link_order (abfd, info, o, p))
10691 goto error_return;
10692 }
10693 else
10694 {
10695 if (! _bfd_default_link_order (abfd, info, o, p))
10696 goto error_return;
10697 }
10698 }
10699 }
10700
10701 /* Free symbol buffer if needed. */
10702 if (!info->reduce_memory_overheads)
10703 {
10704 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10705 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10706 && elf_tdata (sub)->symbuf)
10707 {
10708 free (elf_tdata (sub)->symbuf);
10709 elf_tdata (sub)->symbuf = NULL;
10710 }
10711 }
10712
10713 /* Output any global symbols that got converted to local in a
10714 version script or due to symbol visibility. We do this in a
10715 separate step since ELF requires all local symbols to appear
10716 prior to any global symbols. FIXME: We should only do this if
10717 some global symbols were, in fact, converted to become local.
10718 FIXME: Will this work correctly with the Irix 5 linker? */
10719 eoinfo.failed = FALSE;
10720 eoinfo.finfo = &finfo;
10721 eoinfo.localsyms = TRUE;
10722 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10723 &eoinfo);
10724 if (eoinfo.failed)
10725 return FALSE;
10726
10727 /* If backend needs to output some local symbols not present in the hash
10728 table, do it now. */
10729 if (bed->elf_backend_output_arch_local_syms)
10730 {
10731 typedef int (*out_sym_func)
10732 (void *, const char *, Elf_Internal_Sym *, asection *,
10733 struct elf_link_hash_entry *);
10734
10735 if (! ((*bed->elf_backend_output_arch_local_syms)
10736 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10737 return FALSE;
10738 }
10739
10740 /* That wrote out all the local symbols. Finish up the symbol table
10741 with the global symbols. Even if we want to strip everything we
10742 can, we still need to deal with those global symbols that got
10743 converted to local in a version script. */
10744
10745 /* The sh_info field records the index of the first non local symbol. */
10746 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10747
10748 if (dynamic
10749 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10750 {
10751 Elf_Internal_Sym sym;
10752 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10753 long last_local = 0;
10754
10755 /* Write out the section symbols for the output sections. */
10756 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10757 {
10758 asection *s;
10759
10760 sym.st_size = 0;
10761 sym.st_name = 0;
10762 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10763 sym.st_other = 0;
10764
10765 for (s = abfd->sections; s != NULL; s = s->next)
10766 {
10767 int indx;
10768 bfd_byte *dest;
10769 long dynindx;
10770
10771 dynindx = elf_section_data (s)->dynindx;
10772 if (dynindx <= 0)
10773 continue;
10774 indx = elf_section_data (s)->this_idx;
10775 BFD_ASSERT (indx > 0);
10776 sym.st_shndx = indx;
10777 if (! check_dynsym (abfd, &sym))
10778 return FALSE;
10779 sym.st_value = s->vma;
10780 dest = dynsym + dynindx * bed->s->sizeof_sym;
10781 if (last_local < dynindx)
10782 last_local = dynindx;
10783 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10784 }
10785 }
10786
10787 /* Write out the local dynsyms. */
10788 if (elf_hash_table (info)->dynlocal)
10789 {
10790 struct elf_link_local_dynamic_entry *e;
10791 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10792 {
10793 asection *s;
10794 bfd_byte *dest;
10795
10796 /* Copy the internal symbol and turn off visibility.
10797 Note that we saved a word of storage and overwrote
10798 the original st_name with the dynstr_index. */
10799 sym = e->isym;
10800 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10801
10802 s = bfd_section_from_elf_index (e->input_bfd,
10803 e->isym.st_shndx);
10804 if (s != NULL)
10805 {
10806 sym.st_shndx =
10807 elf_section_data (s->output_section)->this_idx;
10808 if (! check_dynsym (abfd, &sym))
10809 return FALSE;
10810 sym.st_value = (s->output_section->vma
10811 + s->output_offset
10812 + e->isym.st_value);
10813 }
10814
10815 if (last_local < e->dynindx)
10816 last_local = e->dynindx;
10817
10818 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10819 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10820 }
10821 }
10822
10823 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10824 last_local + 1;
10825 }
10826
10827 /* We get the global symbols from the hash table. */
10828 eoinfo.failed = FALSE;
10829 eoinfo.localsyms = FALSE;
10830 eoinfo.finfo = &finfo;
10831 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10832 &eoinfo);
10833 if (eoinfo.failed)
10834 return FALSE;
10835
10836 /* If backend needs to output some symbols not present in the hash
10837 table, do it now. */
10838 if (bed->elf_backend_output_arch_syms)
10839 {
10840 typedef int (*out_sym_func)
10841 (void *, const char *, Elf_Internal_Sym *, asection *,
10842 struct elf_link_hash_entry *);
10843
10844 if (! ((*bed->elf_backend_output_arch_syms)
10845 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10846 return FALSE;
10847 }
10848
10849 /* Flush all symbols to the file. */
10850 if (! elf_link_flush_output_syms (&finfo, bed))
10851 return FALSE;
10852
10853 /* Now we know the size of the symtab section. */
10854 off += symtab_hdr->sh_size;
10855
10856 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10857 if (symtab_shndx_hdr->sh_name != 0)
10858 {
10859 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10860 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10861 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10862 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10863 symtab_shndx_hdr->sh_size = amt;
10864
10865 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10866 off, TRUE);
10867
10868 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10869 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10870 return FALSE;
10871 }
10872
10873
10874 /* Finish up and write out the symbol string table (.strtab)
10875 section. */
10876 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10877 /* sh_name was set in prep_headers. */
10878 symstrtab_hdr->sh_type = SHT_STRTAB;
10879 symstrtab_hdr->sh_flags = 0;
10880 symstrtab_hdr->sh_addr = 0;
10881 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10882 symstrtab_hdr->sh_entsize = 0;
10883 symstrtab_hdr->sh_link = 0;
10884 symstrtab_hdr->sh_info = 0;
10885 /* sh_offset is set just below. */
10886 symstrtab_hdr->sh_addralign = 1;
10887
10888 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10889 elf_tdata (abfd)->next_file_pos = off;
10890
10891 if (bfd_get_symcount (abfd) > 0)
10892 {
10893 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10894 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10895 return FALSE;
10896 }
10897
10898 /* Adjust the relocs to have the correct symbol indices. */
10899 for (o = abfd->sections; o != NULL; o = o->next)
10900 {
10901 struct bfd_elf_section_data *esdo = elf_section_data (o);
10902 if ((o->flags & SEC_RELOC) == 0)
10903 continue;
10904
10905 if (esdo->rel.hdr != NULL)
10906 elf_link_adjust_relocs (abfd, &esdo->rel);
10907 if (esdo->rela.hdr != NULL)
10908 elf_link_adjust_relocs (abfd, &esdo->rela);
10909
10910 /* Set the reloc_count field to 0 to prevent write_relocs from
10911 trying to swap the relocs out itself. */
10912 o->reloc_count = 0;
10913 }
10914
10915 if (dynamic && info->combreloc && dynobj != NULL)
10916 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10917
10918 /* If we are linking against a dynamic object, or generating a
10919 shared library, finish up the dynamic linking information. */
10920 if (dynamic)
10921 {
10922 bfd_byte *dyncon, *dynconend;
10923
10924 /* Fix up .dynamic entries. */
10925 o = bfd_get_section_by_name (dynobj, ".dynamic");
10926 BFD_ASSERT (o != NULL);
10927
10928 dyncon = o->contents;
10929 dynconend = o->contents + o->size;
10930 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10931 {
10932 Elf_Internal_Dyn dyn;
10933 const char *name;
10934 unsigned int type;
10935
10936 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10937
10938 switch (dyn.d_tag)
10939 {
10940 default:
10941 continue;
10942 case DT_NULL:
10943 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10944 {
10945 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10946 {
10947 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10948 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10949 default: continue;
10950 }
10951 dyn.d_un.d_val = relativecount;
10952 relativecount = 0;
10953 break;
10954 }
10955 continue;
10956
10957 case DT_INIT:
10958 name = info->init_function;
10959 goto get_sym;
10960 case DT_FINI:
10961 name = info->fini_function;
10962 get_sym:
10963 {
10964 struct elf_link_hash_entry *h;
10965
10966 h = elf_link_hash_lookup (elf_hash_table (info), name,
10967 FALSE, FALSE, TRUE);
10968 if (h != NULL
10969 && (h->root.type == bfd_link_hash_defined
10970 || h->root.type == bfd_link_hash_defweak))
10971 {
10972 dyn.d_un.d_ptr = h->root.u.def.value;
10973 o = h->root.u.def.section;
10974 if (o->output_section != NULL)
10975 dyn.d_un.d_ptr += (o->output_section->vma
10976 + o->output_offset);
10977 else
10978 {
10979 /* The symbol is imported from another shared
10980 library and does not apply to this one. */
10981 dyn.d_un.d_ptr = 0;
10982 }
10983 break;
10984 }
10985 }
10986 continue;
10987
10988 case DT_PREINIT_ARRAYSZ:
10989 name = ".preinit_array";
10990 goto get_size;
10991 case DT_INIT_ARRAYSZ:
10992 name = ".init_array";
10993 goto get_size;
10994 case DT_FINI_ARRAYSZ:
10995 name = ".fini_array";
10996 get_size:
10997 o = bfd_get_section_by_name (abfd, name);
10998 if (o == NULL)
10999 {
11000 (*_bfd_error_handler)
11001 (_("%B: could not find output section %s"), abfd, name);
11002 goto error_return;
11003 }
11004 if (o->size == 0)
11005 (*_bfd_error_handler)
11006 (_("warning: %s section has zero size"), name);
11007 dyn.d_un.d_val = o->size;
11008 break;
11009
11010 case DT_PREINIT_ARRAY:
11011 name = ".preinit_array";
11012 goto get_vma;
11013 case DT_INIT_ARRAY:
11014 name = ".init_array";
11015 goto get_vma;
11016 case DT_FINI_ARRAY:
11017 name = ".fini_array";
11018 goto get_vma;
11019
11020 case DT_HASH:
11021 name = ".hash";
11022 goto get_vma;
11023 case DT_GNU_HASH:
11024 name = ".gnu.hash";
11025 goto get_vma;
11026 case DT_STRTAB:
11027 name = ".dynstr";
11028 goto get_vma;
11029 case DT_SYMTAB:
11030 name = ".dynsym";
11031 goto get_vma;
11032 case DT_VERDEF:
11033 name = ".gnu.version_d";
11034 goto get_vma;
11035 case DT_VERNEED:
11036 name = ".gnu.version_r";
11037 goto get_vma;
11038 case DT_VERSYM:
11039 name = ".gnu.version";
11040 get_vma:
11041 o = bfd_get_section_by_name (abfd, name);
11042 if (o == NULL)
11043 {
11044 (*_bfd_error_handler)
11045 (_("%B: could not find output section %s"), abfd, name);
11046 goto error_return;
11047 }
11048 dyn.d_un.d_ptr = o->vma;
11049 break;
11050
11051 case DT_REL:
11052 case DT_RELA:
11053 case DT_RELSZ:
11054 case DT_RELASZ:
11055 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11056 type = SHT_REL;
11057 else
11058 type = SHT_RELA;
11059 dyn.d_un.d_val = 0;
11060 dyn.d_un.d_ptr = 0;
11061 for (i = 1; i < elf_numsections (abfd); i++)
11062 {
11063 Elf_Internal_Shdr *hdr;
11064
11065 hdr = elf_elfsections (abfd)[i];
11066 if (hdr->sh_type == type
11067 && (hdr->sh_flags & SHF_ALLOC) != 0)
11068 {
11069 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11070 dyn.d_un.d_val += hdr->sh_size;
11071 else
11072 {
11073 if (dyn.d_un.d_ptr == 0
11074 || hdr->sh_addr < dyn.d_un.d_ptr)
11075 dyn.d_un.d_ptr = hdr->sh_addr;
11076 }
11077 }
11078 }
11079 break;
11080 }
11081 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11082 }
11083 }
11084
11085 /* If we have created any dynamic sections, then output them. */
11086 if (dynobj != NULL)
11087 {
11088 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11089 goto error_return;
11090
11091 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11092 if (info->warn_shared_textrel && info->shared)
11093 {
11094 bfd_byte *dyncon, *dynconend;
11095
11096 /* Fix up .dynamic entries. */
11097 o = bfd_get_section_by_name (dynobj, ".dynamic");
11098 BFD_ASSERT (o != NULL);
11099
11100 dyncon = o->contents;
11101 dynconend = o->contents + o->size;
11102 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11103 {
11104 Elf_Internal_Dyn dyn;
11105
11106 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11107
11108 if (dyn.d_tag == DT_TEXTREL)
11109 {
11110 info->callbacks->einfo
11111 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11112 break;
11113 }
11114 }
11115 }
11116
11117 for (o = dynobj->sections; o != NULL; o = o->next)
11118 {
11119 if ((o->flags & SEC_HAS_CONTENTS) == 0
11120 || o->size == 0
11121 || o->output_section == bfd_abs_section_ptr)
11122 continue;
11123 if ((o->flags & SEC_LINKER_CREATED) == 0)
11124 {
11125 /* At this point, we are only interested in sections
11126 created by _bfd_elf_link_create_dynamic_sections. */
11127 continue;
11128 }
11129 if (elf_hash_table (info)->stab_info.stabstr == o)
11130 continue;
11131 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11132 continue;
11133 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11134 != SHT_STRTAB)
11135 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11136 {
11137 /* FIXME: octets_per_byte. */
11138 if (! bfd_set_section_contents (abfd, o->output_section,
11139 o->contents,
11140 (file_ptr) o->output_offset,
11141 o->size))
11142 goto error_return;
11143 }
11144 else
11145 {
11146 /* The contents of the .dynstr section are actually in a
11147 stringtab. */
11148 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11149 if (bfd_seek (abfd, off, SEEK_SET) != 0
11150 || ! _bfd_elf_strtab_emit (abfd,
11151 elf_hash_table (info)->dynstr))
11152 goto error_return;
11153 }
11154 }
11155 }
11156
11157 if (info->relocatable)
11158 {
11159 bfd_boolean failed = FALSE;
11160
11161 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11162 if (failed)
11163 goto error_return;
11164 }
11165
11166 /* If we have optimized stabs strings, output them. */
11167 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11168 {
11169 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11170 goto error_return;
11171 }
11172
11173 if (info->eh_frame_hdr)
11174 {
11175 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11176 goto error_return;
11177 }
11178
11179 if (finfo.symstrtab != NULL)
11180 _bfd_stringtab_free (finfo.symstrtab);
11181 if (finfo.contents != NULL)
11182 free (finfo.contents);
11183 if (finfo.external_relocs != NULL)
11184 free (finfo.external_relocs);
11185 if (finfo.internal_relocs != NULL)
11186 free (finfo.internal_relocs);
11187 if (finfo.external_syms != NULL)
11188 free (finfo.external_syms);
11189 if (finfo.locsym_shndx != NULL)
11190 free (finfo.locsym_shndx);
11191 if (finfo.internal_syms != NULL)
11192 free (finfo.internal_syms);
11193 if (finfo.indices != NULL)
11194 free (finfo.indices);
11195 if (finfo.sections != NULL)
11196 free (finfo.sections);
11197 if (finfo.symbuf != NULL)
11198 free (finfo.symbuf);
11199 if (finfo.symshndxbuf != NULL)
11200 free (finfo.symshndxbuf);
11201 for (o = abfd->sections; o != NULL; o = o->next)
11202 {
11203 struct bfd_elf_section_data *esdo = elf_section_data (o);
11204 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11205 free (esdo->rel.hashes);
11206 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11207 free (esdo->rela.hashes);
11208 }
11209
11210 elf_tdata (abfd)->linker = TRUE;
11211
11212 if (attr_section)
11213 {
11214 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11215 if (contents == NULL)
11216 return FALSE; /* Bail out and fail. */
11217 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11218 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11219 free (contents);
11220 }
11221
11222 return TRUE;
11223
11224 error_return:
11225 if (finfo.symstrtab != NULL)
11226 _bfd_stringtab_free (finfo.symstrtab);
11227 if (finfo.contents != NULL)
11228 free (finfo.contents);
11229 if (finfo.external_relocs != NULL)
11230 free (finfo.external_relocs);
11231 if (finfo.internal_relocs != NULL)
11232 free (finfo.internal_relocs);
11233 if (finfo.external_syms != NULL)
11234 free (finfo.external_syms);
11235 if (finfo.locsym_shndx != NULL)
11236 free (finfo.locsym_shndx);
11237 if (finfo.internal_syms != NULL)
11238 free (finfo.internal_syms);
11239 if (finfo.indices != NULL)
11240 free (finfo.indices);
11241 if (finfo.sections != NULL)
11242 free (finfo.sections);
11243 if (finfo.symbuf != NULL)
11244 free (finfo.symbuf);
11245 if (finfo.symshndxbuf != NULL)
11246 free (finfo.symshndxbuf);
11247 for (o = abfd->sections; o != NULL; o = o->next)
11248 {
11249 struct bfd_elf_section_data *esdo = elf_section_data (o);
11250 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11251 free (esdo->rel.hashes);
11252 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11253 free (esdo->rela.hashes);
11254 }
11255
11256 return FALSE;
11257 }
11258 \f
11259 /* Initialize COOKIE for input bfd ABFD. */
11260
11261 static bfd_boolean
11262 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11263 struct bfd_link_info *info, bfd *abfd)
11264 {
11265 Elf_Internal_Shdr *symtab_hdr;
11266 const struct elf_backend_data *bed;
11267
11268 bed = get_elf_backend_data (abfd);
11269 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11270
11271 cookie->abfd = abfd;
11272 cookie->sym_hashes = elf_sym_hashes (abfd);
11273 cookie->bad_symtab = elf_bad_symtab (abfd);
11274 if (cookie->bad_symtab)
11275 {
11276 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11277 cookie->extsymoff = 0;
11278 }
11279 else
11280 {
11281 cookie->locsymcount = symtab_hdr->sh_info;
11282 cookie->extsymoff = symtab_hdr->sh_info;
11283 }
11284
11285 if (bed->s->arch_size == 32)
11286 cookie->r_sym_shift = 8;
11287 else
11288 cookie->r_sym_shift = 32;
11289
11290 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11291 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11292 {
11293 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11294 cookie->locsymcount, 0,
11295 NULL, NULL, NULL);
11296 if (cookie->locsyms == NULL)
11297 {
11298 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11299 return FALSE;
11300 }
11301 if (info->keep_memory)
11302 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11303 }
11304 return TRUE;
11305 }
11306
11307 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11308
11309 static void
11310 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11311 {
11312 Elf_Internal_Shdr *symtab_hdr;
11313
11314 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11315 if (cookie->locsyms != NULL
11316 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11317 free (cookie->locsyms);
11318 }
11319
11320 /* Initialize the relocation information in COOKIE for input section SEC
11321 of input bfd ABFD. */
11322
11323 static bfd_boolean
11324 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11325 struct bfd_link_info *info, bfd *abfd,
11326 asection *sec)
11327 {
11328 const struct elf_backend_data *bed;
11329
11330 if (sec->reloc_count == 0)
11331 {
11332 cookie->rels = NULL;
11333 cookie->relend = NULL;
11334 }
11335 else
11336 {
11337 bed = get_elf_backend_data (abfd);
11338
11339 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11340 info->keep_memory);
11341 if (cookie->rels == NULL)
11342 return FALSE;
11343 cookie->rel = cookie->rels;
11344 cookie->relend = (cookie->rels
11345 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11346 }
11347 cookie->rel = cookie->rels;
11348 return TRUE;
11349 }
11350
11351 /* Free the memory allocated by init_reloc_cookie_rels,
11352 if appropriate. */
11353
11354 static void
11355 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11356 asection *sec)
11357 {
11358 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11359 free (cookie->rels);
11360 }
11361
11362 /* Initialize the whole of COOKIE for input section SEC. */
11363
11364 static bfd_boolean
11365 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11366 struct bfd_link_info *info,
11367 asection *sec)
11368 {
11369 if (!init_reloc_cookie (cookie, info, sec->owner))
11370 goto error1;
11371 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11372 goto error2;
11373 return TRUE;
11374
11375 error2:
11376 fini_reloc_cookie (cookie, sec->owner);
11377 error1:
11378 return FALSE;
11379 }
11380
11381 /* Free the memory allocated by init_reloc_cookie_for_section,
11382 if appropriate. */
11383
11384 static void
11385 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11386 asection *sec)
11387 {
11388 fini_reloc_cookie_rels (cookie, sec);
11389 fini_reloc_cookie (cookie, sec->owner);
11390 }
11391 \f
11392 /* Garbage collect unused sections. */
11393
11394 /* Default gc_mark_hook. */
11395
11396 asection *
11397 _bfd_elf_gc_mark_hook (asection *sec,
11398 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11399 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11400 struct elf_link_hash_entry *h,
11401 Elf_Internal_Sym *sym)
11402 {
11403 const char *sec_name;
11404
11405 if (h != NULL)
11406 {
11407 switch (h->root.type)
11408 {
11409 case bfd_link_hash_defined:
11410 case bfd_link_hash_defweak:
11411 return h->root.u.def.section;
11412
11413 case bfd_link_hash_common:
11414 return h->root.u.c.p->section;
11415
11416 case bfd_link_hash_undefined:
11417 case bfd_link_hash_undefweak:
11418 /* To work around a glibc bug, keep all XXX input sections
11419 when there is an as yet undefined reference to __start_XXX
11420 or __stop_XXX symbols. The linker will later define such
11421 symbols for orphan input sections that have a name
11422 representable as a C identifier. */
11423 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11424 sec_name = h->root.root.string + 8;
11425 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11426 sec_name = h->root.root.string + 7;
11427 else
11428 sec_name = NULL;
11429
11430 if (sec_name && *sec_name != '\0')
11431 {
11432 bfd *i;
11433
11434 for (i = info->input_bfds; i; i = i->link_next)
11435 {
11436 sec = bfd_get_section_by_name (i, sec_name);
11437 if (sec)
11438 sec->flags |= SEC_KEEP;
11439 }
11440 }
11441 break;
11442
11443 default:
11444 break;
11445 }
11446 }
11447 else
11448 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11449
11450 return NULL;
11451 }
11452
11453 /* COOKIE->rel describes a relocation against section SEC, which is
11454 a section we've decided to keep. Return the section that contains
11455 the relocation symbol, or NULL if no section contains it. */
11456
11457 asection *
11458 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11459 elf_gc_mark_hook_fn gc_mark_hook,
11460 struct elf_reloc_cookie *cookie)
11461 {
11462 unsigned long r_symndx;
11463 struct elf_link_hash_entry *h;
11464
11465 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11466 if (r_symndx == STN_UNDEF)
11467 return NULL;
11468
11469 if (r_symndx >= cookie->locsymcount
11470 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11471 {
11472 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11473 while (h->root.type == bfd_link_hash_indirect
11474 || h->root.type == bfd_link_hash_warning)
11475 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11476 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11477 }
11478
11479 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11480 &cookie->locsyms[r_symndx]);
11481 }
11482
11483 /* COOKIE->rel describes a relocation against section SEC, which is
11484 a section we've decided to keep. Mark the section that contains
11485 the relocation symbol. */
11486
11487 bfd_boolean
11488 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11489 asection *sec,
11490 elf_gc_mark_hook_fn gc_mark_hook,
11491 struct elf_reloc_cookie *cookie)
11492 {
11493 asection *rsec;
11494
11495 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11496 if (rsec && !rsec->gc_mark)
11497 {
11498 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11499 rsec->gc_mark = 1;
11500 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11501 return FALSE;
11502 }
11503 return TRUE;
11504 }
11505
11506 /* The mark phase of garbage collection. For a given section, mark
11507 it and any sections in this section's group, and all the sections
11508 which define symbols to which it refers. */
11509
11510 bfd_boolean
11511 _bfd_elf_gc_mark (struct bfd_link_info *info,
11512 asection *sec,
11513 elf_gc_mark_hook_fn gc_mark_hook)
11514 {
11515 bfd_boolean ret;
11516 asection *group_sec, *eh_frame;
11517
11518 sec->gc_mark = 1;
11519
11520 /* Mark all the sections in the group. */
11521 group_sec = elf_section_data (sec)->next_in_group;
11522 if (group_sec && !group_sec->gc_mark)
11523 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11524 return FALSE;
11525
11526 /* Look through the section relocs. */
11527 ret = TRUE;
11528 eh_frame = elf_eh_frame_section (sec->owner);
11529 if ((sec->flags & SEC_RELOC) != 0
11530 && sec->reloc_count > 0
11531 && sec != eh_frame)
11532 {
11533 struct elf_reloc_cookie cookie;
11534
11535 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11536 ret = FALSE;
11537 else
11538 {
11539 for (; cookie.rel < cookie.relend; cookie.rel++)
11540 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11541 {
11542 ret = FALSE;
11543 break;
11544 }
11545 fini_reloc_cookie_for_section (&cookie, sec);
11546 }
11547 }
11548
11549 if (ret && eh_frame && elf_fde_list (sec))
11550 {
11551 struct elf_reloc_cookie cookie;
11552
11553 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11554 ret = FALSE;
11555 else
11556 {
11557 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11558 gc_mark_hook, &cookie))
11559 ret = FALSE;
11560 fini_reloc_cookie_for_section (&cookie, eh_frame);
11561 }
11562 }
11563
11564 return ret;
11565 }
11566
11567 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11568
11569 struct elf_gc_sweep_symbol_info
11570 {
11571 struct bfd_link_info *info;
11572 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11573 bfd_boolean);
11574 };
11575
11576 static bfd_boolean
11577 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11578 {
11579 if (h->root.type == bfd_link_hash_warning)
11580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11581
11582 if ((h->root.type == bfd_link_hash_defined
11583 || h->root.type == bfd_link_hash_defweak)
11584 && !h->root.u.def.section->gc_mark
11585 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11586 {
11587 struct elf_gc_sweep_symbol_info *inf =
11588 (struct elf_gc_sweep_symbol_info *) data;
11589 (*inf->hide_symbol) (inf->info, h, TRUE);
11590 }
11591
11592 return TRUE;
11593 }
11594
11595 /* The sweep phase of garbage collection. Remove all garbage sections. */
11596
11597 typedef bfd_boolean (*gc_sweep_hook_fn)
11598 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11599
11600 static bfd_boolean
11601 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11602 {
11603 bfd *sub;
11604 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11605 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11606 unsigned long section_sym_count;
11607 struct elf_gc_sweep_symbol_info sweep_info;
11608
11609 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11610 {
11611 asection *o;
11612
11613 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11614 continue;
11615
11616 for (o = sub->sections; o != NULL; o = o->next)
11617 {
11618 /* When any section in a section group is kept, we keep all
11619 sections in the section group. If the first member of
11620 the section group is excluded, we will also exclude the
11621 group section. */
11622 if (o->flags & SEC_GROUP)
11623 {
11624 asection *first = elf_next_in_group (o);
11625 o->gc_mark = first->gc_mark;
11626 }
11627 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11628 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11629 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11630 {
11631 /* Keep debug, special and SHT_NOTE sections. */
11632 o->gc_mark = 1;
11633 }
11634
11635 if (o->gc_mark)
11636 continue;
11637
11638 /* Skip sweeping sections already excluded. */
11639 if (o->flags & SEC_EXCLUDE)
11640 continue;
11641
11642 /* Since this is early in the link process, it is simple
11643 to remove a section from the output. */
11644 o->flags |= SEC_EXCLUDE;
11645
11646 if (info->print_gc_sections && o->size != 0)
11647 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11648
11649 /* But we also have to update some of the relocation
11650 info we collected before. */
11651 if (gc_sweep_hook
11652 && (o->flags & SEC_RELOC) != 0
11653 && o->reloc_count > 0
11654 && !bfd_is_abs_section (o->output_section))
11655 {
11656 Elf_Internal_Rela *internal_relocs;
11657 bfd_boolean r;
11658
11659 internal_relocs
11660 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11661 info->keep_memory);
11662 if (internal_relocs == NULL)
11663 return FALSE;
11664
11665 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11666
11667 if (elf_section_data (o)->relocs != internal_relocs)
11668 free (internal_relocs);
11669
11670 if (!r)
11671 return FALSE;
11672 }
11673 }
11674 }
11675
11676 /* Remove the symbols that were in the swept sections from the dynamic
11677 symbol table. GCFIXME: Anyone know how to get them out of the
11678 static symbol table as well? */
11679 sweep_info.info = info;
11680 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11681 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11682 &sweep_info);
11683
11684 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11685 return TRUE;
11686 }
11687
11688 /* Propagate collected vtable information. This is called through
11689 elf_link_hash_traverse. */
11690
11691 static bfd_boolean
11692 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11693 {
11694 if (h->root.type == bfd_link_hash_warning)
11695 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11696
11697 /* Those that are not vtables. */
11698 if (h->vtable == NULL || h->vtable->parent == NULL)
11699 return TRUE;
11700
11701 /* Those vtables that do not have parents, we cannot merge. */
11702 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11703 return TRUE;
11704
11705 /* If we've already been done, exit. */
11706 if (h->vtable->used && h->vtable->used[-1])
11707 return TRUE;
11708
11709 /* Make sure the parent's table is up to date. */
11710 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11711
11712 if (h->vtable->used == NULL)
11713 {
11714 /* None of this table's entries were referenced. Re-use the
11715 parent's table. */
11716 h->vtable->used = h->vtable->parent->vtable->used;
11717 h->vtable->size = h->vtable->parent->vtable->size;
11718 }
11719 else
11720 {
11721 size_t n;
11722 bfd_boolean *cu, *pu;
11723
11724 /* Or the parent's entries into ours. */
11725 cu = h->vtable->used;
11726 cu[-1] = TRUE;
11727 pu = h->vtable->parent->vtable->used;
11728 if (pu != NULL)
11729 {
11730 const struct elf_backend_data *bed;
11731 unsigned int log_file_align;
11732
11733 bed = get_elf_backend_data (h->root.u.def.section->owner);
11734 log_file_align = bed->s->log_file_align;
11735 n = h->vtable->parent->vtable->size >> log_file_align;
11736 while (n--)
11737 {
11738 if (*pu)
11739 *cu = TRUE;
11740 pu++;
11741 cu++;
11742 }
11743 }
11744 }
11745
11746 return TRUE;
11747 }
11748
11749 static bfd_boolean
11750 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11751 {
11752 asection *sec;
11753 bfd_vma hstart, hend;
11754 Elf_Internal_Rela *relstart, *relend, *rel;
11755 const struct elf_backend_data *bed;
11756 unsigned int log_file_align;
11757
11758 if (h->root.type == bfd_link_hash_warning)
11759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11760
11761 /* Take care of both those symbols that do not describe vtables as
11762 well as those that are not loaded. */
11763 if (h->vtable == NULL || h->vtable->parent == NULL)
11764 return TRUE;
11765
11766 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11767 || h->root.type == bfd_link_hash_defweak);
11768
11769 sec = h->root.u.def.section;
11770 hstart = h->root.u.def.value;
11771 hend = hstart + h->size;
11772
11773 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11774 if (!relstart)
11775 return *(bfd_boolean *) okp = FALSE;
11776 bed = get_elf_backend_data (sec->owner);
11777 log_file_align = bed->s->log_file_align;
11778
11779 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11780
11781 for (rel = relstart; rel < relend; ++rel)
11782 if (rel->r_offset >= hstart && rel->r_offset < hend)
11783 {
11784 /* If the entry is in use, do nothing. */
11785 if (h->vtable->used
11786 && (rel->r_offset - hstart) < h->vtable->size)
11787 {
11788 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11789 if (h->vtable->used[entry])
11790 continue;
11791 }
11792 /* Otherwise, kill it. */
11793 rel->r_offset = rel->r_info = rel->r_addend = 0;
11794 }
11795
11796 return TRUE;
11797 }
11798
11799 /* Mark sections containing dynamically referenced symbols. When
11800 building shared libraries, we must assume that any visible symbol is
11801 referenced. */
11802
11803 bfd_boolean
11804 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11805 {
11806 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11807
11808 if (h->root.type == bfd_link_hash_warning)
11809 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11810
11811 if ((h->root.type == bfd_link_hash_defined
11812 || h->root.type == bfd_link_hash_defweak)
11813 && (h->ref_dynamic
11814 || (!info->executable
11815 && h->def_regular
11816 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11817 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11818 h->root.u.def.section->flags |= SEC_KEEP;
11819
11820 return TRUE;
11821 }
11822
11823 /* Keep all sections containing symbols undefined on the command-line,
11824 and the section containing the entry symbol. */
11825
11826 void
11827 _bfd_elf_gc_keep (struct bfd_link_info *info)
11828 {
11829 struct bfd_sym_chain *sym;
11830
11831 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11832 {
11833 struct elf_link_hash_entry *h;
11834
11835 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11836 FALSE, FALSE, FALSE);
11837
11838 if (h != NULL
11839 && (h->root.type == bfd_link_hash_defined
11840 || h->root.type == bfd_link_hash_defweak)
11841 && !bfd_is_abs_section (h->root.u.def.section))
11842 h->root.u.def.section->flags |= SEC_KEEP;
11843 }
11844 }
11845
11846 /* Do mark and sweep of unused sections. */
11847
11848 bfd_boolean
11849 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11850 {
11851 bfd_boolean ok = TRUE;
11852 bfd *sub;
11853 elf_gc_mark_hook_fn gc_mark_hook;
11854 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11855
11856 if (!bed->can_gc_sections
11857 || !is_elf_hash_table (info->hash))
11858 {
11859 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11860 return TRUE;
11861 }
11862
11863 bed->gc_keep (info);
11864
11865 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11866 at the .eh_frame section if we can mark the FDEs individually. */
11867 _bfd_elf_begin_eh_frame_parsing (info);
11868 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11869 {
11870 asection *sec;
11871 struct elf_reloc_cookie cookie;
11872
11873 sec = bfd_get_section_by_name (sub, ".eh_frame");
11874 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11875 {
11876 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11877 if (elf_section_data (sec)->sec_info)
11878 elf_eh_frame_section (sub) = sec;
11879 fini_reloc_cookie_for_section (&cookie, sec);
11880 }
11881 }
11882 _bfd_elf_end_eh_frame_parsing (info);
11883
11884 /* Apply transitive closure to the vtable entry usage info. */
11885 elf_link_hash_traverse (elf_hash_table (info),
11886 elf_gc_propagate_vtable_entries_used,
11887 &ok);
11888 if (!ok)
11889 return FALSE;
11890
11891 /* Kill the vtable relocations that were not used. */
11892 elf_link_hash_traverse (elf_hash_table (info),
11893 elf_gc_smash_unused_vtentry_relocs,
11894 &ok);
11895 if (!ok)
11896 return FALSE;
11897
11898 /* Mark dynamically referenced symbols. */
11899 if (elf_hash_table (info)->dynamic_sections_created)
11900 elf_link_hash_traverse (elf_hash_table (info),
11901 bed->gc_mark_dynamic_ref,
11902 info);
11903
11904 /* Grovel through relocs to find out who stays ... */
11905 gc_mark_hook = bed->gc_mark_hook;
11906 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11907 {
11908 asection *o;
11909
11910 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11911 continue;
11912
11913 for (o = sub->sections; o != NULL; o = o->next)
11914 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11915 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11916 return FALSE;
11917 }
11918
11919 /* Allow the backend to mark additional target specific sections. */
11920 if (bed->gc_mark_extra_sections)
11921 bed->gc_mark_extra_sections (info, gc_mark_hook);
11922
11923 /* ... and mark SEC_EXCLUDE for those that go. */
11924 return elf_gc_sweep (abfd, info);
11925 }
11926 \f
11927 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11928
11929 bfd_boolean
11930 bfd_elf_gc_record_vtinherit (bfd *abfd,
11931 asection *sec,
11932 struct elf_link_hash_entry *h,
11933 bfd_vma offset)
11934 {
11935 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11936 struct elf_link_hash_entry **search, *child;
11937 bfd_size_type extsymcount;
11938 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11939
11940 /* The sh_info field of the symtab header tells us where the
11941 external symbols start. We don't care about the local symbols at
11942 this point. */
11943 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11944 if (!elf_bad_symtab (abfd))
11945 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11946
11947 sym_hashes = elf_sym_hashes (abfd);
11948 sym_hashes_end = sym_hashes + extsymcount;
11949
11950 /* Hunt down the child symbol, which is in this section at the same
11951 offset as the relocation. */
11952 for (search = sym_hashes; search != sym_hashes_end; ++search)
11953 {
11954 if ((child = *search) != NULL
11955 && (child->root.type == bfd_link_hash_defined
11956 || child->root.type == bfd_link_hash_defweak)
11957 && child->root.u.def.section == sec
11958 && child->root.u.def.value == offset)
11959 goto win;
11960 }
11961
11962 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11963 abfd, sec, (unsigned long) offset);
11964 bfd_set_error (bfd_error_invalid_operation);
11965 return FALSE;
11966
11967 win:
11968 if (!child->vtable)
11969 {
11970 child->vtable = (struct elf_link_virtual_table_entry *)
11971 bfd_zalloc (abfd, sizeof (*child->vtable));
11972 if (!child->vtable)
11973 return FALSE;
11974 }
11975 if (!h)
11976 {
11977 /* This *should* only be the absolute section. It could potentially
11978 be that someone has defined a non-global vtable though, which
11979 would be bad. It isn't worth paging in the local symbols to be
11980 sure though; that case should simply be handled by the assembler. */
11981
11982 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11983 }
11984 else
11985 child->vtable->parent = h;
11986
11987 return TRUE;
11988 }
11989
11990 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11991
11992 bfd_boolean
11993 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11994 asection *sec ATTRIBUTE_UNUSED,
11995 struct elf_link_hash_entry *h,
11996 bfd_vma addend)
11997 {
11998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11999 unsigned int log_file_align = bed->s->log_file_align;
12000
12001 if (!h->vtable)
12002 {
12003 h->vtable = (struct elf_link_virtual_table_entry *)
12004 bfd_zalloc (abfd, sizeof (*h->vtable));
12005 if (!h->vtable)
12006 return FALSE;
12007 }
12008
12009 if (addend >= h->vtable->size)
12010 {
12011 size_t size, bytes, file_align;
12012 bfd_boolean *ptr = h->vtable->used;
12013
12014 /* While the symbol is undefined, we have to be prepared to handle
12015 a zero size. */
12016 file_align = 1 << log_file_align;
12017 if (h->root.type == bfd_link_hash_undefined)
12018 size = addend + file_align;
12019 else
12020 {
12021 size = h->size;
12022 if (addend >= size)
12023 {
12024 /* Oops! We've got a reference past the defined end of
12025 the table. This is probably a bug -- shall we warn? */
12026 size = addend + file_align;
12027 }
12028 }
12029 size = (size + file_align - 1) & -file_align;
12030
12031 /* Allocate one extra entry for use as a "done" flag for the
12032 consolidation pass. */
12033 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12034
12035 if (ptr)
12036 {
12037 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12038
12039 if (ptr != NULL)
12040 {
12041 size_t oldbytes;
12042
12043 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12044 * sizeof (bfd_boolean));
12045 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12046 }
12047 }
12048 else
12049 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12050
12051 if (ptr == NULL)
12052 return FALSE;
12053
12054 /* And arrange for that done flag to be at index -1. */
12055 h->vtable->used = ptr + 1;
12056 h->vtable->size = size;
12057 }
12058
12059 h->vtable->used[addend >> log_file_align] = TRUE;
12060
12061 return TRUE;
12062 }
12063
12064 struct alloc_got_off_arg {
12065 bfd_vma gotoff;
12066 struct bfd_link_info *info;
12067 };
12068
12069 /* We need a special top-level link routine to convert got reference counts
12070 to real got offsets. */
12071
12072 static bfd_boolean
12073 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12074 {
12075 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12076 bfd *obfd = gofarg->info->output_bfd;
12077 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12078
12079 if (h->root.type == bfd_link_hash_warning)
12080 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12081
12082 if (h->got.refcount > 0)
12083 {
12084 h->got.offset = gofarg->gotoff;
12085 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12086 }
12087 else
12088 h->got.offset = (bfd_vma) -1;
12089
12090 return TRUE;
12091 }
12092
12093 /* And an accompanying bit to work out final got entry offsets once
12094 we're done. Should be called from final_link. */
12095
12096 bfd_boolean
12097 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12098 struct bfd_link_info *info)
12099 {
12100 bfd *i;
12101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12102 bfd_vma gotoff;
12103 struct alloc_got_off_arg gofarg;
12104
12105 BFD_ASSERT (abfd == info->output_bfd);
12106
12107 if (! is_elf_hash_table (info->hash))
12108 return FALSE;
12109
12110 /* The GOT offset is relative to the .got section, but the GOT header is
12111 put into the .got.plt section, if the backend uses it. */
12112 if (bed->want_got_plt)
12113 gotoff = 0;
12114 else
12115 gotoff = bed->got_header_size;
12116
12117 /* Do the local .got entries first. */
12118 for (i = info->input_bfds; i; i = i->link_next)
12119 {
12120 bfd_signed_vma *local_got;
12121 bfd_size_type j, locsymcount;
12122 Elf_Internal_Shdr *symtab_hdr;
12123
12124 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12125 continue;
12126
12127 local_got = elf_local_got_refcounts (i);
12128 if (!local_got)
12129 continue;
12130
12131 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12132 if (elf_bad_symtab (i))
12133 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12134 else
12135 locsymcount = symtab_hdr->sh_info;
12136
12137 for (j = 0; j < locsymcount; ++j)
12138 {
12139 if (local_got[j] > 0)
12140 {
12141 local_got[j] = gotoff;
12142 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12143 }
12144 else
12145 local_got[j] = (bfd_vma) -1;
12146 }
12147 }
12148
12149 /* Then the global .got entries. .plt refcounts are handled by
12150 adjust_dynamic_symbol */
12151 gofarg.gotoff = gotoff;
12152 gofarg.info = info;
12153 elf_link_hash_traverse (elf_hash_table (info),
12154 elf_gc_allocate_got_offsets,
12155 &gofarg);
12156 return TRUE;
12157 }
12158
12159 /* Many folk need no more in the way of final link than this, once
12160 got entry reference counting is enabled. */
12161
12162 bfd_boolean
12163 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12164 {
12165 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12166 return FALSE;
12167
12168 /* Invoke the regular ELF backend linker to do all the work. */
12169 return bfd_elf_final_link (abfd, info);
12170 }
12171
12172 bfd_boolean
12173 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12174 {
12175 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12176
12177 if (rcookie->bad_symtab)
12178 rcookie->rel = rcookie->rels;
12179
12180 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12181 {
12182 unsigned long r_symndx;
12183
12184 if (! rcookie->bad_symtab)
12185 if (rcookie->rel->r_offset > offset)
12186 return FALSE;
12187 if (rcookie->rel->r_offset != offset)
12188 continue;
12189
12190 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12191 if (r_symndx == STN_UNDEF)
12192 return TRUE;
12193
12194 if (r_symndx >= rcookie->locsymcount
12195 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12196 {
12197 struct elf_link_hash_entry *h;
12198
12199 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12200
12201 while (h->root.type == bfd_link_hash_indirect
12202 || h->root.type == bfd_link_hash_warning)
12203 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12204
12205 if ((h->root.type == bfd_link_hash_defined
12206 || h->root.type == bfd_link_hash_defweak)
12207 && elf_discarded_section (h->root.u.def.section))
12208 return TRUE;
12209 else
12210 return FALSE;
12211 }
12212 else
12213 {
12214 /* It's not a relocation against a global symbol,
12215 but it could be a relocation against a local
12216 symbol for a discarded section. */
12217 asection *isec;
12218 Elf_Internal_Sym *isym;
12219
12220 /* Need to: get the symbol; get the section. */
12221 isym = &rcookie->locsyms[r_symndx];
12222 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12223 if (isec != NULL && elf_discarded_section (isec))
12224 return TRUE;
12225 }
12226 return FALSE;
12227 }
12228 return FALSE;
12229 }
12230
12231 /* Discard unneeded references to discarded sections.
12232 Returns TRUE if any section's size was changed. */
12233 /* This function assumes that the relocations are in sorted order,
12234 which is true for all known assemblers. */
12235
12236 bfd_boolean
12237 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12238 {
12239 struct elf_reloc_cookie cookie;
12240 asection *stab, *eh;
12241 const struct elf_backend_data *bed;
12242 bfd *abfd;
12243 bfd_boolean ret = FALSE;
12244
12245 if (info->traditional_format
12246 || !is_elf_hash_table (info->hash))
12247 return FALSE;
12248
12249 _bfd_elf_begin_eh_frame_parsing (info);
12250 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12251 {
12252 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12253 continue;
12254
12255 bed = get_elf_backend_data (abfd);
12256
12257 if ((abfd->flags & DYNAMIC) != 0)
12258 continue;
12259
12260 eh = NULL;
12261 if (!info->relocatable)
12262 {
12263 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12264 if (eh != NULL
12265 && (eh->size == 0
12266 || bfd_is_abs_section (eh->output_section)))
12267 eh = NULL;
12268 }
12269
12270 stab = bfd_get_section_by_name (abfd, ".stab");
12271 if (stab != NULL
12272 && (stab->size == 0
12273 || bfd_is_abs_section (stab->output_section)
12274 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12275 stab = NULL;
12276
12277 if (stab == NULL
12278 && eh == NULL
12279 && bed->elf_backend_discard_info == NULL)
12280 continue;
12281
12282 if (!init_reloc_cookie (&cookie, info, abfd))
12283 return FALSE;
12284
12285 if (stab != NULL
12286 && stab->reloc_count > 0
12287 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12288 {
12289 if (_bfd_discard_section_stabs (abfd, stab,
12290 elf_section_data (stab)->sec_info,
12291 bfd_elf_reloc_symbol_deleted_p,
12292 &cookie))
12293 ret = TRUE;
12294 fini_reloc_cookie_rels (&cookie, stab);
12295 }
12296
12297 if (eh != NULL
12298 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12299 {
12300 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12301 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12302 bfd_elf_reloc_symbol_deleted_p,
12303 &cookie))
12304 ret = TRUE;
12305 fini_reloc_cookie_rels (&cookie, eh);
12306 }
12307
12308 if (bed->elf_backend_discard_info != NULL
12309 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12310 ret = TRUE;
12311
12312 fini_reloc_cookie (&cookie, abfd);
12313 }
12314 _bfd_elf_end_eh_frame_parsing (info);
12315
12316 if (info->eh_frame_hdr
12317 && !info->relocatable
12318 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12319 ret = TRUE;
12320
12321 return ret;
12322 }
12323
12324 /* For a SHT_GROUP section, return the group signature. For other
12325 sections, return the normal section name. */
12326
12327 static const char *
12328 section_signature (asection *sec)
12329 {
12330 if ((sec->flags & SEC_GROUP) != 0
12331 && elf_next_in_group (sec) != NULL
12332 && elf_group_name (elf_next_in_group (sec)) != NULL)
12333 return elf_group_name (elf_next_in_group (sec));
12334 return sec->name;
12335 }
12336
12337 void
12338 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12339 struct bfd_link_info *info)
12340 {
12341 flagword flags;
12342 const char *name, *p;
12343 struct bfd_section_already_linked *l;
12344 struct bfd_section_already_linked_hash_entry *already_linked_list;
12345
12346 if (sec->output_section == bfd_abs_section_ptr)
12347 return;
12348
12349 flags = sec->flags;
12350
12351 /* Return if it isn't a linkonce section. A comdat group section
12352 also has SEC_LINK_ONCE set. */
12353 if ((flags & SEC_LINK_ONCE) == 0)
12354 return;
12355
12356 /* Don't put group member sections on our list of already linked
12357 sections. They are handled as a group via their group section. */
12358 if (elf_sec_group (sec) != NULL)
12359 return;
12360
12361 /* FIXME: When doing a relocatable link, we may have trouble
12362 copying relocations in other sections that refer to local symbols
12363 in the section being discarded. Those relocations will have to
12364 be converted somehow; as of this writing I'm not sure that any of
12365 the backends handle that correctly.
12366
12367 It is tempting to instead not discard link once sections when
12368 doing a relocatable link (technically, they should be discarded
12369 whenever we are building constructors). However, that fails,
12370 because the linker winds up combining all the link once sections
12371 into a single large link once section, which defeats the purpose
12372 of having link once sections in the first place.
12373
12374 Also, not merging link once sections in a relocatable link
12375 causes trouble for MIPS ELF, which relies on link once semantics
12376 to handle the .reginfo section correctly. */
12377
12378 name = section_signature (sec);
12379
12380 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12381 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12382 p++;
12383 else
12384 p = name;
12385
12386 already_linked_list = bfd_section_already_linked_table_lookup (p);
12387
12388 for (l = already_linked_list->entry; l != NULL; l = l->next)
12389 {
12390 /* We may have 2 different types of sections on the list: group
12391 sections and linkonce sections. Match like sections. */
12392 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12393 && strcmp (name, section_signature (l->sec)) == 0
12394 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12395 {
12396 /* The section has already been linked. See if we should
12397 issue a warning. */
12398 switch (flags & SEC_LINK_DUPLICATES)
12399 {
12400 default:
12401 abort ();
12402
12403 case SEC_LINK_DUPLICATES_DISCARD:
12404 break;
12405
12406 case SEC_LINK_DUPLICATES_ONE_ONLY:
12407 (*_bfd_error_handler)
12408 (_("%B: ignoring duplicate section `%A'"),
12409 abfd, sec);
12410 break;
12411
12412 case SEC_LINK_DUPLICATES_SAME_SIZE:
12413 if (sec->size != l->sec->size)
12414 (*_bfd_error_handler)
12415 (_("%B: duplicate section `%A' has different size"),
12416 abfd, sec);
12417 break;
12418
12419 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12420 if (sec->size != l->sec->size)
12421 (*_bfd_error_handler)
12422 (_("%B: duplicate section `%A' has different size"),
12423 abfd, sec);
12424 else if (sec->size != 0)
12425 {
12426 bfd_byte *sec_contents, *l_sec_contents;
12427
12428 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12429 (*_bfd_error_handler)
12430 (_("%B: warning: could not read contents of section `%A'"),
12431 abfd, sec);
12432 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12433 &l_sec_contents))
12434 (*_bfd_error_handler)
12435 (_("%B: warning: could not read contents of section `%A'"),
12436 l->sec->owner, l->sec);
12437 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12438 (*_bfd_error_handler)
12439 (_("%B: warning: duplicate section `%A' has different contents"),
12440 abfd, sec);
12441
12442 if (sec_contents)
12443 free (sec_contents);
12444 if (l_sec_contents)
12445 free (l_sec_contents);
12446 }
12447 break;
12448 }
12449
12450 /* Set the output_section field so that lang_add_section
12451 does not create a lang_input_section structure for this
12452 section. Since there might be a symbol in the section
12453 being discarded, we must retain a pointer to the section
12454 which we are really going to use. */
12455 sec->output_section = bfd_abs_section_ptr;
12456 sec->kept_section = l->sec;
12457
12458 if (flags & SEC_GROUP)
12459 {
12460 asection *first = elf_next_in_group (sec);
12461 asection *s = first;
12462
12463 while (s != NULL)
12464 {
12465 s->output_section = bfd_abs_section_ptr;
12466 /* Record which group discards it. */
12467 s->kept_section = l->sec;
12468 s = elf_next_in_group (s);
12469 /* These lists are circular. */
12470 if (s == first)
12471 break;
12472 }
12473 }
12474
12475 return;
12476 }
12477 }
12478
12479 /* A single member comdat group section may be discarded by a
12480 linkonce section and vice versa. */
12481
12482 if ((flags & SEC_GROUP) != 0)
12483 {
12484 asection *first = elf_next_in_group (sec);
12485
12486 if (first != NULL && elf_next_in_group (first) == first)
12487 /* Check this single member group against linkonce sections. */
12488 for (l = already_linked_list->entry; l != NULL; l = l->next)
12489 if ((l->sec->flags & SEC_GROUP) == 0
12490 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12491 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12492 {
12493 first->output_section = bfd_abs_section_ptr;
12494 first->kept_section = l->sec;
12495 sec->output_section = bfd_abs_section_ptr;
12496 break;
12497 }
12498 }
12499 else
12500 /* Check this linkonce section against single member groups. */
12501 for (l = already_linked_list->entry; l != NULL; l = l->next)
12502 if (l->sec->flags & SEC_GROUP)
12503 {
12504 asection *first = elf_next_in_group (l->sec);
12505
12506 if (first != NULL
12507 && elf_next_in_group (first) == first
12508 && bfd_elf_match_symbols_in_sections (first, sec, info))
12509 {
12510 sec->output_section = bfd_abs_section_ptr;
12511 sec->kept_section = first;
12512 break;
12513 }
12514 }
12515
12516 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12517 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12518 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12519 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12520 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12521 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12522 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12523 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12524 The reverse order cannot happen as there is never a bfd with only the
12525 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12526 matter as here were are looking only for cross-bfd sections. */
12527
12528 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12529 for (l = already_linked_list->entry; l != NULL; l = l->next)
12530 if ((l->sec->flags & SEC_GROUP) == 0
12531 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12532 {
12533 if (abfd != l->sec->owner)
12534 sec->output_section = bfd_abs_section_ptr;
12535 break;
12536 }
12537
12538 /* This is the first section with this name. Record it. */
12539 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12540 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12541 }
12542
12543 bfd_boolean
12544 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12545 {
12546 return sym->st_shndx == SHN_COMMON;
12547 }
12548
12549 unsigned int
12550 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12551 {
12552 return SHN_COMMON;
12553 }
12554
12555 asection *
12556 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12557 {
12558 return bfd_com_section_ptr;
12559 }
12560
12561 bfd_vma
12562 _bfd_elf_default_got_elt_size (bfd *abfd,
12563 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12564 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12565 bfd *ibfd ATTRIBUTE_UNUSED,
12566 unsigned long symndx ATTRIBUTE_UNUSED)
12567 {
12568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12569 return bed->s->arch_size / 8;
12570 }
12571
12572 /* Routines to support the creation of dynamic relocs. */
12573
12574 /* Return true if NAME is a name of a relocation
12575 section associated with section S. */
12576
12577 static bfd_boolean
12578 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12579 {
12580 if (rela)
12581 return CONST_STRNEQ (name, ".rela")
12582 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12583
12584 return CONST_STRNEQ (name, ".rel")
12585 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12586 }
12587
12588 /* Returns the name of the dynamic reloc section associated with SEC. */
12589
12590 static const char *
12591 get_dynamic_reloc_section_name (bfd * abfd,
12592 asection * sec,
12593 bfd_boolean is_rela)
12594 {
12595 const char * name;
12596 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12597 unsigned int shnam = _bfd_elf_single_rel_hdr (sec)->sh_name;
12598
12599 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12600 if (name == NULL)
12601 return NULL;
12602
12603 if (! is_reloc_section (is_rela, name, sec))
12604 {
12605 static bfd_boolean complained = FALSE;
12606
12607 if (! complained)
12608 {
12609 (*_bfd_error_handler)
12610 (_("%B: bad relocation section name `%s\'"), abfd, name);
12611 complained = TRUE;
12612 }
12613 name = NULL;
12614 }
12615
12616 return name;
12617 }
12618
12619 /* Returns the dynamic reloc section associated with SEC.
12620 If necessary compute the name of the dynamic reloc section based
12621 on SEC's name (looked up in ABFD's string table) and the setting
12622 of IS_RELA. */
12623
12624 asection *
12625 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12626 asection * sec,
12627 bfd_boolean is_rela)
12628 {
12629 asection * reloc_sec = elf_section_data (sec)->sreloc;
12630
12631 if (reloc_sec == NULL)
12632 {
12633 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12634
12635 if (name != NULL)
12636 {
12637 reloc_sec = bfd_get_section_by_name (abfd, name);
12638
12639 if (reloc_sec != NULL)
12640 elf_section_data (sec)->sreloc = reloc_sec;
12641 }
12642 }
12643
12644 return reloc_sec;
12645 }
12646
12647 /* Returns the dynamic reloc section associated with SEC. If the
12648 section does not exist it is created and attached to the DYNOBJ
12649 bfd and stored in the SRELOC field of SEC's elf_section_data
12650 structure.
12651
12652 ALIGNMENT is the alignment for the newly created section and
12653 IS_RELA defines whether the name should be .rela.<SEC's name>
12654 or .rel.<SEC's name>. The section name is looked up in the
12655 string table associated with ABFD. */
12656
12657 asection *
12658 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12659 bfd * dynobj,
12660 unsigned int alignment,
12661 bfd * abfd,
12662 bfd_boolean is_rela)
12663 {
12664 asection * reloc_sec = elf_section_data (sec)->sreloc;
12665
12666 if (reloc_sec == NULL)
12667 {
12668 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12669
12670 if (name == NULL)
12671 return NULL;
12672
12673 reloc_sec = bfd_get_section_by_name (dynobj, name);
12674
12675 if (reloc_sec == NULL)
12676 {
12677 flagword flags;
12678
12679 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12680 if ((sec->flags & SEC_ALLOC) != 0)
12681 flags |= SEC_ALLOC | SEC_LOAD;
12682
12683 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12684 if (reloc_sec != NULL)
12685 {
12686 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12687 reloc_sec = NULL;
12688 }
12689 }
12690
12691 elf_section_data (sec)->sreloc = reloc_sec;
12692 }
12693
12694 return reloc_sec;
12695 }
12696
12697 /* Copy the ELF symbol type associated with a linker hash entry. */
12698 void
12699 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12700 struct bfd_link_hash_entry * hdest,
12701 struct bfd_link_hash_entry * hsrc)
12702 {
12703 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12704 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12705
12706 ehdest->type = ehsrc->type;
12707 }
This page took 0.291313 seconds and 4 git commands to generate.