daily update
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
89
90 bed = get_elf_backend_data (abfd);
91 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
92 return h;
93 }
94
95 bfd_boolean
96 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
97 {
98 flagword flags;
99 asection *s;
100 struct elf_link_hash_entry *h;
101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
102 struct elf_link_hash_table *htab = elf_hash_table (info);
103
104 /* This function may be called more than once. */
105 s = bfd_get_linker_section (abfd, ".got");
106 if (s != NULL)
107 return TRUE;
108
109 flags = bed->dynamic_sec_flags;
110
111 s = bfd_make_section_anyway_with_flags (abfd,
112 (bed->rela_plts_and_copies_p
113 ? ".rela.got" : ".rel.got"),
114 (bed->dynamic_sec_flags
115 | SEC_READONLY));
116 if (s == NULL
117 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
118 return FALSE;
119 htab->srelgot = s;
120
121 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
122 if (s == NULL
123 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
124 return FALSE;
125 htab->sgot = s;
126
127 if (bed->want_got_plt)
128 {
129 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
130 if (s == NULL
131 || !bfd_set_section_alignment (abfd, s,
132 bed->s->log_file_align))
133 return FALSE;
134 htab->sgotplt = s;
135 }
136
137 /* The first bit of the global offset table is the header. */
138 s->size += bed->got_header_size;
139
140 if (bed->want_got_sym)
141 {
142 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
143 (or .got.plt) section. We don't do this in the linker script
144 because we don't want to define the symbol if we are not creating
145 a global offset table. */
146 h = _bfd_elf_define_linkage_sym (abfd, info, s,
147 "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
151 }
152
153 return TRUE;
154 }
155 \f
156 /* Create a strtab to hold the dynamic symbol names. */
157 static bfd_boolean
158 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
159 {
160 struct elf_link_hash_table *hash_table;
161
162 hash_table = elf_hash_table (info);
163 if (hash_table->dynobj == NULL)
164 hash_table->dynobj = abfd;
165
166 if (hash_table->dynstr == NULL)
167 {
168 hash_table->dynstr = _bfd_elf_strtab_init ();
169 if (hash_table->dynstr == NULL)
170 return FALSE;
171 }
172 return TRUE;
173 }
174
175 /* Create some sections which will be filled in with dynamic linking
176 information. ABFD is an input file which requires dynamic sections
177 to be created. The dynamic sections take up virtual memory space
178 when the final executable is run, so we need to create them before
179 addresses are assigned to the output sections. We work out the
180 actual contents and size of these sections later. */
181
182 bfd_boolean
183 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
184 {
185 flagword flags;
186 asection *s;
187 const struct elf_backend_data *bed;
188 struct elf_link_hash_entry *h;
189
190 if (! is_elf_hash_table (info->hash))
191 return FALSE;
192
193 if (elf_hash_table (info)->dynamic_sections_created)
194 return TRUE;
195
196 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
197 return FALSE;
198
199 abfd = elf_hash_table (info)->dynobj;
200 bed = get_elf_backend_data (abfd);
201
202 flags = bed->dynamic_sec_flags;
203
204 /* A dynamically linked executable has a .interp section, but a
205 shared library does not. */
206 if (info->executable)
207 {
208 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
209 flags | SEC_READONLY);
210 if (s == NULL)
211 return FALSE;
212 }
213
214 /* Create sections to hold version informations. These are removed
215 if they are not needed. */
216 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
217 flags | SEC_READONLY);
218 if (s == NULL
219 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
220 return FALSE;
221
222 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
223 flags | SEC_READONLY);
224 if (s == NULL
225 || ! bfd_set_section_alignment (abfd, s, 1))
226 return FALSE;
227
228 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
229 flags | SEC_READONLY);
230 if (s == NULL
231 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 return FALSE;
233
234 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
235 flags | SEC_READONLY);
236 if (s == NULL
237 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
238 return FALSE;
239
240 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
241 flags | SEC_READONLY);
242 if (s == NULL)
243 return FALSE;
244
245 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
246 if (s == NULL
247 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
248 return FALSE;
249
250 /* The special symbol _DYNAMIC is always set to the start of the
251 .dynamic section. We could set _DYNAMIC in a linker script, but we
252 only want to define it if we are, in fact, creating a .dynamic
253 section. We don't want to define it if there is no .dynamic
254 section, since on some ELF platforms the start up code examines it
255 to decide how to initialize the process. */
256 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
257 elf_hash_table (info)->hdynamic = h;
258 if (h == NULL)
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
264 flags | SEC_READONLY);
265 if (s == NULL
266 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
267 return FALSE;
268 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 }
270
271 if (info->emit_gnu_hash)
272 {
273 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
274 flags | SEC_READONLY);
275 if (s == NULL
276 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
277 return FALSE;
278 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
279 4 32-bit words followed by variable count of 64-bit words, then
280 variable count of 32-bit words. */
281 if (bed->s->arch_size == 64)
282 elf_section_data (s)->this_hdr.sh_entsize = 0;
283 else
284 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 }
286
287 /* Let the backend create the rest of the sections. This lets the
288 backend set the right flags. The backend will normally create
289 the .got and .plt sections. */
290 if (bed->elf_backend_create_dynamic_sections == NULL
291 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
292 return FALSE;
293
294 elf_hash_table (info)->dynamic_sections_created = TRUE;
295
296 return TRUE;
297 }
298
299 /* Create dynamic sections when linking against a dynamic object. */
300
301 bfd_boolean
302 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
303 {
304 flagword flags, pltflags;
305 struct elf_link_hash_entry *h;
306 asection *s;
307 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
308 struct elf_link_hash_table *htab = elf_hash_table (info);
309
310 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
311 .rel[a].bss sections. */
312 flags = bed->dynamic_sec_flags;
313
314 pltflags = flags;
315 if (bed->plt_not_loaded)
316 /* We do not clear SEC_ALLOC here because we still want the OS to
317 allocate space for the section; it's just that there's nothing
318 to read in from the object file. */
319 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
320 else
321 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
322 if (bed->plt_readonly)
323 pltflags |= SEC_READONLY;
324
325 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
328 return FALSE;
329 htab->splt = s;
330
331 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
332 .plt section. */
333 if (bed->want_plt_sym)
334 {
335 h = _bfd_elf_define_linkage_sym (abfd, info, s,
336 "_PROCEDURE_LINKAGE_TABLE_");
337 elf_hash_table (info)->hplt = h;
338 if (h == NULL)
339 return FALSE;
340 }
341
342 s = bfd_make_section_anyway_with_flags (abfd,
343 (bed->rela_plts_and_copies_p
344 ? ".rela.plt" : ".rel.plt"),
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 htab->srelplt = s;
350
351 if (! _bfd_elf_create_got_section (abfd, info))
352 return FALSE;
353
354 if (bed->want_dynbss)
355 {
356 /* The .dynbss section is a place to put symbols which are defined
357 by dynamic objects, are referenced by regular objects, and are
358 not functions. We must allocate space for them in the process
359 image and use a R_*_COPY reloc to tell the dynamic linker to
360 initialize them at run time. The linker script puts the .dynbss
361 section into the .bss section of the final image. */
362 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
363 (SEC_ALLOC | SEC_LINKER_CREATED));
364 if (s == NULL)
365 return FALSE;
366
367 /* The .rel[a].bss section holds copy relocs. This section is not
368 normally needed. We need to create it here, though, so that the
369 linker will map it to an output section. We can't just create it
370 only if we need it, because we will not know whether we need it
371 until we have seen all the input files, and the first time the
372 main linker code calls BFD after examining all the input files
373 (size_dynamic_sections) the input sections have already been
374 mapped to the output sections. If the section turns out not to
375 be needed, we can discard it later. We will never need this
376 section when generating a shared object, since they do not use
377 copy relocs. */
378 if (! info->shared)
379 {
380 s = bfd_make_section_anyway_with_flags (abfd,
381 (bed->rela_plts_and_copies_p
382 ? ".rela.bss" : ".rel.bss"),
383 flags | SEC_READONLY);
384 if (s == NULL
385 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
386 return FALSE;
387 }
388 }
389
390 return TRUE;
391 }
392 \f
393 /* Record a new dynamic symbol. We record the dynamic symbols as we
394 read the input files, since we need to have a list of all of them
395 before we can determine the final sizes of the output sections.
396 Note that we may actually call this function even though we are not
397 going to output any dynamic symbols; in some cases we know that a
398 symbol should be in the dynamic symbol table, but only if there is
399 one. */
400
401 bfd_boolean
402 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
403 struct elf_link_hash_entry *h)
404 {
405 if (h->dynindx == -1)
406 {
407 struct elf_strtab_hash *dynstr;
408 char *p;
409 const char *name;
410 bfd_size_type indx;
411
412 /* XXX: The ABI draft says the linker must turn hidden and
413 internal symbols into STB_LOCAL symbols when producing the
414 DSO. However, if ld.so honors st_other in the dynamic table,
415 this would not be necessary. */
416 switch (ELF_ST_VISIBILITY (h->other))
417 {
418 case STV_INTERNAL:
419 case STV_HIDDEN:
420 if (h->root.type != bfd_link_hash_undefined
421 && h->root.type != bfd_link_hash_undefweak)
422 {
423 h->forced_local = 1;
424 if (!elf_hash_table (info)->is_relocatable_executable)
425 return TRUE;
426 }
427
428 default:
429 break;
430 }
431
432 h->dynindx = elf_hash_table (info)->dynsymcount;
433 ++elf_hash_table (info)->dynsymcount;
434
435 dynstr = elf_hash_table (info)->dynstr;
436 if (dynstr == NULL)
437 {
438 /* Create a strtab to hold the dynamic symbol names. */
439 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
440 if (dynstr == NULL)
441 return FALSE;
442 }
443
444 /* We don't put any version information in the dynamic string
445 table. */
446 name = h->root.root.string;
447 p = strchr (name, ELF_VER_CHR);
448 if (p != NULL)
449 /* We know that the p points into writable memory. In fact,
450 there are only a few symbols that have read-only names, being
451 those like _GLOBAL_OFFSET_TABLE_ that are created specially
452 by the backends. Most symbols will have names pointing into
453 an ELF string table read from a file, or to objalloc memory. */
454 *p = 0;
455
456 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
457
458 if (p != NULL)
459 *p = ELF_VER_CHR;
460
461 if (indx == (bfd_size_type) -1)
462 return FALSE;
463 h->dynstr_index = indx;
464 }
465
466 return TRUE;
467 }
468 \f
469 /* Mark a symbol dynamic. */
470
471 static void
472 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
473 struct elf_link_hash_entry *h,
474 Elf_Internal_Sym *sym)
475 {
476 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477
478 /* It may be called more than once on the same H. */
479 if(h->dynamic || info->relocatable)
480 return;
481
482 if ((info->dynamic_data
483 && (h->type == STT_OBJECT
484 || (sym != NULL
485 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 || (d != NULL
487 && h->root.type == bfd_link_hash_new
488 && (*d->match) (&d->head, NULL, h->root.root.string)))
489 h->dynamic = 1;
490 }
491
492 /* Record an assignment to a symbol made by a linker script. We need
493 this in case some dynamic object refers to this symbol. */
494
495 bfd_boolean
496 bfd_elf_record_link_assignment (bfd *output_bfd,
497 struct bfd_link_info *info,
498 const char *name,
499 bfd_boolean provide,
500 bfd_boolean hidden)
501 {
502 struct elf_link_hash_entry *h, *hv;
503 struct elf_link_hash_table *htab;
504 const struct elf_backend_data *bed;
505
506 if (!is_elf_hash_table (info->hash))
507 return TRUE;
508
509 htab = elf_hash_table (info);
510 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
511 if (h == NULL)
512 return provide;
513
514 switch (h->root.type)
515 {
516 case bfd_link_hash_defined:
517 case bfd_link_hash_defweak:
518 case bfd_link_hash_common:
519 break;
520 case bfd_link_hash_undefweak:
521 case bfd_link_hash_undefined:
522 /* Since we're defining the symbol, don't let it seem to have not
523 been defined. record_dynamic_symbol and size_dynamic_sections
524 may depend on this. */
525 h->root.type = bfd_link_hash_new;
526 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
527 bfd_link_repair_undef_list (&htab->root);
528 break;
529 case bfd_link_hash_new:
530 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531 h->non_elf = 0;
532 break;
533 case bfd_link_hash_indirect:
534 /* We had a versioned symbol in a dynamic library. We make the
535 the versioned symbol point to this one. */
536 bed = get_elf_backend_data (output_bfd);
537 hv = h;
538 while (hv->root.type == bfd_link_hash_indirect
539 || hv->root.type == bfd_link_hash_warning)
540 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
541 /* We don't need to update h->root.u since linker will set them
542 later. */
543 h->root.type = bfd_link_hash_undefined;
544 hv->root.type = bfd_link_hash_indirect;
545 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
546 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 break;
548 case bfd_link_hash_warning:
549 abort ();
550 break;
551 }
552
553 /* If this symbol is being provided by the linker script, and it is
554 currently defined by a dynamic object, but not by a regular
555 object, then mark it as undefined so that the generic linker will
556 force the correct value. */
557 if (provide
558 && h->def_dynamic
559 && !h->def_regular)
560 h->root.type = bfd_link_hash_undefined;
561
562 /* If this symbol is not being provided by the linker script, and it is
563 currently defined by a dynamic object, but not by a regular object,
564 then clear out any version information because the symbol will not be
565 associated with the dynamic object any more. */
566 if (!provide
567 && h->def_dynamic
568 && !h->def_regular)
569 h->verinfo.verdef = NULL;
570
571 h->def_regular = 1;
572
573 if (hidden)
574 {
575 bed = get_elf_backend_data (output_bfd);
576 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
577 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
578 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 }
580
581 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
582 and executables. */
583 if (!info->relocatable
584 && h->dynindx != -1
585 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
586 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
587 h->forced_local = 1;
588
589 if ((h->def_dynamic
590 || h->ref_dynamic
591 || info->shared
592 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 && h->dynindx == -1)
594 {
595 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 return FALSE;
597
598 /* If this is a weak defined symbol, and we know a corresponding
599 real symbol from the same dynamic object, make sure the real
600 symbol is also made into a dynamic symbol. */
601 if (h->u.weakdef != NULL
602 && h->u.weakdef->dynindx == -1)
603 {
604 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
605 return FALSE;
606 }
607 }
608
609 return TRUE;
610 }
611
612 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
613 success, and 2 on a failure caused by attempting to record a symbol
614 in a discarded section, eg. a discarded link-once section symbol. */
615
616 int
617 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
618 bfd *input_bfd,
619 long input_indx)
620 {
621 bfd_size_type amt;
622 struct elf_link_local_dynamic_entry *entry;
623 struct elf_link_hash_table *eht;
624 struct elf_strtab_hash *dynstr;
625 unsigned long dynstr_index;
626 char *name;
627 Elf_External_Sym_Shndx eshndx;
628 char esym[sizeof (Elf64_External_Sym)];
629
630 if (! is_elf_hash_table (info->hash))
631 return 0;
632
633 /* See if the entry exists already. */
634 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
635 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 return 1;
637
638 amt = sizeof (*entry);
639 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
640 if (entry == NULL)
641 return 0;
642
643 /* Go find the symbol, so that we can find it's name. */
644 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
645 1, input_indx, &entry->isym, esym, &eshndx))
646 {
647 bfd_release (input_bfd, entry);
648 return 0;
649 }
650
651 if (entry->isym.st_shndx != SHN_UNDEF
652 && entry->isym.st_shndx < SHN_LORESERVE)
653 {
654 asection *s;
655
656 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
657 if (s == NULL || bfd_is_abs_section (s->output_section))
658 {
659 /* We can still bfd_release here as nothing has done another
660 bfd_alloc. We can't do this later in this function. */
661 bfd_release (input_bfd, entry);
662 return 2;
663 }
664 }
665
666 name = (bfd_elf_string_from_elf_section
667 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
668 entry->isym.st_name));
669
670 dynstr = elf_hash_table (info)->dynstr;
671 if (dynstr == NULL)
672 {
673 /* Create a strtab to hold the dynamic symbol names. */
674 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
675 if (dynstr == NULL)
676 return 0;
677 }
678
679 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
680 if (dynstr_index == (unsigned long) -1)
681 return 0;
682 entry->isym.st_name = dynstr_index;
683
684 eht = elf_hash_table (info);
685
686 entry->next = eht->dynlocal;
687 eht->dynlocal = entry;
688 entry->input_bfd = input_bfd;
689 entry->input_indx = input_indx;
690 eht->dynsymcount++;
691
692 /* Whatever binding the symbol had before, it's now local. */
693 entry->isym.st_info
694 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
695
696 /* The dynindx will be set at the end of size_dynamic_sections. */
697
698 return 1;
699 }
700
701 /* Return the dynindex of a local dynamic symbol. */
702
703 long
704 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
705 bfd *input_bfd,
706 long input_indx)
707 {
708 struct elf_link_local_dynamic_entry *e;
709
710 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
711 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
712 return e->dynindx;
713 return -1;
714 }
715
716 /* This function is used to renumber the dynamic symbols, if some of
717 them are removed because they are marked as local. This is called
718 via elf_link_hash_traverse. */
719
720 static bfd_boolean
721 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 void *data)
723 {
724 size_t *count = (size_t *) data;
725
726 if (h->forced_local)
727 return TRUE;
728
729 if (h->dynindx != -1)
730 h->dynindx = ++(*count);
731
732 return TRUE;
733 }
734
735
736 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
737 STB_LOCAL binding. */
738
739 static bfd_boolean
740 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 void *data)
742 {
743 size_t *count = (size_t *) data;
744
745 if (!h->forced_local)
746 return TRUE;
747
748 if (h->dynindx != -1)
749 h->dynindx = ++(*count);
750
751 return TRUE;
752 }
753
754 /* Return true if the dynamic symbol for a given section should be
755 omitted when creating a shared library. */
756 bfd_boolean
757 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
758 struct bfd_link_info *info,
759 asection *p)
760 {
761 struct elf_link_hash_table *htab;
762
763 switch (elf_section_data (p)->this_hdr.sh_type)
764 {
765 case SHT_PROGBITS:
766 case SHT_NOBITS:
767 /* If sh_type is yet undecided, assume it could be
768 SHT_PROGBITS/SHT_NOBITS. */
769 case SHT_NULL:
770 htab = elf_hash_table (info);
771 if (p == htab->tls_sec)
772 return FALSE;
773
774 if (htab->text_index_section != NULL)
775 return p != htab->text_index_section && p != htab->data_index_section;
776
777 if (strcmp (p->name, ".got") == 0
778 || strcmp (p->name, ".got.plt") == 0
779 || strcmp (p->name, ".plt") == 0)
780 {
781 asection *ip;
782
783 if (htab->dynobj != NULL
784 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
785 && ip->output_section == p)
786 return TRUE;
787 }
788 return FALSE;
789
790 /* There shouldn't be section relative relocations
791 against any other section. */
792 default:
793 return TRUE;
794 }
795 }
796
797 /* Assign dynsym indices. In a shared library we generate a section
798 symbol for each output section, which come first. Next come symbols
799 which have been forced to local binding. Then all of the back-end
800 allocated local dynamic syms, followed by the rest of the global
801 symbols. */
802
803 static unsigned long
804 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
805 struct bfd_link_info *info,
806 unsigned long *section_sym_count)
807 {
808 unsigned long dynsymcount = 0;
809
810 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 {
812 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813 asection *p;
814 for (p = output_bfd->sections; p ; p = p->next)
815 if ((p->flags & SEC_EXCLUDE) == 0
816 && (p->flags & SEC_ALLOC) != 0
817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
818 elf_section_data (p)->dynindx = ++dynsymcount;
819 else
820 elf_section_data (p)->dynindx = 0;
821 }
822 *section_sym_count = dynsymcount;
823
824 elf_link_hash_traverse (elf_hash_table (info),
825 elf_link_renumber_local_hash_table_dynsyms,
826 &dynsymcount);
827
828 if (elf_hash_table (info)->dynlocal)
829 {
830 struct elf_link_local_dynamic_entry *p;
831 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
832 p->dynindx = ++dynsymcount;
833 }
834
835 elf_link_hash_traverse (elf_hash_table (info),
836 elf_link_renumber_hash_table_dynsyms,
837 &dynsymcount);
838
839 /* There is an unused NULL entry at the head of the table which
840 we must account for in our count. Unless there weren't any
841 symbols, which means we'll have no table at all. */
842 if (dynsymcount != 0)
843 ++dynsymcount;
844
845 elf_hash_table (info)->dynsymcount = dynsymcount;
846 return dynsymcount;
847 }
848
849 /* Merge st_other field. */
850
851 static void
852 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
853 Elf_Internal_Sym *isym, bfd_boolean definition,
854 bfd_boolean dynamic)
855 {
856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857
858 /* If st_other has a processor-specific meaning, specific
859 code might be needed here. We never merge the visibility
860 attribute with the one from a dynamic object. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 /* If this symbol has default visibility and the user has requested
866 we not re-export it, then mark it as hidden. */
867 if (definition
868 && !dynamic
869 && (abfd->no_export
870 || (abfd->my_archive && abfd->my_archive->no_export))
871 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
872 isym->st_other = (STV_HIDDEN
873 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874
875 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 {
877 unsigned char hvis, symvis, other, nvis;
878
879 /* Only merge the visibility. Leave the remainder of the
880 st_other field to elf_backend_merge_symbol_attribute. */
881 other = h->other & ~ELF_ST_VISIBILITY (-1);
882
883 /* Combine visibilities, using the most constraining one. */
884 hvis = ELF_ST_VISIBILITY (h->other);
885 symvis = ELF_ST_VISIBILITY (isym->st_other);
886 if (! hvis)
887 nvis = symvis;
888 else if (! symvis)
889 nvis = hvis;
890 else
891 nvis = hvis < symvis ? hvis : symvis;
892
893 h->other = other | nvis;
894 }
895 }
896
897 /* This function is called when we want to merge a new symbol with an
898 existing symbol. It handles the various cases which arise when we
899 find a definition in a dynamic object, or when there is already a
900 definition in a dynamic object. The new symbol is described by
901 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
902 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
903 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
904 of an old common symbol. We set OVERRIDE if the old symbol is
905 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
906 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
907 to change. By OK to change, we mean that we shouldn't warn if the
908 type or size does change. */
909
910 static bfd_boolean
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
913 const char *name,
914 Elf_Internal_Sym *sym,
915 asection **psec,
916 bfd_vma *pvalue,
917 struct elf_link_hash_entry **sym_hash,
918 bfd **poldbfd,
919 bfd_boolean *pold_weak,
920 unsigned int *pold_alignment,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
925 {
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *hi;
929 struct elf_link_hash_entry *flip;
930 int bind;
931 bfd *oldbfd;
932 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
933 bfd_boolean newweak, oldweak, newfunc, oldfunc;
934 const struct elf_backend_data *bed;
935
936 *skip = FALSE;
937 *override = FALSE;
938
939 sec = *psec;
940 bind = ELF_ST_BIND (sym->st_info);
941
942 if (! bfd_is_und_section (sec))
943 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
944 else
945 h = ((struct elf_link_hash_entry *)
946 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
947 if (h == NULL)
948 return FALSE;
949 *sym_hash = h;
950
951 bed = get_elf_backend_data (abfd);
952
953 /* This code is for coping with dynamic objects, and is only useful
954 if we are doing an ELF link. */
955 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
956 return TRUE;
957
958 /* For merging, we only care about real symbols. But we need to make
959 sure that indirect symbol dynamic flags are updated. */
960 hi = h;
961 while (h->root.type == bfd_link_hash_indirect
962 || h->root.type == bfd_link_hash_warning)
963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
964
965 /* We have to check it for every instance since the first few may be
966 references and not all compilers emit symbol type for undefined
967 symbols. */
968 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
969
970 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
971 respectively, is from a dynamic object. */
972
973 newdyn = (abfd->flags & DYNAMIC) != 0;
974
975 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
976 syms and defined syms in dynamic libraries respectively.
977 ref_dynamic on the other hand can be set for a symbol defined in
978 a dynamic library, and def_dynamic may not be set; When the
979 definition in a dynamic lib is overridden by a definition in the
980 executable use of the symbol in the dynamic lib becomes a
981 reference to the executable symbol. */
982 if (newdyn)
983 {
984 if (bfd_is_und_section (sec))
985 {
986 if (bind != STB_WEAK)
987 {
988 h->ref_dynamic_nonweak = 1;
989 hi->ref_dynamic_nonweak = 1;
990 }
991 }
992 else
993 {
994 h->dynamic_def = 1;
995 hi->dynamic_def = 1;
996 }
997 }
998
999 /* If we just created the symbol, mark it as being an ELF symbol.
1000 Other than that, there is nothing to do--there is no merge issue
1001 with a newly defined symbol--so we just return. */
1002
1003 if (h->root.type == bfd_link_hash_new)
1004 {
1005 h->non_elf = 0;
1006 return TRUE;
1007 }
1008
1009 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1010 existing symbol. */
1011
1012 switch (h->root.type)
1013 {
1014 default:
1015 oldbfd = NULL;
1016 oldsec = NULL;
1017 break;
1018
1019 case bfd_link_hash_undefined:
1020 case bfd_link_hash_undefweak:
1021 oldbfd = h->root.u.undef.abfd;
1022 oldsec = NULL;
1023 break;
1024
1025 case bfd_link_hash_defined:
1026 case bfd_link_hash_defweak:
1027 oldbfd = h->root.u.def.section->owner;
1028 oldsec = h->root.u.def.section;
1029 break;
1030
1031 case bfd_link_hash_common:
1032 oldbfd = h->root.u.c.p->section->owner;
1033 oldsec = h->root.u.c.p->section;
1034 if (pold_alignment)
1035 *pold_alignment = h->root.u.c.p->alignment_power;
1036 break;
1037 }
1038 if (poldbfd && *poldbfd == NULL)
1039 *poldbfd = oldbfd;
1040
1041 /* Differentiate strong and weak symbols. */
1042 newweak = bind == STB_WEAK;
1043 oldweak = (h->root.type == bfd_link_hash_defweak
1044 || h->root.type == bfd_link_hash_undefweak);
1045 if (pold_weak)
1046 *pold_weak = oldweak;
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. We only do it
1091 if the existing regular definition won't be dynamic. */
1092 if (pold_alignment == NULL
1093 && !info->shared
1094 && !info->export_dynamic
1095 && !h->ref_dynamic
1096 && newdyn
1097 && newdef
1098 && !olddyn
1099 && (olddef || h->root.type == bfd_link_hash_common)
1100 && ELF_ST_TYPE (sym->st_info) != h->type
1101 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1102 && h->type != STT_NOTYPE
1103 && !(newfunc && oldfunc))
1104 {
1105 *skip = TRUE;
1106 return TRUE;
1107 }
1108
1109 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1110 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1111 *type_change_ok = TRUE;
1112
1113 /* Check TLS symbol. We don't check undefined symbol introduced by
1114 "ld -u". */
1115 else if (oldbfd != NULL
1116 && ELF_ST_TYPE (sym->st_info) != h->type
1117 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1118 {
1119 bfd *ntbfd, *tbfd;
1120 bfd_boolean ntdef, tdef;
1121 asection *ntsec, *tsec;
1122
1123 if (h->type == STT_TLS)
1124 {
1125 ntbfd = abfd;
1126 ntsec = sec;
1127 ntdef = newdef;
1128 tbfd = oldbfd;
1129 tsec = oldsec;
1130 tdef = olddef;
1131 }
1132 else
1133 {
1134 ntbfd = oldbfd;
1135 ntsec = oldsec;
1136 ntdef = olddef;
1137 tbfd = abfd;
1138 tsec = sec;
1139 tdef = newdef;
1140 }
1141
1142 if (tdef && ntdef)
1143 (*_bfd_error_handler)
1144 (_("%s: TLS definition in %B section %A "
1145 "mismatches non-TLS definition in %B section %A"),
1146 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1147 else if (!tdef && !ntdef)
1148 (*_bfd_error_handler)
1149 (_("%s: TLS reference in %B "
1150 "mismatches non-TLS reference in %B"),
1151 tbfd, ntbfd, h->root.root.string);
1152 else if (tdef)
1153 (*_bfd_error_handler)
1154 (_("%s: TLS definition in %B section %A "
1155 "mismatches non-TLS reference in %B"),
1156 tbfd, tsec, ntbfd, h->root.root.string);
1157 else
1158 (*_bfd_error_handler)
1159 (_("%s: TLS reference in %B "
1160 "mismatches non-TLS definition in %B section %A"),
1161 tbfd, ntbfd, ntsec, h->root.root.string);
1162
1163 bfd_set_error (bfd_error_bad_value);
1164 return FALSE;
1165 }
1166
1167 /* If the old symbol has non-default visibility, we ignore the new
1168 definition from a dynamic object. */
1169 if (newdyn
1170 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && !bfd_is_und_section (sec))
1172 {
1173 *skip = TRUE;
1174 /* Make sure this symbol is dynamic. */
1175 h->ref_dynamic = 1;
1176 hi->ref_dynamic = 1;
1177 /* A protected symbol has external availability. Make sure it is
1178 recorded as dynamic.
1179
1180 FIXME: Should we check type and size for protected symbol? */
1181 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 return bfd_elf_link_record_dynamic_symbol (info, h);
1183 else
1184 return TRUE;
1185 }
1186 else if (!newdyn
1187 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 && h->def_dynamic)
1189 {
1190 /* If the new symbol with non-default visibility comes from a
1191 relocatable file and the old definition comes from a dynamic
1192 object, we remove the old definition. */
1193 if (hi->root.type == bfd_link_hash_indirect)
1194 {
1195 /* Handle the case where the old dynamic definition is
1196 default versioned. We need to copy the symbol info from
1197 the symbol with default version to the normal one if it
1198 was referenced before. */
1199 if (h->ref_regular)
1200 {
1201 hi->root.type = h->root.type;
1202 h->root.type = bfd_link_hash_indirect;
1203 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1204
1205 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1206 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1207 {
1208 /* If the new symbol is hidden or internal, completely undo
1209 any dynamic link state. */
1210 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1211 h->forced_local = 0;
1212 h->ref_dynamic = 0;
1213 }
1214 else
1215 h->ref_dynamic = 1;
1216
1217 h->def_dynamic = 0;
1218 /* FIXME: Should we check type and size for protected symbol? */
1219 h->size = 0;
1220 h->type = 0;
1221
1222 h = hi;
1223 }
1224 else
1225 h = hi;
1226 }
1227
1228 /* If the old symbol was undefined before, then it will still be
1229 on the undefs list. If the new symbol is undefined or
1230 common, we can't make it bfd_link_hash_new here, because new
1231 undefined or common symbols will be added to the undefs list
1232 by _bfd_generic_link_add_one_symbol. Symbols may not be
1233 added twice to the undefs list. Also, if the new symbol is
1234 undefweak then we don't want to lose the strong undef. */
1235 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1236 {
1237 h->root.type = bfd_link_hash_undefined;
1238 h->root.u.undef.abfd = abfd;
1239 }
1240 else
1241 {
1242 h->root.type = bfd_link_hash_new;
1243 h->root.u.undef.abfd = NULL;
1244 }
1245
1246 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1247 {
1248 /* If the new symbol is hidden or internal, completely undo
1249 any dynamic link state. */
1250 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1251 h->forced_local = 0;
1252 h->ref_dynamic = 0;
1253 }
1254 else
1255 h->ref_dynamic = 1;
1256 h->def_dynamic = 0;
1257 /* FIXME: Should we check type and size for protected symbol? */
1258 h->size = 0;
1259 h->type = 0;
1260 return TRUE;
1261 }
1262
1263 /* If a new weak symbol definition comes from a regular file and the
1264 old symbol comes from a dynamic library, we treat the new one as
1265 strong. Similarly, an old weak symbol definition from a regular
1266 file is treated as strong when the new symbol comes from a dynamic
1267 library. Further, an old weak symbol from a dynamic library is
1268 treated as strong if the new symbol is from a dynamic library.
1269 This reflects the way glibc's ld.so works.
1270
1271 Do this before setting *type_change_ok or *size_change_ok so that
1272 we warn properly when dynamic library symbols are overridden. */
1273
1274 if (newdef && !newdyn && olddyn)
1275 newweak = FALSE;
1276 if (olddef && newdyn)
1277 oldweak = FALSE;
1278
1279 /* Allow changes between different types of function symbol. */
1280 if (newfunc && oldfunc)
1281 *type_change_ok = TRUE;
1282
1283 /* It's OK to change the type if either the existing symbol or the
1284 new symbol is weak. A type change is also OK if the old symbol
1285 is undefined and the new symbol is defined. */
1286
1287 if (oldweak
1288 || newweak
1289 || (newdef
1290 && h->root.type == bfd_link_hash_undefined))
1291 *type_change_ok = TRUE;
1292
1293 /* It's OK to change the size if either the existing symbol or the
1294 new symbol is weak, or if the old symbol is undefined. */
1295
1296 if (*type_change_ok
1297 || h->root.type == bfd_link_hash_undefined)
1298 *size_change_ok = TRUE;
1299
1300 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1301 symbol, respectively, appears to be a common symbol in a dynamic
1302 object. If a symbol appears in an uninitialized section, and is
1303 not weak, and is not a function, then it may be a common symbol
1304 which was resolved when the dynamic object was created. We want
1305 to treat such symbols specially, because they raise special
1306 considerations when setting the symbol size: if the symbol
1307 appears as a common symbol in a regular object, and the size in
1308 the regular object is larger, we must make sure that we use the
1309 larger size. This problematic case can always be avoided in C,
1310 but it must be handled correctly when using Fortran shared
1311 libraries.
1312
1313 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1314 likewise for OLDDYNCOMMON and OLDDEF.
1315
1316 Note that this test is just a heuristic, and that it is quite
1317 possible to have an uninitialized symbol in a shared object which
1318 is really a definition, rather than a common symbol. This could
1319 lead to some minor confusion when the symbol really is a common
1320 symbol in some regular object. However, I think it will be
1321 harmless. */
1322
1323 if (newdyn
1324 && newdef
1325 && !newweak
1326 && (sec->flags & SEC_ALLOC) != 0
1327 && (sec->flags & SEC_LOAD) == 0
1328 && sym->st_size > 0
1329 && !newfunc)
1330 newdyncommon = TRUE;
1331 else
1332 newdyncommon = FALSE;
1333
1334 if (olddyn
1335 && olddef
1336 && h->root.type == bfd_link_hash_defined
1337 && h->def_dynamic
1338 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1339 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1340 && h->size > 0
1341 && !oldfunc)
1342 olddyncommon = TRUE;
1343 else
1344 olddyncommon = FALSE;
1345
1346 /* We now know everything about the old and new symbols. We ask the
1347 backend to check if we can merge them. */
1348 if (bed->merge_symbol != NULL)
1349 {
1350 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1351 return FALSE;
1352 sec = *psec;
1353 }
1354
1355 /* If both the old and the new symbols look like common symbols in a
1356 dynamic object, set the size of the symbol to the larger of the
1357 two. */
1358
1359 if (olddyncommon
1360 && newdyncommon
1361 && sym->st_size != h->size)
1362 {
1363 /* Since we think we have two common symbols, issue a multiple
1364 common warning if desired. Note that we only warn if the
1365 size is different. If the size is the same, we simply let
1366 the old symbol override the new one as normally happens with
1367 symbols defined in dynamic objects. */
1368
1369 if (! ((*info->callbacks->multiple_common)
1370 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1371 return FALSE;
1372
1373 if (sym->st_size > h->size)
1374 h->size = sym->st_size;
1375
1376 *size_change_ok = TRUE;
1377 }
1378
1379 /* If we are looking at a dynamic object, and we have found a
1380 definition, we need to see if the symbol was already defined by
1381 some other object. If so, we want to use the existing
1382 definition, and we do not want to report a multiple symbol
1383 definition error; we do this by clobbering *PSEC to be
1384 bfd_und_section_ptr.
1385
1386 We treat a common symbol as a definition if the symbol in the
1387 shared library is a function, since common symbols always
1388 represent variables; this can cause confusion in principle, but
1389 any such confusion would seem to indicate an erroneous program or
1390 shared library. We also permit a common symbol in a regular
1391 object to override a weak symbol in a shared object. */
1392
1393 if (newdyn
1394 && newdef
1395 && (olddef
1396 || (h->root.type == bfd_link_hash_common
1397 && (newweak || newfunc))))
1398 {
1399 *override = TRUE;
1400 newdef = FALSE;
1401 newdyncommon = FALSE;
1402
1403 *psec = sec = bfd_und_section_ptr;
1404 *size_change_ok = TRUE;
1405
1406 /* If we get here when the old symbol is a common symbol, then
1407 we are explicitly letting it override a weak symbol or
1408 function in a dynamic object, and we don't want to warn about
1409 a type change. If the old symbol is a defined symbol, a type
1410 change warning may still be appropriate. */
1411
1412 if (h->root.type == bfd_link_hash_common)
1413 *type_change_ok = TRUE;
1414 }
1415
1416 /* Handle the special case of an old common symbol merging with a
1417 new symbol which looks like a common symbol in a shared object.
1418 We change *PSEC and *PVALUE to make the new symbol look like a
1419 common symbol, and let _bfd_generic_link_add_one_symbol do the
1420 right thing. */
1421
1422 if (newdyncommon
1423 && h->root.type == bfd_link_hash_common)
1424 {
1425 *override = TRUE;
1426 newdef = FALSE;
1427 newdyncommon = FALSE;
1428 *pvalue = sym->st_size;
1429 *psec = sec = bed->common_section (oldsec);
1430 *size_change_ok = TRUE;
1431 }
1432
1433 /* Skip weak definitions of symbols that are already defined. */
1434 if (newdef && olddef && newweak)
1435 {
1436 /* Don't skip new non-IR weak syms. */
1437 if (!(oldbfd != NULL
1438 && (oldbfd->flags & BFD_PLUGIN) != 0
1439 && (abfd->flags & BFD_PLUGIN) == 0))
1440 *skip = TRUE;
1441
1442 /* Merge st_other. If the symbol already has a dynamic index,
1443 but visibility says it should not be visible, turn it into a
1444 local symbol. */
1445 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1446 if (h->dynindx != -1)
1447 switch (ELF_ST_VISIBILITY (h->other))
1448 {
1449 case STV_INTERNAL:
1450 case STV_HIDDEN:
1451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1452 break;
1453 }
1454 }
1455
1456 /* If the old symbol is from a dynamic object, and the new symbol is
1457 a definition which is not from a dynamic object, then the new
1458 symbol overrides the old symbol. Symbols from regular files
1459 always take precedence over symbols from dynamic objects, even if
1460 they are defined after the dynamic object in the link.
1461
1462 As above, we again permit a common symbol in a regular object to
1463 override a definition in a shared object if the shared object
1464 symbol is a function or is weak. */
1465
1466 flip = NULL;
1467 if (!newdyn
1468 && (newdef
1469 || (bfd_is_com_section (sec)
1470 && (oldweak || oldfunc)))
1471 && olddyn
1472 && olddef
1473 && h->def_dynamic)
1474 {
1475 /* Change the hash table entry to undefined, and let
1476 _bfd_generic_link_add_one_symbol do the right thing with the
1477 new definition. */
1478
1479 h->root.type = bfd_link_hash_undefined;
1480 h->root.u.undef.abfd = h->root.u.def.section->owner;
1481 *size_change_ok = TRUE;
1482
1483 olddef = FALSE;
1484 olddyncommon = FALSE;
1485
1486 /* We again permit a type change when a common symbol may be
1487 overriding a function. */
1488
1489 if (bfd_is_com_section (sec))
1490 {
1491 if (oldfunc)
1492 {
1493 /* If a common symbol overrides a function, make sure
1494 that it isn't defined dynamically nor has type
1495 function. */
1496 h->def_dynamic = 0;
1497 h->type = STT_NOTYPE;
1498 }
1499 *type_change_ok = TRUE;
1500 }
1501
1502 if (hi->root.type == bfd_link_hash_indirect)
1503 flip = hi;
1504 else
1505 /* This union may have been set to be non-NULL when this symbol
1506 was seen in a dynamic object. We must force the union to be
1507 NULL, so that it is correct for a regular symbol. */
1508 h->verinfo.vertree = NULL;
1509 }
1510
1511 /* Handle the special case of a new common symbol merging with an
1512 old symbol that looks like it might be a common symbol defined in
1513 a shared object. Note that we have already handled the case in
1514 which a new common symbol should simply override the definition
1515 in the shared library. */
1516
1517 if (! newdyn
1518 && bfd_is_com_section (sec)
1519 && olddyncommon)
1520 {
1521 /* It would be best if we could set the hash table entry to a
1522 common symbol, but we don't know what to use for the section
1523 or the alignment. */
1524 if (! ((*info->callbacks->multiple_common)
1525 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1526 return FALSE;
1527
1528 /* If the presumed common symbol in the dynamic object is
1529 larger, pretend that the new symbol has its size. */
1530
1531 if (h->size > *pvalue)
1532 *pvalue = h->size;
1533
1534 /* We need to remember the alignment required by the symbol
1535 in the dynamic object. */
1536 BFD_ASSERT (pold_alignment);
1537 *pold_alignment = h->root.u.def.section->alignment_power;
1538
1539 olddef = FALSE;
1540 olddyncommon = FALSE;
1541
1542 h->root.type = bfd_link_hash_undefined;
1543 h->root.u.undef.abfd = h->root.u.def.section->owner;
1544
1545 *size_change_ok = TRUE;
1546 *type_change_ok = TRUE;
1547
1548 if (hi->root.type == bfd_link_hash_indirect)
1549 flip = hi;
1550 else
1551 h->verinfo.vertree = NULL;
1552 }
1553
1554 if (flip != NULL)
1555 {
1556 /* Handle the case where we had a versioned symbol in a dynamic
1557 library and now find a definition in a normal object. In this
1558 case, we make the versioned symbol point to the normal one. */
1559 flip->root.type = h->root.type;
1560 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1561 h->root.type = bfd_link_hash_indirect;
1562 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1563 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 if (h->def_dynamic)
1565 {
1566 h->def_dynamic = 0;
1567 flip->ref_dynamic = 1;
1568 }
1569 }
1570
1571 return TRUE;
1572 }
1573
1574 /* This function is called to create an indirect symbol from the
1575 default for the symbol with the default version if needed. The
1576 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1577 set DYNSYM if the new indirect symbol is dynamic. */
1578
1579 static bfd_boolean
1580 _bfd_elf_add_default_symbol (bfd *abfd,
1581 struct bfd_link_info *info,
1582 struct elf_link_hash_entry *h,
1583 const char *name,
1584 Elf_Internal_Sym *sym,
1585 asection *sec,
1586 bfd_vma value,
1587 bfd **poldbfd,
1588 bfd_boolean *dynsym)
1589 {
1590 bfd_boolean type_change_ok;
1591 bfd_boolean size_change_ok;
1592 bfd_boolean skip;
1593 char *shortname;
1594 struct elf_link_hash_entry *hi;
1595 struct bfd_link_hash_entry *bh;
1596 const struct elf_backend_data *bed;
1597 bfd_boolean collect;
1598 bfd_boolean dynamic;
1599 bfd_boolean override;
1600 char *p;
1601 size_t len, shortlen;
1602 asection *tmp_sec;
1603
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1611
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1615
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1622
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 tmp_sec = sec;
1630 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1631 &hi, poldbfd, NULL, NULL, &skip, &override,
1632 &type_change_ok, &size_change_ok))
1633 return FALSE;
1634
1635 if (skip)
1636 goto nondefault;
1637
1638 if (! override)
1639 {
1640 bh = &hi->root;
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1643 0, name, FALSE, collect, &bh)))
1644 return FALSE;
1645 hi = (struct elf_link_hash_entry *) bh;
1646 }
1647 else
1648 {
1649 /* In this case the symbol named SHORTNAME is overriding the
1650 indirect symbol we want to add. We were planning on making
1651 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1652 is the name without a version. NAME is the fully versioned
1653 name, and it is the default version.
1654
1655 Overriding means that we already saw a definition for the
1656 symbol SHORTNAME in a regular object, and it is overriding
1657 the symbol defined in the dynamic object.
1658
1659 When this happens, we actually want to change NAME, the
1660 symbol we just added, to refer to SHORTNAME. This will cause
1661 references to NAME in the shared object to become references
1662 to SHORTNAME in the regular object. This is what we expect
1663 when we override a function in a shared object: that the
1664 references in the shared object will be mapped to the
1665 definition in the regular object. */
1666
1667 while (hi->root.type == bfd_link_hash_indirect
1668 || hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 h->root.type = bfd_link_hash_indirect;
1672 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1673 if (h->def_dynamic)
1674 {
1675 h->def_dynamic = 0;
1676 hi->ref_dynamic = 1;
1677 if (hi->ref_regular
1678 || hi->def_regular)
1679 {
1680 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1681 return FALSE;
1682 }
1683 }
1684
1685 /* Now set HI to H, so that the following code will set the
1686 other fields correctly. */
1687 hi = h;
1688 }
1689
1690 /* Check if HI is a warning symbol. */
1691 if (hi->root.type == bfd_link_hash_warning)
1692 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1693
1694 /* If there is a duplicate definition somewhere, then HI may not
1695 point to an indirect symbol. We will have reported an error to
1696 the user in that case. */
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 {
1700 struct elf_link_hash_entry *ht;
1701
1702 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1704
1705 /* See if the new flags lead us to realize that the symbol must
1706 be dynamic. */
1707 if (! *dynsym)
1708 {
1709 if (! dynamic)
1710 {
1711 if (! info->executable
1712 || hi->def_dynamic
1713 || hi->ref_dynamic)
1714 *dynsym = TRUE;
1715 }
1716 else
1717 {
1718 if (hi->ref_regular)
1719 *dynsym = TRUE;
1720 }
1721 }
1722 }
1723
1724 /* We also need to define an indirection from the nondefault version
1725 of the symbol. */
1726
1727 nondefault:
1728 len = strlen (name);
1729 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1730 if (shortname == NULL)
1731 return FALSE;
1732 memcpy (shortname, name, shortlen);
1733 memcpy (shortname + shortlen, p + 1, len - shortlen);
1734
1735 /* Once again, merge with any existing symbol. */
1736 type_change_ok = FALSE;
1737 size_change_ok = FALSE;
1738 tmp_sec = sec;
1739 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1740 &hi, NULL, NULL, NULL, &skip, &override,
1741 &type_change_ok, &size_change_ok))
1742 return FALSE;
1743
1744 if (skip)
1745 return TRUE;
1746
1747 if (override)
1748 {
1749 /* Here SHORTNAME is a versioned name, so we don't expect to see
1750 the type of override we do in the case above unless it is
1751 overridden by a versioned definition. */
1752 if (hi->root.type != bfd_link_hash_defined
1753 && hi->root.type != bfd_link_hash_defweak)
1754 (*_bfd_error_handler)
1755 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1756 abfd, shortname);
1757 }
1758 else
1759 {
1760 bh = &hi->root;
1761 if (! (_bfd_generic_link_add_one_symbol
1762 (info, abfd, shortname, BSF_INDIRECT,
1763 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1764 return FALSE;
1765 hi = (struct elf_link_hash_entry *) bh;
1766
1767 /* If there is a duplicate definition somewhere, then HI may not
1768 point to an indirect symbol. We will have reported an error
1769 to the user in that case. */
1770
1771 if (hi->root.type == bfd_link_hash_indirect)
1772 {
1773 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1774
1775 /* See if the new flags lead us to realize that the symbol
1776 must be dynamic. */
1777 if (! *dynsym)
1778 {
1779 if (! dynamic)
1780 {
1781 if (! info->executable
1782 || hi->ref_dynamic)
1783 *dynsym = TRUE;
1784 }
1785 else
1786 {
1787 if (hi->ref_regular)
1788 *dynsym = TRUE;
1789 }
1790 }
1791 }
1792 }
1793
1794 return TRUE;
1795 }
1796 \f
1797 /* This routine is used to export all defined symbols into the dynamic
1798 symbol table. It is called via elf_link_hash_traverse. */
1799
1800 static bfd_boolean
1801 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1802 {
1803 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1804
1805 /* Ignore indirect symbols. These are added by the versioning code. */
1806 if (h->root.type == bfd_link_hash_indirect)
1807 return TRUE;
1808
1809 /* Ignore this if we won't export it. */
1810 if (!eif->info->export_dynamic && !h->dynamic)
1811 return TRUE;
1812
1813 if (h->dynindx == -1
1814 && (h->def_regular || h->ref_regular)
1815 && ! bfd_hide_sym_by_version (eif->info->version_info,
1816 h->root.root.string))
1817 {
1818 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1819 {
1820 eif->failed = TRUE;
1821 return FALSE;
1822 }
1823 }
1824
1825 return TRUE;
1826 }
1827 \f
1828 /* Look through the symbols which are defined in other shared
1829 libraries and referenced here. Update the list of version
1830 dependencies. This will be put into the .gnu.version_r section.
1831 This function is called via elf_link_hash_traverse. */
1832
1833 static bfd_boolean
1834 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1835 void *data)
1836 {
1837 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1838 Elf_Internal_Verneed *t;
1839 Elf_Internal_Vernaux *a;
1840 bfd_size_type amt;
1841
1842 /* We only care about symbols defined in shared objects with version
1843 information. */
1844 if (!h->def_dynamic
1845 || h->def_regular
1846 || h->dynindx == -1
1847 || h->verinfo.verdef == NULL)
1848 return TRUE;
1849
1850 /* See if we already know about this version. */
1851 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1852 t != NULL;
1853 t = t->vn_nextref)
1854 {
1855 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1856 continue;
1857
1858 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1859 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1860 return TRUE;
1861
1862 break;
1863 }
1864
1865 /* This is a new version. Add it to tree we are building. */
1866
1867 if (t == NULL)
1868 {
1869 amt = sizeof *t;
1870 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 if (t == NULL)
1872 {
1873 rinfo->failed = TRUE;
1874 return FALSE;
1875 }
1876
1877 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1878 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1879 elf_tdata (rinfo->info->output_bfd)->verref = t;
1880 }
1881
1882 amt = sizeof *a;
1883 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1884 if (a == NULL)
1885 {
1886 rinfo->failed = TRUE;
1887 return FALSE;
1888 }
1889
1890 /* Note that we are copying a string pointer here, and testing it
1891 above. If bfd_elf_string_from_elf_section is ever changed to
1892 discard the string data when low in memory, this will have to be
1893 fixed. */
1894 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1895
1896 a->vna_flags = h->verinfo.verdef->vd_flags;
1897 a->vna_nextptr = t->vn_auxptr;
1898
1899 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1900 ++rinfo->vers;
1901
1902 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1903
1904 t->vn_auxptr = a;
1905
1906 return TRUE;
1907 }
1908
1909 /* Figure out appropriate versions for all the symbols. We may not
1910 have the version number script until we have read all of the input
1911 files, so until that point we don't know which symbols should be
1912 local. This function is called via elf_link_hash_traverse. */
1913
1914 static bfd_boolean
1915 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1916 {
1917 struct elf_info_failed *sinfo;
1918 struct bfd_link_info *info;
1919 const struct elf_backend_data *bed;
1920 struct elf_info_failed eif;
1921 char *p;
1922 bfd_size_type amt;
1923
1924 sinfo = (struct elf_info_failed *) data;
1925 info = sinfo->info;
1926
1927 /* Fix the symbol flags. */
1928 eif.failed = FALSE;
1929 eif.info = info;
1930 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1931 {
1932 if (eif.failed)
1933 sinfo->failed = TRUE;
1934 return FALSE;
1935 }
1936
1937 /* We only need version numbers for symbols defined in regular
1938 objects. */
1939 if (!h->def_regular)
1940 return TRUE;
1941
1942 bed = get_elf_backend_data (info->output_bfd);
1943 p = strchr (h->root.root.string, ELF_VER_CHR);
1944 if (p != NULL && h->verinfo.vertree == NULL)
1945 {
1946 struct bfd_elf_version_tree *t;
1947 bfd_boolean hidden;
1948
1949 hidden = TRUE;
1950
1951 /* There are two consecutive ELF_VER_CHR characters if this is
1952 not a hidden symbol. */
1953 ++p;
1954 if (*p == ELF_VER_CHR)
1955 {
1956 hidden = FALSE;
1957 ++p;
1958 }
1959
1960 /* If there is no version string, we can just return out. */
1961 if (*p == '\0')
1962 {
1963 if (hidden)
1964 h->hidden = 1;
1965 return TRUE;
1966 }
1967
1968 /* Look for the version. If we find it, it is no longer weak. */
1969 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1970 {
1971 if (strcmp (t->name, p) == 0)
1972 {
1973 size_t len;
1974 char *alc;
1975 struct bfd_elf_version_expr *d;
1976
1977 len = p - h->root.root.string;
1978 alc = (char *) bfd_malloc (len);
1979 if (alc == NULL)
1980 {
1981 sinfo->failed = TRUE;
1982 return FALSE;
1983 }
1984 memcpy (alc, h->root.root.string, len - 1);
1985 alc[len - 1] = '\0';
1986 if (alc[len - 2] == ELF_VER_CHR)
1987 alc[len - 2] = '\0';
1988
1989 h->verinfo.vertree = t;
1990 t->used = TRUE;
1991 d = NULL;
1992
1993 if (t->globals.list != NULL)
1994 d = (*t->match) (&t->globals, NULL, alc);
1995
1996 /* See if there is anything to force this symbol to
1997 local scope. */
1998 if (d == NULL && t->locals.list != NULL)
1999 {
2000 d = (*t->match) (&t->locals, NULL, alc);
2001 if (d != NULL
2002 && h->dynindx != -1
2003 && ! info->export_dynamic)
2004 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2005 }
2006
2007 free (alc);
2008 break;
2009 }
2010 }
2011
2012 /* If we are building an application, we need to create a
2013 version node for this version. */
2014 if (t == NULL && info->executable)
2015 {
2016 struct bfd_elf_version_tree **pp;
2017 int version_index;
2018
2019 /* If we aren't going to export this symbol, we don't need
2020 to worry about it. */
2021 if (h->dynindx == -1)
2022 return TRUE;
2023
2024 amt = sizeof *t;
2025 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2026 if (t == NULL)
2027 {
2028 sinfo->failed = TRUE;
2029 return FALSE;
2030 }
2031
2032 t->name = p;
2033 t->name_indx = (unsigned int) -1;
2034 t->used = TRUE;
2035
2036 version_index = 1;
2037 /* Don't count anonymous version tag. */
2038 if (sinfo->info->version_info != NULL
2039 && sinfo->info->version_info->vernum == 0)
2040 version_index = 0;
2041 for (pp = &sinfo->info->version_info;
2042 *pp != NULL;
2043 pp = &(*pp)->next)
2044 ++version_index;
2045 t->vernum = version_index;
2046
2047 *pp = t;
2048
2049 h->verinfo.vertree = t;
2050 }
2051 else if (t == NULL)
2052 {
2053 /* We could not find the version for a symbol when
2054 generating a shared archive. Return an error. */
2055 (*_bfd_error_handler)
2056 (_("%B: version node not found for symbol %s"),
2057 info->output_bfd, h->root.root.string);
2058 bfd_set_error (bfd_error_bad_value);
2059 sinfo->failed = TRUE;
2060 return FALSE;
2061 }
2062
2063 if (hidden)
2064 h->hidden = 1;
2065 }
2066
2067 /* If we don't have a version for this symbol, see if we can find
2068 something. */
2069 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2070 {
2071 bfd_boolean hide;
2072
2073 h->verinfo.vertree
2074 = bfd_find_version_for_sym (sinfo->info->version_info,
2075 h->root.root.string, &hide);
2076 if (h->verinfo.vertree != NULL && hide)
2077 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Read and swap the relocs from the section indicated by SHDR. This
2084 may be either a REL or a RELA section. The relocations are
2085 translated into RELA relocations and stored in INTERNAL_RELOCS,
2086 which should have already been allocated to contain enough space.
2087 The EXTERNAL_RELOCS are a buffer where the external form of the
2088 relocations should be stored.
2089
2090 Returns FALSE if something goes wrong. */
2091
2092 static bfd_boolean
2093 elf_link_read_relocs_from_section (bfd *abfd,
2094 asection *sec,
2095 Elf_Internal_Shdr *shdr,
2096 void *external_relocs,
2097 Elf_Internal_Rela *internal_relocs)
2098 {
2099 const struct elf_backend_data *bed;
2100 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2101 const bfd_byte *erela;
2102 const bfd_byte *erelaend;
2103 Elf_Internal_Rela *irela;
2104 Elf_Internal_Shdr *symtab_hdr;
2105 size_t nsyms;
2106
2107 /* Position ourselves at the start of the section. */
2108 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 return FALSE;
2110
2111 /* Read the relocations. */
2112 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 return FALSE;
2114
2115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2116 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2117
2118 bed = get_elf_backend_data (abfd);
2119
2120 /* Convert the external relocations to the internal format. */
2121 if (shdr->sh_entsize == bed->s->sizeof_rel)
2122 swap_in = bed->s->swap_reloc_in;
2123 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2124 swap_in = bed->s->swap_reloca_in;
2125 else
2126 {
2127 bfd_set_error (bfd_error_wrong_format);
2128 return FALSE;
2129 }
2130
2131 erela = (const bfd_byte *) external_relocs;
2132 erelaend = erela + shdr->sh_size;
2133 irela = internal_relocs;
2134 while (erela < erelaend)
2135 {
2136 bfd_vma r_symndx;
2137
2138 (*swap_in) (abfd, erela, irela);
2139 r_symndx = ELF32_R_SYM (irela->r_info);
2140 if (bed->s->arch_size == 64)
2141 r_symndx >>= 24;
2142 if (nsyms > 0)
2143 {
2144 if ((size_t) r_symndx >= nsyms)
2145 {
2146 (*_bfd_error_handler)
2147 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2148 " for offset 0x%lx in section `%A'"),
2149 abfd, sec,
2150 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2153 }
2154 }
2155 else if (r_symndx != STN_UNDEF)
2156 {
2157 (*_bfd_error_handler)
2158 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2159 " when the object file has no symbol table"),
2160 abfd, sec,
2161 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 bfd_set_error (bfd_error_bad_value);
2163 return FALSE;
2164 }
2165 irela += bed->s->int_rels_per_ext_rel;
2166 erela += shdr->sh_entsize;
2167 }
2168
2169 return TRUE;
2170 }
2171
2172 /* Read and swap the relocs for a section O. They may have been
2173 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2174 not NULL, they are used as buffers to read into. They are known to
2175 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2176 the return value is allocated using either malloc or bfd_alloc,
2177 according to the KEEP_MEMORY argument. If O has two relocation
2178 sections (both REL and RELA relocations), then the REL_HDR
2179 relocations will appear first in INTERNAL_RELOCS, followed by the
2180 RELA_HDR relocations. */
2181
2182 Elf_Internal_Rela *
2183 _bfd_elf_link_read_relocs (bfd *abfd,
2184 asection *o,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs,
2187 bfd_boolean keep_memory)
2188 {
2189 void *alloc1 = NULL;
2190 Elf_Internal_Rela *alloc2 = NULL;
2191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2192 struct bfd_elf_section_data *esdo = elf_section_data (o);
2193 Elf_Internal_Rela *internal_rela_relocs;
2194
2195 if (esdo->relocs != NULL)
2196 return esdo->relocs;
2197
2198 if (o->reloc_count == 0)
2199 return NULL;
2200
2201 if (internal_relocs == NULL)
2202 {
2203 bfd_size_type size;
2204
2205 size = o->reloc_count;
2206 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2207 if (keep_memory)
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2209 else
2210 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2211 if (internal_relocs == NULL)
2212 goto error_return;
2213 }
2214
2215 if (external_relocs == NULL)
2216 {
2217 bfd_size_type size = 0;
2218
2219 if (esdo->rel.hdr)
2220 size += esdo->rel.hdr->sh_size;
2221 if (esdo->rela.hdr)
2222 size += esdo->rela.hdr->sh_size;
2223
2224 alloc1 = bfd_malloc (size);
2225 if (alloc1 == NULL)
2226 goto error_return;
2227 external_relocs = alloc1;
2228 }
2229
2230 internal_rela_relocs = internal_relocs;
2231 if (esdo->rel.hdr)
2232 {
2233 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2234 external_relocs,
2235 internal_relocs))
2236 goto error_return;
2237 external_relocs = (((bfd_byte *) external_relocs)
2238 + esdo->rel.hdr->sh_size);
2239 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2240 * bed->s->int_rels_per_ext_rel);
2241 }
2242
2243 if (esdo->rela.hdr
2244 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2245 external_relocs,
2246 internal_rela_relocs)))
2247 goto error_return;
2248
2249 /* Cache the results for next time, if we can. */
2250 if (keep_memory)
2251 esdo->relocs = internal_relocs;
2252
2253 if (alloc1 != NULL)
2254 free (alloc1);
2255
2256 /* Don't free alloc2, since if it was allocated we are passing it
2257 back (under the name of internal_relocs). */
2258
2259 return internal_relocs;
2260
2261 error_return:
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264 if (alloc2 != NULL)
2265 {
2266 if (keep_memory)
2267 bfd_release (abfd, alloc2);
2268 else
2269 free (alloc2);
2270 }
2271 return NULL;
2272 }
2273
2274 /* Compute the size of, and allocate space for, REL_HDR which is the
2275 section header for a section containing relocations for O. */
2276
2277 static bfd_boolean
2278 _bfd_elf_link_size_reloc_section (bfd *abfd,
2279 struct bfd_elf_section_reloc_data *reldata)
2280 {
2281 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2282
2283 /* That allows us to calculate the size of the section. */
2284 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2285
2286 /* The contents field must last into write_object_contents, so we
2287 allocate it with bfd_alloc rather than malloc. Also since we
2288 cannot be sure that the contents will actually be filled in,
2289 we zero the allocated space. */
2290 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2291 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2292 return FALSE;
2293
2294 if (reldata->hashes == NULL && reldata->count)
2295 {
2296 struct elf_link_hash_entry **p;
2297
2298 p = (struct elf_link_hash_entry **)
2299 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2300 if (p == NULL)
2301 return FALSE;
2302
2303 reldata->hashes = p;
2304 }
2305
2306 return TRUE;
2307 }
2308
2309 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2310 originated from the section given by INPUT_REL_HDR) to the
2311 OUTPUT_BFD. */
2312
2313 bfd_boolean
2314 _bfd_elf_link_output_relocs (bfd *output_bfd,
2315 asection *input_section,
2316 Elf_Internal_Shdr *input_rel_hdr,
2317 Elf_Internal_Rela *internal_relocs,
2318 struct elf_link_hash_entry **rel_hash
2319 ATTRIBUTE_UNUSED)
2320 {
2321 Elf_Internal_Rela *irela;
2322 Elf_Internal_Rela *irelaend;
2323 bfd_byte *erel;
2324 struct bfd_elf_section_reloc_data *output_reldata;
2325 asection *output_section;
2326 const struct elf_backend_data *bed;
2327 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2328 struct bfd_elf_section_data *esdo;
2329
2330 output_section = input_section->output_section;
2331
2332 bed = get_elf_backend_data (output_bfd);
2333 esdo = elf_section_data (output_section);
2334 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2335 {
2336 output_reldata = &esdo->rel;
2337 swap_out = bed->s->swap_reloc_out;
2338 }
2339 else if (esdo->rela.hdr
2340 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2341 {
2342 output_reldata = &esdo->rela;
2343 swap_out = bed->s->swap_reloca_out;
2344 }
2345 else
2346 {
2347 (*_bfd_error_handler)
2348 (_("%B: relocation size mismatch in %B section %A"),
2349 output_bfd, input_section->owner, input_section);
2350 bfd_set_error (bfd_error_wrong_format);
2351 return FALSE;
2352 }
2353
2354 erel = output_reldata->hdr->contents;
2355 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2356 irela = internal_relocs;
2357 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2358 * bed->s->int_rels_per_ext_rel);
2359 while (irela < irelaend)
2360 {
2361 (*swap_out) (output_bfd, irela, erel);
2362 irela += bed->s->int_rels_per_ext_rel;
2363 erel += input_rel_hdr->sh_entsize;
2364 }
2365
2366 /* Bump the counter, so that we know where to add the next set of
2367 relocations. */
2368 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2369
2370 return TRUE;
2371 }
2372 \f
2373 /* Make weak undefined symbols in PIE dynamic. */
2374
2375 bfd_boolean
2376 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2377 struct elf_link_hash_entry *h)
2378 {
2379 if (info->pie
2380 && h->dynindx == -1
2381 && h->root.type == bfd_link_hash_undefweak)
2382 return bfd_elf_link_record_dynamic_symbol (info, h);
2383
2384 return TRUE;
2385 }
2386
2387 /* Fix up the flags for a symbol. This handles various cases which
2388 can only be fixed after all the input files are seen. This is
2389 currently called by both adjust_dynamic_symbol and
2390 assign_sym_version, which is unnecessary but perhaps more robust in
2391 the face of future changes. */
2392
2393 static bfd_boolean
2394 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2395 struct elf_info_failed *eif)
2396 {
2397 const struct elf_backend_data *bed;
2398
2399 /* If this symbol was mentioned in a non-ELF file, try to set
2400 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2401 permit a non-ELF file to correctly refer to a symbol defined in
2402 an ELF dynamic object. */
2403 if (h->non_elf)
2404 {
2405 while (h->root.type == bfd_link_hash_indirect)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2407
2408 if (h->root.type != bfd_link_hash_defined
2409 && h->root.type != bfd_link_hash_defweak)
2410 {
2411 h->ref_regular = 1;
2412 h->ref_regular_nonweak = 1;
2413 }
2414 else
2415 {
2416 if (h->root.u.def.section->owner != NULL
2417 && (bfd_get_flavour (h->root.u.def.section->owner)
2418 == bfd_target_elf_flavour))
2419 {
2420 h->ref_regular = 1;
2421 h->ref_regular_nonweak = 1;
2422 }
2423 else
2424 h->def_regular = 1;
2425 }
2426
2427 if (h->dynindx == -1
2428 && (h->def_dynamic
2429 || h->ref_dynamic))
2430 {
2431 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2432 {
2433 eif->failed = TRUE;
2434 return FALSE;
2435 }
2436 }
2437 }
2438 else
2439 {
2440 /* Unfortunately, NON_ELF is only correct if the symbol
2441 was first seen in a non-ELF file. Fortunately, if the symbol
2442 was first seen in an ELF file, we're probably OK unless the
2443 symbol was defined in a non-ELF file. Catch that case here.
2444 FIXME: We're still in trouble if the symbol was first seen in
2445 a dynamic object, and then later in a non-ELF regular object. */
2446 if ((h->root.type == bfd_link_hash_defined
2447 || h->root.type == bfd_link_hash_defweak)
2448 && !h->def_regular
2449 && (h->root.u.def.section->owner != NULL
2450 ? (bfd_get_flavour (h->root.u.def.section->owner)
2451 != bfd_target_elf_flavour)
2452 : (bfd_is_abs_section (h->root.u.def.section)
2453 && !h->def_dynamic)))
2454 h->def_regular = 1;
2455 }
2456
2457 /* Backend specific symbol fixup. */
2458 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2459 if (bed->elf_backend_fixup_symbol
2460 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 return FALSE;
2462
2463 /* If this is a final link, and the symbol was defined as a common
2464 symbol in a regular object file, and there was no definition in
2465 any dynamic object, then the linker will have allocated space for
2466 the symbol in a common section but the DEF_REGULAR
2467 flag will not have been set. */
2468 if (h->root.type == bfd_link_hash_defined
2469 && !h->def_regular
2470 && h->ref_regular
2471 && !h->def_dynamic
2472 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 h->def_regular = 1;
2474
2475 /* If -Bsymbolic was used (which means to bind references to global
2476 symbols to the definition within the shared object), and this
2477 symbol was defined in a regular object, then it actually doesn't
2478 need a PLT entry. Likewise, if the symbol has non-default
2479 visibility. If the symbol has hidden or internal visibility, we
2480 will force it local. */
2481 if (h->needs_plt
2482 && eif->info->shared
2483 && is_elf_hash_table (eif->info->hash)
2484 && (SYMBOLIC_BIND (eif->info, h)
2485 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 && h->def_regular)
2487 {
2488 bfd_boolean force_local;
2489
2490 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2491 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2492 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2493 }
2494
2495 /* If a weak undefined symbol has non-default visibility, we also
2496 hide it from the dynamic linker. */
2497 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2498 && h->root.type == bfd_link_hash_undefweak)
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2500
2501 /* If this is a weak defined symbol in a dynamic object, and we know
2502 the real definition in the dynamic object, copy interesting flags
2503 over to the real definition. */
2504 if (h->u.weakdef != NULL)
2505 {
2506 /* If the real definition is defined by a regular object file,
2507 don't do anything special. See the longer description in
2508 _bfd_elf_adjust_dynamic_symbol, below. */
2509 if (h->u.weakdef->def_regular)
2510 h->u.weakdef = NULL;
2511 else
2512 {
2513 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2514
2515 while (h->root.type == bfd_link_hash_indirect)
2516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2517
2518 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2519 || h->root.type == bfd_link_hash_defweak);
2520 BFD_ASSERT (weakdef->def_dynamic);
2521 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2522 || weakdef->root.type == bfd_link_hash_defweak);
2523 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2524 }
2525 }
2526
2527 return TRUE;
2528 }
2529
2530 /* Make the backend pick a good value for a dynamic symbol. This is
2531 called via elf_link_hash_traverse, and also calls itself
2532 recursively. */
2533
2534 static bfd_boolean
2535 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2536 {
2537 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2538 bfd *dynobj;
2539 const struct elf_backend_data *bed;
2540
2541 if (! is_elf_hash_table (eif->info->hash))
2542 return FALSE;
2543
2544 /* Ignore indirect symbols. These are added by the versioning code. */
2545 if (h->root.type == bfd_link_hash_indirect)
2546 return TRUE;
2547
2548 /* Fix the symbol flags. */
2549 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 return FALSE;
2551
2552 /* If this symbol does not require a PLT entry, and it is not
2553 defined by a dynamic object, or is not referenced by a regular
2554 object, ignore it. We do have to handle a weak defined symbol,
2555 even if no regular object refers to it, if we decided to add it
2556 to the dynamic symbol table. FIXME: Do we normally need to worry
2557 about symbols which are defined by one dynamic object and
2558 referenced by another one? */
2559 if (!h->needs_plt
2560 && h->type != STT_GNU_IFUNC
2561 && (h->def_regular
2562 || !h->def_dynamic
2563 || (!h->ref_regular
2564 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2565 {
2566 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2567 return TRUE;
2568 }
2569
2570 /* If we've already adjusted this symbol, don't do it again. This
2571 can happen via a recursive call. */
2572 if (h->dynamic_adjusted)
2573 return TRUE;
2574
2575 /* Don't look at this symbol again. Note that we must set this
2576 after checking the above conditions, because we may look at a
2577 symbol once, decide not to do anything, and then get called
2578 recursively later after REF_REGULAR is set below. */
2579 h->dynamic_adjusted = 1;
2580
2581 /* If this is a weak definition, and we know a real definition, and
2582 the real symbol is not itself defined by a regular object file,
2583 then get a good value for the real definition. We handle the
2584 real symbol first, for the convenience of the backend routine.
2585
2586 Note that there is a confusing case here. If the real definition
2587 is defined by a regular object file, we don't get the real symbol
2588 from the dynamic object, but we do get the weak symbol. If the
2589 processor backend uses a COPY reloc, then if some routine in the
2590 dynamic object changes the real symbol, we will not see that
2591 change in the corresponding weak symbol. This is the way other
2592 ELF linkers work as well, and seems to be a result of the shared
2593 library model.
2594
2595 I will clarify this issue. Most SVR4 shared libraries define the
2596 variable _timezone and define timezone as a weak synonym. The
2597 tzset call changes _timezone. If you write
2598 extern int timezone;
2599 int _timezone = 5;
2600 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2601 you might expect that, since timezone is a synonym for _timezone,
2602 the same number will print both times. However, if the processor
2603 backend uses a COPY reloc, then actually timezone will be copied
2604 into your process image, and, since you define _timezone
2605 yourself, _timezone will not. Thus timezone and _timezone will
2606 wind up at different memory locations. The tzset call will set
2607 _timezone, leaving timezone unchanged. */
2608
2609 if (h->u.weakdef != NULL)
2610 {
2611 /* If we get to this point, there is an implicit reference to
2612 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2613 h->u.weakdef->ref_regular = 1;
2614
2615 /* Ensure that the backend adjust_dynamic_symbol function sees
2616 H->U.WEAKDEF before H by recursively calling ourselves. */
2617 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2618 return FALSE;
2619 }
2620
2621 /* If a symbol has no type and no size and does not require a PLT
2622 entry, then we are probably about to do the wrong thing here: we
2623 are probably going to create a COPY reloc for an empty object.
2624 This case can arise when a shared object is built with assembly
2625 code, and the assembly code fails to set the symbol type. */
2626 if (h->size == 0
2627 && h->type == STT_NOTYPE
2628 && !h->needs_plt)
2629 (*_bfd_error_handler)
2630 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2631 h->root.root.string);
2632
2633 dynobj = elf_hash_table (eif->info)->dynobj;
2634 bed = get_elf_backend_data (dynobj);
2635
2636 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2637 {
2638 eif->failed = TRUE;
2639 return FALSE;
2640 }
2641
2642 return TRUE;
2643 }
2644
2645 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2646 DYNBSS. */
2647
2648 bfd_boolean
2649 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2650 asection *dynbss)
2651 {
2652 unsigned int power_of_two;
2653 bfd_vma mask;
2654 asection *sec = h->root.u.def.section;
2655
2656 /* The section aligment of definition is the maximum alignment
2657 requirement of symbols defined in the section. Since we don't
2658 know the symbol alignment requirement, we start with the
2659 maximum alignment and check low bits of the symbol address
2660 for the minimum alignment. */
2661 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2662 mask = ((bfd_vma) 1 << power_of_two) - 1;
2663 while ((h->root.u.def.value & mask) != 0)
2664 {
2665 mask >>= 1;
2666 --power_of_two;
2667 }
2668
2669 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2670 dynbss))
2671 {
2672 /* Adjust the section alignment if needed. */
2673 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2674 power_of_two))
2675 return FALSE;
2676 }
2677
2678 /* We make sure that the symbol will be aligned properly. */
2679 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2680
2681 /* Define the symbol as being at this point in DYNBSS. */
2682 h->root.u.def.section = dynbss;
2683 h->root.u.def.value = dynbss->size;
2684
2685 /* Increment the size of DYNBSS to make room for the symbol. */
2686 dynbss->size += h->size;
2687
2688 return TRUE;
2689 }
2690
2691 /* Adjust all external symbols pointing into SEC_MERGE sections
2692 to reflect the object merging within the sections. */
2693
2694 static bfd_boolean
2695 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2696 {
2697 asection *sec;
2698
2699 if ((h->root.type == bfd_link_hash_defined
2700 || h->root.type == bfd_link_hash_defweak)
2701 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2702 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2703 {
2704 bfd *output_bfd = (bfd *) data;
2705
2706 h->root.u.def.value =
2707 _bfd_merged_section_offset (output_bfd,
2708 &h->root.u.def.section,
2709 elf_section_data (sec)->sec_info,
2710 h->root.u.def.value);
2711 }
2712
2713 return TRUE;
2714 }
2715
2716 /* Returns false if the symbol referred to by H should be considered
2717 to resolve local to the current module, and true if it should be
2718 considered to bind dynamically. */
2719
2720 bfd_boolean
2721 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2722 struct bfd_link_info *info,
2723 bfd_boolean not_local_protected)
2724 {
2725 bfd_boolean binding_stays_local_p;
2726 const struct elf_backend_data *bed;
2727 struct elf_link_hash_table *hash_table;
2728
2729 if (h == NULL)
2730 return FALSE;
2731
2732 while (h->root.type == bfd_link_hash_indirect
2733 || h->root.type == bfd_link_hash_warning)
2734 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735
2736 /* If it was forced local, then clearly it's not dynamic. */
2737 if (h->dynindx == -1)
2738 return FALSE;
2739 if (h->forced_local)
2740 return FALSE;
2741
2742 /* Identify the cases where name binding rules say that a
2743 visible symbol resolves locally. */
2744 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2745
2746 switch (ELF_ST_VISIBILITY (h->other))
2747 {
2748 case STV_INTERNAL:
2749 case STV_HIDDEN:
2750 return FALSE;
2751
2752 case STV_PROTECTED:
2753 hash_table = elf_hash_table (info);
2754 if (!is_elf_hash_table (hash_table))
2755 return FALSE;
2756
2757 bed = get_elf_backend_data (hash_table->dynobj);
2758
2759 /* Proper resolution for function pointer equality may require
2760 that these symbols perhaps be resolved dynamically, even though
2761 we should be resolving them to the current module. */
2762 if (!not_local_protected || !bed->is_function_type (h->type))
2763 binding_stays_local_p = TRUE;
2764 break;
2765
2766 default:
2767 break;
2768 }
2769
2770 /* If it isn't defined locally, then clearly it's dynamic. */
2771 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2772 return TRUE;
2773
2774 /* Otherwise, the symbol is dynamic if binding rules don't tell
2775 us that it remains local. */
2776 return !binding_stays_local_p;
2777 }
2778
2779 /* Return true if the symbol referred to by H should be considered
2780 to resolve local to the current module, and false otherwise. Differs
2781 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2782 undefined symbols. The two functions are virtually identical except
2783 for the place where forced_local and dynindx == -1 are tested. If
2784 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2785 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2786 the symbol is local only for defined symbols.
2787 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2788 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2789 treatment of undefined weak symbols. For those that do not make
2790 undefined weak symbols dynamic, both functions may return false. */
2791
2792 bfd_boolean
2793 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2794 struct bfd_link_info *info,
2795 bfd_boolean local_protected)
2796 {
2797 const struct elf_backend_data *bed;
2798 struct elf_link_hash_table *hash_table;
2799
2800 /* If it's a local sym, of course we resolve locally. */
2801 if (h == NULL)
2802 return TRUE;
2803
2804 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2805 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2806 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2807 return TRUE;
2808
2809 /* Common symbols that become definitions don't get the DEF_REGULAR
2810 flag set, so test it first, and don't bail out. */
2811 if (ELF_COMMON_DEF_P (h))
2812 /* Do nothing. */;
2813 /* If we don't have a definition in a regular file, then we can't
2814 resolve locally. The sym is either undefined or dynamic. */
2815 else if (!h->def_regular)
2816 return FALSE;
2817
2818 /* Forced local symbols resolve locally. */
2819 if (h->forced_local)
2820 return TRUE;
2821
2822 /* As do non-dynamic symbols. */
2823 if (h->dynindx == -1)
2824 return TRUE;
2825
2826 /* At this point, we know the symbol is defined and dynamic. In an
2827 executable it must resolve locally, likewise when building symbolic
2828 shared libraries. */
2829 if (info->executable || SYMBOLIC_BIND (info, h))
2830 return TRUE;
2831
2832 /* Now deal with defined dynamic symbols in shared libraries. Ones
2833 with default visibility might not resolve locally. */
2834 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2835 return FALSE;
2836
2837 hash_table = elf_hash_table (info);
2838 if (!is_elf_hash_table (hash_table))
2839 return TRUE;
2840
2841 bed = get_elf_backend_data (hash_table->dynobj);
2842
2843 /* STV_PROTECTED non-function symbols are local. */
2844 if (!bed->is_function_type (h->type))
2845 return TRUE;
2846
2847 /* Function pointer equality tests may require that STV_PROTECTED
2848 symbols be treated as dynamic symbols. If the address of a
2849 function not defined in an executable is set to that function's
2850 plt entry in the executable, then the address of the function in
2851 a shared library must also be the plt entry in the executable. */
2852 return local_protected;
2853 }
2854
2855 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2856 aligned. Returns the first TLS output section. */
2857
2858 struct bfd_section *
2859 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2860 {
2861 struct bfd_section *sec, *tls;
2862 unsigned int align = 0;
2863
2864 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2865 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2866 break;
2867 tls = sec;
2868
2869 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2870 if (sec->alignment_power > align)
2871 align = sec->alignment_power;
2872
2873 elf_hash_table (info)->tls_sec = tls;
2874
2875 /* Ensure the alignment of the first section is the largest alignment,
2876 so that the tls segment starts aligned. */
2877 if (tls != NULL)
2878 tls->alignment_power = align;
2879
2880 return tls;
2881 }
2882
2883 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2884 static bfd_boolean
2885 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2886 Elf_Internal_Sym *sym)
2887 {
2888 const struct elf_backend_data *bed;
2889
2890 /* Local symbols do not count, but target specific ones might. */
2891 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2892 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 return FALSE;
2894
2895 bed = get_elf_backend_data (abfd);
2896 /* Function symbols do not count. */
2897 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 return FALSE;
2899
2900 /* If the section is undefined, then so is the symbol. */
2901 if (sym->st_shndx == SHN_UNDEF)
2902 return FALSE;
2903
2904 /* If the symbol is defined in the common section, then
2905 it is a common definition and so does not count. */
2906 if (bed->common_definition (sym))
2907 return FALSE;
2908
2909 /* If the symbol is in a target specific section then we
2910 must rely upon the backend to tell us what it is. */
2911 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2912 /* FIXME - this function is not coded yet:
2913
2914 return _bfd_is_global_symbol_definition (abfd, sym);
2915
2916 Instead for now assume that the definition is not global,
2917 Even if this is wrong, at least the linker will behave
2918 in the same way that it used to do. */
2919 return FALSE;
2920
2921 return TRUE;
2922 }
2923
2924 /* Search the symbol table of the archive element of the archive ABFD
2925 whose archive map contains a mention of SYMDEF, and determine if
2926 the symbol is defined in this element. */
2927 static bfd_boolean
2928 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2929 {
2930 Elf_Internal_Shdr * hdr;
2931 bfd_size_type symcount;
2932 bfd_size_type extsymcount;
2933 bfd_size_type extsymoff;
2934 Elf_Internal_Sym *isymbuf;
2935 Elf_Internal_Sym *isym;
2936 Elf_Internal_Sym *isymend;
2937 bfd_boolean result;
2938
2939 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2940 if (abfd == NULL)
2941 return FALSE;
2942
2943 if (! bfd_check_format (abfd, bfd_object))
2944 return FALSE;
2945
2946 /* If we have already included the element containing this symbol in the
2947 link then we do not need to include it again. Just claim that any symbol
2948 it contains is not a definition, so that our caller will not decide to
2949 (re)include this element. */
2950 if (abfd->archive_pass)
2951 return FALSE;
2952
2953 /* Select the appropriate symbol table. */
2954 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2955 hdr = &elf_tdata (abfd)->symtab_hdr;
2956 else
2957 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2958
2959 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2960
2961 /* The sh_info field of the symtab header tells us where the
2962 external symbols start. We don't care about the local symbols. */
2963 if (elf_bad_symtab (abfd))
2964 {
2965 extsymcount = symcount;
2966 extsymoff = 0;
2967 }
2968 else
2969 {
2970 extsymcount = symcount - hdr->sh_info;
2971 extsymoff = hdr->sh_info;
2972 }
2973
2974 if (extsymcount == 0)
2975 return FALSE;
2976
2977 /* Read in the symbol table. */
2978 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2979 NULL, NULL, NULL);
2980 if (isymbuf == NULL)
2981 return FALSE;
2982
2983 /* Scan the symbol table looking for SYMDEF. */
2984 result = FALSE;
2985 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2986 {
2987 const char *name;
2988
2989 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2990 isym->st_name);
2991 if (name == NULL)
2992 break;
2993
2994 if (strcmp (name, symdef->name) == 0)
2995 {
2996 result = is_global_data_symbol_definition (abfd, isym);
2997 break;
2998 }
2999 }
3000
3001 free (isymbuf);
3002
3003 return result;
3004 }
3005 \f
3006 /* Add an entry to the .dynamic table. */
3007
3008 bfd_boolean
3009 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3010 bfd_vma tag,
3011 bfd_vma val)
3012 {
3013 struct elf_link_hash_table *hash_table;
3014 const struct elf_backend_data *bed;
3015 asection *s;
3016 bfd_size_type newsize;
3017 bfd_byte *newcontents;
3018 Elf_Internal_Dyn dyn;
3019
3020 hash_table = elf_hash_table (info);
3021 if (! is_elf_hash_table (hash_table))
3022 return FALSE;
3023
3024 bed = get_elf_backend_data (hash_table->dynobj);
3025 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3026 BFD_ASSERT (s != NULL);
3027
3028 newsize = s->size + bed->s->sizeof_dyn;
3029 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3030 if (newcontents == NULL)
3031 return FALSE;
3032
3033 dyn.d_tag = tag;
3034 dyn.d_un.d_val = val;
3035 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3036
3037 s->size = newsize;
3038 s->contents = newcontents;
3039
3040 return TRUE;
3041 }
3042
3043 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3044 otherwise just check whether one already exists. Returns -1 on error,
3045 1 if a DT_NEEDED tag already exists, and 0 on success. */
3046
3047 static int
3048 elf_add_dt_needed_tag (bfd *abfd,
3049 struct bfd_link_info *info,
3050 const char *soname,
3051 bfd_boolean do_it)
3052 {
3053 struct elf_link_hash_table *hash_table;
3054 bfd_size_type strindex;
3055
3056 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3057 return -1;
3058
3059 hash_table = elf_hash_table (info);
3060 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3061 if (strindex == (bfd_size_type) -1)
3062 return -1;
3063
3064 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3065 {
3066 asection *sdyn;
3067 const struct elf_backend_data *bed;
3068 bfd_byte *extdyn;
3069
3070 bed = get_elf_backend_data (hash_table->dynobj);
3071 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3072 if (sdyn != NULL)
3073 for (extdyn = sdyn->contents;
3074 extdyn < sdyn->contents + sdyn->size;
3075 extdyn += bed->s->sizeof_dyn)
3076 {
3077 Elf_Internal_Dyn dyn;
3078
3079 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3080 if (dyn.d_tag == DT_NEEDED
3081 && dyn.d_un.d_val == strindex)
3082 {
3083 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084 return 1;
3085 }
3086 }
3087 }
3088
3089 if (do_it)
3090 {
3091 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3092 return -1;
3093
3094 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3095 return -1;
3096 }
3097 else
3098 /* We were just checking for existence of the tag. */
3099 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3100
3101 return 0;
3102 }
3103
3104 static bfd_boolean
3105 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3106 {
3107 for (; needed != NULL; needed = needed->next)
3108 if (strcmp (soname, needed->name) == 0)
3109 return TRUE;
3110
3111 return FALSE;
3112 }
3113
3114 /* Sort symbol by value, section, and size. */
3115 static int
3116 elf_sort_symbol (const void *arg1, const void *arg2)
3117 {
3118 const struct elf_link_hash_entry *h1;
3119 const struct elf_link_hash_entry *h2;
3120 bfd_signed_vma vdiff;
3121
3122 h1 = *(const struct elf_link_hash_entry **) arg1;
3123 h2 = *(const struct elf_link_hash_entry **) arg2;
3124 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3125 if (vdiff != 0)
3126 return vdiff > 0 ? 1 : -1;
3127 else
3128 {
3129 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3130 if (sdiff != 0)
3131 return sdiff > 0 ? 1 : -1;
3132 }
3133 vdiff = h1->size - h2->size;
3134 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3135 }
3136
3137 /* This function is used to adjust offsets into .dynstr for
3138 dynamic symbols. This is called via elf_link_hash_traverse. */
3139
3140 static bfd_boolean
3141 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3142 {
3143 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3144
3145 if (h->dynindx != -1)
3146 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3147 return TRUE;
3148 }
3149
3150 /* Assign string offsets in .dynstr, update all structures referencing
3151 them. */
3152
3153 static bfd_boolean
3154 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3155 {
3156 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3157 struct elf_link_local_dynamic_entry *entry;
3158 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3159 bfd *dynobj = hash_table->dynobj;
3160 asection *sdyn;
3161 bfd_size_type size;
3162 const struct elf_backend_data *bed;
3163 bfd_byte *extdyn;
3164
3165 _bfd_elf_strtab_finalize (dynstr);
3166 size = _bfd_elf_strtab_size (dynstr);
3167
3168 bed = get_elf_backend_data (dynobj);
3169 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3170 BFD_ASSERT (sdyn != NULL);
3171
3172 /* Update all .dynamic entries referencing .dynstr strings. */
3173 for (extdyn = sdyn->contents;
3174 extdyn < sdyn->contents + sdyn->size;
3175 extdyn += bed->s->sizeof_dyn)
3176 {
3177 Elf_Internal_Dyn dyn;
3178
3179 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3180 switch (dyn.d_tag)
3181 {
3182 case DT_STRSZ:
3183 dyn.d_un.d_val = size;
3184 break;
3185 case DT_NEEDED:
3186 case DT_SONAME:
3187 case DT_RPATH:
3188 case DT_RUNPATH:
3189 case DT_FILTER:
3190 case DT_AUXILIARY:
3191 case DT_AUDIT:
3192 case DT_DEPAUDIT:
3193 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3194 break;
3195 default:
3196 continue;
3197 }
3198 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3199 }
3200
3201 /* Now update local dynamic symbols. */
3202 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3203 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3204 entry->isym.st_name);
3205
3206 /* And the rest of dynamic symbols. */
3207 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3208
3209 /* Adjust version definitions. */
3210 if (elf_tdata (output_bfd)->cverdefs)
3211 {
3212 asection *s;
3213 bfd_byte *p;
3214 bfd_size_type i;
3215 Elf_Internal_Verdef def;
3216 Elf_Internal_Verdaux defaux;
3217
3218 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3219 p = s->contents;
3220 do
3221 {
3222 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3223 &def);
3224 p += sizeof (Elf_External_Verdef);
3225 if (def.vd_aux != sizeof (Elf_External_Verdef))
3226 continue;
3227 for (i = 0; i < def.vd_cnt; ++i)
3228 {
3229 _bfd_elf_swap_verdaux_in (output_bfd,
3230 (Elf_External_Verdaux *) p, &defaux);
3231 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3232 defaux.vda_name);
3233 _bfd_elf_swap_verdaux_out (output_bfd,
3234 &defaux, (Elf_External_Verdaux *) p);
3235 p += sizeof (Elf_External_Verdaux);
3236 }
3237 }
3238 while (def.vd_next);
3239 }
3240
3241 /* Adjust version references. */
3242 if (elf_tdata (output_bfd)->verref)
3243 {
3244 asection *s;
3245 bfd_byte *p;
3246 bfd_size_type i;
3247 Elf_Internal_Verneed need;
3248 Elf_Internal_Vernaux needaux;
3249
3250 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3251 p = s->contents;
3252 do
3253 {
3254 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3255 &need);
3256 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3257 _bfd_elf_swap_verneed_out (output_bfd, &need,
3258 (Elf_External_Verneed *) p);
3259 p += sizeof (Elf_External_Verneed);
3260 for (i = 0; i < need.vn_cnt; ++i)
3261 {
3262 _bfd_elf_swap_vernaux_in (output_bfd,
3263 (Elf_External_Vernaux *) p, &needaux);
3264 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3265 needaux.vna_name);
3266 _bfd_elf_swap_vernaux_out (output_bfd,
3267 &needaux,
3268 (Elf_External_Vernaux *) p);
3269 p += sizeof (Elf_External_Vernaux);
3270 }
3271 }
3272 while (need.vn_next);
3273 }
3274
3275 return TRUE;
3276 }
3277 \f
3278 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3279 The default is to only match when the INPUT and OUTPUT are exactly
3280 the same target. */
3281
3282 bfd_boolean
3283 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3284 const bfd_target *output)
3285 {
3286 return input == output;
3287 }
3288
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 This version is used when different targets for the same architecture
3291 are virtually identical. */
3292
3293 bfd_boolean
3294 _bfd_elf_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3296 {
3297 const struct elf_backend_data *obed, *ibed;
3298
3299 if (input == output)
3300 return TRUE;
3301
3302 ibed = xvec_get_elf_backend_data (input);
3303 obed = xvec_get_elf_backend_data (output);
3304
3305 if (ibed->arch != obed->arch)
3306 return FALSE;
3307
3308 /* If both backends are using this function, deem them compatible. */
3309 return ibed->relocs_compatible == obed->relocs_compatible;
3310 }
3311
3312 /* Add symbols from an ELF object file to the linker hash table. */
3313
3314 static bfd_boolean
3315 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3316 {
3317 Elf_Internal_Ehdr *ehdr;
3318 Elf_Internal_Shdr *hdr;
3319 bfd_size_type symcount;
3320 bfd_size_type extsymcount;
3321 bfd_size_type extsymoff;
3322 struct elf_link_hash_entry **sym_hash;
3323 bfd_boolean dynamic;
3324 Elf_External_Versym *extversym = NULL;
3325 Elf_External_Versym *ever;
3326 struct elf_link_hash_entry *weaks;
3327 struct elf_link_hash_entry **nondeflt_vers = NULL;
3328 bfd_size_type nondeflt_vers_cnt = 0;
3329 Elf_Internal_Sym *isymbuf = NULL;
3330 Elf_Internal_Sym *isym;
3331 Elf_Internal_Sym *isymend;
3332 const struct elf_backend_data *bed;
3333 bfd_boolean add_needed;
3334 struct elf_link_hash_table *htab;
3335 bfd_size_type amt;
3336 void *alloc_mark = NULL;
3337 struct bfd_hash_entry **old_table = NULL;
3338 unsigned int old_size = 0;
3339 unsigned int old_count = 0;
3340 void *old_tab = NULL;
3341 void *old_ent;
3342 struct bfd_link_hash_entry *old_undefs = NULL;
3343 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3344 long old_dynsymcount = 0;
3345 bfd_size_type old_dynstr_size = 0;
3346 size_t tabsize = 0;
3347
3348 htab = elf_hash_table (info);
3349 bed = get_elf_backend_data (abfd);
3350
3351 if ((abfd->flags & DYNAMIC) == 0)
3352 dynamic = FALSE;
3353 else
3354 {
3355 dynamic = TRUE;
3356
3357 /* You can't use -r against a dynamic object. Also, there's no
3358 hope of using a dynamic object which does not exactly match
3359 the format of the output file. */
3360 if (info->relocatable
3361 || !is_elf_hash_table (htab)
3362 || info->output_bfd->xvec != abfd->xvec)
3363 {
3364 if (info->relocatable)
3365 bfd_set_error (bfd_error_invalid_operation);
3366 else
3367 bfd_set_error (bfd_error_wrong_format);
3368 goto error_return;
3369 }
3370 }
3371
3372 ehdr = elf_elfheader (abfd);
3373 if (info->warn_alternate_em
3374 && bed->elf_machine_code != ehdr->e_machine
3375 && ((bed->elf_machine_alt1 != 0
3376 && ehdr->e_machine == bed->elf_machine_alt1)
3377 || (bed->elf_machine_alt2 != 0
3378 && ehdr->e_machine == bed->elf_machine_alt2)))
3379 info->callbacks->einfo
3380 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3381 ehdr->e_machine, abfd, bed->elf_machine_code);
3382
3383 /* As a GNU extension, any input sections which are named
3384 .gnu.warning.SYMBOL are treated as warning symbols for the given
3385 symbol. This differs from .gnu.warning sections, which generate
3386 warnings when they are included in an output file. */
3387 /* PR 12761: Also generate this warning when building shared libraries. */
3388 if (info->executable || info->shared)
3389 {
3390 asection *s;
3391
3392 for (s = abfd->sections; s != NULL; s = s->next)
3393 {
3394 const char *name;
3395
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3398 {
3399 char *msg;
3400 bfd_size_type sz;
3401
3402 name += sizeof ".gnu.warning." - 1;
3403
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3412 link. */
3413 if (dynamic)
3414 {
3415 struct elf_link_hash_entry *h;
3416
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3418
3419 /* FIXME: What about bfd_link_hash_common? */
3420 if (h != NULL
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3423 {
3424 /* We don't want to issue this warning. Clobber
3425 the section size so that the warning does not
3426 get copied into the output file. */
3427 s->size = 0;
3428 continue;
3429 }
3430 }
3431
3432 sz = s->size;
3433 msg = (char *) bfd_alloc (abfd, sz + 1);
3434 if (msg == NULL)
3435 goto error_return;
3436
3437 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3438 goto error_return;
3439
3440 msg[sz] = '\0';
3441
3442 if (! (_bfd_generic_link_add_one_symbol
3443 (info, abfd, name, BSF_WARNING, s, 0, msg,
3444 FALSE, bed->collect, NULL)))
3445 goto error_return;
3446
3447 if (! info->relocatable)
3448 {
3449 /* Clobber the section size so that the warning does
3450 not get copied into the output file. */
3451 s->size = 0;
3452
3453 /* Also set SEC_EXCLUDE, so that symbols defined in
3454 the warning section don't get copied to the output. */
3455 s->flags |= SEC_EXCLUDE;
3456 }
3457 }
3458 }
3459 }
3460
3461 add_needed = TRUE;
3462 if (! dynamic)
3463 {
3464 /* If we are creating a shared library, create all the dynamic
3465 sections immediately. We need to attach them to something,
3466 so we attach them to this BFD, provided it is the right
3467 format. FIXME: If there are no input BFD's of the same
3468 format as the output, we can't make a shared library. */
3469 if (info->shared
3470 && is_elf_hash_table (htab)
3471 && info->output_bfd->xvec == abfd->xvec
3472 && !htab->dynamic_sections_created)
3473 {
3474 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3475 goto error_return;
3476 }
3477 }
3478 else if (!is_elf_hash_table (htab))
3479 goto error_return;
3480 else
3481 {
3482 asection *s;
3483 const char *soname = NULL;
3484 char *audit = NULL;
3485 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3486 int ret;
3487
3488 /* ld --just-symbols and dynamic objects don't mix very well.
3489 ld shouldn't allow it. */
3490 if ((s = abfd->sections) != NULL
3491 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3492 abort ();
3493
3494 /* If this dynamic lib was specified on the command line with
3495 --as-needed in effect, then we don't want to add a DT_NEEDED
3496 tag unless the lib is actually used. Similary for libs brought
3497 in by another lib's DT_NEEDED. When --no-add-needed is used
3498 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3499 any dynamic library in DT_NEEDED tags in the dynamic lib at
3500 all. */
3501 add_needed = (elf_dyn_lib_class (abfd)
3502 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3503 | DYN_NO_NEEDED)) == 0;
3504
3505 s = bfd_get_section_by_name (abfd, ".dynamic");
3506 if (s != NULL)
3507 {
3508 bfd_byte *dynbuf;
3509 bfd_byte *extdyn;
3510 unsigned int elfsec;
3511 unsigned long shlink;
3512
3513 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3514 {
3515 error_free_dyn:
3516 free (dynbuf);
3517 goto error_return;
3518 }
3519
3520 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3521 if (elfsec == SHN_BAD)
3522 goto error_free_dyn;
3523 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3524
3525 for (extdyn = dynbuf;
3526 extdyn < dynbuf + s->size;
3527 extdyn += bed->s->sizeof_dyn)
3528 {
3529 Elf_Internal_Dyn dyn;
3530
3531 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3532 if (dyn.d_tag == DT_SONAME)
3533 {
3534 unsigned int tagv = dyn.d_un.d_val;
3535 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3536 if (soname == NULL)
3537 goto error_free_dyn;
3538 }
3539 if (dyn.d_tag == DT_NEEDED)
3540 {
3541 struct bfd_link_needed_list *n, **pn;
3542 char *fnm, *anm;
3543 unsigned int tagv = dyn.d_un.d_val;
3544
3545 amt = sizeof (struct bfd_link_needed_list);
3546 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3547 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 if (n == NULL || fnm == NULL)
3549 goto error_free_dyn;
3550 amt = strlen (fnm) + 1;
3551 anm = (char *) bfd_alloc (abfd, amt);
3552 if (anm == NULL)
3553 goto error_free_dyn;
3554 memcpy (anm, fnm, amt);
3555 n->name = anm;
3556 n->by = abfd;
3557 n->next = NULL;
3558 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3559 ;
3560 *pn = n;
3561 }
3562 if (dyn.d_tag == DT_RUNPATH)
3563 {
3564 struct bfd_link_needed_list *n, **pn;
3565 char *fnm, *anm;
3566 unsigned int tagv = dyn.d_un.d_val;
3567
3568 amt = sizeof (struct bfd_link_needed_list);
3569 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3570 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3571 if (n == NULL || fnm == NULL)
3572 goto error_free_dyn;
3573 amt = strlen (fnm) + 1;
3574 anm = (char *) bfd_alloc (abfd, amt);
3575 if (anm == NULL)
3576 goto error_free_dyn;
3577 memcpy (anm, fnm, amt);
3578 n->name = anm;
3579 n->by = abfd;
3580 n->next = NULL;
3581 for (pn = & runpath;
3582 *pn != NULL;
3583 pn = &(*pn)->next)
3584 ;
3585 *pn = n;
3586 }
3587 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3588 if (!runpath && dyn.d_tag == DT_RPATH)
3589 {
3590 struct bfd_link_needed_list *n, **pn;
3591 char *fnm, *anm;
3592 unsigned int tagv = dyn.d_un.d_val;
3593
3594 amt = sizeof (struct bfd_link_needed_list);
3595 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3596 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3597 if (n == NULL || fnm == NULL)
3598 goto error_free_dyn;
3599 amt = strlen (fnm) + 1;
3600 anm = (char *) bfd_alloc (abfd, amt);
3601 if (anm == NULL)
3602 goto error_free_dyn;
3603 memcpy (anm, fnm, amt);
3604 n->name = anm;
3605 n->by = abfd;
3606 n->next = NULL;
3607 for (pn = & rpath;
3608 *pn != NULL;
3609 pn = &(*pn)->next)
3610 ;
3611 *pn = n;
3612 }
3613 if (dyn.d_tag == DT_AUDIT)
3614 {
3615 unsigned int tagv = dyn.d_un.d_val;
3616 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 }
3618 }
3619
3620 free (dynbuf);
3621 }
3622
3623 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3624 frees all more recently bfd_alloc'd blocks as well. */
3625 if (runpath)
3626 rpath = runpath;
3627
3628 if (rpath)
3629 {
3630 struct bfd_link_needed_list **pn;
3631 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3632 ;
3633 *pn = rpath;
3634 }
3635
3636 /* We do not want to include any of the sections in a dynamic
3637 object in the output file. We hack by simply clobbering the
3638 list of sections in the BFD. This could be handled more
3639 cleanly by, say, a new section flag; the existing
3640 SEC_NEVER_LOAD flag is not the one we want, because that one
3641 still implies that the section takes up space in the output
3642 file. */
3643 bfd_section_list_clear (abfd);
3644
3645 /* Find the name to use in a DT_NEEDED entry that refers to this
3646 object. If the object has a DT_SONAME entry, we use it.
3647 Otherwise, if the generic linker stuck something in
3648 elf_dt_name, we use that. Otherwise, we just use the file
3649 name. */
3650 if (soname == NULL || *soname == '\0')
3651 {
3652 soname = elf_dt_name (abfd);
3653 if (soname == NULL || *soname == '\0')
3654 soname = bfd_get_filename (abfd);
3655 }
3656
3657 /* Save the SONAME because sometimes the linker emulation code
3658 will need to know it. */
3659 elf_dt_name (abfd) = soname;
3660
3661 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3662 if (ret < 0)
3663 goto error_return;
3664
3665 /* If we have already included this dynamic object in the
3666 link, just ignore it. There is no reason to include a
3667 particular dynamic object more than once. */
3668 if (ret > 0)
3669 return TRUE;
3670
3671 /* Save the DT_AUDIT entry for the linker emulation code. */
3672 elf_dt_audit (abfd) = audit;
3673 }
3674
3675 /* If this is a dynamic object, we always link against the .dynsym
3676 symbol table, not the .symtab symbol table. The dynamic linker
3677 will only see the .dynsym symbol table, so there is no reason to
3678 look at .symtab for a dynamic object. */
3679
3680 if (! dynamic || elf_dynsymtab (abfd) == 0)
3681 hdr = &elf_tdata (abfd)->symtab_hdr;
3682 else
3683 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3684
3685 symcount = hdr->sh_size / bed->s->sizeof_sym;
3686
3687 /* The sh_info field of the symtab header tells us where the
3688 external symbols start. We don't care about the local symbols at
3689 this point. */
3690 if (elf_bad_symtab (abfd))
3691 {
3692 extsymcount = symcount;
3693 extsymoff = 0;
3694 }
3695 else
3696 {
3697 extsymcount = symcount - hdr->sh_info;
3698 extsymoff = hdr->sh_info;
3699 }
3700
3701 sym_hash = elf_sym_hashes (abfd);
3702 if (extsymcount != 0)
3703 {
3704 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3705 NULL, NULL, NULL);
3706 if (isymbuf == NULL)
3707 goto error_return;
3708
3709 if (sym_hash == NULL)
3710 {
3711 /* We store a pointer to the hash table entry for each
3712 external symbol. */
3713 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3714 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3715 if (sym_hash == NULL)
3716 goto error_free_sym;
3717 elf_sym_hashes (abfd) = sym_hash;
3718 }
3719 }
3720
3721 if (dynamic)
3722 {
3723 /* Read in any version definitions. */
3724 if (!_bfd_elf_slurp_version_tables (abfd,
3725 info->default_imported_symver))
3726 goto error_free_sym;
3727
3728 /* Read in the symbol versions, but don't bother to convert them
3729 to internal format. */
3730 if (elf_dynversym (abfd) != 0)
3731 {
3732 Elf_Internal_Shdr *versymhdr;
3733
3734 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3736 if (extversym == NULL)
3737 goto error_free_sym;
3738 amt = versymhdr->sh_size;
3739 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3740 || bfd_bread (extversym, amt, abfd) != amt)
3741 goto error_free_vers;
3742 }
3743 }
3744
3745 /* If we are loading an as-needed shared lib, save the symbol table
3746 state before we start adding symbols. If the lib turns out
3747 to be unneeded, restore the state. */
3748 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3749 {
3750 unsigned int i;
3751 size_t entsize;
3752
3753 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3754 {
3755 struct bfd_hash_entry *p;
3756 struct elf_link_hash_entry *h;
3757
3758 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3759 {
3760 h = (struct elf_link_hash_entry *) p;
3761 entsize += htab->root.table.entsize;
3762 if (h->root.type == bfd_link_hash_warning)
3763 entsize += htab->root.table.entsize;
3764 }
3765 }
3766
3767 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3768 old_tab = bfd_malloc (tabsize + entsize);
3769 if (old_tab == NULL)
3770 goto error_free_vers;
3771
3772 /* Remember the current objalloc pointer, so that all mem for
3773 symbols added can later be reclaimed. */
3774 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3775 if (alloc_mark == NULL)
3776 goto error_free_vers;
3777
3778 /* Make a special call to the linker "notice" function to
3779 tell it that we are about to handle an as-needed lib. */
3780 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3781 notice_as_needed, 0, NULL))
3782 goto error_free_vers;
3783
3784 /* Clone the symbol table. Remember some pointers into the
3785 symbol table, and dynamic symbol count. */
3786 old_ent = (char *) old_tab + tabsize;
3787 memcpy (old_tab, htab->root.table.table, tabsize);
3788 old_undefs = htab->root.undefs;
3789 old_undefs_tail = htab->root.undefs_tail;
3790 old_table = htab->root.table.table;
3791 old_size = htab->root.table.size;
3792 old_count = htab->root.table.count;
3793 old_dynsymcount = htab->dynsymcount;
3794 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3795
3796 for (i = 0; i < htab->root.table.size; i++)
3797 {
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3800
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3802 {
3803 memcpy (old_ent, p, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 h = (struct elf_link_hash_entry *) p;
3806 if (h->root.type == bfd_link_hash_warning)
3807 {
3808 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3809 old_ent = (char *) old_ent + htab->root.table.entsize;
3810 }
3811 }
3812 }
3813 }
3814
3815 weaks = NULL;
3816 ever = extversym != NULL ? extversym + extsymoff : NULL;
3817 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3818 isym < isymend;
3819 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3820 {
3821 int bind;
3822 bfd_vma value;
3823 asection *sec, *new_sec;
3824 flagword flags;
3825 const char *name;
3826 struct elf_link_hash_entry *h;
3827 struct elf_link_hash_entry *hi;
3828 bfd_boolean definition;
3829 bfd_boolean size_change_ok;
3830 bfd_boolean type_change_ok;
3831 bfd_boolean new_weakdef;
3832 bfd_boolean new_weak;
3833 bfd_boolean old_weak;
3834 bfd_boolean override;
3835 bfd_boolean common;
3836 unsigned int old_alignment;
3837 bfd *old_bfd;
3838
3839 override = FALSE;
3840
3841 flags = BSF_NO_FLAGS;
3842 sec = NULL;
3843 value = isym->st_value;
3844 common = bed->common_definition (isym);
3845
3846 bind = ELF_ST_BIND (isym->st_info);
3847 switch (bind)
3848 {
3849 case STB_LOCAL:
3850 /* This should be impossible, since ELF requires that all
3851 global symbols follow all local symbols, and that sh_info
3852 point to the first global symbol. Unfortunately, Irix 5
3853 screws this up. */
3854 continue;
3855
3856 case STB_GLOBAL:
3857 if (isym->st_shndx != SHN_UNDEF && !common)
3858 flags = BSF_GLOBAL;
3859 break;
3860
3861 case STB_WEAK:
3862 flags = BSF_WEAK;
3863 break;
3864
3865 case STB_GNU_UNIQUE:
3866 flags = BSF_GNU_UNIQUE;
3867 break;
3868
3869 default:
3870 /* Leave it up to the processor backend. */
3871 break;
3872 }
3873
3874 if (isym->st_shndx == SHN_UNDEF)
3875 sec = bfd_und_section_ptr;
3876 else if (isym->st_shndx == SHN_ABS)
3877 sec = bfd_abs_section_ptr;
3878 else if (isym->st_shndx == SHN_COMMON)
3879 {
3880 sec = bfd_com_section_ptr;
3881 /* What ELF calls the size we call the value. What ELF
3882 calls the value we call the alignment. */
3883 value = isym->st_size;
3884 }
3885 else
3886 {
3887 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3888 if (sec == NULL)
3889 sec = bfd_abs_section_ptr;
3890 else if (discarded_section (sec))
3891 {
3892 /* Symbols from discarded section are undefined. We keep
3893 its visibility. */
3894 sec = bfd_und_section_ptr;
3895 isym->st_shndx = SHN_UNDEF;
3896 }
3897 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3898 value -= sec->vma;
3899 }
3900
3901 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3902 isym->st_name);
3903 if (name == NULL)
3904 goto error_free_vers;
3905
3906 if (isym->st_shndx == SHN_COMMON
3907 && (abfd->flags & BFD_PLUGIN) != 0)
3908 {
3909 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3910
3911 if (xc == NULL)
3912 {
3913 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3914 | SEC_EXCLUDE);
3915 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3916 if (xc == NULL)
3917 goto error_free_vers;
3918 }
3919 sec = xc;
3920 }
3921 else if (isym->st_shndx == SHN_COMMON
3922 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3923 && !info->relocatable)
3924 {
3925 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3926
3927 if (tcomm == NULL)
3928 {
3929 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3930 | SEC_LINKER_CREATED);
3931 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3932 if (tcomm == NULL)
3933 goto error_free_vers;
3934 }
3935 sec = tcomm;
3936 }
3937 else if (bed->elf_add_symbol_hook)
3938 {
3939 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3940 &sec, &value))
3941 goto error_free_vers;
3942
3943 /* The hook function sets the name to NULL if this symbol
3944 should be skipped for some reason. */
3945 if (name == NULL)
3946 continue;
3947 }
3948
3949 /* Sanity check that all possibilities were handled. */
3950 if (sec == NULL)
3951 {
3952 bfd_set_error (bfd_error_bad_value);
3953 goto error_free_vers;
3954 }
3955
3956 /* Silently discard TLS symbols from --just-syms. There's
3957 no way to combine a static TLS block with a new TLS block
3958 for this executable. */
3959 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3960 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3961 continue;
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_weak = FALSE;
3972 old_alignment = 0;
3973 old_bfd = NULL;
3974 new_sec = sec;
3975
3976 if (is_elf_hash_table (htab))
3977 {
3978 Elf_Internal_Versym iver;
3979 unsigned int vernum = 0;
3980 bfd_boolean skip;
3981
3982 if (ever == NULL)
3983 {
3984 if (info->default_imported_symver)
3985 /* Use the default symbol version created earlier. */
3986 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3987 else
3988 iver.vs_vers = 0;
3989 }
3990 else
3991 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3992
3993 vernum = iver.vs_vers & VERSYM_VERSION;
3994
3995 /* If this is a hidden symbol, or if it is not version
3996 1, we append the version name to the symbol name.
3997 However, we do not modify a non-hidden absolute symbol
3998 if it is not a function, because it might be the version
3999 symbol itself. FIXME: What if it isn't? */
4000 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4001 || (vernum > 1
4002 && (!bfd_is_abs_section (sec)
4003 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4004 {
4005 const char *verstr;
4006 size_t namelen, verlen, newlen;
4007 char *newname, *p;
4008
4009 if (isym->st_shndx != SHN_UNDEF)
4010 {
4011 if (vernum > elf_tdata (abfd)->cverdefs)
4012 verstr = NULL;
4013 else if (vernum > 1)
4014 verstr =
4015 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4016 else
4017 verstr = "";
4018
4019 if (verstr == NULL)
4020 {
4021 (*_bfd_error_handler)
4022 (_("%B: %s: invalid version %u (max %d)"),
4023 abfd, name, vernum,
4024 elf_tdata (abfd)->cverdefs);
4025 bfd_set_error (bfd_error_bad_value);
4026 goto error_free_vers;
4027 }
4028 }
4029 else
4030 {
4031 /* We cannot simply test for the number of
4032 entries in the VERNEED section since the
4033 numbers for the needed versions do not start
4034 at 0. */
4035 Elf_Internal_Verneed *t;
4036
4037 verstr = NULL;
4038 for (t = elf_tdata (abfd)->verref;
4039 t != NULL;
4040 t = t->vn_nextref)
4041 {
4042 Elf_Internal_Vernaux *a;
4043
4044 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4045 {
4046 if (a->vna_other == vernum)
4047 {
4048 verstr = a->vna_nodename;
4049 break;
4050 }
4051 }
4052 if (a != NULL)
4053 break;
4054 }
4055 if (verstr == NULL)
4056 {
4057 (*_bfd_error_handler)
4058 (_("%B: %s: invalid needed version %d"),
4059 abfd, name, vernum);
4060 bfd_set_error (bfd_error_bad_value);
4061 goto error_free_vers;
4062 }
4063 }
4064
4065 namelen = strlen (name);
4066 verlen = strlen (verstr);
4067 newlen = namelen + verlen + 2;
4068 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4069 && isym->st_shndx != SHN_UNDEF)
4070 ++newlen;
4071
4072 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4073 if (newname == NULL)
4074 goto error_free_vers;
4075 memcpy (newname, name, namelen);
4076 p = newname + namelen;
4077 *p++ = ELF_VER_CHR;
4078 /* If this is a defined non-hidden version symbol,
4079 we add another @ to the name. This indicates the
4080 default version of the symbol. */
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4083 *p++ = ELF_VER_CHR;
4084 memcpy (p, verstr, verlen + 1);
4085
4086 name = newname;
4087 }
4088
4089 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4090 sym_hash, &old_bfd, &old_weak,
4091 &old_alignment, &skip, &override,
4092 &type_change_ok, &size_change_ok))
4093 goto error_free_vers;
4094
4095 if (skip)
4096 continue;
4097
4098 if (override)
4099 definition = FALSE;
4100
4101 h = *sym_hash;
4102 while (h->root.type == bfd_link_hash_indirect
4103 || h->root.type == bfd_link_hash_warning)
4104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4105
4106 if (elf_tdata (abfd)->verdef != NULL
4107 && vernum > 1
4108 && definition)
4109 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4110 }
4111
4112 if (! (_bfd_generic_link_add_one_symbol
4113 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4114 (struct bfd_link_hash_entry **) sym_hash)))
4115 goto error_free_vers;
4116
4117 h = *sym_hash;
4118 /* We need to make sure that indirect symbol dynamic flags are
4119 updated. */
4120 hi = h;
4121 while (h->root.type == bfd_link_hash_indirect
4122 || h->root.type == bfd_link_hash_warning)
4123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4124
4125 *sym_hash = h;
4126
4127 new_weak = (flags & BSF_WEAK) != 0;
4128 new_weakdef = FALSE;
4129 if (dynamic
4130 && definition
4131 && new_weak
4132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4133 && is_elf_hash_table (htab)
4134 && h->u.weakdef == NULL)
4135 {
4136 /* Keep a list of all weak defined non function symbols from
4137 a dynamic object, using the weakdef field. Later in this
4138 function we will set the weakdef field to the correct
4139 value. We only put non-function symbols from dynamic
4140 objects on this list, because that happens to be the only
4141 time we need to know the normal symbol corresponding to a
4142 weak symbol, and the information is time consuming to
4143 figure out. If the weakdef field is not already NULL,
4144 then this symbol was already defined by some previous
4145 dynamic object, and we will be using that previous
4146 definition anyhow. */
4147
4148 h->u.weakdef = weaks;
4149 weaks = h;
4150 new_weakdef = TRUE;
4151 }
4152
4153 /* Set the alignment of a common symbol. */
4154 if ((common || bfd_is_com_section (sec))
4155 && h->root.type == bfd_link_hash_common)
4156 {
4157 unsigned int align;
4158
4159 if (common)
4160 align = bfd_log2 (isym->st_value);
4161 else
4162 {
4163 /* The new symbol is a common symbol in a shared object.
4164 We need to get the alignment from the section. */
4165 align = new_sec->alignment_power;
4166 }
4167 if (align > old_alignment)
4168 h->root.u.c.p->alignment_power = align;
4169 else
4170 h->root.u.c.p->alignment_power = old_alignment;
4171 }
4172
4173 if (is_elf_hash_table (htab))
4174 {
4175 /* Set a flag in the hash table entry indicating the type of
4176 reference or definition we just found. A dynamic symbol
4177 is one which is referenced or defined by both a regular
4178 object and a shared object. */
4179 bfd_boolean dynsym = FALSE;
4180
4181 /* Plugin symbols aren't normal. Don't set def_regular or
4182 ref_regular for them, or make them dynamic. */
4183 if ((abfd->flags & BFD_PLUGIN) != 0)
4184 ;
4185 else if (! dynamic)
4186 {
4187 if (! definition)
4188 {
4189 h->ref_regular = 1;
4190 if (bind != STB_WEAK)
4191 h->ref_regular_nonweak = 1;
4192 }
4193 else
4194 {
4195 h->def_regular = 1;
4196 if (h->def_dynamic)
4197 {
4198 h->def_dynamic = 0;
4199 h->ref_dynamic = 1;
4200 }
4201 }
4202
4203 /* If the indirect symbol has been forced local, don't
4204 make the real symbol dynamic. */
4205 if ((h == hi || !hi->forced_local)
4206 && (! info->executable
4207 || h->def_dynamic
4208 || h->ref_dynamic))
4209 dynsym = TRUE;
4210 }
4211 else
4212 {
4213 if (! definition)
4214 {
4215 h->ref_dynamic = 1;
4216 hi->ref_dynamic = 1;
4217 }
4218 else
4219 {
4220 h->def_dynamic = 1;
4221 hi->def_dynamic = 1;
4222 }
4223
4224 /* If the indirect symbol has been forced local, don't
4225 make the real symbol dynamic. */
4226 if ((h == hi || !hi->forced_local)
4227 && (h->def_regular
4228 || h->ref_regular
4229 || (h->u.weakdef != NULL
4230 && ! new_weakdef
4231 && h->u.weakdef->dynindx != -1)))
4232 dynsym = TRUE;
4233 }
4234
4235 /* Check to see if we need to add an indirect symbol for
4236 the default name. */
4237 if (definition
4238 || (!override && h->root.type == bfd_link_hash_common))
4239 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4240 sec, value, &old_bfd, &dynsym))
4241 goto error_free_vers;
4242
4243 /* Check the alignment when a common symbol is involved. This
4244 can change when a common symbol is overridden by a normal
4245 definition or a common symbol is ignored due to the old
4246 normal definition. We need to make sure the maximum
4247 alignment is maintained. */
4248 if ((old_alignment || common)
4249 && h->root.type != bfd_link_hash_common)
4250 {
4251 unsigned int common_align;
4252 unsigned int normal_align;
4253 unsigned int symbol_align;
4254 bfd *normal_bfd;
4255 bfd *common_bfd;
4256
4257 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4258 || h->root.type == bfd_link_hash_defweak);
4259
4260 symbol_align = ffs (h->root.u.def.value) - 1;
4261 if (h->root.u.def.section->owner != NULL
4262 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4263 {
4264 normal_align = h->root.u.def.section->alignment_power;
4265 if (normal_align > symbol_align)
4266 normal_align = symbol_align;
4267 }
4268 else
4269 normal_align = symbol_align;
4270
4271 if (old_alignment)
4272 {
4273 common_align = old_alignment;
4274 common_bfd = old_bfd;
4275 normal_bfd = abfd;
4276 }
4277 else
4278 {
4279 common_align = bfd_log2 (isym->st_value);
4280 common_bfd = abfd;
4281 normal_bfd = old_bfd;
4282 }
4283
4284 if (normal_align < common_align)
4285 {
4286 /* PR binutils/2735 */
4287 if (normal_bfd == NULL)
4288 (*_bfd_error_handler)
4289 (_("Warning: alignment %u of common symbol `%s' in %B is"
4290 " greater than the alignment (%u) of its section %A"),
4291 common_bfd, h->root.u.def.section,
4292 1 << common_align, name, 1 << normal_align);
4293 else
4294 (*_bfd_error_handler)
4295 (_("Warning: alignment %u of symbol `%s' in %B"
4296 " is smaller than %u in %B"),
4297 normal_bfd, common_bfd,
4298 1 << normal_align, name, 1 << common_align);
4299 }
4300 }
4301
4302 /* Remember the symbol size if it isn't undefined. */
4303 if (isym->st_size != 0
4304 && isym->st_shndx != SHN_UNDEF
4305 && (definition || h->size == 0))
4306 {
4307 if (h->size != 0
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4313 old_bfd, abfd,
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4316
4317 h->size = isym->st_size;
4318 }
4319
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changes between different
4325 function types. */
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4328
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && ((definition && !new_weak)
4331 || (old_weak && h->root.type == bfd_link_hash_common)
4332 || h->type == STT_NOTYPE))
4333 {
4334 unsigned int type = ELF_ST_TYPE (isym->st_info);
4335
4336 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4337 symbol. */
4338 if (type == STT_GNU_IFUNC
4339 && (abfd->flags & DYNAMIC) != 0)
4340 type = STT_FUNC;
4341
4342 if (h->type != type)
4343 {
4344 if (h->type != STT_NOTYPE && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, type);
4349
4350 h->type = type;
4351 }
4352 }
4353
4354 /* Merge st_other field. */
4355 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4356
4357 /* We don't want to make debug symbol dynamic. */
4358 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4359 dynsym = FALSE;
4360
4361 /* Nor should we make plugin symbols dynamic. */
4362 if ((abfd->flags & BFD_PLUGIN) != 0)
4363 dynsym = FALSE;
4364
4365 if (definition)
4366 {
4367 h->target_internal = isym->st_target_internal;
4368 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4369 }
4370
4371 if (definition && !dynamic)
4372 {
4373 char *p = strchr (name, ELF_VER_CHR);
4374 if (p != NULL && p[1] != ELF_VER_CHR)
4375 {
4376 /* Queue non-default versions so that .symver x, x@FOO
4377 aliases can be checked. */
4378 if (!nondeflt_vers)
4379 {
4380 amt = ((isymend - isym + 1)
4381 * sizeof (struct elf_link_hash_entry *));
4382 nondeflt_vers =
4383 (struct elf_link_hash_entry **) bfd_malloc (amt);
4384 if (!nondeflt_vers)
4385 goto error_free_vers;
4386 }
4387 nondeflt_vers[nondeflt_vers_cnt++] = h;
4388 }
4389 }
4390
4391 if (dynsym && h->dynindx == -1)
4392 {
4393 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4394 goto error_free_vers;
4395 if (h->u.weakdef != NULL
4396 && ! new_weakdef
4397 && h->u.weakdef->dynindx == -1)
4398 {
4399 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4400 goto error_free_vers;
4401 }
4402 }
4403 else if (dynsym && h->dynindx != -1)
4404 /* If the symbol already has a dynamic index, but
4405 visibility says it should not be visible, turn it into
4406 a local symbol. */
4407 switch (ELF_ST_VISIBILITY (h->other))
4408 {
4409 case STV_INTERNAL:
4410 case STV_HIDDEN:
4411 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4412 dynsym = FALSE;
4413 break;
4414 }
4415
4416 /* Don't add DT_NEEDED for references from the dummy bfd. */
4417 if (!add_needed
4418 && definition
4419 && ((dynsym
4420 && h->ref_regular_nonweak
4421 && (old_bfd == NULL
4422 || (old_bfd->flags & BFD_PLUGIN) == 0))
4423 || (h->ref_dynamic_nonweak
4424 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4425 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4426 {
4427 int ret;
4428 const char *soname = elf_dt_name (abfd);
4429
4430 /* A symbol from a library loaded via DT_NEEDED of some
4431 other library is referenced by a regular object.
4432 Add a DT_NEEDED entry for it. Issue an error if
4433 --no-add-needed is used and the reference was not
4434 a weak one. */
4435 if (old_bfd != NULL
4436 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4437 {
4438 (*_bfd_error_handler)
4439 (_("%B: undefined reference to symbol '%s'"),
4440 old_bfd, name);
4441 bfd_set_error (bfd_error_missing_dso);
4442 goto error_free_vers;
4443 }
4444
4445 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4446 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4447
4448 add_needed = TRUE;
4449 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4450 if (ret < 0)
4451 goto error_free_vers;
4452
4453 BFD_ASSERT (ret == 0);
4454 }
4455 }
4456 }
4457
4458 if (extversym != NULL)
4459 {
4460 free (extversym);
4461 extversym = NULL;
4462 }
4463
4464 if (isymbuf != NULL)
4465 {
4466 free (isymbuf);
4467 isymbuf = NULL;
4468 }
4469
4470 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4471 {
4472 unsigned int i;
4473
4474 /* Restore the symbol table. */
4475 if (bed->as_needed_cleanup)
4476 (*bed->as_needed_cleanup) (abfd, info);
4477 old_ent = (char *) old_tab + tabsize;
4478 memset (elf_sym_hashes (abfd), 0,
4479 extsymcount * sizeof (struct elf_link_hash_entry *));
4480 htab->root.table.table = old_table;
4481 htab->root.table.size = old_size;
4482 htab->root.table.count = old_count;
4483 memcpy (htab->root.table.table, old_tab, tabsize);
4484 htab->root.undefs = old_undefs;
4485 htab->root.undefs_tail = old_undefs_tail;
4486 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4487 for (i = 0; i < htab->root.table.size; i++)
4488 {
4489 struct bfd_hash_entry *p;
4490 struct elf_link_hash_entry *h;
4491 bfd_size_type size;
4492 unsigned int alignment_power;
4493
4494 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4495 {
4496 h = (struct elf_link_hash_entry *) p;
4497 if (h->root.type == bfd_link_hash_warning)
4498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4499 if (h->dynindx >= old_dynsymcount
4500 && h->dynstr_index < old_dynstr_size)
4501 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4502
4503 /* Preserve the maximum alignment and size for common
4504 symbols even if this dynamic lib isn't on DT_NEEDED
4505 since it can still be loaded at run time by another
4506 dynamic lib. */
4507 if (h->root.type == bfd_link_hash_common)
4508 {
4509 size = h->root.u.c.size;
4510 alignment_power = h->root.u.c.p->alignment_power;
4511 }
4512 else
4513 {
4514 size = 0;
4515 alignment_power = 0;
4516 }
4517 memcpy (p, old_ent, htab->root.table.entsize);
4518 old_ent = (char *) old_ent + htab->root.table.entsize;
4519 h = (struct elf_link_hash_entry *) p;
4520 if (h->root.type == bfd_link_hash_warning)
4521 {
4522 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4523 old_ent = (char *) old_ent + htab->root.table.entsize;
4524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4525 }
4526 if (h->root.type == bfd_link_hash_common)
4527 {
4528 if (size > h->root.u.c.size)
4529 h->root.u.c.size = size;
4530 if (alignment_power > h->root.u.c.p->alignment_power)
4531 h->root.u.c.p->alignment_power = alignment_power;
4532 }
4533 }
4534 }
4535
4536 /* Make a special call to the linker "notice" function to
4537 tell it that symbols added for crefs may need to be removed. */
4538 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4539 notice_not_needed, 0, NULL))
4540 goto error_free_vers;
4541
4542 free (old_tab);
4543 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4544 alloc_mark);
4545 if (nondeflt_vers != NULL)
4546 free (nondeflt_vers);
4547 return TRUE;
4548 }
4549
4550 if (old_tab != NULL)
4551 {
4552 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4553 notice_needed, 0, NULL))
4554 goto error_free_vers;
4555 free (old_tab);
4556 old_tab = NULL;
4557 }
4558
4559 /* Now that all the symbols from this input file are created, handle
4560 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4561 if (nondeflt_vers != NULL)
4562 {
4563 bfd_size_type cnt, symidx;
4564
4565 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4566 {
4567 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4568 char *shortname, *p;
4569
4570 p = strchr (h->root.root.string, ELF_VER_CHR);
4571 if (p == NULL
4572 || (h->root.type != bfd_link_hash_defined
4573 && h->root.type != bfd_link_hash_defweak))
4574 continue;
4575
4576 amt = p - h->root.root.string;
4577 shortname = (char *) bfd_malloc (amt + 1);
4578 if (!shortname)
4579 goto error_free_vers;
4580 memcpy (shortname, h->root.root.string, amt);
4581 shortname[amt] = '\0';
4582
4583 hi = (struct elf_link_hash_entry *)
4584 bfd_link_hash_lookup (&htab->root, shortname,
4585 FALSE, FALSE, FALSE);
4586 if (hi != NULL
4587 && hi->root.type == h->root.type
4588 && hi->root.u.def.value == h->root.u.def.value
4589 && hi->root.u.def.section == h->root.u.def.section)
4590 {
4591 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4592 hi->root.type = bfd_link_hash_indirect;
4593 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4594 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4595 sym_hash = elf_sym_hashes (abfd);
4596 if (sym_hash)
4597 for (symidx = 0; symidx < extsymcount; ++symidx)
4598 if (sym_hash[symidx] == hi)
4599 {
4600 sym_hash[symidx] = h;
4601 break;
4602 }
4603 }
4604 free (shortname);
4605 }
4606 free (nondeflt_vers);
4607 nondeflt_vers = NULL;
4608 }
4609
4610 /* Now set the weakdefs field correctly for all the weak defined
4611 symbols we found. The only way to do this is to search all the
4612 symbols. Since we only need the information for non functions in
4613 dynamic objects, that's the only time we actually put anything on
4614 the list WEAKS. We need this information so that if a regular
4615 object refers to a symbol defined weakly in a dynamic object, the
4616 real symbol in the dynamic object is also put in the dynamic
4617 symbols; we also must arrange for both symbols to point to the
4618 same memory location. We could handle the general case of symbol
4619 aliasing, but a general symbol alias can only be generated in
4620 assembler code, handling it correctly would be very time
4621 consuming, and other ELF linkers don't handle general aliasing
4622 either. */
4623 if (weaks != NULL)
4624 {
4625 struct elf_link_hash_entry **hpp;
4626 struct elf_link_hash_entry **hppend;
4627 struct elf_link_hash_entry **sorted_sym_hash;
4628 struct elf_link_hash_entry *h;
4629 size_t sym_count;
4630
4631 /* Since we have to search the whole symbol list for each weak
4632 defined symbol, search time for N weak defined symbols will be
4633 O(N^2). Binary search will cut it down to O(NlogN). */
4634 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4635 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4636 if (sorted_sym_hash == NULL)
4637 goto error_return;
4638 sym_hash = sorted_sym_hash;
4639 hpp = elf_sym_hashes (abfd);
4640 hppend = hpp + extsymcount;
4641 sym_count = 0;
4642 for (; hpp < hppend; hpp++)
4643 {
4644 h = *hpp;
4645 if (h != NULL
4646 && h->root.type == bfd_link_hash_defined
4647 && !bed->is_function_type (h->type))
4648 {
4649 *sym_hash = h;
4650 sym_hash++;
4651 sym_count++;
4652 }
4653 }
4654
4655 qsort (sorted_sym_hash, sym_count,
4656 sizeof (struct elf_link_hash_entry *),
4657 elf_sort_symbol);
4658
4659 while (weaks != NULL)
4660 {
4661 struct elf_link_hash_entry *hlook;
4662 asection *slook;
4663 bfd_vma vlook;
4664 size_t i, j, idx = 0;
4665
4666 hlook = weaks;
4667 weaks = hlook->u.weakdef;
4668 hlook->u.weakdef = NULL;
4669
4670 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4671 || hlook->root.type == bfd_link_hash_defweak
4672 || hlook->root.type == bfd_link_hash_common
4673 || hlook->root.type == bfd_link_hash_indirect);
4674 slook = hlook->root.u.def.section;
4675 vlook = hlook->root.u.def.value;
4676
4677 i = 0;
4678 j = sym_count;
4679 while (i != j)
4680 {
4681 bfd_signed_vma vdiff;
4682 idx = (i + j) / 2;
4683 h = sorted_sym_hash[idx];
4684 vdiff = vlook - h->root.u.def.value;
4685 if (vdiff < 0)
4686 j = idx;
4687 else if (vdiff > 0)
4688 i = idx + 1;
4689 else
4690 {
4691 long sdiff = slook->id - h->root.u.def.section->id;
4692 if (sdiff < 0)
4693 j = idx;
4694 else if (sdiff > 0)
4695 i = idx + 1;
4696 else
4697 break;
4698 }
4699 }
4700
4701 /* We didn't find a value/section match. */
4702 if (i == j)
4703 continue;
4704
4705 /* With multiple aliases, or when the weak symbol is already
4706 strongly defined, we have multiple matching symbols and
4707 the binary search above may land on any of them. Step
4708 one past the matching symbol(s). */
4709 while (++idx != j)
4710 {
4711 h = sorted_sym_hash[idx];
4712 if (h->root.u.def.section != slook
4713 || h->root.u.def.value != vlook)
4714 break;
4715 }
4716
4717 /* Now look back over the aliases. Since we sorted by size
4718 as well as value and section, we'll choose the one with
4719 the largest size. */
4720 while (idx-- != i)
4721 {
4722 h = sorted_sym_hash[idx];
4723
4724 /* Stop if value or section doesn't match. */
4725 if (h->root.u.def.section != slook
4726 || h->root.u.def.value != vlook)
4727 break;
4728 else if (h != hlook)
4729 {
4730 hlook->u.weakdef = h;
4731
4732 /* If the weak definition is in the list of dynamic
4733 symbols, make sure the real definition is put
4734 there as well. */
4735 if (hlook->dynindx != -1 && h->dynindx == -1)
4736 {
4737 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4738 {
4739 err_free_sym_hash:
4740 free (sorted_sym_hash);
4741 goto error_return;
4742 }
4743 }
4744
4745 /* If the real definition is in the list of dynamic
4746 symbols, make sure the weak definition is put
4747 there as well. If we don't do this, then the
4748 dynamic loader might not merge the entries for the
4749 real definition and the weak definition. */
4750 if (h->dynindx != -1 && hlook->dynindx == -1)
4751 {
4752 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4753 goto err_free_sym_hash;
4754 }
4755 break;
4756 }
4757 }
4758 }
4759
4760 free (sorted_sym_hash);
4761 }
4762
4763 if (bed->check_directives
4764 && !(*bed->check_directives) (abfd, info))
4765 return FALSE;
4766
4767 /* If this object is the same format as the output object, and it is
4768 not a shared library, then let the backend look through the
4769 relocs.
4770
4771 This is required to build global offset table entries and to
4772 arrange for dynamic relocs. It is not required for the
4773 particular common case of linking non PIC code, even when linking
4774 against shared libraries, but unfortunately there is no way of
4775 knowing whether an object file has been compiled PIC or not.
4776 Looking through the relocs is not particularly time consuming.
4777 The problem is that we must either (1) keep the relocs in memory,
4778 which causes the linker to require additional runtime memory or
4779 (2) read the relocs twice from the input file, which wastes time.
4780 This would be a good case for using mmap.
4781
4782 I have no idea how to handle linking PIC code into a file of a
4783 different format. It probably can't be done. */
4784 if (! dynamic
4785 && is_elf_hash_table (htab)
4786 && bed->check_relocs != NULL
4787 && elf_object_id (abfd) == elf_hash_table_id (htab)
4788 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4789 {
4790 asection *o;
4791
4792 for (o = abfd->sections; o != NULL; o = o->next)
4793 {
4794 Elf_Internal_Rela *internal_relocs;
4795 bfd_boolean ok;
4796
4797 if ((o->flags & SEC_RELOC) == 0
4798 || o->reloc_count == 0
4799 || ((info->strip == strip_all || info->strip == strip_debugger)
4800 && (o->flags & SEC_DEBUGGING) != 0)
4801 || bfd_is_abs_section (o->output_section))
4802 continue;
4803
4804 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4805 info->keep_memory);
4806 if (internal_relocs == NULL)
4807 goto error_return;
4808
4809 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4810
4811 if (elf_section_data (o)->relocs != internal_relocs)
4812 free (internal_relocs);
4813
4814 if (! ok)
4815 goto error_return;
4816 }
4817 }
4818
4819 /* If this is a non-traditional link, try to optimize the handling
4820 of the .stab/.stabstr sections. */
4821 if (! dynamic
4822 && ! info->traditional_format
4823 && is_elf_hash_table (htab)
4824 && (info->strip != strip_all && info->strip != strip_debugger))
4825 {
4826 asection *stabstr;
4827
4828 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4829 if (stabstr != NULL)
4830 {
4831 bfd_size_type string_offset = 0;
4832 asection *stab;
4833
4834 for (stab = abfd->sections; stab; stab = stab->next)
4835 if (CONST_STRNEQ (stab->name, ".stab")
4836 && (!stab->name[5] ||
4837 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4838 && (stab->flags & SEC_MERGE) == 0
4839 && !bfd_is_abs_section (stab->output_section))
4840 {
4841 struct bfd_elf_section_data *secdata;
4842
4843 secdata = elf_section_data (stab);
4844 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4845 stabstr, &secdata->sec_info,
4846 &string_offset))
4847 goto error_return;
4848 if (secdata->sec_info)
4849 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4850 }
4851 }
4852 }
4853
4854 if (is_elf_hash_table (htab) && add_needed)
4855 {
4856 /* Add this bfd to the loaded list. */
4857 struct elf_link_loaded_list *n;
4858
4859 n = (struct elf_link_loaded_list *)
4860 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4861 if (n == NULL)
4862 goto error_return;
4863 n->abfd = abfd;
4864 n->next = htab->loaded;
4865 htab->loaded = n;
4866 }
4867
4868 return TRUE;
4869
4870 error_free_vers:
4871 if (old_tab != NULL)
4872 free (old_tab);
4873 if (nondeflt_vers != NULL)
4874 free (nondeflt_vers);
4875 if (extversym != NULL)
4876 free (extversym);
4877 error_free_sym:
4878 if (isymbuf != NULL)
4879 free (isymbuf);
4880 error_return:
4881 return FALSE;
4882 }
4883
4884 /* Return the linker hash table entry of a symbol that might be
4885 satisfied by an archive symbol. Return -1 on error. */
4886
4887 struct elf_link_hash_entry *
4888 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4889 struct bfd_link_info *info,
4890 const char *name)
4891 {
4892 struct elf_link_hash_entry *h;
4893 char *p, *copy;
4894 size_t len, first;
4895
4896 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4897 if (h != NULL)
4898 return h;
4899
4900 /* If this is a default version (the name contains @@), look up the
4901 symbol again with only one `@' as well as without the version.
4902 The effect is that references to the symbol with and without the
4903 version will be matched by the default symbol in the archive. */
4904
4905 p = strchr (name, ELF_VER_CHR);
4906 if (p == NULL || p[1] != ELF_VER_CHR)
4907 return h;
4908
4909 /* First check with only one `@'. */
4910 len = strlen (name);
4911 copy = (char *) bfd_alloc (abfd, len);
4912 if (copy == NULL)
4913 return (struct elf_link_hash_entry *) 0 - 1;
4914
4915 first = p - name + 1;
4916 memcpy (copy, name, first);
4917 memcpy (copy + first, name + first + 1, len - first);
4918
4919 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4920 if (h == NULL)
4921 {
4922 /* We also need to check references to the symbol without the
4923 version. */
4924 copy[first - 1] = '\0';
4925 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4926 FALSE, FALSE, TRUE);
4927 }
4928
4929 bfd_release (abfd, copy);
4930 return h;
4931 }
4932
4933 /* Add symbols from an ELF archive file to the linker hash table. We
4934 don't use _bfd_generic_link_add_archive_symbols because of a
4935 problem which arises on UnixWare. The UnixWare libc.so is an
4936 archive which includes an entry libc.so.1 which defines a bunch of
4937 symbols. The libc.so archive also includes a number of other
4938 object files, which also define symbols, some of which are the same
4939 as those defined in libc.so.1. Correct linking requires that we
4940 consider each object file in turn, and include it if it defines any
4941 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4942 this; it looks through the list of undefined symbols, and includes
4943 any object file which defines them. When this algorithm is used on
4944 UnixWare, it winds up pulling in libc.so.1 early and defining a
4945 bunch of symbols. This means that some of the other objects in the
4946 archive are not included in the link, which is incorrect since they
4947 precede libc.so.1 in the archive.
4948
4949 Fortunately, ELF archive handling is simpler than that done by
4950 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4951 oddities. In ELF, if we find a symbol in the archive map, and the
4952 symbol is currently undefined, we know that we must pull in that
4953 object file.
4954
4955 Unfortunately, we do have to make multiple passes over the symbol
4956 table until nothing further is resolved. */
4957
4958 static bfd_boolean
4959 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4960 {
4961 symindex c;
4962 bfd_boolean *defined = NULL;
4963 bfd_boolean *included = NULL;
4964 carsym *symdefs;
4965 bfd_boolean loop;
4966 bfd_size_type amt;
4967 const struct elf_backend_data *bed;
4968 struct elf_link_hash_entry * (*archive_symbol_lookup)
4969 (bfd *, struct bfd_link_info *, const char *);
4970
4971 if (! bfd_has_map (abfd))
4972 {
4973 /* An empty archive is a special case. */
4974 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4975 return TRUE;
4976 bfd_set_error (bfd_error_no_armap);
4977 return FALSE;
4978 }
4979
4980 /* Keep track of all symbols we know to be already defined, and all
4981 files we know to be already included. This is to speed up the
4982 second and subsequent passes. */
4983 c = bfd_ardata (abfd)->symdef_count;
4984 if (c == 0)
4985 return TRUE;
4986 amt = c;
4987 amt *= sizeof (bfd_boolean);
4988 defined = (bfd_boolean *) bfd_zmalloc (amt);
4989 included = (bfd_boolean *) bfd_zmalloc (amt);
4990 if (defined == NULL || included == NULL)
4991 goto error_return;
4992
4993 symdefs = bfd_ardata (abfd)->symdefs;
4994 bed = get_elf_backend_data (abfd);
4995 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4996
4997 do
4998 {
4999 file_ptr last;
5000 symindex i;
5001 carsym *symdef;
5002 carsym *symdefend;
5003
5004 loop = FALSE;
5005 last = -1;
5006
5007 symdef = symdefs;
5008 symdefend = symdef + c;
5009 for (i = 0; symdef < symdefend; symdef++, i++)
5010 {
5011 struct elf_link_hash_entry *h;
5012 bfd *element;
5013 struct bfd_link_hash_entry *undefs_tail;
5014 symindex mark;
5015
5016 if (defined[i] || included[i])
5017 continue;
5018 if (symdef->file_offset == last)
5019 {
5020 included[i] = TRUE;
5021 continue;
5022 }
5023
5024 h = archive_symbol_lookup (abfd, info, symdef->name);
5025 if (h == (struct elf_link_hash_entry *) 0 - 1)
5026 goto error_return;
5027
5028 if (h == NULL)
5029 continue;
5030
5031 if (h->root.type == bfd_link_hash_common)
5032 {
5033 /* We currently have a common symbol. The archive map contains
5034 a reference to this symbol, so we may want to include it. We
5035 only want to include it however, if this archive element
5036 contains a definition of the symbol, not just another common
5037 declaration of it.
5038
5039 Unfortunately some archivers (including GNU ar) will put
5040 declarations of common symbols into their archive maps, as
5041 well as real definitions, so we cannot just go by the archive
5042 map alone. Instead we must read in the element's symbol
5043 table and check that to see what kind of symbol definition
5044 this is. */
5045 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5046 continue;
5047 }
5048 else if (h->root.type != bfd_link_hash_undefined)
5049 {
5050 if (h->root.type != bfd_link_hash_undefweak)
5051 defined[i] = TRUE;
5052 continue;
5053 }
5054
5055 /* We need to include this archive member. */
5056 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5057 if (element == NULL)
5058 goto error_return;
5059
5060 if (! bfd_check_format (element, bfd_object))
5061 goto error_return;
5062
5063 /* Doublecheck that we have not included this object
5064 already--it should be impossible, but there may be
5065 something wrong with the archive. */
5066 if (element->archive_pass != 0)
5067 {
5068 bfd_set_error (bfd_error_bad_value);
5069 goto error_return;
5070 }
5071 element->archive_pass = 1;
5072
5073 undefs_tail = info->hash->undefs_tail;
5074
5075 if (!(*info->callbacks
5076 ->add_archive_element) (info, element, symdef->name, &element))
5077 goto error_return;
5078 if (!bfd_link_add_symbols (element, info))
5079 goto error_return;
5080
5081 /* If there are any new undefined symbols, we need to make
5082 another pass through the archive in order to see whether
5083 they can be defined. FIXME: This isn't perfect, because
5084 common symbols wind up on undefs_tail and because an
5085 undefined symbol which is defined later on in this pass
5086 does not require another pass. This isn't a bug, but it
5087 does make the code less efficient than it could be. */
5088 if (undefs_tail != info->hash->undefs_tail)
5089 loop = TRUE;
5090
5091 /* Look backward to mark all symbols from this object file
5092 which we have already seen in this pass. */
5093 mark = i;
5094 do
5095 {
5096 included[mark] = TRUE;
5097 if (mark == 0)
5098 break;
5099 --mark;
5100 }
5101 while (symdefs[mark].file_offset == symdef->file_offset);
5102
5103 /* We mark subsequent symbols from this object file as we go
5104 on through the loop. */
5105 last = symdef->file_offset;
5106 }
5107 }
5108 while (loop);
5109
5110 free (defined);
5111 free (included);
5112
5113 return TRUE;
5114
5115 error_return:
5116 if (defined != NULL)
5117 free (defined);
5118 if (included != NULL)
5119 free (included);
5120 return FALSE;
5121 }
5122
5123 /* Given an ELF BFD, add symbols to the global hash table as
5124 appropriate. */
5125
5126 bfd_boolean
5127 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5128 {
5129 switch (bfd_get_format (abfd))
5130 {
5131 case bfd_object:
5132 return elf_link_add_object_symbols (abfd, info);
5133 case bfd_archive:
5134 return elf_link_add_archive_symbols (abfd, info);
5135 default:
5136 bfd_set_error (bfd_error_wrong_format);
5137 return FALSE;
5138 }
5139 }
5140 \f
5141 struct hash_codes_info
5142 {
5143 unsigned long *hashcodes;
5144 bfd_boolean error;
5145 };
5146
5147 /* This function will be called though elf_link_hash_traverse to store
5148 all hash value of the exported symbols in an array. */
5149
5150 static bfd_boolean
5151 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5152 {
5153 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5154 const char *name;
5155 char *p;
5156 unsigned long ha;
5157 char *alc = NULL;
5158
5159 /* Ignore indirect symbols. These are added by the versioning code. */
5160 if (h->dynindx == -1)
5161 return TRUE;
5162
5163 name = h->root.root.string;
5164 p = strchr (name, ELF_VER_CHR);
5165 if (p != NULL)
5166 {
5167 alc = (char *) bfd_malloc (p - name + 1);
5168 if (alc == NULL)
5169 {
5170 inf->error = TRUE;
5171 return FALSE;
5172 }
5173 memcpy (alc, name, p - name);
5174 alc[p - name] = '\0';
5175 name = alc;
5176 }
5177
5178 /* Compute the hash value. */
5179 ha = bfd_elf_hash (name);
5180
5181 /* Store the found hash value in the array given as the argument. */
5182 *(inf->hashcodes)++ = ha;
5183
5184 /* And store it in the struct so that we can put it in the hash table
5185 later. */
5186 h->u.elf_hash_value = ha;
5187
5188 if (alc != NULL)
5189 free (alc);
5190
5191 return TRUE;
5192 }
5193
5194 struct collect_gnu_hash_codes
5195 {
5196 bfd *output_bfd;
5197 const struct elf_backend_data *bed;
5198 unsigned long int nsyms;
5199 unsigned long int maskbits;
5200 unsigned long int *hashcodes;
5201 unsigned long int *hashval;
5202 unsigned long int *indx;
5203 unsigned long int *counts;
5204 bfd_vma *bitmask;
5205 bfd_byte *contents;
5206 long int min_dynindx;
5207 unsigned long int bucketcount;
5208 unsigned long int symindx;
5209 long int local_indx;
5210 long int shift1, shift2;
5211 unsigned long int mask;
5212 bfd_boolean error;
5213 };
5214
5215 /* This function will be called though elf_link_hash_traverse to store
5216 all hash value of the exported symbols in an array. */
5217
5218 static bfd_boolean
5219 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5220 {
5221 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5222 const char *name;
5223 char *p;
5224 unsigned long ha;
5225 char *alc = NULL;
5226
5227 /* Ignore indirect symbols. These are added by the versioning code. */
5228 if (h->dynindx == -1)
5229 return TRUE;
5230
5231 /* Ignore also local symbols and undefined symbols. */
5232 if (! (*s->bed->elf_hash_symbol) (h))
5233 return TRUE;
5234
5235 name = h->root.root.string;
5236 p = strchr (name, ELF_VER_CHR);
5237 if (p != NULL)
5238 {
5239 alc = (char *) bfd_malloc (p - name + 1);
5240 if (alc == NULL)
5241 {
5242 s->error = TRUE;
5243 return FALSE;
5244 }
5245 memcpy (alc, name, p - name);
5246 alc[p - name] = '\0';
5247 name = alc;
5248 }
5249
5250 /* Compute the hash value. */
5251 ha = bfd_elf_gnu_hash (name);
5252
5253 /* Store the found hash value in the array for compute_bucket_count,
5254 and also for .dynsym reordering purposes. */
5255 s->hashcodes[s->nsyms] = ha;
5256 s->hashval[h->dynindx] = ha;
5257 ++s->nsyms;
5258 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5259 s->min_dynindx = h->dynindx;
5260
5261 if (alc != NULL)
5262 free (alc);
5263
5264 return TRUE;
5265 }
5266
5267 /* This function will be called though elf_link_hash_traverse to do
5268 final dynaminc symbol renumbering. */
5269
5270 static bfd_boolean
5271 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5272 {
5273 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5274 unsigned long int bucket;
5275 unsigned long int val;
5276
5277 /* Ignore indirect symbols. */
5278 if (h->dynindx == -1)
5279 return TRUE;
5280
5281 /* Ignore also local symbols and undefined symbols. */
5282 if (! (*s->bed->elf_hash_symbol) (h))
5283 {
5284 if (h->dynindx >= s->min_dynindx)
5285 h->dynindx = s->local_indx++;
5286 return TRUE;
5287 }
5288
5289 bucket = s->hashval[h->dynindx] % s->bucketcount;
5290 val = (s->hashval[h->dynindx] >> s->shift1)
5291 & ((s->maskbits >> s->shift1) - 1);
5292 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5293 s->bitmask[val]
5294 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5295 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5296 if (s->counts[bucket] == 1)
5297 /* Last element terminates the chain. */
5298 val |= 1;
5299 bfd_put_32 (s->output_bfd, val,
5300 s->contents + (s->indx[bucket] - s->symindx) * 4);
5301 --s->counts[bucket];
5302 h->dynindx = s->indx[bucket]++;
5303 return TRUE;
5304 }
5305
5306 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5307
5308 bfd_boolean
5309 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5310 {
5311 return !(h->forced_local
5312 || h->root.type == bfd_link_hash_undefined
5313 || h->root.type == bfd_link_hash_undefweak
5314 || ((h->root.type == bfd_link_hash_defined
5315 || h->root.type == bfd_link_hash_defweak)
5316 && h->root.u.def.section->output_section == NULL));
5317 }
5318
5319 /* Array used to determine the number of hash table buckets to use
5320 based on the number of symbols there are. If there are fewer than
5321 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5322 fewer than 37 we use 17 buckets, and so forth. We never use more
5323 than 32771 buckets. */
5324
5325 static const size_t elf_buckets[] =
5326 {
5327 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5328 16411, 32771, 0
5329 };
5330
5331 /* Compute bucket count for hashing table. We do not use a static set
5332 of possible tables sizes anymore. Instead we determine for all
5333 possible reasonable sizes of the table the outcome (i.e., the
5334 number of collisions etc) and choose the best solution. The
5335 weighting functions are not too simple to allow the table to grow
5336 without bounds. Instead one of the weighting factors is the size.
5337 Therefore the result is always a good payoff between few collisions
5338 (= short chain lengths) and table size. */
5339 static size_t
5340 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5341 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5342 unsigned long int nsyms,
5343 int gnu_hash)
5344 {
5345 size_t best_size = 0;
5346 unsigned long int i;
5347
5348 /* We have a problem here. The following code to optimize the table
5349 size requires an integer type with more the 32 bits. If
5350 BFD_HOST_U_64_BIT is set we know about such a type. */
5351 #ifdef BFD_HOST_U_64_BIT
5352 if (info->optimize)
5353 {
5354 size_t minsize;
5355 size_t maxsize;
5356 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5357 bfd *dynobj = elf_hash_table (info)->dynobj;
5358 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5359 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5360 unsigned long int *counts;
5361 bfd_size_type amt;
5362 unsigned int no_improvement_count = 0;
5363
5364 /* Possible optimization parameters: if we have NSYMS symbols we say
5365 that the hashing table must at least have NSYMS/4 and at most
5366 2*NSYMS buckets. */
5367 minsize = nsyms / 4;
5368 if (minsize == 0)
5369 minsize = 1;
5370 best_size = maxsize = nsyms * 2;
5371 if (gnu_hash)
5372 {
5373 if (minsize < 2)
5374 minsize = 2;
5375 if ((best_size & 31) == 0)
5376 ++best_size;
5377 }
5378
5379 /* Create array where we count the collisions in. We must use bfd_malloc
5380 since the size could be large. */
5381 amt = maxsize;
5382 amt *= sizeof (unsigned long int);
5383 counts = (unsigned long int *) bfd_malloc (amt);
5384 if (counts == NULL)
5385 return 0;
5386
5387 /* Compute the "optimal" size for the hash table. The criteria is a
5388 minimal chain length. The minor criteria is (of course) the size
5389 of the table. */
5390 for (i = minsize; i < maxsize; ++i)
5391 {
5392 /* Walk through the array of hashcodes and count the collisions. */
5393 BFD_HOST_U_64_BIT max;
5394 unsigned long int j;
5395 unsigned long int fact;
5396
5397 if (gnu_hash && (i & 31) == 0)
5398 continue;
5399
5400 memset (counts, '\0', i * sizeof (unsigned long int));
5401
5402 /* Determine how often each hash bucket is used. */
5403 for (j = 0; j < nsyms; ++j)
5404 ++counts[hashcodes[j] % i];
5405
5406 /* For the weight function we need some information about the
5407 pagesize on the target. This is information need not be 100%
5408 accurate. Since this information is not available (so far) we
5409 define it here to a reasonable default value. If it is crucial
5410 to have a better value some day simply define this value. */
5411 # ifndef BFD_TARGET_PAGESIZE
5412 # define BFD_TARGET_PAGESIZE (4096)
5413 # endif
5414
5415 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5416 and the chains. */
5417 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5418
5419 # if 1
5420 /* Variant 1: optimize for short chains. We add the squares
5421 of all the chain lengths (which favors many small chain
5422 over a few long chains). */
5423 for (j = 0; j < i; ++j)
5424 max += counts[j] * counts[j];
5425
5426 /* This adds penalties for the overall size of the table. */
5427 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5428 max *= fact * fact;
5429 # else
5430 /* Variant 2: Optimize a lot more for small table. Here we
5431 also add squares of the size but we also add penalties for
5432 empty slots (the +1 term). */
5433 for (j = 0; j < i; ++j)
5434 max += (1 + counts[j]) * (1 + counts[j]);
5435
5436 /* The overall size of the table is considered, but not as
5437 strong as in variant 1, where it is squared. */
5438 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5439 max *= fact;
5440 # endif
5441
5442 /* Compare with current best results. */
5443 if (max < best_chlen)
5444 {
5445 best_chlen = max;
5446 best_size = i;
5447 no_improvement_count = 0;
5448 }
5449 /* PR 11843: Avoid futile long searches for the best bucket size
5450 when there are a large number of symbols. */
5451 else if (++no_improvement_count == 100)
5452 break;
5453 }
5454
5455 free (counts);
5456 }
5457 else
5458 #endif /* defined (BFD_HOST_U_64_BIT) */
5459 {
5460 /* This is the fallback solution if no 64bit type is available or if we
5461 are not supposed to spend much time on optimizations. We select the
5462 bucket count using a fixed set of numbers. */
5463 for (i = 0; elf_buckets[i] != 0; i++)
5464 {
5465 best_size = elf_buckets[i];
5466 if (nsyms < elf_buckets[i + 1])
5467 break;
5468 }
5469 if (gnu_hash && best_size < 2)
5470 best_size = 2;
5471 }
5472
5473 return best_size;
5474 }
5475
5476 /* Size any SHT_GROUP section for ld -r. */
5477
5478 bfd_boolean
5479 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5480 {
5481 bfd *ibfd;
5482
5483 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5484 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5485 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5486 return FALSE;
5487 return TRUE;
5488 }
5489
5490 /* Set a default stack segment size. The value in INFO wins. If it
5491 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5492 undefined it is initialized. */
5493
5494 bfd_boolean
5495 bfd_elf_stack_segment_size (bfd *output_bfd,
5496 struct bfd_link_info *info,
5497 const char *legacy_symbol,
5498 bfd_vma default_size)
5499 {
5500 struct elf_link_hash_entry *h = NULL;
5501
5502 /* Look for legacy symbol. */
5503 if (legacy_symbol)
5504 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5505 FALSE, FALSE, FALSE);
5506 if (h && (h->root.type == bfd_link_hash_defined
5507 || h->root.type == bfd_link_hash_defweak)
5508 && h->def_regular
5509 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5510 {
5511 /* The symbol has no type if specified on the command line. */
5512 h->type = STT_OBJECT;
5513 if (info->stacksize)
5514 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5515 output_bfd, legacy_symbol);
5516 else if (h->root.u.def.section != bfd_abs_section_ptr)
5517 (*_bfd_error_handler) (_("%B: %s not absolute"),
5518 output_bfd, legacy_symbol);
5519 else
5520 info->stacksize = h->root.u.def.value;
5521 }
5522
5523 if (!info->stacksize)
5524 /* If the user didn't set a size, or explicitly inhibit the
5525 size, set it now. */
5526 info->stacksize = default_size;
5527
5528 /* Provide the legacy symbol, if it is referenced. */
5529 if (h && (h->root.type == bfd_link_hash_undefined
5530 || h->root.type == bfd_link_hash_undefweak))
5531 {
5532 struct bfd_link_hash_entry *bh = NULL;
5533
5534 if (!(_bfd_generic_link_add_one_symbol
5535 (info, output_bfd, legacy_symbol,
5536 BSF_GLOBAL, bfd_abs_section_ptr,
5537 info->stacksize >= 0 ? info->stacksize : 0,
5538 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5539 return FALSE;
5540
5541 h = (struct elf_link_hash_entry *) bh;
5542 h->def_regular = 1;
5543 h->type = STT_OBJECT;
5544 }
5545
5546 return TRUE;
5547 }
5548
5549 /* Set up the sizes and contents of the ELF dynamic sections. This is
5550 called by the ELF linker emulation before_allocation routine. We
5551 must set the sizes of the sections before the linker sets the
5552 addresses of the various sections. */
5553
5554 bfd_boolean
5555 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5556 const char *soname,
5557 const char *rpath,
5558 const char *filter_shlib,
5559 const char *audit,
5560 const char *depaudit,
5561 const char * const *auxiliary_filters,
5562 struct bfd_link_info *info,
5563 asection **sinterpptr)
5564 {
5565 bfd_size_type soname_indx;
5566 bfd *dynobj;
5567 const struct elf_backend_data *bed;
5568 struct elf_info_failed asvinfo;
5569
5570 *sinterpptr = NULL;
5571
5572 soname_indx = (bfd_size_type) -1;
5573
5574 if (!is_elf_hash_table (info->hash))
5575 return TRUE;
5576
5577 bed = get_elf_backend_data (output_bfd);
5578
5579 /* Any syms created from now on start with -1 in
5580 got.refcount/offset and plt.refcount/offset. */
5581 elf_hash_table (info)->init_got_refcount
5582 = elf_hash_table (info)->init_got_offset;
5583 elf_hash_table (info)->init_plt_refcount
5584 = elf_hash_table (info)->init_plt_offset;
5585
5586 if (info->relocatable
5587 && !_bfd_elf_size_group_sections (info))
5588 return FALSE;
5589
5590 /* The backend may have to create some sections regardless of whether
5591 we're dynamic or not. */
5592 if (bed->elf_backend_always_size_sections
5593 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5594 return FALSE;
5595
5596 /* Determine any GNU_STACK segment requirements, after the backend
5597 has had a chance to set a default segment size. */
5598 if (info->execstack)
5599 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5600 else if (info->noexecstack)
5601 elf_stack_flags (output_bfd) = PF_R | PF_W;
5602 else
5603 {
5604 bfd *inputobj;
5605 asection *notesec = NULL;
5606 int exec = 0;
5607
5608 for (inputobj = info->input_bfds;
5609 inputobj;
5610 inputobj = inputobj->link_next)
5611 {
5612 asection *s;
5613
5614 if (inputobj->flags
5615 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5616 continue;
5617 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5618 if (s)
5619 {
5620 if (s->flags & SEC_CODE)
5621 exec = PF_X;
5622 notesec = s;
5623 }
5624 else if (bed->default_execstack)
5625 exec = PF_X;
5626 }
5627 if (notesec || info->stacksize > 0)
5628 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5629 if (notesec && exec && info->relocatable
5630 && notesec->output_section != bfd_abs_section_ptr)
5631 notesec->output_section->flags |= SEC_CODE;
5632 }
5633
5634 dynobj = elf_hash_table (info)->dynobj;
5635
5636 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5637 {
5638 struct elf_info_failed eif;
5639 struct elf_link_hash_entry *h;
5640 asection *dynstr;
5641 struct bfd_elf_version_tree *t;
5642 struct bfd_elf_version_expr *d;
5643 asection *s;
5644 bfd_boolean all_defined;
5645
5646 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5647 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5648
5649 if (soname != NULL)
5650 {
5651 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5652 soname, TRUE);
5653 if (soname_indx == (bfd_size_type) -1
5654 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5655 return FALSE;
5656 }
5657
5658 if (info->symbolic)
5659 {
5660 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5661 return FALSE;
5662 info->flags |= DF_SYMBOLIC;
5663 }
5664
5665 if (rpath != NULL)
5666 {
5667 bfd_size_type indx;
5668 bfd_vma tag;
5669
5670 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5671 TRUE);
5672 if (indx == (bfd_size_type) -1)
5673 return FALSE;
5674
5675 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5676 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5677 return FALSE;
5678 }
5679
5680 if (filter_shlib != NULL)
5681 {
5682 bfd_size_type indx;
5683
5684 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5685 filter_shlib, TRUE);
5686 if (indx == (bfd_size_type) -1
5687 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5688 return FALSE;
5689 }
5690
5691 if (auxiliary_filters != NULL)
5692 {
5693 const char * const *p;
5694
5695 for (p = auxiliary_filters; *p != NULL; p++)
5696 {
5697 bfd_size_type indx;
5698
5699 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5700 *p, TRUE);
5701 if (indx == (bfd_size_type) -1
5702 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5703 return FALSE;
5704 }
5705 }
5706
5707 if (audit != NULL)
5708 {
5709 bfd_size_type indx;
5710
5711 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5712 TRUE);
5713 if (indx == (bfd_size_type) -1
5714 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5715 return FALSE;
5716 }
5717
5718 if (depaudit != NULL)
5719 {
5720 bfd_size_type indx;
5721
5722 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5723 TRUE);
5724 if (indx == (bfd_size_type) -1
5725 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5726 return FALSE;
5727 }
5728
5729 eif.info = info;
5730 eif.failed = FALSE;
5731
5732 /* If we are supposed to export all symbols into the dynamic symbol
5733 table (this is not the normal case), then do so. */
5734 if (info->export_dynamic
5735 || (info->executable && info->dynamic))
5736 {
5737 elf_link_hash_traverse (elf_hash_table (info),
5738 _bfd_elf_export_symbol,
5739 &eif);
5740 if (eif.failed)
5741 return FALSE;
5742 }
5743
5744 /* Make all global versions with definition. */
5745 for (t = info->version_info; t != NULL; t = t->next)
5746 for (d = t->globals.list; d != NULL; d = d->next)
5747 if (!d->symver && d->literal)
5748 {
5749 const char *verstr, *name;
5750 size_t namelen, verlen, newlen;
5751 char *newname, *p, leading_char;
5752 struct elf_link_hash_entry *newh;
5753
5754 leading_char = bfd_get_symbol_leading_char (output_bfd);
5755 name = d->pattern;
5756 namelen = strlen (name) + (leading_char != '\0');
5757 verstr = t->name;
5758 verlen = strlen (verstr);
5759 newlen = namelen + verlen + 3;
5760
5761 newname = (char *) bfd_malloc (newlen);
5762 if (newname == NULL)
5763 return FALSE;
5764 newname[0] = leading_char;
5765 memcpy (newname + (leading_char != '\0'), name, namelen);
5766
5767 /* Check the hidden versioned definition. */
5768 p = newname + namelen;
5769 *p++ = ELF_VER_CHR;
5770 memcpy (p, verstr, verlen + 1);
5771 newh = elf_link_hash_lookup (elf_hash_table (info),
5772 newname, FALSE, FALSE,
5773 FALSE);
5774 if (newh == NULL
5775 || (newh->root.type != bfd_link_hash_defined
5776 && newh->root.type != bfd_link_hash_defweak))
5777 {
5778 /* Check the default versioned definition. */
5779 *p++ = ELF_VER_CHR;
5780 memcpy (p, verstr, verlen + 1);
5781 newh = elf_link_hash_lookup (elf_hash_table (info),
5782 newname, FALSE, FALSE,
5783 FALSE);
5784 }
5785 free (newname);
5786
5787 /* Mark this version if there is a definition and it is
5788 not defined in a shared object. */
5789 if (newh != NULL
5790 && !newh->def_dynamic
5791 && (newh->root.type == bfd_link_hash_defined
5792 || newh->root.type == bfd_link_hash_defweak))
5793 d->symver = 1;
5794 }
5795
5796 /* Attach all the symbols to their version information. */
5797 asvinfo.info = info;
5798 asvinfo.failed = FALSE;
5799
5800 elf_link_hash_traverse (elf_hash_table (info),
5801 _bfd_elf_link_assign_sym_version,
5802 &asvinfo);
5803 if (asvinfo.failed)
5804 return FALSE;
5805
5806 if (!info->allow_undefined_version)
5807 {
5808 /* Check if all global versions have a definition. */
5809 all_defined = TRUE;
5810 for (t = info->version_info; t != NULL; t = t->next)
5811 for (d = t->globals.list; d != NULL; d = d->next)
5812 if (d->literal && !d->symver && !d->script)
5813 {
5814 (*_bfd_error_handler)
5815 (_("%s: undefined version: %s"),
5816 d->pattern, t->name);
5817 all_defined = FALSE;
5818 }
5819
5820 if (!all_defined)
5821 {
5822 bfd_set_error (bfd_error_bad_value);
5823 return FALSE;
5824 }
5825 }
5826
5827 /* Find all symbols which were defined in a dynamic object and make
5828 the backend pick a reasonable value for them. */
5829 elf_link_hash_traverse (elf_hash_table (info),
5830 _bfd_elf_adjust_dynamic_symbol,
5831 &eif);
5832 if (eif.failed)
5833 return FALSE;
5834
5835 /* Add some entries to the .dynamic section. We fill in some of the
5836 values later, in bfd_elf_final_link, but we must add the entries
5837 now so that we know the final size of the .dynamic section. */
5838
5839 /* If there are initialization and/or finalization functions to
5840 call then add the corresponding DT_INIT/DT_FINI entries. */
5841 h = (info->init_function
5842 ? elf_link_hash_lookup (elf_hash_table (info),
5843 info->init_function, FALSE,
5844 FALSE, FALSE)
5845 : NULL);
5846 if (h != NULL
5847 && (h->ref_regular
5848 || h->def_regular))
5849 {
5850 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5851 return FALSE;
5852 }
5853 h = (info->fini_function
5854 ? elf_link_hash_lookup (elf_hash_table (info),
5855 info->fini_function, FALSE,
5856 FALSE, FALSE)
5857 : NULL);
5858 if (h != NULL
5859 && (h->ref_regular
5860 || h->def_regular))
5861 {
5862 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5863 return FALSE;
5864 }
5865
5866 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5867 if (s != NULL && s->linker_has_input)
5868 {
5869 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5870 if (! info->executable)
5871 {
5872 bfd *sub;
5873 asection *o;
5874
5875 for (sub = info->input_bfds; sub != NULL;
5876 sub = sub->link_next)
5877 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5878 for (o = sub->sections; o != NULL; o = o->next)
5879 if (elf_section_data (o)->this_hdr.sh_type
5880 == SHT_PREINIT_ARRAY)
5881 {
5882 (*_bfd_error_handler)
5883 (_("%B: .preinit_array section is not allowed in DSO"),
5884 sub);
5885 break;
5886 }
5887
5888 bfd_set_error (bfd_error_nonrepresentable_section);
5889 return FALSE;
5890 }
5891
5892 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5894 return FALSE;
5895 }
5896 s = bfd_get_section_by_name (output_bfd, ".init_array");
5897 if (s != NULL && s->linker_has_input)
5898 {
5899 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5900 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5901 return FALSE;
5902 }
5903 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5904 if (s != NULL && s->linker_has_input)
5905 {
5906 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5908 return FALSE;
5909 }
5910
5911 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5912 /* If .dynstr is excluded from the link, we don't want any of
5913 these tags. Strictly, we should be checking each section
5914 individually; This quick check covers for the case where
5915 someone does a /DISCARD/ : { *(*) }. */
5916 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5917 {
5918 bfd_size_type strsize;
5919
5920 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5921 if ((info->emit_hash
5922 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5923 || (info->emit_gnu_hash
5924 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5925 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5926 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5927 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5928 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5929 bed->s->sizeof_sym))
5930 return FALSE;
5931 }
5932 }
5933
5934 /* The backend must work out the sizes of all the other dynamic
5935 sections. */
5936 if (dynobj != NULL
5937 && bed->elf_backend_size_dynamic_sections != NULL
5938 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5939 return FALSE;
5940
5941 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5942 return FALSE;
5943
5944 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5945 {
5946 unsigned long section_sym_count;
5947 struct bfd_elf_version_tree *verdefs;
5948 asection *s;
5949
5950 /* Set up the version definition section. */
5951 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5952 BFD_ASSERT (s != NULL);
5953
5954 /* We may have created additional version definitions if we are
5955 just linking a regular application. */
5956 verdefs = info->version_info;
5957
5958 /* Skip anonymous version tag. */
5959 if (verdefs != NULL && verdefs->vernum == 0)
5960 verdefs = verdefs->next;
5961
5962 if (verdefs == NULL && !info->create_default_symver)
5963 s->flags |= SEC_EXCLUDE;
5964 else
5965 {
5966 unsigned int cdefs;
5967 bfd_size_type size;
5968 struct bfd_elf_version_tree *t;
5969 bfd_byte *p;
5970 Elf_Internal_Verdef def;
5971 Elf_Internal_Verdaux defaux;
5972 struct bfd_link_hash_entry *bh;
5973 struct elf_link_hash_entry *h;
5974 const char *name;
5975
5976 cdefs = 0;
5977 size = 0;
5978
5979 /* Make space for the base version. */
5980 size += sizeof (Elf_External_Verdef);
5981 size += sizeof (Elf_External_Verdaux);
5982 ++cdefs;
5983
5984 /* Make space for the default version. */
5985 if (info->create_default_symver)
5986 {
5987 size += sizeof (Elf_External_Verdef);
5988 ++cdefs;
5989 }
5990
5991 for (t = verdefs; t != NULL; t = t->next)
5992 {
5993 struct bfd_elf_version_deps *n;
5994
5995 /* Don't emit base version twice. */
5996 if (t->vernum == 0)
5997 continue;
5998
5999 size += sizeof (Elf_External_Verdef);
6000 size += sizeof (Elf_External_Verdaux);
6001 ++cdefs;
6002
6003 for (n = t->deps; n != NULL; n = n->next)
6004 size += sizeof (Elf_External_Verdaux);
6005 }
6006
6007 s->size = size;
6008 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6009 if (s->contents == NULL && s->size != 0)
6010 return FALSE;
6011
6012 /* Fill in the version definition section. */
6013
6014 p = s->contents;
6015
6016 def.vd_version = VER_DEF_CURRENT;
6017 def.vd_flags = VER_FLG_BASE;
6018 def.vd_ndx = 1;
6019 def.vd_cnt = 1;
6020 if (info->create_default_symver)
6021 {
6022 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6023 def.vd_next = sizeof (Elf_External_Verdef);
6024 }
6025 else
6026 {
6027 def.vd_aux = sizeof (Elf_External_Verdef);
6028 def.vd_next = (sizeof (Elf_External_Verdef)
6029 + sizeof (Elf_External_Verdaux));
6030 }
6031
6032 if (soname_indx != (bfd_size_type) -1)
6033 {
6034 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6035 soname_indx);
6036 def.vd_hash = bfd_elf_hash (soname);
6037 defaux.vda_name = soname_indx;
6038 name = soname;
6039 }
6040 else
6041 {
6042 bfd_size_type indx;
6043
6044 name = lbasename (output_bfd->filename);
6045 def.vd_hash = bfd_elf_hash (name);
6046 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6047 name, FALSE);
6048 if (indx == (bfd_size_type) -1)
6049 return FALSE;
6050 defaux.vda_name = indx;
6051 }
6052 defaux.vda_next = 0;
6053
6054 _bfd_elf_swap_verdef_out (output_bfd, &def,
6055 (Elf_External_Verdef *) p);
6056 p += sizeof (Elf_External_Verdef);
6057 if (info->create_default_symver)
6058 {
6059 /* Add a symbol representing this version. */
6060 bh = NULL;
6061 if (! (_bfd_generic_link_add_one_symbol
6062 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6063 0, NULL, FALSE,
6064 get_elf_backend_data (dynobj)->collect, &bh)))
6065 return FALSE;
6066 h = (struct elf_link_hash_entry *) bh;
6067 h->non_elf = 0;
6068 h->def_regular = 1;
6069 h->type = STT_OBJECT;
6070 h->verinfo.vertree = NULL;
6071
6072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6073 return FALSE;
6074
6075 /* Create a duplicate of the base version with the same
6076 aux block, but different flags. */
6077 def.vd_flags = 0;
6078 def.vd_ndx = 2;
6079 def.vd_aux = sizeof (Elf_External_Verdef);
6080 if (verdefs)
6081 def.vd_next = (sizeof (Elf_External_Verdef)
6082 + sizeof (Elf_External_Verdaux));
6083 else
6084 def.vd_next = 0;
6085 _bfd_elf_swap_verdef_out (output_bfd, &def,
6086 (Elf_External_Verdef *) p);
6087 p += sizeof (Elf_External_Verdef);
6088 }
6089 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6090 (Elf_External_Verdaux *) p);
6091 p += sizeof (Elf_External_Verdaux);
6092
6093 for (t = verdefs; t != NULL; t = t->next)
6094 {
6095 unsigned int cdeps;
6096 struct bfd_elf_version_deps *n;
6097
6098 /* Don't emit the base version twice. */
6099 if (t->vernum == 0)
6100 continue;
6101
6102 cdeps = 0;
6103 for (n = t->deps; n != NULL; n = n->next)
6104 ++cdeps;
6105
6106 /* Add a symbol representing this version. */
6107 bh = NULL;
6108 if (! (_bfd_generic_link_add_one_symbol
6109 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6110 0, NULL, FALSE,
6111 get_elf_backend_data (dynobj)->collect, &bh)))
6112 return FALSE;
6113 h = (struct elf_link_hash_entry *) bh;
6114 h->non_elf = 0;
6115 h->def_regular = 1;
6116 h->type = STT_OBJECT;
6117 h->verinfo.vertree = t;
6118
6119 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6120 return FALSE;
6121
6122 def.vd_version = VER_DEF_CURRENT;
6123 def.vd_flags = 0;
6124 if (t->globals.list == NULL
6125 && t->locals.list == NULL
6126 && ! t->used)
6127 def.vd_flags |= VER_FLG_WEAK;
6128 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6129 def.vd_cnt = cdeps + 1;
6130 def.vd_hash = bfd_elf_hash (t->name);
6131 def.vd_aux = sizeof (Elf_External_Verdef);
6132 def.vd_next = 0;
6133
6134 /* If a basever node is next, it *must* be the last node in
6135 the chain, otherwise Verdef construction breaks. */
6136 if (t->next != NULL && t->next->vernum == 0)
6137 BFD_ASSERT (t->next->next == NULL);
6138
6139 if (t->next != NULL && t->next->vernum != 0)
6140 def.vd_next = (sizeof (Elf_External_Verdef)
6141 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6142
6143 _bfd_elf_swap_verdef_out (output_bfd, &def,
6144 (Elf_External_Verdef *) p);
6145 p += sizeof (Elf_External_Verdef);
6146
6147 defaux.vda_name = h->dynstr_index;
6148 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6149 h->dynstr_index);
6150 defaux.vda_next = 0;
6151 if (t->deps != NULL)
6152 defaux.vda_next = sizeof (Elf_External_Verdaux);
6153 t->name_indx = defaux.vda_name;
6154
6155 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6156 (Elf_External_Verdaux *) p);
6157 p += sizeof (Elf_External_Verdaux);
6158
6159 for (n = t->deps; n != NULL; n = n->next)
6160 {
6161 if (n->version_needed == NULL)
6162 {
6163 /* This can happen if there was an error in the
6164 version script. */
6165 defaux.vda_name = 0;
6166 }
6167 else
6168 {
6169 defaux.vda_name = n->version_needed->name_indx;
6170 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6171 defaux.vda_name);
6172 }
6173 if (n->next == NULL)
6174 defaux.vda_next = 0;
6175 else
6176 defaux.vda_next = sizeof (Elf_External_Verdaux);
6177
6178 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6179 (Elf_External_Verdaux *) p);
6180 p += sizeof (Elf_External_Verdaux);
6181 }
6182 }
6183
6184 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6185 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6186 return FALSE;
6187
6188 elf_tdata (output_bfd)->cverdefs = cdefs;
6189 }
6190
6191 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6192 {
6193 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6194 return FALSE;
6195 }
6196 else if (info->flags & DF_BIND_NOW)
6197 {
6198 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6199 return FALSE;
6200 }
6201
6202 if (info->flags_1)
6203 {
6204 if (info->executable)
6205 info->flags_1 &= ~ (DF_1_INITFIRST
6206 | DF_1_NODELETE
6207 | DF_1_NOOPEN);
6208 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6209 return FALSE;
6210 }
6211
6212 /* Work out the size of the version reference section. */
6213
6214 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6215 BFD_ASSERT (s != NULL);
6216 {
6217 struct elf_find_verdep_info sinfo;
6218
6219 sinfo.info = info;
6220 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6221 if (sinfo.vers == 0)
6222 sinfo.vers = 1;
6223 sinfo.failed = FALSE;
6224
6225 elf_link_hash_traverse (elf_hash_table (info),
6226 _bfd_elf_link_find_version_dependencies,
6227 &sinfo);
6228 if (sinfo.failed)
6229 return FALSE;
6230
6231 if (elf_tdata (output_bfd)->verref == NULL)
6232 s->flags |= SEC_EXCLUDE;
6233 else
6234 {
6235 Elf_Internal_Verneed *t;
6236 unsigned int size;
6237 unsigned int crefs;
6238 bfd_byte *p;
6239
6240 /* Build the version dependency section. */
6241 size = 0;
6242 crefs = 0;
6243 for (t = elf_tdata (output_bfd)->verref;
6244 t != NULL;
6245 t = t->vn_nextref)
6246 {
6247 Elf_Internal_Vernaux *a;
6248
6249 size += sizeof (Elf_External_Verneed);
6250 ++crefs;
6251 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6252 size += sizeof (Elf_External_Vernaux);
6253 }
6254
6255 s->size = size;
6256 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6257 if (s->contents == NULL)
6258 return FALSE;
6259
6260 p = s->contents;
6261 for (t = elf_tdata (output_bfd)->verref;
6262 t != NULL;
6263 t = t->vn_nextref)
6264 {
6265 unsigned int caux;
6266 Elf_Internal_Vernaux *a;
6267 bfd_size_type indx;
6268
6269 caux = 0;
6270 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6271 ++caux;
6272
6273 t->vn_version = VER_NEED_CURRENT;
6274 t->vn_cnt = caux;
6275 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 elf_dt_name (t->vn_bfd) != NULL
6277 ? elf_dt_name (t->vn_bfd)
6278 : lbasename (t->vn_bfd->filename),
6279 FALSE);
6280 if (indx == (bfd_size_type) -1)
6281 return FALSE;
6282 t->vn_file = indx;
6283 t->vn_aux = sizeof (Elf_External_Verneed);
6284 if (t->vn_nextref == NULL)
6285 t->vn_next = 0;
6286 else
6287 t->vn_next = (sizeof (Elf_External_Verneed)
6288 + caux * sizeof (Elf_External_Vernaux));
6289
6290 _bfd_elf_swap_verneed_out (output_bfd, t,
6291 (Elf_External_Verneed *) p);
6292 p += sizeof (Elf_External_Verneed);
6293
6294 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6295 {
6296 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6297 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6298 a->vna_nodename, FALSE);
6299 if (indx == (bfd_size_type) -1)
6300 return FALSE;
6301 a->vna_name = indx;
6302 if (a->vna_nextptr == NULL)
6303 a->vna_next = 0;
6304 else
6305 a->vna_next = sizeof (Elf_External_Vernaux);
6306
6307 _bfd_elf_swap_vernaux_out (output_bfd, a,
6308 (Elf_External_Vernaux *) p);
6309 p += sizeof (Elf_External_Vernaux);
6310 }
6311 }
6312
6313 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6314 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6315 return FALSE;
6316
6317 elf_tdata (output_bfd)->cverrefs = crefs;
6318 }
6319 }
6320
6321 if ((elf_tdata (output_bfd)->cverrefs == 0
6322 && elf_tdata (output_bfd)->cverdefs == 0)
6323 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6324 &section_sym_count) == 0)
6325 {
6326 s = bfd_get_linker_section (dynobj, ".gnu.version");
6327 s->flags |= SEC_EXCLUDE;
6328 }
6329 }
6330 return TRUE;
6331 }
6332
6333 /* Find the first non-excluded output section. We'll use its
6334 section symbol for some emitted relocs. */
6335 void
6336 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6337 {
6338 asection *s;
6339
6340 for (s = output_bfd->sections; s != NULL; s = s->next)
6341 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6342 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6343 {
6344 elf_hash_table (info)->text_index_section = s;
6345 break;
6346 }
6347 }
6348
6349 /* Find two non-excluded output sections, one for code, one for data.
6350 We'll use their section symbols for some emitted relocs. */
6351 void
6352 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6353 {
6354 asection *s;
6355
6356 /* Data first, since setting text_index_section changes
6357 _bfd_elf_link_omit_section_dynsym. */
6358 for (s = output_bfd->sections; s != NULL; s = s->next)
6359 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6360 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6361 {
6362 elf_hash_table (info)->data_index_section = s;
6363 break;
6364 }
6365
6366 for (s = output_bfd->sections; s != NULL; s = s->next)
6367 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6368 == (SEC_ALLOC | SEC_READONLY))
6369 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6370 {
6371 elf_hash_table (info)->text_index_section = s;
6372 break;
6373 }
6374
6375 if (elf_hash_table (info)->text_index_section == NULL)
6376 elf_hash_table (info)->text_index_section
6377 = elf_hash_table (info)->data_index_section;
6378 }
6379
6380 bfd_boolean
6381 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6382 {
6383 const struct elf_backend_data *bed;
6384
6385 if (!is_elf_hash_table (info->hash))
6386 return TRUE;
6387
6388 bed = get_elf_backend_data (output_bfd);
6389 (*bed->elf_backend_init_index_section) (output_bfd, info);
6390
6391 if (elf_hash_table (info)->dynamic_sections_created)
6392 {
6393 bfd *dynobj;
6394 asection *s;
6395 bfd_size_type dynsymcount;
6396 unsigned long section_sym_count;
6397 unsigned int dtagcount;
6398
6399 dynobj = elf_hash_table (info)->dynobj;
6400
6401 /* Assign dynsym indicies. In a shared library we generate a
6402 section symbol for each output section, which come first.
6403 Next come all of the back-end allocated local dynamic syms,
6404 followed by the rest of the global symbols. */
6405
6406 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6407 &section_sym_count);
6408
6409 /* Work out the size of the symbol version section. */
6410 s = bfd_get_linker_section (dynobj, ".gnu.version");
6411 BFD_ASSERT (s != NULL);
6412 if (dynsymcount != 0
6413 && (s->flags & SEC_EXCLUDE) == 0)
6414 {
6415 s->size = dynsymcount * sizeof (Elf_External_Versym);
6416 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6417 if (s->contents == NULL)
6418 return FALSE;
6419
6420 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6421 return FALSE;
6422 }
6423
6424 /* Set the size of the .dynsym and .hash sections. We counted
6425 the number of dynamic symbols in elf_link_add_object_symbols.
6426 We will build the contents of .dynsym and .hash when we build
6427 the final symbol table, because until then we do not know the
6428 correct value to give the symbols. We built the .dynstr
6429 section as we went along in elf_link_add_object_symbols. */
6430 s = bfd_get_linker_section (dynobj, ".dynsym");
6431 BFD_ASSERT (s != NULL);
6432 s->size = dynsymcount * bed->s->sizeof_sym;
6433
6434 if (dynsymcount != 0)
6435 {
6436 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6437 if (s->contents == NULL)
6438 return FALSE;
6439
6440 /* The first entry in .dynsym is a dummy symbol.
6441 Clear all the section syms, in case we don't output them all. */
6442 ++section_sym_count;
6443 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6444 }
6445
6446 elf_hash_table (info)->bucketcount = 0;
6447
6448 /* Compute the size of the hashing table. As a side effect this
6449 computes the hash values for all the names we export. */
6450 if (info->emit_hash)
6451 {
6452 unsigned long int *hashcodes;
6453 struct hash_codes_info hashinf;
6454 bfd_size_type amt;
6455 unsigned long int nsyms;
6456 size_t bucketcount;
6457 size_t hash_entry_size;
6458
6459 /* Compute the hash values for all exported symbols. At the same
6460 time store the values in an array so that we could use them for
6461 optimizations. */
6462 amt = dynsymcount * sizeof (unsigned long int);
6463 hashcodes = (unsigned long int *) bfd_malloc (amt);
6464 if (hashcodes == NULL)
6465 return FALSE;
6466 hashinf.hashcodes = hashcodes;
6467 hashinf.error = FALSE;
6468
6469 /* Put all hash values in HASHCODES. */
6470 elf_link_hash_traverse (elf_hash_table (info),
6471 elf_collect_hash_codes, &hashinf);
6472 if (hashinf.error)
6473 {
6474 free (hashcodes);
6475 return FALSE;
6476 }
6477
6478 nsyms = hashinf.hashcodes - hashcodes;
6479 bucketcount
6480 = compute_bucket_count (info, hashcodes, nsyms, 0);
6481 free (hashcodes);
6482
6483 if (bucketcount == 0)
6484 return FALSE;
6485
6486 elf_hash_table (info)->bucketcount = bucketcount;
6487
6488 s = bfd_get_linker_section (dynobj, ".hash");
6489 BFD_ASSERT (s != NULL);
6490 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6491 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6492 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6493 if (s->contents == NULL)
6494 return FALSE;
6495
6496 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6497 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6498 s->contents + hash_entry_size);
6499 }
6500
6501 if (info->emit_gnu_hash)
6502 {
6503 size_t i, cnt;
6504 unsigned char *contents;
6505 struct collect_gnu_hash_codes cinfo;
6506 bfd_size_type amt;
6507 size_t bucketcount;
6508
6509 memset (&cinfo, 0, sizeof (cinfo));
6510
6511 /* Compute the hash values for all exported symbols. At the same
6512 time store the values in an array so that we could use them for
6513 optimizations. */
6514 amt = dynsymcount * 2 * sizeof (unsigned long int);
6515 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6516 if (cinfo.hashcodes == NULL)
6517 return FALSE;
6518
6519 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6520 cinfo.min_dynindx = -1;
6521 cinfo.output_bfd = output_bfd;
6522 cinfo.bed = bed;
6523
6524 /* Put all hash values in HASHCODES. */
6525 elf_link_hash_traverse (elf_hash_table (info),
6526 elf_collect_gnu_hash_codes, &cinfo);
6527 if (cinfo.error)
6528 {
6529 free (cinfo.hashcodes);
6530 return FALSE;
6531 }
6532
6533 bucketcount
6534 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6535
6536 if (bucketcount == 0)
6537 {
6538 free (cinfo.hashcodes);
6539 return FALSE;
6540 }
6541
6542 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6543 BFD_ASSERT (s != NULL);
6544
6545 if (cinfo.nsyms == 0)
6546 {
6547 /* Empty .gnu.hash section is special. */
6548 BFD_ASSERT (cinfo.min_dynindx == -1);
6549 free (cinfo.hashcodes);
6550 s->size = 5 * 4 + bed->s->arch_size / 8;
6551 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6552 if (contents == NULL)
6553 return FALSE;
6554 s->contents = contents;
6555 /* 1 empty bucket. */
6556 bfd_put_32 (output_bfd, 1, contents);
6557 /* SYMIDX above the special symbol 0. */
6558 bfd_put_32 (output_bfd, 1, contents + 4);
6559 /* Just one word for bitmask. */
6560 bfd_put_32 (output_bfd, 1, contents + 8);
6561 /* Only hash fn bloom filter. */
6562 bfd_put_32 (output_bfd, 0, contents + 12);
6563 /* No hashes are valid - empty bitmask. */
6564 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6565 /* No hashes in the only bucket. */
6566 bfd_put_32 (output_bfd, 0,
6567 contents + 16 + bed->s->arch_size / 8);
6568 }
6569 else
6570 {
6571 unsigned long int maskwords, maskbitslog2, x;
6572 BFD_ASSERT (cinfo.min_dynindx != -1);
6573
6574 x = cinfo.nsyms;
6575 maskbitslog2 = 1;
6576 while ((x >>= 1) != 0)
6577 ++maskbitslog2;
6578 if (maskbitslog2 < 3)
6579 maskbitslog2 = 5;
6580 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6581 maskbitslog2 = maskbitslog2 + 3;
6582 else
6583 maskbitslog2 = maskbitslog2 + 2;
6584 if (bed->s->arch_size == 64)
6585 {
6586 if (maskbitslog2 == 5)
6587 maskbitslog2 = 6;
6588 cinfo.shift1 = 6;
6589 }
6590 else
6591 cinfo.shift1 = 5;
6592 cinfo.mask = (1 << cinfo.shift1) - 1;
6593 cinfo.shift2 = maskbitslog2;
6594 cinfo.maskbits = 1 << maskbitslog2;
6595 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6596 amt = bucketcount * sizeof (unsigned long int) * 2;
6597 amt += maskwords * sizeof (bfd_vma);
6598 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6599 if (cinfo.bitmask == NULL)
6600 {
6601 free (cinfo.hashcodes);
6602 return FALSE;
6603 }
6604
6605 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6606 cinfo.indx = cinfo.counts + bucketcount;
6607 cinfo.symindx = dynsymcount - cinfo.nsyms;
6608 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6609
6610 /* Determine how often each hash bucket is used. */
6611 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6612 for (i = 0; i < cinfo.nsyms; ++i)
6613 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6614
6615 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6616 if (cinfo.counts[i] != 0)
6617 {
6618 cinfo.indx[i] = cnt;
6619 cnt += cinfo.counts[i];
6620 }
6621 BFD_ASSERT (cnt == dynsymcount);
6622 cinfo.bucketcount = bucketcount;
6623 cinfo.local_indx = cinfo.min_dynindx;
6624
6625 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6626 s->size += cinfo.maskbits / 8;
6627 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6628 if (contents == NULL)
6629 {
6630 free (cinfo.bitmask);
6631 free (cinfo.hashcodes);
6632 return FALSE;
6633 }
6634
6635 s->contents = contents;
6636 bfd_put_32 (output_bfd, bucketcount, contents);
6637 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6638 bfd_put_32 (output_bfd, maskwords, contents + 8);
6639 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6640 contents += 16 + cinfo.maskbits / 8;
6641
6642 for (i = 0; i < bucketcount; ++i)
6643 {
6644 if (cinfo.counts[i] == 0)
6645 bfd_put_32 (output_bfd, 0, contents);
6646 else
6647 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6648 contents += 4;
6649 }
6650
6651 cinfo.contents = contents;
6652
6653 /* Renumber dynamic symbols, populate .gnu.hash section. */
6654 elf_link_hash_traverse (elf_hash_table (info),
6655 elf_renumber_gnu_hash_syms, &cinfo);
6656
6657 contents = s->contents + 16;
6658 for (i = 0; i < maskwords; ++i)
6659 {
6660 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6661 contents);
6662 contents += bed->s->arch_size / 8;
6663 }
6664
6665 free (cinfo.bitmask);
6666 free (cinfo.hashcodes);
6667 }
6668 }
6669
6670 s = bfd_get_linker_section (dynobj, ".dynstr");
6671 BFD_ASSERT (s != NULL);
6672
6673 elf_finalize_dynstr (output_bfd, info);
6674
6675 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6676
6677 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6678 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6679 return FALSE;
6680 }
6681
6682 return TRUE;
6683 }
6684 \f
6685 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6686
6687 static void
6688 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6689 asection *sec)
6690 {
6691 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6692 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6693 }
6694
6695 /* Finish SHF_MERGE section merging. */
6696
6697 bfd_boolean
6698 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6699 {
6700 bfd *ibfd;
6701 asection *sec;
6702
6703 if (!is_elf_hash_table (info->hash))
6704 return FALSE;
6705
6706 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6707 if ((ibfd->flags & DYNAMIC) == 0)
6708 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6709 if ((sec->flags & SEC_MERGE) != 0
6710 && !bfd_is_abs_section (sec->output_section))
6711 {
6712 struct bfd_elf_section_data *secdata;
6713
6714 secdata = elf_section_data (sec);
6715 if (! _bfd_add_merge_section (abfd,
6716 &elf_hash_table (info)->merge_info,
6717 sec, &secdata->sec_info))
6718 return FALSE;
6719 else if (secdata->sec_info)
6720 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6721 }
6722
6723 if (elf_hash_table (info)->merge_info != NULL)
6724 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6725 merge_sections_remove_hook);
6726 return TRUE;
6727 }
6728
6729 /* Create an entry in an ELF linker hash table. */
6730
6731 struct bfd_hash_entry *
6732 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6733 struct bfd_hash_table *table,
6734 const char *string)
6735 {
6736 /* Allocate the structure if it has not already been allocated by a
6737 subclass. */
6738 if (entry == NULL)
6739 {
6740 entry = (struct bfd_hash_entry *)
6741 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6742 if (entry == NULL)
6743 return entry;
6744 }
6745
6746 /* Call the allocation method of the superclass. */
6747 entry = _bfd_link_hash_newfunc (entry, table, string);
6748 if (entry != NULL)
6749 {
6750 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6751 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6752
6753 /* Set local fields. */
6754 ret->indx = -1;
6755 ret->dynindx = -1;
6756 ret->got = htab->init_got_refcount;
6757 ret->plt = htab->init_plt_refcount;
6758 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6759 - offsetof (struct elf_link_hash_entry, size)));
6760 /* Assume that we have been called by a non-ELF symbol reader.
6761 This flag is then reset by the code which reads an ELF input
6762 file. This ensures that a symbol created by a non-ELF symbol
6763 reader will have the flag set correctly. */
6764 ret->non_elf = 1;
6765 }
6766
6767 return entry;
6768 }
6769
6770 /* Copy data from an indirect symbol to its direct symbol, hiding the
6771 old indirect symbol. Also used for copying flags to a weakdef. */
6772
6773 void
6774 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6775 struct elf_link_hash_entry *dir,
6776 struct elf_link_hash_entry *ind)
6777 {
6778 struct elf_link_hash_table *htab;
6779
6780 /* Copy down any references that we may have already seen to the
6781 symbol which just became indirect. */
6782
6783 dir->ref_dynamic |= ind->ref_dynamic;
6784 dir->ref_regular |= ind->ref_regular;
6785 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6786 dir->non_got_ref |= ind->non_got_ref;
6787 dir->needs_plt |= ind->needs_plt;
6788 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6789
6790 if (ind->root.type != bfd_link_hash_indirect)
6791 return;
6792
6793 /* Copy over the global and procedure linkage table refcount entries.
6794 These may have been already set up by a check_relocs routine. */
6795 htab = elf_hash_table (info);
6796 if (ind->got.refcount > htab->init_got_refcount.refcount)
6797 {
6798 if (dir->got.refcount < 0)
6799 dir->got.refcount = 0;
6800 dir->got.refcount += ind->got.refcount;
6801 ind->got.refcount = htab->init_got_refcount.refcount;
6802 }
6803
6804 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6805 {
6806 if (dir->plt.refcount < 0)
6807 dir->plt.refcount = 0;
6808 dir->plt.refcount += ind->plt.refcount;
6809 ind->plt.refcount = htab->init_plt_refcount.refcount;
6810 }
6811
6812 if (ind->dynindx != -1)
6813 {
6814 if (dir->dynindx != -1)
6815 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6816 dir->dynindx = ind->dynindx;
6817 dir->dynstr_index = ind->dynstr_index;
6818 ind->dynindx = -1;
6819 ind->dynstr_index = 0;
6820 }
6821 }
6822
6823 void
6824 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6825 struct elf_link_hash_entry *h,
6826 bfd_boolean force_local)
6827 {
6828 /* STT_GNU_IFUNC symbol must go through PLT. */
6829 if (h->type != STT_GNU_IFUNC)
6830 {
6831 h->plt = elf_hash_table (info)->init_plt_offset;
6832 h->needs_plt = 0;
6833 }
6834 if (force_local)
6835 {
6836 h->forced_local = 1;
6837 if (h->dynindx != -1)
6838 {
6839 h->dynindx = -1;
6840 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6841 h->dynstr_index);
6842 }
6843 }
6844 }
6845
6846 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6847 caller. */
6848
6849 bfd_boolean
6850 _bfd_elf_link_hash_table_init
6851 (struct elf_link_hash_table *table,
6852 bfd *abfd,
6853 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6854 struct bfd_hash_table *,
6855 const char *),
6856 unsigned int entsize,
6857 enum elf_target_id target_id)
6858 {
6859 bfd_boolean ret;
6860 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6861
6862 table->init_got_refcount.refcount = can_refcount - 1;
6863 table->init_plt_refcount.refcount = can_refcount - 1;
6864 table->init_got_offset.offset = -(bfd_vma) 1;
6865 table->init_plt_offset.offset = -(bfd_vma) 1;
6866 /* The first dynamic symbol is a dummy. */
6867 table->dynsymcount = 1;
6868
6869 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6870
6871 table->root.type = bfd_link_elf_hash_table;
6872 table->hash_table_id = target_id;
6873
6874 return ret;
6875 }
6876
6877 /* Create an ELF linker hash table. */
6878
6879 struct bfd_link_hash_table *
6880 _bfd_elf_link_hash_table_create (bfd *abfd)
6881 {
6882 struct elf_link_hash_table *ret;
6883 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6884
6885 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6886 if (ret == NULL)
6887 return NULL;
6888
6889 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6890 sizeof (struct elf_link_hash_entry),
6891 GENERIC_ELF_DATA))
6892 {
6893 free (ret);
6894 return NULL;
6895 }
6896
6897 return &ret->root;
6898 }
6899
6900 /* Destroy an ELF linker hash table. */
6901
6902 void
6903 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6904 {
6905 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6906 if (htab->dynstr != NULL)
6907 _bfd_elf_strtab_free (htab->dynstr);
6908 _bfd_merge_sections_free (htab->merge_info);
6909 _bfd_generic_link_hash_table_free (hash);
6910 }
6911
6912 /* This is a hook for the ELF emulation code in the generic linker to
6913 tell the backend linker what file name to use for the DT_NEEDED
6914 entry for a dynamic object. */
6915
6916 void
6917 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6918 {
6919 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6920 && bfd_get_format (abfd) == bfd_object)
6921 elf_dt_name (abfd) = name;
6922 }
6923
6924 int
6925 bfd_elf_get_dyn_lib_class (bfd *abfd)
6926 {
6927 int lib_class;
6928 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6929 && bfd_get_format (abfd) == bfd_object)
6930 lib_class = elf_dyn_lib_class (abfd);
6931 else
6932 lib_class = 0;
6933 return lib_class;
6934 }
6935
6936 void
6937 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6938 {
6939 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6940 && bfd_get_format (abfd) == bfd_object)
6941 elf_dyn_lib_class (abfd) = lib_class;
6942 }
6943
6944 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6945 the linker ELF emulation code. */
6946
6947 struct bfd_link_needed_list *
6948 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6949 struct bfd_link_info *info)
6950 {
6951 if (! is_elf_hash_table (info->hash))
6952 return NULL;
6953 return elf_hash_table (info)->needed;
6954 }
6955
6956 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6957 hook for the linker ELF emulation code. */
6958
6959 struct bfd_link_needed_list *
6960 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6961 struct bfd_link_info *info)
6962 {
6963 if (! is_elf_hash_table (info->hash))
6964 return NULL;
6965 return elf_hash_table (info)->runpath;
6966 }
6967
6968 /* Get the name actually used for a dynamic object for a link. This
6969 is the SONAME entry if there is one. Otherwise, it is the string
6970 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6971
6972 const char *
6973 bfd_elf_get_dt_soname (bfd *abfd)
6974 {
6975 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6976 && bfd_get_format (abfd) == bfd_object)
6977 return elf_dt_name (abfd);
6978 return NULL;
6979 }
6980
6981 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6982 the ELF linker emulation code. */
6983
6984 bfd_boolean
6985 bfd_elf_get_bfd_needed_list (bfd *abfd,
6986 struct bfd_link_needed_list **pneeded)
6987 {
6988 asection *s;
6989 bfd_byte *dynbuf = NULL;
6990 unsigned int elfsec;
6991 unsigned long shlink;
6992 bfd_byte *extdyn, *extdynend;
6993 size_t extdynsize;
6994 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6995
6996 *pneeded = NULL;
6997
6998 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6999 || bfd_get_format (abfd) != bfd_object)
7000 return TRUE;
7001
7002 s = bfd_get_section_by_name (abfd, ".dynamic");
7003 if (s == NULL || s->size == 0)
7004 return TRUE;
7005
7006 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7007 goto error_return;
7008
7009 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7010 if (elfsec == SHN_BAD)
7011 goto error_return;
7012
7013 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7014
7015 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7016 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7017
7018 extdyn = dynbuf;
7019 extdynend = extdyn + s->size;
7020 for (; extdyn < extdynend; extdyn += extdynsize)
7021 {
7022 Elf_Internal_Dyn dyn;
7023
7024 (*swap_dyn_in) (abfd, extdyn, &dyn);
7025
7026 if (dyn.d_tag == DT_NULL)
7027 break;
7028
7029 if (dyn.d_tag == DT_NEEDED)
7030 {
7031 const char *string;
7032 struct bfd_link_needed_list *l;
7033 unsigned int tagv = dyn.d_un.d_val;
7034 bfd_size_type amt;
7035
7036 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7037 if (string == NULL)
7038 goto error_return;
7039
7040 amt = sizeof *l;
7041 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7042 if (l == NULL)
7043 goto error_return;
7044
7045 l->by = abfd;
7046 l->name = string;
7047 l->next = *pneeded;
7048 *pneeded = l;
7049 }
7050 }
7051
7052 free (dynbuf);
7053
7054 return TRUE;
7055
7056 error_return:
7057 if (dynbuf != NULL)
7058 free (dynbuf);
7059 return FALSE;
7060 }
7061
7062 struct elf_symbuf_symbol
7063 {
7064 unsigned long st_name; /* Symbol name, index in string tbl */
7065 unsigned char st_info; /* Type and binding attributes */
7066 unsigned char st_other; /* Visibilty, and target specific */
7067 };
7068
7069 struct elf_symbuf_head
7070 {
7071 struct elf_symbuf_symbol *ssym;
7072 bfd_size_type count;
7073 unsigned int st_shndx;
7074 };
7075
7076 struct elf_symbol
7077 {
7078 union
7079 {
7080 Elf_Internal_Sym *isym;
7081 struct elf_symbuf_symbol *ssym;
7082 } u;
7083 const char *name;
7084 };
7085
7086 /* Sort references to symbols by ascending section number. */
7087
7088 static int
7089 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7090 {
7091 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7092 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7093
7094 return s1->st_shndx - s2->st_shndx;
7095 }
7096
7097 static int
7098 elf_sym_name_compare (const void *arg1, const void *arg2)
7099 {
7100 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7101 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7102 return strcmp (s1->name, s2->name);
7103 }
7104
7105 static struct elf_symbuf_head *
7106 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7107 {
7108 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7109 struct elf_symbuf_symbol *ssym;
7110 struct elf_symbuf_head *ssymbuf, *ssymhead;
7111 bfd_size_type i, shndx_count, total_size;
7112
7113 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7114 if (indbuf == NULL)
7115 return NULL;
7116
7117 for (ind = indbuf, i = 0; i < symcount; i++)
7118 if (isymbuf[i].st_shndx != SHN_UNDEF)
7119 *ind++ = &isymbuf[i];
7120 indbufend = ind;
7121
7122 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7123 elf_sort_elf_symbol);
7124
7125 shndx_count = 0;
7126 if (indbufend > indbuf)
7127 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7128 if (ind[0]->st_shndx != ind[1]->st_shndx)
7129 shndx_count++;
7130
7131 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7132 + (indbufend - indbuf) * sizeof (*ssym));
7133 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7134 if (ssymbuf == NULL)
7135 {
7136 free (indbuf);
7137 return NULL;
7138 }
7139
7140 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7141 ssymbuf->ssym = NULL;
7142 ssymbuf->count = shndx_count;
7143 ssymbuf->st_shndx = 0;
7144 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7145 {
7146 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7147 {
7148 ssymhead++;
7149 ssymhead->ssym = ssym;
7150 ssymhead->count = 0;
7151 ssymhead->st_shndx = (*ind)->st_shndx;
7152 }
7153 ssym->st_name = (*ind)->st_name;
7154 ssym->st_info = (*ind)->st_info;
7155 ssym->st_other = (*ind)->st_other;
7156 ssymhead->count++;
7157 }
7158 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7159 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7160 == total_size));
7161
7162 free (indbuf);
7163 return ssymbuf;
7164 }
7165
7166 /* Check if 2 sections define the same set of local and global
7167 symbols. */
7168
7169 static bfd_boolean
7170 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7171 struct bfd_link_info *info)
7172 {
7173 bfd *bfd1, *bfd2;
7174 const struct elf_backend_data *bed1, *bed2;
7175 Elf_Internal_Shdr *hdr1, *hdr2;
7176 bfd_size_type symcount1, symcount2;
7177 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7178 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7179 Elf_Internal_Sym *isym, *isymend;
7180 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7181 bfd_size_type count1, count2, i;
7182 unsigned int shndx1, shndx2;
7183 bfd_boolean result;
7184
7185 bfd1 = sec1->owner;
7186 bfd2 = sec2->owner;
7187
7188 /* Both sections have to be in ELF. */
7189 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7190 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7191 return FALSE;
7192
7193 if (elf_section_type (sec1) != elf_section_type (sec2))
7194 return FALSE;
7195
7196 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7197 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7198 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7199 return FALSE;
7200
7201 bed1 = get_elf_backend_data (bfd1);
7202 bed2 = get_elf_backend_data (bfd2);
7203 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7204 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7205 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7206 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7207
7208 if (symcount1 == 0 || symcount2 == 0)
7209 return FALSE;
7210
7211 result = FALSE;
7212 isymbuf1 = NULL;
7213 isymbuf2 = NULL;
7214 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7215 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7216
7217 if (ssymbuf1 == NULL)
7218 {
7219 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7220 NULL, NULL, NULL);
7221 if (isymbuf1 == NULL)
7222 goto done;
7223
7224 if (!info->reduce_memory_overheads)
7225 elf_tdata (bfd1)->symbuf = ssymbuf1
7226 = elf_create_symbuf (symcount1, isymbuf1);
7227 }
7228
7229 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7230 {
7231 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7232 NULL, NULL, NULL);
7233 if (isymbuf2 == NULL)
7234 goto done;
7235
7236 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7237 elf_tdata (bfd2)->symbuf = ssymbuf2
7238 = elf_create_symbuf (symcount2, isymbuf2);
7239 }
7240
7241 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7242 {
7243 /* Optimized faster version. */
7244 bfd_size_type lo, hi, mid;
7245 struct elf_symbol *symp;
7246 struct elf_symbuf_symbol *ssym, *ssymend;
7247
7248 lo = 0;
7249 hi = ssymbuf1->count;
7250 ssymbuf1++;
7251 count1 = 0;
7252 while (lo < hi)
7253 {
7254 mid = (lo + hi) / 2;
7255 if (shndx1 < ssymbuf1[mid].st_shndx)
7256 hi = mid;
7257 else if (shndx1 > ssymbuf1[mid].st_shndx)
7258 lo = mid + 1;
7259 else
7260 {
7261 count1 = ssymbuf1[mid].count;
7262 ssymbuf1 += mid;
7263 break;
7264 }
7265 }
7266
7267 lo = 0;
7268 hi = ssymbuf2->count;
7269 ssymbuf2++;
7270 count2 = 0;
7271 while (lo < hi)
7272 {
7273 mid = (lo + hi) / 2;
7274 if (shndx2 < ssymbuf2[mid].st_shndx)
7275 hi = mid;
7276 else if (shndx2 > ssymbuf2[mid].st_shndx)
7277 lo = mid + 1;
7278 else
7279 {
7280 count2 = ssymbuf2[mid].count;
7281 ssymbuf2 += mid;
7282 break;
7283 }
7284 }
7285
7286 if (count1 == 0 || count2 == 0 || count1 != count2)
7287 goto done;
7288
7289 symtable1 = (struct elf_symbol *)
7290 bfd_malloc (count1 * sizeof (struct elf_symbol));
7291 symtable2 = (struct elf_symbol *)
7292 bfd_malloc (count2 * sizeof (struct elf_symbol));
7293 if (symtable1 == NULL || symtable2 == NULL)
7294 goto done;
7295
7296 symp = symtable1;
7297 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7298 ssym < ssymend; ssym++, symp++)
7299 {
7300 symp->u.ssym = ssym;
7301 symp->name = bfd_elf_string_from_elf_section (bfd1,
7302 hdr1->sh_link,
7303 ssym->st_name);
7304 }
7305
7306 symp = symtable2;
7307 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7308 ssym < ssymend; ssym++, symp++)
7309 {
7310 symp->u.ssym = ssym;
7311 symp->name = bfd_elf_string_from_elf_section (bfd2,
7312 hdr2->sh_link,
7313 ssym->st_name);
7314 }
7315
7316 /* Sort symbol by name. */
7317 qsort (symtable1, count1, sizeof (struct elf_symbol),
7318 elf_sym_name_compare);
7319 qsort (symtable2, count1, sizeof (struct elf_symbol),
7320 elf_sym_name_compare);
7321
7322 for (i = 0; i < count1; i++)
7323 /* Two symbols must have the same binding, type and name. */
7324 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7325 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7326 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7327 goto done;
7328
7329 result = TRUE;
7330 goto done;
7331 }
7332
7333 symtable1 = (struct elf_symbol *)
7334 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7335 symtable2 = (struct elf_symbol *)
7336 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7337 if (symtable1 == NULL || symtable2 == NULL)
7338 goto done;
7339
7340 /* Count definitions in the section. */
7341 count1 = 0;
7342 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7343 if (isym->st_shndx == shndx1)
7344 symtable1[count1++].u.isym = isym;
7345
7346 count2 = 0;
7347 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7348 if (isym->st_shndx == shndx2)
7349 symtable2[count2++].u.isym = isym;
7350
7351 if (count1 == 0 || count2 == 0 || count1 != count2)
7352 goto done;
7353
7354 for (i = 0; i < count1; i++)
7355 symtable1[i].name
7356 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7357 symtable1[i].u.isym->st_name);
7358
7359 for (i = 0; i < count2; i++)
7360 symtable2[i].name
7361 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7362 symtable2[i].u.isym->st_name);
7363
7364 /* Sort symbol by name. */
7365 qsort (symtable1, count1, sizeof (struct elf_symbol),
7366 elf_sym_name_compare);
7367 qsort (symtable2, count1, sizeof (struct elf_symbol),
7368 elf_sym_name_compare);
7369
7370 for (i = 0; i < count1; i++)
7371 /* Two symbols must have the same binding, type and name. */
7372 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7373 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7374 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7375 goto done;
7376
7377 result = TRUE;
7378
7379 done:
7380 if (symtable1)
7381 free (symtable1);
7382 if (symtable2)
7383 free (symtable2);
7384 if (isymbuf1)
7385 free (isymbuf1);
7386 if (isymbuf2)
7387 free (isymbuf2);
7388
7389 return result;
7390 }
7391
7392 /* Return TRUE if 2 section types are compatible. */
7393
7394 bfd_boolean
7395 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7396 bfd *bbfd, const asection *bsec)
7397 {
7398 if (asec == NULL
7399 || bsec == NULL
7400 || abfd->xvec->flavour != bfd_target_elf_flavour
7401 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7402 return TRUE;
7403
7404 return elf_section_type (asec) == elf_section_type (bsec);
7405 }
7406 \f
7407 /* Final phase of ELF linker. */
7408
7409 /* A structure we use to avoid passing large numbers of arguments. */
7410
7411 struct elf_final_link_info
7412 {
7413 /* General link information. */
7414 struct bfd_link_info *info;
7415 /* Output BFD. */
7416 bfd *output_bfd;
7417 /* Symbol string table. */
7418 struct bfd_strtab_hash *symstrtab;
7419 /* .dynsym section. */
7420 asection *dynsym_sec;
7421 /* .hash section. */
7422 asection *hash_sec;
7423 /* symbol version section (.gnu.version). */
7424 asection *symver_sec;
7425 /* Buffer large enough to hold contents of any section. */
7426 bfd_byte *contents;
7427 /* Buffer large enough to hold external relocs of any section. */
7428 void *external_relocs;
7429 /* Buffer large enough to hold internal relocs of any section. */
7430 Elf_Internal_Rela *internal_relocs;
7431 /* Buffer large enough to hold external local symbols of any input
7432 BFD. */
7433 bfd_byte *external_syms;
7434 /* And a buffer for symbol section indices. */
7435 Elf_External_Sym_Shndx *locsym_shndx;
7436 /* Buffer large enough to hold internal local symbols of any input
7437 BFD. */
7438 Elf_Internal_Sym *internal_syms;
7439 /* Array large enough to hold a symbol index for each local symbol
7440 of any input BFD. */
7441 long *indices;
7442 /* Array large enough to hold a section pointer for each local
7443 symbol of any input BFD. */
7444 asection **sections;
7445 /* Buffer to hold swapped out symbols. */
7446 bfd_byte *symbuf;
7447 /* And one for symbol section indices. */
7448 Elf_External_Sym_Shndx *symshndxbuf;
7449 /* Number of swapped out symbols in buffer. */
7450 size_t symbuf_count;
7451 /* Number of symbols which fit in symbuf. */
7452 size_t symbuf_size;
7453 /* And same for symshndxbuf. */
7454 size_t shndxbuf_size;
7455 /* Number of STT_FILE syms seen. */
7456 size_t filesym_count;
7457 };
7458
7459 /* This struct is used to pass information to elf_link_output_extsym. */
7460
7461 struct elf_outext_info
7462 {
7463 bfd_boolean failed;
7464 bfd_boolean localsyms;
7465 bfd_boolean need_second_pass;
7466 bfd_boolean second_pass;
7467 struct elf_final_link_info *flinfo;
7468 };
7469
7470
7471 /* Support for evaluating a complex relocation.
7472
7473 Complex relocations are generalized, self-describing relocations. The
7474 implementation of them consists of two parts: complex symbols, and the
7475 relocations themselves.
7476
7477 The relocations are use a reserved elf-wide relocation type code (R_RELC
7478 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7479 information (start bit, end bit, word width, etc) into the addend. This
7480 information is extracted from CGEN-generated operand tables within gas.
7481
7482 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7483 internal) representing prefix-notation expressions, including but not
7484 limited to those sorts of expressions normally encoded as addends in the
7485 addend field. The symbol mangling format is:
7486
7487 <node> := <literal>
7488 | <unary-operator> ':' <node>
7489 | <binary-operator> ':' <node> ':' <node>
7490 ;
7491
7492 <literal> := 's' <digits=N> ':' <N character symbol name>
7493 | 'S' <digits=N> ':' <N character section name>
7494 | '#' <hexdigits>
7495 ;
7496
7497 <binary-operator> := as in C
7498 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7499
7500 static void
7501 set_symbol_value (bfd *bfd_with_globals,
7502 Elf_Internal_Sym *isymbuf,
7503 size_t locsymcount,
7504 size_t symidx,
7505 bfd_vma val)
7506 {
7507 struct elf_link_hash_entry **sym_hashes;
7508 struct elf_link_hash_entry *h;
7509 size_t extsymoff = locsymcount;
7510
7511 if (symidx < locsymcount)
7512 {
7513 Elf_Internal_Sym *sym;
7514
7515 sym = isymbuf + symidx;
7516 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7517 {
7518 /* It is a local symbol: move it to the
7519 "absolute" section and give it a value. */
7520 sym->st_shndx = SHN_ABS;
7521 sym->st_value = val;
7522 return;
7523 }
7524 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7525 extsymoff = 0;
7526 }
7527
7528 /* It is a global symbol: set its link type
7529 to "defined" and give it a value. */
7530
7531 sym_hashes = elf_sym_hashes (bfd_with_globals);
7532 h = sym_hashes [symidx - extsymoff];
7533 while (h->root.type == bfd_link_hash_indirect
7534 || h->root.type == bfd_link_hash_warning)
7535 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7536 h->root.type = bfd_link_hash_defined;
7537 h->root.u.def.value = val;
7538 h->root.u.def.section = bfd_abs_section_ptr;
7539 }
7540
7541 static bfd_boolean
7542 resolve_symbol (const char *name,
7543 bfd *input_bfd,
7544 struct elf_final_link_info *flinfo,
7545 bfd_vma *result,
7546 Elf_Internal_Sym *isymbuf,
7547 size_t locsymcount)
7548 {
7549 Elf_Internal_Sym *sym;
7550 struct bfd_link_hash_entry *global_entry;
7551 const char *candidate = NULL;
7552 Elf_Internal_Shdr *symtab_hdr;
7553 size_t i;
7554
7555 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7556
7557 for (i = 0; i < locsymcount; ++ i)
7558 {
7559 sym = isymbuf + i;
7560
7561 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7562 continue;
7563
7564 candidate = bfd_elf_string_from_elf_section (input_bfd,
7565 symtab_hdr->sh_link,
7566 sym->st_name);
7567 #ifdef DEBUG
7568 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7569 name, candidate, (unsigned long) sym->st_value);
7570 #endif
7571 if (candidate && strcmp (candidate, name) == 0)
7572 {
7573 asection *sec = flinfo->sections [i];
7574
7575 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7576 *result += sec->output_offset + sec->output_section->vma;
7577 #ifdef DEBUG
7578 printf ("Found symbol with value %8.8lx\n",
7579 (unsigned long) *result);
7580 #endif
7581 return TRUE;
7582 }
7583 }
7584
7585 /* Hmm, haven't found it yet. perhaps it is a global. */
7586 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7587 FALSE, FALSE, TRUE);
7588 if (!global_entry)
7589 return FALSE;
7590
7591 if (global_entry->type == bfd_link_hash_defined
7592 || global_entry->type == bfd_link_hash_defweak)
7593 {
7594 *result = (global_entry->u.def.value
7595 + global_entry->u.def.section->output_section->vma
7596 + global_entry->u.def.section->output_offset);
7597 #ifdef DEBUG
7598 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7599 global_entry->root.string, (unsigned long) *result);
7600 #endif
7601 return TRUE;
7602 }
7603
7604 return FALSE;
7605 }
7606
7607 static bfd_boolean
7608 resolve_section (const char *name,
7609 asection *sections,
7610 bfd_vma *result)
7611 {
7612 asection *curr;
7613 unsigned int len;
7614
7615 for (curr = sections; curr; curr = curr->next)
7616 if (strcmp (curr->name, name) == 0)
7617 {
7618 *result = curr->vma;
7619 return TRUE;
7620 }
7621
7622 /* Hmm. still haven't found it. try pseudo-section names. */
7623 for (curr = sections; curr; curr = curr->next)
7624 {
7625 len = strlen (curr->name);
7626 if (len > strlen (name))
7627 continue;
7628
7629 if (strncmp (curr->name, name, len) == 0)
7630 {
7631 if (strncmp (".end", name + len, 4) == 0)
7632 {
7633 *result = curr->vma + curr->size;
7634 return TRUE;
7635 }
7636
7637 /* Insert more pseudo-section names here, if you like. */
7638 }
7639 }
7640
7641 return FALSE;
7642 }
7643
7644 static void
7645 undefined_reference (const char *reftype, const char *name)
7646 {
7647 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7648 reftype, name);
7649 }
7650
7651 static bfd_boolean
7652 eval_symbol (bfd_vma *result,
7653 const char **symp,
7654 bfd *input_bfd,
7655 struct elf_final_link_info *flinfo,
7656 bfd_vma dot,
7657 Elf_Internal_Sym *isymbuf,
7658 size_t locsymcount,
7659 int signed_p)
7660 {
7661 size_t len;
7662 size_t symlen;
7663 bfd_vma a;
7664 bfd_vma b;
7665 char symbuf[4096];
7666 const char *sym = *symp;
7667 const char *symend;
7668 bfd_boolean symbol_is_section = FALSE;
7669
7670 len = strlen (sym);
7671 symend = sym + len;
7672
7673 if (len < 1 || len > sizeof (symbuf))
7674 {
7675 bfd_set_error (bfd_error_invalid_operation);
7676 return FALSE;
7677 }
7678
7679 switch (* sym)
7680 {
7681 case '.':
7682 *result = dot;
7683 *symp = sym + 1;
7684 return TRUE;
7685
7686 case '#':
7687 ++sym;
7688 *result = strtoul (sym, (char **) symp, 16);
7689 return TRUE;
7690
7691 case 'S':
7692 symbol_is_section = TRUE;
7693 case 's':
7694 ++sym;
7695 symlen = strtol (sym, (char **) symp, 10);
7696 sym = *symp + 1; /* Skip the trailing ':'. */
7697
7698 if (symend < sym || symlen + 1 > sizeof (symbuf))
7699 {
7700 bfd_set_error (bfd_error_invalid_operation);
7701 return FALSE;
7702 }
7703
7704 memcpy (symbuf, sym, symlen);
7705 symbuf[symlen] = '\0';
7706 *symp = sym + symlen;
7707
7708 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7709 the symbol as a section, or vice-versa. so we're pretty liberal in our
7710 interpretation here; section means "try section first", not "must be a
7711 section", and likewise with symbol. */
7712
7713 if (symbol_is_section)
7714 {
7715 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7716 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7717 isymbuf, locsymcount))
7718 {
7719 undefined_reference ("section", symbuf);
7720 return FALSE;
7721 }
7722 }
7723 else
7724 {
7725 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7726 isymbuf, locsymcount)
7727 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7728 result))
7729 {
7730 undefined_reference ("symbol", symbuf);
7731 return FALSE;
7732 }
7733 }
7734
7735 return TRUE;
7736
7737 /* All that remains are operators. */
7738
7739 #define UNARY_OP(op) \
7740 if (strncmp (sym, #op, strlen (#op)) == 0) \
7741 { \
7742 sym += strlen (#op); \
7743 if (*sym == ':') \
7744 ++sym; \
7745 *symp = sym; \
7746 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7747 isymbuf, locsymcount, signed_p)) \
7748 return FALSE; \
7749 if (signed_p) \
7750 *result = op ((bfd_signed_vma) a); \
7751 else \
7752 *result = op a; \
7753 return TRUE; \
7754 }
7755
7756 #define BINARY_OP(op) \
7757 if (strncmp (sym, #op, strlen (#op)) == 0) \
7758 { \
7759 sym += strlen (#op); \
7760 if (*sym == ':') \
7761 ++sym; \
7762 *symp = sym; \
7763 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7764 isymbuf, locsymcount, signed_p)) \
7765 return FALSE; \
7766 ++*symp; \
7767 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7768 isymbuf, locsymcount, signed_p)) \
7769 return FALSE; \
7770 if (signed_p) \
7771 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7772 else \
7773 *result = a op b; \
7774 return TRUE; \
7775 }
7776
7777 default:
7778 UNARY_OP (0-);
7779 BINARY_OP (<<);
7780 BINARY_OP (>>);
7781 BINARY_OP (==);
7782 BINARY_OP (!=);
7783 BINARY_OP (<=);
7784 BINARY_OP (>=);
7785 BINARY_OP (&&);
7786 BINARY_OP (||);
7787 UNARY_OP (~);
7788 UNARY_OP (!);
7789 BINARY_OP (*);
7790 BINARY_OP (/);
7791 BINARY_OP (%);
7792 BINARY_OP (^);
7793 BINARY_OP (|);
7794 BINARY_OP (&);
7795 BINARY_OP (+);
7796 BINARY_OP (-);
7797 BINARY_OP (<);
7798 BINARY_OP (>);
7799 #undef UNARY_OP
7800 #undef BINARY_OP
7801 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7802 bfd_set_error (bfd_error_invalid_operation);
7803 return FALSE;
7804 }
7805 }
7806
7807 static void
7808 put_value (bfd_vma size,
7809 unsigned long chunksz,
7810 bfd *input_bfd,
7811 bfd_vma x,
7812 bfd_byte *location)
7813 {
7814 location += (size - chunksz);
7815
7816 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7817 {
7818 switch (chunksz)
7819 {
7820 default:
7821 case 0:
7822 abort ();
7823 case 1:
7824 bfd_put_8 (input_bfd, x, location);
7825 break;
7826 case 2:
7827 bfd_put_16 (input_bfd, x, location);
7828 break;
7829 case 4:
7830 bfd_put_32 (input_bfd, x, location);
7831 break;
7832 case 8:
7833 #ifdef BFD64
7834 bfd_put_64 (input_bfd, x, location);
7835 #else
7836 abort ();
7837 #endif
7838 break;
7839 }
7840 }
7841 }
7842
7843 static bfd_vma
7844 get_value (bfd_vma size,
7845 unsigned long chunksz,
7846 bfd *input_bfd,
7847 bfd_byte *location)
7848 {
7849 int shift;
7850 bfd_vma x = 0;
7851
7852 /* Sanity checks. */
7853 BFD_ASSERT (chunksz <= sizeof (x)
7854 && size >= chunksz
7855 && chunksz != 0
7856 && (size % chunksz) == 0
7857 && input_bfd != NULL
7858 && location != NULL);
7859
7860 if (chunksz == sizeof (x))
7861 {
7862 BFD_ASSERT (size == chunksz);
7863
7864 /* Make sure that we do not perform an undefined shift operation.
7865 We know that size == chunksz so there will only be one iteration
7866 of the loop below. */
7867 shift = 0;
7868 }
7869 else
7870 shift = 8 * chunksz;
7871
7872 for (; size; size -= chunksz, location += chunksz)
7873 {
7874 switch (chunksz)
7875 {
7876 case 1:
7877 x = (x << shift) | bfd_get_8 (input_bfd, location);
7878 break;
7879 case 2:
7880 x = (x << shift) | bfd_get_16 (input_bfd, location);
7881 break;
7882 case 4:
7883 x = (x << shift) | bfd_get_32 (input_bfd, location);
7884 break;
7885 #ifdef BFD64
7886 case 8:
7887 x = (x << shift) | bfd_get_64 (input_bfd, location);
7888 break;
7889 #endif
7890 default:
7891 abort ();
7892 }
7893 }
7894 return x;
7895 }
7896
7897 static void
7898 decode_complex_addend (unsigned long *start, /* in bits */
7899 unsigned long *oplen, /* in bits */
7900 unsigned long *len, /* in bits */
7901 unsigned long *wordsz, /* in bytes */
7902 unsigned long *chunksz, /* in bytes */
7903 unsigned long *lsb0_p,
7904 unsigned long *signed_p,
7905 unsigned long *trunc_p,
7906 unsigned long encoded)
7907 {
7908 * start = encoded & 0x3F;
7909 * len = (encoded >> 6) & 0x3F;
7910 * oplen = (encoded >> 12) & 0x3F;
7911 * wordsz = (encoded >> 18) & 0xF;
7912 * chunksz = (encoded >> 22) & 0xF;
7913 * lsb0_p = (encoded >> 27) & 1;
7914 * signed_p = (encoded >> 28) & 1;
7915 * trunc_p = (encoded >> 29) & 1;
7916 }
7917
7918 bfd_reloc_status_type
7919 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7920 asection *input_section ATTRIBUTE_UNUSED,
7921 bfd_byte *contents,
7922 Elf_Internal_Rela *rel,
7923 bfd_vma relocation)
7924 {
7925 bfd_vma shift, x, mask;
7926 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7927 bfd_reloc_status_type r;
7928
7929 /* Perform this reloc, since it is complex.
7930 (this is not to say that it necessarily refers to a complex
7931 symbol; merely that it is a self-describing CGEN based reloc.
7932 i.e. the addend has the complete reloc information (bit start, end,
7933 word size, etc) encoded within it.). */
7934
7935 decode_complex_addend (&start, &oplen, &len, &wordsz,
7936 &chunksz, &lsb0_p, &signed_p,
7937 &trunc_p, rel->r_addend);
7938
7939 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7940
7941 if (lsb0_p)
7942 shift = (start + 1) - len;
7943 else
7944 shift = (8 * wordsz) - (start + len);
7945
7946 /* FIXME: octets_per_byte. */
7947 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7948
7949 #ifdef DEBUG
7950 printf ("Doing complex reloc: "
7951 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7952 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7953 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7954 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7955 oplen, (unsigned long) x, (unsigned long) mask,
7956 (unsigned long) relocation);
7957 #endif
7958
7959 r = bfd_reloc_ok;
7960 if (! trunc_p)
7961 /* Now do an overflow check. */
7962 r = bfd_check_overflow ((signed_p
7963 ? complain_overflow_signed
7964 : complain_overflow_unsigned),
7965 len, 0, (8 * wordsz),
7966 relocation);
7967
7968 /* Do the deed. */
7969 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7970
7971 #ifdef DEBUG
7972 printf (" relocation: %8.8lx\n"
7973 " shifted mask: %8.8lx\n"
7974 " shifted/masked reloc: %8.8lx\n"
7975 " result: %8.8lx\n",
7976 (unsigned long) relocation, (unsigned long) (mask << shift),
7977 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7978 #endif
7979 /* FIXME: octets_per_byte. */
7980 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7981 return r;
7982 }
7983
7984 /* When performing a relocatable link, the input relocations are
7985 preserved. But, if they reference global symbols, the indices
7986 referenced must be updated. Update all the relocations found in
7987 RELDATA. */
7988
7989 static void
7990 elf_link_adjust_relocs (bfd *abfd,
7991 struct bfd_elf_section_reloc_data *reldata)
7992 {
7993 unsigned int i;
7994 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7995 bfd_byte *erela;
7996 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7997 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7998 bfd_vma r_type_mask;
7999 int r_sym_shift;
8000 unsigned int count = reldata->count;
8001 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8002
8003 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8004 {
8005 swap_in = bed->s->swap_reloc_in;
8006 swap_out = bed->s->swap_reloc_out;
8007 }
8008 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8009 {
8010 swap_in = bed->s->swap_reloca_in;
8011 swap_out = bed->s->swap_reloca_out;
8012 }
8013 else
8014 abort ();
8015
8016 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8017 abort ();
8018
8019 if (bed->s->arch_size == 32)
8020 {
8021 r_type_mask = 0xff;
8022 r_sym_shift = 8;
8023 }
8024 else
8025 {
8026 r_type_mask = 0xffffffff;
8027 r_sym_shift = 32;
8028 }
8029
8030 erela = reldata->hdr->contents;
8031 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8032 {
8033 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8034 unsigned int j;
8035
8036 if (*rel_hash == NULL)
8037 continue;
8038
8039 BFD_ASSERT ((*rel_hash)->indx >= 0);
8040
8041 (*swap_in) (abfd, erela, irela);
8042 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8043 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8044 | (irela[j].r_info & r_type_mask));
8045 (*swap_out) (abfd, irela, erela);
8046 }
8047 }
8048
8049 struct elf_link_sort_rela
8050 {
8051 union {
8052 bfd_vma offset;
8053 bfd_vma sym_mask;
8054 } u;
8055 enum elf_reloc_type_class type;
8056 /* We use this as an array of size int_rels_per_ext_rel. */
8057 Elf_Internal_Rela rela[1];
8058 };
8059
8060 static int
8061 elf_link_sort_cmp1 (const void *A, const void *B)
8062 {
8063 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8064 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8065 int relativea, relativeb;
8066
8067 relativea = a->type == reloc_class_relative;
8068 relativeb = b->type == reloc_class_relative;
8069
8070 if (relativea < relativeb)
8071 return 1;
8072 if (relativea > relativeb)
8073 return -1;
8074 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8075 return -1;
8076 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8077 return 1;
8078 if (a->rela->r_offset < b->rela->r_offset)
8079 return -1;
8080 if (a->rela->r_offset > b->rela->r_offset)
8081 return 1;
8082 return 0;
8083 }
8084
8085 static int
8086 elf_link_sort_cmp2 (const void *A, const void *B)
8087 {
8088 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8089 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8090
8091 if (a->type < b->type)
8092 return -1;
8093 if (a->type > b->type)
8094 return 1;
8095 if (a->u.offset < b->u.offset)
8096 return -1;
8097 if (a->u.offset > b->u.offset)
8098 return 1;
8099 if (a->rela->r_offset < b->rela->r_offset)
8100 return -1;
8101 if (a->rela->r_offset > b->rela->r_offset)
8102 return 1;
8103 return 0;
8104 }
8105
8106 static size_t
8107 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8108 {
8109 asection *dynamic_relocs;
8110 asection *rela_dyn;
8111 asection *rel_dyn;
8112 bfd_size_type count, size;
8113 size_t i, ret, sort_elt, ext_size;
8114 bfd_byte *sort, *s_non_relative, *p;
8115 struct elf_link_sort_rela *sq;
8116 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8117 int i2e = bed->s->int_rels_per_ext_rel;
8118 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8119 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8120 struct bfd_link_order *lo;
8121 bfd_vma r_sym_mask;
8122 bfd_boolean use_rela;
8123
8124 /* Find a dynamic reloc section. */
8125 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8126 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8127 if (rela_dyn != NULL && rela_dyn->size > 0
8128 && rel_dyn != NULL && rel_dyn->size > 0)
8129 {
8130 bfd_boolean use_rela_initialised = FALSE;
8131
8132 /* This is just here to stop gcc from complaining.
8133 It's initialization checking code is not perfect. */
8134 use_rela = TRUE;
8135
8136 /* Both sections are present. Examine the sizes
8137 of the indirect sections to help us choose. */
8138 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8139 if (lo->type == bfd_indirect_link_order)
8140 {
8141 asection *o = lo->u.indirect.section;
8142
8143 if ((o->size % bed->s->sizeof_rela) == 0)
8144 {
8145 if ((o->size % bed->s->sizeof_rel) == 0)
8146 /* Section size is divisible by both rel and rela sizes.
8147 It is of no help to us. */
8148 ;
8149 else
8150 {
8151 /* Section size is only divisible by rela. */
8152 if (use_rela_initialised && (use_rela == FALSE))
8153 {
8154 _bfd_error_handler
8155 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8156 bfd_set_error (bfd_error_invalid_operation);
8157 return 0;
8158 }
8159 else
8160 {
8161 use_rela = TRUE;
8162 use_rela_initialised = TRUE;
8163 }
8164 }
8165 }
8166 else if ((o->size % bed->s->sizeof_rel) == 0)
8167 {
8168 /* Section size is only divisible by rel. */
8169 if (use_rela_initialised && (use_rela == TRUE))
8170 {
8171 _bfd_error_handler
8172 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8173 bfd_set_error (bfd_error_invalid_operation);
8174 return 0;
8175 }
8176 else
8177 {
8178 use_rela = FALSE;
8179 use_rela_initialised = TRUE;
8180 }
8181 }
8182 else
8183 {
8184 /* The section size is not divisible by either - something is wrong. */
8185 _bfd_error_handler
8186 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8187 bfd_set_error (bfd_error_invalid_operation);
8188 return 0;
8189 }
8190 }
8191
8192 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8193 if (lo->type == bfd_indirect_link_order)
8194 {
8195 asection *o = lo->u.indirect.section;
8196
8197 if ((o->size % bed->s->sizeof_rela) == 0)
8198 {
8199 if ((o->size % bed->s->sizeof_rel) == 0)
8200 /* Section size is divisible by both rel and rela sizes.
8201 It is of no help to us. */
8202 ;
8203 else
8204 {
8205 /* Section size is only divisible by rela. */
8206 if (use_rela_initialised && (use_rela == FALSE))
8207 {
8208 _bfd_error_handler
8209 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8210 bfd_set_error (bfd_error_invalid_operation);
8211 return 0;
8212 }
8213 else
8214 {
8215 use_rela = TRUE;
8216 use_rela_initialised = TRUE;
8217 }
8218 }
8219 }
8220 else if ((o->size % bed->s->sizeof_rel) == 0)
8221 {
8222 /* Section size is only divisible by rel. */
8223 if (use_rela_initialised && (use_rela == TRUE))
8224 {
8225 _bfd_error_handler
8226 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8227 bfd_set_error (bfd_error_invalid_operation);
8228 return 0;
8229 }
8230 else
8231 {
8232 use_rela = FALSE;
8233 use_rela_initialised = TRUE;
8234 }
8235 }
8236 else
8237 {
8238 /* The section size is not divisible by either - something is wrong. */
8239 _bfd_error_handler
8240 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8241 bfd_set_error (bfd_error_invalid_operation);
8242 return 0;
8243 }
8244 }
8245
8246 if (! use_rela_initialised)
8247 /* Make a guess. */
8248 use_rela = TRUE;
8249 }
8250 else if (rela_dyn != NULL && rela_dyn->size > 0)
8251 use_rela = TRUE;
8252 else if (rel_dyn != NULL && rel_dyn->size > 0)
8253 use_rela = FALSE;
8254 else
8255 return 0;
8256
8257 if (use_rela)
8258 {
8259 dynamic_relocs = rela_dyn;
8260 ext_size = bed->s->sizeof_rela;
8261 swap_in = bed->s->swap_reloca_in;
8262 swap_out = bed->s->swap_reloca_out;
8263 }
8264 else
8265 {
8266 dynamic_relocs = rel_dyn;
8267 ext_size = bed->s->sizeof_rel;
8268 swap_in = bed->s->swap_reloc_in;
8269 swap_out = bed->s->swap_reloc_out;
8270 }
8271
8272 size = 0;
8273 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8274 if (lo->type == bfd_indirect_link_order)
8275 size += lo->u.indirect.section->size;
8276
8277 if (size != dynamic_relocs->size)
8278 return 0;
8279
8280 sort_elt = (sizeof (struct elf_link_sort_rela)
8281 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8282
8283 count = dynamic_relocs->size / ext_size;
8284 if (count == 0)
8285 return 0;
8286 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8287
8288 if (sort == NULL)
8289 {
8290 (*info->callbacks->warning)
8291 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8292 return 0;
8293 }
8294
8295 if (bed->s->arch_size == 32)
8296 r_sym_mask = ~(bfd_vma) 0xff;
8297 else
8298 r_sym_mask = ~(bfd_vma) 0xffffffff;
8299
8300 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8301 if (lo->type == bfd_indirect_link_order)
8302 {
8303 bfd_byte *erel, *erelend;
8304 asection *o = lo->u.indirect.section;
8305
8306 if (o->contents == NULL && o->size != 0)
8307 {
8308 /* This is a reloc section that is being handled as a normal
8309 section. See bfd_section_from_shdr. We can't combine
8310 relocs in this case. */
8311 free (sort);
8312 return 0;
8313 }
8314 erel = o->contents;
8315 erelend = o->contents + o->size;
8316 /* FIXME: octets_per_byte. */
8317 p = sort + o->output_offset / ext_size * sort_elt;
8318
8319 while (erel < erelend)
8320 {
8321 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8322
8323 (*swap_in) (abfd, erel, s->rela);
8324 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8325 s->u.sym_mask = r_sym_mask;
8326 p += sort_elt;
8327 erel += ext_size;
8328 }
8329 }
8330
8331 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8332
8333 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8334 {
8335 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8336 if (s->type != reloc_class_relative)
8337 break;
8338 }
8339 ret = i;
8340 s_non_relative = p;
8341
8342 sq = (struct elf_link_sort_rela *) s_non_relative;
8343 for (; i < count; i++, p += sort_elt)
8344 {
8345 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8346 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8347 sq = sp;
8348 sp->u.offset = sq->rela->r_offset;
8349 }
8350
8351 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8352
8353 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8354 if (lo->type == bfd_indirect_link_order)
8355 {
8356 bfd_byte *erel, *erelend;
8357 asection *o = lo->u.indirect.section;
8358
8359 erel = o->contents;
8360 erelend = o->contents + o->size;
8361 /* FIXME: octets_per_byte. */
8362 p = sort + o->output_offset / ext_size * sort_elt;
8363 while (erel < erelend)
8364 {
8365 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8366 (*swap_out) (abfd, s->rela, erel);
8367 p += sort_elt;
8368 erel += ext_size;
8369 }
8370 }
8371
8372 free (sort);
8373 *psec = dynamic_relocs;
8374 return ret;
8375 }
8376
8377 /* Flush the output symbols to the file. */
8378
8379 static bfd_boolean
8380 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8381 const struct elf_backend_data *bed)
8382 {
8383 if (flinfo->symbuf_count > 0)
8384 {
8385 Elf_Internal_Shdr *hdr;
8386 file_ptr pos;
8387 bfd_size_type amt;
8388
8389 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8390 pos = hdr->sh_offset + hdr->sh_size;
8391 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8392 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8393 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8394 return FALSE;
8395
8396 hdr->sh_size += amt;
8397 flinfo->symbuf_count = 0;
8398 }
8399
8400 return TRUE;
8401 }
8402
8403 /* Add a symbol to the output symbol table. */
8404
8405 static int
8406 elf_link_output_sym (struct elf_final_link_info *flinfo,
8407 const char *name,
8408 Elf_Internal_Sym *elfsym,
8409 asection *input_sec,
8410 struct elf_link_hash_entry *h)
8411 {
8412 bfd_byte *dest;
8413 Elf_External_Sym_Shndx *destshndx;
8414 int (*output_symbol_hook)
8415 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8416 struct elf_link_hash_entry *);
8417 const struct elf_backend_data *bed;
8418
8419 bed = get_elf_backend_data (flinfo->output_bfd);
8420 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8421 if (output_symbol_hook != NULL)
8422 {
8423 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8424 if (ret != 1)
8425 return ret;
8426 }
8427
8428 if (name == NULL || *name == '\0')
8429 elfsym->st_name = 0;
8430 else if (input_sec->flags & SEC_EXCLUDE)
8431 elfsym->st_name = 0;
8432 else
8433 {
8434 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8435 name, TRUE, FALSE);
8436 if (elfsym->st_name == (unsigned long) -1)
8437 return 0;
8438 }
8439
8440 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8441 {
8442 if (! elf_link_flush_output_syms (flinfo, bed))
8443 return 0;
8444 }
8445
8446 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8447 destshndx = flinfo->symshndxbuf;
8448 if (destshndx != NULL)
8449 {
8450 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8451 {
8452 bfd_size_type amt;
8453
8454 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8455 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8456 amt * 2);
8457 if (destshndx == NULL)
8458 return 0;
8459 flinfo->symshndxbuf = destshndx;
8460 memset ((char *) destshndx + amt, 0, amt);
8461 flinfo->shndxbuf_size *= 2;
8462 }
8463 destshndx += bfd_get_symcount (flinfo->output_bfd);
8464 }
8465
8466 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8467 flinfo->symbuf_count += 1;
8468 bfd_get_symcount (flinfo->output_bfd) += 1;
8469
8470 return 1;
8471 }
8472
8473 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8474
8475 static bfd_boolean
8476 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8477 {
8478 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8479 && sym->st_shndx < SHN_LORESERVE)
8480 {
8481 /* The gABI doesn't support dynamic symbols in output sections
8482 beyond 64k. */
8483 (*_bfd_error_handler)
8484 (_("%B: Too many sections: %d (>= %d)"),
8485 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8486 bfd_set_error (bfd_error_nonrepresentable_section);
8487 return FALSE;
8488 }
8489 return TRUE;
8490 }
8491
8492 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8493 allowing an unsatisfied unversioned symbol in the DSO to match a
8494 versioned symbol that would normally require an explicit version.
8495 We also handle the case that a DSO references a hidden symbol
8496 which may be satisfied by a versioned symbol in another DSO. */
8497
8498 static bfd_boolean
8499 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8500 const struct elf_backend_data *bed,
8501 struct elf_link_hash_entry *h)
8502 {
8503 bfd *abfd;
8504 struct elf_link_loaded_list *loaded;
8505
8506 if (!is_elf_hash_table (info->hash))
8507 return FALSE;
8508
8509 /* Check indirect symbol. */
8510 while (h->root.type == bfd_link_hash_indirect)
8511 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8512
8513 switch (h->root.type)
8514 {
8515 default:
8516 abfd = NULL;
8517 break;
8518
8519 case bfd_link_hash_undefined:
8520 case bfd_link_hash_undefweak:
8521 abfd = h->root.u.undef.abfd;
8522 if ((abfd->flags & DYNAMIC) == 0
8523 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8524 return FALSE;
8525 break;
8526
8527 case bfd_link_hash_defined:
8528 case bfd_link_hash_defweak:
8529 abfd = h->root.u.def.section->owner;
8530 break;
8531
8532 case bfd_link_hash_common:
8533 abfd = h->root.u.c.p->section->owner;
8534 break;
8535 }
8536 BFD_ASSERT (abfd != NULL);
8537
8538 for (loaded = elf_hash_table (info)->loaded;
8539 loaded != NULL;
8540 loaded = loaded->next)
8541 {
8542 bfd *input;
8543 Elf_Internal_Shdr *hdr;
8544 bfd_size_type symcount;
8545 bfd_size_type extsymcount;
8546 bfd_size_type extsymoff;
8547 Elf_Internal_Shdr *versymhdr;
8548 Elf_Internal_Sym *isym;
8549 Elf_Internal_Sym *isymend;
8550 Elf_Internal_Sym *isymbuf;
8551 Elf_External_Versym *ever;
8552 Elf_External_Versym *extversym;
8553
8554 input = loaded->abfd;
8555
8556 /* We check each DSO for a possible hidden versioned definition. */
8557 if (input == abfd
8558 || (input->flags & DYNAMIC) == 0
8559 || elf_dynversym (input) == 0)
8560 continue;
8561
8562 hdr = &elf_tdata (input)->dynsymtab_hdr;
8563
8564 symcount = hdr->sh_size / bed->s->sizeof_sym;
8565 if (elf_bad_symtab (input))
8566 {
8567 extsymcount = symcount;
8568 extsymoff = 0;
8569 }
8570 else
8571 {
8572 extsymcount = symcount - hdr->sh_info;
8573 extsymoff = hdr->sh_info;
8574 }
8575
8576 if (extsymcount == 0)
8577 continue;
8578
8579 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8580 NULL, NULL, NULL);
8581 if (isymbuf == NULL)
8582 return FALSE;
8583
8584 /* Read in any version definitions. */
8585 versymhdr = &elf_tdata (input)->dynversym_hdr;
8586 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8587 if (extversym == NULL)
8588 goto error_ret;
8589
8590 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8591 || (bfd_bread (extversym, versymhdr->sh_size, input)
8592 != versymhdr->sh_size))
8593 {
8594 free (extversym);
8595 error_ret:
8596 free (isymbuf);
8597 return FALSE;
8598 }
8599
8600 ever = extversym + extsymoff;
8601 isymend = isymbuf + extsymcount;
8602 for (isym = isymbuf; isym < isymend; isym++, ever++)
8603 {
8604 const char *name;
8605 Elf_Internal_Versym iver;
8606 unsigned short version_index;
8607
8608 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8609 || isym->st_shndx == SHN_UNDEF)
8610 continue;
8611
8612 name = bfd_elf_string_from_elf_section (input,
8613 hdr->sh_link,
8614 isym->st_name);
8615 if (strcmp (name, h->root.root.string) != 0)
8616 continue;
8617
8618 _bfd_elf_swap_versym_in (input, ever, &iver);
8619
8620 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8621 && !(h->def_regular
8622 && h->forced_local))
8623 {
8624 /* If we have a non-hidden versioned sym, then it should
8625 have provided a definition for the undefined sym unless
8626 it is defined in a non-shared object and forced local.
8627 */
8628 abort ();
8629 }
8630
8631 version_index = iver.vs_vers & VERSYM_VERSION;
8632 if (version_index == 1 || version_index == 2)
8633 {
8634 /* This is the base or first version. We can use it. */
8635 free (extversym);
8636 free (isymbuf);
8637 return TRUE;
8638 }
8639 }
8640
8641 free (extversym);
8642 free (isymbuf);
8643 }
8644
8645 return FALSE;
8646 }
8647
8648 /* Add an external symbol to the symbol table. This is called from
8649 the hash table traversal routine. When generating a shared object,
8650 we go through the symbol table twice. The first time we output
8651 anything that might have been forced to local scope in a version
8652 script. The second time we output the symbols that are still
8653 global symbols. */
8654
8655 static bfd_boolean
8656 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8657 {
8658 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8659 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8660 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8661 bfd_boolean strip;
8662 Elf_Internal_Sym sym;
8663 asection *input_sec;
8664 const struct elf_backend_data *bed;
8665 long indx;
8666 int ret;
8667
8668 if (h->root.type == bfd_link_hash_warning)
8669 {
8670 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8671 if (h->root.type == bfd_link_hash_new)
8672 return TRUE;
8673 }
8674
8675 /* Decide whether to output this symbol in this pass. */
8676 if (eoinfo->localsyms)
8677 {
8678 if (!h->forced_local)
8679 return TRUE;
8680 if (eoinfo->second_pass
8681 && !((h->root.type == bfd_link_hash_defined
8682 || h->root.type == bfd_link_hash_defweak)
8683 && h->root.u.def.section->output_section != NULL))
8684 return TRUE;
8685 }
8686 else
8687 {
8688 if (h->forced_local)
8689 return TRUE;
8690 }
8691
8692 bed = get_elf_backend_data (flinfo->output_bfd);
8693
8694 if (h->root.type == bfd_link_hash_undefined)
8695 {
8696 /* If we have an undefined symbol reference here then it must have
8697 come from a shared library that is being linked in. (Undefined
8698 references in regular files have already been handled unless
8699 they are in unreferenced sections which are removed by garbage
8700 collection). */
8701 bfd_boolean ignore_undef = FALSE;
8702
8703 /* Some symbols may be special in that the fact that they're
8704 undefined can be safely ignored - let backend determine that. */
8705 if (bed->elf_backend_ignore_undef_symbol)
8706 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8707
8708 /* If we are reporting errors for this situation then do so now. */
8709 if (!ignore_undef
8710 && h->ref_dynamic
8711 && (!h->ref_regular || flinfo->info->gc_sections)
8712 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8713 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8714 {
8715 if (!(flinfo->info->callbacks->undefined_symbol
8716 (flinfo->info, h->root.root.string,
8717 h->ref_regular ? NULL : h->root.u.undef.abfd,
8718 NULL, 0,
8719 (flinfo->info->unresolved_syms_in_shared_libs
8720 == RM_GENERATE_ERROR))))
8721 {
8722 bfd_set_error (bfd_error_bad_value);
8723 eoinfo->failed = TRUE;
8724 return FALSE;
8725 }
8726 }
8727 }
8728
8729 /* We should also warn if a forced local symbol is referenced from
8730 shared libraries. */
8731 if (!flinfo->info->relocatable
8732 && flinfo->info->executable
8733 && h->forced_local
8734 && h->ref_dynamic
8735 && h->def_regular
8736 && !h->dynamic_def
8737 && h->ref_dynamic_nonweak
8738 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8739 {
8740 bfd *def_bfd;
8741 const char *msg;
8742 struct elf_link_hash_entry *hi = h;
8743
8744 /* Check indirect symbol. */
8745 while (hi->root.type == bfd_link_hash_indirect)
8746 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8747
8748 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8749 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8750 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8751 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8752 else
8753 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8754 def_bfd = flinfo->output_bfd;
8755 if (hi->root.u.def.section != bfd_abs_section_ptr)
8756 def_bfd = hi->root.u.def.section->owner;
8757 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8758 h->root.root.string);
8759 bfd_set_error (bfd_error_bad_value);
8760 eoinfo->failed = TRUE;
8761 return FALSE;
8762 }
8763
8764 /* We don't want to output symbols that have never been mentioned by
8765 a regular file, or that we have been told to strip. However, if
8766 h->indx is set to -2, the symbol is used by a reloc and we must
8767 output it. */
8768 if (h->indx == -2)
8769 strip = FALSE;
8770 else if ((h->def_dynamic
8771 || h->ref_dynamic
8772 || h->root.type == bfd_link_hash_new)
8773 && !h->def_regular
8774 && !h->ref_regular)
8775 strip = TRUE;
8776 else if (flinfo->info->strip == strip_all)
8777 strip = TRUE;
8778 else if (flinfo->info->strip == strip_some
8779 && bfd_hash_lookup (flinfo->info->keep_hash,
8780 h->root.root.string, FALSE, FALSE) == NULL)
8781 strip = TRUE;
8782 else if ((h->root.type == bfd_link_hash_defined
8783 || h->root.type == bfd_link_hash_defweak)
8784 && ((flinfo->info->strip_discarded
8785 && discarded_section (h->root.u.def.section))
8786 || (h->root.u.def.section->owner != NULL
8787 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8788 strip = TRUE;
8789 else if ((h->root.type == bfd_link_hash_undefined
8790 || h->root.type == bfd_link_hash_undefweak)
8791 && h->root.u.undef.abfd != NULL
8792 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8793 strip = TRUE;
8794 else
8795 strip = FALSE;
8796
8797 /* If we're stripping it, and it's not a dynamic symbol, there's
8798 nothing else to do unless it is a forced local symbol or a
8799 STT_GNU_IFUNC symbol. */
8800 if (strip
8801 && h->dynindx == -1
8802 && h->type != STT_GNU_IFUNC
8803 && !h->forced_local)
8804 return TRUE;
8805
8806 sym.st_value = 0;
8807 sym.st_size = h->size;
8808 sym.st_other = h->other;
8809 if (h->forced_local)
8810 {
8811 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8812 /* Turn off visibility on local symbol. */
8813 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8814 }
8815 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8816 else if (h->unique_global && h->def_regular)
8817 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8818 else if (h->root.type == bfd_link_hash_undefweak
8819 || h->root.type == bfd_link_hash_defweak)
8820 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8821 else
8822 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8823 sym.st_target_internal = h->target_internal;
8824
8825 switch (h->root.type)
8826 {
8827 default:
8828 case bfd_link_hash_new:
8829 case bfd_link_hash_warning:
8830 abort ();
8831 return FALSE;
8832
8833 case bfd_link_hash_undefined:
8834 case bfd_link_hash_undefweak:
8835 input_sec = bfd_und_section_ptr;
8836 sym.st_shndx = SHN_UNDEF;
8837 break;
8838
8839 case bfd_link_hash_defined:
8840 case bfd_link_hash_defweak:
8841 {
8842 input_sec = h->root.u.def.section;
8843 if (input_sec->output_section != NULL)
8844 {
8845 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8846 {
8847 bfd_boolean second_pass_sym
8848 = (input_sec->owner == flinfo->output_bfd
8849 || input_sec->owner == NULL
8850 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8851 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8852
8853 eoinfo->need_second_pass |= second_pass_sym;
8854 if (eoinfo->second_pass != second_pass_sym)
8855 return TRUE;
8856 }
8857
8858 sym.st_shndx =
8859 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8860 input_sec->output_section);
8861 if (sym.st_shndx == SHN_BAD)
8862 {
8863 (*_bfd_error_handler)
8864 (_("%B: could not find output section %A for input section %A"),
8865 flinfo->output_bfd, input_sec->output_section, input_sec);
8866 bfd_set_error (bfd_error_nonrepresentable_section);
8867 eoinfo->failed = TRUE;
8868 return FALSE;
8869 }
8870
8871 /* ELF symbols in relocatable files are section relative,
8872 but in nonrelocatable files they are virtual
8873 addresses. */
8874 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8875 if (!flinfo->info->relocatable)
8876 {
8877 sym.st_value += input_sec->output_section->vma;
8878 if (h->type == STT_TLS)
8879 {
8880 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8881 if (tls_sec != NULL)
8882 sym.st_value -= tls_sec->vma;
8883 else
8884 {
8885 /* The TLS section may have been garbage collected. */
8886 BFD_ASSERT (flinfo->info->gc_sections
8887 && !input_sec->gc_mark);
8888 }
8889 }
8890 }
8891 }
8892 else
8893 {
8894 BFD_ASSERT (input_sec->owner == NULL
8895 || (input_sec->owner->flags & DYNAMIC) != 0);
8896 sym.st_shndx = SHN_UNDEF;
8897 input_sec = bfd_und_section_ptr;
8898 }
8899 }
8900 break;
8901
8902 case bfd_link_hash_common:
8903 input_sec = h->root.u.c.p->section;
8904 sym.st_shndx = bed->common_section_index (input_sec);
8905 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8906 break;
8907
8908 case bfd_link_hash_indirect:
8909 /* These symbols are created by symbol versioning. They point
8910 to the decorated version of the name. For example, if the
8911 symbol foo@@GNU_1.2 is the default, which should be used when
8912 foo is used with no version, then we add an indirect symbol
8913 foo which points to foo@@GNU_1.2. We ignore these symbols,
8914 since the indirected symbol is already in the hash table. */
8915 return TRUE;
8916 }
8917
8918 /* Give the processor backend a chance to tweak the symbol value,
8919 and also to finish up anything that needs to be done for this
8920 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8921 forced local syms when non-shared is due to a historical quirk.
8922 STT_GNU_IFUNC symbol must go through PLT. */
8923 if ((h->type == STT_GNU_IFUNC
8924 && h->def_regular
8925 && !flinfo->info->relocatable)
8926 || ((h->dynindx != -1
8927 || h->forced_local)
8928 && ((flinfo->info->shared
8929 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8930 || h->root.type != bfd_link_hash_undefweak))
8931 || !h->forced_local)
8932 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8933 {
8934 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8935 (flinfo->output_bfd, flinfo->info, h, &sym)))
8936 {
8937 eoinfo->failed = TRUE;
8938 return FALSE;
8939 }
8940 }
8941
8942 /* If we are marking the symbol as undefined, and there are no
8943 non-weak references to this symbol from a regular object, then
8944 mark the symbol as weak undefined; if there are non-weak
8945 references, mark the symbol as strong. We can't do this earlier,
8946 because it might not be marked as undefined until the
8947 finish_dynamic_symbol routine gets through with it. */
8948 if (sym.st_shndx == SHN_UNDEF
8949 && h->ref_regular
8950 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8951 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8952 {
8953 int bindtype;
8954 unsigned int type = ELF_ST_TYPE (sym.st_info);
8955
8956 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8957 if (type == STT_GNU_IFUNC)
8958 type = STT_FUNC;
8959
8960 if (h->ref_regular_nonweak)
8961 bindtype = STB_GLOBAL;
8962 else
8963 bindtype = STB_WEAK;
8964 sym.st_info = ELF_ST_INFO (bindtype, type);
8965 }
8966
8967 /* If this is a symbol defined in a dynamic library, don't use the
8968 symbol size from the dynamic library. Relinking an executable
8969 against a new library may introduce gratuitous changes in the
8970 executable's symbols if we keep the size. */
8971 if (sym.st_shndx == SHN_UNDEF
8972 && !h->def_regular
8973 && h->def_dynamic)
8974 sym.st_size = 0;
8975
8976 /* If a non-weak symbol with non-default visibility is not defined
8977 locally, it is a fatal error. */
8978 if (!flinfo->info->relocatable
8979 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8980 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8981 && h->root.type == bfd_link_hash_undefined
8982 && !h->def_regular)
8983 {
8984 const char *msg;
8985
8986 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8987 msg = _("%B: protected symbol `%s' isn't defined");
8988 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8989 msg = _("%B: internal symbol `%s' isn't defined");
8990 else
8991 msg = _("%B: hidden symbol `%s' isn't defined");
8992 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8993 bfd_set_error (bfd_error_bad_value);
8994 eoinfo->failed = TRUE;
8995 return FALSE;
8996 }
8997
8998 /* If this symbol should be put in the .dynsym section, then put it
8999 there now. We already know the symbol index. We also fill in
9000 the entry in the .hash section. */
9001 if (flinfo->dynsym_sec != NULL
9002 && h->dynindx != -1
9003 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9004 {
9005 bfd_byte *esym;
9006
9007 /* Since there is no version information in the dynamic string,
9008 if there is no version info in symbol version section, we will
9009 have a run-time problem. */
9010 if (h->verinfo.verdef == NULL)
9011 {
9012 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9013
9014 if (p && p [1] != '\0')
9015 {
9016 (*_bfd_error_handler)
9017 (_("%B: No symbol version section for versioned symbol `%s'"),
9018 flinfo->output_bfd, h->root.root.string);
9019 eoinfo->failed = TRUE;
9020 return FALSE;
9021 }
9022 }
9023
9024 sym.st_name = h->dynstr_index;
9025 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9026 if (!check_dynsym (flinfo->output_bfd, &sym))
9027 {
9028 eoinfo->failed = TRUE;
9029 return FALSE;
9030 }
9031 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9032
9033 if (flinfo->hash_sec != NULL)
9034 {
9035 size_t hash_entry_size;
9036 bfd_byte *bucketpos;
9037 bfd_vma chain;
9038 size_t bucketcount;
9039 size_t bucket;
9040
9041 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9042 bucket = h->u.elf_hash_value % bucketcount;
9043
9044 hash_entry_size
9045 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9046 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9047 + (bucket + 2) * hash_entry_size);
9048 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9049 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9050 bucketpos);
9051 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9052 ((bfd_byte *) flinfo->hash_sec->contents
9053 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9054 }
9055
9056 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9057 {
9058 Elf_Internal_Versym iversym;
9059 Elf_External_Versym *eversym;
9060
9061 if (!h->def_regular)
9062 {
9063 if (h->verinfo.verdef == NULL)
9064 iversym.vs_vers = 0;
9065 else
9066 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9067 }
9068 else
9069 {
9070 if (h->verinfo.vertree == NULL)
9071 iversym.vs_vers = 1;
9072 else
9073 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9074 if (flinfo->info->create_default_symver)
9075 iversym.vs_vers++;
9076 }
9077
9078 if (h->hidden)
9079 iversym.vs_vers |= VERSYM_HIDDEN;
9080
9081 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9082 eversym += h->dynindx;
9083 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9084 }
9085 }
9086
9087 /* If we're stripping it, then it was just a dynamic symbol, and
9088 there's nothing else to do. */
9089 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9090 return TRUE;
9091
9092 indx = bfd_get_symcount (flinfo->output_bfd);
9093 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9094 if (ret == 0)
9095 {
9096 eoinfo->failed = TRUE;
9097 return FALSE;
9098 }
9099 else if (ret == 1)
9100 h->indx = indx;
9101 else if (h->indx == -2)
9102 abort();
9103
9104 return TRUE;
9105 }
9106
9107 /* Return TRUE if special handling is done for relocs in SEC against
9108 symbols defined in discarded sections. */
9109
9110 static bfd_boolean
9111 elf_section_ignore_discarded_relocs (asection *sec)
9112 {
9113 const struct elf_backend_data *bed;
9114
9115 switch (sec->sec_info_type)
9116 {
9117 case SEC_INFO_TYPE_STABS:
9118 case SEC_INFO_TYPE_EH_FRAME:
9119 return TRUE;
9120 default:
9121 break;
9122 }
9123
9124 bed = get_elf_backend_data (sec->owner);
9125 if (bed->elf_backend_ignore_discarded_relocs != NULL
9126 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9127 return TRUE;
9128
9129 return FALSE;
9130 }
9131
9132 /* Return a mask saying how ld should treat relocations in SEC against
9133 symbols defined in discarded sections. If this function returns
9134 COMPLAIN set, ld will issue a warning message. If this function
9135 returns PRETEND set, and the discarded section was link-once and the
9136 same size as the kept link-once section, ld will pretend that the
9137 symbol was actually defined in the kept section. Otherwise ld will
9138 zero the reloc (at least that is the intent, but some cooperation by
9139 the target dependent code is needed, particularly for REL targets). */
9140
9141 unsigned int
9142 _bfd_elf_default_action_discarded (asection *sec)
9143 {
9144 if (sec->flags & SEC_DEBUGGING)
9145 return PRETEND;
9146
9147 if (strcmp (".eh_frame", sec->name) == 0)
9148 return 0;
9149
9150 if (strcmp (".gcc_except_table", sec->name) == 0)
9151 return 0;
9152
9153 return COMPLAIN | PRETEND;
9154 }
9155
9156 /* Find a match between a section and a member of a section group. */
9157
9158 static asection *
9159 match_group_member (asection *sec, asection *group,
9160 struct bfd_link_info *info)
9161 {
9162 asection *first = elf_next_in_group (group);
9163 asection *s = first;
9164
9165 while (s != NULL)
9166 {
9167 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9168 return s;
9169
9170 s = elf_next_in_group (s);
9171 if (s == first)
9172 break;
9173 }
9174
9175 return NULL;
9176 }
9177
9178 /* Check if the kept section of a discarded section SEC can be used
9179 to replace it. Return the replacement if it is OK. Otherwise return
9180 NULL. */
9181
9182 asection *
9183 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9184 {
9185 asection *kept;
9186
9187 kept = sec->kept_section;
9188 if (kept != NULL)
9189 {
9190 if ((kept->flags & SEC_GROUP) != 0)
9191 kept = match_group_member (sec, kept, info);
9192 if (kept != NULL
9193 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9194 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9195 kept = NULL;
9196 sec->kept_section = kept;
9197 }
9198 return kept;
9199 }
9200
9201 /* Link an input file into the linker output file. This function
9202 handles all the sections and relocations of the input file at once.
9203 This is so that we only have to read the local symbols once, and
9204 don't have to keep them in memory. */
9205
9206 static bfd_boolean
9207 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9208 {
9209 int (*relocate_section)
9210 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9211 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9212 bfd *output_bfd;
9213 Elf_Internal_Shdr *symtab_hdr;
9214 size_t locsymcount;
9215 size_t extsymoff;
9216 Elf_Internal_Sym *isymbuf;
9217 Elf_Internal_Sym *isym;
9218 Elf_Internal_Sym *isymend;
9219 long *pindex;
9220 asection **ppsection;
9221 asection *o;
9222 const struct elf_backend_data *bed;
9223 struct elf_link_hash_entry **sym_hashes;
9224 bfd_size_type address_size;
9225 bfd_vma r_type_mask;
9226 int r_sym_shift;
9227 bfd_boolean have_file_sym = FALSE;
9228
9229 output_bfd = flinfo->output_bfd;
9230 bed = get_elf_backend_data (output_bfd);
9231 relocate_section = bed->elf_backend_relocate_section;
9232
9233 /* If this is a dynamic object, we don't want to do anything here:
9234 we don't want the local symbols, and we don't want the section
9235 contents. */
9236 if ((input_bfd->flags & DYNAMIC) != 0)
9237 return TRUE;
9238
9239 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9240 if (elf_bad_symtab (input_bfd))
9241 {
9242 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9243 extsymoff = 0;
9244 }
9245 else
9246 {
9247 locsymcount = symtab_hdr->sh_info;
9248 extsymoff = symtab_hdr->sh_info;
9249 }
9250
9251 /* Read the local symbols. */
9252 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9253 if (isymbuf == NULL && locsymcount != 0)
9254 {
9255 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9256 flinfo->internal_syms,
9257 flinfo->external_syms,
9258 flinfo->locsym_shndx);
9259 if (isymbuf == NULL)
9260 return FALSE;
9261 }
9262
9263 /* Find local symbol sections and adjust values of symbols in
9264 SEC_MERGE sections. Write out those local symbols we know are
9265 going into the output file. */
9266 isymend = isymbuf + locsymcount;
9267 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9268 isym < isymend;
9269 isym++, pindex++, ppsection++)
9270 {
9271 asection *isec;
9272 const char *name;
9273 Elf_Internal_Sym osym;
9274 long indx;
9275 int ret;
9276
9277 *pindex = -1;
9278
9279 if (elf_bad_symtab (input_bfd))
9280 {
9281 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9282 {
9283 *ppsection = NULL;
9284 continue;
9285 }
9286 }
9287
9288 if (isym->st_shndx == SHN_UNDEF)
9289 isec = bfd_und_section_ptr;
9290 else if (isym->st_shndx == SHN_ABS)
9291 isec = bfd_abs_section_ptr;
9292 else if (isym->st_shndx == SHN_COMMON)
9293 isec = bfd_com_section_ptr;
9294 else
9295 {
9296 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9297 if (isec == NULL)
9298 {
9299 /* Don't attempt to output symbols with st_shnx in the
9300 reserved range other than SHN_ABS and SHN_COMMON. */
9301 *ppsection = NULL;
9302 continue;
9303 }
9304 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9305 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9306 isym->st_value =
9307 _bfd_merged_section_offset (output_bfd, &isec,
9308 elf_section_data (isec)->sec_info,
9309 isym->st_value);
9310 }
9311
9312 *ppsection = isec;
9313
9314 /* Don't output the first, undefined, symbol. */
9315 if (ppsection == flinfo->sections)
9316 continue;
9317
9318 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9319 {
9320 /* We never output section symbols. Instead, we use the
9321 section symbol of the corresponding section in the output
9322 file. */
9323 continue;
9324 }
9325
9326 /* If we are stripping all symbols, we don't want to output this
9327 one. */
9328 if (flinfo->info->strip == strip_all)
9329 continue;
9330
9331 /* If we are discarding all local symbols, we don't want to
9332 output this one. If we are generating a relocatable output
9333 file, then some of the local symbols may be required by
9334 relocs; we output them below as we discover that they are
9335 needed. */
9336 if (flinfo->info->discard == discard_all)
9337 continue;
9338
9339 /* If this symbol is defined in a section which we are
9340 discarding, we don't need to keep it. */
9341 if (isym->st_shndx != SHN_UNDEF
9342 && isym->st_shndx < SHN_LORESERVE
9343 && bfd_section_removed_from_list (output_bfd,
9344 isec->output_section))
9345 continue;
9346
9347 /* Get the name of the symbol. */
9348 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9349 isym->st_name);
9350 if (name == NULL)
9351 return FALSE;
9352
9353 /* See if we are discarding symbols with this name. */
9354 if ((flinfo->info->strip == strip_some
9355 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9356 == NULL))
9357 || (((flinfo->info->discard == discard_sec_merge
9358 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9359 || flinfo->info->discard == discard_l)
9360 && bfd_is_local_label_name (input_bfd, name)))
9361 continue;
9362
9363 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9364 {
9365 have_file_sym = TRUE;
9366 flinfo->filesym_count += 1;
9367 }
9368 if (!have_file_sym)
9369 {
9370 /* In the absence of debug info, bfd_find_nearest_line uses
9371 FILE symbols to determine the source file for local
9372 function symbols. Provide a FILE symbol here if input
9373 files lack such, so that their symbols won't be
9374 associated with a previous input file. It's not the
9375 source file, but the best we can do. */
9376 have_file_sym = TRUE;
9377 flinfo->filesym_count += 1;
9378 memset (&osym, 0, sizeof (osym));
9379 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9380 osym.st_shndx = SHN_ABS;
9381 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9382 bfd_abs_section_ptr, NULL))
9383 return FALSE;
9384 }
9385
9386 osym = *isym;
9387
9388 /* Adjust the section index for the output file. */
9389 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9390 isec->output_section);
9391 if (osym.st_shndx == SHN_BAD)
9392 return FALSE;
9393
9394 /* ELF symbols in relocatable files are section relative, but
9395 in executable files they are virtual addresses. Note that
9396 this code assumes that all ELF sections have an associated
9397 BFD section with a reasonable value for output_offset; below
9398 we assume that they also have a reasonable value for
9399 output_section. Any special sections must be set up to meet
9400 these requirements. */
9401 osym.st_value += isec->output_offset;
9402 if (!flinfo->info->relocatable)
9403 {
9404 osym.st_value += isec->output_section->vma;
9405 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9406 {
9407 /* STT_TLS symbols are relative to PT_TLS segment base. */
9408 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9409 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9410 }
9411 }
9412
9413 indx = bfd_get_symcount (output_bfd);
9414 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9415 if (ret == 0)
9416 return FALSE;
9417 else if (ret == 1)
9418 *pindex = indx;
9419 }
9420
9421 if (bed->s->arch_size == 32)
9422 {
9423 r_type_mask = 0xff;
9424 r_sym_shift = 8;
9425 address_size = 4;
9426 }
9427 else
9428 {
9429 r_type_mask = 0xffffffff;
9430 r_sym_shift = 32;
9431 address_size = 8;
9432 }
9433
9434 /* Relocate the contents of each section. */
9435 sym_hashes = elf_sym_hashes (input_bfd);
9436 for (o = input_bfd->sections; o != NULL; o = o->next)
9437 {
9438 bfd_byte *contents;
9439
9440 if (! o->linker_mark)
9441 {
9442 /* This section was omitted from the link. */
9443 continue;
9444 }
9445
9446 if (flinfo->info->relocatable
9447 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9448 {
9449 /* Deal with the group signature symbol. */
9450 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9451 unsigned long symndx = sec_data->this_hdr.sh_info;
9452 asection *osec = o->output_section;
9453
9454 if (symndx >= locsymcount
9455 || (elf_bad_symtab (input_bfd)
9456 && flinfo->sections[symndx] == NULL))
9457 {
9458 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9459 while (h->root.type == bfd_link_hash_indirect
9460 || h->root.type == bfd_link_hash_warning)
9461 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9462 /* Arrange for symbol to be output. */
9463 h->indx = -2;
9464 elf_section_data (osec)->this_hdr.sh_info = -2;
9465 }
9466 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9467 {
9468 /* We'll use the output section target_index. */
9469 asection *sec = flinfo->sections[symndx]->output_section;
9470 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9471 }
9472 else
9473 {
9474 if (flinfo->indices[symndx] == -1)
9475 {
9476 /* Otherwise output the local symbol now. */
9477 Elf_Internal_Sym sym = isymbuf[symndx];
9478 asection *sec = flinfo->sections[symndx]->output_section;
9479 const char *name;
9480 long indx;
9481 int ret;
9482
9483 name = bfd_elf_string_from_elf_section (input_bfd,
9484 symtab_hdr->sh_link,
9485 sym.st_name);
9486 if (name == NULL)
9487 return FALSE;
9488
9489 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9490 sec);
9491 if (sym.st_shndx == SHN_BAD)
9492 return FALSE;
9493
9494 sym.st_value += o->output_offset;
9495
9496 indx = bfd_get_symcount (output_bfd);
9497 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9498 if (ret == 0)
9499 return FALSE;
9500 else if (ret == 1)
9501 flinfo->indices[symndx] = indx;
9502 else
9503 abort ();
9504 }
9505 elf_section_data (osec)->this_hdr.sh_info
9506 = flinfo->indices[symndx];
9507 }
9508 }
9509
9510 if ((o->flags & SEC_HAS_CONTENTS) == 0
9511 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9512 continue;
9513
9514 if ((o->flags & SEC_LINKER_CREATED) != 0)
9515 {
9516 /* Section was created by _bfd_elf_link_create_dynamic_sections
9517 or somesuch. */
9518 continue;
9519 }
9520
9521 /* Get the contents of the section. They have been cached by a
9522 relaxation routine. Note that o is a section in an input
9523 file, so the contents field will not have been set by any of
9524 the routines which work on output files. */
9525 if (elf_section_data (o)->this_hdr.contents != NULL)
9526 contents = elf_section_data (o)->this_hdr.contents;
9527 else
9528 {
9529 contents = flinfo->contents;
9530 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9531 return FALSE;
9532 }
9533
9534 if ((o->flags & SEC_RELOC) != 0)
9535 {
9536 Elf_Internal_Rela *internal_relocs;
9537 Elf_Internal_Rela *rel, *relend;
9538 int action_discarded;
9539 int ret;
9540
9541 /* Get the swapped relocs. */
9542 internal_relocs
9543 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9544 flinfo->internal_relocs, FALSE);
9545 if (internal_relocs == NULL
9546 && o->reloc_count > 0)
9547 return FALSE;
9548
9549 /* We need to reverse-copy input .ctors/.dtors sections if
9550 they are placed in .init_array/.finit_array for output. */
9551 if (o->size > address_size
9552 && ((strncmp (o->name, ".ctors", 6) == 0
9553 && strcmp (o->output_section->name,
9554 ".init_array") == 0)
9555 || (strncmp (o->name, ".dtors", 6) == 0
9556 && strcmp (o->output_section->name,
9557 ".fini_array") == 0))
9558 && (o->name[6] == 0 || o->name[6] == '.'))
9559 {
9560 if (o->size != o->reloc_count * address_size)
9561 {
9562 (*_bfd_error_handler)
9563 (_("error: %B: size of section %A is not "
9564 "multiple of address size"),
9565 input_bfd, o);
9566 bfd_set_error (bfd_error_on_input);
9567 return FALSE;
9568 }
9569 o->flags |= SEC_ELF_REVERSE_COPY;
9570 }
9571
9572 action_discarded = -1;
9573 if (!elf_section_ignore_discarded_relocs (o))
9574 action_discarded = (*bed->action_discarded) (o);
9575
9576 /* Run through the relocs evaluating complex reloc symbols and
9577 looking for relocs against symbols from discarded sections
9578 or section symbols from removed link-once sections.
9579 Complain about relocs against discarded sections. Zero
9580 relocs against removed link-once sections. */
9581
9582 rel = internal_relocs;
9583 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9584 for ( ; rel < relend; rel++)
9585 {
9586 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9587 unsigned int s_type;
9588 asection **ps, *sec;
9589 struct elf_link_hash_entry *h = NULL;
9590 const char *sym_name;
9591
9592 if (r_symndx == STN_UNDEF)
9593 continue;
9594
9595 if (r_symndx >= locsymcount
9596 || (elf_bad_symtab (input_bfd)
9597 && flinfo->sections[r_symndx] == NULL))
9598 {
9599 h = sym_hashes[r_symndx - extsymoff];
9600
9601 /* Badly formatted input files can contain relocs that
9602 reference non-existant symbols. Check here so that
9603 we do not seg fault. */
9604 if (h == NULL)
9605 {
9606 char buffer [32];
9607
9608 sprintf_vma (buffer, rel->r_info);
9609 (*_bfd_error_handler)
9610 (_("error: %B contains a reloc (0x%s) for section %A "
9611 "that references a non-existent global symbol"),
9612 input_bfd, o, buffer);
9613 bfd_set_error (bfd_error_bad_value);
9614 return FALSE;
9615 }
9616
9617 while (h->root.type == bfd_link_hash_indirect
9618 || h->root.type == bfd_link_hash_warning)
9619 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9620
9621 s_type = h->type;
9622
9623 ps = NULL;
9624 if (h->root.type == bfd_link_hash_defined
9625 || h->root.type == bfd_link_hash_defweak)
9626 ps = &h->root.u.def.section;
9627
9628 sym_name = h->root.root.string;
9629 }
9630 else
9631 {
9632 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9633
9634 s_type = ELF_ST_TYPE (sym->st_info);
9635 ps = &flinfo->sections[r_symndx];
9636 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9637 sym, *ps);
9638 }
9639
9640 if ((s_type == STT_RELC || s_type == STT_SRELC)
9641 && !flinfo->info->relocatable)
9642 {
9643 bfd_vma val;
9644 bfd_vma dot = (rel->r_offset
9645 + o->output_offset + o->output_section->vma);
9646 #ifdef DEBUG
9647 printf ("Encountered a complex symbol!");
9648 printf (" (input_bfd %s, section %s, reloc %ld\n",
9649 input_bfd->filename, o->name,
9650 (long) (rel - internal_relocs));
9651 printf (" symbol: idx %8.8lx, name %s\n",
9652 r_symndx, sym_name);
9653 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9654 (unsigned long) rel->r_info,
9655 (unsigned long) rel->r_offset);
9656 #endif
9657 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9658 isymbuf, locsymcount, s_type == STT_SRELC))
9659 return FALSE;
9660
9661 /* Symbol evaluated OK. Update to absolute value. */
9662 set_symbol_value (input_bfd, isymbuf, locsymcount,
9663 r_symndx, val);
9664 continue;
9665 }
9666
9667 if (action_discarded != -1 && ps != NULL)
9668 {
9669 /* Complain if the definition comes from a
9670 discarded section. */
9671 if ((sec = *ps) != NULL && discarded_section (sec))
9672 {
9673 BFD_ASSERT (r_symndx != STN_UNDEF);
9674 if (action_discarded & COMPLAIN)
9675 (*flinfo->info->callbacks->einfo)
9676 (_("%X`%s' referenced in section `%A' of %B: "
9677 "defined in discarded section `%A' of %B\n"),
9678 sym_name, o, input_bfd, sec, sec->owner);
9679
9680 /* Try to do the best we can to support buggy old
9681 versions of gcc. Pretend that the symbol is
9682 really defined in the kept linkonce section.
9683 FIXME: This is quite broken. Modifying the
9684 symbol here means we will be changing all later
9685 uses of the symbol, not just in this section. */
9686 if (action_discarded & PRETEND)
9687 {
9688 asection *kept;
9689
9690 kept = _bfd_elf_check_kept_section (sec,
9691 flinfo->info);
9692 if (kept != NULL)
9693 {
9694 *ps = kept;
9695 continue;
9696 }
9697 }
9698 }
9699 }
9700 }
9701
9702 /* Relocate the section by invoking a back end routine.
9703
9704 The back end routine is responsible for adjusting the
9705 section contents as necessary, and (if using Rela relocs
9706 and generating a relocatable output file) adjusting the
9707 reloc addend as necessary.
9708
9709 The back end routine does not have to worry about setting
9710 the reloc address or the reloc symbol index.
9711
9712 The back end routine is given a pointer to the swapped in
9713 internal symbols, and can access the hash table entries
9714 for the external symbols via elf_sym_hashes (input_bfd).
9715
9716 When generating relocatable output, the back end routine
9717 must handle STB_LOCAL/STT_SECTION symbols specially. The
9718 output symbol is going to be a section symbol
9719 corresponding to the output section, which will require
9720 the addend to be adjusted. */
9721
9722 ret = (*relocate_section) (output_bfd, flinfo->info,
9723 input_bfd, o, contents,
9724 internal_relocs,
9725 isymbuf,
9726 flinfo->sections);
9727 if (!ret)
9728 return FALSE;
9729
9730 if (ret == 2
9731 || flinfo->info->relocatable
9732 || flinfo->info->emitrelocations)
9733 {
9734 Elf_Internal_Rela *irela;
9735 Elf_Internal_Rela *irelaend, *irelamid;
9736 bfd_vma last_offset;
9737 struct elf_link_hash_entry **rel_hash;
9738 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9739 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9740 unsigned int next_erel;
9741 bfd_boolean rela_normal;
9742 struct bfd_elf_section_data *esdi, *esdo;
9743
9744 esdi = elf_section_data (o);
9745 esdo = elf_section_data (o->output_section);
9746 rela_normal = FALSE;
9747
9748 /* Adjust the reloc addresses and symbol indices. */
9749
9750 irela = internal_relocs;
9751 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9752 rel_hash = esdo->rel.hashes + esdo->rel.count;
9753 /* We start processing the REL relocs, if any. When we reach
9754 IRELAMID in the loop, we switch to the RELA relocs. */
9755 irelamid = irela;
9756 if (esdi->rel.hdr != NULL)
9757 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9758 * bed->s->int_rels_per_ext_rel);
9759 rel_hash_list = rel_hash;
9760 rela_hash_list = NULL;
9761 last_offset = o->output_offset;
9762 if (!flinfo->info->relocatable)
9763 last_offset += o->output_section->vma;
9764 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9765 {
9766 unsigned long r_symndx;
9767 asection *sec;
9768 Elf_Internal_Sym sym;
9769
9770 if (next_erel == bed->s->int_rels_per_ext_rel)
9771 {
9772 rel_hash++;
9773 next_erel = 0;
9774 }
9775
9776 if (irela == irelamid)
9777 {
9778 rel_hash = esdo->rela.hashes + esdo->rela.count;
9779 rela_hash_list = rel_hash;
9780 rela_normal = bed->rela_normal;
9781 }
9782
9783 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9784 flinfo->info, o,
9785 irela->r_offset);
9786 if (irela->r_offset >= (bfd_vma) -2)
9787 {
9788 /* This is a reloc for a deleted entry or somesuch.
9789 Turn it into an R_*_NONE reloc, at the same
9790 offset as the last reloc. elf_eh_frame.c and
9791 bfd_elf_discard_info rely on reloc offsets
9792 being ordered. */
9793 irela->r_offset = last_offset;
9794 irela->r_info = 0;
9795 irela->r_addend = 0;
9796 continue;
9797 }
9798
9799 irela->r_offset += o->output_offset;
9800
9801 /* Relocs in an executable have to be virtual addresses. */
9802 if (!flinfo->info->relocatable)
9803 irela->r_offset += o->output_section->vma;
9804
9805 last_offset = irela->r_offset;
9806
9807 r_symndx = irela->r_info >> r_sym_shift;
9808 if (r_symndx == STN_UNDEF)
9809 continue;
9810
9811 if (r_symndx >= locsymcount
9812 || (elf_bad_symtab (input_bfd)
9813 && flinfo->sections[r_symndx] == NULL))
9814 {
9815 struct elf_link_hash_entry *rh;
9816 unsigned long indx;
9817
9818 /* This is a reloc against a global symbol. We
9819 have not yet output all the local symbols, so
9820 we do not know the symbol index of any global
9821 symbol. We set the rel_hash entry for this
9822 reloc to point to the global hash table entry
9823 for this symbol. The symbol index is then
9824 set at the end of bfd_elf_final_link. */
9825 indx = r_symndx - extsymoff;
9826 rh = elf_sym_hashes (input_bfd)[indx];
9827 while (rh->root.type == bfd_link_hash_indirect
9828 || rh->root.type == bfd_link_hash_warning)
9829 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9830
9831 /* Setting the index to -2 tells
9832 elf_link_output_extsym that this symbol is
9833 used by a reloc. */
9834 BFD_ASSERT (rh->indx < 0);
9835 rh->indx = -2;
9836
9837 *rel_hash = rh;
9838
9839 continue;
9840 }
9841
9842 /* This is a reloc against a local symbol. */
9843
9844 *rel_hash = NULL;
9845 sym = isymbuf[r_symndx];
9846 sec = flinfo->sections[r_symndx];
9847 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9848 {
9849 /* I suppose the backend ought to fill in the
9850 section of any STT_SECTION symbol against a
9851 processor specific section. */
9852 r_symndx = STN_UNDEF;
9853 if (bfd_is_abs_section (sec))
9854 ;
9855 else if (sec == NULL || sec->owner == NULL)
9856 {
9857 bfd_set_error (bfd_error_bad_value);
9858 return FALSE;
9859 }
9860 else
9861 {
9862 asection *osec = sec->output_section;
9863
9864 /* If we have discarded a section, the output
9865 section will be the absolute section. In
9866 case of discarded SEC_MERGE sections, use
9867 the kept section. relocate_section should
9868 have already handled discarded linkonce
9869 sections. */
9870 if (bfd_is_abs_section (osec)
9871 && sec->kept_section != NULL
9872 && sec->kept_section->output_section != NULL)
9873 {
9874 osec = sec->kept_section->output_section;
9875 irela->r_addend -= osec->vma;
9876 }
9877
9878 if (!bfd_is_abs_section (osec))
9879 {
9880 r_symndx = osec->target_index;
9881 if (r_symndx == STN_UNDEF)
9882 {
9883 irela->r_addend += osec->vma;
9884 osec = _bfd_nearby_section (output_bfd, osec,
9885 osec->vma);
9886 irela->r_addend -= osec->vma;
9887 r_symndx = osec->target_index;
9888 }
9889 }
9890 }
9891
9892 /* Adjust the addend according to where the
9893 section winds up in the output section. */
9894 if (rela_normal)
9895 irela->r_addend += sec->output_offset;
9896 }
9897 else
9898 {
9899 if (flinfo->indices[r_symndx] == -1)
9900 {
9901 unsigned long shlink;
9902 const char *name;
9903 asection *osec;
9904 long indx;
9905
9906 if (flinfo->info->strip == strip_all)
9907 {
9908 /* You can't do ld -r -s. */
9909 bfd_set_error (bfd_error_invalid_operation);
9910 return FALSE;
9911 }
9912
9913 /* This symbol was skipped earlier, but
9914 since it is needed by a reloc, we
9915 must output it now. */
9916 shlink = symtab_hdr->sh_link;
9917 name = (bfd_elf_string_from_elf_section
9918 (input_bfd, shlink, sym.st_name));
9919 if (name == NULL)
9920 return FALSE;
9921
9922 osec = sec->output_section;
9923 sym.st_shndx =
9924 _bfd_elf_section_from_bfd_section (output_bfd,
9925 osec);
9926 if (sym.st_shndx == SHN_BAD)
9927 return FALSE;
9928
9929 sym.st_value += sec->output_offset;
9930 if (!flinfo->info->relocatable)
9931 {
9932 sym.st_value += osec->vma;
9933 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9934 {
9935 /* STT_TLS symbols are relative to PT_TLS
9936 segment base. */
9937 BFD_ASSERT (elf_hash_table (flinfo->info)
9938 ->tls_sec != NULL);
9939 sym.st_value -= (elf_hash_table (flinfo->info)
9940 ->tls_sec->vma);
9941 }
9942 }
9943
9944 indx = bfd_get_symcount (output_bfd);
9945 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9946 NULL);
9947 if (ret == 0)
9948 return FALSE;
9949 else if (ret == 1)
9950 flinfo->indices[r_symndx] = indx;
9951 else
9952 abort ();
9953 }
9954
9955 r_symndx = flinfo->indices[r_symndx];
9956 }
9957
9958 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9959 | (irela->r_info & r_type_mask));
9960 }
9961
9962 /* Swap out the relocs. */
9963 input_rel_hdr = esdi->rel.hdr;
9964 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9965 {
9966 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9967 input_rel_hdr,
9968 internal_relocs,
9969 rel_hash_list))
9970 return FALSE;
9971 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9972 * bed->s->int_rels_per_ext_rel);
9973 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9974 }
9975
9976 input_rela_hdr = esdi->rela.hdr;
9977 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9978 {
9979 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9980 input_rela_hdr,
9981 internal_relocs,
9982 rela_hash_list))
9983 return FALSE;
9984 }
9985 }
9986 }
9987
9988 /* Write out the modified section contents. */
9989 if (bed->elf_backend_write_section
9990 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9991 contents))
9992 {
9993 /* Section written out. */
9994 }
9995 else switch (o->sec_info_type)
9996 {
9997 case SEC_INFO_TYPE_STABS:
9998 if (! (_bfd_write_section_stabs
9999 (output_bfd,
10000 &elf_hash_table (flinfo->info)->stab_info,
10001 o, &elf_section_data (o)->sec_info, contents)))
10002 return FALSE;
10003 break;
10004 case SEC_INFO_TYPE_MERGE:
10005 if (! _bfd_write_merged_section (output_bfd, o,
10006 elf_section_data (o)->sec_info))
10007 return FALSE;
10008 break;
10009 case SEC_INFO_TYPE_EH_FRAME:
10010 {
10011 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10012 o, contents))
10013 return FALSE;
10014 }
10015 break;
10016 default:
10017 {
10018 /* FIXME: octets_per_byte. */
10019 if (! (o->flags & SEC_EXCLUDE))
10020 {
10021 file_ptr offset = (file_ptr) o->output_offset;
10022 bfd_size_type todo = o->size;
10023 if ((o->flags & SEC_ELF_REVERSE_COPY))
10024 {
10025 /* Reverse-copy input section to output. */
10026 do
10027 {
10028 todo -= address_size;
10029 if (! bfd_set_section_contents (output_bfd,
10030 o->output_section,
10031 contents + todo,
10032 offset,
10033 address_size))
10034 return FALSE;
10035 if (todo == 0)
10036 break;
10037 offset += address_size;
10038 }
10039 while (1);
10040 }
10041 else if (! bfd_set_section_contents (output_bfd,
10042 o->output_section,
10043 contents,
10044 offset, todo))
10045 return FALSE;
10046 }
10047 }
10048 break;
10049 }
10050 }
10051
10052 return TRUE;
10053 }
10054
10055 /* Generate a reloc when linking an ELF file. This is a reloc
10056 requested by the linker, and does not come from any input file. This
10057 is used to build constructor and destructor tables when linking
10058 with -Ur. */
10059
10060 static bfd_boolean
10061 elf_reloc_link_order (bfd *output_bfd,
10062 struct bfd_link_info *info,
10063 asection *output_section,
10064 struct bfd_link_order *link_order)
10065 {
10066 reloc_howto_type *howto;
10067 long indx;
10068 bfd_vma offset;
10069 bfd_vma addend;
10070 struct bfd_elf_section_reloc_data *reldata;
10071 struct elf_link_hash_entry **rel_hash_ptr;
10072 Elf_Internal_Shdr *rel_hdr;
10073 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10074 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10075 bfd_byte *erel;
10076 unsigned int i;
10077 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10078
10079 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10080 if (howto == NULL)
10081 {
10082 bfd_set_error (bfd_error_bad_value);
10083 return FALSE;
10084 }
10085
10086 addend = link_order->u.reloc.p->addend;
10087
10088 if (esdo->rel.hdr)
10089 reldata = &esdo->rel;
10090 else if (esdo->rela.hdr)
10091 reldata = &esdo->rela;
10092 else
10093 {
10094 reldata = NULL;
10095 BFD_ASSERT (0);
10096 }
10097
10098 /* Figure out the symbol index. */
10099 rel_hash_ptr = reldata->hashes + reldata->count;
10100 if (link_order->type == bfd_section_reloc_link_order)
10101 {
10102 indx = link_order->u.reloc.p->u.section->target_index;
10103 BFD_ASSERT (indx != 0);
10104 *rel_hash_ptr = NULL;
10105 }
10106 else
10107 {
10108 struct elf_link_hash_entry *h;
10109
10110 /* Treat a reloc against a defined symbol as though it were
10111 actually against the section. */
10112 h = ((struct elf_link_hash_entry *)
10113 bfd_wrapped_link_hash_lookup (output_bfd, info,
10114 link_order->u.reloc.p->u.name,
10115 FALSE, FALSE, TRUE));
10116 if (h != NULL
10117 && (h->root.type == bfd_link_hash_defined
10118 || h->root.type == bfd_link_hash_defweak))
10119 {
10120 asection *section;
10121
10122 section = h->root.u.def.section;
10123 indx = section->output_section->target_index;
10124 *rel_hash_ptr = NULL;
10125 /* It seems that we ought to add the symbol value to the
10126 addend here, but in practice it has already been added
10127 because it was passed to constructor_callback. */
10128 addend += section->output_section->vma + section->output_offset;
10129 }
10130 else if (h != NULL)
10131 {
10132 /* Setting the index to -2 tells elf_link_output_extsym that
10133 this symbol is used by a reloc. */
10134 h->indx = -2;
10135 *rel_hash_ptr = h;
10136 indx = 0;
10137 }
10138 else
10139 {
10140 if (! ((*info->callbacks->unattached_reloc)
10141 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10142 return FALSE;
10143 indx = 0;
10144 }
10145 }
10146
10147 /* If this is an inplace reloc, we must write the addend into the
10148 object file. */
10149 if (howto->partial_inplace && addend != 0)
10150 {
10151 bfd_size_type size;
10152 bfd_reloc_status_type rstat;
10153 bfd_byte *buf;
10154 bfd_boolean ok;
10155 const char *sym_name;
10156
10157 size = (bfd_size_type) bfd_get_reloc_size (howto);
10158 buf = (bfd_byte *) bfd_zmalloc (size);
10159 if (buf == NULL)
10160 return FALSE;
10161 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10162 switch (rstat)
10163 {
10164 case bfd_reloc_ok:
10165 break;
10166
10167 default:
10168 case bfd_reloc_outofrange:
10169 abort ();
10170
10171 case bfd_reloc_overflow:
10172 if (link_order->type == bfd_section_reloc_link_order)
10173 sym_name = bfd_section_name (output_bfd,
10174 link_order->u.reloc.p->u.section);
10175 else
10176 sym_name = link_order->u.reloc.p->u.name;
10177 if (! ((*info->callbacks->reloc_overflow)
10178 (info, NULL, sym_name, howto->name, addend, NULL,
10179 NULL, (bfd_vma) 0)))
10180 {
10181 free (buf);
10182 return FALSE;
10183 }
10184 break;
10185 }
10186 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10187 link_order->offset, size);
10188 free (buf);
10189 if (! ok)
10190 return FALSE;
10191 }
10192
10193 /* The address of a reloc is relative to the section in a
10194 relocatable file, and is a virtual address in an executable
10195 file. */
10196 offset = link_order->offset;
10197 if (! info->relocatable)
10198 offset += output_section->vma;
10199
10200 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10201 {
10202 irel[i].r_offset = offset;
10203 irel[i].r_info = 0;
10204 irel[i].r_addend = 0;
10205 }
10206 if (bed->s->arch_size == 32)
10207 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10208 else
10209 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10210
10211 rel_hdr = reldata->hdr;
10212 erel = rel_hdr->contents;
10213 if (rel_hdr->sh_type == SHT_REL)
10214 {
10215 erel += reldata->count * bed->s->sizeof_rel;
10216 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10217 }
10218 else
10219 {
10220 irel[0].r_addend = addend;
10221 erel += reldata->count * bed->s->sizeof_rela;
10222 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10223 }
10224
10225 ++reldata->count;
10226
10227 return TRUE;
10228 }
10229
10230
10231 /* Get the output vma of the section pointed to by the sh_link field. */
10232
10233 static bfd_vma
10234 elf_get_linked_section_vma (struct bfd_link_order *p)
10235 {
10236 Elf_Internal_Shdr **elf_shdrp;
10237 asection *s;
10238 int elfsec;
10239
10240 s = p->u.indirect.section;
10241 elf_shdrp = elf_elfsections (s->owner);
10242 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10243 elfsec = elf_shdrp[elfsec]->sh_link;
10244 /* PR 290:
10245 The Intel C compiler generates SHT_IA_64_UNWIND with
10246 SHF_LINK_ORDER. But it doesn't set the sh_link or
10247 sh_info fields. Hence we could get the situation
10248 where elfsec is 0. */
10249 if (elfsec == 0)
10250 {
10251 const struct elf_backend_data *bed
10252 = get_elf_backend_data (s->owner);
10253 if (bed->link_order_error_handler)
10254 bed->link_order_error_handler
10255 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10256 return 0;
10257 }
10258 else
10259 {
10260 s = elf_shdrp[elfsec]->bfd_section;
10261 return s->output_section->vma + s->output_offset;
10262 }
10263 }
10264
10265
10266 /* Compare two sections based on the locations of the sections they are
10267 linked to. Used by elf_fixup_link_order. */
10268
10269 static int
10270 compare_link_order (const void * a, const void * b)
10271 {
10272 bfd_vma apos;
10273 bfd_vma bpos;
10274
10275 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10276 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10277 if (apos < bpos)
10278 return -1;
10279 return apos > bpos;
10280 }
10281
10282
10283 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10284 order as their linked sections. Returns false if this could not be done
10285 because an output section includes both ordered and unordered
10286 sections. Ideally we'd do this in the linker proper. */
10287
10288 static bfd_boolean
10289 elf_fixup_link_order (bfd *abfd, asection *o)
10290 {
10291 int seen_linkorder;
10292 int seen_other;
10293 int n;
10294 struct bfd_link_order *p;
10295 bfd *sub;
10296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10297 unsigned elfsec;
10298 struct bfd_link_order **sections;
10299 asection *s, *other_sec, *linkorder_sec;
10300 bfd_vma offset;
10301
10302 other_sec = NULL;
10303 linkorder_sec = NULL;
10304 seen_other = 0;
10305 seen_linkorder = 0;
10306 for (p = o->map_head.link_order; p != NULL; p = p->next)
10307 {
10308 if (p->type == bfd_indirect_link_order)
10309 {
10310 s = p->u.indirect.section;
10311 sub = s->owner;
10312 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10313 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10314 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10315 && elfsec < elf_numsections (sub)
10316 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10317 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10318 {
10319 seen_linkorder++;
10320 linkorder_sec = s;
10321 }
10322 else
10323 {
10324 seen_other++;
10325 other_sec = s;
10326 }
10327 }
10328 else
10329 seen_other++;
10330
10331 if (seen_other && seen_linkorder)
10332 {
10333 if (other_sec && linkorder_sec)
10334 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10335 o, linkorder_sec,
10336 linkorder_sec->owner, other_sec,
10337 other_sec->owner);
10338 else
10339 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10340 o);
10341 bfd_set_error (bfd_error_bad_value);
10342 return FALSE;
10343 }
10344 }
10345
10346 if (!seen_linkorder)
10347 return TRUE;
10348
10349 sections = (struct bfd_link_order **)
10350 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10351 if (sections == NULL)
10352 return FALSE;
10353 seen_linkorder = 0;
10354
10355 for (p = o->map_head.link_order; p != NULL; p = p->next)
10356 {
10357 sections[seen_linkorder++] = p;
10358 }
10359 /* Sort the input sections in the order of their linked section. */
10360 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10361 compare_link_order);
10362
10363 /* Change the offsets of the sections. */
10364 offset = 0;
10365 for (n = 0; n < seen_linkorder; n++)
10366 {
10367 s = sections[n]->u.indirect.section;
10368 offset &= ~(bfd_vma) 0 << s->alignment_power;
10369 s->output_offset = offset;
10370 sections[n]->offset = offset;
10371 /* FIXME: octets_per_byte. */
10372 offset += sections[n]->size;
10373 }
10374
10375 free (sections);
10376 return TRUE;
10377 }
10378
10379 static void
10380 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10381 {
10382 asection *o;
10383
10384 if (flinfo->symstrtab != NULL)
10385 _bfd_stringtab_free (flinfo->symstrtab);
10386 if (flinfo->contents != NULL)
10387 free (flinfo->contents);
10388 if (flinfo->external_relocs != NULL)
10389 free (flinfo->external_relocs);
10390 if (flinfo->internal_relocs != NULL)
10391 free (flinfo->internal_relocs);
10392 if (flinfo->external_syms != NULL)
10393 free (flinfo->external_syms);
10394 if (flinfo->locsym_shndx != NULL)
10395 free (flinfo->locsym_shndx);
10396 if (flinfo->internal_syms != NULL)
10397 free (flinfo->internal_syms);
10398 if (flinfo->indices != NULL)
10399 free (flinfo->indices);
10400 if (flinfo->sections != NULL)
10401 free (flinfo->sections);
10402 if (flinfo->symbuf != NULL)
10403 free (flinfo->symbuf);
10404 if (flinfo->symshndxbuf != NULL)
10405 free (flinfo->symshndxbuf);
10406 for (o = obfd->sections; o != NULL; o = o->next)
10407 {
10408 struct bfd_elf_section_data *esdo = elf_section_data (o);
10409 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10410 free (esdo->rel.hashes);
10411 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10412 free (esdo->rela.hashes);
10413 }
10414 }
10415
10416 /* Do the final step of an ELF link. */
10417
10418 bfd_boolean
10419 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10420 {
10421 bfd_boolean dynamic;
10422 bfd_boolean emit_relocs;
10423 bfd *dynobj;
10424 struct elf_final_link_info flinfo;
10425 asection *o;
10426 struct bfd_link_order *p;
10427 bfd *sub;
10428 bfd_size_type max_contents_size;
10429 bfd_size_type max_external_reloc_size;
10430 bfd_size_type max_internal_reloc_count;
10431 bfd_size_type max_sym_count;
10432 bfd_size_type max_sym_shndx_count;
10433 file_ptr off;
10434 Elf_Internal_Sym elfsym;
10435 unsigned int i;
10436 Elf_Internal_Shdr *symtab_hdr;
10437 Elf_Internal_Shdr *symtab_shndx_hdr;
10438 Elf_Internal_Shdr *symstrtab_hdr;
10439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10440 struct elf_outext_info eoinfo;
10441 bfd_boolean merged;
10442 size_t relativecount = 0;
10443 asection *reldyn = 0;
10444 bfd_size_type amt;
10445 asection *attr_section = NULL;
10446 bfd_vma attr_size = 0;
10447 const char *std_attrs_section;
10448
10449 if (! is_elf_hash_table (info->hash))
10450 return FALSE;
10451
10452 if (info->shared)
10453 abfd->flags |= DYNAMIC;
10454
10455 dynamic = elf_hash_table (info)->dynamic_sections_created;
10456 dynobj = elf_hash_table (info)->dynobj;
10457
10458 emit_relocs = (info->relocatable
10459 || info->emitrelocations);
10460
10461 flinfo.info = info;
10462 flinfo.output_bfd = abfd;
10463 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10464 if (flinfo.symstrtab == NULL)
10465 return FALSE;
10466
10467 if (! dynamic)
10468 {
10469 flinfo.dynsym_sec = NULL;
10470 flinfo.hash_sec = NULL;
10471 flinfo.symver_sec = NULL;
10472 }
10473 else
10474 {
10475 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10476 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10477 /* Note that dynsym_sec can be NULL (on VMS). */
10478 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10479 /* Note that it is OK if symver_sec is NULL. */
10480 }
10481
10482 flinfo.contents = NULL;
10483 flinfo.external_relocs = NULL;
10484 flinfo.internal_relocs = NULL;
10485 flinfo.external_syms = NULL;
10486 flinfo.locsym_shndx = NULL;
10487 flinfo.internal_syms = NULL;
10488 flinfo.indices = NULL;
10489 flinfo.sections = NULL;
10490 flinfo.symbuf = NULL;
10491 flinfo.symshndxbuf = NULL;
10492 flinfo.symbuf_count = 0;
10493 flinfo.shndxbuf_size = 0;
10494 flinfo.filesym_count = 0;
10495
10496 /* The object attributes have been merged. Remove the input
10497 sections from the link, and set the contents of the output
10498 secton. */
10499 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10500 for (o = abfd->sections; o != NULL; o = o->next)
10501 {
10502 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10503 || strcmp (o->name, ".gnu.attributes") == 0)
10504 {
10505 for (p = o->map_head.link_order; p != NULL; p = p->next)
10506 {
10507 asection *input_section;
10508
10509 if (p->type != bfd_indirect_link_order)
10510 continue;
10511 input_section = p->u.indirect.section;
10512 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10513 elf_link_input_bfd ignores this section. */
10514 input_section->flags &= ~SEC_HAS_CONTENTS;
10515 }
10516
10517 attr_size = bfd_elf_obj_attr_size (abfd);
10518 if (attr_size)
10519 {
10520 bfd_set_section_size (abfd, o, attr_size);
10521 attr_section = o;
10522 /* Skip this section later on. */
10523 o->map_head.link_order = NULL;
10524 }
10525 else
10526 o->flags |= SEC_EXCLUDE;
10527 }
10528 }
10529
10530 /* Count up the number of relocations we will output for each output
10531 section, so that we know the sizes of the reloc sections. We
10532 also figure out some maximum sizes. */
10533 max_contents_size = 0;
10534 max_external_reloc_size = 0;
10535 max_internal_reloc_count = 0;
10536 max_sym_count = 0;
10537 max_sym_shndx_count = 0;
10538 merged = FALSE;
10539 for (o = abfd->sections; o != NULL; o = o->next)
10540 {
10541 struct bfd_elf_section_data *esdo = elf_section_data (o);
10542 o->reloc_count = 0;
10543
10544 for (p = o->map_head.link_order; p != NULL; p = p->next)
10545 {
10546 unsigned int reloc_count = 0;
10547 struct bfd_elf_section_data *esdi = NULL;
10548
10549 if (p->type == bfd_section_reloc_link_order
10550 || p->type == bfd_symbol_reloc_link_order)
10551 reloc_count = 1;
10552 else if (p->type == bfd_indirect_link_order)
10553 {
10554 asection *sec;
10555
10556 sec = p->u.indirect.section;
10557 esdi = elf_section_data (sec);
10558
10559 /* Mark all sections which are to be included in the
10560 link. This will normally be every section. We need
10561 to do this so that we can identify any sections which
10562 the linker has decided to not include. */
10563 sec->linker_mark = TRUE;
10564
10565 if (sec->flags & SEC_MERGE)
10566 merged = TRUE;
10567
10568 if (esdo->this_hdr.sh_type == SHT_REL
10569 || esdo->this_hdr.sh_type == SHT_RELA)
10570 /* Some backends use reloc_count in relocation sections
10571 to count particular types of relocs. Of course,
10572 reloc sections themselves can't have relocations. */
10573 reloc_count = 0;
10574 else if (info->relocatable || info->emitrelocations)
10575 reloc_count = sec->reloc_count;
10576 else if (bed->elf_backend_count_relocs)
10577 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10578
10579 if (sec->rawsize > max_contents_size)
10580 max_contents_size = sec->rawsize;
10581 if (sec->size > max_contents_size)
10582 max_contents_size = sec->size;
10583
10584 /* We are interested in just local symbols, not all
10585 symbols. */
10586 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10587 && (sec->owner->flags & DYNAMIC) == 0)
10588 {
10589 size_t sym_count;
10590
10591 if (elf_bad_symtab (sec->owner))
10592 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10593 / bed->s->sizeof_sym);
10594 else
10595 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10596
10597 if (sym_count > max_sym_count)
10598 max_sym_count = sym_count;
10599
10600 if (sym_count > max_sym_shndx_count
10601 && elf_symtab_shndx (sec->owner) != 0)
10602 max_sym_shndx_count = sym_count;
10603
10604 if ((sec->flags & SEC_RELOC) != 0)
10605 {
10606 size_t ext_size = 0;
10607
10608 if (esdi->rel.hdr != NULL)
10609 ext_size = esdi->rel.hdr->sh_size;
10610 if (esdi->rela.hdr != NULL)
10611 ext_size += esdi->rela.hdr->sh_size;
10612
10613 if (ext_size > max_external_reloc_size)
10614 max_external_reloc_size = ext_size;
10615 if (sec->reloc_count > max_internal_reloc_count)
10616 max_internal_reloc_count = sec->reloc_count;
10617 }
10618 }
10619 }
10620
10621 if (reloc_count == 0)
10622 continue;
10623
10624 o->reloc_count += reloc_count;
10625
10626 if (p->type == bfd_indirect_link_order
10627 && (info->relocatable || info->emitrelocations))
10628 {
10629 if (esdi->rel.hdr)
10630 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10631 if (esdi->rela.hdr)
10632 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10633 }
10634 else
10635 {
10636 if (o->use_rela_p)
10637 esdo->rela.count += reloc_count;
10638 else
10639 esdo->rel.count += reloc_count;
10640 }
10641 }
10642
10643 if (o->reloc_count > 0)
10644 o->flags |= SEC_RELOC;
10645 else
10646 {
10647 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10648 set it (this is probably a bug) and if it is set
10649 assign_section_numbers will create a reloc section. */
10650 o->flags &=~ SEC_RELOC;
10651 }
10652
10653 /* If the SEC_ALLOC flag is not set, force the section VMA to
10654 zero. This is done in elf_fake_sections as well, but forcing
10655 the VMA to 0 here will ensure that relocs against these
10656 sections are handled correctly. */
10657 if ((o->flags & SEC_ALLOC) == 0
10658 && ! o->user_set_vma)
10659 o->vma = 0;
10660 }
10661
10662 if (! info->relocatable && merged)
10663 elf_link_hash_traverse (elf_hash_table (info),
10664 _bfd_elf_link_sec_merge_syms, abfd);
10665
10666 /* Figure out the file positions for everything but the symbol table
10667 and the relocs. We set symcount to force assign_section_numbers
10668 to create a symbol table. */
10669 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10670 BFD_ASSERT (! abfd->output_has_begun);
10671 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10672 goto error_return;
10673
10674 /* Set sizes, and assign file positions for reloc sections. */
10675 for (o = abfd->sections; o != NULL; o = o->next)
10676 {
10677 struct bfd_elf_section_data *esdo = elf_section_data (o);
10678 if ((o->flags & SEC_RELOC) != 0)
10679 {
10680 if (esdo->rel.hdr
10681 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10682 goto error_return;
10683
10684 if (esdo->rela.hdr
10685 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10686 goto error_return;
10687 }
10688
10689 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10690 to count upwards while actually outputting the relocations. */
10691 esdo->rel.count = 0;
10692 esdo->rela.count = 0;
10693 }
10694
10695 _bfd_elf_assign_file_positions_for_relocs (abfd);
10696
10697 /* We have now assigned file positions for all the sections except
10698 .symtab and .strtab. We start the .symtab section at the current
10699 file position, and write directly to it. We build the .strtab
10700 section in memory. */
10701 bfd_get_symcount (abfd) = 0;
10702 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10703 /* sh_name is set in prep_headers. */
10704 symtab_hdr->sh_type = SHT_SYMTAB;
10705 /* sh_flags, sh_addr and sh_size all start off zero. */
10706 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10707 /* sh_link is set in assign_section_numbers. */
10708 /* sh_info is set below. */
10709 /* sh_offset is set just below. */
10710 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10711
10712 off = elf_next_file_pos (abfd);
10713 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10714
10715 /* Note that at this point elf_next_file_pos (abfd) is
10716 incorrect. We do not yet know the size of the .symtab section.
10717 We correct next_file_pos below, after we do know the size. */
10718
10719 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10720 continuously seeking to the right position in the file. */
10721 if (! info->keep_memory || max_sym_count < 20)
10722 flinfo.symbuf_size = 20;
10723 else
10724 flinfo.symbuf_size = max_sym_count;
10725 amt = flinfo.symbuf_size;
10726 amt *= bed->s->sizeof_sym;
10727 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10728 if (flinfo.symbuf == NULL)
10729 goto error_return;
10730 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10731 {
10732 /* Wild guess at number of output symbols. realloc'd as needed. */
10733 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10734 flinfo.shndxbuf_size = amt;
10735 amt *= sizeof (Elf_External_Sym_Shndx);
10736 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10737 if (flinfo.symshndxbuf == NULL)
10738 goto error_return;
10739 }
10740
10741 /* Start writing out the symbol table. The first symbol is always a
10742 dummy symbol. */
10743 if (info->strip != strip_all
10744 || emit_relocs)
10745 {
10746 elfsym.st_value = 0;
10747 elfsym.st_size = 0;
10748 elfsym.st_info = 0;
10749 elfsym.st_other = 0;
10750 elfsym.st_shndx = SHN_UNDEF;
10751 elfsym.st_target_internal = 0;
10752 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10753 NULL) != 1)
10754 goto error_return;
10755 }
10756
10757 /* Output a symbol for each section. We output these even if we are
10758 discarding local symbols, since they are used for relocs. These
10759 symbols have no names. We store the index of each one in the
10760 index field of the section, so that we can find it again when
10761 outputting relocs. */
10762 if (info->strip != strip_all
10763 || emit_relocs)
10764 {
10765 elfsym.st_size = 0;
10766 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10767 elfsym.st_other = 0;
10768 elfsym.st_value = 0;
10769 elfsym.st_target_internal = 0;
10770 for (i = 1; i < elf_numsections (abfd); i++)
10771 {
10772 o = bfd_section_from_elf_index (abfd, i);
10773 if (o != NULL)
10774 {
10775 o->target_index = bfd_get_symcount (abfd);
10776 elfsym.st_shndx = i;
10777 if (!info->relocatable)
10778 elfsym.st_value = o->vma;
10779 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10780 goto error_return;
10781 }
10782 }
10783 }
10784
10785 /* Allocate some memory to hold information read in from the input
10786 files. */
10787 if (max_contents_size != 0)
10788 {
10789 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10790 if (flinfo.contents == NULL)
10791 goto error_return;
10792 }
10793
10794 if (max_external_reloc_size != 0)
10795 {
10796 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10797 if (flinfo.external_relocs == NULL)
10798 goto error_return;
10799 }
10800
10801 if (max_internal_reloc_count != 0)
10802 {
10803 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10804 amt *= sizeof (Elf_Internal_Rela);
10805 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10806 if (flinfo.internal_relocs == NULL)
10807 goto error_return;
10808 }
10809
10810 if (max_sym_count != 0)
10811 {
10812 amt = max_sym_count * bed->s->sizeof_sym;
10813 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10814 if (flinfo.external_syms == NULL)
10815 goto error_return;
10816
10817 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10818 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10819 if (flinfo.internal_syms == NULL)
10820 goto error_return;
10821
10822 amt = max_sym_count * sizeof (long);
10823 flinfo.indices = (long int *) bfd_malloc (amt);
10824 if (flinfo.indices == NULL)
10825 goto error_return;
10826
10827 amt = max_sym_count * sizeof (asection *);
10828 flinfo.sections = (asection **) bfd_malloc (amt);
10829 if (flinfo.sections == NULL)
10830 goto error_return;
10831 }
10832
10833 if (max_sym_shndx_count != 0)
10834 {
10835 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10836 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10837 if (flinfo.locsym_shndx == NULL)
10838 goto error_return;
10839 }
10840
10841 if (elf_hash_table (info)->tls_sec)
10842 {
10843 bfd_vma base, end = 0;
10844 asection *sec;
10845
10846 for (sec = elf_hash_table (info)->tls_sec;
10847 sec && (sec->flags & SEC_THREAD_LOCAL);
10848 sec = sec->next)
10849 {
10850 bfd_size_type size = sec->size;
10851
10852 if (size == 0
10853 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10854 {
10855 struct bfd_link_order *ord = sec->map_tail.link_order;
10856
10857 if (ord != NULL)
10858 size = ord->offset + ord->size;
10859 }
10860 end = sec->vma + size;
10861 }
10862 base = elf_hash_table (info)->tls_sec->vma;
10863 /* Only align end of TLS section if static TLS doesn't have special
10864 alignment requirements. */
10865 if (bed->static_tls_alignment == 1)
10866 end = align_power (end,
10867 elf_hash_table (info)->tls_sec->alignment_power);
10868 elf_hash_table (info)->tls_size = end - base;
10869 }
10870
10871 /* Reorder SHF_LINK_ORDER sections. */
10872 for (o = abfd->sections; o != NULL; o = o->next)
10873 {
10874 if (!elf_fixup_link_order (abfd, o))
10875 return FALSE;
10876 }
10877
10878 /* Since ELF permits relocations to be against local symbols, we
10879 must have the local symbols available when we do the relocations.
10880 Since we would rather only read the local symbols once, and we
10881 would rather not keep them in memory, we handle all the
10882 relocations for a single input file at the same time.
10883
10884 Unfortunately, there is no way to know the total number of local
10885 symbols until we have seen all of them, and the local symbol
10886 indices precede the global symbol indices. This means that when
10887 we are generating relocatable output, and we see a reloc against
10888 a global symbol, we can not know the symbol index until we have
10889 finished examining all the local symbols to see which ones we are
10890 going to output. To deal with this, we keep the relocations in
10891 memory, and don't output them until the end of the link. This is
10892 an unfortunate waste of memory, but I don't see a good way around
10893 it. Fortunately, it only happens when performing a relocatable
10894 link, which is not the common case. FIXME: If keep_memory is set
10895 we could write the relocs out and then read them again; I don't
10896 know how bad the memory loss will be. */
10897
10898 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10899 sub->output_has_begun = FALSE;
10900 for (o = abfd->sections; o != NULL; o = o->next)
10901 {
10902 for (p = o->map_head.link_order; p != NULL; p = p->next)
10903 {
10904 if (p->type == bfd_indirect_link_order
10905 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10906 == bfd_target_elf_flavour)
10907 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10908 {
10909 if (! sub->output_has_begun)
10910 {
10911 if (! elf_link_input_bfd (&flinfo, sub))
10912 goto error_return;
10913 sub->output_has_begun = TRUE;
10914 }
10915 }
10916 else if (p->type == bfd_section_reloc_link_order
10917 || p->type == bfd_symbol_reloc_link_order)
10918 {
10919 if (! elf_reloc_link_order (abfd, info, o, p))
10920 goto error_return;
10921 }
10922 else
10923 {
10924 if (! _bfd_default_link_order (abfd, info, o, p))
10925 {
10926 if (p->type == bfd_indirect_link_order
10927 && (bfd_get_flavour (sub)
10928 == bfd_target_elf_flavour)
10929 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10930 != bed->s->elfclass))
10931 {
10932 const char *iclass, *oclass;
10933
10934 if (bed->s->elfclass == ELFCLASS64)
10935 {
10936 iclass = "ELFCLASS32";
10937 oclass = "ELFCLASS64";
10938 }
10939 else
10940 {
10941 iclass = "ELFCLASS64";
10942 oclass = "ELFCLASS32";
10943 }
10944
10945 bfd_set_error (bfd_error_wrong_format);
10946 (*_bfd_error_handler)
10947 (_("%B: file class %s incompatible with %s"),
10948 sub, iclass, oclass);
10949 }
10950
10951 goto error_return;
10952 }
10953 }
10954 }
10955 }
10956
10957 /* Free symbol buffer if needed. */
10958 if (!info->reduce_memory_overheads)
10959 {
10960 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10961 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10962 && elf_tdata (sub)->symbuf)
10963 {
10964 free (elf_tdata (sub)->symbuf);
10965 elf_tdata (sub)->symbuf = NULL;
10966 }
10967 }
10968
10969 /* Output a FILE symbol so that following locals are not associated
10970 with the wrong input file. */
10971 memset (&elfsym, 0, sizeof (elfsym));
10972 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10973 elfsym.st_shndx = SHN_ABS;
10974
10975 if (flinfo.filesym_count > 1
10976 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10977 bfd_und_section_ptr, NULL))
10978 return FALSE;
10979
10980 /* Output any global symbols that got converted to local in a
10981 version script or due to symbol visibility. We do this in a
10982 separate step since ELF requires all local symbols to appear
10983 prior to any global symbols. FIXME: We should only do this if
10984 some global symbols were, in fact, converted to become local.
10985 FIXME: Will this work correctly with the Irix 5 linker? */
10986 eoinfo.failed = FALSE;
10987 eoinfo.flinfo = &flinfo;
10988 eoinfo.localsyms = TRUE;
10989 eoinfo.need_second_pass = FALSE;
10990 eoinfo.second_pass = FALSE;
10991 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10992 if (eoinfo.failed)
10993 return FALSE;
10994
10995 if (flinfo.filesym_count == 1
10996 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10997 bfd_und_section_ptr, NULL))
10998 return FALSE;
10999
11000 if (eoinfo.need_second_pass)
11001 {
11002 eoinfo.second_pass = TRUE;
11003 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11004 if (eoinfo.failed)
11005 return FALSE;
11006 }
11007
11008 /* If backend needs to output some local symbols not present in the hash
11009 table, do it now. */
11010 if (bed->elf_backend_output_arch_local_syms)
11011 {
11012 typedef int (*out_sym_func)
11013 (void *, const char *, Elf_Internal_Sym *, asection *,
11014 struct elf_link_hash_entry *);
11015
11016 if (! ((*bed->elf_backend_output_arch_local_syms)
11017 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11018 return FALSE;
11019 }
11020
11021 /* That wrote out all the local symbols. Finish up the symbol table
11022 with the global symbols. Even if we want to strip everything we
11023 can, we still need to deal with those global symbols that got
11024 converted to local in a version script. */
11025
11026 /* The sh_info field records the index of the first non local symbol. */
11027 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11028
11029 if (dynamic
11030 && flinfo.dynsym_sec != NULL
11031 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11032 {
11033 Elf_Internal_Sym sym;
11034 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11035 long last_local = 0;
11036
11037 /* Write out the section symbols for the output sections. */
11038 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11039 {
11040 asection *s;
11041
11042 sym.st_size = 0;
11043 sym.st_name = 0;
11044 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11045 sym.st_other = 0;
11046 sym.st_target_internal = 0;
11047
11048 for (s = abfd->sections; s != NULL; s = s->next)
11049 {
11050 int indx;
11051 bfd_byte *dest;
11052 long dynindx;
11053
11054 dynindx = elf_section_data (s)->dynindx;
11055 if (dynindx <= 0)
11056 continue;
11057 indx = elf_section_data (s)->this_idx;
11058 BFD_ASSERT (indx > 0);
11059 sym.st_shndx = indx;
11060 if (! check_dynsym (abfd, &sym))
11061 return FALSE;
11062 sym.st_value = s->vma;
11063 dest = dynsym + dynindx * bed->s->sizeof_sym;
11064 if (last_local < dynindx)
11065 last_local = dynindx;
11066 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11067 }
11068 }
11069
11070 /* Write out the local dynsyms. */
11071 if (elf_hash_table (info)->dynlocal)
11072 {
11073 struct elf_link_local_dynamic_entry *e;
11074 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11075 {
11076 asection *s;
11077 bfd_byte *dest;
11078
11079 /* Copy the internal symbol and turn off visibility.
11080 Note that we saved a word of storage and overwrote
11081 the original st_name with the dynstr_index. */
11082 sym = e->isym;
11083 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11084
11085 s = bfd_section_from_elf_index (e->input_bfd,
11086 e->isym.st_shndx);
11087 if (s != NULL)
11088 {
11089 sym.st_shndx =
11090 elf_section_data (s->output_section)->this_idx;
11091 if (! check_dynsym (abfd, &sym))
11092 return FALSE;
11093 sym.st_value = (s->output_section->vma
11094 + s->output_offset
11095 + e->isym.st_value);
11096 }
11097
11098 if (last_local < e->dynindx)
11099 last_local = e->dynindx;
11100
11101 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11102 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11103 }
11104 }
11105
11106 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11107 last_local + 1;
11108 }
11109
11110 /* We get the global symbols from the hash table. */
11111 eoinfo.failed = FALSE;
11112 eoinfo.localsyms = FALSE;
11113 eoinfo.flinfo = &flinfo;
11114 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11115 if (eoinfo.failed)
11116 return FALSE;
11117
11118 /* If backend needs to output some symbols not present in the hash
11119 table, do it now. */
11120 if (bed->elf_backend_output_arch_syms)
11121 {
11122 typedef int (*out_sym_func)
11123 (void *, const char *, Elf_Internal_Sym *, asection *,
11124 struct elf_link_hash_entry *);
11125
11126 if (! ((*bed->elf_backend_output_arch_syms)
11127 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11128 return FALSE;
11129 }
11130
11131 /* Flush all symbols to the file. */
11132 if (! elf_link_flush_output_syms (&flinfo, bed))
11133 return FALSE;
11134
11135 /* Now we know the size of the symtab section. */
11136 off += symtab_hdr->sh_size;
11137
11138 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11139 if (symtab_shndx_hdr->sh_name != 0)
11140 {
11141 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11142 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11143 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11144 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11145 symtab_shndx_hdr->sh_size = amt;
11146
11147 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11148 off, TRUE);
11149
11150 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11151 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11152 return FALSE;
11153 }
11154
11155
11156 /* Finish up and write out the symbol string table (.strtab)
11157 section. */
11158 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11159 /* sh_name was set in prep_headers. */
11160 symstrtab_hdr->sh_type = SHT_STRTAB;
11161 symstrtab_hdr->sh_flags = 0;
11162 symstrtab_hdr->sh_addr = 0;
11163 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11164 symstrtab_hdr->sh_entsize = 0;
11165 symstrtab_hdr->sh_link = 0;
11166 symstrtab_hdr->sh_info = 0;
11167 /* sh_offset is set just below. */
11168 symstrtab_hdr->sh_addralign = 1;
11169
11170 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11171 elf_next_file_pos (abfd) = off;
11172
11173 if (bfd_get_symcount (abfd) > 0)
11174 {
11175 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11176 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11177 return FALSE;
11178 }
11179
11180 /* Adjust the relocs to have the correct symbol indices. */
11181 for (o = abfd->sections; o != NULL; o = o->next)
11182 {
11183 struct bfd_elf_section_data *esdo = elf_section_data (o);
11184 if ((o->flags & SEC_RELOC) == 0)
11185 continue;
11186
11187 if (esdo->rel.hdr != NULL)
11188 elf_link_adjust_relocs (abfd, &esdo->rel);
11189 if (esdo->rela.hdr != NULL)
11190 elf_link_adjust_relocs (abfd, &esdo->rela);
11191
11192 /* Set the reloc_count field to 0 to prevent write_relocs from
11193 trying to swap the relocs out itself. */
11194 o->reloc_count = 0;
11195 }
11196
11197 if (dynamic && info->combreloc && dynobj != NULL)
11198 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11199
11200 /* If we are linking against a dynamic object, or generating a
11201 shared library, finish up the dynamic linking information. */
11202 if (dynamic)
11203 {
11204 bfd_byte *dyncon, *dynconend;
11205
11206 /* Fix up .dynamic entries. */
11207 o = bfd_get_linker_section (dynobj, ".dynamic");
11208 BFD_ASSERT (o != NULL);
11209
11210 dyncon = o->contents;
11211 dynconend = o->contents + o->size;
11212 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11213 {
11214 Elf_Internal_Dyn dyn;
11215 const char *name;
11216 unsigned int type;
11217
11218 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11219
11220 switch (dyn.d_tag)
11221 {
11222 default:
11223 continue;
11224 case DT_NULL:
11225 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11226 {
11227 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11228 {
11229 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11230 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11231 default: continue;
11232 }
11233 dyn.d_un.d_val = relativecount;
11234 relativecount = 0;
11235 break;
11236 }
11237 continue;
11238
11239 case DT_INIT:
11240 name = info->init_function;
11241 goto get_sym;
11242 case DT_FINI:
11243 name = info->fini_function;
11244 get_sym:
11245 {
11246 struct elf_link_hash_entry *h;
11247
11248 h = elf_link_hash_lookup (elf_hash_table (info), name,
11249 FALSE, FALSE, TRUE);
11250 if (h != NULL
11251 && (h->root.type == bfd_link_hash_defined
11252 || h->root.type == bfd_link_hash_defweak))
11253 {
11254 dyn.d_un.d_ptr = h->root.u.def.value;
11255 o = h->root.u.def.section;
11256 if (o->output_section != NULL)
11257 dyn.d_un.d_ptr += (o->output_section->vma
11258 + o->output_offset);
11259 else
11260 {
11261 /* The symbol is imported from another shared
11262 library and does not apply to this one. */
11263 dyn.d_un.d_ptr = 0;
11264 }
11265 break;
11266 }
11267 }
11268 continue;
11269
11270 case DT_PREINIT_ARRAYSZ:
11271 name = ".preinit_array";
11272 goto get_size;
11273 case DT_INIT_ARRAYSZ:
11274 name = ".init_array";
11275 goto get_size;
11276 case DT_FINI_ARRAYSZ:
11277 name = ".fini_array";
11278 get_size:
11279 o = bfd_get_section_by_name (abfd, name);
11280 if (o == NULL)
11281 {
11282 (*_bfd_error_handler)
11283 (_("%B: could not find output section %s"), abfd, name);
11284 goto error_return;
11285 }
11286 if (o->size == 0)
11287 (*_bfd_error_handler)
11288 (_("warning: %s section has zero size"), name);
11289 dyn.d_un.d_val = o->size;
11290 break;
11291
11292 case DT_PREINIT_ARRAY:
11293 name = ".preinit_array";
11294 goto get_vma;
11295 case DT_INIT_ARRAY:
11296 name = ".init_array";
11297 goto get_vma;
11298 case DT_FINI_ARRAY:
11299 name = ".fini_array";
11300 goto get_vma;
11301
11302 case DT_HASH:
11303 name = ".hash";
11304 goto get_vma;
11305 case DT_GNU_HASH:
11306 name = ".gnu.hash";
11307 goto get_vma;
11308 case DT_STRTAB:
11309 name = ".dynstr";
11310 goto get_vma;
11311 case DT_SYMTAB:
11312 name = ".dynsym";
11313 goto get_vma;
11314 case DT_VERDEF:
11315 name = ".gnu.version_d";
11316 goto get_vma;
11317 case DT_VERNEED:
11318 name = ".gnu.version_r";
11319 goto get_vma;
11320 case DT_VERSYM:
11321 name = ".gnu.version";
11322 get_vma:
11323 o = bfd_get_section_by_name (abfd, name);
11324 if (o == NULL)
11325 {
11326 (*_bfd_error_handler)
11327 (_("%B: could not find output section %s"), abfd, name);
11328 goto error_return;
11329 }
11330 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11331 {
11332 (*_bfd_error_handler)
11333 (_("warning: section '%s' is being made into a note"), name);
11334 bfd_set_error (bfd_error_nonrepresentable_section);
11335 goto error_return;
11336 }
11337 dyn.d_un.d_ptr = o->vma;
11338 break;
11339
11340 case DT_REL:
11341 case DT_RELA:
11342 case DT_RELSZ:
11343 case DT_RELASZ:
11344 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11345 type = SHT_REL;
11346 else
11347 type = SHT_RELA;
11348 dyn.d_un.d_val = 0;
11349 dyn.d_un.d_ptr = 0;
11350 for (i = 1; i < elf_numsections (abfd); i++)
11351 {
11352 Elf_Internal_Shdr *hdr;
11353
11354 hdr = elf_elfsections (abfd)[i];
11355 if (hdr->sh_type == type
11356 && (hdr->sh_flags & SHF_ALLOC) != 0)
11357 {
11358 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11359 dyn.d_un.d_val += hdr->sh_size;
11360 else
11361 {
11362 if (dyn.d_un.d_ptr == 0
11363 || hdr->sh_addr < dyn.d_un.d_ptr)
11364 dyn.d_un.d_ptr = hdr->sh_addr;
11365 }
11366 }
11367 }
11368 break;
11369 }
11370 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11371 }
11372 }
11373
11374 /* If we have created any dynamic sections, then output them. */
11375 if (dynobj != NULL)
11376 {
11377 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11378 goto error_return;
11379
11380 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11381 if (((info->warn_shared_textrel && info->shared)
11382 || info->error_textrel)
11383 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11384 {
11385 bfd_byte *dyncon, *dynconend;
11386
11387 dyncon = o->contents;
11388 dynconend = o->contents + o->size;
11389 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11390 {
11391 Elf_Internal_Dyn dyn;
11392
11393 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11394
11395 if (dyn.d_tag == DT_TEXTREL)
11396 {
11397 if (info->error_textrel)
11398 info->callbacks->einfo
11399 (_("%P%X: read-only segment has dynamic relocations.\n"));
11400 else
11401 info->callbacks->einfo
11402 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11403 break;
11404 }
11405 }
11406 }
11407
11408 for (o = dynobj->sections; o != NULL; o = o->next)
11409 {
11410 if ((o->flags & SEC_HAS_CONTENTS) == 0
11411 || o->size == 0
11412 || o->output_section == bfd_abs_section_ptr)
11413 continue;
11414 if ((o->flags & SEC_LINKER_CREATED) == 0)
11415 {
11416 /* At this point, we are only interested in sections
11417 created by _bfd_elf_link_create_dynamic_sections. */
11418 continue;
11419 }
11420 if (elf_hash_table (info)->stab_info.stabstr == o)
11421 continue;
11422 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11423 continue;
11424 if (strcmp (o->name, ".dynstr") != 0)
11425 {
11426 /* FIXME: octets_per_byte. */
11427 if (! bfd_set_section_contents (abfd, o->output_section,
11428 o->contents,
11429 (file_ptr) o->output_offset,
11430 o->size))
11431 goto error_return;
11432 }
11433 else
11434 {
11435 /* The contents of the .dynstr section are actually in a
11436 stringtab. */
11437 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11438 if (bfd_seek (abfd, off, SEEK_SET) != 0
11439 || ! _bfd_elf_strtab_emit (abfd,
11440 elf_hash_table (info)->dynstr))
11441 goto error_return;
11442 }
11443 }
11444 }
11445
11446 if (info->relocatable)
11447 {
11448 bfd_boolean failed = FALSE;
11449
11450 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11451 if (failed)
11452 goto error_return;
11453 }
11454
11455 /* If we have optimized stabs strings, output them. */
11456 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11457 {
11458 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11459 goto error_return;
11460 }
11461
11462 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11463 goto error_return;
11464
11465 elf_final_link_free (abfd, &flinfo);
11466
11467 elf_linker (abfd) = TRUE;
11468
11469 if (attr_section)
11470 {
11471 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11472 if (contents == NULL)
11473 return FALSE; /* Bail out and fail. */
11474 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11475 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11476 free (contents);
11477 }
11478
11479 return TRUE;
11480
11481 error_return:
11482 elf_final_link_free (abfd, &flinfo);
11483 return FALSE;
11484 }
11485 \f
11486 /* Initialize COOKIE for input bfd ABFD. */
11487
11488 static bfd_boolean
11489 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11490 struct bfd_link_info *info, bfd *abfd)
11491 {
11492 Elf_Internal_Shdr *symtab_hdr;
11493 const struct elf_backend_data *bed;
11494
11495 bed = get_elf_backend_data (abfd);
11496 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11497
11498 cookie->abfd = abfd;
11499 cookie->sym_hashes = elf_sym_hashes (abfd);
11500 cookie->bad_symtab = elf_bad_symtab (abfd);
11501 if (cookie->bad_symtab)
11502 {
11503 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11504 cookie->extsymoff = 0;
11505 }
11506 else
11507 {
11508 cookie->locsymcount = symtab_hdr->sh_info;
11509 cookie->extsymoff = symtab_hdr->sh_info;
11510 }
11511
11512 if (bed->s->arch_size == 32)
11513 cookie->r_sym_shift = 8;
11514 else
11515 cookie->r_sym_shift = 32;
11516
11517 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11518 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11519 {
11520 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11521 cookie->locsymcount, 0,
11522 NULL, NULL, NULL);
11523 if (cookie->locsyms == NULL)
11524 {
11525 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11526 return FALSE;
11527 }
11528 if (info->keep_memory)
11529 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11530 }
11531 return TRUE;
11532 }
11533
11534 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11535
11536 static void
11537 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11538 {
11539 Elf_Internal_Shdr *symtab_hdr;
11540
11541 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11542 if (cookie->locsyms != NULL
11543 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11544 free (cookie->locsyms);
11545 }
11546
11547 /* Initialize the relocation information in COOKIE for input section SEC
11548 of input bfd ABFD. */
11549
11550 static bfd_boolean
11551 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11552 struct bfd_link_info *info, bfd *abfd,
11553 asection *sec)
11554 {
11555 const struct elf_backend_data *bed;
11556
11557 if (sec->reloc_count == 0)
11558 {
11559 cookie->rels = NULL;
11560 cookie->relend = NULL;
11561 }
11562 else
11563 {
11564 bed = get_elf_backend_data (abfd);
11565
11566 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11567 info->keep_memory);
11568 if (cookie->rels == NULL)
11569 return FALSE;
11570 cookie->rel = cookie->rels;
11571 cookie->relend = (cookie->rels
11572 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11573 }
11574 cookie->rel = cookie->rels;
11575 return TRUE;
11576 }
11577
11578 /* Free the memory allocated by init_reloc_cookie_rels,
11579 if appropriate. */
11580
11581 static void
11582 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11583 asection *sec)
11584 {
11585 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11586 free (cookie->rels);
11587 }
11588
11589 /* Initialize the whole of COOKIE for input section SEC. */
11590
11591 static bfd_boolean
11592 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11593 struct bfd_link_info *info,
11594 asection *sec)
11595 {
11596 if (!init_reloc_cookie (cookie, info, sec->owner))
11597 goto error1;
11598 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11599 goto error2;
11600 return TRUE;
11601
11602 error2:
11603 fini_reloc_cookie (cookie, sec->owner);
11604 error1:
11605 return FALSE;
11606 }
11607
11608 /* Free the memory allocated by init_reloc_cookie_for_section,
11609 if appropriate. */
11610
11611 static void
11612 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11613 asection *sec)
11614 {
11615 fini_reloc_cookie_rels (cookie, sec);
11616 fini_reloc_cookie (cookie, sec->owner);
11617 }
11618 \f
11619 /* Garbage collect unused sections. */
11620
11621 /* Default gc_mark_hook. */
11622
11623 asection *
11624 _bfd_elf_gc_mark_hook (asection *sec,
11625 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11626 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11627 struct elf_link_hash_entry *h,
11628 Elf_Internal_Sym *sym)
11629 {
11630 const char *sec_name;
11631
11632 if (h != NULL)
11633 {
11634 switch (h->root.type)
11635 {
11636 case bfd_link_hash_defined:
11637 case bfd_link_hash_defweak:
11638 return h->root.u.def.section;
11639
11640 case bfd_link_hash_common:
11641 return h->root.u.c.p->section;
11642
11643 case bfd_link_hash_undefined:
11644 case bfd_link_hash_undefweak:
11645 /* To work around a glibc bug, keep all XXX input sections
11646 when there is an as yet undefined reference to __start_XXX
11647 or __stop_XXX symbols. The linker will later define such
11648 symbols for orphan input sections that have a name
11649 representable as a C identifier. */
11650 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11651 sec_name = h->root.root.string + 8;
11652 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11653 sec_name = h->root.root.string + 7;
11654 else
11655 sec_name = NULL;
11656
11657 if (sec_name && *sec_name != '\0')
11658 {
11659 bfd *i;
11660
11661 for (i = info->input_bfds; i; i = i->link_next)
11662 {
11663 sec = bfd_get_section_by_name (i, sec_name);
11664 if (sec)
11665 sec->flags |= SEC_KEEP;
11666 }
11667 }
11668 break;
11669
11670 default:
11671 break;
11672 }
11673 }
11674 else
11675 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11676
11677 return NULL;
11678 }
11679
11680 /* COOKIE->rel describes a relocation against section SEC, which is
11681 a section we've decided to keep. Return the section that contains
11682 the relocation symbol, or NULL if no section contains it. */
11683
11684 asection *
11685 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11686 elf_gc_mark_hook_fn gc_mark_hook,
11687 struct elf_reloc_cookie *cookie)
11688 {
11689 unsigned long r_symndx;
11690 struct elf_link_hash_entry *h;
11691
11692 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11693 if (r_symndx == STN_UNDEF)
11694 return NULL;
11695
11696 if (r_symndx >= cookie->locsymcount
11697 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11698 {
11699 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11700 while (h->root.type == bfd_link_hash_indirect
11701 || h->root.type == bfd_link_hash_warning)
11702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11703 h->mark = 1;
11704 /* If this symbol is weak and there is a non-weak definition, we
11705 keep the non-weak definition because many backends put
11706 dynamic reloc info on the non-weak definition for code
11707 handling copy relocs. */
11708 if (h->u.weakdef != NULL)
11709 h->u.weakdef->mark = 1;
11710 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11711 }
11712
11713 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11714 &cookie->locsyms[r_symndx]);
11715 }
11716
11717 /* COOKIE->rel describes a relocation against section SEC, which is
11718 a section we've decided to keep. Mark the section that contains
11719 the relocation symbol. */
11720
11721 bfd_boolean
11722 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11723 asection *sec,
11724 elf_gc_mark_hook_fn gc_mark_hook,
11725 struct elf_reloc_cookie *cookie)
11726 {
11727 asection *rsec;
11728
11729 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11730 if (rsec && !rsec->gc_mark)
11731 {
11732 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11733 || (rsec->owner->flags & DYNAMIC) != 0)
11734 rsec->gc_mark = 1;
11735 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11736 return FALSE;
11737 }
11738 return TRUE;
11739 }
11740
11741 /* The mark phase of garbage collection. For a given section, mark
11742 it and any sections in this section's group, and all the sections
11743 which define symbols to which it refers. */
11744
11745 bfd_boolean
11746 _bfd_elf_gc_mark (struct bfd_link_info *info,
11747 asection *sec,
11748 elf_gc_mark_hook_fn gc_mark_hook)
11749 {
11750 bfd_boolean ret;
11751 asection *group_sec, *eh_frame;
11752
11753 sec->gc_mark = 1;
11754
11755 /* Mark all the sections in the group. */
11756 group_sec = elf_section_data (sec)->next_in_group;
11757 if (group_sec && !group_sec->gc_mark)
11758 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11759 return FALSE;
11760
11761 /* Look through the section relocs. */
11762 ret = TRUE;
11763 eh_frame = elf_eh_frame_section (sec->owner);
11764 if ((sec->flags & SEC_RELOC) != 0
11765 && sec->reloc_count > 0
11766 && sec != eh_frame)
11767 {
11768 struct elf_reloc_cookie cookie;
11769
11770 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11771 ret = FALSE;
11772 else
11773 {
11774 for (; cookie.rel < cookie.relend; cookie.rel++)
11775 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11776 {
11777 ret = FALSE;
11778 break;
11779 }
11780 fini_reloc_cookie_for_section (&cookie, sec);
11781 }
11782 }
11783
11784 if (ret && eh_frame && elf_fde_list (sec))
11785 {
11786 struct elf_reloc_cookie cookie;
11787
11788 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11789 ret = FALSE;
11790 else
11791 {
11792 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11793 gc_mark_hook, &cookie))
11794 ret = FALSE;
11795 fini_reloc_cookie_for_section (&cookie, eh_frame);
11796 }
11797 }
11798
11799 return ret;
11800 }
11801
11802 /* Keep debug and special sections. */
11803
11804 bfd_boolean
11805 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11806 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11807 {
11808 bfd *ibfd;
11809
11810 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11811 {
11812 asection *isec;
11813 bfd_boolean some_kept;
11814 bfd_boolean debug_frag_seen;
11815
11816 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11817 continue;
11818
11819 /* Ensure all linker created sections are kept,
11820 see if any other section is already marked,
11821 and note if we have any fragmented debug sections. */
11822 debug_frag_seen = some_kept = FALSE;
11823 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11824 {
11825 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11826 isec->gc_mark = 1;
11827 else if (isec->gc_mark)
11828 some_kept = TRUE;
11829
11830 if (debug_frag_seen == FALSE
11831 && (isec->flags & SEC_DEBUGGING)
11832 && CONST_STRNEQ (isec->name, ".debug_line."))
11833 debug_frag_seen = TRUE;
11834 }
11835
11836 /* If no section in this file will be kept, then we can
11837 toss out the debug and special sections. */
11838 if (!some_kept)
11839 continue;
11840
11841 /* Keep debug and special sections like .comment when they are
11842 not part of a group, or when we have single-member groups. */
11843 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11844 if ((elf_next_in_group (isec) == NULL
11845 || elf_next_in_group (isec) == isec)
11846 && ((isec->flags & SEC_DEBUGGING) != 0
11847 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11848 isec->gc_mark = 1;
11849
11850 if (! debug_frag_seen)
11851 continue;
11852
11853 /* Look for CODE sections which are going to be discarded,
11854 and find and discard any fragmented debug sections which
11855 are associated with that code section. */
11856 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11857 if ((isec->flags & SEC_CODE) != 0
11858 && isec->gc_mark == 0)
11859 {
11860 unsigned int ilen;
11861 asection *dsec;
11862
11863 ilen = strlen (isec->name);
11864
11865 /* Association is determined by the name of the debug section
11866 containing the name of the code section as a suffix. For
11867 example .debug_line.text.foo is a debug section associated
11868 with .text.foo. */
11869 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11870 {
11871 unsigned int dlen;
11872
11873 if (dsec->gc_mark == 0
11874 || (dsec->flags & SEC_DEBUGGING) == 0)
11875 continue;
11876
11877 dlen = strlen (dsec->name);
11878
11879 if (dlen > ilen
11880 && strncmp (dsec->name + (dlen - ilen),
11881 isec->name, ilen) == 0)
11882 {
11883 dsec->gc_mark = 0;
11884 break;
11885 }
11886 }
11887 }
11888 }
11889 return TRUE;
11890 }
11891
11892 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11893
11894 struct elf_gc_sweep_symbol_info
11895 {
11896 struct bfd_link_info *info;
11897 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11898 bfd_boolean);
11899 };
11900
11901 static bfd_boolean
11902 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11903 {
11904 if (!h->mark
11905 && (((h->root.type == bfd_link_hash_defined
11906 || h->root.type == bfd_link_hash_defweak)
11907 && !(h->def_regular
11908 && h->root.u.def.section->gc_mark))
11909 || h->root.type == bfd_link_hash_undefined
11910 || h->root.type == bfd_link_hash_undefweak))
11911 {
11912 struct elf_gc_sweep_symbol_info *inf;
11913
11914 inf = (struct elf_gc_sweep_symbol_info *) data;
11915 (*inf->hide_symbol) (inf->info, h, TRUE);
11916 h->def_regular = 0;
11917 h->ref_regular = 0;
11918 h->ref_regular_nonweak = 0;
11919 }
11920
11921 return TRUE;
11922 }
11923
11924 /* The sweep phase of garbage collection. Remove all garbage sections. */
11925
11926 typedef bfd_boolean (*gc_sweep_hook_fn)
11927 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11928
11929 static bfd_boolean
11930 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11931 {
11932 bfd *sub;
11933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11934 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11935 unsigned long section_sym_count;
11936 struct elf_gc_sweep_symbol_info sweep_info;
11937
11938 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11939 {
11940 asection *o;
11941
11942 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11943 continue;
11944
11945 for (o = sub->sections; o != NULL; o = o->next)
11946 {
11947 /* When any section in a section group is kept, we keep all
11948 sections in the section group. If the first member of
11949 the section group is excluded, we will also exclude the
11950 group section. */
11951 if (o->flags & SEC_GROUP)
11952 {
11953 asection *first = elf_next_in_group (o);
11954 o->gc_mark = first->gc_mark;
11955 }
11956
11957 if (o->gc_mark)
11958 continue;
11959
11960 /* Skip sweeping sections already excluded. */
11961 if (o->flags & SEC_EXCLUDE)
11962 continue;
11963
11964 /* Since this is early in the link process, it is simple
11965 to remove a section from the output. */
11966 o->flags |= SEC_EXCLUDE;
11967
11968 if (info->print_gc_sections && o->size != 0)
11969 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11970
11971 /* But we also have to update some of the relocation
11972 info we collected before. */
11973 if (gc_sweep_hook
11974 && (o->flags & SEC_RELOC) != 0
11975 && o->reloc_count > 0
11976 && !bfd_is_abs_section (o->output_section))
11977 {
11978 Elf_Internal_Rela *internal_relocs;
11979 bfd_boolean r;
11980
11981 internal_relocs
11982 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11983 info->keep_memory);
11984 if (internal_relocs == NULL)
11985 return FALSE;
11986
11987 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11988
11989 if (elf_section_data (o)->relocs != internal_relocs)
11990 free (internal_relocs);
11991
11992 if (!r)
11993 return FALSE;
11994 }
11995 }
11996 }
11997
11998 /* Remove the symbols that were in the swept sections from the dynamic
11999 symbol table. GCFIXME: Anyone know how to get them out of the
12000 static symbol table as well? */
12001 sweep_info.info = info;
12002 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12003 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12004 &sweep_info);
12005
12006 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12007 return TRUE;
12008 }
12009
12010 /* Propagate collected vtable information. This is called through
12011 elf_link_hash_traverse. */
12012
12013 static bfd_boolean
12014 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12015 {
12016 /* Those that are not vtables. */
12017 if (h->vtable == NULL || h->vtable->parent == NULL)
12018 return TRUE;
12019
12020 /* Those vtables that do not have parents, we cannot merge. */
12021 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12022 return TRUE;
12023
12024 /* If we've already been done, exit. */
12025 if (h->vtable->used && h->vtable->used[-1])
12026 return TRUE;
12027
12028 /* Make sure the parent's table is up to date. */
12029 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12030
12031 if (h->vtable->used == NULL)
12032 {
12033 /* None of this table's entries were referenced. Re-use the
12034 parent's table. */
12035 h->vtable->used = h->vtable->parent->vtable->used;
12036 h->vtable->size = h->vtable->parent->vtable->size;
12037 }
12038 else
12039 {
12040 size_t n;
12041 bfd_boolean *cu, *pu;
12042
12043 /* Or the parent's entries into ours. */
12044 cu = h->vtable->used;
12045 cu[-1] = TRUE;
12046 pu = h->vtable->parent->vtable->used;
12047 if (pu != NULL)
12048 {
12049 const struct elf_backend_data *bed;
12050 unsigned int log_file_align;
12051
12052 bed = get_elf_backend_data (h->root.u.def.section->owner);
12053 log_file_align = bed->s->log_file_align;
12054 n = h->vtable->parent->vtable->size >> log_file_align;
12055 while (n--)
12056 {
12057 if (*pu)
12058 *cu = TRUE;
12059 pu++;
12060 cu++;
12061 }
12062 }
12063 }
12064
12065 return TRUE;
12066 }
12067
12068 static bfd_boolean
12069 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12070 {
12071 asection *sec;
12072 bfd_vma hstart, hend;
12073 Elf_Internal_Rela *relstart, *relend, *rel;
12074 const struct elf_backend_data *bed;
12075 unsigned int log_file_align;
12076
12077 /* Take care of both those symbols that do not describe vtables as
12078 well as those that are not loaded. */
12079 if (h->vtable == NULL || h->vtable->parent == NULL)
12080 return TRUE;
12081
12082 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12083 || h->root.type == bfd_link_hash_defweak);
12084
12085 sec = h->root.u.def.section;
12086 hstart = h->root.u.def.value;
12087 hend = hstart + h->size;
12088
12089 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12090 if (!relstart)
12091 return *(bfd_boolean *) okp = FALSE;
12092 bed = get_elf_backend_data (sec->owner);
12093 log_file_align = bed->s->log_file_align;
12094
12095 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12096
12097 for (rel = relstart; rel < relend; ++rel)
12098 if (rel->r_offset >= hstart && rel->r_offset < hend)
12099 {
12100 /* If the entry is in use, do nothing. */
12101 if (h->vtable->used
12102 && (rel->r_offset - hstart) < h->vtable->size)
12103 {
12104 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12105 if (h->vtable->used[entry])
12106 continue;
12107 }
12108 /* Otherwise, kill it. */
12109 rel->r_offset = rel->r_info = rel->r_addend = 0;
12110 }
12111
12112 return TRUE;
12113 }
12114
12115 /* Mark sections containing dynamically referenced symbols. When
12116 building shared libraries, we must assume that any visible symbol is
12117 referenced. */
12118
12119 bfd_boolean
12120 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12121 {
12122 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12123
12124 if ((h->root.type == bfd_link_hash_defined
12125 || h->root.type == bfd_link_hash_defweak)
12126 && (h->ref_dynamic
12127 || ((!info->executable || info->export_dynamic)
12128 && h->def_regular
12129 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12130 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12131 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12132 || !bfd_hide_sym_by_version (info->version_info,
12133 h->root.root.string)))))
12134 h->root.u.def.section->flags |= SEC_KEEP;
12135
12136 return TRUE;
12137 }
12138
12139 /* Keep all sections containing symbols undefined on the command-line,
12140 and the section containing the entry symbol. */
12141
12142 void
12143 _bfd_elf_gc_keep (struct bfd_link_info *info)
12144 {
12145 struct bfd_sym_chain *sym;
12146
12147 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12148 {
12149 struct elf_link_hash_entry *h;
12150
12151 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12152 FALSE, FALSE, FALSE);
12153
12154 if (h != NULL
12155 && (h->root.type == bfd_link_hash_defined
12156 || h->root.type == bfd_link_hash_defweak)
12157 && !bfd_is_abs_section (h->root.u.def.section))
12158 h->root.u.def.section->flags |= SEC_KEEP;
12159 }
12160 }
12161
12162 /* Do mark and sweep of unused sections. */
12163
12164 bfd_boolean
12165 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12166 {
12167 bfd_boolean ok = TRUE;
12168 bfd *sub;
12169 elf_gc_mark_hook_fn gc_mark_hook;
12170 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12171
12172 if (!bed->can_gc_sections
12173 || !is_elf_hash_table (info->hash))
12174 {
12175 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12176 return TRUE;
12177 }
12178
12179 bed->gc_keep (info);
12180
12181 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12182 at the .eh_frame section if we can mark the FDEs individually. */
12183 _bfd_elf_begin_eh_frame_parsing (info);
12184 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12185 {
12186 asection *sec;
12187 struct elf_reloc_cookie cookie;
12188
12189 sec = bfd_get_section_by_name (sub, ".eh_frame");
12190 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12191 {
12192 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12193 if (elf_section_data (sec)->sec_info
12194 && (sec->flags & SEC_LINKER_CREATED) == 0)
12195 elf_eh_frame_section (sub) = sec;
12196 fini_reloc_cookie_for_section (&cookie, sec);
12197 sec = bfd_get_next_section_by_name (sec);
12198 }
12199 }
12200 _bfd_elf_end_eh_frame_parsing (info);
12201
12202 /* Apply transitive closure to the vtable entry usage info. */
12203 elf_link_hash_traverse (elf_hash_table (info),
12204 elf_gc_propagate_vtable_entries_used,
12205 &ok);
12206 if (!ok)
12207 return FALSE;
12208
12209 /* Kill the vtable relocations that were not used. */
12210 elf_link_hash_traverse (elf_hash_table (info),
12211 elf_gc_smash_unused_vtentry_relocs,
12212 &ok);
12213 if (!ok)
12214 return FALSE;
12215
12216 /* Mark dynamically referenced symbols. */
12217 if (elf_hash_table (info)->dynamic_sections_created)
12218 elf_link_hash_traverse (elf_hash_table (info),
12219 bed->gc_mark_dynamic_ref,
12220 info);
12221
12222 /* Grovel through relocs to find out who stays ... */
12223 gc_mark_hook = bed->gc_mark_hook;
12224 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12225 {
12226 asection *o;
12227
12228 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12229 continue;
12230
12231 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12232 Also treat note sections as a root, if the section is not part
12233 of a group. */
12234 for (o = sub->sections; o != NULL; o = o->next)
12235 if (!o->gc_mark
12236 && (o->flags & SEC_EXCLUDE) == 0
12237 && ((o->flags & SEC_KEEP) != 0
12238 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12239 && elf_next_in_group (o) == NULL )))
12240 {
12241 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12242 return FALSE;
12243 }
12244 }
12245
12246 /* Allow the backend to mark additional target specific sections. */
12247 bed->gc_mark_extra_sections (info, gc_mark_hook);
12248
12249 /* ... and mark SEC_EXCLUDE for those that go. */
12250 return elf_gc_sweep (abfd, info);
12251 }
12252 \f
12253 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12254
12255 bfd_boolean
12256 bfd_elf_gc_record_vtinherit (bfd *abfd,
12257 asection *sec,
12258 struct elf_link_hash_entry *h,
12259 bfd_vma offset)
12260 {
12261 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12262 struct elf_link_hash_entry **search, *child;
12263 bfd_size_type extsymcount;
12264 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12265
12266 /* The sh_info field of the symtab header tells us where the
12267 external symbols start. We don't care about the local symbols at
12268 this point. */
12269 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12270 if (!elf_bad_symtab (abfd))
12271 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12272
12273 sym_hashes = elf_sym_hashes (abfd);
12274 sym_hashes_end = sym_hashes + extsymcount;
12275
12276 /* Hunt down the child symbol, which is in this section at the same
12277 offset as the relocation. */
12278 for (search = sym_hashes; search != sym_hashes_end; ++search)
12279 {
12280 if ((child = *search) != NULL
12281 && (child->root.type == bfd_link_hash_defined
12282 || child->root.type == bfd_link_hash_defweak)
12283 && child->root.u.def.section == sec
12284 && child->root.u.def.value == offset)
12285 goto win;
12286 }
12287
12288 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12289 abfd, sec, (unsigned long) offset);
12290 bfd_set_error (bfd_error_invalid_operation);
12291 return FALSE;
12292
12293 win:
12294 if (!child->vtable)
12295 {
12296 child->vtable = (struct elf_link_virtual_table_entry *)
12297 bfd_zalloc (abfd, sizeof (*child->vtable));
12298 if (!child->vtable)
12299 return FALSE;
12300 }
12301 if (!h)
12302 {
12303 /* This *should* only be the absolute section. It could potentially
12304 be that someone has defined a non-global vtable though, which
12305 would be bad. It isn't worth paging in the local symbols to be
12306 sure though; that case should simply be handled by the assembler. */
12307
12308 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12309 }
12310 else
12311 child->vtable->parent = h;
12312
12313 return TRUE;
12314 }
12315
12316 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12317
12318 bfd_boolean
12319 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12320 asection *sec ATTRIBUTE_UNUSED,
12321 struct elf_link_hash_entry *h,
12322 bfd_vma addend)
12323 {
12324 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12325 unsigned int log_file_align = bed->s->log_file_align;
12326
12327 if (!h->vtable)
12328 {
12329 h->vtable = (struct elf_link_virtual_table_entry *)
12330 bfd_zalloc (abfd, sizeof (*h->vtable));
12331 if (!h->vtable)
12332 return FALSE;
12333 }
12334
12335 if (addend >= h->vtable->size)
12336 {
12337 size_t size, bytes, file_align;
12338 bfd_boolean *ptr = h->vtable->used;
12339
12340 /* While the symbol is undefined, we have to be prepared to handle
12341 a zero size. */
12342 file_align = 1 << log_file_align;
12343 if (h->root.type == bfd_link_hash_undefined)
12344 size = addend + file_align;
12345 else
12346 {
12347 size = h->size;
12348 if (addend >= size)
12349 {
12350 /* Oops! We've got a reference past the defined end of
12351 the table. This is probably a bug -- shall we warn? */
12352 size = addend + file_align;
12353 }
12354 }
12355 size = (size + file_align - 1) & -file_align;
12356
12357 /* Allocate one extra entry for use as a "done" flag for the
12358 consolidation pass. */
12359 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12360
12361 if (ptr)
12362 {
12363 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12364
12365 if (ptr != NULL)
12366 {
12367 size_t oldbytes;
12368
12369 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12370 * sizeof (bfd_boolean));
12371 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12372 }
12373 }
12374 else
12375 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12376
12377 if (ptr == NULL)
12378 return FALSE;
12379
12380 /* And arrange for that done flag to be at index -1. */
12381 h->vtable->used = ptr + 1;
12382 h->vtable->size = size;
12383 }
12384
12385 h->vtable->used[addend >> log_file_align] = TRUE;
12386
12387 return TRUE;
12388 }
12389
12390 /* Map an ELF section header flag to its corresponding string. */
12391 typedef struct
12392 {
12393 char *flag_name;
12394 flagword flag_value;
12395 } elf_flags_to_name_table;
12396
12397 static elf_flags_to_name_table elf_flags_to_names [] =
12398 {
12399 { "SHF_WRITE", SHF_WRITE },
12400 { "SHF_ALLOC", SHF_ALLOC },
12401 { "SHF_EXECINSTR", SHF_EXECINSTR },
12402 { "SHF_MERGE", SHF_MERGE },
12403 { "SHF_STRINGS", SHF_STRINGS },
12404 { "SHF_INFO_LINK", SHF_INFO_LINK},
12405 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12406 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12407 { "SHF_GROUP", SHF_GROUP },
12408 { "SHF_TLS", SHF_TLS },
12409 { "SHF_MASKOS", SHF_MASKOS },
12410 { "SHF_EXCLUDE", SHF_EXCLUDE },
12411 };
12412
12413 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12414 bfd_boolean
12415 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12416 struct flag_info *flaginfo,
12417 asection *section)
12418 {
12419 const bfd_vma sh_flags = elf_section_flags (section);
12420
12421 if (!flaginfo->flags_initialized)
12422 {
12423 bfd *obfd = info->output_bfd;
12424 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12425 struct flag_info_list *tf = flaginfo->flag_list;
12426 int with_hex = 0;
12427 int without_hex = 0;
12428
12429 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12430 {
12431 unsigned i;
12432 flagword (*lookup) (char *);
12433
12434 lookup = bed->elf_backend_lookup_section_flags_hook;
12435 if (lookup != NULL)
12436 {
12437 flagword hexval = (*lookup) ((char *) tf->name);
12438
12439 if (hexval != 0)
12440 {
12441 if (tf->with == with_flags)
12442 with_hex |= hexval;
12443 else if (tf->with == without_flags)
12444 without_hex |= hexval;
12445 tf->valid = TRUE;
12446 continue;
12447 }
12448 }
12449 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12450 {
12451 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12452 {
12453 if (tf->with == with_flags)
12454 with_hex |= elf_flags_to_names[i].flag_value;
12455 else if (tf->with == without_flags)
12456 without_hex |= elf_flags_to_names[i].flag_value;
12457 tf->valid = TRUE;
12458 break;
12459 }
12460 }
12461 if (!tf->valid)
12462 {
12463 info->callbacks->einfo
12464 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12465 return FALSE;
12466 }
12467 }
12468 flaginfo->flags_initialized = TRUE;
12469 flaginfo->only_with_flags |= with_hex;
12470 flaginfo->not_with_flags |= without_hex;
12471 }
12472
12473 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12474 return FALSE;
12475
12476 if ((flaginfo->not_with_flags & sh_flags) != 0)
12477 return FALSE;
12478
12479 return TRUE;
12480 }
12481
12482 struct alloc_got_off_arg {
12483 bfd_vma gotoff;
12484 struct bfd_link_info *info;
12485 };
12486
12487 /* We need a special top-level link routine to convert got reference counts
12488 to real got offsets. */
12489
12490 static bfd_boolean
12491 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12492 {
12493 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12494 bfd *obfd = gofarg->info->output_bfd;
12495 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12496
12497 if (h->got.refcount > 0)
12498 {
12499 h->got.offset = gofarg->gotoff;
12500 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12501 }
12502 else
12503 h->got.offset = (bfd_vma) -1;
12504
12505 return TRUE;
12506 }
12507
12508 /* And an accompanying bit to work out final got entry offsets once
12509 we're done. Should be called from final_link. */
12510
12511 bfd_boolean
12512 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12513 struct bfd_link_info *info)
12514 {
12515 bfd *i;
12516 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12517 bfd_vma gotoff;
12518 struct alloc_got_off_arg gofarg;
12519
12520 BFD_ASSERT (abfd == info->output_bfd);
12521
12522 if (! is_elf_hash_table (info->hash))
12523 return FALSE;
12524
12525 /* The GOT offset is relative to the .got section, but the GOT header is
12526 put into the .got.plt section, if the backend uses it. */
12527 if (bed->want_got_plt)
12528 gotoff = 0;
12529 else
12530 gotoff = bed->got_header_size;
12531
12532 /* Do the local .got entries first. */
12533 for (i = info->input_bfds; i; i = i->link_next)
12534 {
12535 bfd_signed_vma *local_got;
12536 bfd_size_type j, locsymcount;
12537 Elf_Internal_Shdr *symtab_hdr;
12538
12539 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12540 continue;
12541
12542 local_got = elf_local_got_refcounts (i);
12543 if (!local_got)
12544 continue;
12545
12546 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12547 if (elf_bad_symtab (i))
12548 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12549 else
12550 locsymcount = symtab_hdr->sh_info;
12551
12552 for (j = 0; j < locsymcount; ++j)
12553 {
12554 if (local_got[j] > 0)
12555 {
12556 local_got[j] = gotoff;
12557 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12558 }
12559 else
12560 local_got[j] = (bfd_vma) -1;
12561 }
12562 }
12563
12564 /* Then the global .got entries. .plt refcounts are handled by
12565 adjust_dynamic_symbol */
12566 gofarg.gotoff = gotoff;
12567 gofarg.info = info;
12568 elf_link_hash_traverse (elf_hash_table (info),
12569 elf_gc_allocate_got_offsets,
12570 &gofarg);
12571 return TRUE;
12572 }
12573
12574 /* Many folk need no more in the way of final link than this, once
12575 got entry reference counting is enabled. */
12576
12577 bfd_boolean
12578 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12579 {
12580 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12581 return FALSE;
12582
12583 /* Invoke the regular ELF backend linker to do all the work. */
12584 return bfd_elf_final_link (abfd, info);
12585 }
12586
12587 bfd_boolean
12588 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12589 {
12590 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12591
12592 if (rcookie->bad_symtab)
12593 rcookie->rel = rcookie->rels;
12594
12595 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12596 {
12597 unsigned long r_symndx;
12598
12599 if (! rcookie->bad_symtab)
12600 if (rcookie->rel->r_offset > offset)
12601 return FALSE;
12602 if (rcookie->rel->r_offset != offset)
12603 continue;
12604
12605 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12606 if (r_symndx == STN_UNDEF)
12607 return TRUE;
12608
12609 if (r_symndx >= rcookie->locsymcount
12610 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12611 {
12612 struct elf_link_hash_entry *h;
12613
12614 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12615
12616 while (h->root.type == bfd_link_hash_indirect
12617 || h->root.type == bfd_link_hash_warning)
12618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12619
12620 if ((h->root.type == bfd_link_hash_defined
12621 || h->root.type == bfd_link_hash_defweak)
12622 && discarded_section (h->root.u.def.section))
12623 return TRUE;
12624 else
12625 return FALSE;
12626 }
12627 else
12628 {
12629 /* It's not a relocation against a global symbol,
12630 but it could be a relocation against a local
12631 symbol for a discarded section. */
12632 asection *isec;
12633 Elf_Internal_Sym *isym;
12634
12635 /* Need to: get the symbol; get the section. */
12636 isym = &rcookie->locsyms[r_symndx];
12637 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12638 if (isec != NULL && discarded_section (isec))
12639 return TRUE;
12640 }
12641 return FALSE;
12642 }
12643 return FALSE;
12644 }
12645
12646 /* Discard unneeded references to discarded sections.
12647 Returns TRUE if any section's size was changed. */
12648 /* This function assumes that the relocations are in sorted order,
12649 which is true for all known assemblers. */
12650
12651 bfd_boolean
12652 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12653 {
12654 struct elf_reloc_cookie cookie;
12655 asection *stab, *eh;
12656 const struct elf_backend_data *bed;
12657 bfd *abfd;
12658 bfd_boolean ret = FALSE;
12659
12660 if (info->traditional_format
12661 || !is_elf_hash_table (info->hash))
12662 return FALSE;
12663
12664 _bfd_elf_begin_eh_frame_parsing (info);
12665 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12666 {
12667 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12668 continue;
12669
12670 bed = get_elf_backend_data (abfd);
12671
12672 eh = NULL;
12673 if (!info->relocatable)
12674 {
12675 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12676 while (eh != NULL
12677 && (eh->size == 0
12678 || bfd_is_abs_section (eh->output_section)))
12679 eh = bfd_get_next_section_by_name (eh);
12680 }
12681
12682 stab = bfd_get_section_by_name (abfd, ".stab");
12683 if (stab != NULL
12684 && (stab->size == 0
12685 || bfd_is_abs_section (stab->output_section)
12686 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12687 stab = NULL;
12688
12689 if (stab == NULL
12690 && eh == NULL
12691 && bed->elf_backend_discard_info == NULL)
12692 continue;
12693
12694 if (!init_reloc_cookie (&cookie, info, abfd))
12695 return FALSE;
12696
12697 if (stab != NULL
12698 && stab->reloc_count > 0
12699 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12700 {
12701 if (_bfd_discard_section_stabs (abfd, stab,
12702 elf_section_data (stab)->sec_info,
12703 bfd_elf_reloc_symbol_deleted_p,
12704 &cookie))
12705 ret = TRUE;
12706 fini_reloc_cookie_rels (&cookie, stab);
12707 }
12708
12709 while (eh != NULL
12710 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12711 {
12712 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12713 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12714 bfd_elf_reloc_symbol_deleted_p,
12715 &cookie))
12716 ret = TRUE;
12717 fini_reloc_cookie_rels (&cookie, eh);
12718 eh = bfd_get_next_section_by_name (eh);
12719 }
12720
12721 if (bed->elf_backend_discard_info != NULL
12722 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12723 ret = TRUE;
12724
12725 fini_reloc_cookie (&cookie, abfd);
12726 }
12727 _bfd_elf_end_eh_frame_parsing (info);
12728
12729 if (info->eh_frame_hdr
12730 && !info->relocatable
12731 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12732 ret = TRUE;
12733
12734 return ret;
12735 }
12736
12737 bfd_boolean
12738 _bfd_elf_section_already_linked (bfd *abfd,
12739 asection *sec,
12740 struct bfd_link_info *info)
12741 {
12742 flagword flags;
12743 const char *name, *key;
12744 struct bfd_section_already_linked *l;
12745 struct bfd_section_already_linked_hash_entry *already_linked_list;
12746
12747 if (sec->output_section == bfd_abs_section_ptr)
12748 return FALSE;
12749
12750 flags = sec->flags;
12751
12752 /* Return if it isn't a linkonce section. A comdat group section
12753 also has SEC_LINK_ONCE set. */
12754 if ((flags & SEC_LINK_ONCE) == 0)
12755 return FALSE;
12756
12757 /* Don't put group member sections on our list of already linked
12758 sections. They are handled as a group via their group section. */
12759 if (elf_sec_group (sec) != NULL)
12760 return FALSE;
12761
12762 /* For a SHT_GROUP section, use the group signature as the key. */
12763 name = sec->name;
12764 if ((flags & SEC_GROUP) != 0
12765 && elf_next_in_group (sec) != NULL
12766 && elf_group_name (elf_next_in_group (sec)) != NULL)
12767 key = elf_group_name (elf_next_in_group (sec));
12768 else
12769 {
12770 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12771 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12772 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12773 key++;
12774 else
12775 /* Must be a user linkonce section that doesn't follow gcc's
12776 naming convention. In this case we won't be matching
12777 single member groups. */
12778 key = name;
12779 }
12780
12781 already_linked_list = bfd_section_already_linked_table_lookup (key);
12782
12783 for (l = already_linked_list->entry; l != NULL; l = l->next)
12784 {
12785 /* We may have 2 different types of sections on the list: group
12786 sections with a signature of <key> (<key> is some string),
12787 and linkonce sections named .gnu.linkonce.<type>.<key>.
12788 Match like sections. LTO plugin sections are an exception.
12789 They are always named .gnu.linkonce.t.<key> and match either
12790 type of section. */
12791 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12792 && ((flags & SEC_GROUP) != 0
12793 || strcmp (name, l->sec->name) == 0))
12794 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12795 {
12796 /* The section has already been linked. See if we should
12797 issue a warning. */
12798 if (!_bfd_handle_already_linked (sec, l, info))
12799 return FALSE;
12800
12801 if (flags & SEC_GROUP)
12802 {
12803 asection *first = elf_next_in_group (sec);
12804 asection *s = first;
12805
12806 while (s != NULL)
12807 {
12808 s->output_section = bfd_abs_section_ptr;
12809 /* Record which group discards it. */
12810 s->kept_section = l->sec;
12811 s = elf_next_in_group (s);
12812 /* These lists are circular. */
12813 if (s == first)
12814 break;
12815 }
12816 }
12817
12818 return TRUE;
12819 }
12820 }
12821
12822 /* A single member comdat group section may be discarded by a
12823 linkonce section and vice versa. */
12824 if ((flags & SEC_GROUP) != 0)
12825 {
12826 asection *first = elf_next_in_group (sec);
12827
12828 if (first != NULL && elf_next_in_group (first) == first)
12829 /* Check this single member group against linkonce sections. */
12830 for (l = already_linked_list->entry; l != NULL; l = l->next)
12831 if ((l->sec->flags & SEC_GROUP) == 0
12832 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12833 {
12834 first->output_section = bfd_abs_section_ptr;
12835 first->kept_section = l->sec;
12836 sec->output_section = bfd_abs_section_ptr;
12837 break;
12838 }
12839 }
12840 else
12841 /* Check this linkonce section against single member groups. */
12842 for (l = already_linked_list->entry; l != NULL; l = l->next)
12843 if (l->sec->flags & SEC_GROUP)
12844 {
12845 asection *first = elf_next_in_group (l->sec);
12846
12847 if (first != NULL
12848 && elf_next_in_group (first) == first
12849 && bfd_elf_match_symbols_in_sections (first, sec, info))
12850 {
12851 sec->output_section = bfd_abs_section_ptr;
12852 sec->kept_section = first;
12853 break;
12854 }
12855 }
12856
12857 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12858 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12859 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12860 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12861 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12862 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12863 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12864 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12865 The reverse order cannot happen as there is never a bfd with only the
12866 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12867 matter as here were are looking only for cross-bfd sections. */
12868
12869 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12870 for (l = already_linked_list->entry; l != NULL; l = l->next)
12871 if ((l->sec->flags & SEC_GROUP) == 0
12872 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12873 {
12874 if (abfd != l->sec->owner)
12875 sec->output_section = bfd_abs_section_ptr;
12876 break;
12877 }
12878
12879 /* This is the first section with this name. Record it. */
12880 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12881 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12882 return sec->output_section == bfd_abs_section_ptr;
12883 }
12884
12885 bfd_boolean
12886 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12887 {
12888 return sym->st_shndx == SHN_COMMON;
12889 }
12890
12891 unsigned int
12892 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12893 {
12894 return SHN_COMMON;
12895 }
12896
12897 asection *
12898 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12899 {
12900 return bfd_com_section_ptr;
12901 }
12902
12903 bfd_vma
12904 _bfd_elf_default_got_elt_size (bfd *abfd,
12905 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12906 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12907 bfd *ibfd ATTRIBUTE_UNUSED,
12908 unsigned long symndx ATTRIBUTE_UNUSED)
12909 {
12910 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12911 return bed->s->arch_size / 8;
12912 }
12913
12914 /* Routines to support the creation of dynamic relocs. */
12915
12916 /* Returns the name of the dynamic reloc section associated with SEC. */
12917
12918 static const char *
12919 get_dynamic_reloc_section_name (bfd * abfd,
12920 asection * sec,
12921 bfd_boolean is_rela)
12922 {
12923 char *name;
12924 const char *old_name = bfd_get_section_name (NULL, sec);
12925 const char *prefix = is_rela ? ".rela" : ".rel";
12926
12927 if (old_name == NULL)
12928 return NULL;
12929
12930 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12931 sprintf (name, "%s%s", prefix, old_name);
12932
12933 return name;
12934 }
12935
12936 /* Returns the dynamic reloc section associated with SEC.
12937 If necessary compute the name of the dynamic reloc section based
12938 on SEC's name (looked up in ABFD's string table) and the setting
12939 of IS_RELA. */
12940
12941 asection *
12942 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12943 asection * sec,
12944 bfd_boolean is_rela)
12945 {
12946 asection * reloc_sec = elf_section_data (sec)->sreloc;
12947
12948 if (reloc_sec == NULL)
12949 {
12950 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12951
12952 if (name != NULL)
12953 {
12954 reloc_sec = bfd_get_linker_section (abfd, name);
12955
12956 if (reloc_sec != NULL)
12957 elf_section_data (sec)->sreloc = reloc_sec;
12958 }
12959 }
12960
12961 return reloc_sec;
12962 }
12963
12964 /* Returns the dynamic reloc section associated with SEC. If the
12965 section does not exist it is created and attached to the DYNOBJ
12966 bfd and stored in the SRELOC field of SEC's elf_section_data
12967 structure.
12968
12969 ALIGNMENT is the alignment for the newly created section and
12970 IS_RELA defines whether the name should be .rela.<SEC's name>
12971 or .rel.<SEC's name>. The section name is looked up in the
12972 string table associated with ABFD. */
12973
12974 asection *
12975 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12976 bfd * dynobj,
12977 unsigned int alignment,
12978 bfd * abfd,
12979 bfd_boolean is_rela)
12980 {
12981 asection * reloc_sec = elf_section_data (sec)->sreloc;
12982
12983 if (reloc_sec == NULL)
12984 {
12985 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12986
12987 if (name == NULL)
12988 return NULL;
12989
12990 reloc_sec = bfd_get_linker_section (dynobj, name);
12991
12992 if (reloc_sec == NULL)
12993 {
12994 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12995 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12996 if ((sec->flags & SEC_ALLOC) != 0)
12997 flags |= SEC_ALLOC | SEC_LOAD;
12998
12999 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13000 if (reloc_sec != NULL)
13001 {
13002 /* _bfd_elf_get_sec_type_attr chooses a section type by
13003 name. Override as it may be wrong, eg. for a user
13004 section named "auto" we'll get ".relauto" which is
13005 seen to be a .rela section. */
13006 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13007 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13008 reloc_sec = NULL;
13009 }
13010 }
13011
13012 elf_section_data (sec)->sreloc = reloc_sec;
13013 }
13014
13015 return reloc_sec;
13016 }
13017
13018 /* Copy the ELF symbol type associated with a linker hash entry. */
13019 void
13020 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13021 struct bfd_link_hash_entry * hdest,
13022 struct bfd_link_hash_entry * hsrc)
13023 {
13024 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13025 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13026
13027 ehdest->type = ehsrc->type;
13028 ehdest->target_internal = ehsrc->target_internal;
13029 }
13030
13031 /* Append a RELA relocation REL to section S in BFD. */
13032
13033 void
13034 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13035 {
13036 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13037 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13038 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13039 bed->s->swap_reloca_out (abfd, rel, loc);
13040 }
13041
13042 /* Append a REL relocation REL to section S in BFD. */
13043
13044 void
13045 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13046 {
13047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13048 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13049 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13050 bed->s->swap_reloc_out (abfd, rel, loc);
13051 }
This page took 0.296668 seconds and 4 git commands to generate.