* breakpoint.c (print_one_breakpoint_location): Revert Enb field
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* Define a symbol in a dynamic linkage section. */
33
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
39 {
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
43
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
46 {
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
52 }
53
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
64
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
68 }
69
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
72 {
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
78
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
83
84 switch (bed->s->arch_size)
85 {
86 case 32:
87 ptralign = 2;
88 break;
89
90 case 64:
91 ptralign = 3;
92 break;
93
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
97 }
98
99 flags = bed->dynamic_sec_flags;
100
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
105
106 if (bed->want_got_plt)
107 {
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
112 }
113
114 if (bed->want_got_sym)
115 {
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
124 }
125
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
128
129 return TRUE;
130 }
131 \f
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
135 {
136 struct elf_link_hash_table *hash_table;
137
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
141
142 if (hash_table->dynstr == NULL)
143 {
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
147 }
148 return TRUE;
149 }
150
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
157
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
160 {
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
164
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
167
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
170
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
173
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
176
177 flags = bed->dynamic_sec_flags;
178
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
182 {
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
187 }
188
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
196
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
202
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
208
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
214
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
219
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
224
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
233
234 if (info->emit_hash)
235 {
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
241 }
242
243 if (info->emit_gnu_hash)
244 {
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
257 }
258
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
264
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
266
267 return TRUE;
268 }
269
270 /* Create dynamic sections when linking against a dynamic object. */
271
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
274 {
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
279
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
283
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
294
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
299
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
303 {
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
309 }
310
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
318
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
321
322 if (bed->want_dynbss)
323 {
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
335
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
348 {
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
356 }
357 }
358
359 return TRUE;
360 }
361 \f
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
369
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
373 {
374 if (h->dynindx == -1)
375 {
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
380
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
386 {
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
391 {
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
395 }
396
397 default:
398 break;
399 }
400
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
403
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
406 {
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
411 }
412
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
424
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426
427 if (p != NULL)
428 *p = ELF_VER_CHR;
429
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
433 }
434
435 return TRUE;
436 }
437 \f
438 /* Mark a symbol dynamic. */
439
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
444 {
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
446
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
450
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
459 }
460
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
463
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
470 {
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
474
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
477
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
482
483 switch (h->root.type)
484 {
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
520 }
521
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
530
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
539
540 h->def_regular = 1;
541
542 if (provide && hidden)
543 {
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
545
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
548 }
549
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
557
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
563 {
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
566
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
572 {
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
575 }
576 }
577
578 return TRUE;
579 }
580
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
584
585 int
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
589 {
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
598
599 if (! is_elf_hash_table (info->hash))
600 return 0;
601
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
606
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
611
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
615 {
616 bfd_release (input_bfd, entry);
617 return 0;
618 }
619
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
623 {
624 asection *s;
625
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
628 {
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
633 }
634 }
635
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
639
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
642 {
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
647 }
648
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
653
654 eht = elf_hash_table (info);
655
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
661
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
665
666 /* The dynindx will be set at the end of size_dynamic_sections. */
667
668 return 1;
669 }
670
671 /* Return the dynindex of a local dynamic symbol. */
672
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
677 {
678 struct elf_link_local_dynamic_entry *e;
679
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
684 }
685
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
689
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
693 {
694 size_t *count = data;
695
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
698
699 if (h->forced_local)
700 return TRUE;
701
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
704
705 return TRUE;
706 }
707
708
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
711
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
715 {
716 size_t *count = data;
717
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
720
721 if (!h->forced_local)
722 return TRUE;
723
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
726
727 return TRUE;
728 }
729
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
736 {
737 struct elf_link_hash_table *htab;
738
739 switch (elf_section_data (p)->this_hdr.sh_type)
740 {
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
749
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
752
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
756 {
757 asection *ip;
758
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
764 }
765 return FALSE;
766
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
771 }
772 }
773
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
779
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
784 {
785 unsigned long dynsymcount = 0;
786
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
788 {
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
798 }
799 *section_sym_count = dynsymcount;
800
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
804
805 if (elf_hash_table (info)->dynlocal)
806 {
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
810 }
811
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
815
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
821
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
824 }
825
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
837
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
851 {
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
860
861 *skip = FALSE;
862 *override = FALSE;
863
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
866
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
871 {
872 *skip = TRUE;
873 return TRUE;
874 }
875
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
884
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->output_bfd->xvec != abfd->xvec)
888 return TRUE;
889
890 /* For merging, we only care about real symbols. */
891
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
895
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
900
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
904
905 if (h->root.type == bfd_link_hash_new)
906 {
907 h->non_elf = 0;
908 return TRUE;
909 }
910
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
913
914 switch (h->root.type)
915 {
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
920
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
926
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
932
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
937 }
938
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
949
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
952
953 newdyn = (abfd->flags & DYNAMIC) != 0;
954
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
959 {
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
963 }
964
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
967
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
969
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
973
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
992 {
993 *skip = TRUE;
994 return TRUE;
995 }
996
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1002 {
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1006
1007 if (h->type == STT_TLS)
1008 {
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1015 }
1016 else
1017 {
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1024 }
1025
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1042
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1045 }
1046
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1051 {
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1055 {
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1060 {
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1063 }
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1066 }
1067 }
1068
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1074 {
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1080
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1086 }
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1090 {
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1095 {
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1101 {
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1111 {
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1115 }
1116 else
1117 {
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1124 }
1125 h = vh;
1126 }
1127 else
1128 h = *sym_hash;
1129 }
1130
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1133 {
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1142 }
1143 else
1144 {
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1147 }
1148
1149 if (h->def_dynamic)
1150 {
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1154 }
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1159 }
1160
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1165
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1173
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1176
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1181
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1186
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1190
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1196
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1199
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1203
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1216
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1219
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1226
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1237
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1249
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1261
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1265
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1269 {
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1275
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1280
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1283
1284 *size_change_ok = TRUE;
1285 }
1286
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1293
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1300
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1307 {
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1311
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1314
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1320
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1323 }
1324
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1330
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1333 {
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1340 }
1341
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1345
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1351
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1355
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1365 {
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1369
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1373
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1376
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1379
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1382
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1390 }
1391
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1397
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1401 {
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1409
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1412
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1415
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1420
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1423
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1426
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1429
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1434 }
1435
1436 if (flip != NULL)
1437 {
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1448 {
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1451 }
1452 }
1453
1454 return TRUE;
1455 }
1456
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1461
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1472 {
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1485
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1493
1494 if (override)
1495 {
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1505 {
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1509 }
1510 }
1511
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1515
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1522
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1534
1535 if (skip)
1536 goto nondefault;
1537
1538 if (! override)
1539 {
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1546 }
1547 else
1548 {
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1554
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1558
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1566
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1570
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1574 {
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1579 {
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1582 }
1583 }
1584
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1588 }
1589
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1593
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1597
1598 if (hi->root.type == bfd_link_hash_indirect)
1599 {
1600 struct elf_link_hash_entry *ht;
1601
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1604
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1608 {
1609 if (! dynamic)
1610 {
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1614 }
1615 else
1616 {
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1619 }
1620 }
1621 }
1622
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1625
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1633
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1642
1643 if (skip)
1644 return TRUE;
1645
1646 if (override)
1647 {
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1656 }
1657 else
1658 {
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1665
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 {
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1673
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1677 {
1678 if (! dynamic)
1679 {
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1683 }
1684 else
1685 {
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1688 }
1689 }
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695 \f
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1698
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1701 {
1702 struct elf_info_failed *eif = data;
1703
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1707
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1711
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1714
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1718 {
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1721
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1723 {
1724 if (t->globals.list != NULL)
1725 {
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1729 }
1730
1731 if (t->locals.list != NULL)
1732 {
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1736 }
1737 }
1738
1739 if (!eif->verdefs)
1740 {
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1743 {
1744 eif->failed = TRUE;
1745 return FALSE;
1746 }
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752 \f
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1757
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1761 {
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1766
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1769
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1777
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1780 {
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1783
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1787
1788 break;
1789 }
1790
1791 /* This is a new version. Add it to tree we are building. */
1792
1793 if (t == NULL)
1794 {
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1798 {
1799 rinfo->failed = TRUE;
1800 return FALSE;
1801 }
1802
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1806 }
1807
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1811 {
1812 rinfo->failed = TRUE;
1813 return FALSE;
1814 }
1815
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1821
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1824
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1827
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1829
1830 t->vn_auxptr = a;
1831
1832 return TRUE;
1833 }
1834
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1839
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1842 {
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1849
1850 sinfo = data;
1851 info = sinfo->info;
1852
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1855
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1860 {
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1864 }
1865
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1870
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1874 {
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1877
1878 hidden = TRUE;
1879
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1884 {
1885 hidden = FALSE;
1886 ++p;
1887 }
1888
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1891 {
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1895 }
1896
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1899 {
1900 if (strcmp (t->name, p) == 0)
1901 {
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1905
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1909 {
1910 sinfo->failed = TRUE;
1911 return FALSE;
1912 }
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1917
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1921
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1924
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1928 {
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1934 }
1935
1936 free (alc);
1937 break;
1938 }
1939 }
1940
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1944 {
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1947
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1952
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1956 {
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1964
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1972
1973 *pp = t;
1974
1975 h->verinfo.vertree = t;
1976 }
1977 else if (t == NULL)
1978 {
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1987 }
1988
1989 if (hidden)
1990 h->hidden = 1;
1991 }
1992
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1996 {
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2000
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2006 {
2007 if (t->globals.list != NULL)
2008 {
2009 bfd_boolean matched;
2010
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2018 {
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2026 }
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 }
2034
2035 if (t->locals.list != NULL)
2036 {
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2040 {
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2047 }
2048
2049 if (d != NULL)
2050 break;
2051 }
2052 }
2053
2054 if (local_ver != NULL)
2055 {
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2059 {
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2061 }
2062 }
2063 }
2064
2065 return TRUE;
2066 }
2067 \f
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2074
2075 Returns FALSE if something goes wrong. */
2076
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2083 {
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2091
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2095
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2099
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2102
2103 bed = get_elf_backend_data (abfd);
2104
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2111 {
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2114 }
2115
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2120 {
2121 bfd_vma r_symndx;
2122
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2128 {
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2136 }
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2139 }
2140
2141 return TRUE;
2142 }
2143
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2153
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2160 {
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2165
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2168
2169 if (o->reloc_count == 0)
2170 return NULL;
2171
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2173
2174 if (internal_relocs == NULL)
2175 {
2176 bfd_size_type size;
2177
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2186 }
2187
2188 if (external_relocs == NULL)
2189 {
2190 bfd_size_type size = rel_hdr->sh_size;
2191
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2198 }
2199
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2212
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2216
2217 if (alloc1 != NULL)
2218 free (alloc1);
2219
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2222
2223 return internal_relocs;
2224
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2231 }
2232
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2235
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2240 {
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2243
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2249
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2253
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2256
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2264
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2269 {
2270 struct elf_link_hash_entry **p;
2271
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2275
2276 elf_section_data (o)->rel_hashes = p;
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2285
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2293 {
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2302
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2305
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2308 {
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2311 }
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2315 {
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2318 }
2319 else
2320 {
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_format);
2325 return FALSE;
2326 }
2327
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2335
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2342 {
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2346 }
2347
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2351
2352 return TRUE;
2353 }
2354 \f
2355 /* Make weak undefined symbols in PIE dynamic. */
2356
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2365
2366 return TRUE;
2367 }
2368
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2374
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2386 {
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2389
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2392 {
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2395 }
2396 else
2397 {
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2401 {
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2404 }
2405 else
2406 h->def_regular = 1;
2407 }
2408
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2412 {
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2414 {
2415 eif->failed = TRUE;
2416 return FALSE;
2417 }
2418 }
2419 }
2420 else
2421 {
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2437 }
2438
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2444
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2456
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2469 {
2470 bfd_boolean force_local;
2471
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2475 }
2476
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2482
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2487 {
2488 struct elf_link_hash_entry *weakdef;
2489
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2493
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2497
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2504 {
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2508 }
2509 }
2510
2511 return TRUE;
2512 }
2513
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2517
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2520 {
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2524
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2527
2528 if (h->root.type == bfd_link_hash_warning)
2529 {
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2532
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2537 }
2538
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2542
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2546
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2559 {
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2562 }
2563
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2568
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2574
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2579
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2588
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2602
2603 if (h->u.weakdef != NULL)
2604 {
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2610
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2613 }
2614
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2626
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2630 {
2631 eif->failed = TRUE;
2632 return FALSE;
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2640
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2644 {
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2648
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2657 {
2658 mask >>= 1;
2659 --power_of_two;
2660 }
2661
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2664 {
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2669 }
2670
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2673
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2677
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2680
2681 return TRUE;
2682 }
2683
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2686
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2689 {
2690 asection *sec;
2691
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2694
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2699 {
2700 bfd *output_bfd = data;
2701
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2707 }
2708
2709 return TRUE;
2710 }
2711
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2715
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2720 {
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2724
2725 if (h == NULL)
2726 return FALSE;
2727
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2737
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741
2742 switch (ELF_ST_VISIBILITY (h->other))
2743 {
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2747
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2752
2753 bed = get_elf_backend_data (hash_table->dynobj);
2754
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2769
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2773 }
2774
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h))
2795 /* Do nothing. */;
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h->def_regular)
2799 return FALSE;
2800
2801 /* Forced local symbols resolve locally. */
2802 if (h->forced_local)
2803 return TRUE;
2804
2805 /* As do non-dynamic symbols. */
2806 if (h->dynindx == -1)
2807 return TRUE;
2808
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info->executable || SYMBOLIC_BIND (info, h))
2813 return TRUE;
2814
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2818 return FALSE;
2819
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2822 return TRUE;
2823
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2827
2828 bed = get_elf_backend_data (hash_table->dynobj);
2829
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2833
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2838 }
2839
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2842
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2845 {
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2848
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2853
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2857
2858 elf_hash_table (info)->tls_sec = tls;
2859
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2864
2865 return tls;
2866 }
2867
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2872 {
2873 const struct elf_backend_data *bed;
2874
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2879
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2884
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2888
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2893
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2898
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2900
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2905
2906 return TRUE;
2907 }
2908
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2914 {
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2923
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2927
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2930
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2937
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2943
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2945
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2949 {
2950 extsymcount = symcount;
2951 extsymoff = 0;
2952 }
2953 else
2954 {
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2957 }
2958
2959 if (extsymcount == 0)
2960 return FALSE;
2961
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2967
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2971 {
2972 const char *name;
2973
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2978
2979 if (strcmp (name, symdef->name) == 0)
2980 {
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2983 }
2984 }
2985
2986 free (isymbuf);
2987
2988 return result;
2989 }
2990 \f
2991 /* Add an entry to the .dynamic table. */
2992
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2997 {
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3004
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3008
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3012
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3017
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3021
3022 s->size = newsize;
3023 s->contents = newcontents;
3024
3025 return TRUE;
3026 }
3027
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3031
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3037 {
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3041
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3044
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3050
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3052 {
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3063 {
3064 Elf_Internal_Dyn dyn;
3065
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3069 {
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3072 }
3073 }
3074 }
3075
3076 if (do_it)
3077 {
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3080
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3083 }
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3087
3088 return 0;
3089 }
3090
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3094 {
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3098
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3105 {
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3109 }
3110 return 0;
3111 }
3112
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3115
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3118 {
3119 struct elf_strtab_hash *dynstr = data;
3120
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3123
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3127 }
3128
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3131
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3134 {
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3143
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3146
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3150
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3155 {
3156 Elf_Internal_Dyn dyn;
3157
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3160 {
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3174 }
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3176 }
3177
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3182
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3185
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3188 {
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3194
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3197 do
3198 {
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3205 {
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3213 }
3214 }
3215 while (def.vd_next);
3216 }
3217
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3220 {
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3226
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3229 do
3230 {
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3238 {
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3247 }
3248 }
3249 while (need.vn_next);
3250 }
3251
3252 return TRUE;
3253 }
3254 \f
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3257 the same target. */
3258
3259 bfd_boolean
3260 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3261 const bfd_target *output)
3262 {
3263 return input == output;
3264 }
3265
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3269
3270 bfd_boolean
3271 _bfd_elf_relocs_compatible (const bfd_target *input,
3272 const bfd_target *output)
3273 {
3274 const struct elf_backend_data *obed, *ibed;
3275
3276 if (input == output)
3277 return TRUE;
3278
3279 ibed = xvec_get_elf_backend_data (input);
3280 obed = xvec_get_elf_backend_data (output);
3281
3282 if (ibed->arch != obed->arch)
3283 return FALSE;
3284
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed->relocs_compatible == obed->relocs_compatible;
3287 }
3288
3289 /* Add symbols from an ELF object file to the linker hash table. */
3290
3291 static bfd_boolean
3292 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3293 {
3294 Elf_Internal_Shdr *hdr;
3295 bfd_size_type symcount;
3296 bfd_size_type extsymcount;
3297 bfd_size_type extsymoff;
3298 struct elf_link_hash_entry **sym_hash;
3299 bfd_boolean dynamic;
3300 Elf_External_Versym *extversym = NULL;
3301 Elf_External_Versym *ever;
3302 struct elf_link_hash_entry *weaks;
3303 struct elf_link_hash_entry **nondeflt_vers = NULL;
3304 bfd_size_type nondeflt_vers_cnt = 0;
3305 Elf_Internal_Sym *isymbuf = NULL;
3306 Elf_Internal_Sym *isym;
3307 Elf_Internal_Sym *isymend;
3308 const struct elf_backend_data *bed;
3309 bfd_boolean add_needed;
3310 struct elf_link_hash_table *htab;
3311 bfd_size_type amt;
3312 void *alloc_mark = NULL;
3313 struct bfd_hash_entry **old_table = NULL;
3314 unsigned int old_size = 0;
3315 unsigned int old_count = 0;
3316 void *old_tab = NULL;
3317 void *old_hash;
3318 void *old_ent;
3319 struct bfd_link_hash_entry *old_undefs = NULL;
3320 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3321 long old_dynsymcount = 0;
3322 size_t tabsize = 0;
3323 size_t hashsize = 0;
3324
3325 htab = elf_hash_table (info);
3326 bed = get_elf_backend_data (abfd);
3327
3328 if ((abfd->flags & DYNAMIC) == 0)
3329 dynamic = FALSE;
3330 else
3331 {
3332 dynamic = TRUE;
3333
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info->relocatable
3338 || !is_elf_hash_table (htab)
3339 || info->output_bfd->xvec != abfd->xvec)
3340 {
3341 if (info->relocatable)
3342 bfd_set_error (bfd_error_invalid_operation);
3343 else
3344 bfd_set_error (bfd_error_wrong_format);
3345 goto error_return;
3346 }
3347 }
3348
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info->executable)
3354 {
3355 asection *s;
3356
3357 for (s = abfd->sections; s != NULL; s = s->next)
3358 {
3359 const char *name;
3360
3361 name = bfd_get_section_name (abfd, s);
3362 if (CONST_STRNEQ (name, ".gnu.warning."))
3363 {
3364 char *msg;
3365 bfd_size_type sz;
3366
3367 name += sizeof ".gnu.warning." - 1;
3368
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3377 link. */
3378 if (dynamic)
3379 {
3380 struct elf_link_hash_entry *h;
3381
3382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3383
3384 /* FIXME: What about bfd_link_hash_common? */
3385 if (h != NULL
3386 && (h->root.type == bfd_link_hash_defined
3387 || h->root.type == bfd_link_hash_defweak))
3388 {
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3392 s->size = 0;
3393 continue;
3394 }
3395 }
3396
3397 sz = s->size;
3398 msg = bfd_alloc (abfd, sz + 1);
3399 if (msg == NULL)
3400 goto error_return;
3401
3402 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3403 goto error_return;
3404
3405 msg[sz] = '\0';
3406
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info, abfd, name, BSF_WARNING, s, 0, msg,
3409 FALSE, bed->collect, NULL)))
3410 goto error_return;
3411
3412 if (! info->relocatable)
3413 {
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3416 s->size = 0;
3417
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s->flags |= SEC_EXCLUDE;
3421 }
3422 }
3423 }
3424 }
3425
3426 add_needed = TRUE;
3427 if (! dynamic)
3428 {
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3434 if (info->shared
3435 && is_elf_hash_table (htab)
3436 && info->output_bfd->xvec == abfd->xvec
3437 && !htab->dynamic_sections_created)
3438 {
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3440 goto error_return;
3441 }
3442 }
3443 else if (!is_elf_hash_table (htab))
3444 goto error_return;
3445 else
3446 {
3447 asection *s;
3448 const char *soname = NULL;
3449 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3450 int ret;
3451
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s = abfd->sections) != NULL
3455 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3456 abort ();
3457
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3464 all. */
3465 add_needed = (elf_dyn_lib_class (abfd)
3466 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3467 | DYN_NO_NEEDED)) == 0;
3468
3469 s = bfd_get_section_by_name (abfd, ".dynamic");
3470 if (s != NULL)
3471 {
3472 bfd_byte *dynbuf;
3473 bfd_byte *extdyn;
3474 int elfsec;
3475 unsigned long shlink;
3476
3477 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3478 goto error_free_dyn;
3479
3480 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3481 if (elfsec == -1)
3482 goto error_free_dyn;
3483 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3484
3485 for (extdyn = dynbuf;
3486 extdyn < dynbuf + s->size;
3487 extdyn += bed->s->sizeof_dyn)
3488 {
3489 Elf_Internal_Dyn dyn;
3490
3491 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3492 if (dyn.d_tag == DT_SONAME)
3493 {
3494 unsigned int tagv = dyn.d_un.d_val;
3495 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3496 if (soname == NULL)
3497 goto error_free_dyn;
3498 }
3499 if (dyn.d_tag == DT_NEEDED)
3500 {
3501 struct bfd_link_needed_list *n, **pn;
3502 char *fnm, *anm;
3503 unsigned int tagv = dyn.d_un.d_val;
3504
3505 amt = sizeof (struct bfd_link_needed_list);
3506 n = bfd_alloc (abfd, amt);
3507 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3508 if (n == NULL || fnm == NULL)
3509 goto error_free_dyn;
3510 amt = strlen (fnm) + 1;
3511 anm = bfd_alloc (abfd, amt);
3512 if (anm == NULL)
3513 goto error_free_dyn;
3514 memcpy (anm, fnm, amt);
3515 n->name = anm;
3516 n->by = abfd;
3517 n->next = NULL;
3518 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3519 ;
3520 *pn = n;
3521 }
3522 if (dyn.d_tag == DT_RUNPATH)
3523 {
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3527
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = & runpath;
3542 *pn != NULL;
3543 pn = &(*pn)->next)
3544 ;
3545 *pn = n;
3546 }
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath && dyn.d_tag == DT_RPATH)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 {
3563 error_free_dyn:
3564 free (dynbuf);
3565 goto error_return;
3566 }
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & rpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3574 ;
3575 *pn = n;
3576 }
3577 }
3578
3579 free (dynbuf);
3580 }
3581
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3584 if (runpath)
3585 rpath = runpath;
3586
3587 if (rpath)
3588 {
3589 struct bfd_link_needed_list **pn;
3590 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3591 ;
3592 *pn = rpath;
3593 }
3594
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3601 file. */
3602 bfd_section_list_clear (abfd);
3603
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3608 name. */
3609 if (soname == NULL || *soname == '\0')
3610 {
3611 soname = elf_dt_name (abfd);
3612 if (soname == NULL || *soname == '\0')
3613 soname = bfd_get_filename (abfd);
3614 }
3615
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd) = soname;
3619
3620 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3621 if (ret < 0)
3622 goto error_return;
3623
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3627 if (ret > 0)
3628 return TRUE;
3629 }
3630
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3635
3636 if (! dynamic || elf_dynsymtab (abfd) == 0)
3637 hdr = &elf_tdata (abfd)->symtab_hdr;
3638 else
3639 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3640
3641 symcount = hdr->sh_size / bed->s->sizeof_sym;
3642
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3645 this point. */
3646 if (elf_bad_symtab (abfd))
3647 {
3648 extsymcount = symcount;
3649 extsymoff = 0;
3650 }
3651 else
3652 {
3653 extsymcount = symcount - hdr->sh_info;
3654 extsymoff = hdr->sh_info;
3655 }
3656
3657 sym_hash = NULL;
3658 if (extsymcount != 0)
3659 {
3660 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3661 NULL, NULL, NULL);
3662 if (isymbuf == NULL)
3663 goto error_return;
3664
3665 /* We store a pointer to the hash table entry for each external
3666 symbol. */
3667 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3668 sym_hash = bfd_alloc (abfd, amt);
3669 if (sym_hash == NULL)
3670 goto error_free_sym;
3671 elf_sym_hashes (abfd) = sym_hash;
3672 }
3673
3674 if (dynamic)
3675 {
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd,
3678 info->default_imported_symver))
3679 goto error_free_sym;
3680
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd) != 0)
3684 {
3685 Elf_Internal_Shdr *versymhdr;
3686
3687 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3688 extversym = bfd_malloc (versymhdr->sh_size);
3689 if (extversym == NULL)
3690 goto error_free_sym;
3691 amt = versymhdr->sh_size;
3692 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3693 || bfd_bread (extversym, amt, abfd) != amt)
3694 goto error_free_vers;
3695 }
3696 }
3697
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3702 {
3703 unsigned int i;
3704 size_t entsize;
3705
3706 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3707 {
3708 struct bfd_hash_entry *p;
3709 struct elf_link_hash_entry *h;
3710
3711 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3712 {
3713 h = (struct elf_link_hash_entry *) p;
3714 entsize += htab->root.table.entsize;
3715 if (h->root.type == bfd_link_hash_warning)
3716 entsize += htab->root.table.entsize;
3717 }
3718 }
3719
3720 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3721 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3723 if (old_tab == NULL)
3724 goto error_free_vers;
3725
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3729 if (alloc_mark == NULL)
3730 goto error_free_vers;
3731
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3735 notice_as_needed))
3736 goto error_free_vers;
3737
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash = (char *) old_tab + tabsize;
3741 old_ent = (char *) old_hash + hashsize;
3742 memcpy (old_tab, htab->root.table.table, tabsize);
3743 memcpy (old_hash, sym_hash, hashsize);
3744 old_undefs = htab->root.undefs;
3745 old_undefs_tail = htab->root.undefs_tail;
3746 old_table = htab->root.table.table;
3747 old_size = htab->root.table.size;
3748 old_count = htab->root.table.count;
3749 old_dynsymcount = htab->dynsymcount;
3750
3751 for (i = 0; i < htab->root.table.size; i++)
3752 {
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3755
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 {
3758 memcpy (old_ent, p, htab->root.table.entsize);
3759 old_ent = (char *) old_ent + htab->root.table.entsize;
3760 h = (struct elf_link_hash_entry *) p;
3761 if (h->root.type == bfd_link_hash_warning)
3762 {
3763 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3764 old_ent = (char *) old_ent + htab->root.table.entsize;
3765 }
3766 }
3767 }
3768 }
3769
3770 weaks = NULL;
3771 ever = extversym != NULL ? extversym + extsymoff : NULL;
3772 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3773 isym < isymend;
3774 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3775 {
3776 int bind;
3777 bfd_vma value;
3778 asection *sec, *new_sec;
3779 flagword flags;
3780 const char *name;
3781 struct elf_link_hash_entry *h;
3782 bfd_boolean definition;
3783 bfd_boolean size_change_ok;
3784 bfd_boolean type_change_ok;
3785 bfd_boolean new_weakdef;
3786 bfd_boolean override;
3787 bfd_boolean common;
3788 unsigned int old_alignment;
3789 bfd *old_bfd;
3790
3791 override = FALSE;
3792
3793 flags = BSF_NO_FLAGS;
3794 sec = NULL;
3795 value = isym->st_value;
3796 *sym_hash = NULL;
3797 common = bed->common_definition (isym);
3798
3799 bind = ELF_ST_BIND (isym->st_info);
3800 if (bind == STB_LOCAL)
3801 {
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3805 screws this up. */
3806 continue;
3807 }
3808 else if (bind == STB_GLOBAL)
3809 {
3810 if (isym->st_shndx != SHN_UNDEF && !common)
3811 flags = BSF_GLOBAL;
3812 }
3813 else if (bind == STB_WEAK)
3814 flags = BSF_WEAK;
3815 else
3816 {
3817 /* Leave it up to the processor backend. */
3818 }
3819
3820 if (isym->st_shndx == SHN_UNDEF)
3821 sec = bfd_und_section_ptr;
3822 else if (isym->st_shndx < SHN_LORESERVE
3823 || isym->st_shndx > SHN_HIRESERVE)
3824 {
3825 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3826 if (sec == NULL)
3827 sec = bfd_abs_section_ptr;
3828 else if (sec->kept_section)
3829 {
3830 /* Symbols from discarded section are undefined. We keep
3831 its visibility. */
3832 sec = bfd_und_section_ptr;
3833 isym->st_shndx = SHN_UNDEF;
3834 }
3835 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3836 value -= sec->vma;
3837 }
3838 else if (isym->st_shndx == SHN_ABS)
3839 sec = bfd_abs_section_ptr;
3840 else if (isym->st_shndx == SHN_COMMON)
3841 {
3842 sec = bfd_com_section_ptr;
3843 /* What ELF calls the size we call the value. What ELF
3844 calls the value we call the alignment. */
3845 value = isym->st_size;
3846 }
3847 else
3848 {
3849 /* Leave it up to the processor backend. */
3850 }
3851
3852 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3853 isym->st_name);
3854 if (name == NULL)
3855 goto error_free_vers;
3856
3857 if (isym->st_shndx == SHN_COMMON
3858 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3859 && !info->relocatable)
3860 {
3861 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3862
3863 if (tcomm == NULL)
3864 {
3865 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3866 (SEC_ALLOC
3867 | SEC_IS_COMMON
3868 | SEC_LINKER_CREATED
3869 | SEC_THREAD_LOCAL));
3870 if (tcomm == NULL)
3871 goto error_free_vers;
3872 }
3873 sec = tcomm;
3874 }
3875 else if (bed->elf_add_symbol_hook)
3876 {
3877 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3878 &sec, &value))
3879 goto error_free_vers;
3880
3881 /* The hook function sets the name to NULL if this symbol
3882 should be skipped for some reason. */
3883 if (name == NULL)
3884 continue;
3885 }
3886
3887 /* Sanity check that all possibilities were handled. */
3888 if (sec == NULL)
3889 {
3890 bfd_set_error (bfd_error_bad_value);
3891 goto error_free_vers;
3892 }
3893
3894 if (bfd_is_und_section (sec)
3895 || bfd_is_com_section (sec))
3896 definition = FALSE;
3897 else
3898 definition = TRUE;
3899
3900 size_change_ok = FALSE;
3901 type_change_ok = bed->type_change_ok;
3902 old_alignment = 0;
3903 old_bfd = NULL;
3904 new_sec = sec;
3905
3906 if (is_elf_hash_table (htab))
3907 {
3908 Elf_Internal_Versym iver;
3909 unsigned int vernum = 0;
3910 bfd_boolean skip;
3911
3912 if (ever == NULL)
3913 {
3914 if (info->default_imported_symver)
3915 /* Use the default symbol version created earlier. */
3916 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3917 else
3918 iver.vs_vers = 0;
3919 }
3920 else
3921 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3922
3923 vernum = iver.vs_vers & VERSYM_VERSION;
3924
3925 /* If this is a hidden symbol, or if it is not version
3926 1, we append the version name to the symbol name.
3927 However, we do not modify a non-hidden absolute symbol
3928 if it is not a function, because it might be the version
3929 symbol itself. FIXME: What if it isn't? */
3930 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3931 || (vernum > 1
3932 && (!bfd_is_abs_section (sec)
3933 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3934 {
3935 const char *verstr;
3936 size_t namelen, verlen, newlen;
3937 char *newname, *p;
3938
3939 if (isym->st_shndx != SHN_UNDEF)
3940 {
3941 if (vernum > elf_tdata (abfd)->cverdefs)
3942 verstr = NULL;
3943 else if (vernum > 1)
3944 verstr =
3945 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3946 else
3947 verstr = "";
3948
3949 if (verstr == NULL)
3950 {
3951 (*_bfd_error_handler)
3952 (_("%B: %s: invalid version %u (max %d)"),
3953 abfd, name, vernum,
3954 elf_tdata (abfd)->cverdefs);
3955 bfd_set_error (bfd_error_bad_value);
3956 goto error_free_vers;
3957 }
3958 }
3959 else
3960 {
3961 /* We cannot simply test for the number of
3962 entries in the VERNEED section since the
3963 numbers for the needed versions do not start
3964 at 0. */
3965 Elf_Internal_Verneed *t;
3966
3967 verstr = NULL;
3968 for (t = elf_tdata (abfd)->verref;
3969 t != NULL;
3970 t = t->vn_nextref)
3971 {
3972 Elf_Internal_Vernaux *a;
3973
3974 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3975 {
3976 if (a->vna_other == vernum)
3977 {
3978 verstr = a->vna_nodename;
3979 break;
3980 }
3981 }
3982 if (a != NULL)
3983 break;
3984 }
3985 if (verstr == NULL)
3986 {
3987 (*_bfd_error_handler)
3988 (_("%B: %s: invalid needed version %d"),
3989 abfd, name, vernum);
3990 bfd_set_error (bfd_error_bad_value);
3991 goto error_free_vers;
3992 }
3993 }
3994
3995 namelen = strlen (name);
3996 verlen = strlen (verstr);
3997 newlen = namelen + verlen + 2;
3998 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3999 && isym->st_shndx != SHN_UNDEF)
4000 ++newlen;
4001
4002 newname = bfd_hash_allocate (&htab->root.table, newlen);
4003 if (newname == NULL)
4004 goto error_free_vers;
4005 memcpy (newname, name, namelen);
4006 p = newname + namelen;
4007 *p++ = ELF_VER_CHR;
4008 /* If this is a defined non-hidden version symbol,
4009 we add another @ to the name. This indicates the
4010 default version of the symbol. */
4011 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4012 && isym->st_shndx != SHN_UNDEF)
4013 *p++ = ELF_VER_CHR;
4014 memcpy (p, verstr, verlen + 1);
4015
4016 name = newname;
4017 }
4018
4019 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4020 &value, &old_alignment,
4021 sym_hash, &skip, &override,
4022 &type_change_ok, &size_change_ok))
4023 goto error_free_vers;
4024
4025 if (skip)
4026 continue;
4027
4028 if (override)
4029 definition = FALSE;
4030
4031 h = *sym_hash;
4032 while (h->root.type == bfd_link_hash_indirect
4033 || h->root.type == bfd_link_hash_warning)
4034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4035
4036 /* Remember the old alignment if this is a common symbol, so
4037 that we don't reduce the alignment later on. We can't
4038 check later, because _bfd_generic_link_add_one_symbol
4039 will set a default for the alignment which we want to
4040 override. We also remember the old bfd where the existing
4041 definition comes from. */
4042 switch (h->root.type)
4043 {
4044 default:
4045 break;
4046
4047 case bfd_link_hash_defined:
4048 case bfd_link_hash_defweak:
4049 old_bfd = h->root.u.def.section->owner;
4050 break;
4051
4052 case bfd_link_hash_common:
4053 old_bfd = h->root.u.c.p->section->owner;
4054 old_alignment = h->root.u.c.p->alignment_power;
4055 break;
4056 }
4057
4058 if (elf_tdata (abfd)->verdef != NULL
4059 && ! override
4060 && vernum > 1
4061 && definition)
4062 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4063 }
4064
4065 if (! (_bfd_generic_link_add_one_symbol
4066 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4067 (struct bfd_link_hash_entry **) sym_hash)))
4068 goto error_free_vers;
4069
4070 h = *sym_hash;
4071 while (h->root.type == bfd_link_hash_indirect
4072 || h->root.type == bfd_link_hash_warning)
4073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4074 *sym_hash = h;
4075
4076 new_weakdef = FALSE;
4077 if (dynamic
4078 && definition
4079 && (flags & BSF_WEAK) != 0
4080 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4081 && is_elf_hash_table (htab)
4082 && h->u.weakdef == NULL)
4083 {
4084 /* Keep a list of all weak defined non function symbols from
4085 a dynamic object, using the weakdef field. Later in this
4086 function we will set the weakdef field to the correct
4087 value. We only put non-function symbols from dynamic
4088 objects on this list, because that happens to be the only
4089 time we need to know the normal symbol corresponding to a
4090 weak symbol, and the information is time consuming to
4091 figure out. If the weakdef field is not already NULL,
4092 then this symbol was already defined by some previous
4093 dynamic object, and we will be using that previous
4094 definition anyhow. */
4095
4096 h->u.weakdef = weaks;
4097 weaks = h;
4098 new_weakdef = TRUE;
4099 }
4100
4101 /* Set the alignment of a common symbol. */
4102 if ((common || bfd_is_com_section (sec))
4103 && h->root.type == bfd_link_hash_common)
4104 {
4105 unsigned int align;
4106
4107 if (common)
4108 align = bfd_log2 (isym->st_value);
4109 else
4110 {
4111 /* The new symbol is a common symbol in a shared object.
4112 We need to get the alignment from the section. */
4113 align = new_sec->alignment_power;
4114 }
4115 if (align > old_alignment
4116 /* Permit an alignment power of zero if an alignment of one
4117 is specified and no other alignments have been specified. */
4118 || (isym->st_value == 1 && old_alignment == 0))
4119 h->root.u.c.p->alignment_power = align;
4120 else
4121 h->root.u.c.p->alignment_power = old_alignment;
4122 }
4123
4124 if (is_elf_hash_table (htab))
4125 {
4126 bfd_boolean dynsym;
4127
4128 /* Check the alignment when a common symbol is involved. This
4129 can change when a common symbol is overridden by a normal
4130 definition or a common symbol is ignored due to the old
4131 normal definition. We need to make sure the maximum
4132 alignment is maintained. */
4133 if ((old_alignment || common)
4134 && h->root.type != bfd_link_hash_common)
4135 {
4136 unsigned int common_align;
4137 unsigned int normal_align;
4138 unsigned int symbol_align;
4139 bfd *normal_bfd;
4140 bfd *common_bfd;
4141
4142 symbol_align = ffs (h->root.u.def.value) - 1;
4143 if (h->root.u.def.section->owner != NULL
4144 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4145 {
4146 normal_align = h->root.u.def.section->alignment_power;
4147 if (normal_align > symbol_align)
4148 normal_align = symbol_align;
4149 }
4150 else
4151 normal_align = symbol_align;
4152
4153 if (old_alignment)
4154 {
4155 common_align = old_alignment;
4156 common_bfd = old_bfd;
4157 normal_bfd = abfd;
4158 }
4159 else
4160 {
4161 common_align = bfd_log2 (isym->st_value);
4162 common_bfd = abfd;
4163 normal_bfd = old_bfd;
4164 }
4165
4166 if (normal_align < common_align)
4167 {
4168 /* PR binutils/2735 */
4169 if (normal_bfd == NULL)
4170 (*_bfd_error_handler)
4171 (_("Warning: alignment %u of common symbol `%s' in %B"
4172 " is greater than the alignment (%u) of its section %A"),
4173 common_bfd, h->root.u.def.section,
4174 1 << common_align, name, 1 << normal_align);
4175 else
4176 (*_bfd_error_handler)
4177 (_("Warning: alignment %u of symbol `%s' in %B"
4178 " is smaller than %u in %B"),
4179 normal_bfd, common_bfd,
4180 1 << normal_align, name, 1 << common_align);
4181 }
4182 }
4183
4184 /* Remember the symbol size if it isn't undefined. */
4185 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4186 && (definition || h->size == 0))
4187 {
4188 if (h->size != 0
4189 && h->size != isym->st_size
4190 && ! size_change_ok)
4191 (*_bfd_error_handler)
4192 (_("Warning: size of symbol `%s' changed"
4193 " from %lu in %B to %lu in %B"),
4194 old_bfd, abfd,
4195 name, (unsigned long) h->size,
4196 (unsigned long) isym->st_size);
4197
4198 h->size = isym->st_size;
4199 }
4200
4201 /* If this is a common symbol, then we always want H->SIZE
4202 to be the size of the common symbol. The code just above
4203 won't fix the size if a common symbol becomes larger. We
4204 don't warn about a size change here, because that is
4205 covered by --warn-common. Allow changed between different
4206 function types. */
4207 if (h->root.type == bfd_link_hash_common)
4208 h->size = h->root.u.c.size;
4209
4210 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4211 && (definition || h->type == STT_NOTYPE))
4212 {
4213 if (h->type != STT_NOTYPE
4214 && h->type != ELF_ST_TYPE (isym->st_info)
4215 && ! type_change_ok)
4216 (*_bfd_error_handler)
4217 (_("Warning: type of symbol `%s' changed"
4218 " from %d to %d in %B"),
4219 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4220
4221 h->type = ELF_ST_TYPE (isym->st_info);
4222 }
4223
4224 /* If st_other has a processor-specific meaning, specific
4225 code might be needed here. We never merge the visibility
4226 attribute with the one from a dynamic object. */
4227 if (bed->elf_backend_merge_symbol_attribute)
4228 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4229 dynamic);
4230
4231 /* If this symbol has default visibility and the user has requested
4232 we not re-export it, then mark it as hidden. */
4233 if (definition && !dynamic
4234 && (abfd->no_export
4235 || (abfd->my_archive && abfd->my_archive->no_export))
4236 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4237 isym->st_other = (STV_HIDDEN
4238 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4239
4240 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4241 {
4242 unsigned char hvis, symvis, other, nvis;
4243
4244 /* Only merge the visibility. Leave the remainder of the
4245 st_other field to elf_backend_merge_symbol_attribute. */
4246 other = h->other & ~ELF_ST_VISIBILITY (-1);
4247
4248 /* Combine visibilities, using the most constraining one. */
4249 hvis = ELF_ST_VISIBILITY (h->other);
4250 symvis = ELF_ST_VISIBILITY (isym->st_other);
4251 if (! hvis)
4252 nvis = symvis;
4253 else if (! symvis)
4254 nvis = hvis;
4255 else
4256 nvis = hvis < symvis ? hvis : symvis;
4257
4258 h->other = other | nvis;
4259 }
4260
4261 /* Set a flag in the hash table entry indicating the type of
4262 reference or definition we just found. Keep a count of
4263 the number of dynamic symbols we find. A dynamic symbol
4264 is one which is referenced or defined by both a regular
4265 object and a shared object. */
4266 dynsym = FALSE;
4267 if (! dynamic)
4268 {
4269 if (! definition)
4270 {
4271 h->ref_regular = 1;
4272 if (bind != STB_WEAK)
4273 h->ref_regular_nonweak = 1;
4274 }
4275 else
4276 h->def_regular = 1;
4277 if (! info->executable
4278 || h->def_dynamic
4279 || h->ref_dynamic)
4280 dynsym = TRUE;
4281 }
4282 else
4283 {
4284 if (! definition)
4285 h->ref_dynamic = 1;
4286 else
4287 h->def_dynamic = 1;
4288 if (h->def_regular
4289 || h->ref_regular
4290 || (h->u.weakdef != NULL
4291 && ! new_weakdef
4292 && h->u.weakdef->dynindx != -1))
4293 dynsym = TRUE;
4294 }
4295
4296 if (definition && (sec->flags & SEC_DEBUGGING))
4297 {
4298 /* We don't want to make debug symbol dynamic. */
4299 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4300 dynsym = FALSE;
4301 }
4302
4303 /* Check to see if we need to add an indirect symbol for
4304 the default name. */
4305 if (definition || h->root.type == bfd_link_hash_common)
4306 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4307 &sec, &value, &dynsym,
4308 override))
4309 goto error_free_vers;
4310
4311 if (definition && !dynamic)
4312 {
4313 char *p = strchr (name, ELF_VER_CHR);
4314 if (p != NULL && p[1] != ELF_VER_CHR)
4315 {
4316 /* Queue non-default versions so that .symver x, x@FOO
4317 aliases can be checked. */
4318 if (!nondeflt_vers)
4319 {
4320 amt = ((isymend - isym + 1)
4321 * sizeof (struct elf_link_hash_entry *));
4322 nondeflt_vers = bfd_malloc (amt);
4323 if (!nondeflt_vers)
4324 goto error_free_vers;
4325 }
4326 nondeflt_vers[nondeflt_vers_cnt++] = h;
4327 }
4328 }
4329
4330 if (dynsym && h->dynindx == -1)
4331 {
4332 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4333 goto error_free_vers;
4334 if (h->u.weakdef != NULL
4335 && ! new_weakdef
4336 && h->u.weakdef->dynindx == -1)
4337 {
4338 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4339 goto error_free_vers;
4340 }
4341 }
4342 else if (dynsym && h->dynindx != -1)
4343 /* If the symbol already has a dynamic index, but
4344 visibility says it should not be visible, turn it into
4345 a local symbol. */
4346 switch (ELF_ST_VISIBILITY (h->other))
4347 {
4348 case STV_INTERNAL:
4349 case STV_HIDDEN:
4350 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4351 dynsym = FALSE;
4352 break;
4353 }
4354
4355 if (!add_needed
4356 && definition
4357 && dynsym
4358 && h->ref_regular)
4359 {
4360 int ret;
4361 const char *soname = elf_dt_name (abfd);
4362
4363 /* A symbol from a library loaded via DT_NEEDED of some
4364 other library is referenced by a regular object.
4365 Add a DT_NEEDED entry for it. Issue an error if
4366 --no-add-needed is used. */
4367 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4368 {
4369 (*_bfd_error_handler)
4370 (_("%s: invalid DSO for symbol `%s' definition"),
4371 abfd, name);
4372 bfd_set_error (bfd_error_bad_value);
4373 goto error_free_vers;
4374 }
4375
4376 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4377
4378 add_needed = TRUE;
4379 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4380 if (ret < 0)
4381 goto error_free_vers;
4382
4383 BFD_ASSERT (ret == 0);
4384 }
4385 }
4386 }
4387
4388 if (extversym != NULL)
4389 {
4390 free (extversym);
4391 extversym = NULL;
4392 }
4393
4394 if (isymbuf != NULL)
4395 {
4396 free (isymbuf);
4397 isymbuf = NULL;
4398 }
4399
4400 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4401 {
4402 unsigned int i;
4403
4404 /* Restore the symbol table. */
4405 if (bed->as_needed_cleanup)
4406 (*bed->as_needed_cleanup) (abfd, info);
4407 old_hash = (char *) old_tab + tabsize;
4408 old_ent = (char *) old_hash + hashsize;
4409 sym_hash = elf_sym_hashes (abfd);
4410 htab->root.table.table = old_table;
4411 htab->root.table.size = old_size;
4412 htab->root.table.count = old_count;
4413 memcpy (htab->root.table.table, old_tab, tabsize);
4414 memcpy (sym_hash, old_hash, hashsize);
4415 htab->root.undefs = old_undefs;
4416 htab->root.undefs_tail = old_undefs_tail;
4417 for (i = 0; i < htab->root.table.size; i++)
4418 {
4419 struct bfd_hash_entry *p;
4420 struct elf_link_hash_entry *h;
4421
4422 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4423 {
4424 h = (struct elf_link_hash_entry *) p;
4425 if (h->root.type == bfd_link_hash_warning)
4426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4427 if (h->dynindx >= old_dynsymcount)
4428 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4429
4430 memcpy (p, old_ent, htab->root.table.entsize);
4431 old_ent = (char *) old_ent + htab->root.table.entsize;
4432 h = (struct elf_link_hash_entry *) p;
4433 if (h->root.type == bfd_link_hash_warning)
4434 {
4435 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4436 old_ent = (char *) old_ent + htab->root.table.entsize;
4437 }
4438 }
4439 }
4440
4441 /* Make a special call to the linker "notice" function to
4442 tell it that symbols added for crefs may need to be removed. */
4443 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4444 notice_not_needed))
4445 goto error_free_vers;
4446
4447 free (old_tab);
4448 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4449 alloc_mark);
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 return TRUE;
4453 }
4454
4455 if (old_tab != NULL)
4456 {
4457 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4458 notice_needed))
4459 goto error_free_vers;
4460 free (old_tab);
4461 old_tab = NULL;
4462 }
4463
4464 /* Now that all the symbols from this input file are created, handle
4465 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4466 if (nondeflt_vers != NULL)
4467 {
4468 bfd_size_type cnt, symidx;
4469
4470 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4471 {
4472 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4473 char *shortname, *p;
4474
4475 p = strchr (h->root.root.string, ELF_VER_CHR);
4476 if (p == NULL
4477 || (h->root.type != bfd_link_hash_defined
4478 && h->root.type != bfd_link_hash_defweak))
4479 continue;
4480
4481 amt = p - h->root.root.string;
4482 shortname = bfd_malloc (amt + 1);
4483 if (!shortname)
4484 goto error_free_vers;
4485 memcpy (shortname, h->root.root.string, amt);
4486 shortname[amt] = '\0';
4487
4488 hi = (struct elf_link_hash_entry *)
4489 bfd_link_hash_lookup (&htab->root, shortname,
4490 FALSE, FALSE, FALSE);
4491 if (hi != NULL
4492 && hi->root.type == h->root.type
4493 && hi->root.u.def.value == h->root.u.def.value
4494 && hi->root.u.def.section == h->root.u.def.section)
4495 {
4496 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4497 hi->root.type = bfd_link_hash_indirect;
4498 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4499 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4500 sym_hash = elf_sym_hashes (abfd);
4501 if (sym_hash)
4502 for (symidx = 0; symidx < extsymcount; ++symidx)
4503 if (sym_hash[symidx] == hi)
4504 {
4505 sym_hash[symidx] = h;
4506 break;
4507 }
4508 }
4509 free (shortname);
4510 }
4511 free (nondeflt_vers);
4512 nondeflt_vers = NULL;
4513 }
4514
4515 /* Now set the weakdefs field correctly for all the weak defined
4516 symbols we found. The only way to do this is to search all the
4517 symbols. Since we only need the information for non functions in
4518 dynamic objects, that's the only time we actually put anything on
4519 the list WEAKS. We need this information so that if a regular
4520 object refers to a symbol defined weakly in a dynamic object, the
4521 real symbol in the dynamic object is also put in the dynamic
4522 symbols; we also must arrange for both symbols to point to the
4523 same memory location. We could handle the general case of symbol
4524 aliasing, but a general symbol alias can only be generated in
4525 assembler code, handling it correctly would be very time
4526 consuming, and other ELF linkers don't handle general aliasing
4527 either. */
4528 if (weaks != NULL)
4529 {
4530 struct elf_link_hash_entry **hpp;
4531 struct elf_link_hash_entry **hppend;
4532 struct elf_link_hash_entry **sorted_sym_hash;
4533 struct elf_link_hash_entry *h;
4534 size_t sym_count;
4535
4536 /* Since we have to search the whole symbol list for each weak
4537 defined symbol, search time for N weak defined symbols will be
4538 O(N^2). Binary search will cut it down to O(NlogN). */
4539 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4540 sorted_sym_hash = bfd_malloc (amt);
4541 if (sorted_sym_hash == NULL)
4542 goto error_return;
4543 sym_hash = sorted_sym_hash;
4544 hpp = elf_sym_hashes (abfd);
4545 hppend = hpp + extsymcount;
4546 sym_count = 0;
4547 for (; hpp < hppend; hpp++)
4548 {
4549 h = *hpp;
4550 if (h != NULL
4551 && h->root.type == bfd_link_hash_defined
4552 && !bed->is_function_type (h->type))
4553 {
4554 *sym_hash = h;
4555 sym_hash++;
4556 sym_count++;
4557 }
4558 }
4559
4560 qsort (sorted_sym_hash, sym_count,
4561 sizeof (struct elf_link_hash_entry *),
4562 elf_sort_symbol);
4563
4564 while (weaks != NULL)
4565 {
4566 struct elf_link_hash_entry *hlook;
4567 asection *slook;
4568 bfd_vma vlook;
4569 long ilook;
4570 size_t i, j, idx;
4571
4572 hlook = weaks;
4573 weaks = hlook->u.weakdef;
4574 hlook->u.weakdef = NULL;
4575
4576 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4577 || hlook->root.type == bfd_link_hash_defweak
4578 || hlook->root.type == bfd_link_hash_common
4579 || hlook->root.type == bfd_link_hash_indirect);
4580 slook = hlook->root.u.def.section;
4581 vlook = hlook->root.u.def.value;
4582
4583 ilook = -1;
4584 i = 0;
4585 j = sym_count;
4586 while (i < j)
4587 {
4588 bfd_signed_vma vdiff;
4589 idx = (i + j) / 2;
4590 h = sorted_sym_hash [idx];
4591 vdiff = vlook - h->root.u.def.value;
4592 if (vdiff < 0)
4593 j = idx;
4594 else if (vdiff > 0)
4595 i = idx + 1;
4596 else
4597 {
4598 long sdiff = slook->id - h->root.u.def.section->id;
4599 if (sdiff < 0)
4600 j = idx;
4601 else if (sdiff > 0)
4602 i = idx + 1;
4603 else
4604 {
4605 ilook = idx;
4606 break;
4607 }
4608 }
4609 }
4610
4611 /* We didn't find a value/section match. */
4612 if (ilook == -1)
4613 continue;
4614
4615 for (i = ilook; i < sym_count; i++)
4616 {
4617 h = sorted_sym_hash [i];
4618
4619 /* Stop if value or section doesn't match. */
4620 if (h->root.u.def.value != vlook
4621 || h->root.u.def.section != slook)
4622 break;
4623 else if (h != hlook)
4624 {
4625 hlook->u.weakdef = h;
4626
4627 /* If the weak definition is in the list of dynamic
4628 symbols, make sure the real definition is put
4629 there as well. */
4630 if (hlook->dynindx != -1 && h->dynindx == -1)
4631 {
4632 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4633 goto error_return;
4634 }
4635
4636 /* If the real definition is in the list of dynamic
4637 symbols, make sure the weak definition is put
4638 there as well. If we don't do this, then the
4639 dynamic loader might not merge the entries for the
4640 real definition and the weak definition. */
4641 if (h->dynindx != -1 && hlook->dynindx == -1)
4642 {
4643 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4644 goto error_return;
4645 }
4646 break;
4647 }
4648 }
4649 }
4650
4651 free (sorted_sym_hash);
4652 }
4653
4654 if (bed->check_directives)
4655 (*bed->check_directives) (abfd, info);
4656
4657 /* If this object is the same format as the output object, and it is
4658 not a shared library, then let the backend look through the
4659 relocs.
4660
4661 This is required to build global offset table entries and to
4662 arrange for dynamic relocs. It is not required for the
4663 particular common case of linking non PIC code, even when linking
4664 against shared libraries, but unfortunately there is no way of
4665 knowing whether an object file has been compiled PIC or not.
4666 Looking through the relocs is not particularly time consuming.
4667 The problem is that we must either (1) keep the relocs in memory,
4668 which causes the linker to require additional runtime memory or
4669 (2) read the relocs twice from the input file, which wastes time.
4670 This would be a good case for using mmap.
4671
4672 I have no idea how to handle linking PIC code into a file of a
4673 different format. It probably can't be done. */
4674 if (! dynamic
4675 && is_elf_hash_table (htab)
4676 && bed->check_relocs != NULL
4677 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4678 {
4679 asection *o;
4680
4681 for (o = abfd->sections; o != NULL; o = o->next)
4682 {
4683 Elf_Internal_Rela *internal_relocs;
4684 bfd_boolean ok;
4685
4686 if ((o->flags & SEC_RELOC) == 0
4687 || o->reloc_count == 0
4688 || ((info->strip == strip_all || info->strip == strip_debugger)
4689 && (o->flags & SEC_DEBUGGING) != 0)
4690 || bfd_is_abs_section (o->output_section))
4691 continue;
4692
4693 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4694 info->keep_memory);
4695 if (internal_relocs == NULL)
4696 goto error_return;
4697
4698 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4699
4700 if (elf_section_data (o)->relocs != internal_relocs)
4701 free (internal_relocs);
4702
4703 if (! ok)
4704 goto error_return;
4705 }
4706 }
4707
4708 /* If this is a non-traditional link, try to optimize the handling
4709 of the .stab/.stabstr sections. */
4710 if (! dynamic
4711 && ! info->traditional_format
4712 && is_elf_hash_table (htab)
4713 && (info->strip != strip_all && info->strip != strip_debugger))
4714 {
4715 asection *stabstr;
4716
4717 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4718 if (stabstr != NULL)
4719 {
4720 bfd_size_type string_offset = 0;
4721 asection *stab;
4722
4723 for (stab = abfd->sections; stab; stab = stab->next)
4724 if (CONST_STRNEQ (stab->name, ".stab")
4725 && (!stab->name[5] ||
4726 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4727 && (stab->flags & SEC_MERGE) == 0
4728 && !bfd_is_abs_section (stab->output_section))
4729 {
4730 struct bfd_elf_section_data *secdata;
4731
4732 secdata = elf_section_data (stab);
4733 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4734 stabstr, &secdata->sec_info,
4735 &string_offset))
4736 goto error_return;
4737 if (secdata->sec_info)
4738 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4739 }
4740 }
4741 }
4742
4743 if (is_elf_hash_table (htab) && add_needed)
4744 {
4745 /* Add this bfd to the loaded list. */
4746 struct elf_link_loaded_list *n;
4747
4748 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4749 if (n == NULL)
4750 goto error_return;
4751 n->abfd = abfd;
4752 n->next = htab->loaded;
4753 htab->loaded = n;
4754 }
4755
4756 return TRUE;
4757
4758 error_free_vers:
4759 if (old_tab != NULL)
4760 free (old_tab);
4761 if (nondeflt_vers != NULL)
4762 free (nondeflt_vers);
4763 if (extversym != NULL)
4764 free (extversym);
4765 error_free_sym:
4766 if (isymbuf != NULL)
4767 free (isymbuf);
4768 error_return:
4769 return FALSE;
4770 }
4771
4772 /* Return the linker hash table entry of a symbol that might be
4773 satisfied by an archive symbol. Return -1 on error. */
4774
4775 struct elf_link_hash_entry *
4776 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4777 struct bfd_link_info *info,
4778 const char *name)
4779 {
4780 struct elf_link_hash_entry *h;
4781 char *p, *copy;
4782 size_t len, first;
4783
4784 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4785 if (h != NULL)
4786 return h;
4787
4788 /* If this is a default version (the name contains @@), look up the
4789 symbol again with only one `@' as well as without the version.
4790 The effect is that references to the symbol with and without the
4791 version will be matched by the default symbol in the archive. */
4792
4793 p = strchr (name, ELF_VER_CHR);
4794 if (p == NULL || p[1] != ELF_VER_CHR)
4795 return h;
4796
4797 /* First check with only one `@'. */
4798 len = strlen (name);
4799 copy = bfd_alloc (abfd, len);
4800 if (copy == NULL)
4801 return (struct elf_link_hash_entry *) 0 - 1;
4802
4803 first = p - name + 1;
4804 memcpy (copy, name, first);
4805 memcpy (copy + first, name + first + 1, len - first);
4806
4807 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4808 if (h == NULL)
4809 {
4810 /* We also need to check references to the symbol without the
4811 version. */
4812 copy[first - 1] = '\0';
4813 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4814 FALSE, FALSE, FALSE);
4815 }
4816
4817 bfd_release (abfd, copy);
4818 return h;
4819 }
4820
4821 /* Add symbols from an ELF archive file to the linker hash table. We
4822 don't use _bfd_generic_link_add_archive_symbols because of a
4823 problem which arises on UnixWare. The UnixWare libc.so is an
4824 archive which includes an entry libc.so.1 which defines a bunch of
4825 symbols. The libc.so archive also includes a number of other
4826 object files, which also define symbols, some of which are the same
4827 as those defined in libc.so.1. Correct linking requires that we
4828 consider each object file in turn, and include it if it defines any
4829 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4830 this; it looks through the list of undefined symbols, and includes
4831 any object file which defines them. When this algorithm is used on
4832 UnixWare, it winds up pulling in libc.so.1 early and defining a
4833 bunch of symbols. This means that some of the other objects in the
4834 archive are not included in the link, which is incorrect since they
4835 precede libc.so.1 in the archive.
4836
4837 Fortunately, ELF archive handling is simpler than that done by
4838 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4839 oddities. In ELF, if we find a symbol in the archive map, and the
4840 symbol is currently undefined, we know that we must pull in that
4841 object file.
4842
4843 Unfortunately, we do have to make multiple passes over the symbol
4844 table until nothing further is resolved. */
4845
4846 static bfd_boolean
4847 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4848 {
4849 symindex c;
4850 bfd_boolean *defined = NULL;
4851 bfd_boolean *included = NULL;
4852 carsym *symdefs;
4853 bfd_boolean loop;
4854 bfd_size_type amt;
4855 const struct elf_backend_data *bed;
4856 struct elf_link_hash_entry * (*archive_symbol_lookup)
4857 (bfd *, struct bfd_link_info *, const char *);
4858
4859 if (! bfd_has_map (abfd))
4860 {
4861 /* An empty archive is a special case. */
4862 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4863 return TRUE;
4864 bfd_set_error (bfd_error_no_armap);
4865 return FALSE;
4866 }
4867
4868 /* Keep track of all symbols we know to be already defined, and all
4869 files we know to be already included. This is to speed up the
4870 second and subsequent passes. */
4871 c = bfd_ardata (abfd)->symdef_count;
4872 if (c == 0)
4873 return TRUE;
4874 amt = c;
4875 amt *= sizeof (bfd_boolean);
4876 defined = bfd_zmalloc (amt);
4877 included = bfd_zmalloc (amt);
4878 if (defined == NULL || included == NULL)
4879 goto error_return;
4880
4881 symdefs = bfd_ardata (abfd)->symdefs;
4882 bed = get_elf_backend_data (abfd);
4883 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4884
4885 do
4886 {
4887 file_ptr last;
4888 symindex i;
4889 carsym *symdef;
4890 carsym *symdefend;
4891
4892 loop = FALSE;
4893 last = -1;
4894
4895 symdef = symdefs;
4896 symdefend = symdef + c;
4897 for (i = 0; symdef < symdefend; symdef++, i++)
4898 {
4899 struct elf_link_hash_entry *h;
4900 bfd *element;
4901 struct bfd_link_hash_entry *undefs_tail;
4902 symindex mark;
4903
4904 if (defined[i] || included[i])
4905 continue;
4906 if (symdef->file_offset == last)
4907 {
4908 included[i] = TRUE;
4909 continue;
4910 }
4911
4912 h = archive_symbol_lookup (abfd, info, symdef->name);
4913 if (h == (struct elf_link_hash_entry *) 0 - 1)
4914 goto error_return;
4915
4916 if (h == NULL)
4917 continue;
4918
4919 if (h->root.type == bfd_link_hash_common)
4920 {
4921 /* We currently have a common symbol. The archive map contains
4922 a reference to this symbol, so we may want to include it. We
4923 only want to include it however, if this archive element
4924 contains a definition of the symbol, not just another common
4925 declaration of it.
4926
4927 Unfortunately some archivers (including GNU ar) will put
4928 declarations of common symbols into their archive maps, as
4929 well as real definitions, so we cannot just go by the archive
4930 map alone. Instead we must read in the element's symbol
4931 table and check that to see what kind of symbol definition
4932 this is. */
4933 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4934 continue;
4935 }
4936 else if (h->root.type != bfd_link_hash_undefined)
4937 {
4938 if (h->root.type != bfd_link_hash_undefweak)
4939 defined[i] = TRUE;
4940 continue;
4941 }
4942
4943 /* We need to include this archive member. */
4944 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4945 if (element == NULL)
4946 goto error_return;
4947
4948 if (! bfd_check_format (element, bfd_object))
4949 goto error_return;
4950
4951 /* Doublecheck that we have not included this object
4952 already--it should be impossible, but there may be
4953 something wrong with the archive. */
4954 if (element->archive_pass != 0)
4955 {
4956 bfd_set_error (bfd_error_bad_value);
4957 goto error_return;
4958 }
4959 element->archive_pass = 1;
4960
4961 undefs_tail = info->hash->undefs_tail;
4962
4963 if (! (*info->callbacks->add_archive_element) (info, element,
4964 symdef->name))
4965 goto error_return;
4966 if (! bfd_link_add_symbols (element, info))
4967 goto error_return;
4968
4969 /* If there are any new undefined symbols, we need to make
4970 another pass through the archive in order to see whether
4971 they can be defined. FIXME: This isn't perfect, because
4972 common symbols wind up on undefs_tail and because an
4973 undefined symbol which is defined later on in this pass
4974 does not require another pass. This isn't a bug, but it
4975 does make the code less efficient than it could be. */
4976 if (undefs_tail != info->hash->undefs_tail)
4977 loop = TRUE;
4978
4979 /* Look backward to mark all symbols from this object file
4980 which we have already seen in this pass. */
4981 mark = i;
4982 do
4983 {
4984 included[mark] = TRUE;
4985 if (mark == 0)
4986 break;
4987 --mark;
4988 }
4989 while (symdefs[mark].file_offset == symdef->file_offset);
4990
4991 /* We mark subsequent symbols from this object file as we go
4992 on through the loop. */
4993 last = symdef->file_offset;
4994 }
4995 }
4996 while (loop);
4997
4998 free (defined);
4999 free (included);
5000
5001 return TRUE;
5002
5003 error_return:
5004 if (defined != NULL)
5005 free (defined);
5006 if (included != NULL)
5007 free (included);
5008 return FALSE;
5009 }
5010
5011 /* Given an ELF BFD, add symbols to the global hash table as
5012 appropriate. */
5013
5014 bfd_boolean
5015 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5016 {
5017 switch (bfd_get_format (abfd))
5018 {
5019 case bfd_object:
5020 return elf_link_add_object_symbols (abfd, info);
5021 case bfd_archive:
5022 return elf_link_add_archive_symbols (abfd, info);
5023 default:
5024 bfd_set_error (bfd_error_wrong_format);
5025 return FALSE;
5026 }
5027 }
5028 \f
5029 struct hash_codes_info
5030 {
5031 unsigned long *hashcodes;
5032 bfd_boolean error;
5033 };
5034
5035 /* This function will be called though elf_link_hash_traverse to store
5036 all hash value of the exported symbols in an array. */
5037
5038 static bfd_boolean
5039 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5040 {
5041 struct hash_codes_info *inf = data;
5042 const char *name;
5043 char *p;
5044 unsigned long ha;
5045 char *alc = NULL;
5046
5047 if (h->root.type == bfd_link_hash_warning)
5048 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5049
5050 /* Ignore indirect symbols. These are added by the versioning code. */
5051 if (h->dynindx == -1)
5052 return TRUE;
5053
5054 name = h->root.root.string;
5055 p = strchr (name, ELF_VER_CHR);
5056 if (p != NULL)
5057 {
5058 alc = bfd_malloc (p - name + 1);
5059 if (alc == NULL)
5060 {
5061 inf->error = TRUE;
5062 return FALSE;
5063 }
5064 memcpy (alc, name, p - name);
5065 alc[p - name] = '\0';
5066 name = alc;
5067 }
5068
5069 /* Compute the hash value. */
5070 ha = bfd_elf_hash (name);
5071
5072 /* Store the found hash value in the array given as the argument. */
5073 *(inf->hashcodes)++ = ha;
5074
5075 /* And store it in the struct so that we can put it in the hash table
5076 later. */
5077 h->u.elf_hash_value = ha;
5078
5079 if (alc != NULL)
5080 free (alc);
5081
5082 return TRUE;
5083 }
5084
5085 struct collect_gnu_hash_codes
5086 {
5087 bfd *output_bfd;
5088 const struct elf_backend_data *bed;
5089 unsigned long int nsyms;
5090 unsigned long int maskbits;
5091 unsigned long int *hashcodes;
5092 unsigned long int *hashval;
5093 unsigned long int *indx;
5094 unsigned long int *counts;
5095 bfd_vma *bitmask;
5096 bfd_byte *contents;
5097 long int min_dynindx;
5098 unsigned long int bucketcount;
5099 unsigned long int symindx;
5100 long int local_indx;
5101 long int shift1, shift2;
5102 unsigned long int mask;
5103 bfd_boolean error;
5104 };
5105
5106 /* This function will be called though elf_link_hash_traverse to store
5107 all hash value of the exported symbols in an array. */
5108
5109 static bfd_boolean
5110 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5111 {
5112 struct collect_gnu_hash_codes *s = data;
5113 const char *name;
5114 char *p;
5115 unsigned long ha;
5116 char *alc = NULL;
5117
5118 if (h->root.type == bfd_link_hash_warning)
5119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5120
5121 /* Ignore indirect symbols. These are added by the versioning code. */
5122 if (h->dynindx == -1)
5123 return TRUE;
5124
5125 /* Ignore also local symbols and undefined symbols. */
5126 if (! (*s->bed->elf_hash_symbol) (h))
5127 return TRUE;
5128
5129 name = h->root.root.string;
5130 p = strchr (name, ELF_VER_CHR);
5131 if (p != NULL)
5132 {
5133 alc = bfd_malloc (p - name + 1);
5134 if (alc == NULL)
5135 {
5136 s->error = TRUE;
5137 return FALSE;
5138 }
5139 memcpy (alc, name, p - name);
5140 alc[p - name] = '\0';
5141 name = alc;
5142 }
5143
5144 /* Compute the hash value. */
5145 ha = bfd_elf_gnu_hash (name);
5146
5147 /* Store the found hash value in the array for compute_bucket_count,
5148 and also for .dynsym reordering purposes. */
5149 s->hashcodes[s->nsyms] = ha;
5150 s->hashval[h->dynindx] = ha;
5151 ++s->nsyms;
5152 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5153 s->min_dynindx = h->dynindx;
5154
5155 if (alc != NULL)
5156 free (alc);
5157
5158 return TRUE;
5159 }
5160
5161 /* This function will be called though elf_link_hash_traverse to do
5162 final dynaminc symbol renumbering. */
5163
5164 static bfd_boolean
5165 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5166 {
5167 struct collect_gnu_hash_codes *s = data;
5168 unsigned long int bucket;
5169 unsigned long int val;
5170
5171 if (h->root.type == bfd_link_hash_warning)
5172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5173
5174 /* Ignore indirect symbols. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5177
5178 /* Ignore also local symbols and undefined symbols. */
5179 if (! (*s->bed->elf_hash_symbol) (h))
5180 {
5181 if (h->dynindx >= s->min_dynindx)
5182 h->dynindx = s->local_indx++;
5183 return TRUE;
5184 }
5185
5186 bucket = s->hashval[h->dynindx] % s->bucketcount;
5187 val = (s->hashval[h->dynindx] >> s->shift1)
5188 & ((s->maskbits >> s->shift1) - 1);
5189 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5190 s->bitmask[val]
5191 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5192 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5193 if (s->counts[bucket] == 1)
5194 /* Last element terminates the chain. */
5195 val |= 1;
5196 bfd_put_32 (s->output_bfd, val,
5197 s->contents + (s->indx[bucket] - s->symindx) * 4);
5198 --s->counts[bucket];
5199 h->dynindx = s->indx[bucket]++;
5200 return TRUE;
5201 }
5202
5203 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5204
5205 bfd_boolean
5206 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5207 {
5208 return !(h->forced_local
5209 || h->root.type == bfd_link_hash_undefined
5210 || h->root.type == bfd_link_hash_undefweak
5211 || ((h->root.type == bfd_link_hash_defined
5212 || h->root.type == bfd_link_hash_defweak)
5213 && h->root.u.def.section->output_section == NULL));
5214 }
5215
5216 /* Array used to determine the number of hash table buckets to use
5217 based on the number of symbols there are. If there are fewer than
5218 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5219 fewer than 37 we use 17 buckets, and so forth. We never use more
5220 than 32771 buckets. */
5221
5222 static const size_t elf_buckets[] =
5223 {
5224 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5225 16411, 32771, 0
5226 };
5227
5228 /* Compute bucket count for hashing table. We do not use a static set
5229 of possible tables sizes anymore. Instead we determine for all
5230 possible reasonable sizes of the table the outcome (i.e., the
5231 number of collisions etc) and choose the best solution. The
5232 weighting functions are not too simple to allow the table to grow
5233 without bounds. Instead one of the weighting factors is the size.
5234 Therefore the result is always a good payoff between few collisions
5235 (= short chain lengths) and table size. */
5236 static size_t
5237 compute_bucket_count (struct bfd_link_info *info,
5238 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5239 unsigned long int nsyms,
5240 int gnu_hash)
5241 {
5242 size_t best_size = 0;
5243 unsigned long int i;
5244
5245 /* We have a problem here. The following code to optimize the table
5246 size requires an integer type with more the 32 bits. If
5247 BFD_HOST_U_64_BIT is set we know about such a type. */
5248 #ifdef BFD_HOST_U_64_BIT
5249 if (info->optimize)
5250 {
5251 size_t minsize;
5252 size_t maxsize;
5253 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5254 bfd *dynobj = elf_hash_table (info)->dynobj;
5255 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5256 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5257 unsigned long int *counts;
5258 bfd_size_type amt;
5259
5260 /* Possible optimization parameters: if we have NSYMS symbols we say
5261 that the hashing table must at least have NSYMS/4 and at most
5262 2*NSYMS buckets. */
5263 minsize = nsyms / 4;
5264 if (minsize == 0)
5265 minsize = 1;
5266 best_size = maxsize = nsyms * 2;
5267 if (gnu_hash)
5268 {
5269 if (minsize < 2)
5270 minsize = 2;
5271 if ((best_size & 31) == 0)
5272 ++best_size;
5273 }
5274
5275 /* Create array where we count the collisions in. We must use bfd_malloc
5276 since the size could be large. */
5277 amt = maxsize;
5278 amt *= sizeof (unsigned long int);
5279 counts = bfd_malloc (amt);
5280 if (counts == NULL)
5281 return 0;
5282
5283 /* Compute the "optimal" size for the hash table. The criteria is a
5284 minimal chain length. The minor criteria is (of course) the size
5285 of the table. */
5286 for (i = minsize; i < maxsize; ++i)
5287 {
5288 /* Walk through the array of hashcodes and count the collisions. */
5289 BFD_HOST_U_64_BIT max;
5290 unsigned long int j;
5291 unsigned long int fact;
5292
5293 if (gnu_hash && (i & 31) == 0)
5294 continue;
5295
5296 memset (counts, '\0', i * sizeof (unsigned long int));
5297
5298 /* Determine how often each hash bucket is used. */
5299 for (j = 0; j < nsyms; ++j)
5300 ++counts[hashcodes[j] % i];
5301
5302 /* For the weight function we need some information about the
5303 pagesize on the target. This is information need not be 100%
5304 accurate. Since this information is not available (so far) we
5305 define it here to a reasonable default value. If it is crucial
5306 to have a better value some day simply define this value. */
5307 # ifndef BFD_TARGET_PAGESIZE
5308 # define BFD_TARGET_PAGESIZE (4096)
5309 # endif
5310
5311 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5312 and the chains. */
5313 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5314
5315 # if 1
5316 /* Variant 1: optimize for short chains. We add the squares
5317 of all the chain lengths (which favors many small chain
5318 over a few long chains). */
5319 for (j = 0; j < i; ++j)
5320 max += counts[j] * counts[j];
5321
5322 /* This adds penalties for the overall size of the table. */
5323 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5324 max *= fact * fact;
5325 # else
5326 /* Variant 2: Optimize a lot more for small table. Here we
5327 also add squares of the size but we also add penalties for
5328 empty slots (the +1 term). */
5329 for (j = 0; j < i; ++j)
5330 max += (1 + counts[j]) * (1 + counts[j]);
5331
5332 /* The overall size of the table is considered, but not as
5333 strong as in variant 1, where it is squared. */
5334 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5335 max *= fact;
5336 # endif
5337
5338 /* Compare with current best results. */
5339 if (max < best_chlen)
5340 {
5341 best_chlen = max;
5342 best_size = i;
5343 }
5344 }
5345
5346 free (counts);
5347 }
5348 else
5349 #endif /* defined (BFD_HOST_U_64_BIT) */
5350 {
5351 /* This is the fallback solution if no 64bit type is available or if we
5352 are not supposed to spend much time on optimizations. We select the
5353 bucket count using a fixed set of numbers. */
5354 for (i = 0; elf_buckets[i] != 0; i++)
5355 {
5356 best_size = elf_buckets[i];
5357 if (nsyms < elf_buckets[i + 1])
5358 break;
5359 }
5360 if (gnu_hash && best_size < 2)
5361 best_size = 2;
5362 }
5363
5364 return best_size;
5365 }
5366
5367 /* Set up the sizes and contents of the ELF dynamic sections. This is
5368 called by the ELF linker emulation before_allocation routine. We
5369 must set the sizes of the sections before the linker sets the
5370 addresses of the various sections. */
5371
5372 bfd_boolean
5373 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5374 const char *soname,
5375 const char *rpath,
5376 const char *filter_shlib,
5377 const char * const *auxiliary_filters,
5378 struct bfd_link_info *info,
5379 asection **sinterpptr,
5380 struct bfd_elf_version_tree *verdefs)
5381 {
5382 bfd_size_type soname_indx;
5383 bfd *dynobj;
5384 const struct elf_backend_data *bed;
5385 struct elf_assign_sym_version_info asvinfo;
5386
5387 *sinterpptr = NULL;
5388
5389 soname_indx = (bfd_size_type) -1;
5390
5391 if (!is_elf_hash_table (info->hash))
5392 return TRUE;
5393
5394 bed = get_elf_backend_data (output_bfd);
5395 if (info->execstack)
5396 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5397 else if (info->noexecstack)
5398 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5399 else
5400 {
5401 bfd *inputobj;
5402 asection *notesec = NULL;
5403 int exec = 0;
5404
5405 for (inputobj = info->input_bfds;
5406 inputobj;
5407 inputobj = inputobj->link_next)
5408 {
5409 asection *s;
5410
5411 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5412 continue;
5413 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5414 if (s)
5415 {
5416 if (s->flags & SEC_CODE)
5417 exec = PF_X;
5418 notesec = s;
5419 }
5420 else if (bed->default_execstack)
5421 exec = PF_X;
5422 }
5423 if (notesec)
5424 {
5425 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5426 if (exec && info->relocatable
5427 && notesec->output_section != bfd_abs_section_ptr)
5428 notesec->output_section->flags |= SEC_CODE;
5429 }
5430 }
5431
5432 /* Any syms created from now on start with -1 in
5433 got.refcount/offset and plt.refcount/offset. */
5434 elf_hash_table (info)->init_got_refcount
5435 = elf_hash_table (info)->init_got_offset;
5436 elf_hash_table (info)->init_plt_refcount
5437 = elf_hash_table (info)->init_plt_offset;
5438
5439 /* The backend may have to create some sections regardless of whether
5440 we're dynamic or not. */
5441 if (bed->elf_backend_always_size_sections
5442 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5443 return FALSE;
5444
5445 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5446 return FALSE;
5447
5448 dynobj = elf_hash_table (info)->dynobj;
5449
5450 /* If there were no dynamic objects in the link, there is nothing to
5451 do here. */
5452 if (dynobj == NULL)
5453 return TRUE;
5454
5455 if (elf_hash_table (info)->dynamic_sections_created)
5456 {
5457 struct elf_info_failed eif;
5458 struct elf_link_hash_entry *h;
5459 asection *dynstr;
5460 struct bfd_elf_version_tree *t;
5461 struct bfd_elf_version_expr *d;
5462 asection *s;
5463 bfd_boolean all_defined;
5464
5465 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5466 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5467
5468 if (soname != NULL)
5469 {
5470 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5471 soname, TRUE);
5472 if (soname_indx == (bfd_size_type) -1
5473 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5474 return FALSE;
5475 }
5476
5477 if (info->symbolic)
5478 {
5479 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5480 return FALSE;
5481 info->flags |= DF_SYMBOLIC;
5482 }
5483
5484 if (rpath != NULL)
5485 {
5486 bfd_size_type indx;
5487
5488 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5489 TRUE);
5490 if (indx == (bfd_size_type) -1
5491 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5492 return FALSE;
5493
5494 if (info->new_dtags)
5495 {
5496 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5497 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5498 return FALSE;
5499 }
5500 }
5501
5502 if (filter_shlib != NULL)
5503 {
5504 bfd_size_type indx;
5505
5506 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5507 filter_shlib, TRUE);
5508 if (indx == (bfd_size_type) -1
5509 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5510 return FALSE;
5511 }
5512
5513 if (auxiliary_filters != NULL)
5514 {
5515 const char * const *p;
5516
5517 for (p = auxiliary_filters; *p != NULL; p++)
5518 {
5519 bfd_size_type indx;
5520
5521 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5522 *p, TRUE);
5523 if (indx == (bfd_size_type) -1
5524 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5525 return FALSE;
5526 }
5527 }
5528
5529 eif.info = info;
5530 eif.verdefs = verdefs;
5531 eif.failed = FALSE;
5532
5533 /* If we are supposed to export all symbols into the dynamic symbol
5534 table (this is not the normal case), then do so. */
5535 if (info->export_dynamic
5536 || (info->executable && info->dynamic))
5537 {
5538 elf_link_hash_traverse (elf_hash_table (info),
5539 _bfd_elf_export_symbol,
5540 &eif);
5541 if (eif.failed)
5542 return FALSE;
5543 }
5544
5545 /* Make all global versions with definition. */
5546 for (t = verdefs; t != NULL; t = t->next)
5547 for (d = t->globals.list; d != NULL; d = d->next)
5548 if (!d->symver && d->symbol)
5549 {
5550 const char *verstr, *name;
5551 size_t namelen, verlen, newlen;
5552 char *newname, *p;
5553 struct elf_link_hash_entry *newh;
5554
5555 name = d->symbol;
5556 namelen = strlen (name);
5557 verstr = t->name;
5558 verlen = strlen (verstr);
5559 newlen = namelen + verlen + 3;
5560
5561 newname = bfd_malloc (newlen);
5562 if (newname == NULL)
5563 return FALSE;
5564 memcpy (newname, name, namelen);
5565
5566 /* Check the hidden versioned definition. */
5567 p = newname + namelen;
5568 *p++ = ELF_VER_CHR;
5569 memcpy (p, verstr, verlen + 1);
5570 newh = elf_link_hash_lookup (elf_hash_table (info),
5571 newname, FALSE, FALSE,
5572 FALSE);
5573 if (newh == NULL
5574 || (newh->root.type != bfd_link_hash_defined
5575 && newh->root.type != bfd_link_hash_defweak))
5576 {
5577 /* Check the default versioned definition. */
5578 *p++ = ELF_VER_CHR;
5579 memcpy (p, verstr, verlen + 1);
5580 newh = elf_link_hash_lookup (elf_hash_table (info),
5581 newname, FALSE, FALSE,
5582 FALSE);
5583 }
5584 free (newname);
5585
5586 /* Mark this version if there is a definition and it is
5587 not defined in a shared object. */
5588 if (newh != NULL
5589 && !newh->def_dynamic
5590 && (newh->root.type == bfd_link_hash_defined
5591 || newh->root.type == bfd_link_hash_defweak))
5592 d->symver = 1;
5593 }
5594
5595 /* Attach all the symbols to their version information. */
5596 asvinfo.output_bfd = output_bfd;
5597 asvinfo.info = info;
5598 asvinfo.verdefs = verdefs;
5599 asvinfo.failed = FALSE;
5600
5601 elf_link_hash_traverse (elf_hash_table (info),
5602 _bfd_elf_link_assign_sym_version,
5603 &asvinfo);
5604 if (asvinfo.failed)
5605 return FALSE;
5606
5607 if (!info->allow_undefined_version)
5608 {
5609 /* Check if all global versions have a definition. */
5610 all_defined = TRUE;
5611 for (t = verdefs; t != NULL; t = t->next)
5612 for (d = t->globals.list; d != NULL; d = d->next)
5613 if (!d->symver && !d->script)
5614 {
5615 (*_bfd_error_handler)
5616 (_("%s: undefined version: %s"),
5617 d->pattern, t->name);
5618 all_defined = FALSE;
5619 }
5620
5621 if (!all_defined)
5622 {
5623 bfd_set_error (bfd_error_bad_value);
5624 return FALSE;
5625 }
5626 }
5627
5628 /* Find all symbols which were defined in a dynamic object and make
5629 the backend pick a reasonable value for them. */
5630 elf_link_hash_traverse (elf_hash_table (info),
5631 _bfd_elf_adjust_dynamic_symbol,
5632 &eif);
5633 if (eif.failed)
5634 return FALSE;
5635
5636 /* Add some entries to the .dynamic section. We fill in some of the
5637 values later, in bfd_elf_final_link, but we must add the entries
5638 now so that we know the final size of the .dynamic section. */
5639
5640 /* If there are initialization and/or finalization functions to
5641 call then add the corresponding DT_INIT/DT_FINI entries. */
5642 h = (info->init_function
5643 ? elf_link_hash_lookup (elf_hash_table (info),
5644 info->init_function, FALSE,
5645 FALSE, FALSE)
5646 : NULL);
5647 if (h != NULL
5648 && (h->ref_regular
5649 || h->def_regular))
5650 {
5651 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5652 return FALSE;
5653 }
5654 h = (info->fini_function
5655 ? elf_link_hash_lookup (elf_hash_table (info),
5656 info->fini_function, FALSE,
5657 FALSE, FALSE)
5658 : NULL);
5659 if (h != NULL
5660 && (h->ref_regular
5661 || h->def_regular))
5662 {
5663 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5664 return FALSE;
5665 }
5666
5667 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5668 if (s != NULL && s->linker_has_input)
5669 {
5670 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5671 if (! info->executable)
5672 {
5673 bfd *sub;
5674 asection *o;
5675
5676 for (sub = info->input_bfds; sub != NULL;
5677 sub = sub->link_next)
5678 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5679 for (o = sub->sections; o != NULL; o = o->next)
5680 if (elf_section_data (o)->this_hdr.sh_type
5681 == SHT_PREINIT_ARRAY)
5682 {
5683 (*_bfd_error_handler)
5684 (_("%B: .preinit_array section is not allowed in DSO"),
5685 sub);
5686 break;
5687 }
5688
5689 bfd_set_error (bfd_error_nonrepresentable_section);
5690 return FALSE;
5691 }
5692
5693 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5694 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5695 return FALSE;
5696 }
5697 s = bfd_get_section_by_name (output_bfd, ".init_array");
5698 if (s != NULL && s->linker_has_input)
5699 {
5700 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5701 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5702 return FALSE;
5703 }
5704 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5705 if (s != NULL && s->linker_has_input)
5706 {
5707 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5708 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5709 return FALSE;
5710 }
5711
5712 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5713 /* If .dynstr is excluded from the link, we don't want any of
5714 these tags. Strictly, we should be checking each section
5715 individually; This quick check covers for the case where
5716 someone does a /DISCARD/ : { *(*) }. */
5717 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5718 {
5719 bfd_size_type strsize;
5720
5721 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5722 if ((info->emit_hash
5723 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5724 || (info->emit_gnu_hash
5725 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5726 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5727 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5728 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5729 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5730 bed->s->sizeof_sym))
5731 return FALSE;
5732 }
5733 }
5734
5735 /* The backend must work out the sizes of all the other dynamic
5736 sections. */
5737 if (bed->elf_backend_size_dynamic_sections
5738 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5739 return FALSE;
5740
5741 if (elf_hash_table (info)->dynamic_sections_created)
5742 {
5743 unsigned long section_sym_count;
5744 asection *s;
5745
5746 /* Set up the version definition section. */
5747 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5748 BFD_ASSERT (s != NULL);
5749
5750 /* We may have created additional version definitions if we are
5751 just linking a regular application. */
5752 verdefs = asvinfo.verdefs;
5753
5754 /* Skip anonymous version tag. */
5755 if (verdefs != NULL && verdefs->vernum == 0)
5756 verdefs = verdefs->next;
5757
5758 if (verdefs == NULL && !info->create_default_symver)
5759 s->flags |= SEC_EXCLUDE;
5760 else
5761 {
5762 unsigned int cdefs;
5763 bfd_size_type size;
5764 struct bfd_elf_version_tree *t;
5765 bfd_byte *p;
5766 Elf_Internal_Verdef def;
5767 Elf_Internal_Verdaux defaux;
5768 struct bfd_link_hash_entry *bh;
5769 struct elf_link_hash_entry *h;
5770 const char *name;
5771
5772 cdefs = 0;
5773 size = 0;
5774
5775 /* Make space for the base version. */
5776 size += sizeof (Elf_External_Verdef);
5777 size += sizeof (Elf_External_Verdaux);
5778 ++cdefs;
5779
5780 /* Make space for the default version. */
5781 if (info->create_default_symver)
5782 {
5783 size += sizeof (Elf_External_Verdef);
5784 ++cdefs;
5785 }
5786
5787 for (t = verdefs; t != NULL; t = t->next)
5788 {
5789 struct bfd_elf_version_deps *n;
5790
5791 size += sizeof (Elf_External_Verdef);
5792 size += sizeof (Elf_External_Verdaux);
5793 ++cdefs;
5794
5795 for (n = t->deps; n != NULL; n = n->next)
5796 size += sizeof (Elf_External_Verdaux);
5797 }
5798
5799 s->size = size;
5800 s->contents = bfd_alloc (output_bfd, s->size);
5801 if (s->contents == NULL && s->size != 0)
5802 return FALSE;
5803
5804 /* Fill in the version definition section. */
5805
5806 p = s->contents;
5807
5808 def.vd_version = VER_DEF_CURRENT;
5809 def.vd_flags = VER_FLG_BASE;
5810 def.vd_ndx = 1;
5811 def.vd_cnt = 1;
5812 if (info->create_default_symver)
5813 {
5814 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5815 def.vd_next = sizeof (Elf_External_Verdef);
5816 }
5817 else
5818 {
5819 def.vd_aux = sizeof (Elf_External_Verdef);
5820 def.vd_next = (sizeof (Elf_External_Verdef)
5821 + sizeof (Elf_External_Verdaux));
5822 }
5823
5824 if (soname_indx != (bfd_size_type) -1)
5825 {
5826 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5827 soname_indx);
5828 def.vd_hash = bfd_elf_hash (soname);
5829 defaux.vda_name = soname_indx;
5830 name = soname;
5831 }
5832 else
5833 {
5834 bfd_size_type indx;
5835
5836 name = lbasename (output_bfd->filename);
5837 def.vd_hash = bfd_elf_hash (name);
5838 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5839 name, FALSE);
5840 if (indx == (bfd_size_type) -1)
5841 return FALSE;
5842 defaux.vda_name = indx;
5843 }
5844 defaux.vda_next = 0;
5845
5846 _bfd_elf_swap_verdef_out (output_bfd, &def,
5847 (Elf_External_Verdef *) p);
5848 p += sizeof (Elf_External_Verdef);
5849 if (info->create_default_symver)
5850 {
5851 /* Add a symbol representing this version. */
5852 bh = NULL;
5853 if (! (_bfd_generic_link_add_one_symbol
5854 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5855 0, NULL, FALSE,
5856 get_elf_backend_data (dynobj)->collect, &bh)))
5857 return FALSE;
5858 h = (struct elf_link_hash_entry *) bh;
5859 h->non_elf = 0;
5860 h->def_regular = 1;
5861 h->type = STT_OBJECT;
5862 h->verinfo.vertree = NULL;
5863
5864 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5865 return FALSE;
5866
5867 /* Create a duplicate of the base version with the same
5868 aux block, but different flags. */
5869 def.vd_flags = 0;
5870 def.vd_ndx = 2;
5871 def.vd_aux = sizeof (Elf_External_Verdef);
5872 if (verdefs)
5873 def.vd_next = (sizeof (Elf_External_Verdef)
5874 + sizeof (Elf_External_Verdaux));
5875 else
5876 def.vd_next = 0;
5877 _bfd_elf_swap_verdef_out (output_bfd, &def,
5878 (Elf_External_Verdef *) p);
5879 p += sizeof (Elf_External_Verdef);
5880 }
5881 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5882 (Elf_External_Verdaux *) p);
5883 p += sizeof (Elf_External_Verdaux);
5884
5885 for (t = verdefs; t != NULL; t = t->next)
5886 {
5887 unsigned int cdeps;
5888 struct bfd_elf_version_deps *n;
5889
5890 cdeps = 0;
5891 for (n = t->deps; n != NULL; n = n->next)
5892 ++cdeps;
5893
5894 /* Add a symbol representing this version. */
5895 bh = NULL;
5896 if (! (_bfd_generic_link_add_one_symbol
5897 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5898 0, NULL, FALSE,
5899 get_elf_backend_data (dynobj)->collect, &bh)))
5900 return FALSE;
5901 h = (struct elf_link_hash_entry *) bh;
5902 h->non_elf = 0;
5903 h->def_regular = 1;
5904 h->type = STT_OBJECT;
5905 h->verinfo.vertree = t;
5906
5907 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5908 return FALSE;
5909
5910 def.vd_version = VER_DEF_CURRENT;
5911 def.vd_flags = 0;
5912 if (t->globals.list == NULL
5913 && t->locals.list == NULL
5914 && ! t->used)
5915 def.vd_flags |= VER_FLG_WEAK;
5916 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5917 def.vd_cnt = cdeps + 1;
5918 def.vd_hash = bfd_elf_hash (t->name);
5919 def.vd_aux = sizeof (Elf_External_Verdef);
5920 def.vd_next = 0;
5921 if (t->next != NULL)
5922 def.vd_next = (sizeof (Elf_External_Verdef)
5923 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5924
5925 _bfd_elf_swap_verdef_out (output_bfd, &def,
5926 (Elf_External_Verdef *) p);
5927 p += sizeof (Elf_External_Verdef);
5928
5929 defaux.vda_name = h->dynstr_index;
5930 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5931 h->dynstr_index);
5932 defaux.vda_next = 0;
5933 if (t->deps != NULL)
5934 defaux.vda_next = sizeof (Elf_External_Verdaux);
5935 t->name_indx = defaux.vda_name;
5936
5937 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5938 (Elf_External_Verdaux *) p);
5939 p += sizeof (Elf_External_Verdaux);
5940
5941 for (n = t->deps; n != NULL; n = n->next)
5942 {
5943 if (n->version_needed == NULL)
5944 {
5945 /* This can happen if there was an error in the
5946 version script. */
5947 defaux.vda_name = 0;
5948 }
5949 else
5950 {
5951 defaux.vda_name = n->version_needed->name_indx;
5952 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5953 defaux.vda_name);
5954 }
5955 if (n->next == NULL)
5956 defaux.vda_next = 0;
5957 else
5958 defaux.vda_next = sizeof (Elf_External_Verdaux);
5959
5960 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5961 (Elf_External_Verdaux *) p);
5962 p += sizeof (Elf_External_Verdaux);
5963 }
5964 }
5965
5966 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5967 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5968 return FALSE;
5969
5970 elf_tdata (output_bfd)->cverdefs = cdefs;
5971 }
5972
5973 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5974 {
5975 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5976 return FALSE;
5977 }
5978 else if (info->flags & DF_BIND_NOW)
5979 {
5980 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5981 return FALSE;
5982 }
5983
5984 if (info->flags_1)
5985 {
5986 if (info->executable)
5987 info->flags_1 &= ~ (DF_1_INITFIRST
5988 | DF_1_NODELETE
5989 | DF_1_NOOPEN);
5990 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5991 return FALSE;
5992 }
5993
5994 /* Work out the size of the version reference section. */
5995
5996 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5997 BFD_ASSERT (s != NULL);
5998 {
5999 struct elf_find_verdep_info sinfo;
6000
6001 sinfo.output_bfd = output_bfd;
6002 sinfo.info = info;
6003 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6004 if (sinfo.vers == 0)
6005 sinfo.vers = 1;
6006 sinfo.failed = FALSE;
6007
6008 elf_link_hash_traverse (elf_hash_table (info),
6009 _bfd_elf_link_find_version_dependencies,
6010 &sinfo);
6011 if (sinfo.failed)
6012 return FALSE;
6013
6014 if (elf_tdata (output_bfd)->verref == NULL)
6015 s->flags |= SEC_EXCLUDE;
6016 else
6017 {
6018 Elf_Internal_Verneed *t;
6019 unsigned int size;
6020 unsigned int crefs;
6021 bfd_byte *p;
6022
6023 /* Build the version definition section. */
6024 size = 0;
6025 crefs = 0;
6026 for (t = elf_tdata (output_bfd)->verref;
6027 t != NULL;
6028 t = t->vn_nextref)
6029 {
6030 Elf_Internal_Vernaux *a;
6031
6032 size += sizeof (Elf_External_Verneed);
6033 ++crefs;
6034 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6035 size += sizeof (Elf_External_Vernaux);
6036 }
6037
6038 s->size = size;
6039 s->contents = bfd_alloc (output_bfd, s->size);
6040 if (s->contents == NULL)
6041 return FALSE;
6042
6043 p = s->contents;
6044 for (t = elf_tdata (output_bfd)->verref;
6045 t != NULL;
6046 t = t->vn_nextref)
6047 {
6048 unsigned int caux;
6049 Elf_Internal_Vernaux *a;
6050 bfd_size_type indx;
6051
6052 caux = 0;
6053 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6054 ++caux;
6055
6056 t->vn_version = VER_NEED_CURRENT;
6057 t->vn_cnt = caux;
6058 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6059 elf_dt_name (t->vn_bfd) != NULL
6060 ? elf_dt_name (t->vn_bfd)
6061 : lbasename (t->vn_bfd->filename),
6062 FALSE);
6063 if (indx == (bfd_size_type) -1)
6064 return FALSE;
6065 t->vn_file = indx;
6066 t->vn_aux = sizeof (Elf_External_Verneed);
6067 if (t->vn_nextref == NULL)
6068 t->vn_next = 0;
6069 else
6070 t->vn_next = (sizeof (Elf_External_Verneed)
6071 + caux * sizeof (Elf_External_Vernaux));
6072
6073 _bfd_elf_swap_verneed_out (output_bfd, t,
6074 (Elf_External_Verneed *) p);
6075 p += sizeof (Elf_External_Verneed);
6076
6077 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6078 {
6079 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6080 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6081 a->vna_nodename, FALSE);
6082 if (indx == (bfd_size_type) -1)
6083 return FALSE;
6084 a->vna_name = indx;
6085 if (a->vna_nextptr == NULL)
6086 a->vna_next = 0;
6087 else
6088 a->vna_next = sizeof (Elf_External_Vernaux);
6089
6090 _bfd_elf_swap_vernaux_out (output_bfd, a,
6091 (Elf_External_Vernaux *) p);
6092 p += sizeof (Elf_External_Vernaux);
6093 }
6094 }
6095
6096 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6097 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6098 return FALSE;
6099
6100 elf_tdata (output_bfd)->cverrefs = crefs;
6101 }
6102 }
6103
6104 if ((elf_tdata (output_bfd)->cverrefs == 0
6105 && elf_tdata (output_bfd)->cverdefs == 0)
6106 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6107 &section_sym_count) == 0)
6108 {
6109 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6110 s->flags |= SEC_EXCLUDE;
6111 }
6112 }
6113 return TRUE;
6114 }
6115
6116 /* Find the first non-excluded output section. We'll use its
6117 section symbol for some emitted relocs. */
6118 void
6119 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6120 {
6121 asection *s;
6122
6123 for (s = output_bfd->sections; s != NULL; s = s->next)
6124 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6125 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6126 {
6127 elf_hash_table (info)->text_index_section = s;
6128 break;
6129 }
6130 }
6131
6132 /* Find two non-excluded output sections, one for code, one for data.
6133 We'll use their section symbols for some emitted relocs. */
6134 void
6135 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6136 {
6137 asection *s;
6138
6139 for (s = output_bfd->sections; s != NULL; s = s->next)
6140 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6141 == (SEC_ALLOC | SEC_READONLY))
6142 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6143 {
6144 elf_hash_table (info)->text_index_section = s;
6145 break;
6146 }
6147
6148 for (s = output_bfd->sections; s != NULL; s = s->next)
6149 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6150 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6151 {
6152 elf_hash_table (info)->data_index_section = s;
6153 break;
6154 }
6155
6156 if (elf_hash_table (info)->text_index_section == NULL)
6157 elf_hash_table (info)->text_index_section
6158 = elf_hash_table (info)->data_index_section;
6159 }
6160
6161 bfd_boolean
6162 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6163 {
6164 const struct elf_backend_data *bed;
6165
6166 if (!is_elf_hash_table (info->hash))
6167 return TRUE;
6168
6169 bed = get_elf_backend_data (output_bfd);
6170 (*bed->elf_backend_init_index_section) (output_bfd, info);
6171
6172 if (elf_hash_table (info)->dynamic_sections_created)
6173 {
6174 bfd *dynobj;
6175 asection *s;
6176 bfd_size_type dynsymcount;
6177 unsigned long section_sym_count;
6178 unsigned int dtagcount;
6179
6180 dynobj = elf_hash_table (info)->dynobj;
6181
6182 /* Assign dynsym indicies. In a shared library we generate a
6183 section symbol for each output section, which come first.
6184 Next come all of the back-end allocated local dynamic syms,
6185 followed by the rest of the global symbols. */
6186
6187 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6188 &section_sym_count);
6189
6190 /* Work out the size of the symbol version section. */
6191 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6192 BFD_ASSERT (s != NULL);
6193 if (dynsymcount != 0
6194 && (s->flags & SEC_EXCLUDE) == 0)
6195 {
6196 s->size = dynsymcount * sizeof (Elf_External_Versym);
6197 s->contents = bfd_zalloc (output_bfd, s->size);
6198 if (s->contents == NULL)
6199 return FALSE;
6200
6201 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6202 return FALSE;
6203 }
6204
6205 /* Set the size of the .dynsym and .hash sections. We counted
6206 the number of dynamic symbols in elf_link_add_object_symbols.
6207 We will build the contents of .dynsym and .hash when we build
6208 the final symbol table, because until then we do not know the
6209 correct value to give the symbols. We built the .dynstr
6210 section as we went along in elf_link_add_object_symbols. */
6211 s = bfd_get_section_by_name (dynobj, ".dynsym");
6212 BFD_ASSERT (s != NULL);
6213 s->size = dynsymcount * bed->s->sizeof_sym;
6214
6215 if (dynsymcount != 0)
6216 {
6217 s->contents = bfd_alloc (output_bfd, s->size);
6218 if (s->contents == NULL)
6219 return FALSE;
6220
6221 /* The first entry in .dynsym is a dummy symbol.
6222 Clear all the section syms, in case we don't output them all. */
6223 ++section_sym_count;
6224 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6225 }
6226
6227 elf_hash_table (info)->bucketcount = 0;
6228
6229 /* Compute the size of the hashing table. As a side effect this
6230 computes the hash values for all the names we export. */
6231 if (info->emit_hash)
6232 {
6233 unsigned long int *hashcodes;
6234 struct hash_codes_info hashinf;
6235 bfd_size_type amt;
6236 unsigned long int nsyms;
6237 size_t bucketcount;
6238 size_t hash_entry_size;
6239
6240 /* Compute the hash values for all exported symbols. At the same
6241 time store the values in an array so that we could use them for
6242 optimizations. */
6243 amt = dynsymcount * sizeof (unsigned long int);
6244 hashcodes = bfd_malloc (amt);
6245 if (hashcodes == NULL)
6246 return FALSE;
6247 hashinf.hashcodes = hashcodes;
6248 hashinf.error = FALSE;
6249
6250 /* Put all hash values in HASHCODES. */
6251 elf_link_hash_traverse (elf_hash_table (info),
6252 elf_collect_hash_codes, &hashinf);
6253 if (hashinf.error)
6254 return FALSE;
6255
6256 nsyms = hashinf.hashcodes - hashcodes;
6257 bucketcount
6258 = compute_bucket_count (info, hashcodes, nsyms, 0);
6259 free (hashcodes);
6260
6261 if (bucketcount == 0)
6262 return FALSE;
6263
6264 elf_hash_table (info)->bucketcount = bucketcount;
6265
6266 s = bfd_get_section_by_name (dynobj, ".hash");
6267 BFD_ASSERT (s != NULL);
6268 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6269 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6270 s->contents = bfd_zalloc (output_bfd, s->size);
6271 if (s->contents == NULL)
6272 return FALSE;
6273
6274 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6275 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6276 s->contents + hash_entry_size);
6277 }
6278
6279 if (info->emit_gnu_hash)
6280 {
6281 size_t i, cnt;
6282 unsigned char *contents;
6283 struct collect_gnu_hash_codes cinfo;
6284 bfd_size_type amt;
6285 size_t bucketcount;
6286
6287 memset (&cinfo, 0, sizeof (cinfo));
6288
6289 /* Compute the hash values for all exported symbols. At the same
6290 time store the values in an array so that we could use them for
6291 optimizations. */
6292 amt = dynsymcount * 2 * sizeof (unsigned long int);
6293 cinfo.hashcodes = bfd_malloc (amt);
6294 if (cinfo.hashcodes == NULL)
6295 return FALSE;
6296
6297 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6298 cinfo.min_dynindx = -1;
6299 cinfo.output_bfd = output_bfd;
6300 cinfo.bed = bed;
6301
6302 /* Put all hash values in HASHCODES. */
6303 elf_link_hash_traverse (elf_hash_table (info),
6304 elf_collect_gnu_hash_codes, &cinfo);
6305 if (cinfo.error)
6306 return FALSE;
6307
6308 bucketcount
6309 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6310
6311 if (bucketcount == 0)
6312 {
6313 free (cinfo.hashcodes);
6314 return FALSE;
6315 }
6316
6317 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6318 BFD_ASSERT (s != NULL);
6319
6320 if (cinfo.nsyms == 0)
6321 {
6322 /* Empty .gnu.hash section is special. */
6323 BFD_ASSERT (cinfo.min_dynindx == -1);
6324 free (cinfo.hashcodes);
6325 s->size = 5 * 4 + bed->s->arch_size / 8;
6326 contents = bfd_zalloc (output_bfd, s->size);
6327 if (contents == NULL)
6328 return FALSE;
6329 s->contents = contents;
6330 /* 1 empty bucket. */
6331 bfd_put_32 (output_bfd, 1, contents);
6332 /* SYMIDX above the special symbol 0. */
6333 bfd_put_32 (output_bfd, 1, contents + 4);
6334 /* Just one word for bitmask. */
6335 bfd_put_32 (output_bfd, 1, contents + 8);
6336 /* Only hash fn bloom filter. */
6337 bfd_put_32 (output_bfd, 0, contents + 12);
6338 /* No hashes are valid - empty bitmask. */
6339 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6340 /* No hashes in the only bucket. */
6341 bfd_put_32 (output_bfd, 0,
6342 contents + 16 + bed->s->arch_size / 8);
6343 }
6344 else
6345 {
6346 unsigned long int maskwords, maskbitslog2;
6347 BFD_ASSERT (cinfo.min_dynindx != -1);
6348
6349 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6350 if (maskbitslog2 < 3)
6351 maskbitslog2 = 5;
6352 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6353 maskbitslog2 = maskbitslog2 + 3;
6354 else
6355 maskbitslog2 = maskbitslog2 + 2;
6356 if (bed->s->arch_size == 64)
6357 {
6358 if (maskbitslog2 == 5)
6359 maskbitslog2 = 6;
6360 cinfo.shift1 = 6;
6361 }
6362 else
6363 cinfo.shift1 = 5;
6364 cinfo.mask = (1 << cinfo.shift1) - 1;
6365 cinfo.shift2 = maskbitslog2;
6366 cinfo.maskbits = 1 << maskbitslog2;
6367 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6368 amt = bucketcount * sizeof (unsigned long int) * 2;
6369 amt += maskwords * sizeof (bfd_vma);
6370 cinfo.bitmask = bfd_malloc (amt);
6371 if (cinfo.bitmask == NULL)
6372 {
6373 free (cinfo.hashcodes);
6374 return FALSE;
6375 }
6376
6377 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6378 cinfo.indx = cinfo.counts + bucketcount;
6379 cinfo.symindx = dynsymcount - cinfo.nsyms;
6380 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6381
6382 /* Determine how often each hash bucket is used. */
6383 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6384 for (i = 0; i < cinfo.nsyms; ++i)
6385 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6386
6387 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6388 if (cinfo.counts[i] != 0)
6389 {
6390 cinfo.indx[i] = cnt;
6391 cnt += cinfo.counts[i];
6392 }
6393 BFD_ASSERT (cnt == dynsymcount);
6394 cinfo.bucketcount = bucketcount;
6395 cinfo.local_indx = cinfo.min_dynindx;
6396
6397 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6398 s->size += cinfo.maskbits / 8;
6399 contents = bfd_zalloc (output_bfd, s->size);
6400 if (contents == NULL)
6401 {
6402 free (cinfo.bitmask);
6403 free (cinfo.hashcodes);
6404 return FALSE;
6405 }
6406
6407 s->contents = contents;
6408 bfd_put_32 (output_bfd, bucketcount, contents);
6409 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6410 bfd_put_32 (output_bfd, maskwords, contents + 8);
6411 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6412 contents += 16 + cinfo.maskbits / 8;
6413
6414 for (i = 0; i < bucketcount; ++i)
6415 {
6416 if (cinfo.counts[i] == 0)
6417 bfd_put_32 (output_bfd, 0, contents);
6418 else
6419 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6420 contents += 4;
6421 }
6422
6423 cinfo.contents = contents;
6424
6425 /* Renumber dynamic symbols, populate .gnu.hash section. */
6426 elf_link_hash_traverse (elf_hash_table (info),
6427 elf_renumber_gnu_hash_syms, &cinfo);
6428
6429 contents = s->contents + 16;
6430 for (i = 0; i < maskwords; ++i)
6431 {
6432 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6433 contents);
6434 contents += bed->s->arch_size / 8;
6435 }
6436
6437 free (cinfo.bitmask);
6438 free (cinfo.hashcodes);
6439 }
6440 }
6441
6442 s = bfd_get_section_by_name (dynobj, ".dynstr");
6443 BFD_ASSERT (s != NULL);
6444
6445 elf_finalize_dynstr (output_bfd, info);
6446
6447 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6448
6449 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6450 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6451 return FALSE;
6452 }
6453
6454 return TRUE;
6455 }
6456 \f
6457 /* Indicate that we are only retrieving symbol values from this
6458 section. */
6459
6460 void
6461 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6462 {
6463 if (is_elf_hash_table (info->hash))
6464 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6465 _bfd_generic_link_just_syms (sec, info);
6466 }
6467
6468 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6469
6470 static void
6471 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6472 asection *sec)
6473 {
6474 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6475 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6476 }
6477
6478 /* Finish SHF_MERGE section merging. */
6479
6480 bfd_boolean
6481 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6482 {
6483 bfd *ibfd;
6484 asection *sec;
6485
6486 if (!is_elf_hash_table (info->hash))
6487 return FALSE;
6488
6489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6490 if ((ibfd->flags & DYNAMIC) == 0)
6491 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6492 if ((sec->flags & SEC_MERGE) != 0
6493 && !bfd_is_abs_section (sec->output_section))
6494 {
6495 struct bfd_elf_section_data *secdata;
6496
6497 secdata = elf_section_data (sec);
6498 if (! _bfd_add_merge_section (abfd,
6499 &elf_hash_table (info)->merge_info,
6500 sec, &secdata->sec_info))
6501 return FALSE;
6502 else if (secdata->sec_info)
6503 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6504 }
6505
6506 if (elf_hash_table (info)->merge_info != NULL)
6507 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6508 merge_sections_remove_hook);
6509 return TRUE;
6510 }
6511
6512 /* Create an entry in an ELF linker hash table. */
6513
6514 struct bfd_hash_entry *
6515 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6516 struct bfd_hash_table *table,
6517 const char *string)
6518 {
6519 /* Allocate the structure if it has not already been allocated by a
6520 subclass. */
6521 if (entry == NULL)
6522 {
6523 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6524 if (entry == NULL)
6525 return entry;
6526 }
6527
6528 /* Call the allocation method of the superclass. */
6529 entry = _bfd_link_hash_newfunc (entry, table, string);
6530 if (entry != NULL)
6531 {
6532 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6533 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6534
6535 /* Set local fields. */
6536 ret->indx = -1;
6537 ret->dynindx = -1;
6538 ret->got = htab->init_got_refcount;
6539 ret->plt = htab->init_plt_refcount;
6540 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6541 - offsetof (struct elf_link_hash_entry, size)));
6542 /* Assume that we have been called by a non-ELF symbol reader.
6543 This flag is then reset by the code which reads an ELF input
6544 file. This ensures that a symbol created by a non-ELF symbol
6545 reader will have the flag set correctly. */
6546 ret->non_elf = 1;
6547 }
6548
6549 return entry;
6550 }
6551
6552 /* Copy data from an indirect symbol to its direct symbol, hiding the
6553 old indirect symbol. Also used for copying flags to a weakdef. */
6554
6555 void
6556 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6557 struct elf_link_hash_entry *dir,
6558 struct elf_link_hash_entry *ind)
6559 {
6560 struct elf_link_hash_table *htab;
6561
6562 /* Copy down any references that we may have already seen to the
6563 symbol which just became indirect. */
6564
6565 dir->ref_dynamic |= ind->ref_dynamic;
6566 dir->ref_regular |= ind->ref_regular;
6567 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6568 dir->non_got_ref |= ind->non_got_ref;
6569 dir->needs_plt |= ind->needs_plt;
6570 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6571
6572 if (ind->root.type != bfd_link_hash_indirect)
6573 return;
6574
6575 /* Copy over the global and procedure linkage table refcount entries.
6576 These may have been already set up by a check_relocs routine. */
6577 htab = elf_hash_table (info);
6578 if (ind->got.refcount > htab->init_got_refcount.refcount)
6579 {
6580 if (dir->got.refcount < 0)
6581 dir->got.refcount = 0;
6582 dir->got.refcount += ind->got.refcount;
6583 ind->got.refcount = htab->init_got_refcount.refcount;
6584 }
6585
6586 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6587 {
6588 if (dir->plt.refcount < 0)
6589 dir->plt.refcount = 0;
6590 dir->plt.refcount += ind->plt.refcount;
6591 ind->plt.refcount = htab->init_plt_refcount.refcount;
6592 }
6593
6594 if (ind->dynindx != -1)
6595 {
6596 if (dir->dynindx != -1)
6597 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6598 dir->dynindx = ind->dynindx;
6599 dir->dynstr_index = ind->dynstr_index;
6600 ind->dynindx = -1;
6601 ind->dynstr_index = 0;
6602 }
6603 }
6604
6605 void
6606 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6607 struct elf_link_hash_entry *h,
6608 bfd_boolean force_local)
6609 {
6610 h->plt = elf_hash_table (info)->init_plt_offset;
6611 h->needs_plt = 0;
6612 if (force_local)
6613 {
6614 h->forced_local = 1;
6615 if (h->dynindx != -1)
6616 {
6617 h->dynindx = -1;
6618 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6619 h->dynstr_index);
6620 }
6621 }
6622 }
6623
6624 /* Initialize an ELF linker hash table. */
6625
6626 bfd_boolean
6627 _bfd_elf_link_hash_table_init
6628 (struct elf_link_hash_table *table,
6629 bfd *abfd,
6630 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6631 struct bfd_hash_table *,
6632 const char *),
6633 unsigned int entsize)
6634 {
6635 bfd_boolean ret;
6636 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6637
6638 memset (table, 0, sizeof * table);
6639 table->init_got_refcount.refcount = can_refcount - 1;
6640 table->init_plt_refcount.refcount = can_refcount - 1;
6641 table->init_got_offset.offset = -(bfd_vma) 1;
6642 table->init_plt_offset.offset = -(bfd_vma) 1;
6643 /* The first dynamic symbol is a dummy. */
6644 table->dynsymcount = 1;
6645
6646 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6647 table->root.type = bfd_link_elf_hash_table;
6648
6649 return ret;
6650 }
6651
6652 /* Create an ELF linker hash table. */
6653
6654 struct bfd_link_hash_table *
6655 _bfd_elf_link_hash_table_create (bfd *abfd)
6656 {
6657 struct elf_link_hash_table *ret;
6658 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6659
6660 ret = bfd_malloc (amt);
6661 if (ret == NULL)
6662 return NULL;
6663
6664 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6665 sizeof (struct elf_link_hash_entry)))
6666 {
6667 free (ret);
6668 return NULL;
6669 }
6670
6671 return &ret->root;
6672 }
6673
6674 /* This is a hook for the ELF emulation code in the generic linker to
6675 tell the backend linker what file name to use for the DT_NEEDED
6676 entry for a dynamic object. */
6677
6678 void
6679 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6680 {
6681 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6682 && bfd_get_format (abfd) == bfd_object)
6683 elf_dt_name (abfd) = name;
6684 }
6685
6686 int
6687 bfd_elf_get_dyn_lib_class (bfd *abfd)
6688 {
6689 int lib_class;
6690 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6691 && bfd_get_format (abfd) == bfd_object)
6692 lib_class = elf_dyn_lib_class (abfd);
6693 else
6694 lib_class = 0;
6695 return lib_class;
6696 }
6697
6698 void
6699 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6700 {
6701 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6702 && bfd_get_format (abfd) == bfd_object)
6703 elf_dyn_lib_class (abfd) = lib_class;
6704 }
6705
6706 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6707 the linker ELF emulation code. */
6708
6709 struct bfd_link_needed_list *
6710 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6711 struct bfd_link_info *info)
6712 {
6713 if (! is_elf_hash_table (info->hash))
6714 return NULL;
6715 return elf_hash_table (info)->needed;
6716 }
6717
6718 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6719 hook for the linker ELF emulation code. */
6720
6721 struct bfd_link_needed_list *
6722 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6723 struct bfd_link_info *info)
6724 {
6725 if (! is_elf_hash_table (info->hash))
6726 return NULL;
6727 return elf_hash_table (info)->runpath;
6728 }
6729
6730 /* Get the name actually used for a dynamic object for a link. This
6731 is the SONAME entry if there is one. Otherwise, it is the string
6732 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6733
6734 const char *
6735 bfd_elf_get_dt_soname (bfd *abfd)
6736 {
6737 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6738 && bfd_get_format (abfd) == bfd_object)
6739 return elf_dt_name (abfd);
6740 return NULL;
6741 }
6742
6743 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6744 the ELF linker emulation code. */
6745
6746 bfd_boolean
6747 bfd_elf_get_bfd_needed_list (bfd *abfd,
6748 struct bfd_link_needed_list **pneeded)
6749 {
6750 asection *s;
6751 bfd_byte *dynbuf = NULL;
6752 int elfsec;
6753 unsigned long shlink;
6754 bfd_byte *extdyn, *extdynend;
6755 size_t extdynsize;
6756 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6757
6758 *pneeded = NULL;
6759
6760 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6761 || bfd_get_format (abfd) != bfd_object)
6762 return TRUE;
6763
6764 s = bfd_get_section_by_name (abfd, ".dynamic");
6765 if (s == NULL || s->size == 0)
6766 return TRUE;
6767
6768 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6769 goto error_return;
6770
6771 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6772 if (elfsec == -1)
6773 goto error_return;
6774
6775 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6776
6777 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6778 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6779
6780 extdyn = dynbuf;
6781 extdynend = extdyn + s->size;
6782 for (; extdyn < extdynend; extdyn += extdynsize)
6783 {
6784 Elf_Internal_Dyn dyn;
6785
6786 (*swap_dyn_in) (abfd, extdyn, &dyn);
6787
6788 if (dyn.d_tag == DT_NULL)
6789 break;
6790
6791 if (dyn.d_tag == DT_NEEDED)
6792 {
6793 const char *string;
6794 struct bfd_link_needed_list *l;
6795 unsigned int tagv = dyn.d_un.d_val;
6796 bfd_size_type amt;
6797
6798 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6799 if (string == NULL)
6800 goto error_return;
6801
6802 amt = sizeof *l;
6803 l = bfd_alloc (abfd, amt);
6804 if (l == NULL)
6805 goto error_return;
6806
6807 l->by = abfd;
6808 l->name = string;
6809 l->next = *pneeded;
6810 *pneeded = l;
6811 }
6812 }
6813
6814 free (dynbuf);
6815
6816 return TRUE;
6817
6818 error_return:
6819 if (dynbuf != NULL)
6820 free (dynbuf);
6821 return FALSE;
6822 }
6823
6824 struct elf_symbuf_symbol
6825 {
6826 unsigned long st_name; /* Symbol name, index in string tbl */
6827 unsigned char st_info; /* Type and binding attributes */
6828 unsigned char st_other; /* Visibilty, and target specific */
6829 };
6830
6831 struct elf_symbuf_head
6832 {
6833 struct elf_symbuf_symbol *ssym;
6834 bfd_size_type count;
6835 unsigned int st_shndx;
6836 };
6837
6838 struct elf_symbol
6839 {
6840 union
6841 {
6842 Elf_Internal_Sym *isym;
6843 struct elf_symbuf_symbol *ssym;
6844 } u;
6845 const char *name;
6846 };
6847
6848 /* Sort references to symbols by ascending section number. */
6849
6850 static int
6851 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6852 {
6853 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6854 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6855
6856 return s1->st_shndx - s2->st_shndx;
6857 }
6858
6859 static int
6860 elf_sym_name_compare (const void *arg1, const void *arg2)
6861 {
6862 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6863 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6864 return strcmp (s1->name, s2->name);
6865 }
6866
6867 static struct elf_symbuf_head *
6868 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6869 {
6870 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6871 struct elf_symbuf_symbol *ssym;
6872 struct elf_symbuf_head *ssymbuf, *ssymhead;
6873 bfd_size_type i, shndx_count, total_size;
6874
6875 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6876 if (indbuf == NULL)
6877 return NULL;
6878
6879 for (ind = indbuf, i = 0; i < symcount; i++)
6880 if (isymbuf[i].st_shndx != SHN_UNDEF)
6881 *ind++ = &isymbuf[i];
6882 indbufend = ind;
6883
6884 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6885 elf_sort_elf_symbol);
6886
6887 shndx_count = 0;
6888 if (indbufend > indbuf)
6889 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6890 if (ind[0]->st_shndx != ind[1]->st_shndx)
6891 shndx_count++;
6892
6893 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6894 + (indbufend - indbuf) * sizeof (*ssym));
6895 ssymbuf = bfd_malloc (total_size);
6896 if (ssymbuf == NULL)
6897 {
6898 free (indbuf);
6899 return NULL;
6900 }
6901
6902 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6903 ssymbuf->ssym = NULL;
6904 ssymbuf->count = shndx_count;
6905 ssymbuf->st_shndx = 0;
6906 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6907 {
6908 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6909 {
6910 ssymhead++;
6911 ssymhead->ssym = ssym;
6912 ssymhead->count = 0;
6913 ssymhead->st_shndx = (*ind)->st_shndx;
6914 }
6915 ssym->st_name = (*ind)->st_name;
6916 ssym->st_info = (*ind)->st_info;
6917 ssym->st_other = (*ind)->st_other;
6918 ssymhead->count++;
6919 }
6920 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6921 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6922 == total_size));
6923
6924 free (indbuf);
6925 return ssymbuf;
6926 }
6927
6928 /* Check if 2 sections define the same set of local and global
6929 symbols. */
6930
6931 static bfd_boolean
6932 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6933 struct bfd_link_info *info)
6934 {
6935 bfd *bfd1, *bfd2;
6936 const struct elf_backend_data *bed1, *bed2;
6937 Elf_Internal_Shdr *hdr1, *hdr2;
6938 bfd_size_type symcount1, symcount2;
6939 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6940 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6941 Elf_Internal_Sym *isym, *isymend;
6942 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6943 bfd_size_type count1, count2, i;
6944 int shndx1, shndx2;
6945 bfd_boolean result;
6946
6947 bfd1 = sec1->owner;
6948 bfd2 = sec2->owner;
6949
6950 /* Both sections have to be in ELF. */
6951 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6952 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6953 return FALSE;
6954
6955 if (elf_section_type (sec1) != elf_section_type (sec2))
6956 return FALSE;
6957
6958 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6959 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6960 if (shndx1 == -1 || shndx2 == -1)
6961 return FALSE;
6962
6963 bed1 = get_elf_backend_data (bfd1);
6964 bed2 = get_elf_backend_data (bfd2);
6965 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6966 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6967 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6968 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6969
6970 if (symcount1 == 0 || symcount2 == 0)
6971 return FALSE;
6972
6973 result = FALSE;
6974 isymbuf1 = NULL;
6975 isymbuf2 = NULL;
6976 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6977 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6978
6979 if (ssymbuf1 == NULL)
6980 {
6981 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6982 NULL, NULL, NULL);
6983 if (isymbuf1 == NULL)
6984 goto done;
6985
6986 if (!info->reduce_memory_overheads)
6987 elf_tdata (bfd1)->symbuf = ssymbuf1
6988 = elf_create_symbuf (symcount1, isymbuf1);
6989 }
6990
6991 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
6992 {
6993 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
6994 NULL, NULL, NULL);
6995 if (isymbuf2 == NULL)
6996 goto done;
6997
6998 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
6999 elf_tdata (bfd2)->symbuf = ssymbuf2
7000 = elf_create_symbuf (symcount2, isymbuf2);
7001 }
7002
7003 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7004 {
7005 /* Optimized faster version. */
7006 bfd_size_type lo, hi, mid;
7007 struct elf_symbol *symp;
7008 struct elf_symbuf_symbol *ssym, *ssymend;
7009
7010 lo = 0;
7011 hi = ssymbuf1->count;
7012 ssymbuf1++;
7013 count1 = 0;
7014 while (lo < hi)
7015 {
7016 mid = (lo + hi) / 2;
7017 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
7018 hi = mid;
7019 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
7020 lo = mid + 1;
7021 else
7022 {
7023 count1 = ssymbuf1[mid].count;
7024 ssymbuf1 += mid;
7025 break;
7026 }
7027 }
7028
7029 lo = 0;
7030 hi = ssymbuf2->count;
7031 ssymbuf2++;
7032 count2 = 0;
7033 while (lo < hi)
7034 {
7035 mid = (lo + hi) / 2;
7036 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
7037 hi = mid;
7038 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
7039 lo = mid + 1;
7040 else
7041 {
7042 count2 = ssymbuf2[mid].count;
7043 ssymbuf2 += mid;
7044 break;
7045 }
7046 }
7047
7048 if (count1 == 0 || count2 == 0 || count1 != count2)
7049 goto done;
7050
7051 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7052 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7053 if (symtable1 == NULL || symtable2 == NULL)
7054 goto done;
7055
7056 symp = symtable1;
7057 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7058 ssym < ssymend; ssym++, symp++)
7059 {
7060 symp->u.ssym = ssym;
7061 symp->name = bfd_elf_string_from_elf_section (bfd1,
7062 hdr1->sh_link,
7063 ssym->st_name);
7064 }
7065
7066 symp = symtable2;
7067 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7068 ssym < ssymend; ssym++, symp++)
7069 {
7070 symp->u.ssym = ssym;
7071 symp->name = bfd_elf_string_from_elf_section (bfd2,
7072 hdr2->sh_link,
7073 ssym->st_name);
7074 }
7075
7076 /* Sort symbol by name. */
7077 qsort (symtable1, count1, sizeof (struct elf_symbol),
7078 elf_sym_name_compare);
7079 qsort (symtable2, count1, sizeof (struct elf_symbol),
7080 elf_sym_name_compare);
7081
7082 for (i = 0; i < count1; i++)
7083 /* Two symbols must have the same binding, type and name. */
7084 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7085 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7086 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7087 goto done;
7088
7089 result = TRUE;
7090 goto done;
7091 }
7092
7093 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7094 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7095 if (symtable1 == NULL || symtable2 == NULL)
7096 goto done;
7097
7098 /* Count definitions in the section. */
7099 count1 = 0;
7100 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7101 if (isym->st_shndx == (unsigned int) shndx1)
7102 symtable1[count1++].u.isym = isym;
7103
7104 count2 = 0;
7105 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7106 if (isym->st_shndx == (unsigned int) shndx2)
7107 symtable2[count2++].u.isym = isym;
7108
7109 if (count1 == 0 || count2 == 0 || count1 != count2)
7110 goto done;
7111
7112 for (i = 0; i < count1; i++)
7113 symtable1[i].name
7114 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7115 symtable1[i].u.isym->st_name);
7116
7117 for (i = 0; i < count2; i++)
7118 symtable2[i].name
7119 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7120 symtable2[i].u.isym->st_name);
7121
7122 /* Sort symbol by name. */
7123 qsort (symtable1, count1, sizeof (struct elf_symbol),
7124 elf_sym_name_compare);
7125 qsort (symtable2, count1, sizeof (struct elf_symbol),
7126 elf_sym_name_compare);
7127
7128 for (i = 0; i < count1; i++)
7129 /* Two symbols must have the same binding, type and name. */
7130 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7131 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7132 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7133 goto done;
7134
7135 result = TRUE;
7136
7137 done:
7138 if (symtable1)
7139 free (symtable1);
7140 if (symtable2)
7141 free (symtable2);
7142 if (isymbuf1)
7143 free (isymbuf1);
7144 if (isymbuf2)
7145 free (isymbuf2);
7146
7147 return result;
7148 }
7149
7150 /* Return TRUE if 2 section types are compatible. */
7151
7152 bfd_boolean
7153 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7154 bfd *bbfd, const asection *bsec)
7155 {
7156 if (asec == NULL
7157 || bsec == NULL
7158 || abfd->xvec->flavour != bfd_target_elf_flavour
7159 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7160 return TRUE;
7161
7162 return elf_section_type (asec) == elf_section_type (bsec);
7163 }
7164 \f
7165 /* Final phase of ELF linker. */
7166
7167 /* A structure we use to avoid passing large numbers of arguments. */
7168
7169 struct elf_final_link_info
7170 {
7171 /* General link information. */
7172 struct bfd_link_info *info;
7173 /* Output BFD. */
7174 bfd *output_bfd;
7175 /* Symbol string table. */
7176 struct bfd_strtab_hash *symstrtab;
7177 /* .dynsym section. */
7178 asection *dynsym_sec;
7179 /* .hash section. */
7180 asection *hash_sec;
7181 /* symbol version section (.gnu.version). */
7182 asection *symver_sec;
7183 /* Buffer large enough to hold contents of any section. */
7184 bfd_byte *contents;
7185 /* Buffer large enough to hold external relocs of any section. */
7186 void *external_relocs;
7187 /* Buffer large enough to hold internal relocs of any section. */
7188 Elf_Internal_Rela *internal_relocs;
7189 /* Buffer large enough to hold external local symbols of any input
7190 BFD. */
7191 bfd_byte *external_syms;
7192 /* And a buffer for symbol section indices. */
7193 Elf_External_Sym_Shndx *locsym_shndx;
7194 /* Buffer large enough to hold internal local symbols of any input
7195 BFD. */
7196 Elf_Internal_Sym *internal_syms;
7197 /* Array large enough to hold a symbol index for each local symbol
7198 of any input BFD. */
7199 long *indices;
7200 /* Array large enough to hold a section pointer for each local
7201 symbol of any input BFD. */
7202 asection **sections;
7203 /* Buffer to hold swapped out symbols. */
7204 bfd_byte *symbuf;
7205 /* And one for symbol section indices. */
7206 Elf_External_Sym_Shndx *symshndxbuf;
7207 /* Number of swapped out symbols in buffer. */
7208 size_t symbuf_count;
7209 /* Number of symbols which fit in symbuf. */
7210 size_t symbuf_size;
7211 /* And same for symshndxbuf. */
7212 size_t shndxbuf_size;
7213 };
7214
7215 /* This struct is used to pass information to elf_link_output_extsym. */
7216
7217 struct elf_outext_info
7218 {
7219 bfd_boolean failed;
7220 bfd_boolean localsyms;
7221 struct elf_final_link_info *finfo;
7222 };
7223
7224
7225 /* Support for evaluating a complex relocation.
7226
7227 Complex relocations are generalized, self-describing relocations. The
7228 implementation of them consists of two parts: complex symbols, and the
7229 relocations themselves.
7230
7231 The relocations are use a reserved elf-wide relocation type code (R_RELC
7232 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7233 information (start bit, end bit, word width, etc) into the addend. This
7234 information is extracted from CGEN-generated operand tables within gas.
7235
7236 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7237 internal) representing prefix-notation expressions, including but not
7238 limited to those sorts of expressions normally encoded as addends in the
7239 addend field. The symbol mangling format is:
7240
7241 <node> := <literal>
7242 | <unary-operator> ':' <node>
7243 | <binary-operator> ':' <node> ':' <node>
7244 ;
7245
7246 <literal> := 's' <digits=N> ':' <N character symbol name>
7247 | 'S' <digits=N> ':' <N character section name>
7248 | '#' <hexdigits>
7249 ;
7250
7251 <binary-operator> := as in C
7252 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7253
7254 static void
7255 set_symbol_value (bfd *bfd_with_globals,
7256 Elf_Internal_Sym *isymbuf,
7257 size_t locsymcount,
7258 size_t symidx,
7259 bfd_vma val)
7260 {
7261 struct elf_link_hash_entry **sym_hashes;
7262 struct elf_link_hash_entry *h;
7263 size_t extsymoff = locsymcount;
7264
7265 if (symidx < locsymcount)
7266 {
7267 Elf_Internal_Sym *sym;
7268
7269 sym = isymbuf + symidx;
7270 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7271 {
7272 /* It is a local symbol: move it to the
7273 "absolute" section and give it a value. */
7274 sym->st_shndx = SHN_ABS;
7275 sym->st_value = val;
7276 return;
7277 }
7278 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7279 extsymoff = 0;
7280 }
7281
7282 /* It is a global symbol: set its link type
7283 to "defined" and give it a value. */
7284
7285 sym_hashes = elf_sym_hashes (bfd_with_globals);
7286 h = sym_hashes [symidx - extsymoff];
7287 while (h->root.type == bfd_link_hash_indirect
7288 || h->root.type == bfd_link_hash_warning)
7289 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7290 h->root.type = bfd_link_hash_defined;
7291 h->root.u.def.value = val;
7292 h->root.u.def.section = bfd_abs_section_ptr;
7293 }
7294
7295 static bfd_boolean
7296 resolve_symbol (const char *name,
7297 bfd *input_bfd,
7298 struct elf_final_link_info *finfo,
7299 bfd_vma *result,
7300 Elf_Internal_Sym *isymbuf,
7301 size_t locsymcount)
7302 {
7303 Elf_Internal_Sym *sym;
7304 struct bfd_link_hash_entry *global_entry;
7305 const char *candidate = NULL;
7306 Elf_Internal_Shdr *symtab_hdr;
7307 size_t i;
7308
7309 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7310
7311 for (i = 0; i < locsymcount; ++ i)
7312 {
7313 sym = isymbuf + i;
7314
7315 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7316 continue;
7317
7318 candidate = bfd_elf_string_from_elf_section (input_bfd,
7319 symtab_hdr->sh_link,
7320 sym->st_name);
7321 #ifdef DEBUG
7322 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7323 name, candidate, (unsigned long) sym->st_value);
7324 #endif
7325 if (candidate && strcmp (candidate, name) == 0)
7326 {
7327 asection *sec = finfo->sections [i];
7328
7329 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7330 *result += sec->output_offset + sec->output_section->vma;
7331 #ifdef DEBUG
7332 printf ("Found symbol with value %8.8lx\n",
7333 (unsigned long) *result);
7334 #endif
7335 return TRUE;
7336 }
7337 }
7338
7339 /* Hmm, haven't found it yet. perhaps it is a global. */
7340 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7341 FALSE, FALSE, TRUE);
7342 if (!global_entry)
7343 return FALSE;
7344
7345 if (global_entry->type == bfd_link_hash_defined
7346 || global_entry->type == bfd_link_hash_defweak)
7347 {
7348 *result = (global_entry->u.def.value
7349 + global_entry->u.def.section->output_section->vma
7350 + global_entry->u.def.section->output_offset);
7351 #ifdef DEBUG
7352 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7353 global_entry->root.string, (unsigned long) *result);
7354 #endif
7355 return TRUE;
7356 }
7357
7358 return FALSE;
7359 }
7360
7361 static bfd_boolean
7362 resolve_section (const char *name,
7363 asection *sections,
7364 bfd_vma *result)
7365 {
7366 asection *curr;
7367 unsigned int len;
7368
7369 for (curr = sections; curr; curr = curr->next)
7370 if (strcmp (curr->name, name) == 0)
7371 {
7372 *result = curr->vma;
7373 return TRUE;
7374 }
7375
7376 /* Hmm. still haven't found it. try pseudo-section names. */
7377 for (curr = sections; curr; curr = curr->next)
7378 {
7379 len = strlen (curr->name);
7380 if (len > strlen (name))
7381 continue;
7382
7383 if (strncmp (curr->name, name, len) == 0)
7384 {
7385 if (strncmp (".end", name + len, 4) == 0)
7386 {
7387 *result = curr->vma + curr->size;
7388 return TRUE;
7389 }
7390
7391 /* Insert more pseudo-section names here, if you like. */
7392 }
7393 }
7394
7395 return FALSE;
7396 }
7397
7398 static void
7399 undefined_reference (const char *reftype, const char *name)
7400 {
7401 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7402 reftype, name);
7403 }
7404
7405 static bfd_boolean
7406 eval_symbol (bfd_vma *result,
7407 const char **symp,
7408 bfd *input_bfd,
7409 struct elf_final_link_info *finfo,
7410 bfd_vma dot,
7411 Elf_Internal_Sym *isymbuf,
7412 size_t locsymcount,
7413 int signed_p)
7414 {
7415 size_t len;
7416 size_t symlen;
7417 bfd_vma a;
7418 bfd_vma b;
7419 char symbuf[4096];
7420 const char *sym = *symp;
7421 const char *symend;
7422 bfd_boolean symbol_is_section = FALSE;
7423
7424 len = strlen (sym);
7425 symend = sym + len;
7426
7427 if (len < 1 || len > sizeof (symbuf))
7428 {
7429 bfd_set_error (bfd_error_invalid_operation);
7430 return FALSE;
7431 }
7432
7433 switch (* sym)
7434 {
7435 case '.':
7436 *result = dot;
7437 *symp = sym + 1;
7438 return TRUE;
7439
7440 case '#':
7441 ++sym;
7442 *result = strtoul (sym, (char **) symp, 16);
7443 return TRUE;
7444
7445 case 'S':
7446 symbol_is_section = TRUE;
7447 case 's':
7448 ++sym;
7449 symlen = strtol (sym, (char **) symp, 10);
7450 sym = *symp + 1; /* Skip the trailing ':'. */
7451
7452 if (symend < sym || symlen + 1 > sizeof (symbuf))
7453 {
7454 bfd_set_error (bfd_error_invalid_operation);
7455 return FALSE;
7456 }
7457
7458 memcpy (symbuf, sym, symlen);
7459 symbuf[symlen] = '\0';
7460 *symp = sym + symlen;
7461
7462 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7463 the symbol as a section, or vice-versa. so we're pretty liberal in our
7464 interpretation here; section means "try section first", not "must be a
7465 section", and likewise with symbol. */
7466
7467 if (symbol_is_section)
7468 {
7469 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7470 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7471 isymbuf, locsymcount))
7472 {
7473 undefined_reference ("section", symbuf);
7474 return FALSE;
7475 }
7476 }
7477 else
7478 {
7479 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7480 isymbuf, locsymcount)
7481 && !resolve_section (symbuf, finfo->output_bfd->sections,
7482 result))
7483 {
7484 undefined_reference ("symbol", symbuf);
7485 return FALSE;
7486 }
7487 }
7488
7489 return TRUE;
7490
7491 /* All that remains are operators. */
7492
7493 #define UNARY_OP(op) \
7494 if (strncmp (sym, #op, strlen (#op)) == 0) \
7495 { \
7496 sym += strlen (#op); \
7497 if (*sym == ':') \
7498 ++sym; \
7499 *symp = sym; \
7500 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7501 isymbuf, locsymcount, signed_p)) \
7502 return FALSE; \
7503 if (signed_p) \
7504 *result = op ((bfd_signed_vma) a); \
7505 else \
7506 *result = op a; \
7507 return TRUE; \
7508 }
7509
7510 #define BINARY_OP(op) \
7511 if (strncmp (sym, #op, strlen (#op)) == 0) \
7512 { \
7513 sym += strlen (#op); \
7514 if (*sym == ':') \
7515 ++sym; \
7516 *symp = sym; \
7517 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7518 isymbuf, locsymcount, signed_p)) \
7519 return FALSE; \
7520 ++*symp; \
7521 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7522 isymbuf, locsymcount, signed_p)) \
7523 return FALSE; \
7524 if (signed_p) \
7525 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7526 else \
7527 *result = a op b; \
7528 return TRUE; \
7529 }
7530
7531 default:
7532 UNARY_OP (0-);
7533 BINARY_OP (<<);
7534 BINARY_OP (>>);
7535 BINARY_OP (==);
7536 BINARY_OP (!=);
7537 BINARY_OP (<=);
7538 BINARY_OP (>=);
7539 BINARY_OP (&&);
7540 BINARY_OP (||);
7541 UNARY_OP (~);
7542 UNARY_OP (!);
7543 BINARY_OP (*);
7544 BINARY_OP (/);
7545 BINARY_OP (%);
7546 BINARY_OP (^);
7547 BINARY_OP (|);
7548 BINARY_OP (&);
7549 BINARY_OP (+);
7550 BINARY_OP (-);
7551 BINARY_OP (<);
7552 BINARY_OP (>);
7553 #undef UNARY_OP
7554 #undef BINARY_OP
7555 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7556 bfd_set_error (bfd_error_invalid_operation);
7557 return FALSE;
7558 }
7559 }
7560
7561 static void
7562 put_value (bfd_vma size,
7563 unsigned long chunksz,
7564 bfd *input_bfd,
7565 bfd_vma x,
7566 bfd_byte *location)
7567 {
7568 location += (size - chunksz);
7569
7570 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7571 {
7572 switch (chunksz)
7573 {
7574 default:
7575 case 0:
7576 abort ();
7577 case 1:
7578 bfd_put_8 (input_bfd, x, location);
7579 break;
7580 case 2:
7581 bfd_put_16 (input_bfd, x, location);
7582 break;
7583 case 4:
7584 bfd_put_32 (input_bfd, x, location);
7585 break;
7586 case 8:
7587 #ifdef BFD64
7588 bfd_put_64 (input_bfd, x, location);
7589 #else
7590 abort ();
7591 #endif
7592 break;
7593 }
7594 }
7595 }
7596
7597 static bfd_vma
7598 get_value (bfd_vma size,
7599 unsigned long chunksz,
7600 bfd *input_bfd,
7601 bfd_byte *location)
7602 {
7603 bfd_vma x = 0;
7604
7605 for (; size; size -= chunksz, location += chunksz)
7606 {
7607 switch (chunksz)
7608 {
7609 default:
7610 case 0:
7611 abort ();
7612 case 1:
7613 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7614 break;
7615 case 2:
7616 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7617 break;
7618 case 4:
7619 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7620 break;
7621 case 8:
7622 #ifdef BFD64
7623 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7624 #else
7625 abort ();
7626 #endif
7627 break;
7628 }
7629 }
7630 return x;
7631 }
7632
7633 static void
7634 decode_complex_addend (unsigned long *start, /* in bits */
7635 unsigned long *oplen, /* in bits */
7636 unsigned long *len, /* in bits */
7637 unsigned long *wordsz, /* in bytes */
7638 unsigned long *chunksz, /* in bytes */
7639 unsigned long *lsb0_p,
7640 unsigned long *signed_p,
7641 unsigned long *trunc_p,
7642 unsigned long encoded)
7643 {
7644 * start = encoded & 0x3F;
7645 * len = (encoded >> 6) & 0x3F;
7646 * oplen = (encoded >> 12) & 0x3F;
7647 * wordsz = (encoded >> 18) & 0xF;
7648 * chunksz = (encoded >> 22) & 0xF;
7649 * lsb0_p = (encoded >> 27) & 1;
7650 * signed_p = (encoded >> 28) & 1;
7651 * trunc_p = (encoded >> 29) & 1;
7652 }
7653
7654 bfd_reloc_status_type
7655 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7656 asection *input_section ATTRIBUTE_UNUSED,
7657 bfd_byte *contents,
7658 Elf_Internal_Rela *rel,
7659 bfd_vma relocation)
7660 {
7661 bfd_vma shift, x, mask;
7662 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7663 bfd_reloc_status_type r;
7664
7665 /* Perform this reloc, since it is complex.
7666 (this is not to say that it necessarily refers to a complex
7667 symbol; merely that it is a self-describing CGEN based reloc.
7668 i.e. the addend has the complete reloc information (bit start, end,
7669 word size, etc) encoded within it.). */
7670
7671 decode_complex_addend (&start, &oplen, &len, &wordsz,
7672 &chunksz, &lsb0_p, &signed_p,
7673 &trunc_p, rel->r_addend);
7674
7675 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7676
7677 if (lsb0_p)
7678 shift = (start + 1) - len;
7679 else
7680 shift = (8 * wordsz) - (start + len);
7681
7682 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7683
7684 #ifdef DEBUG
7685 printf ("Doing complex reloc: "
7686 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7687 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7688 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7689 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7690 oplen, x, mask, relocation);
7691 #endif
7692
7693 r = bfd_reloc_ok;
7694 if (! trunc_p)
7695 /* Now do an overflow check. */
7696 r = bfd_check_overflow ((signed_p
7697 ? complain_overflow_signed
7698 : complain_overflow_unsigned),
7699 len, 0, (8 * wordsz),
7700 relocation);
7701
7702 /* Do the deed. */
7703 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7704
7705 #ifdef DEBUG
7706 printf (" relocation: %8.8lx\n"
7707 " shifted mask: %8.8lx\n"
7708 " shifted/masked reloc: %8.8lx\n"
7709 " result: %8.8lx\n",
7710 relocation, (mask << shift),
7711 ((relocation & mask) << shift), x);
7712 #endif
7713 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7714 return r;
7715 }
7716
7717 /* When performing a relocatable link, the input relocations are
7718 preserved. But, if they reference global symbols, the indices
7719 referenced must be updated. Update all the relocations in
7720 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7721
7722 static void
7723 elf_link_adjust_relocs (bfd *abfd,
7724 Elf_Internal_Shdr *rel_hdr,
7725 unsigned int count,
7726 struct elf_link_hash_entry **rel_hash)
7727 {
7728 unsigned int i;
7729 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7730 bfd_byte *erela;
7731 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7732 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7733 bfd_vma r_type_mask;
7734 int r_sym_shift;
7735
7736 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7737 {
7738 swap_in = bed->s->swap_reloc_in;
7739 swap_out = bed->s->swap_reloc_out;
7740 }
7741 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7742 {
7743 swap_in = bed->s->swap_reloca_in;
7744 swap_out = bed->s->swap_reloca_out;
7745 }
7746 else
7747 abort ();
7748
7749 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7750 abort ();
7751
7752 if (bed->s->arch_size == 32)
7753 {
7754 r_type_mask = 0xff;
7755 r_sym_shift = 8;
7756 }
7757 else
7758 {
7759 r_type_mask = 0xffffffff;
7760 r_sym_shift = 32;
7761 }
7762
7763 erela = rel_hdr->contents;
7764 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7765 {
7766 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7767 unsigned int j;
7768
7769 if (*rel_hash == NULL)
7770 continue;
7771
7772 BFD_ASSERT ((*rel_hash)->indx >= 0);
7773
7774 (*swap_in) (abfd, erela, irela);
7775 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7776 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7777 | (irela[j].r_info & r_type_mask));
7778 (*swap_out) (abfd, irela, erela);
7779 }
7780 }
7781
7782 struct elf_link_sort_rela
7783 {
7784 union {
7785 bfd_vma offset;
7786 bfd_vma sym_mask;
7787 } u;
7788 enum elf_reloc_type_class type;
7789 /* We use this as an array of size int_rels_per_ext_rel. */
7790 Elf_Internal_Rela rela[1];
7791 };
7792
7793 static int
7794 elf_link_sort_cmp1 (const void *A, const void *B)
7795 {
7796 const struct elf_link_sort_rela *a = A;
7797 const struct elf_link_sort_rela *b = B;
7798 int relativea, relativeb;
7799
7800 relativea = a->type == reloc_class_relative;
7801 relativeb = b->type == reloc_class_relative;
7802
7803 if (relativea < relativeb)
7804 return 1;
7805 if (relativea > relativeb)
7806 return -1;
7807 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7808 return -1;
7809 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7810 return 1;
7811 if (a->rela->r_offset < b->rela->r_offset)
7812 return -1;
7813 if (a->rela->r_offset > b->rela->r_offset)
7814 return 1;
7815 return 0;
7816 }
7817
7818 static int
7819 elf_link_sort_cmp2 (const void *A, const void *B)
7820 {
7821 const struct elf_link_sort_rela *a = A;
7822 const struct elf_link_sort_rela *b = B;
7823 int copya, copyb;
7824
7825 if (a->u.offset < b->u.offset)
7826 return -1;
7827 if (a->u.offset > b->u.offset)
7828 return 1;
7829 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7830 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7831 if (copya < copyb)
7832 return -1;
7833 if (copya > copyb)
7834 return 1;
7835 if (a->rela->r_offset < b->rela->r_offset)
7836 return -1;
7837 if (a->rela->r_offset > b->rela->r_offset)
7838 return 1;
7839 return 0;
7840 }
7841
7842 static size_t
7843 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7844 {
7845 asection *dynamic_relocs;
7846 asection *rela_dyn;
7847 asection *rel_dyn;
7848 bfd_size_type count, size;
7849 size_t i, ret, sort_elt, ext_size;
7850 bfd_byte *sort, *s_non_relative, *p;
7851 struct elf_link_sort_rela *sq;
7852 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7853 int i2e = bed->s->int_rels_per_ext_rel;
7854 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7855 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7856 struct bfd_link_order *lo;
7857 bfd_vma r_sym_mask;
7858 bfd_boolean use_rela;
7859
7860 /* Find a dynamic reloc section. */
7861 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7862 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7863 if (rela_dyn != NULL && rela_dyn->size > 0
7864 && rel_dyn != NULL && rel_dyn->size > 0)
7865 {
7866 bfd_boolean use_rela_initialised = FALSE;
7867
7868 /* This is just here to stop gcc from complaining.
7869 It's initialization checking code is not perfect. */
7870 use_rela = TRUE;
7871
7872 /* Both sections are present. Examine the sizes
7873 of the indirect sections to help us choose. */
7874 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7875 if (lo->type == bfd_indirect_link_order)
7876 {
7877 asection *o = lo->u.indirect.section;
7878
7879 if ((o->size % bed->s->sizeof_rela) == 0)
7880 {
7881 if ((o->size % bed->s->sizeof_rel) == 0)
7882 /* Section size is divisible by both rel and rela sizes.
7883 It is of no help to us. */
7884 ;
7885 else
7886 {
7887 /* Section size is only divisible by rela. */
7888 if (use_rela_initialised && (use_rela == FALSE))
7889 {
7890 _bfd_error_handler
7891 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7892 bfd_set_error (bfd_error_invalid_operation);
7893 return 0;
7894 }
7895 else
7896 {
7897 use_rela = TRUE;
7898 use_rela_initialised = TRUE;
7899 }
7900 }
7901 }
7902 else if ((o->size % bed->s->sizeof_rel) == 0)
7903 {
7904 /* Section size is only divisible by rel. */
7905 if (use_rela_initialised && (use_rela == TRUE))
7906 {
7907 _bfd_error_handler
7908 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7909 bfd_set_error (bfd_error_invalid_operation);
7910 return 0;
7911 }
7912 else
7913 {
7914 use_rela = FALSE;
7915 use_rela_initialised = TRUE;
7916 }
7917 }
7918 else
7919 {
7920 /* The section size is not divisible by either - something is wrong. */
7921 _bfd_error_handler
7922 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7923 bfd_set_error (bfd_error_invalid_operation);
7924 return 0;
7925 }
7926 }
7927
7928 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7929 if (lo->type == bfd_indirect_link_order)
7930 {
7931 asection *o = lo->u.indirect.section;
7932
7933 if ((o->size % bed->s->sizeof_rela) == 0)
7934 {
7935 if ((o->size % bed->s->sizeof_rel) == 0)
7936 /* Section size is divisible by both rel and rela sizes.
7937 It is of no help to us. */
7938 ;
7939 else
7940 {
7941 /* Section size is only divisible by rela. */
7942 if (use_rela_initialised && (use_rela == FALSE))
7943 {
7944 _bfd_error_handler
7945 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7946 bfd_set_error (bfd_error_invalid_operation);
7947 return 0;
7948 }
7949 else
7950 {
7951 use_rela = TRUE;
7952 use_rela_initialised = TRUE;
7953 }
7954 }
7955 }
7956 else if ((o->size % bed->s->sizeof_rel) == 0)
7957 {
7958 /* Section size is only divisible by rel. */
7959 if (use_rela_initialised && (use_rela == TRUE))
7960 {
7961 _bfd_error_handler
7962 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7963 bfd_set_error (bfd_error_invalid_operation);
7964 return 0;
7965 }
7966 else
7967 {
7968 use_rela = FALSE;
7969 use_rela_initialised = TRUE;
7970 }
7971 }
7972 else
7973 {
7974 /* The section size is not divisible by either - something is wrong. */
7975 _bfd_error_handler
7976 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7977 bfd_set_error (bfd_error_invalid_operation);
7978 return 0;
7979 }
7980 }
7981
7982 if (! use_rela_initialised)
7983 /* Make a guess. */
7984 use_rela = TRUE;
7985 }
7986 else if (rela_dyn != NULL && rela_dyn->size > 0)
7987 use_rela = TRUE;
7988 else if (rel_dyn != NULL && rel_dyn->size > 0)
7989 use_rela = FALSE;
7990 else
7991 return 0;
7992
7993 if (use_rela)
7994 {
7995 dynamic_relocs = rela_dyn;
7996 ext_size = bed->s->sizeof_rela;
7997 swap_in = bed->s->swap_reloca_in;
7998 swap_out = bed->s->swap_reloca_out;
7999 }
8000 else
8001 {
8002 dynamic_relocs = rel_dyn;
8003 ext_size = bed->s->sizeof_rel;
8004 swap_in = bed->s->swap_reloc_in;
8005 swap_out = bed->s->swap_reloc_out;
8006 }
8007
8008 size = 0;
8009 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8010 if (lo->type == bfd_indirect_link_order)
8011 size += lo->u.indirect.section->size;
8012
8013 if (size != dynamic_relocs->size)
8014 return 0;
8015
8016 sort_elt = (sizeof (struct elf_link_sort_rela)
8017 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8018
8019 count = dynamic_relocs->size / ext_size;
8020 sort = bfd_zmalloc (sort_elt * count);
8021
8022 if (sort == NULL)
8023 {
8024 (*info->callbacks->warning)
8025 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8026 return 0;
8027 }
8028
8029 if (bed->s->arch_size == 32)
8030 r_sym_mask = ~(bfd_vma) 0xff;
8031 else
8032 r_sym_mask = ~(bfd_vma) 0xffffffff;
8033
8034 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8035 if (lo->type == bfd_indirect_link_order)
8036 {
8037 bfd_byte *erel, *erelend;
8038 asection *o = lo->u.indirect.section;
8039
8040 if (o->contents == NULL && o->size != 0)
8041 {
8042 /* This is a reloc section that is being handled as a normal
8043 section. See bfd_section_from_shdr. We can't combine
8044 relocs in this case. */
8045 free (sort);
8046 return 0;
8047 }
8048 erel = o->contents;
8049 erelend = o->contents + o->size;
8050 p = sort + o->output_offset / ext_size * sort_elt;
8051
8052 while (erel < erelend)
8053 {
8054 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8055
8056 (*swap_in) (abfd, erel, s->rela);
8057 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8058 s->u.sym_mask = r_sym_mask;
8059 p += sort_elt;
8060 erel += ext_size;
8061 }
8062 }
8063
8064 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8065
8066 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8067 {
8068 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8069 if (s->type != reloc_class_relative)
8070 break;
8071 }
8072 ret = i;
8073 s_non_relative = p;
8074
8075 sq = (struct elf_link_sort_rela *) s_non_relative;
8076 for (; i < count; i++, p += sort_elt)
8077 {
8078 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8079 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8080 sq = sp;
8081 sp->u.offset = sq->rela->r_offset;
8082 }
8083
8084 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8085
8086 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8087 if (lo->type == bfd_indirect_link_order)
8088 {
8089 bfd_byte *erel, *erelend;
8090 asection *o = lo->u.indirect.section;
8091
8092 erel = o->contents;
8093 erelend = o->contents + o->size;
8094 p = sort + o->output_offset / ext_size * sort_elt;
8095 while (erel < erelend)
8096 {
8097 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8098 (*swap_out) (abfd, s->rela, erel);
8099 p += sort_elt;
8100 erel += ext_size;
8101 }
8102 }
8103
8104 free (sort);
8105 *psec = dynamic_relocs;
8106 return ret;
8107 }
8108
8109 /* Flush the output symbols to the file. */
8110
8111 static bfd_boolean
8112 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8113 const struct elf_backend_data *bed)
8114 {
8115 if (finfo->symbuf_count > 0)
8116 {
8117 Elf_Internal_Shdr *hdr;
8118 file_ptr pos;
8119 bfd_size_type amt;
8120
8121 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8122 pos = hdr->sh_offset + hdr->sh_size;
8123 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8124 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8125 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8126 return FALSE;
8127
8128 hdr->sh_size += amt;
8129 finfo->symbuf_count = 0;
8130 }
8131
8132 return TRUE;
8133 }
8134
8135 /* Add a symbol to the output symbol table. */
8136
8137 static bfd_boolean
8138 elf_link_output_sym (struct elf_final_link_info *finfo,
8139 const char *name,
8140 Elf_Internal_Sym *elfsym,
8141 asection *input_sec,
8142 struct elf_link_hash_entry *h)
8143 {
8144 bfd_byte *dest;
8145 Elf_External_Sym_Shndx *destshndx;
8146 bfd_boolean (*output_symbol_hook)
8147 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8148 struct elf_link_hash_entry *);
8149 const struct elf_backend_data *bed;
8150
8151 bed = get_elf_backend_data (finfo->output_bfd);
8152 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8153 if (output_symbol_hook != NULL)
8154 {
8155 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8156 return FALSE;
8157 }
8158
8159 if (name == NULL || *name == '\0')
8160 elfsym->st_name = 0;
8161 else if (input_sec->flags & SEC_EXCLUDE)
8162 elfsym->st_name = 0;
8163 else
8164 {
8165 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8166 name, TRUE, FALSE);
8167 if (elfsym->st_name == (unsigned long) -1)
8168 return FALSE;
8169 }
8170
8171 if (finfo->symbuf_count >= finfo->symbuf_size)
8172 {
8173 if (! elf_link_flush_output_syms (finfo, bed))
8174 return FALSE;
8175 }
8176
8177 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8178 destshndx = finfo->symshndxbuf;
8179 if (destshndx != NULL)
8180 {
8181 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8182 {
8183 bfd_size_type amt;
8184
8185 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8186 destshndx = bfd_realloc (destshndx, amt * 2);
8187 if (destshndx == NULL)
8188 return FALSE;
8189 finfo->symshndxbuf = destshndx;
8190 memset ((char *) destshndx + amt, 0, amt);
8191 finfo->shndxbuf_size *= 2;
8192 }
8193 destshndx += bfd_get_symcount (finfo->output_bfd);
8194 }
8195
8196 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8197 finfo->symbuf_count += 1;
8198 bfd_get_symcount (finfo->output_bfd) += 1;
8199
8200 return TRUE;
8201 }
8202
8203 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8204
8205 static bfd_boolean
8206 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8207 {
8208 if (sym->st_shndx > SHN_HIRESERVE)
8209 {
8210 /* The gABI doesn't support dynamic symbols in output sections
8211 beyond 64k. */
8212 (*_bfd_error_handler)
8213 (_("%B: Too many sections: %d (>= %d)"),
8214 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8215 bfd_set_error (bfd_error_nonrepresentable_section);
8216 return FALSE;
8217 }
8218 return TRUE;
8219 }
8220
8221 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8222 allowing an unsatisfied unversioned symbol in the DSO to match a
8223 versioned symbol that would normally require an explicit version.
8224 We also handle the case that a DSO references a hidden symbol
8225 which may be satisfied by a versioned symbol in another DSO. */
8226
8227 static bfd_boolean
8228 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8229 const struct elf_backend_data *bed,
8230 struct elf_link_hash_entry *h)
8231 {
8232 bfd *abfd;
8233 struct elf_link_loaded_list *loaded;
8234
8235 if (!is_elf_hash_table (info->hash))
8236 return FALSE;
8237
8238 switch (h->root.type)
8239 {
8240 default:
8241 abfd = NULL;
8242 break;
8243
8244 case bfd_link_hash_undefined:
8245 case bfd_link_hash_undefweak:
8246 abfd = h->root.u.undef.abfd;
8247 if ((abfd->flags & DYNAMIC) == 0
8248 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8249 return FALSE;
8250 break;
8251
8252 case bfd_link_hash_defined:
8253 case bfd_link_hash_defweak:
8254 abfd = h->root.u.def.section->owner;
8255 break;
8256
8257 case bfd_link_hash_common:
8258 abfd = h->root.u.c.p->section->owner;
8259 break;
8260 }
8261 BFD_ASSERT (abfd != NULL);
8262
8263 for (loaded = elf_hash_table (info)->loaded;
8264 loaded != NULL;
8265 loaded = loaded->next)
8266 {
8267 bfd *input;
8268 Elf_Internal_Shdr *hdr;
8269 bfd_size_type symcount;
8270 bfd_size_type extsymcount;
8271 bfd_size_type extsymoff;
8272 Elf_Internal_Shdr *versymhdr;
8273 Elf_Internal_Sym *isym;
8274 Elf_Internal_Sym *isymend;
8275 Elf_Internal_Sym *isymbuf;
8276 Elf_External_Versym *ever;
8277 Elf_External_Versym *extversym;
8278
8279 input = loaded->abfd;
8280
8281 /* We check each DSO for a possible hidden versioned definition. */
8282 if (input == abfd
8283 || (input->flags & DYNAMIC) == 0
8284 || elf_dynversym (input) == 0)
8285 continue;
8286
8287 hdr = &elf_tdata (input)->dynsymtab_hdr;
8288
8289 symcount = hdr->sh_size / bed->s->sizeof_sym;
8290 if (elf_bad_symtab (input))
8291 {
8292 extsymcount = symcount;
8293 extsymoff = 0;
8294 }
8295 else
8296 {
8297 extsymcount = symcount - hdr->sh_info;
8298 extsymoff = hdr->sh_info;
8299 }
8300
8301 if (extsymcount == 0)
8302 continue;
8303
8304 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8305 NULL, NULL, NULL);
8306 if (isymbuf == NULL)
8307 return FALSE;
8308
8309 /* Read in any version definitions. */
8310 versymhdr = &elf_tdata (input)->dynversym_hdr;
8311 extversym = bfd_malloc (versymhdr->sh_size);
8312 if (extversym == NULL)
8313 goto error_ret;
8314
8315 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8316 || (bfd_bread (extversym, versymhdr->sh_size, input)
8317 != versymhdr->sh_size))
8318 {
8319 free (extversym);
8320 error_ret:
8321 free (isymbuf);
8322 return FALSE;
8323 }
8324
8325 ever = extversym + extsymoff;
8326 isymend = isymbuf + extsymcount;
8327 for (isym = isymbuf; isym < isymend; isym++, ever++)
8328 {
8329 const char *name;
8330 Elf_Internal_Versym iver;
8331 unsigned short version_index;
8332
8333 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8334 || isym->st_shndx == SHN_UNDEF)
8335 continue;
8336
8337 name = bfd_elf_string_from_elf_section (input,
8338 hdr->sh_link,
8339 isym->st_name);
8340 if (strcmp (name, h->root.root.string) != 0)
8341 continue;
8342
8343 _bfd_elf_swap_versym_in (input, ever, &iver);
8344
8345 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8346 {
8347 /* If we have a non-hidden versioned sym, then it should
8348 have provided a definition for the undefined sym. */
8349 abort ();
8350 }
8351
8352 version_index = iver.vs_vers & VERSYM_VERSION;
8353 if (version_index == 1 || version_index == 2)
8354 {
8355 /* This is the base or first version. We can use it. */
8356 free (extversym);
8357 free (isymbuf);
8358 return TRUE;
8359 }
8360 }
8361
8362 free (extversym);
8363 free (isymbuf);
8364 }
8365
8366 return FALSE;
8367 }
8368
8369 /* Add an external symbol to the symbol table. This is called from
8370 the hash table traversal routine. When generating a shared object,
8371 we go through the symbol table twice. The first time we output
8372 anything that might have been forced to local scope in a version
8373 script. The second time we output the symbols that are still
8374 global symbols. */
8375
8376 static bfd_boolean
8377 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8378 {
8379 struct elf_outext_info *eoinfo = data;
8380 struct elf_final_link_info *finfo = eoinfo->finfo;
8381 bfd_boolean strip;
8382 Elf_Internal_Sym sym;
8383 asection *input_sec;
8384 const struct elf_backend_data *bed;
8385
8386 if (h->root.type == bfd_link_hash_warning)
8387 {
8388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8389 if (h->root.type == bfd_link_hash_new)
8390 return TRUE;
8391 }
8392
8393 /* Decide whether to output this symbol in this pass. */
8394 if (eoinfo->localsyms)
8395 {
8396 if (!h->forced_local)
8397 return TRUE;
8398 }
8399 else
8400 {
8401 if (h->forced_local)
8402 return TRUE;
8403 }
8404
8405 bed = get_elf_backend_data (finfo->output_bfd);
8406
8407 if (h->root.type == bfd_link_hash_undefined)
8408 {
8409 /* If we have an undefined symbol reference here then it must have
8410 come from a shared library that is being linked in. (Undefined
8411 references in regular files have already been handled). */
8412 bfd_boolean ignore_undef = FALSE;
8413
8414 /* Some symbols may be special in that the fact that they're
8415 undefined can be safely ignored - let backend determine that. */
8416 if (bed->elf_backend_ignore_undef_symbol)
8417 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8418
8419 /* If we are reporting errors for this situation then do so now. */
8420 if (ignore_undef == FALSE
8421 && h->ref_dynamic
8422 && ! h->ref_regular
8423 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8424 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8425 {
8426 if (! (finfo->info->callbacks->undefined_symbol
8427 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8428 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8429 {
8430 eoinfo->failed = TRUE;
8431 return FALSE;
8432 }
8433 }
8434 }
8435
8436 /* We should also warn if a forced local symbol is referenced from
8437 shared libraries. */
8438 if (! finfo->info->relocatable
8439 && (! finfo->info->shared)
8440 && h->forced_local
8441 && h->ref_dynamic
8442 && !h->dynamic_def
8443 && !h->dynamic_weak
8444 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8445 {
8446 (*_bfd_error_handler)
8447 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8448 finfo->output_bfd,
8449 h->root.u.def.section == bfd_abs_section_ptr
8450 ? finfo->output_bfd : h->root.u.def.section->owner,
8451 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8452 ? "internal"
8453 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8454 ? "hidden" : "local",
8455 h->root.root.string);
8456 eoinfo->failed = TRUE;
8457 return FALSE;
8458 }
8459
8460 /* We don't want to output symbols that have never been mentioned by
8461 a regular file, or that we have been told to strip. However, if
8462 h->indx is set to -2, the symbol is used by a reloc and we must
8463 output it. */
8464 if (h->indx == -2)
8465 strip = FALSE;
8466 else if ((h->def_dynamic
8467 || h->ref_dynamic
8468 || h->root.type == bfd_link_hash_new)
8469 && !h->def_regular
8470 && !h->ref_regular)
8471 strip = TRUE;
8472 else if (finfo->info->strip == strip_all)
8473 strip = TRUE;
8474 else if (finfo->info->strip == strip_some
8475 && bfd_hash_lookup (finfo->info->keep_hash,
8476 h->root.root.string, FALSE, FALSE) == NULL)
8477 strip = TRUE;
8478 else if (finfo->info->strip_discarded
8479 && (h->root.type == bfd_link_hash_defined
8480 || h->root.type == bfd_link_hash_defweak)
8481 && elf_discarded_section (h->root.u.def.section))
8482 strip = TRUE;
8483 else
8484 strip = FALSE;
8485
8486 /* If we're stripping it, and it's not a dynamic symbol, there's
8487 nothing else to do unless it is a forced local symbol. */
8488 if (strip
8489 && h->dynindx == -1
8490 && !h->forced_local)
8491 return TRUE;
8492
8493 sym.st_value = 0;
8494 sym.st_size = h->size;
8495 sym.st_other = h->other;
8496 if (h->forced_local)
8497 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8498 else if (h->root.type == bfd_link_hash_undefweak
8499 || h->root.type == bfd_link_hash_defweak)
8500 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8501 else
8502 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8503
8504 switch (h->root.type)
8505 {
8506 default:
8507 case bfd_link_hash_new:
8508 case bfd_link_hash_warning:
8509 abort ();
8510 return FALSE;
8511
8512 case bfd_link_hash_undefined:
8513 case bfd_link_hash_undefweak:
8514 input_sec = bfd_und_section_ptr;
8515 sym.st_shndx = SHN_UNDEF;
8516 break;
8517
8518 case bfd_link_hash_defined:
8519 case bfd_link_hash_defweak:
8520 {
8521 input_sec = h->root.u.def.section;
8522 if (input_sec->output_section != NULL)
8523 {
8524 sym.st_shndx =
8525 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8526 input_sec->output_section);
8527 if (sym.st_shndx == SHN_BAD)
8528 {
8529 (*_bfd_error_handler)
8530 (_("%B: could not find output section %A for input section %A"),
8531 finfo->output_bfd, input_sec->output_section, input_sec);
8532 eoinfo->failed = TRUE;
8533 return FALSE;
8534 }
8535
8536 /* ELF symbols in relocatable files are section relative,
8537 but in nonrelocatable files they are virtual
8538 addresses. */
8539 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8540 if (! finfo->info->relocatable)
8541 {
8542 sym.st_value += input_sec->output_section->vma;
8543 if (h->type == STT_TLS)
8544 {
8545 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8546 if (tls_sec != NULL)
8547 sym.st_value -= tls_sec->vma;
8548 else
8549 {
8550 /* The TLS section may have been garbage collected. */
8551 BFD_ASSERT (finfo->info->gc_sections
8552 && !input_sec->gc_mark);
8553 }
8554 }
8555 }
8556 }
8557 else
8558 {
8559 BFD_ASSERT (input_sec->owner == NULL
8560 || (input_sec->owner->flags & DYNAMIC) != 0);
8561 sym.st_shndx = SHN_UNDEF;
8562 input_sec = bfd_und_section_ptr;
8563 }
8564 }
8565 break;
8566
8567 case bfd_link_hash_common:
8568 input_sec = h->root.u.c.p->section;
8569 sym.st_shndx = bed->common_section_index (input_sec);
8570 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8571 break;
8572
8573 case bfd_link_hash_indirect:
8574 /* These symbols are created by symbol versioning. They point
8575 to the decorated version of the name. For example, if the
8576 symbol foo@@GNU_1.2 is the default, which should be used when
8577 foo is used with no version, then we add an indirect symbol
8578 foo which points to foo@@GNU_1.2. We ignore these symbols,
8579 since the indirected symbol is already in the hash table. */
8580 return TRUE;
8581 }
8582
8583 /* Give the processor backend a chance to tweak the symbol value,
8584 and also to finish up anything that needs to be done for this
8585 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8586 forced local syms when non-shared is due to a historical quirk. */
8587 if ((h->dynindx != -1
8588 || h->forced_local)
8589 && ((finfo->info->shared
8590 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8591 || h->root.type != bfd_link_hash_undefweak))
8592 || !h->forced_local)
8593 && elf_hash_table (finfo->info)->dynamic_sections_created)
8594 {
8595 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8596 (finfo->output_bfd, finfo->info, h, &sym)))
8597 {
8598 eoinfo->failed = TRUE;
8599 return FALSE;
8600 }
8601 }
8602
8603 /* If we are marking the symbol as undefined, and there are no
8604 non-weak references to this symbol from a regular object, then
8605 mark the symbol as weak undefined; if there are non-weak
8606 references, mark the symbol as strong. We can't do this earlier,
8607 because it might not be marked as undefined until the
8608 finish_dynamic_symbol routine gets through with it. */
8609 if (sym.st_shndx == SHN_UNDEF
8610 && h->ref_regular
8611 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8612 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8613 {
8614 int bindtype;
8615
8616 if (h->ref_regular_nonweak)
8617 bindtype = STB_GLOBAL;
8618 else
8619 bindtype = STB_WEAK;
8620 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8621 }
8622
8623 /* If a non-weak symbol with non-default visibility is not defined
8624 locally, it is a fatal error. */
8625 if (! finfo->info->relocatable
8626 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8627 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8628 && h->root.type == bfd_link_hash_undefined
8629 && !h->def_regular)
8630 {
8631 (*_bfd_error_handler)
8632 (_("%B: %s symbol `%s' isn't defined"),
8633 finfo->output_bfd,
8634 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8635 ? "protected"
8636 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8637 ? "internal" : "hidden",
8638 h->root.root.string);
8639 eoinfo->failed = TRUE;
8640 return FALSE;
8641 }
8642
8643 /* If this symbol should be put in the .dynsym section, then put it
8644 there now. We already know the symbol index. We also fill in
8645 the entry in the .hash section. */
8646 if (h->dynindx != -1
8647 && elf_hash_table (finfo->info)->dynamic_sections_created)
8648 {
8649 bfd_byte *esym;
8650
8651 sym.st_name = h->dynstr_index;
8652 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8653 if (! check_dynsym (finfo->output_bfd, &sym))
8654 {
8655 eoinfo->failed = TRUE;
8656 return FALSE;
8657 }
8658 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8659
8660 if (finfo->hash_sec != NULL)
8661 {
8662 size_t hash_entry_size;
8663 bfd_byte *bucketpos;
8664 bfd_vma chain;
8665 size_t bucketcount;
8666 size_t bucket;
8667
8668 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8669 bucket = h->u.elf_hash_value % bucketcount;
8670
8671 hash_entry_size
8672 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8673 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8674 + (bucket + 2) * hash_entry_size);
8675 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8676 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8677 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8678 ((bfd_byte *) finfo->hash_sec->contents
8679 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8680 }
8681
8682 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8683 {
8684 Elf_Internal_Versym iversym;
8685 Elf_External_Versym *eversym;
8686
8687 if (!h->def_regular)
8688 {
8689 if (h->verinfo.verdef == NULL)
8690 iversym.vs_vers = 0;
8691 else
8692 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8693 }
8694 else
8695 {
8696 if (h->verinfo.vertree == NULL)
8697 iversym.vs_vers = 1;
8698 else
8699 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8700 if (finfo->info->create_default_symver)
8701 iversym.vs_vers++;
8702 }
8703
8704 if (h->hidden)
8705 iversym.vs_vers |= VERSYM_HIDDEN;
8706
8707 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8708 eversym += h->dynindx;
8709 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8710 }
8711 }
8712
8713 /* If we're stripping it, then it was just a dynamic symbol, and
8714 there's nothing else to do. */
8715 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8716 return TRUE;
8717
8718 h->indx = bfd_get_symcount (finfo->output_bfd);
8719
8720 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8721 {
8722 eoinfo->failed = TRUE;
8723 return FALSE;
8724 }
8725
8726 return TRUE;
8727 }
8728
8729 /* Return TRUE if special handling is done for relocs in SEC against
8730 symbols defined in discarded sections. */
8731
8732 static bfd_boolean
8733 elf_section_ignore_discarded_relocs (asection *sec)
8734 {
8735 const struct elf_backend_data *bed;
8736
8737 switch (sec->sec_info_type)
8738 {
8739 case ELF_INFO_TYPE_STABS:
8740 case ELF_INFO_TYPE_EH_FRAME:
8741 return TRUE;
8742 default:
8743 break;
8744 }
8745
8746 bed = get_elf_backend_data (sec->owner);
8747 if (bed->elf_backend_ignore_discarded_relocs != NULL
8748 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8749 return TRUE;
8750
8751 return FALSE;
8752 }
8753
8754 /* Return a mask saying how ld should treat relocations in SEC against
8755 symbols defined in discarded sections. If this function returns
8756 COMPLAIN set, ld will issue a warning message. If this function
8757 returns PRETEND set, and the discarded section was link-once and the
8758 same size as the kept link-once section, ld will pretend that the
8759 symbol was actually defined in the kept section. Otherwise ld will
8760 zero the reloc (at least that is the intent, but some cooperation by
8761 the target dependent code is needed, particularly for REL targets). */
8762
8763 unsigned int
8764 _bfd_elf_default_action_discarded (asection *sec)
8765 {
8766 if (sec->flags & SEC_DEBUGGING)
8767 return PRETEND;
8768
8769 if (strcmp (".eh_frame", sec->name) == 0)
8770 return 0;
8771
8772 if (strcmp (".gcc_except_table", sec->name) == 0)
8773 return 0;
8774
8775 return COMPLAIN | PRETEND;
8776 }
8777
8778 /* Find a match between a section and a member of a section group. */
8779
8780 static asection *
8781 match_group_member (asection *sec, asection *group,
8782 struct bfd_link_info *info)
8783 {
8784 asection *first = elf_next_in_group (group);
8785 asection *s = first;
8786
8787 while (s != NULL)
8788 {
8789 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8790 return s;
8791
8792 s = elf_next_in_group (s);
8793 if (s == first)
8794 break;
8795 }
8796
8797 return NULL;
8798 }
8799
8800 /* Check if the kept section of a discarded section SEC can be used
8801 to replace it. Return the replacement if it is OK. Otherwise return
8802 NULL. */
8803
8804 asection *
8805 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8806 {
8807 asection *kept;
8808
8809 kept = sec->kept_section;
8810 if (kept != NULL)
8811 {
8812 if ((kept->flags & SEC_GROUP) != 0)
8813 kept = match_group_member (sec, kept, info);
8814 if (kept != NULL
8815 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8816 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8817 kept = NULL;
8818 sec->kept_section = kept;
8819 }
8820 return kept;
8821 }
8822
8823 /* Link an input file into the linker output file. This function
8824 handles all the sections and relocations of the input file at once.
8825 This is so that we only have to read the local symbols once, and
8826 don't have to keep them in memory. */
8827
8828 static bfd_boolean
8829 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8830 {
8831 int (*relocate_section)
8832 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8833 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8834 bfd *output_bfd;
8835 Elf_Internal_Shdr *symtab_hdr;
8836 size_t locsymcount;
8837 size_t extsymoff;
8838 Elf_Internal_Sym *isymbuf;
8839 Elf_Internal_Sym *isym;
8840 Elf_Internal_Sym *isymend;
8841 long *pindex;
8842 asection **ppsection;
8843 asection *o;
8844 const struct elf_backend_data *bed;
8845 struct elf_link_hash_entry **sym_hashes;
8846
8847 output_bfd = finfo->output_bfd;
8848 bed = get_elf_backend_data (output_bfd);
8849 relocate_section = bed->elf_backend_relocate_section;
8850
8851 /* If this is a dynamic object, we don't want to do anything here:
8852 we don't want the local symbols, and we don't want the section
8853 contents. */
8854 if ((input_bfd->flags & DYNAMIC) != 0)
8855 return TRUE;
8856
8857 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8858 if (elf_bad_symtab (input_bfd))
8859 {
8860 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8861 extsymoff = 0;
8862 }
8863 else
8864 {
8865 locsymcount = symtab_hdr->sh_info;
8866 extsymoff = symtab_hdr->sh_info;
8867 }
8868
8869 /* Read the local symbols. */
8870 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8871 if (isymbuf == NULL && locsymcount != 0)
8872 {
8873 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8874 finfo->internal_syms,
8875 finfo->external_syms,
8876 finfo->locsym_shndx);
8877 if (isymbuf == NULL)
8878 return FALSE;
8879 }
8880
8881 /* Find local symbol sections and adjust values of symbols in
8882 SEC_MERGE sections. Write out those local symbols we know are
8883 going into the output file. */
8884 isymend = isymbuf + locsymcount;
8885 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8886 isym < isymend;
8887 isym++, pindex++, ppsection++)
8888 {
8889 asection *isec;
8890 const char *name;
8891 Elf_Internal_Sym osym;
8892
8893 *pindex = -1;
8894
8895 if (elf_bad_symtab (input_bfd))
8896 {
8897 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8898 {
8899 *ppsection = NULL;
8900 continue;
8901 }
8902 }
8903
8904 if (isym->st_shndx == SHN_UNDEF)
8905 isec = bfd_und_section_ptr;
8906 else if (isym->st_shndx < SHN_LORESERVE
8907 || isym->st_shndx > SHN_HIRESERVE)
8908 {
8909 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8910 if (isec
8911 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
8912 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8913 isym->st_value =
8914 _bfd_merged_section_offset (output_bfd, &isec,
8915 elf_section_data (isec)->sec_info,
8916 isym->st_value);
8917 }
8918 else if (isym->st_shndx == SHN_ABS)
8919 isec = bfd_abs_section_ptr;
8920 else if (isym->st_shndx == SHN_COMMON)
8921 isec = bfd_com_section_ptr;
8922 else
8923 {
8924 /* Don't attempt to output symbols with st_shnx in the
8925 reserved range other than SHN_ABS and SHN_COMMON. */
8926 *ppsection = NULL;
8927 continue;
8928 }
8929
8930 *ppsection = isec;
8931
8932 /* Don't output the first, undefined, symbol. */
8933 if (ppsection == finfo->sections)
8934 continue;
8935
8936 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8937 {
8938 /* We never output section symbols. Instead, we use the
8939 section symbol of the corresponding section in the output
8940 file. */
8941 continue;
8942 }
8943
8944 /* If we are stripping all symbols, we don't want to output this
8945 one. */
8946 if (finfo->info->strip == strip_all)
8947 continue;
8948
8949 /* If we are discarding all local symbols, we don't want to
8950 output this one. If we are generating a relocatable output
8951 file, then some of the local symbols may be required by
8952 relocs; we output them below as we discover that they are
8953 needed. */
8954 if (finfo->info->discard == discard_all)
8955 continue;
8956
8957 /* If this symbol is defined in a section which we are
8958 discarding, we don't need to keep it. */
8959 if (isym->st_shndx != SHN_UNDEF
8960 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8961 && (isec == NULL
8962 || bfd_section_removed_from_list (output_bfd,
8963 isec->output_section)))
8964 continue;
8965
8966 /* Get the name of the symbol. */
8967 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8968 isym->st_name);
8969 if (name == NULL)
8970 return FALSE;
8971
8972 /* See if we are discarding symbols with this name. */
8973 if ((finfo->info->strip == strip_some
8974 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8975 == NULL))
8976 || (((finfo->info->discard == discard_sec_merge
8977 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8978 || finfo->info->discard == discard_l)
8979 && bfd_is_local_label_name (input_bfd, name)))
8980 continue;
8981
8982 /* If we get here, we are going to output this symbol. */
8983
8984 osym = *isym;
8985
8986 /* Adjust the section index for the output file. */
8987 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8988 isec->output_section);
8989 if (osym.st_shndx == SHN_BAD)
8990 return FALSE;
8991
8992 *pindex = bfd_get_symcount (output_bfd);
8993
8994 /* ELF symbols in relocatable files are section relative, but
8995 in executable files they are virtual addresses. Note that
8996 this code assumes that all ELF sections have an associated
8997 BFD section with a reasonable value for output_offset; below
8998 we assume that they also have a reasonable value for
8999 output_section. Any special sections must be set up to meet
9000 these requirements. */
9001 osym.st_value += isec->output_offset;
9002 if (! finfo->info->relocatable)
9003 {
9004 osym.st_value += isec->output_section->vma;
9005 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9006 {
9007 /* STT_TLS symbols are relative to PT_TLS segment base. */
9008 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9009 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9010 }
9011 }
9012
9013 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9014 return FALSE;
9015 }
9016
9017 /* Relocate the contents of each section. */
9018 sym_hashes = elf_sym_hashes (input_bfd);
9019 for (o = input_bfd->sections; o != NULL; o = o->next)
9020 {
9021 bfd_byte *contents;
9022
9023 if (! o->linker_mark)
9024 {
9025 /* This section was omitted from the link. */
9026 continue;
9027 }
9028
9029 if ((o->flags & SEC_HAS_CONTENTS) == 0
9030 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9031 continue;
9032
9033 if ((o->flags & SEC_LINKER_CREATED) != 0)
9034 {
9035 /* Section was created by _bfd_elf_link_create_dynamic_sections
9036 or somesuch. */
9037 continue;
9038 }
9039
9040 /* Get the contents of the section. They have been cached by a
9041 relaxation routine. Note that o is a section in an input
9042 file, so the contents field will not have been set by any of
9043 the routines which work on output files. */
9044 if (elf_section_data (o)->this_hdr.contents != NULL)
9045 contents = elf_section_data (o)->this_hdr.contents;
9046 else
9047 {
9048 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9049
9050 contents = finfo->contents;
9051 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9052 return FALSE;
9053 }
9054
9055 if ((o->flags & SEC_RELOC) != 0)
9056 {
9057 Elf_Internal_Rela *internal_relocs;
9058 Elf_Internal_Rela *rel, *relend;
9059 bfd_vma r_type_mask;
9060 int r_sym_shift;
9061 int action_discarded;
9062 int ret;
9063
9064 /* Get the swapped relocs. */
9065 internal_relocs
9066 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9067 finfo->internal_relocs, FALSE);
9068 if (internal_relocs == NULL
9069 && o->reloc_count > 0)
9070 return FALSE;
9071
9072 if (bed->s->arch_size == 32)
9073 {
9074 r_type_mask = 0xff;
9075 r_sym_shift = 8;
9076 }
9077 else
9078 {
9079 r_type_mask = 0xffffffff;
9080 r_sym_shift = 32;
9081 }
9082
9083 action_discarded = -1;
9084 if (!elf_section_ignore_discarded_relocs (o))
9085 action_discarded = (*bed->action_discarded) (o);
9086
9087 /* Run through the relocs evaluating complex reloc symbols and
9088 looking for relocs against symbols from discarded sections
9089 or section symbols from removed link-once sections.
9090 Complain about relocs against discarded sections. Zero
9091 relocs against removed link-once sections. */
9092
9093 rel = internal_relocs;
9094 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9095 for ( ; rel < relend; rel++)
9096 {
9097 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9098 unsigned int s_type;
9099 asection **ps, *sec;
9100 struct elf_link_hash_entry *h = NULL;
9101 const char *sym_name;
9102
9103 if (r_symndx == STN_UNDEF)
9104 continue;
9105
9106 if (r_symndx >= locsymcount
9107 || (elf_bad_symtab (input_bfd)
9108 && finfo->sections[r_symndx] == NULL))
9109 {
9110 h = sym_hashes[r_symndx - extsymoff];
9111
9112 /* Badly formatted input files can contain relocs that
9113 reference non-existant symbols. Check here so that
9114 we do not seg fault. */
9115 if (h == NULL)
9116 {
9117 char buffer [32];
9118
9119 sprintf_vma (buffer, rel->r_info);
9120 (*_bfd_error_handler)
9121 (_("error: %B contains a reloc (0x%s) for section %A "
9122 "that references a non-existent global symbol"),
9123 input_bfd, o, buffer);
9124 bfd_set_error (bfd_error_bad_value);
9125 return FALSE;
9126 }
9127
9128 while (h->root.type == bfd_link_hash_indirect
9129 || h->root.type == bfd_link_hash_warning)
9130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9131
9132 s_type = h->type;
9133
9134 ps = NULL;
9135 if (h->root.type == bfd_link_hash_defined
9136 || h->root.type == bfd_link_hash_defweak)
9137 ps = &h->root.u.def.section;
9138
9139 sym_name = h->root.root.string;
9140 }
9141 else
9142 {
9143 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9144
9145 s_type = ELF_ST_TYPE (sym->st_info);
9146 ps = &finfo->sections[r_symndx];
9147 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9148 sym, *ps);
9149 }
9150
9151 if (s_type == STT_RELC || s_type == STT_SRELC)
9152 {
9153 bfd_vma val;
9154 bfd_vma dot = (rel->r_offset
9155 + o->output_offset + o->output_section->vma);
9156 #ifdef DEBUG
9157 printf ("Encountered a complex symbol!");
9158 printf (" (input_bfd %s, section %s, reloc %ld\n",
9159 input_bfd->filename, o->name, rel - internal_relocs);
9160 printf (" symbol: idx %8.8lx, name %s\n",
9161 r_symndx, sym_name);
9162 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9163 (unsigned long) rel->r_info,
9164 (unsigned long) rel->r_offset);
9165 #endif
9166 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9167 isymbuf, locsymcount, s_type == STT_SRELC))
9168 return FALSE;
9169
9170 /* Symbol evaluated OK. Update to absolute value. */
9171 set_symbol_value (input_bfd, isymbuf, locsymcount,
9172 r_symndx, val);
9173 continue;
9174 }
9175
9176 if (action_discarded != -1 && ps != NULL)
9177 {
9178 /* Complain if the definition comes from a
9179 discarded section. */
9180 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9181 {
9182 BFD_ASSERT (r_symndx != 0);
9183 if (action_discarded & COMPLAIN)
9184 (*finfo->info->callbacks->einfo)
9185 (_("%X`%s' referenced in section `%A' of %B: "
9186 "defined in discarded section `%A' of %B\n"),
9187 sym_name, o, input_bfd, sec, sec->owner);
9188
9189 /* Try to do the best we can to support buggy old
9190 versions of gcc. Pretend that the symbol is
9191 really defined in the kept linkonce section.
9192 FIXME: This is quite broken. Modifying the
9193 symbol here means we will be changing all later
9194 uses of the symbol, not just in this section. */
9195 if (action_discarded & PRETEND)
9196 {
9197 asection *kept;
9198
9199 kept = _bfd_elf_check_kept_section (sec,
9200 finfo->info);
9201 if (kept != NULL)
9202 {
9203 *ps = kept;
9204 continue;
9205 }
9206 }
9207 }
9208 }
9209 }
9210
9211 /* Relocate the section by invoking a back end routine.
9212
9213 The back end routine is responsible for adjusting the
9214 section contents as necessary, and (if using Rela relocs
9215 and generating a relocatable output file) adjusting the
9216 reloc addend as necessary.
9217
9218 The back end routine does not have to worry about setting
9219 the reloc address or the reloc symbol index.
9220
9221 The back end routine is given a pointer to the swapped in
9222 internal symbols, and can access the hash table entries
9223 for the external symbols via elf_sym_hashes (input_bfd).
9224
9225 When generating relocatable output, the back end routine
9226 must handle STB_LOCAL/STT_SECTION symbols specially. The
9227 output symbol is going to be a section symbol
9228 corresponding to the output section, which will require
9229 the addend to be adjusted. */
9230
9231 ret = (*relocate_section) (output_bfd, finfo->info,
9232 input_bfd, o, contents,
9233 internal_relocs,
9234 isymbuf,
9235 finfo->sections);
9236 if (!ret)
9237 return FALSE;
9238
9239 if (ret == 2
9240 || finfo->info->relocatable
9241 || finfo->info->emitrelocations)
9242 {
9243 Elf_Internal_Rela *irela;
9244 Elf_Internal_Rela *irelaend;
9245 bfd_vma last_offset;
9246 struct elf_link_hash_entry **rel_hash;
9247 struct elf_link_hash_entry **rel_hash_list;
9248 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9249 unsigned int next_erel;
9250 bfd_boolean rela_normal;
9251
9252 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9253 rela_normal = (bed->rela_normal
9254 && (input_rel_hdr->sh_entsize
9255 == bed->s->sizeof_rela));
9256
9257 /* Adjust the reloc addresses and symbol indices. */
9258
9259 irela = internal_relocs;
9260 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9261 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9262 + elf_section_data (o->output_section)->rel_count
9263 + elf_section_data (o->output_section)->rel_count2);
9264 rel_hash_list = rel_hash;
9265 last_offset = o->output_offset;
9266 if (!finfo->info->relocatable)
9267 last_offset += o->output_section->vma;
9268 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9269 {
9270 unsigned long r_symndx;
9271 asection *sec;
9272 Elf_Internal_Sym sym;
9273
9274 if (next_erel == bed->s->int_rels_per_ext_rel)
9275 {
9276 rel_hash++;
9277 next_erel = 0;
9278 }
9279
9280 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9281 finfo->info, o,
9282 irela->r_offset);
9283 if (irela->r_offset >= (bfd_vma) -2)
9284 {
9285 /* This is a reloc for a deleted entry or somesuch.
9286 Turn it into an R_*_NONE reloc, at the same
9287 offset as the last reloc. elf_eh_frame.c and
9288 bfd_elf_discard_info rely on reloc offsets
9289 being ordered. */
9290 irela->r_offset = last_offset;
9291 irela->r_info = 0;
9292 irela->r_addend = 0;
9293 continue;
9294 }
9295
9296 irela->r_offset += o->output_offset;
9297
9298 /* Relocs in an executable have to be virtual addresses. */
9299 if (!finfo->info->relocatable)
9300 irela->r_offset += o->output_section->vma;
9301
9302 last_offset = irela->r_offset;
9303
9304 r_symndx = irela->r_info >> r_sym_shift;
9305 if (r_symndx == STN_UNDEF)
9306 continue;
9307
9308 if (r_symndx >= locsymcount
9309 || (elf_bad_symtab (input_bfd)
9310 && finfo->sections[r_symndx] == NULL))
9311 {
9312 struct elf_link_hash_entry *rh;
9313 unsigned long indx;
9314
9315 /* This is a reloc against a global symbol. We
9316 have not yet output all the local symbols, so
9317 we do not know the symbol index of any global
9318 symbol. We set the rel_hash entry for this
9319 reloc to point to the global hash table entry
9320 for this symbol. The symbol index is then
9321 set at the end of bfd_elf_final_link. */
9322 indx = r_symndx - extsymoff;
9323 rh = elf_sym_hashes (input_bfd)[indx];
9324 while (rh->root.type == bfd_link_hash_indirect
9325 || rh->root.type == bfd_link_hash_warning)
9326 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9327
9328 /* Setting the index to -2 tells
9329 elf_link_output_extsym that this symbol is
9330 used by a reloc. */
9331 BFD_ASSERT (rh->indx < 0);
9332 rh->indx = -2;
9333
9334 *rel_hash = rh;
9335
9336 continue;
9337 }
9338
9339 /* This is a reloc against a local symbol. */
9340
9341 *rel_hash = NULL;
9342 sym = isymbuf[r_symndx];
9343 sec = finfo->sections[r_symndx];
9344 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9345 {
9346 /* I suppose the backend ought to fill in the
9347 section of any STT_SECTION symbol against a
9348 processor specific section. */
9349 r_symndx = 0;
9350 if (bfd_is_abs_section (sec))
9351 ;
9352 else if (sec == NULL || sec->owner == NULL)
9353 {
9354 bfd_set_error (bfd_error_bad_value);
9355 return FALSE;
9356 }
9357 else
9358 {
9359 asection *osec = sec->output_section;
9360
9361 /* If we have discarded a section, the output
9362 section will be the absolute section. In
9363 case of discarded SEC_MERGE sections, use
9364 the kept section. relocate_section should
9365 have already handled discarded linkonce
9366 sections. */
9367 if (bfd_is_abs_section (osec)
9368 && sec->kept_section != NULL
9369 && sec->kept_section->output_section != NULL)
9370 {
9371 osec = sec->kept_section->output_section;
9372 irela->r_addend -= osec->vma;
9373 }
9374
9375 if (!bfd_is_abs_section (osec))
9376 {
9377 r_symndx = osec->target_index;
9378 if (r_symndx == 0)
9379 {
9380 struct elf_link_hash_table *htab;
9381 asection *oi;
9382
9383 htab = elf_hash_table (finfo->info);
9384 oi = htab->text_index_section;
9385 if ((osec->flags & SEC_READONLY) == 0
9386 && htab->data_index_section != NULL)
9387 oi = htab->data_index_section;
9388
9389 if (oi != NULL)
9390 {
9391 irela->r_addend += osec->vma - oi->vma;
9392 r_symndx = oi->target_index;
9393 }
9394 }
9395
9396 BFD_ASSERT (r_symndx != 0);
9397 }
9398 }
9399
9400 /* Adjust the addend according to where the
9401 section winds up in the output section. */
9402 if (rela_normal)
9403 irela->r_addend += sec->output_offset;
9404 }
9405 else
9406 {
9407 if (finfo->indices[r_symndx] == -1)
9408 {
9409 unsigned long shlink;
9410 const char *name;
9411 asection *osec;
9412
9413 if (finfo->info->strip == strip_all)
9414 {
9415 /* You can't do ld -r -s. */
9416 bfd_set_error (bfd_error_invalid_operation);
9417 return FALSE;
9418 }
9419
9420 /* This symbol was skipped earlier, but
9421 since it is needed by a reloc, we
9422 must output it now. */
9423 shlink = symtab_hdr->sh_link;
9424 name = (bfd_elf_string_from_elf_section
9425 (input_bfd, shlink, sym.st_name));
9426 if (name == NULL)
9427 return FALSE;
9428
9429 osec = sec->output_section;
9430 sym.st_shndx =
9431 _bfd_elf_section_from_bfd_section (output_bfd,
9432 osec);
9433 if (sym.st_shndx == SHN_BAD)
9434 return FALSE;
9435
9436 sym.st_value += sec->output_offset;
9437 if (! finfo->info->relocatable)
9438 {
9439 sym.st_value += osec->vma;
9440 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9441 {
9442 /* STT_TLS symbols are relative to PT_TLS
9443 segment base. */
9444 BFD_ASSERT (elf_hash_table (finfo->info)
9445 ->tls_sec != NULL);
9446 sym.st_value -= (elf_hash_table (finfo->info)
9447 ->tls_sec->vma);
9448 }
9449 }
9450
9451 finfo->indices[r_symndx]
9452 = bfd_get_symcount (output_bfd);
9453
9454 if (! elf_link_output_sym (finfo, name, &sym, sec,
9455 NULL))
9456 return FALSE;
9457 }
9458
9459 r_symndx = finfo->indices[r_symndx];
9460 }
9461
9462 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9463 | (irela->r_info & r_type_mask));
9464 }
9465
9466 /* Swap out the relocs. */
9467 if (input_rel_hdr->sh_size != 0
9468 && !bed->elf_backend_emit_relocs (output_bfd, o,
9469 input_rel_hdr,
9470 internal_relocs,
9471 rel_hash_list))
9472 return FALSE;
9473
9474 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9475 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9476 {
9477 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9478 * bed->s->int_rels_per_ext_rel);
9479 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9480 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9481 input_rel_hdr2,
9482 internal_relocs,
9483 rel_hash_list))
9484 return FALSE;
9485 }
9486 }
9487 }
9488
9489 /* Write out the modified section contents. */
9490 if (bed->elf_backend_write_section
9491 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9492 contents))
9493 {
9494 /* Section written out. */
9495 }
9496 else switch (o->sec_info_type)
9497 {
9498 case ELF_INFO_TYPE_STABS:
9499 if (! (_bfd_write_section_stabs
9500 (output_bfd,
9501 &elf_hash_table (finfo->info)->stab_info,
9502 o, &elf_section_data (o)->sec_info, contents)))
9503 return FALSE;
9504 break;
9505 case ELF_INFO_TYPE_MERGE:
9506 if (! _bfd_write_merged_section (output_bfd, o,
9507 elf_section_data (o)->sec_info))
9508 return FALSE;
9509 break;
9510 case ELF_INFO_TYPE_EH_FRAME:
9511 {
9512 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9513 o, contents))
9514 return FALSE;
9515 }
9516 break;
9517 default:
9518 {
9519 if (! (o->flags & SEC_EXCLUDE)
9520 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9521 && ! bfd_set_section_contents (output_bfd, o->output_section,
9522 contents,
9523 (file_ptr) o->output_offset,
9524 o->size))
9525 return FALSE;
9526 }
9527 break;
9528 }
9529 }
9530
9531 return TRUE;
9532 }
9533
9534 /* Generate a reloc when linking an ELF file. This is a reloc
9535 requested by the linker, and does not come from any input file. This
9536 is used to build constructor and destructor tables when linking
9537 with -Ur. */
9538
9539 static bfd_boolean
9540 elf_reloc_link_order (bfd *output_bfd,
9541 struct bfd_link_info *info,
9542 asection *output_section,
9543 struct bfd_link_order *link_order)
9544 {
9545 reloc_howto_type *howto;
9546 long indx;
9547 bfd_vma offset;
9548 bfd_vma addend;
9549 struct elf_link_hash_entry **rel_hash_ptr;
9550 Elf_Internal_Shdr *rel_hdr;
9551 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9552 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9553 bfd_byte *erel;
9554 unsigned int i;
9555
9556 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9557 if (howto == NULL)
9558 {
9559 bfd_set_error (bfd_error_bad_value);
9560 return FALSE;
9561 }
9562
9563 addend = link_order->u.reloc.p->addend;
9564
9565 /* Figure out the symbol index. */
9566 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9567 + elf_section_data (output_section)->rel_count
9568 + elf_section_data (output_section)->rel_count2);
9569 if (link_order->type == bfd_section_reloc_link_order)
9570 {
9571 indx = link_order->u.reloc.p->u.section->target_index;
9572 BFD_ASSERT (indx != 0);
9573 *rel_hash_ptr = NULL;
9574 }
9575 else
9576 {
9577 struct elf_link_hash_entry *h;
9578
9579 /* Treat a reloc against a defined symbol as though it were
9580 actually against the section. */
9581 h = ((struct elf_link_hash_entry *)
9582 bfd_wrapped_link_hash_lookup (output_bfd, info,
9583 link_order->u.reloc.p->u.name,
9584 FALSE, FALSE, TRUE));
9585 if (h != NULL
9586 && (h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak))
9588 {
9589 asection *section;
9590
9591 section = h->root.u.def.section;
9592 indx = section->output_section->target_index;
9593 *rel_hash_ptr = NULL;
9594 /* It seems that we ought to add the symbol value to the
9595 addend here, but in practice it has already been added
9596 because it was passed to constructor_callback. */
9597 addend += section->output_section->vma + section->output_offset;
9598 }
9599 else if (h != NULL)
9600 {
9601 /* Setting the index to -2 tells elf_link_output_extsym that
9602 this symbol is used by a reloc. */
9603 h->indx = -2;
9604 *rel_hash_ptr = h;
9605 indx = 0;
9606 }
9607 else
9608 {
9609 if (! ((*info->callbacks->unattached_reloc)
9610 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9611 return FALSE;
9612 indx = 0;
9613 }
9614 }
9615
9616 /* If this is an inplace reloc, we must write the addend into the
9617 object file. */
9618 if (howto->partial_inplace && addend != 0)
9619 {
9620 bfd_size_type size;
9621 bfd_reloc_status_type rstat;
9622 bfd_byte *buf;
9623 bfd_boolean ok;
9624 const char *sym_name;
9625
9626 size = bfd_get_reloc_size (howto);
9627 buf = bfd_zmalloc (size);
9628 if (buf == NULL)
9629 return FALSE;
9630 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9631 switch (rstat)
9632 {
9633 case bfd_reloc_ok:
9634 break;
9635
9636 default:
9637 case bfd_reloc_outofrange:
9638 abort ();
9639
9640 case bfd_reloc_overflow:
9641 if (link_order->type == bfd_section_reloc_link_order)
9642 sym_name = bfd_section_name (output_bfd,
9643 link_order->u.reloc.p->u.section);
9644 else
9645 sym_name = link_order->u.reloc.p->u.name;
9646 if (! ((*info->callbacks->reloc_overflow)
9647 (info, NULL, sym_name, howto->name, addend, NULL,
9648 NULL, (bfd_vma) 0)))
9649 {
9650 free (buf);
9651 return FALSE;
9652 }
9653 break;
9654 }
9655 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9656 link_order->offset, size);
9657 free (buf);
9658 if (! ok)
9659 return FALSE;
9660 }
9661
9662 /* The address of a reloc is relative to the section in a
9663 relocatable file, and is a virtual address in an executable
9664 file. */
9665 offset = link_order->offset;
9666 if (! info->relocatable)
9667 offset += output_section->vma;
9668
9669 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9670 {
9671 irel[i].r_offset = offset;
9672 irel[i].r_info = 0;
9673 irel[i].r_addend = 0;
9674 }
9675 if (bed->s->arch_size == 32)
9676 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9677 else
9678 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9679
9680 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9681 erel = rel_hdr->contents;
9682 if (rel_hdr->sh_type == SHT_REL)
9683 {
9684 erel += (elf_section_data (output_section)->rel_count
9685 * bed->s->sizeof_rel);
9686 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9687 }
9688 else
9689 {
9690 irel[0].r_addend = addend;
9691 erel += (elf_section_data (output_section)->rel_count
9692 * bed->s->sizeof_rela);
9693 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9694 }
9695
9696 ++elf_section_data (output_section)->rel_count;
9697
9698 return TRUE;
9699 }
9700
9701
9702 /* Get the output vma of the section pointed to by the sh_link field. */
9703
9704 static bfd_vma
9705 elf_get_linked_section_vma (struct bfd_link_order *p)
9706 {
9707 Elf_Internal_Shdr **elf_shdrp;
9708 asection *s;
9709 int elfsec;
9710
9711 s = p->u.indirect.section;
9712 elf_shdrp = elf_elfsections (s->owner);
9713 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9714 elfsec = elf_shdrp[elfsec]->sh_link;
9715 /* PR 290:
9716 The Intel C compiler generates SHT_IA_64_UNWIND with
9717 SHF_LINK_ORDER. But it doesn't set the sh_link or
9718 sh_info fields. Hence we could get the situation
9719 where elfsec is 0. */
9720 if (elfsec == 0)
9721 {
9722 const struct elf_backend_data *bed
9723 = get_elf_backend_data (s->owner);
9724 if (bed->link_order_error_handler)
9725 bed->link_order_error_handler
9726 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9727 return 0;
9728 }
9729 else
9730 {
9731 s = elf_shdrp[elfsec]->bfd_section;
9732 return s->output_section->vma + s->output_offset;
9733 }
9734 }
9735
9736
9737 /* Compare two sections based on the locations of the sections they are
9738 linked to. Used by elf_fixup_link_order. */
9739
9740 static int
9741 compare_link_order (const void * a, const void * b)
9742 {
9743 bfd_vma apos;
9744 bfd_vma bpos;
9745
9746 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9747 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9748 if (apos < bpos)
9749 return -1;
9750 return apos > bpos;
9751 }
9752
9753
9754 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9755 order as their linked sections. Returns false if this could not be done
9756 because an output section includes both ordered and unordered
9757 sections. Ideally we'd do this in the linker proper. */
9758
9759 static bfd_boolean
9760 elf_fixup_link_order (bfd *abfd, asection *o)
9761 {
9762 int seen_linkorder;
9763 int seen_other;
9764 int n;
9765 struct bfd_link_order *p;
9766 bfd *sub;
9767 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9768 unsigned elfsec;
9769 struct bfd_link_order **sections;
9770 asection *s, *other_sec, *linkorder_sec;
9771 bfd_vma offset;
9772
9773 other_sec = NULL;
9774 linkorder_sec = NULL;
9775 seen_other = 0;
9776 seen_linkorder = 0;
9777 for (p = o->map_head.link_order; p != NULL; p = p->next)
9778 {
9779 if (p->type == bfd_indirect_link_order)
9780 {
9781 s = p->u.indirect.section;
9782 sub = s->owner;
9783 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9784 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9785 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9786 && elfsec < elf_numsections (sub)
9787 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9788 {
9789 seen_linkorder++;
9790 linkorder_sec = s;
9791 }
9792 else
9793 {
9794 seen_other++;
9795 other_sec = s;
9796 }
9797 }
9798 else
9799 seen_other++;
9800
9801 if (seen_other && seen_linkorder)
9802 {
9803 if (other_sec && linkorder_sec)
9804 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9805 o, linkorder_sec,
9806 linkorder_sec->owner, other_sec,
9807 other_sec->owner);
9808 else
9809 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9810 o);
9811 bfd_set_error (bfd_error_bad_value);
9812 return FALSE;
9813 }
9814 }
9815
9816 if (!seen_linkorder)
9817 return TRUE;
9818
9819 sections = (struct bfd_link_order **)
9820 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9821 if (sections == NULL)
9822 return FALSE;
9823 seen_linkorder = 0;
9824
9825 for (p = o->map_head.link_order; p != NULL; p = p->next)
9826 {
9827 sections[seen_linkorder++] = p;
9828 }
9829 /* Sort the input sections in the order of their linked section. */
9830 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9831 compare_link_order);
9832
9833 /* Change the offsets of the sections. */
9834 offset = 0;
9835 for (n = 0; n < seen_linkorder; n++)
9836 {
9837 s = sections[n]->u.indirect.section;
9838 offset &= ~(bfd_vma) 0 << s->alignment_power;
9839 s->output_offset = offset;
9840 sections[n]->offset = offset;
9841 offset += sections[n]->size;
9842 }
9843
9844 return TRUE;
9845 }
9846
9847
9848 /* Do the final step of an ELF link. */
9849
9850 bfd_boolean
9851 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9852 {
9853 bfd_boolean dynamic;
9854 bfd_boolean emit_relocs;
9855 bfd *dynobj;
9856 struct elf_final_link_info finfo;
9857 register asection *o;
9858 register struct bfd_link_order *p;
9859 register bfd *sub;
9860 bfd_size_type max_contents_size;
9861 bfd_size_type max_external_reloc_size;
9862 bfd_size_type max_internal_reloc_count;
9863 bfd_size_type max_sym_count;
9864 bfd_size_type max_sym_shndx_count;
9865 file_ptr off;
9866 Elf_Internal_Sym elfsym;
9867 unsigned int i;
9868 Elf_Internal_Shdr *symtab_hdr;
9869 Elf_Internal_Shdr *symtab_shndx_hdr;
9870 Elf_Internal_Shdr *symstrtab_hdr;
9871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9872 struct elf_outext_info eoinfo;
9873 bfd_boolean merged;
9874 size_t relativecount = 0;
9875 asection *reldyn = 0;
9876 bfd_size_type amt;
9877 asection *attr_section = NULL;
9878 bfd_vma attr_size = 0;
9879 const char *std_attrs_section;
9880
9881 if (! is_elf_hash_table (info->hash))
9882 return FALSE;
9883
9884 if (info->shared)
9885 abfd->flags |= DYNAMIC;
9886
9887 dynamic = elf_hash_table (info)->dynamic_sections_created;
9888 dynobj = elf_hash_table (info)->dynobj;
9889
9890 emit_relocs = (info->relocatable
9891 || info->emitrelocations);
9892
9893 finfo.info = info;
9894 finfo.output_bfd = abfd;
9895 finfo.symstrtab = _bfd_elf_stringtab_init ();
9896 if (finfo.symstrtab == NULL)
9897 return FALSE;
9898
9899 if (! dynamic)
9900 {
9901 finfo.dynsym_sec = NULL;
9902 finfo.hash_sec = NULL;
9903 finfo.symver_sec = NULL;
9904 }
9905 else
9906 {
9907 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9908 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9909 BFD_ASSERT (finfo.dynsym_sec != NULL);
9910 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9911 /* Note that it is OK if symver_sec is NULL. */
9912 }
9913
9914 finfo.contents = NULL;
9915 finfo.external_relocs = NULL;
9916 finfo.internal_relocs = NULL;
9917 finfo.external_syms = NULL;
9918 finfo.locsym_shndx = NULL;
9919 finfo.internal_syms = NULL;
9920 finfo.indices = NULL;
9921 finfo.sections = NULL;
9922 finfo.symbuf = NULL;
9923 finfo.symshndxbuf = NULL;
9924 finfo.symbuf_count = 0;
9925 finfo.shndxbuf_size = 0;
9926
9927 /* The object attributes have been merged. Remove the input
9928 sections from the link, and set the contents of the output
9929 secton. */
9930 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9931 for (o = abfd->sections; o != NULL; o = o->next)
9932 {
9933 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9934 || strcmp (o->name, ".gnu.attributes") == 0)
9935 {
9936 for (p = o->map_head.link_order; p != NULL; p = p->next)
9937 {
9938 asection *input_section;
9939
9940 if (p->type != bfd_indirect_link_order)
9941 continue;
9942 input_section = p->u.indirect.section;
9943 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9944 elf_link_input_bfd ignores this section. */
9945 input_section->flags &= ~SEC_HAS_CONTENTS;
9946 }
9947
9948 attr_size = bfd_elf_obj_attr_size (abfd);
9949 if (attr_size)
9950 {
9951 bfd_set_section_size (abfd, o, attr_size);
9952 attr_section = o;
9953 /* Skip this section later on. */
9954 o->map_head.link_order = NULL;
9955 }
9956 else
9957 o->flags |= SEC_EXCLUDE;
9958 }
9959 }
9960
9961 /* Count up the number of relocations we will output for each output
9962 section, so that we know the sizes of the reloc sections. We
9963 also figure out some maximum sizes. */
9964 max_contents_size = 0;
9965 max_external_reloc_size = 0;
9966 max_internal_reloc_count = 0;
9967 max_sym_count = 0;
9968 max_sym_shndx_count = 0;
9969 merged = FALSE;
9970 for (o = abfd->sections; o != NULL; o = o->next)
9971 {
9972 struct bfd_elf_section_data *esdo = elf_section_data (o);
9973 o->reloc_count = 0;
9974
9975 for (p = o->map_head.link_order; p != NULL; p = p->next)
9976 {
9977 unsigned int reloc_count = 0;
9978 struct bfd_elf_section_data *esdi = NULL;
9979 unsigned int *rel_count1;
9980
9981 if (p->type == bfd_section_reloc_link_order
9982 || p->type == bfd_symbol_reloc_link_order)
9983 reloc_count = 1;
9984 else if (p->type == bfd_indirect_link_order)
9985 {
9986 asection *sec;
9987
9988 sec = p->u.indirect.section;
9989 esdi = elf_section_data (sec);
9990
9991 /* Mark all sections which are to be included in the
9992 link. This will normally be every section. We need
9993 to do this so that we can identify any sections which
9994 the linker has decided to not include. */
9995 sec->linker_mark = TRUE;
9996
9997 if (sec->flags & SEC_MERGE)
9998 merged = TRUE;
9999
10000 if (info->relocatable || info->emitrelocations)
10001 reloc_count = sec->reloc_count;
10002 else if (bed->elf_backend_count_relocs)
10003 {
10004 Elf_Internal_Rela * relocs;
10005
10006 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10007 NULL, NULL,
10008 info->keep_memory);
10009
10010 if (relocs != NULL)
10011 {
10012 reloc_count
10013 = (*bed->elf_backend_count_relocs) (sec, relocs);
10014
10015 if (elf_section_data (sec)->relocs != relocs)
10016 free (relocs);
10017 }
10018 }
10019
10020 if (sec->rawsize > max_contents_size)
10021 max_contents_size = sec->rawsize;
10022 if (sec->size > max_contents_size)
10023 max_contents_size = sec->size;
10024
10025 /* We are interested in just local symbols, not all
10026 symbols. */
10027 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10028 && (sec->owner->flags & DYNAMIC) == 0)
10029 {
10030 size_t sym_count;
10031
10032 if (elf_bad_symtab (sec->owner))
10033 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10034 / bed->s->sizeof_sym);
10035 else
10036 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10037
10038 if (sym_count > max_sym_count)
10039 max_sym_count = sym_count;
10040
10041 if (sym_count > max_sym_shndx_count
10042 && elf_symtab_shndx (sec->owner) != 0)
10043 max_sym_shndx_count = sym_count;
10044
10045 if ((sec->flags & SEC_RELOC) != 0)
10046 {
10047 size_t ext_size;
10048
10049 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10050 if (ext_size > max_external_reloc_size)
10051 max_external_reloc_size = ext_size;
10052 if (sec->reloc_count > max_internal_reloc_count)
10053 max_internal_reloc_count = sec->reloc_count;
10054 }
10055 }
10056 }
10057
10058 if (reloc_count == 0)
10059 continue;
10060
10061 o->reloc_count += reloc_count;
10062
10063 /* MIPS may have a mix of REL and RELA relocs on sections.
10064 To support this curious ABI we keep reloc counts in
10065 elf_section_data too. We must be careful to add the
10066 relocations from the input section to the right output
10067 count. FIXME: Get rid of one count. We have
10068 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10069 rel_count1 = &esdo->rel_count;
10070 if (esdi != NULL)
10071 {
10072 bfd_boolean same_size;
10073 bfd_size_type entsize1;
10074
10075 entsize1 = esdi->rel_hdr.sh_entsize;
10076 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10077 || entsize1 == bed->s->sizeof_rela);
10078 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10079
10080 if (!same_size)
10081 rel_count1 = &esdo->rel_count2;
10082
10083 if (esdi->rel_hdr2 != NULL)
10084 {
10085 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10086 unsigned int alt_count;
10087 unsigned int *rel_count2;
10088
10089 BFD_ASSERT (entsize2 != entsize1
10090 && (entsize2 == bed->s->sizeof_rel
10091 || entsize2 == bed->s->sizeof_rela));
10092
10093 rel_count2 = &esdo->rel_count2;
10094 if (!same_size)
10095 rel_count2 = &esdo->rel_count;
10096
10097 /* The following is probably too simplistic if the
10098 backend counts output relocs unusually. */
10099 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10100 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10101 *rel_count2 += alt_count;
10102 reloc_count -= alt_count;
10103 }
10104 }
10105 *rel_count1 += reloc_count;
10106 }
10107
10108 if (o->reloc_count > 0)
10109 o->flags |= SEC_RELOC;
10110 else
10111 {
10112 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10113 set it (this is probably a bug) and if it is set
10114 assign_section_numbers will create a reloc section. */
10115 o->flags &=~ SEC_RELOC;
10116 }
10117
10118 /* If the SEC_ALLOC flag is not set, force the section VMA to
10119 zero. This is done in elf_fake_sections as well, but forcing
10120 the VMA to 0 here will ensure that relocs against these
10121 sections are handled correctly. */
10122 if ((o->flags & SEC_ALLOC) == 0
10123 && ! o->user_set_vma)
10124 o->vma = 0;
10125 }
10126
10127 if (! info->relocatable && merged)
10128 elf_link_hash_traverse (elf_hash_table (info),
10129 _bfd_elf_link_sec_merge_syms, abfd);
10130
10131 /* Figure out the file positions for everything but the symbol table
10132 and the relocs. We set symcount to force assign_section_numbers
10133 to create a symbol table. */
10134 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10135 BFD_ASSERT (! abfd->output_has_begun);
10136 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10137 goto error_return;
10138
10139 /* Set sizes, and assign file positions for reloc sections. */
10140 for (o = abfd->sections; o != NULL; o = o->next)
10141 {
10142 if ((o->flags & SEC_RELOC) != 0)
10143 {
10144 if (!(_bfd_elf_link_size_reloc_section
10145 (abfd, &elf_section_data (o)->rel_hdr, o)))
10146 goto error_return;
10147
10148 if (elf_section_data (o)->rel_hdr2
10149 && !(_bfd_elf_link_size_reloc_section
10150 (abfd, elf_section_data (o)->rel_hdr2, o)))
10151 goto error_return;
10152 }
10153
10154 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10155 to count upwards while actually outputting the relocations. */
10156 elf_section_data (o)->rel_count = 0;
10157 elf_section_data (o)->rel_count2 = 0;
10158 }
10159
10160 _bfd_elf_assign_file_positions_for_relocs (abfd);
10161
10162 /* We have now assigned file positions for all the sections except
10163 .symtab and .strtab. We start the .symtab section at the current
10164 file position, and write directly to it. We build the .strtab
10165 section in memory. */
10166 bfd_get_symcount (abfd) = 0;
10167 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10168 /* sh_name is set in prep_headers. */
10169 symtab_hdr->sh_type = SHT_SYMTAB;
10170 /* sh_flags, sh_addr and sh_size all start off zero. */
10171 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10172 /* sh_link is set in assign_section_numbers. */
10173 /* sh_info is set below. */
10174 /* sh_offset is set just below. */
10175 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10176
10177 off = elf_tdata (abfd)->next_file_pos;
10178 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10179
10180 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10181 incorrect. We do not yet know the size of the .symtab section.
10182 We correct next_file_pos below, after we do know the size. */
10183
10184 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10185 continuously seeking to the right position in the file. */
10186 if (! info->keep_memory || max_sym_count < 20)
10187 finfo.symbuf_size = 20;
10188 else
10189 finfo.symbuf_size = max_sym_count;
10190 amt = finfo.symbuf_size;
10191 amt *= bed->s->sizeof_sym;
10192 finfo.symbuf = bfd_malloc (amt);
10193 if (finfo.symbuf == NULL)
10194 goto error_return;
10195 if (elf_numsections (abfd) > SHN_LORESERVE)
10196 {
10197 /* Wild guess at number of output symbols. realloc'd as needed. */
10198 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10199 finfo.shndxbuf_size = amt;
10200 amt *= sizeof (Elf_External_Sym_Shndx);
10201 finfo.symshndxbuf = bfd_zmalloc (amt);
10202 if (finfo.symshndxbuf == NULL)
10203 goto error_return;
10204 }
10205
10206 /* Start writing out the symbol table. The first symbol is always a
10207 dummy symbol. */
10208 if (info->strip != strip_all
10209 || emit_relocs)
10210 {
10211 elfsym.st_value = 0;
10212 elfsym.st_size = 0;
10213 elfsym.st_info = 0;
10214 elfsym.st_other = 0;
10215 elfsym.st_shndx = SHN_UNDEF;
10216 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10217 NULL))
10218 goto error_return;
10219 }
10220
10221 /* Output a symbol for each section. We output these even if we are
10222 discarding local symbols, since they are used for relocs. These
10223 symbols have no names. We store the index of each one in the
10224 index field of the section, so that we can find it again when
10225 outputting relocs. */
10226 if (info->strip != strip_all
10227 || emit_relocs)
10228 {
10229 elfsym.st_size = 0;
10230 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10231 elfsym.st_other = 0;
10232 elfsym.st_value = 0;
10233 for (i = 1; i < elf_numsections (abfd); i++)
10234 {
10235 o = bfd_section_from_elf_index (abfd, i);
10236 if (o != NULL)
10237 {
10238 o->target_index = bfd_get_symcount (abfd);
10239 elfsym.st_shndx = i;
10240 if (!info->relocatable)
10241 elfsym.st_value = o->vma;
10242 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10243 goto error_return;
10244 }
10245 if (i == SHN_LORESERVE - 1)
10246 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10247 }
10248 }
10249
10250 /* Allocate some memory to hold information read in from the input
10251 files. */
10252 if (max_contents_size != 0)
10253 {
10254 finfo.contents = bfd_malloc (max_contents_size);
10255 if (finfo.contents == NULL)
10256 goto error_return;
10257 }
10258
10259 if (max_external_reloc_size != 0)
10260 {
10261 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10262 if (finfo.external_relocs == NULL)
10263 goto error_return;
10264 }
10265
10266 if (max_internal_reloc_count != 0)
10267 {
10268 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10269 amt *= sizeof (Elf_Internal_Rela);
10270 finfo.internal_relocs = bfd_malloc (amt);
10271 if (finfo.internal_relocs == NULL)
10272 goto error_return;
10273 }
10274
10275 if (max_sym_count != 0)
10276 {
10277 amt = max_sym_count * bed->s->sizeof_sym;
10278 finfo.external_syms = bfd_malloc (amt);
10279 if (finfo.external_syms == NULL)
10280 goto error_return;
10281
10282 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10283 finfo.internal_syms = bfd_malloc (amt);
10284 if (finfo.internal_syms == NULL)
10285 goto error_return;
10286
10287 amt = max_sym_count * sizeof (long);
10288 finfo.indices = bfd_malloc (amt);
10289 if (finfo.indices == NULL)
10290 goto error_return;
10291
10292 amt = max_sym_count * sizeof (asection *);
10293 finfo.sections = bfd_malloc (amt);
10294 if (finfo.sections == NULL)
10295 goto error_return;
10296 }
10297
10298 if (max_sym_shndx_count != 0)
10299 {
10300 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10301 finfo.locsym_shndx = bfd_malloc (amt);
10302 if (finfo.locsym_shndx == NULL)
10303 goto error_return;
10304 }
10305
10306 if (elf_hash_table (info)->tls_sec)
10307 {
10308 bfd_vma base, end = 0;
10309 asection *sec;
10310
10311 for (sec = elf_hash_table (info)->tls_sec;
10312 sec && (sec->flags & SEC_THREAD_LOCAL);
10313 sec = sec->next)
10314 {
10315 bfd_size_type size = sec->size;
10316
10317 if (size == 0
10318 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10319 {
10320 struct bfd_link_order *o = sec->map_tail.link_order;
10321 if (o != NULL)
10322 size = o->offset + o->size;
10323 }
10324 end = sec->vma + size;
10325 }
10326 base = elf_hash_table (info)->tls_sec->vma;
10327 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10328 elf_hash_table (info)->tls_size = end - base;
10329 }
10330
10331 /* Reorder SHF_LINK_ORDER sections. */
10332 for (o = abfd->sections; o != NULL; o = o->next)
10333 {
10334 if (!elf_fixup_link_order (abfd, o))
10335 return FALSE;
10336 }
10337
10338 /* Since ELF permits relocations to be against local symbols, we
10339 must have the local symbols available when we do the relocations.
10340 Since we would rather only read the local symbols once, and we
10341 would rather not keep them in memory, we handle all the
10342 relocations for a single input file at the same time.
10343
10344 Unfortunately, there is no way to know the total number of local
10345 symbols until we have seen all of them, and the local symbol
10346 indices precede the global symbol indices. This means that when
10347 we are generating relocatable output, and we see a reloc against
10348 a global symbol, we can not know the symbol index until we have
10349 finished examining all the local symbols to see which ones we are
10350 going to output. To deal with this, we keep the relocations in
10351 memory, and don't output them until the end of the link. This is
10352 an unfortunate waste of memory, but I don't see a good way around
10353 it. Fortunately, it only happens when performing a relocatable
10354 link, which is not the common case. FIXME: If keep_memory is set
10355 we could write the relocs out and then read them again; I don't
10356 know how bad the memory loss will be. */
10357
10358 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10359 sub->output_has_begun = FALSE;
10360 for (o = abfd->sections; o != NULL; o = o->next)
10361 {
10362 for (p = o->map_head.link_order; p != NULL; p = p->next)
10363 {
10364 if (p->type == bfd_indirect_link_order
10365 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10366 == bfd_target_elf_flavour)
10367 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10368 {
10369 if (! sub->output_has_begun)
10370 {
10371 if (! elf_link_input_bfd (&finfo, sub))
10372 goto error_return;
10373 sub->output_has_begun = TRUE;
10374 }
10375 }
10376 else if (p->type == bfd_section_reloc_link_order
10377 || p->type == bfd_symbol_reloc_link_order)
10378 {
10379 if (! elf_reloc_link_order (abfd, info, o, p))
10380 goto error_return;
10381 }
10382 else
10383 {
10384 if (! _bfd_default_link_order (abfd, info, o, p))
10385 goto error_return;
10386 }
10387 }
10388 }
10389
10390 /* Free symbol buffer if needed. */
10391 if (!info->reduce_memory_overheads)
10392 {
10393 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10394 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10395 && elf_tdata (sub)->symbuf)
10396 {
10397 free (elf_tdata (sub)->symbuf);
10398 elf_tdata (sub)->symbuf = NULL;
10399 }
10400 }
10401
10402 /* Output any global symbols that got converted to local in a
10403 version script or due to symbol visibility. We do this in a
10404 separate step since ELF requires all local symbols to appear
10405 prior to any global symbols. FIXME: We should only do this if
10406 some global symbols were, in fact, converted to become local.
10407 FIXME: Will this work correctly with the Irix 5 linker? */
10408 eoinfo.failed = FALSE;
10409 eoinfo.finfo = &finfo;
10410 eoinfo.localsyms = TRUE;
10411 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10412 &eoinfo);
10413 if (eoinfo.failed)
10414 return FALSE;
10415
10416 /* If backend needs to output some local symbols not present in the hash
10417 table, do it now. */
10418 if (bed->elf_backend_output_arch_local_syms)
10419 {
10420 typedef bfd_boolean (*out_sym_func)
10421 (void *, const char *, Elf_Internal_Sym *, asection *,
10422 struct elf_link_hash_entry *);
10423
10424 if (! ((*bed->elf_backend_output_arch_local_syms)
10425 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10426 return FALSE;
10427 }
10428
10429 /* That wrote out all the local symbols. Finish up the symbol table
10430 with the global symbols. Even if we want to strip everything we
10431 can, we still need to deal with those global symbols that got
10432 converted to local in a version script. */
10433
10434 /* The sh_info field records the index of the first non local symbol. */
10435 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10436
10437 if (dynamic
10438 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10439 {
10440 Elf_Internal_Sym sym;
10441 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10442 long last_local = 0;
10443
10444 /* Write out the section symbols for the output sections. */
10445 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10446 {
10447 asection *s;
10448
10449 sym.st_size = 0;
10450 sym.st_name = 0;
10451 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10452 sym.st_other = 0;
10453
10454 for (s = abfd->sections; s != NULL; s = s->next)
10455 {
10456 int indx;
10457 bfd_byte *dest;
10458 long dynindx;
10459
10460 dynindx = elf_section_data (s)->dynindx;
10461 if (dynindx <= 0)
10462 continue;
10463 indx = elf_section_data (s)->this_idx;
10464 BFD_ASSERT (indx > 0);
10465 sym.st_shndx = indx;
10466 if (! check_dynsym (abfd, &sym))
10467 return FALSE;
10468 sym.st_value = s->vma;
10469 dest = dynsym + dynindx * bed->s->sizeof_sym;
10470 if (last_local < dynindx)
10471 last_local = dynindx;
10472 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10473 }
10474 }
10475
10476 /* Write out the local dynsyms. */
10477 if (elf_hash_table (info)->dynlocal)
10478 {
10479 struct elf_link_local_dynamic_entry *e;
10480 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10481 {
10482 asection *s;
10483 bfd_byte *dest;
10484
10485 sym.st_size = e->isym.st_size;
10486 sym.st_other = e->isym.st_other;
10487
10488 /* Copy the internal symbol as is.
10489 Note that we saved a word of storage and overwrote
10490 the original st_name with the dynstr_index. */
10491 sym = e->isym;
10492
10493 if (e->isym.st_shndx != SHN_UNDEF
10494 && (e->isym.st_shndx < SHN_LORESERVE
10495 || e->isym.st_shndx > SHN_HIRESERVE))
10496 {
10497 s = bfd_section_from_elf_index (e->input_bfd,
10498 e->isym.st_shndx);
10499
10500 sym.st_shndx =
10501 elf_section_data (s->output_section)->this_idx;
10502 if (! check_dynsym (abfd, &sym))
10503 return FALSE;
10504 sym.st_value = (s->output_section->vma
10505 + s->output_offset
10506 + e->isym.st_value);
10507 }
10508
10509 if (last_local < e->dynindx)
10510 last_local = e->dynindx;
10511
10512 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10513 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10514 }
10515 }
10516
10517 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10518 last_local + 1;
10519 }
10520
10521 /* We get the global symbols from the hash table. */
10522 eoinfo.failed = FALSE;
10523 eoinfo.localsyms = FALSE;
10524 eoinfo.finfo = &finfo;
10525 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10526 &eoinfo);
10527 if (eoinfo.failed)
10528 return FALSE;
10529
10530 /* If backend needs to output some symbols not present in the hash
10531 table, do it now. */
10532 if (bed->elf_backend_output_arch_syms)
10533 {
10534 typedef bfd_boolean (*out_sym_func)
10535 (void *, const char *, Elf_Internal_Sym *, asection *,
10536 struct elf_link_hash_entry *);
10537
10538 if (! ((*bed->elf_backend_output_arch_syms)
10539 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10540 return FALSE;
10541 }
10542
10543 /* Flush all symbols to the file. */
10544 if (! elf_link_flush_output_syms (&finfo, bed))
10545 return FALSE;
10546
10547 /* Now we know the size of the symtab section. */
10548 off += symtab_hdr->sh_size;
10549
10550 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10551 if (symtab_shndx_hdr->sh_name != 0)
10552 {
10553 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10554 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10555 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10556 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10557 symtab_shndx_hdr->sh_size = amt;
10558
10559 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10560 off, TRUE);
10561
10562 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10563 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10564 return FALSE;
10565 }
10566
10567
10568 /* Finish up and write out the symbol string table (.strtab)
10569 section. */
10570 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10571 /* sh_name was set in prep_headers. */
10572 symstrtab_hdr->sh_type = SHT_STRTAB;
10573 symstrtab_hdr->sh_flags = 0;
10574 symstrtab_hdr->sh_addr = 0;
10575 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10576 symstrtab_hdr->sh_entsize = 0;
10577 symstrtab_hdr->sh_link = 0;
10578 symstrtab_hdr->sh_info = 0;
10579 /* sh_offset is set just below. */
10580 symstrtab_hdr->sh_addralign = 1;
10581
10582 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10583 elf_tdata (abfd)->next_file_pos = off;
10584
10585 if (bfd_get_symcount (abfd) > 0)
10586 {
10587 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10588 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10589 return FALSE;
10590 }
10591
10592 /* Adjust the relocs to have the correct symbol indices. */
10593 for (o = abfd->sections; o != NULL; o = o->next)
10594 {
10595 if ((o->flags & SEC_RELOC) == 0)
10596 continue;
10597
10598 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10599 elf_section_data (o)->rel_count,
10600 elf_section_data (o)->rel_hashes);
10601 if (elf_section_data (o)->rel_hdr2 != NULL)
10602 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10603 elf_section_data (o)->rel_count2,
10604 (elf_section_data (o)->rel_hashes
10605 + elf_section_data (o)->rel_count));
10606
10607 /* Set the reloc_count field to 0 to prevent write_relocs from
10608 trying to swap the relocs out itself. */
10609 o->reloc_count = 0;
10610 }
10611
10612 if (dynamic && info->combreloc && dynobj != NULL)
10613 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10614
10615 /* If we are linking against a dynamic object, or generating a
10616 shared library, finish up the dynamic linking information. */
10617 if (dynamic)
10618 {
10619 bfd_byte *dyncon, *dynconend;
10620
10621 /* Fix up .dynamic entries. */
10622 o = bfd_get_section_by_name (dynobj, ".dynamic");
10623 BFD_ASSERT (o != NULL);
10624
10625 dyncon = o->contents;
10626 dynconend = o->contents + o->size;
10627 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10628 {
10629 Elf_Internal_Dyn dyn;
10630 const char *name;
10631 unsigned int type;
10632
10633 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10634
10635 switch (dyn.d_tag)
10636 {
10637 default:
10638 continue;
10639 case DT_NULL:
10640 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10641 {
10642 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10643 {
10644 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10645 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10646 default: continue;
10647 }
10648 dyn.d_un.d_val = relativecount;
10649 relativecount = 0;
10650 break;
10651 }
10652 continue;
10653
10654 case DT_INIT:
10655 name = info->init_function;
10656 goto get_sym;
10657 case DT_FINI:
10658 name = info->fini_function;
10659 get_sym:
10660 {
10661 struct elf_link_hash_entry *h;
10662
10663 h = elf_link_hash_lookup (elf_hash_table (info), name,
10664 FALSE, FALSE, TRUE);
10665 if (h != NULL
10666 && (h->root.type == bfd_link_hash_defined
10667 || h->root.type == bfd_link_hash_defweak))
10668 {
10669 dyn.d_un.d_val = h->root.u.def.value;
10670 o = h->root.u.def.section;
10671 if (o->output_section != NULL)
10672 dyn.d_un.d_val += (o->output_section->vma
10673 + o->output_offset);
10674 else
10675 {
10676 /* The symbol is imported from another shared
10677 library and does not apply to this one. */
10678 dyn.d_un.d_val = 0;
10679 }
10680 break;
10681 }
10682 }
10683 continue;
10684
10685 case DT_PREINIT_ARRAYSZ:
10686 name = ".preinit_array";
10687 goto get_size;
10688 case DT_INIT_ARRAYSZ:
10689 name = ".init_array";
10690 goto get_size;
10691 case DT_FINI_ARRAYSZ:
10692 name = ".fini_array";
10693 get_size:
10694 o = bfd_get_section_by_name (abfd, name);
10695 if (o == NULL)
10696 {
10697 (*_bfd_error_handler)
10698 (_("%B: could not find output section %s"), abfd, name);
10699 goto error_return;
10700 }
10701 if (o->size == 0)
10702 (*_bfd_error_handler)
10703 (_("warning: %s section has zero size"), name);
10704 dyn.d_un.d_val = o->size;
10705 break;
10706
10707 case DT_PREINIT_ARRAY:
10708 name = ".preinit_array";
10709 goto get_vma;
10710 case DT_INIT_ARRAY:
10711 name = ".init_array";
10712 goto get_vma;
10713 case DT_FINI_ARRAY:
10714 name = ".fini_array";
10715 goto get_vma;
10716
10717 case DT_HASH:
10718 name = ".hash";
10719 goto get_vma;
10720 case DT_GNU_HASH:
10721 name = ".gnu.hash";
10722 goto get_vma;
10723 case DT_STRTAB:
10724 name = ".dynstr";
10725 goto get_vma;
10726 case DT_SYMTAB:
10727 name = ".dynsym";
10728 goto get_vma;
10729 case DT_VERDEF:
10730 name = ".gnu.version_d";
10731 goto get_vma;
10732 case DT_VERNEED:
10733 name = ".gnu.version_r";
10734 goto get_vma;
10735 case DT_VERSYM:
10736 name = ".gnu.version";
10737 get_vma:
10738 o = bfd_get_section_by_name (abfd, name);
10739 if (o == NULL)
10740 {
10741 (*_bfd_error_handler)
10742 (_("%B: could not find output section %s"), abfd, name);
10743 goto error_return;
10744 }
10745 dyn.d_un.d_ptr = o->vma;
10746 break;
10747
10748 case DT_REL:
10749 case DT_RELA:
10750 case DT_RELSZ:
10751 case DT_RELASZ:
10752 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10753 type = SHT_REL;
10754 else
10755 type = SHT_RELA;
10756 dyn.d_un.d_val = 0;
10757 for (i = 1; i < elf_numsections (abfd); i++)
10758 {
10759 Elf_Internal_Shdr *hdr;
10760
10761 hdr = elf_elfsections (abfd)[i];
10762 if (hdr->sh_type == type
10763 && (hdr->sh_flags & SHF_ALLOC) != 0)
10764 {
10765 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10766 dyn.d_un.d_val += hdr->sh_size;
10767 else
10768 {
10769 if (dyn.d_un.d_val == 0
10770 || hdr->sh_addr < dyn.d_un.d_val)
10771 dyn.d_un.d_val = hdr->sh_addr;
10772 }
10773 }
10774 }
10775 break;
10776 }
10777 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10778 }
10779 }
10780
10781 /* If we have created any dynamic sections, then output them. */
10782 if (dynobj != NULL)
10783 {
10784 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10785 goto error_return;
10786
10787 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10788 if (info->warn_shared_textrel && info->shared)
10789 {
10790 bfd_byte *dyncon, *dynconend;
10791
10792 /* Fix up .dynamic entries. */
10793 o = bfd_get_section_by_name (dynobj, ".dynamic");
10794 BFD_ASSERT (o != NULL);
10795
10796 dyncon = o->contents;
10797 dynconend = o->contents + o->size;
10798 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10799 {
10800 Elf_Internal_Dyn dyn;
10801
10802 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10803
10804 if (dyn.d_tag == DT_TEXTREL)
10805 {
10806 info->callbacks->einfo
10807 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10808 break;
10809 }
10810 }
10811 }
10812
10813 for (o = dynobj->sections; o != NULL; o = o->next)
10814 {
10815 if ((o->flags & SEC_HAS_CONTENTS) == 0
10816 || o->size == 0
10817 || o->output_section == bfd_abs_section_ptr)
10818 continue;
10819 if ((o->flags & SEC_LINKER_CREATED) == 0)
10820 {
10821 /* At this point, we are only interested in sections
10822 created by _bfd_elf_link_create_dynamic_sections. */
10823 continue;
10824 }
10825 if (elf_hash_table (info)->stab_info.stabstr == o)
10826 continue;
10827 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10828 continue;
10829 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10830 != SHT_STRTAB)
10831 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10832 {
10833 if (! bfd_set_section_contents (abfd, o->output_section,
10834 o->contents,
10835 (file_ptr) o->output_offset,
10836 o->size))
10837 goto error_return;
10838 }
10839 else
10840 {
10841 /* The contents of the .dynstr section are actually in a
10842 stringtab. */
10843 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10844 if (bfd_seek (abfd, off, SEEK_SET) != 0
10845 || ! _bfd_elf_strtab_emit (abfd,
10846 elf_hash_table (info)->dynstr))
10847 goto error_return;
10848 }
10849 }
10850 }
10851
10852 if (info->relocatable)
10853 {
10854 bfd_boolean failed = FALSE;
10855
10856 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10857 if (failed)
10858 goto error_return;
10859 }
10860
10861 /* If we have optimized stabs strings, output them. */
10862 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10863 {
10864 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10865 goto error_return;
10866 }
10867
10868 if (info->eh_frame_hdr)
10869 {
10870 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10871 goto error_return;
10872 }
10873
10874 if (finfo.symstrtab != NULL)
10875 _bfd_stringtab_free (finfo.symstrtab);
10876 if (finfo.contents != NULL)
10877 free (finfo.contents);
10878 if (finfo.external_relocs != NULL)
10879 free (finfo.external_relocs);
10880 if (finfo.internal_relocs != NULL)
10881 free (finfo.internal_relocs);
10882 if (finfo.external_syms != NULL)
10883 free (finfo.external_syms);
10884 if (finfo.locsym_shndx != NULL)
10885 free (finfo.locsym_shndx);
10886 if (finfo.internal_syms != NULL)
10887 free (finfo.internal_syms);
10888 if (finfo.indices != NULL)
10889 free (finfo.indices);
10890 if (finfo.sections != NULL)
10891 free (finfo.sections);
10892 if (finfo.symbuf != NULL)
10893 free (finfo.symbuf);
10894 if (finfo.symshndxbuf != NULL)
10895 free (finfo.symshndxbuf);
10896 for (o = abfd->sections; o != NULL; o = o->next)
10897 {
10898 if ((o->flags & SEC_RELOC) != 0
10899 && elf_section_data (o)->rel_hashes != NULL)
10900 free (elf_section_data (o)->rel_hashes);
10901 }
10902
10903 elf_tdata (abfd)->linker = TRUE;
10904
10905 if (attr_section)
10906 {
10907 bfd_byte *contents = bfd_malloc (attr_size);
10908 if (contents == NULL)
10909 return FALSE; /* Bail out and fail. */
10910 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10911 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10912 free (contents);
10913 }
10914
10915 return TRUE;
10916
10917 error_return:
10918 if (finfo.symstrtab != NULL)
10919 _bfd_stringtab_free (finfo.symstrtab);
10920 if (finfo.contents != NULL)
10921 free (finfo.contents);
10922 if (finfo.external_relocs != NULL)
10923 free (finfo.external_relocs);
10924 if (finfo.internal_relocs != NULL)
10925 free (finfo.internal_relocs);
10926 if (finfo.external_syms != NULL)
10927 free (finfo.external_syms);
10928 if (finfo.locsym_shndx != NULL)
10929 free (finfo.locsym_shndx);
10930 if (finfo.internal_syms != NULL)
10931 free (finfo.internal_syms);
10932 if (finfo.indices != NULL)
10933 free (finfo.indices);
10934 if (finfo.sections != NULL)
10935 free (finfo.sections);
10936 if (finfo.symbuf != NULL)
10937 free (finfo.symbuf);
10938 if (finfo.symshndxbuf != NULL)
10939 free (finfo.symshndxbuf);
10940 for (o = abfd->sections; o != NULL; o = o->next)
10941 {
10942 if ((o->flags & SEC_RELOC) != 0
10943 && elf_section_data (o)->rel_hashes != NULL)
10944 free (elf_section_data (o)->rel_hashes);
10945 }
10946
10947 return FALSE;
10948 }
10949 \f
10950 /* Initialize COOKIE for input bfd ABFD. */
10951
10952 static bfd_boolean
10953 init_reloc_cookie (struct elf_reloc_cookie *cookie,
10954 struct bfd_link_info *info, bfd *abfd)
10955 {
10956 Elf_Internal_Shdr *symtab_hdr;
10957 const struct elf_backend_data *bed;
10958
10959 bed = get_elf_backend_data (abfd);
10960 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10961
10962 cookie->abfd = abfd;
10963 cookie->sym_hashes = elf_sym_hashes (abfd);
10964 cookie->bad_symtab = elf_bad_symtab (abfd);
10965 if (cookie->bad_symtab)
10966 {
10967 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10968 cookie->extsymoff = 0;
10969 }
10970 else
10971 {
10972 cookie->locsymcount = symtab_hdr->sh_info;
10973 cookie->extsymoff = symtab_hdr->sh_info;
10974 }
10975
10976 if (bed->s->arch_size == 32)
10977 cookie->r_sym_shift = 8;
10978 else
10979 cookie->r_sym_shift = 32;
10980
10981 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
10982 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
10983 {
10984 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
10985 cookie->locsymcount, 0,
10986 NULL, NULL, NULL);
10987 if (cookie->locsyms == NULL)
10988 {
10989 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
10990 return FALSE;
10991 }
10992 if (info->keep_memory)
10993 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
10994 }
10995 return TRUE;
10996 }
10997
10998 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
10999
11000 static void
11001 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11002 {
11003 Elf_Internal_Shdr *symtab_hdr;
11004
11005 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11006 if (cookie->locsyms != NULL
11007 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11008 free (cookie->locsyms);
11009 }
11010
11011 /* Initialize the relocation information in COOKIE for input section SEC
11012 of input bfd ABFD. */
11013
11014 static bfd_boolean
11015 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11016 struct bfd_link_info *info, bfd *abfd,
11017 asection *sec)
11018 {
11019 const struct elf_backend_data *bed;
11020
11021 if (sec->reloc_count == 0)
11022 {
11023 cookie->rels = NULL;
11024 cookie->relend = NULL;
11025 }
11026 else
11027 {
11028 bed = get_elf_backend_data (abfd);
11029
11030 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11031 info->keep_memory);
11032 if (cookie->rels == NULL)
11033 return FALSE;
11034 cookie->rel = cookie->rels;
11035 cookie->relend = (cookie->rels
11036 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11037 }
11038 cookie->rel = cookie->rels;
11039 return TRUE;
11040 }
11041
11042 /* Free the memory allocated by init_reloc_cookie_rels,
11043 if appropriate. */
11044
11045 static void
11046 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11047 asection *sec)
11048 {
11049 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11050 free (cookie->rels);
11051 }
11052
11053 /* Initialize the whole of COOKIE for input section SEC. */
11054
11055 static bfd_boolean
11056 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11057 struct bfd_link_info *info,
11058 asection *sec)
11059 {
11060 if (!init_reloc_cookie (cookie, info, sec->owner))
11061 goto error1;
11062 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11063 goto error2;
11064 return TRUE;
11065
11066 error2:
11067 fini_reloc_cookie (cookie, sec->owner);
11068 error1:
11069 return FALSE;
11070 }
11071
11072 /* Free the memory allocated by init_reloc_cookie_for_section,
11073 if appropriate. */
11074
11075 static void
11076 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11077 asection *sec)
11078 {
11079 fini_reloc_cookie_rels (cookie, sec);
11080 fini_reloc_cookie (cookie, sec->owner);
11081 }
11082 \f
11083 /* Garbage collect unused sections. */
11084
11085 /* Default gc_mark_hook. */
11086
11087 asection *
11088 _bfd_elf_gc_mark_hook (asection *sec,
11089 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11090 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11091 struct elf_link_hash_entry *h,
11092 Elf_Internal_Sym *sym)
11093 {
11094 if (h != NULL)
11095 {
11096 switch (h->root.type)
11097 {
11098 case bfd_link_hash_defined:
11099 case bfd_link_hash_defweak:
11100 return h->root.u.def.section;
11101
11102 case bfd_link_hash_common:
11103 return h->root.u.c.p->section;
11104
11105 default:
11106 break;
11107 }
11108 }
11109 else
11110 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11111
11112 return NULL;
11113 }
11114
11115 /* COOKIE->rel describes a relocation against section SEC, which is
11116 a section we've decided to keep. Return the section that contains
11117 the relocation symbol, or NULL if no section contains it. */
11118
11119 asection *
11120 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11121 elf_gc_mark_hook_fn gc_mark_hook,
11122 struct elf_reloc_cookie *cookie)
11123 {
11124 unsigned long r_symndx;
11125 struct elf_link_hash_entry *h;
11126
11127 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11128 if (r_symndx == 0)
11129 return NULL;
11130
11131 if (r_symndx >= cookie->locsymcount
11132 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11133 {
11134 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11135 while (h->root.type == bfd_link_hash_indirect
11136 || h->root.type == bfd_link_hash_warning)
11137 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11138 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11139 }
11140
11141 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11142 &cookie->locsyms[r_symndx]);
11143 }
11144
11145 /* COOKIE->rel describes a relocation against section SEC, which is
11146 a section we've decided to keep. Mark the section that contains
11147 the relocation symbol. */
11148
11149 bfd_boolean
11150 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11151 asection *sec,
11152 elf_gc_mark_hook_fn gc_mark_hook,
11153 struct elf_reloc_cookie *cookie)
11154 {
11155 asection *rsec;
11156
11157 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11158 if (rsec && !rsec->gc_mark)
11159 {
11160 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11161 rsec->gc_mark = 1;
11162 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11163 return FALSE;
11164 }
11165 return TRUE;
11166 }
11167
11168 /* The mark phase of garbage collection. For a given section, mark
11169 it and any sections in this section's group, and all the sections
11170 which define symbols to which it refers. */
11171
11172 bfd_boolean
11173 _bfd_elf_gc_mark (struct bfd_link_info *info,
11174 asection *sec,
11175 elf_gc_mark_hook_fn gc_mark_hook)
11176 {
11177 bfd_boolean ret;
11178 asection *group_sec, *eh_frame;
11179
11180 sec->gc_mark = 1;
11181
11182 /* Mark all the sections in the group. */
11183 group_sec = elf_section_data (sec)->next_in_group;
11184 if (group_sec && !group_sec->gc_mark)
11185 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11186 return FALSE;
11187
11188 /* Look through the section relocs. */
11189 ret = TRUE;
11190 eh_frame = elf_eh_frame_section (sec->owner);
11191 if ((sec->flags & SEC_RELOC) != 0
11192 && sec->reloc_count > 0
11193 && sec != eh_frame)
11194 {
11195 struct elf_reloc_cookie cookie;
11196
11197 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11198 ret = FALSE;
11199 else
11200 {
11201 for (; cookie.rel < cookie.relend; cookie.rel++)
11202 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11203 {
11204 ret = FALSE;
11205 break;
11206 }
11207 fini_reloc_cookie_for_section (&cookie, sec);
11208 }
11209 }
11210
11211 if (ret && eh_frame && elf_fde_list (sec))
11212 {
11213 struct elf_reloc_cookie cookie;
11214
11215 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11216 ret = FALSE;
11217 else
11218 {
11219 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11220 gc_mark_hook, &cookie))
11221 ret = FALSE;
11222 fini_reloc_cookie_for_section (&cookie, eh_frame);
11223 }
11224 }
11225
11226 return ret;
11227 }
11228
11229 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11230
11231 struct elf_gc_sweep_symbol_info
11232 {
11233 struct bfd_link_info *info;
11234 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11235 bfd_boolean);
11236 };
11237
11238 static bfd_boolean
11239 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11240 {
11241 if (h->root.type == bfd_link_hash_warning)
11242 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11243
11244 if ((h->root.type == bfd_link_hash_defined
11245 || h->root.type == bfd_link_hash_defweak)
11246 && !h->root.u.def.section->gc_mark
11247 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11248 {
11249 struct elf_gc_sweep_symbol_info *inf = data;
11250 (*inf->hide_symbol) (inf->info, h, TRUE);
11251 }
11252
11253 return TRUE;
11254 }
11255
11256 /* The sweep phase of garbage collection. Remove all garbage sections. */
11257
11258 typedef bfd_boolean (*gc_sweep_hook_fn)
11259 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11260
11261 static bfd_boolean
11262 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11263 {
11264 bfd *sub;
11265 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11266 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11267 unsigned long section_sym_count;
11268 struct elf_gc_sweep_symbol_info sweep_info;
11269
11270 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11271 {
11272 asection *o;
11273
11274 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11275 continue;
11276
11277 for (o = sub->sections; o != NULL; o = o->next)
11278 {
11279 /* Keep debug and special sections. */
11280 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11281 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11282 o->gc_mark = 1;
11283
11284 if (o->gc_mark)
11285 continue;
11286
11287 /* Skip sweeping sections already excluded. */
11288 if (o->flags & SEC_EXCLUDE)
11289 continue;
11290
11291 /* Since this is early in the link process, it is simple
11292 to remove a section from the output. */
11293 o->flags |= SEC_EXCLUDE;
11294
11295 if (info->print_gc_sections && o->size != 0)
11296 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11297
11298 /* But we also have to update some of the relocation
11299 info we collected before. */
11300 if (gc_sweep_hook
11301 && (o->flags & SEC_RELOC) != 0
11302 && o->reloc_count > 0
11303 && !bfd_is_abs_section (o->output_section))
11304 {
11305 Elf_Internal_Rela *internal_relocs;
11306 bfd_boolean r;
11307
11308 internal_relocs
11309 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11310 info->keep_memory);
11311 if (internal_relocs == NULL)
11312 return FALSE;
11313
11314 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11315
11316 if (elf_section_data (o)->relocs != internal_relocs)
11317 free (internal_relocs);
11318
11319 if (!r)
11320 return FALSE;
11321 }
11322 }
11323 }
11324
11325 /* Remove the symbols that were in the swept sections from the dynamic
11326 symbol table. GCFIXME: Anyone know how to get them out of the
11327 static symbol table as well? */
11328 sweep_info.info = info;
11329 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11330 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11331 &sweep_info);
11332
11333 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11334 return TRUE;
11335 }
11336
11337 /* Propagate collected vtable information. This is called through
11338 elf_link_hash_traverse. */
11339
11340 static bfd_boolean
11341 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11342 {
11343 if (h->root.type == bfd_link_hash_warning)
11344 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11345
11346 /* Those that are not vtables. */
11347 if (h->vtable == NULL || h->vtable->parent == NULL)
11348 return TRUE;
11349
11350 /* Those vtables that do not have parents, we cannot merge. */
11351 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11352 return TRUE;
11353
11354 /* If we've already been done, exit. */
11355 if (h->vtable->used && h->vtable->used[-1])
11356 return TRUE;
11357
11358 /* Make sure the parent's table is up to date. */
11359 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11360
11361 if (h->vtable->used == NULL)
11362 {
11363 /* None of this table's entries were referenced. Re-use the
11364 parent's table. */
11365 h->vtable->used = h->vtable->parent->vtable->used;
11366 h->vtable->size = h->vtable->parent->vtable->size;
11367 }
11368 else
11369 {
11370 size_t n;
11371 bfd_boolean *cu, *pu;
11372
11373 /* Or the parent's entries into ours. */
11374 cu = h->vtable->used;
11375 cu[-1] = TRUE;
11376 pu = h->vtable->parent->vtable->used;
11377 if (pu != NULL)
11378 {
11379 const struct elf_backend_data *bed;
11380 unsigned int log_file_align;
11381
11382 bed = get_elf_backend_data (h->root.u.def.section->owner);
11383 log_file_align = bed->s->log_file_align;
11384 n = h->vtable->parent->vtable->size >> log_file_align;
11385 while (n--)
11386 {
11387 if (*pu)
11388 *cu = TRUE;
11389 pu++;
11390 cu++;
11391 }
11392 }
11393 }
11394
11395 return TRUE;
11396 }
11397
11398 static bfd_boolean
11399 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11400 {
11401 asection *sec;
11402 bfd_vma hstart, hend;
11403 Elf_Internal_Rela *relstart, *relend, *rel;
11404 const struct elf_backend_data *bed;
11405 unsigned int log_file_align;
11406
11407 if (h->root.type == bfd_link_hash_warning)
11408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11409
11410 /* Take care of both those symbols that do not describe vtables as
11411 well as those that are not loaded. */
11412 if (h->vtable == NULL || h->vtable->parent == NULL)
11413 return TRUE;
11414
11415 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11416 || h->root.type == bfd_link_hash_defweak);
11417
11418 sec = h->root.u.def.section;
11419 hstart = h->root.u.def.value;
11420 hend = hstart + h->size;
11421
11422 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11423 if (!relstart)
11424 return *(bfd_boolean *) okp = FALSE;
11425 bed = get_elf_backend_data (sec->owner);
11426 log_file_align = bed->s->log_file_align;
11427
11428 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11429
11430 for (rel = relstart; rel < relend; ++rel)
11431 if (rel->r_offset >= hstart && rel->r_offset < hend)
11432 {
11433 /* If the entry is in use, do nothing. */
11434 if (h->vtable->used
11435 && (rel->r_offset - hstart) < h->vtable->size)
11436 {
11437 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11438 if (h->vtable->used[entry])
11439 continue;
11440 }
11441 /* Otherwise, kill it. */
11442 rel->r_offset = rel->r_info = rel->r_addend = 0;
11443 }
11444
11445 return TRUE;
11446 }
11447
11448 /* Mark sections containing dynamically referenced symbols. When
11449 building shared libraries, we must assume that any visible symbol is
11450 referenced. */
11451
11452 bfd_boolean
11453 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11454 {
11455 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11456
11457 if (h->root.type == bfd_link_hash_warning)
11458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11459
11460 if ((h->root.type == bfd_link_hash_defined
11461 || h->root.type == bfd_link_hash_defweak)
11462 && (h->ref_dynamic
11463 || (!info->executable
11464 && h->def_regular
11465 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11466 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11467 h->root.u.def.section->flags |= SEC_KEEP;
11468
11469 return TRUE;
11470 }
11471
11472 /* Keep all sections containing symbols undefined on the command-line,
11473 and the section containing the entry symbol. */
11474
11475 void
11476 _bfd_elf_gc_keep (struct bfd_link_info *info)
11477 {
11478 struct bfd_sym_chain *sym;
11479
11480 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11481 {
11482 struct elf_link_hash_entry *h;
11483
11484 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11485 FALSE, FALSE, FALSE);
11486
11487 if (h != NULL
11488 && (h->root.type == bfd_link_hash_defined
11489 || h->root.type == bfd_link_hash_defweak)
11490 && !bfd_is_abs_section (h->root.u.def.section))
11491 h->root.u.def.section->flags |= SEC_KEEP;
11492 }
11493 }
11494
11495 /* Do mark and sweep of unused sections. */
11496
11497 bfd_boolean
11498 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11499 {
11500 bfd_boolean ok = TRUE;
11501 bfd *sub;
11502 elf_gc_mark_hook_fn gc_mark_hook;
11503 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11504
11505 if (!bed->can_gc_sections
11506 || !is_elf_hash_table (info->hash))
11507 {
11508 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11509 return TRUE;
11510 }
11511
11512 bed->gc_keep (info);
11513
11514 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11515 at the .eh_frame section if we can mark the FDEs individually. */
11516 _bfd_elf_begin_eh_frame_parsing (info);
11517 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11518 {
11519 asection *sec;
11520 struct elf_reloc_cookie cookie;
11521
11522 sec = bfd_get_section_by_name (sub, ".eh_frame");
11523 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11524 {
11525 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11526 if (elf_section_data (sec)->sec_info)
11527 elf_eh_frame_section (sub) = sec;
11528 fini_reloc_cookie_for_section (&cookie, sec);
11529 }
11530 }
11531 _bfd_elf_end_eh_frame_parsing (info);
11532
11533 /* Apply transitive closure to the vtable entry usage info. */
11534 elf_link_hash_traverse (elf_hash_table (info),
11535 elf_gc_propagate_vtable_entries_used,
11536 &ok);
11537 if (!ok)
11538 return FALSE;
11539
11540 /* Kill the vtable relocations that were not used. */
11541 elf_link_hash_traverse (elf_hash_table (info),
11542 elf_gc_smash_unused_vtentry_relocs,
11543 &ok);
11544 if (!ok)
11545 return FALSE;
11546
11547 /* Mark dynamically referenced symbols. */
11548 if (elf_hash_table (info)->dynamic_sections_created)
11549 elf_link_hash_traverse (elf_hash_table (info),
11550 bed->gc_mark_dynamic_ref,
11551 info);
11552
11553 /* Grovel through relocs to find out who stays ... */
11554 gc_mark_hook = bed->gc_mark_hook;
11555 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11556 {
11557 asection *o;
11558
11559 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11560 continue;
11561
11562 for (o = sub->sections; o != NULL; o = o->next)
11563 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11564 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11565 return FALSE;
11566 }
11567
11568 /* Allow the backend to mark additional target specific sections. */
11569 if (bed->gc_mark_extra_sections)
11570 bed->gc_mark_extra_sections (info, gc_mark_hook);
11571
11572 /* ... and mark SEC_EXCLUDE for those that go. */
11573 return elf_gc_sweep (abfd, info);
11574 }
11575 \f
11576 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11577
11578 bfd_boolean
11579 bfd_elf_gc_record_vtinherit (bfd *abfd,
11580 asection *sec,
11581 struct elf_link_hash_entry *h,
11582 bfd_vma offset)
11583 {
11584 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11585 struct elf_link_hash_entry **search, *child;
11586 bfd_size_type extsymcount;
11587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11588
11589 /* The sh_info field of the symtab header tells us where the
11590 external symbols start. We don't care about the local symbols at
11591 this point. */
11592 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11593 if (!elf_bad_symtab (abfd))
11594 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11595
11596 sym_hashes = elf_sym_hashes (abfd);
11597 sym_hashes_end = sym_hashes + extsymcount;
11598
11599 /* Hunt down the child symbol, which is in this section at the same
11600 offset as the relocation. */
11601 for (search = sym_hashes; search != sym_hashes_end; ++search)
11602 {
11603 if ((child = *search) != NULL
11604 && (child->root.type == bfd_link_hash_defined
11605 || child->root.type == bfd_link_hash_defweak)
11606 && child->root.u.def.section == sec
11607 && child->root.u.def.value == offset)
11608 goto win;
11609 }
11610
11611 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11612 abfd, sec, (unsigned long) offset);
11613 bfd_set_error (bfd_error_invalid_operation);
11614 return FALSE;
11615
11616 win:
11617 if (!child->vtable)
11618 {
11619 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11620 if (!child->vtable)
11621 return FALSE;
11622 }
11623 if (!h)
11624 {
11625 /* This *should* only be the absolute section. It could potentially
11626 be that someone has defined a non-global vtable though, which
11627 would be bad. It isn't worth paging in the local symbols to be
11628 sure though; that case should simply be handled by the assembler. */
11629
11630 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11631 }
11632 else
11633 child->vtable->parent = h;
11634
11635 return TRUE;
11636 }
11637
11638 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11639
11640 bfd_boolean
11641 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11642 asection *sec ATTRIBUTE_UNUSED,
11643 struct elf_link_hash_entry *h,
11644 bfd_vma addend)
11645 {
11646 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11647 unsigned int log_file_align = bed->s->log_file_align;
11648
11649 if (!h->vtable)
11650 {
11651 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11652 if (!h->vtable)
11653 return FALSE;
11654 }
11655
11656 if (addend >= h->vtable->size)
11657 {
11658 size_t size, bytes, file_align;
11659 bfd_boolean *ptr = h->vtable->used;
11660
11661 /* While the symbol is undefined, we have to be prepared to handle
11662 a zero size. */
11663 file_align = 1 << log_file_align;
11664 if (h->root.type == bfd_link_hash_undefined)
11665 size = addend + file_align;
11666 else
11667 {
11668 size = h->size;
11669 if (addend >= size)
11670 {
11671 /* Oops! We've got a reference past the defined end of
11672 the table. This is probably a bug -- shall we warn? */
11673 size = addend + file_align;
11674 }
11675 }
11676 size = (size + file_align - 1) & -file_align;
11677
11678 /* Allocate one extra entry for use as a "done" flag for the
11679 consolidation pass. */
11680 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11681
11682 if (ptr)
11683 {
11684 ptr = bfd_realloc (ptr - 1, bytes);
11685
11686 if (ptr != NULL)
11687 {
11688 size_t oldbytes;
11689
11690 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11691 * sizeof (bfd_boolean));
11692 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11693 }
11694 }
11695 else
11696 ptr = bfd_zmalloc (bytes);
11697
11698 if (ptr == NULL)
11699 return FALSE;
11700
11701 /* And arrange for that done flag to be at index -1. */
11702 h->vtable->used = ptr + 1;
11703 h->vtable->size = size;
11704 }
11705
11706 h->vtable->used[addend >> log_file_align] = TRUE;
11707
11708 return TRUE;
11709 }
11710
11711 struct alloc_got_off_arg {
11712 bfd_vma gotoff;
11713 unsigned int got_elt_size;
11714 };
11715
11716 /* We need a special top-level link routine to convert got reference counts
11717 to real got offsets. */
11718
11719 static bfd_boolean
11720 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11721 {
11722 struct alloc_got_off_arg *gofarg = arg;
11723
11724 if (h->root.type == bfd_link_hash_warning)
11725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11726
11727 if (h->got.refcount > 0)
11728 {
11729 h->got.offset = gofarg->gotoff;
11730 gofarg->gotoff += gofarg->got_elt_size;
11731 }
11732 else
11733 h->got.offset = (bfd_vma) -1;
11734
11735 return TRUE;
11736 }
11737
11738 /* And an accompanying bit to work out final got entry offsets once
11739 we're done. Should be called from final_link. */
11740
11741 bfd_boolean
11742 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11743 struct bfd_link_info *info)
11744 {
11745 bfd *i;
11746 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11747 bfd_vma gotoff;
11748 unsigned int got_elt_size = bed->s->arch_size / 8;
11749 struct alloc_got_off_arg gofarg;
11750
11751 if (! is_elf_hash_table (info->hash))
11752 return FALSE;
11753
11754 /* The GOT offset is relative to the .got section, but the GOT header is
11755 put into the .got.plt section, if the backend uses it. */
11756 if (bed->want_got_plt)
11757 gotoff = 0;
11758 else
11759 gotoff = bed->got_header_size;
11760
11761 /* Do the local .got entries first. */
11762 for (i = info->input_bfds; i; i = i->link_next)
11763 {
11764 bfd_signed_vma *local_got;
11765 bfd_size_type j, locsymcount;
11766 Elf_Internal_Shdr *symtab_hdr;
11767
11768 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11769 continue;
11770
11771 local_got = elf_local_got_refcounts (i);
11772 if (!local_got)
11773 continue;
11774
11775 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11776 if (elf_bad_symtab (i))
11777 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11778 else
11779 locsymcount = symtab_hdr->sh_info;
11780
11781 for (j = 0; j < locsymcount; ++j)
11782 {
11783 if (local_got[j] > 0)
11784 {
11785 local_got[j] = gotoff;
11786 gotoff += got_elt_size;
11787 }
11788 else
11789 local_got[j] = (bfd_vma) -1;
11790 }
11791 }
11792
11793 /* Then the global .got entries. .plt refcounts are handled by
11794 adjust_dynamic_symbol */
11795 gofarg.gotoff = gotoff;
11796 gofarg.got_elt_size = got_elt_size;
11797 elf_link_hash_traverse (elf_hash_table (info),
11798 elf_gc_allocate_got_offsets,
11799 &gofarg);
11800 return TRUE;
11801 }
11802
11803 /* Many folk need no more in the way of final link than this, once
11804 got entry reference counting is enabled. */
11805
11806 bfd_boolean
11807 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11808 {
11809 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11810 return FALSE;
11811
11812 /* Invoke the regular ELF backend linker to do all the work. */
11813 return bfd_elf_final_link (abfd, info);
11814 }
11815
11816 bfd_boolean
11817 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11818 {
11819 struct elf_reloc_cookie *rcookie = cookie;
11820
11821 if (rcookie->bad_symtab)
11822 rcookie->rel = rcookie->rels;
11823
11824 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11825 {
11826 unsigned long r_symndx;
11827
11828 if (! rcookie->bad_symtab)
11829 if (rcookie->rel->r_offset > offset)
11830 return FALSE;
11831 if (rcookie->rel->r_offset != offset)
11832 continue;
11833
11834 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11835 if (r_symndx == SHN_UNDEF)
11836 return TRUE;
11837
11838 if (r_symndx >= rcookie->locsymcount
11839 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11840 {
11841 struct elf_link_hash_entry *h;
11842
11843 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11844
11845 while (h->root.type == bfd_link_hash_indirect
11846 || h->root.type == bfd_link_hash_warning)
11847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11848
11849 if ((h->root.type == bfd_link_hash_defined
11850 || h->root.type == bfd_link_hash_defweak)
11851 && elf_discarded_section (h->root.u.def.section))
11852 return TRUE;
11853 else
11854 return FALSE;
11855 }
11856 else
11857 {
11858 /* It's not a relocation against a global symbol,
11859 but it could be a relocation against a local
11860 symbol for a discarded section. */
11861 asection *isec;
11862 Elf_Internal_Sym *isym;
11863
11864 /* Need to: get the symbol; get the section. */
11865 isym = &rcookie->locsyms[r_symndx];
11866 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11867 {
11868 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11869 if (isec != NULL && elf_discarded_section (isec))
11870 return TRUE;
11871 }
11872 }
11873 return FALSE;
11874 }
11875 return FALSE;
11876 }
11877
11878 /* Discard unneeded references to discarded sections.
11879 Returns TRUE if any section's size was changed. */
11880 /* This function assumes that the relocations are in sorted order,
11881 which is true for all known assemblers. */
11882
11883 bfd_boolean
11884 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11885 {
11886 struct elf_reloc_cookie cookie;
11887 asection *stab, *eh;
11888 const struct elf_backend_data *bed;
11889 bfd *abfd;
11890 bfd_boolean ret = FALSE;
11891
11892 if (info->traditional_format
11893 || !is_elf_hash_table (info->hash))
11894 return FALSE;
11895
11896 _bfd_elf_begin_eh_frame_parsing (info);
11897 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11898 {
11899 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11900 continue;
11901
11902 bed = get_elf_backend_data (abfd);
11903
11904 if ((abfd->flags & DYNAMIC) != 0)
11905 continue;
11906
11907 eh = NULL;
11908 if (!info->relocatable)
11909 {
11910 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11911 if (eh != NULL
11912 && (eh->size == 0
11913 || bfd_is_abs_section (eh->output_section)))
11914 eh = NULL;
11915 }
11916
11917 stab = bfd_get_section_by_name (abfd, ".stab");
11918 if (stab != NULL
11919 && (stab->size == 0
11920 || bfd_is_abs_section (stab->output_section)
11921 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11922 stab = NULL;
11923
11924 if (stab == NULL
11925 && eh == NULL
11926 && bed->elf_backend_discard_info == NULL)
11927 continue;
11928
11929 if (!init_reloc_cookie (&cookie, info, abfd))
11930 return FALSE;
11931
11932 if (stab != NULL
11933 && stab->reloc_count > 0
11934 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
11935 {
11936 if (_bfd_discard_section_stabs (abfd, stab,
11937 elf_section_data (stab)->sec_info,
11938 bfd_elf_reloc_symbol_deleted_p,
11939 &cookie))
11940 ret = TRUE;
11941 fini_reloc_cookie_rels (&cookie, stab);
11942 }
11943
11944 if (eh != NULL
11945 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
11946 {
11947 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
11948 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11949 bfd_elf_reloc_symbol_deleted_p,
11950 &cookie))
11951 ret = TRUE;
11952 fini_reloc_cookie_rels (&cookie, eh);
11953 }
11954
11955 if (bed->elf_backend_discard_info != NULL
11956 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11957 ret = TRUE;
11958
11959 fini_reloc_cookie (&cookie, abfd);
11960 }
11961 _bfd_elf_end_eh_frame_parsing (info);
11962
11963 if (info->eh_frame_hdr
11964 && !info->relocatable
11965 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11966 ret = TRUE;
11967
11968 return ret;
11969 }
11970
11971 void
11972 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11973 struct bfd_link_info *info)
11974 {
11975 flagword flags;
11976 const char *name, *p;
11977 struct bfd_section_already_linked *l;
11978 struct bfd_section_already_linked_hash_entry *already_linked_list;
11979
11980 if (sec->output_section == bfd_abs_section_ptr)
11981 return;
11982
11983 flags = sec->flags;
11984
11985 /* Return if it isn't a linkonce section. A comdat group section
11986 also has SEC_LINK_ONCE set. */
11987 if ((flags & SEC_LINK_ONCE) == 0)
11988 return;
11989
11990 /* Don't put group member sections on our list of already linked
11991 sections. They are handled as a group via their group section. */
11992 if (elf_sec_group (sec) != NULL)
11993 return;
11994
11995 /* FIXME: When doing a relocatable link, we may have trouble
11996 copying relocations in other sections that refer to local symbols
11997 in the section being discarded. Those relocations will have to
11998 be converted somehow; as of this writing I'm not sure that any of
11999 the backends handle that correctly.
12000
12001 It is tempting to instead not discard link once sections when
12002 doing a relocatable link (technically, they should be discarded
12003 whenever we are building constructors). However, that fails,
12004 because the linker winds up combining all the link once sections
12005 into a single large link once section, which defeats the purpose
12006 of having link once sections in the first place.
12007
12008 Also, not merging link once sections in a relocatable link
12009 causes trouble for MIPS ELF, which relies on link once semantics
12010 to handle the .reginfo section correctly. */
12011
12012 name = bfd_get_section_name (abfd, sec);
12013
12014 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12015 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12016 p++;
12017 else
12018 p = name;
12019
12020 already_linked_list = bfd_section_already_linked_table_lookup (p);
12021
12022 for (l = already_linked_list->entry; l != NULL; l = l->next)
12023 {
12024 /* We may have 2 different types of sections on the list: group
12025 sections and linkonce sections. Match like sections. */
12026 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12027 && strcmp (name, l->sec->name) == 0
12028 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12029 {
12030 /* The section has already been linked. See if we should
12031 issue a warning. */
12032 switch (flags & SEC_LINK_DUPLICATES)
12033 {
12034 default:
12035 abort ();
12036
12037 case SEC_LINK_DUPLICATES_DISCARD:
12038 break;
12039
12040 case SEC_LINK_DUPLICATES_ONE_ONLY:
12041 (*_bfd_error_handler)
12042 (_("%B: ignoring duplicate section `%A'"),
12043 abfd, sec);
12044 break;
12045
12046 case SEC_LINK_DUPLICATES_SAME_SIZE:
12047 if (sec->size != l->sec->size)
12048 (*_bfd_error_handler)
12049 (_("%B: duplicate section `%A' has different size"),
12050 abfd, sec);
12051 break;
12052
12053 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12054 if (sec->size != l->sec->size)
12055 (*_bfd_error_handler)
12056 (_("%B: duplicate section `%A' has different size"),
12057 abfd, sec);
12058 else if (sec->size != 0)
12059 {
12060 bfd_byte *sec_contents, *l_sec_contents;
12061
12062 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12063 (*_bfd_error_handler)
12064 (_("%B: warning: could not read contents of section `%A'"),
12065 abfd, sec);
12066 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12067 &l_sec_contents))
12068 (*_bfd_error_handler)
12069 (_("%B: warning: could not read contents of section `%A'"),
12070 l->sec->owner, l->sec);
12071 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12072 (*_bfd_error_handler)
12073 (_("%B: warning: duplicate section `%A' has different contents"),
12074 abfd, sec);
12075
12076 if (sec_contents)
12077 free (sec_contents);
12078 if (l_sec_contents)
12079 free (l_sec_contents);
12080 }
12081 break;
12082 }
12083
12084 /* Set the output_section field so that lang_add_section
12085 does not create a lang_input_section structure for this
12086 section. Since there might be a symbol in the section
12087 being discarded, we must retain a pointer to the section
12088 which we are really going to use. */
12089 sec->output_section = bfd_abs_section_ptr;
12090 sec->kept_section = l->sec;
12091
12092 if (flags & SEC_GROUP)
12093 {
12094 asection *first = elf_next_in_group (sec);
12095 asection *s = first;
12096
12097 while (s != NULL)
12098 {
12099 s->output_section = bfd_abs_section_ptr;
12100 /* Record which group discards it. */
12101 s->kept_section = l->sec;
12102 s = elf_next_in_group (s);
12103 /* These lists are circular. */
12104 if (s == first)
12105 break;
12106 }
12107 }
12108
12109 return;
12110 }
12111 }
12112
12113 /* A single member comdat group section may be discarded by a
12114 linkonce section and vice versa. */
12115
12116 if ((flags & SEC_GROUP) != 0)
12117 {
12118 asection *first = elf_next_in_group (sec);
12119
12120 if (first != NULL && elf_next_in_group (first) == first)
12121 /* Check this single member group against linkonce sections. */
12122 for (l = already_linked_list->entry; l != NULL; l = l->next)
12123 if ((l->sec->flags & SEC_GROUP) == 0
12124 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12125 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12126 {
12127 first->output_section = bfd_abs_section_ptr;
12128 first->kept_section = l->sec;
12129 sec->output_section = bfd_abs_section_ptr;
12130 break;
12131 }
12132 }
12133 else
12134 /* Check this linkonce section against single member groups. */
12135 for (l = already_linked_list->entry; l != NULL; l = l->next)
12136 if (l->sec->flags & SEC_GROUP)
12137 {
12138 asection *first = elf_next_in_group (l->sec);
12139
12140 if (first != NULL
12141 && elf_next_in_group (first) == first
12142 && bfd_elf_match_symbols_in_sections (first, sec, info))
12143 {
12144 sec->output_section = bfd_abs_section_ptr;
12145 sec->kept_section = first;
12146 break;
12147 }
12148 }
12149
12150 /* This is the first section with this name. Record it. */
12151 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12152 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12153 }
12154
12155 bfd_boolean
12156 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12157 {
12158 return sym->st_shndx == SHN_COMMON;
12159 }
12160
12161 unsigned int
12162 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12163 {
12164 return SHN_COMMON;
12165 }
12166
12167 asection *
12168 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12169 {
12170 return bfd_com_section_ptr;
12171 }
This page took 0.285567 seconds and 4 git commands to generate.