ELF: Properly handle section symbols
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 size_t amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 size_t amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 free (alloc1);
2647
2648 /* Don't free alloc2, since if it was allocated we are passing it
2649 back (under the name of internal_relocs). */
2650
2651 return internal_relocs;
2652
2653 error_return:
2654 free (alloc1);
2655 if (alloc2 != NULL)
2656 {
2657 if (keep_memory)
2658 bfd_release (abfd, alloc2);
2659 else
2660 free (alloc2);
2661 }
2662 return NULL;
2663 }
2664
2665 /* Compute the size of, and allocate space for, REL_HDR which is the
2666 section header for a section containing relocations for O. */
2667
2668 static bfd_boolean
2669 _bfd_elf_link_size_reloc_section (bfd *abfd,
2670 struct bfd_elf_section_reloc_data *reldata)
2671 {
2672 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2673
2674 /* That allows us to calculate the size of the section. */
2675 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2676
2677 /* The contents field must last into write_object_contents, so we
2678 allocate it with bfd_alloc rather than malloc. Also since we
2679 cannot be sure that the contents will actually be filled in,
2680 we zero the allocated space. */
2681 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2682 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2683 return FALSE;
2684
2685 if (reldata->hashes == NULL && reldata->count)
2686 {
2687 struct elf_link_hash_entry **p;
2688
2689 p = ((struct elf_link_hash_entry **)
2690 bfd_zmalloc (reldata->count * sizeof (*p)));
2691 if (p == NULL)
2692 return FALSE;
2693
2694 reldata->hashes = p;
2695 }
2696
2697 return TRUE;
2698 }
2699
2700 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2701 originated from the section given by INPUT_REL_HDR) to the
2702 OUTPUT_BFD. */
2703
2704 bfd_boolean
2705 _bfd_elf_link_output_relocs (bfd *output_bfd,
2706 asection *input_section,
2707 Elf_Internal_Shdr *input_rel_hdr,
2708 Elf_Internal_Rela *internal_relocs,
2709 struct elf_link_hash_entry **rel_hash
2710 ATTRIBUTE_UNUSED)
2711 {
2712 Elf_Internal_Rela *irela;
2713 Elf_Internal_Rela *irelaend;
2714 bfd_byte *erel;
2715 struct bfd_elf_section_reloc_data *output_reldata;
2716 asection *output_section;
2717 const struct elf_backend_data *bed;
2718 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2719 struct bfd_elf_section_data *esdo;
2720
2721 output_section = input_section->output_section;
2722
2723 bed = get_elf_backend_data (output_bfd);
2724 esdo = elf_section_data (output_section);
2725 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2726 {
2727 output_reldata = &esdo->rel;
2728 swap_out = bed->s->swap_reloc_out;
2729 }
2730 else if (esdo->rela.hdr
2731 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2732 {
2733 output_reldata = &esdo->rela;
2734 swap_out = bed->s->swap_reloca_out;
2735 }
2736 else
2737 {
2738 _bfd_error_handler
2739 /* xgettext:c-format */
2740 (_("%pB: relocation size mismatch in %pB section %pA"),
2741 output_bfd, input_section->owner, input_section);
2742 bfd_set_error (bfd_error_wrong_format);
2743 return FALSE;
2744 }
2745
2746 erel = output_reldata->hdr->contents;
2747 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2748 irela = internal_relocs;
2749 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2750 * bed->s->int_rels_per_ext_rel);
2751 while (irela < irelaend)
2752 {
2753 (*swap_out) (output_bfd, irela, erel);
2754 irela += bed->s->int_rels_per_ext_rel;
2755 erel += input_rel_hdr->sh_entsize;
2756 }
2757
2758 /* Bump the counter, so that we know where to add the next set of
2759 relocations. */
2760 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2761
2762 return TRUE;
2763 }
2764 \f
2765 /* Make weak undefined symbols in PIE dynamic. */
2766
2767 bfd_boolean
2768 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2769 struct elf_link_hash_entry *h)
2770 {
2771 if (bfd_link_pie (info)
2772 && h->dynindx == -1
2773 && h->root.type == bfd_link_hash_undefweak)
2774 return bfd_elf_link_record_dynamic_symbol (info, h);
2775
2776 return TRUE;
2777 }
2778
2779 /* Fix up the flags for a symbol. This handles various cases which
2780 can only be fixed after all the input files are seen. This is
2781 currently called by both adjust_dynamic_symbol and
2782 assign_sym_version, which is unnecessary but perhaps more robust in
2783 the face of future changes. */
2784
2785 static bfd_boolean
2786 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2787 struct elf_info_failed *eif)
2788 {
2789 const struct elf_backend_data *bed;
2790
2791 /* If this symbol was mentioned in a non-ELF file, try to set
2792 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2793 permit a non-ELF file to correctly refer to a symbol defined in
2794 an ELF dynamic object. */
2795 if (h->non_elf)
2796 {
2797 while (h->root.type == bfd_link_hash_indirect)
2798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2799
2800 if (h->root.type != bfd_link_hash_defined
2801 && h->root.type != bfd_link_hash_defweak)
2802 {
2803 h->ref_regular = 1;
2804 h->ref_regular_nonweak = 1;
2805 }
2806 else
2807 {
2808 if (h->root.u.def.section->owner != NULL
2809 && (bfd_get_flavour (h->root.u.def.section->owner)
2810 == bfd_target_elf_flavour))
2811 {
2812 h->ref_regular = 1;
2813 h->ref_regular_nonweak = 1;
2814 }
2815 else
2816 h->def_regular = 1;
2817 }
2818
2819 if (h->dynindx == -1
2820 && (h->def_dynamic
2821 || h->ref_dynamic))
2822 {
2823 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2824 {
2825 eif->failed = TRUE;
2826 return FALSE;
2827 }
2828 }
2829 }
2830 else
2831 {
2832 /* Unfortunately, NON_ELF is only correct if the symbol
2833 was first seen in a non-ELF file. Fortunately, if the symbol
2834 was first seen in an ELF file, we're probably OK unless the
2835 symbol was defined in a non-ELF file. Catch that case here.
2836 FIXME: We're still in trouble if the symbol was first seen in
2837 a dynamic object, and then later in a non-ELF regular object. */
2838 if ((h->root.type == bfd_link_hash_defined
2839 || h->root.type == bfd_link_hash_defweak)
2840 && !h->def_regular
2841 && (h->root.u.def.section->owner != NULL
2842 ? (bfd_get_flavour (h->root.u.def.section->owner)
2843 != bfd_target_elf_flavour)
2844 : (bfd_is_abs_section (h->root.u.def.section)
2845 && !h->def_dynamic)))
2846 h->def_regular = 1;
2847 }
2848
2849 /* Backend specific symbol fixup. */
2850 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2851 if (bed->elf_backend_fixup_symbol
2852 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2853 return FALSE;
2854
2855 /* If this is a final link, and the symbol was defined as a common
2856 symbol in a regular object file, and there was no definition in
2857 any dynamic object, then the linker will have allocated space for
2858 the symbol in a common section but the DEF_REGULAR
2859 flag will not have been set. */
2860 if (h->root.type == bfd_link_hash_defined
2861 && !h->def_regular
2862 && h->ref_regular
2863 && !h->def_dynamic
2864 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2865 h->def_regular = 1;
2866
2867 /* Symbols defined in discarded sections shouldn't be dynamic. */
2868 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2869 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2870
2871 /* If a weak undefined symbol has non-default visibility, we also
2872 hide it from the dynamic linker. */
2873 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2874 && h->root.type == bfd_link_hash_undefweak)
2875 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2876
2877 /* A hidden versioned symbol in executable should be forced local if
2878 it is is locally defined, not referenced by shared library and not
2879 exported. */
2880 else if (bfd_link_executable (eif->info)
2881 && h->versioned == versioned_hidden
2882 && !eif->info->export_dynamic
2883 && !h->dynamic
2884 && !h->ref_dynamic
2885 && h->def_regular)
2886 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2887
2888 /* If -Bsymbolic was used (which means to bind references to global
2889 symbols to the definition within the shared object), and this
2890 symbol was defined in a regular object, then it actually doesn't
2891 need a PLT entry. Likewise, if the symbol has non-default
2892 visibility. If the symbol has hidden or internal visibility, we
2893 will force it local. */
2894 else if (h->needs_plt
2895 && bfd_link_pic (eif->info)
2896 && is_elf_hash_table (eif->info->hash)
2897 && (SYMBOLIC_BIND (eif->info, h)
2898 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2899 && h->def_regular)
2900 {
2901 bfd_boolean force_local;
2902
2903 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2904 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2905 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2906 }
2907
2908 /* If this is a weak defined symbol in a dynamic object, and we know
2909 the real definition in the dynamic object, copy interesting flags
2910 over to the real definition. */
2911 if (h->is_weakalias)
2912 {
2913 struct elf_link_hash_entry *def = weakdef (h);
2914
2915 /* If the real definition is defined by a regular object file,
2916 don't do anything special. See the longer description in
2917 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2918 bfd_link_hash_defined as it was when put on the alias list
2919 then it must have originally been a versioned symbol (for
2920 which a non-versioned indirect symbol is created) and later
2921 a definition for the non-versioned symbol is found. In that
2922 case the indirection is flipped with the versioned symbol
2923 becoming an indirect pointing at the non-versioned symbol.
2924 Thus, not an alias any more. */
2925 if (def->def_regular
2926 || def->root.type != bfd_link_hash_defined)
2927 {
2928 h = def;
2929 while ((h = h->u.alias) != def)
2930 h->is_weakalias = 0;
2931 }
2932 else
2933 {
2934 while (h->root.type == bfd_link_hash_indirect)
2935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2936 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2937 || h->root.type == bfd_link_hash_defweak);
2938 BFD_ASSERT (def->def_dynamic);
2939 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2940 }
2941 }
2942
2943 return TRUE;
2944 }
2945
2946 /* Make the backend pick a good value for a dynamic symbol. This is
2947 called via elf_link_hash_traverse, and also calls itself
2948 recursively. */
2949
2950 static bfd_boolean
2951 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2952 {
2953 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2954 struct elf_link_hash_table *htab;
2955 const struct elf_backend_data *bed;
2956
2957 if (! is_elf_hash_table (eif->info->hash))
2958 return FALSE;
2959
2960 /* Ignore indirect symbols. These are added by the versioning code. */
2961 if (h->root.type == bfd_link_hash_indirect)
2962 return TRUE;
2963
2964 /* Fix the symbol flags. */
2965 if (! _bfd_elf_fix_symbol_flags (h, eif))
2966 return FALSE;
2967
2968 htab = elf_hash_table (eif->info);
2969 bed = get_elf_backend_data (htab->dynobj);
2970
2971 if (h->root.type == bfd_link_hash_undefweak)
2972 {
2973 if (eif->info->dynamic_undefined_weak == 0)
2974 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2975 else if (eif->info->dynamic_undefined_weak > 0
2976 && h->ref_regular
2977 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2978 && !bfd_hide_sym_by_version (eif->info->version_info,
2979 h->root.root.string))
2980 {
2981 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2982 {
2983 eif->failed = TRUE;
2984 return FALSE;
2985 }
2986 }
2987 }
2988
2989 /* If this symbol does not require a PLT entry, and it is not
2990 defined by a dynamic object, or is not referenced by a regular
2991 object, ignore it. We do have to handle a weak defined symbol,
2992 even if no regular object refers to it, if we decided to add it
2993 to the dynamic symbol table. FIXME: Do we normally need to worry
2994 about symbols which are defined by one dynamic object and
2995 referenced by another one? */
2996 if (!h->needs_plt
2997 && h->type != STT_GNU_IFUNC
2998 && (h->def_regular
2999 || !h->def_dynamic
3000 || (!h->ref_regular
3001 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3002 {
3003 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3004 return TRUE;
3005 }
3006
3007 /* If we've already adjusted this symbol, don't do it again. This
3008 can happen via a recursive call. */
3009 if (h->dynamic_adjusted)
3010 return TRUE;
3011
3012 /* Don't look at this symbol again. Note that we must set this
3013 after checking the above conditions, because we may look at a
3014 symbol once, decide not to do anything, and then get called
3015 recursively later after REF_REGULAR is set below. */
3016 h->dynamic_adjusted = 1;
3017
3018 /* If this is a weak definition, and we know a real definition, and
3019 the real symbol is not itself defined by a regular object file,
3020 then get a good value for the real definition. We handle the
3021 real symbol first, for the convenience of the backend routine.
3022
3023 Note that there is a confusing case here. If the real definition
3024 is defined by a regular object file, we don't get the real symbol
3025 from the dynamic object, but we do get the weak symbol. If the
3026 processor backend uses a COPY reloc, then if some routine in the
3027 dynamic object changes the real symbol, we will not see that
3028 change in the corresponding weak symbol. This is the way other
3029 ELF linkers work as well, and seems to be a result of the shared
3030 library model.
3031
3032 I will clarify this issue. Most SVR4 shared libraries define the
3033 variable _timezone and define timezone as a weak synonym. The
3034 tzset call changes _timezone. If you write
3035 extern int timezone;
3036 int _timezone = 5;
3037 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3038 you might expect that, since timezone is a synonym for _timezone,
3039 the same number will print both times. However, if the processor
3040 backend uses a COPY reloc, then actually timezone will be copied
3041 into your process image, and, since you define _timezone
3042 yourself, _timezone will not. Thus timezone and _timezone will
3043 wind up at different memory locations. The tzset call will set
3044 _timezone, leaving timezone unchanged. */
3045
3046 if (h->is_weakalias)
3047 {
3048 struct elf_link_hash_entry *def = weakdef (h);
3049
3050 /* If we get to this point, there is an implicit reference to
3051 the alias by a regular object file via the weak symbol H. */
3052 def->ref_regular = 1;
3053
3054 /* Ensure that the backend adjust_dynamic_symbol function sees
3055 the strong alias before H by recursively calling ourselves. */
3056 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3057 return FALSE;
3058 }
3059
3060 /* If a symbol has no type and no size and does not require a PLT
3061 entry, then we are probably about to do the wrong thing here: we
3062 are probably going to create a COPY reloc for an empty object.
3063 This case can arise when a shared object is built with assembly
3064 code, and the assembly code fails to set the symbol type. */
3065 if (h->size == 0
3066 && h->type == STT_NOTYPE
3067 && !h->needs_plt)
3068 _bfd_error_handler
3069 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3070 h->root.root.string);
3071
3072 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3073 {
3074 eif->failed = TRUE;
3075 return FALSE;
3076 }
3077
3078 return TRUE;
3079 }
3080
3081 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3082 DYNBSS. */
3083
3084 bfd_boolean
3085 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3086 struct elf_link_hash_entry *h,
3087 asection *dynbss)
3088 {
3089 unsigned int power_of_two;
3090 bfd_vma mask;
3091 asection *sec = h->root.u.def.section;
3092
3093 /* The section alignment of the definition is the maximum alignment
3094 requirement of symbols defined in the section. Since we don't
3095 know the symbol alignment requirement, we start with the
3096 maximum alignment and check low bits of the symbol address
3097 for the minimum alignment. */
3098 power_of_two = bfd_section_alignment (sec);
3099 mask = ((bfd_vma) 1 << power_of_two) - 1;
3100 while ((h->root.u.def.value & mask) != 0)
3101 {
3102 mask >>= 1;
3103 --power_of_two;
3104 }
3105
3106 if (power_of_two > bfd_section_alignment (dynbss))
3107 {
3108 /* Adjust the section alignment if needed. */
3109 if (!bfd_set_section_alignment (dynbss, power_of_two))
3110 return FALSE;
3111 }
3112
3113 /* We make sure that the symbol will be aligned properly. */
3114 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3115
3116 /* Define the symbol as being at this point in DYNBSS. */
3117 h->root.u.def.section = dynbss;
3118 h->root.u.def.value = dynbss->size;
3119
3120 /* Increment the size of DYNBSS to make room for the symbol. */
3121 dynbss->size += h->size;
3122
3123 /* No error if extern_protected_data is true. */
3124 if (h->protected_def
3125 && (!info->extern_protected_data
3126 || (info->extern_protected_data < 0
3127 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3128 info->callbacks->einfo
3129 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3130 h->root.root.string);
3131
3132 return TRUE;
3133 }
3134
3135 /* Adjust all external symbols pointing into SEC_MERGE sections
3136 to reflect the object merging within the sections. */
3137
3138 static bfd_boolean
3139 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3140 {
3141 asection *sec;
3142
3143 if ((h->root.type == bfd_link_hash_defined
3144 || h->root.type == bfd_link_hash_defweak)
3145 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3146 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3147 {
3148 bfd *output_bfd = (bfd *) data;
3149
3150 h->root.u.def.value =
3151 _bfd_merged_section_offset (output_bfd,
3152 &h->root.u.def.section,
3153 elf_section_data (sec)->sec_info,
3154 h->root.u.def.value);
3155 }
3156
3157 return TRUE;
3158 }
3159
3160 /* Returns false if the symbol referred to by H should be considered
3161 to resolve local to the current module, and true if it should be
3162 considered to bind dynamically. */
3163
3164 bfd_boolean
3165 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3166 struct bfd_link_info *info,
3167 bfd_boolean not_local_protected)
3168 {
3169 bfd_boolean binding_stays_local_p;
3170 const struct elf_backend_data *bed;
3171 struct elf_link_hash_table *hash_table;
3172
3173 if (h == NULL)
3174 return FALSE;
3175
3176 while (h->root.type == bfd_link_hash_indirect
3177 || h->root.type == bfd_link_hash_warning)
3178 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3179
3180 /* If it was forced local, then clearly it's not dynamic. */
3181 if (h->dynindx == -1)
3182 return FALSE;
3183 if (h->forced_local)
3184 return FALSE;
3185
3186 /* Identify the cases where name binding rules say that a
3187 visible symbol resolves locally. */
3188 binding_stays_local_p = (bfd_link_executable (info)
3189 || SYMBOLIC_BIND (info, h));
3190
3191 switch (ELF_ST_VISIBILITY (h->other))
3192 {
3193 case STV_INTERNAL:
3194 case STV_HIDDEN:
3195 return FALSE;
3196
3197 case STV_PROTECTED:
3198 hash_table = elf_hash_table (info);
3199 if (!is_elf_hash_table (hash_table))
3200 return FALSE;
3201
3202 bed = get_elf_backend_data (hash_table->dynobj);
3203
3204 /* Proper resolution for function pointer equality may require
3205 that these symbols perhaps be resolved dynamically, even though
3206 we should be resolving them to the current module. */
3207 if (!not_local_protected || !bed->is_function_type (h->type))
3208 binding_stays_local_p = TRUE;
3209 break;
3210
3211 default:
3212 break;
3213 }
3214
3215 /* If it isn't defined locally, then clearly it's dynamic. */
3216 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3217 return TRUE;
3218
3219 /* Otherwise, the symbol is dynamic if binding rules don't tell
3220 us that it remains local. */
3221 return !binding_stays_local_p;
3222 }
3223
3224 /* Return true if the symbol referred to by H should be considered
3225 to resolve local to the current module, and false otherwise. Differs
3226 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3227 undefined symbols. The two functions are virtually identical except
3228 for the place where dynindx == -1 is tested. If that test is true,
3229 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3230 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3231 defined symbols.
3232 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3233 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3234 treatment of undefined weak symbols. For those that do not make
3235 undefined weak symbols dynamic, both functions may return false. */
3236
3237 bfd_boolean
3238 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3239 struct bfd_link_info *info,
3240 bfd_boolean local_protected)
3241 {
3242 const struct elf_backend_data *bed;
3243 struct elf_link_hash_table *hash_table;
3244
3245 /* If it's a local sym, of course we resolve locally. */
3246 if (h == NULL)
3247 return TRUE;
3248
3249 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3250 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3251 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3252 return TRUE;
3253
3254 /* Forced local symbols resolve locally. */
3255 if (h->forced_local)
3256 return TRUE;
3257
3258 /* Common symbols that become definitions don't get the DEF_REGULAR
3259 flag set, so test it first, and don't bail out. */
3260 if (ELF_COMMON_DEF_P (h))
3261 /* Do nothing. */;
3262 /* If we don't have a definition in a regular file, then we can't
3263 resolve locally. The sym is either undefined or dynamic. */
3264 else if (!h->def_regular)
3265 return FALSE;
3266
3267 /* Non-dynamic symbols resolve locally. */
3268 if (h->dynindx == -1)
3269 return TRUE;
3270
3271 /* At this point, we know the symbol is defined and dynamic. In an
3272 executable it must resolve locally, likewise when building symbolic
3273 shared libraries. */
3274 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3275 return TRUE;
3276
3277 /* Now deal with defined dynamic symbols in shared libraries. Ones
3278 with default visibility might not resolve locally. */
3279 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3280 return FALSE;
3281
3282 hash_table = elf_hash_table (info);
3283 if (!is_elf_hash_table (hash_table))
3284 return TRUE;
3285
3286 bed = get_elf_backend_data (hash_table->dynobj);
3287
3288 /* If extern_protected_data is false, STV_PROTECTED non-function
3289 symbols are local. */
3290 if ((!info->extern_protected_data
3291 || (info->extern_protected_data < 0
3292 && !bed->extern_protected_data))
3293 && !bed->is_function_type (h->type))
3294 return TRUE;
3295
3296 /* Function pointer equality tests may require that STV_PROTECTED
3297 symbols be treated as dynamic symbols. If the address of a
3298 function not defined in an executable is set to that function's
3299 plt entry in the executable, then the address of the function in
3300 a shared library must also be the plt entry in the executable. */
3301 return local_protected;
3302 }
3303
3304 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3305 aligned. Returns the first TLS output section. */
3306
3307 struct bfd_section *
3308 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3309 {
3310 struct bfd_section *sec, *tls;
3311 unsigned int align = 0;
3312
3313 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3314 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3315 break;
3316 tls = sec;
3317
3318 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3319 if (sec->alignment_power > align)
3320 align = sec->alignment_power;
3321
3322 elf_hash_table (info)->tls_sec = tls;
3323
3324 /* Ensure the alignment of the first section (usually .tdata) is the largest
3325 alignment, so that the tls segment starts aligned. */
3326 if (tls != NULL)
3327 tls->alignment_power = align;
3328
3329 return tls;
3330 }
3331
3332 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3333 static bfd_boolean
3334 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3335 Elf_Internal_Sym *sym)
3336 {
3337 const struct elf_backend_data *bed;
3338
3339 /* Local symbols do not count, but target specific ones might. */
3340 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3341 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3342 return FALSE;
3343
3344 bed = get_elf_backend_data (abfd);
3345 /* Function symbols do not count. */
3346 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3347 return FALSE;
3348
3349 /* If the section is undefined, then so is the symbol. */
3350 if (sym->st_shndx == SHN_UNDEF)
3351 return FALSE;
3352
3353 /* If the symbol is defined in the common section, then
3354 it is a common definition and so does not count. */
3355 if (bed->common_definition (sym))
3356 return FALSE;
3357
3358 /* If the symbol is in a target specific section then we
3359 must rely upon the backend to tell us what it is. */
3360 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3361 /* FIXME - this function is not coded yet:
3362
3363 return _bfd_is_global_symbol_definition (abfd, sym);
3364
3365 Instead for now assume that the definition is not global,
3366 Even if this is wrong, at least the linker will behave
3367 in the same way that it used to do. */
3368 return FALSE;
3369
3370 return TRUE;
3371 }
3372
3373 /* Search the symbol table of the archive element of the archive ABFD
3374 whose archive map contains a mention of SYMDEF, and determine if
3375 the symbol is defined in this element. */
3376 static bfd_boolean
3377 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3378 {
3379 Elf_Internal_Shdr * hdr;
3380 size_t symcount;
3381 size_t extsymcount;
3382 size_t extsymoff;
3383 Elf_Internal_Sym *isymbuf;
3384 Elf_Internal_Sym *isym;
3385 Elf_Internal_Sym *isymend;
3386 bfd_boolean result;
3387
3388 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3389 if (abfd == NULL)
3390 return FALSE;
3391
3392 if (! bfd_check_format (abfd, bfd_object))
3393 return FALSE;
3394
3395 /* Select the appropriate symbol table. If we don't know if the
3396 object file is an IR object, give linker LTO plugin a chance to
3397 get the correct symbol table. */
3398 if (abfd->plugin_format == bfd_plugin_yes
3399 #if BFD_SUPPORTS_PLUGINS
3400 || (abfd->plugin_format == bfd_plugin_unknown
3401 && bfd_link_plugin_object_p (abfd))
3402 #endif
3403 )
3404 {
3405 /* Use the IR symbol table if the object has been claimed by
3406 plugin. */
3407 abfd = abfd->plugin_dummy_bfd;
3408 hdr = &elf_tdata (abfd)->symtab_hdr;
3409 }
3410 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3411 hdr = &elf_tdata (abfd)->symtab_hdr;
3412 else
3413 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3414
3415 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3416
3417 /* The sh_info field of the symtab header tells us where the
3418 external symbols start. We don't care about the local symbols. */
3419 if (elf_bad_symtab (abfd))
3420 {
3421 extsymcount = symcount;
3422 extsymoff = 0;
3423 }
3424 else
3425 {
3426 extsymcount = symcount - hdr->sh_info;
3427 extsymoff = hdr->sh_info;
3428 }
3429
3430 if (extsymcount == 0)
3431 return FALSE;
3432
3433 /* Read in the symbol table. */
3434 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3435 NULL, NULL, NULL);
3436 if (isymbuf == NULL)
3437 return FALSE;
3438
3439 /* Scan the symbol table looking for SYMDEF. */
3440 result = FALSE;
3441 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3442 {
3443 const char *name;
3444
3445 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3446 isym->st_name);
3447 if (name == NULL)
3448 break;
3449
3450 if (strcmp (name, symdef->name) == 0)
3451 {
3452 result = is_global_data_symbol_definition (abfd, isym);
3453 break;
3454 }
3455 }
3456
3457 free (isymbuf);
3458
3459 return result;
3460 }
3461 \f
3462 /* Add an entry to the .dynamic table. */
3463
3464 bfd_boolean
3465 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3466 bfd_vma tag,
3467 bfd_vma val)
3468 {
3469 struct elf_link_hash_table *hash_table;
3470 const struct elf_backend_data *bed;
3471 asection *s;
3472 bfd_size_type newsize;
3473 bfd_byte *newcontents;
3474 Elf_Internal_Dyn dyn;
3475
3476 hash_table = elf_hash_table (info);
3477 if (! is_elf_hash_table (hash_table))
3478 return FALSE;
3479
3480 if (tag == DT_RELA || tag == DT_REL)
3481 hash_table->dynamic_relocs = TRUE;
3482
3483 bed = get_elf_backend_data (hash_table->dynobj);
3484 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3485 BFD_ASSERT (s != NULL);
3486
3487 newsize = s->size + bed->s->sizeof_dyn;
3488 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3489 if (newcontents == NULL)
3490 return FALSE;
3491
3492 dyn.d_tag = tag;
3493 dyn.d_un.d_val = val;
3494 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3495
3496 s->size = newsize;
3497 s->contents = newcontents;
3498
3499 return TRUE;
3500 }
3501
3502 /* Strip zero-sized dynamic sections. */
3503
3504 bfd_boolean
3505 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3506 {
3507 struct elf_link_hash_table *hash_table;
3508 const struct elf_backend_data *bed;
3509 asection *s, *sdynamic, **pp;
3510 asection *rela_dyn, *rel_dyn;
3511 Elf_Internal_Dyn dyn;
3512 bfd_byte *extdyn, *next;
3513 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3514 bfd_boolean strip_zero_sized;
3515 bfd_boolean strip_zero_sized_plt;
3516
3517 if (bfd_link_relocatable (info))
3518 return TRUE;
3519
3520 hash_table = elf_hash_table (info);
3521 if (!is_elf_hash_table (hash_table))
3522 return FALSE;
3523
3524 if (!hash_table->dynobj)
3525 return TRUE;
3526
3527 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3528 if (!sdynamic)
3529 return TRUE;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 swap_dyn_in = bed->s->swap_dyn_in;
3533
3534 strip_zero_sized = FALSE;
3535 strip_zero_sized_plt = FALSE;
3536
3537 /* Strip zero-sized dynamic sections. */
3538 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3539 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3540 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3541 if (s->size == 0
3542 && (s == rela_dyn
3543 || s == rel_dyn
3544 || s == hash_table->srelplt->output_section
3545 || s == hash_table->splt->output_section))
3546 {
3547 *pp = s->next;
3548 info->output_bfd->section_count--;
3549 strip_zero_sized = TRUE;
3550 if (s == rela_dyn)
3551 s = rela_dyn;
3552 if (s == rel_dyn)
3553 s = rel_dyn;
3554 else if (s == hash_table->splt->output_section)
3555 {
3556 s = hash_table->splt;
3557 strip_zero_sized_plt = TRUE;
3558 }
3559 else
3560 s = hash_table->srelplt;
3561 s->flags |= SEC_EXCLUDE;
3562 s->output_section = bfd_abs_section_ptr;
3563 }
3564 else
3565 pp = &s->next;
3566
3567 if (strip_zero_sized_plt)
3568 for (extdyn = sdynamic->contents;
3569 extdyn < sdynamic->contents + sdynamic->size;
3570 extdyn = next)
3571 {
3572 next = extdyn + bed->s->sizeof_dyn;
3573 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3574 switch (dyn.d_tag)
3575 {
3576 default:
3577 break;
3578 case DT_JMPREL:
3579 case DT_PLTRELSZ:
3580 case DT_PLTREL:
3581 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3582 the procedure linkage table (the .plt section) has been
3583 removed. */
3584 memmove (extdyn, next,
3585 sdynamic->size - (next - sdynamic->contents));
3586 next = extdyn;
3587 }
3588 }
3589
3590 if (strip_zero_sized)
3591 {
3592 /* Regenerate program headers. */
3593 elf_seg_map (info->output_bfd) = NULL;
3594 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3595 }
3596
3597 return TRUE;
3598 }
3599
3600 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3601 1 if a DT_NEEDED tag already exists, and 0 on success. */
3602
3603 int
3604 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3605 {
3606 struct elf_link_hash_table *hash_table;
3607 size_t strindex;
3608 const char *soname;
3609
3610 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3611 return -1;
3612
3613 hash_table = elf_hash_table (info);
3614 soname = elf_dt_name (abfd);
3615 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3616 if (strindex == (size_t) -1)
3617 return -1;
3618
3619 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3620 {
3621 asection *sdyn;
3622 const struct elf_backend_data *bed;
3623 bfd_byte *extdyn;
3624
3625 bed = get_elf_backend_data (hash_table->dynobj);
3626 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3627 if (sdyn != NULL)
3628 for (extdyn = sdyn->contents;
3629 extdyn < sdyn->contents + sdyn->size;
3630 extdyn += bed->s->sizeof_dyn)
3631 {
3632 Elf_Internal_Dyn dyn;
3633
3634 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3635 if (dyn.d_tag == DT_NEEDED
3636 && dyn.d_un.d_val == strindex)
3637 {
3638 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3639 return 1;
3640 }
3641 }
3642 }
3643
3644 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3645 return -1;
3646
3647 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3648 return -1;
3649
3650 return 0;
3651 }
3652
3653 /* Return true if SONAME is on the needed list between NEEDED and STOP
3654 (or the end of list if STOP is NULL), and needed by a library that
3655 will be loaded. */
3656
3657 static bfd_boolean
3658 on_needed_list (const char *soname,
3659 struct bfd_link_needed_list *needed,
3660 struct bfd_link_needed_list *stop)
3661 {
3662 struct bfd_link_needed_list *look;
3663 for (look = needed; look != stop; look = look->next)
3664 if (strcmp (soname, look->name) == 0
3665 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3666 /* If needed by a library that itself is not directly
3667 needed, recursively check whether that library is
3668 indirectly needed. Since we add DT_NEEDED entries to
3669 the end of the list, library dependencies appear after
3670 the library. Therefore search prior to the current
3671 LOOK, preventing possible infinite recursion. */
3672 || on_needed_list (elf_dt_name (look->by), needed, look)))
3673 return TRUE;
3674
3675 return FALSE;
3676 }
3677
3678 /* Sort symbol by value, section, size, and type. */
3679 static int
3680 elf_sort_symbol (const void *arg1, const void *arg2)
3681 {
3682 const struct elf_link_hash_entry *h1;
3683 const struct elf_link_hash_entry *h2;
3684 bfd_signed_vma vdiff;
3685 int sdiff;
3686 const char *n1;
3687 const char *n2;
3688
3689 h1 = *(const struct elf_link_hash_entry **) arg1;
3690 h2 = *(const struct elf_link_hash_entry **) arg2;
3691 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3692 if (vdiff != 0)
3693 return vdiff > 0 ? 1 : -1;
3694
3695 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3696 if (sdiff != 0)
3697 return sdiff;
3698
3699 /* Sort so that sized symbols are selected over zero size symbols. */
3700 vdiff = h1->size - h2->size;
3701 if (vdiff != 0)
3702 return vdiff > 0 ? 1 : -1;
3703
3704 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3705 if (h1->type != h2->type)
3706 return h1->type - h2->type;
3707
3708 /* If symbols are properly sized and typed, and multiple strong
3709 aliases are not defined in a shared library by the user we
3710 shouldn't get here. Unfortunately linker script symbols like
3711 __bss_start sometimes match a user symbol defined at the start of
3712 .bss without proper size and type. We'd like to preference the
3713 user symbol over reserved system symbols. Sort on leading
3714 underscores. */
3715 n1 = h1->root.root.string;
3716 n2 = h2->root.root.string;
3717 while (*n1 == *n2)
3718 {
3719 if (*n1 == 0)
3720 break;
3721 ++n1;
3722 ++n2;
3723 }
3724 if (*n1 == '_')
3725 return -1;
3726 if (*n2 == '_')
3727 return 1;
3728
3729 /* Final sort on name selects user symbols like '_u' over reserved
3730 system symbols like '_Z' and also will avoid qsort instability. */
3731 return *n1 - *n2;
3732 }
3733
3734 /* This function is used to adjust offsets into .dynstr for
3735 dynamic symbols. This is called via elf_link_hash_traverse. */
3736
3737 static bfd_boolean
3738 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3739 {
3740 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3741
3742 if (h->dynindx != -1)
3743 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3744 return TRUE;
3745 }
3746
3747 /* Assign string offsets in .dynstr, update all structures referencing
3748 them. */
3749
3750 static bfd_boolean
3751 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3752 {
3753 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3754 struct elf_link_local_dynamic_entry *entry;
3755 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3756 bfd *dynobj = hash_table->dynobj;
3757 asection *sdyn;
3758 bfd_size_type size;
3759 const struct elf_backend_data *bed;
3760 bfd_byte *extdyn;
3761
3762 _bfd_elf_strtab_finalize (dynstr);
3763 size = _bfd_elf_strtab_size (dynstr);
3764
3765 bed = get_elf_backend_data (dynobj);
3766 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3767 BFD_ASSERT (sdyn != NULL);
3768
3769 /* Update all .dynamic entries referencing .dynstr strings. */
3770 for (extdyn = sdyn->contents;
3771 extdyn < sdyn->contents + sdyn->size;
3772 extdyn += bed->s->sizeof_dyn)
3773 {
3774 Elf_Internal_Dyn dyn;
3775
3776 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3777 switch (dyn.d_tag)
3778 {
3779 case DT_STRSZ:
3780 dyn.d_un.d_val = size;
3781 break;
3782 case DT_NEEDED:
3783 case DT_SONAME:
3784 case DT_RPATH:
3785 case DT_RUNPATH:
3786 case DT_FILTER:
3787 case DT_AUXILIARY:
3788 case DT_AUDIT:
3789 case DT_DEPAUDIT:
3790 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3791 break;
3792 default:
3793 continue;
3794 }
3795 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3796 }
3797
3798 /* Now update local dynamic symbols. */
3799 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3800 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3801 entry->isym.st_name);
3802
3803 /* And the rest of dynamic symbols. */
3804 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3805
3806 /* Adjust version definitions. */
3807 if (elf_tdata (output_bfd)->cverdefs)
3808 {
3809 asection *s;
3810 bfd_byte *p;
3811 size_t i;
3812 Elf_Internal_Verdef def;
3813 Elf_Internal_Verdaux defaux;
3814
3815 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3816 p = s->contents;
3817 do
3818 {
3819 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3820 &def);
3821 p += sizeof (Elf_External_Verdef);
3822 if (def.vd_aux != sizeof (Elf_External_Verdef))
3823 continue;
3824 for (i = 0; i < def.vd_cnt; ++i)
3825 {
3826 _bfd_elf_swap_verdaux_in (output_bfd,
3827 (Elf_External_Verdaux *) p, &defaux);
3828 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3829 defaux.vda_name);
3830 _bfd_elf_swap_verdaux_out (output_bfd,
3831 &defaux, (Elf_External_Verdaux *) p);
3832 p += sizeof (Elf_External_Verdaux);
3833 }
3834 }
3835 while (def.vd_next);
3836 }
3837
3838 /* Adjust version references. */
3839 if (elf_tdata (output_bfd)->verref)
3840 {
3841 asection *s;
3842 bfd_byte *p;
3843 size_t i;
3844 Elf_Internal_Verneed need;
3845 Elf_Internal_Vernaux needaux;
3846
3847 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3848 p = s->contents;
3849 do
3850 {
3851 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3852 &need);
3853 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3854 _bfd_elf_swap_verneed_out (output_bfd, &need,
3855 (Elf_External_Verneed *) p);
3856 p += sizeof (Elf_External_Verneed);
3857 for (i = 0; i < need.vn_cnt; ++i)
3858 {
3859 _bfd_elf_swap_vernaux_in (output_bfd,
3860 (Elf_External_Vernaux *) p, &needaux);
3861 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3862 needaux.vna_name);
3863 _bfd_elf_swap_vernaux_out (output_bfd,
3864 &needaux,
3865 (Elf_External_Vernaux *) p);
3866 p += sizeof (Elf_External_Vernaux);
3867 }
3868 }
3869 while (need.vn_next);
3870 }
3871
3872 return TRUE;
3873 }
3874 \f
3875 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3876 The default is to only match when the INPUT and OUTPUT are exactly
3877 the same target. */
3878
3879 bfd_boolean
3880 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3881 const bfd_target *output)
3882 {
3883 return input == output;
3884 }
3885
3886 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3887 This version is used when different targets for the same architecture
3888 are virtually identical. */
3889
3890 bfd_boolean
3891 _bfd_elf_relocs_compatible (const bfd_target *input,
3892 const bfd_target *output)
3893 {
3894 const struct elf_backend_data *obed, *ibed;
3895
3896 if (input == output)
3897 return TRUE;
3898
3899 ibed = xvec_get_elf_backend_data (input);
3900 obed = xvec_get_elf_backend_data (output);
3901
3902 if (ibed->arch != obed->arch)
3903 return FALSE;
3904
3905 /* If both backends are using this function, deem them compatible. */
3906 return ibed->relocs_compatible == obed->relocs_compatible;
3907 }
3908
3909 /* Make a special call to the linker "notice" function to tell it that
3910 we are about to handle an as-needed lib, or have finished
3911 processing the lib. */
3912
3913 bfd_boolean
3914 _bfd_elf_notice_as_needed (bfd *ibfd,
3915 struct bfd_link_info *info,
3916 enum notice_asneeded_action act)
3917 {
3918 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3919 }
3920
3921 /* Check relocations an ELF object file. */
3922
3923 bfd_boolean
3924 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3925 {
3926 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3927 struct elf_link_hash_table *htab = elf_hash_table (info);
3928
3929 /* If this object is the same format as the output object, and it is
3930 not a shared library, then let the backend look through the
3931 relocs.
3932
3933 This is required to build global offset table entries and to
3934 arrange for dynamic relocs. It is not required for the
3935 particular common case of linking non PIC code, even when linking
3936 against shared libraries, but unfortunately there is no way of
3937 knowing whether an object file has been compiled PIC or not.
3938 Looking through the relocs is not particularly time consuming.
3939 The problem is that we must either (1) keep the relocs in memory,
3940 which causes the linker to require additional runtime memory or
3941 (2) read the relocs twice from the input file, which wastes time.
3942 This would be a good case for using mmap.
3943
3944 I have no idea how to handle linking PIC code into a file of a
3945 different format. It probably can't be done. */
3946 if ((abfd->flags & DYNAMIC) == 0
3947 && is_elf_hash_table (htab)
3948 && bed->check_relocs != NULL
3949 && elf_object_id (abfd) == elf_hash_table_id (htab)
3950 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3951 {
3952 asection *o;
3953
3954 for (o = abfd->sections; o != NULL; o = o->next)
3955 {
3956 Elf_Internal_Rela *internal_relocs;
3957 bfd_boolean ok;
3958
3959 /* Don't check relocations in excluded sections. Don't do
3960 anything special with non-loaded, non-alloced sections.
3961 In particular, any relocs in such sections should not
3962 affect GOT and PLT reference counting (ie. we don't
3963 allow them to create GOT or PLT entries), there's no
3964 possibility or desire to optimize TLS relocs, and
3965 there's not much point in propagating relocs to shared
3966 libs that the dynamic linker won't relocate. */
3967 if ((o->flags & SEC_ALLOC) == 0
3968 || (o->flags & SEC_RELOC) == 0
3969 || (o->flags & SEC_EXCLUDE) != 0
3970 || o->reloc_count == 0
3971 || ((info->strip == strip_all || info->strip == strip_debugger)
3972 && (o->flags & SEC_DEBUGGING) != 0)
3973 || bfd_is_abs_section (o->output_section))
3974 continue;
3975
3976 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3977 info->keep_memory);
3978 if (internal_relocs == NULL)
3979 return FALSE;
3980
3981 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3982
3983 if (elf_section_data (o)->relocs != internal_relocs)
3984 free (internal_relocs);
3985
3986 if (! ok)
3987 return FALSE;
3988 }
3989 }
3990
3991 return TRUE;
3992 }
3993
3994 /* Add symbols from an ELF object file to the linker hash table. */
3995
3996 static bfd_boolean
3997 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3998 {
3999 Elf_Internal_Ehdr *ehdr;
4000 Elf_Internal_Shdr *hdr;
4001 size_t symcount;
4002 size_t extsymcount;
4003 size_t extsymoff;
4004 struct elf_link_hash_entry **sym_hash;
4005 bfd_boolean dynamic;
4006 Elf_External_Versym *extversym = NULL;
4007 Elf_External_Versym *extversym_end = NULL;
4008 Elf_External_Versym *ever;
4009 struct elf_link_hash_entry *weaks;
4010 struct elf_link_hash_entry **nondeflt_vers = NULL;
4011 size_t nondeflt_vers_cnt = 0;
4012 Elf_Internal_Sym *isymbuf = NULL;
4013 Elf_Internal_Sym *isym;
4014 Elf_Internal_Sym *isymend;
4015 const struct elf_backend_data *bed;
4016 bfd_boolean add_needed;
4017 struct elf_link_hash_table *htab;
4018 void *alloc_mark = NULL;
4019 struct bfd_hash_entry **old_table = NULL;
4020 unsigned int old_size = 0;
4021 unsigned int old_count = 0;
4022 void *old_tab = NULL;
4023 void *old_ent;
4024 struct bfd_link_hash_entry *old_undefs = NULL;
4025 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4026 void *old_strtab = NULL;
4027 size_t tabsize = 0;
4028 asection *s;
4029 bfd_boolean just_syms;
4030
4031 htab = elf_hash_table (info);
4032 bed = get_elf_backend_data (abfd);
4033
4034 if ((abfd->flags & DYNAMIC) == 0)
4035 dynamic = FALSE;
4036 else
4037 {
4038 dynamic = TRUE;
4039
4040 /* You can't use -r against a dynamic object. Also, there's no
4041 hope of using a dynamic object which does not exactly match
4042 the format of the output file. */
4043 if (bfd_link_relocatable (info)
4044 || !is_elf_hash_table (htab)
4045 || info->output_bfd->xvec != abfd->xvec)
4046 {
4047 if (bfd_link_relocatable (info))
4048 bfd_set_error (bfd_error_invalid_operation);
4049 else
4050 bfd_set_error (bfd_error_wrong_format);
4051 goto error_return;
4052 }
4053 }
4054
4055 ehdr = elf_elfheader (abfd);
4056 if (info->warn_alternate_em
4057 && bed->elf_machine_code != ehdr->e_machine
4058 && ((bed->elf_machine_alt1 != 0
4059 && ehdr->e_machine == bed->elf_machine_alt1)
4060 || (bed->elf_machine_alt2 != 0
4061 && ehdr->e_machine == bed->elf_machine_alt2)))
4062 _bfd_error_handler
4063 /* xgettext:c-format */
4064 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4065 ehdr->e_machine, abfd, bed->elf_machine_code);
4066
4067 /* As a GNU extension, any input sections which are named
4068 .gnu.warning.SYMBOL are treated as warning symbols for the given
4069 symbol. This differs from .gnu.warning sections, which generate
4070 warnings when they are included in an output file. */
4071 /* PR 12761: Also generate this warning when building shared libraries. */
4072 for (s = abfd->sections; s != NULL; s = s->next)
4073 {
4074 const char *name;
4075
4076 name = bfd_section_name (s);
4077 if (CONST_STRNEQ (name, ".gnu.warning."))
4078 {
4079 char *msg;
4080 bfd_size_type sz;
4081
4082 name += sizeof ".gnu.warning." - 1;
4083
4084 /* If this is a shared object, then look up the symbol
4085 in the hash table. If it is there, and it is already
4086 been defined, then we will not be using the entry
4087 from this shared object, so we don't need to warn.
4088 FIXME: If we see the definition in a regular object
4089 later on, we will warn, but we shouldn't. The only
4090 fix is to keep track of what warnings we are supposed
4091 to emit, and then handle them all at the end of the
4092 link. */
4093 if (dynamic)
4094 {
4095 struct elf_link_hash_entry *h;
4096
4097 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4098
4099 /* FIXME: What about bfd_link_hash_common? */
4100 if (h != NULL
4101 && (h->root.type == bfd_link_hash_defined
4102 || h->root.type == bfd_link_hash_defweak))
4103 continue;
4104 }
4105
4106 sz = s->size;
4107 msg = (char *) bfd_alloc (abfd, sz + 1);
4108 if (msg == NULL)
4109 goto error_return;
4110
4111 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4112 goto error_return;
4113
4114 msg[sz] = '\0';
4115
4116 if (! (_bfd_generic_link_add_one_symbol
4117 (info, abfd, name, BSF_WARNING, s, 0, msg,
4118 FALSE, bed->collect, NULL)))
4119 goto error_return;
4120
4121 if (bfd_link_executable (info))
4122 {
4123 /* Clobber the section size so that the warning does
4124 not get copied into the output file. */
4125 s->size = 0;
4126
4127 /* Also set SEC_EXCLUDE, so that symbols defined in
4128 the warning section don't get copied to the output. */
4129 s->flags |= SEC_EXCLUDE;
4130 }
4131 }
4132 }
4133
4134 just_syms = ((s = abfd->sections) != NULL
4135 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4136
4137 add_needed = TRUE;
4138 if (! dynamic)
4139 {
4140 /* If we are creating a shared library, create all the dynamic
4141 sections immediately. We need to attach them to something,
4142 so we attach them to this BFD, provided it is the right
4143 format and is not from ld --just-symbols. Always create the
4144 dynamic sections for -E/--dynamic-list. FIXME: If there
4145 are no input BFD's of the same format as the output, we can't
4146 make a shared library. */
4147 if (!just_syms
4148 && (bfd_link_pic (info)
4149 || (!bfd_link_relocatable (info)
4150 && info->nointerp
4151 && (info->export_dynamic || info->dynamic)))
4152 && is_elf_hash_table (htab)
4153 && info->output_bfd->xvec == abfd->xvec
4154 && !htab->dynamic_sections_created)
4155 {
4156 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4157 goto error_return;
4158 }
4159 }
4160 else if (!is_elf_hash_table (htab))
4161 goto error_return;
4162 else
4163 {
4164 const char *soname = NULL;
4165 char *audit = NULL;
4166 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4167 const Elf_Internal_Phdr *phdr;
4168 struct elf_link_loaded_list *loaded_lib;
4169
4170 /* ld --just-symbols and dynamic objects don't mix very well.
4171 ld shouldn't allow it. */
4172 if (just_syms)
4173 abort ();
4174
4175 /* If this dynamic lib was specified on the command line with
4176 --as-needed in effect, then we don't want to add a DT_NEEDED
4177 tag unless the lib is actually used. Similary for libs brought
4178 in by another lib's DT_NEEDED. When --no-add-needed is used
4179 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4180 any dynamic library in DT_NEEDED tags in the dynamic lib at
4181 all. */
4182 add_needed = (elf_dyn_lib_class (abfd)
4183 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4184 | DYN_NO_NEEDED)) == 0;
4185
4186 s = bfd_get_section_by_name (abfd, ".dynamic");
4187 if (s != NULL)
4188 {
4189 bfd_byte *dynbuf;
4190 bfd_byte *extdyn;
4191 unsigned int elfsec;
4192 unsigned long shlink;
4193
4194 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4195 {
4196 error_free_dyn:
4197 free (dynbuf);
4198 goto error_return;
4199 }
4200
4201 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4202 if (elfsec == SHN_BAD)
4203 goto error_free_dyn;
4204 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4205
4206 for (extdyn = dynbuf;
4207 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4208 extdyn += bed->s->sizeof_dyn)
4209 {
4210 Elf_Internal_Dyn dyn;
4211
4212 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4213 if (dyn.d_tag == DT_SONAME)
4214 {
4215 unsigned int tagv = dyn.d_un.d_val;
4216 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4217 if (soname == NULL)
4218 goto error_free_dyn;
4219 }
4220 if (dyn.d_tag == DT_NEEDED)
4221 {
4222 struct bfd_link_needed_list *n, **pn;
4223 char *fnm, *anm;
4224 unsigned int tagv = dyn.d_un.d_val;
4225 size_t amt = sizeof (struct bfd_link_needed_list);
4226
4227 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4228 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4229 if (n == NULL || fnm == NULL)
4230 goto error_free_dyn;
4231 amt = strlen (fnm) + 1;
4232 anm = (char *) bfd_alloc (abfd, amt);
4233 if (anm == NULL)
4234 goto error_free_dyn;
4235 memcpy (anm, fnm, amt);
4236 n->name = anm;
4237 n->by = abfd;
4238 n->next = NULL;
4239 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4240 ;
4241 *pn = n;
4242 }
4243 if (dyn.d_tag == DT_RUNPATH)
4244 {
4245 struct bfd_link_needed_list *n, **pn;
4246 char *fnm, *anm;
4247 unsigned int tagv = dyn.d_un.d_val;
4248 size_t amt = sizeof (struct bfd_link_needed_list);
4249
4250 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4251 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4252 if (n == NULL || fnm == NULL)
4253 goto error_free_dyn;
4254 amt = strlen (fnm) + 1;
4255 anm = (char *) bfd_alloc (abfd, amt);
4256 if (anm == NULL)
4257 goto error_free_dyn;
4258 memcpy (anm, fnm, amt);
4259 n->name = anm;
4260 n->by = abfd;
4261 n->next = NULL;
4262 for (pn = & runpath;
4263 *pn != NULL;
4264 pn = &(*pn)->next)
4265 ;
4266 *pn = n;
4267 }
4268 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4269 if (!runpath && dyn.d_tag == DT_RPATH)
4270 {
4271 struct bfd_link_needed_list *n, **pn;
4272 char *fnm, *anm;
4273 unsigned int tagv = dyn.d_un.d_val;
4274 size_t amt = sizeof (struct bfd_link_needed_list);
4275
4276 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4277 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4278 if (n == NULL || fnm == NULL)
4279 goto error_free_dyn;
4280 amt = strlen (fnm) + 1;
4281 anm = (char *) bfd_alloc (abfd, amt);
4282 if (anm == NULL)
4283 goto error_free_dyn;
4284 memcpy (anm, fnm, amt);
4285 n->name = anm;
4286 n->by = abfd;
4287 n->next = NULL;
4288 for (pn = & rpath;
4289 *pn != NULL;
4290 pn = &(*pn)->next)
4291 ;
4292 *pn = n;
4293 }
4294 if (dyn.d_tag == DT_AUDIT)
4295 {
4296 unsigned int tagv = dyn.d_un.d_val;
4297 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4298 }
4299 }
4300
4301 free (dynbuf);
4302 }
4303
4304 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4305 frees all more recently bfd_alloc'd blocks as well. */
4306 if (runpath)
4307 rpath = runpath;
4308
4309 if (rpath)
4310 {
4311 struct bfd_link_needed_list **pn;
4312 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4313 ;
4314 *pn = rpath;
4315 }
4316
4317 /* If we have a PT_GNU_RELRO program header, mark as read-only
4318 all sections contained fully therein. This makes relro
4319 shared library sections appear as they will at run-time. */
4320 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4321 while (phdr-- > elf_tdata (abfd)->phdr)
4322 if (phdr->p_type == PT_GNU_RELRO)
4323 {
4324 for (s = abfd->sections; s != NULL; s = s->next)
4325 {
4326 unsigned int opb = bfd_octets_per_byte (abfd, s);
4327
4328 if ((s->flags & SEC_ALLOC) != 0
4329 && s->vma * opb >= phdr->p_vaddr
4330 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4331 s->flags |= SEC_READONLY;
4332 }
4333 break;
4334 }
4335
4336 /* We do not want to include any of the sections in a dynamic
4337 object in the output file. We hack by simply clobbering the
4338 list of sections in the BFD. This could be handled more
4339 cleanly by, say, a new section flag; the existing
4340 SEC_NEVER_LOAD flag is not the one we want, because that one
4341 still implies that the section takes up space in the output
4342 file. */
4343 bfd_section_list_clear (abfd);
4344
4345 /* Find the name to use in a DT_NEEDED entry that refers to this
4346 object. If the object has a DT_SONAME entry, we use it.
4347 Otherwise, if the generic linker stuck something in
4348 elf_dt_name, we use that. Otherwise, we just use the file
4349 name. */
4350 if (soname == NULL || *soname == '\0')
4351 {
4352 soname = elf_dt_name (abfd);
4353 if (soname == NULL || *soname == '\0')
4354 soname = bfd_get_filename (abfd);
4355 }
4356
4357 /* Save the SONAME because sometimes the linker emulation code
4358 will need to know it. */
4359 elf_dt_name (abfd) = soname;
4360
4361 /* If we have already included this dynamic object in the
4362 link, just ignore it. There is no reason to include a
4363 particular dynamic object more than once. */
4364 for (loaded_lib = htab->dyn_loaded;
4365 loaded_lib != NULL;
4366 loaded_lib = loaded_lib->next)
4367 {
4368 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4369 return TRUE;
4370 }
4371
4372 /* Create dynamic sections for backends that require that be done
4373 before setup_gnu_properties. */
4374 if (add_needed
4375 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4376 return FALSE;
4377
4378 /* Save the DT_AUDIT entry for the linker emulation code. */
4379 elf_dt_audit (abfd) = audit;
4380 }
4381
4382 /* If this is a dynamic object, we always link against the .dynsym
4383 symbol table, not the .symtab symbol table. The dynamic linker
4384 will only see the .dynsym symbol table, so there is no reason to
4385 look at .symtab for a dynamic object. */
4386
4387 if (! dynamic || elf_dynsymtab (abfd) == 0)
4388 hdr = &elf_tdata (abfd)->symtab_hdr;
4389 else
4390 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4391
4392 symcount = hdr->sh_size / bed->s->sizeof_sym;
4393
4394 /* The sh_info field of the symtab header tells us where the
4395 external symbols start. We don't care about the local symbols at
4396 this point. */
4397 if (elf_bad_symtab (abfd))
4398 {
4399 extsymcount = symcount;
4400 extsymoff = 0;
4401 }
4402 else
4403 {
4404 extsymcount = symcount - hdr->sh_info;
4405 extsymoff = hdr->sh_info;
4406 }
4407
4408 sym_hash = elf_sym_hashes (abfd);
4409 if (extsymcount != 0)
4410 {
4411 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4412 NULL, NULL, NULL);
4413 if (isymbuf == NULL)
4414 goto error_return;
4415
4416 if (sym_hash == NULL)
4417 {
4418 /* We store a pointer to the hash table entry for each
4419 external symbol. */
4420 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4421 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4422 if (sym_hash == NULL)
4423 goto error_free_sym;
4424 elf_sym_hashes (abfd) = sym_hash;
4425 }
4426 }
4427
4428 if (dynamic)
4429 {
4430 /* Read in any version definitions. */
4431 if (!_bfd_elf_slurp_version_tables (abfd,
4432 info->default_imported_symver))
4433 goto error_free_sym;
4434
4435 /* Read in the symbol versions, but don't bother to convert them
4436 to internal format. */
4437 if (elf_dynversym (abfd) != 0)
4438 {
4439 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4440 bfd_size_type amt = versymhdr->sh_size;
4441
4442 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4443 goto error_free_sym;
4444 extversym = (Elf_External_Versym *)
4445 _bfd_malloc_and_read (abfd, amt, amt);
4446 if (extversym == NULL)
4447 goto error_free_sym;
4448 extversym_end = extversym + amt / sizeof (*extversym);
4449 }
4450 }
4451
4452 /* If we are loading an as-needed shared lib, save the symbol table
4453 state before we start adding symbols. If the lib turns out
4454 to be unneeded, restore the state. */
4455 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4456 {
4457 unsigned int i;
4458 size_t entsize;
4459
4460 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4461 {
4462 struct bfd_hash_entry *p;
4463 struct elf_link_hash_entry *h;
4464
4465 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4466 {
4467 h = (struct elf_link_hash_entry *) p;
4468 entsize += htab->root.table.entsize;
4469 if (h->root.type == bfd_link_hash_warning)
4470 entsize += htab->root.table.entsize;
4471 }
4472 }
4473
4474 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4475 old_tab = bfd_malloc (tabsize + entsize);
4476 if (old_tab == NULL)
4477 goto error_free_vers;
4478
4479 /* Remember the current objalloc pointer, so that all mem for
4480 symbols added can later be reclaimed. */
4481 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4482 if (alloc_mark == NULL)
4483 goto error_free_vers;
4484
4485 /* Make a special call to the linker "notice" function to
4486 tell it that we are about to handle an as-needed lib. */
4487 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4488 goto error_free_vers;
4489
4490 /* Clone the symbol table. Remember some pointers into the
4491 symbol table, and dynamic symbol count. */
4492 old_ent = (char *) old_tab + tabsize;
4493 memcpy (old_tab, htab->root.table.table, tabsize);
4494 old_undefs = htab->root.undefs;
4495 old_undefs_tail = htab->root.undefs_tail;
4496 old_table = htab->root.table.table;
4497 old_size = htab->root.table.size;
4498 old_count = htab->root.table.count;
4499 old_strtab = NULL;
4500 if (htab->dynstr != NULL)
4501 {
4502 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4503 if (old_strtab == NULL)
4504 goto error_free_vers;
4505 }
4506
4507 for (i = 0; i < htab->root.table.size; i++)
4508 {
4509 struct bfd_hash_entry *p;
4510 struct elf_link_hash_entry *h;
4511
4512 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4513 {
4514 memcpy (old_ent, p, htab->root.table.entsize);
4515 old_ent = (char *) old_ent + htab->root.table.entsize;
4516 h = (struct elf_link_hash_entry *) p;
4517 if (h->root.type == bfd_link_hash_warning)
4518 {
4519 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4520 old_ent = (char *) old_ent + htab->root.table.entsize;
4521 }
4522 }
4523 }
4524 }
4525
4526 weaks = NULL;
4527 if (extversym == NULL)
4528 ever = NULL;
4529 else if (extversym + extsymoff < extversym_end)
4530 ever = extversym + extsymoff;
4531 else
4532 {
4533 /* xgettext:c-format */
4534 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4535 abfd, (long) extsymoff,
4536 (long) (extversym_end - extversym) / sizeof (* extversym));
4537 bfd_set_error (bfd_error_bad_value);
4538 goto error_free_vers;
4539 }
4540
4541 if (!bfd_link_relocatable (info)
4542 && abfd->lto_slim_object)
4543 {
4544 _bfd_error_handler
4545 (_("%pB: plugin needed to handle lto object"), abfd);
4546 }
4547
4548 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4549 isym < isymend;
4550 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4551 {
4552 int bind;
4553 bfd_vma value;
4554 asection *sec, *new_sec;
4555 flagword flags;
4556 const char *name;
4557 struct elf_link_hash_entry *h;
4558 struct elf_link_hash_entry *hi;
4559 bfd_boolean definition;
4560 bfd_boolean size_change_ok;
4561 bfd_boolean type_change_ok;
4562 bfd_boolean new_weak;
4563 bfd_boolean old_weak;
4564 bfd_boolean override;
4565 bfd_boolean common;
4566 bfd_boolean discarded;
4567 unsigned int old_alignment;
4568 unsigned int shindex;
4569 bfd *old_bfd;
4570 bfd_boolean matched;
4571
4572 override = FALSE;
4573
4574 flags = BSF_NO_FLAGS;
4575 sec = NULL;
4576 value = isym->st_value;
4577 common = bed->common_definition (isym);
4578 if (common && info->inhibit_common_definition)
4579 {
4580 /* Treat common symbol as undefined for --no-define-common. */
4581 isym->st_shndx = SHN_UNDEF;
4582 common = FALSE;
4583 }
4584 discarded = FALSE;
4585
4586 bind = ELF_ST_BIND (isym->st_info);
4587 switch (bind)
4588 {
4589 case STB_LOCAL:
4590 /* This should be impossible, since ELF requires that all
4591 global symbols follow all local symbols, and that sh_info
4592 point to the first global symbol. Unfortunately, Irix 5
4593 screws this up. */
4594 if (elf_bad_symtab (abfd))
4595 continue;
4596
4597 /* If we aren't prepared to handle locals within the globals
4598 then we'll likely segfault on a NULL symbol hash if the
4599 symbol is ever referenced in relocations. */
4600 shindex = elf_elfheader (abfd)->e_shstrndx;
4601 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4602 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4603 " (>= sh_info of %lu)"),
4604 abfd, name, (long) (isym - isymbuf + extsymoff),
4605 (long) extsymoff);
4606
4607 /* Dynamic object relocations are not processed by ld, so
4608 ld won't run into the problem mentioned above. */
4609 if (dynamic)
4610 continue;
4611 bfd_set_error (bfd_error_bad_value);
4612 goto error_free_vers;
4613
4614 case STB_GLOBAL:
4615 if (isym->st_shndx != SHN_UNDEF && !common)
4616 flags = BSF_GLOBAL;
4617 break;
4618
4619 case STB_WEAK:
4620 flags = BSF_WEAK;
4621 break;
4622
4623 case STB_GNU_UNIQUE:
4624 flags = BSF_GNU_UNIQUE;
4625 break;
4626
4627 default:
4628 /* Leave it up to the processor backend. */
4629 break;
4630 }
4631
4632 if (isym->st_shndx == SHN_UNDEF)
4633 sec = bfd_und_section_ptr;
4634 else if (isym->st_shndx == SHN_ABS)
4635 sec = bfd_abs_section_ptr;
4636 else if (isym->st_shndx == SHN_COMMON)
4637 {
4638 sec = bfd_com_section_ptr;
4639 /* What ELF calls the size we call the value. What ELF
4640 calls the value we call the alignment. */
4641 value = isym->st_size;
4642 }
4643 else
4644 {
4645 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4646 if (sec == NULL)
4647 sec = bfd_abs_section_ptr;
4648 else if (discarded_section (sec))
4649 {
4650 /* Symbols from discarded section are undefined. We keep
4651 its visibility. */
4652 sec = bfd_und_section_ptr;
4653 discarded = TRUE;
4654 isym->st_shndx = SHN_UNDEF;
4655 }
4656 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4657 value -= sec->vma;
4658 }
4659
4660 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4661 isym->st_name);
4662 if (name == NULL)
4663 goto error_free_vers;
4664
4665 if (isym->st_shndx == SHN_COMMON
4666 && (abfd->flags & BFD_PLUGIN) != 0)
4667 {
4668 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4669
4670 if (xc == NULL)
4671 {
4672 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4673 | SEC_EXCLUDE);
4674 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4675 if (xc == NULL)
4676 goto error_free_vers;
4677 }
4678 sec = xc;
4679 }
4680 else if (isym->st_shndx == SHN_COMMON
4681 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4682 && !bfd_link_relocatable (info))
4683 {
4684 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4685
4686 if (tcomm == NULL)
4687 {
4688 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4689 | SEC_LINKER_CREATED);
4690 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4691 if (tcomm == NULL)
4692 goto error_free_vers;
4693 }
4694 sec = tcomm;
4695 }
4696 else if (bed->elf_add_symbol_hook)
4697 {
4698 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4699 &sec, &value))
4700 goto error_free_vers;
4701
4702 /* The hook function sets the name to NULL if this symbol
4703 should be skipped for some reason. */
4704 if (name == NULL)
4705 continue;
4706 }
4707
4708 /* Sanity check that all possibilities were handled. */
4709 if (sec == NULL)
4710 abort ();
4711
4712 /* Silently discard TLS symbols from --just-syms. There's
4713 no way to combine a static TLS block with a new TLS block
4714 for this executable. */
4715 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4716 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4717 continue;
4718
4719 if (bfd_is_und_section (sec)
4720 || bfd_is_com_section (sec))
4721 definition = FALSE;
4722 else
4723 definition = TRUE;
4724
4725 size_change_ok = FALSE;
4726 type_change_ok = bed->type_change_ok;
4727 old_weak = FALSE;
4728 matched = FALSE;
4729 old_alignment = 0;
4730 old_bfd = NULL;
4731 new_sec = sec;
4732
4733 if (is_elf_hash_table (htab))
4734 {
4735 Elf_Internal_Versym iver;
4736 unsigned int vernum = 0;
4737 bfd_boolean skip;
4738
4739 if (ever == NULL)
4740 {
4741 if (info->default_imported_symver)
4742 /* Use the default symbol version created earlier. */
4743 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4744 else
4745 iver.vs_vers = 0;
4746 }
4747 else if (ever >= extversym_end)
4748 {
4749 /* xgettext:c-format */
4750 _bfd_error_handler (_("%pB: not enough version information"),
4751 abfd);
4752 bfd_set_error (bfd_error_bad_value);
4753 goto error_free_vers;
4754 }
4755 else
4756 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4757
4758 vernum = iver.vs_vers & VERSYM_VERSION;
4759
4760 /* If this is a hidden symbol, or if it is not version
4761 1, we append the version name to the symbol name.
4762 However, we do not modify a non-hidden absolute symbol
4763 if it is not a function, because it might be the version
4764 symbol itself. FIXME: What if it isn't? */
4765 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4766 || (vernum > 1
4767 && (!bfd_is_abs_section (sec)
4768 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4769 {
4770 const char *verstr;
4771 size_t namelen, verlen, newlen;
4772 char *newname, *p;
4773
4774 if (isym->st_shndx != SHN_UNDEF)
4775 {
4776 if (vernum > elf_tdata (abfd)->cverdefs)
4777 verstr = NULL;
4778 else if (vernum > 1)
4779 verstr =
4780 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4781 else
4782 verstr = "";
4783
4784 if (verstr == NULL)
4785 {
4786 _bfd_error_handler
4787 /* xgettext:c-format */
4788 (_("%pB: %s: invalid version %u (max %d)"),
4789 abfd, name, vernum,
4790 elf_tdata (abfd)->cverdefs);
4791 bfd_set_error (bfd_error_bad_value);
4792 goto error_free_vers;
4793 }
4794 }
4795 else
4796 {
4797 /* We cannot simply test for the number of
4798 entries in the VERNEED section since the
4799 numbers for the needed versions do not start
4800 at 0. */
4801 Elf_Internal_Verneed *t;
4802
4803 verstr = NULL;
4804 for (t = elf_tdata (abfd)->verref;
4805 t != NULL;
4806 t = t->vn_nextref)
4807 {
4808 Elf_Internal_Vernaux *a;
4809
4810 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4811 {
4812 if (a->vna_other == vernum)
4813 {
4814 verstr = a->vna_nodename;
4815 break;
4816 }
4817 }
4818 if (a != NULL)
4819 break;
4820 }
4821 if (verstr == NULL)
4822 {
4823 _bfd_error_handler
4824 /* xgettext:c-format */
4825 (_("%pB: %s: invalid needed version %d"),
4826 abfd, name, vernum);
4827 bfd_set_error (bfd_error_bad_value);
4828 goto error_free_vers;
4829 }
4830 }
4831
4832 namelen = strlen (name);
4833 verlen = strlen (verstr);
4834 newlen = namelen + verlen + 2;
4835 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4836 && isym->st_shndx != SHN_UNDEF)
4837 ++newlen;
4838
4839 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4840 if (newname == NULL)
4841 goto error_free_vers;
4842 memcpy (newname, name, namelen);
4843 p = newname + namelen;
4844 *p++ = ELF_VER_CHR;
4845 /* If this is a defined non-hidden version symbol,
4846 we add another @ to the name. This indicates the
4847 default version of the symbol. */
4848 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4849 && isym->st_shndx != SHN_UNDEF)
4850 *p++ = ELF_VER_CHR;
4851 memcpy (p, verstr, verlen + 1);
4852
4853 name = newname;
4854 }
4855
4856 /* If this symbol has default visibility and the user has
4857 requested we not re-export it, then mark it as hidden. */
4858 if (!bfd_is_und_section (sec)
4859 && !dynamic
4860 && abfd->no_export
4861 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4862 isym->st_other = (STV_HIDDEN
4863 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4864
4865 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4866 sym_hash, &old_bfd, &old_weak,
4867 &old_alignment, &skip, &override,
4868 &type_change_ok, &size_change_ok,
4869 &matched))
4870 goto error_free_vers;
4871
4872 if (skip)
4873 continue;
4874
4875 /* Override a definition only if the new symbol matches the
4876 existing one. */
4877 if (override && matched)
4878 definition = FALSE;
4879
4880 h = *sym_hash;
4881 while (h->root.type == bfd_link_hash_indirect
4882 || h->root.type == bfd_link_hash_warning)
4883 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4884
4885 if (elf_tdata (abfd)->verdef != NULL
4886 && vernum > 1
4887 && definition)
4888 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4889 }
4890
4891 if (! (_bfd_generic_link_add_one_symbol
4892 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4893 (struct bfd_link_hash_entry **) sym_hash)))
4894 goto error_free_vers;
4895
4896 h = *sym_hash;
4897 /* We need to make sure that indirect symbol dynamic flags are
4898 updated. */
4899 hi = h;
4900 while (h->root.type == bfd_link_hash_indirect
4901 || h->root.type == bfd_link_hash_warning)
4902 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4903
4904 /* Setting the index to -3 tells elf_link_output_extsym that
4905 this symbol is defined in a discarded section. */
4906 if (discarded)
4907 h->indx = -3;
4908
4909 *sym_hash = h;
4910
4911 new_weak = (flags & BSF_WEAK) != 0;
4912 if (dynamic
4913 && definition
4914 && new_weak
4915 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4916 && is_elf_hash_table (htab)
4917 && h->u.alias == NULL)
4918 {
4919 /* Keep a list of all weak defined non function symbols from
4920 a dynamic object, using the alias field. Later in this
4921 function we will set the alias field to the correct
4922 value. We only put non-function symbols from dynamic
4923 objects on this list, because that happens to be the only
4924 time we need to know the normal symbol corresponding to a
4925 weak symbol, and the information is time consuming to
4926 figure out. If the alias field is not already NULL,
4927 then this symbol was already defined by some previous
4928 dynamic object, and we will be using that previous
4929 definition anyhow. */
4930
4931 h->u.alias = weaks;
4932 weaks = h;
4933 }
4934
4935 /* Set the alignment of a common symbol. */
4936 if ((common || bfd_is_com_section (sec))
4937 && h->root.type == bfd_link_hash_common)
4938 {
4939 unsigned int align;
4940
4941 if (common)
4942 align = bfd_log2 (isym->st_value);
4943 else
4944 {
4945 /* The new symbol is a common symbol in a shared object.
4946 We need to get the alignment from the section. */
4947 align = new_sec->alignment_power;
4948 }
4949 if (align > old_alignment)
4950 h->root.u.c.p->alignment_power = align;
4951 else
4952 h->root.u.c.p->alignment_power = old_alignment;
4953 }
4954
4955 if (is_elf_hash_table (htab))
4956 {
4957 /* Set a flag in the hash table entry indicating the type of
4958 reference or definition we just found. A dynamic symbol
4959 is one which is referenced or defined by both a regular
4960 object and a shared object. */
4961 bfd_boolean dynsym = FALSE;
4962
4963 /* Plugin symbols aren't normal. Don't set def_regular or
4964 ref_regular for them, or make them dynamic. */
4965 if ((abfd->flags & BFD_PLUGIN) != 0)
4966 ;
4967 else if (! dynamic)
4968 {
4969 if (! definition)
4970 {
4971 h->ref_regular = 1;
4972 if (bind != STB_WEAK)
4973 h->ref_regular_nonweak = 1;
4974 }
4975 else
4976 {
4977 h->def_regular = 1;
4978 if (h->def_dynamic)
4979 {
4980 h->def_dynamic = 0;
4981 h->ref_dynamic = 1;
4982 }
4983 }
4984
4985 /* If the indirect symbol has been forced local, don't
4986 make the real symbol dynamic. */
4987 if ((h == hi || !hi->forced_local)
4988 && (bfd_link_dll (info)
4989 || h->def_dynamic
4990 || h->ref_dynamic))
4991 dynsym = TRUE;
4992 }
4993 else
4994 {
4995 if (! definition)
4996 {
4997 h->ref_dynamic = 1;
4998 hi->ref_dynamic = 1;
4999 }
5000 else
5001 {
5002 h->def_dynamic = 1;
5003 hi->def_dynamic = 1;
5004 }
5005
5006 /* If the indirect symbol has been forced local, don't
5007 make the real symbol dynamic. */
5008 if ((h == hi || !hi->forced_local)
5009 && (h->def_regular
5010 || h->ref_regular
5011 || (h->is_weakalias
5012 && weakdef (h)->dynindx != -1)))
5013 dynsym = TRUE;
5014 }
5015
5016 /* Check to see if we need to add an indirect symbol for
5017 the default name. */
5018 if (definition
5019 || (!override && h->root.type == bfd_link_hash_common))
5020 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5021 sec, value, &old_bfd, &dynsym))
5022 goto error_free_vers;
5023
5024 /* Check the alignment when a common symbol is involved. This
5025 can change when a common symbol is overridden by a normal
5026 definition or a common symbol is ignored due to the old
5027 normal definition. We need to make sure the maximum
5028 alignment is maintained. */
5029 if ((old_alignment || common)
5030 && h->root.type != bfd_link_hash_common)
5031 {
5032 unsigned int common_align;
5033 unsigned int normal_align;
5034 unsigned int symbol_align;
5035 bfd *normal_bfd;
5036 bfd *common_bfd;
5037
5038 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5039 || h->root.type == bfd_link_hash_defweak);
5040
5041 symbol_align = ffs (h->root.u.def.value) - 1;
5042 if (h->root.u.def.section->owner != NULL
5043 && (h->root.u.def.section->owner->flags
5044 & (DYNAMIC | BFD_PLUGIN)) == 0)
5045 {
5046 normal_align = h->root.u.def.section->alignment_power;
5047 if (normal_align > symbol_align)
5048 normal_align = symbol_align;
5049 }
5050 else
5051 normal_align = symbol_align;
5052
5053 if (old_alignment)
5054 {
5055 common_align = old_alignment;
5056 common_bfd = old_bfd;
5057 normal_bfd = abfd;
5058 }
5059 else
5060 {
5061 common_align = bfd_log2 (isym->st_value);
5062 common_bfd = abfd;
5063 normal_bfd = old_bfd;
5064 }
5065
5066 if (normal_align < common_align)
5067 {
5068 /* PR binutils/2735 */
5069 if (normal_bfd == NULL)
5070 _bfd_error_handler
5071 /* xgettext:c-format */
5072 (_("warning: alignment %u of common symbol `%s' in %pB is"
5073 " greater than the alignment (%u) of its section %pA"),
5074 1 << common_align, name, common_bfd,
5075 1 << normal_align, h->root.u.def.section);
5076 else
5077 _bfd_error_handler
5078 /* xgettext:c-format */
5079 (_("warning: alignment %u of symbol `%s' in %pB"
5080 " is smaller than %u in %pB"),
5081 1 << normal_align, name, normal_bfd,
5082 1 << common_align, common_bfd);
5083 }
5084 }
5085
5086 /* Remember the symbol size if it isn't undefined. */
5087 if (isym->st_size != 0
5088 && isym->st_shndx != SHN_UNDEF
5089 && (definition || h->size == 0))
5090 {
5091 if (h->size != 0
5092 && h->size != isym->st_size
5093 && ! size_change_ok)
5094 _bfd_error_handler
5095 /* xgettext:c-format */
5096 (_("warning: size of symbol `%s' changed"
5097 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5098 name, (uint64_t) h->size, old_bfd,
5099 (uint64_t) isym->st_size, abfd);
5100
5101 h->size = isym->st_size;
5102 }
5103
5104 /* If this is a common symbol, then we always want H->SIZE
5105 to be the size of the common symbol. The code just above
5106 won't fix the size if a common symbol becomes larger. We
5107 don't warn about a size change here, because that is
5108 covered by --warn-common. Allow changes between different
5109 function types. */
5110 if (h->root.type == bfd_link_hash_common)
5111 h->size = h->root.u.c.size;
5112
5113 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5114 && ((definition && !new_weak)
5115 || (old_weak && h->root.type == bfd_link_hash_common)
5116 || h->type == STT_NOTYPE))
5117 {
5118 unsigned int type = ELF_ST_TYPE (isym->st_info);
5119
5120 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5121 symbol. */
5122 if (type == STT_GNU_IFUNC
5123 && (abfd->flags & DYNAMIC) != 0)
5124 type = STT_FUNC;
5125
5126 if (h->type != type)
5127 {
5128 if (h->type != STT_NOTYPE && ! type_change_ok)
5129 /* xgettext:c-format */
5130 _bfd_error_handler
5131 (_("warning: type of symbol `%s' changed"
5132 " from %d to %d in %pB"),
5133 name, h->type, type, abfd);
5134
5135 h->type = type;
5136 }
5137 }
5138
5139 /* Merge st_other field. */
5140 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5141
5142 /* We don't want to make debug symbol dynamic. */
5143 if (definition
5144 && (sec->flags & SEC_DEBUGGING)
5145 && !bfd_link_relocatable (info))
5146 dynsym = FALSE;
5147
5148 /* Nor should we make plugin symbols dynamic. */
5149 if ((abfd->flags & BFD_PLUGIN) != 0)
5150 dynsym = FALSE;
5151
5152 if (definition)
5153 {
5154 h->target_internal = isym->st_target_internal;
5155 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5156 }
5157
5158 if (definition && !dynamic)
5159 {
5160 char *p = strchr (name, ELF_VER_CHR);
5161 if (p != NULL && p[1] != ELF_VER_CHR)
5162 {
5163 /* Queue non-default versions so that .symver x, x@FOO
5164 aliases can be checked. */
5165 if (!nondeflt_vers)
5166 {
5167 size_t amt = ((isymend - isym + 1)
5168 * sizeof (struct elf_link_hash_entry *));
5169 nondeflt_vers
5170 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5171 if (!nondeflt_vers)
5172 goto error_free_vers;
5173 }
5174 nondeflt_vers[nondeflt_vers_cnt++] = h;
5175 }
5176 }
5177
5178 if (dynsym && h->dynindx == -1)
5179 {
5180 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5181 goto error_free_vers;
5182 if (h->is_weakalias
5183 && weakdef (h)->dynindx == -1)
5184 {
5185 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5186 goto error_free_vers;
5187 }
5188 }
5189 else if (h->dynindx != -1)
5190 /* If the symbol already has a dynamic index, but
5191 visibility says it should not be visible, turn it into
5192 a local symbol. */
5193 switch (ELF_ST_VISIBILITY (h->other))
5194 {
5195 case STV_INTERNAL:
5196 case STV_HIDDEN:
5197 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5198 dynsym = FALSE;
5199 break;
5200 }
5201
5202 /* Don't add DT_NEEDED for references from the dummy bfd nor
5203 for unmatched symbol. */
5204 if (!add_needed
5205 && matched
5206 && definition
5207 && ((dynsym
5208 && h->ref_regular_nonweak
5209 && (old_bfd == NULL
5210 || (old_bfd->flags & BFD_PLUGIN) == 0))
5211 || (h->ref_dynamic_nonweak
5212 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5213 && !on_needed_list (elf_dt_name (abfd),
5214 htab->needed, NULL))))
5215 {
5216 const char *soname = elf_dt_name (abfd);
5217
5218 info->callbacks->minfo ("%!", soname, old_bfd,
5219 h->root.root.string);
5220
5221 /* A symbol from a library loaded via DT_NEEDED of some
5222 other library is referenced by a regular object.
5223 Add a DT_NEEDED entry for it. Issue an error if
5224 --no-add-needed is used and the reference was not
5225 a weak one. */
5226 if (old_bfd != NULL
5227 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5228 {
5229 _bfd_error_handler
5230 /* xgettext:c-format */
5231 (_("%pB: undefined reference to symbol '%s'"),
5232 old_bfd, name);
5233 bfd_set_error (bfd_error_missing_dso);
5234 goto error_free_vers;
5235 }
5236
5237 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5238 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5239
5240 /* Create dynamic sections for backends that require
5241 that be done before setup_gnu_properties. */
5242 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5243 return FALSE;
5244 add_needed = TRUE;
5245 }
5246 }
5247 }
5248
5249 if (info->lto_plugin_active
5250 && !bfd_link_relocatable (info)
5251 && (abfd->flags & BFD_PLUGIN) == 0
5252 && !just_syms
5253 && extsymcount)
5254 {
5255 int r_sym_shift;
5256
5257 if (bed->s->arch_size == 32)
5258 r_sym_shift = 8;
5259 else
5260 r_sym_shift = 32;
5261
5262 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5263 referenced in regular objects so that linker plugin will get
5264 the correct symbol resolution. */
5265
5266 sym_hash = elf_sym_hashes (abfd);
5267 for (s = abfd->sections; s != NULL; s = s->next)
5268 {
5269 Elf_Internal_Rela *internal_relocs;
5270 Elf_Internal_Rela *rel, *relend;
5271
5272 /* Don't check relocations in excluded sections. */
5273 if ((s->flags & SEC_RELOC) == 0
5274 || s->reloc_count == 0
5275 || (s->flags & SEC_EXCLUDE) != 0
5276 || ((info->strip == strip_all
5277 || info->strip == strip_debugger)
5278 && (s->flags & SEC_DEBUGGING) != 0))
5279 continue;
5280
5281 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5282 NULL,
5283 info->keep_memory);
5284 if (internal_relocs == NULL)
5285 goto error_free_vers;
5286
5287 rel = internal_relocs;
5288 relend = rel + s->reloc_count;
5289 for ( ; rel < relend; rel++)
5290 {
5291 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5292 struct elf_link_hash_entry *h;
5293
5294 /* Skip local symbols. */
5295 if (r_symndx < extsymoff)
5296 continue;
5297
5298 h = sym_hash[r_symndx - extsymoff];
5299 if (h != NULL)
5300 h->root.non_ir_ref_regular = 1;
5301 }
5302
5303 if (elf_section_data (s)->relocs != internal_relocs)
5304 free (internal_relocs);
5305 }
5306 }
5307
5308 free (extversym);
5309 extversym = NULL;
5310 free (isymbuf);
5311 isymbuf = NULL;
5312
5313 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5314 {
5315 unsigned int i;
5316
5317 /* Restore the symbol table. */
5318 old_ent = (char *) old_tab + tabsize;
5319 memset (elf_sym_hashes (abfd), 0,
5320 extsymcount * sizeof (struct elf_link_hash_entry *));
5321 htab->root.table.table = old_table;
5322 htab->root.table.size = old_size;
5323 htab->root.table.count = old_count;
5324 memcpy (htab->root.table.table, old_tab, tabsize);
5325 htab->root.undefs = old_undefs;
5326 htab->root.undefs_tail = old_undefs_tail;
5327 if (htab->dynstr != NULL)
5328 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5329 free (old_strtab);
5330 old_strtab = NULL;
5331 for (i = 0; i < htab->root.table.size; i++)
5332 {
5333 struct bfd_hash_entry *p;
5334 struct elf_link_hash_entry *h;
5335 bfd_size_type size;
5336 unsigned int alignment_power;
5337 unsigned int non_ir_ref_dynamic;
5338
5339 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5340 {
5341 h = (struct elf_link_hash_entry *) p;
5342 if (h->root.type == bfd_link_hash_warning)
5343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5344
5345 /* Preserve the maximum alignment and size for common
5346 symbols even if this dynamic lib isn't on DT_NEEDED
5347 since it can still be loaded at run time by another
5348 dynamic lib. */
5349 if (h->root.type == bfd_link_hash_common)
5350 {
5351 size = h->root.u.c.size;
5352 alignment_power = h->root.u.c.p->alignment_power;
5353 }
5354 else
5355 {
5356 size = 0;
5357 alignment_power = 0;
5358 }
5359 /* Preserve non_ir_ref_dynamic so that this symbol
5360 will be exported when the dynamic lib becomes needed
5361 in the second pass. */
5362 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5363 memcpy (p, old_ent, htab->root.table.entsize);
5364 old_ent = (char *) old_ent + htab->root.table.entsize;
5365 h = (struct elf_link_hash_entry *) p;
5366 if (h->root.type == bfd_link_hash_warning)
5367 {
5368 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5369 old_ent = (char *) old_ent + htab->root.table.entsize;
5370 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5371 }
5372 if (h->root.type == bfd_link_hash_common)
5373 {
5374 if (size > h->root.u.c.size)
5375 h->root.u.c.size = size;
5376 if (alignment_power > h->root.u.c.p->alignment_power)
5377 h->root.u.c.p->alignment_power = alignment_power;
5378 }
5379 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5380 }
5381 }
5382
5383 /* Make a special call to the linker "notice" function to
5384 tell it that symbols added for crefs may need to be removed. */
5385 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5386 goto error_free_vers;
5387
5388 free (old_tab);
5389 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5390 alloc_mark);
5391 free (nondeflt_vers);
5392 return TRUE;
5393 }
5394
5395 if (old_tab != NULL)
5396 {
5397 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5398 goto error_free_vers;
5399 free (old_tab);
5400 old_tab = NULL;
5401 }
5402
5403 /* Now that all the symbols from this input file are created, if
5404 not performing a relocatable link, handle .symver foo, foo@BAR
5405 such that any relocs against foo become foo@BAR. */
5406 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5407 {
5408 size_t cnt, symidx;
5409
5410 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5411 {
5412 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5413 char *shortname, *p;
5414 size_t amt;
5415
5416 p = strchr (h->root.root.string, ELF_VER_CHR);
5417 if (p == NULL
5418 || (h->root.type != bfd_link_hash_defined
5419 && h->root.type != bfd_link_hash_defweak))
5420 continue;
5421
5422 amt = p - h->root.root.string;
5423 shortname = (char *) bfd_malloc (amt + 1);
5424 if (!shortname)
5425 goto error_free_vers;
5426 memcpy (shortname, h->root.root.string, amt);
5427 shortname[amt] = '\0';
5428
5429 hi = (struct elf_link_hash_entry *)
5430 bfd_link_hash_lookup (&htab->root, shortname,
5431 FALSE, FALSE, FALSE);
5432 if (hi != NULL
5433 && hi->root.type == h->root.type
5434 && hi->root.u.def.value == h->root.u.def.value
5435 && hi->root.u.def.section == h->root.u.def.section)
5436 {
5437 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5438 hi->root.type = bfd_link_hash_indirect;
5439 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5440 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5441 sym_hash = elf_sym_hashes (abfd);
5442 if (sym_hash)
5443 for (symidx = 0; symidx < extsymcount; ++symidx)
5444 if (sym_hash[symidx] == hi)
5445 {
5446 sym_hash[symidx] = h;
5447 break;
5448 }
5449 }
5450 free (shortname);
5451 }
5452 free (nondeflt_vers);
5453 nondeflt_vers = NULL;
5454 }
5455
5456 /* Now set the alias field correctly for all the weak defined
5457 symbols we found. The only way to do this is to search all the
5458 symbols. Since we only need the information for non functions in
5459 dynamic objects, that's the only time we actually put anything on
5460 the list WEAKS. We need this information so that if a regular
5461 object refers to a symbol defined weakly in a dynamic object, the
5462 real symbol in the dynamic object is also put in the dynamic
5463 symbols; we also must arrange for both symbols to point to the
5464 same memory location. We could handle the general case of symbol
5465 aliasing, but a general symbol alias can only be generated in
5466 assembler code, handling it correctly would be very time
5467 consuming, and other ELF linkers don't handle general aliasing
5468 either. */
5469 if (weaks != NULL)
5470 {
5471 struct elf_link_hash_entry **hpp;
5472 struct elf_link_hash_entry **hppend;
5473 struct elf_link_hash_entry **sorted_sym_hash;
5474 struct elf_link_hash_entry *h;
5475 size_t sym_count, amt;
5476
5477 /* Since we have to search the whole symbol list for each weak
5478 defined symbol, search time for N weak defined symbols will be
5479 O(N^2). Binary search will cut it down to O(NlogN). */
5480 amt = extsymcount * sizeof (*sorted_sym_hash);
5481 sorted_sym_hash = bfd_malloc (amt);
5482 if (sorted_sym_hash == NULL)
5483 goto error_return;
5484 sym_hash = sorted_sym_hash;
5485 hpp = elf_sym_hashes (abfd);
5486 hppend = hpp + extsymcount;
5487 sym_count = 0;
5488 for (; hpp < hppend; hpp++)
5489 {
5490 h = *hpp;
5491 if (h != NULL
5492 && h->root.type == bfd_link_hash_defined
5493 && !bed->is_function_type (h->type))
5494 {
5495 *sym_hash = h;
5496 sym_hash++;
5497 sym_count++;
5498 }
5499 }
5500
5501 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5502 elf_sort_symbol);
5503
5504 while (weaks != NULL)
5505 {
5506 struct elf_link_hash_entry *hlook;
5507 asection *slook;
5508 bfd_vma vlook;
5509 size_t i, j, idx = 0;
5510
5511 hlook = weaks;
5512 weaks = hlook->u.alias;
5513 hlook->u.alias = NULL;
5514
5515 if (hlook->root.type != bfd_link_hash_defined
5516 && hlook->root.type != bfd_link_hash_defweak)
5517 continue;
5518
5519 slook = hlook->root.u.def.section;
5520 vlook = hlook->root.u.def.value;
5521
5522 i = 0;
5523 j = sym_count;
5524 while (i != j)
5525 {
5526 bfd_signed_vma vdiff;
5527 idx = (i + j) / 2;
5528 h = sorted_sym_hash[idx];
5529 vdiff = vlook - h->root.u.def.value;
5530 if (vdiff < 0)
5531 j = idx;
5532 else if (vdiff > 0)
5533 i = idx + 1;
5534 else
5535 {
5536 int sdiff = slook->id - h->root.u.def.section->id;
5537 if (sdiff < 0)
5538 j = idx;
5539 else if (sdiff > 0)
5540 i = idx + 1;
5541 else
5542 break;
5543 }
5544 }
5545
5546 /* We didn't find a value/section match. */
5547 if (i == j)
5548 continue;
5549
5550 /* With multiple aliases, or when the weak symbol is already
5551 strongly defined, we have multiple matching symbols and
5552 the binary search above may land on any of them. Step
5553 one past the matching symbol(s). */
5554 while (++idx != j)
5555 {
5556 h = sorted_sym_hash[idx];
5557 if (h->root.u.def.section != slook
5558 || h->root.u.def.value != vlook)
5559 break;
5560 }
5561
5562 /* Now look back over the aliases. Since we sorted by size
5563 as well as value and section, we'll choose the one with
5564 the largest size. */
5565 while (idx-- != i)
5566 {
5567 h = sorted_sym_hash[idx];
5568
5569 /* Stop if value or section doesn't match. */
5570 if (h->root.u.def.section != slook
5571 || h->root.u.def.value != vlook)
5572 break;
5573 else if (h != hlook)
5574 {
5575 struct elf_link_hash_entry *t;
5576
5577 hlook->u.alias = h;
5578 hlook->is_weakalias = 1;
5579 t = h;
5580 if (t->u.alias != NULL)
5581 while (t->u.alias != h)
5582 t = t->u.alias;
5583 t->u.alias = hlook;
5584
5585 /* If the weak definition is in the list of dynamic
5586 symbols, make sure the real definition is put
5587 there as well. */
5588 if (hlook->dynindx != -1 && h->dynindx == -1)
5589 {
5590 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5591 {
5592 err_free_sym_hash:
5593 free (sorted_sym_hash);
5594 goto error_return;
5595 }
5596 }
5597
5598 /* If the real definition is in the list of dynamic
5599 symbols, make sure the weak definition is put
5600 there as well. If we don't do this, then the
5601 dynamic loader might not merge the entries for the
5602 real definition and the weak definition. */
5603 if (h->dynindx != -1 && hlook->dynindx == -1)
5604 {
5605 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5606 goto err_free_sym_hash;
5607 }
5608 break;
5609 }
5610 }
5611 }
5612
5613 free (sorted_sym_hash);
5614 }
5615
5616 if (bed->check_directives
5617 && !(*bed->check_directives) (abfd, info))
5618 return FALSE;
5619
5620 /* If this is a non-traditional link, try to optimize the handling
5621 of the .stab/.stabstr sections. */
5622 if (! dynamic
5623 && ! info->traditional_format
5624 && is_elf_hash_table (htab)
5625 && (info->strip != strip_all && info->strip != strip_debugger))
5626 {
5627 asection *stabstr;
5628
5629 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5630 if (stabstr != NULL)
5631 {
5632 bfd_size_type string_offset = 0;
5633 asection *stab;
5634
5635 for (stab = abfd->sections; stab; stab = stab->next)
5636 if (CONST_STRNEQ (stab->name, ".stab")
5637 && (!stab->name[5] ||
5638 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5639 && (stab->flags & SEC_MERGE) == 0
5640 && !bfd_is_abs_section (stab->output_section))
5641 {
5642 struct bfd_elf_section_data *secdata;
5643
5644 secdata = elf_section_data (stab);
5645 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5646 stabstr, &secdata->sec_info,
5647 &string_offset))
5648 goto error_return;
5649 if (secdata->sec_info)
5650 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5651 }
5652 }
5653 }
5654
5655 if (dynamic && add_needed)
5656 {
5657 /* Add this bfd to the loaded list. */
5658 struct elf_link_loaded_list *n;
5659
5660 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5661 if (n == NULL)
5662 goto error_return;
5663 n->abfd = abfd;
5664 n->next = htab->dyn_loaded;
5665 htab->dyn_loaded = n;
5666 }
5667 if (dynamic && !add_needed
5668 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5669 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5670
5671 return TRUE;
5672
5673 error_free_vers:
5674 free (old_tab);
5675 free (old_strtab);
5676 free (nondeflt_vers);
5677 free (extversym);
5678 error_free_sym:
5679 free (isymbuf);
5680 error_return:
5681 return FALSE;
5682 }
5683
5684 /* Return the linker hash table entry of a symbol that might be
5685 satisfied by an archive symbol. Return -1 on error. */
5686
5687 struct elf_link_hash_entry *
5688 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5689 struct bfd_link_info *info,
5690 const char *name)
5691 {
5692 struct elf_link_hash_entry *h;
5693 char *p, *copy;
5694 size_t len, first;
5695
5696 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5697 if (h != NULL)
5698 return h;
5699
5700 /* If this is a default version (the name contains @@), look up the
5701 symbol again with only one `@' as well as without the version.
5702 The effect is that references to the symbol with and without the
5703 version will be matched by the default symbol in the archive. */
5704
5705 p = strchr (name, ELF_VER_CHR);
5706 if (p == NULL || p[1] != ELF_VER_CHR)
5707 return h;
5708
5709 /* First check with only one `@'. */
5710 len = strlen (name);
5711 copy = (char *) bfd_alloc (abfd, len);
5712 if (copy == NULL)
5713 return (struct elf_link_hash_entry *) -1;
5714
5715 first = p - name + 1;
5716 memcpy (copy, name, first);
5717 memcpy (copy + first, name + first + 1, len - first);
5718
5719 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5720 if (h == NULL)
5721 {
5722 /* We also need to check references to the symbol without the
5723 version. */
5724 copy[first - 1] = '\0';
5725 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5726 FALSE, FALSE, TRUE);
5727 }
5728
5729 bfd_release (abfd, copy);
5730 return h;
5731 }
5732
5733 /* Add symbols from an ELF archive file to the linker hash table. We
5734 don't use _bfd_generic_link_add_archive_symbols because we need to
5735 handle versioned symbols.
5736
5737 Fortunately, ELF archive handling is simpler than that done by
5738 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5739 oddities. In ELF, if we find a symbol in the archive map, and the
5740 symbol is currently undefined, we know that we must pull in that
5741 object file.
5742
5743 Unfortunately, we do have to make multiple passes over the symbol
5744 table until nothing further is resolved. */
5745
5746 static bfd_boolean
5747 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5748 {
5749 symindex c;
5750 unsigned char *included = NULL;
5751 carsym *symdefs;
5752 bfd_boolean loop;
5753 size_t amt;
5754 const struct elf_backend_data *bed;
5755 struct elf_link_hash_entry * (*archive_symbol_lookup)
5756 (bfd *, struct bfd_link_info *, const char *);
5757
5758 if (! bfd_has_map (abfd))
5759 {
5760 /* An empty archive is a special case. */
5761 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5762 return TRUE;
5763 bfd_set_error (bfd_error_no_armap);
5764 return FALSE;
5765 }
5766
5767 /* Keep track of all symbols we know to be already defined, and all
5768 files we know to be already included. This is to speed up the
5769 second and subsequent passes. */
5770 c = bfd_ardata (abfd)->symdef_count;
5771 if (c == 0)
5772 return TRUE;
5773 amt = c * sizeof (*included);
5774 included = (unsigned char *) bfd_zmalloc (amt);
5775 if (included == NULL)
5776 return FALSE;
5777
5778 symdefs = bfd_ardata (abfd)->symdefs;
5779 bed = get_elf_backend_data (abfd);
5780 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5781
5782 do
5783 {
5784 file_ptr last;
5785 symindex i;
5786 carsym *symdef;
5787 carsym *symdefend;
5788
5789 loop = FALSE;
5790 last = -1;
5791
5792 symdef = symdefs;
5793 symdefend = symdef + c;
5794 for (i = 0; symdef < symdefend; symdef++, i++)
5795 {
5796 struct elf_link_hash_entry *h;
5797 bfd *element;
5798 struct bfd_link_hash_entry *undefs_tail;
5799 symindex mark;
5800
5801 if (included[i])
5802 continue;
5803 if (symdef->file_offset == last)
5804 {
5805 included[i] = TRUE;
5806 continue;
5807 }
5808
5809 h = archive_symbol_lookup (abfd, info, symdef->name);
5810 if (h == (struct elf_link_hash_entry *) -1)
5811 goto error_return;
5812
5813 if (h == NULL)
5814 continue;
5815
5816 if (h->root.type == bfd_link_hash_common)
5817 {
5818 /* We currently have a common symbol. The archive map contains
5819 a reference to this symbol, so we may want to include it. We
5820 only want to include it however, if this archive element
5821 contains a definition of the symbol, not just another common
5822 declaration of it.
5823
5824 Unfortunately some archivers (including GNU ar) will put
5825 declarations of common symbols into their archive maps, as
5826 well as real definitions, so we cannot just go by the archive
5827 map alone. Instead we must read in the element's symbol
5828 table and check that to see what kind of symbol definition
5829 this is. */
5830 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5831 continue;
5832 }
5833 else if (h->root.type != bfd_link_hash_undefined)
5834 {
5835 if (h->root.type != bfd_link_hash_undefweak)
5836 /* Symbol must be defined. Don't check it again. */
5837 included[i] = TRUE;
5838 continue;
5839 }
5840
5841 /* We need to include this archive member. */
5842 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5843 if (element == NULL)
5844 goto error_return;
5845
5846 if (! bfd_check_format (element, bfd_object))
5847 goto error_return;
5848
5849 undefs_tail = info->hash->undefs_tail;
5850
5851 if (!(*info->callbacks
5852 ->add_archive_element) (info, element, symdef->name, &element))
5853 continue;
5854 if (!bfd_link_add_symbols (element, info))
5855 goto error_return;
5856
5857 /* If there are any new undefined symbols, we need to make
5858 another pass through the archive in order to see whether
5859 they can be defined. FIXME: This isn't perfect, because
5860 common symbols wind up on undefs_tail and because an
5861 undefined symbol which is defined later on in this pass
5862 does not require another pass. This isn't a bug, but it
5863 does make the code less efficient than it could be. */
5864 if (undefs_tail != info->hash->undefs_tail)
5865 loop = TRUE;
5866
5867 /* Look backward to mark all symbols from this object file
5868 which we have already seen in this pass. */
5869 mark = i;
5870 do
5871 {
5872 included[mark] = TRUE;
5873 if (mark == 0)
5874 break;
5875 --mark;
5876 }
5877 while (symdefs[mark].file_offset == symdef->file_offset);
5878
5879 /* We mark subsequent symbols from this object file as we go
5880 on through the loop. */
5881 last = symdef->file_offset;
5882 }
5883 }
5884 while (loop);
5885
5886 free (included);
5887 return TRUE;
5888
5889 error_return:
5890 free (included);
5891 return FALSE;
5892 }
5893
5894 /* Given an ELF BFD, add symbols to the global hash table as
5895 appropriate. */
5896
5897 bfd_boolean
5898 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5899 {
5900 switch (bfd_get_format (abfd))
5901 {
5902 case bfd_object:
5903 return elf_link_add_object_symbols (abfd, info);
5904 case bfd_archive:
5905 return elf_link_add_archive_symbols (abfd, info);
5906 default:
5907 bfd_set_error (bfd_error_wrong_format);
5908 return FALSE;
5909 }
5910 }
5911 \f
5912 struct hash_codes_info
5913 {
5914 unsigned long *hashcodes;
5915 bfd_boolean error;
5916 };
5917
5918 /* This function will be called though elf_link_hash_traverse to store
5919 all hash value of the exported symbols in an array. */
5920
5921 static bfd_boolean
5922 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5923 {
5924 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5925 const char *name;
5926 unsigned long ha;
5927 char *alc = NULL;
5928
5929 /* Ignore indirect symbols. These are added by the versioning code. */
5930 if (h->dynindx == -1)
5931 return TRUE;
5932
5933 name = h->root.root.string;
5934 if (h->versioned >= versioned)
5935 {
5936 char *p = strchr (name, ELF_VER_CHR);
5937 if (p != NULL)
5938 {
5939 alc = (char *) bfd_malloc (p - name + 1);
5940 if (alc == NULL)
5941 {
5942 inf->error = TRUE;
5943 return FALSE;
5944 }
5945 memcpy (alc, name, p - name);
5946 alc[p - name] = '\0';
5947 name = alc;
5948 }
5949 }
5950
5951 /* Compute the hash value. */
5952 ha = bfd_elf_hash (name);
5953
5954 /* Store the found hash value in the array given as the argument. */
5955 *(inf->hashcodes)++ = ha;
5956
5957 /* And store it in the struct so that we can put it in the hash table
5958 later. */
5959 h->u.elf_hash_value = ha;
5960
5961 free (alc);
5962 return TRUE;
5963 }
5964
5965 struct collect_gnu_hash_codes
5966 {
5967 bfd *output_bfd;
5968 const struct elf_backend_data *bed;
5969 unsigned long int nsyms;
5970 unsigned long int maskbits;
5971 unsigned long int *hashcodes;
5972 unsigned long int *hashval;
5973 unsigned long int *indx;
5974 unsigned long int *counts;
5975 bfd_vma *bitmask;
5976 bfd_byte *contents;
5977 bfd_size_type xlat;
5978 long int min_dynindx;
5979 unsigned long int bucketcount;
5980 unsigned long int symindx;
5981 long int local_indx;
5982 long int shift1, shift2;
5983 unsigned long int mask;
5984 bfd_boolean error;
5985 };
5986
5987 /* This function will be called though elf_link_hash_traverse to store
5988 all hash value of the exported symbols in an array. */
5989
5990 static bfd_boolean
5991 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5992 {
5993 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5994 const char *name;
5995 unsigned long ha;
5996 char *alc = NULL;
5997
5998 /* Ignore indirect symbols. These are added by the versioning code. */
5999 if (h->dynindx == -1)
6000 return TRUE;
6001
6002 /* Ignore also local symbols and undefined symbols. */
6003 if (! (*s->bed->elf_hash_symbol) (h))
6004 return TRUE;
6005
6006 name = h->root.root.string;
6007 if (h->versioned >= versioned)
6008 {
6009 char *p = strchr (name, ELF_VER_CHR);
6010 if (p != NULL)
6011 {
6012 alc = (char *) bfd_malloc (p - name + 1);
6013 if (alc == NULL)
6014 {
6015 s->error = TRUE;
6016 return FALSE;
6017 }
6018 memcpy (alc, name, p - name);
6019 alc[p - name] = '\0';
6020 name = alc;
6021 }
6022 }
6023
6024 /* Compute the hash value. */
6025 ha = bfd_elf_gnu_hash (name);
6026
6027 /* Store the found hash value in the array for compute_bucket_count,
6028 and also for .dynsym reordering purposes. */
6029 s->hashcodes[s->nsyms] = ha;
6030 s->hashval[h->dynindx] = ha;
6031 ++s->nsyms;
6032 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6033 s->min_dynindx = h->dynindx;
6034
6035 free (alc);
6036 return TRUE;
6037 }
6038
6039 /* This function will be called though elf_link_hash_traverse to do
6040 final dynamic symbol renumbering in case of .gnu.hash.
6041 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6042 to the translation table. */
6043
6044 static bfd_boolean
6045 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6046 {
6047 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6048 unsigned long int bucket;
6049 unsigned long int val;
6050
6051 /* Ignore indirect symbols. */
6052 if (h->dynindx == -1)
6053 return TRUE;
6054
6055 /* Ignore also local symbols and undefined symbols. */
6056 if (! (*s->bed->elf_hash_symbol) (h))
6057 {
6058 if (h->dynindx >= s->min_dynindx)
6059 {
6060 if (s->bed->record_xhash_symbol != NULL)
6061 {
6062 (*s->bed->record_xhash_symbol) (h, 0);
6063 s->local_indx++;
6064 }
6065 else
6066 h->dynindx = s->local_indx++;
6067 }
6068 return TRUE;
6069 }
6070
6071 bucket = s->hashval[h->dynindx] % s->bucketcount;
6072 val = (s->hashval[h->dynindx] >> s->shift1)
6073 & ((s->maskbits >> s->shift1) - 1);
6074 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6075 s->bitmask[val]
6076 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6077 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6078 if (s->counts[bucket] == 1)
6079 /* Last element terminates the chain. */
6080 val |= 1;
6081 bfd_put_32 (s->output_bfd, val,
6082 s->contents + (s->indx[bucket] - s->symindx) * 4);
6083 --s->counts[bucket];
6084 if (s->bed->record_xhash_symbol != NULL)
6085 {
6086 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6087
6088 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6089 }
6090 else
6091 h->dynindx = s->indx[bucket]++;
6092 return TRUE;
6093 }
6094
6095 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6096
6097 bfd_boolean
6098 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6099 {
6100 return !(h->forced_local
6101 || h->root.type == bfd_link_hash_undefined
6102 || h->root.type == bfd_link_hash_undefweak
6103 || ((h->root.type == bfd_link_hash_defined
6104 || h->root.type == bfd_link_hash_defweak)
6105 && h->root.u.def.section->output_section == NULL));
6106 }
6107
6108 /* Array used to determine the number of hash table buckets to use
6109 based on the number of symbols there are. If there are fewer than
6110 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6111 fewer than 37 we use 17 buckets, and so forth. We never use more
6112 than 32771 buckets. */
6113
6114 static const size_t elf_buckets[] =
6115 {
6116 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6117 16411, 32771, 0
6118 };
6119
6120 /* Compute bucket count for hashing table. We do not use a static set
6121 of possible tables sizes anymore. Instead we determine for all
6122 possible reasonable sizes of the table the outcome (i.e., the
6123 number of collisions etc) and choose the best solution. The
6124 weighting functions are not too simple to allow the table to grow
6125 without bounds. Instead one of the weighting factors is the size.
6126 Therefore the result is always a good payoff between few collisions
6127 (= short chain lengths) and table size. */
6128 static size_t
6129 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6130 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6131 unsigned long int nsyms,
6132 int gnu_hash)
6133 {
6134 size_t best_size = 0;
6135 unsigned long int i;
6136
6137 /* We have a problem here. The following code to optimize the table
6138 size requires an integer type with more the 32 bits. If
6139 BFD_HOST_U_64_BIT is set we know about such a type. */
6140 #ifdef BFD_HOST_U_64_BIT
6141 if (info->optimize)
6142 {
6143 size_t minsize;
6144 size_t maxsize;
6145 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6146 bfd *dynobj = elf_hash_table (info)->dynobj;
6147 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6148 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6149 unsigned long int *counts;
6150 bfd_size_type amt;
6151 unsigned int no_improvement_count = 0;
6152
6153 /* Possible optimization parameters: if we have NSYMS symbols we say
6154 that the hashing table must at least have NSYMS/4 and at most
6155 2*NSYMS buckets. */
6156 minsize = nsyms / 4;
6157 if (minsize == 0)
6158 minsize = 1;
6159 best_size = maxsize = nsyms * 2;
6160 if (gnu_hash)
6161 {
6162 if (minsize < 2)
6163 minsize = 2;
6164 if ((best_size & 31) == 0)
6165 ++best_size;
6166 }
6167
6168 /* Create array where we count the collisions in. We must use bfd_malloc
6169 since the size could be large. */
6170 amt = maxsize;
6171 amt *= sizeof (unsigned long int);
6172 counts = (unsigned long int *) bfd_malloc (amt);
6173 if (counts == NULL)
6174 return 0;
6175
6176 /* Compute the "optimal" size for the hash table. The criteria is a
6177 minimal chain length. The minor criteria is (of course) the size
6178 of the table. */
6179 for (i = minsize; i < maxsize; ++i)
6180 {
6181 /* Walk through the array of hashcodes and count the collisions. */
6182 BFD_HOST_U_64_BIT max;
6183 unsigned long int j;
6184 unsigned long int fact;
6185
6186 if (gnu_hash && (i & 31) == 0)
6187 continue;
6188
6189 memset (counts, '\0', i * sizeof (unsigned long int));
6190
6191 /* Determine how often each hash bucket is used. */
6192 for (j = 0; j < nsyms; ++j)
6193 ++counts[hashcodes[j] % i];
6194
6195 /* For the weight function we need some information about the
6196 pagesize on the target. This is information need not be 100%
6197 accurate. Since this information is not available (so far) we
6198 define it here to a reasonable default value. If it is crucial
6199 to have a better value some day simply define this value. */
6200 # ifndef BFD_TARGET_PAGESIZE
6201 # define BFD_TARGET_PAGESIZE (4096)
6202 # endif
6203
6204 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6205 and the chains. */
6206 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6207
6208 # if 1
6209 /* Variant 1: optimize for short chains. We add the squares
6210 of all the chain lengths (which favors many small chain
6211 over a few long chains). */
6212 for (j = 0; j < i; ++j)
6213 max += counts[j] * counts[j];
6214
6215 /* This adds penalties for the overall size of the table. */
6216 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6217 max *= fact * fact;
6218 # else
6219 /* Variant 2: Optimize a lot more for small table. Here we
6220 also add squares of the size but we also add penalties for
6221 empty slots (the +1 term). */
6222 for (j = 0; j < i; ++j)
6223 max += (1 + counts[j]) * (1 + counts[j]);
6224
6225 /* The overall size of the table is considered, but not as
6226 strong as in variant 1, where it is squared. */
6227 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6228 max *= fact;
6229 # endif
6230
6231 /* Compare with current best results. */
6232 if (max < best_chlen)
6233 {
6234 best_chlen = max;
6235 best_size = i;
6236 no_improvement_count = 0;
6237 }
6238 /* PR 11843: Avoid futile long searches for the best bucket size
6239 when there are a large number of symbols. */
6240 else if (++no_improvement_count == 100)
6241 break;
6242 }
6243
6244 free (counts);
6245 }
6246 else
6247 #endif /* defined (BFD_HOST_U_64_BIT) */
6248 {
6249 /* This is the fallback solution if no 64bit type is available or if we
6250 are not supposed to spend much time on optimizations. We select the
6251 bucket count using a fixed set of numbers. */
6252 for (i = 0; elf_buckets[i] != 0; i++)
6253 {
6254 best_size = elf_buckets[i];
6255 if (nsyms < elf_buckets[i + 1])
6256 break;
6257 }
6258 if (gnu_hash && best_size < 2)
6259 best_size = 2;
6260 }
6261
6262 return best_size;
6263 }
6264
6265 /* Size any SHT_GROUP section for ld -r. */
6266
6267 bfd_boolean
6268 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6269 {
6270 bfd *ibfd;
6271 asection *s;
6272
6273 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6274 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6275 && (s = ibfd->sections) != NULL
6276 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6277 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6278 return FALSE;
6279 return TRUE;
6280 }
6281
6282 /* Set a default stack segment size. The value in INFO wins. If it
6283 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6284 undefined it is initialized. */
6285
6286 bfd_boolean
6287 bfd_elf_stack_segment_size (bfd *output_bfd,
6288 struct bfd_link_info *info,
6289 const char *legacy_symbol,
6290 bfd_vma default_size)
6291 {
6292 struct elf_link_hash_entry *h = NULL;
6293
6294 /* Look for legacy symbol. */
6295 if (legacy_symbol)
6296 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6297 FALSE, FALSE, FALSE);
6298 if (h && (h->root.type == bfd_link_hash_defined
6299 || h->root.type == bfd_link_hash_defweak)
6300 && h->def_regular
6301 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6302 {
6303 /* The symbol has no type if specified on the command line. */
6304 h->type = STT_OBJECT;
6305 if (info->stacksize)
6306 /* xgettext:c-format */
6307 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6308 output_bfd, legacy_symbol);
6309 else if (h->root.u.def.section != bfd_abs_section_ptr)
6310 /* xgettext:c-format */
6311 _bfd_error_handler (_("%pB: %s not absolute"),
6312 output_bfd, legacy_symbol);
6313 else
6314 info->stacksize = h->root.u.def.value;
6315 }
6316
6317 if (!info->stacksize)
6318 /* If the user didn't set a size, or explicitly inhibit the
6319 size, set it now. */
6320 info->stacksize = default_size;
6321
6322 /* Provide the legacy symbol, if it is referenced. */
6323 if (h && (h->root.type == bfd_link_hash_undefined
6324 || h->root.type == bfd_link_hash_undefweak))
6325 {
6326 struct bfd_link_hash_entry *bh = NULL;
6327
6328 if (!(_bfd_generic_link_add_one_symbol
6329 (info, output_bfd, legacy_symbol,
6330 BSF_GLOBAL, bfd_abs_section_ptr,
6331 info->stacksize >= 0 ? info->stacksize : 0,
6332 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6333 return FALSE;
6334
6335 h = (struct elf_link_hash_entry *) bh;
6336 h->def_regular = 1;
6337 h->type = STT_OBJECT;
6338 }
6339
6340 return TRUE;
6341 }
6342
6343 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6344
6345 struct elf_gc_sweep_symbol_info
6346 {
6347 struct bfd_link_info *info;
6348 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6349 bfd_boolean);
6350 };
6351
6352 static bfd_boolean
6353 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6354 {
6355 if (!h->mark
6356 && (((h->root.type == bfd_link_hash_defined
6357 || h->root.type == bfd_link_hash_defweak)
6358 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6359 && h->root.u.def.section->gc_mark))
6360 || h->root.type == bfd_link_hash_undefined
6361 || h->root.type == bfd_link_hash_undefweak))
6362 {
6363 struct elf_gc_sweep_symbol_info *inf;
6364
6365 inf = (struct elf_gc_sweep_symbol_info *) data;
6366 (*inf->hide_symbol) (inf->info, h, TRUE);
6367 h->def_regular = 0;
6368 h->ref_regular = 0;
6369 h->ref_regular_nonweak = 0;
6370 }
6371
6372 return TRUE;
6373 }
6374
6375 /* Set up the sizes and contents of the ELF dynamic sections. This is
6376 called by the ELF linker emulation before_allocation routine. We
6377 must set the sizes of the sections before the linker sets the
6378 addresses of the various sections. */
6379
6380 bfd_boolean
6381 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6382 const char *soname,
6383 const char *rpath,
6384 const char *filter_shlib,
6385 const char *audit,
6386 const char *depaudit,
6387 const char * const *auxiliary_filters,
6388 struct bfd_link_info *info,
6389 asection **sinterpptr)
6390 {
6391 bfd *dynobj;
6392 const struct elf_backend_data *bed;
6393
6394 *sinterpptr = NULL;
6395
6396 if (!is_elf_hash_table (info->hash))
6397 return TRUE;
6398
6399 dynobj = elf_hash_table (info)->dynobj;
6400
6401 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6402 {
6403 struct bfd_elf_version_tree *verdefs;
6404 struct elf_info_failed asvinfo;
6405 struct bfd_elf_version_tree *t;
6406 struct bfd_elf_version_expr *d;
6407 asection *s;
6408 size_t soname_indx;
6409
6410 /* If we are supposed to export all symbols into the dynamic symbol
6411 table (this is not the normal case), then do so. */
6412 if (info->export_dynamic
6413 || (bfd_link_executable (info) && info->dynamic))
6414 {
6415 struct elf_info_failed eif;
6416
6417 eif.info = info;
6418 eif.failed = FALSE;
6419 elf_link_hash_traverse (elf_hash_table (info),
6420 _bfd_elf_export_symbol,
6421 &eif);
6422 if (eif.failed)
6423 return FALSE;
6424 }
6425
6426 if (soname != NULL)
6427 {
6428 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6429 soname, TRUE);
6430 if (soname_indx == (size_t) -1
6431 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6432 return FALSE;
6433 }
6434 else
6435 soname_indx = (size_t) -1;
6436
6437 /* Make all global versions with definition. */
6438 for (t = info->version_info; t != NULL; t = t->next)
6439 for (d = t->globals.list; d != NULL; d = d->next)
6440 if (!d->symver && d->literal)
6441 {
6442 const char *verstr, *name;
6443 size_t namelen, verlen, newlen;
6444 char *newname, *p, leading_char;
6445 struct elf_link_hash_entry *newh;
6446
6447 leading_char = bfd_get_symbol_leading_char (output_bfd);
6448 name = d->pattern;
6449 namelen = strlen (name) + (leading_char != '\0');
6450 verstr = t->name;
6451 verlen = strlen (verstr);
6452 newlen = namelen + verlen + 3;
6453
6454 newname = (char *) bfd_malloc (newlen);
6455 if (newname == NULL)
6456 return FALSE;
6457 newname[0] = leading_char;
6458 memcpy (newname + (leading_char != '\0'), name, namelen);
6459
6460 /* Check the hidden versioned definition. */
6461 p = newname + namelen;
6462 *p++ = ELF_VER_CHR;
6463 memcpy (p, verstr, verlen + 1);
6464 newh = elf_link_hash_lookup (elf_hash_table (info),
6465 newname, FALSE, FALSE,
6466 FALSE);
6467 if (newh == NULL
6468 || (newh->root.type != bfd_link_hash_defined
6469 && newh->root.type != bfd_link_hash_defweak))
6470 {
6471 /* Check the default versioned definition. */
6472 *p++ = ELF_VER_CHR;
6473 memcpy (p, verstr, verlen + 1);
6474 newh = elf_link_hash_lookup (elf_hash_table (info),
6475 newname, FALSE, FALSE,
6476 FALSE);
6477 }
6478 free (newname);
6479
6480 /* Mark this version if there is a definition and it is
6481 not defined in a shared object. */
6482 if (newh != NULL
6483 && !newh->def_dynamic
6484 && (newh->root.type == bfd_link_hash_defined
6485 || newh->root.type == bfd_link_hash_defweak))
6486 d->symver = 1;
6487 }
6488
6489 /* Attach all the symbols to their version information. */
6490 asvinfo.info = info;
6491 asvinfo.failed = FALSE;
6492
6493 elf_link_hash_traverse (elf_hash_table (info),
6494 _bfd_elf_link_assign_sym_version,
6495 &asvinfo);
6496 if (asvinfo.failed)
6497 return FALSE;
6498
6499 if (!info->allow_undefined_version)
6500 {
6501 /* Check if all global versions have a definition. */
6502 bfd_boolean all_defined = TRUE;
6503 for (t = info->version_info; t != NULL; t = t->next)
6504 for (d = t->globals.list; d != NULL; d = d->next)
6505 if (d->literal && !d->symver && !d->script)
6506 {
6507 _bfd_error_handler
6508 (_("%s: undefined version: %s"),
6509 d->pattern, t->name);
6510 all_defined = FALSE;
6511 }
6512
6513 if (!all_defined)
6514 {
6515 bfd_set_error (bfd_error_bad_value);
6516 return FALSE;
6517 }
6518 }
6519
6520 /* Set up the version definition section. */
6521 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6522 BFD_ASSERT (s != NULL);
6523
6524 /* We may have created additional version definitions if we are
6525 just linking a regular application. */
6526 verdefs = info->version_info;
6527
6528 /* Skip anonymous version tag. */
6529 if (verdefs != NULL && verdefs->vernum == 0)
6530 verdefs = verdefs->next;
6531
6532 if (verdefs == NULL && !info->create_default_symver)
6533 s->flags |= SEC_EXCLUDE;
6534 else
6535 {
6536 unsigned int cdefs;
6537 bfd_size_type size;
6538 bfd_byte *p;
6539 Elf_Internal_Verdef def;
6540 Elf_Internal_Verdaux defaux;
6541 struct bfd_link_hash_entry *bh;
6542 struct elf_link_hash_entry *h;
6543 const char *name;
6544
6545 cdefs = 0;
6546 size = 0;
6547
6548 /* Make space for the base version. */
6549 size += sizeof (Elf_External_Verdef);
6550 size += sizeof (Elf_External_Verdaux);
6551 ++cdefs;
6552
6553 /* Make space for the default version. */
6554 if (info->create_default_symver)
6555 {
6556 size += sizeof (Elf_External_Verdef);
6557 ++cdefs;
6558 }
6559
6560 for (t = verdefs; t != NULL; t = t->next)
6561 {
6562 struct bfd_elf_version_deps *n;
6563
6564 /* Don't emit base version twice. */
6565 if (t->vernum == 0)
6566 continue;
6567
6568 size += sizeof (Elf_External_Verdef);
6569 size += sizeof (Elf_External_Verdaux);
6570 ++cdefs;
6571
6572 for (n = t->deps; n != NULL; n = n->next)
6573 size += sizeof (Elf_External_Verdaux);
6574 }
6575
6576 s->size = size;
6577 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6578 if (s->contents == NULL && s->size != 0)
6579 return FALSE;
6580
6581 /* Fill in the version definition section. */
6582
6583 p = s->contents;
6584
6585 def.vd_version = VER_DEF_CURRENT;
6586 def.vd_flags = VER_FLG_BASE;
6587 def.vd_ndx = 1;
6588 def.vd_cnt = 1;
6589 if (info->create_default_symver)
6590 {
6591 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6592 def.vd_next = sizeof (Elf_External_Verdef);
6593 }
6594 else
6595 {
6596 def.vd_aux = sizeof (Elf_External_Verdef);
6597 def.vd_next = (sizeof (Elf_External_Verdef)
6598 + sizeof (Elf_External_Verdaux));
6599 }
6600
6601 if (soname_indx != (size_t) -1)
6602 {
6603 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6604 soname_indx);
6605 def.vd_hash = bfd_elf_hash (soname);
6606 defaux.vda_name = soname_indx;
6607 name = soname;
6608 }
6609 else
6610 {
6611 size_t indx;
6612
6613 name = lbasename (bfd_get_filename (output_bfd));
6614 def.vd_hash = bfd_elf_hash (name);
6615 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6616 name, FALSE);
6617 if (indx == (size_t) -1)
6618 return FALSE;
6619 defaux.vda_name = indx;
6620 }
6621 defaux.vda_next = 0;
6622
6623 _bfd_elf_swap_verdef_out (output_bfd, &def,
6624 (Elf_External_Verdef *) p);
6625 p += sizeof (Elf_External_Verdef);
6626 if (info->create_default_symver)
6627 {
6628 /* Add a symbol representing this version. */
6629 bh = NULL;
6630 if (! (_bfd_generic_link_add_one_symbol
6631 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6632 0, NULL, FALSE,
6633 get_elf_backend_data (dynobj)->collect, &bh)))
6634 return FALSE;
6635 h = (struct elf_link_hash_entry *) bh;
6636 h->non_elf = 0;
6637 h->def_regular = 1;
6638 h->type = STT_OBJECT;
6639 h->verinfo.vertree = NULL;
6640
6641 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6642 return FALSE;
6643
6644 /* Create a duplicate of the base version with the same
6645 aux block, but different flags. */
6646 def.vd_flags = 0;
6647 def.vd_ndx = 2;
6648 def.vd_aux = sizeof (Elf_External_Verdef);
6649 if (verdefs)
6650 def.vd_next = (sizeof (Elf_External_Verdef)
6651 + sizeof (Elf_External_Verdaux));
6652 else
6653 def.vd_next = 0;
6654 _bfd_elf_swap_verdef_out (output_bfd, &def,
6655 (Elf_External_Verdef *) p);
6656 p += sizeof (Elf_External_Verdef);
6657 }
6658 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6659 (Elf_External_Verdaux *) p);
6660 p += sizeof (Elf_External_Verdaux);
6661
6662 for (t = verdefs; t != NULL; t = t->next)
6663 {
6664 unsigned int cdeps;
6665 struct bfd_elf_version_deps *n;
6666
6667 /* Don't emit the base version twice. */
6668 if (t->vernum == 0)
6669 continue;
6670
6671 cdeps = 0;
6672 for (n = t->deps; n != NULL; n = n->next)
6673 ++cdeps;
6674
6675 /* Add a symbol representing this version. */
6676 bh = NULL;
6677 if (! (_bfd_generic_link_add_one_symbol
6678 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6679 0, NULL, FALSE,
6680 get_elf_backend_data (dynobj)->collect, &bh)))
6681 return FALSE;
6682 h = (struct elf_link_hash_entry *) bh;
6683 h->non_elf = 0;
6684 h->def_regular = 1;
6685 h->type = STT_OBJECT;
6686 h->verinfo.vertree = t;
6687
6688 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6689 return FALSE;
6690
6691 def.vd_version = VER_DEF_CURRENT;
6692 def.vd_flags = 0;
6693 if (t->globals.list == NULL
6694 && t->locals.list == NULL
6695 && ! t->used)
6696 def.vd_flags |= VER_FLG_WEAK;
6697 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6698 def.vd_cnt = cdeps + 1;
6699 def.vd_hash = bfd_elf_hash (t->name);
6700 def.vd_aux = sizeof (Elf_External_Verdef);
6701 def.vd_next = 0;
6702
6703 /* If a basever node is next, it *must* be the last node in
6704 the chain, otherwise Verdef construction breaks. */
6705 if (t->next != NULL && t->next->vernum == 0)
6706 BFD_ASSERT (t->next->next == NULL);
6707
6708 if (t->next != NULL && t->next->vernum != 0)
6709 def.vd_next = (sizeof (Elf_External_Verdef)
6710 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6711
6712 _bfd_elf_swap_verdef_out (output_bfd, &def,
6713 (Elf_External_Verdef *) p);
6714 p += sizeof (Elf_External_Verdef);
6715
6716 defaux.vda_name = h->dynstr_index;
6717 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6718 h->dynstr_index);
6719 defaux.vda_next = 0;
6720 if (t->deps != NULL)
6721 defaux.vda_next = sizeof (Elf_External_Verdaux);
6722 t->name_indx = defaux.vda_name;
6723
6724 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6725 (Elf_External_Verdaux *) p);
6726 p += sizeof (Elf_External_Verdaux);
6727
6728 for (n = t->deps; n != NULL; n = n->next)
6729 {
6730 if (n->version_needed == NULL)
6731 {
6732 /* This can happen if there was an error in the
6733 version script. */
6734 defaux.vda_name = 0;
6735 }
6736 else
6737 {
6738 defaux.vda_name = n->version_needed->name_indx;
6739 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6740 defaux.vda_name);
6741 }
6742 if (n->next == NULL)
6743 defaux.vda_next = 0;
6744 else
6745 defaux.vda_next = sizeof (Elf_External_Verdaux);
6746
6747 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6748 (Elf_External_Verdaux *) p);
6749 p += sizeof (Elf_External_Verdaux);
6750 }
6751 }
6752
6753 elf_tdata (output_bfd)->cverdefs = cdefs;
6754 }
6755 }
6756
6757 bed = get_elf_backend_data (output_bfd);
6758
6759 if (info->gc_sections && bed->can_gc_sections)
6760 {
6761 struct elf_gc_sweep_symbol_info sweep_info;
6762
6763 /* Remove the symbols that were in the swept sections from the
6764 dynamic symbol table. */
6765 sweep_info.info = info;
6766 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6767 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6768 &sweep_info);
6769 }
6770
6771 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6772 {
6773 asection *s;
6774 struct elf_find_verdep_info sinfo;
6775
6776 /* Work out the size of the version reference section. */
6777
6778 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6779 BFD_ASSERT (s != NULL);
6780
6781 sinfo.info = info;
6782 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6783 if (sinfo.vers == 0)
6784 sinfo.vers = 1;
6785 sinfo.failed = FALSE;
6786
6787 elf_link_hash_traverse (elf_hash_table (info),
6788 _bfd_elf_link_find_version_dependencies,
6789 &sinfo);
6790 if (sinfo.failed)
6791 return FALSE;
6792
6793 if (elf_tdata (output_bfd)->verref == NULL)
6794 s->flags |= SEC_EXCLUDE;
6795 else
6796 {
6797 Elf_Internal_Verneed *vn;
6798 unsigned int size;
6799 unsigned int crefs;
6800 bfd_byte *p;
6801
6802 /* Build the version dependency section. */
6803 size = 0;
6804 crefs = 0;
6805 for (vn = elf_tdata (output_bfd)->verref;
6806 vn != NULL;
6807 vn = vn->vn_nextref)
6808 {
6809 Elf_Internal_Vernaux *a;
6810
6811 size += sizeof (Elf_External_Verneed);
6812 ++crefs;
6813 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6814 size += sizeof (Elf_External_Vernaux);
6815 }
6816
6817 s->size = size;
6818 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6819 if (s->contents == NULL)
6820 return FALSE;
6821
6822 p = s->contents;
6823 for (vn = elf_tdata (output_bfd)->verref;
6824 vn != NULL;
6825 vn = vn->vn_nextref)
6826 {
6827 unsigned int caux;
6828 Elf_Internal_Vernaux *a;
6829 size_t indx;
6830
6831 caux = 0;
6832 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6833 ++caux;
6834
6835 vn->vn_version = VER_NEED_CURRENT;
6836 vn->vn_cnt = caux;
6837 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6838 elf_dt_name (vn->vn_bfd) != NULL
6839 ? elf_dt_name (vn->vn_bfd)
6840 : lbasename (bfd_get_filename
6841 (vn->vn_bfd)),
6842 FALSE);
6843 if (indx == (size_t) -1)
6844 return FALSE;
6845 vn->vn_file = indx;
6846 vn->vn_aux = sizeof (Elf_External_Verneed);
6847 if (vn->vn_nextref == NULL)
6848 vn->vn_next = 0;
6849 else
6850 vn->vn_next = (sizeof (Elf_External_Verneed)
6851 + caux * sizeof (Elf_External_Vernaux));
6852
6853 _bfd_elf_swap_verneed_out (output_bfd, vn,
6854 (Elf_External_Verneed *) p);
6855 p += sizeof (Elf_External_Verneed);
6856
6857 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6858 {
6859 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6860 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6861 a->vna_nodename, FALSE);
6862 if (indx == (size_t) -1)
6863 return FALSE;
6864 a->vna_name = indx;
6865 if (a->vna_nextptr == NULL)
6866 a->vna_next = 0;
6867 else
6868 a->vna_next = sizeof (Elf_External_Vernaux);
6869
6870 _bfd_elf_swap_vernaux_out (output_bfd, a,
6871 (Elf_External_Vernaux *) p);
6872 p += sizeof (Elf_External_Vernaux);
6873 }
6874 }
6875
6876 elf_tdata (output_bfd)->cverrefs = crefs;
6877 }
6878 }
6879
6880 /* Any syms created from now on start with -1 in
6881 got.refcount/offset and plt.refcount/offset. */
6882 elf_hash_table (info)->init_got_refcount
6883 = elf_hash_table (info)->init_got_offset;
6884 elf_hash_table (info)->init_plt_refcount
6885 = elf_hash_table (info)->init_plt_offset;
6886
6887 if (bfd_link_relocatable (info)
6888 && !_bfd_elf_size_group_sections (info))
6889 return FALSE;
6890
6891 /* The backend may have to create some sections regardless of whether
6892 we're dynamic or not. */
6893 if (bed->elf_backend_always_size_sections
6894 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6895 return FALSE;
6896
6897 /* Determine any GNU_STACK segment requirements, after the backend
6898 has had a chance to set a default segment size. */
6899 if (info->execstack)
6900 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6901 else if (info->noexecstack)
6902 elf_stack_flags (output_bfd) = PF_R | PF_W;
6903 else
6904 {
6905 bfd *inputobj;
6906 asection *notesec = NULL;
6907 int exec = 0;
6908
6909 for (inputobj = info->input_bfds;
6910 inputobj;
6911 inputobj = inputobj->link.next)
6912 {
6913 asection *s;
6914
6915 if (inputobj->flags
6916 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6917 continue;
6918 s = inputobj->sections;
6919 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6920 continue;
6921
6922 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6923 if (s)
6924 {
6925 if (s->flags & SEC_CODE)
6926 exec = PF_X;
6927 notesec = s;
6928 }
6929 else if (bed->default_execstack)
6930 exec = PF_X;
6931 }
6932 if (notesec || info->stacksize > 0)
6933 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6934 if (notesec && exec && bfd_link_relocatable (info)
6935 && notesec->output_section != bfd_abs_section_ptr)
6936 notesec->output_section->flags |= SEC_CODE;
6937 }
6938
6939 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6940 {
6941 struct elf_info_failed eif;
6942 struct elf_link_hash_entry *h;
6943 asection *dynstr;
6944 asection *s;
6945
6946 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6947 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6948
6949 if (info->symbolic)
6950 {
6951 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6952 return FALSE;
6953 info->flags |= DF_SYMBOLIC;
6954 }
6955
6956 if (rpath != NULL)
6957 {
6958 size_t indx;
6959 bfd_vma tag;
6960
6961 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6962 TRUE);
6963 if (indx == (size_t) -1)
6964 return FALSE;
6965
6966 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6967 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6968 return FALSE;
6969 }
6970
6971 if (filter_shlib != NULL)
6972 {
6973 size_t indx;
6974
6975 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6976 filter_shlib, TRUE);
6977 if (indx == (size_t) -1
6978 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6979 return FALSE;
6980 }
6981
6982 if (auxiliary_filters != NULL)
6983 {
6984 const char * const *p;
6985
6986 for (p = auxiliary_filters; *p != NULL; p++)
6987 {
6988 size_t indx;
6989
6990 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6991 *p, TRUE);
6992 if (indx == (size_t) -1
6993 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6994 return FALSE;
6995 }
6996 }
6997
6998 if (audit != NULL)
6999 {
7000 size_t indx;
7001
7002 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7003 TRUE);
7004 if (indx == (size_t) -1
7005 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7006 return FALSE;
7007 }
7008
7009 if (depaudit != NULL)
7010 {
7011 size_t indx;
7012
7013 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7014 TRUE);
7015 if (indx == (size_t) -1
7016 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7017 return FALSE;
7018 }
7019
7020 eif.info = info;
7021 eif.failed = FALSE;
7022
7023 /* Find all symbols which were defined in a dynamic object and make
7024 the backend pick a reasonable value for them. */
7025 elf_link_hash_traverse (elf_hash_table (info),
7026 _bfd_elf_adjust_dynamic_symbol,
7027 &eif);
7028 if (eif.failed)
7029 return FALSE;
7030
7031 /* Add some entries to the .dynamic section. We fill in some of the
7032 values later, in bfd_elf_final_link, but we must add the entries
7033 now so that we know the final size of the .dynamic section. */
7034
7035 /* If there are initialization and/or finalization functions to
7036 call then add the corresponding DT_INIT/DT_FINI entries. */
7037 h = (info->init_function
7038 ? elf_link_hash_lookup (elf_hash_table (info),
7039 info->init_function, FALSE,
7040 FALSE, FALSE)
7041 : NULL);
7042 if (h != NULL
7043 && (h->ref_regular
7044 || h->def_regular))
7045 {
7046 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7047 return FALSE;
7048 }
7049 h = (info->fini_function
7050 ? elf_link_hash_lookup (elf_hash_table (info),
7051 info->fini_function, FALSE,
7052 FALSE, FALSE)
7053 : NULL);
7054 if (h != NULL
7055 && (h->ref_regular
7056 || h->def_regular))
7057 {
7058 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7059 return FALSE;
7060 }
7061
7062 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7063 if (s != NULL && s->linker_has_input)
7064 {
7065 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7066 if (! bfd_link_executable (info))
7067 {
7068 bfd *sub;
7069 asection *o;
7070
7071 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7072 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7073 && (o = sub->sections) != NULL
7074 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7075 for (o = sub->sections; o != NULL; o = o->next)
7076 if (elf_section_data (o)->this_hdr.sh_type
7077 == SHT_PREINIT_ARRAY)
7078 {
7079 _bfd_error_handler
7080 (_("%pB: .preinit_array section is not allowed in DSO"),
7081 sub);
7082 break;
7083 }
7084
7085 bfd_set_error (bfd_error_nonrepresentable_section);
7086 return FALSE;
7087 }
7088
7089 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7090 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7091 return FALSE;
7092 }
7093 s = bfd_get_section_by_name (output_bfd, ".init_array");
7094 if (s != NULL && s->linker_has_input)
7095 {
7096 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7097 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7098 return FALSE;
7099 }
7100 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7101 if (s != NULL && s->linker_has_input)
7102 {
7103 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7104 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7105 return FALSE;
7106 }
7107
7108 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7109 /* If .dynstr is excluded from the link, we don't want any of
7110 these tags. Strictly, we should be checking each section
7111 individually; This quick check covers for the case where
7112 someone does a /DISCARD/ : { *(*) }. */
7113 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7114 {
7115 bfd_size_type strsize;
7116
7117 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7118 if ((info->emit_hash
7119 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7120 || (info->emit_gnu_hash
7121 && (bed->record_xhash_symbol == NULL
7122 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7123 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7124 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7125 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7126 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7127 bed->s->sizeof_sym))
7128 return FALSE;
7129 }
7130 }
7131
7132 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7133 return FALSE;
7134
7135 /* The backend must work out the sizes of all the other dynamic
7136 sections. */
7137 if (dynobj != NULL
7138 && bed->elf_backend_size_dynamic_sections != NULL
7139 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7140 return FALSE;
7141
7142 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7143 {
7144 if (elf_tdata (output_bfd)->cverdefs)
7145 {
7146 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7147
7148 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7149 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7150 return FALSE;
7151 }
7152
7153 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7154 {
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7156 return FALSE;
7157 }
7158 else if (info->flags & DF_BIND_NOW)
7159 {
7160 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7161 return FALSE;
7162 }
7163
7164 if (info->flags_1)
7165 {
7166 if (bfd_link_executable (info))
7167 info->flags_1 &= ~ (DF_1_INITFIRST
7168 | DF_1_NODELETE
7169 | DF_1_NOOPEN);
7170 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7171 return FALSE;
7172 }
7173
7174 if (elf_tdata (output_bfd)->cverrefs)
7175 {
7176 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7177
7178 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7179 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7180 return FALSE;
7181 }
7182
7183 if ((elf_tdata (output_bfd)->cverrefs == 0
7184 && elf_tdata (output_bfd)->cverdefs == 0)
7185 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7186 {
7187 asection *s;
7188
7189 s = bfd_get_linker_section (dynobj, ".gnu.version");
7190 s->flags |= SEC_EXCLUDE;
7191 }
7192 }
7193 return TRUE;
7194 }
7195
7196 /* Find the first non-excluded output section. We'll use its
7197 section symbol for some emitted relocs. */
7198 void
7199 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7200 {
7201 asection *s;
7202 asection *found = NULL;
7203
7204 for (s = output_bfd->sections; s != NULL; s = s->next)
7205 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7206 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7207 {
7208 found = s;
7209 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7210 break;
7211 }
7212 elf_hash_table (info)->text_index_section = found;
7213 }
7214
7215 /* Find two non-excluded output sections, one for code, one for data.
7216 We'll use their section symbols for some emitted relocs. */
7217 void
7218 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7219 {
7220 asection *s;
7221 asection *found = NULL;
7222
7223 /* Data first, since setting text_index_section changes
7224 _bfd_elf_omit_section_dynsym_default. */
7225 for (s = output_bfd->sections; s != NULL; s = s->next)
7226 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7227 && !(s->flags & SEC_READONLY)
7228 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7229 {
7230 found = s;
7231 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7232 break;
7233 }
7234 elf_hash_table (info)->data_index_section = found;
7235
7236 for (s = output_bfd->sections; s != NULL; s = s->next)
7237 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7238 && (s->flags & SEC_READONLY)
7239 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7240 {
7241 found = s;
7242 break;
7243 }
7244 elf_hash_table (info)->text_index_section = found;
7245 }
7246
7247 #define GNU_HASH_SECTION_NAME(bed) \
7248 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7249
7250 bfd_boolean
7251 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7252 {
7253 const struct elf_backend_data *bed;
7254 unsigned long section_sym_count;
7255 bfd_size_type dynsymcount = 0;
7256
7257 if (!is_elf_hash_table (info->hash))
7258 return TRUE;
7259
7260 bed = get_elf_backend_data (output_bfd);
7261 (*bed->elf_backend_init_index_section) (output_bfd, info);
7262
7263 /* Assign dynsym indices. In a shared library we generate a section
7264 symbol for each output section, which come first. Next come all
7265 of the back-end allocated local dynamic syms, followed by the rest
7266 of the global symbols.
7267
7268 This is usually not needed for static binaries, however backends
7269 can request to always do it, e.g. the MIPS backend uses dynamic
7270 symbol counts to lay out GOT, which will be produced in the
7271 presence of GOT relocations even in static binaries (holding fixed
7272 data in that case, to satisfy those relocations). */
7273
7274 if (elf_hash_table (info)->dynamic_sections_created
7275 || bed->always_renumber_dynsyms)
7276 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7277 &section_sym_count);
7278
7279 if (elf_hash_table (info)->dynamic_sections_created)
7280 {
7281 bfd *dynobj;
7282 asection *s;
7283 unsigned int dtagcount;
7284
7285 dynobj = elf_hash_table (info)->dynobj;
7286
7287 /* Work out the size of the symbol version section. */
7288 s = bfd_get_linker_section (dynobj, ".gnu.version");
7289 BFD_ASSERT (s != NULL);
7290 if ((s->flags & SEC_EXCLUDE) == 0)
7291 {
7292 s->size = dynsymcount * sizeof (Elf_External_Versym);
7293 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7294 if (s->contents == NULL)
7295 return FALSE;
7296
7297 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7298 return FALSE;
7299 }
7300
7301 /* Set the size of the .dynsym and .hash sections. We counted
7302 the number of dynamic symbols in elf_link_add_object_symbols.
7303 We will build the contents of .dynsym and .hash when we build
7304 the final symbol table, because until then we do not know the
7305 correct value to give the symbols. We built the .dynstr
7306 section as we went along in elf_link_add_object_symbols. */
7307 s = elf_hash_table (info)->dynsym;
7308 BFD_ASSERT (s != NULL);
7309 s->size = dynsymcount * bed->s->sizeof_sym;
7310
7311 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7312 if (s->contents == NULL)
7313 return FALSE;
7314
7315 /* The first entry in .dynsym is a dummy symbol. Clear all the
7316 section syms, in case we don't output them all. */
7317 ++section_sym_count;
7318 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7319
7320 elf_hash_table (info)->bucketcount = 0;
7321
7322 /* Compute the size of the hashing table. As a side effect this
7323 computes the hash values for all the names we export. */
7324 if (info->emit_hash)
7325 {
7326 unsigned long int *hashcodes;
7327 struct hash_codes_info hashinf;
7328 bfd_size_type amt;
7329 unsigned long int nsyms;
7330 size_t bucketcount;
7331 size_t hash_entry_size;
7332
7333 /* Compute the hash values for all exported symbols. At the same
7334 time store the values in an array so that we could use them for
7335 optimizations. */
7336 amt = dynsymcount * sizeof (unsigned long int);
7337 hashcodes = (unsigned long int *) bfd_malloc (amt);
7338 if (hashcodes == NULL)
7339 return FALSE;
7340 hashinf.hashcodes = hashcodes;
7341 hashinf.error = FALSE;
7342
7343 /* Put all hash values in HASHCODES. */
7344 elf_link_hash_traverse (elf_hash_table (info),
7345 elf_collect_hash_codes, &hashinf);
7346 if (hashinf.error)
7347 {
7348 free (hashcodes);
7349 return FALSE;
7350 }
7351
7352 nsyms = hashinf.hashcodes - hashcodes;
7353 bucketcount
7354 = compute_bucket_count (info, hashcodes, nsyms, 0);
7355 free (hashcodes);
7356
7357 if (bucketcount == 0 && nsyms > 0)
7358 return FALSE;
7359
7360 elf_hash_table (info)->bucketcount = bucketcount;
7361
7362 s = bfd_get_linker_section (dynobj, ".hash");
7363 BFD_ASSERT (s != NULL);
7364 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7365 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7366 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7367 if (s->contents == NULL)
7368 return FALSE;
7369
7370 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7371 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7372 s->contents + hash_entry_size);
7373 }
7374
7375 if (info->emit_gnu_hash)
7376 {
7377 size_t i, cnt;
7378 unsigned char *contents;
7379 struct collect_gnu_hash_codes cinfo;
7380 bfd_size_type amt;
7381 size_t bucketcount;
7382
7383 memset (&cinfo, 0, sizeof (cinfo));
7384
7385 /* Compute the hash values for all exported symbols. At the same
7386 time store the values in an array so that we could use them for
7387 optimizations. */
7388 amt = dynsymcount * 2 * sizeof (unsigned long int);
7389 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7390 if (cinfo.hashcodes == NULL)
7391 return FALSE;
7392
7393 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7394 cinfo.min_dynindx = -1;
7395 cinfo.output_bfd = output_bfd;
7396 cinfo.bed = bed;
7397
7398 /* Put all hash values in HASHCODES. */
7399 elf_link_hash_traverse (elf_hash_table (info),
7400 elf_collect_gnu_hash_codes, &cinfo);
7401 if (cinfo.error)
7402 {
7403 free (cinfo.hashcodes);
7404 return FALSE;
7405 }
7406
7407 bucketcount
7408 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7409
7410 if (bucketcount == 0)
7411 {
7412 free (cinfo.hashcodes);
7413 return FALSE;
7414 }
7415
7416 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7417 BFD_ASSERT (s != NULL);
7418
7419 if (cinfo.nsyms == 0)
7420 {
7421 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7422 BFD_ASSERT (cinfo.min_dynindx == -1);
7423 free (cinfo.hashcodes);
7424 s->size = 5 * 4 + bed->s->arch_size / 8;
7425 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7426 if (contents == NULL)
7427 return FALSE;
7428 s->contents = contents;
7429 /* 1 empty bucket. */
7430 bfd_put_32 (output_bfd, 1, contents);
7431 /* SYMIDX above the special symbol 0. */
7432 bfd_put_32 (output_bfd, 1, contents + 4);
7433 /* Just one word for bitmask. */
7434 bfd_put_32 (output_bfd, 1, contents + 8);
7435 /* Only hash fn bloom filter. */
7436 bfd_put_32 (output_bfd, 0, contents + 12);
7437 /* No hashes are valid - empty bitmask. */
7438 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7439 /* No hashes in the only bucket. */
7440 bfd_put_32 (output_bfd, 0,
7441 contents + 16 + bed->s->arch_size / 8);
7442 }
7443 else
7444 {
7445 unsigned long int maskwords, maskbitslog2, x;
7446 BFD_ASSERT (cinfo.min_dynindx != -1);
7447
7448 x = cinfo.nsyms;
7449 maskbitslog2 = 1;
7450 while ((x >>= 1) != 0)
7451 ++maskbitslog2;
7452 if (maskbitslog2 < 3)
7453 maskbitslog2 = 5;
7454 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7455 maskbitslog2 = maskbitslog2 + 3;
7456 else
7457 maskbitslog2 = maskbitslog2 + 2;
7458 if (bed->s->arch_size == 64)
7459 {
7460 if (maskbitslog2 == 5)
7461 maskbitslog2 = 6;
7462 cinfo.shift1 = 6;
7463 }
7464 else
7465 cinfo.shift1 = 5;
7466 cinfo.mask = (1 << cinfo.shift1) - 1;
7467 cinfo.shift2 = maskbitslog2;
7468 cinfo.maskbits = 1 << maskbitslog2;
7469 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7470 amt = bucketcount * sizeof (unsigned long int) * 2;
7471 amt += maskwords * sizeof (bfd_vma);
7472 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7473 if (cinfo.bitmask == NULL)
7474 {
7475 free (cinfo.hashcodes);
7476 return FALSE;
7477 }
7478
7479 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7480 cinfo.indx = cinfo.counts + bucketcount;
7481 cinfo.symindx = dynsymcount - cinfo.nsyms;
7482 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7483
7484 /* Determine how often each hash bucket is used. */
7485 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7486 for (i = 0; i < cinfo.nsyms; ++i)
7487 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7488
7489 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7490 if (cinfo.counts[i] != 0)
7491 {
7492 cinfo.indx[i] = cnt;
7493 cnt += cinfo.counts[i];
7494 }
7495 BFD_ASSERT (cnt == dynsymcount);
7496 cinfo.bucketcount = bucketcount;
7497 cinfo.local_indx = cinfo.min_dynindx;
7498
7499 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7500 s->size += cinfo.maskbits / 8;
7501 if (bed->record_xhash_symbol != NULL)
7502 s->size += cinfo.nsyms * 4;
7503 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7504 if (contents == NULL)
7505 {
7506 free (cinfo.bitmask);
7507 free (cinfo.hashcodes);
7508 return FALSE;
7509 }
7510
7511 s->contents = contents;
7512 bfd_put_32 (output_bfd, bucketcount, contents);
7513 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7514 bfd_put_32 (output_bfd, maskwords, contents + 8);
7515 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7516 contents += 16 + cinfo.maskbits / 8;
7517
7518 for (i = 0; i < bucketcount; ++i)
7519 {
7520 if (cinfo.counts[i] == 0)
7521 bfd_put_32 (output_bfd, 0, contents);
7522 else
7523 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7524 contents += 4;
7525 }
7526
7527 cinfo.contents = contents;
7528
7529 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7530 /* Renumber dynamic symbols, if populating .gnu.hash section.
7531 If using .MIPS.xhash, populate the translation table. */
7532 elf_link_hash_traverse (elf_hash_table (info),
7533 elf_gnu_hash_process_symidx, &cinfo);
7534
7535 contents = s->contents + 16;
7536 for (i = 0; i < maskwords; ++i)
7537 {
7538 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7539 contents);
7540 contents += bed->s->arch_size / 8;
7541 }
7542
7543 free (cinfo.bitmask);
7544 free (cinfo.hashcodes);
7545 }
7546 }
7547
7548 s = bfd_get_linker_section (dynobj, ".dynstr");
7549 BFD_ASSERT (s != NULL);
7550
7551 elf_finalize_dynstr (output_bfd, info);
7552
7553 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7554
7555 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7556 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7557 return FALSE;
7558 }
7559
7560 return TRUE;
7561 }
7562 \f
7563 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7564
7565 static void
7566 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7567 asection *sec)
7568 {
7569 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7570 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7571 }
7572
7573 /* Finish SHF_MERGE section merging. */
7574
7575 bfd_boolean
7576 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7577 {
7578 bfd *ibfd;
7579 asection *sec;
7580
7581 if (!is_elf_hash_table (info->hash))
7582 return FALSE;
7583
7584 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7585 if ((ibfd->flags & DYNAMIC) == 0
7586 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7587 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7588 == get_elf_backend_data (obfd)->s->elfclass))
7589 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7590 if ((sec->flags & SEC_MERGE) != 0
7591 && !bfd_is_abs_section (sec->output_section))
7592 {
7593 struct bfd_elf_section_data *secdata;
7594
7595 secdata = elf_section_data (sec);
7596 if (! _bfd_add_merge_section (obfd,
7597 &elf_hash_table (info)->merge_info,
7598 sec, &secdata->sec_info))
7599 return FALSE;
7600 else if (secdata->sec_info)
7601 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7602 }
7603
7604 if (elf_hash_table (info)->merge_info != NULL)
7605 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7606 merge_sections_remove_hook);
7607 return TRUE;
7608 }
7609
7610 /* Create an entry in an ELF linker hash table. */
7611
7612 struct bfd_hash_entry *
7613 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7614 struct bfd_hash_table *table,
7615 const char *string)
7616 {
7617 /* Allocate the structure if it has not already been allocated by a
7618 subclass. */
7619 if (entry == NULL)
7620 {
7621 entry = (struct bfd_hash_entry *)
7622 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7623 if (entry == NULL)
7624 return entry;
7625 }
7626
7627 /* Call the allocation method of the superclass. */
7628 entry = _bfd_link_hash_newfunc (entry, table, string);
7629 if (entry != NULL)
7630 {
7631 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7632 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7633
7634 /* Set local fields. */
7635 ret->indx = -1;
7636 ret->dynindx = -1;
7637 ret->got = htab->init_got_refcount;
7638 ret->plt = htab->init_plt_refcount;
7639 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7640 - offsetof (struct elf_link_hash_entry, size)));
7641 /* Assume that we have been called by a non-ELF symbol reader.
7642 This flag is then reset by the code which reads an ELF input
7643 file. This ensures that a symbol created by a non-ELF symbol
7644 reader will have the flag set correctly. */
7645 ret->non_elf = 1;
7646 }
7647
7648 return entry;
7649 }
7650
7651 /* Copy data from an indirect symbol to its direct symbol, hiding the
7652 old indirect symbol. Also used for copying flags to a weakdef. */
7653
7654 void
7655 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7656 struct elf_link_hash_entry *dir,
7657 struct elf_link_hash_entry *ind)
7658 {
7659 struct elf_link_hash_table *htab;
7660
7661 if (ind->dyn_relocs != NULL)
7662 {
7663 if (dir->dyn_relocs != NULL)
7664 {
7665 struct elf_dyn_relocs **pp;
7666 struct elf_dyn_relocs *p;
7667
7668 /* Add reloc counts against the indirect sym to the direct sym
7669 list. Merge any entries against the same section. */
7670 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7671 {
7672 struct elf_dyn_relocs *q;
7673
7674 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7675 if (q->sec == p->sec)
7676 {
7677 q->pc_count += p->pc_count;
7678 q->count += p->count;
7679 *pp = p->next;
7680 break;
7681 }
7682 if (q == NULL)
7683 pp = &p->next;
7684 }
7685 *pp = dir->dyn_relocs;
7686 }
7687
7688 dir->dyn_relocs = ind->dyn_relocs;
7689 ind->dyn_relocs = NULL;
7690 }
7691
7692 /* Copy down any references that we may have already seen to the
7693 symbol which just became indirect. */
7694
7695 if (dir->versioned != versioned_hidden)
7696 dir->ref_dynamic |= ind->ref_dynamic;
7697 dir->ref_regular |= ind->ref_regular;
7698 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7699 dir->non_got_ref |= ind->non_got_ref;
7700 dir->needs_plt |= ind->needs_plt;
7701 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7702
7703 if (ind->root.type != bfd_link_hash_indirect)
7704 return;
7705
7706 /* Copy over the global and procedure linkage table refcount entries.
7707 These may have been already set up by a check_relocs routine. */
7708 htab = elf_hash_table (info);
7709 if (ind->got.refcount > htab->init_got_refcount.refcount)
7710 {
7711 if (dir->got.refcount < 0)
7712 dir->got.refcount = 0;
7713 dir->got.refcount += ind->got.refcount;
7714 ind->got.refcount = htab->init_got_refcount.refcount;
7715 }
7716
7717 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7718 {
7719 if (dir->plt.refcount < 0)
7720 dir->plt.refcount = 0;
7721 dir->plt.refcount += ind->plt.refcount;
7722 ind->plt.refcount = htab->init_plt_refcount.refcount;
7723 }
7724
7725 if (ind->dynindx != -1)
7726 {
7727 if (dir->dynindx != -1)
7728 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7729 dir->dynindx = ind->dynindx;
7730 dir->dynstr_index = ind->dynstr_index;
7731 ind->dynindx = -1;
7732 ind->dynstr_index = 0;
7733 }
7734 }
7735
7736 void
7737 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7738 struct elf_link_hash_entry *h,
7739 bfd_boolean force_local)
7740 {
7741 /* STT_GNU_IFUNC symbol must go through PLT. */
7742 if (h->type != STT_GNU_IFUNC)
7743 {
7744 h->plt = elf_hash_table (info)->init_plt_offset;
7745 h->needs_plt = 0;
7746 }
7747 if (force_local)
7748 {
7749 h->forced_local = 1;
7750 if (h->dynindx != -1)
7751 {
7752 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7753 h->dynstr_index);
7754 h->dynindx = -1;
7755 h->dynstr_index = 0;
7756 }
7757 }
7758 }
7759
7760 /* Hide a symbol. */
7761
7762 void
7763 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7764 struct bfd_link_info *info,
7765 struct bfd_link_hash_entry *h)
7766 {
7767 if (is_elf_hash_table (info->hash))
7768 {
7769 const struct elf_backend_data *bed
7770 = get_elf_backend_data (output_bfd);
7771 struct elf_link_hash_entry *eh
7772 = (struct elf_link_hash_entry *) h;
7773 bed->elf_backend_hide_symbol (info, eh, TRUE);
7774 eh->def_dynamic = 0;
7775 eh->ref_dynamic = 0;
7776 eh->dynamic_def = 0;
7777 }
7778 }
7779
7780 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7781 caller. */
7782
7783 bfd_boolean
7784 _bfd_elf_link_hash_table_init
7785 (struct elf_link_hash_table *table,
7786 bfd *abfd,
7787 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7788 struct bfd_hash_table *,
7789 const char *),
7790 unsigned int entsize,
7791 enum elf_target_id target_id)
7792 {
7793 bfd_boolean ret;
7794 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7795
7796 table->init_got_refcount.refcount = can_refcount - 1;
7797 table->init_plt_refcount.refcount = can_refcount - 1;
7798 table->init_got_offset.offset = -(bfd_vma) 1;
7799 table->init_plt_offset.offset = -(bfd_vma) 1;
7800 /* The first dynamic symbol is a dummy. */
7801 table->dynsymcount = 1;
7802
7803 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7804
7805 table->root.type = bfd_link_elf_hash_table;
7806 table->hash_table_id = target_id;
7807 table->target_os = get_elf_backend_data (abfd)->target_os;
7808
7809 return ret;
7810 }
7811
7812 /* Create an ELF linker hash table. */
7813
7814 struct bfd_link_hash_table *
7815 _bfd_elf_link_hash_table_create (bfd *abfd)
7816 {
7817 struct elf_link_hash_table *ret;
7818 size_t amt = sizeof (struct elf_link_hash_table);
7819
7820 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7821 if (ret == NULL)
7822 return NULL;
7823
7824 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7825 sizeof (struct elf_link_hash_entry),
7826 GENERIC_ELF_DATA))
7827 {
7828 free (ret);
7829 return NULL;
7830 }
7831 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7832
7833 return &ret->root;
7834 }
7835
7836 /* Destroy an ELF linker hash table. */
7837
7838 void
7839 _bfd_elf_link_hash_table_free (bfd *obfd)
7840 {
7841 struct elf_link_hash_table *htab;
7842
7843 htab = (struct elf_link_hash_table *) obfd->link.hash;
7844 if (htab->dynstr != NULL)
7845 _bfd_elf_strtab_free (htab->dynstr);
7846 _bfd_merge_sections_free (htab->merge_info);
7847 _bfd_generic_link_hash_table_free (obfd);
7848 }
7849
7850 /* This is a hook for the ELF emulation code in the generic linker to
7851 tell the backend linker what file name to use for the DT_NEEDED
7852 entry for a dynamic object. */
7853
7854 void
7855 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7856 {
7857 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7858 && bfd_get_format (abfd) == bfd_object)
7859 elf_dt_name (abfd) = name;
7860 }
7861
7862 int
7863 bfd_elf_get_dyn_lib_class (bfd *abfd)
7864 {
7865 int lib_class;
7866 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7867 && bfd_get_format (abfd) == bfd_object)
7868 lib_class = elf_dyn_lib_class (abfd);
7869 else
7870 lib_class = 0;
7871 return lib_class;
7872 }
7873
7874 void
7875 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7876 {
7877 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7878 && bfd_get_format (abfd) == bfd_object)
7879 elf_dyn_lib_class (abfd) = lib_class;
7880 }
7881
7882 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7883 the linker ELF emulation code. */
7884
7885 struct bfd_link_needed_list *
7886 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7887 struct bfd_link_info *info)
7888 {
7889 if (! is_elf_hash_table (info->hash))
7890 return NULL;
7891 return elf_hash_table (info)->needed;
7892 }
7893
7894 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7895 hook for the linker ELF emulation code. */
7896
7897 struct bfd_link_needed_list *
7898 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7899 struct bfd_link_info *info)
7900 {
7901 if (! is_elf_hash_table (info->hash))
7902 return NULL;
7903 return elf_hash_table (info)->runpath;
7904 }
7905
7906 /* Get the name actually used for a dynamic object for a link. This
7907 is the SONAME entry if there is one. Otherwise, it is the string
7908 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7909
7910 const char *
7911 bfd_elf_get_dt_soname (bfd *abfd)
7912 {
7913 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7914 && bfd_get_format (abfd) == bfd_object)
7915 return elf_dt_name (abfd);
7916 return NULL;
7917 }
7918
7919 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7920 the ELF linker emulation code. */
7921
7922 bfd_boolean
7923 bfd_elf_get_bfd_needed_list (bfd *abfd,
7924 struct bfd_link_needed_list **pneeded)
7925 {
7926 asection *s;
7927 bfd_byte *dynbuf = NULL;
7928 unsigned int elfsec;
7929 unsigned long shlink;
7930 bfd_byte *extdyn, *extdynend;
7931 size_t extdynsize;
7932 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7933
7934 *pneeded = NULL;
7935
7936 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7937 || bfd_get_format (abfd) != bfd_object)
7938 return TRUE;
7939
7940 s = bfd_get_section_by_name (abfd, ".dynamic");
7941 if (s == NULL || s->size == 0)
7942 return TRUE;
7943
7944 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7945 goto error_return;
7946
7947 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7948 if (elfsec == SHN_BAD)
7949 goto error_return;
7950
7951 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7952
7953 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7954 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7955
7956 extdyn = dynbuf;
7957 extdynend = extdyn + s->size;
7958 for (; extdyn < extdynend; extdyn += extdynsize)
7959 {
7960 Elf_Internal_Dyn dyn;
7961
7962 (*swap_dyn_in) (abfd, extdyn, &dyn);
7963
7964 if (dyn.d_tag == DT_NULL)
7965 break;
7966
7967 if (dyn.d_tag == DT_NEEDED)
7968 {
7969 const char *string;
7970 struct bfd_link_needed_list *l;
7971 unsigned int tagv = dyn.d_un.d_val;
7972 size_t amt;
7973
7974 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7975 if (string == NULL)
7976 goto error_return;
7977
7978 amt = sizeof *l;
7979 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7980 if (l == NULL)
7981 goto error_return;
7982
7983 l->by = abfd;
7984 l->name = string;
7985 l->next = *pneeded;
7986 *pneeded = l;
7987 }
7988 }
7989
7990 free (dynbuf);
7991
7992 return TRUE;
7993
7994 error_return:
7995 free (dynbuf);
7996 return FALSE;
7997 }
7998
7999 struct elf_symbuf_symbol
8000 {
8001 unsigned long st_name; /* Symbol name, index in string tbl */
8002 unsigned char st_info; /* Type and binding attributes */
8003 unsigned char st_other; /* Visibilty, and target specific */
8004 };
8005
8006 struct elf_symbuf_head
8007 {
8008 struct elf_symbuf_symbol *ssym;
8009 size_t count;
8010 unsigned int st_shndx;
8011 };
8012
8013 struct elf_symbol
8014 {
8015 union
8016 {
8017 Elf_Internal_Sym *isym;
8018 struct elf_symbuf_symbol *ssym;
8019 void *p;
8020 } u;
8021 const char *name;
8022 };
8023
8024 /* Sort references to symbols by ascending section number. */
8025
8026 static int
8027 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8028 {
8029 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8030 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8031
8032 if (s1->st_shndx != s2->st_shndx)
8033 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8034 /* Final sort by the address of the sym in the symbuf ensures
8035 a stable sort. */
8036 if (s1 != s2)
8037 return s1 > s2 ? 1 : -1;
8038 return 0;
8039 }
8040
8041 static int
8042 elf_sym_name_compare (const void *arg1, const void *arg2)
8043 {
8044 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8045 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8046 int ret = strcmp (s1->name, s2->name);
8047 if (ret != 0)
8048 return ret;
8049 if (s1->u.p != s2->u.p)
8050 return s1->u.p > s2->u.p ? 1 : -1;
8051 return 0;
8052 }
8053
8054 static struct elf_symbuf_head *
8055 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8056 {
8057 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8058 struct elf_symbuf_symbol *ssym;
8059 struct elf_symbuf_head *ssymbuf, *ssymhead;
8060 size_t i, shndx_count, total_size, amt;
8061
8062 amt = symcount * sizeof (*indbuf);
8063 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8064 if (indbuf == NULL)
8065 return NULL;
8066
8067 for (ind = indbuf, i = 0; i < symcount; i++)
8068 if (isymbuf[i].st_shndx != SHN_UNDEF)
8069 *ind++ = &isymbuf[i];
8070 indbufend = ind;
8071
8072 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8073 elf_sort_elf_symbol);
8074
8075 shndx_count = 0;
8076 if (indbufend > indbuf)
8077 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8078 if (ind[0]->st_shndx != ind[1]->st_shndx)
8079 shndx_count++;
8080
8081 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8082 + (indbufend - indbuf) * sizeof (*ssym));
8083 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8084 if (ssymbuf == NULL)
8085 {
8086 free (indbuf);
8087 return NULL;
8088 }
8089
8090 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8091 ssymbuf->ssym = NULL;
8092 ssymbuf->count = shndx_count;
8093 ssymbuf->st_shndx = 0;
8094 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8095 {
8096 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8097 {
8098 ssymhead++;
8099 ssymhead->ssym = ssym;
8100 ssymhead->count = 0;
8101 ssymhead->st_shndx = (*ind)->st_shndx;
8102 }
8103 ssym->st_name = (*ind)->st_name;
8104 ssym->st_info = (*ind)->st_info;
8105 ssym->st_other = (*ind)->st_other;
8106 ssymhead->count++;
8107 }
8108 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8109 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8110 == total_size));
8111
8112 free (indbuf);
8113 return ssymbuf;
8114 }
8115
8116 /* Check if 2 sections define the same set of local and global
8117 symbols. */
8118
8119 static bfd_boolean
8120 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8121 struct bfd_link_info *info)
8122 {
8123 bfd *bfd1, *bfd2;
8124 const struct elf_backend_data *bed1, *bed2;
8125 Elf_Internal_Shdr *hdr1, *hdr2;
8126 size_t symcount1, symcount2;
8127 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8128 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8129 Elf_Internal_Sym *isym, *isymend;
8130 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8131 size_t count1, count2, i;
8132 unsigned int shndx1, shndx2;
8133 bfd_boolean result;
8134
8135 bfd1 = sec1->owner;
8136 bfd2 = sec2->owner;
8137
8138 /* Both sections have to be in ELF. */
8139 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8140 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8141 return FALSE;
8142
8143 if (elf_section_type (sec1) != elf_section_type (sec2))
8144 return FALSE;
8145
8146 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8147 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8148 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8149 return FALSE;
8150
8151 bed1 = get_elf_backend_data (bfd1);
8152 bed2 = get_elf_backend_data (bfd2);
8153 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8154 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8155 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8156 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8157
8158 if (symcount1 == 0 || symcount2 == 0)
8159 return FALSE;
8160
8161 result = FALSE;
8162 isymbuf1 = NULL;
8163 isymbuf2 = NULL;
8164 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8165 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8166
8167 if (ssymbuf1 == NULL)
8168 {
8169 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8170 NULL, NULL, NULL);
8171 if (isymbuf1 == NULL)
8172 goto done;
8173
8174 if (!info->reduce_memory_overheads)
8175 {
8176 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8177 elf_tdata (bfd1)->symbuf = ssymbuf1;
8178 }
8179 }
8180
8181 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8182 {
8183 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8184 NULL, NULL, NULL);
8185 if (isymbuf2 == NULL)
8186 goto done;
8187
8188 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8189 {
8190 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8191 elf_tdata (bfd2)->symbuf = ssymbuf2;
8192 }
8193 }
8194
8195 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8196 {
8197 /* Optimized faster version. */
8198 size_t lo, hi, mid;
8199 struct elf_symbol *symp;
8200 struct elf_symbuf_symbol *ssym, *ssymend;
8201
8202 lo = 0;
8203 hi = ssymbuf1->count;
8204 ssymbuf1++;
8205 count1 = 0;
8206 while (lo < hi)
8207 {
8208 mid = (lo + hi) / 2;
8209 if (shndx1 < ssymbuf1[mid].st_shndx)
8210 hi = mid;
8211 else if (shndx1 > ssymbuf1[mid].st_shndx)
8212 lo = mid + 1;
8213 else
8214 {
8215 count1 = ssymbuf1[mid].count;
8216 ssymbuf1 += mid;
8217 break;
8218 }
8219 }
8220
8221 lo = 0;
8222 hi = ssymbuf2->count;
8223 ssymbuf2++;
8224 count2 = 0;
8225 while (lo < hi)
8226 {
8227 mid = (lo + hi) / 2;
8228 if (shndx2 < ssymbuf2[mid].st_shndx)
8229 hi = mid;
8230 else if (shndx2 > ssymbuf2[mid].st_shndx)
8231 lo = mid + 1;
8232 else
8233 {
8234 count2 = ssymbuf2[mid].count;
8235 ssymbuf2 += mid;
8236 break;
8237 }
8238 }
8239
8240 if (count1 == 0 || count2 == 0 || count1 != count2)
8241 goto done;
8242
8243 symtable1
8244 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8245 symtable2
8246 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8247 if (symtable1 == NULL || symtable2 == NULL)
8248 goto done;
8249
8250 symp = symtable1;
8251 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8252 ssym < ssymend; ssym++, symp++)
8253 {
8254 symp->u.ssym = ssym;
8255 symp->name = bfd_elf_string_from_elf_section (bfd1,
8256 hdr1->sh_link,
8257 ssym->st_name);
8258 }
8259
8260 symp = symtable2;
8261 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8262 ssym < ssymend; ssym++, symp++)
8263 {
8264 symp->u.ssym = ssym;
8265 symp->name = bfd_elf_string_from_elf_section (bfd2,
8266 hdr2->sh_link,
8267 ssym->st_name);
8268 }
8269
8270 /* Sort symbol by name. */
8271 qsort (symtable1, count1, sizeof (struct elf_symbol),
8272 elf_sym_name_compare);
8273 qsort (symtable2, count1, sizeof (struct elf_symbol),
8274 elf_sym_name_compare);
8275
8276 for (i = 0; i < count1; i++)
8277 /* Two symbols must have the same binding, type and name. */
8278 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8279 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8280 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8281 goto done;
8282
8283 result = TRUE;
8284 goto done;
8285 }
8286
8287 symtable1 = (struct elf_symbol *)
8288 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8289 symtable2 = (struct elf_symbol *)
8290 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8291 if (symtable1 == NULL || symtable2 == NULL)
8292 goto done;
8293
8294 /* Count definitions in the section. */
8295 count1 = 0;
8296 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8297 if (isym->st_shndx == shndx1)
8298 symtable1[count1++].u.isym = isym;
8299
8300 count2 = 0;
8301 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8302 if (isym->st_shndx == shndx2)
8303 symtable2[count2++].u.isym = isym;
8304
8305 if (count1 == 0 || count2 == 0 || count1 != count2)
8306 goto done;
8307
8308 for (i = 0; i < count1; i++)
8309 symtable1[i].name
8310 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8311 symtable1[i].u.isym->st_name);
8312
8313 for (i = 0; i < count2; i++)
8314 symtable2[i].name
8315 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8316 symtable2[i].u.isym->st_name);
8317
8318 /* Sort symbol by name. */
8319 qsort (symtable1, count1, sizeof (struct elf_symbol),
8320 elf_sym_name_compare);
8321 qsort (symtable2, count1, sizeof (struct elf_symbol),
8322 elf_sym_name_compare);
8323
8324 for (i = 0; i < count1; i++)
8325 /* Two symbols must have the same binding, type and name. */
8326 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8327 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8328 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8329 goto done;
8330
8331 result = TRUE;
8332
8333 done:
8334 free (symtable1);
8335 free (symtable2);
8336 free (isymbuf1);
8337 free (isymbuf2);
8338
8339 return result;
8340 }
8341
8342 /* Return TRUE if 2 section types are compatible. */
8343
8344 bfd_boolean
8345 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8346 bfd *bbfd, const asection *bsec)
8347 {
8348 if (asec == NULL
8349 || bsec == NULL
8350 || abfd->xvec->flavour != bfd_target_elf_flavour
8351 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8352 return TRUE;
8353
8354 return elf_section_type (asec) == elf_section_type (bsec);
8355 }
8356 \f
8357 /* Final phase of ELF linker. */
8358
8359 /* A structure we use to avoid passing large numbers of arguments. */
8360
8361 struct elf_final_link_info
8362 {
8363 /* General link information. */
8364 struct bfd_link_info *info;
8365 /* Output BFD. */
8366 bfd *output_bfd;
8367 /* Symbol string table. */
8368 struct elf_strtab_hash *symstrtab;
8369 /* .hash section. */
8370 asection *hash_sec;
8371 /* symbol version section (.gnu.version). */
8372 asection *symver_sec;
8373 /* Buffer large enough to hold contents of any section. */
8374 bfd_byte *contents;
8375 /* Buffer large enough to hold external relocs of any section. */
8376 void *external_relocs;
8377 /* Buffer large enough to hold internal relocs of any section. */
8378 Elf_Internal_Rela *internal_relocs;
8379 /* Buffer large enough to hold external local symbols of any input
8380 BFD. */
8381 bfd_byte *external_syms;
8382 /* And a buffer for symbol section indices. */
8383 Elf_External_Sym_Shndx *locsym_shndx;
8384 /* Buffer large enough to hold internal local symbols of any input
8385 BFD. */
8386 Elf_Internal_Sym *internal_syms;
8387 /* Array large enough to hold a symbol index for each local symbol
8388 of any input BFD. */
8389 long *indices;
8390 /* Array large enough to hold a section pointer for each local
8391 symbol of any input BFD. */
8392 asection **sections;
8393 /* Buffer for SHT_SYMTAB_SHNDX section. */
8394 Elf_External_Sym_Shndx *symshndxbuf;
8395 /* Number of STT_FILE syms seen. */
8396 size_t filesym_count;
8397 };
8398
8399 /* This struct is used to pass information to elf_link_output_extsym. */
8400
8401 struct elf_outext_info
8402 {
8403 bfd_boolean failed;
8404 bfd_boolean localsyms;
8405 bfd_boolean file_sym_done;
8406 struct elf_final_link_info *flinfo;
8407 };
8408
8409
8410 /* Support for evaluating a complex relocation.
8411
8412 Complex relocations are generalized, self-describing relocations. The
8413 implementation of them consists of two parts: complex symbols, and the
8414 relocations themselves.
8415
8416 The relocations are use a reserved elf-wide relocation type code (R_RELC
8417 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8418 information (start bit, end bit, word width, etc) into the addend. This
8419 information is extracted from CGEN-generated operand tables within gas.
8420
8421 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8422 internal) representing prefix-notation expressions, including but not
8423 limited to those sorts of expressions normally encoded as addends in the
8424 addend field. The symbol mangling format is:
8425
8426 <node> := <literal>
8427 | <unary-operator> ':' <node>
8428 | <binary-operator> ':' <node> ':' <node>
8429 ;
8430
8431 <literal> := 's' <digits=N> ':' <N character symbol name>
8432 | 'S' <digits=N> ':' <N character section name>
8433 | '#' <hexdigits>
8434 ;
8435
8436 <binary-operator> := as in C
8437 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8438
8439 static void
8440 set_symbol_value (bfd *bfd_with_globals,
8441 Elf_Internal_Sym *isymbuf,
8442 size_t locsymcount,
8443 size_t symidx,
8444 bfd_vma val)
8445 {
8446 struct elf_link_hash_entry **sym_hashes;
8447 struct elf_link_hash_entry *h;
8448 size_t extsymoff = locsymcount;
8449
8450 if (symidx < locsymcount)
8451 {
8452 Elf_Internal_Sym *sym;
8453
8454 sym = isymbuf + symidx;
8455 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8456 {
8457 /* It is a local symbol: move it to the
8458 "absolute" section and give it a value. */
8459 sym->st_shndx = SHN_ABS;
8460 sym->st_value = val;
8461 return;
8462 }
8463 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8464 extsymoff = 0;
8465 }
8466
8467 /* It is a global symbol: set its link type
8468 to "defined" and give it a value. */
8469
8470 sym_hashes = elf_sym_hashes (bfd_with_globals);
8471 h = sym_hashes [symidx - extsymoff];
8472 while (h->root.type == bfd_link_hash_indirect
8473 || h->root.type == bfd_link_hash_warning)
8474 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8475 h->root.type = bfd_link_hash_defined;
8476 h->root.u.def.value = val;
8477 h->root.u.def.section = bfd_abs_section_ptr;
8478 }
8479
8480 static bfd_boolean
8481 resolve_symbol (const char *name,
8482 bfd *input_bfd,
8483 struct elf_final_link_info *flinfo,
8484 bfd_vma *result,
8485 Elf_Internal_Sym *isymbuf,
8486 size_t locsymcount)
8487 {
8488 Elf_Internal_Sym *sym;
8489 struct bfd_link_hash_entry *global_entry;
8490 const char *candidate = NULL;
8491 Elf_Internal_Shdr *symtab_hdr;
8492 size_t i;
8493
8494 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8495
8496 for (i = 0; i < locsymcount; ++ i)
8497 {
8498 sym = isymbuf + i;
8499
8500 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8501 continue;
8502
8503 candidate = bfd_elf_string_from_elf_section (input_bfd,
8504 symtab_hdr->sh_link,
8505 sym->st_name);
8506 #ifdef DEBUG
8507 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8508 name, candidate, (unsigned long) sym->st_value);
8509 #endif
8510 if (candidate && strcmp (candidate, name) == 0)
8511 {
8512 asection *sec = flinfo->sections [i];
8513
8514 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8515 *result += sec->output_offset + sec->output_section->vma;
8516 #ifdef DEBUG
8517 printf ("Found symbol with value %8.8lx\n",
8518 (unsigned long) *result);
8519 #endif
8520 return TRUE;
8521 }
8522 }
8523
8524 /* Hmm, haven't found it yet. perhaps it is a global. */
8525 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8526 FALSE, FALSE, TRUE);
8527 if (!global_entry)
8528 return FALSE;
8529
8530 if (global_entry->type == bfd_link_hash_defined
8531 || global_entry->type == bfd_link_hash_defweak)
8532 {
8533 *result = (global_entry->u.def.value
8534 + global_entry->u.def.section->output_section->vma
8535 + global_entry->u.def.section->output_offset);
8536 #ifdef DEBUG
8537 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8538 global_entry->root.string, (unsigned long) *result);
8539 #endif
8540 return TRUE;
8541 }
8542
8543 return FALSE;
8544 }
8545
8546 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8547 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8548 names like "foo.end" which is the end address of section "foo". */
8549
8550 static bfd_boolean
8551 resolve_section (const char *name,
8552 asection *sections,
8553 bfd_vma *result,
8554 bfd * abfd)
8555 {
8556 asection *curr;
8557 unsigned int len;
8558
8559 for (curr = sections; curr; curr = curr->next)
8560 if (strcmp (curr->name, name) == 0)
8561 {
8562 *result = curr->vma;
8563 return TRUE;
8564 }
8565
8566 /* Hmm. still haven't found it. try pseudo-section names. */
8567 /* FIXME: This could be coded more efficiently... */
8568 for (curr = sections; curr; curr = curr->next)
8569 {
8570 len = strlen (curr->name);
8571 if (len > strlen (name))
8572 continue;
8573
8574 if (strncmp (curr->name, name, len) == 0)
8575 {
8576 if (strncmp (".end", name + len, 4) == 0)
8577 {
8578 *result = (curr->vma
8579 + curr->size / bfd_octets_per_byte (abfd, curr));
8580 return TRUE;
8581 }
8582
8583 /* Insert more pseudo-section names here, if you like. */
8584 }
8585 }
8586
8587 return FALSE;
8588 }
8589
8590 static void
8591 undefined_reference (const char *reftype, const char *name)
8592 {
8593 /* xgettext:c-format */
8594 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8595 reftype, name);
8596 }
8597
8598 static bfd_boolean
8599 eval_symbol (bfd_vma *result,
8600 const char **symp,
8601 bfd *input_bfd,
8602 struct elf_final_link_info *flinfo,
8603 bfd_vma dot,
8604 Elf_Internal_Sym *isymbuf,
8605 size_t locsymcount,
8606 int signed_p)
8607 {
8608 size_t len;
8609 size_t symlen;
8610 bfd_vma a;
8611 bfd_vma b;
8612 char symbuf[4096];
8613 const char *sym = *symp;
8614 const char *symend;
8615 bfd_boolean symbol_is_section = FALSE;
8616
8617 len = strlen (sym);
8618 symend = sym + len;
8619
8620 if (len < 1 || len > sizeof (symbuf))
8621 {
8622 bfd_set_error (bfd_error_invalid_operation);
8623 return FALSE;
8624 }
8625
8626 switch (* sym)
8627 {
8628 case '.':
8629 *result = dot;
8630 *symp = sym + 1;
8631 return TRUE;
8632
8633 case '#':
8634 ++sym;
8635 *result = strtoul (sym, (char **) symp, 16);
8636 return TRUE;
8637
8638 case 'S':
8639 symbol_is_section = TRUE;
8640 /* Fall through. */
8641 case 's':
8642 ++sym;
8643 symlen = strtol (sym, (char **) symp, 10);
8644 sym = *symp + 1; /* Skip the trailing ':'. */
8645
8646 if (symend < sym || symlen + 1 > sizeof (symbuf))
8647 {
8648 bfd_set_error (bfd_error_invalid_operation);
8649 return FALSE;
8650 }
8651
8652 memcpy (symbuf, sym, symlen);
8653 symbuf[symlen] = '\0';
8654 *symp = sym + symlen;
8655
8656 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8657 the symbol as a section, or vice-versa. so we're pretty liberal in our
8658 interpretation here; section means "try section first", not "must be a
8659 section", and likewise with symbol. */
8660
8661 if (symbol_is_section)
8662 {
8663 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8664 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8665 isymbuf, locsymcount))
8666 {
8667 undefined_reference ("section", symbuf);
8668 return FALSE;
8669 }
8670 }
8671 else
8672 {
8673 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8674 isymbuf, locsymcount)
8675 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8676 result, input_bfd))
8677 {
8678 undefined_reference ("symbol", symbuf);
8679 return FALSE;
8680 }
8681 }
8682
8683 return TRUE;
8684
8685 /* All that remains are operators. */
8686
8687 #define UNARY_OP(op) \
8688 if (strncmp (sym, #op, strlen (#op)) == 0) \
8689 { \
8690 sym += strlen (#op); \
8691 if (*sym == ':') \
8692 ++sym; \
8693 *symp = sym; \
8694 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8695 isymbuf, locsymcount, signed_p)) \
8696 return FALSE; \
8697 if (signed_p) \
8698 *result = op ((bfd_signed_vma) a); \
8699 else \
8700 *result = op a; \
8701 return TRUE; \
8702 }
8703
8704 #define BINARY_OP(op) \
8705 if (strncmp (sym, #op, strlen (#op)) == 0) \
8706 { \
8707 sym += strlen (#op); \
8708 if (*sym == ':') \
8709 ++sym; \
8710 *symp = sym; \
8711 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8712 isymbuf, locsymcount, signed_p)) \
8713 return FALSE; \
8714 ++*symp; \
8715 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8716 isymbuf, locsymcount, signed_p)) \
8717 return FALSE; \
8718 if (signed_p) \
8719 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8720 else \
8721 *result = a op b; \
8722 return TRUE; \
8723 }
8724
8725 default:
8726 UNARY_OP (0-);
8727 BINARY_OP (<<);
8728 BINARY_OP (>>);
8729 BINARY_OP (==);
8730 BINARY_OP (!=);
8731 BINARY_OP (<=);
8732 BINARY_OP (>=);
8733 BINARY_OP (&&);
8734 BINARY_OP (||);
8735 UNARY_OP (~);
8736 UNARY_OP (!);
8737 BINARY_OP (*);
8738 BINARY_OP (/);
8739 BINARY_OP (%);
8740 BINARY_OP (^);
8741 BINARY_OP (|);
8742 BINARY_OP (&);
8743 BINARY_OP (+);
8744 BINARY_OP (-);
8745 BINARY_OP (<);
8746 BINARY_OP (>);
8747 #undef UNARY_OP
8748 #undef BINARY_OP
8749 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8750 bfd_set_error (bfd_error_invalid_operation);
8751 return FALSE;
8752 }
8753 }
8754
8755 static void
8756 put_value (bfd_vma size,
8757 unsigned long chunksz,
8758 bfd *input_bfd,
8759 bfd_vma x,
8760 bfd_byte *location)
8761 {
8762 location += (size - chunksz);
8763
8764 for (; size; size -= chunksz, location -= chunksz)
8765 {
8766 switch (chunksz)
8767 {
8768 case 1:
8769 bfd_put_8 (input_bfd, x, location);
8770 x >>= 8;
8771 break;
8772 case 2:
8773 bfd_put_16 (input_bfd, x, location);
8774 x >>= 16;
8775 break;
8776 case 4:
8777 bfd_put_32 (input_bfd, x, location);
8778 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8779 x >>= 16;
8780 x >>= 16;
8781 break;
8782 #ifdef BFD64
8783 case 8:
8784 bfd_put_64 (input_bfd, x, location);
8785 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8786 x >>= 32;
8787 x >>= 32;
8788 break;
8789 #endif
8790 default:
8791 abort ();
8792 break;
8793 }
8794 }
8795 }
8796
8797 static bfd_vma
8798 get_value (bfd_vma size,
8799 unsigned long chunksz,
8800 bfd *input_bfd,
8801 bfd_byte *location)
8802 {
8803 int shift;
8804 bfd_vma x = 0;
8805
8806 /* Sanity checks. */
8807 BFD_ASSERT (chunksz <= sizeof (x)
8808 && size >= chunksz
8809 && chunksz != 0
8810 && (size % chunksz) == 0
8811 && input_bfd != NULL
8812 && location != NULL);
8813
8814 if (chunksz == sizeof (x))
8815 {
8816 BFD_ASSERT (size == chunksz);
8817
8818 /* Make sure that we do not perform an undefined shift operation.
8819 We know that size == chunksz so there will only be one iteration
8820 of the loop below. */
8821 shift = 0;
8822 }
8823 else
8824 shift = 8 * chunksz;
8825
8826 for (; size; size -= chunksz, location += chunksz)
8827 {
8828 switch (chunksz)
8829 {
8830 case 1:
8831 x = (x << shift) | bfd_get_8 (input_bfd, location);
8832 break;
8833 case 2:
8834 x = (x << shift) | bfd_get_16 (input_bfd, location);
8835 break;
8836 case 4:
8837 x = (x << shift) | bfd_get_32 (input_bfd, location);
8838 break;
8839 #ifdef BFD64
8840 case 8:
8841 x = (x << shift) | bfd_get_64 (input_bfd, location);
8842 break;
8843 #endif
8844 default:
8845 abort ();
8846 }
8847 }
8848 return x;
8849 }
8850
8851 static void
8852 decode_complex_addend (unsigned long *start, /* in bits */
8853 unsigned long *oplen, /* in bits */
8854 unsigned long *len, /* in bits */
8855 unsigned long *wordsz, /* in bytes */
8856 unsigned long *chunksz, /* in bytes */
8857 unsigned long *lsb0_p,
8858 unsigned long *signed_p,
8859 unsigned long *trunc_p,
8860 unsigned long encoded)
8861 {
8862 * start = encoded & 0x3F;
8863 * len = (encoded >> 6) & 0x3F;
8864 * oplen = (encoded >> 12) & 0x3F;
8865 * wordsz = (encoded >> 18) & 0xF;
8866 * chunksz = (encoded >> 22) & 0xF;
8867 * lsb0_p = (encoded >> 27) & 1;
8868 * signed_p = (encoded >> 28) & 1;
8869 * trunc_p = (encoded >> 29) & 1;
8870 }
8871
8872 bfd_reloc_status_type
8873 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8874 asection *input_section,
8875 bfd_byte *contents,
8876 Elf_Internal_Rela *rel,
8877 bfd_vma relocation)
8878 {
8879 bfd_vma shift, x, mask;
8880 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8881 bfd_reloc_status_type r;
8882 bfd_size_type octets;
8883
8884 /* Perform this reloc, since it is complex.
8885 (this is not to say that it necessarily refers to a complex
8886 symbol; merely that it is a self-describing CGEN based reloc.
8887 i.e. the addend has the complete reloc information (bit start, end,
8888 word size, etc) encoded within it.). */
8889
8890 decode_complex_addend (&start, &oplen, &len, &wordsz,
8891 &chunksz, &lsb0_p, &signed_p,
8892 &trunc_p, rel->r_addend);
8893
8894 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8895
8896 if (lsb0_p)
8897 shift = (start + 1) - len;
8898 else
8899 shift = (8 * wordsz) - (start + len);
8900
8901 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8902 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8903
8904 #ifdef DEBUG
8905 printf ("Doing complex reloc: "
8906 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8907 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8908 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8909 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8910 oplen, (unsigned long) x, (unsigned long) mask,
8911 (unsigned long) relocation);
8912 #endif
8913
8914 r = bfd_reloc_ok;
8915 if (! trunc_p)
8916 /* Now do an overflow check. */
8917 r = bfd_check_overflow ((signed_p
8918 ? complain_overflow_signed
8919 : complain_overflow_unsigned),
8920 len, 0, (8 * wordsz),
8921 relocation);
8922
8923 /* Do the deed. */
8924 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8925
8926 #ifdef DEBUG
8927 printf (" relocation: %8.8lx\n"
8928 " shifted mask: %8.8lx\n"
8929 " shifted/masked reloc: %8.8lx\n"
8930 " result: %8.8lx\n",
8931 (unsigned long) relocation, (unsigned long) (mask << shift),
8932 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8933 #endif
8934 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8935 return r;
8936 }
8937
8938 /* Functions to read r_offset from external (target order) reloc
8939 entry. Faster than bfd_getl32 et al, because we let the compiler
8940 know the value is aligned. */
8941
8942 static bfd_vma
8943 ext32l_r_offset (const void *p)
8944 {
8945 union aligned32
8946 {
8947 uint32_t v;
8948 unsigned char c[4];
8949 };
8950 const union aligned32 *a
8951 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8952
8953 uint32_t aval = ( (uint32_t) a->c[0]
8954 | (uint32_t) a->c[1] << 8
8955 | (uint32_t) a->c[2] << 16
8956 | (uint32_t) a->c[3] << 24);
8957 return aval;
8958 }
8959
8960 static bfd_vma
8961 ext32b_r_offset (const void *p)
8962 {
8963 union aligned32
8964 {
8965 uint32_t v;
8966 unsigned char c[4];
8967 };
8968 const union aligned32 *a
8969 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8970
8971 uint32_t aval = ( (uint32_t) a->c[0] << 24
8972 | (uint32_t) a->c[1] << 16
8973 | (uint32_t) a->c[2] << 8
8974 | (uint32_t) a->c[3]);
8975 return aval;
8976 }
8977
8978 #ifdef BFD_HOST_64_BIT
8979 static bfd_vma
8980 ext64l_r_offset (const void *p)
8981 {
8982 union aligned64
8983 {
8984 uint64_t v;
8985 unsigned char c[8];
8986 };
8987 const union aligned64 *a
8988 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8989
8990 uint64_t aval = ( (uint64_t) a->c[0]
8991 | (uint64_t) a->c[1] << 8
8992 | (uint64_t) a->c[2] << 16
8993 | (uint64_t) a->c[3] << 24
8994 | (uint64_t) a->c[4] << 32
8995 | (uint64_t) a->c[5] << 40
8996 | (uint64_t) a->c[6] << 48
8997 | (uint64_t) a->c[7] << 56);
8998 return aval;
8999 }
9000
9001 static bfd_vma
9002 ext64b_r_offset (const void *p)
9003 {
9004 union aligned64
9005 {
9006 uint64_t v;
9007 unsigned char c[8];
9008 };
9009 const union aligned64 *a
9010 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9011
9012 uint64_t aval = ( (uint64_t) a->c[0] << 56
9013 | (uint64_t) a->c[1] << 48
9014 | (uint64_t) a->c[2] << 40
9015 | (uint64_t) a->c[3] << 32
9016 | (uint64_t) a->c[4] << 24
9017 | (uint64_t) a->c[5] << 16
9018 | (uint64_t) a->c[6] << 8
9019 | (uint64_t) a->c[7]);
9020 return aval;
9021 }
9022 #endif
9023
9024 /* When performing a relocatable link, the input relocations are
9025 preserved. But, if they reference global symbols, the indices
9026 referenced must be updated. Update all the relocations found in
9027 RELDATA. */
9028
9029 static bfd_boolean
9030 elf_link_adjust_relocs (bfd *abfd,
9031 asection *sec,
9032 struct bfd_elf_section_reloc_data *reldata,
9033 bfd_boolean sort,
9034 struct bfd_link_info *info)
9035 {
9036 unsigned int i;
9037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9038 bfd_byte *erela;
9039 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9040 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9041 bfd_vma r_type_mask;
9042 int r_sym_shift;
9043 unsigned int count = reldata->count;
9044 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9045
9046 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9047 {
9048 swap_in = bed->s->swap_reloc_in;
9049 swap_out = bed->s->swap_reloc_out;
9050 }
9051 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9052 {
9053 swap_in = bed->s->swap_reloca_in;
9054 swap_out = bed->s->swap_reloca_out;
9055 }
9056 else
9057 abort ();
9058
9059 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9060 abort ();
9061
9062 if (bed->s->arch_size == 32)
9063 {
9064 r_type_mask = 0xff;
9065 r_sym_shift = 8;
9066 }
9067 else
9068 {
9069 r_type_mask = 0xffffffff;
9070 r_sym_shift = 32;
9071 }
9072
9073 erela = reldata->hdr->contents;
9074 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9075 {
9076 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9077 unsigned int j;
9078
9079 if (*rel_hash == NULL)
9080 continue;
9081
9082 if ((*rel_hash)->indx == -2
9083 && info->gc_sections
9084 && ! info->gc_keep_exported)
9085 {
9086 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9087 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9088 abfd, sec,
9089 (*rel_hash)->root.root.string);
9090 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9091 abfd, sec);
9092 bfd_set_error (bfd_error_invalid_operation);
9093 return FALSE;
9094 }
9095 BFD_ASSERT ((*rel_hash)->indx >= 0);
9096
9097 (*swap_in) (abfd, erela, irela);
9098 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9099 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9100 | (irela[j].r_info & r_type_mask));
9101 (*swap_out) (abfd, irela, erela);
9102 }
9103
9104 if (bed->elf_backend_update_relocs)
9105 (*bed->elf_backend_update_relocs) (sec, reldata);
9106
9107 if (sort && count != 0)
9108 {
9109 bfd_vma (*ext_r_off) (const void *);
9110 bfd_vma r_off;
9111 size_t elt_size;
9112 bfd_byte *base, *end, *p, *loc;
9113 bfd_byte *buf = NULL;
9114
9115 if (bed->s->arch_size == 32)
9116 {
9117 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9118 ext_r_off = ext32l_r_offset;
9119 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9120 ext_r_off = ext32b_r_offset;
9121 else
9122 abort ();
9123 }
9124 else
9125 {
9126 #ifdef BFD_HOST_64_BIT
9127 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9128 ext_r_off = ext64l_r_offset;
9129 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9130 ext_r_off = ext64b_r_offset;
9131 else
9132 #endif
9133 abort ();
9134 }
9135
9136 /* Must use a stable sort here. A modified insertion sort,
9137 since the relocs are mostly sorted already. */
9138 elt_size = reldata->hdr->sh_entsize;
9139 base = reldata->hdr->contents;
9140 end = base + count * elt_size;
9141 if (elt_size > sizeof (Elf64_External_Rela))
9142 abort ();
9143
9144 /* Ensure the first element is lowest. This acts as a sentinel,
9145 speeding the main loop below. */
9146 r_off = (*ext_r_off) (base);
9147 for (p = loc = base; (p += elt_size) < end; )
9148 {
9149 bfd_vma r_off2 = (*ext_r_off) (p);
9150 if (r_off > r_off2)
9151 {
9152 r_off = r_off2;
9153 loc = p;
9154 }
9155 }
9156 if (loc != base)
9157 {
9158 /* Don't just swap *base and *loc as that changes the order
9159 of the original base[0] and base[1] if they happen to
9160 have the same r_offset. */
9161 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9162 memcpy (onebuf, loc, elt_size);
9163 memmove (base + elt_size, base, loc - base);
9164 memcpy (base, onebuf, elt_size);
9165 }
9166
9167 for (p = base + elt_size; (p += elt_size) < end; )
9168 {
9169 /* base to p is sorted, *p is next to insert. */
9170 r_off = (*ext_r_off) (p);
9171 /* Search the sorted region for location to insert. */
9172 loc = p - elt_size;
9173 while (r_off < (*ext_r_off) (loc))
9174 loc -= elt_size;
9175 loc += elt_size;
9176 if (loc != p)
9177 {
9178 /* Chances are there is a run of relocs to insert here,
9179 from one of more input files. Files are not always
9180 linked in order due to the way elf_link_input_bfd is
9181 called. See pr17666. */
9182 size_t sortlen = p - loc;
9183 bfd_vma r_off2 = (*ext_r_off) (loc);
9184 size_t runlen = elt_size;
9185 size_t buf_size = 96 * 1024;
9186 while (p + runlen < end
9187 && (sortlen <= buf_size
9188 || runlen + elt_size <= buf_size)
9189 && r_off2 > (*ext_r_off) (p + runlen))
9190 runlen += elt_size;
9191 if (buf == NULL)
9192 {
9193 buf = bfd_malloc (buf_size);
9194 if (buf == NULL)
9195 return FALSE;
9196 }
9197 if (runlen < sortlen)
9198 {
9199 memcpy (buf, p, runlen);
9200 memmove (loc + runlen, loc, sortlen);
9201 memcpy (loc, buf, runlen);
9202 }
9203 else
9204 {
9205 memcpy (buf, loc, sortlen);
9206 memmove (loc, p, runlen);
9207 memcpy (loc + runlen, buf, sortlen);
9208 }
9209 p += runlen - elt_size;
9210 }
9211 }
9212 /* Hashes are no longer valid. */
9213 free (reldata->hashes);
9214 reldata->hashes = NULL;
9215 free (buf);
9216 }
9217 return TRUE;
9218 }
9219
9220 struct elf_link_sort_rela
9221 {
9222 union {
9223 bfd_vma offset;
9224 bfd_vma sym_mask;
9225 } u;
9226 enum elf_reloc_type_class type;
9227 /* We use this as an array of size int_rels_per_ext_rel. */
9228 Elf_Internal_Rela rela[1];
9229 };
9230
9231 /* qsort stability here and for cmp2 is only an issue if multiple
9232 dynamic relocations are emitted at the same address. But targets
9233 that apply a series of dynamic relocations each operating on the
9234 result of the prior relocation can't use -z combreloc as
9235 implemented anyway. Such schemes tend to be broken by sorting on
9236 symbol index. That leaves dynamic NONE relocs as the only other
9237 case where ld might emit multiple relocs at the same address, and
9238 those are only emitted due to target bugs. */
9239
9240 static int
9241 elf_link_sort_cmp1 (const void *A, const void *B)
9242 {
9243 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9244 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9245 int relativea, relativeb;
9246
9247 relativea = a->type == reloc_class_relative;
9248 relativeb = b->type == reloc_class_relative;
9249
9250 if (relativea < relativeb)
9251 return 1;
9252 if (relativea > relativeb)
9253 return -1;
9254 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9255 return -1;
9256 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9257 return 1;
9258 if (a->rela->r_offset < b->rela->r_offset)
9259 return -1;
9260 if (a->rela->r_offset > b->rela->r_offset)
9261 return 1;
9262 return 0;
9263 }
9264
9265 static int
9266 elf_link_sort_cmp2 (const void *A, const void *B)
9267 {
9268 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9269 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9270
9271 if (a->type < b->type)
9272 return -1;
9273 if (a->type > b->type)
9274 return 1;
9275 if (a->u.offset < b->u.offset)
9276 return -1;
9277 if (a->u.offset > b->u.offset)
9278 return 1;
9279 if (a->rela->r_offset < b->rela->r_offset)
9280 return -1;
9281 if (a->rela->r_offset > b->rela->r_offset)
9282 return 1;
9283 return 0;
9284 }
9285
9286 static size_t
9287 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9288 {
9289 asection *dynamic_relocs;
9290 asection *rela_dyn;
9291 asection *rel_dyn;
9292 bfd_size_type count, size;
9293 size_t i, ret, sort_elt, ext_size;
9294 bfd_byte *sort, *s_non_relative, *p;
9295 struct elf_link_sort_rela *sq;
9296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9297 int i2e = bed->s->int_rels_per_ext_rel;
9298 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9299 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9300 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9301 struct bfd_link_order *lo;
9302 bfd_vma r_sym_mask;
9303 bfd_boolean use_rela;
9304
9305 /* Find a dynamic reloc section. */
9306 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9307 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9308 if (rela_dyn != NULL && rela_dyn->size > 0
9309 && rel_dyn != NULL && rel_dyn->size > 0)
9310 {
9311 bfd_boolean use_rela_initialised = FALSE;
9312
9313 /* This is just here to stop gcc from complaining.
9314 Its initialization checking code is not perfect. */
9315 use_rela = TRUE;
9316
9317 /* Both sections are present. Examine the sizes
9318 of the indirect sections to help us choose. */
9319 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9320 if (lo->type == bfd_indirect_link_order)
9321 {
9322 asection *o = lo->u.indirect.section;
9323
9324 if ((o->size % bed->s->sizeof_rela) == 0)
9325 {
9326 if ((o->size % bed->s->sizeof_rel) == 0)
9327 /* Section size is divisible by both rel and rela sizes.
9328 It is of no help to us. */
9329 ;
9330 else
9331 {
9332 /* Section size is only divisible by rela. */
9333 if (use_rela_initialised && !use_rela)
9334 {
9335 _bfd_error_handler (_("%pB: unable to sort relocs - "
9336 "they are in more than one size"),
9337 abfd);
9338 bfd_set_error (bfd_error_invalid_operation);
9339 return 0;
9340 }
9341 else
9342 {
9343 use_rela = TRUE;
9344 use_rela_initialised = TRUE;
9345 }
9346 }
9347 }
9348 else if ((o->size % bed->s->sizeof_rel) == 0)
9349 {
9350 /* Section size is only divisible by rel. */
9351 if (use_rela_initialised && use_rela)
9352 {
9353 _bfd_error_handler (_("%pB: unable to sort relocs - "
9354 "they are in more than one size"),
9355 abfd);
9356 bfd_set_error (bfd_error_invalid_operation);
9357 return 0;
9358 }
9359 else
9360 {
9361 use_rela = FALSE;
9362 use_rela_initialised = TRUE;
9363 }
9364 }
9365 else
9366 {
9367 /* The section size is not divisible by either -
9368 something is wrong. */
9369 _bfd_error_handler (_("%pB: unable to sort relocs - "
9370 "they are of an unknown size"), abfd);
9371 bfd_set_error (bfd_error_invalid_operation);
9372 return 0;
9373 }
9374 }
9375
9376 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9377 if (lo->type == bfd_indirect_link_order)
9378 {
9379 asection *o = lo->u.indirect.section;
9380
9381 if ((o->size % bed->s->sizeof_rela) == 0)
9382 {
9383 if ((o->size % bed->s->sizeof_rel) == 0)
9384 /* Section size is divisible by both rel and rela sizes.
9385 It is of no help to us. */
9386 ;
9387 else
9388 {
9389 /* Section size is only divisible by rela. */
9390 if (use_rela_initialised && !use_rela)
9391 {
9392 _bfd_error_handler (_("%pB: unable to sort relocs - "
9393 "they are in more than one size"),
9394 abfd);
9395 bfd_set_error (bfd_error_invalid_operation);
9396 return 0;
9397 }
9398 else
9399 {
9400 use_rela = TRUE;
9401 use_rela_initialised = TRUE;
9402 }
9403 }
9404 }
9405 else if ((o->size % bed->s->sizeof_rel) == 0)
9406 {
9407 /* Section size is only divisible by rel. */
9408 if (use_rela_initialised && use_rela)
9409 {
9410 _bfd_error_handler (_("%pB: unable to sort relocs - "
9411 "they are in more than one size"),
9412 abfd);
9413 bfd_set_error (bfd_error_invalid_operation);
9414 return 0;
9415 }
9416 else
9417 {
9418 use_rela = FALSE;
9419 use_rela_initialised = TRUE;
9420 }
9421 }
9422 else
9423 {
9424 /* The section size is not divisible by either -
9425 something is wrong. */
9426 _bfd_error_handler (_("%pB: unable to sort relocs - "
9427 "they are of an unknown size"), abfd);
9428 bfd_set_error (bfd_error_invalid_operation);
9429 return 0;
9430 }
9431 }
9432
9433 if (! use_rela_initialised)
9434 /* Make a guess. */
9435 use_rela = TRUE;
9436 }
9437 else if (rela_dyn != NULL && rela_dyn->size > 0)
9438 use_rela = TRUE;
9439 else if (rel_dyn != NULL && rel_dyn->size > 0)
9440 use_rela = FALSE;
9441 else
9442 return 0;
9443
9444 if (use_rela)
9445 {
9446 dynamic_relocs = rela_dyn;
9447 ext_size = bed->s->sizeof_rela;
9448 swap_in = bed->s->swap_reloca_in;
9449 swap_out = bed->s->swap_reloca_out;
9450 }
9451 else
9452 {
9453 dynamic_relocs = rel_dyn;
9454 ext_size = bed->s->sizeof_rel;
9455 swap_in = bed->s->swap_reloc_in;
9456 swap_out = bed->s->swap_reloc_out;
9457 }
9458
9459 size = 0;
9460 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9461 if (lo->type == bfd_indirect_link_order)
9462 size += lo->u.indirect.section->size;
9463
9464 if (size != dynamic_relocs->size)
9465 return 0;
9466
9467 sort_elt = (sizeof (struct elf_link_sort_rela)
9468 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9469
9470 count = dynamic_relocs->size / ext_size;
9471 if (count == 0)
9472 return 0;
9473 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9474
9475 if (sort == NULL)
9476 {
9477 (*info->callbacks->warning)
9478 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9479 return 0;
9480 }
9481
9482 if (bed->s->arch_size == 32)
9483 r_sym_mask = ~(bfd_vma) 0xff;
9484 else
9485 r_sym_mask = ~(bfd_vma) 0xffffffff;
9486
9487 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9488 if (lo->type == bfd_indirect_link_order)
9489 {
9490 bfd_byte *erel, *erelend;
9491 asection *o = lo->u.indirect.section;
9492
9493 if (o->contents == NULL && o->size != 0)
9494 {
9495 /* This is a reloc section that is being handled as a normal
9496 section. See bfd_section_from_shdr. We can't combine
9497 relocs in this case. */
9498 free (sort);
9499 return 0;
9500 }
9501 erel = o->contents;
9502 erelend = o->contents + o->size;
9503 p = sort + o->output_offset * opb / ext_size * sort_elt;
9504
9505 while (erel < erelend)
9506 {
9507 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9508
9509 (*swap_in) (abfd, erel, s->rela);
9510 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9511 s->u.sym_mask = r_sym_mask;
9512 p += sort_elt;
9513 erel += ext_size;
9514 }
9515 }
9516
9517 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9518
9519 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9520 {
9521 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9522 if (s->type != reloc_class_relative)
9523 break;
9524 }
9525 ret = i;
9526 s_non_relative = p;
9527
9528 sq = (struct elf_link_sort_rela *) s_non_relative;
9529 for (; i < count; i++, p += sort_elt)
9530 {
9531 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9532 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9533 sq = sp;
9534 sp->u.offset = sq->rela->r_offset;
9535 }
9536
9537 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9538
9539 struct elf_link_hash_table *htab = elf_hash_table (info);
9540 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9541 {
9542 /* We have plt relocs in .rela.dyn. */
9543 sq = (struct elf_link_sort_rela *) sort;
9544 for (i = 0; i < count; i++)
9545 if (sq[count - i - 1].type != reloc_class_plt)
9546 break;
9547 if (i != 0 && htab->srelplt->size == i * ext_size)
9548 {
9549 struct bfd_link_order **plo;
9550 /* Put srelplt link_order last. This is so the output_offset
9551 set in the next loop is correct for DT_JMPREL. */
9552 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9553 if ((*plo)->type == bfd_indirect_link_order
9554 && (*plo)->u.indirect.section == htab->srelplt)
9555 {
9556 lo = *plo;
9557 *plo = lo->next;
9558 }
9559 else
9560 plo = &(*plo)->next;
9561 *plo = lo;
9562 lo->next = NULL;
9563 dynamic_relocs->map_tail.link_order = lo;
9564 }
9565 }
9566
9567 p = sort;
9568 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9569 if (lo->type == bfd_indirect_link_order)
9570 {
9571 bfd_byte *erel, *erelend;
9572 asection *o = lo->u.indirect.section;
9573
9574 erel = o->contents;
9575 erelend = o->contents + o->size;
9576 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9577 while (erel < erelend)
9578 {
9579 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9580 (*swap_out) (abfd, s->rela, erel);
9581 p += sort_elt;
9582 erel += ext_size;
9583 }
9584 }
9585
9586 free (sort);
9587 *psec = dynamic_relocs;
9588 return ret;
9589 }
9590
9591 /* Add a symbol to the output symbol string table. */
9592
9593 static int
9594 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9595 const char *name,
9596 Elf_Internal_Sym *elfsym,
9597 asection *input_sec,
9598 struct elf_link_hash_entry *h)
9599 {
9600 int (*output_symbol_hook)
9601 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9602 struct elf_link_hash_entry *);
9603 struct elf_link_hash_table *hash_table;
9604 const struct elf_backend_data *bed;
9605 bfd_size_type strtabsize;
9606
9607 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9608
9609 bed = get_elf_backend_data (flinfo->output_bfd);
9610 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9611 if (output_symbol_hook != NULL)
9612 {
9613 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9614 if (ret != 1)
9615 return ret;
9616 }
9617
9618 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9619 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9620 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9621 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9622
9623 if (name == NULL
9624 || *name == '\0'
9625 || (input_sec->flags & SEC_EXCLUDE))
9626 elfsym->st_name = (unsigned long) -1;
9627 else
9628 {
9629 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9630 to get the final offset for st_name. */
9631 elfsym->st_name
9632 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9633 name, FALSE);
9634 if (elfsym->st_name == (unsigned long) -1)
9635 return 0;
9636 }
9637
9638 hash_table = elf_hash_table (flinfo->info);
9639 strtabsize = hash_table->strtabsize;
9640 if (strtabsize <= hash_table->strtabcount)
9641 {
9642 strtabsize += strtabsize;
9643 hash_table->strtabsize = strtabsize;
9644 strtabsize *= sizeof (*hash_table->strtab);
9645 hash_table->strtab
9646 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9647 strtabsize);
9648 if (hash_table->strtab == NULL)
9649 return 0;
9650 }
9651 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9652 hash_table->strtab[hash_table->strtabcount].dest_index
9653 = hash_table->strtabcount;
9654 hash_table->strtab[hash_table->strtabcount].destshndx_index
9655 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9656
9657 flinfo->output_bfd->symcount += 1;
9658 hash_table->strtabcount += 1;
9659
9660 return 1;
9661 }
9662
9663 /* Swap symbols out to the symbol table and flush the output symbols to
9664 the file. */
9665
9666 static bfd_boolean
9667 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9668 {
9669 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9670 size_t amt;
9671 size_t i;
9672 const struct elf_backend_data *bed;
9673 bfd_byte *symbuf;
9674 Elf_Internal_Shdr *hdr;
9675 file_ptr pos;
9676 bfd_boolean ret;
9677
9678 if (!hash_table->strtabcount)
9679 return TRUE;
9680
9681 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9682
9683 bed = get_elf_backend_data (flinfo->output_bfd);
9684
9685 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9686 symbuf = (bfd_byte *) bfd_malloc (amt);
9687 if (symbuf == NULL)
9688 return FALSE;
9689
9690 if (flinfo->symshndxbuf)
9691 {
9692 amt = sizeof (Elf_External_Sym_Shndx);
9693 amt *= bfd_get_symcount (flinfo->output_bfd);
9694 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9695 if (flinfo->symshndxbuf == NULL)
9696 {
9697 free (symbuf);
9698 return FALSE;
9699 }
9700 }
9701
9702 for (i = 0; i < hash_table->strtabcount; i++)
9703 {
9704 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9705 if (elfsym->sym.st_name == (unsigned long) -1)
9706 elfsym->sym.st_name = 0;
9707 else
9708 elfsym->sym.st_name
9709 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9710 elfsym->sym.st_name);
9711 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9712 ((bfd_byte *) symbuf
9713 + (elfsym->dest_index
9714 * bed->s->sizeof_sym)),
9715 (flinfo->symshndxbuf
9716 + elfsym->destshndx_index));
9717 }
9718
9719 /* Allow the linker to examine the strtab and symtab now they are
9720 populated. */
9721
9722 if (flinfo->info->callbacks->examine_strtab)
9723 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9724 hash_table->strtabcount,
9725 flinfo->symstrtab);
9726
9727 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9728 pos = hdr->sh_offset + hdr->sh_size;
9729 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9730 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9731 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9732 {
9733 hdr->sh_size += amt;
9734 ret = TRUE;
9735 }
9736 else
9737 ret = FALSE;
9738
9739 free (symbuf);
9740
9741 free (hash_table->strtab);
9742 hash_table->strtab = NULL;
9743
9744 return ret;
9745 }
9746
9747 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9748
9749 static bfd_boolean
9750 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9751 {
9752 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9753 && sym->st_shndx < SHN_LORESERVE)
9754 {
9755 /* The gABI doesn't support dynamic symbols in output sections
9756 beyond 64k. */
9757 _bfd_error_handler
9758 /* xgettext:c-format */
9759 (_("%pB: too many sections: %d (>= %d)"),
9760 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9761 bfd_set_error (bfd_error_nonrepresentable_section);
9762 return FALSE;
9763 }
9764 return TRUE;
9765 }
9766
9767 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9768 allowing an unsatisfied unversioned symbol in the DSO to match a
9769 versioned symbol that would normally require an explicit version.
9770 We also handle the case that a DSO references a hidden symbol
9771 which may be satisfied by a versioned symbol in another DSO. */
9772
9773 static bfd_boolean
9774 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9775 const struct elf_backend_data *bed,
9776 struct elf_link_hash_entry *h)
9777 {
9778 bfd *abfd;
9779 struct elf_link_loaded_list *loaded;
9780
9781 if (!is_elf_hash_table (info->hash))
9782 return FALSE;
9783
9784 /* Check indirect symbol. */
9785 while (h->root.type == bfd_link_hash_indirect)
9786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9787
9788 switch (h->root.type)
9789 {
9790 default:
9791 abfd = NULL;
9792 break;
9793
9794 case bfd_link_hash_undefined:
9795 case bfd_link_hash_undefweak:
9796 abfd = h->root.u.undef.abfd;
9797 if (abfd == NULL
9798 || (abfd->flags & DYNAMIC) == 0
9799 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9800 return FALSE;
9801 break;
9802
9803 case bfd_link_hash_defined:
9804 case bfd_link_hash_defweak:
9805 abfd = h->root.u.def.section->owner;
9806 break;
9807
9808 case bfd_link_hash_common:
9809 abfd = h->root.u.c.p->section->owner;
9810 break;
9811 }
9812 BFD_ASSERT (abfd != NULL);
9813
9814 for (loaded = elf_hash_table (info)->dyn_loaded;
9815 loaded != NULL;
9816 loaded = loaded->next)
9817 {
9818 bfd *input;
9819 Elf_Internal_Shdr *hdr;
9820 size_t symcount;
9821 size_t extsymcount;
9822 size_t extsymoff;
9823 Elf_Internal_Shdr *versymhdr;
9824 Elf_Internal_Sym *isym;
9825 Elf_Internal_Sym *isymend;
9826 Elf_Internal_Sym *isymbuf;
9827 Elf_External_Versym *ever;
9828 Elf_External_Versym *extversym;
9829
9830 input = loaded->abfd;
9831
9832 /* We check each DSO for a possible hidden versioned definition. */
9833 if (input == abfd
9834 || elf_dynversym (input) == 0)
9835 continue;
9836
9837 hdr = &elf_tdata (input)->dynsymtab_hdr;
9838
9839 symcount = hdr->sh_size / bed->s->sizeof_sym;
9840 if (elf_bad_symtab (input))
9841 {
9842 extsymcount = symcount;
9843 extsymoff = 0;
9844 }
9845 else
9846 {
9847 extsymcount = symcount - hdr->sh_info;
9848 extsymoff = hdr->sh_info;
9849 }
9850
9851 if (extsymcount == 0)
9852 continue;
9853
9854 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9855 NULL, NULL, NULL);
9856 if (isymbuf == NULL)
9857 return FALSE;
9858
9859 /* Read in any version definitions. */
9860 versymhdr = &elf_tdata (input)->dynversym_hdr;
9861 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9862 || (extversym = (Elf_External_Versym *)
9863 _bfd_malloc_and_read (input, versymhdr->sh_size,
9864 versymhdr->sh_size)) == NULL)
9865 {
9866 free (isymbuf);
9867 return FALSE;
9868 }
9869
9870 ever = extversym + extsymoff;
9871 isymend = isymbuf + extsymcount;
9872 for (isym = isymbuf; isym < isymend; isym++, ever++)
9873 {
9874 const char *name;
9875 Elf_Internal_Versym iver;
9876 unsigned short version_index;
9877
9878 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9879 || isym->st_shndx == SHN_UNDEF)
9880 continue;
9881
9882 name = bfd_elf_string_from_elf_section (input,
9883 hdr->sh_link,
9884 isym->st_name);
9885 if (strcmp (name, h->root.root.string) != 0)
9886 continue;
9887
9888 _bfd_elf_swap_versym_in (input, ever, &iver);
9889
9890 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9891 && !(h->def_regular
9892 && h->forced_local))
9893 {
9894 /* If we have a non-hidden versioned sym, then it should
9895 have provided a definition for the undefined sym unless
9896 it is defined in a non-shared object and forced local.
9897 */
9898 abort ();
9899 }
9900
9901 version_index = iver.vs_vers & VERSYM_VERSION;
9902 if (version_index == 1 || version_index == 2)
9903 {
9904 /* This is the base or first version. We can use it. */
9905 free (extversym);
9906 free (isymbuf);
9907 return TRUE;
9908 }
9909 }
9910
9911 free (extversym);
9912 free (isymbuf);
9913 }
9914
9915 return FALSE;
9916 }
9917
9918 /* Convert ELF common symbol TYPE. */
9919
9920 static int
9921 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9922 {
9923 /* Commom symbol can only appear in relocatable link. */
9924 if (!bfd_link_relocatable (info))
9925 abort ();
9926 switch (info->elf_stt_common)
9927 {
9928 case unchanged:
9929 break;
9930 case elf_stt_common:
9931 type = STT_COMMON;
9932 break;
9933 case no_elf_stt_common:
9934 type = STT_OBJECT;
9935 break;
9936 }
9937 return type;
9938 }
9939
9940 /* Add an external symbol to the symbol table. This is called from
9941 the hash table traversal routine. When generating a shared object,
9942 we go through the symbol table twice. The first time we output
9943 anything that might have been forced to local scope in a version
9944 script. The second time we output the symbols that are still
9945 global symbols. */
9946
9947 static bfd_boolean
9948 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9949 {
9950 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9951 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9952 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9953 bfd_boolean strip;
9954 Elf_Internal_Sym sym;
9955 asection *input_sec;
9956 const struct elf_backend_data *bed;
9957 long indx;
9958 int ret;
9959 unsigned int type;
9960
9961 if (h->root.type == bfd_link_hash_warning)
9962 {
9963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9964 if (h->root.type == bfd_link_hash_new)
9965 return TRUE;
9966 }
9967
9968 /* Decide whether to output this symbol in this pass. */
9969 if (eoinfo->localsyms)
9970 {
9971 if (!h->forced_local)
9972 return TRUE;
9973 }
9974 else
9975 {
9976 if (h->forced_local)
9977 return TRUE;
9978 }
9979
9980 bed = get_elf_backend_data (flinfo->output_bfd);
9981
9982 if (h->root.type == bfd_link_hash_undefined)
9983 {
9984 /* If we have an undefined symbol reference here then it must have
9985 come from a shared library that is being linked in. (Undefined
9986 references in regular files have already been handled unless
9987 they are in unreferenced sections which are removed by garbage
9988 collection). */
9989 bfd_boolean ignore_undef = FALSE;
9990
9991 /* Some symbols may be special in that the fact that they're
9992 undefined can be safely ignored - let backend determine that. */
9993 if (bed->elf_backend_ignore_undef_symbol)
9994 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9995
9996 /* If we are reporting errors for this situation then do so now. */
9997 if (!ignore_undef
9998 && h->ref_dynamic_nonweak
9999 && (!h->ref_regular || flinfo->info->gc_sections)
10000 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10001 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10002 {
10003 flinfo->info->callbacks->undefined_symbol
10004 (flinfo->info, h->root.root.string,
10005 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10006 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10007 && !flinfo->info->warn_unresolved_syms);
10008 }
10009
10010 /* Strip a global symbol defined in a discarded section. */
10011 if (h->indx == -3)
10012 return TRUE;
10013 }
10014
10015 /* We should also warn if a forced local symbol is referenced from
10016 shared libraries. */
10017 if (bfd_link_executable (flinfo->info)
10018 && h->forced_local
10019 && h->ref_dynamic
10020 && h->def_regular
10021 && !h->dynamic_def
10022 && h->ref_dynamic_nonweak
10023 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10024 {
10025 bfd *def_bfd;
10026 const char *msg;
10027 struct elf_link_hash_entry *hi = h;
10028
10029 /* Check indirect symbol. */
10030 while (hi->root.type == bfd_link_hash_indirect)
10031 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10032
10033 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10034 /* xgettext:c-format */
10035 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10036 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10037 /* xgettext:c-format */
10038 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10039 else
10040 /* xgettext:c-format */
10041 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10042 def_bfd = flinfo->output_bfd;
10043 if (hi->root.u.def.section != bfd_abs_section_ptr)
10044 def_bfd = hi->root.u.def.section->owner;
10045 _bfd_error_handler (msg, flinfo->output_bfd,
10046 h->root.root.string, def_bfd);
10047 bfd_set_error (bfd_error_bad_value);
10048 eoinfo->failed = TRUE;
10049 return FALSE;
10050 }
10051
10052 /* We don't want to output symbols that have never been mentioned by
10053 a regular file, or that we have been told to strip. However, if
10054 h->indx is set to -2, the symbol is used by a reloc and we must
10055 output it. */
10056 strip = FALSE;
10057 if (h->indx == -2)
10058 ;
10059 else if ((h->def_dynamic
10060 || h->ref_dynamic
10061 || h->root.type == bfd_link_hash_new)
10062 && !h->def_regular
10063 && !h->ref_regular)
10064 strip = TRUE;
10065 else if (flinfo->info->strip == strip_all)
10066 strip = TRUE;
10067 else if (flinfo->info->strip == strip_some
10068 && bfd_hash_lookup (flinfo->info->keep_hash,
10069 h->root.root.string, FALSE, FALSE) == NULL)
10070 strip = TRUE;
10071 else if ((h->root.type == bfd_link_hash_defined
10072 || h->root.type == bfd_link_hash_defweak)
10073 && ((flinfo->info->strip_discarded
10074 && discarded_section (h->root.u.def.section))
10075 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10076 && h->root.u.def.section->owner != NULL
10077 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10078 strip = TRUE;
10079 else if ((h->root.type == bfd_link_hash_undefined
10080 || h->root.type == bfd_link_hash_undefweak)
10081 && h->root.u.undef.abfd != NULL
10082 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10083 strip = TRUE;
10084
10085 type = h->type;
10086
10087 /* If we're stripping it, and it's not a dynamic symbol, there's
10088 nothing else to do. However, if it is a forced local symbol or
10089 an ifunc symbol we need to give the backend finish_dynamic_symbol
10090 function a chance to make it dynamic. */
10091 if (strip
10092 && h->dynindx == -1
10093 && type != STT_GNU_IFUNC
10094 && !h->forced_local)
10095 return TRUE;
10096
10097 sym.st_value = 0;
10098 sym.st_size = h->size;
10099 sym.st_other = h->other;
10100 switch (h->root.type)
10101 {
10102 default:
10103 case bfd_link_hash_new:
10104 case bfd_link_hash_warning:
10105 abort ();
10106 return FALSE;
10107
10108 case bfd_link_hash_undefined:
10109 case bfd_link_hash_undefweak:
10110 input_sec = bfd_und_section_ptr;
10111 sym.st_shndx = SHN_UNDEF;
10112 break;
10113
10114 case bfd_link_hash_defined:
10115 case bfd_link_hash_defweak:
10116 {
10117 input_sec = h->root.u.def.section;
10118 if (input_sec->output_section != NULL)
10119 {
10120 sym.st_shndx =
10121 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10122 input_sec->output_section);
10123 if (sym.st_shndx == SHN_BAD)
10124 {
10125 _bfd_error_handler
10126 /* xgettext:c-format */
10127 (_("%pB: could not find output section %pA for input section %pA"),
10128 flinfo->output_bfd, input_sec->output_section, input_sec);
10129 bfd_set_error (bfd_error_nonrepresentable_section);
10130 eoinfo->failed = TRUE;
10131 return FALSE;
10132 }
10133
10134 /* ELF symbols in relocatable files are section relative,
10135 but in nonrelocatable files they are virtual
10136 addresses. */
10137 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10138 if (!bfd_link_relocatable (flinfo->info))
10139 {
10140 sym.st_value += input_sec->output_section->vma;
10141 if (h->type == STT_TLS)
10142 {
10143 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10144 if (tls_sec != NULL)
10145 sym.st_value -= tls_sec->vma;
10146 }
10147 }
10148 }
10149 else
10150 {
10151 BFD_ASSERT (input_sec->owner == NULL
10152 || (input_sec->owner->flags & DYNAMIC) != 0);
10153 sym.st_shndx = SHN_UNDEF;
10154 input_sec = bfd_und_section_ptr;
10155 }
10156 }
10157 break;
10158
10159 case bfd_link_hash_common:
10160 input_sec = h->root.u.c.p->section;
10161 sym.st_shndx = bed->common_section_index (input_sec);
10162 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10163 break;
10164
10165 case bfd_link_hash_indirect:
10166 /* These symbols are created by symbol versioning. They point
10167 to the decorated version of the name. For example, if the
10168 symbol foo@@GNU_1.2 is the default, which should be used when
10169 foo is used with no version, then we add an indirect symbol
10170 foo which points to foo@@GNU_1.2. We ignore these symbols,
10171 since the indirected symbol is already in the hash table. */
10172 return TRUE;
10173 }
10174
10175 if (type == STT_COMMON || type == STT_OBJECT)
10176 switch (h->root.type)
10177 {
10178 case bfd_link_hash_common:
10179 type = elf_link_convert_common_type (flinfo->info, type);
10180 break;
10181 case bfd_link_hash_defined:
10182 case bfd_link_hash_defweak:
10183 if (bed->common_definition (&sym))
10184 type = elf_link_convert_common_type (flinfo->info, type);
10185 else
10186 type = STT_OBJECT;
10187 break;
10188 case bfd_link_hash_undefined:
10189 case bfd_link_hash_undefweak:
10190 break;
10191 default:
10192 abort ();
10193 }
10194
10195 if (h->forced_local)
10196 {
10197 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10198 /* Turn off visibility on local symbol. */
10199 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10200 }
10201 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10202 else if (h->unique_global && h->def_regular)
10203 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10204 else if (h->root.type == bfd_link_hash_undefweak
10205 || h->root.type == bfd_link_hash_defweak)
10206 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10207 else
10208 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10209 sym.st_target_internal = h->target_internal;
10210
10211 /* Give the processor backend a chance to tweak the symbol value,
10212 and also to finish up anything that needs to be done for this
10213 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10214 forced local syms when non-shared is due to a historical quirk.
10215 STT_GNU_IFUNC symbol must go through PLT. */
10216 if ((h->type == STT_GNU_IFUNC
10217 && h->def_regular
10218 && !bfd_link_relocatable (flinfo->info))
10219 || ((h->dynindx != -1
10220 || h->forced_local)
10221 && ((bfd_link_pic (flinfo->info)
10222 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10223 || h->root.type != bfd_link_hash_undefweak))
10224 || !h->forced_local)
10225 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10226 {
10227 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10228 (flinfo->output_bfd, flinfo->info, h, &sym)))
10229 {
10230 eoinfo->failed = TRUE;
10231 return FALSE;
10232 }
10233 }
10234
10235 /* If we are marking the symbol as undefined, and there are no
10236 non-weak references to this symbol from a regular object, then
10237 mark the symbol as weak undefined; if there are non-weak
10238 references, mark the symbol as strong. We can't do this earlier,
10239 because it might not be marked as undefined until the
10240 finish_dynamic_symbol routine gets through with it. */
10241 if (sym.st_shndx == SHN_UNDEF
10242 && h->ref_regular
10243 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10244 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10245 {
10246 int bindtype;
10247 type = ELF_ST_TYPE (sym.st_info);
10248
10249 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10250 if (type == STT_GNU_IFUNC)
10251 type = STT_FUNC;
10252
10253 if (h->ref_regular_nonweak)
10254 bindtype = STB_GLOBAL;
10255 else
10256 bindtype = STB_WEAK;
10257 sym.st_info = ELF_ST_INFO (bindtype, type);
10258 }
10259
10260 /* If this is a symbol defined in a dynamic library, don't use the
10261 symbol size from the dynamic library. Relinking an executable
10262 against a new library may introduce gratuitous changes in the
10263 executable's symbols if we keep the size. */
10264 if (sym.st_shndx == SHN_UNDEF
10265 && !h->def_regular
10266 && h->def_dynamic)
10267 sym.st_size = 0;
10268
10269 /* If a non-weak symbol with non-default visibility is not defined
10270 locally, it is a fatal error. */
10271 if (!bfd_link_relocatable (flinfo->info)
10272 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10273 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10274 && h->root.type == bfd_link_hash_undefined
10275 && !h->def_regular)
10276 {
10277 const char *msg;
10278
10279 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10280 /* xgettext:c-format */
10281 msg = _("%pB: protected symbol `%s' isn't defined");
10282 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10283 /* xgettext:c-format */
10284 msg = _("%pB: internal symbol `%s' isn't defined");
10285 else
10286 /* xgettext:c-format */
10287 msg = _("%pB: hidden symbol `%s' isn't defined");
10288 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10289 bfd_set_error (bfd_error_bad_value);
10290 eoinfo->failed = TRUE;
10291 return FALSE;
10292 }
10293
10294 /* If this symbol should be put in the .dynsym section, then put it
10295 there now. We already know the symbol index. We also fill in
10296 the entry in the .hash section. */
10297 if (h->dynindx != -1
10298 && elf_hash_table (flinfo->info)->dynamic_sections_created
10299 && elf_hash_table (flinfo->info)->dynsym != NULL
10300 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10301 {
10302 bfd_byte *esym;
10303
10304 /* Since there is no version information in the dynamic string,
10305 if there is no version info in symbol version section, we will
10306 have a run-time problem if not linking executable, referenced
10307 by shared library, or not bound locally. */
10308 if (h->verinfo.verdef == NULL
10309 && (!bfd_link_executable (flinfo->info)
10310 || h->ref_dynamic
10311 || !h->def_regular))
10312 {
10313 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10314
10315 if (p && p [1] != '\0')
10316 {
10317 _bfd_error_handler
10318 /* xgettext:c-format */
10319 (_("%pB: no symbol version section for versioned symbol `%s'"),
10320 flinfo->output_bfd, h->root.root.string);
10321 eoinfo->failed = TRUE;
10322 return FALSE;
10323 }
10324 }
10325
10326 sym.st_name = h->dynstr_index;
10327 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10328 + h->dynindx * bed->s->sizeof_sym);
10329 if (!check_dynsym (flinfo->output_bfd, &sym))
10330 {
10331 eoinfo->failed = TRUE;
10332 return FALSE;
10333 }
10334 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10335
10336 if (flinfo->hash_sec != NULL)
10337 {
10338 size_t hash_entry_size;
10339 bfd_byte *bucketpos;
10340 bfd_vma chain;
10341 size_t bucketcount;
10342 size_t bucket;
10343
10344 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10345 bucket = h->u.elf_hash_value % bucketcount;
10346
10347 hash_entry_size
10348 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10349 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10350 + (bucket + 2) * hash_entry_size);
10351 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10352 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10353 bucketpos);
10354 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10355 ((bfd_byte *) flinfo->hash_sec->contents
10356 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10357 }
10358
10359 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10360 {
10361 Elf_Internal_Versym iversym;
10362 Elf_External_Versym *eversym;
10363
10364 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10365 {
10366 if (h->verinfo.verdef == NULL
10367 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10368 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10369 iversym.vs_vers = 0;
10370 else
10371 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10372 }
10373 else
10374 {
10375 if (h->verinfo.vertree == NULL)
10376 iversym.vs_vers = 1;
10377 else
10378 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10379 if (flinfo->info->create_default_symver)
10380 iversym.vs_vers++;
10381 }
10382
10383 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10384 defined locally. */
10385 if (h->versioned == versioned_hidden && h->def_regular)
10386 iversym.vs_vers |= VERSYM_HIDDEN;
10387
10388 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10389 eversym += h->dynindx;
10390 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10391 }
10392 }
10393
10394 /* If the symbol is undefined, and we didn't output it to .dynsym,
10395 strip it from .symtab too. Obviously we can't do this for
10396 relocatable output or when needed for --emit-relocs. */
10397 else if (input_sec == bfd_und_section_ptr
10398 && h->indx != -2
10399 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10400 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10401 && !bfd_link_relocatable (flinfo->info))
10402 return TRUE;
10403
10404 /* Also strip others that we couldn't earlier due to dynamic symbol
10405 processing. */
10406 if (strip)
10407 return TRUE;
10408 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10409 return TRUE;
10410
10411 /* Output a FILE symbol so that following locals are not associated
10412 with the wrong input file. We need one for forced local symbols
10413 if we've seen more than one FILE symbol or when we have exactly
10414 one FILE symbol but global symbols are present in a file other
10415 than the one with the FILE symbol. We also need one if linker
10416 defined symbols are present. In practice these conditions are
10417 always met, so just emit the FILE symbol unconditionally. */
10418 if (eoinfo->localsyms
10419 && !eoinfo->file_sym_done
10420 && eoinfo->flinfo->filesym_count != 0)
10421 {
10422 Elf_Internal_Sym fsym;
10423
10424 memset (&fsym, 0, sizeof (fsym));
10425 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10426 fsym.st_shndx = SHN_ABS;
10427 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10428 bfd_und_section_ptr, NULL))
10429 return FALSE;
10430
10431 eoinfo->file_sym_done = TRUE;
10432 }
10433
10434 indx = bfd_get_symcount (flinfo->output_bfd);
10435 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10436 input_sec, h);
10437 if (ret == 0)
10438 {
10439 eoinfo->failed = TRUE;
10440 return FALSE;
10441 }
10442 else if (ret == 1)
10443 h->indx = indx;
10444 else if (h->indx == -2)
10445 abort();
10446
10447 return TRUE;
10448 }
10449
10450 /* Return TRUE if special handling is done for relocs in SEC against
10451 symbols defined in discarded sections. */
10452
10453 static bfd_boolean
10454 elf_section_ignore_discarded_relocs (asection *sec)
10455 {
10456 const struct elf_backend_data *bed;
10457
10458 switch (sec->sec_info_type)
10459 {
10460 case SEC_INFO_TYPE_STABS:
10461 case SEC_INFO_TYPE_EH_FRAME:
10462 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10463 return TRUE;
10464 default:
10465 break;
10466 }
10467
10468 bed = get_elf_backend_data (sec->owner);
10469 if (bed->elf_backend_ignore_discarded_relocs != NULL
10470 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10471 return TRUE;
10472
10473 return FALSE;
10474 }
10475
10476 /* Return a mask saying how ld should treat relocations in SEC against
10477 symbols defined in discarded sections. If this function returns
10478 COMPLAIN set, ld will issue a warning message. If this function
10479 returns PRETEND set, and the discarded section was link-once and the
10480 same size as the kept link-once section, ld will pretend that the
10481 symbol was actually defined in the kept section. Otherwise ld will
10482 zero the reloc (at least that is the intent, but some cooperation by
10483 the target dependent code is needed, particularly for REL targets). */
10484
10485 unsigned int
10486 _bfd_elf_default_action_discarded (asection *sec)
10487 {
10488 if (sec->flags & SEC_DEBUGGING)
10489 return PRETEND;
10490
10491 if (strcmp (".eh_frame", sec->name) == 0)
10492 return 0;
10493
10494 if (strcmp (".gcc_except_table", sec->name) == 0)
10495 return 0;
10496
10497 return COMPLAIN | PRETEND;
10498 }
10499
10500 /* Find a match between a section and a member of a section group. */
10501
10502 static asection *
10503 match_group_member (asection *sec, asection *group,
10504 struct bfd_link_info *info)
10505 {
10506 asection *first = elf_next_in_group (group);
10507 asection *s = first;
10508
10509 while (s != NULL)
10510 {
10511 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10512 return s;
10513
10514 s = elf_next_in_group (s);
10515 if (s == first)
10516 break;
10517 }
10518
10519 return NULL;
10520 }
10521
10522 /* Check if the kept section of a discarded section SEC can be used
10523 to replace it. Return the replacement if it is OK. Otherwise return
10524 NULL. */
10525
10526 asection *
10527 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10528 {
10529 asection *kept;
10530
10531 kept = sec->kept_section;
10532 if (kept != NULL)
10533 {
10534 if ((kept->flags & SEC_GROUP) != 0)
10535 kept = match_group_member (sec, kept, info);
10536 if (kept != NULL
10537 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10538 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10539 kept = NULL;
10540 sec->kept_section = kept;
10541 }
10542 return kept;
10543 }
10544
10545 /* Link an input file into the linker output file. This function
10546 handles all the sections and relocations of the input file at once.
10547 This is so that we only have to read the local symbols once, and
10548 don't have to keep them in memory. */
10549
10550 static bfd_boolean
10551 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10552 {
10553 int (*relocate_section)
10554 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10555 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10556 bfd *output_bfd;
10557 Elf_Internal_Shdr *symtab_hdr;
10558 size_t locsymcount;
10559 size_t extsymoff;
10560 Elf_Internal_Sym *isymbuf;
10561 Elf_Internal_Sym *isym;
10562 Elf_Internal_Sym *isymend;
10563 long *pindex;
10564 asection **ppsection;
10565 asection *o;
10566 const struct elf_backend_data *bed;
10567 struct elf_link_hash_entry **sym_hashes;
10568 bfd_size_type address_size;
10569 bfd_vma r_type_mask;
10570 int r_sym_shift;
10571 bfd_boolean have_file_sym = FALSE;
10572
10573 output_bfd = flinfo->output_bfd;
10574 bed = get_elf_backend_data (output_bfd);
10575 relocate_section = bed->elf_backend_relocate_section;
10576
10577 /* If this is a dynamic object, we don't want to do anything here:
10578 we don't want the local symbols, and we don't want the section
10579 contents. */
10580 if ((input_bfd->flags & DYNAMIC) != 0)
10581 return TRUE;
10582
10583 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10584 if (elf_bad_symtab (input_bfd))
10585 {
10586 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10587 extsymoff = 0;
10588 }
10589 else
10590 {
10591 locsymcount = symtab_hdr->sh_info;
10592 extsymoff = symtab_hdr->sh_info;
10593 }
10594
10595 /* Read the local symbols. */
10596 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10597 if (isymbuf == NULL && locsymcount != 0)
10598 {
10599 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10600 flinfo->internal_syms,
10601 flinfo->external_syms,
10602 flinfo->locsym_shndx);
10603 if (isymbuf == NULL)
10604 return FALSE;
10605 }
10606
10607 /* Find local symbol sections and adjust values of symbols in
10608 SEC_MERGE sections. Write out those local symbols we know are
10609 going into the output file. */
10610 isymend = isymbuf + locsymcount;
10611 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10612 isym < isymend;
10613 isym++, pindex++, ppsection++)
10614 {
10615 asection *isec;
10616 const char *name;
10617 Elf_Internal_Sym osym;
10618 long indx;
10619 int ret;
10620
10621 *pindex = -1;
10622
10623 if (elf_bad_symtab (input_bfd))
10624 {
10625 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10626 {
10627 *ppsection = NULL;
10628 continue;
10629 }
10630 }
10631
10632 if (isym->st_shndx == SHN_UNDEF)
10633 isec = bfd_und_section_ptr;
10634 else if (isym->st_shndx == SHN_ABS)
10635 isec = bfd_abs_section_ptr;
10636 else if (isym->st_shndx == SHN_COMMON)
10637 isec = bfd_com_section_ptr;
10638 else
10639 {
10640 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10641 if (isec == NULL)
10642 {
10643 /* Don't attempt to output symbols with st_shnx in the
10644 reserved range other than SHN_ABS and SHN_COMMON. */
10645 isec = bfd_und_section_ptr;
10646 }
10647 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10648 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10649 isym->st_value =
10650 _bfd_merged_section_offset (output_bfd, &isec,
10651 elf_section_data (isec)->sec_info,
10652 isym->st_value);
10653 }
10654
10655 *ppsection = isec;
10656
10657 /* Don't output the first, undefined, symbol. In fact, don't
10658 output any undefined local symbol. */
10659 if (isec == bfd_und_section_ptr)
10660 continue;
10661
10662 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10663 {
10664 /* We never output section symbols. Instead, we use the
10665 section symbol of the corresponding section in the output
10666 file. */
10667 continue;
10668 }
10669
10670 /* If we are stripping all symbols, we don't want to output this
10671 one. */
10672 if (flinfo->info->strip == strip_all)
10673 continue;
10674
10675 /* If we are discarding all local symbols, we don't want to
10676 output this one. If we are generating a relocatable output
10677 file, then some of the local symbols may be required by
10678 relocs; we output them below as we discover that they are
10679 needed. */
10680 if (flinfo->info->discard == discard_all)
10681 continue;
10682
10683 /* If this symbol is defined in a section which we are
10684 discarding, we don't need to keep it. */
10685 if (isym->st_shndx != SHN_UNDEF
10686 && isym->st_shndx < SHN_LORESERVE
10687 && isec->output_section == NULL
10688 && flinfo->info->non_contiguous_regions
10689 && flinfo->info->non_contiguous_regions_warnings)
10690 {
10691 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10692 "discards section `%s' from '%s'\n"),
10693 isec->name, bfd_get_filename (isec->owner));
10694 continue;
10695 }
10696
10697 if (isym->st_shndx != SHN_UNDEF
10698 && isym->st_shndx < SHN_LORESERVE
10699 && bfd_section_removed_from_list (output_bfd,
10700 isec->output_section))
10701 continue;
10702
10703 /* Get the name of the symbol. */
10704 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10705 isym->st_name);
10706 if (name == NULL)
10707 return FALSE;
10708
10709 /* See if we are discarding symbols with this name. */
10710 if ((flinfo->info->strip == strip_some
10711 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10712 == NULL))
10713 || (((flinfo->info->discard == discard_sec_merge
10714 && (isec->flags & SEC_MERGE)
10715 && !bfd_link_relocatable (flinfo->info))
10716 || flinfo->info->discard == discard_l)
10717 && bfd_is_local_label_name (input_bfd, name)))
10718 continue;
10719
10720 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10721 {
10722 if (input_bfd->lto_output)
10723 /* -flto puts a temp file name here. This means builds
10724 are not reproducible. Discard the symbol. */
10725 continue;
10726 have_file_sym = TRUE;
10727 flinfo->filesym_count += 1;
10728 }
10729 if (!have_file_sym)
10730 {
10731 /* In the absence of debug info, bfd_find_nearest_line uses
10732 FILE symbols to determine the source file for local
10733 function symbols. Provide a FILE symbol here if input
10734 files lack such, so that their symbols won't be
10735 associated with a previous input file. It's not the
10736 source file, but the best we can do. */
10737 have_file_sym = TRUE;
10738 flinfo->filesym_count += 1;
10739 memset (&osym, 0, sizeof (osym));
10740 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10741 osym.st_shndx = SHN_ABS;
10742 if (!elf_link_output_symstrtab (flinfo,
10743 (input_bfd->lto_output ? NULL
10744 : bfd_get_filename (input_bfd)),
10745 &osym, bfd_abs_section_ptr,
10746 NULL))
10747 return FALSE;
10748 }
10749
10750 osym = *isym;
10751
10752 /* Adjust the section index for the output file. */
10753 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10754 isec->output_section);
10755 if (osym.st_shndx == SHN_BAD)
10756 return FALSE;
10757
10758 /* ELF symbols in relocatable files are section relative, but
10759 in executable files they are virtual addresses. Note that
10760 this code assumes that all ELF sections have an associated
10761 BFD section with a reasonable value for output_offset; below
10762 we assume that they also have a reasonable value for
10763 output_section. Any special sections must be set up to meet
10764 these requirements. */
10765 osym.st_value += isec->output_offset;
10766 if (!bfd_link_relocatable (flinfo->info))
10767 {
10768 osym.st_value += isec->output_section->vma;
10769 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10770 {
10771 /* STT_TLS symbols are relative to PT_TLS segment base. */
10772 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10773 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10774 else
10775 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10776 STT_NOTYPE);
10777 }
10778 }
10779
10780 indx = bfd_get_symcount (output_bfd);
10781 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10782 if (ret == 0)
10783 return FALSE;
10784 else if (ret == 1)
10785 *pindex = indx;
10786 }
10787
10788 if (bed->s->arch_size == 32)
10789 {
10790 r_type_mask = 0xff;
10791 r_sym_shift = 8;
10792 address_size = 4;
10793 }
10794 else
10795 {
10796 r_type_mask = 0xffffffff;
10797 r_sym_shift = 32;
10798 address_size = 8;
10799 }
10800
10801 /* Relocate the contents of each section. */
10802 sym_hashes = elf_sym_hashes (input_bfd);
10803 for (o = input_bfd->sections; o != NULL; o = o->next)
10804 {
10805 bfd_byte *contents;
10806
10807 if (! o->linker_mark)
10808 {
10809 /* This section was omitted from the link. */
10810 continue;
10811 }
10812
10813 if (!flinfo->info->resolve_section_groups
10814 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10815 {
10816 /* Deal with the group signature symbol. */
10817 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10818 unsigned long symndx = sec_data->this_hdr.sh_info;
10819 asection *osec = o->output_section;
10820
10821 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10822 if (symndx >= locsymcount
10823 || (elf_bad_symtab (input_bfd)
10824 && flinfo->sections[symndx] == NULL))
10825 {
10826 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10827 while (h->root.type == bfd_link_hash_indirect
10828 || h->root.type == bfd_link_hash_warning)
10829 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10830 /* Arrange for symbol to be output. */
10831 h->indx = -2;
10832 elf_section_data (osec)->this_hdr.sh_info = -2;
10833 }
10834 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10835 {
10836 /* We'll use the output section target_index. */
10837 asection *sec = flinfo->sections[symndx]->output_section;
10838 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10839 }
10840 else
10841 {
10842 if (flinfo->indices[symndx] == -1)
10843 {
10844 /* Otherwise output the local symbol now. */
10845 Elf_Internal_Sym sym = isymbuf[symndx];
10846 asection *sec = flinfo->sections[symndx]->output_section;
10847 const char *name;
10848 long indx;
10849 int ret;
10850
10851 name = bfd_elf_string_from_elf_section (input_bfd,
10852 symtab_hdr->sh_link,
10853 sym.st_name);
10854 if (name == NULL)
10855 return FALSE;
10856
10857 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10858 sec);
10859 if (sym.st_shndx == SHN_BAD)
10860 return FALSE;
10861
10862 sym.st_value += o->output_offset;
10863
10864 indx = bfd_get_symcount (output_bfd);
10865 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10866 NULL);
10867 if (ret == 0)
10868 return FALSE;
10869 else if (ret == 1)
10870 flinfo->indices[symndx] = indx;
10871 else
10872 abort ();
10873 }
10874 elf_section_data (osec)->this_hdr.sh_info
10875 = flinfo->indices[symndx];
10876 }
10877 }
10878
10879 if ((o->flags & SEC_HAS_CONTENTS) == 0
10880 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10881 continue;
10882
10883 if ((o->flags & SEC_LINKER_CREATED) != 0)
10884 {
10885 /* Section was created by _bfd_elf_link_create_dynamic_sections
10886 or somesuch. */
10887 continue;
10888 }
10889
10890 /* Get the contents of the section. They have been cached by a
10891 relaxation routine. Note that o is a section in an input
10892 file, so the contents field will not have been set by any of
10893 the routines which work on output files. */
10894 if (elf_section_data (o)->this_hdr.contents != NULL)
10895 {
10896 contents = elf_section_data (o)->this_hdr.contents;
10897 if (bed->caches_rawsize
10898 && o->rawsize != 0
10899 && o->rawsize < o->size)
10900 {
10901 memcpy (flinfo->contents, contents, o->rawsize);
10902 contents = flinfo->contents;
10903 }
10904 }
10905 else
10906 {
10907 contents = flinfo->contents;
10908 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10909 return FALSE;
10910 }
10911
10912 if ((o->flags & SEC_RELOC) != 0)
10913 {
10914 Elf_Internal_Rela *internal_relocs;
10915 Elf_Internal_Rela *rel, *relend;
10916 int action_discarded;
10917 int ret;
10918
10919 /* Get the swapped relocs. */
10920 internal_relocs
10921 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10922 flinfo->internal_relocs, FALSE);
10923 if (internal_relocs == NULL
10924 && o->reloc_count > 0)
10925 return FALSE;
10926
10927 /* We need to reverse-copy input .ctors/.dtors sections if
10928 they are placed in .init_array/.finit_array for output. */
10929 if (o->size > address_size
10930 && ((strncmp (o->name, ".ctors", 6) == 0
10931 && strcmp (o->output_section->name,
10932 ".init_array") == 0)
10933 || (strncmp (o->name, ".dtors", 6) == 0
10934 && strcmp (o->output_section->name,
10935 ".fini_array") == 0))
10936 && (o->name[6] == 0 || o->name[6] == '.'))
10937 {
10938 if (o->size * bed->s->int_rels_per_ext_rel
10939 != o->reloc_count * address_size)
10940 {
10941 _bfd_error_handler
10942 /* xgettext:c-format */
10943 (_("error: %pB: size of section %pA is not "
10944 "multiple of address size"),
10945 input_bfd, o);
10946 bfd_set_error (bfd_error_bad_value);
10947 return FALSE;
10948 }
10949 o->flags |= SEC_ELF_REVERSE_COPY;
10950 }
10951
10952 action_discarded = -1;
10953 if (!elf_section_ignore_discarded_relocs (o))
10954 action_discarded = (*bed->action_discarded) (o);
10955
10956 /* Run through the relocs evaluating complex reloc symbols and
10957 looking for relocs against symbols from discarded sections
10958 or section symbols from removed link-once sections.
10959 Complain about relocs against discarded sections. Zero
10960 relocs against removed link-once sections. */
10961
10962 rel = internal_relocs;
10963 relend = rel + o->reloc_count;
10964 for ( ; rel < relend; rel++)
10965 {
10966 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10967 unsigned int s_type;
10968 asection **ps, *sec;
10969 struct elf_link_hash_entry *h = NULL;
10970 const char *sym_name;
10971
10972 if (r_symndx == STN_UNDEF)
10973 continue;
10974
10975 if (r_symndx >= locsymcount
10976 || (elf_bad_symtab (input_bfd)
10977 && flinfo->sections[r_symndx] == NULL))
10978 {
10979 h = sym_hashes[r_symndx - extsymoff];
10980
10981 /* Badly formatted input files can contain relocs that
10982 reference non-existant symbols. Check here so that
10983 we do not seg fault. */
10984 if (h == NULL)
10985 {
10986 _bfd_error_handler
10987 /* xgettext:c-format */
10988 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10989 "that references a non-existent global symbol"),
10990 input_bfd, (uint64_t) rel->r_info, o);
10991 bfd_set_error (bfd_error_bad_value);
10992 return FALSE;
10993 }
10994
10995 while (h->root.type == bfd_link_hash_indirect
10996 || h->root.type == bfd_link_hash_warning)
10997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10998
10999 s_type = h->type;
11000
11001 /* If a plugin symbol is referenced from a non-IR file,
11002 mark the symbol as undefined. Note that the
11003 linker may attach linker created dynamic sections
11004 to the plugin bfd. Symbols defined in linker
11005 created sections are not plugin symbols. */
11006 if ((h->root.non_ir_ref_regular
11007 || h->root.non_ir_ref_dynamic)
11008 && (h->root.type == bfd_link_hash_defined
11009 || h->root.type == bfd_link_hash_defweak)
11010 && (h->root.u.def.section->flags
11011 & SEC_LINKER_CREATED) == 0
11012 && h->root.u.def.section->owner != NULL
11013 && (h->root.u.def.section->owner->flags
11014 & BFD_PLUGIN) != 0)
11015 {
11016 h->root.type = bfd_link_hash_undefined;
11017 h->root.u.undef.abfd = h->root.u.def.section->owner;
11018 }
11019
11020 ps = NULL;
11021 if (h->root.type == bfd_link_hash_defined
11022 || h->root.type == bfd_link_hash_defweak)
11023 ps = &h->root.u.def.section;
11024
11025 sym_name = h->root.root.string;
11026 }
11027 else
11028 {
11029 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11030
11031 s_type = ELF_ST_TYPE (sym->st_info);
11032 ps = &flinfo->sections[r_symndx];
11033 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11034 sym, *ps);
11035 }
11036
11037 if ((s_type == STT_RELC || s_type == STT_SRELC)
11038 && !bfd_link_relocatable (flinfo->info))
11039 {
11040 bfd_vma val;
11041 bfd_vma dot = (rel->r_offset
11042 + o->output_offset + o->output_section->vma);
11043 #ifdef DEBUG
11044 printf ("Encountered a complex symbol!");
11045 printf (" (input_bfd %s, section %s, reloc %ld\n",
11046 bfd_get_filename (input_bfd), o->name,
11047 (long) (rel - internal_relocs));
11048 printf (" symbol: idx %8.8lx, name %s\n",
11049 r_symndx, sym_name);
11050 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11051 (unsigned long) rel->r_info,
11052 (unsigned long) rel->r_offset);
11053 #endif
11054 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11055 isymbuf, locsymcount, s_type == STT_SRELC))
11056 return FALSE;
11057
11058 /* Symbol evaluated OK. Update to absolute value. */
11059 set_symbol_value (input_bfd, isymbuf, locsymcount,
11060 r_symndx, val);
11061 continue;
11062 }
11063
11064 if (action_discarded != -1 && ps != NULL)
11065 {
11066 /* Complain if the definition comes from a
11067 discarded section. */
11068 if ((sec = *ps) != NULL && discarded_section (sec))
11069 {
11070 BFD_ASSERT (r_symndx != STN_UNDEF);
11071 if (action_discarded & COMPLAIN)
11072 (*flinfo->info->callbacks->einfo)
11073 /* xgettext:c-format */
11074 (_("%X`%s' referenced in section `%pA' of %pB: "
11075 "defined in discarded section `%pA' of %pB\n"),
11076 sym_name, o, input_bfd, sec, sec->owner);
11077
11078 /* Try to do the best we can to support buggy old
11079 versions of gcc. Pretend that the symbol is
11080 really defined in the kept linkonce section.
11081 FIXME: This is quite broken. Modifying the
11082 symbol here means we will be changing all later
11083 uses of the symbol, not just in this section. */
11084 if (action_discarded & PRETEND)
11085 {
11086 asection *kept;
11087
11088 kept = _bfd_elf_check_kept_section (sec,
11089 flinfo->info);
11090 if (kept != NULL)
11091 {
11092 *ps = kept;
11093 continue;
11094 }
11095 }
11096 }
11097 }
11098 }
11099
11100 /* Relocate the section by invoking a back end routine.
11101
11102 The back end routine is responsible for adjusting the
11103 section contents as necessary, and (if using Rela relocs
11104 and generating a relocatable output file) adjusting the
11105 reloc addend as necessary.
11106
11107 The back end routine does not have to worry about setting
11108 the reloc address or the reloc symbol index.
11109
11110 The back end routine is given a pointer to the swapped in
11111 internal symbols, and can access the hash table entries
11112 for the external symbols via elf_sym_hashes (input_bfd).
11113
11114 When generating relocatable output, the back end routine
11115 must handle STB_LOCAL/STT_SECTION symbols specially. The
11116 output symbol is going to be a section symbol
11117 corresponding to the output section, which will require
11118 the addend to be adjusted. */
11119
11120 ret = (*relocate_section) (output_bfd, flinfo->info,
11121 input_bfd, o, contents,
11122 internal_relocs,
11123 isymbuf,
11124 flinfo->sections);
11125 if (!ret)
11126 return FALSE;
11127
11128 if (ret == 2
11129 || bfd_link_relocatable (flinfo->info)
11130 || flinfo->info->emitrelocations)
11131 {
11132 Elf_Internal_Rela *irela;
11133 Elf_Internal_Rela *irelaend, *irelamid;
11134 bfd_vma last_offset;
11135 struct elf_link_hash_entry **rel_hash;
11136 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11137 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11138 unsigned int next_erel;
11139 bfd_boolean rela_normal;
11140 struct bfd_elf_section_data *esdi, *esdo;
11141
11142 esdi = elf_section_data (o);
11143 esdo = elf_section_data (o->output_section);
11144 rela_normal = FALSE;
11145
11146 /* Adjust the reloc addresses and symbol indices. */
11147
11148 irela = internal_relocs;
11149 irelaend = irela + o->reloc_count;
11150 rel_hash = esdo->rel.hashes + esdo->rel.count;
11151 /* We start processing the REL relocs, if any. When we reach
11152 IRELAMID in the loop, we switch to the RELA relocs. */
11153 irelamid = irela;
11154 if (esdi->rel.hdr != NULL)
11155 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11156 * bed->s->int_rels_per_ext_rel);
11157 rel_hash_list = rel_hash;
11158 rela_hash_list = NULL;
11159 last_offset = o->output_offset;
11160 if (!bfd_link_relocatable (flinfo->info))
11161 last_offset += o->output_section->vma;
11162 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11163 {
11164 unsigned long r_symndx;
11165 asection *sec;
11166 Elf_Internal_Sym sym;
11167
11168 if (next_erel == bed->s->int_rels_per_ext_rel)
11169 {
11170 rel_hash++;
11171 next_erel = 0;
11172 }
11173
11174 if (irela == irelamid)
11175 {
11176 rel_hash = esdo->rela.hashes + esdo->rela.count;
11177 rela_hash_list = rel_hash;
11178 rela_normal = bed->rela_normal;
11179 }
11180
11181 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11182 flinfo->info, o,
11183 irela->r_offset);
11184 if (irela->r_offset >= (bfd_vma) -2)
11185 {
11186 /* This is a reloc for a deleted entry or somesuch.
11187 Turn it into an R_*_NONE reloc, at the same
11188 offset as the last reloc. elf_eh_frame.c and
11189 bfd_elf_discard_info rely on reloc offsets
11190 being ordered. */
11191 irela->r_offset = last_offset;
11192 irela->r_info = 0;
11193 irela->r_addend = 0;
11194 continue;
11195 }
11196
11197 irela->r_offset += o->output_offset;
11198
11199 /* Relocs in an executable have to be virtual addresses. */
11200 if (!bfd_link_relocatable (flinfo->info))
11201 irela->r_offset += o->output_section->vma;
11202
11203 last_offset = irela->r_offset;
11204
11205 r_symndx = irela->r_info >> r_sym_shift;
11206 if (r_symndx == STN_UNDEF)
11207 continue;
11208
11209 if (r_symndx >= locsymcount
11210 || (elf_bad_symtab (input_bfd)
11211 && flinfo->sections[r_symndx] == NULL))
11212 {
11213 struct elf_link_hash_entry *rh;
11214 unsigned long indx;
11215
11216 /* This is a reloc against a global symbol. We
11217 have not yet output all the local symbols, so
11218 we do not know the symbol index of any global
11219 symbol. We set the rel_hash entry for this
11220 reloc to point to the global hash table entry
11221 for this symbol. The symbol index is then
11222 set at the end of bfd_elf_final_link. */
11223 indx = r_symndx - extsymoff;
11224 rh = elf_sym_hashes (input_bfd)[indx];
11225 while (rh->root.type == bfd_link_hash_indirect
11226 || rh->root.type == bfd_link_hash_warning)
11227 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11228
11229 /* Setting the index to -2 tells
11230 elf_link_output_extsym that this symbol is
11231 used by a reloc. */
11232 BFD_ASSERT (rh->indx < 0);
11233 rh->indx = -2;
11234 *rel_hash = rh;
11235
11236 continue;
11237 }
11238
11239 /* This is a reloc against a local symbol. */
11240
11241 *rel_hash = NULL;
11242 sym = isymbuf[r_symndx];
11243 sec = flinfo->sections[r_symndx];
11244 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11245 {
11246 /* I suppose the backend ought to fill in the
11247 section of any STT_SECTION symbol against a
11248 processor specific section. */
11249 r_symndx = STN_UNDEF;
11250 if (bfd_is_abs_section (sec))
11251 ;
11252 else if (sec == NULL || sec->owner == NULL)
11253 {
11254 bfd_set_error (bfd_error_bad_value);
11255 return FALSE;
11256 }
11257 else
11258 {
11259 asection *osec = sec->output_section;
11260
11261 /* If we have discarded a section, the output
11262 section will be the absolute section. In
11263 case of discarded SEC_MERGE sections, use
11264 the kept section. relocate_section should
11265 have already handled discarded linkonce
11266 sections. */
11267 if (bfd_is_abs_section (osec)
11268 && sec->kept_section != NULL
11269 && sec->kept_section->output_section != NULL)
11270 {
11271 osec = sec->kept_section->output_section;
11272 irela->r_addend -= osec->vma;
11273 }
11274
11275 if (!bfd_is_abs_section (osec))
11276 {
11277 r_symndx = osec->target_index;
11278 if (r_symndx == STN_UNDEF)
11279 {
11280 irela->r_addend += osec->vma;
11281 osec = _bfd_nearby_section (output_bfd, osec,
11282 osec->vma);
11283 irela->r_addend -= osec->vma;
11284 r_symndx = osec->target_index;
11285 }
11286 }
11287 }
11288
11289 /* Adjust the addend according to where the
11290 section winds up in the output section. */
11291 if (rela_normal)
11292 irela->r_addend += sec->output_offset;
11293 }
11294 else
11295 {
11296 if (flinfo->indices[r_symndx] == -1)
11297 {
11298 unsigned long shlink;
11299 const char *name;
11300 asection *osec;
11301 long indx;
11302
11303 if (flinfo->info->strip == strip_all)
11304 {
11305 /* You can't do ld -r -s. */
11306 bfd_set_error (bfd_error_invalid_operation);
11307 return FALSE;
11308 }
11309
11310 /* This symbol was skipped earlier, but
11311 since it is needed by a reloc, we
11312 must output it now. */
11313 shlink = symtab_hdr->sh_link;
11314 name = (bfd_elf_string_from_elf_section
11315 (input_bfd, shlink, sym.st_name));
11316 if (name == NULL)
11317 return FALSE;
11318
11319 osec = sec->output_section;
11320 sym.st_shndx =
11321 _bfd_elf_section_from_bfd_section (output_bfd,
11322 osec);
11323 if (sym.st_shndx == SHN_BAD)
11324 return FALSE;
11325
11326 sym.st_value += sec->output_offset;
11327 if (!bfd_link_relocatable (flinfo->info))
11328 {
11329 sym.st_value += osec->vma;
11330 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11331 {
11332 struct elf_link_hash_table *htab
11333 = elf_hash_table (flinfo->info);
11334
11335 /* STT_TLS symbols are relative to PT_TLS
11336 segment base. */
11337 if (htab->tls_sec != NULL)
11338 sym.st_value -= htab->tls_sec->vma;
11339 else
11340 sym.st_info
11341 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11342 STT_NOTYPE);
11343 }
11344 }
11345
11346 indx = bfd_get_symcount (output_bfd);
11347 ret = elf_link_output_symstrtab (flinfo, name,
11348 &sym, sec,
11349 NULL);
11350 if (ret == 0)
11351 return FALSE;
11352 else if (ret == 1)
11353 flinfo->indices[r_symndx] = indx;
11354 else
11355 abort ();
11356 }
11357
11358 r_symndx = flinfo->indices[r_symndx];
11359 }
11360
11361 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11362 | (irela->r_info & r_type_mask));
11363 }
11364
11365 /* Swap out the relocs. */
11366 input_rel_hdr = esdi->rel.hdr;
11367 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11368 {
11369 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11370 input_rel_hdr,
11371 internal_relocs,
11372 rel_hash_list))
11373 return FALSE;
11374 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11375 * bed->s->int_rels_per_ext_rel);
11376 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11377 }
11378
11379 input_rela_hdr = esdi->rela.hdr;
11380 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11381 {
11382 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11383 input_rela_hdr,
11384 internal_relocs,
11385 rela_hash_list))
11386 return FALSE;
11387 }
11388 }
11389 }
11390
11391 /* Write out the modified section contents. */
11392 if (bed->elf_backend_write_section
11393 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11394 contents))
11395 {
11396 /* Section written out. */
11397 }
11398 else switch (o->sec_info_type)
11399 {
11400 case SEC_INFO_TYPE_STABS:
11401 if (! (_bfd_write_section_stabs
11402 (output_bfd,
11403 &elf_hash_table (flinfo->info)->stab_info,
11404 o, &elf_section_data (o)->sec_info, contents)))
11405 return FALSE;
11406 break;
11407 case SEC_INFO_TYPE_MERGE:
11408 if (! _bfd_write_merged_section (output_bfd, o,
11409 elf_section_data (o)->sec_info))
11410 return FALSE;
11411 break;
11412 case SEC_INFO_TYPE_EH_FRAME:
11413 {
11414 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11415 o, contents))
11416 return FALSE;
11417 }
11418 break;
11419 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11420 {
11421 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11422 flinfo->info,
11423 o, contents))
11424 return FALSE;
11425 }
11426 break;
11427 default:
11428 {
11429 if (! (o->flags & SEC_EXCLUDE))
11430 {
11431 file_ptr offset = (file_ptr) o->output_offset;
11432 bfd_size_type todo = o->size;
11433
11434 offset *= bfd_octets_per_byte (output_bfd, o);
11435
11436 if ((o->flags & SEC_ELF_REVERSE_COPY))
11437 {
11438 /* Reverse-copy input section to output. */
11439 do
11440 {
11441 todo -= address_size;
11442 if (! bfd_set_section_contents (output_bfd,
11443 o->output_section,
11444 contents + todo,
11445 offset,
11446 address_size))
11447 return FALSE;
11448 if (todo == 0)
11449 break;
11450 offset += address_size;
11451 }
11452 while (1);
11453 }
11454 else if (! bfd_set_section_contents (output_bfd,
11455 o->output_section,
11456 contents,
11457 offset, todo))
11458 return FALSE;
11459 }
11460 }
11461 break;
11462 }
11463 }
11464
11465 return TRUE;
11466 }
11467
11468 /* Generate a reloc when linking an ELF file. This is a reloc
11469 requested by the linker, and does not come from any input file. This
11470 is used to build constructor and destructor tables when linking
11471 with -Ur. */
11472
11473 static bfd_boolean
11474 elf_reloc_link_order (bfd *output_bfd,
11475 struct bfd_link_info *info,
11476 asection *output_section,
11477 struct bfd_link_order *link_order)
11478 {
11479 reloc_howto_type *howto;
11480 long indx;
11481 bfd_vma offset;
11482 bfd_vma addend;
11483 struct bfd_elf_section_reloc_data *reldata;
11484 struct elf_link_hash_entry **rel_hash_ptr;
11485 Elf_Internal_Shdr *rel_hdr;
11486 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11487 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11488 bfd_byte *erel;
11489 unsigned int i;
11490 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11491
11492 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11493 if (howto == NULL)
11494 {
11495 bfd_set_error (bfd_error_bad_value);
11496 return FALSE;
11497 }
11498
11499 addend = link_order->u.reloc.p->addend;
11500
11501 if (esdo->rel.hdr)
11502 reldata = &esdo->rel;
11503 else if (esdo->rela.hdr)
11504 reldata = &esdo->rela;
11505 else
11506 {
11507 reldata = NULL;
11508 BFD_ASSERT (0);
11509 }
11510
11511 /* Figure out the symbol index. */
11512 rel_hash_ptr = reldata->hashes + reldata->count;
11513 if (link_order->type == bfd_section_reloc_link_order)
11514 {
11515 indx = link_order->u.reloc.p->u.section->target_index;
11516 BFD_ASSERT (indx != 0);
11517 *rel_hash_ptr = NULL;
11518 }
11519 else
11520 {
11521 struct elf_link_hash_entry *h;
11522
11523 /* Treat a reloc against a defined symbol as though it were
11524 actually against the section. */
11525 h = ((struct elf_link_hash_entry *)
11526 bfd_wrapped_link_hash_lookup (output_bfd, info,
11527 link_order->u.reloc.p->u.name,
11528 FALSE, FALSE, TRUE));
11529 if (h != NULL
11530 && (h->root.type == bfd_link_hash_defined
11531 || h->root.type == bfd_link_hash_defweak))
11532 {
11533 asection *section;
11534
11535 section = h->root.u.def.section;
11536 indx = section->output_section->target_index;
11537 *rel_hash_ptr = NULL;
11538 /* It seems that we ought to add the symbol value to the
11539 addend here, but in practice it has already been added
11540 because it was passed to constructor_callback. */
11541 addend += section->output_section->vma + section->output_offset;
11542 }
11543 else if (h != NULL)
11544 {
11545 /* Setting the index to -2 tells elf_link_output_extsym that
11546 this symbol is used by a reloc. */
11547 h->indx = -2;
11548 *rel_hash_ptr = h;
11549 indx = 0;
11550 }
11551 else
11552 {
11553 (*info->callbacks->unattached_reloc)
11554 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11555 indx = 0;
11556 }
11557 }
11558
11559 /* If this is an inplace reloc, we must write the addend into the
11560 object file. */
11561 if (howto->partial_inplace && addend != 0)
11562 {
11563 bfd_size_type size;
11564 bfd_reloc_status_type rstat;
11565 bfd_byte *buf;
11566 bfd_boolean ok;
11567 const char *sym_name;
11568 bfd_size_type octets;
11569
11570 size = (bfd_size_type) bfd_get_reloc_size (howto);
11571 buf = (bfd_byte *) bfd_zmalloc (size);
11572 if (buf == NULL && size != 0)
11573 return FALSE;
11574 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11575 switch (rstat)
11576 {
11577 case bfd_reloc_ok:
11578 break;
11579
11580 default:
11581 case bfd_reloc_outofrange:
11582 abort ();
11583
11584 case bfd_reloc_overflow:
11585 if (link_order->type == bfd_section_reloc_link_order)
11586 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11587 else
11588 sym_name = link_order->u.reloc.p->u.name;
11589 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11590 howto->name, addend, NULL, NULL,
11591 (bfd_vma) 0);
11592 break;
11593 }
11594
11595 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11596 output_section);
11597 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11598 octets, size);
11599 free (buf);
11600 if (! ok)
11601 return FALSE;
11602 }
11603
11604 /* The address of a reloc is relative to the section in a
11605 relocatable file, and is a virtual address in an executable
11606 file. */
11607 offset = link_order->offset;
11608 if (! bfd_link_relocatable (info))
11609 offset += output_section->vma;
11610
11611 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11612 {
11613 irel[i].r_offset = offset;
11614 irel[i].r_info = 0;
11615 irel[i].r_addend = 0;
11616 }
11617 if (bed->s->arch_size == 32)
11618 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11619 else
11620 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11621
11622 rel_hdr = reldata->hdr;
11623 erel = rel_hdr->contents;
11624 if (rel_hdr->sh_type == SHT_REL)
11625 {
11626 erel += reldata->count * bed->s->sizeof_rel;
11627 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11628 }
11629 else
11630 {
11631 irel[0].r_addend = addend;
11632 erel += reldata->count * bed->s->sizeof_rela;
11633 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11634 }
11635
11636 ++reldata->count;
11637
11638 return TRUE;
11639 }
11640
11641
11642 /* Compare two sections based on the locations of the sections they are
11643 linked to. Used by elf_fixup_link_order. */
11644
11645 static int
11646 compare_link_order (const void *a, const void *b)
11647 {
11648 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11649 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11650 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11651 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11652 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11653 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11654
11655 if (apos < bpos)
11656 return -1;
11657 if (apos > bpos)
11658 return 1;
11659
11660 /* The only way we should get matching LMAs is when the first of two
11661 sections has zero size. */
11662 if (asec->size < bsec->size)
11663 return -1;
11664 if (asec->size > bsec->size)
11665 return 1;
11666
11667 /* If they are both zero size then they almost certainly have the same
11668 VMA and thus are not ordered with respect to each other. Test VMA
11669 anyway, and fall back to id to make the result reproducible across
11670 qsort implementations. */
11671 apos = asec->output_section->vma + asec->output_offset;
11672 bpos = bsec->output_section->vma + bsec->output_offset;
11673 if (apos < bpos)
11674 return -1;
11675 if (apos > bpos)
11676 return 1;
11677
11678 return asec->id - bsec->id;
11679 }
11680
11681
11682 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11683 order as their linked sections. Returns false if this could not be done
11684 because an output section includes both ordered and unordered
11685 sections. Ideally we'd do this in the linker proper. */
11686
11687 static bfd_boolean
11688 elf_fixup_link_order (bfd *abfd, asection *o)
11689 {
11690 size_t seen_linkorder;
11691 size_t seen_other;
11692 size_t n;
11693 struct bfd_link_order *p;
11694 bfd *sub;
11695 struct bfd_link_order **sections;
11696 asection *other_sec, *linkorder_sec;
11697 bfd_vma offset; /* Octets. */
11698
11699 other_sec = NULL;
11700 linkorder_sec = NULL;
11701 seen_other = 0;
11702 seen_linkorder = 0;
11703 for (p = o->map_head.link_order; p != NULL; p = p->next)
11704 {
11705 if (p->type == bfd_indirect_link_order)
11706 {
11707 asection *s = p->u.indirect.section;
11708 sub = s->owner;
11709 if ((s->flags & SEC_LINKER_CREATED) == 0
11710 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11711 && elf_section_data (s) != NULL
11712 && elf_linked_to_section (s) != NULL)
11713 {
11714 seen_linkorder++;
11715 linkorder_sec = s;
11716 }
11717 else
11718 {
11719 seen_other++;
11720 other_sec = s;
11721 }
11722 }
11723 else
11724 seen_other++;
11725
11726 if (seen_other && seen_linkorder)
11727 {
11728 if (other_sec && linkorder_sec)
11729 _bfd_error_handler
11730 /* xgettext:c-format */
11731 (_("%pA has both ordered [`%pA' in %pB] "
11732 "and unordered [`%pA' in %pB] sections"),
11733 o, linkorder_sec, linkorder_sec->owner,
11734 other_sec, other_sec->owner);
11735 else
11736 _bfd_error_handler
11737 (_("%pA has both ordered and unordered sections"), o);
11738 bfd_set_error (bfd_error_bad_value);
11739 return FALSE;
11740 }
11741 }
11742
11743 if (!seen_linkorder)
11744 return TRUE;
11745
11746 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11747 if (sections == NULL)
11748 return FALSE;
11749
11750 seen_linkorder = 0;
11751 for (p = o->map_head.link_order; p != NULL; p = p->next)
11752 sections[seen_linkorder++] = p;
11753
11754 /* Sort the input sections in the order of their linked section. */
11755 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11756
11757 /* Change the offsets of the sections. */
11758 offset = 0;
11759 for (n = 0; n < seen_linkorder; n++)
11760 {
11761 bfd_vma mask;
11762 asection *s = sections[n]->u.indirect.section;
11763 unsigned int opb = bfd_octets_per_byte (abfd, s);
11764
11765 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11766 offset = (offset + ~mask) & mask;
11767 sections[n]->offset = s->output_offset = offset / opb;
11768 offset += sections[n]->size;
11769 }
11770
11771 free (sections);
11772 return TRUE;
11773 }
11774
11775 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11776 Returns TRUE upon success, FALSE otherwise. */
11777
11778 static bfd_boolean
11779 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11780 {
11781 bfd_boolean ret = FALSE;
11782 bfd *implib_bfd;
11783 const struct elf_backend_data *bed;
11784 flagword flags;
11785 enum bfd_architecture arch;
11786 unsigned int mach;
11787 asymbol **sympp = NULL;
11788 long symsize;
11789 long symcount;
11790 long src_count;
11791 elf_symbol_type *osymbuf;
11792 size_t amt;
11793
11794 implib_bfd = info->out_implib_bfd;
11795 bed = get_elf_backend_data (abfd);
11796
11797 if (!bfd_set_format (implib_bfd, bfd_object))
11798 return FALSE;
11799
11800 /* Use flag from executable but make it a relocatable object. */
11801 flags = bfd_get_file_flags (abfd);
11802 flags &= ~HAS_RELOC;
11803 if (!bfd_set_start_address (implib_bfd, 0)
11804 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11805 return FALSE;
11806
11807 /* Copy architecture of output file to import library file. */
11808 arch = bfd_get_arch (abfd);
11809 mach = bfd_get_mach (abfd);
11810 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11811 && (abfd->target_defaulted
11812 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11813 return FALSE;
11814
11815 /* Get symbol table size. */
11816 symsize = bfd_get_symtab_upper_bound (abfd);
11817 if (symsize < 0)
11818 return FALSE;
11819
11820 /* Read in the symbol table. */
11821 sympp = (asymbol **) bfd_malloc (symsize);
11822 if (sympp == NULL)
11823 return FALSE;
11824
11825 symcount = bfd_canonicalize_symtab (abfd, sympp);
11826 if (symcount < 0)
11827 goto free_sym_buf;
11828
11829 /* Allow the BFD backend to copy any private header data it
11830 understands from the output BFD to the import library BFD. */
11831 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11832 goto free_sym_buf;
11833
11834 /* Filter symbols to appear in the import library. */
11835 if (bed->elf_backend_filter_implib_symbols)
11836 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11837 symcount);
11838 else
11839 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11840 if (symcount == 0)
11841 {
11842 bfd_set_error (bfd_error_no_symbols);
11843 _bfd_error_handler (_("%pB: no symbol found for import library"),
11844 implib_bfd);
11845 goto free_sym_buf;
11846 }
11847
11848
11849 /* Make symbols absolute. */
11850 amt = symcount * sizeof (*osymbuf);
11851 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11852 if (osymbuf == NULL)
11853 goto free_sym_buf;
11854
11855 for (src_count = 0; src_count < symcount; src_count++)
11856 {
11857 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11858 sizeof (*osymbuf));
11859 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11860 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11861 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11862 osymbuf[src_count].internal_elf_sym.st_value =
11863 osymbuf[src_count].symbol.value;
11864 sympp[src_count] = &osymbuf[src_count].symbol;
11865 }
11866
11867 bfd_set_symtab (implib_bfd, sympp, symcount);
11868
11869 /* Allow the BFD backend to copy any private data it understands
11870 from the output BFD to the import library BFD. This is done last
11871 to permit the routine to look at the filtered symbol table. */
11872 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11873 goto free_sym_buf;
11874
11875 if (!bfd_close (implib_bfd))
11876 goto free_sym_buf;
11877
11878 ret = TRUE;
11879
11880 free_sym_buf:
11881 free (sympp);
11882 return ret;
11883 }
11884
11885 static void
11886 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11887 {
11888 asection *o;
11889
11890 if (flinfo->symstrtab != NULL)
11891 _bfd_elf_strtab_free (flinfo->symstrtab);
11892 free (flinfo->contents);
11893 free (flinfo->external_relocs);
11894 free (flinfo->internal_relocs);
11895 free (flinfo->external_syms);
11896 free (flinfo->locsym_shndx);
11897 free (flinfo->internal_syms);
11898 free (flinfo->indices);
11899 free (flinfo->sections);
11900 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11901 free (flinfo->symshndxbuf);
11902 for (o = obfd->sections; o != NULL; o = o->next)
11903 {
11904 struct bfd_elf_section_data *esdo = elf_section_data (o);
11905 free (esdo->rel.hashes);
11906 free (esdo->rela.hashes);
11907 }
11908 }
11909
11910 /* Do the final step of an ELF link. */
11911
11912 bfd_boolean
11913 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11914 {
11915 bfd_boolean dynamic;
11916 bfd_boolean emit_relocs;
11917 bfd *dynobj;
11918 struct elf_final_link_info flinfo;
11919 asection *o;
11920 struct bfd_link_order *p;
11921 bfd *sub;
11922 bfd_size_type max_contents_size;
11923 bfd_size_type max_external_reloc_size;
11924 bfd_size_type max_internal_reloc_count;
11925 bfd_size_type max_sym_count;
11926 bfd_size_type max_sym_shndx_count;
11927 Elf_Internal_Sym elfsym;
11928 unsigned int i;
11929 Elf_Internal_Shdr *symtab_hdr;
11930 Elf_Internal_Shdr *symtab_shndx_hdr;
11931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11932 struct elf_outext_info eoinfo;
11933 bfd_boolean merged;
11934 size_t relativecount = 0;
11935 asection *reldyn = 0;
11936 bfd_size_type amt;
11937 asection *attr_section = NULL;
11938 bfd_vma attr_size = 0;
11939 const char *std_attrs_section;
11940 struct elf_link_hash_table *htab = elf_hash_table (info);
11941 bfd_boolean sections_removed;
11942
11943 if (!is_elf_hash_table (htab))
11944 return FALSE;
11945
11946 if (bfd_link_pic (info))
11947 abfd->flags |= DYNAMIC;
11948
11949 dynamic = htab->dynamic_sections_created;
11950 dynobj = htab->dynobj;
11951
11952 emit_relocs = (bfd_link_relocatable (info)
11953 || info->emitrelocations);
11954
11955 flinfo.info = info;
11956 flinfo.output_bfd = abfd;
11957 flinfo.symstrtab = _bfd_elf_strtab_init ();
11958 if (flinfo.symstrtab == NULL)
11959 return FALSE;
11960
11961 if (! dynamic)
11962 {
11963 flinfo.hash_sec = NULL;
11964 flinfo.symver_sec = NULL;
11965 }
11966 else
11967 {
11968 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11969 /* Note that dynsym_sec can be NULL (on VMS). */
11970 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11971 /* Note that it is OK if symver_sec is NULL. */
11972 }
11973
11974 flinfo.contents = NULL;
11975 flinfo.external_relocs = NULL;
11976 flinfo.internal_relocs = NULL;
11977 flinfo.external_syms = NULL;
11978 flinfo.locsym_shndx = NULL;
11979 flinfo.internal_syms = NULL;
11980 flinfo.indices = NULL;
11981 flinfo.sections = NULL;
11982 flinfo.symshndxbuf = NULL;
11983 flinfo.filesym_count = 0;
11984
11985 /* The object attributes have been merged. Remove the input
11986 sections from the link, and set the contents of the output
11987 section. */
11988 sections_removed = FALSE;
11989 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11990 for (o = abfd->sections; o != NULL; o = o->next)
11991 {
11992 bfd_boolean remove_section = FALSE;
11993
11994 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11995 || strcmp (o->name, ".gnu.attributes") == 0)
11996 {
11997 for (p = o->map_head.link_order; p != NULL; p = p->next)
11998 {
11999 asection *input_section;
12000
12001 if (p->type != bfd_indirect_link_order)
12002 continue;
12003 input_section = p->u.indirect.section;
12004 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12005 elf_link_input_bfd ignores this section. */
12006 input_section->flags &= ~SEC_HAS_CONTENTS;
12007 }
12008
12009 attr_size = bfd_elf_obj_attr_size (abfd);
12010 bfd_set_section_size (o, attr_size);
12011 /* Skip this section later on. */
12012 o->map_head.link_order = NULL;
12013 if (attr_size)
12014 attr_section = o;
12015 else
12016 remove_section = TRUE;
12017 }
12018 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12019 {
12020 /* Remove empty group section from linker output. */
12021 remove_section = TRUE;
12022 }
12023 if (remove_section)
12024 {
12025 o->flags |= SEC_EXCLUDE;
12026 bfd_section_list_remove (abfd, o);
12027 abfd->section_count--;
12028 sections_removed = TRUE;
12029 }
12030 }
12031 if (sections_removed)
12032 _bfd_fix_excluded_sec_syms (abfd, info);
12033
12034 /* Count up the number of relocations we will output for each output
12035 section, so that we know the sizes of the reloc sections. We
12036 also figure out some maximum sizes. */
12037 max_contents_size = 0;
12038 max_external_reloc_size = 0;
12039 max_internal_reloc_count = 0;
12040 max_sym_count = 0;
12041 max_sym_shndx_count = 0;
12042 merged = FALSE;
12043 for (o = abfd->sections; o != NULL; o = o->next)
12044 {
12045 struct bfd_elf_section_data *esdo = elf_section_data (o);
12046 o->reloc_count = 0;
12047
12048 for (p = o->map_head.link_order; p != NULL; p = p->next)
12049 {
12050 unsigned int reloc_count = 0;
12051 unsigned int additional_reloc_count = 0;
12052 struct bfd_elf_section_data *esdi = NULL;
12053
12054 if (p->type == bfd_section_reloc_link_order
12055 || p->type == bfd_symbol_reloc_link_order)
12056 reloc_count = 1;
12057 else if (p->type == bfd_indirect_link_order)
12058 {
12059 asection *sec;
12060
12061 sec = p->u.indirect.section;
12062
12063 /* Mark all sections which are to be included in the
12064 link. This will normally be every section. We need
12065 to do this so that we can identify any sections which
12066 the linker has decided to not include. */
12067 sec->linker_mark = TRUE;
12068
12069 if (sec->flags & SEC_MERGE)
12070 merged = TRUE;
12071
12072 if (sec->rawsize > max_contents_size)
12073 max_contents_size = sec->rawsize;
12074 if (sec->size > max_contents_size)
12075 max_contents_size = sec->size;
12076
12077 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12078 && (sec->owner->flags & DYNAMIC) == 0)
12079 {
12080 size_t sym_count;
12081
12082 /* We are interested in just local symbols, not all
12083 symbols. */
12084 if (elf_bad_symtab (sec->owner))
12085 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12086 / bed->s->sizeof_sym);
12087 else
12088 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12089
12090 if (sym_count > max_sym_count)
12091 max_sym_count = sym_count;
12092
12093 if (sym_count > max_sym_shndx_count
12094 && elf_symtab_shndx_list (sec->owner) != NULL)
12095 max_sym_shndx_count = sym_count;
12096
12097 if (esdo->this_hdr.sh_type == SHT_REL
12098 || esdo->this_hdr.sh_type == SHT_RELA)
12099 /* Some backends use reloc_count in relocation sections
12100 to count particular types of relocs. Of course,
12101 reloc sections themselves can't have relocations. */
12102 ;
12103 else if (emit_relocs)
12104 {
12105 reloc_count = sec->reloc_count;
12106 if (bed->elf_backend_count_additional_relocs)
12107 {
12108 int c;
12109 c = (*bed->elf_backend_count_additional_relocs) (sec);
12110 additional_reloc_count += c;
12111 }
12112 }
12113 else if (bed->elf_backend_count_relocs)
12114 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12115
12116 esdi = elf_section_data (sec);
12117
12118 if ((sec->flags & SEC_RELOC) != 0)
12119 {
12120 size_t ext_size = 0;
12121
12122 if (esdi->rel.hdr != NULL)
12123 ext_size = esdi->rel.hdr->sh_size;
12124 if (esdi->rela.hdr != NULL)
12125 ext_size += esdi->rela.hdr->sh_size;
12126
12127 if (ext_size > max_external_reloc_size)
12128 max_external_reloc_size = ext_size;
12129 if (sec->reloc_count > max_internal_reloc_count)
12130 max_internal_reloc_count = sec->reloc_count;
12131 }
12132 }
12133 }
12134
12135 if (reloc_count == 0)
12136 continue;
12137
12138 reloc_count += additional_reloc_count;
12139 o->reloc_count += reloc_count;
12140
12141 if (p->type == bfd_indirect_link_order && emit_relocs)
12142 {
12143 if (esdi->rel.hdr)
12144 {
12145 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12146 esdo->rel.count += additional_reloc_count;
12147 }
12148 if (esdi->rela.hdr)
12149 {
12150 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12151 esdo->rela.count += additional_reloc_count;
12152 }
12153 }
12154 else
12155 {
12156 if (o->use_rela_p)
12157 esdo->rela.count += reloc_count;
12158 else
12159 esdo->rel.count += reloc_count;
12160 }
12161 }
12162
12163 if (o->reloc_count > 0)
12164 o->flags |= SEC_RELOC;
12165 else
12166 {
12167 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12168 set it (this is probably a bug) and if it is set
12169 assign_section_numbers will create a reloc section. */
12170 o->flags &=~ SEC_RELOC;
12171 }
12172
12173 /* If the SEC_ALLOC flag is not set, force the section VMA to
12174 zero. This is done in elf_fake_sections as well, but forcing
12175 the VMA to 0 here will ensure that relocs against these
12176 sections are handled correctly. */
12177 if ((o->flags & SEC_ALLOC) == 0
12178 && ! o->user_set_vma)
12179 o->vma = 0;
12180 }
12181
12182 if (! bfd_link_relocatable (info) && merged)
12183 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12184
12185 /* Figure out the file positions for everything but the symbol table
12186 and the relocs. We set symcount to force assign_section_numbers
12187 to create a symbol table. */
12188 abfd->symcount = info->strip != strip_all || emit_relocs;
12189 BFD_ASSERT (! abfd->output_has_begun);
12190 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12191 goto error_return;
12192
12193 /* Set sizes, and assign file positions for reloc sections. */
12194 for (o = abfd->sections; o != NULL; o = o->next)
12195 {
12196 struct bfd_elf_section_data *esdo = elf_section_data (o);
12197 if ((o->flags & SEC_RELOC) != 0)
12198 {
12199 if (esdo->rel.hdr
12200 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12201 goto error_return;
12202
12203 if (esdo->rela.hdr
12204 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12205 goto error_return;
12206 }
12207
12208 /* _bfd_elf_compute_section_file_positions makes temporary use
12209 of target_index. Reset it. */
12210 o->target_index = 0;
12211
12212 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12213 to count upwards while actually outputting the relocations. */
12214 esdo->rel.count = 0;
12215 esdo->rela.count = 0;
12216
12217 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12218 && !bfd_section_is_ctf (o))
12219 {
12220 /* Cache the section contents so that they can be compressed
12221 later. Use bfd_malloc since it will be freed by
12222 bfd_compress_section_contents. */
12223 unsigned char *contents = esdo->this_hdr.contents;
12224 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12225 abort ();
12226 contents
12227 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12228 if (contents == NULL)
12229 goto error_return;
12230 esdo->this_hdr.contents = contents;
12231 }
12232 }
12233
12234 /* We have now assigned file positions for all the sections except .symtab,
12235 .strtab, and non-loaded reloc and compressed debugging sections. We start
12236 the .symtab section at the current file position, and write directly to it.
12237 We build the .strtab section in memory. */
12238 abfd->symcount = 0;
12239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12240 /* sh_name is set in prep_headers. */
12241 symtab_hdr->sh_type = SHT_SYMTAB;
12242 /* sh_flags, sh_addr and sh_size all start off zero. */
12243 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12244 /* sh_link is set in assign_section_numbers. */
12245 /* sh_info is set below. */
12246 /* sh_offset is set just below. */
12247 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12248
12249 if (max_sym_count < 20)
12250 max_sym_count = 20;
12251 htab->strtabsize = max_sym_count;
12252 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12253 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12254 if (htab->strtab == NULL)
12255 goto error_return;
12256 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12257 flinfo.symshndxbuf
12258 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12259 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12260
12261 if (info->strip != strip_all || emit_relocs)
12262 {
12263 file_ptr off = elf_next_file_pos (abfd);
12264
12265 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12266
12267 /* Note that at this point elf_next_file_pos (abfd) is
12268 incorrect. We do not yet know the size of the .symtab section.
12269 We correct next_file_pos below, after we do know the size. */
12270
12271 /* Start writing out the symbol table. The first symbol is always a
12272 dummy symbol. */
12273 elfsym.st_value = 0;
12274 elfsym.st_size = 0;
12275 elfsym.st_info = 0;
12276 elfsym.st_other = 0;
12277 elfsym.st_shndx = SHN_UNDEF;
12278 elfsym.st_target_internal = 0;
12279 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12280 bfd_und_section_ptr, NULL) != 1)
12281 goto error_return;
12282
12283 /* Output a symbol for each section. We output these even if we are
12284 discarding local symbols, since they are used for relocs. These
12285 symbols have no names. We store the index of each one in the
12286 index field of the section, so that we can find it again when
12287 outputting relocs. */
12288
12289 elfsym.st_size = 0;
12290 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12291 elfsym.st_other = 0;
12292 elfsym.st_value = 0;
12293 elfsym.st_target_internal = 0;
12294 for (i = 1; i < elf_numsections (abfd); i++)
12295 {
12296 o = bfd_section_from_elf_index (abfd, i);
12297 if (o != NULL)
12298 {
12299 o->target_index = bfd_get_symcount (abfd);
12300 elfsym.st_shndx = i;
12301 if (!bfd_link_relocatable (info))
12302 elfsym.st_value = o->vma;
12303 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12304 NULL) != 1)
12305 goto error_return;
12306 }
12307 }
12308 }
12309
12310 /* Allocate some memory to hold information read in from the input
12311 files. */
12312 if (max_contents_size != 0)
12313 {
12314 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12315 if (flinfo.contents == NULL)
12316 goto error_return;
12317 }
12318
12319 if (max_external_reloc_size != 0)
12320 {
12321 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12322 if (flinfo.external_relocs == NULL)
12323 goto error_return;
12324 }
12325
12326 if (max_internal_reloc_count != 0)
12327 {
12328 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12329 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12330 if (flinfo.internal_relocs == NULL)
12331 goto error_return;
12332 }
12333
12334 if (max_sym_count != 0)
12335 {
12336 amt = max_sym_count * bed->s->sizeof_sym;
12337 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12338 if (flinfo.external_syms == NULL)
12339 goto error_return;
12340
12341 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12342 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12343 if (flinfo.internal_syms == NULL)
12344 goto error_return;
12345
12346 amt = max_sym_count * sizeof (long);
12347 flinfo.indices = (long int *) bfd_malloc (amt);
12348 if (flinfo.indices == NULL)
12349 goto error_return;
12350
12351 amt = max_sym_count * sizeof (asection *);
12352 flinfo.sections = (asection **) bfd_malloc (amt);
12353 if (flinfo.sections == NULL)
12354 goto error_return;
12355 }
12356
12357 if (max_sym_shndx_count != 0)
12358 {
12359 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12360 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12361 if (flinfo.locsym_shndx == NULL)
12362 goto error_return;
12363 }
12364
12365 if (htab->tls_sec)
12366 {
12367 bfd_vma base, end = 0; /* Both bytes. */
12368 asection *sec;
12369
12370 for (sec = htab->tls_sec;
12371 sec && (sec->flags & SEC_THREAD_LOCAL);
12372 sec = sec->next)
12373 {
12374 bfd_size_type size = sec->size;
12375 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12376
12377 if (size == 0
12378 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12379 {
12380 struct bfd_link_order *ord = sec->map_tail.link_order;
12381
12382 if (ord != NULL)
12383 size = ord->offset * opb + ord->size;
12384 }
12385 end = sec->vma + size / opb;
12386 }
12387 base = htab->tls_sec->vma;
12388 /* Only align end of TLS section if static TLS doesn't have special
12389 alignment requirements. */
12390 if (bed->static_tls_alignment == 1)
12391 end = align_power (end, htab->tls_sec->alignment_power);
12392 htab->tls_size = end - base;
12393 }
12394
12395 /* Reorder SHF_LINK_ORDER sections. */
12396 for (o = abfd->sections; o != NULL; o = o->next)
12397 {
12398 if (!elf_fixup_link_order (abfd, o))
12399 return FALSE;
12400 }
12401
12402 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12403 return FALSE;
12404
12405 /* Since ELF permits relocations to be against local symbols, we
12406 must have the local symbols available when we do the relocations.
12407 Since we would rather only read the local symbols once, and we
12408 would rather not keep them in memory, we handle all the
12409 relocations for a single input file at the same time.
12410
12411 Unfortunately, there is no way to know the total number of local
12412 symbols until we have seen all of them, and the local symbol
12413 indices precede the global symbol indices. This means that when
12414 we are generating relocatable output, and we see a reloc against
12415 a global symbol, we can not know the symbol index until we have
12416 finished examining all the local symbols to see which ones we are
12417 going to output. To deal with this, we keep the relocations in
12418 memory, and don't output them until the end of the link. This is
12419 an unfortunate waste of memory, but I don't see a good way around
12420 it. Fortunately, it only happens when performing a relocatable
12421 link, which is not the common case. FIXME: If keep_memory is set
12422 we could write the relocs out and then read them again; I don't
12423 know how bad the memory loss will be. */
12424
12425 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12426 sub->output_has_begun = FALSE;
12427 for (o = abfd->sections; o != NULL; o = o->next)
12428 {
12429 for (p = o->map_head.link_order; p != NULL; p = p->next)
12430 {
12431 if (p->type == bfd_indirect_link_order
12432 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12433 == bfd_target_elf_flavour)
12434 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12435 {
12436 if (! sub->output_has_begun)
12437 {
12438 if (! elf_link_input_bfd (&flinfo, sub))
12439 goto error_return;
12440 sub->output_has_begun = TRUE;
12441 }
12442 }
12443 else if (p->type == bfd_section_reloc_link_order
12444 || p->type == bfd_symbol_reloc_link_order)
12445 {
12446 if (! elf_reloc_link_order (abfd, info, o, p))
12447 goto error_return;
12448 }
12449 else
12450 {
12451 if (! _bfd_default_link_order (abfd, info, o, p))
12452 {
12453 if (p->type == bfd_indirect_link_order
12454 && (bfd_get_flavour (sub)
12455 == bfd_target_elf_flavour)
12456 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12457 != bed->s->elfclass))
12458 {
12459 const char *iclass, *oclass;
12460
12461 switch (bed->s->elfclass)
12462 {
12463 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12464 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12465 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12466 default: abort ();
12467 }
12468
12469 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12470 {
12471 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12472 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12473 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12474 default: abort ();
12475 }
12476
12477 bfd_set_error (bfd_error_wrong_format);
12478 _bfd_error_handler
12479 /* xgettext:c-format */
12480 (_("%pB: file class %s incompatible with %s"),
12481 sub, iclass, oclass);
12482 }
12483
12484 goto error_return;
12485 }
12486 }
12487 }
12488 }
12489
12490 /* Free symbol buffer if needed. */
12491 if (!info->reduce_memory_overheads)
12492 {
12493 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12494 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12495 {
12496 free (elf_tdata (sub)->symbuf);
12497 elf_tdata (sub)->symbuf = NULL;
12498 }
12499 }
12500
12501 /* Output any global symbols that got converted to local in a
12502 version script or due to symbol visibility. We do this in a
12503 separate step since ELF requires all local symbols to appear
12504 prior to any global symbols. FIXME: We should only do this if
12505 some global symbols were, in fact, converted to become local.
12506 FIXME: Will this work correctly with the Irix 5 linker? */
12507 eoinfo.failed = FALSE;
12508 eoinfo.flinfo = &flinfo;
12509 eoinfo.localsyms = TRUE;
12510 eoinfo.file_sym_done = FALSE;
12511 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12512 if (eoinfo.failed)
12513 return FALSE;
12514
12515 /* If backend needs to output some local symbols not present in the hash
12516 table, do it now. */
12517 if (bed->elf_backend_output_arch_local_syms
12518 && (info->strip != strip_all || emit_relocs))
12519 {
12520 typedef int (*out_sym_func)
12521 (void *, const char *, Elf_Internal_Sym *, asection *,
12522 struct elf_link_hash_entry *);
12523
12524 if (! ((*bed->elf_backend_output_arch_local_syms)
12525 (abfd, info, &flinfo,
12526 (out_sym_func) elf_link_output_symstrtab)))
12527 return FALSE;
12528 }
12529
12530 /* That wrote out all the local symbols. Finish up the symbol table
12531 with the global symbols. Even if we want to strip everything we
12532 can, we still need to deal with those global symbols that got
12533 converted to local in a version script. */
12534
12535 /* The sh_info field records the index of the first non local symbol. */
12536 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12537
12538 if (dynamic
12539 && htab->dynsym != NULL
12540 && htab->dynsym->output_section != bfd_abs_section_ptr)
12541 {
12542 Elf_Internal_Sym sym;
12543 bfd_byte *dynsym = htab->dynsym->contents;
12544
12545 o = htab->dynsym->output_section;
12546 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12547
12548 /* Write out the section symbols for the output sections. */
12549 if (bfd_link_pic (info)
12550 || htab->is_relocatable_executable)
12551 {
12552 asection *s;
12553
12554 sym.st_size = 0;
12555 sym.st_name = 0;
12556 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12557 sym.st_other = 0;
12558 sym.st_target_internal = 0;
12559
12560 for (s = abfd->sections; s != NULL; s = s->next)
12561 {
12562 int indx;
12563 bfd_byte *dest;
12564 long dynindx;
12565
12566 dynindx = elf_section_data (s)->dynindx;
12567 if (dynindx <= 0)
12568 continue;
12569 indx = elf_section_data (s)->this_idx;
12570 BFD_ASSERT (indx > 0);
12571 sym.st_shndx = indx;
12572 if (! check_dynsym (abfd, &sym))
12573 return FALSE;
12574 sym.st_value = s->vma;
12575 dest = dynsym + dynindx * bed->s->sizeof_sym;
12576 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12577 }
12578 }
12579
12580 /* Write out the local dynsyms. */
12581 if (htab->dynlocal)
12582 {
12583 struct elf_link_local_dynamic_entry *e;
12584 for (e = htab->dynlocal; e ; e = e->next)
12585 {
12586 asection *s;
12587 bfd_byte *dest;
12588
12589 /* Copy the internal symbol and turn off visibility.
12590 Note that we saved a word of storage and overwrote
12591 the original st_name with the dynstr_index. */
12592 sym = e->isym;
12593 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12594
12595 s = bfd_section_from_elf_index (e->input_bfd,
12596 e->isym.st_shndx);
12597 if (s != NULL)
12598 {
12599 sym.st_shndx =
12600 elf_section_data (s->output_section)->this_idx;
12601 if (! check_dynsym (abfd, &sym))
12602 return FALSE;
12603 sym.st_value = (s->output_section->vma
12604 + s->output_offset
12605 + e->isym.st_value);
12606 }
12607
12608 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12609 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12610 }
12611 }
12612 }
12613
12614 /* We get the global symbols from the hash table. */
12615 eoinfo.failed = FALSE;
12616 eoinfo.localsyms = FALSE;
12617 eoinfo.flinfo = &flinfo;
12618 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12619 if (eoinfo.failed)
12620 return FALSE;
12621
12622 /* If backend needs to output some symbols not present in the hash
12623 table, do it now. */
12624 if (bed->elf_backend_output_arch_syms
12625 && (info->strip != strip_all || emit_relocs))
12626 {
12627 typedef int (*out_sym_func)
12628 (void *, const char *, Elf_Internal_Sym *, asection *,
12629 struct elf_link_hash_entry *);
12630
12631 if (! ((*bed->elf_backend_output_arch_syms)
12632 (abfd, info, &flinfo,
12633 (out_sym_func) elf_link_output_symstrtab)))
12634 return FALSE;
12635 }
12636
12637 /* Finalize the .strtab section. */
12638 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12639
12640 /* Swap out the .strtab section. */
12641 if (!elf_link_swap_symbols_out (&flinfo))
12642 return FALSE;
12643
12644 /* Now we know the size of the symtab section. */
12645 if (bfd_get_symcount (abfd) > 0)
12646 {
12647 /* Finish up and write out the symbol string table (.strtab)
12648 section. */
12649 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12650 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12651
12652 if (elf_symtab_shndx_list (abfd))
12653 {
12654 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12655
12656 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12657 {
12658 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12659 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12660 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12661 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12662 symtab_shndx_hdr->sh_size = amt;
12663
12664 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12665 off, TRUE);
12666
12667 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12668 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12669 return FALSE;
12670 }
12671 }
12672
12673 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12674 /* sh_name was set in prep_headers. */
12675 symstrtab_hdr->sh_type = SHT_STRTAB;
12676 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12677 symstrtab_hdr->sh_addr = 0;
12678 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12679 symstrtab_hdr->sh_entsize = 0;
12680 symstrtab_hdr->sh_link = 0;
12681 symstrtab_hdr->sh_info = 0;
12682 /* sh_offset is set just below. */
12683 symstrtab_hdr->sh_addralign = 1;
12684
12685 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12686 off, TRUE);
12687 elf_next_file_pos (abfd) = off;
12688
12689 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12690 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12691 return FALSE;
12692 }
12693
12694 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12695 {
12696 _bfd_error_handler (_("%pB: failed to generate import library"),
12697 info->out_implib_bfd);
12698 return FALSE;
12699 }
12700
12701 /* Adjust the relocs to have the correct symbol indices. */
12702 for (o = abfd->sections; o != NULL; o = o->next)
12703 {
12704 struct bfd_elf_section_data *esdo = elf_section_data (o);
12705 bfd_boolean sort;
12706
12707 if ((o->flags & SEC_RELOC) == 0)
12708 continue;
12709
12710 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12711 if (esdo->rel.hdr != NULL
12712 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12713 return FALSE;
12714 if (esdo->rela.hdr != NULL
12715 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12716 return FALSE;
12717
12718 /* Set the reloc_count field to 0 to prevent write_relocs from
12719 trying to swap the relocs out itself. */
12720 o->reloc_count = 0;
12721 }
12722
12723 if (dynamic && info->combreloc && dynobj != NULL)
12724 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12725
12726 /* If we are linking against a dynamic object, or generating a
12727 shared library, finish up the dynamic linking information. */
12728 if (dynamic)
12729 {
12730 bfd_byte *dyncon, *dynconend;
12731
12732 /* Fix up .dynamic entries. */
12733 o = bfd_get_linker_section (dynobj, ".dynamic");
12734 BFD_ASSERT (o != NULL);
12735
12736 dyncon = o->contents;
12737 dynconend = o->contents + o->size;
12738 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12739 {
12740 Elf_Internal_Dyn dyn;
12741 const char *name;
12742 unsigned int type;
12743 bfd_size_type sh_size;
12744 bfd_vma sh_addr;
12745
12746 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12747
12748 switch (dyn.d_tag)
12749 {
12750 default:
12751 continue;
12752 case DT_NULL:
12753 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12754 {
12755 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12756 {
12757 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12758 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12759 default: continue;
12760 }
12761 dyn.d_un.d_val = relativecount;
12762 relativecount = 0;
12763 break;
12764 }
12765 continue;
12766
12767 case DT_INIT:
12768 name = info->init_function;
12769 goto get_sym;
12770 case DT_FINI:
12771 name = info->fini_function;
12772 get_sym:
12773 {
12774 struct elf_link_hash_entry *h;
12775
12776 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12777 if (h != NULL
12778 && (h->root.type == bfd_link_hash_defined
12779 || h->root.type == bfd_link_hash_defweak))
12780 {
12781 dyn.d_un.d_ptr = h->root.u.def.value;
12782 o = h->root.u.def.section;
12783 if (o->output_section != NULL)
12784 dyn.d_un.d_ptr += (o->output_section->vma
12785 + o->output_offset);
12786 else
12787 {
12788 /* The symbol is imported from another shared
12789 library and does not apply to this one. */
12790 dyn.d_un.d_ptr = 0;
12791 }
12792 break;
12793 }
12794 }
12795 continue;
12796
12797 case DT_PREINIT_ARRAYSZ:
12798 name = ".preinit_array";
12799 goto get_out_size;
12800 case DT_INIT_ARRAYSZ:
12801 name = ".init_array";
12802 goto get_out_size;
12803 case DT_FINI_ARRAYSZ:
12804 name = ".fini_array";
12805 get_out_size:
12806 o = bfd_get_section_by_name (abfd, name);
12807 if (o == NULL)
12808 {
12809 _bfd_error_handler
12810 (_("could not find section %s"), name);
12811 goto error_return;
12812 }
12813 if (o->size == 0)
12814 _bfd_error_handler
12815 (_("warning: %s section has zero size"), name);
12816 dyn.d_un.d_val = o->size;
12817 break;
12818
12819 case DT_PREINIT_ARRAY:
12820 name = ".preinit_array";
12821 goto get_out_vma;
12822 case DT_INIT_ARRAY:
12823 name = ".init_array";
12824 goto get_out_vma;
12825 case DT_FINI_ARRAY:
12826 name = ".fini_array";
12827 get_out_vma:
12828 o = bfd_get_section_by_name (abfd, name);
12829 goto do_vma;
12830
12831 case DT_HASH:
12832 name = ".hash";
12833 goto get_vma;
12834 case DT_GNU_HASH:
12835 name = ".gnu.hash";
12836 goto get_vma;
12837 case DT_STRTAB:
12838 name = ".dynstr";
12839 goto get_vma;
12840 case DT_SYMTAB:
12841 name = ".dynsym";
12842 goto get_vma;
12843 case DT_VERDEF:
12844 name = ".gnu.version_d";
12845 goto get_vma;
12846 case DT_VERNEED:
12847 name = ".gnu.version_r";
12848 goto get_vma;
12849 case DT_VERSYM:
12850 name = ".gnu.version";
12851 get_vma:
12852 o = bfd_get_linker_section (dynobj, name);
12853 do_vma:
12854 if (o == NULL || bfd_is_abs_section (o->output_section))
12855 {
12856 _bfd_error_handler
12857 (_("could not find section %s"), name);
12858 goto error_return;
12859 }
12860 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12861 {
12862 _bfd_error_handler
12863 (_("warning: section '%s' is being made into a note"), name);
12864 bfd_set_error (bfd_error_nonrepresentable_section);
12865 goto error_return;
12866 }
12867 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12868 break;
12869
12870 case DT_REL:
12871 case DT_RELA:
12872 case DT_RELSZ:
12873 case DT_RELASZ:
12874 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12875 type = SHT_REL;
12876 else
12877 type = SHT_RELA;
12878 sh_size = 0;
12879 sh_addr = 0;
12880 for (i = 1; i < elf_numsections (abfd); i++)
12881 {
12882 Elf_Internal_Shdr *hdr;
12883
12884 hdr = elf_elfsections (abfd)[i];
12885 if (hdr->sh_type == type
12886 && (hdr->sh_flags & SHF_ALLOC) != 0)
12887 {
12888 sh_size += hdr->sh_size;
12889 if (sh_addr == 0
12890 || sh_addr > hdr->sh_addr)
12891 sh_addr = hdr->sh_addr;
12892 }
12893 }
12894
12895 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12896 {
12897 unsigned int opb = bfd_octets_per_byte (abfd, o);
12898
12899 /* Don't count procedure linkage table relocs in the
12900 overall reloc count. */
12901 sh_size -= htab->srelplt->size;
12902 if (sh_size == 0)
12903 /* If the size is zero, make the address zero too.
12904 This is to avoid a glibc bug. If the backend
12905 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12906 zero, then we'll put DT_RELA at the end of
12907 DT_JMPREL. glibc will interpret the end of
12908 DT_RELA matching the end of DT_JMPREL as the
12909 case where DT_RELA includes DT_JMPREL, and for
12910 LD_BIND_NOW will decide that processing DT_RELA
12911 will process the PLT relocs too. Net result:
12912 No PLT relocs applied. */
12913 sh_addr = 0;
12914
12915 /* If .rela.plt is the first .rela section, exclude
12916 it from DT_RELA. */
12917 else if (sh_addr == (htab->srelplt->output_section->vma
12918 + htab->srelplt->output_offset) * opb)
12919 sh_addr += htab->srelplt->size;
12920 }
12921
12922 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12923 dyn.d_un.d_val = sh_size;
12924 else
12925 dyn.d_un.d_ptr = sh_addr;
12926 break;
12927 }
12928 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12929 }
12930 }
12931
12932 /* If we have created any dynamic sections, then output them. */
12933 if (dynobj != NULL)
12934 {
12935 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12936 goto error_return;
12937
12938 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12939 if (bfd_link_textrel_check (info)
12940 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12941 {
12942 bfd_byte *dyncon, *dynconend;
12943
12944 dyncon = o->contents;
12945 dynconend = o->contents + o->size;
12946 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12947 {
12948 Elf_Internal_Dyn dyn;
12949
12950 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12951
12952 if (dyn.d_tag == DT_TEXTREL)
12953 {
12954 if (info->textrel_check == textrel_check_error)
12955 info->callbacks->einfo
12956 (_("%P%X: read-only segment has dynamic relocations\n"));
12957 else if (bfd_link_dll (info))
12958 info->callbacks->einfo
12959 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
12960 else
12961 info->callbacks->einfo
12962 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
12963 break;
12964 }
12965 }
12966 }
12967
12968 for (o = dynobj->sections; o != NULL; o = o->next)
12969 {
12970 if ((o->flags & SEC_HAS_CONTENTS) == 0
12971 || o->size == 0
12972 || o->output_section == bfd_abs_section_ptr)
12973 continue;
12974 if ((o->flags & SEC_LINKER_CREATED) == 0)
12975 {
12976 /* At this point, we are only interested in sections
12977 created by _bfd_elf_link_create_dynamic_sections. */
12978 continue;
12979 }
12980 if (htab->stab_info.stabstr == o)
12981 continue;
12982 if (htab->eh_info.hdr_sec == o)
12983 continue;
12984 if (strcmp (o->name, ".dynstr") != 0)
12985 {
12986 bfd_size_type octets = ((file_ptr) o->output_offset
12987 * bfd_octets_per_byte (abfd, o));
12988 if (!bfd_set_section_contents (abfd, o->output_section,
12989 o->contents, octets, o->size))
12990 goto error_return;
12991 }
12992 else
12993 {
12994 /* The contents of the .dynstr section are actually in a
12995 stringtab. */
12996 file_ptr off;
12997
12998 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12999 if (bfd_seek (abfd, off, SEEK_SET) != 0
13000 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13001 goto error_return;
13002 }
13003 }
13004 }
13005
13006 if (!info->resolve_section_groups)
13007 {
13008 bfd_boolean failed = FALSE;
13009
13010 BFD_ASSERT (bfd_link_relocatable (info));
13011 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13012 if (failed)
13013 goto error_return;
13014 }
13015
13016 /* If we have optimized stabs strings, output them. */
13017 if (htab->stab_info.stabstr != NULL)
13018 {
13019 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13020 goto error_return;
13021 }
13022
13023 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13024 goto error_return;
13025
13026 if (info->callbacks->emit_ctf)
13027 info->callbacks->emit_ctf ();
13028
13029 elf_final_link_free (abfd, &flinfo);
13030
13031 if (attr_section)
13032 {
13033 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13034 if (contents == NULL)
13035 return FALSE; /* Bail out and fail. */
13036 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13037 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13038 free (contents);
13039 }
13040
13041 return TRUE;
13042
13043 error_return:
13044 elf_final_link_free (abfd, &flinfo);
13045 return FALSE;
13046 }
13047 \f
13048 /* Initialize COOKIE for input bfd ABFD. */
13049
13050 static bfd_boolean
13051 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13052 struct bfd_link_info *info, bfd *abfd)
13053 {
13054 Elf_Internal_Shdr *symtab_hdr;
13055 const struct elf_backend_data *bed;
13056
13057 bed = get_elf_backend_data (abfd);
13058 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13059
13060 cookie->abfd = abfd;
13061 cookie->sym_hashes = elf_sym_hashes (abfd);
13062 cookie->bad_symtab = elf_bad_symtab (abfd);
13063 if (cookie->bad_symtab)
13064 {
13065 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13066 cookie->extsymoff = 0;
13067 }
13068 else
13069 {
13070 cookie->locsymcount = symtab_hdr->sh_info;
13071 cookie->extsymoff = symtab_hdr->sh_info;
13072 }
13073
13074 if (bed->s->arch_size == 32)
13075 cookie->r_sym_shift = 8;
13076 else
13077 cookie->r_sym_shift = 32;
13078
13079 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13080 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13081 {
13082 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13083 cookie->locsymcount, 0,
13084 NULL, NULL, NULL);
13085 if (cookie->locsyms == NULL)
13086 {
13087 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13088 return FALSE;
13089 }
13090 if (info->keep_memory)
13091 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13092 }
13093 return TRUE;
13094 }
13095
13096 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13097
13098 static void
13099 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13100 {
13101 Elf_Internal_Shdr *symtab_hdr;
13102
13103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13104 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13105 free (cookie->locsyms);
13106 }
13107
13108 /* Initialize the relocation information in COOKIE for input section SEC
13109 of input bfd ABFD. */
13110
13111 static bfd_boolean
13112 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13113 struct bfd_link_info *info, bfd *abfd,
13114 asection *sec)
13115 {
13116 if (sec->reloc_count == 0)
13117 {
13118 cookie->rels = NULL;
13119 cookie->relend = NULL;
13120 }
13121 else
13122 {
13123 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13124 info->keep_memory);
13125 if (cookie->rels == NULL)
13126 return FALSE;
13127 cookie->rel = cookie->rels;
13128 cookie->relend = cookie->rels + sec->reloc_count;
13129 }
13130 cookie->rel = cookie->rels;
13131 return TRUE;
13132 }
13133
13134 /* Free the memory allocated by init_reloc_cookie_rels,
13135 if appropriate. */
13136
13137 static void
13138 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13139 asection *sec)
13140 {
13141 if (elf_section_data (sec)->relocs != cookie->rels)
13142 free (cookie->rels);
13143 }
13144
13145 /* Initialize the whole of COOKIE for input section SEC. */
13146
13147 static bfd_boolean
13148 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13149 struct bfd_link_info *info,
13150 asection *sec)
13151 {
13152 if (!init_reloc_cookie (cookie, info, sec->owner))
13153 goto error1;
13154 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13155 goto error2;
13156 return TRUE;
13157
13158 error2:
13159 fini_reloc_cookie (cookie, sec->owner);
13160 error1:
13161 return FALSE;
13162 }
13163
13164 /* Free the memory allocated by init_reloc_cookie_for_section,
13165 if appropriate. */
13166
13167 static void
13168 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13169 asection *sec)
13170 {
13171 fini_reloc_cookie_rels (cookie, sec);
13172 fini_reloc_cookie (cookie, sec->owner);
13173 }
13174 \f
13175 /* Garbage collect unused sections. */
13176
13177 /* Default gc_mark_hook. */
13178
13179 asection *
13180 _bfd_elf_gc_mark_hook (asection *sec,
13181 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13182 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13183 struct elf_link_hash_entry *h,
13184 Elf_Internal_Sym *sym)
13185 {
13186 if (h != NULL)
13187 {
13188 switch (h->root.type)
13189 {
13190 case bfd_link_hash_defined:
13191 case bfd_link_hash_defweak:
13192 return h->root.u.def.section;
13193
13194 case bfd_link_hash_common:
13195 return h->root.u.c.p->section;
13196
13197 default:
13198 break;
13199 }
13200 }
13201 else
13202 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13203
13204 return NULL;
13205 }
13206
13207 /* Return the debug definition section. */
13208
13209 static asection *
13210 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13211 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13212 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13213 struct elf_link_hash_entry *h,
13214 Elf_Internal_Sym *sym)
13215 {
13216 if (h != NULL)
13217 {
13218 /* Return the global debug definition section. */
13219 if ((h->root.type == bfd_link_hash_defined
13220 || h->root.type == bfd_link_hash_defweak)
13221 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13222 return h->root.u.def.section;
13223 }
13224 else
13225 {
13226 /* Return the local debug definition section. */
13227 asection *isec = bfd_section_from_elf_index (sec->owner,
13228 sym->st_shndx);
13229 if ((isec->flags & SEC_DEBUGGING) != 0)
13230 return isec;
13231 }
13232
13233 return NULL;
13234 }
13235
13236 /* COOKIE->rel describes a relocation against section SEC, which is
13237 a section we've decided to keep. Return the section that contains
13238 the relocation symbol, or NULL if no section contains it. */
13239
13240 asection *
13241 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13242 elf_gc_mark_hook_fn gc_mark_hook,
13243 struct elf_reloc_cookie *cookie,
13244 bfd_boolean *start_stop)
13245 {
13246 unsigned long r_symndx;
13247 struct elf_link_hash_entry *h, *hw;
13248
13249 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13250 if (r_symndx == STN_UNDEF)
13251 return NULL;
13252
13253 if (r_symndx >= cookie->locsymcount
13254 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13255 {
13256 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13257 if (h == NULL)
13258 {
13259 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13260 sec->owner);
13261 return NULL;
13262 }
13263 while (h->root.type == bfd_link_hash_indirect
13264 || h->root.type == bfd_link_hash_warning)
13265 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13266 h->mark = 1;
13267 /* Keep all aliases of the symbol too. If an object symbol
13268 needs to be copied into .dynbss then all of its aliases
13269 should be present as dynamic symbols, not just the one used
13270 on the copy relocation. */
13271 hw = h;
13272 while (hw->is_weakalias)
13273 {
13274 hw = hw->u.alias;
13275 hw->mark = 1;
13276 }
13277
13278 if (start_stop != NULL)
13279 {
13280 /* To work around a glibc bug, mark XXX input sections
13281 when there is a reference to __start_XXX or __stop_XXX
13282 symbols. */
13283 if (h->start_stop)
13284 {
13285 asection *s = h->u2.start_stop_section;
13286 *start_stop = !s->gc_mark;
13287 return s;
13288 }
13289 }
13290
13291 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13292 }
13293
13294 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13295 &cookie->locsyms[r_symndx]);
13296 }
13297
13298 /* COOKIE->rel describes a relocation against section SEC, which is
13299 a section we've decided to keep. Mark the section that contains
13300 the relocation symbol. */
13301
13302 bfd_boolean
13303 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13304 asection *sec,
13305 elf_gc_mark_hook_fn gc_mark_hook,
13306 struct elf_reloc_cookie *cookie)
13307 {
13308 asection *rsec;
13309 bfd_boolean start_stop = FALSE;
13310
13311 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13312 while (rsec != NULL)
13313 {
13314 if (!rsec->gc_mark)
13315 {
13316 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13317 || (rsec->owner->flags & DYNAMIC) != 0)
13318 rsec->gc_mark = 1;
13319 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13320 return FALSE;
13321 }
13322 if (!start_stop)
13323 break;
13324 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13325 }
13326 return TRUE;
13327 }
13328
13329 /* The mark phase of garbage collection. For a given section, mark
13330 it and any sections in this section's group, and all the sections
13331 which define symbols to which it refers. */
13332
13333 bfd_boolean
13334 _bfd_elf_gc_mark (struct bfd_link_info *info,
13335 asection *sec,
13336 elf_gc_mark_hook_fn gc_mark_hook)
13337 {
13338 bfd_boolean ret;
13339 asection *group_sec, *eh_frame;
13340
13341 sec->gc_mark = 1;
13342
13343 /* Mark all the sections in the group. */
13344 group_sec = elf_section_data (sec)->next_in_group;
13345 if (group_sec && !group_sec->gc_mark)
13346 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13347 return FALSE;
13348
13349 /* Look through the section relocs. */
13350 ret = TRUE;
13351 eh_frame = elf_eh_frame_section (sec->owner);
13352 if ((sec->flags & SEC_RELOC) != 0
13353 && sec->reloc_count > 0
13354 && sec != eh_frame)
13355 {
13356 struct elf_reloc_cookie cookie;
13357
13358 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13359 ret = FALSE;
13360 else
13361 {
13362 for (; cookie.rel < cookie.relend; cookie.rel++)
13363 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13364 {
13365 ret = FALSE;
13366 break;
13367 }
13368 fini_reloc_cookie_for_section (&cookie, sec);
13369 }
13370 }
13371
13372 if (ret && eh_frame && elf_fde_list (sec))
13373 {
13374 struct elf_reloc_cookie cookie;
13375
13376 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13377 ret = FALSE;
13378 else
13379 {
13380 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13381 gc_mark_hook, &cookie))
13382 ret = FALSE;
13383 fini_reloc_cookie_for_section (&cookie, eh_frame);
13384 }
13385 }
13386
13387 eh_frame = elf_section_eh_frame_entry (sec);
13388 if (ret && eh_frame && !eh_frame->gc_mark)
13389 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13390 ret = FALSE;
13391
13392 return ret;
13393 }
13394
13395 /* Scan and mark sections in a special or debug section group. */
13396
13397 static void
13398 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13399 {
13400 /* Point to first section of section group. */
13401 asection *ssec;
13402 /* Used to iterate the section group. */
13403 asection *msec;
13404
13405 bfd_boolean is_special_grp = TRUE;
13406 bfd_boolean is_debug_grp = TRUE;
13407
13408 /* First scan to see if group contains any section other than debug
13409 and special section. */
13410 ssec = msec = elf_next_in_group (grp);
13411 do
13412 {
13413 if ((msec->flags & SEC_DEBUGGING) == 0)
13414 is_debug_grp = FALSE;
13415
13416 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13417 is_special_grp = FALSE;
13418
13419 msec = elf_next_in_group (msec);
13420 }
13421 while (msec != ssec);
13422
13423 /* If this is a pure debug section group or pure special section group,
13424 keep all sections in this group. */
13425 if (is_debug_grp || is_special_grp)
13426 {
13427 do
13428 {
13429 msec->gc_mark = 1;
13430 msec = elf_next_in_group (msec);
13431 }
13432 while (msec != ssec);
13433 }
13434 }
13435
13436 /* Keep debug and special sections. */
13437
13438 bfd_boolean
13439 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13440 elf_gc_mark_hook_fn mark_hook)
13441 {
13442 bfd *ibfd;
13443
13444 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13445 {
13446 asection *isec;
13447 bfd_boolean some_kept;
13448 bfd_boolean debug_frag_seen;
13449 bfd_boolean has_kept_debug_info;
13450
13451 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13452 continue;
13453 isec = ibfd->sections;
13454 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13455 continue;
13456
13457 /* Ensure all linker created sections are kept,
13458 see if any other section is already marked,
13459 and note if we have any fragmented debug sections. */
13460 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13461 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13462 {
13463 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13464 isec->gc_mark = 1;
13465 else if (isec->gc_mark
13466 && (isec->flags & SEC_ALLOC) != 0
13467 && elf_section_type (isec) != SHT_NOTE)
13468 some_kept = TRUE;
13469 else
13470 {
13471 /* Since all sections, except for backend specific ones,
13472 have been garbage collected, call mark_hook on this
13473 section if any of its linked-to sections is marked. */
13474 asection *linked_to_sec = elf_linked_to_section (isec);
13475 for (; linked_to_sec != NULL;
13476 linked_to_sec = elf_linked_to_section (linked_to_sec))
13477 if (linked_to_sec->gc_mark)
13478 {
13479 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13480 return FALSE;
13481 break;
13482 }
13483 }
13484
13485 if (!debug_frag_seen
13486 && (isec->flags & SEC_DEBUGGING)
13487 && CONST_STRNEQ (isec->name, ".debug_line."))
13488 debug_frag_seen = TRUE;
13489 else if (strcmp (bfd_section_name (isec),
13490 "__patchable_function_entries") == 0
13491 && elf_linked_to_section (isec) == NULL)
13492 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13493 "need linked-to section "
13494 "for --gc-sections\n"),
13495 isec->owner, isec);
13496 }
13497
13498 /* If no non-note alloc section in this file will be kept, then
13499 we can toss out the debug and special sections. */
13500 if (!some_kept)
13501 continue;
13502
13503 /* Keep debug and special sections like .comment when they are
13504 not part of a group. Also keep section groups that contain
13505 just debug sections or special sections. NB: Sections with
13506 linked-to section has been handled above. */
13507 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13508 {
13509 if ((isec->flags & SEC_GROUP) != 0)
13510 _bfd_elf_gc_mark_debug_special_section_group (isec);
13511 else if (((isec->flags & SEC_DEBUGGING) != 0
13512 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13513 && elf_next_in_group (isec) == NULL
13514 && elf_linked_to_section (isec) == NULL)
13515 isec->gc_mark = 1;
13516 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13517 has_kept_debug_info = TRUE;
13518 }
13519
13520 /* Look for CODE sections which are going to be discarded,
13521 and find and discard any fragmented debug sections which
13522 are associated with that code section. */
13523 if (debug_frag_seen)
13524 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13525 if ((isec->flags & SEC_CODE) != 0
13526 && isec->gc_mark == 0)
13527 {
13528 unsigned int ilen;
13529 asection *dsec;
13530
13531 ilen = strlen (isec->name);
13532
13533 /* Association is determined by the name of the debug
13534 section containing the name of the code section as
13535 a suffix. For example .debug_line.text.foo is a
13536 debug section associated with .text.foo. */
13537 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13538 {
13539 unsigned int dlen;
13540
13541 if (dsec->gc_mark == 0
13542 || (dsec->flags & SEC_DEBUGGING) == 0)
13543 continue;
13544
13545 dlen = strlen (dsec->name);
13546
13547 if (dlen > ilen
13548 && strncmp (dsec->name + (dlen - ilen),
13549 isec->name, ilen) == 0)
13550 dsec->gc_mark = 0;
13551 }
13552 }
13553
13554 /* Mark debug sections referenced by kept debug sections. */
13555 if (has_kept_debug_info)
13556 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13557 if (isec->gc_mark
13558 && (isec->flags & SEC_DEBUGGING) != 0)
13559 if (!_bfd_elf_gc_mark (info, isec,
13560 elf_gc_mark_debug_section))
13561 return FALSE;
13562 }
13563 return TRUE;
13564 }
13565
13566 static bfd_boolean
13567 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13568 {
13569 bfd *sub;
13570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13571
13572 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13573 {
13574 asection *o;
13575
13576 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13577 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13578 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13579 continue;
13580 o = sub->sections;
13581 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13582 continue;
13583
13584 for (o = sub->sections; o != NULL; o = o->next)
13585 {
13586 /* When any section in a section group is kept, we keep all
13587 sections in the section group. If the first member of
13588 the section group is excluded, we will also exclude the
13589 group section. */
13590 if (o->flags & SEC_GROUP)
13591 {
13592 asection *first = elf_next_in_group (o);
13593 o->gc_mark = first->gc_mark;
13594 }
13595
13596 if (o->gc_mark)
13597 continue;
13598
13599 /* Skip sweeping sections already excluded. */
13600 if (o->flags & SEC_EXCLUDE)
13601 continue;
13602
13603 /* Since this is early in the link process, it is simple
13604 to remove a section from the output. */
13605 o->flags |= SEC_EXCLUDE;
13606
13607 if (info->print_gc_sections && o->size != 0)
13608 /* xgettext:c-format */
13609 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13610 o, sub);
13611 }
13612 }
13613
13614 return TRUE;
13615 }
13616
13617 /* Propagate collected vtable information. This is called through
13618 elf_link_hash_traverse. */
13619
13620 static bfd_boolean
13621 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13622 {
13623 /* Those that are not vtables. */
13624 if (h->start_stop
13625 || h->u2.vtable == NULL
13626 || h->u2.vtable->parent == NULL)
13627 return TRUE;
13628
13629 /* Those vtables that do not have parents, we cannot merge. */
13630 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13631 return TRUE;
13632
13633 /* If we've already been done, exit. */
13634 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13635 return TRUE;
13636
13637 /* Make sure the parent's table is up to date. */
13638 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13639
13640 if (h->u2.vtable->used == NULL)
13641 {
13642 /* None of this table's entries were referenced. Re-use the
13643 parent's table. */
13644 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13645 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13646 }
13647 else
13648 {
13649 size_t n;
13650 bfd_boolean *cu, *pu;
13651
13652 /* Or the parent's entries into ours. */
13653 cu = h->u2.vtable->used;
13654 cu[-1] = TRUE;
13655 pu = h->u2.vtable->parent->u2.vtable->used;
13656 if (pu != NULL)
13657 {
13658 const struct elf_backend_data *bed;
13659 unsigned int log_file_align;
13660
13661 bed = get_elf_backend_data (h->root.u.def.section->owner);
13662 log_file_align = bed->s->log_file_align;
13663 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13664 while (n--)
13665 {
13666 if (*pu)
13667 *cu = TRUE;
13668 pu++;
13669 cu++;
13670 }
13671 }
13672 }
13673
13674 return TRUE;
13675 }
13676
13677 static bfd_boolean
13678 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13679 {
13680 asection *sec;
13681 bfd_vma hstart, hend;
13682 Elf_Internal_Rela *relstart, *relend, *rel;
13683 const struct elf_backend_data *bed;
13684 unsigned int log_file_align;
13685
13686 /* Take care of both those symbols that do not describe vtables as
13687 well as those that are not loaded. */
13688 if (h->start_stop
13689 || h->u2.vtable == NULL
13690 || h->u2.vtable->parent == NULL)
13691 return TRUE;
13692
13693 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13694 || h->root.type == bfd_link_hash_defweak);
13695
13696 sec = h->root.u.def.section;
13697 hstart = h->root.u.def.value;
13698 hend = hstart + h->size;
13699
13700 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13701 if (!relstart)
13702 return *(bfd_boolean *) okp = FALSE;
13703 bed = get_elf_backend_data (sec->owner);
13704 log_file_align = bed->s->log_file_align;
13705
13706 relend = relstart + sec->reloc_count;
13707
13708 for (rel = relstart; rel < relend; ++rel)
13709 if (rel->r_offset >= hstart && rel->r_offset < hend)
13710 {
13711 /* If the entry is in use, do nothing. */
13712 if (h->u2.vtable->used
13713 && (rel->r_offset - hstart) < h->u2.vtable->size)
13714 {
13715 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13716 if (h->u2.vtable->used[entry])
13717 continue;
13718 }
13719 /* Otherwise, kill it. */
13720 rel->r_offset = rel->r_info = rel->r_addend = 0;
13721 }
13722
13723 return TRUE;
13724 }
13725
13726 /* Mark sections containing dynamically referenced symbols. When
13727 building shared libraries, we must assume that any visible symbol is
13728 referenced. */
13729
13730 bfd_boolean
13731 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13732 {
13733 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13734 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13735
13736 if ((h->root.type == bfd_link_hash_defined
13737 || h->root.type == bfd_link_hash_defweak)
13738 && ((h->ref_dynamic && !h->forced_local)
13739 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13740 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13741 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13742 && (!bfd_link_executable (info)
13743 || info->gc_keep_exported
13744 || info->export_dynamic
13745 || (h->dynamic
13746 && d != NULL
13747 && (*d->match) (&d->head, NULL, h->root.root.string)))
13748 && (h->versioned >= versioned
13749 || !bfd_hide_sym_by_version (info->version_info,
13750 h->root.root.string)))))
13751 h->root.u.def.section->flags |= SEC_KEEP;
13752
13753 return TRUE;
13754 }
13755
13756 /* Keep all sections containing symbols undefined on the command-line,
13757 and the section containing the entry symbol. */
13758
13759 void
13760 _bfd_elf_gc_keep (struct bfd_link_info *info)
13761 {
13762 struct bfd_sym_chain *sym;
13763
13764 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13765 {
13766 struct elf_link_hash_entry *h;
13767
13768 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13769 FALSE, FALSE, FALSE);
13770
13771 if (h != NULL
13772 && (h->root.type == bfd_link_hash_defined
13773 || h->root.type == bfd_link_hash_defweak)
13774 && !bfd_is_abs_section (h->root.u.def.section)
13775 && !bfd_is_und_section (h->root.u.def.section))
13776 h->root.u.def.section->flags |= SEC_KEEP;
13777 }
13778 }
13779
13780 bfd_boolean
13781 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13782 struct bfd_link_info *info)
13783 {
13784 bfd *ibfd = info->input_bfds;
13785
13786 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13787 {
13788 asection *sec;
13789 struct elf_reloc_cookie cookie;
13790
13791 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13792 continue;
13793 sec = ibfd->sections;
13794 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13795 continue;
13796
13797 if (!init_reloc_cookie (&cookie, info, ibfd))
13798 return FALSE;
13799
13800 for (sec = ibfd->sections; sec; sec = sec->next)
13801 {
13802 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13803 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13804 {
13805 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13806 fini_reloc_cookie_rels (&cookie, sec);
13807 }
13808 }
13809 }
13810 return TRUE;
13811 }
13812
13813 /* Do mark and sweep of unused sections. */
13814
13815 bfd_boolean
13816 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13817 {
13818 bfd_boolean ok = TRUE;
13819 bfd *sub;
13820 elf_gc_mark_hook_fn gc_mark_hook;
13821 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13822 struct elf_link_hash_table *htab;
13823
13824 if (!bed->can_gc_sections
13825 || !is_elf_hash_table (info->hash))
13826 {
13827 _bfd_error_handler(_("warning: gc-sections option ignored"));
13828 return TRUE;
13829 }
13830
13831 bed->gc_keep (info);
13832 htab = elf_hash_table (info);
13833
13834 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13835 at the .eh_frame section if we can mark the FDEs individually. */
13836 for (sub = info->input_bfds;
13837 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13838 sub = sub->link.next)
13839 {
13840 asection *sec;
13841 struct elf_reloc_cookie cookie;
13842
13843 sec = sub->sections;
13844 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13845 continue;
13846 sec = bfd_get_section_by_name (sub, ".eh_frame");
13847 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13848 {
13849 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13850 if (elf_section_data (sec)->sec_info
13851 && (sec->flags & SEC_LINKER_CREATED) == 0)
13852 elf_eh_frame_section (sub) = sec;
13853 fini_reloc_cookie_for_section (&cookie, sec);
13854 sec = bfd_get_next_section_by_name (NULL, sec);
13855 }
13856 }
13857
13858 /* Apply transitive closure to the vtable entry usage info. */
13859 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13860 if (!ok)
13861 return FALSE;
13862
13863 /* Kill the vtable relocations that were not used. */
13864 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13865 if (!ok)
13866 return FALSE;
13867
13868 /* Mark dynamically referenced symbols. */
13869 if (htab->dynamic_sections_created || info->gc_keep_exported)
13870 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13871
13872 /* Grovel through relocs to find out who stays ... */
13873 gc_mark_hook = bed->gc_mark_hook;
13874 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13875 {
13876 asection *o;
13877
13878 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13879 || elf_object_id (sub) != elf_hash_table_id (htab)
13880 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13881 continue;
13882
13883 o = sub->sections;
13884 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13885 continue;
13886
13887 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13888 Also treat note sections as a root, if the section is not part
13889 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13890 well as FINI_ARRAY sections for ld -r. */
13891 for (o = sub->sections; o != NULL; o = o->next)
13892 if (!o->gc_mark
13893 && (o->flags & SEC_EXCLUDE) == 0
13894 && ((o->flags & SEC_KEEP) != 0
13895 || (bfd_link_relocatable (info)
13896 && ((elf_section_data (o)->this_hdr.sh_type
13897 == SHT_PREINIT_ARRAY)
13898 || (elf_section_data (o)->this_hdr.sh_type
13899 == SHT_INIT_ARRAY)
13900 || (elf_section_data (o)->this_hdr.sh_type
13901 == SHT_FINI_ARRAY)))
13902 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13903 && elf_next_in_group (o) == NULL )))
13904 {
13905 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13906 return FALSE;
13907 }
13908 }
13909
13910 /* Allow the backend to mark additional target specific sections. */
13911 bed->gc_mark_extra_sections (info, gc_mark_hook);
13912
13913 /* ... and mark SEC_EXCLUDE for those that go. */
13914 return elf_gc_sweep (abfd, info);
13915 }
13916 \f
13917 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13918
13919 bfd_boolean
13920 bfd_elf_gc_record_vtinherit (bfd *abfd,
13921 asection *sec,
13922 struct elf_link_hash_entry *h,
13923 bfd_vma offset)
13924 {
13925 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13926 struct elf_link_hash_entry **search, *child;
13927 size_t extsymcount;
13928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13929
13930 /* The sh_info field of the symtab header tells us where the
13931 external symbols start. We don't care about the local symbols at
13932 this point. */
13933 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13934 if (!elf_bad_symtab (abfd))
13935 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13936
13937 sym_hashes = elf_sym_hashes (abfd);
13938 sym_hashes_end = sym_hashes + extsymcount;
13939
13940 /* Hunt down the child symbol, which is in this section at the same
13941 offset as the relocation. */
13942 for (search = sym_hashes; search != sym_hashes_end; ++search)
13943 {
13944 if ((child = *search) != NULL
13945 && (child->root.type == bfd_link_hash_defined
13946 || child->root.type == bfd_link_hash_defweak)
13947 && child->root.u.def.section == sec
13948 && child->root.u.def.value == offset)
13949 goto win;
13950 }
13951
13952 /* xgettext:c-format */
13953 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13954 abfd, sec, (uint64_t) offset);
13955 bfd_set_error (bfd_error_invalid_operation);
13956 return FALSE;
13957
13958 win:
13959 if (!child->u2.vtable)
13960 {
13961 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13962 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13963 if (!child->u2.vtable)
13964 return FALSE;
13965 }
13966 if (!h)
13967 {
13968 /* This *should* only be the absolute section. It could potentially
13969 be that someone has defined a non-global vtable though, which
13970 would be bad. It isn't worth paging in the local symbols to be
13971 sure though; that case should simply be handled by the assembler. */
13972
13973 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13974 }
13975 else
13976 child->u2.vtable->parent = h;
13977
13978 return TRUE;
13979 }
13980
13981 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13982
13983 bfd_boolean
13984 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13985 struct elf_link_hash_entry *h,
13986 bfd_vma addend)
13987 {
13988 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13989 unsigned int log_file_align = bed->s->log_file_align;
13990
13991 if (!h)
13992 {
13993 /* xgettext:c-format */
13994 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13995 abfd, sec);
13996 bfd_set_error (bfd_error_bad_value);
13997 return FALSE;
13998 }
13999
14000 if (!h->u2.vtable)
14001 {
14002 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14003 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14004 if (!h->u2.vtable)
14005 return FALSE;
14006 }
14007
14008 if (addend >= h->u2.vtable->size)
14009 {
14010 size_t size, bytes, file_align;
14011 bfd_boolean *ptr = h->u2.vtable->used;
14012
14013 /* While the symbol is undefined, we have to be prepared to handle
14014 a zero size. */
14015 file_align = 1 << log_file_align;
14016 if (h->root.type == bfd_link_hash_undefined)
14017 size = addend + file_align;
14018 else
14019 {
14020 size = h->size;
14021 if (addend >= size)
14022 {
14023 /* Oops! We've got a reference past the defined end of
14024 the table. This is probably a bug -- shall we warn? */
14025 size = addend + file_align;
14026 }
14027 }
14028 size = (size + file_align - 1) & -file_align;
14029
14030 /* Allocate one extra entry for use as a "done" flag for the
14031 consolidation pass. */
14032 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14033
14034 if (ptr)
14035 {
14036 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14037
14038 if (ptr != NULL)
14039 {
14040 size_t oldbytes;
14041
14042 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14043 * sizeof (bfd_boolean));
14044 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14045 }
14046 }
14047 else
14048 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14049
14050 if (ptr == NULL)
14051 return FALSE;
14052
14053 /* And arrange for that done flag to be at index -1. */
14054 h->u2.vtable->used = ptr + 1;
14055 h->u2.vtable->size = size;
14056 }
14057
14058 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14059
14060 return TRUE;
14061 }
14062
14063 /* Map an ELF section header flag to its corresponding string. */
14064 typedef struct
14065 {
14066 char *flag_name;
14067 flagword flag_value;
14068 } elf_flags_to_name_table;
14069
14070 static elf_flags_to_name_table elf_flags_to_names [] =
14071 {
14072 { "SHF_WRITE", SHF_WRITE },
14073 { "SHF_ALLOC", SHF_ALLOC },
14074 { "SHF_EXECINSTR", SHF_EXECINSTR },
14075 { "SHF_MERGE", SHF_MERGE },
14076 { "SHF_STRINGS", SHF_STRINGS },
14077 { "SHF_INFO_LINK", SHF_INFO_LINK},
14078 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14079 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14080 { "SHF_GROUP", SHF_GROUP },
14081 { "SHF_TLS", SHF_TLS },
14082 { "SHF_MASKOS", SHF_MASKOS },
14083 { "SHF_EXCLUDE", SHF_EXCLUDE },
14084 };
14085
14086 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14087 bfd_boolean
14088 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14089 struct flag_info *flaginfo,
14090 asection *section)
14091 {
14092 const bfd_vma sh_flags = elf_section_flags (section);
14093
14094 if (!flaginfo->flags_initialized)
14095 {
14096 bfd *obfd = info->output_bfd;
14097 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14098 struct flag_info_list *tf = flaginfo->flag_list;
14099 int with_hex = 0;
14100 int without_hex = 0;
14101
14102 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14103 {
14104 unsigned i;
14105 flagword (*lookup) (char *);
14106
14107 lookup = bed->elf_backend_lookup_section_flags_hook;
14108 if (lookup != NULL)
14109 {
14110 flagword hexval = (*lookup) ((char *) tf->name);
14111
14112 if (hexval != 0)
14113 {
14114 if (tf->with == with_flags)
14115 with_hex |= hexval;
14116 else if (tf->with == without_flags)
14117 without_hex |= hexval;
14118 tf->valid = TRUE;
14119 continue;
14120 }
14121 }
14122 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14123 {
14124 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14125 {
14126 if (tf->with == with_flags)
14127 with_hex |= elf_flags_to_names[i].flag_value;
14128 else if (tf->with == without_flags)
14129 without_hex |= elf_flags_to_names[i].flag_value;
14130 tf->valid = TRUE;
14131 break;
14132 }
14133 }
14134 if (!tf->valid)
14135 {
14136 info->callbacks->einfo
14137 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14138 return FALSE;
14139 }
14140 }
14141 flaginfo->flags_initialized = TRUE;
14142 flaginfo->only_with_flags |= with_hex;
14143 flaginfo->not_with_flags |= without_hex;
14144 }
14145
14146 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14147 return FALSE;
14148
14149 if ((flaginfo->not_with_flags & sh_flags) != 0)
14150 return FALSE;
14151
14152 return TRUE;
14153 }
14154
14155 struct alloc_got_off_arg {
14156 bfd_vma gotoff;
14157 struct bfd_link_info *info;
14158 };
14159
14160 /* We need a special top-level link routine to convert got reference counts
14161 to real got offsets. */
14162
14163 static bfd_boolean
14164 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14165 {
14166 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14167 bfd *obfd = gofarg->info->output_bfd;
14168 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14169
14170 if (h->got.refcount > 0)
14171 {
14172 h->got.offset = gofarg->gotoff;
14173 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14174 }
14175 else
14176 h->got.offset = (bfd_vma) -1;
14177
14178 return TRUE;
14179 }
14180
14181 /* And an accompanying bit to work out final got entry offsets once
14182 we're done. Should be called from final_link. */
14183
14184 bfd_boolean
14185 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14186 struct bfd_link_info *info)
14187 {
14188 bfd *i;
14189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14190 bfd_vma gotoff;
14191 struct alloc_got_off_arg gofarg;
14192
14193 BFD_ASSERT (abfd == info->output_bfd);
14194
14195 if (! is_elf_hash_table (info->hash))
14196 return FALSE;
14197
14198 /* The GOT offset is relative to the .got section, but the GOT header is
14199 put into the .got.plt section, if the backend uses it. */
14200 if (bed->want_got_plt)
14201 gotoff = 0;
14202 else
14203 gotoff = bed->got_header_size;
14204
14205 /* Do the local .got entries first. */
14206 for (i = info->input_bfds; i; i = i->link.next)
14207 {
14208 bfd_signed_vma *local_got;
14209 size_t j, locsymcount;
14210 Elf_Internal_Shdr *symtab_hdr;
14211
14212 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14213 continue;
14214
14215 local_got = elf_local_got_refcounts (i);
14216 if (!local_got)
14217 continue;
14218
14219 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14220 if (elf_bad_symtab (i))
14221 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14222 else
14223 locsymcount = symtab_hdr->sh_info;
14224
14225 for (j = 0; j < locsymcount; ++j)
14226 {
14227 if (local_got[j] > 0)
14228 {
14229 local_got[j] = gotoff;
14230 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14231 }
14232 else
14233 local_got[j] = (bfd_vma) -1;
14234 }
14235 }
14236
14237 /* Then the global .got entries. .plt refcounts are handled by
14238 adjust_dynamic_symbol */
14239 gofarg.gotoff = gotoff;
14240 gofarg.info = info;
14241 elf_link_hash_traverse (elf_hash_table (info),
14242 elf_gc_allocate_got_offsets,
14243 &gofarg);
14244 return TRUE;
14245 }
14246
14247 /* Many folk need no more in the way of final link than this, once
14248 got entry reference counting is enabled. */
14249
14250 bfd_boolean
14251 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14252 {
14253 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14254 return FALSE;
14255
14256 /* Invoke the regular ELF backend linker to do all the work. */
14257 return bfd_elf_final_link (abfd, info);
14258 }
14259
14260 bfd_boolean
14261 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14262 {
14263 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14264
14265 if (rcookie->bad_symtab)
14266 rcookie->rel = rcookie->rels;
14267
14268 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14269 {
14270 unsigned long r_symndx;
14271
14272 if (! rcookie->bad_symtab)
14273 if (rcookie->rel->r_offset > offset)
14274 return FALSE;
14275 if (rcookie->rel->r_offset != offset)
14276 continue;
14277
14278 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14279 if (r_symndx == STN_UNDEF)
14280 return TRUE;
14281
14282 if (r_symndx >= rcookie->locsymcount
14283 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14284 {
14285 struct elf_link_hash_entry *h;
14286
14287 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14288
14289 while (h->root.type == bfd_link_hash_indirect
14290 || h->root.type == bfd_link_hash_warning)
14291 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14292
14293 if ((h->root.type == bfd_link_hash_defined
14294 || h->root.type == bfd_link_hash_defweak)
14295 && (h->root.u.def.section->owner != rcookie->abfd
14296 || h->root.u.def.section->kept_section != NULL
14297 || discarded_section (h->root.u.def.section)))
14298 return TRUE;
14299 }
14300 else
14301 {
14302 /* It's not a relocation against a global symbol,
14303 but it could be a relocation against a local
14304 symbol for a discarded section. */
14305 asection *isec;
14306 Elf_Internal_Sym *isym;
14307
14308 /* Need to: get the symbol; get the section. */
14309 isym = &rcookie->locsyms[r_symndx];
14310 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14311 if (isec != NULL
14312 && (isec->kept_section != NULL
14313 || discarded_section (isec)))
14314 return TRUE;
14315 }
14316 return FALSE;
14317 }
14318 return FALSE;
14319 }
14320
14321 /* Discard unneeded references to discarded sections.
14322 Returns -1 on error, 1 if any section's size was changed, 0 if
14323 nothing changed. This function assumes that the relocations are in
14324 sorted order, which is true for all known assemblers. */
14325
14326 int
14327 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14328 {
14329 struct elf_reloc_cookie cookie;
14330 asection *o;
14331 bfd *abfd;
14332 int changed = 0;
14333
14334 if (info->traditional_format
14335 || !is_elf_hash_table (info->hash))
14336 return 0;
14337
14338 o = bfd_get_section_by_name (output_bfd, ".stab");
14339 if (o != NULL)
14340 {
14341 asection *i;
14342
14343 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14344 {
14345 if (i->size == 0
14346 || i->reloc_count == 0
14347 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14348 continue;
14349
14350 abfd = i->owner;
14351 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14352 continue;
14353
14354 if (!init_reloc_cookie_for_section (&cookie, info, i))
14355 return -1;
14356
14357 if (_bfd_discard_section_stabs (abfd, i,
14358 elf_section_data (i)->sec_info,
14359 bfd_elf_reloc_symbol_deleted_p,
14360 &cookie))
14361 changed = 1;
14362
14363 fini_reloc_cookie_for_section (&cookie, i);
14364 }
14365 }
14366
14367 o = NULL;
14368 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14369 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14370 if (o != NULL)
14371 {
14372 asection *i;
14373 int eh_changed = 0;
14374 unsigned int eh_alignment; /* Octets. */
14375
14376 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14377 {
14378 if (i->size == 0)
14379 continue;
14380
14381 abfd = i->owner;
14382 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14383 continue;
14384
14385 if (!init_reloc_cookie_for_section (&cookie, info, i))
14386 return -1;
14387
14388 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14389 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14390 bfd_elf_reloc_symbol_deleted_p,
14391 &cookie))
14392 {
14393 eh_changed = 1;
14394 if (i->size != i->rawsize)
14395 changed = 1;
14396 }
14397
14398 fini_reloc_cookie_for_section (&cookie, i);
14399 }
14400
14401 eh_alignment = ((1 << o->alignment_power)
14402 * bfd_octets_per_byte (output_bfd, o));
14403 /* Skip over zero terminator, and prevent empty sections from
14404 adding alignment padding at the end. */
14405 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14406 if (i->size == 0)
14407 i->flags |= SEC_EXCLUDE;
14408 else if (i->size > 4)
14409 break;
14410 /* The last non-empty eh_frame section doesn't need padding. */
14411 if (i != NULL)
14412 i = i->map_tail.s;
14413 /* Any prior sections must pad the last FDE out to the output
14414 section alignment. Otherwise we might have zero padding
14415 between sections, which would be seen as a terminator. */
14416 for (; i != NULL; i = i->map_tail.s)
14417 if (i->size == 4)
14418 /* All but the last zero terminator should have been removed. */
14419 BFD_FAIL ();
14420 else
14421 {
14422 bfd_size_type size
14423 = (i->size + eh_alignment - 1) & -eh_alignment;
14424 if (i->size != size)
14425 {
14426 i->size = size;
14427 changed = 1;
14428 eh_changed = 1;
14429 }
14430 }
14431 if (eh_changed)
14432 elf_link_hash_traverse (elf_hash_table (info),
14433 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14434 }
14435
14436 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14437 {
14438 const struct elf_backend_data *bed;
14439 asection *s;
14440
14441 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14442 continue;
14443 s = abfd->sections;
14444 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14445 continue;
14446
14447 bed = get_elf_backend_data (abfd);
14448
14449 if (bed->elf_backend_discard_info != NULL)
14450 {
14451 if (!init_reloc_cookie (&cookie, info, abfd))
14452 return -1;
14453
14454 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14455 changed = 1;
14456
14457 fini_reloc_cookie (&cookie, abfd);
14458 }
14459 }
14460
14461 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14462 _bfd_elf_end_eh_frame_parsing (info);
14463
14464 if (info->eh_frame_hdr_type
14465 && !bfd_link_relocatable (info)
14466 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14467 changed = 1;
14468
14469 return changed;
14470 }
14471
14472 bfd_boolean
14473 _bfd_elf_section_already_linked (bfd *abfd,
14474 asection *sec,
14475 struct bfd_link_info *info)
14476 {
14477 flagword flags;
14478 const char *name, *key;
14479 struct bfd_section_already_linked *l;
14480 struct bfd_section_already_linked_hash_entry *already_linked_list;
14481
14482 if (sec->output_section == bfd_abs_section_ptr)
14483 return FALSE;
14484
14485 flags = sec->flags;
14486
14487 /* Return if it isn't a linkonce section. A comdat group section
14488 also has SEC_LINK_ONCE set. */
14489 if ((flags & SEC_LINK_ONCE) == 0)
14490 return FALSE;
14491
14492 /* Don't put group member sections on our list of already linked
14493 sections. They are handled as a group via their group section. */
14494 if (elf_sec_group (sec) != NULL)
14495 return FALSE;
14496
14497 /* For a SHT_GROUP section, use the group signature as the key. */
14498 name = sec->name;
14499 if ((flags & SEC_GROUP) != 0
14500 && elf_next_in_group (sec) != NULL
14501 && elf_group_name (elf_next_in_group (sec)) != NULL)
14502 key = elf_group_name (elf_next_in_group (sec));
14503 else
14504 {
14505 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14506 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14507 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14508 key++;
14509 else
14510 /* Must be a user linkonce section that doesn't follow gcc's
14511 naming convention. In this case we won't be matching
14512 single member groups. */
14513 key = name;
14514 }
14515
14516 already_linked_list = bfd_section_already_linked_table_lookup (key);
14517
14518 for (l = already_linked_list->entry; l != NULL; l = l->next)
14519 {
14520 /* We may have 2 different types of sections on the list: group
14521 sections with a signature of <key> (<key> is some string),
14522 and linkonce sections named .gnu.linkonce.<type>.<key>.
14523 Match like sections. LTO plugin sections are an exception.
14524 They are always named .gnu.linkonce.t.<key> and match either
14525 type of section. */
14526 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14527 && ((flags & SEC_GROUP) != 0
14528 || strcmp (name, l->sec->name) == 0))
14529 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14530 {
14531 /* The section has already been linked. See if we should
14532 issue a warning. */
14533 if (!_bfd_handle_already_linked (sec, l, info))
14534 return FALSE;
14535
14536 if (flags & SEC_GROUP)
14537 {
14538 asection *first = elf_next_in_group (sec);
14539 asection *s = first;
14540
14541 while (s != NULL)
14542 {
14543 s->output_section = bfd_abs_section_ptr;
14544 /* Record which group discards it. */
14545 s->kept_section = l->sec;
14546 s = elf_next_in_group (s);
14547 /* These lists are circular. */
14548 if (s == first)
14549 break;
14550 }
14551 }
14552
14553 return TRUE;
14554 }
14555 }
14556
14557 /* A single member comdat group section may be discarded by a
14558 linkonce section and vice versa. */
14559 if ((flags & SEC_GROUP) != 0)
14560 {
14561 asection *first = elf_next_in_group (sec);
14562
14563 if (first != NULL && elf_next_in_group (first) == first)
14564 /* Check this single member group against linkonce sections. */
14565 for (l = already_linked_list->entry; l != NULL; l = l->next)
14566 if ((l->sec->flags & SEC_GROUP) == 0
14567 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14568 {
14569 first->output_section = bfd_abs_section_ptr;
14570 first->kept_section = l->sec;
14571 sec->output_section = bfd_abs_section_ptr;
14572 break;
14573 }
14574 }
14575 else
14576 /* Check this linkonce section against single member groups. */
14577 for (l = already_linked_list->entry; l != NULL; l = l->next)
14578 if (l->sec->flags & SEC_GROUP)
14579 {
14580 asection *first = elf_next_in_group (l->sec);
14581
14582 if (first != NULL
14583 && elf_next_in_group (first) == first
14584 && bfd_elf_match_symbols_in_sections (first, sec, info))
14585 {
14586 sec->output_section = bfd_abs_section_ptr;
14587 sec->kept_section = first;
14588 break;
14589 }
14590 }
14591
14592 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14593 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14594 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14595 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14596 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14597 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14598 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14599 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14600 The reverse order cannot happen as there is never a bfd with only the
14601 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14602 matter as here were are looking only for cross-bfd sections. */
14603
14604 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14605 for (l = already_linked_list->entry; l != NULL; l = l->next)
14606 if ((l->sec->flags & SEC_GROUP) == 0
14607 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14608 {
14609 if (abfd != l->sec->owner)
14610 sec->output_section = bfd_abs_section_ptr;
14611 break;
14612 }
14613
14614 /* This is the first section with this name. Record it. */
14615 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14616 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14617 return sec->output_section == bfd_abs_section_ptr;
14618 }
14619
14620 bfd_boolean
14621 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14622 {
14623 return sym->st_shndx == SHN_COMMON;
14624 }
14625
14626 unsigned int
14627 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14628 {
14629 return SHN_COMMON;
14630 }
14631
14632 asection *
14633 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14634 {
14635 return bfd_com_section_ptr;
14636 }
14637
14638 bfd_vma
14639 _bfd_elf_default_got_elt_size (bfd *abfd,
14640 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14641 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14642 bfd *ibfd ATTRIBUTE_UNUSED,
14643 unsigned long symndx ATTRIBUTE_UNUSED)
14644 {
14645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14646 return bed->s->arch_size / 8;
14647 }
14648
14649 /* Routines to support the creation of dynamic relocs. */
14650
14651 /* Returns the name of the dynamic reloc section associated with SEC. */
14652
14653 static const char *
14654 get_dynamic_reloc_section_name (bfd * abfd,
14655 asection * sec,
14656 bfd_boolean is_rela)
14657 {
14658 char *name;
14659 const char *old_name = bfd_section_name (sec);
14660 const char *prefix = is_rela ? ".rela" : ".rel";
14661
14662 if (old_name == NULL)
14663 return NULL;
14664
14665 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14666 sprintf (name, "%s%s", prefix, old_name);
14667
14668 return name;
14669 }
14670
14671 /* Returns the dynamic reloc section associated with SEC.
14672 If necessary compute the name of the dynamic reloc section based
14673 on SEC's name (looked up in ABFD's string table) and the setting
14674 of IS_RELA. */
14675
14676 asection *
14677 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14678 asection * sec,
14679 bfd_boolean is_rela)
14680 {
14681 asection * reloc_sec = elf_section_data (sec)->sreloc;
14682
14683 if (reloc_sec == NULL)
14684 {
14685 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14686
14687 if (name != NULL)
14688 {
14689 reloc_sec = bfd_get_linker_section (abfd, name);
14690
14691 if (reloc_sec != NULL)
14692 elf_section_data (sec)->sreloc = reloc_sec;
14693 }
14694 }
14695
14696 return reloc_sec;
14697 }
14698
14699 /* Returns the dynamic reloc section associated with SEC. If the
14700 section does not exist it is created and attached to the DYNOBJ
14701 bfd and stored in the SRELOC field of SEC's elf_section_data
14702 structure.
14703
14704 ALIGNMENT is the alignment for the newly created section and
14705 IS_RELA defines whether the name should be .rela.<SEC's name>
14706 or .rel.<SEC's name>. The section name is looked up in the
14707 string table associated with ABFD. */
14708
14709 asection *
14710 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14711 bfd *dynobj,
14712 unsigned int alignment,
14713 bfd *abfd,
14714 bfd_boolean is_rela)
14715 {
14716 asection * reloc_sec = elf_section_data (sec)->sreloc;
14717
14718 if (reloc_sec == NULL)
14719 {
14720 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14721
14722 if (name == NULL)
14723 return NULL;
14724
14725 reloc_sec = bfd_get_linker_section (dynobj, name);
14726
14727 if (reloc_sec == NULL)
14728 {
14729 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14730 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14731 if ((sec->flags & SEC_ALLOC) != 0)
14732 flags |= SEC_ALLOC | SEC_LOAD;
14733
14734 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14735 if (reloc_sec != NULL)
14736 {
14737 /* _bfd_elf_get_sec_type_attr chooses a section type by
14738 name. Override as it may be wrong, eg. for a user
14739 section named "auto" we'll get ".relauto" which is
14740 seen to be a .rela section. */
14741 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14742 if (!bfd_set_section_alignment (reloc_sec, alignment))
14743 reloc_sec = NULL;
14744 }
14745 }
14746
14747 elf_section_data (sec)->sreloc = reloc_sec;
14748 }
14749
14750 return reloc_sec;
14751 }
14752
14753 /* Copy the ELF symbol type and other attributes for a linker script
14754 assignment from HSRC to HDEST. Generally this should be treated as
14755 if we found a strong non-dynamic definition for HDEST (except that
14756 ld ignores multiple definition errors). */
14757 void
14758 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14759 struct bfd_link_hash_entry *hdest,
14760 struct bfd_link_hash_entry *hsrc)
14761 {
14762 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14763 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14764 Elf_Internal_Sym isym;
14765
14766 ehdest->type = ehsrc->type;
14767 ehdest->target_internal = ehsrc->target_internal;
14768
14769 isym.st_other = ehsrc->other;
14770 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14771 }
14772
14773 /* Append a RELA relocation REL to section S in BFD. */
14774
14775 void
14776 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14777 {
14778 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14779 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14780 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14781 bed->s->swap_reloca_out (abfd, rel, loc);
14782 }
14783
14784 /* Append a REL relocation REL to section S in BFD. */
14785
14786 void
14787 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14788 {
14789 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14790 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14791 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14792 bed->s->swap_reloc_out (abfd, rel, loc);
14793 }
14794
14795 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14796
14797 struct bfd_link_hash_entry *
14798 bfd_elf_define_start_stop (struct bfd_link_info *info,
14799 const char *symbol, asection *sec)
14800 {
14801 struct elf_link_hash_entry *h;
14802
14803 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14804 FALSE, FALSE, TRUE);
14805 /* NB: Common symbols will be turned into definition later. */
14806 if (h != NULL
14807 && (h->root.type == bfd_link_hash_undefined
14808 || h->root.type == bfd_link_hash_undefweak
14809 || ((h->ref_regular || h->def_dynamic)
14810 && !h->def_regular
14811 && h->root.type != bfd_link_hash_common)))
14812 {
14813 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14814 h->verinfo.verdef = NULL;
14815 h->root.type = bfd_link_hash_defined;
14816 h->root.u.def.section = sec;
14817 h->root.u.def.value = 0;
14818 h->def_regular = 1;
14819 h->def_dynamic = 0;
14820 h->start_stop = 1;
14821 h->u2.start_stop_section = sec;
14822 if (symbol[0] == '.')
14823 {
14824 /* .startof. and .sizeof. symbols are local. */
14825 const struct elf_backend_data *bed;
14826 bed = get_elf_backend_data (info->output_bfd);
14827 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14828 }
14829 else
14830 {
14831 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14832 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14833 if (was_dynamic)
14834 bfd_elf_link_record_dynamic_symbol (info, h);
14835 }
14836 return &h->root;
14837 }
14838 return NULL;
14839 }
14840
14841 /* Find dynamic relocs for H that apply to read-only sections. */
14842
14843 asection *
14844 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
14845 {
14846 struct elf_dyn_relocs *p;
14847
14848 for (p = h->dyn_relocs; p != NULL; p = p->next)
14849 {
14850 asection *s = p->sec->output_section;
14851
14852 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14853 return p->sec;
14854 }
14855 return NULL;
14856 }
14857
14858 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
14859 read-only sections. */
14860
14861 bfd_boolean
14862 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
14863 {
14864 asection *sec;
14865
14866 if (h->root.type == bfd_link_hash_indirect)
14867 return TRUE;
14868
14869 sec = _bfd_elf_readonly_dynrelocs (h);
14870 if (sec != NULL)
14871 {
14872 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14873
14874 info->flags |= DF_TEXTREL;
14875 /* xgettext:c-format */
14876 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
14877 "in read-only section `%pA'\n"),
14878 sec->owner, h->root.root.string, sec);
14879
14880 if (bfd_link_textrel_check (info))
14881 /* xgettext:c-format */
14882 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
14883 "in read-only section `%pA'\n"),
14884 sec->owner, h->root.root.string, sec);
14885
14886 /* Not an error, just cut short the traversal. */
14887 return FALSE;
14888 }
14889 return TRUE;
14890 }
This page took 0.353419 seconds and 4 git commands to generate.