* elflink.c (_bfd_elf_link_output_relocs): Delete unused variable
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->non_elf = 0;
90 h->type = STT_OBJECT;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
95 return h;
96 }
97
98 bfd_boolean
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
100 {
101 flagword flags;
102 asection *s;
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
106
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
110 return TRUE;
111
112 flags = bed->dynamic_sec_flags;
113
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
118 | SEC_READONLY));
119 if (s == NULL
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
121 return FALSE;
122 htab->srelgot = s;
123
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 if (s == NULL
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
127 return FALSE;
128 htab->sgot = s;
129
130 if (bed->want_got_plt)
131 {
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 if (s == NULL
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
136 return FALSE;
137 htab->sgotplt = s;
138 }
139
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
142
143 if (bed->want_got_sym)
144 {
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
152 if (h == NULL)
153 return FALSE;
154 }
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
307
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
311
312 pltflags = flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 else
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
322
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 if (s == NULL
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
326 return FALSE;
327 htab->splt = s;
328
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 .plt section. */
331 if (bed->want_plt_sym)
332 {
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
336 if (h == NULL)
337 return FALSE;
338 }
339
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
344 if (s == NULL
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
346 return FALSE;
347 htab->srelplt = s;
348
349 if (! _bfd_elf_create_got_section (abfd, info))
350 return FALSE;
351
352 if (bed->want_dynbss)
353 {
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 (SEC_ALLOC
362 | SEC_LINKER_CREATED));
363 if (s == NULL)
364 return FALSE;
365
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
376 copy relocs. */
377 if (! info->shared)
378 {
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
383 if (s == NULL
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
385 return FALSE;
386 }
387 }
388
389 return TRUE;
390 }
391 \f
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
398 one. */
399
400 bfd_boolean
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
403 {
404 if (h->dynindx == -1)
405 {
406 struct elf_strtab_hash *dynstr;
407 char *p;
408 const char *name;
409 bfd_size_type indx;
410
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
416 {
417 case STV_INTERNAL:
418 case STV_HIDDEN:
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
421 {
422 h->forced_local = 1;
423 if (!elf_hash_table (info)->is_relocatable_executable)
424 return TRUE;
425 }
426
427 default:
428 break;
429 }
430
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
433
434 dynstr = elf_hash_table (info)->dynstr;
435 if (dynstr == NULL)
436 {
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
439 if (dynstr == NULL)
440 return FALSE;
441 }
442
443 /* We don't put any version information in the dynamic string
444 table. */
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
447 if (p != NULL)
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
453 *p = 0;
454
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
456
457 if (p != NULL)
458 *p = ELF_VER_CHR;
459
460 if (indx == (bfd_size_type) -1)
461 return FALSE;
462 h->dynstr_index = indx;
463 }
464
465 return TRUE;
466 }
467 \f
468 /* Mark a symbol dynamic. */
469
470 static void
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
474 {
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
479 return;
480
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
483 || (sym != NULL
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 || (d != NULL
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
488 h->dynamic = 1;
489 }
490
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
493
494 bfd_boolean
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
497 const char *name,
498 bfd_boolean provide,
499 bfd_boolean hidden)
500 {
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
504
505 if (!is_elf_hash_table (info->hash))
506 return TRUE;
507
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
510 if (h == NULL)
511 return provide;
512
513 switch (h->root.type)
514 {
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
518 break;
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
527 break;
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
530 h->non_elf = 0;
531 break;
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
536 hv = h;
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
541 later. */
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 break;
547 case bfd_link_hash_warning:
548 abort ();
549 break;
550 }
551
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
556 if (provide
557 && h->def_dynamic
558 && !h->def_regular)
559 h->root.type = bfd_link_hash_undefined;
560
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
565 if (!provide
566 && h->def_dynamic
567 && !h->def_regular)
568 h->verinfo.verdef = NULL;
569
570 h->def_regular = 1;
571
572 if (provide && hidden)
573 {
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1021
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1028 if (abfd == oldbfd
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1032 return TRUE;
1033
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1036
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1072 && !info->shared
1073 && !info->export_dynamic
1074 && !h->ref_dynamic
1075 && newdyn
1076 && newdef
1077 && !olddyn
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1083 {
1084 *skip = TRUE;
1085 return TRUE;
1086 }
1087
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1089 "ld -u". */
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1092 && oldbfd != NULL)
1093 {
1094 bfd *ntbfd, *tbfd;
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1097
1098 if (h->type == STT_TLS)
1099 {
1100 ntbfd = abfd;
1101 ntsec = sec;
1102 ntdef = newdef;
1103 tbfd = oldbfd;
1104 tsec = oldsec;
1105 tdef = olddef;
1106 }
1107 else
1108 {
1109 ntbfd = oldbfd;
1110 ntsec = oldsec;
1111 ntdef = olddef;
1112 tbfd = abfd;
1113 tsec = sec;
1114 tdef = newdef;
1115 }
1116
1117 if (tdef && ntdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1125 else if (tdef)
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1129 else
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1133
1134 bfd_set_error (bfd_error_bad_value);
1135 return FALSE;
1136 }
1137
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1142 {
1143 if (!bfd_is_und_section (sec))
1144 h->dynamic_def = 1;
1145 else
1146 {
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1151 {
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1154 }
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1157 }
1158 }
1159
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1162 if (newdyn
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1165 {
1166 *skip = TRUE;
1167 /* Make sure this symbol is dynamic. */
1168 h->ref_dynamic = 1;
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1171
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1175 else
1176 return TRUE;
1177 }
1178 else if (!newdyn
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 && h->def_dynamic)
1181 {
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1186 {
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1191 if (h->ref_regular)
1192 {
1193 struct elf_link_hash_entry *vh = *sym_hash;
1194
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1201 {
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1205 }
1206 else
1207 {
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1214 }
1215 h = vh;
1216 }
1217 else
1218 h = *sym_hash;
1219 }
1220
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1223 {
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1229 undefs list. */
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1232 }
1233 else
1234 {
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1237 }
1238
1239 if (h->def_dynamic)
1240 {
1241 h->def_dynamic = 0;
1242 h->ref_dynamic = 1;
1243 h->dynamic_def = 1;
1244 }
1245 /* FIXME: Should we check type and size for protected symbol? */
1246 h->size = 0;
1247 h->type = 0;
1248 return TRUE;
1249 }
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1556 if (h->def_dynamic)
1557 {
1558 h->def_dynamic = 0;
1559 flip->ref_dynamic = 1;
1560 }
1561 }
1562
1563 return TRUE;
1564 }
1565
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1570
1571 static bfd_boolean
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1575 const char *name,
1576 Elf_Internal_Sym *sym,
1577 asection **psec,
1578 bfd_vma *value,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1581 {
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1584 bfd_boolean skip;
1585 char *shortname;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1591 char *p;
1592 size_t len, shortlen;
1593 asection *sec;
1594
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1601 return TRUE;
1602
1603 if (override)
1604 {
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 FALSE, FALSE);
1609 BFD_ASSERT (hi != NULL);
1610 if (hi == h)
1611 return TRUE;
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1614 {
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1616 if (hi == h)
1617 return TRUE;
1618 }
1619 }
1620
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1624
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1628 return FALSE;
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1631
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1638 sec = *psec;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1642 return FALSE;
1643
1644 if (skip)
1645 goto nondefault;
1646
1647 if (! override)
1648 {
1649 bh = &hi->root;
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1653 return FALSE;
1654 hi = (struct elf_link_hash_entry *) bh;
1655 }
1656 else
1657 {
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1663
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1667
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1675
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1682 if (h->def_dynamic)
1683 {
1684 h->def_dynamic = 0;
1685 hi->ref_dynamic = 1;
1686 if (hi->ref_regular
1687 || hi->def_regular)
1688 {
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1690 return FALSE;
1691 }
1692 }
1693
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1696 hi = h;
1697 }
1698
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1706
1707 if (hi->root.type == bfd_link_hash_indirect)
1708 {
1709 struct elf_link_hash_entry *ht;
1710
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713
1714 /* See if the new flags lead us to realize that the symbol must
1715 be dynamic. */
1716 if (! *dynsym)
1717 {
1718 if (! dynamic)
1719 {
1720 if (! info->executable
1721 || hi->ref_dynamic)
1722 *dynsym = TRUE;
1723 }
1724 else
1725 {
1726 if (hi->ref_regular)
1727 *dynsym = TRUE;
1728 }
1729 }
1730 }
1731
1732 /* We also need to define an indirection from the nondefault version
1733 of the symbol. */
1734
1735 nondefault:
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1739 return FALSE;
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1746 sec = *psec;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1750 return FALSE;
1751
1752 if (skip)
1753 return TRUE;
1754
1755 if (override)
1756 {
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1764 abfd, shortname);
1765 }
1766 else
1767 {
1768 bh = &hi->root;
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 return FALSE;
1773 hi = (struct elf_link_hash_entry *) bh;
1774
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1778
1779 if (hi->root.type == bfd_link_hash_indirect)
1780 {
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1786 {
1787 if (! dynamic)
1788 {
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1792 }
1793 else
1794 {
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1797 }
1798 }
1799 }
1800 }
1801
1802 return TRUE;
1803 }
1804 \f
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1807
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 {
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812
1813 /* Ignore this if we won't export it. */
1814 if (!eif->info->export_dynamic && !h->dynamic)
1815 return TRUE;
1816
1817 /* Ignore indirect symbols. These are added by the versioning code. */
1818 if (h->root.type == bfd_link_hash_indirect)
1819 return TRUE;
1820
1821 if (h->root.type == bfd_link_hash_warning)
1822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1823
1824 if (h->dynindx == -1
1825 && (h->def_regular
1826 || h->ref_regular))
1827 {
1828 bfd_boolean hide;
1829
1830 if (eif->verdefs == NULL
1831 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 && !hide))
1833 {
1834 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1835 {
1836 eif->failed = TRUE;
1837 return FALSE;
1838 }
1839 }
1840 }
1841
1842 return TRUE;
1843 }
1844 \f
1845 /* Look through the symbols which are defined in other shared
1846 libraries and referenced here. Update the list of version
1847 dependencies. This will be put into the .gnu.version_r section.
1848 This function is called via elf_link_hash_traverse. */
1849
1850 static bfd_boolean
1851 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 void *data)
1853 {
1854 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1855 Elf_Internal_Verneed *t;
1856 Elf_Internal_Vernaux *a;
1857 bfd_size_type amt;
1858
1859 if (h->root.type == bfd_link_hash_warning)
1860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1861
1862 /* We only care about symbols defined in shared objects with version
1863 information. */
1864 if (!h->def_dynamic
1865 || h->def_regular
1866 || h->dynindx == -1
1867 || h->verinfo.verdef == NULL)
1868 return TRUE;
1869
1870 /* See if we already know about this version. */
1871 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1872 t != NULL;
1873 t = t->vn_nextref)
1874 {
1875 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 continue;
1877
1878 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1879 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1880 return TRUE;
1881
1882 break;
1883 }
1884
1885 /* This is a new version. Add it to tree we are building. */
1886
1887 if (t == NULL)
1888 {
1889 amt = sizeof *t;
1890 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1891 if (t == NULL)
1892 {
1893 rinfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1898 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1899 elf_tdata (rinfo->info->output_bfd)->verref = t;
1900 }
1901
1902 amt = sizeof *a;
1903 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1904 if (a == NULL)
1905 {
1906 rinfo->failed = TRUE;
1907 return FALSE;
1908 }
1909
1910 /* Note that we are copying a string pointer here, and testing it
1911 above. If bfd_elf_string_from_elf_section is ever changed to
1912 discard the string data when low in memory, this will have to be
1913 fixed. */
1914 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1915
1916 a->vna_flags = h->verinfo.verdef->vd_flags;
1917 a->vna_nextptr = t->vn_auxptr;
1918
1919 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 ++rinfo->vers;
1921
1922 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1923
1924 t->vn_auxptr = a;
1925
1926 return TRUE;
1927 }
1928
1929 /* Figure out appropriate versions for all the symbols. We may not
1930 have the version number script until we have read all of the input
1931 files, so until that point we don't know which symbols should be
1932 local. This function is called via elf_link_hash_traverse. */
1933
1934 static bfd_boolean
1935 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1936 {
1937 struct elf_info_failed *sinfo;
1938 struct bfd_link_info *info;
1939 const struct elf_backend_data *bed;
1940 struct elf_info_failed eif;
1941 char *p;
1942 bfd_size_type amt;
1943
1944 sinfo = (struct elf_info_failed *) data;
1945 info = sinfo->info;
1946
1947 if (h->root.type == bfd_link_hash_warning)
1948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1949
1950 /* Fix the symbol flags. */
1951 eif.failed = FALSE;
1952 eif.info = info;
1953 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1954 {
1955 if (eif.failed)
1956 sinfo->failed = TRUE;
1957 return FALSE;
1958 }
1959
1960 /* We only need version numbers for symbols defined in regular
1961 objects. */
1962 if (!h->def_regular)
1963 return TRUE;
1964
1965 bed = get_elf_backend_data (info->output_bfd);
1966 p = strchr (h->root.root.string, ELF_VER_CHR);
1967 if (p != NULL && h->verinfo.vertree == NULL)
1968 {
1969 struct bfd_elf_version_tree *t;
1970 bfd_boolean hidden;
1971
1972 hidden = TRUE;
1973
1974 /* There are two consecutive ELF_VER_CHR characters if this is
1975 not a hidden symbol. */
1976 ++p;
1977 if (*p == ELF_VER_CHR)
1978 {
1979 hidden = FALSE;
1980 ++p;
1981 }
1982
1983 /* If there is no version string, we can just return out. */
1984 if (*p == '\0')
1985 {
1986 if (hidden)
1987 h->hidden = 1;
1988 return TRUE;
1989 }
1990
1991 /* Look for the version. If we find it, it is no longer weak. */
1992 for (t = sinfo->verdefs; t != NULL; t = t->next)
1993 {
1994 if (strcmp (t->name, p) == 0)
1995 {
1996 size_t len;
1997 char *alc;
1998 struct bfd_elf_version_expr *d;
1999
2000 len = p - h->root.root.string;
2001 alc = (char *) bfd_malloc (len);
2002 if (alc == NULL)
2003 {
2004 sinfo->failed = TRUE;
2005 return FALSE;
2006 }
2007 memcpy (alc, h->root.root.string, len - 1);
2008 alc[len - 1] = '\0';
2009 if (alc[len - 2] == ELF_VER_CHR)
2010 alc[len - 2] = '\0';
2011
2012 h->verinfo.vertree = t;
2013 t->used = TRUE;
2014 d = NULL;
2015
2016 if (t->globals.list != NULL)
2017 d = (*t->match) (&t->globals, NULL, alc);
2018
2019 /* See if there is anything to force this symbol to
2020 local scope. */
2021 if (d == NULL && t->locals.list != NULL)
2022 {
2023 d = (*t->match) (&t->locals, NULL, alc);
2024 if (d != NULL
2025 && h->dynindx != -1
2026 && ! info->export_dynamic)
2027 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2028 }
2029
2030 free (alc);
2031 break;
2032 }
2033 }
2034
2035 /* If we are building an application, we need to create a
2036 version node for this version. */
2037 if (t == NULL && info->executable)
2038 {
2039 struct bfd_elf_version_tree **pp;
2040 int version_index;
2041
2042 /* If we aren't going to export this symbol, we don't need
2043 to worry about it. */
2044 if (h->dynindx == -1)
2045 return TRUE;
2046
2047 amt = sizeof *t;
2048 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2049 if (t == NULL)
2050 {
2051 sinfo->failed = TRUE;
2052 return FALSE;
2053 }
2054
2055 t->name = p;
2056 t->name_indx = (unsigned int) -1;
2057 t->used = TRUE;
2058
2059 version_index = 1;
2060 /* Don't count anonymous version tag. */
2061 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2062 version_index = 0;
2063 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2064 ++version_index;
2065 t->vernum = version_index;
2066
2067 *pp = t;
2068
2069 h->verinfo.vertree = t;
2070 }
2071 else if (t == NULL)
2072 {
2073 /* We could not find the version for a symbol when
2074 generating a shared archive. Return an error. */
2075 (*_bfd_error_handler)
2076 (_("%B: version node not found for symbol %s"),
2077 info->output_bfd, h->root.root.string);
2078 bfd_set_error (bfd_error_bad_value);
2079 sinfo->failed = TRUE;
2080 return FALSE;
2081 }
2082
2083 if (hidden)
2084 h->hidden = 1;
2085 }
2086
2087 /* If we don't have a version for this symbol, see if we can find
2088 something. */
2089 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2090 {
2091 bfd_boolean hide;
2092
2093 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2094 h->root.root.string, &hide);
2095 if (h->verinfo.vertree != NULL && hide)
2096 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2097 }
2098
2099 return TRUE;
2100 }
2101 \f
2102 /* Read and swap the relocs from the section indicated by SHDR. This
2103 may be either a REL or a RELA section. The relocations are
2104 translated into RELA relocations and stored in INTERNAL_RELOCS,
2105 which should have already been allocated to contain enough space.
2106 The EXTERNAL_RELOCS are a buffer where the external form of the
2107 relocations should be stored.
2108
2109 Returns FALSE if something goes wrong. */
2110
2111 static bfd_boolean
2112 elf_link_read_relocs_from_section (bfd *abfd,
2113 asection *sec,
2114 Elf_Internal_Shdr *shdr,
2115 void *external_relocs,
2116 Elf_Internal_Rela *internal_relocs)
2117 {
2118 const struct elf_backend_data *bed;
2119 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2120 const bfd_byte *erela;
2121 const bfd_byte *erelaend;
2122 Elf_Internal_Rela *irela;
2123 Elf_Internal_Shdr *symtab_hdr;
2124 size_t nsyms;
2125
2126 /* Position ourselves at the start of the section. */
2127 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 return FALSE;
2129
2130 /* Read the relocations. */
2131 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 return FALSE;
2133
2134 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2135 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2136
2137 bed = get_elf_backend_data (abfd);
2138
2139 /* Convert the external relocations to the internal format. */
2140 if (shdr->sh_entsize == bed->s->sizeof_rel)
2141 swap_in = bed->s->swap_reloc_in;
2142 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2143 swap_in = bed->s->swap_reloca_in;
2144 else
2145 {
2146 bfd_set_error (bfd_error_wrong_format);
2147 return FALSE;
2148 }
2149
2150 erela = (const bfd_byte *) external_relocs;
2151 erelaend = erela + shdr->sh_size;
2152 irela = internal_relocs;
2153 while (erela < erelaend)
2154 {
2155 bfd_vma r_symndx;
2156
2157 (*swap_in) (abfd, erela, irela);
2158 r_symndx = ELF32_R_SYM (irela->r_info);
2159 if (bed->s->arch_size == 64)
2160 r_symndx >>= 24;
2161 if (nsyms > 0)
2162 {
2163 if ((size_t) r_symndx >= nsyms)
2164 {
2165 (*_bfd_error_handler)
2166 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2167 " for offset 0x%lx in section `%A'"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2172 }
2173 }
2174 else if (r_symndx != STN_UNDEF)
2175 {
2176 (*_bfd_error_handler)
2177 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2178 " when the object file has no symbol table"),
2179 abfd, sec,
2180 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2183 }
2184 irela += bed->s->int_rels_per_ext_rel;
2185 erela += shdr->sh_entsize;
2186 }
2187
2188 return TRUE;
2189 }
2190
2191 /* Read and swap the relocs for a section O. They may have been
2192 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2193 not NULL, they are used as buffers to read into. They are known to
2194 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2195 the return value is allocated using either malloc or bfd_alloc,
2196 according to the KEEP_MEMORY argument. If O has two relocation
2197 sections (both REL and RELA relocations), then the REL_HDR
2198 relocations will appear first in INTERNAL_RELOCS, followed by the
2199 RELA_HDR relocations. */
2200
2201 Elf_Internal_Rela *
2202 _bfd_elf_link_read_relocs (bfd *abfd,
2203 asection *o,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs,
2206 bfd_boolean keep_memory)
2207 {
2208 void *alloc1 = NULL;
2209 Elf_Internal_Rela *alloc2 = NULL;
2210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 struct bfd_elf_section_data *esdo = elf_section_data (o);
2212 Elf_Internal_Rela *internal_rela_relocs;
2213
2214 if (esdo->relocs != NULL)
2215 return esdo->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 if (internal_relocs == NULL)
2221 {
2222 bfd_size_type size;
2223
2224 size = o->reloc_count;
2225 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 if (keep_memory)
2227 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2228 else
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2230 if (internal_relocs == NULL)
2231 goto error_return;
2232 }
2233
2234 if (external_relocs == NULL)
2235 {
2236 bfd_size_type size = 0;
2237
2238 if (esdo->rel.hdr)
2239 size += esdo->rel.hdr->sh_size;
2240 if (esdo->rela.hdr)
2241 size += esdo->rela.hdr->sh_size;
2242
2243 alloc1 = bfd_malloc (size);
2244 if (alloc1 == NULL)
2245 goto error_return;
2246 external_relocs = alloc1;
2247 }
2248
2249 internal_rela_relocs = internal_relocs;
2250 if (esdo->rel.hdr)
2251 {
2252 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2253 external_relocs,
2254 internal_relocs))
2255 goto error_return;
2256 external_relocs = (((bfd_byte *) external_relocs)
2257 + esdo->rel.hdr->sh_size);
2258 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2259 * bed->s->int_rels_per_ext_rel);
2260 }
2261
2262 if (esdo->rela.hdr
2263 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2264 external_relocs,
2265 internal_rela_relocs)))
2266 goto error_return;
2267
2268 /* Cache the results for next time, if we can. */
2269 if (keep_memory)
2270 esdo->relocs = internal_relocs;
2271
2272 if (alloc1 != NULL)
2273 free (alloc1);
2274
2275 /* Don't free alloc2, since if it was allocated we are passing it
2276 back (under the name of internal_relocs). */
2277
2278 return internal_relocs;
2279
2280 error_return:
2281 if (alloc1 != NULL)
2282 free (alloc1);
2283 if (alloc2 != NULL)
2284 {
2285 if (keep_memory)
2286 bfd_release (abfd, alloc2);
2287 else
2288 free (alloc2);
2289 }
2290 return NULL;
2291 }
2292
2293 /* Compute the size of, and allocate space for, REL_HDR which is the
2294 section header for a section containing relocations for O. */
2295
2296 static bfd_boolean
2297 _bfd_elf_link_size_reloc_section (bfd *abfd,
2298 struct bfd_elf_section_reloc_data *reldata)
2299 {
2300 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2301
2302 /* That allows us to calculate the size of the section. */
2303 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2304
2305 /* The contents field must last into write_object_contents, so we
2306 allocate it with bfd_alloc rather than malloc. Also since we
2307 cannot be sure that the contents will actually be filled in,
2308 we zero the allocated space. */
2309 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2310 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2311 return FALSE;
2312
2313 if (reldata->hashes == NULL && reldata->count)
2314 {
2315 struct elf_link_hash_entry **p;
2316
2317 p = (struct elf_link_hash_entry **)
2318 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2319 if (p == NULL)
2320 return FALSE;
2321
2322 reldata->hashes = p;
2323 }
2324
2325 return TRUE;
2326 }
2327
2328 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2329 originated from the section given by INPUT_REL_HDR) to the
2330 OUTPUT_BFD. */
2331
2332 bfd_boolean
2333 _bfd_elf_link_output_relocs (bfd *output_bfd,
2334 asection *input_section,
2335 Elf_Internal_Shdr *input_rel_hdr,
2336 Elf_Internal_Rela *internal_relocs,
2337 struct elf_link_hash_entry **rel_hash
2338 ATTRIBUTE_UNUSED)
2339 {
2340 Elf_Internal_Rela *irela;
2341 Elf_Internal_Rela *irelaend;
2342 bfd_byte *erel;
2343 struct bfd_elf_section_reloc_data *output_reldata;
2344 asection *output_section;
2345 const struct elf_backend_data *bed;
2346 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2347 struct bfd_elf_section_data *esdo;
2348
2349 output_section = input_section->output_section;
2350
2351 bed = get_elf_backend_data (output_bfd);
2352 esdo = elf_section_data (output_section);
2353 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2354 {
2355 output_reldata = &esdo->rel;
2356 swap_out = bed->s->swap_reloc_out;
2357 }
2358 else if (esdo->rela.hdr
2359 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2360 {
2361 output_reldata = &esdo->rela;
2362 swap_out = bed->s->swap_reloca_out;
2363 }
2364 else
2365 {
2366 (*_bfd_error_handler)
2367 (_("%B: relocation size mismatch in %B section %A"),
2368 output_bfd, input_section->owner, input_section);
2369 bfd_set_error (bfd_error_wrong_format);
2370 return FALSE;
2371 }
2372
2373 erel = output_reldata->hdr->contents;
2374 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2375 irela = internal_relocs;
2376 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2377 * bed->s->int_rels_per_ext_rel);
2378 while (irela < irelaend)
2379 {
2380 (*swap_out) (output_bfd, irela, erel);
2381 irela += bed->s->int_rels_per_ext_rel;
2382 erel += input_rel_hdr->sh_entsize;
2383 }
2384
2385 /* Bump the counter, so that we know where to add the next set of
2386 relocations. */
2387 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2388
2389 return TRUE;
2390 }
2391 \f
2392 /* Make weak undefined symbols in PIE dynamic. */
2393
2394 bfd_boolean
2395 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2397 {
2398 if (info->pie
2399 && h->dynindx == -1
2400 && h->root.type == bfd_link_hash_undefweak)
2401 return bfd_elf_link_record_dynamic_symbol (info, h);
2402
2403 return TRUE;
2404 }
2405
2406 /* Fix up the flags for a symbol. This handles various cases which
2407 can only be fixed after all the input files are seen. This is
2408 currently called by both adjust_dynamic_symbol and
2409 assign_sym_version, which is unnecessary but perhaps more robust in
2410 the face of future changes. */
2411
2412 static bfd_boolean
2413 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2414 struct elf_info_failed *eif)
2415 {
2416 const struct elf_backend_data *bed;
2417
2418 /* If this symbol was mentioned in a non-ELF file, try to set
2419 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2420 permit a non-ELF file to correctly refer to a symbol defined in
2421 an ELF dynamic object. */
2422 if (h->non_elf)
2423 {
2424 while (h->root.type == bfd_link_hash_indirect)
2425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2426
2427 if (h->root.type != bfd_link_hash_defined
2428 && h->root.type != bfd_link_hash_defweak)
2429 {
2430 h->ref_regular = 1;
2431 h->ref_regular_nonweak = 1;
2432 }
2433 else
2434 {
2435 if (h->root.u.def.section->owner != NULL
2436 && (bfd_get_flavour (h->root.u.def.section->owner)
2437 == bfd_target_elf_flavour))
2438 {
2439 h->ref_regular = 1;
2440 h->ref_regular_nonweak = 1;
2441 }
2442 else
2443 h->def_regular = 1;
2444 }
2445
2446 if (h->dynindx == -1
2447 && (h->def_dynamic
2448 || h->ref_dynamic))
2449 {
2450 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2451 {
2452 eif->failed = TRUE;
2453 return FALSE;
2454 }
2455 }
2456 }
2457 else
2458 {
2459 /* Unfortunately, NON_ELF is only correct if the symbol
2460 was first seen in a non-ELF file. Fortunately, if the symbol
2461 was first seen in an ELF file, we're probably OK unless the
2462 symbol was defined in a non-ELF file. Catch that case here.
2463 FIXME: We're still in trouble if the symbol was first seen in
2464 a dynamic object, and then later in a non-ELF regular object. */
2465 if ((h->root.type == bfd_link_hash_defined
2466 || h->root.type == bfd_link_hash_defweak)
2467 && !h->def_regular
2468 && (h->root.u.def.section->owner != NULL
2469 ? (bfd_get_flavour (h->root.u.def.section->owner)
2470 != bfd_target_elf_flavour)
2471 : (bfd_is_abs_section (h->root.u.def.section)
2472 && !h->def_dynamic)))
2473 h->def_regular = 1;
2474 }
2475
2476 /* Backend specific symbol fixup. */
2477 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2478 if (bed->elf_backend_fixup_symbol
2479 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2480 return FALSE;
2481
2482 /* If this is a final link, and the symbol was defined as a common
2483 symbol in a regular object file, and there was no definition in
2484 any dynamic object, then the linker will have allocated space for
2485 the symbol in a common section but the DEF_REGULAR
2486 flag will not have been set. */
2487 if (h->root.type == bfd_link_hash_defined
2488 && !h->def_regular
2489 && h->ref_regular
2490 && !h->def_dynamic
2491 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2492 h->def_regular = 1;
2493
2494 /* If -Bsymbolic was used (which means to bind references to global
2495 symbols to the definition within the shared object), and this
2496 symbol was defined in a regular object, then it actually doesn't
2497 need a PLT entry. Likewise, if the symbol has non-default
2498 visibility. If the symbol has hidden or internal visibility, we
2499 will force it local. */
2500 if (h->needs_plt
2501 && eif->info->shared
2502 && is_elf_hash_table (eif->info->hash)
2503 && (SYMBOLIC_BIND (eif->info, h)
2504 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2505 && h->def_regular)
2506 {
2507 bfd_boolean force_local;
2508
2509 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2510 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2511 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2512 }
2513
2514 /* If a weak undefined symbol has non-default visibility, we also
2515 hide it from the dynamic linker. */
2516 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2517 && h->root.type == bfd_link_hash_undefweak)
2518 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2519
2520 /* If this is a weak defined symbol in a dynamic object, and we know
2521 the real definition in the dynamic object, copy interesting flags
2522 over to the real definition. */
2523 if (h->u.weakdef != NULL)
2524 {
2525 struct elf_link_hash_entry *weakdef;
2526
2527 weakdef = h->u.weakdef;
2528 if (h->root.type == bfd_link_hash_indirect)
2529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2530
2531 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2532 || h->root.type == bfd_link_hash_defweak);
2533 BFD_ASSERT (weakdef->def_dynamic);
2534
2535 /* If the real definition is defined by a regular object file,
2536 don't do anything special. See the longer description in
2537 _bfd_elf_adjust_dynamic_symbol, below. */
2538 if (weakdef->def_regular)
2539 h->u.weakdef = NULL;
2540 else
2541 {
2542 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2543 || weakdef->root.type == bfd_link_hash_defweak);
2544 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2545 }
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Make the backend pick a good value for a dynamic symbol. This is
2552 called via elf_link_hash_traverse, and also calls itself
2553 recursively. */
2554
2555 static bfd_boolean
2556 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2557 {
2558 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2559 bfd *dynobj;
2560 const struct elf_backend_data *bed;
2561
2562 if (! is_elf_hash_table (eif->info->hash))
2563 return FALSE;
2564
2565 if (h->root.type == bfd_link_hash_warning)
2566 {
2567 h->got = elf_hash_table (eif->info)->init_got_offset;
2568 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2569
2570 /* When warning symbols are created, they **replace** the "real"
2571 entry in the hash table, thus we never get to see the real
2572 symbol in a hash traversal. So look at it now. */
2573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2574 }
2575
2576 /* Ignore indirect symbols. These are added by the versioning code. */
2577 if (h->root.type == bfd_link_hash_indirect)
2578 return TRUE;
2579
2580 /* Fix the symbol flags. */
2581 if (! _bfd_elf_fix_symbol_flags (h, eif))
2582 return FALSE;
2583
2584 /* If this symbol does not require a PLT entry, and it is not
2585 defined by a dynamic object, or is not referenced by a regular
2586 object, ignore it. We do have to handle a weak defined symbol,
2587 even if no regular object refers to it, if we decided to add it
2588 to the dynamic symbol table. FIXME: Do we normally need to worry
2589 about symbols which are defined by one dynamic object and
2590 referenced by another one? */
2591 if (!h->needs_plt
2592 && h->type != STT_GNU_IFUNC
2593 && (h->def_regular
2594 || !h->def_dynamic
2595 || (!h->ref_regular
2596 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2597 {
2598 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2599 return TRUE;
2600 }
2601
2602 /* If we've already adjusted this symbol, don't do it again. This
2603 can happen via a recursive call. */
2604 if (h->dynamic_adjusted)
2605 return TRUE;
2606
2607 /* Don't look at this symbol again. Note that we must set this
2608 after checking the above conditions, because we may look at a
2609 symbol once, decide not to do anything, and then get called
2610 recursively later after REF_REGULAR is set below. */
2611 h->dynamic_adjusted = 1;
2612
2613 /* If this is a weak definition, and we know a real definition, and
2614 the real symbol is not itself defined by a regular object file,
2615 then get a good value for the real definition. We handle the
2616 real symbol first, for the convenience of the backend routine.
2617
2618 Note that there is a confusing case here. If the real definition
2619 is defined by a regular object file, we don't get the real symbol
2620 from the dynamic object, but we do get the weak symbol. If the
2621 processor backend uses a COPY reloc, then if some routine in the
2622 dynamic object changes the real symbol, we will not see that
2623 change in the corresponding weak symbol. This is the way other
2624 ELF linkers work as well, and seems to be a result of the shared
2625 library model.
2626
2627 I will clarify this issue. Most SVR4 shared libraries define the
2628 variable _timezone and define timezone as a weak synonym. The
2629 tzset call changes _timezone. If you write
2630 extern int timezone;
2631 int _timezone = 5;
2632 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2633 you might expect that, since timezone is a synonym for _timezone,
2634 the same number will print both times. However, if the processor
2635 backend uses a COPY reloc, then actually timezone will be copied
2636 into your process image, and, since you define _timezone
2637 yourself, _timezone will not. Thus timezone and _timezone will
2638 wind up at different memory locations. The tzset call will set
2639 _timezone, leaving timezone unchanged. */
2640
2641 if (h->u.weakdef != NULL)
2642 {
2643 /* If we get to this point, we know there is an implicit
2644 reference by a regular object file via the weak symbol H.
2645 FIXME: Is this really true? What if the traversal finds
2646 H->U.WEAKDEF before it finds H? */
2647 h->u.weakdef->ref_regular = 1;
2648
2649 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2650 return FALSE;
2651 }
2652
2653 /* If a symbol has no type and no size and does not require a PLT
2654 entry, then we are probably about to do the wrong thing here: we
2655 are probably going to create a COPY reloc for an empty object.
2656 This case can arise when a shared object is built with assembly
2657 code, and the assembly code fails to set the symbol type. */
2658 if (h->size == 0
2659 && h->type == STT_NOTYPE
2660 && !h->needs_plt)
2661 (*_bfd_error_handler)
2662 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2663 h->root.root.string);
2664
2665 dynobj = elf_hash_table (eif->info)->dynobj;
2666 bed = get_elf_backend_data (dynobj);
2667
2668 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2669 {
2670 eif->failed = TRUE;
2671 return FALSE;
2672 }
2673
2674 return TRUE;
2675 }
2676
2677 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2678 DYNBSS. */
2679
2680 bfd_boolean
2681 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2682 asection *dynbss)
2683 {
2684 unsigned int power_of_two;
2685 bfd_vma mask;
2686 asection *sec = h->root.u.def.section;
2687
2688 /* The section aligment of definition is the maximum alignment
2689 requirement of symbols defined in the section. Since we don't
2690 know the symbol alignment requirement, we start with the
2691 maximum alignment and check low bits of the symbol address
2692 for the minimum alignment. */
2693 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2694 mask = ((bfd_vma) 1 << power_of_two) - 1;
2695 while ((h->root.u.def.value & mask) != 0)
2696 {
2697 mask >>= 1;
2698 --power_of_two;
2699 }
2700
2701 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2702 dynbss))
2703 {
2704 /* Adjust the section alignment if needed. */
2705 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2706 power_of_two))
2707 return FALSE;
2708 }
2709
2710 /* We make sure that the symbol will be aligned properly. */
2711 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2712
2713 /* Define the symbol as being at this point in DYNBSS. */
2714 h->root.u.def.section = dynbss;
2715 h->root.u.def.value = dynbss->size;
2716
2717 /* Increment the size of DYNBSS to make room for the symbol. */
2718 dynbss->size += h->size;
2719
2720 return TRUE;
2721 }
2722
2723 /* Adjust all external symbols pointing into SEC_MERGE sections
2724 to reflect the object merging within the sections. */
2725
2726 static bfd_boolean
2727 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2728 {
2729 asection *sec;
2730
2731 if (h->root.type == bfd_link_hash_warning)
2732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2733
2734 if ((h->root.type == bfd_link_hash_defined
2735 || h->root.type == bfd_link_hash_defweak)
2736 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2737 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2738 {
2739 bfd *output_bfd = (bfd *) data;
2740
2741 h->root.u.def.value =
2742 _bfd_merged_section_offset (output_bfd,
2743 &h->root.u.def.section,
2744 elf_section_data (sec)->sec_info,
2745 h->root.u.def.value);
2746 }
2747
2748 return TRUE;
2749 }
2750
2751 /* Returns false if the symbol referred to by H should be considered
2752 to resolve local to the current module, and true if it should be
2753 considered to bind dynamically. */
2754
2755 bfd_boolean
2756 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2757 struct bfd_link_info *info,
2758 bfd_boolean not_local_protected)
2759 {
2760 bfd_boolean binding_stays_local_p;
2761 const struct elf_backend_data *bed;
2762 struct elf_link_hash_table *hash_table;
2763
2764 if (h == NULL)
2765 return FALSE;
2766
2767 while (h->root.type == bfd_link_hash_indirect
2768 || h->root.type == bfd_link_hash_warning)
2769 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2770
2771 /* If it was forced local, then clearly it's not dynamic. */
2772 if (h->dynindx == -1)
2773 return FALSE;
2774 if (h->forced_local)
2775 return FALSE;
2776
2777 /* Identify the cases where name binding rules say that a
2778 visible symbol resolves locally. */
2779 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2780
2781 switch (ELF_ST_VISIBILITY (h->other))
2782 {
2783 case STV_INTERNAL:
2784 case STV_HIDDEN:
2785 return FALSE;
2786
2787 case STV_PROTECTED:
2788 hash_table = elf_hash_table (info);
2789 if (!is_elf_hash_table (hash_table))
2790 return FALSE;
2791
2792 bed = get_elf_backend_data (hash_table->dynobj);
2793
2794 /* Proper resolution for function pointer equality may require
2795 that these symbols perhaps be resolved dynamically, even though
2796 we should be resolving them to the current module. */
2797 if (!not_local_protected || !bed->is_function_type (h->type))
2798 binding_stays_local_p = TRUE;
2799 break;
2800
2801 default:
2802 break;
2803 }
2804
2805 /* If it isn't defined locally, then clearly it's dynamic. */
2806 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2807 return TRUE;
2808
2809 /* Otherwise, the symbol is dynamic if binding rules don't tell
2810 us that it remains local. */
2811 return !binding_stays_local_p;
2812 }
2813
2814 /* Return true if the symbol referred to by H should be considered
2815 to resolve local to the current module, and false otherwise. Differs
2816 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2817 undefined symbols. The two functions are virtually identical except
2818 for the place where forced_local and dynindx == -1 are tested. If
2819 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2820 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2821 the symbol is local only for defined symbols.
2822 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2823 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2824 treatment of undefined weak symbols. For those that do not make
2825 undefined weak symbols dynamic, both functions may return false. */
2826
2827 bfd_boolean
2828 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2829 struct bfd_link_info *info,
2830 bfd_boolean local_protected)
2831 {
2832 const struct elf_backend_data *bed;
2833 struct elf_link_hash_table *hash_table;
2834
2835 /* If it's a local sym, of course we resolve locally. */
2836 if (h == NULL)
2837 return TRUE;
2838
2839 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2840 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2841 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2842 return TRUE;
2843
2844 /* Common symbols that become definitions don't get the DEF_REGULAR
2845 flag set, so test it first, and don't bail out. */
2846 if (ELF_COMMON_DEF_P (h))
2847 /* Do nothing. */;
2848 /* If we don't have a definition in a regular file, then we can't
2849 resolve locally. The sym is either undefined or dynamic. */
2850 else if (!h->def_regular)
2851 return FALSE;
2852
2853 /* Forced local symbols resolve locally. */
2854 if (h->forced_local)
2855 return TRUE;
2856
2857 /* As do non-dynamic symbols. */
2858 if (h->dynindx == -1)
2859 return TRUE;
2860
2861 /* At this point, we know the symbol is defined and dynamic. In an
2862 executable it must resolve locally, likewise when building symbolic
2863 shared libraries. */
2864 if (info->executable || SYMBOLIC_BIND (info, h))
2865 return TRUE;
2866
2867 /* Now deal with defined dynamic symbols in shared libraries. Ones
2868 with default visibility might not resolve locally. */
2869 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2870 return FALSE;
2871
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return TRUE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* STV_PROTECTED non-function symbols are local. */
2879 if (!bed->is_function_type (h->type))
2880 return TRUE;
2881
2882 /* Function pointer equality tests may require that STV_PROTECTED
2883 symbols be treated as dynamic symbols, even when we know that the
2884 dynamic linker will resolve them locally. */
2885 return local_protected;
2886 }
2887
2888 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2889 aligned. Returns the first TLS output section. */
2890
2891 struct bfd_section *
2892 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2893 {
2894 struct bfd_section *sec, *tls;
2895 unsigned int align = 0;
2896
2897 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2898 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2899 break;
2900 tls = sec;
2901
2902 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2903 if (sec->alignment_power > align)
2904 align = sec->alignment_power;
2905
2906 elf_hash_table (info)->tls_sec = tls;
2907
2908 /* Ensure the alignment of the first section is the largest alignment,
2909 so that the tls segment starts aligned. */
2910 if (tls != NULL)
2911 tls->alignment_power = align;
2912
2913 return tls;
2914 }
2915
2916 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2917 static bfd_boolean
2918 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2919 Elf_Internal_Sym *sym)
2920 {
2921 const struct elf_backend_data *bed;
2922
2923 /* Local symbols do not count, but target specific ones might. */
2924 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2925 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2926 return FALSE;
2927
2928 bed = get_elf_backend_data (abfd);
2929 /* Function symbols do not count. */
2930 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2931 return FALSE;
2932
2933 /* If the section is undefined, then so is the symbol. */
2934 if (sym->st_shndx == SHN_UNDEF)
2935 return FALSE;
2936
2937 /* If the symbol is defined in the common section, then
2938 it is a common definition and so does not count. */
2939 if (bed->common_definition (sym))
2940 return FALSE;
2941
2942 /* If the symbol is in a target specific section then we
2943 must rely upon the backend to tell us what it is. */
2944 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2945 /* FIXME - this function is not coded yet:
2946
2947 return _bfd_is_global_symbol_definition (abfd, sym);
2948
2949 Instead for now assume that the definition is not global,
2950 Even if this is wrong, at least the linker will behave
2951 in the same way that it used to do. */
2952 return FALSE;
2953
2954 return TRUE;
2955 }
2956
2957 /* Search the symbol table of the archive element of the archive ABFD
2958 whose archive map contains a mention of SYMDEF, and determine if
2959 the symbol is defined in this element. */
2960 static bfd_boolean
2961 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2962 {
2963 Elf_Internal_Shdr * hdr;
2964 bfd_size_type symcount;
2965 bfd_size_type extsymcount;
2966 bfd_size_type extsymoff;
2967 Elf_Internal_Sym *isymbuf;
2968 Elf_Internal_Sym *isym;
2969 Elf_Internal_Sym *isymend;
2970 bfd_boolean result;
2971
2972 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2973 if (abfd == NULL)
2974 return FALSE;
2975
2976 if (! bfd_check_format (abfd, bfd_object))
2977 return FALSE;
2978
2979 /* If we have already included the element containing this symbol in the
2980 link then we do not need to include it again. Just claim that any symbol
2981 it contains is not a definition, so that our caller will not decide to
2982 (re)include this element. */
2983 if (abfd->archive_pass)
2984 return FALSE;
2985
2986 /* Select the appropriate symbol table. */
2987 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2988 hdr = &elf_tdata (abfd)->symtab_hdr;
2989 else
2990 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2991
2992 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2993
2994 /* The sh_info field of the symtab header tells us where the
2995 external symbols start. We don't care about the local symbols. */
2996 if (elf_bad_symtab (abfd))
2997 {
2998 extsymcount = symcount;
2999 extsymoff = 0;
3000 }
3001 else
3002 {
3003 extsymcount = symcount - hdr->sh_info;
3004 extsymoff = hdr->sh_info;
3005 }
3006
3007 if (extsymcount == 0)
3008 return FALSE;
3009
3010 /* Read in the symbol table. */
3011 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3012 NULL, NULL, NULL);
3013 if (isymbuf == NULL)
3014 return FALSE;
3015
3016 /* Scan the symbol table looking for SYMDEF. */
3017 result = FALSE;
3018 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3019 {
3020 const char *name;
3021
3022 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3023 isym->st_name);
3024 if (name == NULL)
3025 break;
3026
3027 if (strcmp (name, symdef->name) == 0)
3028 {
3029 result = is_global_data_symbol_definition (abfd, isym);
3030 break;
3031 }
3032 }
3033
3034 free (isymbuf);
3035
3036 return result;
3037 }
3038 \f
3039 /* Add an entry to the .dynamic table. */
3040
3041 bfd_boolean
3042 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3043 bfd_vma tag,
3044 bfd_vma val)
3045 {
3046 struct elf_link_hash_table *hash_table;
3047 const struct elf_backend_data *bed;
3048 asection *s;
3049 bfd_size_type newsize;
3050 bfd_byte *newcontents;
3051 Elf_Internal_Dyn dyn;
3052
3053 hash_table = elf_hash_table (info);
3054 if (! is_elf_hash_table (hash_table))
3055 return FALSE;
3056
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 BFD_ASSERT (s != NULL);
3060
3061 newsize = s->size + bed->s->sizeof_dyn;
3062 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3063 if (newcontents == NULL)
3064 return FALSE;
3065
3066 dyn.d_tag = tag;
3067 dyn.d_un.d_val = val;
3068 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3069
3070 s->size = newsize;
3071 s->contents = newcontents;
3072
3073 return TRUE;
3074 }
3075
3076 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3077 otherwise just check whether one already exists. Returns -1 on error,
3078 1 if a DT_NEEDED tag already exists, and 0 on success. */
3079
3080 static int
3081 elf_add_dt_needed_tag (bfd *abfd,
3082 struct bfd_link_info *info,
3083 const char *soname,
3084 bfd_boolean do_it)
3085 {
3086 struct elf_link_hash_table *hash_table;
3087 bfd_size_type oldsize;
3088 bfd_size_type strindex;
3089
3090 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3091 return -1;
3092
3093 hash_table = elf_hash_table (info);
3094 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3095 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3096 if (strindex == (bfd_size_type) -1)
3097 return -1;
3098
3099 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3100 {
3101 asection *sdyn;
3102 const struct elf_backend_data *bed;
3103 bfd_byte *extdyn;
3104
3105 bed = get_elf_backend_data (hash_table->dynobj);
3106 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3107 if (sdyn != NULL)
3108 for (extdyn = sdyn->contents;
3109 extdyn < sdyn->contents + sdyn->size;
3110 extdyn += bed->s->sizeof_dyn)
3111 {
3112 Elf_Internal_Dyn dyn;
3113
3114 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3115 if (dyn.d_tag == DT_NEEDED
3116 && dyn.d_un.d_val == strindex)
3117 {
3118 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3119 return 1;
3120 }
3121 }
3122 }
3123
3124 if (do_it)
3125 {
3126 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3127 return -1;
3128
3129 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3130 return -1;
3131 }
3132 else
3133 /* We were just checking for existence of the tag. */
3134 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3135
3136 return 0;
3137 }
3138
3139 static bfd_boolean
3140 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3141 {
3142 for (; needed != NULL; needed = needed->next)
3143 if (strcmp (soname, needed->name) == 0)
3144 return TRUE;
3145
3146 return FALSE;
3147 }
3148
3149 /* Sort symbol by value and section. */
3150 static int
3151 elf_sort_symbol (const void *arg1, const void *arg2)
3152 {
3153 const struct elf_link_hash_entry *h1;
3154 const struct elf_link_hash_entry *h2;
3155 bfd_signed_vma vdiff;
3156
3157 h1 = *(const struct elf_link_hash_entry **) arg1;
3158 h2 = *(const struct elf_link_hash_entry **) arg2;
3159 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3160 if (vdiff != 0)
3161 return vdiff > 0 ? 1 : -1;
3162 else
3163 {
3164 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3165 if (sdiff != 0)
3166 return sdiff > 0 ? 1 : -1;
3167 }
3168 return 0;
3169 }
3170
3171 /* This function is used to adjust offsets into .dynstr for
3172 dynamic symbols. This is called via elf_link_hash_traverse. */
3173
3174 static bfd_boolean
3175 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3176 {
3177 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3178
3179 if (h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 if (h->dynindx != -1)
3183 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3184 return TRUE;
3185 }
3186
3187 /* Assign string offsets in .dynstr, update all structures referencing
3188 them. */
3189
3190 static bfd_boolean
3191 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3192 {
3193 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3194 struct elf_link_local_dynamic_entry *entry;
3195 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3196 bfd *dynobj = hash_table->dynobj;
3197 asection *sdyn;
3198 bfd_size_type size;
3199 const struct elf_backend_data *bed;
3200 bfd_byte *extdyn;
3201
3202 _bfd_elf_strtab_finalize (dynstr);
3203 size = _bfd_elf_strtab_size (dynstr);
3204
3205 bed = get_elf_backend_data (dynobj);
3206 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3207 BFD_ASSERT (sdyn != NULL);
3208
3209 /* Update all .dynamic entries referencing .dynstr strings. */
3210 for (extdyn = sdyn->contents;
3211 extdyn < sdyn->contents + sdyn->size;
3212 extdyn += bed->s->sizeof_dyn)
3213 {
3214 Elf_Internal_Dyn dyn;
3215
3216 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3217 switch (dyn.d_tag)
3218 {
3219 case DT_STRSZ:
3220 dyn.d_un.d_val = size;
3221 break;
3222 case DT_NEEDED:
3223 case DT_SONAME:
3224 case DT_RPATH:
3225 case DT_RUNPATH:
3226 case DT_FILTER:
3227 case DT_AUXILIARY:
3228 case DT_AUDIT:
3229 case DT_DEPAUDIT:
3230 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3231 break;
3232 default:
3233 continue;
3234 }
3235 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3236 }
3237
3238 /* Now update local dynamic symbols. */
3239 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3240 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3241 entry->isym.st_name);
3242
3243 /* And the rest of dynamic symbols. */
3244 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3245
3246 /* Adjust version definitions. */
3247 if (elf_tdata (output_bfd)->cverdefs)
3248 {
3249 asection *s;
3250 bfd_byte *p;
3251 bfd_size_type i;
3252 Elf_Internal_Verdef def;
3253 Elf_Internal_Verdaux defaux;
3254
3255 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3256 p = s->contents;
3257 do
3258 {
3259 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3260 &def);
3261 p += sizeof (Elf_External_Verdef);
3262 if (def.vd_aux != sizeof (Elf_External_Verdef))
3263 continue;
3264 for (i = 0; i < def.vd_cnt; ++i)
3265 {
3266 _bfd_elf_swap_verdaux_in (output_bfd,
3267 (Elf_External_Verdaux *) p, &defaux);
3268 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3269 defaux.vda_name);
3270 _bfd_elf_swap_verdaux_out (output_bfd,
3271 &defaux, (Elf_External_Verdaux *) p);
3272 p += sizeof (Elf_External_Verdaux);
3273 }
3274 }
3275 while (def.vd_next);
3276 }
3277
3278 /* Adjust version references. */
3279 if (elf_tdata (output_bfd)->verref)
3280 {
3281 asection *s;
3282 bfd_byte *p;
3283 bfd_size_type i;
3284 Elf_Internal_Verneed need;
3285 Elf_Internal_Vernaux needaux;
3286
3287 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3288 p = s->contents;
3289 do
3290 {
3291 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3292 &need);
3293 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3294 _bfd_elf_swap_verneed_out (output_bfd, &need,
3295 (Elf_External_Verneed *) p);
3296 p += sizeof (Elf_External_Verneed);
3297 for (i = 0; i < need.vn_cnt; ++i)
3298 {
3299 _bfd_elf_swap_vernaux_in (output_bfd,
3300 (Elf_External_Vernaux *) p, &needaux);
3301 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3302 needaux.vna_name);
3303 _bfd_elf_swap_vernaux_out (output_bfd,
3304 &needaux,
3305 (Elf_External_Vernaux *) p);
3306 p += sizeof (Elf_External_Vernaux);
3307 }
3308 }
3309 while (need.vn_next);
3310 }
3311
3312 return TRUE;
3313 }
3314 \f
3315 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3316 The default is to only match when the INPUT and OUTPUT are exactly
3317 the same target. */
3318
3319 bfd_boolean
3320 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3321 const bfd_target *output)
3322 {
3323 return input == output;
3324 }
3325
3326 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3327 This version is used when different targets for the same architecture
3328 are virtually identical. */
3329
3330 bfd_boolean
3331 _bfd_elf_relocs_compatible (const bfd_target *input,
3332 const bfd_target *output)
3333 {
3334 const struct elf_backend_data *obed, *ibed;
3335
3336 if (input == output)
3337 return TRUE;
3338
3339 ibed = xvec_get_elf_backend_data (input);
3340 obed = xvec_get_elf_backend_data (output);
3341
3342 if (ibed->arch != obed->arch)
3343 return FALSE;
3344
3345 /* If both backends are using this function, deem them compatible. */
3346 return ibed->relocs_compatible == obed->relocs_compatible;
3347 }
3348
3349 /* Add symbols from an ELF object file to the linker hash table. */
3350
3351 static bfd_boolean
3352 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3353 {
3354 Elf_Internal_Ehdr *ehdr;
3355 Elf_Internal_Shdr *hdr;
3356 bfd_size_type symcount;
3357 bfd_size_type extsymcount;
3358 bfd_size_type extsymoff;
3359 struct elf_link_hash_entry **sym_hash;
3360 bfd_boolean dynamic;
3361 Elf_External_Versym *extversym = NULL;
3362 Elf_External_Versym *ever;
3363 struct elf_link_hash_entry *weaks;
3364 struct elf_link_hash_entry **nondeflt_vers = NULL;
3365 bfd_size_type nondeflt_vers_cnt = 0;
3366 Elf_Internal_Sym *isymbuf = NULL;
3367 Elf_Internal_Sym *isym;
3368 Elf_Internal_Sym *isymend;
3369 const struct elf_backend_data *bed;
3370 bfd_boolean add_needed;
3371 struct elf_link_hash_table *htab;
3372 bfd_size_type amt;
3373 void *alloc_mark = NULL;
3374 struct bfd_hash_entry **old_table = NULL;
3375 unsigned int old_size = 0;
3376 unsigned int old_count = 0;
3377 void *old_tab = NULL;
3378 void *old_hash;
3379 void *old_ent;
3380 struct bfd_link_hash_entry *old_undefs = NULL;
3381 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3382 long old_dynsymcount = 0;
3383 size_t tabsize = 0;
3384 size_t hashsize = 0;
3385
3386 htab = elf_hash_table (info);
3387 bed = get_elf_backend_data (abfd);
3388
3389 if ((abfd->flags & DYNAMIC) == 0)
3390 dynamic = FALSE;
3391 else
3392 {
3393 dynamic = TRUE;
3394
3395 /* You can't use -r against a dynamic object. Also, there's no
3396 hope of using a dynamic object which does not exactly match
3397 the format of the output file. */
3398 if (info->relocatable
3399 || !is_elf_hash_table (htab)
3400 || info->output_bfd->xvec != abfd->xvec)
3401 {
3402 if (info->relocatable)
3403 bfd_set_error (bfd_error_invalid_operation);
3404 else
3405 bfd_set_error (bfd_error_wrong_format);
3406 goto error_return;
3407 }
3408 }
3409
3410 ehdr = elf_elfheader (abfd);
3411 if (info->warn_alternate_em
3412 && bed->elf_machine_code != ehdr->e_machine
3413 && ((bed->elf_machine_alt1 != 0
3414 && ehdr->e_machine == bed->elf_machine_alt1)
3415 || (bed->elf_machine_alt2 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt2)))
3417 info->callbacks->einfo
3418 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3419 ehdr->e_machine, abfd, bed->elf_machine_code);
3420
3421 /* As a GNU extension, any input sections which are named
3422 .gnu.warning.SYMBOL are treated as warning symbols for the given
3423 symbol. This differs from .gnu.warning sections, which generate
3424 warnings when they are included in an output file. */
3425 if (info->executable)
3426 {
3427 asection *s;
3428
3429 for (s = abfd->sections; s != NULL; s = s->next)
3430 {
3431 const char *name;
3432
3433 name = bfd_get_section_name (abfd, s);
3434 if (CONST_STRNEQ (name, ".gnu.warning."))
3435 {
3436 char *msg;
3437 bfd_size_type sz;
3438
3439 name += sizeof ".gnu.warning." - 1;
3440
3441 /* If this is a shared object, then look up the symbol
3442 in the hash table. If it is there, and it is already
3443 been defined, then we will not be using the entry
3444 from this shared object, so we don't need to warn.
3445 FIXME: If we see the definition in a regular object
3446 later on, we will warn, but we shouldn't. The only
3447 fix is to keep track of what warnings we are supposed
3448 to emit, and then handle them all at the end of the
3449 link. */
3450 if (dynamic)
3451 {
3452 struct elf_link_hash_entry *h;
3453
3454 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3455
3456 /* FIXME: What about bfd_link_hash_common? */
3457 if (h != NULL
3458 && (h->root.type == bfd_link_hash_defined
3459 || h->root.type == bfd_link_hash_defweak))
3460 {
3461 /* We don't want to issue this warning. Clobber
3462 the section size so that the warning does not
3463 get copied into the output file. */
3464 s->size = 0;
3465 continue;
3466 }
3467 }
3468
3469 sz = s->size;
3470 msg = (char *) bfd_alloc (abfd, sz + 1);
3471 if (msg == NULL)
3472 goto error_return;
3473
3474 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3475 goto error_return;
3476
3477 msg[sz] = '\0';
3478
3479 if (! (_bfd_generic_link_add_one_symbol
3480 (info, abfd, name, BSF_WARNING, s, 0, msg,
3481 FALSE, bed->collect, NULL)))
3482 goto error_return;
3483
3484 if (! info->relocatable)
3485 {
3486 /* Clobber the section size so that the warning does
3487 not get copied into the output file. */
3488 s->size = 0;
3489
3490 /* Also set SEC_EXCLUDE, so that symbols defined in
3491 the warning section don't get copied to the output. */
3492 s->flags |= SEC_EXCLUDE;
3493 }
3494 }
3495 }
3496 }
3497
3498 add_needed = TRUE;
3499 if (! dynamic)
3500 {
3501 /* If we are creating a shared library, create all the dynamic
3502 sections immediately. We need to attach them to something,
3503 so we attach them to this BFD, provided it is the right
3504 format. FIXME: If there are no input BFD's of the same
3505 format as the output, we can't make a shared library. */
3506 if (info->shared
3507 && is_elf_hash_table (htab)
3508 && info->output_bfd->xvec == abfd->xvec
3509 && !htab->dynamic_sections_created)
3510 {
3511 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3512 goto error_return;
3513 }
3514 }
3515 else if (!is_elf_hash_table (htab))
3516 goto error_return;
3517 else
3518 {
3519 asection *s;
3520 const char *soname = NULL;
3521 char *audit = NULL;
3522 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3523 int ret;
3524
3525 /* ld --just-symbols and dynamic objects don't mix very well.
3526 ld shouldn't allow it. */
3527 if ((s = abfd->sections) != NULL
3528 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3529 abort ();
3530
3531 /* If this dynamic lib was specified on the command line with
3532 --as-needed in effect, then we don't want to add a DT_NEEDED
3533 tag unless the lib is actually used. Similary for libs brought
3534 in by another lib's DT_NEEDED. When --no-add-needed is used
3535 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3536 any dynamic library in DT_NEEDED tags in the dynamic lib at
3537 all. */
3538 add_needed = (elf_dyn_lib_class (abfd)
3539 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3540 | DYN_NO_NEEDED)) == 0;
3541
3542 s = bfd_get_section_by_name (abfd, ".dynamic");
3543 if (s != NULL)
3544 {
3545 bfd_byte *dynbuf;
3546 bfd_byte *extdyn;
3547 unsigned int elfsec;
3548 unsigned long shlink;
3549
3550 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3551 {
3552 error_free_dyn:
3553 free (dynbuf);
3554 goto error_return;
3555 }
3556
3557 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3558 if (elfsec == SHN_BAD)
3559 goto error_free_dyn;
3560 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3561
3562 for (extdyn = dynbuf;
3563 extdyn < dynbuf + s->size;
3564 extdyn += bed->s->sizeof_dyn)
3565 {
3566 Elf_Internal_Dyn dyn;
3567
3568 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3569 if (dyn.d_tag == DT_SONAME)
3570 {
3571 unsigned int tagv = dyn.d_un.d_val;
3572 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3573 if (soname == NULL)
3574 goto error_free_dyn;
3575 }
3576 if (dyn.d_tag == DT_NEEDED)
3577 {
3578 struct bfd_link_needed_list *n, **pn;
3579 char *fnm, *anm;
3580 unsigned int tagv = dyn.d_un.d_val;
3581
3582 amt = sizeof (struct bfd_link_needed_list);
3583 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3584 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3585 if (n == NULL || fnm == NULL)
3586 goto error_free_dyn;
3587 amt = strlen (fnm) + 1;
3588 anm = (char *) bfd_alloc (abfd, amt);
3589 if (anm == NULL)
3590 goto error_free_dyn;
3591 memcpy (anm, fnm, amt);
3592 n->name = anm;
3593 n->by = abfd;
3594 n->next = NULL;
3595 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3596 ;
3597 *pn = n;
3598 }
3599 if (dyn.d_tag == DT_RUNPATH)
3600 {
3601 struct bfd_link_needed_list *n, **pn;
3602 char *fnm, *anm;
3603 unsigned int tagv = dyn.d_un.d_val;
3604
3605 amt = sizeof (struct bfd_link_needed_list);
3606 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3607 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3608 if (n == NULL || fnm == NULL)
3609 goto error_free_dyn;
3610 amt = strlen (fnm) + 1;
3611 anm = (char *) bfd_alloc (abfd, amt);
3612 if (anm == NULL)
3613 goto error_free_dyn;
3614 memcpy (anm, fnm, amt);
3615 n->name = anm;
3616 n->by = abfd;
3617 n->next = NULL;
3618 for (pn = & runpath;
3619 *pn != NULL;
3620 pn = &(*pn)->next)
3621 ;
3622 *pn = n;
3623 }
3624 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3625 if (!runpath && dyn.d_tag == DT_RPATH)
3626 {
3627 struct bfd_link_needed_list *n, **pn;
3628 char *fnm, *anm;
3629 unsigned int tagv = dyn.d_un.d_val;
3630
3631 amt = sizeof (struct bfd_link_needed_list);
3632 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3633 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3634 if (n == NULL || fnm == NULL)
3635 goto error_free_dyn;
3636 amt = strlen (fnm) + 1;
3637 anm = (char *) bfd_alloc (abfd, amt);
3638 if (anm == NULL)
3639 goto error_free_dyn;
3640 memcpy (anm, fnm, amt);
3641 n->name = anm;
3642 n->by = abfd;
3643 n->next = NULL;
3644 for (pn = & rpath;
3645 *pn != NULL;
3646 pn = &(*pn)->next)
3647 ;
3648 *pn = n;
3649 }
3650 if (dyn.d_tag == DT_AUDIT)
3651 {
3652 unsigned int tagv = dyn.d_un.d_val;
3653 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3654 }
3655 }
3656
3657 free (dynbuf);
3658 }
3659
3660 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3661 frees all more recently bfd_alloc'd blocks as well. */
3662 if (runpath)
3663 rpath = runpath;
3664
3665 if (rpath)
3666 {
3667 struct bfd_link_needed_list **pn;
3668 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3669 ;
3670 *pn = rpath;
3671 }
3672
3673 /* We do not want to include any of the sections in a dynamic
3674 object in the output file. We hack by simply clobbering the
3675 list of sections in the BFD. This could be handled more
3676 cleanly by, say, a new section flag; the existing
3677 SEC_NEVER_LOAD flag is not the one we want, because that one
3678 still implies that the section takes up space in the output
3679 file. */
3680 bfd_section_list_clear (abfd);
3681
3682 /* Find the name to use in a DT_NEEDED entry that refers to this
3683 object. If the object has a DT_SONAME entry, we use it.
3684 Otherwise, if the generic linker stuck something in
3685 elf_dt_name, we use that. Otherwise, we just use the file
3686 name. */
3687 if (soname == NULL || *soname == '\0')
3688 {
3689 soname = elf_dt_name (abfd);
3690 if (soname == NULL || *soname == '\0')
3691 soname = bfd_get_filename (abfd);
3692 }
3693
3694 /* Save the SONAME because sometimes the linker emulation code
3695 will need to know it. */
3696 elf_dt_name (abfd) = soname;
3697
3698 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3699 if (ret < 0)
3700 goto error_return;
3701
3702 /* If we have already included this dynamic object in the
3703 link, just ignore it. There is no reason to include a
3704 particular dynamic object more than once. */
3705 if (ret > 0)
3706 return TRUE;
3707
3708 /* Save the DT_AUDIT entry for the linker emulation code. */
3709 elf_dt_audit (abfd) = audit;
3710 }
3711
3712 /* If this is a dynamic object, we always link against the .dynsym
3713 symbol table, not the .symtab symbol table. The dynamic linker
3714 will only see the .dynsym symbol table, so there is no reason to
3715 look at .symtab for a dynamic object. */
3716
3717 if (! dynamic || elf_dynsymtab (abfd) == 0)
3718 hdr = &elf_tdata (abfd)->symtab_hdr;
3719 else
3720 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3721
3722 symcount = hdr->sh_size / bed->s->sizeof_sym;
3723
3724 /* The sh_info field of the symtab header tells us where the
3725 external symbols start. We don't care about the local symbols at
3726 this point. */
3727 if (elf_bad_symtab (abfd))
3728 {
3729 extsymcount = symcount;
3730 extsymoff = 0;
3731 }
3732 else
3733 {
3734 extsymcount = symcount - hdr->sh_info;
3735 extsymoff = hdr->sh_info;
3736 }
3737
3738 sym_hash = NULL;
3739 if (extsymcount != 0)
3740 {
3741 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3742 NULL, NULL, NULL);
3743 if (isymbuf == NULL)
3744 goto error_return;
3745
3746 /* We store a pointer to the hash table entry for each external
3747 symbol. */
3748 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3749 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3750 if (sym_hash == NULL)
3751 goto error_free_sym;
3752 elf_sym_hashes (abfd) = sym_hash;
3753 }
3754
3755 if (dynamic)
3756 {
3757 /* Read in any version definitions. */
3758 if (!_bfd_elf_slurp_version_tables (abfd,
3759 info->default_imported_symver))
3760 goto error_free_sym;
3761
3762 /* Read in the symbol versions, but don't bother to convert them
3763 to internal format. */
3764 if (elf_dynversym (abfd) != 0)
3765 {
3766 Elf_Internal_Shdr *versymhdr;
3767
3768 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3769 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3770 if (extversym == NULL)
3771 goto error_free_sym;
3772 amt = versymhdr->sh_size;
3773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3774 || bfd_bread (extversym, amt, abfd) != amt)
3775 goto error_free_vers;
3776 }
3777 }
3778
3779 /* If we are loading an as-needed shared lib, save the symbol table
3780 state before we start adding symbols. If the lib turns out
3781 to be unneeded, restore the state. */
3782 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3783 {
3784 unsigned int i;
3785 size_t entsize;
3786
3787 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3788 {
3789 struct bfd_hash_entry *p;
3790 struct elf_link_hash_entry *h;
3791
3792 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3793 {
3794 h = (struct elf_link_hash_entry *) p;
3795 entsize += htab->root.table.entsize;
3796 if (h->root.type == bfd_link_hash_warning)
3797 entsize += htab->root.table.entsize;
3798 }
3799 }
3800
3801 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3802 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3803 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3804 if (old_tab == NULL)
3805 goto error_free_vers;
3806
3807 /* Remember the current objalloc pointer, so that all mem for
3808 symbols added can later be reclaimed. */
3809 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3810 if (alloc_mark == NULL)
3811 goto error_free_vers;
3812
3813 /* Make a special call to the linker "notice" function to
3814 tell it that we are about to handle an as-needed lib. */
3815 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3816 notice_as_needed))
3817 goto error_free_vers;
3818
3819 /* Clone the symbol table and sym hashes. Remember some
3820 pointers into the symbol table, and dynamic symbol count. */
3821 old_hash = (char *) old_tab + tabsize;
3822 old_ent = (char *) old_hash + hashsize;
3823 memcpy (old_tab, htab->root.table.table, tabsize);
3824 memcpy (old_hash, sym_hash, hashsize);
3825 old_undefs = htab->root.undefs;
3826 old_undefs_tail = htab->root.undefs_tail;
3827 old_table = htab->root.table.table;
3828 old_size = htab->root.table.size;
3829 old_count = htab->root.table.count;
3830 old_dynsymcount = htab->dynsymcount;
3831
3832 for (i = 0; i < htab->root.table.size; i++)
3833 {
3834 struct bfd_hash_entry *p;
3835 struct elf_link_hash_entry *h;
3836
3837 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3838 {
3839 memcpy (old_ent, p, htab->root.table.entsize);
3840 old_ent = (char *) old_ent + htab->root.table.entsize;
3841 h = (struct elf_link_hash_entry *) p;
3842 if (h->root.type == bfd_link_hash_warning)
3843 {
3844 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3845 old_ent = (char *) old_ent + htab->root.table.entsize;
3846 }
3847 }
3848 }
3849 }
3850
3851 weaks = NULL;
3852 ever = extversym != NULL ? extversym + extsymoff : NULL;
3853 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3854 isym < isymend;
3855 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3856 {
3857 int bind;
3858 bfd_vma value;
3859 asection *sec, *new_sec;
3860 flagword flags;
3861 const char *name;
3862 struct elf_link_hash_entry *h;
3863 bfd_boolean definition;
3864 bfd_boolean size_change_ok;
3865 bfd_boolean type_change_ok;
3866 bfd_boolean new_weakdef;
3867 bfd_boolean override;
3868 bfd_boolean common;
3869 unsigned int old_alignment;
3870 bfd *old_bfd;
3871 bfd * undef_bfd = NULL;
3872
3873 override = FALSE;
3874
3875 flags = BSF_NO_FLAGS;
3876 sec = NULL;
3877 value = isym->st_value;
3878 *sym_hash = NULL;
3879 common = bed->common_definition (isym);
3880
3881 bind = ELF_ST_BIND (isym->st_info);
3882 switch (bind)
3883 {
3884 case STB_LOCAL:
3885 /* This should be impossible, since ELF requires that all
3886 global symbols follow all local symbols, and that sh_info
3887 point to the first global symbol. Unfortunately, Irix 5
3888 screws this up. */
3889 continue;
3890
3891 case STB_GLOBAL:
3892 if (isym->st_shndx != SHN_UNDEF && !common)
3893 flags = BSF_GLOBAL;
3894 break;
3895
3896 case STB_WEAK:
3897 flags = BSF_WEAK;
3898 break;
3899
3900 case STB_GNU_UNIQUE:
3901 flags = BSF_GNU_UNIQUE;
3902 break;
3903
3904 default:
3905 /* Leave it up to the processor backend. */
3906 break;
3907 }
3908
3909 if (isym->st_shndx == SHN_UNDEF)
3910 sec = bfd_und_section_ptr;
3911 else if (isym->st_shndx == SHN_ABS)
3912 sec = bfd_abs_section_ptr;
3913 else if (isym->st_shndx == SHN_COMMON)
3914 {
3915 sec = bfd_com_section_ptr;
3916 /* What ELF calls the size we call the value. What ELF
3917 calls the value we call the alignment. */
3918 value = isym->st_size;
3919 }
3920 else
3921 {
3922 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3923 if (sec == NULL)
3924 sec = bfd_abs_section_ptr;
3925 else if (sec->kept_section)
3926 {
3927 /* Symbols from discarded section are undefined. We keep
3928 its visibility. */
3929 sec = bfd_und_section_ptr;
3930 isym->st_shndx = SHN_UNDEF;
3931 }
3932 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3933 value -= sec->vma;
3934 }
3935
3936 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3937 isym->st_name);
3938 if (name == NULL)
3939 goto error_free_vers;
3940
3941 if (isym->st_shndx == SHN_COMMON
3942 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3943 && !info->relocatable)
3944 {
3945 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3946
3947 if (tcomm == NULL)
3948 {
3949 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3950 (SEC_ALLOC
3951 | SEC_IS_COMMON
3952 | SEC_LINKER_CREATED
3953 | SEC_THREAD_LOCAL));
3954 if (tcomm == NULL)
3955 goto error_free_vers;
3956 }
3957 sec = tcomm;
3958 }
3959 else if (bed->elf_add_symbol_hook)
3960 {
3961 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3962 &sec, &value))
3963 goto error_free_vers;
3964
3965 /* The hook function sets the name to NULL if this symbol
3966 should be skipped for some reason. */
3967 if (name == NULL)
3968 continue;
3969 }
3970
3971 /* Sanity check that all possibilities were handled. */
3972 if (sec == NULL)
3973 {
3974 bfd_set_error (bfd_error_bad_value);
3975 goto error_free_vers;
3976 }
3977
3978 if (bfd_is_und_section (sec)
3979 || bfd_is_com_section (sec))
3980 definition = FALSE;
3981 else
3982 definition = TRUE;
3983
3984 size_change_ok = FALSE;
3985 type_change_ok = bed->type_change_ok;
3986 old_alignment = 0;
3987 old_bfd = NULL;
3988 new_sec = sec;
3989
3990 if (is_elf_hash_table (htab))
3991 {
3992 Elf_Internal_Versym iver;
3993 unsigned int vernum = 0;
3994 bfd_boolean skip;
3995
3996 /* If this is a definition of a symbol which was previously
3997 referenced in a non-weak manner then make a note of the bfd
3998 that contained the reference. This is used if we need to
3999 refer to the source of the reference later on. */
4000 if (! bfd_is_und_section (sec))
4001 {
4002 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4003
4004 if (h != NULL
4005 && h->root.type == bfd_link_hash_undefined
4006 && h->root.u.undef.abfd)
4007 undef_bfd = h->root.u.undef.abfd;
4008 }
4009
4010 if (ever == NULL)
4011 {
4012 if (info->default_imported_symver)
4013 /* Use the default symbol version created earlier. */
4014 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4015 else
4016 iver.vs_vers = 0;
4017 }
4018 else
4019 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4020
4021 vernum = iver.vs_vers & VERSYM_VERSION;
4022
4023 /* If this is a hidden symbol, or if it is not version
4024 1, we append the version name to the symbol name.
4025 However, we do not modify a non-hidden absolute symbol
4026 if it is not a function, because it might be the version
4027 symbol itself. FIXME: What if it isn't? */
4028 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4029 || (vernum > 1
4030 && (!bfd_is_abs_section (sec)
4031 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4032 {
4033 const char *verstr;
4034 size_t namelen, verlen, newlen;
4035 char *newname, *p;
4036
4037 if (isym->st_shndx != SHN_UNDEF)
4038 {
4039 if (vernum > elf_tdata (abfd)->cverdefs)
4040 verstr = NULL;
4041 else if (vernum > 1)
4042 verstr =
4043 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4044 else
4045 verstr = "";
4046
4047 if (verstr == NULL)
4048 {
4049 (*_bfd_error_handler)
4050 (_("%B: %s: invalid version %u (max %d)"),
4051 abfd, name, vernum,
4052 elf_tdata (abfd)->cverdefs);
4053 bfd_set_error (bfd_error_bad_value);
4054 goto error_free_vers;
4055 }
4056 }
4057 else
4058 {
4059 /* We cannot simply test for the number of
4060 entries in the VERNEED section since the
4061 numbers for the needed versions do not start
4062 at 0. */
4063 Elf_Internal_Verneed *t;
4064
4065 verstr = NULL;
4066 for (t = elf_tdata (abfd)->verref;
4067 t != NULL;
4068 t = t->vn_nextref)
4069 {
4070 Elf_Internal_Vernaux *a;
4071
4072 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4073 {
4074 if (a->vna_other == vernum)
4075 {
4076 verstr = a->vna_nodename;
4077 break;
4078 }
4079 }
4080 if (a != NULL)
4081 break;
4082 }
4083 if (verstr == NULL)
4084 {
4085 (*_bfd_error_handler)
4086 (_("%B: %s: invalid needed version %d"),
4087 abfd, name, vernum);
4088 bfd_set_error (bfd_error_bad_value);
4089 goto error_free_vers;
4090 }
4091 }
4092
4093 namelen = strlen (name);
4094 verlen = strlen (verstr);
4095 newlen = namelen + verlen + 2;
4096 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4097 && isym->st_shndx != SHN_UNDEF)
4098 ++newlen;
4099
4100 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4101 if (newname == NULL)
4102 goto error_free_vers;
4103 memcpy (newname, name, namelen);
4104 p = newname + namelen;
4105 *p++ = ELF_VER_CHR;
4106 /* If this is a defined non-hidden version symbol,
4107 we add another @ to the name. This indicates the
4108 default version of the symbol. */
4109 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4110 && isym->st_shndx != SHN_UNDEF)
4111 *p++ = ELF_VER_CHR;
4112 memcpy (p, verstr, verlen + 1);
4113
4114 name = newname;
4115 }
4116
4117 /* If necessary, make a second attempt to locate the bfd
4118 containing an unresolved, non-weak reference to the
4119 current symbol. */
4120 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4121 {
4122 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4123
4124 if (h != NULL
4125 && h->root.type == bfd_link_hash_undefined
4126 && h->root.u.undef.abfd)
4127 undef_bfd = h->root.u.undef.abfd;
4128 }
4129
4130 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4131 &value, &old_alignment,
4132 sym_hash, &skip, &override,
4133 &type_change_ok, &size_change_ok))
4134 goto error_free_vers;
4135
4136 if (skip)
4137 continue;
4138
4139 if (override)
4140 definition = FALSE;
4141
4142 h = *sym_hash;
4143 while (h->root.type == bfd_link_hash_indirect
4144 || h->root.type == bfd_link_hash_warning)
4145 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4146
4147 /* Remember the old alignment if this is a common symbol, so
4148 that we don't reduce the alignment later on. We can't
4149 check later, because _bfd_generic_link_add_one_symbol
4150 will set a default for the alignment which we want to
4151 override. We also remember the old bfd where the existing
4152 definition comes from. */
4153 switch (h->root.type)
4154 {
4155 default:
4156 break;
4157
4158 case bfd_link_hash_defined:
4159 case bfd_link_hash_defweak:
4160 old_bfd = h->root.u.def.section->owner;
4161 break;
4162
4163 case bfd_link_hash_common:
4164 old_bfd = h->root.u.c.p->section->owner;
4165 old_alignment = h->root.u.c.p->alignment_power;
4166 break;
4167 }
4168
4169 if (elf_tdata (abfd)->verdef != NULL
4170 && ! override
4171 && vernum > 1
4172 && definition)
4173 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4174 }
4175
4176 if (! (_bfd_generic_link_add_one_symbol
4177 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4178 (struct bfd_link_hash_entry **) sym_hash)))
4179 goto error_free_vers;
4180
4181 h = *sym_hash;
4182 while (h->root.type == bfd_link_hash_indirect
4183 || h->root.type == bfd_link_hash_warning)
4184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4185
4186 *sym_hash = h;
4187 if (is_elf_hash_table (htab))
4188 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4189
4190 new_weakdef = FALSE;
4191 if (dynamic
4192 && definition
4193 && (flags & BSF_WEAK) != 0
4194 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4195 && is_elf_hash_table (htab)
4196 && h->u.weakdef == NULL)
4197 {
4198 /* Keep a list of all weak defined non function symbols from
4199 a dynamic object, using the weakdef field. Later in this
4200 function we will set the weakdef field to the correct
4201 value. We only put non-function symbols from dynamic
4202 objects on this list, because that happens to be the only
4203 time we need to know the normal symbol corresponding to a
4204 weak symbol, and the information is time consuming to
4205 figure out. If the weakdef field is not already NULL,
4206 then this symbol was already defined by some previous
4207 dynamic object, and we will be using that previous
4208 definition anyhow. */
4209
4210 h->u.weakdef = weaks;
4211 weaks = h;
4212 new_weakdef = TRUE;
4213 }
4214
4215 /* Set the alignment of a common symbol. */
4216 if ((common || bfd_is_com_section (sec))
4217 && h->root.type == bfd_link_hash_common)
4218 {
4219 unsigned int align;
4220
4221 if (common)
4222 align = bfd_log2 (isym->st_value);
4223 else
4224 {
4225 /* The new symbol is a common symbol in a shared object.
4226 We need to get the alignment from the section. */
4227 align = new_sec->alignment_power;
4228 }
4229 if (align > old_alignment
4230 /* Permit an alignment power of zero if an alignment of one
4231 is specified and no other alignments have been specified. */
4232 || (isym->st_value == 1 && old_alignment == 0))
4233 h->root.u.c.p->alignment_power = align;
4234 else
4235 h->root.u.c.p->alignment_power = old_alignment;
4236 }
4237
4238 if (is_elf_hash_table (htab))
4239 {
4240 bfd_boolean dynsym;
4241
4242 /* Check the alignment when a common symbol is involved. This
4243 can change when a common symbol is overridden by a normal
4244 definition or a common symbol is ignored due to the old
4245 normal definition. We need to make sure the maximum
4246 alignment is maintained. */
4247 if ((old_alignment || common)
4248 && h->root.type != bfd_link_hash_common)
4249 {
4250 unsigned int common_align;
4251 unsigned int normal_align;
4252 unsigned int symbol_align;
4253 bfd *normal_bfd;
4254 bfd *common_bfd;
4255
4256 symbol_align = ffs (h->root.u.def.value) - 1;
4257 if (h->root.u.def.section->owner != NULL
4258 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4259 {
4260 normal_align = h->root.u.def.section->alignment_power;
4261 if (normal_align > symbol_align)
4262 normal_align = symbol_align;
4263 }
4264 else
4265 normal_align = symbol_align;
4266
4267 if (old_alignment)
4268 {
4269 common_align = old_alignment;
4270 common_bfd = old_bfd;
4271 normal_bfd = abfd;
4272 }
4273 else
4274 {
4275 common_align = bfd_log2 (isym->st_value);
4276 common_bfd = abfd;
4277 normal_bfd = old_bfd;
4278 }
4279
4280 if (normal_align < common_align)
4281 {
4282 /* PR binutils/2735 */
4283 if (normal_bfd == NULL)
4284 (*_bfd_error_handler)
4285 (_("Warning: alignment %u of common symbol `%s' in %B"
4286 " is greater than the alignment (%u) of its section %A"),
4287 common_bfd, h->root.u.def.section,
4288 1 << common_align, name, 1 << normal_align);
4289 else
4290 (*_bfd_error_handler)
4291 (_("Warning: alignment %u of symbol `%s' in %B"
4292 " is smaller than %u in %B"),
4293 normal_bfd, common_bfd,
4294 1 << normal_align, name, 1 << common_align);
4295 }
4296 }
4297
4298 /* Remember the symbol size if it isn't undefined. */
4299 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4300 && (definition || h->size == 0))
4301 {
4302 if (h->size != 0
4303 && h->size != isym->st_size
4304 && ! size_change_ok)
4305 (*_bfd_error_handler)
4306 (_("Warning: size of symbol `%s' changed"
4307 " from %lu in %B to %lu in %B"),
4308 old_bfd, abfd,
4309 name, (unsigned long) h->size,
4310 (unsigned long) isym->st_size);
4311
4312 h->size = isym->st_size;
4313 }
4314
4315 /* If this is a common symbol, then we always want H->SIZE
4316 to be the size of the common symbol. The code just above
4317 won't fix the size if a common symbol becomes larger. We
4318 don't warn about a size change here, because that is
4319 covered by --warn-common. Allow changed between different
4320 function types. */
4321 if (h->root.type == bfd_link_hash_common)
4322 h->size = h->root.u.c.size;
4323
4324 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4325 && (definition || h->type == STT_NOTYPE))
4326 {
4327 unsigned int type = ELF_ST_TYPE (isym->st_info);
4328
4329 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4330 symbol. */
4331 if (type == STT_GNU_IFUNC
4332 && (abfd->flags & DYNAMIC) != 0)
4333 type = STT_FUNC;
4334
4335 if (h->type != type)
4336 {
4337 if (h->type != STT_NOTYPE && ! type_change_ok)
4338 (*_bfd_error_handler)
4339 (_("Warning: type of symbol `%s' changed"
4340 " from %d to %d in %B"),
4341 abfd, name, h->type, type);
4342
4343 h->type = type;
4344 }
4345 }
4346
4347 /* Merge st_other field. */
4348 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4349
4350 /* Set a flag in the hash table entry indicating the type of
4351 reference or definition we just found. Keep a count of
4352 the number of dynamic symbols we find. A dynamic symbol
4353 is one which is referenced or defined by both a regular
4354 object and a shared object. */
4355 dynsym = FALSE;
4356 if (! dynamic)
4357 {
4358 if (! definition)
4359 {
4360 h->ref_regular = 1;
4361 if (bind != STB_WEAK)
4362 h->ref_regular_nonweak = 1;
4363 }
4364 else
4365 {
4366 h->def_regular = 1;
4367 if (h->def_dynamic)
4368 {
4369 h->def_dynamic = 0;
4370 h->ref_dynamic = 1;
4371 h->dynamic_def = 1;
4372 }
4373 }
4374 if (! info->executable
4375 || h->def_dynamic
4376 || h->ref_dynamic)
4377 dynsym = TRUE;
4378 }
4379 else
4380 {
4381 if (! definition)
4382 h->ref_dynamic = 1;
4383 else
4384 h->def_dynamic = 1;
4385 if (h->def_regular
4386 || h->ref_regular
4387 || (h->u.weakdef != NULL
4388 && ! new_weakdef
4389 && h->u.weakdef->dynindx != -1))
4390 dynsym = TRUE;
4391 }
4392
4393 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4394 {
4395 /* We don't want to make debug symbol dynamic. */
4396 dynsym = FALSE;
4397 }
4398
4399 /* Check to see if we need to add an indirect symbol for
4400 the default name. */
4401 if (definition || h->root.type == bfd_link_hash_common)
4402 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4403 &sec, &value, &dynsym,
4404 override))
4405 goto error_free_vers;
4406
4407 if (definition && !dynamic)
4408 {
4409 char *p = strchr (name, ELF_VER_CHR);
4410 if (p != NULL && p[1] != ELF_VER_CHR)
4411 {
4412 /* Queue non-default versions so that .symver x, x@FOO
4413 aliases can be checked. */
4414 if (!nondeflt_vers)
4415 {
4416 amt = ((isymend - isym + 1)
4417 * sizeof (struct elf_link_hash_entry *));
4418 nondeflt_vers =
4419 (struct elf_link_hash_entry **) bfd_malloc (amt);
4420 if (!nondeflt_vers)
4421 goto error_free_vers;
4422 }
4423 nondeflt_vers[nondeflt_vers_cnt++] = h;
4424 }
4425 }
4426
4427 if (dynsym && h->dynindx == -1)
4428 {
4429 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4430 goto error_free_vers;
4431 if (h->u.weakdef != NULL
4432 && ! new_weakdef
4433 && h->u.weakdef->dynindx == -1)
4434 {
4435 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4436 goto error_free_vers;
4437 }
4438 }
4439 else if (dynsym && h->dynindx != -1)
4440 /* If the symbol already has a dynamic index, but
4441 visibility says it should not be visible, turn it into
4442 a local symbol. */
4443 switch (ELF_ST_VISIBILITY (h->other))
4444 {
4445 case STV_INTERNAL:
4446 case STV_HIDDEN:
4447 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4448 dynsym = FALSE;
4449 break;
4450 }
4451
4452 if (!add_needed
4453 && definition
4454 && ((dynsym
4455 && h->ref_regular)
4456 || (h->ref_dynamic
4457 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4458 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4459 {
4460 int ret;
4461 const char *soname = elf_dt_name (abfd);
4462
4463 /* A symbol from a library loaded via DT_NEEDED of some
4464 other library is referenced by a regular object.
4465 Add a DT_NEEDED entry for it. Issue an error if
4466 --no-add-needed is used and the reference was not
4467 a weak one. */
4468 if (undef_bfd != NULL
4469 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4470 {
4471 (*_bfd_error_handler)
4472 (_("%B: undefined reference to symbol '%s'"),
4473 undef_bfd, name);
4474 (*_bfd_error_handler)
4475 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4476 abfd, name);
4477 bfd_set_error (bfd_error_invalid_operation);
4478 goto error_free_vers;
4479 }
4480
4481 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4482 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4483
4484 add_needed = TRUE;
4485 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4486 if (ret < 0)
4487 goto error_free_vers;
4488
4489 BFD_ASSERT (ret == 0);
4490 }
4491 }
4492 }
4493
4494 if (extversym != NULL)
4495 {
4496 free (extversym);
4497 extversym = NULL;
4498 }
4499
4500 if (isymbuf != NULL)
4501 {
4502 free (isymbuf);
4503 isymbuf = NULL;
4504 }
4505
4506 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4507 {
4508 unsigned int i;
4509
4510 /* Restore the symbol table. */
4511 if (bed->as_needed_cleanup)
4512 (*bed->as_needed_cleanup) (abfd, info);
4513 old_hash = (char *) old_tab + tabsize;
4514 old_ent = (char *) old_hash + hashsize;
4515 sym_hash = elf_sym_hashes (abfd);
4516 htab->root.table.table = old_table;
4517 htab->root.table.size = old_size;
4518 htab->root.table.count = old_count;
4519 memcpy (htab->root.table.table, old_tab, tabsize);
4520 memcpy (sym_hash, old_hash, hashsize);
4521 htab->root.undefs = old_undefs;
4522 htab->root.undefs_tail = old_undefs_tail;
4523 for (i = 0; i < htab->root.table.size; i++)
4524 {
4525 struct bfd_hash_entry *p;
4526 struct elf_link_hash_entry *h;
4527
4528 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4529 {
4530 h = (struct elf_link_hash_entry *) p;
4531 if (h->root.type == bfd_link_hash_warning)
4532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4533 if (h->dynindx >= old_dynsymcount)
4534 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4535
4536 memcpy (p, old_ent, htab->root.table.entsize);
4537 old_ent = (char *) old_ent + htab->root.table.entsize;
4538 h = (struct elf_link_hash_entry *) p;
4539 if (h->root.type == bfd_link_hash_warning)
4540 {
4541 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 }
4544 }
4545 }
4546
4547 /* Make a special call to the linker "notice" function to
4548 tell it that symbols added for crefs may need to be removed. */
4549 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4550 notice_not_needed))
4551 goto error_free_vers;
4552
4553 free (old_tab);
4554 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4555 alloc_mark);
4556 if (nondeflt_vers != NULL)
4557 free (nondeflt_vers);
4558 return TRUE;
4559 }
4560
4561 if (old_tab != NULL)
4562 {
4563 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4564 notice_needed))
4565 goto error_free_vers;
4566 free (old_tab);
4567 old_tab = NULL;
4568 }
4569
4570 /* Now that all the symbols from this input file are created, handle
4571 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4572 if (nondeflt_vers != NULL)
4573 {
4574 bfd_size_type cnt, symidx;
4575
4576 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4577 {
4578 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4579 char *shortname, *p;
4580
4581 p = strchr (h->root.root.string, ELF_VER_CHR);
4582 if (p == NULL
4583 || (h->root.type != bfd_link_hash_defined
4584 && h->root.type != bfd_link_hash_defweak))
4585 continue;
4586
4587 amt = p - h->root.root.string;
4588 shortname = (char *) bfd_malloc (amt + 1);
4589 if (!shortname)
4590 goto error_free_vers;
4591 memcpy (shortname, h->root.root.string, amt);
4592 shortname[amt] = '\0';
4593
4594 hi = (struct elf_link_hash_entry *)
4595 bfd_link_hash_lookup (&htab->root, shortname,
4596 FALSE, FALSE, FALSE);
4597 if (hi != NULL
4598 && hi->root.type == h->root.type
4599 && hi->root.u.def.value == h->root.u.def.value
4600 && hi->root.u.def.section == h->root.u.def.section)
4601 {
4602 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4603 hi->root.type = bfd_link_hash_indirect;
4604 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4605 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4606 sym_hash = elf_sym_hashes (abfd);
4607 if (sym_hash)
4608 for (symidx = 0; symidx < extsymcount; ++symidx)
4609 if (sym_hash[symidx] == hi)
4610 {
4611 sym_hash[symidx] = h;
4612 break;
4613 }
4614 }
4615 free (shortname);
4616 }
4617 free (nondeflt_vers);
4618 nondeflt_vers = NULL;
4619 }
4620
4621 /* Now set the weakdefs field correctly for all the weak defined
4622 symbols we found. The only way to do this is to search all the
4623 symbols. Since we only need the information for non functions in
4624 dynamic objects, that's the only time we actually put anything on
4625 the list WEAKS. We need this information so that if a regular
4626 object refers to a symbol defined weakly in a dynamic object, the
4627 real symbol in the dynamic object is also put in the dynamic
4628 symbols; we also must arrange for both symbols to point to the
4629 same memory location. We could handle the general case of symbol
4630 aliasing, but a general symbol alias can only be generated in
4631 assembler code, handling it correctly would be very time
4632 consuming, and other ELF linkers don't handle general aliasing
4633 either. */
4634 if (weaks != NULL)
4635 {
4636 struct elf_link_hash_entry **hpp;
4637 struct elf_link_hash_entry **hppend;
4638 struct elf_link_hash_entry **sorted_sym_hash;
4639 struct elf_link_hash_entry *h;
4640 size_t sym_count;
4641
4642 /* Since we have to search the whole symbol list for each weak
4643 defined symbol, search time for N weak defined symbols will be
4644 O(N^2). Binary search will cut it down to O(NlogN). */
4645 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4646 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4647 if (sorted_sym_hash == NULL)
4648 goto error_return;
4649 sym_hash = sorted_sym_hash;
4650 hpp = elf_sym_hashes (abfd);
4651 hppend = hpp + extsymcount;
4652 sym_count = 0;
4653 for (; hpp < hppend; hpp++)
4654 {
4655 h = *hpp;
4656 if (h != NULL
4657 && h->root.type == bfd_link_hash_defined
4658 && !bed->is_function_type (h->type))
4659 {
4660 *sym_hash = h;
4661 sym_hash++;
4662 sym_count++;
4663 }
4664 }
4665
4666 qsort (sorted_sym_hash, sym_count,
4667 sizeof (struct elf_link_hash_entry *),
4668 elf_sort_symbol);
4669
4670 while (weaks != NULL)
4671 {
4672 struct elf_link_hash_entry *hlook;
4673 asection *slook;
4674 bfd_vma vlook;
4675 long ilook;
4676 size_t i, j, idx;
4677
4678 hlook = weaks;
4679 weaks = hlook->u.weakdef;
4680 hlook->u.weakdef = NULL;
4681
4682 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4683 || hlook->root.type == bfd_link_hash_defweak
4684 || hlook->root.type == bfd_link_hash_common
4685 || hlook->root.type == bfd_link_hash_indirect);
4686 slook = hlook->root.u.def.section;
4687 vlook = hlook->root.u.def.value;
4688
4689 ilook = -1;
4690 i = 0;
4691 j = sym_count;
4692 while (i < j)
4693 {
4694 bfd_signed_vma vdiff;
4695 idx = (i + j) / 2;
4696 h = sorted_sym_hash [idx];
4697 vdiff = vlook - h->root.u.def.value;
4698 if (vdiff < 0)
4699 j = idx;
4700 else if (vdiff > 0)
4701 i = idx + 1;
4702 else
4703 {
4704 long sdiff = slook->id - h->root.u.def.section->id;
4705 if (sdiff < 0)
4706 j = idx;
4707 else if (sdiff > 0)
4708 i = idx + 1;
4709 else
4710 {
4711 ilook = idx;
4712 break;
4713 }
4714 }
4715 }
4716
4717 /* We didn't find a value/section match. */
4718 if (ilook == -1)
4719 continue;
4720
4721 for (i = ilook; i < sym_count; i++)
4722 {
4723 h = sorted_sym_hash [i];
4724
4725 /* Stop if value or section doesn't match. */
4726 if (h->root.u.def.value != vlook
4727 || h->root.u.def.section != slook)
4728 break;
4729 else if (h != hlook)
4730 {
4731 hlook->u.weakdef = h;
4732
4733 /* If the weak definition is in the list of dynamic
4734 symbols, make sure the real definition is put
4735 there as well. */
4736 if (hlook->dynindx != -1 && h->dynindx == -1)
4737 {
4738 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4739 {
4740 err_free_sym_hash:
4741 free (sorted_sym_hash);
4742 goto error_return;
4743 }
4744 }
4745
4746 /* If the real definition is in the list of dynamic
4747 symbols, make sure the weak definition is put
4748 there as well. If we don't do this, then the
4749 dynamic loader might not merge the entries for the
4750 real definition and the weak definition. */
4751 if (h->dynindx != -1 && hlook->dynindx == -1)
4752 {
4753 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4754 goto err_free_sym_hash;
4755 }
4756 break;
4757 }
4758 }
4759 }
4760
4761 free (sorted_sym_hash);
4762 }
4763
4764 if (bed->check_directives
4765 && !(*bed->check_directives) (abfd, info))
4766 return FALSE;
4767
4768 /* If this object is the same format as the output object, and it is
4769 not a shared library, then let the backend look through the
4770 relocs.
4771
4772 This is required to build global offset table entries and to
4773 arrange for dynamic relocs. It is not required for the
4774 particular common case of linking non PIC code, even when linking
4775 against shared libraries, but unfortunately there is no way of
4776 knowing whether an object file has been compiled PIC or not.
4777 Looking through the relocs is not particularly time consuming.
4778 The problem is that we must either (1) keep the relocs in memory,
4779 which causes the linker to require additional runtime memory or
4780 (2) read the relocs twice from the input file, which wastes time.
4781 This would be a good case for using mmap.
4782
4783 I have no idea how to handle linking PIC code into a file of a
4784 different format. It probably can't be done. */
4785 if (! dynamic
4786 && is_elf_hash_table (htab)
4787 && bed->check_relocs != NULL
4788 && elf_object_id (abfd) == elf_hash_table_id (htab)
4789 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4790 {
4791 asection *o;
4792
4793 for (o = abfd->sections; o != NULL; o = o->next)
4794 {
4795 Elf_Internal_Rela *internal_relocs;
4796 bfd_boolean ok;
4797
4798 if ((o->flags & SEC_RELOC) == 0
4799 || o->reloc_count == 0
4800 || ((info->strip == strip_all || info->strip == strip_debugger)
4801 && (o->flags & SEC_DEBUGGING) != 0)
4802 || bfd_is_abs_section (o->output_section))
4803 continue;
4804
4805 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4806 info->keep_memory);
4807 if (internal_relocs == NULL)
4808 goto error_return;
4809
4810 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4811
4812 if (elf_section_data (o)->relocs != internal_relocs)
4813 free (internal_relocs);
4814
4815 if (! ok)
4816 goto error_return;
4817 }
4818 }
4819
4820 /* If this is a non-traditional link, try to optimize the handling
4821 of the .stab/.stabstr sections. */
4822 if (! dynamic
4823 && ! info->traditional_format
4824 && is_elf_hash_table (htab)
4825 && (info->strip != strip_all && info->strip != strip_debugger))
4826 {
4827 asection *stabstr;
4828
4829 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4830 if (stabstr != NULL)
4831 {
4832 bfd_size_type string_offset = 0;
4833 asection *stab;
4834
4835 for (stab = abfd->sections; stab; stab = stab->next)
4836 if (CONST_STRNEQ (stab->name, ".stab")
4837 && (!stab->name[5] ||
4838 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4839 && (stab->flags & SEC_MERGE) == 0
4840 && !bfd_is_abs_section (stab->output_section))
4841 {
4842 struct bfd_elf_section_data *secdata;
4843
4844 secdata = elf_section_data (stab);
4845 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4846 stabstr, &secdata->sec_info,
4847 &string_offset))
4848 goto error_return;
4849 if (secdata->sec_info)
4850 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4851 }
4852 }
4853 }
4854
4855 if (is_elf_hash_table (htab) && add_needed)
4856 {
4857 /* Add this bfd to the loaded list. */
4858 struct elf_link_loaded_list *n;
4859
4860 n = (struct elf_link_loaded_list *)
4861 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4862 if (n == NULL)
4863 goto error_return;
4864 n->abfd = abfd;
4865 n->next = htab->loaded;
4866 htab->loaded = n;
4867 }
4868
4869 return TRUE;
4870
4871 error_free_vers:
4872 if (old_tab != NULL)
4873 free (old_tab);
4874 if (nondeflt_vers != NULL)
4875 free (nondeflt_vers);
4876 if (extversym != NULL)
4877 free (extversym);
4878 error_free_sym:
4879 if (isymbuf != NULL)
4880 free (isymbuf);
4881 error_return:
4882 return FALSE;
4883 }
4884
4885 /* Return the linker hash table entry of a symbol that might be
4886 satisfied by an archive symbol. Return -1 on error. */
4887
4888 struct elf_link_hash_entry *
4889 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4890 struct bfd_link_info *info,
4891 const char *name)
4892 {
4893 struct elf_link_hash_entry *h;
4894 char *p, *copy;
4895 size_t len, first;
4896
4897 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4898 if (h != NULL)
4899 return h;
4900
4901 /* If this is a default version (the name contains @@), look up the
4902 symbol again with only one `@' as well as without the version.
4903 The effect is that references to the symbol with and without the
4904 version will be matched by the default symbol in the archive. */
4905
4906 p = strchr (name, ELF_VER_CHR);
4907 if (p == NULL || p[1] != ELF_VER_CHR)
4908 return h;
4909
4910 /* First check with only one `@'. */
4911 len = strlen (name);
4912 copy = (char *) bfd_alloc (abfd, len);
4913 if (copy == NULL)
4914 return (struct elf_link_hash_entry *) 0 - 1;
4915
4916 first = p - name + 1;
4917 memcpy (copy, name, first);
4918 memcpy (copy + first, name + first + 1, len - first);
4919
4920 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4921 if (h == NULL)
4922 {
4923 /* We also need to check references to the symbol without the
4924 version. */
4925 copy[first - 1] = '\0';
4926 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4927 FALSE, FALSE, FALSE);
4928 }
4929
4930 bfd_release (abfd, copy);
4931 return h;
4932 }
4933
4934 /* Add symbols from an ELF archive file to the linker hash table. We
4935 don't use _bfd_generic_link_add_archive_symbols because of a
4936 problem which arises on UnixWare. The UnixWare libc.so is an
4937 archive which includes an entry libc.so.1 which defines a bunch of
4938 symbols. The libc.so archive also includes a number of other
4939 object files, which also define symbols, some of which are the same
4940 as those defined in libc.so.1. Correct linking requires that we
4941 consider each object file in turn, and include it if it defines any
4942 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4943 this; it looks through the list of undefined symbols, and includes
4944 any object file which defines them. When this algorithm is used on
4945 UnixWare, it winds up pulling in libc.so.1 early and defining a
4946 bunch of symbols. This means that some of the other objects in the
4947 archive are not included in the link, which is incorrect since they
4948 precede libc.so.1 in the archive.
4949
4950 Fortunately, ELF archive handling is simpler than that done by
4951 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4952 oddities. In ELF, if we find a symbol in the archive map, and the
4953 symbol is currently undefined, we know that we must pull in that
4954 object file.
4955
4956 Unfortunately, we do have to make multiple passes over the symbol
4957 table until nothing further is resolved. */
4958
4959 static bfd_boolean
4960 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4961 {
4962 symindex c;
4963 bfd_boolean *defined = NULL;
4964 bfd_boolean *included = NULL;
4965 carsym *symdefs;
4966 bfd_boolean loop;
4967 bfd_size_type amt;
4968 const struct elf_backend_data *bed;
4969 struct elf_link_hash_entry * (*archive_symbol_lookup)
4970 (bfd *, struct bfd_link_info *, const char *);
4971
4972 if (! bfd_has_map (abfd))
4973 {
4974 /* An empty archive is a special case. */
4975 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4976 return TRUE;
4977 bfd_set_error (bfd_error_no_armap);
4978 return FALSE;
4979 }
4980
4981 /* Keep track of all symbols we know to be already defined, and all
4982 files we know to be already included. This is to speed up the
4983 second and subsequent passes. */
4984 c = bfd_ardata (abfd)->symdef_count;
4985 if (c == 0)
4986 return TRUE;
4987 amt = c;
4988 amt *= sizeof (bfd_boolean);
4989 defined = (bfd_boolean *) bfd_zmalloc (amt);
4990 included = (bfd_boolean *) bfd_zmalloc (amt);
4991 if (defined == NULL || included == NULL)
4992 goto error_return;
4993
4994 symdefs = bfd_ardata (abfd)->symdefs;
4995 bed = get_elf_backend_data (abfd);
4996 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4997
4998 do
4999 {
5000 file_ptr last;
5001 symindex i;
5002 carsym *symdef;
5003 carsym *symdefend;
5004
5005 loop = FALSE;
5006 last = -1;
5007
5008 symdef = symdefs;
5009 symdefend = symdef + c;
5010 for (i = 0; symdef < symdefend; symdef++, i++)
5011 {
5012 struct elf_link_hash_entry *h;
5013 bfd *element;
5014 struct bfd_link_hash_entry *undefs_tail;
5015 symindex mark;
5016
5017 if (defined[i] || included[i])
5018 continue;
5019 if (symdef->file_offset == last)
5020 {
5021 included[i] = TRUE;
5022 continue;
5023 }
5024
5025 h = archive_symbol_lookup (abfd, info, symdef->name);
5026 if (h == (struct elf_link_hash_entry *) 0 - 1)
5027 goto error_return;
5028
5029 if (h == NULL)
5030 continue;
5031
5032 if (h->root.type == bfd_link_hash_common)
5033 {
5034 /* We currently have a common symbol. The archive map contains
5035 a reference to this symbol, so we may want to include it. We
5036 only want to include it however, if this archive element
5037 contains a definition of the symbol, not just another common
5038 declaration of it.
5039
5040 Unfortunately some archivers (including GNU ar) will put
5041 declarations of common symbols into their archive maps, as
5042 well as real definitions, so we cannot just go by the archive
5043 map alone. Instead we must read in the element's symbol
5044 table and check that to see what kind of symbol definition
5045 this is. */
5046 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5047 continue;
5048 }
5049 else if (h->root.type != bfd_link_hash_undefined)
5050 {
5051 if (h->root.type != bfd_link_hash_undefweak)
5052 defined[i] = TRUE;
5053 continue;
5054 }
5055
5056 /* We need to include this archive member. */
5057 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5058 if (element == NULL)
5059 goto error_return;
5060
5061 if (! bfd_check_format (element, bfd_object))
5062 goto error_return;
5063
5064 /* Doublecheck that we have not included this object
5065 already--it should be impossible, but there may be
5066 something wrong with the archive. */
5067 if (element->archive_pass != 0)
5068 {
5069 bfd_set_error (bfd_error_bad_value);
5070 goto error_return;
5071 }
5072 element->archive_pass = 1;
5073
5074 undefs_tail = info->hash->undefs_tail;
5075
5076 if (! (*info->callbacks->add_archive_element) (info, element,
5077 symdef->name))
5078 goto error_return;
5079 if (! bfd_link_add_symbols (element, info))
5080 goto error_return;
5081
5082 /* If there are any new undefined symbols, we need to make
5083 another pass through the archive in order to see whether
5084 they can be defined. FIXME: This isn't perfect, because
5085 common symbols wind up on undefs_tail and because an
5086 undefined symbol which is defined later on in this pass
5087 does not require another pass. This isn't a bug, but it
5088 does make the code less efficient than it could be. */
5089 if (undefs_tail != info->hash->undefs_tail)
5090 loop = TRUE;
5091
5092 /* Look backward to mark all symbols from this object file
5093 which we have already seen in this pass. */
5094 mark = i;
5095 do
5096 {
5097 included[mark] = TRUE;
5098 if (mark == 0)
5099 break;
5100 --mark;
5101 }
5102 while (symdefs[mark].file_offset == symdef->file_offset);
5103
5104 /* We mark subsequent symbols from this object file as we go
5105 on through the loop. */
5106 last = symdef->file_offset;
5107 }
5108 }
5109 while (loop);
5110
5111 free (defined);
5112 free (included);
5113
5114 return TRUE;
5115
5116 error_return:
5117 if (defined != NULL)
5118 free (defined);
5119 if (included != NULL)
5120 free (included);
5121 return FALSE;
5122 }
5123
5124 /* Given an ELF BFD, add symbols to the global hash table as
5125 appropriate. */
5126
5127 bfd_boolean
5128 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5129 {
5130 switch (bfd_get_format (abfd))
5131 {
5132 case bfd_object:
5133 return elf_link_add_object_symbols (abfd, info);
5134 case bfd_archive:
5135 return elf_link_add_archive_symbols (abfd, info);
5136 default:
5137 bfd_set_error (bfd_error_wrong_format);
5138 return FALSE;
5139 }
5140 }
5141 \f
5142 struct hash_codes_info
5143 {
5144 unsigned long *hashcodes;
5145 bfd_boolean error;
5146 };
5147
5148 /* This function will be called though elf_link_hash_traverse to store
5149 all hash value of the exported symbols in an array. */
5150
5151 static bfd_boolean
5152 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5153 {
5154 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5155 const char *name;
5156 char *p;
5157 unsigned long ha;
5158 char *alc = NULL;
5159
5160 if (h->root.type == bfd_link_hash_warning)
5161 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5162
5163 /* Ignore indirect symbols. These are added by the versioning code. */
5164 if (h->dynindx == -1)
5165 return TRUE;
5166
5167 name = h->root.root.string;
5168 p = strchr (name, ELF_VER_CHR);
5169 if (p != NULL)
5170 {
5171 alc = (char *) bfd_malloc (p - name + 1);
5172 if (alc == NULL)
5173 {
5174 inf->error = TRUE;
5175 return FALSE;
5176 }
5177 memcpy (alc, name, p - name);
5178 alc[p - name] = '\0';
5179 name = alc;
5180 }
5181
5182 /* Compute the hash value. */
5183 ha = bfd_elf_hash (name);
5184
5185 /* Store the found hash value in the array given as the argument. */
5186 *(inf->hashcodes)++ = ha;
5187
5188 /* And store it in the struct so that we can put it in the hash table
5189 later. */
5190 h->u.elf_hash_value = ha;
5191
5192 if (alc != NULL)
5193 free (alc);
5194
5195 return TRUE;
5196 }
5197
5198 struct collect_gnu_hash_codes
5199 {
5200 bfd *output_bfd;
5201 const struct elf_backend_data *bed;
5202 unsigned long int nsyms;
5203 unsigned long int maskbits;
5204 unsigned long int *hashcodes;
5205 unsigned long int *hashval;
5206 unsigned long int *indx;
5207 unsigned long int *counts;
5208 bfd_vma *bitmask;
5209 bfd_byte *contents;
5210 long int min_dynindx;
5211 unsigned long int bucketcount;
5212 unsigned long int symindx;
5213 long int local_indx;
5214 long int shift1, shift2;
5215 unsigned long int mask;
5216 bfd_boolean error;
5217 };
5218
5219 /* This function will be called though elf_link_hash_traverse to store
5220 all hash value of the exported symbols in an array. */
5221
5222 static bfd_boolean
5223 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5224 {
5225 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5226 const char *name;
5227 char *p;
5228 unsigned long ha;
5229 char *alc = NULL;
5230
5231 if (h->root.type == bfd_link_hash_warning)
5232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5233
5234 /* Ignore indirect symbols. These are added by the versioning code. */
5235 if (h->dynindx == -1)
5236 return TRUE;
5237
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s->bed->elf_hash_symbol) (h))
5240 return TRUE;
5241
5242 name = h->root.root.string;
5243 p = strchr (name, ELF_VER_CHR);
5244 if (p != NULL)
5245 {
5246 alc = (char *) bfd_malloc (p - name + 1);
5247 if (alc == NULL)
5248 {
5249 s->error = TRUE;
5250 return FALSE;
5251 }
5252 memcpy (alc, name, p - name);
5253 alc[p - name] = '\0';
5254 name = alc;
5255 }
5256
5257 /* Compute the hash value. */
5258 ha = bfd_elf_gnu_hash (name);
5259
5260 /* Store the found hash value in the array for compute_bucket_count,
5261 and also for .dynsym reordering purposes. */
5262 s->hashcodes[s->nsyms] = ha;
5263 s->hashval[h->dynindx] = ha;
5264 ++s->nsyms;
5265 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5266 s->min_dynindx = h->dynindx;
5267
5268 if (alc != NULL)
5269 free (alc);
5270
5271 return TRUE;
5272 }
5273
5274 /* This function will be called though elf_link_hash_traverse to do
5275 final dynaminc symbol renumbering. */
5276
5277 static bfd_boolean
5278 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5279 {
5280 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5281 unsigned long int bucket;
5282 unsigned long int val;
5283
5284 if (h->root.type == bfd_link_hash_warning)
5285 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5286
5287 /* Ignore indirect symbols. */
5288 if (h->dynindx == -1)
5289 return TRUE;
5290
5291 /* Ignore also local symbols and undefined symbols. */
5292 if (! (*s->bed->elf_hash_symbol) (h))
5293 {
5294 if (h->dynindx >= s->min_dynindx)
5295 h->dynindx = s->local_indx++;
5296 return TRUE;
5297 }
5298
5299 bucket = s->hashval[h->dynindx] % s->bucketcount;
5300 val = (s->hashval[h->dynindx] >> s->shift1)
5301 & ((s->maskbits >> s->shift1) - 1);
5302 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5303 s->bitmask[val]
5304 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5305 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5306 if (s->counts[bucket] == 1)
5307 /* Last element terminates the chain. */
5308 val |= 1;
5309 bfd_put_32 (s->output_bfd, val,
5310 s->contents + (s->indx[bucket] - s->symindx) * 4);
5311 --s->counts[bucket];
5312 h->dynindx = s->indx[bucket]++;
5313 return TRUE;
5314 }
5315
5316 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5317
5318 bfd_boolean
5319 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5320 {
5321 return !(h->forced_local
5322 || h->root.type == bfd_link_hash_undefined
5323 || h->root.type == bfd_link_hash_undefweak
5324 || ((h->root.type == bfd_link_hash_defined
5325 || h->root.type == bfd_link_hash_defweak)
5326 && h->root.u.def.section->output_section == NULL));
5327 }
5328
5329 /* Array used to determine the number of hash table buckets to use
5330 based on the number of symbols there are. If there are fewer than
5331 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5332 fewer than 37 we use 17 buckets, and so forth. We never use more
5333 than 32771 buckets. */
5334
5335 static const size_t elf_buckets[] =
5336 {
5337 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5338 16411, 32771, 0
5339 };
5340
5341 /* Compute bucket count for hashing table. We do not use a static set
5342 of possible tables sizes anymore. Instead we determine for all
5343 possible reasonable sizes of the table the outcome (i.e., the
5344 number of collisions etc) and choose the best solution. The
5345 weighting functions are not too simple to allow the table to grow
5346 without bounds. Instead one of the weighting factors is the size.
5347 Therefore the result is always a good payoff between few collisions
5348 (= short chain lengths) and table size. */
5349 static size_t
5350 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5351 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5352 unsigned long int nsyms,
5353 int gnu_hash)
5354 {
5355 size_t best_size = 0;
5356 unsigned long int i;
5357
5358 /* We have a problem here. The following code to optimize the table
5359 size requires an integer type with more the 32 bits. If
5360 BFD_HOST_U_64_BIT is set we know about such a type. */
5361 #ifdef BFD_HOST_U_64_BIT
5362 if (info->optimize)
5363 {
5364 size_t minsize;
5365 size_t maxsize;
5366 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5367 bfd *dynobj = elf_hash_table (info)->dynobj;
5368 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5369 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5370 unsigned long int *counts;
5371 bfd_size_type amt;
5372 unsigned int no_improvement_count = 0;
5373
5374 /* Possible optimization parameters: if we have NSYMS symbols we say
5375 that the hashing table must at least have NSYMS/4 and at most
5376 2*NSYMS buckets. */
5377 minsize = nsyms / 4;
5378 if (minsize == 0)
5379 minsize = 1;
5380 best_size = maxsize = nsyms * 2;
5381 if (gnu_hash)
5382 {
5383 if (minsize < 2)
5384 minsize = 2;
5385 if ((best_size & 31) == 0)
5386 ++best_size;
5387 }
5388
5389 /* Create array where we count the collisions in. We must use bfd_malloc
5390 since the size could be large. */
5391 amt = maxsize;
5392 amt *= sizeof (unsigned long int);
5393 counts = (unsigned long int *) bfd_malloc (amt);
5394 if (counts == NULL)
5395 return 0;
5396
5397 /* Compute the "optimal" size for the hash table. The criteria is a
5398 minimal chain length. The minor criteria is (of course) the size
5399 of the table. */
5400 for (i = minsize; i < maxsize; ++i)
5401 {
5402 /* Walk through the array of hashcodes and count the collisions. */
5403 BFD_HOST_U_64_BIT max;
5404 unsigned long int j;
5405 unsigned long int fact;
5406
5407 if (gnu_hash && (i & 31) == 0)
5408 continue;
5409
5410 memset (counts, '\0', i * sizeof (unsigned long int));
5411
5412 /* Determine how often each hash bucket is used. */
5413 for (j = 0; j < nsyms; ++j)
5414 ++counts[hashcodes[j] % i];
5415
5416 /* For the weight function we need some information about the
5417 pagesize on the target. This is information need not be 100%
5418 accurate. Since this information is not available (so far) we
5419 define it here to a reasonable default value. If it is crucial
5420 to have a better value some day simply define this value. */
5421 # ifndef BFD_TARGET_PAGESIZE
5422 # define BFD_TARGET_PAGESIZE (4096)
5423 # endif
5424
5425 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5426 and the chains. */
5427 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5428
5429 # if 1
5430 /* Variant 1: optimize for short chains. We add the squares
5431 of all the chain lengths (which favors many small chain
5432 over a few long chains). */
5433 for (j = 0; j < i; ++j)
5434 max += counts[j] * counts[j];
5435
5436 /* This adds penalties for the overall size of the table. */
5437 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5438 max *= fact * fact;
5439 # else
5440 /* Variant 2: Optimize a lot more for small table. Here we
5441 also add squares of the size but we also add penalties for
5442 empty slots (the +1 term). */
5443 for (j = 0; j < i; ++j)
5444 max += (1 + counts[j]) * (1 + counts[j]);
5445
5446 /* The overall size of the table is considered, but not as
5447 strong as in variant 1, where it is squared. */
5448 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5449 max *= fact;
5450 # endif
5451
5452 /* Compare with current best results. */
5453 if (max < best_chlen)
5454 {
5455 best_chlen = max;
5456 best_size = i;
5457 no_improvement_count = 0;
5458 }
5459 /* PR 11843: Avoid futile long searches for the best bucket size
5460 when there are a large number of symbols. */
5461 else if (++no_improvement_count == 100)
5462 break;
5463 }
5464
5465 free (counts);
5466 }
5467 else
5468 #endif /* defined (BFD_HOST_U_64_BIT) */
5469 {
5470 /* This is the fallback solution if no 64bit type is available or if we
5471 are not supposed to spend much time on optimizations. We select the
5472 bucket count using a fixed set of numbers. */
5473 for (i = 0; elf_buckets[i] != 0; i++)
5474 {
5475 best_size = elf_buckets[i];
5476 if (nsyms < elf_buckets[i + 1])
5477 break;
5478 }
5479 if (gnu_hash && best_size < 2)
5480 best_size = 2;
5481 }
5482
5483 return best_size;
5484 }
5485
5486 /* Size any SHT_GROUP section for ld -r. */
5487
5488 bfd_boolean
5489 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5490 {
5491 bfd *ibfd;
5492
5493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5494 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5495 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5496 return FALSE;
5497 return TRUE;
5498 }
5499
5500 /* Set up the sizes and contents of the ELF dynamic sections. This is
5501 called by the ELF linker emulation before_allocation routine. We
5502 must set the sizes of the sections before the linker sets the
5503 addresses of the various sections. */
5504
5505 bfd_boolean
5506 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5507 const char *soname,
5508 const char *rpath,
5509 const char *filter_shlib,
5510 const char *audit,
5511 const char *depaudit,
5512 const char * const *auxiliary_filters,
5513 struct bfd_link_info *info,
5514 asection **sinterpptr,
5515 struct bfd_elf_version_tree *verdefs)
5516 {
5517 bfd_size_type soname_indx;
5518 bfd *dynobj;
5519 const struct elf_backend_data *bed;
5520 struct elf_info_failed asvinfo;
5521
5522 *sinterpptr = NULL;
5523
5524 soname_indx = (bfd_size_type) -1;
5525
5526 if (!is_elf_hash_table (info->hash))
5527 return TRUE;
5528
5529 bed = get_elf_backend_data (output_bfd);
5530 if (info->execstack)
5531 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5532 else if (info->noexecstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5534 else
5535 {
5536 bfd *inputobj;
5537 asection *notesec = NULL;
5538 int exec = 0;
5539
5540 for (inputobj = info->input_bfds;
5541 inputobj;
5542 inputobj = inputobj->link_next)
5543 {
5544 asection *s;
5545
5546 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5547 continue;
5548 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5549 if (s)
5550 {
5551 if (s->flags & SEC_CODE)
5552 exec = PF_X;
5553 notesec = s;
5554 }
5555 else if (bed->default_execstack)
5556 exec = PF_X;
5557 }
5558 if (notesec)
5559 {
5560 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5561 if (exec && info->relocatable
5562 && notesec->output_section != bfd_abs_section_ptr)
5563 notesec->output_section->flags |= SEC_CODE;
5564 }
5565 }
5566
5567 /* Any syms created from now on start with -1 in
5568 got.refcount/offset and plt.refcount/offset. */
5569 elf_hash_table (info)->init_got_refcount
5570 = elf_hash_table (info)->init_got_offset;
5571 elf_hash_table (info)->init_plt_refcount
5572 = elf_hash_table (info)->init_plt_offset;
5573
5574 if (info->relocatable
5575 && !_bfd_elf_size_group_sections (info))
5576 return FALSE;
5577
5578 /* The backend may have to create some sections regardless of whether
5579 we're dynamic or not. */
5580 if (bed->elf_backend_always_size_sections
5581 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5582 return FALSE;
5583
5584 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5585 return FALSE;
5586
5587 dynobj = elf_hash_table (info)->dynobj;
5588
5589 /* If there were no dynamic objects in the link, there is nothing to
5590 do here. */
5591 if (dynobj == NULL)
5592 return TRUE;
5593
5594 if (elf_hash_table (info)->dynamic_sections_created)
5595 {
5596 struct elf_info_failed eif;
5597 struct elf_link_hash_entry *h;
5598 asection *dynstr;
5599 struct bfd_elf_version_tree *t;
5600 struct bfd_elf_version_expr *d;
5601 asection *s;
5602 bfd_boolean all_defined;
5603
5604 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5605 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5606
5607 if (soname != NULL)
5608 {
5609 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5610 soname, TRUE);
5611 if (soname_indx == (bfd_size_type) -1
5612 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5613 return FALSE;
5614 }
5615
5616 if (info->symbolic)
5617 {
5618 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5619 return FALSE;
5620 info->flags |= DF_SYMBOLIC;
5621 }
5622
5623 if (rpath != NULL)
5624 {
5625 bfd_size_type indx;
5626
5627 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5628 TRUE);
5629 if (indx == (bfd_size_type) -1
5630 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5631 return FALSE;
5632
5633 if (info->new_dtags)
5634 {
5635 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5636 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5637 return FALSE;
5638 }
5639 }
5640
5641 if (filter_shlib != NULL)
5642 {
5643 bfd_size_type indx;
5644
5645 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5646 filter_shlib, TRUE);
5647 if (indx == (bfd_size_type) -1
5648 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5649 return FALSE;
5650 }
5651
5652 if (auxiliary_filters != NULL)
5653 {
5654 const char * const *p;
5655
5656 for (p = auxiliary_filters; *p != NULL; p++)
5657 {
5658 bfd_size_type indx;
5659
5660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5661 *p, TRUE);
5662 if (indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5664 return FALSE;
5665 }
5666 }
5667
5668 if (audit != NULL)
5669 {
5670 bfd_size_type indx;
5671
5672 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5673 TRUE);
5674 if (indx == (bfd_size_type) -1
5675 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5676 return FALSE;
5677 }
5678
5679 if (depaudit != NULL)
5680 {
5681 bfd_size_type indx;
5682
5683 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5684 TRUE);
5685 if (indx == (bfd_size_type) -1
5686 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5687 return FALSE;
5688 }
5689
5690 eif.info = info;
5691 eif.verdefs = verdefs;
5692 eif.failed = FALSE;
5693
5694 /* If we are supposed to export all symbols into the dynamic symbol
5695 table (this is not the normal case), then do so. */
5696 if (info->export_dynamic
5697 || (info->executable && info->dynamic))
5698 {
5699 elf_link_hash_traverse (elf_hash_table (info),
5700 _bfd_elf_export_symbol,
5701 &eif);
5702 if (eif.failed)
5703 return FALSE;
5704 }
5705
5706 /* Make all global versions with definition. */
5707 for (t = verdefs; t != NULL; t = t->next)
5708 for (d = t->globals.list; d != NULL; d = d->next)
5709 if (!d->symver && d->literal)
5710 {
5711 const char *verstr, *name;
5712 size_t namelen, verlen, newlen;
5713 char *newname, *p;
5714 struct elf_link_hash_entry *newh;
5715
5716 name = d->pattern;
5717 namelen = strlen (name);
5718 verstr = t->name;
5719 verlen = strlen (verstr);
5720 newlen = namelen + verlen + 3;
5721
5722 newname = (char *) bfd_malloc (newlen);
5723 if (newname == NULL)
5724 return FALSE;
5725 memcpy (newname, name, namelen);
5726
5727 /* Check the hidden versioned definition. */
5728 p = newname + namelen;
5729 *p++ = ELF_VER_CHR;
5730 memcpy (p, verstr, verlen + 1);
5731 newh = elf_link_hash_lookup (elf_hash_table (info),
5732 newname, FALSE, FALSE,
5733 FALSE);
5734 if (newh == NULL
5735 || (newh->root.type != bfd_link_hash_defined
5736 && newh->root.type != bfd_link_hash_defweak))
5737 {
5738 /* Check the default versioned definition. */
5739 *p++ = ELF_VER_CHR;
5740 memcpy (p, verstr, verlen + 1);
5741 newh = elf_link_hash_lookup (elf_hash_table (info),
5742 newname, FALSE, FALSE,
5743 FALSE);
5744 }
5745 free (newname);
5746
5747 /* Mark this version if there is a definition and it is
5748 not defined in a shared object. */
5749 if (newh != NULL
5750 && !newh->def_dynamic
5751 && (newh->root.type == bfd_link_hash_defined
5752 || newh->root.type == bfd_link_hash_defweak))
5753 d->symver = 1;
5754 }
5755
5756 /* Attach all the symbols to their version information. */
5757 asvinfo.info = info;
5758 asvinfo.verdefs = verdefs;
5759 asvinfo.failed = FALSE;
5760
5761 elf_link_hash_traverse (elf_hash_table (info),
5762 _bfd_elf_link_assign_sym_version,
5763 &asvinfo);
5764 if (asvinfo.failed)
5765 return FALSE;
5766
5767 if (!info->allow_undefined_version)
5768 {
5769 /* Check if all global versions have a definition. */
5770 all_defined = TRUE;
5771 for (t = verdefs; t != NULL; t = t->next)
5772 for (d = t->globals.list; d != NULL; d = d->next)
5773 if (d->literal && !d->symver && !d->script)
5774 {
5775 (*_bfd_error_handler)
5776 (_("%s: undefined version: %s"),
5777 d->pattern, t->name);
5778 all_defined = FALSE;
5779 }
5780
5781 if (!all_defined)
5782 {
5783 bfd_set_error (bfd_error_bad_value);
5784 return FALSE;
5785 }
5786 }
5787
5788 /* Find all symbols which were defined in a dynamic object and make
5789 the backend pick a reasonable value for them. */
5790 elf_link_hash_traverse (elf_hash_table (info),
5791 _bfd_elf_adjust_dynamic_symbol,
5792 &eif);
5793 if (eif.failed)
5794 return FALSE;
5795
5796 /* Add some entries to the .dynamic section. We fill in some of the
5797 values later, in bfd_elf_final_link, but we must add the entries
5798 now so that we know the final size of the .dynamic section. */
5799
5800 /* If there are initialization and/or finalization functions to
5801 call then add the corresponding DT_INIT/DT_FINI entries. */
5802 h = (info->init_function
5803 ? elf_link_hash_lookup (elf_hash_table (info),
5804 info->init_function, FALSE,
5805 FALSE, FALSE)
5806 : NULL);
5807 if (h != NULL
5808 && (h->ref_regular
5809 || h->def_regular))
5810 {
5811 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5812 return FALSE;
5813 }
5814 h = (info->fini_function
5815 ? elf_link_hash_lookup (elf_hash_table (info),
5816 info->fini_function, FALSE,
5817 FALSE, FALSE)
5818 : NULL);
5819 if (h != NULL
5820 && (h->ref_regular
5821 || h->def_regular))
5822 {
5823 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5824 return FALSE;
5825 }
5826
5827 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5828 if (s != NULL && s->linker_has_input)
5829 {
5830 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5831 if (! info->executable)
5832 {
5833 bfd *sub;
5834 asection *o;
5835
5836 for (sub = info->input_bfds; sub != NULL;
5837 sub = sub->link_next)
5838 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5839 for (o = sub->sections; o != NULL; o = o->next)
5840 if (elf_section_data (o)->this_hdr.sh_type
5841 == SHT_PREINIT_ARRAY)
5842 {
5843 (*_bfd_error_handler)
5844 (_("%B: .preinit_array section is not allowed in DSO"),
5845 sub);
5846 break;
5847 }
5848
5849 bfd_set_error (bfd_error_nonrepresentable_section);
5850 return FALSE;
5851 }
5852
5853 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5854 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5855 return FALSE;
5856 }
5857 s = bfd_get_section_by_name (output_bfd, ".init_array");
5858 if (s != NULL && s->linker_has_input)
5859 {
5860 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5861 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5862 return FALSE;
5863 }
5864 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5865 if (s != NULL && s->linker_has_input)
5866 {
5867 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5868 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5869 return FALSE;
5870 }
5871
5872 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5873 /* If .dynstr is excluded from the link, we don't want any of
5874 these tags. Strictly, we should be checking each section
5875 individually; This quick check covers for the case where
5876 someone does a /DISCARD/ : { *(*) }. */
5877 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5878 {
5879 bfd_size_type strsize;
5880
5881 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5882 if ((info->emit_hash
5883 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5884 || (info->emit_gnu_hash
5885 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5886 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5887 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5888 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5889 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5890 bed->s->sizeof_sym))
5891 return FALSE;
5892 }
5893 }
5894
5895 /* The backend must work out the sizes of all the other dynamic
5896 sections. */
5897 if (bed->elf_backend_size_dynamic_sections
5898 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5899 return FALSE;
5900
5901 if (elf_hash_table (info)->dynamic_sections_created)
5902 {
5903 unsigned long section_sym_count;
5904 asection *s;
5905
5906 /* Set up the version definition section. */
5907 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5908 BFD_ASSERT (s != NULL);
5909
5910 /* We may have created additional version definitions if we are
5911 just linking a regular application. */
5912 verdefs = asvinfo.verdefs;
5913
5914 /* Skip anonymous version tag. */
5915 if (verdefs != NULL && verdefs->vernum == 0)
5916 verdefs = verdefs->next;
5917
5918 if (verdefs == NULL && !info->create_default_symver)
5919 s->flags |= SEC_EXCLUDE;
5920 else
5921 {
5922 unsigned int cdefs;
5923 bfd_size_type size;
5924 struct bfd_elf_version_tree *t;
5925 bfd_byte *p;
5926 Elf_Internal_Verdef def;
5927 Elf_Internal_Verdaux defaux;
5928 struct bfd_link_hash_entry *bh;
5929 struct elf_link_hash_entry *h;
5930 const char *name;
5931
5932 cdefs = 0;
5933 size = 0;
5934
5935 /* Make space for the base version. */
5936 size += sizeof (Elf_External_Verdef);
5937 size += sizeof (Elf_External_Verdaux);
5938 ++cdefs;
5939
5940 /* Make space for the default version. */
5941 if (info->create_default_symver)
5942 {
5943 size += sizeof (Elf_External_Verdef);
5944 ++cdefs;
5945 }
5946
5947 for (t = verdefs; t != NULL; t = t->next)
5948 {
5949 struct bfd_elf_version_deps *n;
5950
5951 /* Don't emit base version twice. */
5952 if (t->vernum == 0)
5953 continue;
5954
5955 size += sizeof (Elf_External_Verdef);
5956 size += sizeof (Elf_External_Verdaux);
5957 ++cdefs;
5958
5959 for (n = t->deps; n != NULL; n = n->next)
5960 size += sizeof (Elf_External_Verdaux);
5961 }
5962
5963 s->size = size;
5964 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5965 if (s->contents == NULL && s->size != 0)
5966 return FALSE;
5967
5968 /* Fill in the version definition section. */
5969
5970 p = s->contents;
5971
5972 def.vd_version = VER_DEF_CURRENT;
5973 def.vd_flags = VER_FLG_BASE;
5974 def.vd_ndx = 1;
5975 def.vd_cnt = 1;
5976 if (info->create_default_symver)
5977 {
5978 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5979 def.vd_next = sizeof (Elf_External_Verdef);
5980 }
5981 else
5982 {
5983 def.vd_aux = sizeof (Elf_External_Verdef);
5984 def.vd_next = (sizeof (Elf_External_Verdef)
5985 + sizeof (Elf_External_Verdaux));
5986 }
5987
5988 if (soname_indx != (bfd_size_type) -1)
5989 {
5990 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5991 soname_indx);
5992 def.vd_hash = bfd_elf_hash (soname);
5993 defaux.vda_name = soname_indx;
5994 name = soname;
5995 }
5996 else
5997 {
5998 bfd_size_type indx;
5999
6000 name = lbasename (output_bfd->filename);
6001 def.vd_hash = bfd_elf_hash (name);
6002 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6003 name, FALSE);
6004 if (indx == (bfd_size_type) -1)
6005 return FALSE;
6006 defaux.vda_name = indx;
6007 }
6008 defaux.vda_next = 0;
6009
6010 _bfd_elf_swap_verdef_out (output_bfd, &def,
6011 (Elf_External_Verdef *) p);
6012 p += sizeof (Elf_External_Verdef);
6013 if (info->create_default_symver)
6014 {
6015 /* Add a symbol representing this version. */
6016 bh = NULL;
6017 if (! (_bfd_generic_link_add_one_symbol
6018 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6019 0, NULL, FALSE,
6020 get_elf_backend_data (dynobj)->collect, &bh)))
6021 return FALSE;
6022 h = (struct elf_link_hash_entry *) bh;
6023 h->non_elf = 0;
6024 h->def_regular = 1;
6025 h->type = STT_OBJECT;
6026 h->verinfo.vertree = NULL;
6027
6028 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6029 return FALSE;
6030
6031 /* Create a duplicate of the base version with the same
6032 aux block, but different flags. */
6033 def.vd_flags = 0;
6034 def.vd_ndx = 2;
6035 def.vd_aux = sizeof (Elf_External_Verdef);
6036 if (verdefs)
6037 def.vd_next = (sizeof (Elf_External_Verdef)
6038 + sizeof (Elf_External_Verdaux));
6039 else
6040 def.vd_next = 0;
6041 _bfd_elf_swap_verdef_out (output_bfd, &def,
6042 (Elf_External_Verdef *) p);
6043 p += sizeof (Elf_External_Verdef);
6044 }
6045 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6046 (Elf_External_Verdaux *) p);
6047 p += sizeof (Elf_External_Verdaux);
6048
6049 for (t = verdefs; t != NULL; t = t->next)
6050 {
6051 unsigned int cdeps;
6052 struct bfd_elf_version_deps *n;
6053
6054 /* Don't emit the base version twice. */
6055 if (t->vernum == 0)
6056 continue;
6057
6058 cdeps = 0;
6059 for (n = t->deps; n != NULL; n = n->next)
6060 ++cdeps;
6061
6062 /* Add a symbol representing this version. */
6063 bh = NULL;
6064 if (! (_bfd_generic_link_add_one_symbol
6065 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6066 0, NULL, FALSE,
6067 get_elf_backend_data (dynobj)->collect, &bh)))
6068 return FALSE;
6069 h = (struct elf_link_hash_entry *) bh;
6070 h->non_elf = 0;
6071 h->def_regular = 1;
6072 h->type = STT_OBJECT;
6073 h->verinfo.vertree = t;
6074
6075 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6076 return FALSE;
6077
6078 def.vd_version = VER_DEF_CURRENT;
6079 def.vd_flags = 0;
6080 if (t->globals.list == NULL
6081 && t->locals.list == NULL
6082 && ! t->used)
6083 def.vd_flags |= VER_FLG_WEAK;
6084 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6085 def.vd_cnt = cdeps + 1;
6086 def.vd_hash = bfd_elf_hash (t->name);
6087 def.vd_aux = sizeof (Elf_External_Verdef);
6088 def.vd_next = 0;
6089
6090 /* If a basever node is next, it *must* be the last node in
6091 the chain, otherwise Verdef construction breaks. */
6092 if (t->next != NULL && t->next->vernum == 0)
6093 BFD_ASSERT (t->next->next == NULL);
6094
6095 if (t->next != NULL && t->next->vernum != 0)
6096 def.vd_next = (sizeof (Elf_External_Verdef)
6097 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6098
6099 _bfd_elf_swap_verdef_out (output_bfd, &def,
6100 (Elf_External_Verdef *) p);
6101 p += sizeof (Elf_External_Verdef);
6102
6103 defaux.vda_name = h->dynstr_index;
6104 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6105 h->dynstr_index);
6106 defaux.vda_next = 0;
6107 if (t->deps != NULL)
6108 defaux.vda_next = sizeof (Elf_External_Verdaux);
6109 t->name_indx = defaux.vda_name;
6110
6111 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6112 (Elf_External_Verdaux *) p);
6113 p += sizeof (Elf_External_Verdaux);
6114
6115 for (n = t->deps; n != NULL; n = n->next)
6116 {
6117 if (n->version_needed == NULL)
6118 {
6119 /* This can happen if there was an error in the
6120 version script. */
6121 defaux.vda_name = 0;
6122 }
6123 else
6124 {
6125 defaux.vda_name = n->version_needed->name_indx;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6127 defaux.vda_name);
6128 }
6129 if (n->next == NULL)
6130 defaux.vda_next = 0;
6131 else
6132 defaux.vda_next = sizeof (Elf_External_Verdaux);
6133
6134 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6135 (Elf_External_Verdaux *) p);
6136 p += sizeof (Elf_External_Verdaux);
6137 }
6138 }
6139
6140 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6141 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6142 return FALSE;
6143
6144 elf_tdata (output_bfd)->cverdefs = cdefs;
6145 }
6146
6147 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6148 {
6149 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6150 return FALSE;
6151 }
6152 else if (info->flags & DF_BIND_NOW)
6153 {
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6155 return FALSE;
6156 }
6157
6158 if (info->flags_1)
6159 {
6160 if (info->executable)
6161 info->flags_1 &= ~ (DF_1_INITFIRST
6162 | DF_1_NODELETE
6163 | DF_1_NOOPEN);
6164 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6165 return FALSE;
6166 }
6167
6168 /* Work out the size of the version reference section. */
6169
6170 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6171 BFD_ASSERT (s != NULL);
6172 {
6173 struct elf_find_verdep_info sinfo;
6174
6175 sinfo.info = info;
6176 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6177 if (sinfo.vers == 0)
6178 sinfo.vers = 1;
6179 sinfo.failed = FALSE;
6180
6181 elf_link_hash_traverse (elf_hash_table (info),
6182 _bfd_elf_link_find_version_dependencies,
6183 &sinfo);
6184 if (sinfo.failed)
6185 return FALSE;
6186
6187 if (elf_tdata (output_bfd)->verref == NULL)
6188 s->flags |= SEC_EXCLUDE;
6189 else
6190 {
6191 Elf_Internal_Verneed *t;
6192 unsigned int size;
6193 unsigned int crefs;
6194 bfd_byte *p;
6195
6196 /* Build the version dependency section. */
6197 size = 0;
6198 crefs = 0;
6199 for (t = elf_tdata (output_bfd)->verref;
6200 t != NULL;
6201 t = t->vn_nextref)
6202 {
6203 Elf_Internal_Vernaux *a;
6204
6205 size += sizeof (Elf_External_Verneed);
6206 ++crefs;
6207 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6208 size += sizeof (Elf_External_Vernaux);
6209 }
6210
6211 s->size = size;
6212 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6213 if (s->contents == NULL)
6214 return FALSE;
6215
6216 p = s->contents;
6217 for (t = elf_tdata (output_bfd)->verref;
6218 t != NULL;
6219 t = t->vn_nextref)
6220 {
6221 unsigned int caux;
6222 Elf_Internal_Vernaux *a;
6223 bfd_size_type indx;
6224
6225 caux = 0;
6226 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6227 ++caux;
6228
6229 t->vn_version = VER_NEED_CURRENT;
6230 t->vn_cnt = caux;
6231 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6232 elf_dt_name (t->vn_bfd) != NULL
6233 ? elf_dt_name (t->vn_bfd)
6234 : lbasename (t->vn_bfd->filename),
6235 FALSE);
6236 if (indx == (bfd_size_type) -1)
6237 return FALSE;
6238 t->vn_file = indx;
6239 t->vn_aux = sizeof (Elf_External_Verneed);
6240 if (t->vn_nextref == NULL)
6241 t->vn_next = 0;
6242 else
6243 t->vn_next = (sizeof (Elf_External_Verneed)
6244 + caux * sizeof (Elf_External_Vernaux));
6245
6246 _bfd_elf_swap_verneed_out (output_bfd, t,
6247 (Elf_External_Verneed *) p);
6248 p += sizeof (Elf_External_Verneed);
6249
6250 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6251 {
6252 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 a->vna_nodename, FALSE);
6255 if (indx == (bfd_size_type) -1)
6256 return FALSE;
6257 a->vna_name = indx;
6258 if (a->vna_nextptr == NULL)
6259 a->vna_next = 0;
6260 else
6261 a->vna_next = sizeof (Elf_External_Vernaux);
6262
6263 _bfd_elf_swap_vernaux_out (output_bfd, a,
6264 (Elf_External_Vernaux *) p);
6265 p += sizeof (Elf_External_Vernaux);
6266 }
6267 }
6268
6269 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6270 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6271 return FALSE;
6272
6273 elf_tdata (output_bfd)->cverrefs = crefs;
6274 }
6275 }
6276
6277 if ((elf_tdata (output_bfd)->cverrefs == 0
6278 && elf_tdata (output_bfd)->cverdefs == 0)
6279 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6280 &section_sym_count) == 0)
6281 {
6282 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6283 s->flags |= SEC_EXCLUDE;
6284 }
6285 }
6286 return TRUE;
6287 }
6288
6289 /* Find the first non-excluded output section. We'll use its
6290 section symbol for some emitted relocs. */
6291 void
6292 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6293 {
6294 asection *s;
6295
6296 for (s = output_bfd->sections; s != NULL; s = s->next)
6297 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6298 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6299 {
6300 elf_hash_table (info)->text_index_section = s;
6301 break;
6302 }
6303 }
6304
6305 /* Find two non-excluded output sections, one for code, one for data.
6306 We'll use their section symbols for some emitted relocs. */
6307 void
6308 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6309 {
6310 asection *s;
6311
6312 /* Data first, since setting text_index_section changes
6313 _bfd_elf_link_omit_section_dynsym. */
6314 for (s = output_bfd->sections; s != NULL; s = s->next)
6315 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6316 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6317 {
6318 elf_hash_table (info)->data_index_section = s;
6319 break;
6320 }
6321
6322 for (s = output_bfd->sections; s != NULL; s = s->next)
6323 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6324 == (SEC_ALLOC | SEC_READONLY))
6325 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6326 {
6327 elf_hash_table (info)->text_index_section = s;
6328 break;
6329 }
6330
6331 if (elf_hash_table (info)->text_index_section == NULL)
6332 elf_hash_table (info)->text_index_section
6333 = elf_hash_table (info)->data_index_section;
6334 }
6335
6336 bfd_boolean
6337 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6338 {
6339 const struct elf_backend_data *bed;
6340
6341 if (!is_elf_hash_table (info->hash))
6342 return TRUE;
6343
6344 bed = get_elf_backend_data (output_bfd);
6345 (*bed->elf_backend_init_index_section) (output_bfd, info);
6346
6347 if (elf_hash_table (info)->dynamic_sections_created)
6348 {
6349 bfd *dynobj;
6350 asection *s;
6351 bfd_size_type dynsymcount;
6352 unsigned long section_sym_count;
6353 unsigned int dtagcount;
6354
6355 dynobj = elf_hash_table (info)->dynobj;
6356
6357 /* Assign dynsym indicies. In a shared library we generate a
6358 section symbol for each output section, which come first.
6359 Next come all of the back-end allocated local dynamic syms,
6360 followed by the rest of the global symbols. */
6361
6362 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6363 &section_sym_count);
6364
6365 /* Work out the size of the symbol version section. */
6366 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6367 BFD_ASSERT (s != NULL);
6368 if (dynsymcount != 0
6369 && (s->flags & SEC_EXCLUDE) == 0)
6370 {
6371 s->size = dynsymcount * sizeof (Elf_External_Versym);
6372 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6373 if (s->contents == NULL)
6374 return FALSE;
6375
6376 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6377 return FALSE;
6378 }
6379
6380 /* Set the size of the .dynsym and .hash sections. We counted
6381 the number of dynamic symbols in elf_link_add_object_symbols.
6382 We will build the contents of .dynsym and .hash when we build
6383 the final symbol table, because until then we do not know the
6384 correct value to give the symbols. We built the .dynstr
6385 section as we went along in elf_link_add_object_symbols. */
6386 s = bfd_get_section_by_name (dynobj, ".dynsym");
6387 BFD_ASSERT (s != NULL);
6388 s->size = dynsymcount * bed->s->sizeof_sym;
6389
6390 if (dynsymcount != 0)
6391 {
6392 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6393 if (s->contents == NULL)
6394 return FALSE;
6395
6396 /* The first entry in .dynsym is a dummy symbol.
6397 Clear all the section syms, in case we don't output them all. */
6398 ++section_sym_count;
6399 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6400 }
6401
6402 elf_hash_table (info)->bucketcount = 0;
6403
6404 /* Compute the size of the hashing table. As a side effect this
6405 computes the hash values for all the names we export. */
6406 if (info->emit_hash)
6407 {
6408 unsigned long int *hashcodes;
6409 struct hash_codes_info hashinf;
6410 bfd_size_type amt;
6411 unsigned long int nsyms;
6412 size_t bucketcount;
6413 size_t hash_entry_size;
6414
6415 /* Compute the hash values for all exported symbols. At the same
6416 time store the values in an array so that we could use them for
6417 optimizations. */
6418 amt = dynsymcount * sizeof (unsigned long int);
6419 hashcodes = (unsigned long int *) bfd_malloc (amt);
6420 if (hashcodes == NULL)
6421 return FALSE;
6422 hashinf.hashcodes = hashcodes;
6423 hashinf.error = FALSE;
6424
6425 /* Put all hash values in HASHCODES. */
6426 elf_link_hash_traverse (elf_hash_table (info),
6427 elf_collect_hash_codes, &hashinf);
6428 if (hashinf.error)
6429 {
6430 free (hashcodes);
6431 return FALSE;
6432 }
6433
6434 nsyms = hashinf.hashcodes - hashcodes;
6435 bucketcount
6436 = compute_bucket_count (info, hashcodes, nsyms, 0);
6437 free (hashcodes);
6438
6439 if (bucketcount == 0)
6440 return FALSE;
6441
6442 elf_hash_table (info)->bucketcount = bucketcount;
6443
6444 s = bfd_get_section_by_name (dynobj, ".hash");
6445 BFD_ASSERT (s != NULL);
6446 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6447 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6448 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6449 if (s->contents == NULL)
6450 return FALSE;
6451
6452 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6453 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6454 s->contents + hash_entry_size);
6455 }
6456
6457 if (info->emit_gnu_hash)
6458 {
6459 size_t i, cnt;
6460 unsigned char *contents;
6461 struct collect_gnu_hash_codes cinfo;
6462 bfd_size_type amt;
6463 size_t bucketcount;
6464
6465 memset (&cinfo, 0, sizeof (cinfo));
6466
6467 /* Compute the hash values for all exported symbols. At the same
6468 time store the values in an array so that we could use them for
6469 optimizations. */
6470 amt = dynsymcount * 2 * sizeof (unsigned long int);
6471 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6472 if (cinfo.hashcodes == NULL)
6473 return FALSE;
6474
6475 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6476 cinfo.min_dynindx = -1;
6477 cinfo.output_bfd = output_bfd;
6478 cinfo.bed = bed;
6479
6480 /* Put all hash values in HASHCODES. */
6481 elf_link_hash_traverse (elf_hash_table (info),
6482 elf_collect_gnu_hash_codes, &cinfo);
6483 if (cinfo.error)
6484 {
6485 free (cinfo.hashcodes);
6486 return FALSE;
6487 }
6488
6489 bucketcount
6490 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6491
6492 if (bucketcount == 0)
6493 {
6494 free (cinfo.hashcodes);
6495 return FALSE;
6496 }
6497
6498 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6499 BFD_ASSERT (s != NULL);
6500
6501 if (cinfo.nsyms == 0)
6502 {
6503 /* Empty .gnu.hash section is special. */
6504 BFD_ASSERT (cinfo.min_dynindx == -1);
6505 free (cinfo.hashcodes);
6506 s->size = 5 * 4 + bed->s->arch_size / 8;
6507 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6508 if (contents == NULL)
6509 return FALSE;
6510 s->contents = contents;
6511 /* 1 empty bucket. */
6512 bfd_put_32 (output_bfd, 1, contents);
6513 /* SYMIDX above the special symbol 0. */
6514 bfd_put_32 (output_bfd, 1, contents + 4);
6515 /* Just one word for bitmask. */
6516 bfd_put_32 (output_bfd, 1, contents + 8);
6517 /* Only hash fn bloom filter. */
6518 bfd_put_32 (output_bfd, 0, contents + 12);
6519 /* No hashes are valid - empty bitmask. */
6520 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6521 /* No hashes in the only bucket. */
6522 bfd_put_32 (output_bfd, 0,
6523 contents + 16 + bed->s->arch_size / 8);
6524 }
6525 else
6526 {
6527 unsigned long int maskwords, maskbitslog2;
6528 BFD_ASSERT (cinfo.min_dynindx != -1);
6529
6530 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6531 if (maskbitslog2 < 3)
6532 maskbitslog2 = 5;
6533 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6534 maskbitslog2 = maskbitslog2 + 3;
6535 else
6536 maskbitslog2 = maskbitslog2 + 2;
6537 if (bed->s->arch_size == 64)
6538 {
6539 if (maskbitslog2 == 5)
6540 maskbitslog2 = 6;
6541 cinfo.shift1 = 6;
6542 }
6543 else
6544 cinfo.shift1 = 5;
6545 cinfo.mask = (1 << cinfo.shift1) - 1;
6546 cinfo.shift2 = maskbitslog2;
6547 cinfo.maskbits = 1 << maskbitslog2;
6548 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6549 amt = bucketcount * sizeof (unsigned long int) * 2;
6550 amt += maskwords * sizeof (bfd_vma);
6551 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6552 if (cinfo.bitmask == NULL)
6553 {
6554 free (cinfo.hashcodes);
6555 return FALSE;
6556 }
6557
6558 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6559 cinfo.indx = cinfo.counts + bucketcount;
6560 cinfo.symindx = dynsymcount - cinfo.nsyms;
6561 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6562
6563 /* Determine how often each hash bucket is used. */
6564 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6565 for (i = 0; i < cinfo.nsyms; ++i)
6566 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6567
6568 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6569 if (cinfo.counts[i] != 0)
6570 {
6571 cinfo.indx[i] = cnt;
6572 cnt += cinfo.counts[i];
6573 }
6574 BFD_ASSERT (cnt == dynsymcount);
6575 cinfo.bucketcount = bucketcount;
6576 cinfo.local_indx = cinfo.min_dynindx;
6577
6578 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6579 s->size += cinfo.maskbits / 8;
6580 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6581 if (contents == NULL)
6582 {
6583 free (cinfo.bitmask);
6584 free (cinfo.hashcodes);
6585 return FALSE;
6586 }
6587
6588 s->contents = contents;
6589 bfd_put_32 (output_bfd, bucketcount, contents);
6590 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6591 bfd_put_32 (output_bfd, maskwords, contents + 8);
6592 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6593 contents += 16 + cinfo.maskbits / 8;
6594
6595 for (i = 0; i < bucketcount; ++i)
6596 {
6597 if (cinfo.counts[i] == 0)
6598 bfd_put_32 (output_bfd, 0, contents);
6599 else
6600 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6601 contents += 4;
6602 }
6603
6604 cinfo.contents = contents;
6605
6606 /* Renumber dynamic symbols, populate .gnu.hash section. */
6607 elf_link_hash_traverse (elf_hash_table (info),
6608 elf_renumber_gnu_hash_syms, &cinfo);
6609
6610 contents = s->contents + 16;
6611 for (i = 0; i < maskwords; ++i)
6612 {
6613 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6614 contents);
6615 contents += bed->s->arch_size / 8;
6616 }
6617
6618 free (cinfo.bitmask);
6619 free (cinfo.hashcodes);
6620 }
6621 }
6622
6623 s = bfd_get_section_by_name (dynobj, ".dynstr");
6624 BFD_ASSERT (s != NULL);
6625
6626 elf_finalize_dynstr (output_bfd, info);
6627
6628 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6629
6630 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6631 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6632 return FALSE;
6633 }
6634
6635 return TRUE;
6636 }
6637 \f
6638 /* Indicate that we are only retrieving symbol values from this
6639 section. */
6640
6641 void
6642 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6643 {
6644 if (is_elf_hash_table (info->hash))
6645 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6646 _bfd_generic_link_just_syms (sec, info);
6647 }
6648
6649 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6650
6651 static void
6652 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6653 asection *sec)
6654 {
6655 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6656 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6657 }
6658
6659 /* Finish SHF_MERGE section merging. */
6660
6661 bfd_boolean
6662 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6663 {
6664 bfd *ibfd;
6665 asection *sec;
6666
6667 if (!is_elf_hash_table (info->hash))
6668 return FALSE;
6669
6670 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6671 if ((ibfd->flags & DYNAMIC) == 0)
6672 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6673 if ((sec->flags & SEC_MERGE) != 0
6674 && !bfd_is_abs_section (sec->output_section))
6675 {
6676 struct bfd_elf_section_data *secdata;
6677
6678 secdata = elf_section_data (sec);
6679 if (! _bfd_add_merge_section (abfd,
6680 &elf_hash_table (info)->merge_info,
6681 sec, &secdata->sec_info))
6682 return FALSE;
6683 else if (secdata->sec_info)
6684 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6685 }
6686
6687 if (elf_hash_table (info)->merge_info != NULL)
6688 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6689 merge_sections_remove_hook);
6690 return TRUE;
6691 }
6692
6693 /* Create an entry in an ELF linker hash table. */
6694
6695 struct bfd_hash_entry *
6696 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6697 struct bfd_hash_table *table,
6698 const char *string)
6699 {
6700 /* Allocate the structure if it has not already been allocated by a
6701 subclass. */
6702 if (entry == NULL)
6703 {
6704 entry = (struct bfd_hash_entry *)
6705 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6706 if (entry == NULL)
6707 return entry;
6708 }
6709
6710 /* Call the allocation method of the superclass. */
6711 entry = _bfd_link_hash_newfunc (entry, table, string);
6712 if (entry != NULL)
6713 {
6714 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6715 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6716
6717 /* Set local fields. */
6718 ret->indx = -1;
6719 ret->dynindx = -1;
6720 ret->got = htab->init_got_refcount;
6721 ret->plt = htab->init_plt_refcount;
6722 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6723 - offsetof (struct elf_link_hash_entry, size)));
6724 /* Assume that we have been called by a non-ELF symbol reader.
6725 This flag is then reset by the code which reads an ELF input
6726 file. This ensures that a symbol created by a non-ELF symbol
6727 reader will have the flag set correctly. */
6728 ret->non_elf = 1;
6729 }
6730
6731 return entry;
6732 }
6733
6734 /* Copy data from an indirect symbol to its direct symbol, hiding the
6735 old indirect symbol. Also used for copying flags to a weakdef. */
6736
6737 void
6738 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6739 struct elf_link_hash_entry *dir,
6740 struct elf_link_hash_entry *ind)
6741 {
6742 struct elf_link_hash_table *htab;
6743
6744 /* Copy down any references that we may have already seen to the
6745 symbol which just became indirect. */
6746
6747 dir->ref_dynamic |= ind->ref_dynamic;
6748 dir->ref_regular |= ind->ref_regular;
6749 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6750 dir->non_got_ref |= ind->non_got_ref;
6751 dir->needs_plt |= ind->needs_plt;
6752 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6753
6754 if (ind->root.type != bfd_link_hash_indirect)
6755 return;
6756
6757 /* Copy over the global and procedure linkage table refcount entries.
6758 These may have been already set up by a check_relocs routine. */
6759 htab = elf_hash_table (info);
6760 if (ind->got.refcount > htab->init_got_refcount.refcount)
6761 {
6762 if (dir->got.refcount < 0)
6763 dir->got.refcount = 0;
6764 dir->got.refcount += ind->got.refcount;
6765 ind->got.refcount = htab->init_got_refcount.refcount;
6766 }
6767
6768 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6769 {
6770 if (dir->plt.refcount < 0)
6771 dir->plt.refcount = 0;
6772 dir->plt.refcount += ind->plt.refcount;
6773 ind->plt.refcount = htab->init_plt_refcount.refcount;
6774 }
6775
6776 if (ind->dynindx != -1)
6777 {
6778 if (dir->dynindx != -1)
6779 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6780 dir->dynindx = ind->dynindx;
6781 dir->dynstr_index = ind->dynstr_index;
6782 ind->dynindx = -1;
6783 ind->dynstr_index = 0;
6784 }
6785 }
6786
6787 void
6788 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6789 struct elf_link_hash_entry *h,
6790 bfd_boolean force_local)
6791 {
6792 /* STT_GNU_IFUNC symbol must go through PLT. */
6793 if (h->type != STT_GNU_IFUNC)
6794 {
6795 h->plt = elf_hash_table (info)->init_plt_offset;
6796 h->needs_plt = 0;
6797 }
6798 if (force_local)
6799 {
6800 h->forced_local = 1;
6801 if (h->dynindx != -1)
6802 {
6803 h->dynindx = -1;
6804 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6805 h->dynstr_index);
6806 }
6807 }
6808 }
6809
6810 /* Initialize an ELF linker hash table. */
6811
6812 bfd_boolean
6813 _bfd_elf_link_hash_table_init
6814 (struct elf_link_hash_table *table,
6815 bfd *abfd,
6816 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6817 struct bfd_hash_table *,
6818 const char *),
6819 unsigned int entsize,
6820 enum elf_target_id target_id)
6821 {
6822 bfd_boolean ret;
6823 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6824
6825 memset (table, 0, sizeof * table);
6826 table->init_got_refcount.refcount = can_refcount - 1;
6827 table->init_plt_refcount.refcount = can_refcount - 1;
6828 table->init_got_offset.offset = -(bfd_vma) 1;
6829 table->init_plt_offset.offset = -(bfd_vma) 1;
6830 /* The first dynamic symbol is a dummy. */
6831 table->dynsymcount = 1;
6832
6833 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6834
6835 table->root.type = bfd_link_elf_hash_table;
6836 table->hash_table_id = target_id;
6837
6838 return ret;
6839 }
6840
6841 /* Create an ELF linker hash table. */
6842
6843 struct bfd_link_hash_table *
6844 _bfd_elf_link_hash_table_create (bfd *abfd)
6845 {
6846 struct elf_link_hash_table *ret;
6847 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6848
6849 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6850 if (ret == NULL)
6851 return NULL;
6852
6853 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6854 sizeof (struct elf_link_hash_entry),
6855 GENERIC_ELF_DATA))
6856 {
6857 free (ret);
6858 return NULL;
6859 }
6860
6861 return &ret->root;
6862 }
6863
6864 /* This is a hook for the ELF emulation code in the generic linker to
6865 tell the backend linker what file name to use for the DT_NEEDED
6866 entry for a dynamic object. */
6867
6868 void
6869 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6870 {
6871 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6872 && bfd_get_format (abfd) == bfd_object)
6873 elf_dt_name (abfd) = name;
6874 }
6875
6876 int
6877 bfd_elf_get_dyn_lib_class (bfd *abfd)
6878 {
6879 int lib_class;
6880 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6881 && bfd_get_format (abfd) == bfd_object)
6882 lib_class = elf_dyn_lib_class (abfd);
6883 else
6884 lib_class = 0;
6885 return lib_class;
6886 }
6887
6888 void
6889 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6890 {
6891 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6892 && bfd_get_format (abfd) == bfd_object)
6893 elf_dyn_lib_class (abfd) = lib_class;
6894 }
6895
6896 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6897 the linker ELF emulation code. */
6898
6899 struct bfd_link_needed_list *
6900 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6901 struct bfd_link_info *info)
6902 {
6903 if (! is_elf_hash_table (info->hash))
6904 return NULL;
6905 return elf_hash_table (info)->needed;
6906 }
6907
6908 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6909 hook for the linker ELF emulation code. */
6910
6911 struct bfd_link_needed_list *
6912 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6913 struct bfd_link_info *info)
6914 {
6915 if (! is_elf_hash_table (info->hash))
6916 return NULL;
6917 return elf_hash_table (info)->runpath;
6918 }
6919
6920 /* Get the name actually used for a dynamic object for a link. This
6921 is the SONAME entry if there is one. Otherwise, it is the string
6922 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6923
6924 const char *
6925 bfd_elf_get_dt_soname (bfd *abfd)
6926 {
6927 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6928 && bfd_get_format (abfd) == bfd_object)
6929 return elf_dt_name (abfd);
6930 return NULL;
6931 }
6932
6933 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6934 the ELF linker emulation code. */
6935
6936 bfd_boolean
6937 bfd_elf_get_bfd_needed_list (bfd *abfd,
6938 struct bfd_link_needed_list **pneeded)
6939 {
6940 asection *s;
6941 bfd_byte *dynbuf = NULL;
6942 unsigned int elfsec;
6943 unsigned long shlink;
6944 bfd_byte *extdyn, *extdynend;
6945 size_t extdynsize;
6946 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6947
6948 *pneeded = NULL;
6949
6950 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6951 || bfd_get_format (abfd) != bfd_object)
6952 return TRUE;
6953
6954 s = bfd_get_section_by_name (abfd, ".dynamic");
6955 if (s == NULL || s->size == 0)
6956 return TRUE;
6957
6958 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6959 goto error_return;
6960
6961 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6962 if (elfsec == SHN_BAD)
6963 goto error_return;
6964
6965 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6966
6967 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6968 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6969
6970 extdyn = dynbuf;
6971 extdynend = extdyn + s->size;
6972 for (; extdyn < extdynend; extdyn += extdynsize)
6973 {
6974 Elf_Internal_Dyn dyn;
6975
6976 (*swap_dyn_in) (abfd, extdyn, &dyn);
6977
6978 if (dyn.d_tag == DT_NULL)
6979 break;
6980
6981 if (dyn.d_tag == DT_NEEDED)
6982 {
6983 const char *string;
6984 struct bfd_link_needed_list *l;
6985 unsigned int tagv = dyn.d_un.d_val;
6986 bfd_size_type amt;
6987
6988 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6989 if (string == NULL)
6990 goto error_return;
6991
6992 amt = sizeof *l;
6993 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6994 if (l == NULL)
6995 goto error_return;
6996
6997 l->by = abfd;
6998 l->name = string;
6999 l->next = *pneeded;
7000 *pneeded = l;
7001 }
7002 }
7003
7004 free (dynbuf);
7005
7006 return TRUE;
7007
7008 error_return:
7009 if (dynbuf != NULL)
7010 free (dynbuf);
7011 return FALSE;
7012 }
7013
7014 struct elf_symbuf_symbol
7015 {
7016 unsigned long st_name; /* Symbol name, index in string tbl */
7017 unsigned char st_info; /* Type and binding attributes */
7018 unsigned char st_other; /* Visibilty, and target specific */
7019 };
7020
7021 struct elf_symbuf_head
7022 {
7023 struct elf_symbuf_symbol *ssym;
7024 bfd_size_type count;
7025 unsigned int st_shndx;
7026 };
7027
7028 struct elf_symbol
7029 {
7030 union
7031 {
7032 Elf_Internal_Sym *isym;
7033 struct elf_symbuf_symbol *ssym;
7034 } u;
7035 const char *name;
7036 };
7037
7038 /* Sort references to symbols by ascending section number. */
7039
7040 static int
7041 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7042 {
7043 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7044 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7045
7046 return s1->st_shndx - s2->st_shndx;
7047 }
7048
7049 static int
7050 elf_sym_name_compare (const void *arg1, const void *arg2)
7051 {
7052 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7053 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7054 return strcmp (s1->name, s2->name);
7055 }
7056
7057 static struct elf_symbuf_head *
7058 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7059 {
7060 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7061 struct elf_symbuf_symbol *ssym;
7062 struct elf_symbuf_head *ssymbuf, *ssymhead;
7063 bfd_size_type i, shndx_count, total_size;
7064
7065 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7066 if (indbuf == NULL)
7067 return NULL;
7068
7069 for (ind = indbuf, i = 0; i < symcount; i++)
7070 if (isymbuf[i].st_shndx != SHN_UNDEF)
7071 *ind++ = &isymbuf[i];
7072 indbufend = ind;
7073
7074 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7075 elf_sort_elf_symbol);
7076
7077 shndx_count = 0;
7078 if (indbufend > indbuf)
7079 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7080 if (ind[0]->st_shndx != ind[1]->st_shndx)
7081 shndx_count++;
7082
7083 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7084 + (indbufend - indbuf) * sizeof (*ssym));
7085 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7086 if (ssymbuf == NULL)
7087 {
7088 free (indbuf);
7089 return NULL;
7090 }
7091
7092 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7093 ssymbuf->ssym = NULL;
7094 ssymbuf->count = shndx_count;
7095 ssymbuf->st_shndx = 0;
7096 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7097 {
7098 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7099 {
7100 ssymhead++;
7101 ssymhead->ssym = ssym;
7102 ssymhead->count = 0;
7103 ssymhead->st_shndx = (*ind)->st_shndx;
7104 }
7105 ssym->st_name = (*ind)->st_name;
7106 ssym->st_info = (*ind)->st_info;
7107 ssym->st_other = (*ind)->st_other;
7108 ssymhead->count++;
7109 }
7110 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7111 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7112 == total_size));
7113
7114 free (indbuf);
7115 return ssymbuf;
7116 }
7117
7118 /* Check if 2 sections define the same set of local and global
7119 symbols. */
7120
7121 static bfd_boolean
7122 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7123 struct bfd_link_info *info)
7124 {
7125 bfd *bfd1, *bfd2;
7126 const struct elf_backend_data *bed1, *bed2;
7127 Elf_Internal_Shdr *hdr1, *hdr2;
7128 bfd_size_type symcount1, symcount2;
7129 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7130 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7131 Elf_Internal_Sym *isym, *isymend;
7132 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7133 bfd_size_type count1, count2, i;
7134 unsigned int shndx1, shndx2;
7135 bfd_boolean result;
7136
7137 bfd1 = sec1->owner;
7138 bfd2 = sec2->owner;
7139
7140 /* Both sections have to be in ELF. */
7141 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7142 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7143 return FALSE;
7144
7145 if (elf_section_type (sec1) != elf_section_type (sec2))
7146 return FALSE;
7147
7148 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7149 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7150 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7151 return FALSE;
7152
7153 bed1 = get_elf_backend_data (bfd1);
7154 bed2 = get_elf_backend_data (bfd2);
7155 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7156 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7157 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7158 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7159
7160 if (symcount1 == 0 || symcount2 == 0)
7161 return FALSE;
7162
7163 result = FALSE;
7164 isymbuf1 = NULL;
7165 isymbuf2 = NULL;
7166 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7167 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7168
7169 if (ssymbuf1 == NULL)
7170 {
7171 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7172 NULL, NULL, NULL);
7173 if (isymbuf1 == NULL)
7174 goto done;
7175
7176 if (!info->reduce_memory_overheads)
7177 elf_tdata (bfd1)->symbuf = ssymbuf1
7178 = elf_create_symbuf (symcount1, isymbuf1);
7179 }
7180
7181 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7182 {
7183 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7184 NULL, NULL, NULL);
7185 if (isymbuf2 == NULL)
7186 goto done;
7187
7188 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7189 elf_tdata (bfd2)->symbuf = ssymbuf2
7190 = elf_create_symbuf (symcount2, isymbuf2);
7191 }
7192
7193 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7194 {
7195 /* Optimized faster version. */
7196 bfd_size_type lo, hi, mid;
7197 struct elf_symbol *symp;
7198 struct elf_symbuf_symbol *ssym, *ssymend;
7199
7200 lo = 0;
7201 hi = ssymbuf1->count;
7202 ssymbuf1++;
7203 count1 = 0;
7204 while (lo < hi)
7205 {
7206 mid = (lo + hi) / 2;
7207 if (shndx1 < ssymbuf1[mid].st_shndx)
7208 hi = mid;
7209 else if (shndx1 > ssymbuf1[mid].st_shndx)
7210 lo = mid + 1;
7211 else
7212 {
7213 count1 = ssymbuf1[mid].count;
7214 ssymbuf1 += mid;
7215 break;
7216 }
7217 }
7218
7219 lo = 0;
7220 hi = ssymbuf2->count;
7221 ssymbuf2++;
7222 count2 = 0;
7223 while (lo < hi)
7224 {
7225 mid = (lo + hi) / 2;
7226 if (shndx2 < ssymbuf2[mid].st_shndx)
7227 hi = mid;
7228 else if (shndx2 > ssymbuf2[mid].st_shndx)
7229 lo = mid + 1;
7230 else
7231 {
7232 count2 = ssymbuf2[mid].count;
7233 ssymbuf2 += mid;
7234 break;
7235 }
7236 }
7237
7238 if (count1 == 0 || count2 == 0 || count1 != count2)
7239 goto done;
7240
7241 symtable1 = (struct elf_symbol *)
7242 bfd_malloc (count1 * sizeof (struct elf_symbol));
7243 symtable2 = (struct elf_symbol *)
7244 bfd_malloc (count2 * sizeof (struct elf_symbol));
7245 if (symtable1 == NULL || symtable2 == NULL)
7246 goto done;
7247
7248 symp = symtable1;
7249 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7250 ssym < ssymend; ssym++, symp++)
7251 {
7252 symp->u.ssym = ssym;
7253 symp->name = bfd_elf_string_from_elf_section (bfd1,
7254 hdr1->sh_link,
7255 ssym->st_name);
7256 }
7257
7258 symp = symtable2;
7259 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7260 ssym < ssymend; ssym++, symp++)
7261 {
7262 symp->u.ssym = ssym;
7263 symp->name = bfd_elf_string_from_elf_section (bfd2,
7264 hdr2->sh_link,
7265 ssym->st_name);
7266 }
7267
7268 /* Sort symbol by name. */
7269 qsort (symtable1, count1, sizeof (struct elf_symbol),
7270 elf_sym_name_compare);
7271 qsort (symtable2, count1, sizeof (struct elf_symbol),
7272 elf_sym_name_compare);
7273
7274 for (i = 0; i < count1; i++)
7275 /* Two symbols must have the same binding, type and name. */
7276 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7277 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7278 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7279 goto done;
7280
7281 result = TRUE;
7282 goto done;
7283 }
7284
7285 symtable1 = (struct elf_symbol *)
7286 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7287 symtable2 = (struct elf_symbol *)
7288 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7289 if (symtable1 == NULL || symtable2 == NULL)
7290 goto done;
7291
7292 /* Count definitions in the section. */
7293 count1 = 0;
7294 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7295 if (isym->st_shndx == shndx1)
7296 symtable1[count1++].u.isym = isym;
7297
7298 count2 = 0;
7299 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7300 if (isym->st_shndx == shndx2)
7301 symtable2[count2++].u.isym = isym;
7302
7303 if (count1 == 0 || count2 == 0 || count1 != count2)
7304 goto done;
7305
7306 for (i = 0; i < count1; i++)
7307 symtable1[i].name
7308 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7309 symtable1[i].u.isym->st_name);
7310
7311 for (i = 0; i < count2; i++)
7312 symtable2[i].name
7313 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7314 symtable2[i].u.isym->st_name);
7315
7316 /* Sort symbol by name. */
7317 qsort (symtable1, count1, sizeof (struct elf_symbol),
7318 elf_sym_name_compare);
7319 qsort (symtable2, count1, sizeof (struct elf_symbol),
7320 elf_sym_name_compare);
7321
7322 for (i = 0; i < count1; i++)
7323 /* Two symbols must have the same binding, type and name. */
7324 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7325 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7326 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7327 goto done;
7328
7329 result = TRUE;
7330
7331 done:
7332 if (symtable1)
7333 free (symtable1);
7334 if (symtable2)
7335 free (symtable2);
7336 if (isymbuf1)
7337 free (isymbuf1);
7338 if (isymbuf2)
7339 free (isymbuf2);
7340
7341 return result;
7342 }
7343
7344 /* Return TRUE if 2 section types are compatible. */
7345
7346 bfd_boolean
7347 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7348 bfd *bbfd, const asection *bsec)
7349 {
7350 if (asec == NULL
7351 || bsec == NULL
7352 || abfd->xvec->flavour != bfd_target_elf_flavour
7353 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7354 return TRUE;
7355
7356 return elf_section_type (asec) == elf_section_type (bsec);
7357 }
7358 \f
7359 /* Final phase of ELF linker. */
7360
7361 /* A structure we use to avoid passing large numbers of arguments. */
7362
7363 struct elf_final_link_info
7364 {
7365 /* General link information. */
7366 struct bfd_link_info *info;
7367 /* Output BFD. */
7368 bfd *output_bfd;
7369 /* Symbol string table. */
7370 struct bfd_strtab_hash *symstrtab;
7371 /* .dynsym section. */
7372 asection *dynsym_sec;
7373 /* .hash section. */
7374 asection *hash_sec;
7375 /* symbol version section (.gnu.version). */
7376 asection *symver_sec;
7377 /* Buffer large enough to hold contents of any section. */
7378 bfd_byte *contents;
7379 /* Buffer large enough to hold external relocs of any section. */
7380 void *external_relocs;
7381 /* Buffer large enough to hold internal relocs of any section. */
7382 Elf_Internal_Rela *internal_relocs;
7383 /* Buffer large enough to hold external local symbols of any input
7384 BFD. */
7385 bfd_byte *external_syms;
7386 /* And a buffer for symbol section indices. */
7387 Elf_External_Sym_Shndx *locsym_shndx;
7388 /* Buffer large enough to hold internal local symbols of any input
7389 BFD. */
7390 Elf_Internal_Sym *internal_syms;
7391 /* Array large enough to hold a symbol index for each local symbol
7392 of any input BFD. */
7393 long *indices;
7394 /* Array large enough to hold a section pointer for each local
7395 symbol of any input BFD. */
7396 asection **sections;
7397 /* Buffer to hold swapped out symbols. */
7398 bfd_byte *symbuf;
7399 /* And one for symbol section indices. */
7400 Elf_External_Sym_Shndx *symshndxbuf;
7401 /* Number of swapped out symbols in buffer. */
7402 size_t symbuf_count;
7403 /* Number of symbols which fit in symbuf. */
7404 size_t symbuf_size;
7405 /* And same for symshndxbuf. */
7406 size_t shndxbuf_size;
7407 };
7408
7409 /* This struct is used to pass information to elf_link_output_extsym. */
7410
7411 struct elf_outext_info
7412 {
7413 bfd_boolean failed;
7414 bfd_boolean localsyms;
7415 struct elf_final_link_info *finfo;
7416 };
7417
7418
7419 /* Support for evaluating a complex relocation.
7420
7421 Complex relocations are generalized, self-describing relocations. The
7422 implementation of them consists of two parts: complex symbols, and the
7423 relocations themselves.
7424
7425 The relocations are use a reserved elf-wide relocation type code (R_RELC
7426 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7427 information (start bit, end bit, word width, etc) into the addend. This
7428 information is extracted from CGEN-generated operand tables within gas.
7429
7430 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7431 internal) representing prefix-notation expressions, including but not
7432 limited to those sorts of expressions normally encoded as addends in the
7433 addend field. The symbol mangling format is:
7434
7435 <node> := <literal>
7436 | <unary-operator> ':' <node>
7437 | <binary-operator> ':' <node> ':' <node>
7438 ;
7439
7440 <literal> := 's' <digits=N> ':' <N character symbol name>
7441 | 'S' <digits=N> ':' <N character section name>
7442 | '#' <hexdigits>
7443 ;
7444
7445 <binary-operator> := as in C
7446 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7447
7448 static void
7449 set_symbol_value (bfd *bfd_with_globals,
7450 Elf_Internal_Sym *isymbuf,
7451 size_t locsymcount,
7452 size_t symidx,
7453 bfd_vma val)
7454 {
7455 struct elf_link_hash_entry **sym_hashes;
7456 struct elf_link_hash_entry *h;
7457 size_t extsymoff = locsymcount;
7458
7459 if (symidx < locsymcount)
7460 {
7461 Elf_Internal_Sym *sym;
7462
7463 sym = isymbuf + symidx;
7464 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7465 {
7466 /* It is a local symbol: move it to the
7467 "absolute" section and give it a value. */
7468 sym->st_shndx = SHN_ABS;
7469 sym->st_value = val;
7470 return;
7471 }
7472 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7473 extsymoff = 0;
7474 }
7475
7476 /* It is a global symbol: set its link type
7477 to "defined" and give it a value. */
7478
7479 sym_hashes = elf_sym_hashes (bfd_with_globals);
7480 h = sym_hashes [symidx - extsymoff];
7481 while (h->root.type == bfd_link_hash_indirect
7482 || h->root.type == bfd_link_hash_warning)
7483 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7484 h->root.type = bfd_link_hash_defined;
7485 h->root.u.def.value = val;
7486 h->root.u.def.section = bfd_abs_section_ptr;
7487 }
7488
7489 static bfd_boolean
7490 resolve_symbol (const char *name,
7491 bfd *input_bfd,
7492 struct elf_final_link_info *finfo,
7493 bfd_vma *result,
7494 Elf_Internal_Sym *isymbuf,
7495 size_t locsymcount)
7496 {
7497 Elf_Internal_Sym *sym;
7498 struct bfd_link_hash_entry *global_entry;
7499 const char *candidate = NULL;
7500 Elf_Internal_Shdr *symtab_hdr;
7501 size_t i;
7502
7503 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7504
7505 for (i = 0; i < locsymcount; ++ i)
7506 {
7507 sym = isymbuf + i;
7508
7509 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7510 continue;
7511
7512 candidate = bfd_elf_string_from_elf_section (input_bfd,
7513 symtab_hdr->sh_link,
7514 sym->st_name);
7515 #ifdef DEBUG
7516 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7517 name, candidate, (unsigned long) sym->st_value);
7518 #endif
7519 if (candidate && strcmp (candidate, name) == 0)
7520 {
7521 asection *sec = finfo->sections [i];
7522
7523 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7524 *result += sec->output_offset + sec->output_section->vma;
7525 #ifdef DEBUG
7526 printf ("Found symbol with value %8.8lx\n",
7527 (unsigned long) *result);
7528 #endif
7529 return TRUE;
7530 }
7531 }
7532
7533 /* Hmm, haven't found it yet. perhaps it is a global. */
7534 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7535 FALSE, FALSE, TRUE);
7536 if (!global_entry)
7537 return FALSE;
7538
7539 if (global_entry->type == bfd_link_hash_defined
7540 || global_entry->type == bfd_link_hash_defweak)
7541 {
7542 *result = (global_entry->u.def.value
7543 + global_entry->u.def.section->output_section->vma
7544 + global_entry->u.def.section->output_offset);
7545 #ifdef DEBUG
7546 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7547 global_entry->root.string, (unsigned long) *result);
7548 #endif
7549 return TRUE;
7550 }
7551
7552 return FALSE;
7553 }
7554
7555 static bfd_boolean
7556 resolve_section (const char *name,
7557 asection *sections,
7558 bfd_vma *result)
7559 {
7560 asection *curr;
7561 unsigned int len;
7562
7563 for (curr = sections; curr; curr = curr->next)
7564 if (strcmp (curr->name, name) == 0)
7565 {
7566 *result = curr->vma;
7567 return TRUE;
7568 }
7569
7570 /* Hmm. still haven't found it. try pseudo-section names. */
7571 for (curr = sections; curr; curr = curr->next)
7572 {
7573 len = strlen (curr->name);
7574 if (len > strlen (name))
7575 continue;
7576
7577 if (strncmp (curr->name, name, len) == 0)
7578 {
7579 if (strncmp (".end", name + len, 4) == 0)
7580 {
7581 *result = curr->vma + curr->size;
7582 return TRUE;
7583 }
7584
7585 /* Insert more pseudo-section names here, if you like. */
7586 }
7587 }
7588
7589 return FALSE;
7590 }
7591
7592 static void
7593 undefined_reference (const char *reftype, const char *name)
7594 {
7595 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7596 reftype, name);
7597 }
7598
7599 static bfd_boolean
7600 eval_symbol (bfd_vma *result,
7601 const char **symp,
7602 bfd *input_bfd,
7603 struct elf_final_link_info *finfo,
7604 bfd_vma dot,
7605 Elf_Internal_Sym *isymbuf,
7606 size_t locsymcount,
7607 int signed_p)
7608 {
7609 size_t len;
7610 size_t symlen;
7611 bfd_vma a;
7612 bfd_vma b;
7613 char symbuf[4096];
7614 const char *sym = *symp;
7615 const char *symend;
7616 bfd_boolean symbol_is_section = FALSE;
7617
7618 len = strlen (sym);
7619 symend = sym + len;
7620
7621 if (len < 1 || len > sizeof (symbuf))
7622 {
7623 bfd_set_error (bfd_error_invalid_operation);
7624 return FALSE;
7625 }
7626
7627 switch (* sym)
7628 {
7629 case '.':
7630 *result = dot;
7631 *symp = sym + 1;
7632 return TRUE;
7633
7634 case '#':
7635 ++sym;
7636 *result = strtoul (sym, (char **) symp, 16);
7637 return TRUE;
7638
7639 case 'S':
7640 symbol_is_section = TRUE;
7641 case 's':
7642 ++sym;
7643 symlen = strtol (sym, (char **) symp, 10);
7644 sym = *symp + 1; /* Skip the trailing ':'. */
7645
7646 if (symend < sym || symlen + 1 > sizeof (symbuf))
7647 {
7648 bfd_set_error (bfd_error_invalid_operation);
7649 return FALSE;
7650 }
7651
7652 memcpy (symbuf, sym, symlen);
7653 symbuf[symlen] = '\0';
7654 *symp = sym + symlen;
7655
7656 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7657 the symbol as a section, or vice-versa. so we're pretty liberal in our
7658 interpretation here; section means "try section first", not "must be a
7659 section", and likewise with symbol. */
7660
7661 if (symbol_is_section)
7662 {
7663 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7664 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7665 isymbuf, locsymcount))
7666 {
7667 undefined_reference ("section", symbuf);
7668 return FALSE;
7669 }
7670 }
7671 else
7672 {
7673 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7674 isymbuf, locsymcount)
7675 && !resolve_section (symbuf, finfo->output_bfd->sections,
7676 result))
7677 {
7678 undefined_reference ("symbol", symbuf);
7679 return FALSE;
7680 }
7681 }
7682
7683 return TRUE;
7684
7685 /* All that remains are operators. */
7686
7687 #define UNARY_OP(op) \
7688 if (strncmp (sym, #op, strlen (#op)) == 0) \
7689 { \
7690 sym += strlen (#op); \
7691 if (*sym == ':') \
7692 ++sym; \
7693 *symp = sym; \
7694 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7695 isymbuf, locsymcount, signed_p)) \
7696 return FALSE; \
7697 if (signed_p) \
7698 *result = op ((bfd_signed_vma) a); \
7699 else \
7700 *result = op a; \
7701 return TRUE; \
7702 }
7703
7704 #define BINARY_OP(op) \
7705 if (strncmp (sym, #op, strlen (#op)) == 0) \
7706 { \
7707 sym += strlen (#op); \
7708 if (*sym == ':') \
7709 ++sym; \
7710 *symp = sym; \
7711 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7712 isymbuf, locsymcount, signed_p)) \
7713 return FALSE; \
7714 ++*symp; \
7715 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7716 isymbuf, locsymcount, signed_p)) \
7717 return FALSE; \
7718 if (signed_p) \
7719 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7720 else \
7721 *result = a op b; \
7722 return TRUE; \
7723 }
7724
7725 default:
7726 UNARY_OP (0-);
7727 BINARY_OP (<<);
7728 BINARY_OP (>>);
7729 BINARY_OP (==);
7730 BINARY_OP (!=);
7731 BINARY_OP (<=);
7732 BINARY_OP (>=);
7733 BINARY_OP (&&);
7734 BINARY_OP (||);
7735 UNARY_OP (~);
7736 UNARY_OP (!);
7737 BINARY_OP (*);
7738 BINARY_OP (/);
7739 BINARY_OP (%);
7740 BINARY_OP (^);
7741 BINARY_OP (|);
7742 BINARY_OP (&);
7743 BINARY_OP (+);
7744 BINARY_OP (-);
7745 BINARY_OP (<);
7746 BINARY_OP (>);
7747 #undef UNARY_OP
7748 #undef BINARY_OP
7749 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7750 bfd_set_error (bfd_error_invalid_operation);
7751 return FALSE;
7752 }
7753 }
7754
7755 static void
7756 put_value (bfd_vma size,
7757 unsigned long chunksz,
7758 bfd *input_bfd,
7759 bfd_vma x,
7760 bfd_byte *location)
7761 {
7762 location += (size - chunksz);
7763
7764 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7765 {
7766 switch (chunksz)
7767 {
7768 default:
7769 case 0:
7770 abort ();
7771 case 1:
7772 bfd_put_8 (input_bfd, x, location);
7773 break;
7774 case 2:
7775 bfd_put_16 (input_bfd, x, location);
7776 break;
7777 case 4:
7778 bfd_put_32 (input_bfd, x, location);
7779 break;
7780 case 8:
7781 #ifdef BFD64
7782 bfd_put_64 (input_bfd, x, location);
7783 #else
7784 abort ();
7785 #endif
7786 break;
7787 }
7788 }
7789 }
7790
7791 static bfd_vma
7792 get_value (bfd_vma size,
7793 unsigned long chunksz,
7794 bfd *input_bfd,
7795 bfd_byte *location)
7796 {
7797 bfd_vma x = 0;
7798
7799 for (; size; size -= chunksz, location += chunksz)
7800 {
7801 switch (chunksz)
7802 {
7803 default:
7804 case 0:
7805 abort ();
7806 case 1:
7807 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7808 break;
7809 case 2:
7810 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7811 break;
7812 case 4:
7813 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7814 break;
7815 case 8:
7816 #ifdef BFD64
7817 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7818 #else
7819 abort ();
7820 #endif
7821 break;
7822 }
7823 }
7824 return x;
7825 }
7826
7827 static void
7828 decode_complex_addend (unsigned long *start, /* in bits */
7829 unsigned long *oplen, /* in bits */
7830 unsigned long *len, /* in bits */
7831 unsigned long *wordsz, /* in bytes */
7832 unsigned long *chunksz, /* in bytes */
7833 unsigned long *lsb0_p,
7834 unsigned long *signed_p,
7835 unsigned long *trunc_p,
7836 unsigned long encoded)
7837 {
7838 * start = encoded & 0x3F;
7839 * len = (encoded >> 6) & 0x3F;
7840 * oplen = (encoded >> 12) & 0x3F;
7841 * wordsz = (encoded >> 18) & 0xF;
7842 * chunksz = (encoded >> 22) & 0xF;
7843 * lsb0_p = (encoded >> 27) & 1;
7844 * signed_p = (encoded >> 28) & 1;
7845 * trunc_p = (encoded >> 29) & 1;
7846 }
7847
7848 bfd_reloc_status_type
7849 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7850 asection *input_section ATTRIBUTE_UNUSED,
7851 bfd_byte *contents,
7852 Elf_Internal_Rela *rel,
7853 bfd_vma relocation)
7854 {
7855 bfd_vma shift, x, mask;
7856 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7857 bfd_reloc_status_type r;
7858
7859 /* Perform this reloc, since it is complex.
7860 (this is not to say that it necessarily refers to a complex
7861 symbol; merely that it is a self-describing CGEN based reloc.
7862 i.e. the addend has the complete reloc information (bit start, end,
7863 word size, etc) encoded within it.). */
7864
7865 decode_complex_addend (&start, &oplen, &len, &wordsz,
7866 &chunksz, &lsb0_p, &signed_p,
7867 &trunc_p, rel->r_addend);
7868
7869 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7870
7871 if (lsb0_p)
7872 shift = (start + 1) - len;
7873 else
7874 shift = (8 * wordsz) - (start + len);
7875
7876 /* FIXME: octets_per_byte. */
7877 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7878
7879 #ifdef DEBUG
7880 printf ("Doing complex reloc: "
7881 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7882 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7883 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7884 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7885 oplen, (unsigned long) x, (unsigned long) mask,
7886 (unsigned long) relocation);
7887 #endif
7888
7889 r = bfd_reloc_ok;
7890 if (! trunc_p)
7891 /* Now do an overflow check. */
7892 r = bfd_check_overflow ((signed_p
7893 ? complain_overflow_signed
7894 : complain_overflow_unsigned),
7895 len, 0, (8 * wordsz),
7896 relocation);
7897
7898 /* Do the deed. */
7899 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7900
7901 #ifdef DEBUG
7902 printf (" relocation: %8.8lx\n"
7903 " shifted mask: %8.8lx\n"
7904 " shifted/masked reloc: %8.8lx\n"
7905 " result: %8.8lx\n",
7906 (unsigned long) relocation, (unsigned long) (mask << shift),
7907 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7908 #endif
7909 /* FIXME: octets_per_byte. */
7910 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7911 return r;
7912 }
7913
7914 /* When performing a relocatable link, the input relocations are
7915 preserved. But, if they reference global symbols, the indices
7916 referenced must be updated. Update all the relocations found in
7917 RELDATA. */
7918
7919 static void
7920 elf_link_adjust_relocs (bfd *abfd,
7921 struct bfd_elf_section_reloc_data *reldata)
7922 {
7923 unsigned int i;
7924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7925 bfd_byte *erela;
7926 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7927 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7928 bfd_vma r_type_mask;
7929 int r_sym_shift;
7930 unsigned int count = reldata->count;
7931 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7932
7933 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7934 {
7935 swap_in = bed->s->swap_reloc_in;
7936 swap_out = bed->s->swap_reloc_out;
7937 }
7938 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7939 {
7940 swap_in = bed->s->swap_reloca_in;
7941 swap_out = bed->s->swap_reloca_out;
7942 }
7943 else
7944 abort ();
7945
7946 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7947 abort ();
7948
7949 if (bed->s->arch_size == 32)
7950 {
7951 r_type_mask = 0xff;
7952 r_sym_shift = 8;
7953 }
7954 else
7955 {
7956 r_type_mask = 0xffffffff;
7957 r_sym_shift = 32;
7958 }
7959
7960 erela = reldata->hdr->contents;
7961 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7962 {
7963 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7964 unsigned int j;
7965
7966 if (*rel_hash == NULL)
7967 continue;
7968
7969 BFD_ASSERT ((*rel_hash)->indx >= 0);
7970
7971 (*swap_in) (abfd, erela, irela);
7972 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7973 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7974 | (irela[j].r_info & r_type_mask));
7975 (*swap_out) (abfd, irela, erela);
7976 }
7977 }
7978
7979 struct elf_link_sort_rela
7980 {
7981 union {
7982 bfd_vma offset;
7983 bfd_vma sym_mask;
7984 } u;
7985 enum elf_reloc_type_class type;
7986 /* We use this as an array of size int_rels_per_ext_rel. */
7987 Elf_Internal_Rela rela[1];
7988 };
7989
7990 static int
7991 elf_link_sort_cmp1 (const void *A, const void *B)
7992 {
7993 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7994 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7995 int relativea, relativeb;
7996
7997 relativea = a->type == reloc_class_relative;
7998 relativeb = b->type == reloc_class_relative;
7999
8000 if (relativea < relativeb)
8001 return 1;
8002 if (relativea > relativeb)
8003 return -1;
8004 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8005 return -1;
8006 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8007 return 1;
8008 if (a->rela->r_offset < b->rela->r_offset)
8009 return -1;
8010 if (a->rela->r_offset > b->rela->r_offset)
8011 return 1;
8012 return 0;
8013 }
8014
8015 static int
8016 elf_link_sort_cmp2 (const void *A, const void *B)
8017 {
8018 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8019 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8020 int copya, copyb;
8021
8022 if (a->u.offset < b->u.offset)
8023 return -1;
8024 if (a->u.offset > b->u.offset)
8025 return 1;
8026 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8027 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8028 if (copya < copyb)
8029 return -1;
8030 if (copya > copyb)
8031 return 1;
8032 if (a->rela->r_offset < b->rela->r_offset)
8033 return -1;
8034 if (a->rela->r_offset > b->rela->r_offset)
8035 return 1;
8036 return 0;
8037 }
8038
8039 static size_t
8040 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8041 {
8042 asection *dynamic_relocs;
8043 asection *rela_dyn;
8044 asection *rel_dyn;
8045 bfd_size_type count, size;
8046 size_t i, ret, sort_elt, ext_size;
8047 bfd_byte *sort, *s_non_relative, *p;
8048 struct elf_link_sort_rela *sq;
8049 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8050 int i2e = bed->s->int_rels_per_ext_rel;
8051 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8052 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8053 struct bfd_link_order *lo;
8054 bfd_vma r_sym_mask;
8055 bfd_boolean use_rela;
8056
8057 /* Find a dynamic reloc section. */
8058 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8059 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8060 if (rela_dyn != NULL && rela_dyn->size > 0
8061 && rel_dyn != NULL && rel_dyn->size > 0)
8062 {
8063 bfd_boolean use_rela_initialised = FALSE;
8064
8065 /* This is just here to stop gcc from complaining.
8066 It's initialization checking code is not perfect. */
8067 use_rela = TRUE;
8068
8069 /* Both sections are present. Examine the sizes
8070 of the indirect sections to help us choose. */
8071 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8072 if (lo->type == bfd_indirect_link_order)
8073 {
8074 asection *o = lo->u.indirect.section;
8075
8076 if ((o->size % bed->s->sizeof_rela) == 0)
8077 {
8078 if ((o->size % bed->s->sizeof_rel) == 0)
8079 /* Section size is divisible by both rel and rela sizes.
8080 It is of no help to us. */
8081 ;
8082 else
8083 {
8084 /* Section size is only divisible by rela. */
8085 if (use_rela_initialised && (use_rela == FALSE))
8086 {
8087 _bfd_error_handler
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8089 bfd_set_error (bfd_error_invalid_operation);
8090 return 0;
8091 }
8092 else
8093 {
8094 use_rela = TRUE;
8095 use_rela_initialised = TRUE;
8096 }
8097 }
8098 }
8099 else if ((o->size % bed->s->sizeof_rel) == 0)
8100 {
8101 /* Section size is only divisible by rel. */
8102 if (use_rela_initialised && (use_rela == TRUE))
8103 {
8104 _bfd_error_handler
8105 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8106 bfd_set_error (bfd_error_invalid_operation);
8107 return 0;
8108 }
8109 else
8110 {
8111 use_rela = FALSE;
8112 use_rela_initialised = TRUE;
8113 }
8114 }
8115 else
8116 {
8117 /* The section size is not divisible by either - something is wrong. */
8118 _bfd_error_handler
8119 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8120 bfd_set_error (bfd_error_invalid_operation);
8121 return 0;
8122 }
8123 }
8124
8125 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8126 if (lo->type == bfd_indirect_link_order)
8127 {
8128 asection *o = lo->u.indirect.section;
8129
8130 if ((o->size % bed->s->sizeof_rela) == 0)
8131 {
8132 if ((o->size % bed->s->sizeof_rel) == 0)
8133 /* Section size is divisible by both rel and rela sizes.
8134 It is of no help to us. */
8135 ;
8136 else
8137 {
8138 /* Section size is only divisible by rela. */
8139 if (use_rela_initialised && (use_rela == FALSE))
8140 {
8141 _bfd_error_handler
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8144 return 0;
8145 }
8146 else
8147 {
8148 use_rela = TRUE;
8149 use_rela_initialised = TRUE;
8150 }
8151 }
8152 }
8153 else if ((o->size % bed->s->sizeof_rel) == 0)
8154 {
8155 /* Section size is only divisible by rel. */
8156 if (use_rela_initialised && (use_rela == TRUE))
8157 {
8158 _bfd_error_handler
8159 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8160 bfd_set_error (bfd_error_invalid_operation);
8161 return 0;
8162 }
8163 else
8164 {
8165 use_rela = FALSE;
8166 use_rela_initialised = TRUE;
8167 }
8168 }
8169 else
8170 {
8171 /* The section size is not divisible by either - something is wrong. */
8172 _bfd_error_handler
8173 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8174 bfd_set_error (bfd_error_invalid_operation);
8175 return 0;
8176 }
8177 }
8178
8179 if (! use_rela_initialised)
8180 /* Make a guess. */
8181 use_rela = TRUE;
8182 }
8183 else if (rela_dyn != NULL && rela_dyn->size > 0)
8184 use_rela = TRUE;
8185 else if (rel_dyn != NULL && rel_dyn->size > 0)
8186 use_rela = FALSE;
8187 else
8188 return 0;
8189
8190 if (use_rela)
8191 {
8192 dynamic_relocs = rela_dyn;
8193 ext_size = bed->s->sizeof_rela;
8194 swap_in = bed->s->swap_reloca_in;
8195 swap_out = bed->s->swap_reloca_out;
8196 }
8197 else
8198 {
8199 dynamic_relocs = rel_dyn;
8200 ext_size = bed->s->sizeof_rel;
8201 swap_in = bed->s->swap_reloc_in;
8202 swap_out = bed->s->swap_reloc_out;
8203 }
8204
8205 size = 0;
8206 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8207 if (lo->type == bfd_indirect_link_order)
8208 size += lo->u.indirect.section->size;
8209
8210 if (size != dynamic_relocs->size)
8211 return 0;
8212
8213 sort_elt = (sizeof (struct elf_link_sort_rela)
8214 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8215
8216 count = dynamic_relocs->size / ext_size;
8217 if (count == 0)
8218 return 0;
8219 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8220
8221 if (sort == NULL)
8222 {
8223 (*info->callbacks->warning)
8224 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8225 return 0;
8226 }
8227
8228 if (bed->s->arch_size == 32)
8229 r_sym_mask = ~(bfd_vma) 0xff;
8230 else
8231 r_sym_mask = ~(bfd_vma) 0xffffffff;
8232
8233 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8234 if (lo->type == bfd_indirect_link_order)
8235 {
8236 bfd_byte *erel, *erelend;
8237 asection *o = lo->u.indirect.section;
8238
8239 if (o->contents == NULL && o->size != 0)
8240 {
8241 /* This is a reloc section that is being handled as a normal
8242 section. See bfd_section_from_shdr. We can't combine
8243 relocs in this case. */
8244 free (sort);
8245 return 0;
8246 }
8247 erel = o->contents;
8248 erelend = o->contents + o->size;
8249 /* FIXME: octets_per_byte. */
8250 p = sort + o->output_offset / ext_size * sort_elt;
8251
8252 while (erel < erelend)
8253 {
8254 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8255
8256 (*swap_in) (abfd, erel, s->rela);
8257 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8258 s->u.sym_mask = r_sym_mask;
8259 p += sort_elt;
8260 erel += ext_size;
8261 }
8262 }
8263
8264 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8265
8266 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8267 {
8268 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8269 if (s->type != reloc_class_relative)
8270 break;
8271 }
8272 ret = i;
8273 s_non_relative = p;
8274
8275 sq = (struct elf_link_sort_rela *) s_non_relative;
8276 for (; i < count; i++, p += sort_elt)
8277 {
8278 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8279 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8280 sq = sp;
8281 sp->u.offset = sq->rela->r_offset;
8282 }
8283
8284 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8285
8286 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8287 if (lo->type == bfd_indirect_link_order)
8288 {
8289 bfd_byte *erel, *erelend;
8290 asection *o = lo->u.indirect.section;
8291
8292 erel = o->contents;
8293 erelend = o->contents + o->size;
8294 /* FIXME: octets_per_byte. */
8295 p = sort + o->output_offset / ext_size * sort_elt;
8296 while (erel < erelend)
8297 {
8298 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8299 (*swap_out) (abfd, s->rela, erel);
8300 p += sort_elt;
8301 erel += ext_size;
8302 }
8303 }
8304
8305 free (sort);
8306 *psec = dynamic_relocs;
8307 return ret;
8308 }
8309
8310 /* Flush the output symbols to the file. */
8311
8312 static bfd_boolean
8313 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8314 const struct elf_backend_data *bed)
8315 {
8316 if (finfo->symbuf_count > 0)
8317 {
8318 Elf_Internal_Shdr *hdr;
8319 file_ptr pos;
8320 bfd_size_type amt;
8321
8322 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8323 pos = hdr->sh_offset + hdr->sh_size;
8324 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8325 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8326 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8327 return FALSE;
8328
8329 hdr->sh_size += amt;
8330 finfo->symbuf_count = 0;
8331 }
8332
8333 return TRUE;
8334 }
8335
8336 /* Add a symbol to the output symbol table. */
8337
8338 static int
8339 elf_link_output_sym (struct elf_final_link_info *finfo,
8340 const char *name,
8341 Elf_Internal_Sym *elfsym,
8342 asection *input_sec,
8343 struct elf_link_hash_entry *h)
8344 {
8345 bfd_byte *dest;
8346 Elf_External_Sym_Shndx *destshndx;
8347 int (*output_symbol_hook)
8348 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8349 struct elf_link_hash_entry *);
8350 const struct elf_backend_data *bed;
8351
8352 bed = get_elf_backend_data (finfo->output_bfd);
8353 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8354 if (output_symbol_hook != NULL)
8355 {
8356 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8357 if (ret != 1)
8358 return ret;
8359 }
8360
8361 if (name == NULL || *name == '\0')
8362 elfsym->st_name = 0;
8363 else if (input_sec->flags & SEC_EXCLUDE)
8364 elfsym->st_name = 0;
8365 else
8366 {
8367 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8368 name, TRUE, FALSE);
8369 if (elfsym->st_name == (unsigned long) -1)
8370 return 0;
8371 }
8372
8373 if (finfo->symbuf_count >= finfo->symbuf_size)
8374 {
8375 if (! elf_link_flush_output_syms (finfo, bed))
8376 return 0;
8377 }
8378
8379 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8380 destshndx = finfo->symshndxbuf;
8381 if (destshndx != NULL)
8382 {
8383 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8384 {
8385 bfd_size_type amt;
8386
8387 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8388 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8389 amt * 2);
8390 if (destshndx == NULL)
8391 return 0;
8392 finfo->symshndxbuf = destshndx;
8393 memset ((char *) destshndx + amt, 0, amt);
8394 finfo->shndxbuf_size *= 2;
8395 }
8396 destshndx += bfd_get_symcount (finfo->output_bfd);
8397 }
8398
8399 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8400 finfo->symbuf_count += 1;
8401 bfd_get_symcount (finfo->output_bfd) += 1;
8402
8403 return 1;
8404 }
8405
8406 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8407
8408 static bfd_boolean
8409 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8410 {
8411 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8412 && sym->st_shndx < SHN_LORESERVE)
8413 {
8414 /* The gABI doesn't support dynamic symbols in output sections
8415 beyond 64k. */
8416 (*_bfd_error_handler)
8417 (_("%B: Too many sections: %d (>= %d)"),
8418 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8419 bfd_set_error (bfd_error_nonrepresentable_section);
8420 return FALSE;
8421 }
8422 return TRUE;
8423 }
8424
8425 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8426 allowing an unsatisfied unversioned symbol in the DSO to match a
8427 versioned symbol that would normally require an explicit version.
8428 We also handle the case that a DSO references a hidden symbol
8429 which may be satisfied by a versioned symbol in another DSO. */
8430
8431 static bfd_boolean
8432 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8433 const struct elf_backend_data *bed,
8434 struct elf_link_hash_entry *h)
8435 {
8436 bfd *abfd;
8437 struct elf_link_loaded_list *loaded;
8438
8439 if (!is_elf_hash_table (info->hash))
8440 return FALSE;
8441
8442 switch (h->root.type)
8443 {
8444 default:
8445 abfd = NULL;
8446 break;
8447
8448 case bfd_link_hash_undefined:
8449 case bfd_link_hash_undefweak:
8450 abfd = h->root.u.undef.abfd;
8451 if ((abfd->flags & DYNAMIC) == 0
8452 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8453 return FALSE;
8454 break;
8455
8456 case bfd_link_hash_defined:
8457 case bfd_link_hash_defweak:
8458 abfd = h->root.u.def.section->owner;
8459 break;
8460
8461 case bfd_link_hash_common:
8462 abfd = h->root.u.c.p->section->owner;
8463 break;
8464 }
8465 BFD_ASSERT (abfd != NULL);
8466
8467 for (loaded = elf_hash_table (info)->loaded;
8468 loaded != NULL;
8469 loaded = loaded->next)
8470 {
8471 bfd *input;
8472 Elf_Internal_Shdr *hdr;
8473 bfd_size_type symcount;
8474 bfd_size_type extsymcount;
8475 bfd_size_type extsymoff;
8476 Elf_Internal_Shdr *versymhdr;
8477 Elf_Internal_Sym *isym;
8478 Elf_Internal_Sym *isymend;
8479 Elf_Internal_Sym *isymbuf;
8480 Elf_External_Versym *ever;
8481 Elf_External_Versym *extversym;
8482
8483 input = loaded->abfd;
8484
8485 /* We check each DSO for a possible hidden versioned definition. */
8486 if (input == abfd
8487 || (input->flags & DYNAMIC) == 0
8488 || elf_dynversym (input) == 0)
8489 continue;
8490
8491 hdr = &elf_tdata (input)->dynsymtab_hdr;
8492
8493 symcount = hdr->sh_size / bed->s->sizeof_sym;
8494 if (elf_bad_symtab (input))
8495 {
8496 extsymcount = symcount;
8497 extsymoff = 0;
8498 }
8499 else
8500 {
8501 extsymcount = symcount - hdr->sh_info;
8502 extsymoff = hdr->sh_info;
8503 }
8504
8505 if (extsymcount == 0)
8506 continue;
8507
8508 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8509 NULL, NULL, NULL);
8510 if (isymbuf == NULL)
8511 return FALSE;
8512
8513 /* Read in any version definitions. */
8514 versymhdr = &elf_tdata (input)->dynversym_hdr;
8515 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8516 if (extversym == NULL)
8517 goto error_ret;
8518
8519 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8520 || (bfd_bread (extversym, versymhdr->sh_size, input)
8521 != versymhdr->sh_size))
8522 {
8523 free (extversym);
8524 error_ret:
8525 free (isymbuf);
8526 return FALSE;
8527 }
8528
8529 ever = extversym + extsymoff;
8530 isymend = isymbuf + extsymcount;
8531 for (isym = isymbuf; isym < isymend; isym++, ever++)
8532 {
8533 const char *name;
8534 Elf_Internal_Versym iver;
8535 unsigned short version_index;
8536
8537 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8538 || isym->st_shndx == SHN_UNDEF)
8539 continue;
8540
8541 name = bfd_elf_string_from_elf_section (input,
8542 hdr->sh_link,
8543 isym->st_name);
8544 if (strcmp (name, h->root.root.string) != 0)
8545 continue;
8546
8547 _bfd_elf_swap_versym_in (input, ever, &iver);
8548
8549 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8550 && !(h->def_regular
8551 && h->forced_local))
8552 {
8553 /* If we have a non-hidden versioned sym, then it should
8554 have provided a definition for the undefined sym unless
8555 it is defined in a non-shared object and forced local.
8556 */
8557 abort ();
8558 }
8559
8560 version_index = iver.vs_vers & VERSYM_VERSION;
8561 if (version_index == 1 || version_index == 2)
8562 {
8563 /* This is the base or first version. We can use it. */
8564 free (extversym);
8565 free (isymbuf);
8566 return TRUE;
8567 }
8568 }
8569
8570 free (extversym);
8571 free (isymbuf);
8572 }
8573
8574 return FALSE;
8575 }
8576
8577 /* Add an external symbol to the symbol table. This is called from
8578 the hash table traversal routine. When generating a shared object,
8579 we go through the symbol table twice. The first time we output
8580 anything that might have been forced to local scope in a version
8581 script. The second time we output the symbols that are still
8582 global symbols. */
8583
8584 static bfd_boolean
8585 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8586 {
8587 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8588 struct elf_final_link_info *finfo = eoinfo->finfo;
8589 bfd_boolean strip;
8590 Elf_Internal_Sym sym;
8591 asection *input_sec;
8592 const struct elf_backend_data *bed;
8593 long indx;
8594 int ret;
8595
8596 if (h->root.type == bfd_link_hash_warning)
8597 {
8598 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8599 if (h->root.type == bfd_link_hash_new)
8600 return TRUE;
8601 }
8602
8603 /* Decide whether to output this symbol in this pass. */
8604 if (eoinfo->localsyms)
8605 {
8606 if (!h->forced_local)
8607 return TRUE;
8608 }
8609 else
8610 {
8611 if (h->forced_local)
8612 return TRUE;
8613 }
8614
8615 bed = get_elf_backend_data (finfo->output_bfd);
8616
8617 if (h->root.type == bfd_link_hash_undefined)
8618 {
8619 /* If we have an undefined symbol reference here then it must have
8620 come from a shared library that is being linked in. (Undefined
8621 references in regular files have already been handled unless
8622 they are in unreferenced sections which are removed by garbage
8623 collection). */
8624 bfd_boolean ignore_undef = FALSE;
8625
8626 /* Some symbols may be special in that the fact that they're
8627 undefined can be safely ignored - let backend determine that. */
8628 if (bed->elf_backend_ignore_undef_symbol)
8629 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8630
8631 /* If we are reporting errors for this situation then do so now. */
8632 if (!ignore_undef
8633 && h->ref_dynamic
8634 && (!h->ref_regular || finfo->info->gc_sections)
8635 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8636 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8637 {
8638 if (! (finfo->info->callbacks->undefined_symbol
8639 (finfo->info, h->root.root.string,
8640 h->ref_regular ? NULL : h->root.u.undef.abfd,
8641 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8642 {
8643 eoinfo->failed = TRUE;
8644 return FALSE;
8645 }
8646 }
8647 }
8648
8649 /* We should also warn if a forced local symbol is referenced from
8650 shared libraries. */
8651 if (! finfo->info->relocatable
8652 && (! finfo->info->shared)
8653 && h->forced_local
8654 && h->ref_dynamic
8655 && !h->dynamic_def
8656 && !h->dynamic_weak
8657 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8658 {
8659 (*_bfd_error_handler)
8660 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8661 finfo->output_bfd,
8662 h->root.u.def.section == bfd_abs_section_ptr
8663 ? finfo->output_bfd : h->root.u.def.section->owner,
8664 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8665 ? "internal"
8666 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8667 ? "hidden" : "local",
8668 h->root.root.string);
8669 eoinfo->failed = TRUE;
8670 return FALSE;
8671 }
8672
8673 /* We don't want to output symbols that have never been mentioned by
8674 a regular file, or that we have been told to strip. However, if
8675 h->indx is set to -2, the symbol is used by a reloc and we must
8676 output it. */
8677 if (h->indx == -2)
8678 strip = FALSE;
8679 else if ((h->def_dynamic
8680 || h->ref_dynamic
8681 || h->root.type == bfd_link_hash_new)
8682 && !h->def_regular
8683 && !h->ref_regular)
8684 strip = TRUE;
8685 else if (finfo->info->strip == strip_all)
8686 strip = TRUE;
8687 else if (finfo->info->strip == strip_some
8688 && bfd_hash_lookup (finfo->info->keep_hash,
8689 h->root.root.string, FALSE, FALSE) == NULL)
8690 strip = TRUE;
8691 else if (finfo->info->strip_discarded
8692 && (h->root.type == bfd_link_hash_defined
8693 || h->root.type == bfd_link_hash_defweak)
8694 && elf_discarded_section (h->root.u.def.section))
8695 strip = TRUE;
8696 else
8697 strip = FALSE;
8698
8699 /* If we're stripping it, and it's not a dynamic symbol, there's
8700 nothing else to do unless it is a forced local symbol or a
8701 STT_GNU_IFUNC symbol. */
8702 if (strip
8703 && h->dynindx == -1
8704 && h->type != STT_GNU_IFUNC
8705 && !h->forced_local)
8706 return TRUE;
8707
8708 sym.st_value = 0;
8709 sym.st_size = h->size;
8710 sym.st_other = h->other;
8711 if (h->forced_local)
8712 {
8713 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8714 /* Turn off visibility on local symbol. */
8715 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8716 }
8717 else if (h->unique_global)
8718 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8719 else if (h->root.type == bfd_link_hash_undefweak
8720 || h->root.type == bfd_link_hash_defweak)
8721 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8722 else
8723 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8724
8725 switch (h->root.type)
8726 {
8727 default:
8728 case bfd_link_hash_new:
8729 case bfd_link_hash_warning:
8730 abort ();
8731 return FALSE;
8732
8733 case bfd_link_hash_undefined:
8734 case bfd_link_hash_undefweak:
8735 input_sec = bfd_und_section_ptr;
8736 sym.st_shndx = SHN_UNDEF;
8737 break;
8738
8739 case bfd_link_hash_defined:
8740 case bfd_link_hash_defweak:
8741 {
8742 input_sec = h->root.u.def.section;
8743 if (input_sec->output_section != NULL)
8744 {
8745 sym.st_shndx =
8746 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8747 input_sec->output_section);
8748 if (sym.st_shndx == SHN_BAD)
8749 {
8750 (*_bfd_error_handler)
8751 (_("%B: could not find output section %A for input section %A"),
8752 finfo->output_bfd, input_sec->output_section, input_sec);
8753 eoinfo->failed = TRUE;
8754 return FALSE;
8755 }
8756
8757 /* ELF symbols in relocatable files are section relative,
8758 but in nonrelocatable files they are virtual
8759 addresses. */
8760 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8761 if (! finfo->info->relocatable)
8762 {
8763 sym.st_value += input_sec->output_section->vma;
8764 if (h->type == STT_TLS)
8765 {
8766 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8767 if (tls_sec != NULL)
8768 sym.st_value -= tls_sec->vma;
8769 else
8770 {
8771 /* The TLS section may have been garbage collected. */
8772 BFD_ASSERT (finfo->info->gc_sections
8773 && !input_sec->gc_mark);
8774 }
8775 }
8776 }
8777 }
8778 else
8779 {
8780 BFD_ASSERT (input_sec->owner == NULL
8781 || (input_sec->owner->flags & DYNAMIC) != 0);
8782 sym.st_shndx = SHN_UNDEF;
8783 input_sec = bfd_und_section_ptr;
8784 }
8785 }
8786 break;
8787
8788 case bfd_link_hash_common:
8789 input_sec = h->root.u.c.p->section;
8790 sym.st_shndx = bed->common_section_index (input_sec);
8791 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8792 break;
8793
8794 case bfd_link_hash_indirect:
8795 /* These symbols are created by symbol versioning. They point
8796 to the decorated version of the name. For example, if the
8797 symbol foo@@GNU_1.2 is the default, which should be used when
8798 foo is used with no version, then we add an indirect symbol
8799 foo which points to foo@@GNU_1.2. We ignore these symbols,
8800 since the indirected symbol is already in the hash table. */
8801 return TRUE;
8802 }
8803
8804 /* Give the processor backend a chance to tweak the symbol value,
8805 and also to finish up anything that needs to be done for this
8806 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8807 forced local syms when non-shared is due to a historical quirk.
8808 STT_GNU_IFUNC symbol must go through PLT. */
8809 if ((h->type == STT_GNU_IFUNC
8810 && h->def_regular
8811 && !finfo->info->relocatable)
8812 || ((h->dynindx != -1
8813 || h->forced_local)
8814 && ((finfo->info->shared
8815 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8816 || h->root.type != bfd_link_hash_undefweak))
8817 || !h->forced_local)
8818 && elf_hash_table (finfo->info)->dynamic_sections_created))
8819 {
8820 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8821 (finfo->output_bfd, finfo->info, h, &sym)))
8822 {
8823 eoinfo->failed = TRUE;
8824 return FALSE;
8825 }
8826 }
8827
8828 /* If we are marking the symbol as undefined, and there are no
8829 non-weak references to this symbol from a regular object, then
8830 mark the symbol as weak undefined; if there are non-weak
8831 references, mark the symbol as strong. We can't do this earlier,
8832 because it might not be marked as undefined until the
8833 finish_dynamic_symbol routine gets through with it. */
8834 if (sym.st_shndx == SHN_UNDEF
8835 && h->ref_regular
8836 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8837 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8838 {
8839 int bindtype;
8840 unsigned int type = ELF_ST_TYPE (sym.st_info);
8841
8842 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8843 if (type == STT_GNU_IFUNC)
8844 type = STT_FUNC;
8845
8846 if (h->ref_regular_nonweak)
8847 bindtype = STB_GLOBAL;
8848 else
8849 bindtype = STB_WEAK;
8850 sym.st_info = ELF_ST_INFO (bindtype, type);
8851 }
8852
8853 /* If this is a symbol defined in a dynamic library, don't use the
8854 symbol size from the dynamic library. Relinking an executable
8855 against a new library may introduce gratuitous changes in the
8856 executable's symbols if we keep the size. */
8857 if (sym.st_shndx == SHN_UNDEF
8858 && !h->def_regular
8859 && h->def_dynamic)
8860 sym.st_size = 0;
8861
8862 /* If a non-weak symbol with non-default visibility is not defined
8863 locally, it is a fatal error. */
8864 if (! finfo->info->relocatable
8865 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8866 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8867 && h->root.type == bfd_link_hash_undefined
8868 && !h->def_regular)
8869 {
8870 (*_bfd_error_handler)
8871 (_("%B: %s symbol `%s' isn't defined"),
8872 finfo->output_bfd,
8873 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8874 ? "protected"
8875 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8876 ? "internal" : "hidden",
8877 h->root.root.string);
8878 eoinfo->failed = TRUE;
8879 return FALSE;
8880 }
8881
8882 /* If this symbol should be put in the .dynsym section, then put it
8883 there now. We already know the symbol index. We also fill in
8884 the entry in the .hash section. */
8885 if (h->dynindx != -1
8886 && elf_hash_table (finfo->info)->dynamic_sections_created)
8887 {
8888 bfd_byte *esym;
8889
8890 sym.st_name = h->dynstr_index;
8891 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8892 if (! check_dynsym (finfo->output_bfd, &sym))
8893 {
8894 eoinfo->failed = TRUE;
8895 return FALSE;
8896 }
8897 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8898
8899 if (finfo->hash_sec != NULL)
8900 {
8901 size_t hash_entry_size;
8902 bfd_byte *bucketpos;
8903 bfd_vma chain;
8904 size_t bucketcount;
8905 size_t bucket;
8906
8907 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8908 bucket = h->u.elf_hash_value % bucketcount;
8909
8910 hash_entry_size
8911 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8912 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8913 + (bucket + 2) * hash_entry_size);
8914 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8915 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8916 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8917 ((bfd_byte *) finfo->hash_sec->contents
8918 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8919 }
8920
8921 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8922 {
8923 Elf_Internal_Versym iversym;
8924 Elf_External_Versym *eversym;
8925
8926 if (!h->def_regular)
8927 {
8928 if (h->verinfo.verdef == NULL)
8929 iversym.vs_vers = 0;
8930 else
8931 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8932 }
8933 else
8934 {
8935 if (h->verinfo.vertree == NULL)
8936 iversym.vs_vers = 1;
8937 else
8938 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8939 if (finfo->info->create_default_symver)
8940 iversym.vs_vers++;
8941 }
8942
8943 if (h->hidden)
8944 iversym.vs_vers |= VERSYM_HIDDEN;
8945
8946 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8947 eversym += h->dynindx;
8948 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8949 }
8950 }
8951
8952 /* If we're stripping it, then it was just a dynamic symbol, and
8953 there's nothing else to do. */
8954 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8955 return TRUE;
8956
8957 indx = bfd_get_symcount (finfo->output_bfd);
8958 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8959 if (ret == 0)
8960 {
8961 eoinfo->failed = TRUE;
8962 return FALSE;
8963 }
8964 else if (ret == 1)
8965 h->indx = indx;
8966 else if (h->indx == -2)
8967 abort();
8968
8969 return TRUE;
8970 }
8971
8972 /* Return TRUE if special handling is done for relocs in SEC against
8973 symbols defined in discarded sections. */
8974
8975 static bfd_boolean
8976 elf_section_ignore_discarded_relocs (asection *sec)
8977 {
8978 const struct elf_backend_data *bed;
8979
8980 switch (sec->sec_info_type)
8981 {
8982 case ELF_INFO_TYPE_STABS:
8983 case ELF_INFO_TYPE_EH_FRAME:
8984 return TRUE;
8985 default:
8986 break;
8987 }
8988
8989 bed = get_elf_backend_data (sec->owner);
8990 if (bed->elf_backend_ignore_discarded_relocs != NULL
8991 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8992 return TRUE;
8993
8994 return FALSE;
8995 }
8996
8997 /* Return a mask saying how ld should treat relocations in SEC against
8998 symbols defined in discarded sections. If this function returns
8999 COMPLAIN set, ld will issue a warning message. If this function
9000 returns PRETEND set, and the discarded section was link-once and the
9001 same size as the kept link-once section, ld will pretend that the
9002 symbol was actually defined in the kept section. Otherwise ld will
9003 zero the reloc (at least that is the intent, but some cooperation by
9004 the target dependent code is needed, particularly for REL targets). */
9005
9006 unsigned int
9007 _bfd_elf_default_action_discarded (asection *sec)
9008 {
9009 if (sec->flags & SEC_DEBUGGING)
9010 return PRETEND;
9011
9012 if (strcmp (".eh_frame", sec->name) == 0)
9013 return 0;
9014
9015 if (strcmp (".gcc_except_table", sec->name) == 0)
9016 return 0;
9017
9018 return COMPLAIN | PRETEND;
9019 }
9020
9021 /* Find a match between a section and a member of a section group. */
9022
9023 static asection *
9024 match_group_member (asection *sec, asection *group,
9025 struct bfd_link_info *info)
9026 {
9027 asection *first = elf_next_in_group (group);
9028 asection *s = first;
9029
9030 while (s != NULL)
9031 {
9032 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9033 return s;
9034
9035 s = elf_next_in_group (s);
9036 if (s == first)
9037 break;
9038 }
9039
9040 return NULL;
9041 }
9042
9043 /* Check if the kept section of a discarded section SEC can be used
9044 to replace it. Return the replacement if it is OK. Otherwise return
9045 NULL. */
9046
9047 asection *
9048 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9049 {
9050 asection *kept;
9051
9052 kept = sec->kept_section;
9053 if (kept != NULL)
9054 {
9055 if ((kept->flags & SEC_GROUP) != 0)
9056 kept = match_group_member (sec, kept, info);
9057 if (kept != NULL
9058 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9059 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9060 kept = NULL;
9061 sec->kept_section = kept;
9062 }
9063 return kept;
9064 }
9065
9066 /* Link an input file into the linker output file. This function
9067 handles all the sections and relocations of the input file at once.
9068 This is so that we only have to read the local symbols once, and
9069 don't have to keep them in memory. */
9070
9071 static bfd_boolean
9072 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9073 {
9074 int (*relocate_section)
9075 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9076 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9077 bfd *output_bfd;
9078 Elf_Internal_Shdr *symtab_hdr;
9079 size_t locsymcount;
9080 size_t extsymoff;
9081 Elf_Internal_Sym *isymbuf;
9082 Elf_Internal_Sym *isym;
9083 Elf_Internal_Sym *isymend;
9084 long *pindex;
9085 asection **ppsection;
9086 asection *o;
9087 const struct elf_backend_data *bed;
9088 struct elf_link_hash_entry **sym_hashes;
9089
9090 output_bfd = finfo->output_bfd;
9091 bed = get_elf_backend_data (output_bfd);
9092 relocate_section = bed->elf_backend_relocate_section;
9093
9094 /* If this is a dynamic object, we don't want to do anything here:
9095 we don't want the local symbols, and we don't want the section
9096 contents. */
9097 if ((input_bfd->flags & DYNAMIC) != 0)
9098 return TRUE;
9099
9100 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9101 if (elf_bad_symtab (input_bfd))
9102 {
9103 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9104 extsymoff = 0;
9105 }
9106 else
9107 {
9108 locsymcount = symtab_hdr->sh_info;
9109 extsymoff = symtab_hdr->sh_info;
9110 }
9111
9112 /* Read the local symbols. */
9113 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9114 if (isymbuf == NULL && locsymcount != 0)
9115 {
9116 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9117 finfo->internal_syms,
9118 finfo->external_syms,
9119 finfo->locsym_shndx);
9120 if (isymbuf == NULL)
9121 return FALSE;
9122 }
9123
9124 /* Find local symbol sections and adjust values of symbols in
9125 SEC_MERGE sections. Write out those local symbols we know are
9126 going into the output file. */
9127 isymend = isymbuf + locsymcount;
9128 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9129 isym < isymend;
9130 isym++, pindex++, ppsection++)
9131 {
9132 asection *isec;
9133 const char *name;
9134 Elf_Internal_Sym osym;
9135 long indx;
9136 int ret;
9137
9138 *pindex = -1;
9139
9140 if (elf_bad_symtab (input_bfd))
9141 {
9142 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9143 {
9144 *ppsection = NULL;
9145 continue;
9146 }
9147 }
9148
9149 if (isym->st_shndx == SHN_UNDEF)
9150 isec = bfd_und_section_ptr;
9151 else if (isym->st_shndx == SHN_ABS)
9152 isec = bfd_abs_section_ptr;
9153 else if (isym->st_shndx == SHN_COMMON)
9154 isec = bfd_com_section_ptr;
9155 else
9156 {
9157 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9158 if (isec == NULL)
9159 {
9160 /* Don't attempt to output symbols with st_shnx in the
9161 reserved range other than SHN_ABS and SHN_COMMON. */
9162 *ppsection = NULL;
9163 continue;
9164 }
9165 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9166 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9167 isym->st_value =
9168 _bfd_merged_section_offset (output_bfd, &isec,
9169 elf_section_data (isec)->sec_info,
9170 isym->st_value);
9171 }
9172
9173 *ppsection = isec;
9174
9175 /* Don't output the first, undefined, symbol. */
9176 if (ppsection == finfo->sections)
9177 continue;
9178
9179 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9180 {
9181 /* We never output section symbols. Instead, we use the
9182 section symbol of the corresponding section in the output
9183 file. */
9184 continue;
9185 }
9186
9187 /* If we are stripping all symbols, we don't want to output this
9188 one. */
9189 if (finfo->info->strip == strip_all)
9190 continue;
9191
9192 /* If we are discarding all local symbols, we don't want to
9193 output this one. If we are generating a relocatable output
9194 file, then some of the local symbols may be required by
9195 relocs; we output them below as we discover that they are
9196 needed. */
9197 if (finfo->info->discard == discard_all)
9198 continue;
9199
9200 /* If this symbol is defined in a section which we are
9201 discarding, we don't need to keep it. */
9202 if (isym->st_shndx != SHN_UNDEF
9203 && isym->st_shndx < SHN_LORESERVE
9204 && bfd_section_removed_from_list (output_bfd,
9205 isec->output_section))
9206 continue;
9207
9208 /* Get the name of the symbol. */
9209 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9210 isym->st_name);
9211 if (name == NULL)
9212 return FALSE;
9213
9214 /* See if we are discarding symbols with this name. */
9215 if ((finfo->info->strip == strip_some
9216 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9217 == NULL))
9218 || (((finfo->info->discard == discard_sec_merge
9219 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9220 || finfo->info->discard == discard_l)
9221 && bfd_is_local_label_name (input_bfd, name)))
9222 continue;
9223
9224 osym = *isym;
9225
9226 /* Adjust the section index for the output file. */
9227 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9228 isec->output_section);
9229 if (osym.st_shndx == SHN_BAD)
9230 return FALSE;
9231
9232 /* ELF symbols in relocatable files are section relative, but
9233 in executable files they are virtual addresses. Note that
9234 this code assumes that all ELF sections have an associated
9235 BFD section with a reasonable value for output_offset; below
9236 we assume that they also have a reasonable value for
9237 output_section. Any special sections must be set up to meet
9238 these requirements. */
9239 osym.st_value += isec->output_offset;
9240 if (! finfo->info->relocatable)
9241 {
9242 osym.st_value += isec->output_section->vma;
9243 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9244 {
9245 /* STT_TLS symbols are relative to PT_TLS segment base. */
9246 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9247 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9248 }
9249 }
9250
9251 indx = bfd_get_symcount (output_bfd);
9252 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9253 if (ret == 0)
9254 return FALSE;
9255 else if (ret == 1)
9256 *pindex = indx;
9257 }
9258
9259 /* Relocate the contents of each section. */
9260 sym_hashes = elf_sym_hashes (input_bfd);
9261 for (o = input_bfd->sections; o != NULL; o = o->next)
9262 {
9263 bfd_byte *contents;
9264
9265 if (! o->linker_mark)
9266 {
9267 /* This section was omitted from the link. */
9268 continue;
9269 }
9270
9271 if (finfo->info->relocatable
9272 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9273 {
9274 /* Deal with the group signature symbol. */
9275 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9276 unsigned long symndx = sec_data->this_hdr.sh_info;
9277 asection *osec = o->output_section;
9278
9279 if (symndx >= locsymcount
9280 || (elf_bad_symtab (input_bfd)
9281 && finfo->sections[symndx] == NULL))
9282 {
9283 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9284 while (h->root.type == bfd_link_hash_indirect
9285 || h->root.type == bfd_link_hash_warning)
9286 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9287 /* Arrange for symbol to be output. */
9288 h->indx = -2;
9289 elf_section_data (osec)->this_hdr.sh_info = -2;
9290 }
9291 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9292 {
9293 /* We'll use the output section target_index. */
9294 asection *sec = finfo->sections[symndx]->output_section;
9295 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9296 }
9297 else
9298 {
9299 if (finfo->indices[symndx] == -1)
9300 {
9301 /* Otherwise output the local symbol now. */
9302 Elf_Internal_Sym sym = isymbuf[symndx];
9303 asection *sec = finfo->sections[symndx]->output_section;
9304 const char *name;
9305 long indx;
9306 int ret;
9307
9308 name = bfd_elf_string_from_elf_section (input_bfd,
9309 symtab_hdr->sh_link,
9310 sym.st_name);
9311 if (name == NULL)
9312 return FALSE;
9313
9314 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9315 sec);
9316 if (sym.st_shndx == SHN_BAD)
9317 return FALSE;
9318
9319 sym.st_value += o->output_offset;
9320
9321 indx = bfd_get_symcount (output_bfd);
9322 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9323 if (ret == 0)
9324 return FALSE;
9325 else if (ret == 1)
9326 finfo->indices[symndx] = indx;
9327 else
9328 abort ();
9329 }
9330 elf_section_data (osec)->this_hdr.sh_info
9331 = finfo->indices[symndx];
9332 }
9333 }
9334
9335 if ((o->flags & SEC_HAS_CONTENTS) == 0
9336 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9337 continue;
9338
9339 if ((o->flags & SEC_LINKER_CREATED) != 0)
9340 {
9341 /* Section was created by _bfd_elf_link_create_dynamic_sections
9342 or somesuch. */
9343 continue;
9344 }
9345
9346 /* Get the contents of the section. They have been cached by a
9347 relaxation routine. Note that o is a section in an input
9348 file, so the contents field will not have been set by any of
9349 the routines which work on output files. */
9350 if (elf_section_data (o)->this_hdr.contents != NULL)
9351 contents = elf_section_data (o)->this_hdr.contents;
9352 else
9353 {
9354 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9355
9356 contents = finfo->contents;
9357 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9358 return FALSE;
9359 }
9360
9361 if ((o->flags & SEC_RELOC) != 0)
9362 {
9363 Elf_Internal_Rela *internal_relocs;
9364 Elf_Internal_Rela *rel, *relend;
9365 bfd_vma r_type_mask;
9366 int r_sym_shift;
9367 int action_discarded;
9368 int ret;
9369
9370 /* Get the swapped relocs. */
9371 internal_relocs
9372 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9373 finfo->internal_relocs, FALSE);
9374 if (internal_relocs == NULL
9375 && o->reloc_count > 0)
9376 return FALSE;
9377
9378 if (bed->s->arch_size == 32)
9379 {
9380 r_type_mask = 0xff;
9381 r_sym_shift = 8;
9382 }
9383 else
9384 {
9385 r_type_mask = 0xffffffff;
9386 r_sym_shift = 32;
9387 }
9388
9389 action_discarded = -1;
9390 if (!elf_section_ignore_discarded_relocs (o))
9391 action_discarded = (*bed->action_discarded) (o);
9392
9393 /* Run through the relocs evaluating complex reloc symbols and
9394 looking for relocs against symbols from discarded sections
9395 or section symbols from removed link-once sections.
9396 Complain about relocs against discarded sections. Zero
9397 relocs against removed link-once sections. */
9398
9399 rel = internal_relocs;
9400 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9401 for ( ; rel < relend; rel++)
9402 {
9403 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9404 unsigned int s_type;
9405 asection **ps, *sec;
9406 struct elf_link_hash_entry *h = NULL;
9407 const char *sym_name;
9408
9409 if (r_symndx == STN_UNDEF)
9410 continue;
9411
9412 if (r_symndx >= locsymcount
9413 || (elf_bad_symtab (input_bfd)
9414 && finfo->sections[r_symndx] == NULL))
9415 {
9416 h = sym_hashes[r_symndx - extsymoff];
9417
9418 /* Badly formatted input files can contain relocs that
9419 reference non-existant symbols. Check here so that
9420 we do not seg fault. */
9421 if (h == NULL)
9422 {
9423 char buffer [32];
9424
9425 sprintf_vma (buffer, rel->r_info);
9426 (*_bfd_error_handler)
9427 (_("error: %B contains a reloc (0x%s) for section %A "
9428 "that references a non-existent global symbol"),
9429 input_bfd, o, buffer);
9430 bfd_set_error (bfd_error_bad_value);
9431 return FALSE;
9432 }
9433
9434 while (h->root.type == bfd_link_hash_indirect
9435 || h->root.type == bfd_link_hash_warning)
9436 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9437
9438 s_type = h->type;
9439
9440 ps = NULL;
9441 if (h->root.type == bfd_link_hash_defined
9442 || h->root.type == bfd_link_hash_defweak)
9443 ps = &h->root.u.def.section;
9444
9445 sym_name = h->root.root.string;
9446 }
9447 else
9448 {
9449 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9450
9451 s_type = ELF_ST_TYPE (sym->st_info);
9452 ps = &finfo->sections[r_symndx];
9453 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9454 sym, *ps);
9455 }
9456
9457 if ((s_type == STT_RELC || s_type == STT_SRELC)
9458 && !finfo->info->relocatable)
9459 {
9460 bfd_vma val;
9461 bfd_vma dot = (rel->r_offset
9462 + o->output_offset + o->output_section->vma);
9463 #ifdef DEBUG
9464 printf ("Encountered a complex symbol!");
9465 printf (" (input_bfd %s, section %s, reloc %ld\n",
9466 input_bfd->filename, o->name,
9467 (long) (rel - internal_relocs));
9468 printf (" symbol: idx %8.8lx, name %s\n",
9469 r_symndx, sym_name);
9470 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9471 (unsigned long) rel->r_info,
9472 (unsigned long) rel->r_offset);
9473 #endif
9474 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9475 isymbuf, locsymcount, s_type == STT_SRELC))
9476 return FALSE;
9477
9478 /* Symbol evaluated OK. Update to absolute value. */
9479 set_symbol_value (input_bfd, isymbuf, locsymcount,
9480 r_symndx, val);
9481 continue;
9482 }
9483
9484 if (action_discarded != -1 && ps != NULL)
9485 {
9486 /* Complain if the definition comes from a
9487 discarded section. */
9488 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9489 {
9490 BFD_ASSERT (r_symndx != STN_UNDEF);
9491 if (action_discarded & COMPLAIN)
9492 (*finfo->info->callbacks->einfo)
9493 (_("%X`%s' referenced in section `%A' of %B: "
9494 "defined in discarded section `%A' of %B\n"),
9495 sym_name, o, input_bfd, sec, sec->owner);
9496
9497 /* Try to do the best we can to support buggy old
9498 versions of gcc. Pretend that the symbol is
9499 really defined in the kept linkonce section.
9500 FIXME: This is quite broken. Modifying the
9501 symbol here means we will be changing all later
9502 uses of the symbol, not just in this section. */
9503 if (action_discarded & PRETEND)
9504 {
9505 asection *kept;
9506
9507 kept = _bfd_elf_check_kept_section (sec,
9508 finfo->info);
9509 if (kept != NULL)
9510 {
9511 *ps = kept;
9512 continue;
9513 }
9514 }
9515 }
9516 }
9517 }
9518
9519 /* Relocate the section by invoking a back end routine.
9520
9521 The back end routine is responsible for adjusting the
9522 section contents as necessary, and (if using Rela relocs
9523 and generating a relocatable output file) adjusting the
9524 reloc addend as necessary.
9525
9526 The back end routine does not have to worry about setting
9527 the reloc address or the reloc symbol index.
9528
9529 The back end routine is given a pointer to the swapped in
9530 internal symbols, and can access the hash table entries
9531 for the external symbols via elf_sym_hashes (input_bfd).
9532
9533 When generating relocatable output, the back end routine
9534 must handle STB_LOCAL/STT_SECTION symbols specially. The
9535 output symbol is going to be a section symbol
9536 corresponding to the output section, which will require
9537 the addend to be adjusted. */
9538
9539 ret = (*relocate_section) (output_bfd, finfo->info,
9540 input_bfd, o, contents,
9541 internal_relocs,
9542 isymbuf,
9543 finfo->sections);
9544 if (!ret)
9545 return FALSE;
9546
9547 if (ret == 2
9548 || finfo->info->relocatable
9549 || finfo->info->emitrelocations)
9550 {
9551 Elf_Internal_Rela *irela;
9552 Elf_Internal_Rela *irelaend, *irelamid;
9553 bfd_vma last_offset;
9554 struct elf_link_hash_entry **rel_hash;
9555 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9556 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9557 unsigned int next_erel;
9558 bfd_boolean rela_normal;
9559 struct bfd_elf_section_data *esdi, *esdo;
9560
9561 esdi = elf_section_data (o);
9562 esdo = elf_section_data (o->output_section);
9563 rela_normal = FALSE;
9564
9565 /* Adjust the reloc addresses and symbol indices. */
9566
9567 irela = internal_relocs;
9568 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9569 rel_hash = esdo->rel.hashes + esdo->rel.count;
9570 /* We start processing the REL relocs, if any. When we reach
9571 IRELAMID in the loop, we switch to the RELA relocs. */
9572 irelamid = irela;
9573 if (esdi->rel.hdr != NULL)
9574 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9575 * bed->s->int_rels_per_ext_rel);
9576 rel_hash_list = rel_hash;
9577 rela_hash_list = NULL;
9578 last_offset = o->output_offset;
9579 if (!finfo->info->relocatable)
9580 last_offset += o->output_section->vma;
9581 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9582 {
9583 unsigned long r_symndx;
9584 asection *sec;
9585 Elf_Internal_Sym sym;
9586
9587 if (next_erel == bed->s->int_rels_per_ext_rel)
9588 {
9589 rel_hash++;
9590 next_erel = 0;
9591 }
9592
9593 if (irela == irelamid)
9594 {
9595 rel_hash = esdo->rela.hashes + esdo->rela.count;
9596 rela_hash_list = rel_hash;
9597 rela_normal = bed->rela_normal;
9598 }
9599
9600 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9601 finfo->info, o,
9602 irela->r_offset);
9603 if (irela->r_offset >= (bfd_vma) -2)
9604 {
9605 /* This is a reloc for a deleted entry or somesuch.
9606 Turn it into an R_*_NONE reloc, at the same
9607 offset as the last reloc. elf_eh_frame.c and
9608 bfd_elf_discard_info rely on reloc offsets
9609 being ordered. */
9610 irela->r_offset = last_offset;
9611 irela->r_info = 0;
9612 irela->r_addend = 0;
9613 continue;
9614 }
9615
9616 irela->r_offset += o->output_offset;
9617
9618 /* Relocs in an executable have to be virtual addresses. */
9619 if (!finfo->info->relocatable)
9620 irela->r_offset += o->output_section->vma;
9621
9622 last_offset = irela->r_offset;
9623
9624 r_symndx = irela->r_info >> r_sym_shift;
9625 if (r_symndx == STN_UNDEF)
9626 continue;
9627
9628 if (r_symndx >= locsymcount
9629 || (elf_bad_symtab (input_bfd)
9630 && finfo->sections[r_symndx] == NULL))
9631 {
9632 struct elf_link_hash_entry *rh;
9633 unsigned long indx;
9634
9635 /* This is a reloc against a global symbol. We
9636 have not yet output all the local symbols, so
9637 we do not know the symbol index of any global
9638 symbol. We set the rel_hash entry for this
9639 reloc to point to the global hash table entry
9640 for this symbol. The symbol index is then
9641 set at the end of bfd_elf_final_link. */
9642 indx = r_symndx - extsymoff;
9643 rh = elf_sym_hashes (input_bfd)[indx];
9644 while (rh->root.type == bfd_link_hash_indirect
9645 || rh->root.type == bfd_link_hash_warning)
9646 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9647
9648 /* Setting the index to -2 tells
9649 elf_link_output_extsym that this symbol is
9650 used by a reloc. */
9651 BFD_ASSERT (rh->indx < 0);
9652 rh->indx = -2;
9653
9654 *rel_hash = rh;
9655
9656 continue;
9657 }
9658
9659 /* This is a reloc against a local symbol. */
9660
9661 *rel_hash = NULL;
9662 sym = isymbuf[r_symndx];
9663 sec = finfo->sections[r_symndx];
9664 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9665 {
9666 /* I suppose the backend ought to fill in the
9667 section of any STT_SECTION symbol against a
9668 processor specific section. */
9669 r_symndx = STN_UNDEF;
9670 if (bfd_is_abs_section (sec))
9671 ;
9672 else if (sec == NULL || sec->owner == NULL)
9673 {
9674 bfd_set_error (bfd_error_bad_value);
9675 return FALSE;
9676 }
9677 else
9678 {
9679 asection *osec = sec->output_section;
9680
9681 /* If we have discarded a section, the output
9682 section will be the absolute section. In
9683 case of discarded SEC_MERGE sections, use
9684 the kept section. relocate_section should
9685 have already handled discarded linkonce
9686 sections. */
9687 if (bfd_is_abs_section (osec)
9688 && sec->kept_section != NULL
9689 && sec->kept_section->output_section != NULL)
9690 {
9691 osec = sec->kept_section->output_section;
9692 irela->r_addend -= osec->vma;
9693 }
9694
9695 if (!bfd_is_abs_section (osec))
9696 {
9697 r_symndx = osec->target_index;
9698 if (r_symndx == STN_UNDEF)
9699 {
9700 struct elf_link_hash_table *htab;
9701 asection *oi;
9702
9703 htab = elf_hash_table (finfo->info);
9704 oi = htab->text_index_section;
9705 if ((osec->flags & SEC_READONLY) == 0
9706 && htab->data_index_section != NULL)
9707 oi = htab->data_index_section;
9708
9709 if (oi != NULL)
9710 {
9711 irela->r_addend += osec->vma - oi->vma;
9712 r_symndx = oi->target_index;
9713 }
9714 }
9715
9716 BFD_ASSERT (r_symndx != STN_UNDEF);
9717 }
9718 }
9719
9720 /* Adjust the addend according to where the
9721 section winds up in the output section. */
9722 if (rela_normal)
9723 irela->r_addend += sec->output_offset;
9724 }
9725 else
9726 {
9727 if (finfo->indices[r_symndx] == -1)
9728 {
9729 unsigned long shlink;
9730 const char *name;
9731 asection *osec;
9732 long indx;
9733
9734 if (finfo->info->strip == strip_all)
9735 {
9736 /* You can't do ld -r -s. */
9737 bfd_set_error (bfd_error_invalid_operation);
9738 return FALSE;
9739 }
9740
9741 /* This symbol was skipped earlier, but
9742 since it is needed by a reloc, we
9743 must output it now. */
9744 shlink = symtab_hdr->sh_link;
9745 name = (bfd_elf_string_from_elf_section
9746 (input_bfd, shlink, sym.st_name));
9747 if (name == NULL)
9748 return FALSE;
9749
9750 osec = sec->output_section;
9751 sym.st_shndx =
9752 _bfd_elf_section_from_bfd_section (output_bfd,
9753 osec);
9754 if (sym.st_shndx == SHN_BAD)
9755 return FALSE;
9756
9757 sym.st_value += sec->output_offset;
9758 if (! finfo->info->relocatable)
9759 {
9760 sym.st_value += osec->vma;
9761 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9762 {
9763 /* STT_TLS symbols are relative to PT_TLS
9764 segment base. */
9765 BFD_ASSERT (elf_hash_table (finfo->info)
9766 ->tls_sec != NULL);
9767 sym.st_value -= (elf_hash_table (finfo->info)
9768 ->tls_sec->vma);
9769 }
9770 }
9771
9772 indx = bfd_get_symcount (output_bfd);
9773 ret = elf_link_output_sym (finfo, name, &sym, sec,
9774 NULL);
9775 if (ret == 0)
9776 return FALSE;
9777 else if (ret == 1)
9778 finfo->indices[r_symndx] = indx;
9779 else
9780 abort ();
9781 }
9782
9783 r_symndx = finfo->indices[r_symndx];
9784 }
9785
9786 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9787 | (irela->r_info & r_type_mask));
9788 }
9789
9790 /* Swap out the relocs. */
9791 input_rel_hdr = esdi->rel.hdr;
9792 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9793 {
9794 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9795 input_rel_hdr,
9796 internal_relocs,
9797 rel_hash_list))
9798 return FALSE;
9799 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9800 * bed->s->int_rels_per_ext_rel);
9801 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9802 }
9803
9804 input_rela_hdr = esdi->rela.hdr;
9805 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9806 {
9807 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9808 input_rela_hdr,
9809 internal_relocs,
9810 rela_hash_list))
9811 return FALSE;
9812 }
9813 }
9814 }
9815
9816 /* Write out the modified section contents. */
9817 if (bed->elf_backend_write_section
9818 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9819 contents))
9820 {
9821 /* Section written out. */
9822 }
9823 else switch (o->sec_info_type)
9824 {
9825 case ELF_INFO_TYPE_STABS:
9826 if (! (_bfd_write_section_stabs
9827 (output_bfd,
9828 &elf_hash_table (finfo->info)->stab_info,
9829 o, &elf_section_data (o)->sec_info, contents)))
9830 return FALSE;
9831 break;
9832 case ELF_INFO_TYPE_MERGE:
9833 if (! _bfd_write_merged_section (output_bfd, o,
9834 elf_section_data (o)->sec_info))
9835 return FALSE;
9836 break;
9837 case ELF_INFO_TYPE_EH_FRAME:
9838 {
9839 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9840 o, contents))
9841 return FALSE;
9842 }
9843 break;
9844 default:
9845 {
9846 /* FIXME: octets_per_byte. */
9847 if (! (o->flags & SEC_EXCLUDE)
9848 && ! bfd_set_section_contents (output_bfd, o->output_section,
9849 contents,
9850 (file_ptr) o->output_offset,
9851 o->size))
9852 return FALSE;
9853 }
9854 break;
9855 }
9856 }
9857
9858 return TRUE;
9859 }
9860
9861 /* Generate a reloc when linking an ELF file. This is a reloc
9862 requested by the linker, and does not come from any input file. This
9863 is used to build constructor and destructor tables when linking
9864 with -Ur. */
9865
9866 static bfd_boolean
9867 elf_reloc_link_order (bfd *output_bfd,
9868 struct bfd_link_info *info,
9869 asection *output_section,
9870 struct bfd_link_order *link_order)
9871 {
9872 reloc_howto_type *howto;
9873 long indx;
9874 bfd_vma offset;
9875 bfd_vma addend;
9876 struct bfd_elf_section_reloc_data *reldata;
9877 struct elf_link_hash_entry **rel_hash_ptr;
9878 Elf_Internal_Shdr *rel_hdr;
9879 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9880 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9881 bfd_byte *erel;
9882 unsigned int i;
9883 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9884
9885 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9886 if (howto == NULL)
9887 {
9888 bfd_set_error (bfd_error_bad_value);
9889 return FALSE;
9890 }
9891
9892 addend = link_order->u.reloc.p->addend;
9893
9894 if (esdo->rel.hdr)
9895 reldata = &esdo->rel;
9896 else if (esdo->rela.hdr)
9897 reldata = &esdo->rela;
9898 else
9899 {
9900 reldata = NULL;
9901 BFD_ASSERT (0);
9902 }
9903
9904 /* Figure out the symbol index. */
9905 rel_hash_ptr = reldata->hashes + reldata->count;
9906 if (link_order->type == bfd_section_reloc_link_order)
9907 {
9908 indx = link_order->u.reloc.p->u.section->target_index;
9909 BFD_ASSERT (indx != 0);
9910 *rel_hash_ptr = NULL;
9911 }
9912 else
9913 {
9914 struct elf_link_hash_entry *h;
9915
9916 /* Treat a reloc against a defined symbol as though it were
9917 actually against the section. */
9918 h = ((struct elf_link_hash_entry *)
9919 bfd_wrapped_link_hash_lookup (output_bfd, info,
9920 link_order->u.reloc.p->u.name,
9921 FALSE, FALSE, TRUE));
9922 if (h != NULL
9923 && (h->root.type == bfd_link_hash_defined
9924 || h->root.type == bfd_link_hash_defweak))
9925 {
9926 asection *section;
9927
9928 section = h->root.u.def.section;
9929 indx = section->output_section->target_index;
9930 *rel_hash_ptr = NULL;
9931 /* It seems that we ought to add the symbol value to the
9932 addend here, but in practice it has already been added
9933 because it was passed to constructor_callback. */
9934 addend += section->output_section->vma + section->output_offset;
9935 }
9936 else if (h != NULL)
9937 {
9938 /* Setting the index to -2 tells elf_link_output_extsym that
9939 this symbol is used by a reloc. */
9940 h->indx = -2;
9941 *rel_hash_ptr = h;
9942 indx = 0;
9943 }
9944 else
9945 {
9946 if (! ((*info->callbacks->unattached_reloc)
9947 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9948 return FALSE;
9949 indx = 0;
9950 }
9951 }
9952
9953 /* If this is an inplace reloc, we must write the addend into the
9954 object file. */
9955 if (howto->partial_inplace && addend != 0)
9956 {
9957 bfd_size_type size;
9958 bfd_reloc_status_type rstat;
9959 bfd_byte *buf;
9960 bfd_boolean ok;
9961 const char *sym_name;
9962
9963 size = (bfd_size_type) bfd_get_reloc_size (howto);
9964 buf = (bfd_byte *) bfd_zmalloc (size);
9965 if (buf == NULL)
9966 return FALSE;
9967 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9968 switch (rstat)
9969 {
9970 case bfd_reloc_ok:
9971 break;
9972
9973 default:
9974 case bfd_reloc_outofrange:
9975 abort ();
9976
9977 case bfd_reloc_overflow:
9978 if (link_order->type == bfd_section_reloc_link_order)
9979 sym_name = bfd_section_name (output_bfd,
9980 link_order->u.reloc.p->u.section);
9981 else
9982 sym_name = link_order->u.reloc.p->u.name;
9983 if (! ((*info->callbacks->reloc_overflow)
9984 (info, NULL, sym_name, howto->name, addend, NULL,
9985 NULL, (bfd_vma) 0)))
9986 {
9987 free (buf);
9988 return FALSE;
9989 }
9990 break;
9991 }
9992 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9993 link_order->offset, size);
9994 free (buf);
9995 if (! ok)
9996 return FALSE;
9997 }
9998
9999 /* The address of a reloc is relative to the section in a
10000 relocatable file, and is a virtual address in an executable
10001 file. */
10002 offset = link_order->offset;
10003 if (! info->relocatable)
10004 offset += output_section->vma;
10005
10006 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10007 {
10008 irel[i].r_offset = offset;
10009 irel[i].r_info = 0;
10010 irel[i].r_addend = 0;
10011 }
10012 if (bed->s->arch_size == 32)
10013 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10014 else
10015 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10016
10017 rel_hdr = reldata->hdr;
10018 erel = rel_hdr->contents;
10019 if (rel_hdr->sh_type == SHT_REL)
10020 {
10021 erel += reldata->count * bed->s->sizeof_rel;
10022 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10023 }
10024 else
10025 {
10026 irel[0].r_addend = addend;
10027 erel += reldata->count * bed->s->sizeof_rela;
10028 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10029 }
10030
10031 ++reldata->count;
10032
10033 return TRUE;
10034 }
10035
10036
10037 /* Get the output vma of the section pointed to by the sh_link field. */
10038
10039 static bfd_vma
10040 elf_get_linked_section_vma (struct bfd_link_order *p)
10041 {
10042 Elf_Internal_Shdr **elf_shdrp;
10043 asection *s;
10044 int elfsec;
10045
10046 s = p->u.indirect.section;
10047 elf_shdrp = elf_elfsections (s->owner);
10048 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10049 elfsec = elf_shdrp[elfsec]->sh_link;
10050 /* PR 290:
10051 The Intel C compiler generates SHT_IA_64_UNWIND with
10052 SHF_LINK_ORDER. But it doesn't set the sh_link or
10053 sh_info fields. Hence we could get the situation
10054 where elfsec is 0. */
10055 if (elfsec == 0)
10056 {
10057 const struct elf_backend_data *bed
10058 = get_elf_backend_data (s->owner);
10059 if (bed->link_order_error_handler)
10060 bed->link_order_error_handler
10061 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10062 return 0;
10063 }
10064 else
10065 {
10066 s = elf_shdrp[elfsec]->bfd_section;
10067 return s->output_section->vma + s->output_offset;
10068 }
10069 }
10070
10071
10072 /* Compare two sections based on the locations of the sections they are
10073 linked to. Used by elf_fixup_link_order. */
10074
10075 static int
10076 compare_link_order (const void * a, const void * b)
10077 {
10078 bfd_vma apos;
10079 bfd_vma bpos;
10080
10081 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10082 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10083 if (apos < bpos)
10084 return -1;
10085 return apos > bpos;
10086 }
10087
10088
10089 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10090 order as their linked sections. Returns false if this could not be done
10091 because an output section includes both ordered and unordered
10092 sections. Ideally we'd do this in the linker proper. */
10093
10094 static bfd_boolean
10095 elf_fixup_link_order (bfd *abfd, asection *o)
10096 {
10097 int seen_linkorder;
10098 int seen_other;
10099 int n;
10100 struct bfd_link_order *p;
10101 bfd *sub;
10102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10103 unsigned elfsec;
10104 struct bfd_link_order **sections;
10105 asection *s, *other_sec, *linkorder_sec;
10106 bfd_vma offset;
10107
10108 other_sec = NULL;
10109 linkorder_sec = NULL;
10110 seen_other = 0;
10111 seen_linkorder = 0;
10112 for (p = o->map_head.link_order; p != NULL; p = p->next)
10113 {
10114 if (p->type == bfd_indirect_link_order)
10115 {
10116 s = p->u.indirect.section;
10117 sub = s->owner;
10118 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10119 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10120 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10121 && elfsec < elf_numsections (sub)
10122 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10123 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10124 {
10125 seen_linkorder++;
10126 linkorder_sec = s;
10127 }
10128 else
10129 {
10130 seen_other++;
10131 other_sec = s;
10132 }
10133 }
10134 else
10135 seen_other++;
10136
10137 if (seen_other && seen_linkorder)
10138 {
10139 if (other_sec && linkorder_sec)
10140 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10141 o, linkorder_sec,
10142 linkorder_sec->owner, other_sec,
10143 other_sec->owner);
10144 else
10145 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10146 o);
10147 bfd_set_error (bfd_error_bad_value);
10148 return FALSE;
10149 }
10150 }
10151
10152 if (!seen_linkorder)
10153 return TRUE;
10154
10155 sections = (struct bfd_link_order **)
10156 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10157 if (sections == NULL)
10158 return FALSE;
10159 seen_linkorder = 0;
10160
10161 for (p = o->map_head.link_order; p != NULL; p = p->next)
10162 {
10163 sections[seen_linkorder++] = p;
10164 }
10165 /* Sort the input sections in the order of their linked section. */
10166 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10167 compare_link_order);
10168
10169 /* Change the offsets of the sections. */
10170 offset = 0;
10171 for (n = 0; n < seen_linkorder; n++)
10172 {
10173 s = sections[n]->u.indirect.section;
10174 offset &= ~(bfd_vma) 0 << s->alignment_power;
10175 s->output_offset = offset;
10176 sections[n]->offset = offset;
10177 /* FIXME: octets_per_byte. */
10178 offset += sections[n]->size;
10179 }
10180
10181 free (sections);
10182 return TRUE;
10183 }
10184
10185
10186 /* Do the final step of an ELF link. */
10187
10188 bfd_boolean
10189 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10190 {
10191 bfd_boolean dynamic;
10192 bfd_boolean emit_relocs;
10193 bfd *dynobj;
10194 struct elf_final_link_info finfo;
10195 asection *o;
10196 struct bfd_link_order *p;
10197 bfd *sub;
10198 bfd_size_type max_contents_size;
10199 bfd_size_type max_external_reloc_size;
10200 bfd_size_type max_internal_reloc_count;
10201 bfd_size_type max_sym_count;
10202 bfd_size_type max_sym_shndx_count;
10203 file_ptr off;
10204 Elf_Internal_Sym elfsym;
10205 unsigned int i;
10206 Elf_Internal_Shdr *symtab_hdr;
10207 Elf_Internal_Shdr *symtab_shndx_hdr;
10208 Elf_Internal_Shdr *symstrtab_hdr;
10209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10210 struct elf_outext_info eoinfo;
10211 bfd_boolean merged;
10212 size_t relativecount = 0;
10213 asection *reldyn = 0;
10214 bfd_size_type amt;
10215 asection *attr_section = NULL;
10216 bfd_vma attr_size = 0;
10217 const char *std_attrs_section;
10218
10219 if (! is_elf_hash_table (info->hash))
10220 return FALSE;
10221
10222 if (info->shared)
10223 abfd->flags |= DYNAMIC;
10224
10225 dynamic = elf_hash_table (info)->dynamic_sections_created;
10226 dynobj = elf_hash_table (info)->dynobj;
10227
10228 emit_relocs = (info->relocatable
10229 || info->emitrelocations);
10230
10231 finfo.info = info;
10232 finfo.output_bfd = abfd;
10233 finfo.symstrtab = _bfd_elf_stringtab_init ();
10234 if (finfo.symstrtab == NULL)
10235 return FALSE;
10236
10237 if (! dynamic)
10238 {
10239 finfo.dynsym_sec = NULL;
10240 finfo.hash_sec = NULL;
10241 finfo.symver_sec = NULL;
10242 }
10243 else
10244 {
10245 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10246 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10247 BFD_ASSERT (finfo.dynsym_sec != NULL);
10248 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10249 /* Note that it is OK if symver_sec is NULL. */
10250 }
10251
10252 finfo.contents = NULL;
10253 finfo.external_relocs = NULL;
10254 finfo.internal_relocs = NULL;
10255 finfo.external_syms = NULL;
10256 finfo.locsym_shndx = NULL;
10257 finfo.internal_syms = NULL;
10258 finfo.indices = NULL;
10259 finfo.sections = NULL;
10260 finfo.symbuf = NULL;
10261 finfo.symshndxbuf = NULL;
10262 finfo.symbuf_count = 0;
10263 finfo.shndxbuf_size = 0;
10264
10265 /* The object attributes have been merged. Remove the input
10266 sections from the link, and set the contents of the output
10267 secton. */
10268 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10269 for (o = abfd->sections; o != NULL; o = o->next)
10270 {
10271 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10272 || strcmp (o->name, ".gnu.attributes") == 0)
10273 {
10274 for (p = o->map_head.link_order; p != NULL; p = p->next)
10275 {
10276 asection *input_section;
10277
10278 if (p->type != bfd_indirect_link_order)
10279 continue;
10280 input_section = p->u.indirect.section;
10281 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10282 elf_link_input_bfd ignores this section. */
10283 input_section->flags &= ~SEC_HAS_CONTENTS;
10284 }
10285
10286 attr_size = bfd_elf_obj_attr_size (abfd);
10287 if (attr_size)
10288 {
10289 bfd_set_section_size (abfd, o, attr_size);
10290 attr_section = o;
10291 /* Skip this section later on. */
10292 o->map_head.link_order = NULL;
10293 }
10294 else
10295 o->flags |= SEC_EXCLUDE;
10296 }
10297 }
10298
10299 /* Count up the number of relocations we will output for each output
10300 section, so that we know the sizes of the reloc sections. We
10301 also figure out some maximum sizes. */
10302 max_contents_size = 0;
10303 max_external_reloc_size = 0;
10304 max_internal_reloc_count = 0;
10305 max_sym_count = 0;
10306 max_sym_shndx_count = 0;
10307 merged = FALSE;
10308 for (o = abfd->sections; o != NULL; o = o->next)
10309 {
10310 struct bfd_elf_section_data *esdo = elf_section_data (o);
10311 o->reloc_count = 0;
10312
10313 for (p = o->map_head.link_order; p != NULL; p = p->next)
10314 {
10315 unsigned int reloc_count = 0;
10316 struct bfd_elf_section_data *esdi = NULL;
10317
10318 if (p->type == bfd_section_reloc_link_order
10319 || p->type == bfd_symbol_reloc_link_order)
10320 reloc_count = 1;
10321 else if (p->type == bfd_indirect_link_order)
10322 {
10323 asection *sec;
10324
10325 sec = p->u.indirect.section;
10326 esdi = elf_section_data (sec);
10327
10328 /* Mark all sections which are to be included in the
10329 link. This will normally be every section. We need
10330 to do this so that we can identify any sections which
10331 the linker has decided to not include. */
10332 sec->linker_mark = TRUE;
10333
10334 if (sec->flags & SEC_MERGE)
10335 merged = TRUE;
10336
10337 if (info->relocatable || info->emitrelocations)
10338 reloc_count = sec->reloc_count;
10339 else if (bed->elf_backend_count_relocs)
10340 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10341
10342 if (sec->rawsize > max_contents_size)
10343 max_contents_size = sec->rawsize;
10344 if (sec->size > max_contents_size)
10345 max_contents_size = sec->size;
10346
10347 /* We are interested in just local symbols, not all
10348 symbols. */
10349 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10350 && (sec->owner->flags & DYNAMIC) == 0)
10351 {
10352 size_t sym_count;
10353
10354 if (elf_bad_symtab (sec->owner))
10355 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10356 / bed->s->sizeof_sym);
10357 else
10358 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10359
10360 if (sym_count > max_sym_count)
10361 max_sym_count = sym_count;
10362
10363 if (sym_count > max_sym_shndx_count
10364 && elf_symtab_shndx (sec->owner) != 0)
10365 max_sym_shndx_count = sym_count;
10366
10367 if ((sec->flags & SEC_RELOC) != 0)
10368 {
10369 size_t ext_size = 0;
10370
10371 if (esdi->rel.hdr != NULL)
10372 ext_size = esdi->rel.hdr->sh_size;
10373 if (esdi->rela.hdr != NULL)
10374 ext_size += esdi->rela.hdr->sh_size;
10375
10376 if (ext_size > max_external_reloc_size)
10377 max_external_reloc_size = ext_size;
10378 if (sec->reloc_count > max_internal_reloc_count)
10379 max_internal_reloc_count = sec->reloc_count;
10380 }
10381 }
10382 }
10383
10384 if (reloc_count == 0)
10385 continue;
10386
10387 o->reloc_count += reloc_count;
10388
10389 if (p->type == bfd_indirect_link_order
10390 && (info->relocatable || info->emitrelocations))
10391 {
10392 if (esdi->rel.hdr)
10393 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10394 if (esdi->rela.hdr)
10395 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10396 }
10397 else
10398 {
10399 if (o->use_rela_p)
10400 esdo->rela.count += reloc_count;
10401 else
10402 esdo->rel.count += reloc_count;
10403 }
10404 }
10405
10406 if (o->reloc_count > 0)
10407 o->flags |= SEC_RELOC;
10408 else
10409 {
10410 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10411 set it (this is probably a bug) and if it is set
10412 assign_section_numbers will create a reloc section. */
10413 o->flags &=~ SEC_RELOC;
10414 }
10415
10416 /* If the SEC_ALLOC flag is not set, force the section VMA to
10417 zero. This is done in elf_fake_sections as well, but forcing
10418 the VMA to 0 here will ensure that relocs against these
10419 sections are handled correctly. */
10420 if ((o->flags & SEC_ALLOC) == 0
10421 && ! o->user_set_vma)
10422 o->vma = 0;
10423 }
10424
10425 if (! info->relocatable && merged)
10426 elf_link_hash_traverse (elf_hash_table (info),
10427 _bfd_elf_link_sec_merge_syms, abfd);
10428
10429 /* Figure out the file positions for everything but the symbol table
10430 and the relocs. We set symcount to force assign_section_numbers
10431 to create a symbol table. */
10432 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10433 BFD_ASSERT (! abfd->output_has_begun);
10434 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10435 goto error_return;
10436
10437 /* Set sizes, and assign file positions for reloc sections. */
10438 for (o = abfd->sections; o != NULL; o = o->next)
10439 {
10440 struct bfd_elf_section_data *esdo = elf_section_data (o);
10441 if ((o->flags & SEC_RELOC) != 0)
10442 {
10443 if (esdo->rel.hdr
10444 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10445 goto error_return;
10446
10447 if (esdo->rela.hdr
10448 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10449 goto error_return;
10450 }
10451
10452 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10453 to count upwards while actually outputting the relocations. */
10454 esdo->rel.count = 0;
10455 esdo->rela.count = 0;
10456 }
10457
10458 _bfd_elf_assign_file_positions_for_relocs (abfd);
10459
10460 /* We have now assigned file positions for all the sections except
10461 .symtab and .strtab. We start the .symtab section at the current
10462 file position, and write directly to it. We build the .strtab
10463 section in memory. */
10464 bfd_get_symcount (abfd) = 0;
10465 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10466 /* sh_name is set in prep_headers. */
10467 symtab_hdr->sh_type = SHT_SYMTAB;
10468 /* sh_flags, sh_addr and sh_size all start off zero. */
10469 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10470 /* sh_link is set in assign_section_numbers. */
10471 /* sh_info is set below. */
10472 /* sh_offset is set just below. */
10473 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10474
10475 off = elf_tdata (abfd)->next_file_pos;
10476 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10477
10478 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10479 incorrect. We do not yet know the size of the .symtab section.
10480 We correct next_file_pos below, after we do know the size. */
10481
10482 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10483 continuously seeking to the right position in the file. */
10484 if (! info->keep_memory || max_sym_count < 20)
10485 finfo.symbuf_size = 20;
10486 else
10487 finfo.symbuf_size = max_sym_count;
10488 amt = finfo.symbuf_size;
10489 amt *= bed->s->sizeof_sym;
10490 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10491 if (finfo.symbuf == NULL)
10492 goto error_return;
10493 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10494 {
10495 /* Wild guess at number of output symbols. realloc'd as needed. */
10496 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10497 finfo.shndxbuf_size = amt;
10498 amt *= sizeof (Elf_External_Sym_Shndx);
10499 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10500 if (finfo.symshndxbuf == NULL)
10501 goto error_return;
10502 }
10503
10504 /* Start writing out the symbol table. The first symbol is always a
10505 dummy symbol. */
10506 if (info->strip != strip_all
10507 || emit_relocs)
10508 {
10509 elfsym.st_value = 0;
10510 elfsym.st_size = 0;
10511 elfsym.st_info = 0;
10512 elfsym.st_other = 0;
10513 elfsym.st_shndx = SHN_UNDEF;
10514 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10515 NULL) != 1)
10516 goto error_return;
10517 }
10518
10519 /* Output a symbol for each section. We output these even if we are
10520 discarding local symbols, since they are used for relocs. These
10521 symbols have no names. We store the index of each one in the
10522 index field of the section, so that we can find it again when
10523 outputting relocs. */
10524 if (info->strip != strip_all
10525 || emit_relocs)
10526 {
10527 elfsym.st_size = 0;
10528 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10529 elfsym.st_other = 0;
10530 elfsym.st_value = 0;
10531 for (i = 1; i < elf_numsections (abfd); i++)
10532 {
10533 o = bfd_section_from_elf_index (abfd, i);
10534 if (o != NULL)
10535 {
10536 o->target_index = bfd_get_symcount (abfd);
10537 elfsym.st_shndx = i;
10538 if (!info->relocatable)
10539 elfsym.st_value = o->vma;
10540 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10541 goto error_return;
10542 }
10543 }
10544 }
10545
10546 /* Allocate some memory to hold information read in from the input
10547 files. */
10548 if (max_contents_size != 0)
10549 {
10550 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10551 if (finfo.contents == NULL)
10552 goto error_return;
10553 }
10554
10555 if (max_external_reloc_size != 0)
10556 {
10557 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10558 if (finfo.external_relocs == NULL)
10559 goto error_return;
10560 }
10561
10562 if (max_internal_reloc_count != 0)
10563 {
10564 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10565 amt *= sizeof (Elf_Internal_Rela);
10566 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10567 if (finfo.internal_relocs == NULL)
10568 goto error_return;
10569 }
10570
10571 if (max_sym_count != 0)
10572 {
10573 amt = max_sym_count * bed->s->sizeof_sym;
10574 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10575 if (finfo.external_syms == NULL)
10576 goto error_return;
10577
10578 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10579 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10580 if (finfo.internal_syms == NULL)
10581 goto error_return;
10582
10583 amt = max_sym_count * sizeof (long);
10584 finfo.indices = (long int *) bfd_malloc (amt);
10585 if (finfo.indices == NULL)
10586 goto error_return;
10587
10588 amt = max_sym_count * sizeof (asection *);
10589 finfo.sections = (asection **) bfd_malloc (amt);
10590 if (finfo.sections == NULL)
10591 goto error_return;
10592 }
10593
10594 if (max_sym_shndx_count != 0)
10595 {
10596 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10597 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10598 if (finfo.locsym_shndx == NULL)
10599 goto error_return;
10600 }
10601
10602 if (elf_hash_table (info)->tls_sec)
10603 {
10604 bfd_vma base, end = 0;
10605 asection *sec;
10606
10607 for (sec = elf_hash_table (info)->tls_sec;
10608 sec && (sec->flags & SEC_THREAD_LOCAL);
10609 sec = sec->next)
10610 {
10611 bfd_size_type size = sec->size;
10612
10613 if (size == 0
10614 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10615 {
10616 struct bfd_link_order *ord = sec->map_tail.link_order;
10617
10618 if (ord != NULL)
10619 size = ord->offset + ord->size;
10620 }
10621 end = sec->vma + size;
10622 }
10623 base = elf_hash_table (info)->tls_sec->vma;
10624 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10625 elf_hash_table (info)->tls_size = end - base;
10626 }
10627
10628 /* Reorder SHF_LINK_ORDER sections. */
10629 for (o = abfd->sections; o != NULL; o = o->next)
10630 {
10631 if (!elf_fixup_link_order (abfd, o))
10632 return FALSE;
10633 }
10634
10635 /* Since ELF permits relocations to be against local symbols, we
10636 must have the local symbols available when we do the relocations.
10637 Since we would rather only read the local symbols once, and we
10638 would rather not keep them in memory, we handle all the
10639 relocations for a single input file at the same time.
10640
10641 Unfortunately, there is no way to know the total number of local
10642 symbols until we have seen all of them, and the local symbol
10643 indices precede the global symbol indices. This means that when
10644 we are generating relocatable output, and we see a reloc against
10645 a global symbol, we can not know the symbol index until we have
10646 finished examining all the local symbols to see which ones we are
10647 going to output. To deal with this, we keep the relocations in
10648 memory, and don't output them until the end of the link. This is
10649 an unfortunate waste of memory, but I don't see a good way around
10650 it. Fortunately, it only happens when performing a relocatable
10651 link, which is not the common case. FIXME: If keep_memory is set
10652 we could write the relocs out and then read them again; I don't
10653 know how bad the memory loss will be. */
10654
10655 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10656 sub->output_has_begun = FALSE;
10657 for (o = abfd->sections; o != NULL; o = o->next)
10658 {
10659 for (p = o->map_head.link_order; p != NULL; p = p->next)
10660 {
10661 if (p->type == bfd_indirect_link_order
10662 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10663 == bfd_target_elf_flavour)
10664 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10665 {
10666 if (! sub->output_has_begun)
10667 {
10668 if (! elf_link_input_bfd (&finfo, sub))
10669 goto error_return;
10670 sub->output_has_begun = TRUE;
10671 }
10672 }
10673 else if (p->type == bfd_section_reloc_link_order
10674 || p->type == bfd_symbol_reloc_link_order)
10675 {
10676 if (! elf_reloc_link_order (abfd, info, o, p))
10677 goto error_return;
10678 }
10679 else
10680 {
10681 if (! _bfd_default_link_order (abfd, info, o, p))
10682 goto error_return;
10683 }
10684 }
10685 }
10686
10687 /* Free symbol buffer if needed. */
10688 if (!info->reduce_memory_overheads)
10689 {
10690 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10691 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10692 && elf_tdata (sub)->symbuf)
10693 {
10694 free (elf_tdata (sub)->symbuf);
10695 elf_tdata (sub)->symbuf = NULL;
10696 }
10697 }
10698
10699 /* Output any global symbols that got converted to local in a
10700 version script or due to symbol visibility. We do this in a
10701 separate step since ELF requires all local symbols to appear
10702 prior to any global symbols. FIXME: We should only do this if
10703 some global symbols were, in fact, converted to become local.
10704 FIXME: Will this work correctly with the Irix 5 linker? */
10705 eoinfo.failed = FALSE;
10706 eoinfo.finfo = &finfo;
10707 eoinfo.localsyms = TRUE;
10708 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10709 &eoinfo);
10710 if (eoinfo.failed)
10711 return FALSE;
10712
10713 /* If backend needs to output some local symbols not present in the hash
10714 table, do it now. */
10715 if (bed->elf_backend_output_arch_local_syms)
10716 {
10717 typedef int (*out_sym_func)
10718 (void *, const char *, Elf_Internal_Sym *, asection *,
10719 struct elf_link_hash_entry *);
10720
10721 if (! ((*bed->elf_backend_output_arch_local_syms)
10722 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10723 return FALSE;
10724 }
10725
10726 /* That wrote out all the local symbols. Finish up the symbol table
10727 with the global symbols. Even if we want to strip everything we
10728 can, we still need to deal with those global symbols that got
10729 converted to local in a version script. */
10730
10731 /* The sh_info field records the index of the first non local symbol. */
10732 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10733
10734 if (dynamic
10735 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10736 {
10737 Elf_Internal_Sym sym;
10738 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10739 long last_local = 0;
10740
10741 /* Write out the section symbols for the output sections. */
10742 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10743 {
10744 asection *s;
10745
10746 sym.st_size = 0;
10747 sym.st_name = 0;
10748 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10749 sym.st_other = 0;
10750
10751 for (s = abfd->sections; s != NULL; s = s->next)
10752 {
10753 int indx;
10754 bfd_byte *dest;
10755 long dynindx;
10756
10757 dynindx = elf_section_data (s)->dynindx;
10758 if (dynindx <= 0)
10759 continue;
10760 indx = elf_section_data (s)->this_idx;
10761 BFD_ASSERT (indx > 0);
10762 sym.st_shndx = indx;
10763 if (! check_dynsym (abfd, &sym))
10764 return FALSE;
10765 sym.st_value = s->vma;
10766 dest = dynsym + dynindx * bed->s->sizeof_sym;
10767 if (last_local < dynindx)
10768 last_local = dynindx;
10769 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10770 }
10771 }
10772
10773 /* Write out the local dynsyms. */
10774 if (elf_hash_table (info)->dynlocal)
10775 {
10776 struct elf_link_local_dynamic_entry *e;
10777 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10778 {
10779 asection *s;
10780 bfd_byte *dest;
10781
10782 /* Copy the internal symbol and turn off visibility.
10783 Note that we saved a word of storage and overwrote
10784 the original st_name with the dynstr_index. */
10785 sym = e->isym;
10786 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10787
10788 s = bfd_section_from_elf_index (e->input_bfd,
10789 e->isym.st_shndx);
10790 if (s != NULL)
10791 {
10792 sym.st_shndx =
10793 elf_section_data (s->output_section)->this_idx;
10794 if (! check_dynsym (abfd, &sym))
10795 return FALSE;
10796 sym.st_value = (s->output_section->vma
10797 + s->output_offset
10798 + e->isym.st_value);
10799 }
10800
10801 if (last_local < e->dynindx)
10802 last_local = e->dynindx;
10803
10804 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10805 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10806 }
10807 }
10808
10809 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10810 last_local + 1;
10811 }
10812
10813 /* We get the global symbols from the hash table. */
10814 eoinfo.failed = FALSE;
10815 eoinfo.localsyms = FALSE;
10816 eoinfo.finfo = &finfo;
10817 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10818 &eoinfo);
10819 if (eoinfo.failed)
10820 return FALSE;
10821
10822 /* If backend needs to output some symbols not present in the hash
10823 table, do it now. */
10824 if (bed->elf_backend_output_arch_syms)
10825 {
10826 typedef int (*out_sym_func)
10827 (void *, const char *, Elf_Internal_Sym *, asection *,
10828 struct elf_link_hash_entry *);
10829
10830 if (! ((*bed->elf_backend_output_arch_syms)
10831 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10832 return FALSE;
10833 }
10834
10835 /* Flush all symbols to the file. */
10836 if (! elf_link_flush_output_syms (&finfo, bed))
10837 return FALSE;
10838
10839 /* Now we know the size of the symtab section. */
10840 off += symtab_hdr->sh_size;
10841
10842 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10843 if (symtab_shndx_hdr->sh_name != 0)
10844 {
10845 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10846 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10847 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10848 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10849 symtab_shndx_hdr->sh_size = amt;
10850
10851 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10852 off, TRUE);
10853
10854 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10855 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10856 return FALSE;
10857 }
10858
10859
10860 /* Finish up and write out the symbol string table (.strtab)
10861 section. */
10862 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10863 /* sh_name was set in prep_headers. */
10864 symstrtab_hdr->sh_type = SHT_STRTAB;
10865 symstrtab_hdr->sh_flags = 0;
10866 symstrtab_hdr->sh_addr = 0;
10867 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10868 symstrtab_hdr->sh_entsize = 0;
10869 symstrtab_hdr->sh_link = 0;
10870 symstrtab_hdr->sh_info = 0;
10871 /* sh_offset is set just below. */
10872 symstrtab_hdr->sh_addralign = 1;
10873
10874 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10875 elf_tdata (abfd)->next_file_pos = off;
10876
10877 if (bfd_get_symcount (abfd) > 0)
10878 {
10879 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10880 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10881 return FALSE;
10882 }
10883
10884 /* Adjust the relocs to have the correct symbol indices. */
10885 for (o = abfd->sections; o != NULL; o = o->next)
10886 {
10887 struct bfd_elf_section_data *esdo = elf_section_data (o);
10888 if ((o->flags & SEC_RELOC) == 0)
10889 continue;
10890
10891 if (esdo->rel.hdr != NULL)
10892 elf_link_adjust_relocs (abfd, &esdo->rel);
10893 if (esdo->rela.hdr != NULL)
10894 elf_link_adjust_relocs (abfd, &esdo->rela);
10895
10896 /* Set the reloc_count field to 0 to prevent write_relocs from
10897 trying to swap the relocs out itself. */
10898 o->reloc_count = 0;
10899 }
10900
10901 if (dynamic && info->combreloc && dynobj != NULL)
10902 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10903
10904 /* If we are linking against a dynamic object, or generating a
10905 shared library, finish up the dynamic linking information. */
10906 if (dynamic)
10907 {
10908 bfd_byte *dyncon, *dynconend;
10909
10910 /* Fix up .dynamic entries. */
10911 o = bfd_get_section_by_name (dynobj, ".dynamic");
10912 BFD_ASSERT (o != NULL);
10913
10914 dyncon = o->contents;
10915 dynconend = o->contents + o->size;
10916 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10917 {
10918 Elf_Internal_Dyn dyn;
10919 const char *name;
10920 unsigned int type;
10921
10922 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10923
10924 switch (dyn.d_tag)
10925 {
10926 default:
10927 continue;
10928 case DT_NULL:
10929 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10930 {
10931 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10932 {
10933 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10934 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10935 default: continue;
10936 }
10937 dyn.d_un.d_val = relativecount;
10938 relativecount = 0;
10939 break;
10940 }
10941 continue;
10942
10943 case DT_INIT:
10944 name = info->init_function;
10945 goto get_sym;
10946 case DT_FINI:
10947 name = info->fini_function;
10948 get_sym:
10949 {
10950 struct elf_link_hash_entry *h;
10951
10952 h = elf_link_hash_lookup (elf_hash_table (info), name,
10953 FALSE, FALSE, TRUE);
10954 if (h != NULL
10955 && (h->root.type == bfd_link_hash_defined
10956 || h->root.type == bfd_link_hash_defweak))
10957 {
10958 dyn.d_un.d_ptr = h->root.u.def.value;
10959 o = h->root.u.def.section;
10960 if (o->output_section != NULL)
10961 dyn.d_un.d_ptr += (o->output_section->vma
10962 + o->output_offset);
10963 else
10964 {
10965 /* The symbol is imported from another shared
10966 library and does not apply to this one. */
10967 dyn.d_un.d_ptr = 0;
10968 }
10969 break;
10970 }
10971 }
10972 continue;
10973
10974 case DT_PREINIT_ARRAYSZ:
10975 name = ".preinit_array";
10976 goto get_size;
10977 case DT_INIT_ARRAYSZ:
10978 name = ".init_array";
10979 goto get_size;
10980 case DT_FINI_ARRAYSZ:
10981 name = ".fini_array";
10982 get_size:
10983 o = bfd_get_section_by_name (abfd, name);
10984 if (o == NULL)
10985 {
10986 (*_bfd_error_handler)
10987 (_("%B: could not find output section %s"), abfd, name);
10988 goto error_return;
10989 }
10990 if (o->size == 0)
10991 (*_bfd_error_handler)
10992 (_("warning: %s section has zero size"), name);
10993 dyn.d_un.d_val = o->size;
10994 break;
10995
10996 case DT_PREINIT_ARRAY:
10997 name = ".preinit_array";
10998 goto get_vma;
10999 case DT_INIT_ARRAY:
11000 name = ".init_array";
11001 goto get_vma;
11002 case DT_FINI_ARRAY:
11003 name = ".fini_array";
11004 goto get_vma;
11005
11006 case DT_HASH:
11007 name = ".hash";
11008 goto get_vma;
11009 case DT_GNU_HASH:
11010 name = ".gnu.hash";
11011 goto get_vma;
11012 case DT_STRTAB:
11013 name = ".dynstr";
11014 goto get_vma;
11015 case DT_SYMTAB:
11016 name = ".dynsym";
11017 goto get_vma;
11018 case DT_VERDEF:
11019 name = ".gnu.version_d";
11020 goto get_vma;
11021 case DT_VERNEED:
11022 name = ".gnu.version_r";
11023 goto get_vma;
11024 case DT_VERSYM:
11025 name = ".gnu.version";
11026 get_vma:
11027 o = bfd_get_section_by_name (abfd, name);
11028 if (o == NULL)
11029 {
11030 (*_bfd_error_handler)
11031 (_("%B: could not find output section %s"), abfd, name);
11032 goto error_return;
11033 }
11034 dyn.d_un.d_ptr = o->vma;
11035 break;
11036
11037 case DT_REL:
11038 case DT_RELA:
11039 case DT_RELSZ:
11040 case DT_RELASZ:
11041 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11042 type = SHT_REL;
11043 else
11044 type = SHT_RELA;
11045 dyn.d_un.d_val = 0;
11046 dyn.d_un.d_ptr = 0;
11047 for (i = 1; i < elf_numsections (abfd); i++)
11048 {
11049 Elf_Internal_Shdr *hdr;
11050
11051 hdr = elf_elfsections (abfd)[i];
11052 if (hdr->sh_type == type
11053 && (hdr->sh_flags & SHF_ALLOC) != 0)
11054 {
11055 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11056 dyn.d_un.d_val += hdr->sh_size;
11057 else
11058 {
11059 if (dyn.d_un.d_ptr == 0
11060 || hdr->sh_addr < dyn.d_un.d_ptr)
11061 dyn.d_un.d_ptr = hdr->sh_addr;
11062 }
11063 }
11064 }
11065 break;
11066 }
11067 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11068 }
11069 }
11070
11071 /* If we have created any dynamic sections, then output them. */
11072 if (dynobj != NULL)
11073 {
11074 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11075 goto error_return;
11076
11077 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11078 if (info->warn_shared_textrel && info->shared)
11079 {
11080 bfd_byte *dyncon, *dynconend;
11081
11082 /* Fix up .dynamic entries. */
11083 o = bfd_get_section_by_name (dynobj, ".dynamic");
11084 BFD_ASSERT (o != NULL);
11085
11086 dyncon = o->contents;
11087 dynconend = o->contents + o->size;
11088 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11089 {
11090 Elf_Internal_Dyn dyn;
11091
11092 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11093
11094 if (dyn.d_tag == DT_TEXTREL)
11095 {
11096 info->callbacks->einfo
11097 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11098 break;
11099 }
11100 }
11101 }
11102
11103 for (o = dynobj->sections; o != NULL; o = o->next)
11104 {
11105 if ((o->flags & SEC_HAS_CONTENTS) == 0
11106 || o->size == 0
11107 || o->output_section == bfd_abs_section_ptr)
11108 continue;
11109 if ((o->flags & SEC_LINKER_CREATED) == 0)
11110 {
11111 /* At this point, we are only interested in sections
11112 created by _bfd_elf_link_create_dynamic_sections. */
11113 continue;
11114 }
11115 if (elf_hash_table (info)->stab_info.stabstr == o)
11116 continue;
11117 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11118 continue;
11119 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11120 != SHT_STRTAB)
11121 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11122 {
11123 /* FIXME: octets_per_byte. */
11124 if (! bfd_set_section_contents (abfd, o->output_section,
11125 o->contents,
11126 (file_ptr) o->output_offset,
11127 o->size))
11128 goto error_return;
11129 }
11130 else
11131 {
11132 /* The contents of the .dynstr section are actually in a
11133 stringtab. */
11134 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11135 if (bfd_seek (abfd, off, SEEK_SET) != 0
11136 || ! _bfd_elf_strtab_emit (abfd,
11137 elf_hash_table (info)->dynstr))
11138 goto error_return;
11139 }
11140 }
11141 }
11142
11143 if (info->relocatable)
11144 {
11145 bfd_boolean failed = FALSE;
11146
11147 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11148 if (failed)
11149 goto error_return;
11150 }
11151
11152 /* If we have optimized stabs strings, output them. */
11153 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11154 {
11155 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11156 goto error_return;
11157 }
11158
11159 if (info->eh_frame_hdr)
11160 {
11161 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11162 goto error_return;
11163 }
11164
11165 if (finfo.symstrtab != NULL)
11166 _bfd_stringtab_free (finfo.symstrtab);
11167 if (finfo.contents != NULL)
11168 free (finfo.contents);
11169 if (finfo.external_relocs != NULL)
11170 free (finfo.external_relocs);
11171 if (finfo.internal_relocs != NULL)
11172 free (finfo.internal_relocs);
11173 if (finfo.external_syms != NULL)
11174 free (finfo.external_syms);
11175 if (finfo.locsym_shndx != NULL)
11176 free (finfo.locsym_shndx);
11177 if (finfo.internal_syms != NULL)
11178 free (finfo.internal_syms);
11179 if (finfo.indices != NULL)
11180 free (finfo.indices);
11181 if (finfo.sections != NULL)
11182 free (finfo.sections);
11183 if (finfo.symbuf != NULL)
11184 free (finfo.symbuf);
11185 if (finfo.symshndxbuf != NULL)
11186 free (finfo.symshndxbuf);
11187 for (o = abfd->sections; o != NULL; o = o->next)
11188 {
11189 struct bfd_elf_section_data *esdo = elf_section_data (o);
11190 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11191 free (esdo->rel.hashes);
11192 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11193 free (esdo->rela.hashes);
11194 }
11195
11196 elf_tdata (abfd)->linker = TRUE;
11197
11198 if (attr_section)
11199 {
11200 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11201 if (contents == NULL)
11202 return FALSE; /* Bail out and fail. */
11203 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11204 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11205 free (contents);
11206 }
11207
11208 return TRUE;
11209
11210 error_return:
11211 if (finfo.symstrtab != NULL)
11212 _bfd_stringtab_free (finfo.symstrtab);
11213 if (finfo.contents != NULL)
11214 free (finfo.contents);
11215 if (finfo.external_relocs != NULL)
11216 free (finfo.external_relocs);
11217 if (finfo.internal_relocs != NULL)
11218 free (finfo.internal_relocs);
11219 if (finfo.external_syms != NULL)
11220 free (finfo.external_syms);
11221 if (finfo.locsym_shndx != NULL)
11222 free (finfo.locsym_shndx);
11223 if (finfo.internal_syms != NULL)
11224 free (finfo.internal_syms);
11225 if (finfo.indices != NULL)
11226 free (finfo.indices);
11227 if (finfo.sections != NULL)
11228 free (finfo.sections);
11229 if (finfo.symbuf != NULL)
11230 free (finfo.symbuf);
11231 if (finfo.symshndxbuf != NULL)
11232 free (finfo.symshndxbuf);
11233 for (o = abfd->sections; o != NULL; o = o->next)
11234 {
11235 struct bfd_elf_section_data *esdo = elf_section_data (o);
11236 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11237 free (esdo->rel.hashes);
11238 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11239 free (esdo->rela.hashes);
11240 }
11241
11242 return FALSE;
11243 }
11244 \f
11245 /* Initialize COOKIE for input bfd ABFD. */
11246
11247 static bfd_boolean
11248 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11249 struct bfd_link_info *info, bfd *abfd)
11250 {
11251 Elf_Internal_Shdr *symtab_hdr;
11252 const struct elf_backend_data *bed;
11253
11254 bed = get_elf_backend_data (abfd);
11255 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11256
11257 cookie->abfd = abfd;
11258 cookie->sym_hashes = elf_sym_hashes (abfd);
11259 cookie->bad_symtab = elf_bad_symtab (abfd);
11260 if (cookie->bad_symtab)
11261 {
11262 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11263 cookie->extsymoff = 0;
11264 }
11265 else
11266 {
11267 cookie->locsymcount = symtab_hdr->sh_info;
11268 cookie->extsymoff = symtab_hdr->sh_info;
11269 }
11270
11271 if (bed->s->arch_size == 32)
11272 cookie->r_sym_shift = 8;
11273 else
11274 cookie->r_sym_shift = 32;
11275
11276 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11277 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11278 {
11279 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11280 cookie->locsymcount, 0,
11281 NULL, NULL, NULL);
11282 if (cookie->locsyms == NULL)
11283 {
11284 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11285 return FALSE;
11286 }
11287 if (info->keep_memory)
11288 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11289 }
11290 return TRUE;
11291 }
11292
11293 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11294
11295 static void
11296 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11297 {
11298 Elf_Internal_Shdr *symtab_hdr;
11299
11300 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11301 if (cookie->locsyms != NULL
11302 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11303 free (cookie->locsyms);
11304 }
11305
11306 /* Initialize the relocation information in COOKIE for input section SEC
11307 of input bfd ABFD. */
11308
11309 static bfd_boolean
11310 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11311 struct bfd_link_info *info, bfd *abfd,
11312 asection *sec)
11313 {
11314 const struct elf_backend_data *bed;
11315
11316 if (sec->reloc_count == 0)
11317 {
11318 cookie->rels = NULL;
11319 cookie->relend = NULL;
11320 }
11321 else
11322 {
11323 bed = get_elf_backend_data (abfd);
11324
11325 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11326 info->keep_memory);
11327 if (cookie->rels == NULL)
11328 return FALSE;
11329 cookie->rel = cookie->rels;
11330 cookie->relend = (cookie->rels
11331 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11332 }
11333 cookie->rel = cookie->rels;
11334 return TRUE;
11335 }
11336
11337 /* Free the memory allocated by init_reloc_cookie_rels,
11338 if appropriate. */
11339
11340 static void
11341 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11342 asection *sec)
11343 {
11344 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11345 free (cookie->rels);
11346 }
11347
11348 /* Initialize the whole of COOKIE for input section SEC. */
11349
11350 static bfd_boolean
11351 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11352 struct bfd_link_info *info,
11353 asection *sec)
11354 {
11355 if (!init_reloc_cookie (cookie, info, sec->owner))
11356 goto error1;
11357 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11358 goto error2;
11359 return TRUE;
11360
11361 error2:
11362 fini_reloc_cookie (cookie, sec->owner);
11363 error1:
11364 return FALSE;
11365 }
11366
11367 /* Free the memory allocated by init_reloc_cookie_for_section,
11368 if appropriate. */
11369
11370 static void
11371 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11372 asection *sec)
11373 {
11374 fini_reloc_cookie_rels (cookie, sec);
11375 fini_reloc_cookie (cookie, sec->owner);
11376 }
11377 \f
11378 /* Garbage collect unused sections. */
11379
11380 /* Default gc_mark_hook. */
11381
11382 asection *
11383 _bfd_elf_gc_mark_hook (asection *sec,
11384 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11385 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11386 struct elf_link_hash_entry *h,
11387 Elf_Internal_Sym *sym)
11388 {
11389 const char *sec_name;
11390
11391 if (h != NULL)
11392 {
11393 switch (h->root.type)
11394 {
11395 case bfd_link_hash_defined:
11396 case bfd_link_hash_defweak:
11397 return h->root.u.def.section;
11398
11399 case bfd_link_hash_common:
11400 return h->root.u.c.p->section;
11401
11402 case bfd_link_hash_undefined:
11403 case bfd_link_hash_undefweak:
11404 /* To work around a glibc bug, keep all XXX input sections
11405 when there is an as yet undefined reference to __start_XXX
11406 or __stop_XXX symbols. The linker will later define such
11407 symbols for orphan input sections that have a name
11408 representable as a C identifier. */
11409 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11410 sec_name = h->root.root.string + 8;
11411 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11412 sec_name = h->root.root.string + 7;
11413 else
11414 sec_name = NULL;
11415
11416 if (sec_name && *sec_name != '\0')
11417 {
11418 bfd *i;
11419
11420 for (i = info->input_bfds; i; i = i->link_next)
11421 {
11422 sec = bfd_get_section_by_name (i, sec_name);
11423 if (sec)
11424 sec->flags |= SEC_KEEP;
11425 }
11426 }
11427 break;
11428
11429 default:
11430 break;
11431 }
11432 }
11433 else
11434 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11435
11436 return NULL;
11437 }
11438
11439 /* COOKIE->rel describes a relocation against section SEC, which is
11440 a section we've decided to keep. Return the section that contains
11441 the relocation symbol, or NULL if no section contains it. */
11442
11443 asection *
11444 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11445 elf_gc_mark_hook_fn gc_mark_hook,
11446 struct elf_reloc_cookie *cookie)
11447 {
11448 unsigned long r_symndx;
11449 struct elf_link_hash_entry *h;
11450
11451 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11452 if (r_symndx == STN_UNDEF)
11453 return NULL;
11454
11455 if (r_symndx >= cookie->locsymcount
11456 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11457 {
11458 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11459 while (h->root.type == bfd_link_hash_indirect
11460 || h->root.type == bfd_link_hash_warning)
11461 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11462 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11463 }
11464
11465 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11466 &cookie->locsyms[r_symndx]);
11467 }
11468
11469 /* COOKIE->rel describes a relocation against section SEC, which is
11470 a section we've decided to keep. Mark the section that contains
11471 the relocation symbol. */
11472
11473 bfd_boolean
11474 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11475 asection *sec,
11476 elf_gc_mark_hook_fn gc_mark_hook,
11477 struct elf_reloc_cookie *cookie)
11478 {
11479 asection *rsec;
11480
11481 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11482 if (rsec && !rsec->gc_mark)
11483 {
11484 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11485 rsec->gc_mark = 1;
11486 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11487 return FALSE;
11488 }
11489 return TRUE;
11490 }
11491
11492 /* The mark phase of garbage collection. For a given section, mark
11493 it and any sections in this section's group, and all the sections
11494 which define symbols to which it refers. */
11495
11496 bfd_boolean
11497 _bfd_elf_gc_mark (struct bfd_link_info *info,
11498 asection *sec,
11499 elf_gc_mark_hook_fn gc_mark_hook)
11500 {
11501 bfd_boolean ret;
11502 asection *group_sec, *eh_frame;
11503
11504 sec->gc_mark = 1;
11505
11506 /* Mark all the sections in the group. */
11507 group_sec = elf_section_data (sec)->next_in_group;
11508 if (group_sec && !group_sec->gc_mark)
11509 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11510 return FALSE;
11511
11512 /* Look through the section relocs. */
11513 ret = TRUE;
11514 eh_frame = elf_eh_frame_section (sec->owner);
11515 if ((sec->flags & SEC_RELOC) != 0
11516 && sec->reloc_count > 0
11517 && sec != eh_frame)
11518 {
11519 struct elf_reloc_cookie cookie;
11520
11521 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11522 ret = FALSE;
11523 else
11524 {
11525 for (; cookie.rel < cookie.relend; cookie.rel++)
11526 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11527 {
11528 ret = FALSE;
11529 break;
11530 }
11531 fini_reloc_cookie_for_section (&cookie, sec);
11532 }
11533 }
11534
11535 if (ret && eh_frame && elf_fde_list (sec))
11536 {
11537 struct elf_reloc_cookie cookie;
11538
11539 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11540 ret = FALSE;
11541 else
11542 {
11543 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11544 gc_mark_hook, &cookie))
11545 ret = FALSE;
11546 fini_reloc_cookie_for_section (&cookie, eh_frame);
11547 }
11548 }
11549
11550 return ret;
11551 }
11552
11553 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11554
11555 struct elf_gc_sweep_symbol_info
11556 {
11557 struct bfd_link_info *info;
11558 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11559 bfd_boolean);
11560 };
11561
11562 static bfd_boolean
11563 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11564 {
11565 if (h->root.type == bfd_link_hash_warning)
11566 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11567
11568 if ((h->root.type == bfd_link_hash_defined
11569 || h->root.type == bfd_link_hash_defweak)
11570 && !h->root.u.def.section->gc_mark
11571 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11572 {
11573 struct elf_gc_sweep_symbol_info *inf =
11574 (struct elf_gc_sweep_symbol_info *) data;
11575 (*inf->hide_symbol) (inf->info, h, TRUE);
11576 }
11577
11578 return TRUE;
11579 }
11580
11581 /* The sweep phase of garbage collection. Remove all garbage sections. */
11582
11583 typedef bfd_boolean (*gc_sweep_hook_fn)
11584 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11585
11586 static bfd_boolean
11587 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11588 {
11589 bfd *sub;
11590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11591 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11592 unsigned long section_sym_count;
11593 struct elf_gc_sweep_symbol_info sweep_info;
11594
11595 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11596 {
11597 asection *o;
11598
11599 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11600 continue;
11601
11602 for (o = sub->sections; o != NULL; o = o->next)
11603 {
11604 /* When any section in a section group is kept, we keep all
11605 sections in the section group. If the first member of
11606 the section group is excluded, we will also exclude the
11607 group section. */
11608 if (o->flags & SEC_GROUP)
11609 {
11610 asection *first = elf_next_in_group (o);
11611 o->gc_mark = first->gc_mark;
11612 }
11613 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11614 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11615 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11616 {
11617 /* Keep debug, special and SHT_NOTE sections. */
11618 o->gc_mark = 1;
11619 }
11620
11621 if (o->gc_mark)
11622 continue;
11623
11624 /* Skip sweeping sections already excluded. */
11625 if (o->flags & SEC_EXCLUDE)
11626 continue;
11627
11628 /* Since this is early in the link process, it is simple
11629 to remove a section from the output. */
11630 o->flags |= SEC_EXCLUDE;
11631
11632 if (info->print_gc_sections && o->size != 0)
11633 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11634
11635 /* But we also have to update some of the relocation
11636 info we collected before. */
11637 if (gc_sweep_hook
11638 && (o->flags & SEC_RELOC) != 0
11639 && o->reloc_count > 0
11640 && !bfd_is_abs_section (o->output_section))
11641 {
11642 Elf_Internal_Rela *internal_relocs;
11643 bfd_boolean r;
11644
11645 internal_relocs
11646 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11647 info->keep_memory);
11648 if (internal_relocs == NULL)
11649 return FALSE;
11650
11651 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11652
11653 if (elf_section_data (o)->relocs != internal_relocs)
11654 free (internal_relocs);
11655
11656 if (!r)
11657 return FALSE;
11658 }
11659 }
11660 }
11661
11662 /* Remove the symbols that were in the swept sections from the dynamic
11663 symbol table. GCFIXME: Anyone know how to get them out of the
11664 static symbol table as well? */
11665 sweep_info.info = info;
11666 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11667 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11668 &sweep_info);
11669
11670 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11671 return TRUE;
11672 }
11673
11674 /* Propagate collected vtable information. This is called through
11675 elf_link_hash_traverse. */
11676
11677 static bfd_boolean
11678 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11679 {
11680 if (h->root.type == bfd_link_hash_warning)
11681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11682
11683 /* Those that are not vtables. */
11684 if (h->vtable == NULL || h->vtable->parent == NULL)
11685 return TRUE;
11686
11687 /* Those vtables that do not have parents, we cannot merge. */
11688 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11689 return TRUE;
11690
11691 /* If we've already been done, exit. */
11692 if (h->vtable->used && h->vtable->used[-1])
11693 return TRUE;
11694
11695 /* Make sure the parent's table is up to date. */
11696 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11697
11698 if (h->vtable->used == NULL)
11699 {
11700 /* None of this table's entries were referenced. Re-use the
11701 parent's table. */
11702 h->vtable->used = h->vtable->parent->vtable->used;
11703 h->vtable->size = h->vtable->parent->vtable->size;
11704 }
11705 else
11706 {
11707 size_t n;
11708 bfd_boolean *cu, *pu;
11709
11710 /* Or the parent's entries into ours. */
11711 cu = h->vtable->used;
11712 cu[-1] = TRUE;
11713 pu = h->vtable->parent->vtable->used;
11714 if (pu != NULL)
11715 {
11716 const struct elf_backend_data *bed;
11717 unsigned int log_file_align;
11718
11719 bed = get_elf_backend_data (h->root.u.def.section->owner);
11720 log_file_align = bed->s->log_file_align;
11721 n = h->vtable->parent->vtable->size >> log_file_align;
11722 while (n--)
11723 {
11724 if (*pu)
11725 *cu = TRUE;
11726 pu++;
11727 cu++;
11728 }
11729 }
11730 }
11731
11732 return TRUE;
11733 }
11734
11735 static bfd_boolean
11736 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11737 {
11738 asection *sec;
11739 bfd_vma hstart, hend;
11740 Elf_Internal_Rela *relstart, *relend, *rel;
11741 const struct elf_backend_data *bed;
11742 unsigned int log_file_align;
11743
11744 if (h->root.type == bfd_link_hash_warning)
11745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11746
11747 /* Take care of both those symbols that do not describe vtables as
11748 well as those that are not loaded. */
11749 if (h->vtable == NULL || h->vtable->parent == NULL)
11750 return TRUE;
11751
11752 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11753 || h->root.type == bfd_link_hash_defweak);
11754
11755 sec = h->root.u.def.section;
11756 hstart = h->root.u.def.value;
11757 hend = hstart + h->size;
11758
11759 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11760 if (!relstart)
11761 return *(bfd_boolean *) okp = FALSE;
11762 bed = get_elf_backend_data (sec->owner);
11763 log_file_align = bed->s->log_file_align;
11764
11765 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11766
11767 for (rel = relstart; rel < relend; ++rel)
11768 if (rel->r_offset >= hstart && rel->r_offset < hend)
11769 {
11770 /* If the entry is in use, do nothing. */
11771 if (h->vtable->used
11772 && (rel->r_offset - hstart) < h->vtable->size)
11773 {
11774 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11775 if (h->vtable->used[entry])
11776 continue;
11777 }
11778 /* Otherwise, kill it. */
11779 rel->r_offset = rel->r_info = rel->r_addend = 0;
11780 }
11781
11782 return TRUE;
11783 }
11784
11785 /* Mark sections containing dynamically referenced symbols. When
11786 building shared libraries, we must assume that any visible symbol is
11787 referenced. */
11788
11789 bfd_boolean
11790 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11791 {
11792 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11793
11794 if (h->root.type == bfd_link_hash_warning)
11795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11796
11797 if ((h->root.type == bfd_link_hash_defined
11798 || h->root.type == bfd_link_hash_defweak)
11799 && (h->ref_dynamic
11800 || (!info->executable
11801 && h->def_regular
11802 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11803 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11804 h->root.u.def.section->flags |= SEC_KEEP;
11805
11806 return TRUE;
11807 }
11808
11809 /* Keep all sections containing symbols undefined on the command-line,
11810 and the section containing the entry symbol. */
11811
11812 void
11813 _bfd_elf_gc_keep (struct bfd_link_info *info)
11814 {
11815 struct bfd_sym_chain *sym;
11816
11817 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11818 {
11819 struct elf_link_hash_entry *h;
11820
11821 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11822 FALSE, FALSE, FALSE);
11823
11824 if (h != NULL
11825 && (h->root.type == bfd_link_hash_defined
11826 || h->root.type == bfd_link_hash_defweak)
11827 && !bfd_is_abs_section (h->root.u.def.section))
11828 h->root.u.def.section->flags |= SEC_KEEP;
11829 }
11830 }
11831
11832 /* Do mark and sweep of unused sections. */
11833
11834 bfd_boolean
11835 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11836 {
11837 bfd_boolean ok = TRUE;
11838 bfd *sub;
11839 elf_gc_mark_hook_fn gc_mark_hook;
11840 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11841
11842 if (!bed->can_gc_sections
11843 || !is_elf_hash_table (info->hash))
11844 {
11845 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11846 return TRUE;
11847 }
11848
11849 bed->gc_keep (info);
11850
11851 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11852 at the .eh_frame section if we can mark the FDEs individually. */
11853 _bfd_elf_begin_eh_frame_parsing (info);
11854 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11855 {
11856 asection *sec;
11857 struct elf_reloc_cookie cookie;
11858
11859 sec = bfd_get_section_by_name (sub, ".eh_frame");
11860 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11861 {
11862 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11863 if (elf_section_data (sec)->sec_info)
11864 elf_eh_frame_section (sub) = sec;
11865 fini_reloc_cookie_for_section (&cookie, sec);
11866 }
11867 }
11868 _bfd_elf_end_eh_frame_parsing (info);
11869
11870 /* Apply transitive closure to the vtable entry usage info. */
11871 elf_link_hash_traverse (elf_hash_table (info),
11872 elf_gc_propagate_vtable_entries_used,
11873 &ok);
11874 if (!ok)
11875 return FALSE;
11876
11877 /* Kill the vtable relocations that were not used. */
11878 elf_link_hash_traverse (elf_hash_table (info),
11879 elf_gc_smash_unused_vtentry_relocs,
11880 &ok);
11881 if (!ok)
11882 return FALSE;
11883
11884 /* Mark dynamically referenced symbols. */
11885 if (elf_hash_table (info)->dynamic_sections_created)
11886 elf_link_hash_traverse (elf_hash_table (info),
11887 bed->gc_mark_dynamic_ref,
11888 info);
11889
11890 /* Grovel through relocs to find out who stays ... */
11891 gc_mark_hook = bed->gc_mark_hook;
11892 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11893 {
11894 asection *o;
11895
11896 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11897 continue;
11898
11899 for (o = sub->sections; o != NULL; o = o->next)
11900 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11901 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11902 return FALSE;
11903 }
11904
11905 /* Allow the backend to mark additional target specific sections. */
11906 if (bed->gc_mark_extra_sections)
11907 bed->gc_mark_extra_sections (info, gc_mark_hook);
11908
11909 /* ... and mark SEC_EXCLUDE for those that go. */
11910 return elf_gc_sweep (abfd, info);
11911 }
11912 \f
11913 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11914
11915 bfd_boolean
11916 bfd_elf_gc_record_vtinherit (bfd *abfd,
11917 asection *sec,
11918 struct elf_link_hash_entry *h,
11919 bfd_vma offset)
11920 {
11921 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11922 struct elf_link_hash_entry **search, *child;
11923 bfd_size_type extsymcount;
11924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11925
11926 /* The sh_info field of the symtab header tells us where the
11927 external symbols start. We don't care about the local symbols at
11928 this point. */
11929 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11930 if (!elf_bad_symtab (abfd))
11931 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11932
11933 sym_hashes = elf_sym_hashes (abfd);
11934 sym_hashes_end = sym_hashes + extsymcount;
11935
11936 /* Hunt down the child symbol, which is in this section at the same
11937 offset as the relocation. */
11938 for (search = sym_hashes; search != sym_hashes_end; ++search)
11939 {
11940 if ((child = *search) != NULL
11941 && (child->root.type == bfd_link_hash_defined
11942 || child->root.type == bfd_link_hash_defweak)
11943 && child->root.u.def.section == sec
11944 && child->root.u.def.value == offset)
11945 goto win;
11946 }
11947
11948 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11949 abfd, sec, (unsigned long) offset);
11950 bfd_set_error (bfd_error_invalid_operation);
11951 return FALSE;
11952
11953 win:
11954 if (!child->vtable)
11955 {
11956 child->vtable = (struct elf_link_virtual_table_entry *)
11957 bfd_zalloc (abfd, sizeof (*child->vtable));
11958 if (!child->vtable)
11959 return FALSE;
11960 }
11961 if (!h)
11962 {
11963 /* This *should* only be the absolute section. It could potentially
11964 be that someone has defined a non-global vtable though, which
11965 would be bad. It isn't worth paging in the local symbols to be
11966 sure though; that case should simply be handled by the assembler. */
11967
11968 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11969 }
11970 else
11971 child->vtable->parent = h;
11972
11973 return TRUE;
11974 }
11975
11976 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11977
11978 bfd_boolean
11979 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11980 asection *sec ATTRIBUTE_UNUSED,
11981 struct elf_link_hash_entry *h,
11982 bfd_vma addend)
11983 {
11984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11985 unsigned int log_file_align = bed->s->log_file_align;
11986
11987 if (!h->vtable)
11988 {
11989 h->vtable = (struct elf_link_virtual_table_entry *)
11990 bfd_zalloc (abfd, sizeof (*h->vtable));
11991 if (!h->vtable)
11992 return FALSE;
11993 }
11994
11995 if (addend >= h->vtable->size)
11996 {
11997 size_t size, bytes, file_align;
11998 bfd_boolean *ptr = h->vtable->used;
11999
12000 /* While the symbol is undefined, we have to be prepared to handle
12001 a zero size. */
12002 file_align = 1 << log_file_align;
12003 if (h->root.type == bfd_link_hash_undefined)
12004 size = addend + file_align;
12005 else
12006 {
12007 size = h->size;
12008 if (addend >= size)
12009 {
12010 /* Oops! We've got a reference past the defined end of
12011 the table. This is probably a bug -- shall we warn? */
12012 size = addend + file_align;
12013 }
12014 }
12015 size = (size + file_align - 1) & -file_align;
12016
12017 /* Allocate one extra entry for use as a "done" flag for the
12018 consolidation pass. */
12019 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12020
12021 if (ptr)
12022 {
12023 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12024
12025 if (ptr != NULL)
12026 {
12027 size_t oldbytes;
12028
12029 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12030 * sizeof (bfd_boolean));
12031 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12032 }
12033 }
12034 else
12035 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12036
12037 if (ptr == NULL)
12038 return FALSE;
12039
12040 /* And arrange for that done flag to be at index -1. */
12041 h->vtable->used = ptr + 1;
12042 h->vtable->size = size;
12043 }
12044
12045 h->vtable->used[addend >> log_file_align] = TRUE;
12046
12047 return TRUE;
12048 }
12049
12050 struct alloc_got_off_arg {
12051 bfd_vma gotoff;
12052 struct bfd_link_info *info;
12053 };
12054
12055 /* We need a special top-level link routine to convert got reference counts
12056 to real got offsets. */
12057
12058 static bfd_boolean
12059 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12060 {
12061 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12062 bfd *obfd = gofarg->info->output_bfd;
12063 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12064
12065 if (h->root.type == bfd_link_hash_warning)
12066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12067
12068 if (h->got.refcount > 0)
12069 {
12070 h->got.offset = gofarg->gotoff;
12071 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12072 }
12073 else
12074 h->got.offset = (bfd_vma) -1;
12075
12076 return TRUE;
12077 }
12078
12079 /* And an accompanying bit to work out final got entry offsets once
12080 we're done. Should be called from final_link. */
12081
12082 bfd_boolean
12083 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12084 struct bfd_link_info *info)
12085 {
12086 bfd *i;
12087 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12088 bfd_vma gotoff;
12089 struct alloc_got_off_arg gofarg;
12090
12091 BFD_ASSERT (abfd == info->output_bfd);
12092
12093 if (! is_elf_hash_table (info->hash))
12094 return FALSE;
12095
12096 /* The GOT offset is relative to the .got section, but the GOT header is
12097 put into the .got.plt section, if the backend uses it. */
12098 if (bed->want_got_plt)
12099 gotoff = 0;
12100 else
12101 gotoff = bed->got_header_size;
12102
12103 /* Do the local .got entries first. */
12104 for (i = info->input_bfds; i; i = i->link_next)
12105 {
12106 bfd_signed_vma *local_got;
12107 bfd_size_type j, locsymcount;
12108 Elf_Internal_Shdr *symtab_hdr;
12109
12110 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12111 continue;
12112
12113 local_got = elf_local_got_refcounts (i);
12114 if (!local_got)
12115 continue;
12116
12117 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12118 if (elf_bad_symtab (i))
12119 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12120 else
12121 locsymcount = symtab_hdr->sh_info;
12122
12123 for (j = 0; j < locsymcount; ++j)
12124 {
12125 if (local_got[j] > 0)
12126 {
12127 local_got[j] = gotoff;
12128 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12129 }
12130 else
12131 local_got[j] = (bfd_vma) -1;
12132 }
12133 }
12134
12135 /* Then the global .got entries. .plt refcounts are handled by
12136 adjust_dynamic_symbol */
12137 gofarg.gotoff = gotoff;
12138 gofarg.info = info;
12139 elf_link_hash_traverse (elf_hash_table (info),
12140 elf_gc_allocate_got_offsets,
12141 &gofarg);
12142 return TRUE;
12143 }
12144
12145 /* Many folk need no more in the way of final link than this, once
12146 got entry reference counting is enabled. */
12147
12148 bfd_boolean
12149 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12150 {
12151 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12152 return FALSE;
12153
12154 /* Invoke the regular ELF backend linker to do all the work. */
12155 return bfd_elf_final_link (abfd, info);
12156 }
12157
12158 bfd_boolean
12159 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12160 {
12161 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12162
12163 if (rcookie->bad_symtab)
12164 rcookie->rel = rcookie->rels;
12165
12166 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12167 {
12168 unsigned long r_symndx;
12169
12170 if (! rcookie->bad_symtab)
12171 if (rcookie->rel->r_offset > offset)
12172 return FALSE;
12173 if (rcookie->rel->r_offset != offset)
12174 continue;
12175
12176 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12177 if (r_symndx == STN_UNDEF)
12178 return TRUE;
12179
12180 if (r_symndx >= rcookie->locsymcount
12181 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12182 {
12183 struct elf_link_hash_entry *h;
12184
12185 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12186
12187 while (h->root.type == bfd_link_hash_indirect
12188 || h->root.type == bfd_link_hash_warning)
12189 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12190
12191 if ((h->root.type == bfd_link_hash_defined
12192 || h->root.type == bfd_link_hash_defweak)
12193 && elf_discarded_section (h->root.u.def.section))
12194 return TRUE;
12195 else
12196 return FALSE;
12197 }
12198 else
12199 {
12200 /* It's not a relocation against a global symbol,
12201 but it could be a relocation against a local
12202 symbol for a discarded section. */
12203 asection *isec;
12204 Elf_Internal_Sym *isym;
12205
12206 /* Need to: get the symbol; get the section. */
12207 isym = &rcookie->locsyms[r_symndx];
12208 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12209 if (isec != NULL && elf_discarded_section (isec))
12210 return TRUE;
12211 }
12212 return FALSE;
12213 }
12214 return FALSE;
12215 }
12216
12217 /* Discard unneeded references to discarded sections.
12218 Returns TRUE if any section's size was changed. */
12219 /* This function assumes that the relocations are in sorted order,
12220 which is true for all known assemblers. */
12221
12222 bfd_boolean
12223 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12224 {
12225 struct elf_reloc_cookie cookie;
12226 asection *stab, *eh;
12227 const struct elf_backend_data *bed;
12228 bfd *abfd;
12229 bfd_boolean ret = FALSE;
12230
12231 if (info->traditional_format
12232 || !is_elf_hash_table (info->hash))
12233 return FALSE;
12234
12235 _bfd_elf_begin_eh_frame_parsing (info);
12236 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12237 {
12238 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12239 continue;
12240
12241 bed = get_elf_backend_data (abfd);
12242
12243 if ((abfd->flags & DYNAMIC) != 0)
12244 continue;
12245
12246 eh = NULL;
12247 if (!info->relocatable)
12248 {
12249 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12250 if (eh != NULL
12251 && (eh->size == 0
12252 || bfd_is_abs_section (eh->output_section)))
12253 eh = NULL;
12254 }
12255
12256 stab = bfd_get_section_by_name (abfd, ".stab");
12257 if (stab != NULL
12258 && (stab->size == 0
12259 || bfd_is_abs_section (stab->output_section)
12260 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12261 stab = NULL;
12262
12263 if (stab == NULL
12264 && eh == NULL
12265 && bed->elf_backend_discard_info == NULL)
12266 continue;
12267
12268 if (!init_reloc_cookie (&cookie, info, abfd))
12269 return FALSE;
12270
12271 if (stab != NULL
12272 && stab->reloc_count > 0
12273 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12274 {
12275 if (_bfd_discard_section_stabs (abfd, stab,
12276 elf_section_data (stab)->sec_info,
12277 bfd_elf_reloc_symbol_deleted_p,
12278 &cookie))
12279 ret = TRUE;
12280 fini_reloc_cookie_rels (&cookie, stab);
12281 }
12282
12283 if (eh != NULL
12284 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12285 {
12286 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12287 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12288 bfd_elf_reloc_symbol_deleted_p,
12289 &cookie))
12290 ret = TRUE;
12291 fini_reloc_cookie_rels (&cookie, eh);
12292 }
12293
12294 if (bed->elf_backend_discard_info != NULL
12295 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12296 ret = TRUE;
12297
12298 fini_reloc_cookie (&cookie, abfd);
12299 }
12300 _bfd_elf_end_eh_frame_parsing (info);
12301
12302 if (info->eh_frame_hdr
12303 && !info->relocatable
12304 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12305 ret = TRUE;
12306
12307 return ret;
12308 }
12309
12310 /* For a SHT_GROUP section, return the group signature. For other
12311 sections, return the normal section name. */
12312
12313 static const char *
12314 section_signature (asection *sec)
12315 {
12316 if ((sec->flags & SEC_GROUP) != 0
12317 && elf_next_in_group (sec) != NULL
12318 && elf_group_name (elf_next_in_group (sec)) != NULL)
12319 return elf_group_name (elf_next_in_group (sec));
12320 return sec->name;
12321 }
12322
12323 void
12324 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12325 struct bfd_link_info *info)
12326 {
12327 flagword flags;
12328 const char *name, *p;
12329 struct bfd_section_already_linked *l;
12330 struct bfd_section_already_linked_hash_entry *already_linked_list;
12331
12332 if (sec->output_section == bfd_abs_section_ptr)
12333 return;
12334
12335 flags = sec->flags;
12336
12337 /* Return if it isn't a linkonce section. A comdat group section
12338 also has SEC_LINK_ONCE set. */
12339 if ((flags & SEC_LINK_ONCE) == 0)
12340 return;
12341
12342 /* Don't put group member sections on our list of already linked
12343 sections. They are handled as a group via their group section. */
12344 if (elf_sec_group (sec) != NULL)
12345 return;
12346
12347 /* FIXME: When doing a relocatable link, we may have trouble
12348 copying relocations in other sections that refer to local symbols
12349 in the section being discarded. Those relocations will have to
12350 be converted somehow; as of this writing I'm not sure that any of
12351 the backends handle that correctly.
12352
12353 It is tempting to instead not discard link once sections when
12354 doing a relocatable link (technically, they should be discarded
12355 whenever we are building constructors). However, that fails,
12356 because the linker winds up combining all the link once sections
12357 into a single large link once section, which defeats the purpose
12358 of having link once sections in the first place.
12359
12360 Also, not merging link once sections in a relocatable link
12361 causes trouble for MIPS ELF, which relies on link once semantics
12362 to handle the .reginfo section correctly. */
12363
12364 name = section_signature (sec);
12365
12366 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12367 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12368 p++;
12369 else
12370 p = name;
12371
12372 already_linked_list = bfd_section_already_linked_table_lookup (p);
12373
12374 for (l = already_linked_list->entry; l != NULL; l = l->next)
12375 {
12376 /* We may have 2 different types of sections on the list: group
12377 sections and linkonce sections. Match like sections. */
12378 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12379 && strcmp (name, section_signature (l->sec)) == 0
12380 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12381 {
12382 /* The section has already been linked. See if we should
12383 issue a warning. */
12384 switch (flags & SEC_LINK_DUPLICATES)
12385 {
12386 default:
12387 abort ();
12388
12389 case SEC_LINK_DUPLICATES_DISCARD:
12390 break;
12391
12392 case SEC_LINK_DUPLICATES_ONE_ONLY:
12393 (*_bfd_error_handler)
12394 (_("%B: ignoring duplicate section `%A'"),
12395 abfd, sec);
12396 break;
12397
12398 case SEC_LINK_DUPLICATES_SAME_SIZE:
12399 if (sec->size != l->sec->size)
12400 (*_bfd_error_handler)
12401 (_("%B: duplicate section `%A' has different size"),
12402 abfd, sec);
12403 break;
12404
12405 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12406 if (sec->size != l->sec->size)
12407 (*_bfd_error_handler)
12408 (_("%B: duplicate section `%A' has different size"),
12409 abfd, sec);
12410 else if (sec->size != 0)
12411 {
12412 bfd_byte *sec_contents, *l_sec_contents;
12413
12414 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12415 (*_bfd_error_handler)
12416 (_("%B: warning: could not read contents of section `%A'"),
12417 abfd, sec);
12418 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12419 &l_sec_contents))
12420 (*_bfd_error_handler)
12421 (_("%B: warning: could not read contents of section `%A'"),
12422 l->sec->owner, l->sec);
12423 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12424 (*_bfd_error_handler)
12425 (_("%B: warning: duplicate section `%A' has different contents"),
12426 abfd, sec);
12427
12428 if (sec_contents)
12429 free (sec_contents);
12430 if (l_sec_contents)
12431 free (l_sec_contents);
12432 }
12433 break;
12434 }
12435
12436 /* Set the output_section field so that lang_add_section
12437 does not create a lang_input_section structure for this
12438 section. Since there might be a symbol in the section
12439 being discarded, we must retain a pointer to the section
12440 which we are really going to use. */
12441 sec->output_section = bfd_abs_section_ptr;
12442 sec->kept_section = l->sec;
12443
12444 if (flags & SEC_GROUP)
12445 {
12446 asection *first = elf_next_in_group (sec);
12447 asection *s = first;
12448
12449 while (s != NULL)
12450 {
12451 s->output_section = bfd_abs_section_ptr;
12452 /* Record which group discards it. */
12453 s->kept_section = l->sec;
12454 s = elf_next_in_group (s);
12455 /* These lists are circular. */
12456 if (s == first)
12457 break;
12458 }
12459 }
12460
12461 return;
12462 }
12463 }
12464
12465 /* A single member comdat group section may be discarded by a
12466 linkonce section and vice versa. */
12467
12468 if ((flags & SEC_GROUP) != 0)
12469 {
12470 asection *first = elf_next_in_group (sec);
12471
12472 if (first != NULL && elf_next_in_group (first) == first)
12473 /* Check this single member group against linkonce sections. */
12474 for (l = already_linked_list->entry; l != NULL; l = l->next)
12475 if ((l->sec->flags & SEC_GROUP) == 0
12476 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12477 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12478 {
12479 first->output_section = bfd_abs_section_ptr;
12480 first->kept_section = l->sec;
12481 sec->output_section = bfd_abs_section_ptr;
12482 break;
12483 }
12484 }
12485 else
12486 /* Check this linkonce section against single member groups. */
12487 for (l = already_linked_list->entry; l != NULL; l = l->next)
12488 if (l->sec->flags & SEC_GROUP)
12489 {
12490 asection *first = elf_next_in_group (l->sec);
12491
12492 if (first != NULL
12493 && elf_next_in_group (first) == first
12494 && bfd_elf_match_symbols_in_sections (first, sec, info))
12495 {
12496 sec->output_section = bfd_abs_section_ptr;
12497 sec->kept_section = first;
12498 break;
12499 }
12500 }
12501
12502 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12503 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12504 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12505 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12506 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12507 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12508 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12509 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12510 The reverse order cannot happen as there is never a bfd with only the
12511 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12512 matter as here were are looking only for cross-bfd sections. */
12513
12514 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12515 for (l = already_linked_list->entry; l != NULL; l = l->next)
12516 if ((l->sec->flags & SEC_GROUP) == 0
12517 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12518 {
12519 if (abfd != l->sec->owner)
12520 sec->output_section = bfd_abs_section_ptr;
12521 break;
12522 }
12523
12524 /* This is the first section with this name. Record it. */
12525 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12526 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12527 }
12528
12529 bfd_boolean
12530 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12531 {
12532 return sym->st_shndx == SHN_COMMON;
12533 }
12534
12535 unsigned int
12536 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12537 {
12538 return SHN_COMMON;
12539 }
12540
12541 asection *
12542 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12543 {
12544 return bfd_com_section_ptr;
12545 }
12546
12547 bfd_vma
12548 _bfd_elf_default_got_elt_size (bfd *abfd,
12549 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12550 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12551 bfd *ibfd ATTRIBUTE_UNUSED,
12552 unsigned long symndx ATTRIBUTE_UNUSED)
12553 {
12554 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12555 return bed->s->arch_size / 8;
12556 }
12557
12558 /* Routines to support the creation of dynamic relocs. */
12559
12560 /* Return true if NAME is a name of a relocation
12561 section associated with section S. */
12562
12563 static bfd_boolean
12564 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12565 {
12566 if (rela)
12567 return CONST_STRNEQ (name, ".rela")
12568 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12569
12570 return CONST_STRNEQ (name, ".rel")
12571 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12572 }
12573
12574 /* Returns the name of the dynamic reloc section associated with SEC. */
12575
12576 static const char *
12577 get_dynamic_reloc_section_name (bfd * abfd,
12578 asection * sec,
12579 bfd_boolean is_rela)
12580 {
12581 const char * name;
12582 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12583 unsigned int shnam = _bfd_elf_single_rel_hdr (sec)->sh_name;
12584
12585 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12586 if (name == NULL)
12587 return NULL;
12588
12589 if (! is_reloc_section (is_rela, name, sec))
12590 {
12591 static bfd_boolean complained = FALSE;
12592
12593 if (! complained)
12594 {
12595 (*_bfd_error_handler)
12596 (_("%B: bad relocation section name `%s\'"), abfd, name);
12597 complained = TRUE;
12598 }
12599 name = NULL;
12600 }
12601
12602 return name;
12603 }
12604
12605 /* Returns the dynamic reloc section associated with SEC.
12606 If necessary compute the name of the dynamic reloc section based
12607 on SEC's name (looked up in ABFD's string table) and the setting
12608 of IS_RELA. */
12609
12610 asection *
12611 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12612 asection * sec,
12613 bfd_boolean is_rela)
12614 {
12615 asection * reloc_sec = elf_section_data (sec)->sreloc;
12616
12617 if (reloc_sec == NULL)
12618 {
12619 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12620
12621 if (name != NULL)
12622 {
12623 reloc_sec = bfd_get_section_by_name (abfd, name);
12624
12625 if (reloc_sec != NULL)
12626 elf_section_data (sec)->sreloc = reloc_sec;
12627 }
12628 }
12629
12630 return reloc_sec;
12631 }
12632
12633 /* Returns the dynamic reloc section associated with SEC. If the
12634 section does not exist it is created and attached to the DYNOBJ
12635 bfd and stored in the SRELOC field of SEC's elf_section_data
12636 structure.
12637
12638 ALIGNMENT is the alignment for the newly created section and
12639 IS_RELA defines whether the name should be .rela.<SEC's name>
12640 or .rel.<SEC's name>. The section name is looked up in the
12641 string table associated with ABFD. */
12642
12643 asection *
12644 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12645 bfd * dynobj,
12646 unsigned int alignment,
12647 bfd * abfd,
12648 bfd_boolean is_rela)
12649 {
12650 asection * reloc_sec = elf_section_data (sec)->sreloc;
12651
12652 if (reloc_sec == NULL)
12653 {
12654 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12655
12656 if (name == NULL)
12657 return NULL;
12658
12659 reloc_sec = bfd_get_section_by_name (dynobj, name);
12660
12661 if (reloc_sec == NULL)
12662 {
12663 flagword flags;
12664
12665 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12666 if ((sec->flags & SEC_ALLOC) != 0)
12667 flags |= SEC_ALLOC | SEC_LOAD;
12668
12669 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12670 if (reloc_sec != NULL)
12671 {
12672 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12673 reloc_sec = NULL;
12674 }
12675 }
12676
12677 elf_section_data (sec)->sreloc = reloc_sec;
12678 }
12679
12680 return reloc_sec;
12681 }
12682
12683 /* Copy the ELF symbol type associated with a linker hash entry. */
12684 void
12685 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12686 struct bfd_link_hash_entry * hdest,
12687 struct bfd_link_hash_entry * hsrc)
12688 {
12689 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12690 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12691
12692 ehdest->type = ehsrc->type;
12693 }
This page took 0.303223 seconds and 4 git commands to generate.