2009-07-14 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1258
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1261
1262 if (newdef && !newdyn && olddyn)
1263 newweak = FALSE;
1264 if (olddef && newdyn)
1265 oldweak = FALSE;
1266
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1270
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1274
1275 if (oldweak
1276 || newweak
1277 || (newdef
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1280
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1283
1284 if (*type_change_ok
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1287
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1299 libraries.
1300
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1303
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1309 harmless. */
1310
1311 if (newdyn
1312 && newdef
1313 && !newweak
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1316 && sym->st_size > 0
1317 && !newfunc)
1318 newdyncommon = TRUE;
1319 else
1320 newdyncommon = FALSE;
1321
1322 if (olddyn
1323 && olddef
1324 && h->root.type == bfd_link_hash_defined
1325 && h->def_dynamic
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1328 && h->size > 0
1329 && !oldfunc)
1330 olddyncommon = TRUE;
1331 else
1332 olddyncommon = FALSE;
1333
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1341 abfd, &sec,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1343 oldbfd, &oldsec))
1344 return FALSE;
1345
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1348 two. */
1349
1350 if (olddyncommon
1351 && newdyncommon
1352 && sym->st_size != h->size)
1353 {
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1359
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1362 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1363 return FALSE;
1364
1365 if (sym->st_size > h->size)
1366 h->size = sym->st_size;
1367
1368 *size_change_ok = TRUE;
1369 }
1370
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1377
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1384
1385 if (newdyn
1386 && newdef
1387 && (olddef
1388 || (h->root.type == bfd_link_hash_common
1389 && (newweak || newfunc))))
1390 {
1391 *override = TRUE;
1392 newdef = FALSE;
1393 newdyncommon = FALSE;
1394
1395 *psec = sec = bfd_und_section_ptr;
1396 *size_change_ok = TRUE;
1397
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1403
1404 if (h->root.type == bfd_link_hash_common)
1405 *type_change_ok = TRUE;
1406 }
1407
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1412 right thing. */
1413
1414 if (newdyncommon
1415 && h->root.type == bfd_link_hash_common)
1416 {
1417 *override = TRUE;
1418 newdef = FALSE;
1419 newdyncommon = FALSE;
1420 *pvalue = sym->st_size;
1421 *psec = sec = bed->common_section (oldsec);
1422 *size_change_ok = TRUE;
1423 }
1424
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef && olddef && newweak)
1427 {
1428 *skip = TRUE;
1429
1430 /* Merge st_other. If the symbol already has a dynamic index,
1431 but visibility says it should not be visible, turn it into a
1432 local symbol. */
1433 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1434 if (h->dynindx != -1)
1435 switch (ELF_ST_VISIBILITY (h->other))
1436 {
1437 case STV_INTERNAL:
1438 case STV_HIDDEN:
1439 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1440 break;
1441 }
1442 }
1443
1444 /* If the old symbol is from a dynamic object, and the new symbol is
1445 a definition which is not from a dynamic object, then the new
1446 symbol overrides the old symbol. Symbols from regular files
1447 always take precedence over symbols from dynamic objects, even if
1448 they are defined after the dynamic object in the link.
1449
1450 As above, we again permit a common symbol in a regular object to
1451 override a definition in a shared object if the shared object
1452 symbol is a function or is weak. */
1453
1454 flip = NULL;
1455 if (!newdyn
1456 && (newdef
1457 || (bfd_is_com_section (sec)
1458 && (oldweak || oldfunc)))
1459 && olddyn
1460 && olddef
1461 && h->def_dynamic)
1462 {
1463 /* Change the hash table entry to undefined, and let
1464 _bfd_generic_link_add_one_symbol do the right thing with the
1465 new definition. */
1466
1467 h->root.type = bfd_link_hash_undefined;
1468 h->root.u.undef.abfd = h->root.u.def.section->owner;
1469 *size_change_ok = TRUE;
1470
1471 olddef = FALSE;
1472 olddyncommon = FALSE;
1473
1474 /* We again permit a type change when a common symbol may be
1475 overriding a function. */
1476
1477 if (bfd_is_com_section (sec))
1478 {
1479 if (oldfunc)
1480 {
1481 /* If a common symbol overrides a function, make sure
1482 that it isn't defined dynamically nor has type
1483 function. */
1484 h->def_dynamic = 0;
1485 h->type = STT_NOTYPE;
1486 }
1487 *type_change_ok = TRUE;
1488 }
1489
1490 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1491 flip = *sym_hash;
1492 else
1493 /* This union may have been set to be non-NULL when this symbol
1494 was seen in a dynamic object. We must force the union to be
1495 NULL, so that it is correct for a regular symbol. */
1496 h->verinfo.vertree = NULL;
1497 }
1498
1499 /* Handle the special case of a new common symbol merging with an
1500 old symbol that looks like it might be a common symbol defined in
1501 a shared object. Note that we have already handled the case in
1502 which a new common symbol should simply override the definition
1503 in the shared library. */
1504
1505 if (! newdyn
1506 && bfd_is_com_section (sec)
1507 && olddyncommon)
1508 {
1509 /* It would be best if we could set the hash table entry to a
1510 common symbol, but we don't know what to use for the section
1511 or the alignment. */
1512 if (! ((*info->callbacks->multiple_common)
1513 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1514 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1515 return FALSE;
1516
1517 /* If the presumed common symbol in the dynamic object is
1518 larger, pretend that the new symbol has its size. */
1519
1520 if (h->size > *pvalue)
1521 *pvalue = h->size;
1522
1523 /* We need to remember the alignment required by the symbol
1524 in the dynamic object. */
1525 BFD_ASSERT (pold_alignment);
1526 *pold_alignment = h->root.u.def.section->alignment_power;
1527
1528 olddef = FALSE;
1529 olddyncommon = FALSE;
1530
1531 h->root.type = bfd_link_hash_undefined;
1532 h->root.u.undef.abfd = h->root.u.def.section->owner;
1533
1534 *size_change_ok = TRUE;
1535 *type_change_ok = TRUE;
1536
1537 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1538 flip = *sym_hash;
1539 else
1540 h->verinfo.vertree = NULL;
1541 }
1542
1543 if (flip != NULL)
1544 {
1545 /* Handle the case where we had a versioned symbol in a dynamic
1546 library and now find a definition in a normal object. In this
1547 case, we make the versioned symbol point to the normal one. */
1548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1554 if (h->def_dynamic)
1555 {
1556 h->def_dynamic = 0;
1557 flip->ref_dynamic = 1;
1558 }
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1568
1569 static bfd_boolean
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1573 const char *name,
1574 Elf_Internal_Sym *sym,
1575 asection **psec,
1576 bfd_vma *value,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1579 {
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1582 bfd_boolean skip;
1583 char *shortname;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1589 char *p;
1590 size_t len, shortlen;
1591 asection *sec;
1592
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1599 return TRUE;
1600
1601 if (override)
1602 {
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1606 FALSE, FALSE);
1607 BFD_ASSERT (hi != NULL);
1608 if (hi == h)
1609 return TRUE;
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1612 {
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1614 if (hi == h)
1615 return TRUE;
1616 }
1617 }
1618
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1622
1623 shortlen = p - name;
1624 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1626 return FALSE;
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1629
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1636 sec = *psec;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1640 return FALSE;
1641
1642 if (skip)
1643 goto nondefault;
1644
1645 if (! override)
1646 {
1647 bh = &hi->root;
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1651 return FALSE;
1652 hi = (struct elf_link_hash_entry *) bh;
1653 }
1654 else
1655 {
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1661
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1665
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1673
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1677
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1680 if (h->def_dynamic)
1681 {
1682 h->def_dynamic = 0;
1683 hi->ref_dynamic = 1;
1684 if (hi->ref_regular
1685 || hi->def_regular)
1686 {
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1688 return FALSE;
1689 }
1690 }
1691
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1694 hi = h;
1695 }
1696
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1700
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1704
1705 if (hi->root.type == bfd_link_hash_indirect)
1706 {
1707 struct elf_link_hash_entry *ht;
1708
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1711
1712 /* See if the new flags lead us to realize that the symbol must
1713 be dynamic. */
1714 if (! *dynsym)
1715 {
1716 if (! dynamic)
1717 {
1718 if (info->shared
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 sec = *psec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780
1781 /* See if the new flags lead us to realize that the symbol
1782 must be dynamic. */
1783 if (! *dynsym)
1784 {
1785 if (! dynamic)
1786 {
1787 if (info->shared
1788 || hi->ref_dynamic)
1789 *dynsym = TRUE;
1790 }
1791 else
1792 {
1793 if (hi->ref_regular)
1794 *dynsym = TRUE;
1795 }
1796 }
1797 }
1798 }
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1805
1806 static bfd_boolean
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1808 {
1809 struct elf_info_failed *eif = data;
1810
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1813 return TRUE;
1814
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1817 return TRUE;
1818
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1821
1822 if (h->dynindx == -1
1823 && (h->def_regular
1824 || h->ref_regular))
1825 {
1826 bfd_boolean hide;
1827
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1830 && !hide))
1831 {
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1833 {
1834 eif->failed = TRUE;
1835 return FALSE;
1836 }
1837 }
1838 }
1839
1840 return TRUE;
1841 }
1842 \f
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1847
1848 static bfd_boolean
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1850 void *data)
1851 {
1852 struct elf_find_verdep_info *rinfo = data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1855 bfd_size_type amt;
1856
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1859
1860 /* We only care about symbols defined in shared objects with version
1861 information. */
1862 if (!h->def_dynamic
1863 || h->def_regular
1864 || h->dynindx == -1
1865 || h->verinfo.verdef == NULL)
1866 return TRUE;
1867
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1870 t != NULL;
1871 t = t->vn_nextref)
1872 {
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1874 continue;
1875
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1878 return TRUE;
1879
1880 break;
1881 }
1882
1883 /* This is a new version. Add it to tree we are building. */
1884
1885 if (t == NULL)
1886 {
1887 amt = sizeof *t;
1888 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1889 if (t == NULL)
1890 {
1891 rinfo->failed = TRUE;
1892 return FALSE;
1893 }
1894
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1898 }
1899
1900 amt = sizeof *a;
1901 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1902 if (a == NULL)
1903 {
1904 rinfo->failed = TRUE;
1905 return FALSE;
1906 }
1907
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1911 fixed. */
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1913
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1916
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1918 ++rinfo->vers;
1919
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1921
1922 t->vn_auxptr = a;
1923
1924 return TRUE;
1925 }
1926
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1931
1932 static bfd_boolean
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1934 {
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1939 char *p;
1940 bfd_size_type amt;
1941
1942 sinfo = data;
1943 info = sinfo->info;
1944
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1947
1948 /* Fix the symbol flags. */
1949 eif.failed = FALSE;
1950 eif.info = info;
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1952 {
1953 if (eif.failed)
1954 sinfo->failed = TRUE;
1955 return FALSE;
1956 }
1957
1958 /* We only need version numbers for symbols defined in regular
1959 objects. */
1960 if (!h->def_regular)
1961 return TRUE;
1962
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1966 {
1967 struct bfd_elf_version_tree *t;
1968 bfd_boolean hidden;
1969
1970 hidden = TRUE;
1971
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1974 ++p;
1975 if (*p == ELF_VER_CHR)
1976 {
1977 hidden = FALSE;
1978 ++p;
1979 }
1980
1981 /* If there is no version string, we can just return out. */
1982 if (*p == '\0')
1983 {
1984 if (hidden)
1985 h->hidden = 1;
1986 return TRUE;
1987 }
1988
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1991 {
1992 if (strcmp (t->name, p) == 0)
1993 {
1994 size_t len;
1995 char *alc;
1996 struct bfd_elf_version_expr *d;
1997
1998 len = p - h->root.root.string;
1999 alc = bfd_malloc (len);
2000 if (alc == NULL)
2001 {
2002 sinfo->failed = TRUE;
2003 return FALSE;
2004 }
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2009
2010 h->verinfo.vertree = t;
2011 t->used = TRUE;
2012 d = NULL;
2013
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2016
2017 /* See if there is anything to force this symbol to
2018 local scope. */
2019 if (d == NULL && t->locals.list != NULL)
2020 {
2021 d = (*t->match) (&t->locals, NULL, alc);
2022 if (d != NULL
2023 && h->dynindx != -1
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 }
2027
2028 free (alc);
2029 break;
2030 }
2031 }
2032
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2036 {
2037 struct bfd_elf_version_tree **pp;
2038 int version_index;
2039
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2043 return TRUE;
2044
2045 amt = sizeof *t;
2046 t = bfd_zalloc (info->output_bfd, amt);
2047 if (t == NULL)
2048 {
2049 sinfo->failed = TRUE;
2050 return FALSE;
2051 }
2052
2053 t->name = p;
2054 t->name_indx = (unsigned int) -1;
2055 t->used = TRUE;
2056
2057 version_index = 1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2060 version_index = 0;
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2062 ++version_index;
2063 t->vernum = version_index;
2064
2065 *pp = t;
2066
2067 h->verinfo.vertree = t;
2068 }
2069 else if (t == NULL)
2070 {
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2078 return FALSE;
2079 }
2080
2081 if (hidden)
2082 h->hidden = 1;
2083 }
2084
2085 /* If we don't have a version for this symbol, see if we can find
2086 something. */
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2088 {
2089 bfd_boolean hide;
2090
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2106
2107 Returns FALSE if something goes wrong. */
2108
2109 static bfd_boolean
2110 elf_link_read_relocs_from_section (bfd *abfd,
2111 asection *sec,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2115 {
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2122 size_t nsyms;
2123
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2126 return FALSE;
2127
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2130 return FALSE;
2131
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2134
2135 bed = get_elf_backend_data (abfd);
2136
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2142 else
2143 {
2144 bfd_set_error (bfd_error_wrong_format);
2145 return FALSE;
2146 }
2147
2148 erela = external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2152 {
2153 bfd_vma r_symndx;
2154
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2158 r_symndx >>= 24;
2159 if (nsyms > 0)
2160 {
2161 if ((size_t) r_symndx >= nsyms)
2162 {
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2166 abfd, sec,
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 }
2172 else if (r_symndx != 0)
2173 {
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2177 abfd, sec,
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2184 }
2185
2186 return TRUE;
2187 }
2188
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2198
2199 Elf_Internal_Rela *
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2201 asection *o,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2205 {
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2210
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2213
2214 if (o->reloc_count == 0)
2215 return NULL;
2216
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2218
2219 if (internal_relocs == NULL)
2220 {
2221 bfd_size_type size;
2222
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2225 if (keep_memory)
2226 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2227 else
2228 internal_relocs = alloc2 = bfd_malloc (size);
2229 if (internal_relocs == NULL)
2230 goto error_return;
2231 }
2232
2233 if (external_relocs == NULL)
2234 {
2235 bfd_size_type size = rel_hdr->sh_size;
2236
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2240 if (alloc1 == NULL)
2241 goto error_return;
2242 external_relocs = alloc1;
2243 }
2244
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2246 external_relocs,
2247 internal_relocs))
2248 goto error_return;
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2251 (abfd, o,
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2256 goto error_return;
2257
2258 /* Cache the results for next time, if we can. */
2259 if (keep_memory)
2260 elf_section_data (o)->relocs = internal_relocs;
2261
2262 if (alloc1 != NULL)
2263 free (alloc1);
2264
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2267
2268 return internal_relocs;
2269
2270 error_return:
2271 if (alloc1 != NULL)
2272 free (alloc1);
2273 if (alloc2 != NULL)
2274 {
2275 if (keep_memory)
2276 bfd_release (abfd, alloc2);
2277 else
2278 free (alloc2);
2279 }
2280 return NULL;
2281 }
2282
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2285
2286 static bfd_boolean
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2289 asection *o)
2290 {
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2293
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2297 else
2298 reloc_count = elf_section_data (o)->rel_count2;
2299
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2303
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2306
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2313 return FALSE;
2314
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2318 && num_rel_hashes)
2319 {
2320 struct elf_link_hash_entry **p;
2321
2322 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2323 if (p == NULL)
2324 return FALSE;
2325
2326 elf_section_data (o)->rel_hashes = p;
2327 }
2328
2329 return TRUE;
2330 }
2331
2332 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2333 originated from the section given by INPUT_REL_HDR) to the
2334 OUTPUT_BFD. */
2335
2336 bfd_boolean
2337 _bfd_elf_link_output_relocs (bfd *output_bfd,
2338 asection *input_section,
2339 Elf_Internal_Shdr *input_rel_hdr,
2340 Elf_Internal_Rela *internal_relocs,
2341 struct elf_link_hash_entry **rel_hash
2342 ATTRIBUTE_UNUSED)
2343 {
2344 Elf_Internal_Rela *irela;
2345 Elf_Internal_Rela *irelaend;
2346 bfd_byte *erel;
2347 Elf_Internal_Shdr *output_rel_hdr;
2348 asection *output_section;
2349 unsigned int *rel_countp = NULL;
2350 const struct elf_backend_data *bed;
2351 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2352
2353 output_section = input_section->output_section;
2354 output_rel_hdr = NULL;
2355
2356 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2357 == input_rel_hdr->sh_entsize)
2358 {
2359 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2360 rel_countp = &elf_section_data (output_section)->rel_count;
2361 }
2362 else if (elf_section_data (output_section)->rel_hdr2
2363 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2364 == input_rel_hdr->sh_entsize))
2365 {
2366 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2367 rel_countp = &elf_section_data (output_section)->rel_count2;
2368 }
2369 else
2370 {
2371 (*_bfd_error_handler)
2372 (_("%B: relocation size mismatch in %B section %A"),
2373 output_bfd, input_section->owner, input_section);
2374 bfd_set_error (bfd_error_wrong_format);
2375 return FALSE;
2376 }
2377
2378 bed = get_elf_backend_data (output_bfd);
2379 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2380 swap_out = bed->s->swap_reloc_out;
2381 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2382 swap_out = bed->s->swap_reloca_out;
2383 else
2384 abort ();
2385
2386 erel = output_rel_hdr->contents;
2387 erel += *rel_countp * input_rel_hdr->sh_entsize;
2388 irela = internal_relocs;
2389 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2390 * bed->s->int_rels_per_ext_rel);
2391 while (irela < irelaend)
2392 {
2393 (*swap_out) (output_bfd, irela, erel);
2394 irela += bed->s->int_rels_per_ext_rel;
2395 erel += input_rel_hdr->sh_entsize;
2396 }
2397
2398 /* Bump the counter, so that we know where to add the next set of
2399 relocations. */
2400 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2401
2402 return TRUE;
2403 }
2404 \f
2405 /* Make weak undefined symbols in PIE dynamic. */
2406
2407 bfd_boolean
2408 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2409 struct elf_link_hash_entry *h)
2410 {
2411 if (info->pie
2412 && h->dynindx == -1
2413 && h->root.type == bfd_link_hash_undefweak)
2414 return bfd_elf_link_record_dynamic_symbol (info, h);
2415
2416 return TRUE;
2417 }
2418
2419 /* Fix up the flags for a symbol. This handles various cases which
2420 can only be fixed after all the input files are seen. This is
2421 currently called by both adjust_dynamic_symbol and
2422 assign_sym_version, which is unnecessary but perhaps more robust in
2423 the face of future changes. */
2424
2425 static bfd_boolean
2426 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2427 struct elf_info_failed *eif)
2428 {
2429 const struct elf_backend_data *bed;
2430
2431 /* If this symbol was mentioned in a non-ELF file, try to set
2432 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2433 permit a non-ELF file to correctly refer to a symbol defined in
2434 an ELF dynamic object. */
2435 if (h->non_elf)
2436 {
2437 while (h->root.type == bfd_link_hash_indirect)
2438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2439
2440 if (h->root.type != bfd_link_hash_defined
2441 && h->root.type != bfd_link_hash_defweak)
2442 {
2443 h->ref_regular = 1;
2444 h->ref_regular_nonweak = 1;
2445 }
2446 else
2447 {
2448 if (h->root.u.def.section->owner != NULL
2449 && (bfd_get_flavour (h->root.u.def.section->owner)
2450 == bfd_target_elf_flavour))
2451 {
2452 h->ref_regular = 1;
2453 h->ref_regular_nonweak = 1;
2454 }
2455 else
2456 h->def_regular = 1;
2457 }
2458
2459 if (h->dynindx == -1
2460 && (h->def_dynamic
2461 || h->ref_dynamic))
2462 {
2463 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2464 {
2465 eif->failed = TRUE;
2466 return FALSE;
2467 }
2468 }
2469 }
2470 else
2471 {
2472 /* Unfortunately, NON_ELF is only correct if the symbol
2473 was first seen in a non-ELF file. Fortunately, if the symbol
2474 was first seen in an ELF file, we're probably OK unless the
2475 symbol was defined in a non-ELF file. Catch that case here.
2476 FIXME: We're still in trouble if the symbol was first seen in
2477 a dynamic object, and then later in a non-ELF regular object. */
2478 if ((h->root.type == bfd_link_hash_defined
2479 || h->root.type == bfd_link_hash_defweak)
2480 && !h->def_regular
2481 && (h->root.u.def.section->owner != NULL
2482 ? (bfd_get_flavour (h->root.u.def.section->owner)
2483 != bfd_target_elf_flavour)
2484 : (bfd_is_abs_section (h->root.u.def.section)
2485 && !h->def_dynamic)))
2486 h->def_regular = 1;
2487 }
2488
2489 /* Backend specific symbol fixup. */
2490 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2491 if (bed->elf_backend_fixup_symbol
2492 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2493 return FALSE;
2494
2495 /* If this is a final link, and the symbol was defined as a common
2496 symbol in a regular object file, and there was no definition in
2497 any dynamic object, then the linker will have allocated space for
2498 the symbol in a common section but the DEF_REGULAR
2499 flag will not have been set. */
2500 if (h->root.type == bfd_link_hash_defined
2501 && !h->def_regular
2502 && h->ref_regular
2503 && !h->def_dynamic
2504 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2505 h->def_regular = 1;
2506
2507 /* If -Bsymbolic was used (which means to bind references to global
2508 symbols to the definition within the shared object), and this
2509 symbol was defined in a regular object, then it actually doesn't
2510 need a PLT entry. Likewise, if the symbol has non-default
2511 visibility. If the symbol has hidden or internal visibility, we
2512 will force it local. */
2513 if (h->needs_plt
2514 && eif->info->shared
2515 && is_elf_hash_table (eif->info->hash)
2516 && (SYMBOLIC_BIND (eif->info, h)
2517 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2518 && h->def_regular)
2519 {
2520 bfd_boolean force_local;
2521
2522 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2523 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2525 }
2526
2527 /* If a weak undefined symbol has non-default visibility, we also
2528 hide it from the dynamic linker. */
2529 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2530 && h->root.type == bfd_link_hash_undefweak)
2531 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2532
2533 /* If this is a weak defined symbol in a dynamic object, and we know
2534 the real definition in the dynamic object, copy interesting flags
2535 over to the real definition. */
2536 if (h->u.weakdef != NULL)
2537 {
2538 struct elf_link_hash_entry *weakdef;
2539
2540 weakdef = h->u.weakdef;
2541 if (h->root.type == bfd_link_hash_indirect)
2542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2543
2544 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2545 || h->root.type == bfd_link_hash_defweak);
2546 BFD_ASSERT (weakdef->def_dynamic);
2547
2548 /* If the real definition is defined by a regular object file,
2549 don't do anything special. See the longer description in
2550 _bfd_elf_adjust_dynamic_symbol, below. */
2551 if (weakdef->def_regular)
2552 h->u.weakdef = NULL;
2553 else
2554 {
2555 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2556 || weakdef->root.type == bfd_link_hash_defweak);
2557 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2558 }
2559 }
2560
2561 return TRUE;
2562 }
2563
2564 /* Make the backend pick a good value for a dynamic symbol. This is
2565 called via elf_link_hash_traverse, and also calls itself
2566 recursively. */
2567
2568 static bfd_boolean
2569 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2570 {
2571 struct elf_info_failed *eif = data;
2572 bfd *dynobj;
2573 const struct elf_backend_data *bed;
2574
2575 if (! is_elf_hash_table (eif->info->hash))
2576 return FALSE;
2577
2578 if (h->root.type == bfd_link_hash_warning)
2579 {
2580 h->got = elf_hash_table (eif->info)->init_got_offset;
2581 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2582
2583 /* When warning symbols are created, they **replace** the "real"
2584 entry in the hash table, thus we never get to see the real
2585 symbol in a hash traversal. So look at it now. */
2586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2587 }
2588
2589 /* Ignore indirect symbols. These are added by the versioning code. */
2590 if (h->root.type == bfd_link_hash_indirect)
2591 return TRUE;
2592
2593 /* Fix the symbol flags. */
2594 if (! _bfd_elf_fix_symbol_flags (h, eif))
2595 return FALSE;
2596
2597 /* If this symbol does not require a PLT entry, and it is not
2598 defined by a dynamic object, or is not referenced by a regular
2599 object, ignore it. We do have to handle a weak defined symbol,
2600 even if no regular object refers to it, if we decided to add it
2601 to the dynamic symbol table. FIXME: Do we normally need to worry
2602 about symbols which are defined by one dynamic object and
2603 referenced by another one? */
2604 if (!h->needs_plt
2605 && (h->def_regular
2606 || !h->def_dynamic
2607 || (!h->ref_regular
2608 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2609 {
2610 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2611 return TRUE;
2612 }
2613
2614 /* If we've already adjusted this symbol, don't do it again. This
2615 can happen via a recursive call. */
2616 if (h->dynamic_adjusted)
2617 return TRUE;
2618
2619 /* Don't look at this symbol again. Note that we must set this
2620 after checking the above conditions, because we may look at a
2621 symbol once, decide not to do anything, and then get called
2622 recursively later after REF_REGULAR is set below. */
2623 h->dynamic_adjusted = 1;
2624
2625 /* If this is a weak definition, and we know a real definition, and
2626 the real symbol is not itself defined by a regular object file,
2627 then get a good value for the real definition. We handle the
2628 real symbol first, for the convenience of the backend routine.
2629
2630 Note that there is a confusing case here. If the real definition
2631 is defined by a regular object file, we don't get the real symbol
2632 from the dynamic object, but we do get the weak symbol. If the
2633 processor backend uses a COPY reloc, then if some routine in the
2634 dynamic object changes the real symbol, we will not see that
2635 change in the corresponding weak symbol. This is the way other
2636 ELF linkers work as well, and seems to be a result of the shared
2637 library model.
2638
2639 I will clarify this issue. Most SVR4 shared libraries define the
2640 variable _timezone and define timezone as a weak synonym. The
2641 tzset call changes _timezone. If you write
2642 extern int timezone;
2643 int _timezone = 5;
2644 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2645 you might expect that, since timezone is a synonym for _timezone,
2646 the same number will print both times. However, if the processor
2647 backend uses a COPY reloc, then actually timezone will be copied
2648 into your process image, and, since you define _timezone
2649 yourself, _timezone will not. Thus timezone and _timezone will
2650 wind up at different memory locations. The tzset call will set
2651 _timezone, leaving timezone unchanged. */
2652
2653 if (h->u.weakdef != NULL)
2654 {
2655 /* If we get to this point, we know there is an implicit
2656 reference by a regular object file via the weak symbol H.
2657 FIXME: Is this really true? What if the traversal finds
2658 H->U.WEAKDEF before it finds H? */
2659 h->u.weakdef->ref_regular = 1;
2660
2661 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2662 return FALSE;
2663 }
2664
2665 /* If a symbol has no type and no size and does not require a PLT
2666 entry, then we are probably about to do the wrong thing here: we
2667 are probably going to create a COPY reloc for an empty object.
2668 This case can arise when a shared object is built with assembly
2669 code, and the assembly code fails to set the symbol type. */
2670 if (h->size == 0
2671 && h->type == STT_NOTYPE
2672 && !h->needs_plt)
2673 (*_bfd_error_handler)
2674 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2675 h->root.root.string);
2676
2677 dynobj = elf_hash_table (eif->info)->dynobj;
2678 bed = get_elf_backend_data (dynobj);
2679
2680 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2681 {
2682 eif->failed = TRUE;
2683 return FALSE;
2684 }
2685
2686 return TRUE;
2687 }
2688
2689 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2690 DYNBSS. */
2691
2692 bfd_boolean
2693 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2694 asection *dynbss)
2695 {
2696 unsigned int power_of_two;
2697 bfd_vma mask;
2698 asection *sec = h->root.u.def.section;
2699
2700 /* The section aligment of definition is the maximum alignment
2701 requirement of symbols defined in the section. Since we don't
2702 know the symbol alignment requirement, we start with the
2703 maximum alignment and check low bits of the symbol address
2704 for the minimum alignment. */
2705 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2706 mask = ((bfd_vma) 1 << power_of_two) - 1;
2707 while ((h->root.u.def.value & mask) != 0)
2708 {
2709 mask >>= 1;
2710 --power_of_two;
2711 }
2712
2713 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2714 dynbss))
2715 {
2716 /* Adjust the section alignment if needed. */
2717 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2718 power_of_two))
2719 return FALSE;
2720 }
2721
2722 /* We make sure that the symbol will be aligned properly. */
2723 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2724
2725 /* Define the symbol as being at this point in DYNBSS. */
2726 h->root.u.def.section = dynbss;
2727 h->root.u.def.value = dynbss->size;
2728
2729 /* Increment the size of DYNBSS to make room for the symbol. */
2730 dynbss->size += h->size;
2731
2732 return TRUE;
2733 }
2734
2735 /* Adjust all external symbols pointing into SEC_MERGE sections
2736 to reflect the object merging within the sections. */
2737
2738 static bfd_boolean
2739 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2740 {
2741 asection *sec;
2742
2743 if (h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2745
2746 if ((h->root.type == bfd_link_hash_defined
2747 || h->root.type == bfd_link_hash_defweak)
2748 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2749 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2750 {
2751 bfd *output_bfd = data;
2752
2753 h->root.u.def.value =
2754 _bfd_merged_section_offset (output_bfd,
2755 &h->root.u.def.section,
2756 elf_section_data (sec)->sec_info,
2757 h->root.u.def.value);
2758 }
2759
2760 return TRUE;
2761 }
2762
2763 /* Returns false if the symbol referred to by H should be considered
2764 to resolve local to the current module, and true if it should be
2765 considered to bind dynamically. */
2766
2767 bfd_boolean
2768 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2769 struct bfd_link_info *info,
2770 bfd_boolean ignore_protected)
2771 {
2772 bfd_boolean binding_stays_local_p;
2773 const struct elf_backend_data *bed;
2774 struct elf_link_hash_table *hash_table;
2775
2776 if (h == NULL)
2777 return FALSE;
2778
2779 while (h->root.type == bfd_link_hash_indirect
2780 || h->root.type == bfd_link_hash_warning)
2781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2782
2783 /* If it was forced local, then clearly it's not dynamic. */
2784 if (h->dynindx == -1)
2785 return FALSE;
2786 if (h->forced_local)
2787 return FALSE;
2788
2789 /* Identify the cases where name binding rules say that a
2790 visible symbol resolves locally. */
2791 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2792
2793 switch (ELF_ST_VISIBILITY (h->other))
2794 {
2795 case STV_INTERNAL:
2796 case STV_HIDDEN:
2797 return FALSE;
2798
2799 case STV_PROTECTED:
2800 hash_table = elf_hash_table (info);
2801 if (!is_elf_hash_table (hash_table))
2802 return FALSE;
2803
2804 bed = get_elf_backend_data (hash_table->dynobj);
2805
2806 /* Proper resolution for function pointer equality may require
2807 that these symbols perhaps be resolved dynamically, even though
2808 we should be resolving them to the current module. */
2809 if (!ignore_protected || !bed->is_function_type (h->type))
2810 binding_stays_local_p = TRUE;
2811 break;
2812
2813 default:
2814 break;
2815 }
2816
2817 /* If it isn't defined locally, then clearly it's dynamic. */
2818 if (!h->def_regular)
2819 return TRUE;
2820
2821 /* Otherwise, the symbol is dynamic if binding rules don't tell
2822 us that it remains local. */
2823 return !binding_stays_local_p;
2824 }
2825
2826 /* Return true if the symbol referred to by H should be considered
2827 to resolve local to the current module, and false otherwise. Differs
2828 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2829 undefined symbols and weak symbols. */
2830
2831 bfd_boolean
2832 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2833 struct bfd_link_info *info,
2834 bfd_boolean local_protected)
2835 {
2836 const struct elf_backend_data *bed;
2837 struct elf_link_hash_table *hash_table;
2838
2839 /* If it's a local sym, of course we resolve locally. */
2840 if (h == NULL)
2841 return TRUE;
2842
2843 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2845 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2846 return TRUE;
2847
2848 /* Common symbols that become definitions don't get the DEF_REGULAR
2849 flag set, so test it first, and don't bail out. */
2850 if (ELF_COMMON_DEF_P (h))
2851 /* Do nothing. */;
2852 /* If we don't have a definition in a regular file, then we can't
2853 resolve locally. The sym is either undefined or dynamic. */
2854 else if (!h->def_regular)
2855 return FALSE;
2856
2857 /* Forced local symbols resolve locally. */
2858 if (h->forced_local)
2859 return TRUE;
2860
2861 /* As do non-dynamic symbols. */
2862 if (h->dynindx == -1)
2863 return TRUE;
2864
2865 /* At this point, we know the symbol is defined and dynamic. In an
2866 executable it must resolve locally, likewise when building symbolic
2867 shared libraries. */
2868 if (info->executable || SYMBOLIC_BIND (info, h))
2869 return TRUE;
2870
2871 /* Now deal with defined dynamic symbols in shared libraries. Ones
2872 with default visibility might not resolve locally. */
2873 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2874 return FALSE;
2875
2876 hash_table = elf_hash_table (info);
2877 if (!is_elf_hash_table (hash_table))
2878 return TRUE;
2879
2880 bed = get_elf_backend_data (hash_table->dynobj);
2881
2882 /* STV_PROTECTED non-function symbols are local. */
2883 if (!bed->is_function_type (h->type))
2884 return TRUE;
2885
2886 /* Function pointer equality tests may require that STV_PROTECTED
2887 symbols be treated as dynamic symbols, even when we know that the
2888 dynamic linker will resolve them locally. */
2889 return local_protected;
2890 }
2891
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2894
2895 struct bfd_section *
2896 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2897 {
2898 struct bfd_section *sec, *tls;
2899 unsigned int align = 0;
2900
2901 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2902 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2903 break;
2904 tls = sec;
2905
2906 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2907 if (sec->alignment_power > align)
2908 align = sec->alignment_power;
2909
2910 elf_hash_table (info)->tls_sec = tls;
2911
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2914 if (tls != NULL)
2915 tls->alignment_power = align;
2916
2917 return tls;
2918 }
2919
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2921 static bfd_boolean
2922 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2923 Elf_Internal_Sym *sym)
2924 {
2925 const struct elf_backend_data *bed;
2926
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2929 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2930 return FALSE;
2931
2932 bed = get_elf_backend_data (abfd);
2933 /* Function symbols do not count. */
2934 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2935 return FALSE;
2936
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym->st_shndx == SHN_UNDEF)
2939 return FALSE;
2940
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed->common_definition (sym))
2944 return FALSE;
2945
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2949 /* FIXME - this function is not coded yet:
2950
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2952
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2956 return FALSE;
2957
2958 return TRUE;
2959 }
2960
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2964 static bfd_boolean
2965 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2966 {
2967 Elf_Internal_Shdr * hdr;
2968 bfd_size_type symcount;
2969 bfd_size_type extsymcount;
2970 bfd_size_type extsymoff;
2971 Elf_Internal_Sym *isymbuf;
2972 Elf_Internal_Sym *isym;
2973 Elf_Internal_Sym *isymend;
2974 bfd_boolean result;
2975
2976 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2977 if (abfd == NULL)
2978 return FALSE;
2979
2980 if (! bfd_check_format (abfd, bfd_object))
2981 return FALSE;
2982
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd->archive_pass)
2988 return FALSE;
2989
2990 /* Select the appropriate symbol table. */
2991 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2992 hdr = &elf_tdata (abfd)->symtab_hdr;
2993 else
2994 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2995
2996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2997
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd))
3001 {
3002 extsymcount = symcount;
3003 extsymoff = 0;
3004 }
3005 else
3006 {
3007 extsymcount = symcount - hdr->sh_info;
3008 extsymoff = hdr->sh_info;
3009 }
3010
3011 if (extsymcount == 0)
3012 return FALSE;
3013
3014 /* Read in the symbol table. */
3015 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3016 NULL, NULL, NULL);
3017 if (isymbuf == NULL)
3018 return FALSE;
3019
3020 /* Scan the symbol table looking for SYMDEF. */
3021 result = FALSE;
3022 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3023 {
3024 const char *name;
3025
3026 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3027 isym->st_name);
3028 if (name == NULL)
3029 break;
3030
3031 if (strcmp (name, symdef->name) == 0)
3032 {
3033 result = is_global_data_symbol_definition (abfd, isym);
3034 break;
3035 }
3036 }
3037
3038 free (isymbuf);
3039
3040 return result;
3041 }
3042 \f
3043 /* Add an entry to the .dynamic table. */
3044
3045 bfd_boolean
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3047 bfd_vma tag,
3048 bfd_vma val)
3049 {
3050 struct elf_link_hash_table *hash_table;
3051 const struct elf_backend_data *bed;
3052 asection *s;
3053 bfd_size_type newsize;
3054 bfd_byte *newcontents;
3055 Elf_Internal_Dyn dyn;
3056
3057 hash_table = elf_hash_table (info);
3058 if (! is_elf_hash_table (hash_table))
3059 return FALSE;
3060
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3063 BFD_ASSERT (s != NULL);
3064
3065 newsize = s->size + bed->s->sizeof_dyn;
3066 newcontents = bfd_realloc (s->contents, newsize);
3067 if (newcontents == NULL)
3068 return FALSE;
3069
3070 dyn.d_tag = tag;
3071 dyn.d_un.d_val = val;
3072 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3073
3074 s->size = newsize;
3075 s->contents = newcontents;
3076
3077 return TRUE;
3078 }
3079
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3083
3084 static int
3085 elf_add_dt_needed_tag (bfd *abfd,
3086 struct bfd_link_info *info,
3087 const char *soname,
3088 bfd_boolean do_it)
3089 {
3090 struct elf_link_hash_table *hash_table;
3091 bfd_size_type oldsize;
3092 bfd_size_type strindex;
3093
3094 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3095 return -1;
3096
3097 hash_table = elf_hash_table (info);
3098 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3101 return -1;
3102
3103 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3104 {
3105 asection *sdyn;
3106 const struct elf_backend_data *bed;
3107 bfd_byte *extdyn;
3108
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3111 if (sdyn != NULL)
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3115 {
3116 Elf_Internal_Dyn dyn;
3117
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3121 {
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3123 return 1;
3124 }
3125 }
3126 }
3127
3128 if (do_it)
3129 {
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3131 return -1;
3132
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 return -1;
3135 }
3136 else
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3139
3140 return 0;
3141 }
3142
3143 static bfd_boolean
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3145 {
3146 for (; needed != NULL; needed = needed->next)
3147 if (strcmp (soname, needed->name) == 0)
3148 return TRUE;
3149
3150 return FALSE;
3151 }
3152
3153 /* Sort symbol by value and section. */
3154 static int
3155 elf_sort_symbol (const void *arg1, const void *arg2)
3156 {
3157 const struct elf_link_hash_entry *h1;
3158 const struct elf_link_hash_entry *h2;
3159 bfd_signed_vma vdiff;
3160
3161 h1 = *(const struct elf_link_hash_entry **) arg1;
3162 h2 = *(const struct elf_link_hash_entry **) arg2;
3163 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3164 if (vdiff != 0)
3165 return vdiff > 0 ? 1 : -1;
3166 else
3167 {
3168 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3169 if (sdiff != 0)
3170 return sdiff > 0 ? 1 : -1;
3171 }
3172 return 0;
3173 }
3174
3175 /* This function is used to adjust offsets into .dynstr for
3176 dynamic symbols. This is called via elf_link_hash_traverse. */
3177
3178 static bfd_boolean
3179 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3180 {
3181 struct elf_strtab_hash *dynstr = data;
3182
3183 if (h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 if (h->dynindx != -1)
3187 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3188 return TRUE;
3189 }
3190
3191 /* Assign string offsets in .dynstr, update all structures referencing
3192 them. */
3193
3194 static bfd_boolean
3195 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3196 {
3197 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3198 struct elf_link_local_dynamic_entry *entry;
3199 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3200 bfd *dynobj = hash_table->dynobj;
3201 asection *sdyn;
3202 bfd_size_type size;
3203 const struct elf_backend_data *bed;
3204 bfd_byte *extdyn;
3205
3206 _bfd_elf_strtab_finalize (dynstr);
3207 size = _bfd_elf_strtab_size (dynstr);
3208
3209 bed = get_elf_backend_data (dynobj);
3210 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3211 BFD_ASSERT (sdyn != NULL);
3212
3213 /* Update all .dynamic entries referencing .dynstr strings. */
3214 for (extdyn = sdyn->contents;
3215 extdyn < sdyn->contents + sdyn->size;
3216 extdyn += bed->s->sizeof_dyn)
3217 {
3218 Elf_Internal_Dyn dyn;
3219
3220 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3221 switch (dyn.d_tag)
3222 {
3223 case DT_STRSZ:
3224 dyn.d_un.d_val = size;
3225 break;
3226 case DT_NEEDED:
3227 case DT_SONAME:
3228 case DT_RPATH:
3229 case DT_RUNPATH:
3230 case DT_FILTER:
3231 case DT_AUXILIARY:
3232 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3233 break;
3234 default:
3235 continue;
3236 }
3237 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3238 }
3239
3240 /* Now update local dynamic symbols. */
3241 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3242 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3243 entry->isym.st_name);
3244
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3247
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd)->cverdefs)
3250 {
3251 asection *s;
3252 bfd_byte *p;
3253 bfd_size_type i;
3254 Elf_Internal_Verdef def;
3255 Elf_Internal_Verdaux defaux;
3256
3257 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3258 p = s->contents;
3259 do
3260 {
3261 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3262 &def);
3263 p += sizeof (Elf_External_Verdef);
3264 if (def.vd_aux != sizeof (Elf_External_Verdef))
3265 continue;
3266 for (i = 0; i < def.vd_cnt; ++i)
3267 {
3268 _bfd_elf_swap_verdaux_in (output_bfd,
3269 (Elf_External_Verdaux *) p, &defaux);
3270 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3271 defaux.vda_name);
3272 _bfd_elf_swap_verdaux_out (output_bfd,
3273 &defaux, (Elf_External_Verdaux *) p);
3274 p += sizeof (Elf_External_Verdaux);
3275 }
3276 }
3277 while (def.vd_next);
3278 }
3279
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd)->verref)
3282 {
3283 asection *s;
3284 bfd_byte *p;
3285 bfd_size_type i;
3286 Elf_Internal_Verneed need;
3287 Elf_Internal_Vernaux needaux;
3288
3289 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3290 p = s->contents;
3291 do
3292 {
3293 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3294 &need);
3295 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3296 _bfd_elf_swap_verneed_out (output_bfd, &need,
3297 (Elf_External_Verneed *) p);
3298 p += sizeof (Elf_External_Verneed);
3299 for (i = 0; i < need.vn_cnt; ++i)
3300 {
3301 _bfd_elf_swap_vernaux_in (output_bfd,
3302 (Elf_External_Vernaux *) p, &needaux);
3303 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3304 needaux.vna_name);
3305 _bfd_elf_swap_vernaux_out (output_bfd,
3306 &needaux,
3307 (Elf_External_Vernaux *) p);
3308 p += sizeof (Elf_External_Vernaux);
3309 }
3310 }
3311 while (need.vn_next);
3312 }
3313
3314 return TRUE;
3315 }
3316 \f
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3319 the same target. */
3320
3321 bfd_boolean
3322 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3323 const bfd_target *output)
3324 {
3325 return input == output;
3326 }
3327
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3331
3332 bfd_boolean
3333 _bfd_elf_relocs_compatible (const bfd_target *input,
3334 const bfd_target *output)
3335 {
3336 const struct elf_backend_data *obed, *ibed;
3337
3338 if (input == output)
3339 return TRUE;
3340
3341 ibed = xvec_get_elf_backend_data (input);
3342 obed = xvec_get_elf_backend_data (output);
3343
3344 if (ibed->arch != obed->arch)
3345 return FALSE;
3346
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed->relocs_compatible == obed->relocs_compatible;
3349 }
3350
3351 /* Add symbols from an ELF object file to the linker hash table. */
3352
3353 static bfd_boolean
3354 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3355 {
3356 Elf_Internal_Ehdr *ehdr;
3357 Elf_Internal_Shdr *hdr;
3358 bfd_size_type symcount;
3359 bfd_size_type extsymcount;
3360 bfd_size_type extsymoff;
3361 struct elf_link_hash_entry **sym_hash;
3362 bfd_boolean dynamic;
3363 Elf_External_Versym *extversym = NULL;
3364 Elf_External_Versym *ever;
3365 struct elf_link_hash_entry *weaks;
3366 struct elf_link_hash_entry **nondeflt_vers = NULL;
3367 bfd_size_type nondeflt_vers_cnt = 0;
3368 Elf_Internal_Sym *isymbuf = NULL;
3369 Elf_Internal_Sym *isym;
3370 Elf_Internal_Sym *isymend;
3371 const struct elf_backend_data *bed;
3372 bfd_boolean add_needed;
3373 struct elf_link_hash_table *htab;
3374 bfd_size_type amt;
3375 void *alloc_mark = NULL;
3376 struct bfd_hash_entry **old_table = NULL;
3377 unsigned int old_size = 0;
3378 unsigned int old_count = 0;
3379 void *old_tab = NULL;
3380 void *old_hash;
3381 void *old_ent;
3382 struct bfd_link_hash_entry *old_undefs = NULL;
3383 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3384 long old_dynsymcount = 0;
3385 size_t tabsize = 0;
3386 size_t hashsize = 0;
3387
3388 htab = elf_hash_table (info);
3389 bed = get_elf_backend_data (abfd);
3390
3391 if ((abfd->flags & DYNAMIC) == 0)
3392 dynamic = FALSE;
3393 else
3394 {
3395 dynamic = TRUE;
3396
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info->relocatable
3401 || !is_elf_hash_table (htab)
3402 || info->output_bfd->xvec != abfd->xvec)
3403 {
3404 if (info->relocatable)
3405 bfd_set_error (bfd_error_invalid_operation);
3406 else
3407 bfd_set_error (bfd_error_wrong_format);
3408 goto error_return;
3409 }
3410 }
3411
3412 ehdr = elf_elfheader (abfd);
3413 if (info->warn_alternate_em
3414 && bed->elf_machine_code != ehdr->e_machine
3415 && ((bed->elf_machine_alt1 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt1)
3417 || (bed->elf_machine_alt2 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt2)))
3419 info->callbacks->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr->e_machine, abfd, bed->elf_machine_code);
3422
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 if (info->executable)
3428 {
3429 asection *s;
3430
3431 for (s = abfd->sections; s != NULL; s = s->next)
3432 {
3433 const char *name;
3434
3435 name = bfd_get_section_name (abfd, s);
3436 if (CONST_STRNEQ (name, ".gnu.warning."))
3437 {
3438 char *msg;
3439 bfd_size_type sz;
3440
3441 name += sizeof ".gnu.warning." - 1;
3442
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3451 link. */
3452 if (dynamic)
3453 {
3454 struct elf_link_hash_entry *h;
3455
3456 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3457
3458 /* FIXME: What about bfd_link_hash_common? */
3459 if (h != NULL
3460 && (h->root.type == bfd_link_hash_defined
3461 || h->root.type == bfd_link_hash_defweak))
3462 {
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3466 s->size = 0;
3467 continue;
3468 }
3469 }
3470
3471 sz = s->size;
3472 msg = bfd_alloc (abfd, sz + 1);
3473 if (msg == NULL)
3474 goto error_return;
3475
3476 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3477 goto error_return;
3478
3479 msg[sz] = '\0';
3480
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info, abfd, name, BSF_WARNING, s, 0, msg,
3483 FALSE, bed->collect, NULL)))
3484 goto error_return;
3485
3486 if (! info->relocatable)
3487 {
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3490 s->size = 0;
3491
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s->flags |= SEC_EXCLUDE;
3495 }
3496 }
3497 }
3498 }
3499
3500 add_needed = TRUE;
3501 if (! dynamic)
3502 {
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3508 if (info->shared
3509 && is_elf_hash_table (htab)
3510 && info->output_bfd->xvec == abfd->xvec
3511 && !htab->dynamic_sections_created)
3512 {
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3514 goto error_return;
3515 }
3516 }
3517 else if (!is_elf_hash_table (htab))
3518 goto error_return;
3519 else
3520 {
3521 asection *s;
3522 const char *soname = NULL;
3523 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3524 int ret;
3525
3526 /* ld --just-symbols and dynamic objects don't mix very well.
3527 ld shouldn't allow it. */
3528 if ((s = abfd->sections) != NULL
3529 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3530 abort ();
3531
3532 /* If this dynamic lib was specified on the command line with
3533 --as-needed in effect, then we don't want to add a DT_NEEDED
3534 tag unless the lib is actually used. Similary for libs brought
3535 in by another lib's DT_NEEDED. When --no-add-needed is used
3536 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3537 any dynamic library in DT_NEEDED tags in the dynamic lib at
3538 all. */
3539 add_needed = (elf_dyn_lib_class (abfd)
3540 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3541 | DYN_NO_NEEDED)) == 0;
3542
3543 s = bfd_get_section_by_name (abfd, ".dynamic");
3544 if (s != NULL)
3545 {
3546 bfd_byte *dynbuf;
3547 bfd_byte *extdyn;
3548 unsigned int elfsec;
3549 unsigned long shlink;
3550
3551 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3552 {
3553 error_free_dyn:
3554 free (dynbuf);
3555 goto error_return;
3556 }
3557
3558 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3559 if (elfsec == SHN_BAD)
3560 goto error_free_dyn;
3561 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3562
3563 for (extdyn = dynbuf;
3564 extdyn < dynbuf + s->size;
3565 extdyn += bed->s->sizeof_dyn)
3566 {
3567 Elf_Internal_Dyn dyn;
3568
3569 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3570 if (dyn.d_tag == DT_SONAME)
3571 {
3572 unsigned int tagv = dyn.d_un.d_val;
3573 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3574 if (soname == NULL)
3575 goto error_free_dyn;
3576 }
3577 if (dyn.d_tag == DT_NEEDED)
3578 {
3579 struct bfd_link_needed_list *n, **pn;
3580 char *fnm, *anm;
3581 unsigned int tagv = dyn.d_un.d_val;
3582
3583 amt = sizeof (struct bfd_link_needed_list);
3584 n = bfd_alloc (abfd, amt);
3585 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586 if (n == NULL || fnm == NULL)
3587 goto error_free_dyn;
3588 amt = strlen (fnm) + 1;
3589 anm = bfd_alloc (abfd, amt);
3590 if (anm == NULL)
3591 goto error_free_dyn;
3592 memcpy (anm, fnm, amt);
3593 n->name = anm;
3594 n->by = abfd;
3595 n->next = NULL;
3596 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3597 ;
3598 *pn = n;
3599 }
3600 if (dyn.d_tag == DT_RUNPATH)
3601 {
3602 struct bfd_link_needed_list *n, **pn;
3603 char *fnm, *anm;
3604 unsigned int tagv = dyn.d_un.d_val;
3605
3606 amt = sizeof (struct bfd_link_needed_list);
3607 n = bfd_alloc (abfd, amt);
3608 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 if (n == NULL || fnm == NULL)
3610 goto error_free_dyn;
3611 amt = strlen (fnm) + 1;
3612 anm = bfd_alloc (abfd, amt);
3613 if (anm == NULL)
3614 goto error_free_dyn;
3615 memcpy (anm, fnm, amt);
3616 n->name = anm;
3617 n->by = abfd;
3618 n->next = NULL;
3619 for (pn = & runpath;
3620 *pn != NULL;
3621 pn = &(*pn)->next)
3622 ;
3623 *pn = n;
3624 }
3625 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3626 if (!runpath && dyn.d_tag == DT_RPATH)
3627 {
3628 struct bfd_link_needed_list *n, **pn;
3629 char *fnm, *anm;
3630 unsigned int tagv = dyn.d_un.d_val;
3631
3632 amt = sizeof (struct bfd_link_needed_list);
3633 n = bfd_alloc (abfd, amt);
3634 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3635 if (n == NULL || fnm == NULL)
3636 goto error_free_dyn;
3637 amt = strlen (fnm) + 1;
3638 anm = bfd_alloc (abfd, amt);
3639 if (anm == NULL)
3640 goto error_free_dyn;
3641 memcpy (anm, fnm, amt);
3642 n->name = anm;
3643 n->by = abfd;
3644 n->next = NULL;
3645 for (pn = & rpath;
3646 *pn != NULL;
3647 pn = &(*pn)->next)
3648 ;
3649 *pn = n;
3650 }
3651 }
3652
3653 free (dynbuf);
3654 }
3655
3656 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3657 frees all more recently bfd_alloc'd blocks as well. */
3658 if (runpath)
3659 rpath = runpath;
3660
3661 if (rpath)
3662 {
3663 struct bfd_link_needed_list **pn;
3664 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3665 ;
3666 *pn = rpath;
3667 }
3668
3669 /* We do not want to include any of the sections in a dynamic
3670 object in the output file. We hack by simply clobbering the
3671 list of sections in the BFD. This could be handled more
3672 cleanly by, say, a new section flag; the existing
3673 SEC_NEVER_LOAD flag is not the one we want, because that one
3674 still implies that the section takes up space in the output
3675 file. */
3676 bfd_section_list_clear (abfd);
3677
3678 /* Find the name to use in a DT_NEEDED entry that refers to this
3679 object. If the object has a DT_SONAME entry, we use it.
3680 Otherwise, if the generic linker stuck something in
3681 elf_dt_name, we use that. Otherwise, we just use the file
3682 name. */
3683 if (soname == NULL || *soname == '\0')
3684 {
3685 soname = elf_dt_name (abfd);
3686 if (soname == NULL || *soname == '\0')
3687 soname = bfd_get_filename (abfd);
3688 }
3689
3690 /* Save the SONAME because sometimes the linker emulation code
3691 will need to know it. */
3692 elf_dt_name (abfd) = soname;
3693
3694 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3695 if (ret < 0)
3696 goto error_return;
3697
3698 /* If we have already included this dynamic object in the
3699 link, just ignore it. There is no reason to include a
3700 particular dynamic object more than once. */
3701 if (ret > 0)
3702 return TRUE;
3703 }
3704
3705 /* If this is a dynamic object, we always link against the .dynsym
3706 symbol table, not the .symtab symbol table. The dynamic linker
3707 will only see the .dynsym symbol table, so there is no reason to
3708 look at .symtab for a dynamic object. */
3709
3710 if (! dynamic || elf_dynsymtab (abfd) == 0)
3711 hdr = &elf_tdata (abfd)->symtab_hdr;
3712 else
3713 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3714
3715 symcount = hdr->sh_size / bed->s->sizeof_sym;
3716
3717 /* The sh_info field of the symtab header tells us where the
3718 external symbols start. We don't care about the local symbols at
3719 this point. */
3720 if (elf_bad_symtab (abfd))
3721 {
3722 extsymcount = symcount;
3723 extsymoff = 0;
3724 }
3725 else
3726 {
3727 extsymcount = symcount - hdr->sh_info;
3728 extsymoff = hdr->sh_info;
3729 }
3730
3731 sym_hash = NULL;
3732 if (extsymcount != 0)
3733 {
3734 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3735 NULL, NULL, NULL);
3736 if (isymbuf == NULL)
3737 goto error_return;
3738
3739 /* We store a pointer to the hash table entry for each external
3740 symbol. */
3741 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3742 sym_hash = bfd_alloc (abfd, amt);
3743 if (sym_hash == NULL)
3744 goto error_free_sym;
3745 elf_sym_hashes (abfd) = sym_hash;
3746 }
3747
3748 if (dynamic)
3749 {
3750 /* Read in any version definitions. */
3751 if (!_bfd_elf_slurp_version_tables (abfd,
3752 info->default_imported_symver))
3753 goto error_free_sym;
3754
3755 /* Read in the symbol versions, but don't bother to convert them
3756 to internal format. */
3757 if (elf_dynversym (abfd) != 0)
3758 {
3759 Elf_Internal_Shdr *versymhdr;
3760
3761 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3762 extversym = bfd_malloc (versymhdr->sh_size);
3763 if (extversym == NULL)
3764 goto error_free_sym;
3765 amt = versymhdr->sh_size;
3766 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3767 || bfd_bread (extversym, amt, abfd) != amt)
3768 goto error_free_vers;
3769 }
3770 }
3771
3772 /* If we are loading an as-needed shared lib, save the symbol table
3773 state before we start adding symbols. If the lib turns out
3774 to be unneeded, restore the state. */
3775 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3776 {
3777 unsigned int i;
3778 size_t entsize;
3779
3780 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3781 {
3782 struct bfd_hash_entry *p;
3783 struct elf_link_hash_entry *h;
3784
3785 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3786 {
3787 h = (struct elf_link_hash_entry *) p;
3788 entsize += htab->root.table.entsize;
3789 if (h->root.type == bfd_link_hash_warning)
3790 entsize += htab->root.table.entsize;
3791 }
3792 }
3793
3794 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3795 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3796 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3797 if (old_tab == NULL)
3798 goto error_free_vers;
3799
3800 /* Remember the current objalloc pointer, so that all mem for
3801 symbols added can later be reclaimed. */
3802 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3803 if (alloc_mark == NULL)
3804 goto error_free_vers;
3805
3806 /* Make a special call to the linker "notice" function to
3807 tell it that we are about to handle an as-needed lib. */
3808 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3809 notice_as_needed))
3810 goto error_free_vers;
3811
3812 /* Clone the symbol table and sym hashes. Remember some
3813 pointers into the symbol table, and dynamic symbol count. */
3814 old_hash = (char *) old_tab + tabsize;
3815 old_ent = (char *) old_hash + hashsize;
3816 memcpy (old_tab, htab->root.table.table, tabsize);
3817 memcpy (old_hash, sym_hash, hashsize);
3818 old_undefs = htab->root.undefs;
3819 old_undefs_tail = htab->root.undefs_tail;
3820 old_table = htab->root.table.table;
3821 old_size = htab->root.table.size;
3822 old_count = htab->root.table.count;
3823 old_dynsymcount = htab->dynsymcount;
3824
3825 for (i = 0; i < htab->root.table.size; i++)
3826 {
3827 struct bfd_hash_entry *p;
3828 struct elf_link_hash_entry *h;
3829
3830 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3831 {
3832 memcpy (old_ent, p, htab->root.table.entsize);
3833 old_ent = (char *) old_ent + htab->root.table.entsize;
3834 h = (struct elf_link_hash_entry *) p;
3835 if (h->root.type == bfd_link_hash_warning)
3836 {
3837 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3838 old_ent = (char *) old_ent + htab->root.table.entsize;
3839 }
3840 }
3841 }
3842 }
3843
3844 weaks = NULL;
3845 ever = extversym != NULL ? extversym + extsymoff : NULL;
3846 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3847 isym < isymend;
3848 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3849 {
3850 int bind;
3851 bfd_vma value;
3852 asection *sec, *new_sec;
3853 flagword flags;
3854 const char *name;
3855 struct elf_link_hash_entry *h;
3856 bfd_boolean definition;
3857 bfd_boolean size_change_ok;
3858 bfd_boolean type_change_ok;
3859 bfd_boolean new_weakdef;
3860 bfd_boolean override;
3861 bfd_boolean common;
3862 unsigned int old_alignment;
3863 bfd *old_bfd;
3864
3865 override = FALSE;
3866
3867 flags = BSF_NO_FLAGS;
3868 sec = NULL;
3869 value = isym->st_value;
3870 *sym_hash = NULL;
3871 common = bed->common_definition (isym);
3872
3873 bind = ELF_ST_BIND (isym->st_info);
3874 if (bind == STB_LOCAL)
3875 {
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3879 screws this up. */
3880 continue;
3881 }
3882 else if (bind == STB_GLOBAL)
3883 {
3884 if (isym->st_shndx != SHN_UNDEF && !common)
3885 flags = BSF_GLOBAL;
3886 }
3887 else if (bind == STB_WEAK)
3888 flags = BSF_WEAK;
3889 else
3890 {
3891 /* Leave it up to the processor backend. */
3892 }
3893
3894 if (isym->st_shndx == SHN_UNDEF)
3895 sec = bfd_und_section_ptr;
3896 else if (isym->st_shndx == SHN_ABS)
3897 sec = bfd_abs_section_ptr;
3898 else if (isym->st_shndx == SHN_COMMON)
3899 {
3900 sec = bfd_com_section_ptr;
3901 /* What ELF calls the size we call the value. What ELF
3902 calls the value we call the alignment. */
3903 value = isym->st_size;
3904 }
3905 else
3906 {
3907 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3908 if (sec == NULL)
3909 sec = bfd_abs_section_ptr;
3910 else if (sec->kept_section)
3911 {
3912 /* Symbols from discarded section are undefined. We keep
3913 its visibility. */
3914 sec = bfd_und_section_ptr;
3915 isym->st_shndx = SHN_UNDEF;
3916 }
3917 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3918 value -= sec->vma;
3919 }
3920
3921 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3922 isym->st_name);
3923 if (name == NULL)
3924 goto error_free_vers;
3925
3926 if (isym->st_shndx == SHN_COMMON
3927 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3928 && !info->relocatable)
3929 {
3930 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3931
3932 if (tcomm == NULL)
3933 {
3934 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3935 (SEC_ALLOC
3936 | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED
3938 | SEC_THREAD_LOCAL));
3939 if (tcomm == NULL)
3940 goto error_free_vers;
3941 }
3942 sec = tcomm;
3943 }
3944 else if (bed->elf_add_symbol_hook)
3945 {
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3947 &sec, &value))
3948 goto error_free_vers;
3949
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3952 if (name == NULL)
3953 continue;
3954 }
3955
3956 /* Sanity check that all possibilities were handled. */
3957 if (sec == NULL)
3958 {
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3961 }
3962
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3965 definition = FALSE;
3966 else
3967 definition = TRUE;
3968
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3971 old_alignment = 0;
3972 old_bfd = NULL;
3973 new_sec = sec;
3974
3975 if (is_elf_hash_table (htab))
3976 {
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3979 bfd_boolean skip;
3980
3981 if (ever == NULL)
3982 {
3983 if (info->default_imported_symver)
3984 /* Use the default symbol version created earlier. */
3985 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3986 else
3987 iver.vs_vers = 0;
3988 }
3989 else
3990 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3991
3992 vernum = iver.vs_vers & VERSYM_VERSION;
3993
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4000 || (vernum > 1
4001 && (!bfd_is_abs_section (sec)
4002 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4003 {
4004 const char *verstr;
4005 size_t namelen, verlen, newlen;
4006 char *newname, *p;
4007
4008 if (isym->st_shndx != SHN_UNDEF)
4009 {
4010 if (vernum > elf_tdata (abfd)->cverdefs)
4011 verstr = NULL;
4012 else if (vernum > 1)
4013 verstr =
4014 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4015 else
4016 verstr = "";
4017
4018 if (verstr == NULL)
4019 {
4020 (*_bfd_error_handler)
4021 (_("%B: %s: invalid version %u (max %d)"),
4022 abfd, name, vernum,
4023 elf_tdata (abfd)->cverdefs);
4024 bfd_set_error (bfd_error_bad_value);
4025 goto error_free_vers;
4026 }
4027 }
4028 else
4029 {
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4033 at 0. */
4034 Elf_Internal_Verneed *t;
4035
4036 verstr = NULL;
4037 for (t = elf_tdata (abfd)->verref;
4038 t != NULL;
4039 t = t->vn_nextref)
4040 {
4041 Elf_Internal_Vernaux *a;
4042
4043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4044 {
4045 if (a->vna_other == vernum)
4046 {
4047 verstr = a->vna_nodename;
4048 break;
4049 }
4050 }
4051 if (a != NULL)
4052 break;
4053 }
4054 if (verstr == NULL)
4055 {
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd, name, vernum);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4061 }
4062 }
4063
4064 namelen = strlen (name);
4065 verlen = strlen (verstr);
4066 newlen = namelen + verlen + 2;
4067 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4068 && isym->st_shndx != SHN_UNDEF)
4069 ++newlen;
4070
4071 newname = bfd_hash_allocate (&htab->root.table, newlen);
4072 if (newname == NULL)
4073 goto error_free_vers;
4074 memcpy (newname, name, namelen);
4075 p = newname + namelen;
4076 *p++ = ELF_VER_CHR;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4081 && isym->st_shndx != SHN_UNDEF)
4082 *p++ = ELF_VER_CHR;
4083 memcpy (p, verstr, verlen + 1);
4084
4085 name = newname;
4086 }
4087
4088 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4089 &value, &old_alignment,
4090 sym_hash, &skip, &override,
4091 &type_change_ok, &size_change_ok))
4092 goto error_free_vers;
4093
4094 if (skip)
4095 continue;
4096
4097 if (override)
4098 definition = FALSE;
4099
4100 h = *sym_hash;
4101 while (h->root.type == bfd_link_hash_indirect
4102 || h->root.type == bfd_link_hash_warning)
4103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4104
4105 /* Remember the old alignment if this is a common symbol, so
4106 that we don't reduce the alignment later on. We can't
4107 check later, because _bfd_generic_link_add_one_symbol
4108 will set a default for the alignment which we want to
4109 override. We also remember the old bfd where the existing
4110 definition comes from. */
4111 switch (h->root.type)
4112 {
4113 default:
4114 break;
4115
4116 case bfd_link_hash_defined:
4117 case bfd_link_hash_defweak:
4118 old_bfd = h->root.u.def.section->owner;
4119 break;
4120
4121 case bfd_link_hash_common:
4122 old_bfd = h->root.u.c.p->section->owner;
4123 old_alignment = h->root.u.c.p->alignment_power;
4124 break;
4125 }
4126
4127 if (elf_tdata (abfd)->verdef != NULL
4128 && ! override
4129 && vernum > 1
4130 && definition)
4131 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4132 }
4133
4134 if (! (_bfd_generic_link_add_one_symbol
4135 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4136 (struct bfd_link_hash_entry **) sym_hash)))
4137 goto error_free_vers;
4138
4139 h = *sym_hash;
4140 while (h->root.type == bfd_link_hash_indirect
4141 || h->root.type == bfd_link_hash_warning)
4142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4143 *sym_hash = h;
4144
4145 new_weakdef = FALSE;
4146 if (dynamic
4147 && definition
4148 && (flags & BSF_WEAK) != 0
4149 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4150 && is_elf_hash_table (htab)
4151 && h->u.weakdef == NULL)
4152 {
4153 /* Keep a list of all weak defined non function symbols from
4154 a dynamic object, using the weakdef field. Later in this
4155 function we will set the weakdef field to the correct
4156 value. We only put non-function symbols from dynamic
4157 objects on this list, because that happens to be the only
4158 time we need to know the normal symbol corresponding to a
4159 weak symbol, and the information is time consuming to
4160 figure out. If the weakdef field is not already NULL,
4161 then this symbol was already defined by some previous
4162 dynamic object, and we will be using that previous
4163 definition anyhow. */
4164
4165 h->u.weakdef = weaks;
4166 weaks = h;
4167 new_weakdef = TRUE;
4168 }
4169
4170 /* Set the alignment of a common symbol. */
4171 if ((common || bfd_is_com_section (sec))
4172 && h->root.type == bfd_link_hash_common)
4173 {
4174 unsigned int align;
4175
4176 if (common)
4177 align = bfd_log2 (isym->st_value);
4178 else
4179 {
4180 /* The new symbol is a common symbol in a shared object.
4181 We need to get the alignment from the section. */
4182 align = new_sec->alignment_power;
4183 }
4184 if (align > old_alignment
4185 /* Permit an alignment power of zero if an alignment of one
4186 is specified and no other alignments have been specified. */
4187 || (isym->st_value == 1 && old_alignment == 0))
4188 h->root.u.c.p->alignment_power = align;
4189 else
4190 h->root.u.c.p->alignment_power = old_alignment;
4191 }
4192
4193 if (is_elf_hash_table (htab))
4194 {
4195 bfd_boolean dynsym;
4196
4197 /* Check the alignment when a common symbol is involved. This
4198 can change when a common symbol is overridden by a normal
4199 definition or a common symbol is ignored due to the old
4200 normal definition. We need to make sure the maximum
4201 alignment is maintained. */
4202 if ((old_alignment || common)
4203 && h->root.type != bfd_link_hash_common)
4204 {
4205 unsigned int common_align;
4206 unsigned int normal_align;
4207 unsigned int symbol_align;
4208 bfd *normal_bfd;
4209 bfd *common_bfd;
4210
4211 symbol_align = ffs (h->root.u.def.value) - 1;
4212 if (h->root.u.def.section->owner != NULL
4213 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4214 {
4215 normal_align = h->root.u.def.section->alignment_power;
4216 if (normal_align > symbol_align)
4217 normal_align = symbol_align;
4218 }
4219 else
4220 normal_align = symbol_align;
4221
4222 if (old_alignment)
4223 {
4224 common_align = old_alignment;
4225 common_bfd = old_bfd;
4226 normal_bfd = abfd;
4227 }
4228 else
4229 {
4230 common_align = bfd_log2 (isym->st_value);
4231 common_bfd = abfd;
4232 normal_bfd = old_bfd;
4233 }
4234
4235 if (normal_align < common_align)
4236 {
4237 /* PR binutils/2735 */
4238 if (normal_bfd == NULL)
4239 (*_bfd_error_handler)
4240 (_("Warning: alignment %u of common symbol `%s' in %B"
4241 " is greater than the alignment (%u) of its section %A"),
4242 common_bfd, h->root.u.def.section,
4243 1 << common_align, name, 1 << normal_align);
4244 else
4245 (*_bfd_error_handler)
4246 (_("Warning: alignment %u of symbol `%s' in %B"
4247 " is smaller than %u in %B"),
4248 normal_bfd, common_bfd,
4249 1 << normal_align, name, 1 << common_align);
4250 }
4251 }
4252
4253 /* Remember the symbol size if it isn't undefined. */
4254 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4255 && (definition || h->size == 0))
4256 {
4257 if (h->size != 0
4258 && h->size != isym->st_size
4259 && ! size_change_ok)
4260 (*_bfd_error_handler)
4261 (_("Warning: size of symbol `%s' changed"
4262 " from %lu in %B to %lu in %B"),
4263 old_bfd, abfd,
4264 name, (unsigned long) h->size,
4265 (unsigned long) isym->st_size);
4266
4267 h->size = isym->st_size;
4268 }
4269
4270 /* If this is a common symbol, then we always want H->SIZE
4271 to be the size of the common symbol. The code just above
4272 won't fix the size if a common symbol becomes larger. We
4273 don't warn about a size change here, because that is
4274 covered by --warn-common. Allow changed between different
4275 function types. */
4276 if (h->root.type == bfd_link_hash_common)
4277 h->size = h->root.u.c.size;
4278
4279 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4280 && (definition || h->type == STT_NOTYPE))
4281 {
4282 if (h->type != STT_NOTYPE
4283 && h->type != ELF_ST_TYPE (isym->st_info)
4284 && ! type_change_ok)
4285 (*_bfd_error_handler)
4286 (_("Warning: type of symbol `%s' changed"
4287 " from %d to %d in %B"),
4288 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4289
4290 h->type = ELF_ST_TYPE (isym->st_info);
4291 }
4292
4293 /* Merge st_other field. */
4294 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4295
4296 /* Set a flag in the hash table entry indicating the type of
4297 reference or definition we just found. Keep a count of
4298 the number of dynamic symbols we find. A dynamic symbol
4299 is one which is referenced or defined by both a regular
4300 object and a shared object. */
4301 dynsym = FALSE;
4302 if (! dynamic)
4303 {
4304 if (! definition)
4305 {
4306 h->ref_regular = 1;
4307 if (bind != STB_WEAK)
4308 h->ref_regular_nonweak = 1;
4309 }
4310 else
4311 {
4312 h->def_regular = 1;
4313 if (h->def_dynamic)
4314 {
4315 h->def_dynamic = 0;
4316 h->ref_dynamic = 1;
4317 h->dynamic_def = 1;
4318 }
4319 }
4320 if (! info->executable
4321 || h->def_dynamic
4322 || h->ref_dynamic)
4323 dynsym = TRUE;
4324 }
4325 else
4326 {
4327 if (! definition)
4328 h->ref_dynamic = 1;
4329 else
4330 h->def_dynamic = 1;
4331 if (h->def_regular
4332 || h->ref_regular
4333 || (h->u.weakdef != NULL
4334 && ! new_weakdef
4335 && h->u.weakdef->dynindx != -1))
4336 dynsym = TRUE;
4337 }
4338
4339 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4340 {
4341 /* We don't want to make debug symbol dynamic. */
4342 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4343 dynsym = FALSE;
4344 }
4345
4346 /* Check to see if we need to add an indirect symbol for
4347 the default name. */
4348 if (definition || h->root.type == bfd_link_hash_common)
4349 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4350 &sec, &value, &dynsym,
4351 override))
4352 goto error_free_vers;
4353
4354 if (definition && !dynamic)
4355 {
4356 char *p = strchr (name, ELF_VER_CHR);
4357 if (p != NULL && p[1] != ELF_VER_CHR)
4358 {
4359 /* Queue non-default versions so that .symver x, x@FOO
4360 aliases can be checked. */
4361 if (!nondeflt_vers)
4362 {
4363 amt = ((isymend - isym + 1)
4364 * sizeof (struct elf_link_hash_entry *));
4365 nondeflt_vers = bfd_malloc (amt);
4366 if (!nondeflt_vers)
4367 goto error_free_vers;
4368 }
4369 nondeflt_vers[nondeflt_vers_cnt++] = h;
4370 }
4371 }
4372
4373 if (dynsym && h->dynindx == -1)
4374 {
4375 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4376 goto error_free_vers;
4377 if (h->u.weakdef != NULL
4378 && ! new_weakdef
4379 && h->u.weakdef->dynindx == -1)
4380 {
4381 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4382 goto error_free_vers;
4383 }
4384 }
4385 else if (dynsym && h->dynindx != -1)
4386 /* If the symbol already has a dynamic index, but
4387 visibility says it should not be visible, turn it into
4388 a local symbol. */
4389 switch (ELF_ST_VISIBILITY (h->other))
4390 {
4391 case STV_INTERNAL:
4392 case STV_HIDDEN:
4393 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4394 dynsym = FALSE;
4395 break;
4396 }
4397
4398 if (!add_needed
4399 && definition
4400 && ((dynsym
4401 && h->ref_regular)
4402 || (h->ref_dynamic
4403 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4404 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4405 {
4406 int ret;
4407 const char *soname = elf_dt_name (abfd);
4408
4409 /* A symbol from a library loaded via DT_NEEDED of some
4410 other library is referenced by a regular object.
4411 Add a DT_NEEDED entry for it. Issue an error if
4412 --no-add-needed is used. */
4413 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4414 {
4415 (*_bfd_error_handler)
4416 (_("%s: invalid DSO for symbol `%s' definition"),
4417 abfd, name);
4418 bfd_set_error (bfd_error_bad_value);
4419 goto error_free_vers;
4420 }
4421
4422 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4423
4424 add_needed = TRUE;
4425 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4426 if (ret < 0)
4427 goto error_free_vers;
4428
4429 BFD_ASSERT (ret == 0);
4430 }
4431 }
4432 }
4433
4434 if (extversym != NULL)
4435 {
4436 free (extversym);
4437 extversym = NULL;
4438 }
4439
4440 if (isymbuf != NULL)
4441 {
4442 free (isymbuf);
4443 isymbuf = NULL;
4444 }
4445
4446 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4447 {
4448 unsigned int i;
4449
4450 /* Restore the symbol table. */
4451 if (bed->as_needed_cleanup)
4452 (*bed->as_needed_cleanup) (abfd, info);
4453 old_hash = (char *) old_tab + tabsize;
4454 old_ent = (char *) old_hash + hashsize;
4455 sym_hash = elf_sym_hashes (abfd);
4456 htab->root.table.table = old_table;
4457 htab->root.table.size = old_size;
4458 htab->root.table.count = old_count;
4459 memcpy (htab->root.table.table, old_tab, tabsize);
4460 memcpy (sym_hash, old_hash, hashsize);
4461 htab->root.undefs = old_undefs;
4462 htab->root.undefs_tail = old_undefs_tail;
4463 for (i = 0; i < htab->root.table.size; i++)
4464 {
4465 struct bfd_hash_entry *p;
4466 struct elf_link_hash_entry *h;
4467
4468 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4469 {
4470 h = (struct elf_link_hash_entry *) p;
4471 if (h->root.type == bfd_link_hash_warning)
4472 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4473 if (h->dynindx >= old_dynsymcount)
4474 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4475
4476 memcpy (p, old_ent, htab->root.table.entsize);
4477 old_ent = (char *) old_ent + htab->root.table.entsize;
4478 h = (struct elf_link_hash_entry *) p;
4479 if (h->root.type == bfd_link_hash_warning)
4480 {
4481 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4482 old_ent = (char *) old_ent + htab->root.table.entsize;
4483 }
4484 }
4485 }
4486
4487 /* Make a special call to the linker "notice" function to
4488 tell it that symbols added for crefs may need to be removed. */
4489 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4490 notice_not_needed))
4491 goto error_free_vers;
4492
4493 free (old_tab);
4494 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4495 alloc_mark);
4496 if (nondeflt_vers != NULL)
4497 free (nondeflt_vers);
4498 return TRUE;
4499 }
4500
4501 if (old_tab != NULL)
4502 {
4503 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4504 notice_needed))
4505 goto error_free_vers;
4506 free (old_tab);
4507 old_tab = NULL;
4508 }
4509
4510 /* Now that all the symbols from this input file are created, handle
4511 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4512 if (nondeflt_vers != NULL)
4513 {
4514 bfd_size_type cnt, symidx;
4515
4516 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4517 {
4518 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4519 char *shortname, *p;
4520
4521 p = strchr (h->root.root.string, ELF_VER_CHR);
4522 if (p == NULL
4523 || (h->root.type != bfd_link_hash_defined
4524 && h->root.type != bfd_link_hash_defweak))
4525 continue;
4526
4527 amt = p - h->root.root.string;
4528 shortname = bfd_malloc (amt + 1);
4529 if (!shortname)
4530 goto error_free_vers;
4531 memcpy (shortname, h->root.root.string, amt);
4532 shortname[amt] = '\0';
4533
4534 hi = (struct elf_link_hash_entry *)
4535 bfd_link_hash_lookup (&htab->root, shortname,
4536 FALSE, FALSE, FALSE);
4537 if (hi != NULL
4538 && hi->root.type == h->root.type
4539 && hi->root.u.def.value == h->root.u.def.value
4540 && hi->root.u.def.section == h->root.u.def.section)
4541 {
4542 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4543 hi->root.type = bfd_link_hash_indirect;
4544 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4546 sym_hash = elf_sym_hashes (abfd);
4547 if (sym_hash)
4548 for (symidx = 0; symidx < extsymcount; ++symidx)
4549 if (sym_hash[symidx] == hi)
4550 {
4551 sym_hash[symidx] = h;
4552 break;
4553 }
4554 }
4555 free (shortname);
4556 }
4557 free (nondeflt_vers);
4558 nondeflt_vers = NULL;
4559 }
4560
4561 /* Now set the weakdefs field correctly for all the weak defined
4562 symbols we found. The only way to do this is to search all the
4563 symbols. Since we only need the information for non functions in
4564 dynamic objects, that's the only time we actually put anything on
4565 the list WEAKS. We need this information so that if a regular
4566 object refers to a symbol defined weakly in a dynamic object, the
4567 real symbol in the dynamic object is also put in the dynamic
4568 symbols; we also must arrange for both symbols to point to the
4569 same memory location. We could handle the general case of symbol
4570 aliasing, but a general symbol alias can only be generated in
4571 assembler code, handling it correctly would be very time
4572 consuming, and other ELF linkers don't handle general aliasing
4573 either. */
4574 if (weaks != NULL)
4575 {
4576 struct elf_link_hash_entry **hpp;
4577 struct elf_link_hash_entry **hppend;
4578 struct elf_link_hash_entry **sorted_sym_hash;
4579 struct elf_link_hash_entry *h;
4580 size_t sym_count;
4581
4582 /* Since we have to search the whole symbol list for each weak
4583 defined symbol, search time for N weak defined symbols will be
4584 O(N^2). Binary search will cut it down to O(NlogN). */
4585 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4586 sorted_sym_hash = bfd_malloc (amt);
4587 if (sorted_sym_hash == NULL)
4588 goto error_return;
4589 sym_hash = sorted_sym_hash;
4590 hpp = elf_sym_hashes (abfd);
4591 hppend = hpp + extsymcount;
4592 sym_count = 0;
4593 for (; hpp < hppend; hpp++)
4594 {
4595 h = *hpp;
4596 if (h != NULL
4597 && h->root.type == bfd_link_hash_defined
4598 && !bed->is_function_type (h->type))
4599 {
4600 *sym_hash = h;
4601 sym_hash++;
4602 sym_count++;
4603 }
4604 }
4605
4606 qsort (sorted_sym_hash, sym_count,
4607 sizeof (struct elf_link_hash_entry *),
4608 elf_sort_symbol);
4609
4610 while (weaks != NULL)
4611 {
4612 struct elf_link_hash_entry *hlook;
4613 asection *slook;
4614 bfd_vma vlook;
4615 long ilook;
4616 size_t i, j, idx;
4617
4618 hlook = weaks;
4619 weaks = hlook->u.weakdef;
4620 hlook->u.weakdef = NULL;
4621
4622 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4623 || hlook->root.type == bfd_link_hash_defweak
4624 || hlook->root.type == bfd_link_hash_common
4625 || hlook->root.type == bfd_link_hash_indirect);
4626 slook = hlook->root.u.def.section;
4627 vlook = hlook->root.u.def.value;
4628
4629 ilook = -1;
4630 i = 0;
4631 j = sym_count;
4632 while (i < j)
4633 {
4634 bfd_signed_vma vdiff;
4635 idx = (i + j) / 2;
4636 h = sorted_sym_hash [idx];
4637 vdiff = vlook - h->root.u.def.value;
4638 if (vdiff < 0)
4639 j = idx;
4640 else if (vdiff > 0)
4641 i = idx + 1;
4642 else
4643 {
4644 long sdiff = slook->id - h->root.u.def.section->id;
4645 if (sdiff < 0)
4646 j = idx;
4647 else if (sdiff > 0)
4648 i = idx + 1;
4649 else
4650 {
4651 ilook = idx;
4652 break;
4653 }
4654 }
4655 }
4656
4657 /* We didn't find a value/section match. */
4658 if (ilook == -1)
4659 continue;
4660
4661 for (i = ilook; i < sym_count; i++)
4662 {
4663 h = sorted_sym_hash [i];
4664
4665 /* Stop if value or section doesn't match. */
4666 if (h->root.u.def.value != vlook
4667 || h->root.u.def.section != slook)
4668 break;
4669 else if (h != hlook)
4670 {
4671 hlook->u.weakdef = h;
4672
4673 /* If the weak definition is in the list of dynamic
4674 symbols, make sure the real definition is put
4675 there as well. */
4676 if (hlook->dynindx != -1 && h->dynindx == -1)
4677 {
4678 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4679 {
4680 err_free_sym_hash:
4681 free (sorted_sym_hash);
4682 goto error_return;
4683 }
4684 }
4685
4686 /* If the real definition is in the list of dynamic
4687 symbols, make sure the weak definition is put
4688 there as well. If we don't do this, then the
4689 dynamic loader might not merge the entries for the
4690 real definition and the weak definition. */
4691 if (h->dynindx != -1 && hlook->dynindx == -1)
4692 {
4693 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4694 goto err_free_sym_hash;
4695 }
4696 break;
4697 }
4698 }
4699 }
4700
4701 free (sorted_sym_hash);
4702 }
4703
4704 if (bed->check_directives
4705 && !(*bed->check_directives) (abfd, info))
4706 return FALSE;
4707
4708 /* If this object is the same format as the output object, and it is
4709 not a shared library, then let the backend look through the
4710 relocs.
4711
4712 This is required to build global offset table entries and to
4713 arrange for dynamic relocs. It is not required for the
4714 particular common case of linking non PIC code, even when linking
4715 against shared libraries, but unfortunately there is no way of
4716 knowing whether an object file has been compiled PIC or not.
4717 Looking through the relocs is not particularly time consuming.
4718 The problem is that we must either (1) keep the relocs in memory,
4719 which causes the linker to require additional runtime memory or
4720 (2) read the relocs twice from the input file, which wastes time.
4721 This would be a good case for using mmap.
4722
4723 I have no idea how to handle linking PIC code into a file of a
4724 different format. It probably can't be done. */
4725 if (! dynamic
4726 && is_elf_hash_table (htab)
4727 && bed->check_relocs != NULL
4728 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4729 {
4730 asection *o;
4731
4732 for (o = abfd->sections; o != NULL; o = o->next)
4733 {
4734 Elf_Internal_Rela *internal_relocs;
4735 bfd_boolean ok;
4736
4737 if ((o->flags & SEC_RELOC) == 0
4738 || o->reloc_count == 0
4739 || ((info->strip == strip_all || info->strip == strip_debugger)
4740 && (o->flags & SEC_DEBUGGING) != 0)
4741 || bfd_is_abs_section (o->output_section))
4742 continue;
4743
4744 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4745 info->keep_memory);
4746 if (internal_relocs == NULL)
4747 goto error_return;
4748
4749 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4750
4751 if (elf_section_data (o)->relocs != internal_relocs)
4752 free (internal_relocs);
4753
4754 if (! ok)
4755 goto error_return;
4756 }
4757 }
4758
4759 /* If this is a non-traditional link, try to optimize the handling
4760 of the .stab/.stabstr sections. */
4761 if (! dynamic
4762 && ! info->traditional_format
4763 && is_elf_hash_table (htab)
4764 && (info->strip != strip_all && info->strip != strip_debugger))
4765 {
4766 asection *stabstr;
4767
4768 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4769 if (stabstr != NULL)
4770 {
4771 bfd_size_type string_offset = 0;
4772 asection *stab;
4773
4774 for (stab = abfd->sections; stab; stab = stab->next)
4775 if (CONST_STRNEQ (stab->name, ".stab")
4776 && (!stab->name[5] ||
4777 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4778 && (stab->flags & SEC_MERGE) == 0
4779 && !bfd_is_abs_section (stab->output_section))
4780 {
4781 struct bfd_elf_section_data *secdata;
4782
4783 secdata = elf_section_data (stab);
4784 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4785 stabstr, &secdata->sec_info,
4786 &string_offset))
4787 goto error_return;
4788 if (secdata->sec_info)
4789 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4790 }
4791 }
4792 }
4793
4794 if (is_elf_hash_table (htab) && add_needed)
4795 {
4796 /* Add this bfd to the loaded list. */
4797 struct elf_link_loaded_list *n;
4798
4799 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4800 if (n == NULL)
4801 goto error_return;
4802 n->abfd = abfd;
4803 n->next = htab->loaded;
4804 htab->loaded = n;
4805 }
4806
4807 return TRUE;
4808
4809 error_free_vers:
4810 if (old_tab != NULL)
4811 free (old_tab);
4812 if (nondeflt_vers != NULL)
4813 free (nondeflt_vers);
4814 if (extversym != NULL)
4815 free (extversym);
4816 error_free_sym:
4817 if (isymbuf != NULL)
4818 free (isymbuf);
4819 error_return:
4820 return FALSE;
4821 }
4822
4823 /* Return the linker hash table entry of a symbol that might be
4824 satisfied by an archive symbol. Return -1 on error. */
4825
4826 struct elf_link_hash_entry *
4827 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4828 struct bfd_link_info *info,
4829 const char *name)
4830 {
4831 struct elf_link_hash_entry *h;
4832 char *p, *copy;
4833 size_t len, first;
4834
4835 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4836 if (h != NULL)
4837 return h;
4838
4839 /* If this is a default version (the name contains @@), look up the
4840 symbol again with only one `@' as well as without the version.
4841 The effect is that references to the symbol with and without the
4842 version will be matched by the default symbol in the archive. */
4843
4844 p = strchr (name, ELF_VER_CHR);
4845 if (p == NULL || p[1] != ELF_VER_CHR)
4846 return h;
4847
4848 /* First check with only one `@'. */
4849 len = strlen (name);
4850 copy = bfd_alloc (abfd, len);
4851 if (copy == NULL)
4852 return (struct elf_link_hash_entry *) 0 - 1;
4853
4854 first = p - name + 1;
4855 memcpy (copy, name, first);
4856 memcpy (copy + first, name + first + 1, len - first);
4857
4858 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4859 if (h == NULL)
4860 {
4861 /* We also need to check references to the symbol without the
4862 version. */
4863 copy[first - 1] = '\0';
4864 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4865 FALSE, FALSE, FALSE);
4866 }
4867
4868 bfd_release (abfd, copy);
4869 return h;
4870 }
4871
4872 /* Add symbols from an ELF archive file to the linker hash table. We
4873 don't use _bfd_generic_link_add_archive_symbols because of a
4874 problem which arises on UnixWare. The UnixWare libc.so is an
4875 archive which includes an entry libc.so.1 which defines a bunch of
4876 symbols. The libc.so archive also includes a number of other
4877 object files, which also define symbols, some of which are the same
4878 as those defined in libc.so.1. Correct linking requires that we
4879 consider each object file in turn, and include it if it defines any
4880 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4881 this; it looks through the list of undefined symbols, and includes
4882 any object file which defines them. When this algorithm is used on
4883 UnixWare, it winds up pulling in libc.so.1 early and defining a
4884 bunch of symbols. This means that some of the other objects in the
4885 archive are not included in the link, which is incorrect since they
4886 precede libc.so.1 in the archive.
4887
4888 Fortunately, ELF archive handling is simpler than that done by
4889 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4890 oddities. In ELF, if we find a symbol in the archive map, and the
4891 symbol is currently undefined, we know that we must pull in that
4892 object file.
4893
4894 Unfortunately, we do have to make multiple passes over the symbol
4895 table until nothing further is resolved. */
4896
4897 static bfd_boolean
4898 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4899 {
4900 symindex c;
4901 bfd_boolean *defined = NULL;
4902 bfd_boolean *included = NULL;
4903 carsym *symdefs;
4904 bfd_boolean loop;
4905 bfd_size_type amt;
4906 const struct elf_backend_data *bed;
4907 struct elf_link_hash_entry * (*archive_symbol_lookup)
4908 (bfd *, struct bfd_link_info *, const char *);
4909
4910 if (! bfd_has_map (abfd))
4911 {
4912 /* An empty archive is a special case. */
4913 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4914 return TRUE;
4915 bfd_set_error (bfd_error_no_armap);
4916 return FALSE;
4917 }
4918
4919 /* Keep track of all symbols we know to be already defined, and all
4920 files we know to be already included. This is to speed up the
4921 second and subsequent passes. */
4922 c = bfd_ardata (abfd)->symdef_count;
4923 if (c == 0)
4924 return TRUE;
4925 amt = c;
4926 amt *= sizeof (bfd_boolean);
4927 defined = bfd_zmalloc (amt);
4928 included = bfd_zmalloc (amt);
4929 if (defined == NULL || included == NULL)
4930 goto error_return;
4931
4932 symdefs = bfd_ardata (abfd)->symdefs;
4933 bed = get_elf_backend_data (abfd);
4934 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4935
4936 do
4937 {
4938 file_ptr last;
4939 symindex i;
4940 carsym *symdef;
4941 carsym *symdefend;
4942
4943 loop = FALSE;
4944 last = -1;
4945
4946 symdef = symdefs;
4947 symdefend = symdef + c;
4948 for (i = 0; symdef < symdefend; symdef++, i++)
4949 {
4950 struct elf_link_hash_entry *h;
4951 bfd *element;
4952 struct bfd_link_hash_entry *undefs_tail;
4953 symindex mark;
4954
4955 if (defined[i] || included[i])
4956 continue;
4957 if (symdef->file_offset == last)
4958 {
4959 included[i] = TRUE;
4960 continue;
4961 }
4962
4963 h = archive_symbol_lookup (abfd, info, symdef->name);
4964 if (h == (struct elf_link_hash_entry *) 0 - 1)
4965 goto error_return;
4966
4967 if (h == NULL)
4968 continue;
4969
4970 if (h->root.type == bfd_link_hash_common)
4971 {
4972 /* We currently have a common symbol. The archive map contains
4973 a reference to this symbol, so we may want to include it. We
4974 only want to include it however, if this archive element
4975 contains a definition of the symbol, not just another common
4976 declaration of it.
4977
4978 Unfortunately some archivers (including GNU ar) will put
4979 declarations of common symbols into their archive maps, as
4980 well as real definitions, so we cannot just go by the archive
4981 map alone. Instead we must read in the element's symbol
4982 table and check that to see what kind of symbol definition
4983 this is. */
4984 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4985 continue;
4986 }
4987 else if (h->root.type != bfd_link_hash_undefined)
4988 {
4989 if (h->root.type != bfd_link_hash_undefweak)
4990 defined[i] = TRUE;
4991 continue;
4992 }
4993
4994 /* We need to include this archive member. */
4995 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4996 if (element == NULL)
4997 goto error_return;
4998
4999 if (! bfd_check_format (element, bfd_object))
5000 goto error_return;
5001
5002 /* Doublecheck that we have not included this object
5003 already--it should be impossible, but there may be
5004 something wrong with the archive. */
5005 if (element->archive_pass != 0)
5006 {
5007 bfd_set_error (bfd_error_bad_value);
5008 goto error_return;
5009 }
5010 element->archive_pass = 1;
5011
5012 undefs_tail = info->hash->undefs_tail;
5013
5014 if (! (*info->callbacks->add_archive_element) (info, element,
5015 symdef->name))
5016 goto error_return;
5017 if (! bfd_link_add_symbols (element, info))
5018 goto error_return;
5019
5020 /* If there are any new undefined symbols, we need to make
5021 another pass through the archive in order to see whether
5022 they can be defined. FIXME: This isn't perfect, because
5023 common symbols wind up on undefs_tail and because an
5024 undefined symbol which is defined later on in this pass
5025 does not require another pass. This isn't a bug, but it
5026 does make the code less efficient than it could be. */
5027 if (undefs_tail != info->hash->undefs_tail)
5028 loop = TRUE;
5029
5030 /* Look backward to mark all symbols from this object file
5031 which we have already seen in this pass. */
5032 mark = i;
5033 do
5034 {
5035 included[mark] = TRUE;
5036 if (mark == 0)
5037 break;
5038 --mark;
5039 }
5040 while (symdefs[mark].file_offset == symdef->file_offset);
5041
5042 /* We mark subsequent symbols from this object file as we go
5043 on through the loop. */
5044 last = symdef->file_offset;
5045 }
5046 }
5047 while (loop);
5048
5049 free (defined);
5050 free (included);
5051
5052 return TRUE;
5053
5054 error_return:
5055 if (defined != NULL)
5056 free (defined);
5057 if (included != NULL)
5058 free (included);
5059 return FALSE;
5060 }
5061
5062 /* Given an ELF BFD, add symbols to the global hash table as
5063 appropriate. */
5064
5065 bfd_boolean
5066 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5067 {
5068 switch (bfd_get_format (abfd))
5069 {
5070 case bfd_object:
5071 return elf_link_add_object_symbols (abfd, info);
5072 case bfd_archive:
5073 return elf_link_add_archive_symbols (abfd, info);
5074 default:
5075 bfd_set_error (bfd_error_wrong_format);
5076 return FALSE;
5077 }
5078 }
5079 \f
5080 struct hash_codes_info
5081 {
5082 unsigned long *hashcodes;
5083 bfd_boolean error;
5084 };
5085
5086 /* This function will be called though elf_link_hash_traverse to store
5087 all hash value of the exported symbols in an array. */
5088
5089 static bfd_boolean
5090 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5091 {
5092 struct hash_codes_info *inf = data;
5093 const char *name;
5094 char *p;
5095 unsigned long ha;
5096 char *alc = NULL;
5097
5098 if (h->root.type == bfd_link_hash_warning)
5099 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5100
5101 /* Ignore indirect symbols. These are added by the versioning code. */
5102 if (h->dynindx == -1)
5103 return TRUE;
5104
5105 name = h->root.root.string;
5106 p = strchr (name, ELF_VER_CHR);
5107 if (p != NULL)
5108 {
5109 alc = bfd_malloc (p - name + 1);
5110 if (alc == NULL)
5111 {
5112 inf->error = TRUE;
5113 return FALSE;
5114 }
5115 memcpy (alc, name, p - name);
5116 alc[p - name] = '\0';
5117 name = alc;
5118 }
5119
5120 /* Compute the hash value. */
5121 ha = bfd_elf_hash (name);
5122
5123 /* Store the found hash value in the array given as the argument. */
5124 *(inf->hashcodes)++ = ha;
5125
5126 /* And store it in the struct so that we can put it in the hash table
5127 later. */
5128 h->u.elf_hash_value = ha;
5129
5130 if (alc != NULL)
5131 free (alc);
5132
5133 return TRUE;
5134 }
5135
5136 struct collect_gnu_hash_codes
5137 {
5138 bfd *output_bfd;
5139 const struct elf_backend_data *bed;
5140 unsigned long int nsyms;
5141 unsigned long int maskbits;
5142 unsigned long int *hashcodes;
5143 unsigned long int *hashval;
5144 unsigned long int *indx;
5145 unsigned long int *counts;
5146 bfd_vma *bitmask;
5147 bfd_byte *contents;
5148 long int min_dynindx;
5149 unsigned long int bucketcount;
5150 unsigned long int symindx;
5151 long int local_indx;
5152 long int shift1, shift2;
5153 unsigned long int mask;
5154 bfd_boolean error;
5155 };
5156
5157 /* This function will be called though elf_link_hash_traverse to store
5158 all hash value of the exported symbols in an array. */
5159
5160 static bfd_boolean
5161 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5162 {
5163 struct collect_gnu_hash_codes *s = data;
5164 const char *name;
5165 char *p;
5166 unsigned long ha;
5167 char *alc = NULL;
5168
5169 if (h->root.type == bfd_link_hash_warning)
5170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5171
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h->dynindx == -1)
5174 return TRUE;
5175
5176 /* Ignore also local symbols and undefined symbols. */
5177 if (! (*s->bed->elf_hash_symbol) (h))
5178 return TRUE;
5179
5180 name = h->root.root.string;
5181 p = strchr (name, ELF_VER_CHR);
5182 if (p != NULL)
5183 {
5184 alc = bfd_malloc (p - name + 1);
5185 if (alc == NULL)
5186 {
5187 s->error = TRUE;
5188 return FALSE;
5189 }
5190 memcpy (alc, name, p - name);
5191 alc[p - name] = '\0';
5192 name = alc;
5193 }
5194
5195 /* Compute the hash value. */
5196 ha = bfd_elf_gnu_hash (name);
5197
5198 /* Store the found hash value in the array for compute_bucket_count,
5199 and also for .dynsym reordering purposes. */
5200 s->hashcodes[s->nsyms] = ha;
5201 s->hashval[h->dynindx] = ha;
5202 ++s->nsyms;
5203 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5204 s->min_dynindx = h->dynindx;
5205
5206 if (alc != NULL)
5207 free (alc);
5208
5209 return TRUE;
5210 }
5211
5212 /* This function will be called though elf_link_hash_traverse to do
5213 final dynaminc symbol renumbering. */
5214
5215 static bfd_boolean
5216 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5217 {
5218 struct collect_gnu_hash_codes *s = data;
5219 unsigned long int bucket;
5220 unsigned long int val;
5221
5222 if (h->root.type == bfd_link_hash_warning)
5223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5224
5225 /* Ignore indirect symbols. */
5226 if (h->dynindx == -1)
5227 return TRUE;
5228
5229 /* Ignore also local symbols and undefined symbols. */
5230 if (! (*s->bed->elf_hash_symbol) (h))
5231 {
5232 if (h->dynindx >= s->min_dynindx)
5233 h->dynindx = s->local_indx++;
5234 return TRUE;
5235 }
5236
5237 bucket = s->hashval[h->dynindx] % s->bucketcount;
5238 val = (s->hashval[h->dynindx] >> s->shift1)
5239 & ((s->maskbits >> s->shift1) - 1);
5240 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5241 s->bitmask[val]
5242 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5243 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5244 if (s->counts[bucket] == 1)
5245 /* Last element terminates the chain. */
5246 val |= 1;
5247 bfd_put_32 (s->output_bfd, val,
5248 s->contents + (s->indx[bucket] - s->symindx) * 4);
5249 --s->counts[bucket];
5250 h->dynindx = s->indx[bucket]++;
5251 return TRUE;
5252 }
5253
5254 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5255
5256 bfd_boolean
5257 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5258 {
5259 return !(h->forced_local
5260 || h->root.type == bfd_link_hash_undefined
5261 || h->root.type == bfd_link_hash_undefweak
5262 || ((h->root.type == bfd_link_hash_defined
5263 || h->root.type == bfd_link_hash_defweak)
5264 && h->root.u.def.section->output_section == NULL));
5265 }
5266
5267 /* Array used to determine the number of hash table buckets to use
5268 based on the number of symbols there are. If there are fewer than
5269 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5270 fewer than 37 we use 17 buckets, and so forth. We never use more
5271 than 32771 buckets. */
5272
5273 static const size_t elf_buckets[] =
5274 {
5275 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5276 16411, 32771, 0
5277 };
5278
5279 /* Compute bucket count for hashing table. We do not use a static set
5280 of possible tables sizes anymore. Instead we determine for all
5281 possible reasonable sizes of the table the outcome (i.e., the
5282 number of collisions etc) and choose the best solution. The
5283 weighting functions are not too simple to allow the table to grow
5284 without bounds. Instead one of the weighting factors is the size.
5285 Therefore the result is always a good payoff between few collisions
5286 (= short chain lengths) and table size. */
5287 static size_t
5288 compute_bucket_count (struct bfd_link_info *info,
5289 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5290 unsigned long int nsyms,
5291 int gnu_hash)
5292 {
5293 size_t best_size = 0;
5294 unsigned long int i;
5295
5296 /* We have a problem here. The following code to optimize the table
5297 size requires an integer type with more the 32 bits. If
5298 BFD_HOST_U_64_BIT is set we know about such a type. */
5299 #ifdef BFD_HOST_U_64_BIT
5300 if (info->optimize)
5301 {
5302 size_t minsize;
5303 size_t maxsize;
5304 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5305 bfd *dynobj = elf_hash_table (info)->dynobj;
5306 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5307 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5308 unsigned long int *counts;
5309 bfd_size_type amt;
5310
5311 /* Possible optimization parameters: if we have NSYMS symbols we say
5312 that the hashing table must at least have NSYMS/4 and at most
5313 2*NSYMS buckets. */
5314 minsize = nsyms / 4;
5315 if (minsize == 0)
5316 minsize = 1;
5317 best_size = maxsize = nsyms * 2;
5318 if (gnu_hash)
5319 {
5320 if (minsize < 2)
5321 minsize = 2;
5322 if ((best_size & 31) == 0)
5323 ++best_size;
5324 }
5325
5326 /* Create array where we count the collisions in. We must use bfd_malloc
5327 since the size could be large. */
5328 amt = maxsize;
5329 amt *= sizeof (unsigned long int);
5330 counts = bfd_malloc (amt);
5331 if (counts == NULL)
5332 return 0;
5333
5334 /* Compute the "optimal" size for the hash table. The criteria is a
5335 minimal chain length. The minor criteria is (of course) the size
5336 of the table. */
5337 for (i = minsize; i < maxsize; ++i)
5338 {
5339 /* Walk through the array of hashcodes and count the collisions. */
5340 BFD_HOST_U_64_BIT max;
5341 unsigned long int j;
5342 unsigned long int fact;
5343
5344 if (gnu_hash && (i & 31) == 0)
5345 continue;
5346
5347 memset (counts, '\0', i * sizeof (unsigned long int));
5348
5349 /* Determine how often each hash bucket is used. */
5350 for (j = 0; j < nsyms; ++j)
5351 ++counts[hashcodes[j] % i];
5352
5353 /* For the weight function we need some information about the
5354 pagesize on the target. This is information need not be 100%
5355 accurate. Since this information is not available (so far) we
5356 define it here to a reasonable default value. If it is crucial
5357 to have a better value some day simply define this value. */
5358 # ifndef BFD_TARGET_PAGESIZE
5359 # define BFD_TARGET_PAGESIZE (4096)
5360 # endif
5361
5362 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5363 and the chains. */
5364 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5365
5366 # if 1
5367 /* Variant 1: optimize for short chains. We add the squares
5368 of all the chain lengths (which favors many small chain
5369 over a few long chains). */
5370 for (j = 0; j < i; ++j)
5371 max += counts[j] * counts[j];
5372
5373 /* This adds penalties for the overall size of the table. */
5374 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5375 max *= fact * fact;
5376 # else
5377 /* Variant 2: Optimize a lot more for small table. Here we
5378 also add squares of the size but we also add penalties for
5379 empty slots (the +1 term). */
5380 for (j = 0; j < i; ++j)
5381 max += (1 + counts[j]) * (1 + counts[j]);
5382
5383 /* The overall size of the table is considered, but not as
5384 strong as in variant 1, where it is squared. */
5385 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5386 max *= fact;
5387 # endif
5388
5389 /* Compare with current best results. */
5390 if (max < best_chlen)
5391 {
5392 best_chlen = max;
5393 best_size = i;
5394 }
5395 }
5396
5397 free (counts);
5398 }
5399 else
5400 #endif /* defined (BFD_HOST_U_64_BIT) */
5401 {
5402 /* This is the fallback solution if no 64bit type is available or if we
5403 are not supposed to spend much time on optimizations. We select the
5404 bucket count using a fixed set of numbers. */
5405 for (i = 0; elf_buckets[i] != 0; i++)
5406 {
5407 best_size = elf_buckets[i];
5408 if (nsyms < elf_buckets[i + 1])
5409 break;
5410 }
5411 if (gnu_hash && best_size < 2)
5412 best_size = 2;
5413 }
5414
5415 return best_size;
5416 }
5417
5418 /* Set up the sizes and contents of the ELF dynamic sections. This is
5419 called by the ELF linker emulation before_allocation routine. We
5420 must set the sizes of the sections before the linker sets the
5421 addresses of the various sections. */
5422
5423 bfd_boolean
5424 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5425 const char *soname,
5426 const char *rpath,
5427 const char *filter_shlib,
5428 const char * const *auxiliary_filters,
5429 struct bfd_link_info *info,
5430 asection **sinterpptr,
5431 struct bfd_elf_version_tree *verdefs)
5432 {
5433 bfd_size_type soname_indx;
5434 bfd *dynobj;
5435 const struct elf_backend_data *bed;
5436 struct elf_info_failed asvinfo;
5437
5438 *sinterpptr = NULL;
5439
5440 soname_indx = (bfd_size_type) -1;
5441
5442 if (!is_elf_hash_table (info->hash))
5443 return TRUE;
5444
5445 bed = get_elf_backend_data (output_bfd);
5446 if (info->execstack)
5447 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5448 else if (info->noexecstack)
5449 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5450 else
5451 {
5452 bfd *inputobj;
5453 asection *notesec = NULL;
5454 int exec = 0;
5455
5456 for (inputobj = info->input_bfds;
5457 inputobj;
5458 inputobj = inputobj->link_next)
5459 {
5460 asection *s;
5461
5462 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5463 continue;
5464 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5465 if (s)
5466 {
5467 if (s->flags & SEC_CODE)
5468 exec = PF_X;
5469 notesec = s;
5470 }
5471 else if (bed->default_execstack)
5472 exec = PF_X;
5473 }
5474 if (notesec)
5475 {
5476 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5477 if (exec && info->relocatable
5478 && notesec->output_section != bfd_abs_section_ptr)
5479 notesec->output_section->flags |= SEC_CODE;
5480 }
5481 }
5482
5483 /* Any syms created from now on start with -1 in
5484 got.refcount/offset and plt.refcount/offset. */
5485 elf_hash_table (info)->init_got_refcount
5486 = elf_hash_table (info)->init_got_offset;
5487 elf_hash_table (info)->init_plt_refcount
5488 = elf_hash_table (info)->init_plt_offset;
5489
5490 /* The backend may have to create some sections regardless of whether
5491 we're dynamic or not. */
5492 if (bed->elf_backend_always_size_sections
5493 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5494 return FALSE;
5495
5496 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5497 return FALSE;
5498
5499 dynobj = elf_hash_table (info)->dynobj;
5500
5501 /* If there were no dynamic objects in the link, there is nothing to
5502 do here. */
5503 if (dynobj == NULL)
5504 return TRUE;
5505
5506 if (elf_hash_table (info)->dynamic_sections_created)
5507 {
5508 struct elf_info_failed eif;
5509 struct elf_link_hash_entry *h;
5510 asection *dynstr;
5511 struct bfd_elf_version_tree *t;
5512 struct bfd_elf_version_expr *d;
5513 asection *s;
5514 bfd_boolean all_defined;
5515
5516 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5517 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5518
5519 if (soname != NULL)
5520 {
5521 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5522 soname, TRUE);
5523 if (soname_indx == (bfd_size_type) -1
5524 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5525 return FALSE;
5526 }
5527
5528 if (info->symbolic)
5529 {
5530 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5531 return FALSE;
5532 info->flags |= DF_SYMBOLIC;
5533 }
5534
5535 if (rpath != NULL)
5536 {
5537 bfd_size_type indx;
5538
5539 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5540 TRUE);
5541 if (indx == (bfd_size_type) -1
5542 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5543 return FALSE;
5544
5545 if (info->new_dtags)
5546 {
5547 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5548 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5549 return FALSE;
5550 }
5551 }
5552
5553 if (filter_shlib != NULL)
5554 {
5555 bfd_size_type indx;
5556
5557 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5558 filter_shlib, TRUE);
5559 if (indx == (bfd_size_type) -1
5560 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5561 return FALSE;
5562 }
5563
5564 if (auxiliary_filters != NULL)
5565 {
5566 const char * const *p;
5567
5568 for (p = auxiliary_filters; *p != NULL; p++)
5569 {
5570 bfd_size_type indx;
5571
5572 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5573 *p, TRUE);
5574 if (indx == (bfd_size_type) -1
5575 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5576 return FALSE;
5577 }
5578 }
5579
5580 eif.info = info;
5581 eif.verdefs = verdefs;
5582 eif.failed = FALSE;
5583
5584 /* If we are supposed to export all symbols into the dynamic symbol
5585 table (this is not the normal case), then do so. */
5586 if (info->export_dynamic
5587 || (info->executable && info->dynamic))
5588 {
5589 elf_link_hash_traverse (elf_hash_table (info),
5590 _bfd_elf_export_symbol,
5591 &eif);
5592 if (eif.failed)
5593 return FALSE;
5594 }
5595
5596 /* Make all global versions with definition. */
5597 for (t = verdefs; t != NULL; t = t->next)
5598 for (d = t->globals.list; d != NULL; d = d->next)
5599 if (!d->symver && d->literal)
5600 {
5601 const char *verstr, *name;
5602 size_t namelen, verlen, newlen;
5603 char *newname, *p;
5604 struct elf_link_hash_entry *newh;
5605
5606 name = d->pattern;
5607 namelen = strlen (name);
5608 verstr = t->name;
5609 verlen = strlen (verstr);
5610 newlen = namelen + verlen + 3;
5611
5612 newname = bfd_malloc (newlen);
5613 if (newname == NULL)
5614 return FALSE;
5615 memcpy (newname, name, namelen);
5616
5617 /* Check the hidden versioned definition. */
5618 p = newname + namelen;
5619 *p++ = ELF_VER_CHR;
5620 memcpy (p, verstr, verlen + 1);
5621 newh = elf_link_hash_lookup (elf_hash_table (info),
5622 newname, FALSE, FALSE,
5623 FALSE);
5624 if (newh == NULL
5625 || (newh->root.type != bfd_link_hash_defined
5626 && newh->root.type != bfd_link_hash_defweak))
5627 {
5628 /* Check the default versioned definition. */
5629 *p++ = ELF_VER_CHR;
5630 memcpy (p, verstr, verlen + 1);
5631 newh = elf_link_hash_lookup (elf_hash_table (info),
5632 newname, FALSE, FALSE,
5633 FALSE);
5634 }
5635 free (newname);
5636
5637 /* Mark this version if there is a definition and it is
5638 not defined in a shared object. */
5639 if (newh != NULL
5640 && !newh->def_dynamic
5641 && (newh->root.type == bfd_link_hash_defined
5642 || newh->root.type == bfd_link_hash_defweak))
5643 d->symver = 1;
5644 }
5645
5646 /* Attach all the symbols to their version information. */
5647 asvinfo.info = info;
5648 asvinfo.verdefs = verdefs;
5649 asvinfo.failed = FALSE;
5650
5651 elf_link_hash_traverse (elf_hash_table (info),
5652 _bfd_elf_link_assign_sym_version,
5653 &asvinfo);
5654 if (asvinfo.failed)
5655 return FALSE;
5656
5657 if (!info->allow_undefined_version)
5658 {
5659 /* Check if all global versions have a definition. */
5660 all_defined = TRUE;
5661 for (t = verdefs; t != NULL; t = t->next)
5662 for (d = t->globals.list; d != NULL; d = d->next)
5663 if (d->literal && !d->symver && !d->script)
5664 {
5665 (*_bfd_error_handler)
5666 (_("%s: undefined version: %s"),
5667 d->pattern, t->name);
5668 all_defined = FALSE;
5669 }
5670
5671 if (!all_defined)
5672 {
5673 bfd_set_error (bfd_error_bad_value);
5674 return FALSE;
5675 }
5676 }
5677
5678 /* Find all symbols which were defined in a dynamic object and make
5679 the backend pick a reasonable value for them. */
5680 elf_link_hash_traverse (elf_hash_table (info),
5681 _bfd_elf_adjust_dynamic_symbol,
5682 &eif);
5683 if (eif.failed)
5684 return FALSE;
5685
5686 /* Add some entries to the .dynamic section. We fill in some of the
5687 values later, in bfd_elf_final_link, but we must add the entries
5688 now so that we know the final size of the .dynamic section. */
5689
5690 /* If there are initialization and/or finalization functions to
5691 call then add the corresponding DT_INIT/DT_FINI entries. */
5692 h = (info->init_function
5693 ? elf_link_hash_lookup (elf_hash_table (info),
5694 info->init_function, FALSE,
5695 FALSE, FALSE)
5696 : NULL);
5697 if (h != NULL
5698 && (h->ref_regular
5699 || h->def_regular))
5700 {
5701 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5702 return FALSE;
5703 }
5704 h = (info->fini_function
5705 ? elf_link_hash_lookup (elf_hash_table (info),
5706 info->fini_function, FALSE,
5707 FALSE, FALSE)
5708 : NULL);
5709 if (h != NULL
5710 && (h->ref_regular
5711 || h->def_regular))
5712 {
5713 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5714 return FALSE;
5715 }
5716
5717 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5718 if (s != NULL && s->linker_has_input)
5719 {
5720 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5721 if (! info->executable)
5722 {
5723 bfd *sub;
5724 asection *o;
5725
5726 for (sub = info->input_bfds; sub != NULL;
5727 sub = sub->link_next)
5728 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5729 for (o = sub->sections; o != NULL; o = o->next)
5730 if (elf_section_data (o)->this_hdr.sh_type
5731 == SHT_PREINIT_ARRAY)
5732 {
5733 (*_bfd_error_handler)
5734 (_("%B: .preinit_array section is not allowed in DSO"),
5735 sub);
5736 break;
5737 }
5738
5739 bfd_set_error (bfd_error_nonrepresentable_section);
5740 return FALSE;
5741 }
5742
5743 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5744 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5745 return FALSE;
5746 }
5747 s = bfd_get_section_by_name (output_bfd, ".init_array");
5748 if (s != NULL && s->linker_has_input)
5749 {
5750 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5751 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5752 return FALSE;
5753 }
5754 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5755 if (s != NULL && s->linker_has_input)
5756 {
5757 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5758 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5759 return FALSE;
5760 }
5761
5762 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5763 /* If .dynstr is excluded from the link, we don't want any of
5764 these tags. Strictly, we should be checking each section
5765 individually; This quick check covers for the case where
5766 someone does a /DISCARD/ : { *(*) }. */
5767 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5768 {
5769 bfd_size_type strsize;
5770
5771 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5772 if ((info->emit_hash
5773 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5774 || (info->emit_gnu_hash
5775 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5776 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5777 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5778 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5779 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5780 bed->s->sizeof_sym))
5781 return FALSE;
5782 }
5783 }
5784
5785 /* The backend must work out the sizes of all the other dynamic
5786 sections. */
5787 if (bed->elf_backend_size_dynamic_sections
5788 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5789 return FALSE;
5790
5791 if (elf_hash_table (info)->dynamic_sections_created)
5792 {
5793 unsigned long section_sym_count;
5794 asection *s;
5795
5796 /* Set up the version definition section. */
5797 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5798 BFD_ASSERT (s != NULL);
5799
5800 /* We may have created additional version definitions if we are
5801 just linking a regular application. */
5802 verdefs = asvinfo.verdefs;
5803
5804 /* Skip anonymous version tag. */
5805 if (verdefs != NULL && verdefs->vernum == 0)
5806 verdefs = verdefs->next;
5807
5808 if (verdefs == NULL && !info->create_default_symver)
5809 s->flags |= SEC_EXCLUDE;
5810 else
5811 {
5812 unsigned int cdefs;
5813 bfd_size_type size;
5814 struct bfd_elf_version_tree *t;
5815 bfd_byte *p;
5816 Elf_Internal_Verdef def;
5817 Elf_Internal_Verdaux defaux;
5818 struct bfd_link_hash_entry *bh;
5819 struct elf_link_hash_entry *h;
5820 const char *name;
5821
5822 cdefs = 0;
5823 size = 0;
5824
5825 /* Make space for the base version. */
5826 size += sizeof (Elf_External_Verdef);
5827 size += sizeof (Elf_External_Verdaux);
5828 ++cdefs;
5829
5830 /* Make space for the default version. */
5831 if (info->create_default_symver)
5832 {
5833 size += sizeof (Elf_External_Verdef);
5834 ++cdefs;
5835 }
5836
5837 for (t = verdefs; t != NULL; t = t->next)
5838 {
5839 struct bfd_elf_version_deps *n;
5840
5841 size += sizeof (Elf_External_Verdef);
5842 size += sizeof (Elf_External_Verdaux);
5843 ++cdefs;
5844
5845 for (n = t->deps; n != NULL; n = n->next)
5846 size += sizeof (Elf_External_Verdaux);
5847 }
5848
5849 s->size = size;
5850 s->contents = bfd_alloc (output_bfd, s->size);
5851 if (s->contents == NULL && s->size != 0)
5852 return FALSE;
5853
5854 /* Fill in the version definition section. */
5855
5856 p = s->contents;
5857
5858 def.vd_version = VER_DEF_CURRENT;
5859 def.vd_flags = VER_FLG_BASE;
5860 def.vd_ndx = 1;
5861 def.vd_cnt = 1;
5862 if (info->create_default_symver)
5863 {
5864 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5865 def.vd_next = sizeof (Elf_External_Verdef);
5866 }
5867 else
5868 {
5869 def.vd_aux = sizeof (Elf_External_Verdef);
5870 def.vd_next = (sizeof (Elf_External_Verdef)
5871 + sizeof (Elf_External_Verdaux));
5872 }
5873
5874 if (soname_indx != (bfd_size_type) -1)
5875 {
5876 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5877 soname_indx);
5878 def.vd_hash = bfd_elf_hash (soname);
5879 defaux.vda_name = soname_indx;
5880 name = soname;
5881 }
5882 else
5883 {
5884 bfd_size_type indx;
5885
5886 name = lbasename (output_bfd->filename);
5887 def.vd_hash = bfd_elf_hash (name);
5888 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5889 name, FALSE);
5890 if (indx == (bfd_size_type) -1)
5891 return FALSE;
5892 defaux.vda_name = indx;
5893 }
5894 defaux.vda_next = 0;
5895
5896 _bfd_elf_swap_verdef_out (output_bfd, &def,
5897 (Elf_External_Verdef *) p);
5898 p += sizeof (Elf_External_Verdef);
5899 if (info->create_default_symver)
5900 {
5901 /* Add a symbol representing this version. */
5902 bh = NULL;
5903 if (! (_bfd_generic_link_add_one_symbol
5904 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5905 0, NULL, FALSE,
5906 get_elf_backend_data (dynobj)->collect, &bh)))
5907 return FALSE;
5908 h = (struct elf_link_hash_entry *) bh;
5909 h->non_elf = 0;
5910 h->def_regular = 1;
5911 h->type = STT_OBJECT;
5912 h->verinfo.vertree = NULL;
5913
5914 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5915 return FALSE;
5916
5917 /* Create a duplicate of the base version with the same
5918 aux block, but different flags. */
5919 def.vd_flags = 0;
5920 def.vd_ndx = 2;
5921 def.vd_aux = sizeof (Elf_External_Verdef);
5922 if (verdefs)
5923 def.vd_next = (sizeof (Elf_External_Verdef)
5924 + sizeof (Elf_External_Verdaux));
5925 else
5926 def.vd_next = 0;
5927 _bfd_elf_swap_verdef_out (output_bfd, &def,
5928 (Elf_External_Verdef *) p);
5929 p += sizeof (Elf_External_Verdef);
5930 }
5931 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5932 (Elf_External_Verdaux *) p);
5933 p += sizeof (Elf_External_Verdaux);
5934
5935 for (t = verdefs; t != NULL; t = t->next)
5936 {
5937 unsigned int cdeps;
5938 struct bfd_elf_version_deps *n;
5939
5940 cdeps = 0;
5941 for (n = t->deps; n != NULL; n = n->next)
5942 ++cdeps;
5943
5944 /* Add a symbol representing this version. */
5945 bh = NULL;
5946 if (! (_bfd_generic_link_add_one_symbol
5947 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5948 0, NULL, FALSE,
5949 get_elf_backend_data (dynobj)->collect, &bh)))
5950 return FALSE;
5951 h = (struct elf_link_hash_entry *) bh;
5952 h->non_elf = 0;
5953 h->def_regular = 1;
5954 h->type = STT_OBJECT;
5955 h->verinfo.vertree = t;
5956
5957 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5958 return FALSE;
5959
5960 def.vd_version = VER_DEF_CURRENT;
5961 def.vd_flags = 0;
5962 if (t->globals.list == NULL
5963 && t->locals.list == NULL
5964 && ! t->used)
5965 def.vd_flags |= VER_FLG_WEAK;
5966 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5967 def.vd_cnt = cdeps + 1;
5968 def.vd_hash = bfd_elf_hash (t->name);
5969 def.vd_aux = sizeof (Elf_External_Verdef);
5970 def.vd_next = 0;
5971 if (t->next != NULL)
5972 def.vd_next = (sizeof (Elf_External_Verdef)
5973 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5974
5975 _bfd_elf_swap_verdef_out (output_bfd, &def,
5976 (Elf_External_Verdef *) p);
5977 p += sizeof (Elf_External_Verdef);
5978
5979 defaux.vda_name = h->dynstr_index;
5980 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5981 h->dynstr_index);
5982 defaux.vda_next = 0;
5983 if (t->deps != NULL)
5984 defaux.vda_next = sizeof (Elf_External_Verdaux);
5985 t->name_indx = defaux.vda_name;
5986
5987 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5988 (Elf_External_Verdaux *) p);
5989 p += sizeof (Elf_External_Verdaux);
5990
5991 for (n = t->deps; n != NULL; n = n->next)
5992 {
5993 if (n->version_needed == NULL)
5994 {
5995 /* This can happen if there was an error in the
5996 version script. */
5997 defaux.vda_name = 0;
5998 }
5999 else
6000 {
6001 defaux.vda_name = n->version_needed->name_indx;
6002 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6003 defaux.vda_name);
6004 }
6005 if (n->next == NULL)
6006 defaux.vda_next = 0;
6007 else
6008 defaux.vda_next = sizeof (Elf_External_Verdaux);
6009
6010 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6011 (Elf_External_Verdaux *) p);
6012 p += sizeof (Elf_External_Verdaux);
6013 }
6014 }
6015
6016 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6017 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6018 return FALSE;
6019
6020 elf_tdata (output_bfd)->cverdefs = cdefs;
6021 }
6022
6023 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6024 {
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6026 return FALSE;
6027 }
6028 else if (info->flags & DF_BIND_NOW)
6029 {
6030 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6031 return FALSE;
6032 }
6033
6034 if (info->flags_1)
6035 {
6036 if (info->executable)
6037 info->flags_1 &= ~ (DF_1_INITFIRST
6038 | DF_1_NODELETE
6039 | DF_1_NOOPEN);
6040 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6041 return FALSE;
6042 }
6043
6044 /* Work out the size of the version reference section. */
6045
6046 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6047 BFD_ASSERT (s != NULL);
6048 {
6049 struct elf_find_verdep_info sinfo;
6050
6051 sinfo.info = info;
6052 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6053 if (sinfo.vers == 0)
6054 sinfo.vers = 1;
6055 sinfo.failed = FALSE;
6056
6057 elf_link_hash_traverse (elf_hash_table (info),
6058 _bfd_elf_link_find_version_dependencies,
6059 &sinfo);
6060 if (sinfo.failed)
6061 return FALSE;
6062
6063 if (elf_tdata (output_bfd)->verref == NULL)
6064 s->flags |= SEC_EXCLUDE;
6065 else
6066 {
6067 Elf_Internal_Verneed *t;
6068 unsigned int size;
6069 unsigned int crefs;
6070 bfd_byte *p;
6071
6072 /* Build the version definition section. */
6073 size = 0;
6074 crefs = 0;
6075 for (t = elf_tdata (output_bfd)->verref;
6076 t != NULL;
6077 t = t->vn_nextref)
6078 {
6079 Elf_Internal_Vernaux *a;
6080
6081 size += sizeof (Elf_External_Verneed);
6082 ++crefs;
6083 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6084 size += sizeof (Elf_External_Vernaux);
6085 }
6086
6087 s->size = size;
6088 s->contents = bfd_alloc (output_bfd, s->size);
6089 if (s->contents == NULL)
6090 return FALSE;
6091
6092 p = s->contents;
6093 for (t = elf_tdata (output_bfd)->verref;
6094 t != NULL;
6095 t = t->vn_nextref)
6096 {
6097 unsigned int caux;
6098 Elf_Internal_Vernaux *a;
6099 bfd_size_type indx;
6100
6101 caux = 0;
6102 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6103 ++caux;
6104
6105 t->vn_version = VER_NEED_CURRENT;
6106 t->vn_cnt = caux;
6107 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6108 elf_dt_name (t->vn_bfd) != NULL
6109 ? elf_dt_name (t->vn_bfd)
6110 : lbasename (t->vn_bfd->filename),
6111 FALSE);
6112 if (indx == (bfd_size_type) -1)
6113 return FALSE;
6114 t->vn_file = indx;
6115 t->vn_aux = sizeof (Elf_External_Verneed);
6116 if (t->vn_nextref == NULL)
6117 t->vn_next = 0;
6118 else
6119 t->vn_next = (sizeof (Elf_External_Verneed)
6120 + caux * sizeof (Elf_External_Vernaux));
6121
6122 _bfd_elf_swap_verneed_out (output_bfd, t,
6123 (Elf_External_Verneed *) p);
6124 p += sizeof (Elf_External_Verneed);
6125
6126 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6127 {
6128 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6129 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6130 a->vna_nodename, FALSE);
6131 if (indx == (bfd_size_type) -1)
6132 return FALSE;
6133 a->vna_name = indx;
6134 if (a->vna_nextptr == NULL)
6135 a->vna_next = 0;
6136 else
6137 a->vna_next = sizeof (Elf_External_Vernaux);
6138
6139 _bfd_elf_swap_vernaux_out (output_bfd, a,
6140 (Elf_External_Vernaux *) p);
6141 p += sizeof (Elf_External_Vernaux);
6142 }
6143 }
6144
6145 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6146 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6147 return FALSE;
6148
6149 elf_tdata (output_bfd)->cverrefs = crefs;
6150 }
6151 }
6152
6153 if ((elf_tdata (output_bfd)->cverrefs == 0
6154 && elf_tdata (output_bfd)->cverdefs == 0)
6155 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6156 &section_sym_count) == 0)
6157 {
6158 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6159 s->flags |= SEC_EXCLUDE;
6160 }
6161 }
6162 return TRUE;
6163 }
6164
6165 /* Find the first non-excluded output section. We'll use its
6166 section symbol for some emitted relocs. */
6167 void
6168 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6169 {
6170 asection *s;
6171
6172 for (s = output_bfd->sections; s != NULL; s = s->next)
6173 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6174 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6175 {
6176 elf_hash_table (info)->text_index_section = s;
6177 break;
6178 }
6179 }
6180
6181 /* Find two non-excluded output sections, one for code, one for data.
6182 We'll use their section symbols for some emitted relocs. */
6183 void
6184 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6185 {
6186 asection *s;
6187
6188 /* Data first, since setting text_index_section changes
6189 _bfd_elf_link_omit_section_dynsym. */
6190 for (s = output_bfd->sections; s != NULL; s = s->next)
6191 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6192 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6193 {
6194 elf_hash_table (info)->data_index_section = s;
6195 break;
6196 }
6197
6198 for (s = output_bfd->sections; s != NULL; s = s->next)
6199 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6200 == (SEC_ALLOC | SEC_READONLY))
6201 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6202 {
6203 elf_hash_table (info)->text_index_section = s;
6204 break;
6205 }
6206
6207 if (elf_hash_table (info)->text_index_section == NULL)
6208 elf_hash_table (info)->text_index_section
6209 = elf_hash_table (info)->data_index_section;
6210 }
6211
6212 bfd_boolean
6213 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6214 {
6215 const struct elf_backend_data *bed;
6216
6217 if (!is_elf_hash_table (info->hash))
6218 return TRUE;
6219
6220 bed = get_elf_backend_data (output_bfd);
6221 (*bed->elf_backend_init_index_section) (output_bfd, info);
6222
6223 if (elf_hash_table (info)->dynamic_sections_created)
6224 {
6225 bfd *dynobj;
6226 asection *s;
6227 bfd_size_type dynsymcount;
6228 unsigned long section_sym_count;
6229 unsigned int dtagcount;
6230
6231 dynobj = elf_hash_table (info)->dynobj;
6232
6233 /* Assign dynsym indicies. In a shared library we generate a
6234 section symbol for each output section, which come first.
6235 Next come all of the back-end allocated local dynamic syms,
6236 followed by the rest of the global symbols. */
6237
6238 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6239 &section_sym_count);
6240
6241 /* Work out the size of the symbol version section. */
6242 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6243 BFD_ASSERT (s != NULL);
6244 if (dynsymcount != 0
6245 && (s->flags & SEC_EXCLUDE) == 0)
6246 {
6247 s->size = dynsymcount * sizeof (Elf_External_Versym);
6248 s->contents = bfd_zalloc (output_bfd, s->size);
6249 if (s->contents == NULL)
6250 return FALSE;
6251
6252 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6253 return FALSE;
6254 }
6255
6256 /* Set the size of the .dynsym and .hash sections. We counted
6257 the number of dynamic symbols in elf_link_add_object_symbols.
6258 We will build the contents of .dynsym and .hash when we build
6259 the final symbol table, because until then we do not know the
6260 correct value to give the symbols. We built the .dynstr
6261 section as we went along in elf_link_add_object_symbols. */
6262 s = bfd_get_section_by_name (dynobj, ".dynsym");
6263 BFD_ASSERT (s != NULL);
6264 s->size = dynsymcount * bed->s->sizeof_sym;
6265
6266 if (dynsymcount != 0)
6267 {
6268 s->contents = bfd_alloc (output_bfd, s->size);
6269 if (s->contents == NULL)
6270 return FALSE;
6271
6272 /* The first entry in .dynsym is a dummy symbol.
6273 Clear all the section syms, in case we don't output them all. */
6274 ++section_sym_count;
6275 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6276 }
6277
6278 elf_hash_table (info)->bucketcount = 0;
6279
6280 /* Compute the size of the hashing table. As a side effect this
6281 computes the hash values for all the names we export. */
6282 if (info->emit_hash)
6283 {
6284 unsigned long int *hashcodes;
6285 struct hash_codes_info hashinf;
6286 bfd_size_type amt;
6287 unsigned long int nsyms;
6288 size_t bucketcount;
6289 size_t hash_entry_size;
6290
6291 /* Compute the hash values for all exported symbols. At the same
6292 time store the values in an array so that we could use them for
6293 optimizations. */
6294 amt = dynsymcount * sizeof (unsigned long int);
6295 hashcodes = bfd_malloc (amt);
6296 if (hashcodes == NULL)
6297 return FALSE;
6298 hashinf.hashcodes = hashcodes;
6299 hashinf.error = FALSE;
6300
6301 /* Put all hash values in HASHCODES. */
6302 elf_link_hash_traverse (elf_hash_table (info),
6303 elf_collect_hash_codes, &hashinf);
6304 if (hashinf.error)
6305 {
6306 free (hashcodes);
6307 return FALSE;
6308 }
6309
6310 nsyms = hashinf.hashcodes - hashcodes;
6311 bucketcount
6312 = compute_bucket_count (info, hashcodes, nsyms, 0);
6313 free (hashcodes);
6314
6315 if (bucketcount == 0)
6316 return FALSE;
6317
6318 elf_hash_table (info)->bucketcount = bucketcount;
6319
6320 s = bfd_get_section_by_name (dynobj, ".hash");
6321 BFD_ASSERT (s != NULL);
6322 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6323 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6324 s->contents = bfd_zalloc (output_bfd, s->size);
6325 if (s->contents == NULL)
6326 return FALSE;
6327
6328 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6329 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6330 s->contents + hash_entry_size);
6331 }
6332
6333 if (info->emit_gnu_hash)
6334 {
6335 size_t i, cnt;
6336 unsigned char *contents;
6337 struct collect_gnu_hash_codes cinfo;
6338 bfd_size_type amt;
6339 size_t bucketcount;
6340
6341 memset (&cinfo, 0, sizeof (cinfo));
6342
6343 /* Compute the hash values for all exported symbols. At the same
6344 time store the values in an array so that we could use them for
6345 optimizations. */
6346 amt = dynsymcount * 2 * sizeof (unsigned long int);
6347 cinfo.hashcodes = bfd_malloc (amt);
6348 if (cinfo.hashcodes == NULL)
6349 return FALSE;
6350
6351 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6352 cinfo.min_dynindx = -1;
6353 cinfo.output_bfd = output_bfd;
6354 cinfo.bed = bed;
6355
6356 /* Put all hash values in HASHCODES. */
6357 elf_link_hash_traverse (elf_hash_table (info),
6358 elf_collect_gnu_hash_codes, &cinfo);
6359 if (cinfo.error)
6360 {
6361 free (cinfo.hashcodes);
6362 return FALSE;
6363 }
6364
6365 bucketcount
6366 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6367
6368 if (bucketcount == 0)
6369 {
6370 free (cinfo.hashcodes);
6371 return FALSE;
6372 }
6373
6374 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6375 BFD_ASSERT (s != NULL);
6376
6377 if (cinfo.nsyms == 0)
6378 {
6379 /* Empty .gnu.hash section is special. */
6380 BFD_ASSERT (cinfo.min_dynindx == -1);
6381 free (cinfo.hashcodes);
6382 s->size = 5 * 4 + bed->s->arch_size / 8;
6383 contents = bfd_zalloc (output_bfd, s->size);
6384 if (contents == NULL)
6385 return FALSE;
6386 s->contents = contents;
6387 /* 1 empty bucket. */
6388 bfd_put_32 (output_bfd, 1, contents);
6389 /* SYMIDX above the special symbol 0. */
6390 bfd_put_32 (output_bfd, 1, contents + 4);
6391 /* Just one word for bitmask. */
6392 bfd_put_32 (output_bfd, 1, contents + 8);
6393 /* Only hash fn bloom filter. */
6394 bfd_put_32 (output_bfd, 0, contents + 12);
6395 /* No hashes are valid - empty bitmask. */
6396 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6397 /* No hashes in the only bucket. */
6398 bfd_put_32 (output_bfd, 0,
6399 contents + 16 + bed->s->arch_size / 8);
6400 }
6401 else
6402 {
6403 unsigned long int maskwords, maskbitslog2;
6404 BFD_ASSERT (cinfo.min_dynindx != -1);
6405
6406 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6407 if (maskbitslog2 < 3)
6408 maskbitslog2 = 5;
6409 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6410 maskbitslog2 = maskbitslog2 + 3;
6411 else
6412 maskbitslog2 = maskbitslog2 + 2;
6413 if (bed->s->arch_size == 64)
6414 {
6415 if (maskbitslog2 == 5)
6416 maskbitslog2 = 6;
6417 cinfo.shift1 = 6;
6418 }
6419 else
6420 cinfo.shift1 = 5;
6421 cinfo.mask = (1 << cinfo.shift1) - 1;
6422 cinfo.shift2 = maskbitslog2;
6423 cinfo.maskbits = 1 << maskbitslog2;
6424 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6425 amt = bucketcount * sizeof (unsigned long int) * 2;
6426 amt += maskwords * sizeof (bfd_vma);
6427 cinfo.bitmask = bfd_malloc (amt);
6428 if (cinfo.bitmask == NULL)
6429 {
6430 free (cinfo.hashcodes);
6431 return FALSE;
6432 }
6433
6434 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6435 cinfo.indx = cinfo.counts + bucketcount;
6436 cinfo.symindx = dynsymcount - cinfo.nsyms;
6437 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6438
6439 /* Determine how often each hash bucket is used. */
6440 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6441 for (i = 0; i < cinfo.nsyms; ++i)
6442 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6443
6444 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6445 if (cinfo.counts[i] != 0)
6446 {
6447 cinfo.indx[i] = cnt;
6448 cnt += cinfo.counts[i];
6449 }
6450 BFD_ASSERT (cnt == dynsymcount);
6451 cinfo.bucketcount = bucketcount;
6452 cinfo.local_indx = cinfo.min_dynindx;
6453
6454 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6455 s->size += cinfo.maskbits / 8;
6456 contents = bfd_zalloc (output_bfd, s->size);
6457 if (contents == NULL)
6458 {
6459 free (cinfo.bitmask);
6460 free (cinfo.hashcodes);
6461 return FALSE;
6462 }
6463
6464 s->contents = contents;
6465 bfd_put_32 (output_bfd, bucketcount, contents);
6466 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6467 bfd_put_32 (output_bfd, maskwords, contents + 8);
6468 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6469 contents += 16 + cinfo.maskbits / 8;
6470
6471 for (i = 0; i < bucketcount; ++i)
6472 {
6473 if (cinfo.counts[i] == 0)
6474 bfd_put_32 (output_bfd, 0, contents);
6475 else
6476 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6477 contents += 4;
6478 }
6479
6480 cinfo.contents = contents;
6481
6482 /* Renumber dynamic symbols, populate .gnu.hash section. */
6483 elf_link_hash_traverse (elf_hash_table (info),
6484 elf_renumber_gnu_hash_syms, &cinfo);
6485
6486 contents = s->contents + 16;
6487 for (i = 0; i < maskwords; ++i)
6488 {
6489 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6490 contents);
6491 contents += bed->s->arch_size / 8;
6492 }
6493
6494 free (cinfo.bitmask);
6495 free (cinfo.hashcodes);
6496 }
6497 }
6498
6499 s = bfd_get_section_by_name (dynobj, ".dynstr");
6500 BFD_ASSERT (s != NULL);
6501
6502 elf_finalize_dynstr (output_bfd, info);
6503
6504 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6505
6506 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6507 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6508 return FALSE;
6509 }
6510
6511 return TRUE;
6512 }
6513 \f
6514 /* Indicate that we are only retrieving symbol values from this
6515 section. */
6516
6517 void
6518 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6519 {
6520 if (is_elf_hash_table (info->hash))
6521 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6522 _bfd_generic_link_just_syms (sec, info);
6523 }
6524
6525 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6526
6527 static void
6528 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6529 asection *sec)
6530 {
6531 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6532 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6533 }
6534
6535 /* Finish SHF_MERGE section merging. */
6536
6537 bfd_boolean
6538 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6539 {
6540 bfd *ibfd;
6541 asection *sec;
6542
6543 if (!is_elf_hash_table (info->hash))
6544 return FALSE;
6545
6546 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6547 if ((ibfd->flags & DYNAMIC) == 0)
6548 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6549 if ((sec->flags & SEC_MERGE) != 0
6550 && !bfd_is_abs_section (sec->output_section))
6551 {
6552 struct bfd_elf_section_data *secdata;
6553
6554 secdata = elf_section_data (sec);
6555 if (! _bfd_add_merge_section (abfd,
6556 &elf_hash_table (info)->merge_info,
6557 sec, &secdata->sec_info))
6558 return FALSE;
6559 else if (secdata->sec_info)
6560 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6561 }
6562
6563 if (elf_hash_table (info)->merge_info != NULL)
6564 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6565 merge_sections_remove_hook);
6566 return TRUE;
6567 }
6568
6569 /* Create an entry in an ELF linker hash table. */
6570
6571 struct bfd_hash_entry *
6572 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6573 struct bfd_hash_table *table,
6574 const char *string)
6575 {
6576 /* Allocate the structure if it has not already been allocated by a
6577 subclass. */
6578 if (entry == NULL)
6579 {
6580 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6581 if (entry == NULL)
6582 return entry;
6583 }
6584
6585 /* Call the allocation method of the superclass. */
6586 entry = _bfd_link_hash_newfunc (entry, table, string);
6587 if (entry != NULL)
6588 {
6589 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6590 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6591
6592 /* Set local fields. */
6593 ret->indx = -1;
6594 ret->dynindx = -1;
6595 ret->got = htab->init_got_refcount;
6596 ret->plt = htab->init_plt_refcount;
6597 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6598 - offsetof (struct elf_link_hash_entry, size)));
6599 /* Assume that we have been called by a non-ELF symbol reader.
6600 This flag is then reset by the code which reads an ELF input
6601 file. This ensures that a symbol created by a non-ELF symbol
6602 reader will have the flag set correctly. */
6603 ret->non_elf = 1;
6604 }
6605
6606 return entry;
6607 }
6608
6609 /* Copy data from an indirect symbol to its direct symbol, hiding the
6610 old indirect symbol. Also used for copying flags to a weakdef. */
6611
6612 void
6613 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6614 struct elf_link_hash_entry *dir,
6615 struct elf_link_hash_entry *ind)
6616 {
6617 struct elf_link_hash_table *htab;
6618
6619 /* Copy down any references that we may have already seen to the
6620 symbol which just became indirect. */
6621
6622 dir->ref_dynamic |= ind->ref_dynamic;
6623 dir->ref_regular |= ind->ref_regular;
6624 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6625 dir->non_got_ref |= ind->non_got_ref;
6626 dir->needs_plt |= ind->needs_plt;
6627 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6628
6629 if (ind->root.type != bfd_link_hash_indirect)
6630 return;
6631
6632 /* Copy over the global and procedure linkage table refcount entries.
6633 These may have been already set up by a check_relocs routine. */
6634 htab = elf_hash_table (info);
6635 if (ind->got.refcount > htab->init_got_refcount.refcount)
6636 {
6637 if (dir->got.refcount < 0)
6638 dir->got.refcount = 0;
6639 dir->got.refcount += ind->got.refcount;
6640 ind->got.refcount = htab->init_got_refcount.refcount;
6641 }
6642
6643 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6644 {
6645 if (dir->plt.refcount < 0)
6646 dir->plt.refcount = 0;
6647 dir->plt.refcount += ind->plt.refcount;
6648 ind->plt.refcount = htab->init_plt_refcount.refcount;
6649 }
6650
6651 if (ind->dynindx != -1)
6652 {
6653 if (dir->dynindx != -1)
6654 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6655 dir->dynindx = ind->dynindx;
6656 dir->dynstr_index = ind->dynstr_index;
6657 ind->dynindx = -1;
6658 ind->dynstr_index = 0;
6659 }
6660 }
6661
6662 void
6663 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6664 struct elf_link_hash_entry *h,
6665 bfd_boolean force_local)
6666 {
6667 /* STT_GNU_IFUNC symbol must go through PLT. */
6668 if (h->type != STT_GNU_IFUNC)
6669 {
6670 h->plt = elf_hash_table (info)->init_plt_offset;
6671 h->needs_plt = 0;
6672 }
6673 if (force_local)
6674 {
6675 h->forced_local = 1;
6676 if (h->dynindx != -1)
6677 {
6678 h->dynindx = -1;
6679 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6680 h->dynstr_index);
6681 }
6682 }
6683 }
6684
6685 /* Initialize an ELF linker hash table. */
6686
6687 bfd_boolean
6688 _bfd_elf_link_hash_table_init
6689 (struct elf_link_hash_table *table,
6690 bfd *abfd,
6691 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6692 struct bfd_hash_table *,
6693 const char *),
6694 unsigned int entsize)
6695 {
6696 bfd_boolean ret;
6697 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6698
6699 memset (table, 0, sizeof * table);
6700 table->init_got_refcount.refcount = can_refcount - 1;
6701 table->init_plt_refcount.refcount = can_refcount - 1;
6702 table->init_got_offset.offset = -(bfd_vma) 1;
6703 table->init_plt_offset.offset = -(bfd_vma) 1;
6704 /* The first dynamic symbol is a dummy. */
6705 table->dynsymcount = 1;
6706
6707 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6708 table->root.type = bfd_link_elf_hash_table;
6709
6710 return ret;
6711 }
6712
6713 /* Create an ELF linker hash table. */
6714
6715 struct bfd_link_hash_table *
6716 _bfd_elf_link_hash_table_create (bfd *abfd)
6717 {
6718 struct elf_link_hash_table *ret;
6719 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6720
6721 ret = bfd_malloc (amt);
6722 if (ret == NULL)
6723 return NULL;
6724
6725 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6726 sizeof (struct elf_link_hash_entry)))
6727 {
6728 free (ret);
6729 return NULL;
6730 }
6731
6732 return &ret->root;
6733 }
6734
6735 /* This is a hook for the ELF emulation code in the generic linker to
6736 tell the backend linker what file name to use for the DT_NEEDED
6737 entry for a dynamic object. */
6738
6739 void
6740 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6741 {
6742 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6743 && bfd_get_format (abfd) == bfd_object)
6744 elf_dt_name (abfd) = name;
6745 }
6746
6747 int
6748 bfd_elf_get_dyn_lib_class (bfd *abfd)
6749 {
6750 int lib_class;
6751 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6752 && bfd_get_format (abfd) == bfd_object)
6753 lib_class = elf_dyn_lib_class (abfd);
6754 else
6755 lib_class = 0;
6756 return lib_class;
6757 }
6758
6759 void
6760 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6761 {
6762 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6763 && bfd_get_format (abfd) == bfd_object)
6764 elf_dyn_lib_class (abfd) = lib_class;
6765 }
6766
6767 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6768 the linker ELF emulation code. */
6769
6770 struct bfd_link_needed_list *
6771 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6772 struct bfd_link_info *info)
6773 {
6774 if (! is_elf_hash_table (info->hash))
6775 return NULL;
6776 return elf_hash_table (info)->needed;
6777 }
6778
6779 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6780 hook for the linker ELF emulation code. */
6781
6782 struct bfd_link_needed_list *
6783 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6784 struct bfd_link_info *info)
6785 {
6786 if (! is_elf_hash_table (info->hash))
6787 return NULL;
6788 return elf_hash_table (info)->runpath;
6789 }
6790
6791 /* Get the name actually used for a dynamic object for a link. This
6792 is the SONAME entry if there is one. Otherwise, it is the string
6793 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6794
6795 const char *
6796 bfd_elf_get_dt_soname (bfd *abfd)
6797 {
6798 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6799 && bfd_get_format (abfd) == bfd_object)
6800 return elf_dt_name (abfd);
6801 return NULL;
6802 }
6803
6804 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6805 the ELF linker emulation code. */
6806
6807 bfd_boolean
6808 bfd_elf_get_bfd_needed_list (bfd *abfd,
6809 struct bfd_link_needed_list **pneeded)
6810 {
6811 asection *s;
6812 bfd_byte *dynbuf = NULL;
6813 unsigned int elfsec;
6814 unsigned long shlink;
6815 bfd_byte *extdyn, *extdynend;
6816 size_t extdynsize;
6817 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6818
6819 *pneeded = NULL;
6820
6821 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6822 || bfd_get_format (abfd) != bfd_object)
6823 return TRUE;
6824
6825 s = bfd_get_section_by_name (abfd, ".dynamic");
6826 if (s == NULL || s->size == 0)
6827 return TRUE;
6828
6829 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6830 goto error_return;
6831
6832 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6833 if (elfsec == SHN_BAD)
6834 goto error_return;
6835
6836 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6837
6838 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6839 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6840
6841 extdyn = dynbuf;
6842 extdynend = extdyn + s->size;
6843 for (; extdyn < extdynend; extdyn += extdynsize)
6844 {
6845 Elf_Internal_Dyn dyn;
6846
6847 (*swap_dyn_in) (abfd, extdyn, &dyn);
6848
6849 if (dyn.d_tag == DT_NULL)
6850 break;
6851
6852 if (dyn.d_tag == DT_NEEDED)
6853 {
6854 const char *string;
6855 struct bfd_link_needed_list *l;
6856 unsigned int tagv = dyn.d_un.d_val;
6857 bfd_size_type amt;
6858
6859 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6860 if (string == NULL)
6861 goto error_return;
6862
6863 amt = sizeof *l;
6864 l = bfd_alloc (abfd, amt);
6865 if (l == NULL)
6866 goto error_return;
6867
6868 l->by = abfd;
6869 l->name = string;
6870 l->next = *pneeded;
6871 *pneeded = l;
6872 }
6873 }
6874
6875 free (dynbuf);
6876
6877 return TRUE;
6878
6879 error_return:
6880 if (dynbuf != NULL)
6881 free (dynbuf);
6882 return FALSE;
6883 }
6884
6885 struct elf_symbuf_symbol
6886 {
6887 unsigned long st_name; /* Symbol name, index in string tbl */
6888 unsigned char st_info; /* Type and binding attributes */
6889 unsigned char st_other; /* Visibilty, and target specific */
6890 };
6891
6892 struct elf_symbuf_head
6893 {
6894 struct elf_symbuf_symbol *ssym;
6895 bfd_size_type count;
6896 unsigned int st_shndx;
6897 };
6898
6899 struct elf_symbol
6900 {
6901 union
6902 {
6903 Elf_Internal_Sym *isym;
6904 struct elf_symbuf_symbol *ssym;
6905 } u;
6906 const char *name;
6907 };
6908
6909 /* Sort references to symbols by ascending section number. */
6910
6911 static int
6912 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6913 {
6914 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6915 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6916
6917 return s1->st_shndx - s2->st_shndx;
6918 }
6919
6920 static int
6921 elf_sym_name_compare (const void *arg1, const void *arg2)
6922 {
6923 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6924 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6925 return strcmp (s1->name, s2->name);
6926 }
6927
6928 static struct elf_symbuf_head *
6929 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6930 {
6931 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6932 struct elf_symbuf_symbol *ssym;
6933 struct elf_symbuf_head *ssymbuf, *ssymhead;
6934 bfd_size_type i, shndx_count, total_size;
6935
6936 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6937 if (indbuf == NULL)
6938 return NULL;
6939
6940 for (ind = indbuf, i = 0; i < symcount; i++)
6941 if (isymbuf[i].st_shndx != SHN_UNDEF)
6942 *ind++ = &isymbuf[i];
6943 indbufend = ind;
6944
6945 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6946 elf_sort_elf_symbol);
6947
6948 shndx_count = 0;
6949 if (indbufend > indbuf)
6950 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6951 if (ind[0]->st_shndx != ind[1]->st_shndx)
6952 shndx_count++;
6953
6954 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6955 + (indbufend - indbuf) * sizeof (*ssym));
6956 ssymbuf = bfd_malloc (total_size);
6957 if (ssymbuf == NULL)
6958 {
6959 free (indbuf);
6960 return NULL;
6961 }
6962
6963 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6964 ssymbuf->ssym = NULL;
6965 ssymbuf->count = shndx_count;
6966 ssymbuf->st_shndx = 0;
6967 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6968 {
6969 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6970 {
6971 ssymhead++;
6972 ssymhead->ssym = ssym;
6973 ssymhead->count = 0;
6974 ssymhead->st_shndx = (*ind)->st_shndx;
6975 }
6976 ssym->st_name = (*ind)->st_name;
6977 ssym->st_info = (*ind)->st_info;
6978 ssym->st_other = (*ind)->st_other;
6979 ssymhead->count++;
6980 }
6981 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6982 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6983 == total_size));
6984
6985 free (indbuf);
6986 return ssymbuf;
6987 }
6988
6989 /* Check if 2 sections define the same set of local and global
6990 symbols. */
6991
6992 static bfd_boolean
6993 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6994 struct bfd_link_info *info)
6995 {
6996 bfd *bfd1, *bfd2;
6997 const struct elf_backend_data *bed1, *bed2;
6998 Elf_Internal_Shdr *hdr1, *hdr2;
6999 bfd_size_type symcount1, symcount2;
7000 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7001 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7002 Elf_Internal_Sym *isym, *isymend;
7003 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7004 bfd_size_type count1, count2, i;
7005 unsigned int shndx1, shndx2;
7006 bfd_boolean result;
7007
7008 bfd1 = sec1->owner;
7009 bfd2 = sec2->owner;
7010
7011 /* Both sections have to be in ELF. */
7012 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7013 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7014 return FALSE;
7015
7016 if (elf_section_type (sec1) != elf_section_type (sec2))
7017 return FALSE;
7018
7019 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7020 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7021 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7022 return FALSE;
7023
7024 bed1 = get_elf_backend_data (bfd1);
7025 bed2 = get_elf_backend_data (bfd2);
7026 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7027 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7028 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7029 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7030
7031 if (symcount1 == 0 || symcount2 == 0)
7032 return FALSE;
7033
7034 result = FALSE;
7035 isymbuf1 = NULL;
7036 isymbuf2 = NULL;
7037 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7038 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7039
7040 if (ssymbuf1 == NULL)
7041 {
7042 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7043 NULL, NULL, NULL);
7044 if (isymbuf1 == NULL)
7045 goto done;
7046
7047 if (!info->reduce_memory_overheads)
7048 elf_tdata (bfd1)->symbuf = ssymbuf1
7049 = elf_create_symbuf (symcount1, isymbuf1);
7050 }
7051
7052 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7053 {
7054 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7055 NULL, NULL, NULL);
7056 if (isymbuf2 == NULL)
7057 goto done;
7058
7059 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7060 elf_tdata (bfd2)->symbuf = ssymbuf2
7061 = elf_create_symbuf (symcount2, isymbuf2);
7062 }
7063
7064 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7065 {
7066 /* Optimized faster version. */
7067 bfd_size_type lo, hi, mid;
7068 struct elf_symbol *symp;
7069 struct elf_symbuf_symbol *ssym, *ssymend;
7070
7071 lo = 0;
7072 hi = ssymbuf1->count;
7073 ssymbuf1++;
7074 count1 = 0;
7075 while (lo < hi)
7076 {
7077 mid = (lo + hi) / 2;
7078 if (shndx1 < ssymbuf1[mid].st_shndx)
7079 hi = mid;
7080 else if (shndx1 > ssymbuf1[mid].st_shndx)
7081 lo = mid + 1;
7082 else
7083 {
7084 count1 = ssymbuf1[mid].count;
7085 ssymbuf1 += mid;
7086 break;
7087 }
7088 }
7089
7090 lo = 0;
7091 hi = ssymbuf2->count;
7092 ssymbuf2++;
7093 count2 = 0;
7094 while (lo < hi)
7095 {
7096 mid = (lo + hi) / 2;
7097 if (shndx2 < ssymbuf2[mid].st_shndx)
7098 hi = mid;
7099 else if (shndx2 > ssymbuf2[mid].st_shndx)
7100 lo = mid + 1;
7101 else
7102 {
7103 count2 = ssymbuf2[mid].count;
7104 ssymbuf2 += mid;
7105 break;
7106 }
7107 }
7108
7109 if (count1 == 0 || count2 == 0 || count1 != count2)
7110 goto done;
7111
7112 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7113 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7114 if (symtable1 == NULL || symtable2 == NULL)
7115 goto done;
7116
7117 symp = symtable1;
7118 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7119 ssym < ssymend; ssym++, symp++)
7120 {
7121 symp->u.ssym = ssym;
7122 symp->name = bfd_elf_string_from_elf_section (bfd1,
7123 hdr1->sh_link,
7124 ssym->st_name);
7125 }
7126
7127 symp = symtable2;
7128 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7129 ssym < ssymend; ssym++, symp++)
7130 {
7131 symp->u.ssym = ssym;
7132 symp->name = bfd_elf_string_from_elf_section (bfd2,
7133 hdr2->sh_link,
7134 ssym->st_name);
7135 }
7136
7137 /* Sort symbol by name. */
7138 qsort (symtable1, count1, sizeof (struct elf_symbol),
7139 elf_sym_name_compare);
7140 qsort (symtable2, count1, sizeof (struct elf_symbol),
7141 elf_sym_name_compare);
7142
7143 for (i = 0; i < count1; i++)
7144 /* Two symbols must have the same binding, type and name. */
7145 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7146 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7147 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7148 goto done;
7149
7150 result = TRUE;
7151 goto done;
7152 }
7153
7154 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7155 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7156 if (symtable1 == NULL || symtable2 == NULL)
7157 goto done;
7158
7159 /* Count definitions in the section. */
7160 count1 = 0;
7161 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7162 if (isym->st_shndx == shndx1)
7163 symtable1[count1++].u.isym = isym;
7164
7165 count2 = 0;
7166 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7167 if (isym->st_shndx == shndx2)
7168 symtable2[count2++].u.isym = isym;
7169
7170 if (count1 == 0 || count2 == 0 || count1 != count2)
7171 goto done;
7172
7173 for (i = 0; i < count1; i++)
7174 symtable1[i].name
7175 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7176 symtable1[i].u.isym->st_name);
7177
7178 for (i = 0; i < count2; i++)
7179 symtable2[i].name
7180 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7181 symtable2[i].u.isym->st_name);
7182
7183 /* Sort symbol by name. */
7184 qsort (symtable1, count1, sizeof (struct elf_symbol),
7185 elf_sym_name_compare);
7186 qsort (symtable2, count1, sizeof (struct elf_symbol),
7187 elf_sym_name_compare);
7188
7189 for (i = 0; i < count1; i++)
7190 /* Two symbols must have the same binding, type and name. */
7191 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7192 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7193 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7194 goto done;
7195
7196 result = TRUE;
7197
7198 done:
7199 if (symtable1)
7200 free (symtable1);
7201 if (symtable2)
7202 free (symtable2);
7203 if (isymbuf1)
7204 free (isymbuf1);
7205 if (isymbuf2)
7206 free (isymbuf2);
7207
7208 return result;
7209 }
7210
7211 /* Return TRUE if 2 section types are compatible. */
7212
7213 bfd_boolean
7214 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7215 bfd *bbfd, const asection *bsec)
7216 {
7217 if (asec == NULL
7218 || bsec == NULL
7219 || abfd->xvec->flavour != bfd_target_elf_flavour
7220 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7221 return TRUE;
7222
7223 return elf_section_type (asec) == elf_section_type (bsec);
7224 }
7225 \f
7226 /* Final phase of ELF linker. */
7227
7228 /* A structure we use to avoid passing large numbers of arguments. */
7229
7230 struct elf_final_link_info
7231 {
7232 /* General link information. */
7233 struct bfd_link_info *info;
7234 /* Output BFD. */
7235 bfd *output_bfd;
7236 /* Symbol string table. */
7237 struct bfd_strtab_hash *symstrtab;
7238 /* .dynsym section. */
7239 asection *dynsym_sec;
7240 /* .hash section. */
7241 asection *hash_sec;
7242 /* symbol version section (.gnu.version). */
7243 asection *symver_sec;
7244 /* Buffer large enough to hold contents of any section. */
7245 bfd_byte *contents;
7246 /* Buffer large enough to hold external relocs of any section. */
7247 void *external_relocs;
7248 /* Buffer large enough to hold internal relocs of any section. */
7249 Elf_Internal_Rela *internal_relocs;
7250 /* Buffer large enough to hold external local symbols of any input
7251 BFD. */
7252 bfd_byte *external_syms;
7253 /* And a buffer for symbol section indices. */
7254 Elf_External_Sym_Shndx *locsym_shndx;
7255 /* Buffer large enough to hold internal local symbols of any input
7256 BFD. */
7257 Elf_Internal_Sym *internal_syms;
7258 /* Array large enough to hold a symbol index for each local symbol
7259 of any input BFD. */
7260 long *indices;
7261 /* Array large enough to hold a section pointer for each local
7262 symbol of any input BFD. */
7263 asection **sections;
7264 /* Buffer to hold swapped out symbols. */
7265 bfd_byte *symbuf;
7266 /* And one for symbol section indices. */
7267 Elf_External_Sym_Shndx *symshndxbuf;
7268 /* Number of swapped out symbols in buffer. */
7269 size_t symbuf_count;
7270 /* Number of symbols which fit in symbuf. */
7271 size_t symbuf_size;
7272 /* And same for symshndxbuf. */
7273 size_t shndxbuf_size;
7274 };
7275
7276 /* This struct is used to pass information to elf_link_output_extsym. */
7277
7278 struct elf_outext_info
7279 {
7280 bfd_boolean failed;
7281 bfd_boolean localsyms;
7282 struct elf_final_link_info *finfo;
7283 };
7284
7285
7286 /* Support for evaluating a complex relocation.
7287
7288 Complex relocations are generalized, self-describing relocations. The
7289 implementation of them consists of two parts: complex symbols, and the
7290 relocations themselves.
7291
7292 The relocations are use a reserved elf-wide relocation type code (R_RELC
7293 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7294 information (start bit, end bit, word width, etc) into the addend. This
7295 information is extracted from CGEN-generated operand tables within gas.
7296
7297 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7298 internal) representing prefix-notation expressions, including but not
7299 limited to those sorts of expressions normally encoded as addends in the
7300 addend field. The symbol mangling format is:
7301
7302 <node> := <literal>
7303 | <unary-operator> ':' <node>
7304 | <binary-operator> ':' <node> ':' <node>
7305 ;
7306
7307 <literal> := 's' <digits=N> ':' <N character symbol name>
7308 | 'S' <digits=N> ':' <N character section name>
7309 | '#' <hexdigits>
7310 ;
7311
7312 <binary-operator> := as in C
7313 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7314
7315 static void
7316 set_symbol_value (bfd *bfd_with_globals,
7317 Elf_Internal_Sym *isymbuf,
7318 size_t locsymcount,
7319 size_t symidx,
7320 bfd_vma val)
7321 {
7322 struct elf_link_hash_entry **sym_hashes;
7323 struct elf_link_hash_entry *h;
7324 size_t extsymoff = locsymcount;
7325
7326 if (symidx < locsymcount)
7327 {
7328 Elf_Internal_Sym *sym;
7329
7330 sym = isymbuf + symidx;
7331 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7332 {
7333 /* It is a local symbol: move it to the
7334 "absolute" section and give it a value. */
7335 sym->st_shndx = SHN_ABS;
7336 sym->st_value = val;
7337 return;
7338 }
7339 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7340 extsymoff = 0;
7341 }
7342
7343 /* It is a global symbol: set its link type
7344 to "defined" and give it a value. */
7345
7346 sym_hashes = elf_sym_hashes (bfd_with_globals);
7347 h = sym_hashes [symidx - extsymoff];
7348 while (h->root.type == bfd_link_hash_indirect
7349 || h->root.type == bfd_link_hash_warning)
7350 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7351 h->root.type = bfd_link_hash_defined;
7352 h->root.u.def.value = val;
7353 h->root.u.def.section = bfd_abs_section_ptr;
7354 }
7355
7356 static bfd_boolean
7357 resolve_symbol (const char *name,
7358 bfd *input_bfd,
7359 struct elf_final_link_info *finfo,
7360 bfd_vma *result,
7361 Elf_Internal_Sym *isymbuf,
7362 size_t locsymcount)
7363 {
7364 Elf_Internal_Sym *sym;
7365 struct bfd_link_hash_entry *global_entry;
7366 const char *candidate = NULL;
7367 Elf_Internal_Shdr *symtab_hdr;
7368 size_t i;
7369
7370 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7371
7372 for (i = 0; i < locsymcount; ++ i)
7373 {
7374 sym = isymbuf + i;
7375
7376 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7377 continue;
7378
7379 candidate = bfd_elf_string_from_elf_section (input_bfd,
7380 symtab_hdr->sh_link,
7381 sym->st_name);
7382 #ifdef DEBUG
7383 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7384 name, candidate, (unsigned long) sym->st_value);
7385 #endif
7386 if (candidate && strcmp (candidate, name) == 0)
7387 {
7388 asection *sec = finfo->sections [i];
7389
7390 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7391 *result += sec->output_offset + sec->output_section->vma;
7392 #ifdef DEBUG
7393 printf ("Found symbol with value %8.8lx\n",
7394 (unsigned long) *result);
7395 #endif
7396 return TRUE;
7397 }
7398 }
7399
7400 /* Hmm, haven't found it yet. perhaps it is a global. */
7401 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7402 FALSE, FALSE, TRUE);
7403 if (!global_entry)
7404 return FALSE;
7405
7406 if (global_entry->type == bfd_link_hash_defined
7407 || global_entry->type == bfd_link_hash_defweak)
7408 {
7409 *result = (global_entry->u.def.value
7410 + global_entry->u.def.section->output_section->vma
7411 + global_entry->u.def.section->output_offset);
7412 #ifdef DEBUG
7413 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7414 global_entry->root.string, (unsigned long) *result);
7415 #endif
7416 return TRUE;
7417 }
7418
7419 return FALSE;
7420 }
7421
7422 static bfd_boolean
7423 resolve_section (const char *name,
7424 asection *sections,
7425 bfd_vma *result)
7426 {
7427 asection *curr;
7428 unsigned int len;
7429
7430 for (curr = sections; curr; curr = curr->next)
7431 if (strcmp (curr->name, name) == 0)
7432 {
7433 *result = curr->vma;
7434 return TRUE;
7435 }
7436
7437 /* Hmm. still haven't found it. try pseudo-section names. */
7438 for (curr = sections; curr; curr = curr->next)
7439 {
7440 len = strlen (curr->name);
7441 if (len > strlen (name))
7442 continue;
7443
7444 if (strncmp (curr->name, name, len) == 0)
7445 {
7446 if (strncmp (".end", name + len, 4) == 0)
7447 {
7448 *result = curr->vma + curr->size;
7449 return TRUE;
7450 }
7451
7452 /* Insert more pseudo-section names here, if you like. */
7453 }
7454 }
7455
7456 return FALSE;
7457 }
7458
7459 static void
7460 undefined_reference (const char *reftype, const char *name)
7461 {
7462 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7463 reftype, name);
7464 }
7465
7466 static bfd_boolean
7467 eval_symbol (bfd_vma *result,
7468 const char **symp,
7469 bfd *input_bfd,
7470 struct elf_final_link_info *finfo,
7471 bfd_vma dot,
7472 Elf_Internal_Sym *isymbuf,
7473 size_t locsymcount,
7474 int signed_p)
7475 {
7476 size_t len;
7477 size_t symlen;
7478 bfd_vma a;
7479 bfd_vma b;
7480 char symbuf[4096];
7481 const char *sym = *symp;
7482 const char *symend;
7483 bfd_boolean symbol_is_section = FALSE;
7484
7485 len = strlen (sym);
7486 symend = sym + len;
7487
7488 if (len < 1 || len > sizeof (symbuf))
7489 {
7490 bfd_set_error (bfd_error_invalid_operation);
7491 return FALSE;
7492 }
7493
7494 switch (* sym)
7495 {
7496 case '.':
7497 *result = dot;
7498 *symp = sym + 1;
7499 return TRUE;
7500
7501 case '#':
7502 ++sym;
7503 *result = strtoul (sym, (char **) symp, 16);
7504 return TRUE;
7505
7506 case 'S':
7507 symbol_is_section = TRUE;
7508 case 's':
7509 ++sym;
7510 symlen = strtol (sym, (char **) symp, 10);
7511 sym = *symp + 1; /* Skip the trailing ':'. */
7512
7513 if (symend < sym || symlen + 1 > sizeof (symbuf))
7514 {
7515 bfd_set_error (bfd_error_invalid_operation);
7516 return FALSE;
7517 }
7518
7519 memcpy (symbuf, sym, symlen);
7520 symbuf[symlen] = '\0';
7521 *symp = sym + symlen;
7522
7523 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7524 the symbol as a section, or vice-versa. so we're pretty liberal in our
7525 interpretation here; section means "try section first", not "must be a
7526 section", and likewise with symbol. */
7527
7528 if (symbol_is_section)
7529 {
7530 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7531 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7532 isymbuf, locsymcount))
7533 {
7534 undefined_reference ("section", symbuf);
7535 return FALSE;
7536 }
7537 }
7538 else
7539 {
7540 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7541 isymbuf, locsymcount)
7542 && !resolve_section (symbuf, finfo->output_bfd->sections,
7543 result))
7544 {
7545 undefined_reference ("symbol", symbuf);
7546 return FALSE;
7547 }
7548 }
7549
7550 return TRUE;
7551
7552 /* All that remains are operators. */
7553
7554 #define UNARY_OP(op) \
7555 if (strncmp (sym, #op, strlen (#op)) == 0) \
7556 { \
7557 sym += strlen (#op); \
7558 if (*sym == ':') \
7559 ++sym; \
7560 *symp = sym; \
7561 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7562 isymbuf, locsymcount, signed_p)) \
7563 return FALSE; \
7564 if (signed_p) \
7565 *result = op ((bfd_signed_vma) a); \
7566 else \
7567 *result = op a; \
7568 return TRUE; \
7569 }
7570
7571 #define BINARY_OP(op) \
7572 if (strncmp (sym, #op, strlen (#op)) == 0) \
7573 { \
7574 sym += strlen (#op); \
7575 if (*sym == ':') \
7576 ++sym; \
7577 *symp = sym; \
7578 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7579 isymbuf, locsymcount, signed_p)) \
7580 return FALSE; \
7581 ++*symp; \
7582 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7583 isymbuf, locsymcount, signed_p)) \
7584 return FALSE; \
7585 if (signed_p) \
7586 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7587 else \
7588 *result = a op b; \
7589 return TRUE; \
7590 }
7591
7592 default:
7593 UNARY_OP (0-);
7594 BINARY_OP (<<);
7595 BINARY_OP (>>);
7596 BINARY_OP (==);
7597 BINARY_OP (!=);
7598 BINARY_OP (<=);
7599 BINARY_OP (>=);
7600 BINARY_OP (&&);
7601 BINARY_OP (||);
7602 UNARY_OP (~);
7603 UNARY_OP (!);
7604 BINARY_OP (*);
7605 BINARY_OP (/);
7606 BINARY_OP (%);
7607 BINARY_OP (^);
7608 BINARY_OP (|);
7609 BINARY_OP (&);
7610 BINARY_OP (+);
7611 BINARY_OP (-);
7612 BINARY_OP (<);
7613 BINARY_OP (>);
7614 #undef UNARY_OP
7615 #undef BINARY_OP
7616 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7617 bfd_set_error (bfd_error_invalid_operation);
7618 return FALSE;
7619 }
7620 }
7621
7622 static void
7623 put_value (bfd_vma size,
7624 unsigned long chunksz,
7625 bfd *input_bfd,
7626 bfd_vma x,
7627 bfd_byte *location)
7628 {
7629 location += (size - chunksz);
7630
7631 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7632 {
7633 switch (chunksz)
7634 {
7635 default:
7636 case 0:
7637 abort ();
7638 case 1:
7639 bfd_put_8 (input_bfd, x, location);
7640 break;
7641 case 2:
7642 bfd_put_16 (input_bfd, x, location);
7643 break;
7644 case 4:
7645 bfd_put_32 (input_bfd, x, location);
7646 break;
7647 case 8:
7648 #ifdef BFD64
7649 bfd_put_64 (input_bfd, x, location);
7650 #else
7651 abort ();
7652 #endif
7653 break;
7654 }
7655 }
7656 }
7657
7658 static bfd_vma
7659 get_value (bfd_vma size,
7660 unsigned long chunksz,
7661 bfd *input_bfd,
7662 bfd_byte *location)
7663 {
7664 bfd_vma x = 0;
7665
7666 for (; size; size -= chunksz, location += chunksz)
7667 {
7668 switch (chunksz)
7669 {
7670 default:
7671 case 0:
7672 abort ();
7673 case 1:
7674 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7675 break;
7676 case 2:
7677 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7678 break;
7679 case 4:
7680 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7681 break;
7682 case 8:
7683 #ifdef BFD64
7684 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7685 #else
7686 abort ();
7687 #endif
7688 break;
7689 }
7690 }
7691 return x;
7692 }
7693
7694 static void
7695 decode_complex_addend (unsigned long *start, /* in bits */
7696 unsigned long *oplen, /* in bits */
7697 unsigned long *len, /* in bits */
7698 unsigned long *wordsz, /* in bytes */
7699 unsigned long *chunksz, /* in bytes */
7700 unsigned long *lsb0_p,
7701 unsigned long *signed_p,
7702 unsigned long *trunc_p,
7703 unsigned long encoded)
7704 {
7705 * start = encoded & 0x3F;
7706 * len = (encoded >> 6) & 0x3F;
7707 * oplen = (encoded >> 12) & 0x3F;
7708 * wordsz = (encoded >> 18) & 0xF;
7709 * chunksz = (encoded >> 22) & 0xF;
7710 * lsb0_p = (encoded >> 27) & 1;
7711 * signed_p = (encoded >> 28) & 1;
7712 * trunc_p = (encoded >> 29) & 1;
7713 }
7714
7715 bfd_reloc_status_type
7716 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7717 asection *input_section ATTRIBUTE_UNUSED,
7718 bfd_byte *contents,
7719 Elf_Internal_Rela *rel,
7720 bfd_vma relocation)
7721 {
7722 bfd_vma shift, x, mask;
7723 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7724 bfd_reloc_status_type r;
7725
7726 /* Perform this reloc, since it is complex.
7727 (this is not to say that it necessarily refers to a complex
7728 symbol; merely that it is a self-describing CGEN based reloc.
7729 i.e. the addend has the complete reloc information (bit start, end,
7730 word size, etc) encoded within it.). */
7731
7732 decode_complex_addend (&start, &oplen, &len, &wordsz,
7733 &chunksz, &lsb0_p, &signed_p,
7734 &trunc_p, rel->r_addend);
7735
7736 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7737
7738 if (lsb0_p)
7739 shift = (start + 1) - len;
7740 else
7741 shift = (8 * wordsz) - (start + len);
7742
7743 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7744
7745 #ifdef DEBUG
7746 printf ("Doing complex reloc: "
7747 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7748 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7749 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7750 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7751 oplen, x, mask, relocation);
7752 #endif
7753
7754 r = bfd_reloc_ok;
7755 if (! trunc_p)
7756 /* Now do an overflow check. */
7757 r = bfd_check_overflow ((signed_p
7758 ? complain_overflow_signed
7759 : complain_overflow_unsigned),
7760 len, 0, (8 * wordsz),
7761 relocation);
7762
7763 /* Do the deed. */
7764 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7765
7766 #ifdef DEBUG
7767 printf (" relocation: %8.8lx\n"
7768 " shifted mask: %8.8lx\n"
7769 " shifted/masked reloc: %8.8lx\n"
7770 " result: %8.8lx\n",
7771 relocation, (mask << shift),
7772 ((relocation & mask) << shift), x);
7773 #endif
7774 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7775 return r;
7776 }
7777
7778 /* When performing a relocatable link, the input relocations are
7779 preserved. But, if they reference global symbols, the indices
7780 referenced must be updated. Update all the relocations in
7781 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7782
7783 static void
7784 elf_link_adjust_relocs (bfd *abfd,
7785 Elf_Internal_Shdr *rel_hdr,
7786 unsigned int count,
7787 struct elf_link_hash_entry **rel_hash)
7788 {
7789 unsigned int i;
7790 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7791 bfd_byte *erela;
7792 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7793 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7794 bfd_vma r_type_mask;
7795 int r_sym_shift;
7796
7797 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7798 {
7799 swap_in = bed->s->swap_reloc_in;
7800 swap_out = bed->s->swap_reloc_out;
7801 }
7802 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7803 {
7804 swap_in = bed->s->swap_reloca_in;
7805 swap_out = bed->s->swap_reloca_out;
7806 }
7807 else
7808 abort ();
7809
7810 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7811 abort ();
7812
7813 if (bed->s->arch_size == 32)
7814 {
7815 r_type_mask = 0xff;
7816 r_sym_shift = 8;
7817 }
7818 else
7819 {
7820 r_type_mask = 0xffffffff;
7821 r_sym_shift = 32;
7822 }
7823
7824 erela = rel_hdr->contents;
7825 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7826 {
7827 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7828 unsigned int j;
7829
7830 if (*rel_hash == NULL)
7831 continue;
7832
7833 BFD_ASSERT ((*rel_hash)->indx >= 0);
7834
7835 (*swap_in) (abfd, erela, irela);
7836 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7837 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7838 | (irela[j].r_info & r_type_mask));
7839 (*swap_out) (abfd, irela, erela);
7840 }
7841 }
7842
7843 struct elf_link_sort_rela
7844 {
7845 union {
7846 bfd_vma offset;
7847 bfd_vma sym_mask;
7848 } u;
7849 enum elf_reloc_type_class type;
7850 /* We use this as an array of size int_rels_per_ext_rel. */
7851 Elf_Internal_Rela rela[1];
7852 };
7853
7854 static int
7855 elf_link_sort_cmp1 (const void *A, const void *B)
7856 {
7857 const struct elf_link_sort_rela *a = A;
7858 const struct elf_link_sort_rela *b = B;
7859 int relativea, relativeb;
7860
7861 relativea = a->type == reloc_class_relative;
7862 relativeb = b->type == reloc_class_relative;
7863
7864 if (relativea < relativeb)
7865 return 1;
7866 if (relativea > relativeb)
7867 return -1;
7868 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7869 return -1;
7870 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7871 return 1;
7872 if (a->rela->r_offset < b->rela->r_offset)
7873 return -1;
7874 if (a->rela->r_offset > b->rela->r_offset)
7875 return 1;
7876 return 0;
7877 }
7878
7879 static int
7880 elf_link_sort_cmp2 (const void *A, const void *B)
7881 {
7882 const struct elf_link_sort_rela *a = A;
7883 const struct elf_link_sort_rela *b = B;
7884 int copya, copyb;
7885
7886 if (a->u.offset < b->u.offset)
7887 return -1;
7888 if (a->u.offset > b->u.offset)
7889 return 1;
7890 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7891 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7892 if (copya < copyb)
7893 return -1;
7894 if (copya > copyb)
7895 return 1;
7896 if (a->rela->r_offset < b->rela->r_offset)
7897 return -1;
7898 if (a->rela->r_offset > b->rela->r_offset)
7899 return 1;
7900 return 0;
7901 }
7902
7903 static size_t
7904 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7905 {
7906 asection *dynamic_relocs;
7907 asection *rela_dyn;
7908 asection *rel_dyn;
7909 bfd_size_type count, size;
7910 size_t i, ret, sort_elt, ext_size;
7911 bfd_byte *sort, *s_non_relative, *p;
7912 struct elf_link_sort_rela *sq;
7913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7914 int i2e = bed->s->int_rels_per_ext_rel;
7915 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7916 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7917 struct bfd_link_order *lo;
7918 bfd_vma r_sym_mask;
7919 bfd_boolean use_rela;
7920
7921 /* Find a dynamic reloc section. */
7922 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7923 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7924 if (rela_dyn != NULL && rela_dyn->size > 0
7925 && rel_dyn != NULL && rel_dyn->size > 0)
7926 {
7927 bfd_boolean use_rela_initialised = FALSE;
7928
7929 /* This is just here to stop gcc from complaining.
7930 It's initialization checking code is not perfect. */
7931 use_rela = TRUE;
7932
7933 /* Both sections are present. Examine the sizes
7934 of the indirect sections to help us choose. */
7935 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7936 if (lo->type == bfd_indirect_link_order)
7937 {
7938 asection *o = lo->u.indirect.section;
7939
7940 if ((o->size % bed->s->sizeof_rela) == 0)
7941 {
7942 if ((o->size % bed->s->sizeof_rel) == 0)
7943 /* Section size is divisible by both rel and rela sizes.
7944 It is of no help to us. */
7945 ;
7946 else
7947 {
7948 /* Section size is only divisible by rela. */
7949 if (use_rela_initialised && (use_rela == FALSE))
7950 {
7951 _bfd_error_handler
7952 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7953 bfd_set_error (bfd_error_invalid_operation);
7954 return 0;
7955 }
7956 else
7957 {
7958 use_rela = TRUE;
7959 use_rela_initialised = TRUE;
7960 }
7961 }
7962 }
7963 else if ((o->size % bed->s->sizeof_rel) == 0)
7964 {
7965 /* Section size is only divisible by rel. */
7966 if (use_rela_initialised && (use_rela == TRUE))
7967 {
7968 _bfd_error_handler
7969 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7970 bfd_set_error (bfd_error_invalid_operation);
7971 return 0;
7972 }
7973 else
7974 {
7975 use_rela = FALSE;
7976 use_rela_initialised = TRUE;
7977 }
7978 }
7979 else
7980 {
7981 /* The section size is not divisible by either - something is wrong. */
7982 _bfd_error_handler
7983 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7984 bfd_set_error (bfd_error_invalid_operation);
7985 return 0;
7986 }
7987 }
7988
7989 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7990 if (lo->type == bfd_indirect_link_order)
7991 {
7992 asection *o = lo->u.indirect.section;
7993
7994 if ((o->size % bed->s->sizeof_rela) == 0)
7995 {
7996 if ((o->size % bed->s->sizeof_rel) == 0)
7997 /* Section size is divisible by both rel and rela sizes.
7998 It is of no help to us. */
7999 ;
8000 else
8001 {
8002 /* Section size is only divisible by rela. */
8003 if (use_rela_initialised && (use_rela == FALSE))
8004 {
8005 _bfd_error_handler
8006 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8007 bfd_set_error (bfd_error_invalid_operation);
8008 return 0;
8009 }
8010 else
8011 {
8012 use_rela = TRUE;
8013 use_rela_initialised = TRUE;
8014 }
8015 }
8016 }
8017 else if ((o->size % bed->s->sizeof_rel) == 0)
8018 {
8019 /* Section size is only divisible by rel. */
8020 if (use_rela_initialised && (use_rela == TRUE))
8021 {
8022 _bfd_error_handler
8023 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8024 bfd_set_error (bfd_error_invalid_operation);
8025 return 0;
8026 }
8027 else
8028 {
8029 use_rela = FALSE;
8030 use_rela_initialised = TRUE;
8031 }
8032 }
8033 else
8034 {
8035 /* The section size is not divisible by either - something is wrong. */
8036 _bfd_error_handler
8037 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8038 bfd_set_error (bfd_error_invalid_operation);
8039 return 0;
8040 }
8041 }
8042
8043 if (! use_rela_initialised)
8044 /* Make a guess. */
8045 use_rela = TRUE;
8046 }
8047 else if (rela_dyn != NULL && rela_dyn->size > 0)
8048 use_rela = TRUE;
8049 else if (rel_dyn != NULL && rel_dyn->size > 0)
8050 use_rela = FALSE;
8051 else
8052 return 0;
8053
8054 if (use_rela)
8055 {
8056 dynamic_relocs = rela_dyn;
8057 ext_size = bed->s->sizeof_rela;
8058 swap_in = bed->s->swap_reloca_in;
8059 swap_out = bed->s->swap_reloca_out;
8060 }
8061 else
8062 {
8063 dynamic_relocs = rel_dyn;
8064 ext_size = bed->s->sizeof_rel;
8065 swap_in = bed->s->swap_reloc_in;
8066 swap_out = bed->s->swap_reloc_out;
8067 }
8068
8069 size = 0;
8070 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8071 if (lo->type == bfd_indirect_link_order)
8072 size += lo->u.indirect.section->size;
8073
8074 if (size != dynamic_relocs->size)
8075 return 0;
8076
8077 sort_elt = (sizeof (struct elf_link_sort_rela)
8078 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8079
8080 count = dynamic_relocs->size / ext_size;
8081 if (count == 0)
8082 return 0;
8083 sort = bfd_zmalloc (sort_elt * count);
8084
8085 if (sort == NULL)
8086 {
8087 (*info->callbacks->warning)
8088 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8089 return 0;
8090 }
8091
8092 if (bed->s->arch_size == 32)
8093 r_sym_mask = ~(bfd_vma) 0xff;
8094 else
8095 r_sym_mask = ~(bfd_vma) 0xffffffff;
8096
8097 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8098 if (lo->type == bfd_indirect_link_order)
8099 {
8100 bfd_byte *erel, *erelend;
8101 asection *o = lo->u.indirect.section;
8102
8103 if (o->contents == NULL && o->size != 0)
8104 {
8105 /* This is a reloc section that is being handled as a normal
8106 section. See bfd_section_from_shdr. We can't combine
8107 relocs in this case. */
8108 free (sort);
8109 return 0;
8110 }
8111 erel = o->contents;
8112 erelend = o->contents + o->size;
8113 p = sort + o->output_offset / ext_size * sort_elt;
8114
8115 while (erel < erelend)
8116 {
8117 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8118
8119 (*swap_in) (abfd, erel, s->rela);
8120 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8121 s->u.sym_mask = r_sym_mask;
8122 p += sort_elt;
8123 erel += ext_size;
8124 }
8125 }
8126
8127 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8128
8129 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8130 {
8131 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8132 if (s->type != reloc_class_relative)
8133 break;
8134 }
8135 ret = i;
8136 s_non_relative = p;
8137
8138 sq = (struct elf_link_sort_rela *) s_non_relative;
8139 for (; i < count; i++, p += sort_elt)
8140 {
8141 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8142 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8143 sq = sp;
8144 sp->u.offset = sq->rela->r_offset;
8145 }
8146
8147 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8148
8149 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8150 if (lo->type == bfd_indirect_link_order)
8151 {
8152 bfd_byte *erel, *erelend;
8153 asection *o = lo->u.indirect.section;
8154
8155 erel = o->contents;
8156 erelend = o->contents + o->size;
8157 p = sort + o->output_offset / ext_size * sort_elt;
8158 while (erel < erelend)
8159 {
8160 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8161 (*swap_out) (abfd, s->rela, erel);
8162 p += sort_elt;
8163 erel += ext_size;
8164 }
8165 }
8166
8167 free (sort);
8168 *psec = dynamic_relocs;
8169 return ret;
8170 }
8171
8172 /* Flush the output symbols to the file. */
8173
8174 static bfd_boolean
8175 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8176 const struct elf_backend_data *bed)
8177 {
8178 if (finfo->symbuf_count > 0)
8179 {
8180 Elf_Internal_Shdr *hdr;
8181 file_ptr pos;
8182 bfd_size_type amt;
8183
8184 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8185 pos = hdr->sh_offset + hdr->sh_size;
8186 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8187 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8188 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8189 return FALSE;
8190
8191 hdr->sh_size += amt;
8192 finfo->symbuf_count = 0;
8193 }
8194
8195 return TRUE;
8196 }
8197
8198 /* Add a symbol to the output symbol table. */
8199
8200 static int
8201 elf_link_output_sym (struct elf_final_link_info *finfo,
8202 const char *name,
8203 Elf_Internal_Sym *elfsym,
8204 asection *input_sec,
8205 struct elf_link_hash_entry *h)
8206 {
8207 bfd_byte *dest;
8208 Elf_External_Sym_Shndx *destshndx;
8209 int (*output_symbol_hook)
8210 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8211 struct elf_link_hash_entry *);
8212 const struct elf_backend_data *bed;
8213
8214 bed = get_elf_backend_data (finfo->output_bfd);
8215 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8216 if (output_symbol_hook != NULL)
8217 {
8218 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8219 if (ret != 1)
8220 return ret;
8221 }
8222
8223 if (name == NULL || *name == '\0')
8224 elfsym->st_name = 0;
8225 else if (input_sec->flags & SEC_EXCLUDE)
8226 elfsym->st_name = 0;
8227 else
8228 {
8229 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8230 name, TRUE, FALSE);
8231 if (elfsym->st_name == (unsigned long) -1)
8232 return 0;
8233 }
8234
8235 if (finfo->symbuf_count >= finfo->symbuf_size)
8236 {
8237 if (! elf_link_flush_output_syms (finfo, bed))
8238 return 0;
8239 }
8240
8241 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8242 destshndx = finfo->symshndxbuf;
8243 if (destshndx != NULL)
8244 {
8245 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8246 {
8247 bfd_size_type amt;
8248
8249 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8250 destshndx = bfd_realloc (destshndx, amt * 2);
8251 if (destshndx == NULL)
8252 return 0;
8253 finfo->symshndxbuf = destshndx;
8254 memset ((char *) destshndx + amt, 0, amt);
8255 finfo->shndxbuf_size *= 2;
8256 }
8257 destshndx += bfd_get_symcount (finfo->output_bfd);
8258 }
8259
8260 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8261 finfo->symbuf_count += 1;
8262 bfd_get_symcount (finfo->output_bfd) += 1;
8263
8264 return 1;
8265 }
8266
8267 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8268
8269 static bfd_boolean
8270 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8271 {
8272 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8273 && sym->st_shndx < SHN_LORESERVE)
8274 {
8275 /* The gABI doesn't support dynamic symbols in output sections
8276 beyond 64k. */
8277 (*_bfd_error_handler)
8278 (_("%B: Too many sections: %d (>= %d)"),
8279 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8280 bfd_set_error (bfd_error_nonrepresentable_section);
8281 return FALSE;
8282 }
8283 return TRUE;
8284 }
8285
8286 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8287 allowing an unsatisfied unversioned symbol in the DSO to match a
8288 versioned symbol that would normally require an explicit version.
8289 We also handle the case that a DSO references a hidden symbol
8290 which may be satisfied by a versioned symbol in another DSO. */
8291
8292 static bfd_boolean
8293 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8294 const struct elf_backend_data *bed,
8295 struct elf_link_hash_entry *h)
8296 {
8297 bfd *abfd;
8298 struct elf_link_loaded_list *loaded;
8299
8300 if (!is_elf_hash_table (info->hash))
8301 return FALSE;
8302
8303 switch (h->root.type)
8304 {
8305 default:
8306 abfd = NULL;
8307 break;
8308
8309 case bfd_link_hash_undefined:
8310 case bfd_link_hash_undefweak:
8311 abfd = h->root.u.undef.abfd;
8312 if ((abfd->flags & DYNAMIC) == 0
8313 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8314 return FALSE;
8315 break;
8316
8317 case bfd_link_hash_defined:
8318 case bfd_link_hash_defweak:
8319 abfd = h->root.u.def.section->owner;
8320 break;
8321
8322 case bfd_link_hash_common:
8323 abfd = h->root.u.c.p->section->owner;
8324 break;
8325 }
8326 BFD_ASSERT (abfd != NULL);
8327
8328 for (loaded = elf_hash_table (info)->loaded;
8329 loaded != NULL;
8330 loaded = loaded->next)
8331 {
8332 bfd *input;
8333 Elf_Internal_Shdr *hdr;
8334 bfd_size_type symcount;
8335 bfd_size_type extsymcount;
8336 bfd_size_type extsymoff;
8337 Elf_Internal_Shdr *versymhdr;
8338 Elf_Internal_Sym *isym;
8339 Elf_Internal_Sym *isymend;
8340 Elf_Internal_Sym *isymbuf;
8341 Elf_External_Versym *ever;
8342 Elf_External_Versym *extversym;
8343
8344 input = loaded->abfd;
8345
8346 /* We check each DSO for a possible hidden versioned definition. */
8347 if (input == abfd
8348 || (input->flags & DYNAMIC) == 0
8349 || elf_dynversym (input) == 0)
8350 continue;
8351
8352 hdr = &elf_tdata (input)->dynsymtab_hdr;
8353
8354 symcount = hdr->sh_size / bed->s->sizeof_sym;
8355 if (elf_bad_symtab (input))
8356 {
8357 extsymcount = symcount;
8358 extsymoff = 0;
8359 }
8360 else
8361 {
8362 extsymcount = symcount - hdr->sh_info;
8363 extsymoff = hdr->sh_info;
8364 }
8365
8366 if (extsymcount == 0)
8367 continue;
8368
8369 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8370 NULL, NULL, NULL);
8371 if (isymbuf == NULL)
8372 return FALSE;
8373
8374 /* Read in any version definitions. */
8375 versymhdr = &elf_tdata (input)->dynversym_hdr;
8376 extversym = bfd_malloc (versymhdr->sh_size);
8377 if (extversym == NULL)
8378 goto error_ret;
8379
8380 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8381 || (bfd_bread (extversym, versymhdr->sh_size, input)
8382 != versymhdr->sh_size))
8383 {
8384 free (extversym);
8385 error_ret:
8386 free (isymbuf);
8387 return FALSE;
8388 }
8389
8390 ever = extversym + extsymoff;
8391 isymend = isymbuf + extsymcount;
8392 for (isym = isymbuf; isym < isymend; isym++, ever++)
8393 {
8394 const char *name;
8395 Elf_Internal_Versym iver;
8396 unsigned short version_index;
8397
8398 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8399 || isym->st_shndx == SHN_UNDEF)
8400 continue;
8401
8402 name = bfd_elf_string_from_elf_section (input,
8403 hdr->sh_link,
8404 isym->st_name);
8405 if (strcmp (name, h->root.root.string) != 0)
8406 continue;
8407
8408 _bfd_elf_swap_versym_in (input, ever, &iver);
8409
8410 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8411 {
8412 /* If we have a non-hidden versioned sym, then it should
8413 have provided a definition for the undefined sym. */
8414 abort ();
8415 }
8416
8417 version_index = iver.vs_vers & VERSYM_VERSION;
8418 if (version_index == 1 || version_index == 2)
8419 {
8420 /* This is the base or first version. We can use it. */
8421 free (extversym);
8422 free (isymbuf);
8423 return TRUE;
8424 }
8425 }
8426
8427 free (extversym);
8428 free (isymbuf);
8429 }
8430
8431 return FALSE;
8432 }
8433
8434 /* Add an external symbol to the symbol table. This is called from
8435 the hash table traversal routine. When generating a shared object,
8436 we go through the symbol table twice. The first time we output
8437 anything that might have been forced to local scope in a version
8438 script. The second time we output the symbols that are still
8439 global symbols. */
8440
8441 static bfd_boolean
8442 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8443 {
8444 struct elf_outext_info *eoinfo = data;
8445 struct elf_final_link_info *finfo = eoinfo->finfo;
8446 bfd_boolean strip;
8447 Elf_Internal_Sym sym;
8448 asection *input_sec;
8449 const struct elf_backend_data *bed;
8450 long indx;
8451 int ret;
8452
8453 if (h->root.type == bfd_link_hash_warning)
8454 {
8455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8456 if (h->root.type == bfd_link_hash_new)
8457 return TRUE;
8458 }
8459
8460 /* Decide whether to output this symbol in this pass. */
8461 if (eoinfo->localsyms)
8462 {
8463 if (!h->forced_local)
8464 return TRUE;
8465 }
8466 else
8467 {
8468 if (h->forced_local)
8469 return TRUE;
8470 }
8471
8472 bed = get_elf_backend_data (finfo->output_bfd);
8473
8474 if (h->root.type == bfd_link_hash_undefined)
8475 {
8476 /* If we have an undefined symbol reference here then it must have
8477 come from a shared library that is being linked in. (Undefined
8478 references in regular files have already been handled). */
8479 bfd_boolean ignore_undef = FALSE;
8480
8481 /* Some symbols may be special in that the fact that they're
8482 undefined can be safely ignored - let backend determine that. */
8483 if (bed->elf_backend_ignore_undef_symbol)
8484 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8485
8486 /* If we are reporting errors for this situation then do so now. */
8487 if (ignore_undef == FALSE
8488 && h->ref_dynamic
8489 && ! h->ref_regular
8490 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8491 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8492 {
8493 if (! (finfo->info->callbacks->undefined_symbol
8494 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8495 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8496 {
8497 eoinfo->failed = TRUE;
8498 return FALSE;
8499 }
8500 }
8501 }
8502
8503 /* We should also warn if a forced local symbol is referenced from
8504 shared libraries. */
8505 if (! finfo->info->relocatable
8506 && (! finfo->info->shared)
8507 && h->forced_local
8508 && h->ref_dynamic
8509 && !h->dynamic_def
8510 && !h->dynamic_weak
8511 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8512 {
8513 (*_bfd_error_handler)
8514 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8515 finfo->output_bfd,
8516 h->root.u.def.section == bfd_abs_section_ptr
8517 ? finfo->output_bfd : h->root.u.def.section->owner,
8518 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8519 ? "internal"
8520 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8521 ? "hidden" : "local",
8522 h->root.root.string);
8523 eoinfo->failed = TRUE;
8524 return FALSE;
8525 }
8526
8527 /* We don't want to output symbols that have never been mentioned by
8528 a regular file, or that we have been told to strip. However, if
8529 h->indx is set to -2, the symbol is used by a reloc and we must
8530 output it. */
8531 if (h->indx == -2)
8532 strip = FALSE;
8533 else if ((h->def_dynamic
8534 || h->ref_dynamic
8535 || h->root.type == bfd_link_hash_new)
8536 && !h->def_regular
8537 && !h->ref_regular)
8538 strip = TRUE;
8539 else if (finfo->info->strip == strip_all)
8540 strip = TRUE;
8541 else if (finfo->info->strip == strip_some
8542 && bfd_hash_lookup (finfo->info->keep_hash,
8543 h->root.root.string, FALSE, FALSE) == NULL)
8544 strip = TRUE;
8545 else if (finfo->info->strip_discarded
8546 && (h->root.type == bfd_link_hash_defined
8547 || h->root.type == bfd_link_hash_defweak)
8548 && elf_discarded_section (h->root.u.def.section))
8549 strip = TRUE;
8550 else
8551 strip = FALSE;
8552
8553 /* If we're stripping it, and it's not a dynamic symbol, there's
8554 nothing else to do unless it is a forced local symbol. */
8555 if (strip
8556 && h->dynindx == -1
8557 && !h->forced_local)
8558 return TRUE;
8559
8560 sym.st_value = 0;
8561 sym.st_size = h->size;
8562 sym.st_other = h->other;
8563 if (h->forced_local)
8564 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8565 else if (h->root.type == bfd_link_hash_undefweak
8566 || h->root.type == bfd_link_hash_defweak)
8567 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8568 else
8569 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8570
8571 switch (h->root.type)
8572 {
8573 default:
8574 case bfd_link_hash_new:
8575 case bfd_link_hash_warning:
8576 abort ();
8577 return FALSE;
8578
8579 case bfd_link_hash_undefined:
8580 case bfd_link_hash_undefweak:
8581 input_sec = bfd_und_section_ptr;
8582 sym.st_shndx = SHN_UNDEF;
8583 break;
8584
8585 case bfd_link_hash_defined:
8586 case bfd_link_hash_defweak:
8587 {
8588 input_sec = h->root.u.def.section;
8589 if (input_sec->output_section != NULL)
8590 {
8591 sym.st_shndx =
8592 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8593 input_sec->output_section);
8594 if (sym.st_shndx == SHN_BAD)
8595 {
8596 (*_bfd_error_handler)
8597 (_("%B: could not find output section %A for input section %A"),
8598 finfo->output_bfd, input_sec->output_section, input_sec);
8599 eoinfo->failed = TRUE;
8600 return FALSE;
8601 }
8602
8603 /* ELF symbols in relocatable files are section relative,
8604 but in nonrelocatable files they are virtual
8605 addresses. */
8606 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8607 if (! finfo->info->relocatable)
8608 {
8609 sym.st_value += input_sec->output_section->vma;
8610 if (h->type == STT_TLS)
8611 {
8612 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8613 if (tls_sec != NULL)
8614 sym.st_value -= tls_sec->vma;
8615 else
8616 {
8617 /* The TLS section may have been garbage collected. */
8618 BFD_ASSERT (finfo->info->gc_sections
8619 && !input_sec->gc_mark);
8620 }
8621 }
8622 }
8623 }
8624 else
8625 {
8626 BFD_ASSERT (input_sec->owner == NULL
8627 || (input_sec->owner->flags & DYNAMIC) != 0);
8628 sym.st_shndx = SHN_UNDEF;
8629 input_sec = bfd_und_section_ptr;
8630 }
8631 }
8632 break;
8633
8634 case bfd_link_hash_common:
8635 input_sec = h->root.u.c.p->section;
8636 sym.st_shndx = bed->common_section_index (input_sec);
8637 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8638 break;
8639
8640 case bfd_link_hash_indirect:
8641 /* These symbols are created by symbol versioning. They point
8642 to the decorated version of the name. For example, if the
8643 symbol foo@@GNU_1.2 is the default, which should be used when
8644 foo is used with no version, then we add an indirect symbol
8645 foo which points to foo@@GNU_1.2. We ignore these symbols,
8646 since the indirected symbol is already in the hash table. */
8647 return TRUE;
8648 }
8649
8650 /* Give the processor backend a chance to tweak the symbol value,
8651 and also to finish up anything that needs to be done for this
8652 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8653 forced local syms when non-shared is due to a historical quirk.
8654 STT_GNU_IFUNC symbol must go through PLT. */
8655 if ((h->type == STT_GNU_IFUNC
8656 && h->def_regular
8657 && !finfo->info->relocatable)
8658 || ((h->dynindx != -1
8659 || h->forced_local)
8660 && ((finfo->info->shared
8661 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8662 || h->root.type != bfd_link_hash_undefweak))
8663 || !h->forced_local)
8664 && elf_hash_table (finfo->info)->dynamic_sections_created))
8665 {
8666 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8667 (finfo->output_bfd, finfo->info, h, &sym)))
8668 {
8669 eoinfo->failed = TRUE;
8670 return FALSE;
8671 }
8672 }
8673
8674 /* If we are marking the symbol as undefined, and there are no
8675 non-weak references to this symbol from a regular object, then
8676 mark the symbol as weak undefined; if there are non-weak
8677 references, mark the symbol as strong. We can't do this earlier,
8678 because it might not be marked as undefined until the
8679 finish_dynamic_symbol routine gets through with it. */
8680 if (sym.st_shndx == SHN_UNDEF
8681 && h->ref_regular
8682 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8683 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8684 {
8685 int bindtype;
8686
8687 if (h->ref_regular_nonweak)
8688 bindtype = STB_GLOBAL;
8689 else
8690 bindtype = STB_WEAK;
8691 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8692 }
8693
8694 /* If this is a symbol defined in a dynamic library, don't use the
8695 symbol size from the dynamic library. Relinking an executable
8696 against a new library may introduce gratuitous changes in the
8697 executable's symbols if we keep the size. */
8698 if (sym.st_shndx == SHN_UNDEF
8699 && !h->def_regular
8700 && h->def_dynamic)
8701 sym.st_size = 0;
8702
8703 /* If a non-weak symbol with non-default visibility is not defined
8704 locally, it is a fatal error. */
8705 if (! finfo->info->relocatable
8706 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8707 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8708 && h->root.type == bfd_link_hash_undefined
8709 && !h->def_regular)
8710 {
8711 (*_bfd_error_handler)
8712 (_("%B: %s symbol `%s' isn't defined"),
8713 finfo->output_bfd,
8714 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8715 ? "protected"
8716 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8717 ? "internal" : "hidden",
8718 h->root.root.string);
8719 eoinfo->failed = TRUE;
8720 return FALSE;
8721 }
8722
8723 /* If this symbol should be put in the .dynsym section, then put it
8724 there now. We already know the symbol index. We also fill in
8725 the entry in the .hash section. */
8726 if (h->dynindx != -1
8727 && elf_hash_table (finfo->info)->dynamic_sections_created)
8728 {
8729 bfd_byte *esym;
8730
8731 sym.st_name = h->dynstr_index;
8732 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8733 if (! check_dynsym (finfo->output_bfd, &sym))
8734 {
8735 eoinfo->failed = TRUE;
8736 return FALSE;
8737 }
8738 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8739
8740 if (finfo->hash_sec != NULL)
8741 {
8742 size_t hash_entry_size;
8743 bfd_byte *bucketpos;
8744 bfd_vma chain;
8745 size_t bucketcount;
8746 size_t bucket;
8747
8748 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8749 bucket = h->u.elf_hash_value % bucketcount;
8750
8751 hash_entry_size
8752 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8753 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8754 + (bucket + 2) * hash_entry_size);
8755 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8756 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8757 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8758 ((bfd_byte *) finfo->hash_sec->contents
8759 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8760 }
8761
8762 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8763 {
8764 Elf_Internal_Versym iversym;
8765 Elf_External_Versym *eversym;
8766
8767 if (!h->def_regular)
8768 {
8769 if (h->verinfo.verdef == NULL)
8770 iversym.vs_vers = 0;
8771 else
8772 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8773 }
8774 else
8775 {
8776 if (h->verinfo.vertree == NULL)
8777 iversym.vs_vers = 1;
8778 else
8779 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8780 if (finfo->info->create_default_symver)
8781 iversym.vs_vers++;
8782 }
8783
8784 if (h->hidden)
8785 iversym.vs_vers |= VERSYM_HIDDEN;
8786
8787 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8788 eversym += h->dynindx;
8789 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8790 }
8791 }
8792
8793 /* If we're stripping it, then it was just a dynamic symbol, and
8794 there's nothing else to do. */
8795 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8796 return TRUE;
8797
8798 indx = bfd_get_symcount (finfo->output_bfd);
8799 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8800 if (ret == 0)
8801 {
8802 eoinfo->failed = TRUE;
8803 return FALSE;
8804 }
8805 else if (ret == 1)
8806 h->indx = indx;
8807 else if (h->indx == -2)
8808 abort();
8809
8810 return TRUE;
8811 }
8812
8813 /* Return TRUE if special handling is done for relocs in SEC against
8814 symbols defined in discarded sections. */
8815
8816 static bfd_boolean
8817 elf_section_ignore_discarded_relocs (asection *sec)
8818 {
8819 const struct elf_backend_data *bed;
8820
8821 switch (sec->sec_info_type)
8822 {
8823 case ELF_INFO_TYPE_STABS:
8824 case ELF_INFO_TYPE_EH_FRAME:
8825 return TRUE;
8826 default:
8827 break;
8828 }
8829
8830 bed = get_elf_backend_data (sec->owner);
8831 if (bed->elf_backend_ignore_discarded_relocs != NULL
8832 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8833 return TRUE;
8834
8835 return FALSE;
8836 }
8837
8838 /* Return a mask saying how ld should treat relocations in SEC against
8839 symbols defined in discarded sections. If this function returns
8840 COMPLAIN set, ld will issue a warning message. If this function
8841 returns PRETEND set, and the discarded section was link-once and the
8842 same size as the kept link-once section, ld will pretend that the
8843 symbol was actually defined in the kept section. Otherwise ld will
8844 zero the reloc (at least that is the intent, but some cooperation by
8845 the target dependent code is needed, particularly for REL targets). */
8846
8847 unsigned int
8848 _bfd_elf_default_action_discarded (asection *sec)
8849 {
8850 if (sec->flags & SEC_DEBUGGING)
8851 return PRETEND;
8852
8853 if (strcmp (".eh_frame", sec->name) == 0)
8854 return 0;
8855
8856 if (strcmp (".gcc_except_table", sec->name) == 0)
8857 return 0;
8858
8859 return COMPLAIN | PRETEND;
8860 }
8861
8862 /* Find a match between a section and a member of a section group. */
8863
8864 static asection *
8865 match_group_member (asection *sec, asection *group,
8866 struct bfd_link_info *info)
8867 {
8868 asection *first = elf_next_in_group (group);
8869 asection *s = first;
8870
8871 while (s != NULL)
8872 {
8873 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8874 return s;
8875
8876 s = elf_next_in_group (s);
8877 if (s == first)
8878 break;
8879 }
8880
8881 return NULL;
8882 }
8883
8884 /* Check if the kept section of a discarded section SEC can be used
8885 to replace it. Return the replacement if it is OK. Otherwise return
8886 NULL. */
8887
8888 asection *
8889 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8890 {
8891 asection *kept;
8892
8893 kept = sec->kept_section;
8894 if (kept != NULL)
8895 {
8896 if ((kept->flags & SEC_GROUP) != 0)
8897 kept = match_group_member (sec, kept, info);
8898 if (kept != NULL
8899 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8900 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8901 kept = NULL;
8902 sec->kept_section = kept;
8903 }
8904 return kept;
8905 }
8906
8907 /* Link an input file into the linker output file. This function
8908 handles all the sections and relocations of the input file at once.
8909 This is so that we only have to read the local symbols once, and
8910 don't have to keep them in memory. */
8911
8912 static bfd_boolean
8913 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8914 {
8915 int (*relocate_section)
8916 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8917 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8918 bfd *output_bfd;
8919 Elf_Internal_Shdr *symtab_hdr;
8920 size_t locsymcount;
8921 size_t extsymoff;
8922 Elf_Internal_Sym *isymbuf;
8923 Elf_Internal_Sym *isym;
8924 Elf_Internal_Sym *isymend;
8925 long *pindex;
8926 asection **ppsection;
8927 asection *o;
8928 const struct elf_backend_data *bed;
8929 struct elf_link_hash_entry **sym_hashes;
8930
8931 output_bfd = finfo->output_bfd;
8932 bed = get_elf_backend_data (output_bfd);
8933 relocate_section = bed->elf_backend_relocate_section;
8934
8935 /* If this is a dynamic object, we don't want to do anything here:
8936 we don't want the local symbols, and we don't want the section
8937 contents. */
8938 if ((input_bfd->flags & DYNAMIC) != 0)
8939 return TRUE;
8940
8941 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8942 if (elf_bad_symtab (input_bfd))
8943 {
8944 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8945 extsymoff = 0;
8946 }
8947 else
8948 {
8949 locsymcount = symtab_hdr->sh_info;
8950 extsymoff = symtab_hdr->sh_info;
8951 }
8952
8953 /* Read the local symbols. */
8954 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8955 if (isymbuf == NULL && locsymcount != 0)
8956 {
8957 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8958 finfo->internal_syms,
8959 finfo->external_syms,
8960 finfo->locsym_shndx);
8961 if (isymbuf == NULL)
8962 return FALSE;
8963 }
8964
8965 /* Find local symbol sections and adjust values of symbols in
8966 SEC_MERGE sections. Write out those local symbols we know are
8967 going into the output file. */
8968 isymend = isymbuf + locsymcount;
8969 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8970 isym < isymend;
8971 isym++, pindex++, ppsection++)
8972 {
8973 asection *isec;
8974 const char *name;
8975 Elf_Internal_Sym osym;
8976 long indx;
8977 int ret;
8978
8979 *pindex = -1;
8980
8981 if (elf_bad_symtab (input_bfd))
8982 {
8983 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8984 {
8985 *ppsection = NULL;
8986 continue;
8987 }
8988 }
8989
8990 if (isym->st_shndx == SHN_UNDEF)
8991 isec = bfd_und_section_ptr;
8992 else if (isym->st_shndx == SHN_ABS)
8993 isec = bfd_abs_section_ptr;
8994 else if (isym->st_shndx == SHN_COMMON)
8995 isec = bfd_com_section_ptr;
8996 else
8997 {
8998 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8999 if (isec == NULL)
9000 {
9001 /* Don't attempt to output symbols with st_shnx in the
9002 reserved range other than SHN_ABS and SHN_COMMON. */
9003 *ppsection = NULL;
9004 continue;
9005 }
9006 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9007 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9008 isym->st_value =
9009 _bfd_merged_section_offset (output_bfd, &isec,
9010 elf_section_data (isec)->sec_info,
9011 isym->st_value);
9012 }
9013
9014 *ppsection = isec;
9015
9016 /* Don't output the first, undefined, symbol. */
9017 if (ppsection == finfo->sections)
9018 continue;
9019
9020 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9021 {
9022 /* We never output section symbols. Instead, we use the
9023 section symbol of the corresponding section in the output
9024 file. */
9025 continue;
9026 }
9027
9028 /* If we are stripping all symbols, we don't want to output this
9029 one. */
9030 if (finfo->info->strip == strip_all)
9031 continue;
9032
9033 /* If we are discarding all local symbols, we don't want to
9034 output this one. If we are generating a relocatable output
9035 file, then some of the local symbols may be required by
9036 relocs; we output them below as we discover that they are
9037 needed. */
9038 if (finfo->info->discard == discard_all)
9039 continue;
9040
9041 /* If this symbol is defined in a section which we are
9042 discarding, we don't need to keep it. */
9043 if (isym->st_shndx != SHN_UNDEF
9044 && isym->st_shndx < SHN_LORESERVE
9045 && bfd_section_removed_from_list (output_bfd,
9046 isec->output_section))
9047 continue;
9048
9049 /* Get the name of the symbol. */
9050 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9051 isym->st_name);
9052 if (name == NULL)
9053 return FALSE;
9054
9055 /* See if we are discarding symbols with this name. */
9056 if ((finfo->info->strip == strip_some
9057 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9058 == NULL))
9059 || (((finfo->info->discard == discard_sec_merge
9060 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9061 || finfo->info->discard == discard_l)
9062 && bfd_is_local_label_name (input_bfd, name)))
9063 continue;
9064
9065 osym = *isym;
9066
9067 /* Adjust the section index for the output file. */
9068 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9069 isec->output_section);
9070 if (osym.st_shndx == SHN_BAD)
9071 return FALSE;
9072
9073 /* ELF symbols in relocatable files are section relative, but
9074 in executable files they are virtual addresses. Note that
9075 this code assumes that all ELF sections have an associated
9076 BFD section with a reasonable value for output_offset; below
9077 we assume that they also have a reasonable value for
9078 output_section. Any special sections must be set up to meet
9079 these requirements. */
9080 osym.st_value += isec->output_offset;
9081 if (! finfo->info->relocatable)
9082 {
9083 osym.st_value += isec->output_section->vma;
9084 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9085 {
9086 /* STT_TLS symbols are relative to PT_TLS segment base. */
9087 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9088 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9089 }
9090 }
9091
9092 indx = bfd_get_symcount (output_bfd);
9093 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9094 if (ret == 0)
9095 return FALSE;
9096 else if (ret == 1)
9097 *pindex = indx;
9098 }
9099
9100 /* Relocate the contents of each section. */
9101 sym_hashes = elf_sym_hashes (input_bfd);
9102 for (o = input_bfd->sections; o != NULL; o = o->next)
9103 {
9104 bfd_byte *contents;
9105
9106 if (! o->linker_mark)
9107 {
9108 /* This section was omitted from the link. */
9109 continue;
9110 }
9111
9112 if (finfo->info->relocatable
9113 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9114 {
9115 /* Deal with the group signature symbol. */
9116 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9117 unsigned long symndx = sec_data->this_hdr.sh_info;
9118 asection *osec = o->output_section;
9119
9120 if (symndx >= locsymcount
9121 || (elf_bad_symtab (input_bfd)
9122 && finfo->sections[symndx] == NULL))
9123 {
9124 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9125 while (h->root.type == bfd_link_hash_indirect
9126 || h->root.type == bfd_link_hash_warning)
9127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9128 /* Arrange for symbol to be output. */
9129 h->indx = -2;
9130 elf_section_data (osec)->this_hdr.sh_info = -2;
9131 }
9132 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9133 {
9134 /* We'll use the output section target_index. */
9135 asection *sec = finfo->sections[symndx]->output_section;
9136 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9137 }
9138 else
9139 {
9140 if (finfo->indices[symndx] == -1)
9141 {
9142 /* Otherwise output the local symbol now. */
9143 Elf_Internal_Sym sym = isymbuf[symndx];
9144 asection *sec = finfo->sections[symndx]->output_section;
9145 const char *name;
9146 long indx;
9147 int ret;
9148
9149 name = bfd_elf_string_from_elf_section (input_bfd,
9150 symtab_hdr->sh_link,
9151 sym.st_name);
9152 if (name == NULL)
9153 return FALSE;
9154
9155 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9156 sec);
9157 if (sym.st_shndx == SHN_BAD)
9158 return FALSE;
9159
9160 sym.st_value += o->output_offset;
9161
9162 indx = bfd_get_symcount (output_bfd);
9163 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9164 if (ret == 0)
9165 return FALSE;
9166 else if (ret == 1)
9167 finfo->indices[symndx] = indx;
9168 else
9169 abort ();
9170 }
9171 elf_section_data (osec)->this_hdr.sh_info
9172 = finfo->indices[symndx];
9173 }
9174 }
9175
9176 if ((o->flags & SEC_HAS_CONTENTS) == 0
9177 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9178 continue;
9179
9180 if ((o->flags & SEC_LINKER_CREATED) != 0)
9181 {
9182 /* Section was created by _bfd_elf_link_create_dynamic_sections
9183 or somesuch. */
9184 continue;
9185 }
9186
9187 /* Get the contents of the section. They have been cached by a
9188 relaxation routine. Note that o is a section in an input
9189 file, so the contents field will not have been set by any of
9190 the routines which work on output files. */
9191 if (elf_section_data (o)->this_hdr.contents != NULL)
9192 contents = elf_section_data (o)->this_hdr.contents;
9193 else
9194 {
9195 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9196
9197 contents = finfo->contents;
9198 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9199 return FALSE;
9200 }
9201
9202 if ((o->flags & SEC_RELOC) != 0)
9203 {
9204 Elf_Internal_Rela *internal_relocs;
9205 Elf_Internal_Rela *rel, *relend;
9206 bfd_vma r_type_mask;
9207 int r_sym_shift;
9208 int action_discarded;
9209 int ret;
9210
9211 /* Get the swapped relocs. */
9212 internal_relocs
9213 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9214 finfo->internal_relocs, FALSE);
9215 if (internal_relocs == NULL
9216 && o->reloc_count > 0)
9217 return FALSE;
9218
9219 if (bed->s->arch_size == 32)
9220 {
9221 r_type_mask = 0xff;
9222 r_sym_shift = 8;
9223 }
9224 else
9225 {
9226 r_type_mask = 0xffffffff;
9227 r_sym_shift = 32;
9228 }
9229
9230 action_discarded = -1;
9231 if (!elf_section_ignore_discarded_relocs (o))
9232 action_discarded = (*bed->action_discarded) (o);
9233
9234 /* Run through the relocs evaluating complex reloc symbols and
9235 looking for relocs against symbols from discarded sections
9236 or section symbols from removed link-once sections.
9237 Complain about relocs against discarded sections. Zero
9238 relocs against removed link-once sections. */
9239
9240 rel = internal_relocs;
9241 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9242 for ( ; rel < relend; rel++)
9243 {
9244 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9245 unsigned int s_type;
9246 asection **ps, *sec;
9247 struct elf_link_hash_entry *h = NULL;
9248 const char *sym_name;
9249
9250 if (r_symndx == STN_UNDEF)
9251 continue;
9252
9253 if (r_symndx >= locsymcount
9254 || (elf_bad_symtab (input_bfd)
9255 && finfo->sections[r_symndx] == NULL))
9256 {
9257 h = sym_hashes[r_symndx - extsymoff];
9258
9259 /* Badly formatted input files can contain relocs that
9260 reference non-existant symbols. Check here so that
9261 we do not seg fault. */
9262 if (h == NULL)
9263 {
9264 char buffer [32];
9265
9266 sprintf_vma (buffer, rel->r_info);
9267 (*_bfd_error_handler)
9268 (_("error: %B contains a reloc (0x%s) for section %A "
9269 "that references a non-existent global symbol"),
9270 input_bfd, o, buffer);
9271 bfd_set_error (bfd_error_bad_value);
9272 return FALSE;
9273 }
9274
9275 while (h->root.type == bfd_link_hash_indirect
9276 || h->root.type == bfd_link_hash_warning)
9277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9278
9279 s_type = h->type;
9280
9281 ps = NULL;
9282 if (h->root.type == bfd_link_hash_defined
9283 || h->root.type == bfd_link_hash_defweak)
9284 ps = &h->root.u.def.section;
9285
9286 sym_name = h->root.root.string;
9287 }
9288 else
9289 {
9290 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9291
9292 s_type = ELF_ST_TYPE (sym->st_info);
9293 ps = &finfo->sections[r_symndx];
9294 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9295 sym, *ps);
9296 }
9297
9298 if ((s_type == STT_RELC || s_type == STT_SRELC)
9299 && !finfo->info->relocatable)
9300 {
9301 bfd_vma val;
9302 bfd_vma dot = (rel->r_offset
9303 + o->output_offset + o->output_section->vma);
9304 #ifdef DEBUG
9305 printf ("Encountered a complex symbol!");
9306 printf (" (input_bfd %s, section %s, reloc %ld\n",
9307 input_bfd->filename, o->name, rel - internal_relocs);
9308 printf (" symbol: idx %8.8lx, name %s\n",
9309 r_symndx, sym_name);
9310 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9311 (unsigned long) rel->r_info,
9312 (unsigned long) rel->r_offset);
9313 #endif
9314 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9315 isymbuf, locsymcount, s_type == STT_SRELC))
9316 return FALSE;
9317
9318 /* Symbol evaluated OK. Update to absolute value. */
9319 set_symbol_value (input_bfd, isymbuf, locsymcount,
9320 r_symndx, val);
9321 continue;
9322 }
9323
9324 if (action_discarded != -1 && ps != NULL)
9325 {
9326 /* Complain if the definition comes from a
9327 discarded section. */
9328 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9329 {
9330 BFD_ASSERT (r_symndx != 0);
9331 if (action_discarded & COMPLAIN)
9332 (*finfo->info->callbacks->einfo)
9333 (_("%X`%s' referenced in section `%A' of %B: "
9334 "defined in discarded section `%A' of %B\n"),
9335 sym_name, o, input_bfd, sec, sec->owner);
9336
9337 /* Try to do the best we can to support buggy old
9338 versions of gcc. Pretend that the symbol is
9339 really defined in the kept linkonce section.
9340 FIXME: This is quite broken. Modifying the
9341 symbol here means we will be changing all later
9342 uses of the symbol, not just in this section. */
9343 if (action_discarded & PRETEND)
9344 {
9345 asection *kept;
9346
9347 kept = _bfd_elf_check_kept_section (sec,
9348 finfo->info);
9349 if (kept != NULL)
9350 {
9351 *ps = kept;
9352 continue;
9353 }
9354 }
9355 }
9356 }
9357 }
9358
9359 /* Relocate the section by invoking a back end routine.
9360
9361 The back end routine is responsible for adjusting the
9362 section contents as necessary, and (if using Rela relocs
9363 and generating a relocatable output file) adjusting the
9364 reloc addend as necessary.
9365
9366 The back end routine does not have to worry about setting
9367 the reloc address or the reloc symbol index.
9368
9369 The back end routine is given a pointer to the swapped in
9370 internal symbols, and can access the hash table entries
9371 for the external symbols via elf_sym_hashes (input_bfd).
9372
9373 When generating relocatable output, the back end routine
9374 must handle STB_LOCAL/STT_SECTION symbols specially. The
9375 output symbol is going to be a section symbol
9376 corresponding to the output section, which will require
9377 the addend to be adjusted. */
9378
9379 ret = (*relocate_section) (output_bfd, finfo->info,
9380 input_bfd, o, contents,
9381 internal_relocs,
9382 isymbuf,
9383 finfo->sections);
9384 if (!ret)
9385 return FALSE;
9386
9387 if (ret == 2
9388 || finfo->info->relocatable
9389 || finfo->info->emitrelocations)
9390 {
9391 Elf_Internal_Rela *irela;
9392 Elf_Internal_Rela *irelaend;
9393 bfd_vma last_offset;
9394 struct elf_link_hash_entry **rel_hash;
9395 struct elf_link_hash_entry **rel_hash_list;
9396 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9397 unsigned int next_erel;
9398 bfd_boolean rela_normal;
9399
9400 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9401 rela_normal = (bed->rela_normal
9402 && (input_rel_hdr->sh_entsize
9403 == bed->s->sizeof_rela));
9404
9405 /* Adjust the reloc addresses and symbol indices. */
9406
9407 irela = internal_relocs;
9408 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9409 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9410 + elf_section_data (o->output_section)->rel_count
9411 + elf_section_data (o->output_section)->rel_count2);
9412 rel_hash_list = rel_hash;
9413 last_offset = o->output_offset;
9414 if (!finfo->info->relocatable)
9415 last_offset += o->output_section->vma;
9416 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9417 {
9418 unsigned long r_symndx;
9419 asection *sec;
9420 Elf_Internal_Sym sym;
9421
9422 if (next_erel == bed->s->int_rels_per_ext_rel)
9423 {
9424 rel_hash++;
9425 next_erel = 0;
9426 }
9427
9428 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9429 finfo->info, o,
9430 irela->r_offset);
9431 if (irela->r_offset >= (bfd_vma) -2)
9432 {
9433 /* This is a reloc for a deleted entry or somesuch.
9434 Turn it into an R_*_NONE reloc, at the same
9435 offset as the last reloc. elf_eh_frame.c and
9436 bfd_elf_discard_info rely on reloc offsets
9437 being ordered. */
9438 irela->r_offset = last_offset;
9439 irela->r_info = 0;
9440 irela->r_addend = 0;
9441 continue;
9442 }
9443
9444 irela->r_offset += o->output_offset;
9445
9446 /* Relocs in an executable have to be virtual addresses. */
9447 if (!finfo->info->relocatable)
9448 irela->r_offset += o->output_section->vma;
9449
9450 last_offset = irela->r_offset;
9451
9452 r_symndx = irela->r_info >> r_sym_shift;
9453 if (r_symndx == STN_UNDEF)
9454 continue;
9455
9456 if (r_symndx >= locsymcount
9457 || (elf_bad_symtab (input_bfd)
9458 && finfo->sections[r_symndx] == NULL))
9459 {
9460 struct elf_link_hash_entry *rh;
9461 unsigned long indx;
9462
9463 /* This is a reloc against a global symbol. We
9464 have not yet output all the local symbols, so
9465 we do not know the symbol index of any global
9466 symbol. We set the rel_hash entry for this
9467 reloc to point to the global hash table entry
9468 for this symbol. The symbol index is then
9469 set at the end of bfd_elf_final_link. */
9470 indx = r_symndx - extsymoff;
9471 rh = elf_sym_hashes (input_bfd)[indx];
9472 while (rh->root.type == bfd_link_hash_indirect
9473 || rh->root.type == bfd_link_hash_warning)
9474 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9475
9476 /* Setting the index to -2 tells
9477 elf_link_output_extsym that this symbol is
9478 used by a reloc. */
9479 BFD_ASSERT (rh->indx < 0);
9480 rh->indx = -2;
9481
9482 *rel_hash = rh;
9483
9484 continue;
9485 }
9486
9487 /* This is a reloc against a local symbol. */
9488
9489 *rel_hash = NULL;
9490 sym = isymbuf[r_symndx];
9491 sec = finfo->sections[r_symndx];
9492 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9493 {
9494 /* I suppose the backend ought to fill in the
9495 section of any STT_SECTION symbol against a
9496 processor specific section. */
9497 r_symndx = 0;
9498 if (bfd_is_abs_section (sec))
9499 ;
9500 else if (sec == NULL || sec->owner == NULL)
9501 {
9502 bfd_set_error (bfd_error_bad_value);
9503 return FALSE;
9504 }
9505 else
9506 {
9507 asection *osec = sec->output_section;
9508
9509 /* If we have discarded a section, the output
9510 section will be the absolute section. In
9511 case of discarded SEC_MERGE sections, use
9512 the kept section. relocate_section should
9513 have already handled discarded linkonce
9514 sections. */
9515 if (bfd_is_abs_section (osec)
9516 && sec->kept_section != NULL
9517 && sec->kept_section->output_section != NULL)
9518 {
9519 osec = sec->kept_section->output_section;
9520 irela->r_addend -= osec->vma;
9521 }
9522
9523 if (!bfd_is_abs_section (osec))
9524 {
9525 r_symndx = osec->target_index;
9526 if (r_symndx == 0)
9527 {
9528 struct elf_link_hash_table *htab;
9529 asection *oi;
9530
9531 htab = elf_hash_table (finfo->info);
9532 oi = htab->text_index_section;
9533 if ((osec->flags & SEC_READONLY) == 0
9534 && htab->data_index_section != NULL)
9535 oi = htab->data_index_section;
9536
9537 if (oi != NULL)
9538 {
9539 irela->r_addend += osec->vma - oi->vma;
9540 r_symndx = oi->target_index;
9541 }
9542 }
9543
9544 BFD_ASSERT (r_symndx != 0);
9545 }
9546 }
9547
9548 /* Adjust the addend according to where the
9549 section winds up in the output section. */
9550 if (rela_normal)
9551 irela->r_addend += sec->output_offset;
9552 }
9553 else
9554 {
9555 if (finfo->indices[r_symndx] == -1)
9556 {
9557 unsigned long shlink;
9558 const char *name;
9559 asection *osec;
9560 long indx;
9561
9562 if (finfo->info->strip == strip_all)
9563 {
9564 /* You can't do ld -r -s. */
9565 bfd_set_error (bfd_error_invalid_operation);
9566 return FALSE;
9567 }
9568
9569 /* This symbol was skipped earlier, but
9570 since it is needed by a reloc, we
9571 must output it now. */
9572 shlink = symtab_hdr->sh_link;
9573 name = (bfd_elf_string_from_elf_section
9574 (input_bfd, shlink, sym.st_name));
9575 if (name == NULL)
9576 return FALSE;
9577
9578 osec = sec->output_section;
9579 sym.st_shndx =
9580 _bfd_elf_section_from_bfd_section (output_bfd,
9581 osec);
9582 if (sym.st_shndx == SHN_BAD)
9583 return FALSE;
9584
9585 sym.st_value += sec->output_offset;
9586 if (! finfo->info->relocatable)
9587 {
9588 sym.st_value += osec->vma;
9589 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9590 {
9591 /* STT_TLS symbols are relative to PT_TLS
9592 segment base. */
9593 BFD_ASSERT (elf_hash_table (finfo->info)
9594 ->tls_sec != NULL);
9595 sym.st_value -= (elf_hash_table (finfo->info)
9596 ->tls_sec->vma);
9597 }
9598 }
9599
9600 indx = bfd_get_symcount (output_bfd);
9601 ret = elf_link_output_sym (finfo, name, &sym, sec,
9602 NULL);
9603 if (ret == 0)
9604 return FALSE;
9605 else if (ret == 1)
9606 finfo->indices[r_symndx] = indx;
9607 else
9608 abort ();
9609 }
9610
9611 r_symndx = finfo->indices[r_symndx];
9612 }
9613
9614 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9615 | (irela->r_info & r_type_mask));
9616 }
9617
9618 /* Swap out the relocs. */
9619 if (input_rel_hdr->sh_size != 0
9620 && !bed->elf_backend_emit_relocs (output_bfd, o,
9621 input_rel_hdr,
9622 internal_relocs,
9623 rel_hash_list))
9624 return FALSE;
9625
9626 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9627 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9628 {
9629 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9630 * bed->s->int_rels_per_ext_rel);
9631 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9632 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9633 input_rel_hdr2,
9634 internal_relocs,
9635 rel_hash_list))
9636 return FALSE;
9637 }
9638 }
9639 }
9640
9641 /* Write out the modified section contents. */
9642 if (bed->elf_backend_write_section
9643 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9644 contents))
9645 {
9646 /* Section written out. */
9647 }
9648 else switch (o->sec_info_type)
9649 {
9650 case ELF_INFO_TYPE_STABS:
9651 if (! (_bfd_write_section_stabs
9652 (output_bfd,
9653 &elf_hash_table (finfo->info)->stab_info,
9654 o, &elf_section_data (o)->sec_info, contents)))
9655 return FALSE;
9656 break;
9657 case ELF_INFO_TYPE_MERGE:
9658 if (! _bfd_write_merged_section (output_bfd, o,
9659 elf_section_data (o)->sec_info))
9660 return FALSE;
9661 break;
9662 case ELF_INFO_TYPE_EH_FRAME:
9663 {
9664 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9665 o, contents))
9666 return FALSE;
9667 }
9668 break;
9669 default:
9670 {
9671 if (! (o->flags & SEC_EXCLUDE)
9672 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9673 && ! bfd_set_section_contents (output_bfd, o->output_section,
9674 contents,
9675 (file_ptr) o->output_offset,
9676 o->size))
9677 return FALSE;
9678 }
9679 break;
9680 }
9681 }
9682
9683 return TRUE;
9684 }
9685
9686 /* Generate a reloc when linking an ELF file. This is a reloc
9687 requested by the linker, and does not come from any input file. This
9688 is used to build constructor and destructor tables when linking
9689 with -Ur. */
9690
9691 static bfd_boolean
9692 elf_reloc_link_order (bfd *output_bfd,
9693 struct bfd_link_info *info,
9694 asection *output_section,
9695 struct bfd_link_order *link_order)
9696 {
9697 reloc_howto_type *howto;
9698 long indx;
9699 bfd_vma offset;
9700 bfd_vma addend;
9701 struct elf_link_hash_entry **rel_hash_ptr;
9702 Elf_Internal_Shdr *rel_hdr;
9703 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9704 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9705 bfd_byte *erel;
9706 unsigned int i;
9707
9708 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9709 if (howto == NULL)
9710 {
9711 bfd_set_error (bfd_error_bad_value);
9712 return FALSE;
9713 }
9714
9715 addend = link_order->u.reloc.p->addend;
9716
9717 /* Figure out the symbol index. */
9718 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9719 + elf_section_data (output_section)->rel_count
9720 + elf_section_data (output_section)->rel_count2);
9721 if (link_order->type == bfd_section_reloc_link_order)
9722 {
9723 indx = link_order->u.reloc.p->u.section->target_index;
9724 BFD_ASSERT (indx != 0);
9725 *rel_hash_ptr = NULL;
9726 }
9727 else
9728 {
9729 struct elf_link_hash_entry *h;
9730
9731 /* Treat a reloc against a defined symbol as though it were
9732 actually against the section. */
9733 h = ((struct elf_link_hash_entry *)
9734 bfd_wrapped_link_hash_lookup (output_bfd, info,
9735 link_order->u.reloc.p->u.name,
9736 FALSE, FALSE, TRUE));
9737 if (h != NULL
9738 && (h->root.type == bfd_link_hash_defined
9739 || h->root.type == bfd_link_hash_defweak))
9740 {
9741 asection *section;
9742
9743 section = h->root.u.def.section;
9744 indx = section->output_section->target_index;
9745 *rel_hash_ptr = NULL;
9746 /* It seems that we ought to add the symbol value to the
9747 addend here, but in practice it has already been added
9748 because it was passed to constructor_callback. */
9749 addend += section->output_section->vma + section->output_offset;
9750 }
9751 else if (h != NULL)
9752 {
9753 /* Setting the index to -2 tells elf_link_output_extsym that
9754 this symbol is used by a reloc. */
9755 h->indx = -2;
9756 *rel_hash_ptr = h;
9757 indx = 0;
9758 }
9759 else
9760 {
9761 if (! ((*info->callbacks->unattached_reloc)
9762 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9763 return FALSE;
9764 indx = 0;
9765 }
9766 }
9767
9768 /* If this is an inplace reloc, we must write the addend into the
9769 object file. */
9770 if (howto->partial_inplace && addend != 0)
9771 {
9772 bfd_size_type size;
9773 bfd_reloc_status_type rstat;
9774 bfd_byte *buf;
9775 bfd_boolean ok;
9776 const char *sym_name;
9777
9778 size = bfd_get_reloc_size (howto);
9779 buf = bfd_zmalloc (size);
9780 if (buf == NULL)
9781 return FALSE;
9782 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9783 switch (rstat)
9784 {
9785 case bfd_reloc_ok:
9786 break;
9787
9788 default:
9789 case bfd_reloc_outofrange:
9790 abort ();
9791
9792 case bfd_reloc_overflow:
9793 if (link_order->type == bfd_section_reloc_link_order)
9794 sym_name = bfd_section_name (output_bfd,
9795 link_order->u.reloc.p->u.section);
9796 else
9797 sym_name = link_order->u.reloc.p->u.name;
9798 if (! ((*info->callbacks->reloc_overflow)
9799 (info, NULL, sym_name, howto->name, addend, NULL,
9800 NULL, (bfd_vma) 0)))
9801 {
9802 free (buf);
9803 return FALSE;
9804 }
9805 break;
9806 }
9807 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9808 link_order->offset, size);
9809 free (buf);
9810 if (! ok)
9811 return FALSE;
9812 }
9813
9814 /* The address of a reloc is relative to the section in a
9815 relocatable file, and is a virtual address in an executable
9816 file. */
9817 offset = link_order->offset;
9818 if (! info->relocatable)
9819 offset += output_section->vma;
9820
9821 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9822 {
9823 irel[i].r_offset = offset;
9824 irel[i].r_info = 0;
9825 irel[i].r_addend = 0;
9826 }
9827 if (bed->s->arch_size == 32)
9828 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9829 else
9830 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9831
9832 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9833 erel = rel_hdr->contents;
9834 if (rel_hdr->sh_type == SHT_REL)
9835 {
9836 erel += (elf_section_data (output_section)->rel_count
9837 * bed->s->sizeof_rel);
9838 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9839 }
9840 else
9841 {
9842 irel[0].r_addend = addend;
9843 erel += (elf_section_data (output_section)->rel_count
9844 * bed->s->sizeof_rela);
9845 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9846 }
9847
9848 ++elf_section_data (output_section)->rel_count;
9849
9850 return TRUE;
9851 }
9852
9853
9854 /* Get the output vma of the section pointed to by the sh_link field. */
9855
9856 static bfd_vma
9857 elf_get_linked_section_vma (struct bfd_link_order *p)
9858 {
9859 Elf_Internal_Shdr **elf_shdrp;
9860 asection *s;
9861 int elfsec;
9862
9863 s = p->u.indirect.section;
9864 elf_shdrp = elf_elfsections (s->owner);
9865 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9866 elfsec = elf_shdrp[elfsec]->sh_link;
9867 /* PR 290:
9868 The Intel C compiler generates SHT_IA_64_UNWIND with
9869 SHF_LINK_ORDER. But it doesn't set the sh_link or
9870 sh_info fields. Hence we could get the situation
9871 where elfsec is 0. */
9872 if (elfsec == 0)
9873 {
9874 const struct elf_backend_data *bed
9875 = get_elf_backend_data (s->owner);
9876 if (bed->link_order_error_handler)
9877 bed->link_order_error_handler
9878 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9879 return 0;
9880 }
9881 else
9882 {
9883 s = elf_shdrp[elfsec]->bfd_section;
9884 return s->output_section->vma + s->output_offset;
9885 }
9886 }
9887
9888
9889 /* Compare two sections based on the locations of the sections they are
9890 linked to. Used by elf_fixup_link_order. */
9891
9892 static int
9893 compare_link_order (const void * a, const void * b)
9894 {
9895 bfd_vma apos;
9896 bfd_vma bpos;
9897
9898 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9899 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9900 if (apos < bpos)
9901 return -1;
9902 return apos > bpos;
9903 }
9904
9905
9906 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9907 order as their linked sections. Returns false if this could not be done
9908 because an output section includes both ordered and unordered
9909 sections. Ideally we'd do this in the linker proper. */
9910
9911 static bfd_boolean
9912 elf_fixup_link_order (bfd *abfd, asection *o)
9913 {
9914 int seen_linkorder;
9915 int seen_other;
9916 int n;
9917 struct bfd_link_order *p;
9918 bfd *sub;
9919 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9920 unsigned elfsec;
9921 struct bfd_link_order **sections;
9922 asection *s, *other_sec, *linkorder_sec;
9923 bfd_vma offset;
9924
9925 other_sec = NULL;
9926 linkorder_sec = NULL;
9927 seen_other = 0;
9928 seen_linkorder = 0;
9929 for (p = o->map_head.link_order; p != NULL; p = p->next)
9930 {
9931 if (p->type == bfd_indirect_link_order)
9932 {
9933 s = p->u.indirect.section;
9934 sub = s->owner;
9935 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9936 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9937 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9938 && elfsec < elf_numsections (sub)
9939 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9940 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9941 {
9942 seen_linkorder++;
9943 linkorder_sec = s;
9944 }
9945 else
9946 {
9947 seen_other++;
9948 other_sec = s;
9949 }
9950 }
9951 else
9952 seen_other++;
9953
9954 if (seen_other && seen_linkorder)
9955 {
9956 if (other_sec && linkorder_sec)
9957 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9958 o, linkorder_sec,
9959 linkorder_sec->owner, other_sec,
9960 other_sec->owner);
9961 else
9962 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9963 o);
9964 bfd_set_error (bfd_error_bad_value);
9965 return FALSE;
9966 }
9967 }
9968
9969 if (!seen_linkorder)
9970 return TRUE;
9971
9972 sections = (struct bfd_link_order **)
9973 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9974 if (sections == NULL)
9975 return FALSE;
9976 seen_linkorder = 0;
9977
9978 for (p = o->map_head.link_order; p != NULL; p = p->next)
9979 {
9980 sections[seen_linkorder++] = p;
9981 }
9982 /* Sort the input sections in the order of their linked section. */
9983 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9984 compare_link_order);
9985
9986 /* Change the offsets of the sections. */
9987 offset = 0;
9988 for (n = 0; n < seen_linkorder; n++)
9989 {
9990 s = sections[n]->u.indirect.section;
9991 offset &= ~(bfd_vma) 0 << s->alignment_power;
9992 s->output_offset = offset;
9993 sections[n]->offset = offset;
9994 offset += sections[n]->size;
9995 }
9996
9997 free (sections);
9998 return TRUE;
9999 }
10000
10001
10002 /* Do the final step of an ELF link. */
10003
10004 bfd_boolean
10005 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10006 {
10007 bfd_boolean dynamic;
10008 bfd_boolean emit_relocs;
10009 bfd *dynobj;
10010 struct elf_final_link_info finfo;
10011 register asection *o;
10012 register struct bfd_link_order *p;
10013 register bfd *sub;
10014 bfd_size_type max_contents_size;
10015 bfd_size_type max_external_reloc_size;
10016 bfd_size_type max_internal_reloc_count;
10017 bfd_size_type max_sym_count;
10018 bfd_size_type max_sym_shndx_count;
10019 file_ptr off;
10020 Elf_Internal_Sym elfsym;
10021 unsigned int i;
10022 Elf_Internal_Shdr *symtab_hdr;
10023 Elf_Internal_Shdr *symtab_shndx_hdr;
10024 Elf_Internal_Shdr *symstrtab_hdr;
10025 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10026 struct elf_outext_info eoinfo;
10027 bfd_boolean merged;
10028 size_t relativecount = 0;
10029 asection *reldyn = 0;
10030 bfd_size_type amt;
10031 asection *attr_section = NULL;
10032 bfd_vma attr_size = 0;
10033 const char *std_attrs_section;
10034
10035 if (! is_elf_hash_table (info->hash))
10036 return FALSE;
10037
10038 if (info->shared)
10039 abfd->flags |= DYNAMIC;
10040
10041 dynamic = elf_hash_table (info)->dynamic_sections_created;
10042 dynobj = elf_hash_table (info)->dynobj;
10043
10044 emit_relocs = (info->relocatable
10045 || info->emitrelocations);
10046
10047 finfo.info = info;
10048 finfo.output_bfd = abfd;
10049 finfo.symstrtab = _bfd_elf_stringtab_init ();
10050 if (finfo.symstrtab == NULL)
10051 return FALSE;
10052
10053 if (! dynamic)
10054 {
10055 finfo.dynsym_sec = NULL;
10056 finfo.hash_sec = NULL;
10057 finfo.symver_sec = NULL;
10058 }
10059 else
10060 {
10061 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10062 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10063 BFD_ASSERT (finfo.dynsym_sec != NULL);
10064 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10065 /* Note that it is OK if symver_sec is NULL. */
10066 }
10067
10068 finfo.contents = NULL;
10069 finfo.external_relocs = NULL;
10070 finfo.internal_relocs = NULL;
10071 finfo.external_syms = NULL;
10072 finfo.locsym_shndx = NULL;
10073 finfo.internal_syms = NULL;
10074 finfo.indices = NULL;
10075 finfo.sections = NULL;
10076 finfo.symbuf = NULL;
10077 finfo.symshndxbuf = NULL;
10078 finfo.symbuf_count = 0;
10079 finfo.shndxbuf_size = 0;
10080
10081 /* The object attributes have been merged. Remove the input
10082 sections from the link, and set the contents of the output
10083 secton. */
10084 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10085 for (o = abfd->sections; o != NULL; o = o->next)
10086 {
10087 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10088 || strcmp (o->name, ".gnu.attributes") == 0)
10089 {
10090 for (p = o->map_head.link_order; p != NULL; p = p->next)
10091 {
10092 asection *input_section;
10093
10094 if (p->type != bfd_indirect_link_order)
10095 continue;
10096 input_section = p->u.indirect.section;
10097 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10098 elf_link_input_bfd ignores this section. */
10099 input_section->flags &= ~SEC_HAS_CONTENTS;
10100 }
10101
10102 attr_size = bfd_elf_obj_attr_size (abfd);
10103 if (attr_size)
10104 {
10105 bfd_set_section_size (abfd, o, attr_size);
10106 attr_section = o;
10107 /* Skip this section later on. */
10108 o->map_head.link_order = NULL;
10109 }
10110 else
10111 o->flags |= SEC_EXCLUDE;
10112 }
10113 }
10114
10115 /* Count up the number of relocations we will output for each output
10116 section, so that we know the sizes of the reloc sections. We
10117 also figure out some maximum sizes. */
10118 max_contents_size = 0;
10119 max_external_reloc_size = 0;
10120 max_internal_reloc_count = 0;
10121 max_sym_count = 0;
10122 max_sym_shndx_count = 0;
10123 merged = FALSE;
10124 for (o = abfd->sections; o != NULL; o = o->next)
10125 {
10126 struct bfd_elf_section_data *esdo = elf_section_data (o);
10127 o->reloc_count = 0;
10128
10129 for (p = o->map_head.link_order; p != NULL; p = p->next)
10130 {
10131 unsigned int reloc_count = 0;
10132 struct bfd_elf_section_data *esdi = NULL;
10133 unsigned int *rel_count1;
10134
10135 if (p->type == bfd_section_reloc_link_order
10136 || p->type == bfd_symbol_reloc_link_order)
10137 reloc_count = 1;
10138 else if (p->type == bfd_indirect_link_order)
10139 {
10140 asection *sec;
10141
10142 sec = p->u.indirect.section;
10143 esdi = elf_section_data (sec);
10144
10145 /* Mark all sections which are to be included in the
10146 link. This will normally be every section. We need
10147 to do this so that we can identify any sections which
10148 the linker has decided to not include. */
10149 sec->linker_mark = TRUE;
10150
10151 if (sec->flags & SEC_MERGE)
10152 merged = TRUE;
10153
10154 if (info->relocatable || info->emitrelocations)
10155 reloc_count = sec->reloc_count;
10156 else if (bed->elf_backend_count_relocs)
10157 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10158
10159 if (sec->rawsize > max_contents_size)
10160 max_contents_size = sec->rawsize;
10161 if (sec->size > max_contents_size)
10162 max_contents_size = sec->size;
10163
10164 /* We are interested in just local symbols, not all
10165 symbols. */
10166 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10167 && (sec->owner->flags & DYNAMIC) == 0)
10168 {
10169 size_t sym_count;
10170
10171 if (elf_bad_symtab (sec->owner))
10172 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10173 / bed->s->sizeof_sym);
10174 else
10175 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10176
10177 if (sym_count > max_sym_count)
10178 max_sym_count = sym_count;
10179
10180 if (sym_count > max_sym_shndx_count
10181 && elf_symtab_shndx (sec->owner) != 0)
10182 max_sym_shndx_count = sym_count;
10183
10184 if ((sec->flags & SEC_RELOC) != 0)
10185 {
10186 size_t ext_size;
10187
10188 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10189 if (ext_size > max_external_reloc_size)
10190 max_external_reloc_size = ext_size;
10191 if (sec->reloc_count > max_internal_reloc_count)
10192 max_internal_reloc_count = sec->reloc_count;
10193 }
10194 }
10195 }
10196
10197 if (reloc_count == 0)
10198 continue;
10199
10200 o->reloc_count += reloc_count;
10201
10202 /* MIPS may have a mix of REL and RELA relocs on sections.
10203 To support this curious ABI we keep reloc counts in
10204 elf_section_data too. We must be careful to add the
10205 relocations from the input section to the right output
10206 count. FIXME: Get rid of one count. We have
10207 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10208 rel_count1 = &esdo->rel_count;
10209 if (esdi != NULL)
10210 {
10211 bfd_boolean same_size;
10212 bfd_size_type entsize1;
10213
10214 entsize1 = esdi->rel_hdr.sh_entsize;
10215 /* PR 9827: If the header size has not been set yet then
10216 assume that it will match the output section's reloc type. */
10217 if (entsize1 == 0)
10218 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10219 else
10220 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10221 || entsize1 == bed->s->sizeof_rela);
10222 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10223
10224 if (!same_size)
10225 rel_count1 = &esdo->rel_count2;
10226
10227 if (esdi->rel_hdr2 != NULL)
10228 {
10229 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10230 unsigned int alt_count;
10231 unsigned int *rel_count2;
10232
10233 BFD_ASSERT (entsize2 != entsize1
10234 && (entsize2 == bed->s->sizeof_rel
10235 || entsize2 == bed->s->sizeof_rela));
10236
10237 rel_count2 = &esdo->rel_count2;
10238 if (!same_size)
10239 rel_count2 = &esdo->rel_count;
10240
10241 /* The following is probably too simplistic if the
10242 backend counts output relocs unusually. */
10243 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10244 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10245 *rel_count2 += alt_count;
10246 reloc_count -= alt_count;
10247 }
10248 }
10249 *rel_count1 += reloc_count;
10250 }
10251
10252 if (o->reloc_count > 0)
10253 o->flags |= SEC_RELOC;
10254 else
10255 {
10256 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10257 set it (this is probably a bug) and if it is set
10258 assign_section_numbers will create a reloc section. */
10259 o->flags &=~ SEC_RELOC;
10260 }
10261
10262 /* If the SEC_ALLOC flag is not set, force the section VMA to
10263 zero. This is done in elf_fake_sections as well, but forcing
10264 the VMA to 0 here will ensure that relocs against these
10265 sections are handled correctly. */
10266 if ((o->flags & SEC_ALLOC) == 0
10267 && ! o->user_set_vma)
10268 o->vma = 0;
10269 }
10270
10271 if (! info->relocatable && merged)
10272 elf_link_hash_traverse (elf_hash_table (info),
10273 _bfd_elf_link_sec_merge_syms, abfd);
10274
10275 /* Figure out the file positions for everything but the symbol table
10276 and the relocs. We set symcount to force assign_section_numbers
10277 to create a symbol table. */
10278 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10279 BFD_ASSERT (! abfd->output_has_begun);
10280 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10281 goto error_return;
10282
10283 /* Set sizes, and assign file positions for reloc sections. */
10284 for (o = abfd->sections; o != NULL; o = o->next)
10285 {
10286 if ((o->flags & SEC_RELOC) != 0)
10287 {
10288 if (!(_bfd_elf_link_size_reloc_section
10289 (abfd, &elf_section_data (o)->rel_hdr, o)))
10290 goto error_return;
10291
10292 if (elf_section_data (o)->rel_hdr2
10293 && !(_bfd_elf_link_size_reloc_section
10294 (abfd, elf_section_data (o)->rel_hdr2, o)))
10295 goto error_return;
10296 }
10297
10298 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10299 to count upwards while actually outputting the relocations. */
10300 elf_section_data (o)->rel_count = 0;
10301 elf_section_data (o)->rel_count2 = 0;
10302 }
10303
10304 _bfd_elf_assign_file_positions_for_relocs (abfd);
10305
10306 /* We have now assigned file positions for all the sections except
10307 .symtab and .strtab. We start the .symtab section at the current
10308 file position, and write directly to it. We build the .strtab
10309 section in memory. */
10310 bfd_get_symcount (abfd) = 0;
10311 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10312 /* sh_name is set in prep_headers. */
10313 symtab_hdr->sh_type = SHT_SYMTAB;
10314 /* sh_flags, sh_addr and sh_size all start off zero. */
10315 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10316 /* sh_link is set in assign_section_numbers. */
10317 /* sh_info is set below. */
10318 /* sh_offset is set just below. */
10319 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10320
10321 off = elf_tdata (abfd)->next_file_pos;
10322 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10323
10324 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10325 incorrect. We do not yet know the size of the .symtab section.
10326 We correct next_file_pos below, after we do know the size. */
10327
10328 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10329 continuously seeking to the right position in the file. */
10330 if (! info->keep_memory || max_sym_count < 20)
10331 finfo.symbuf_size = 20;
10332 else
10333 finfo.symbuf_size = max_sym_count;
10334 amt = finfo.symbuf_size;
10335 amt *= bed->s->sizeof_sym;
10336 finfo.symbuf = bfd_malloc (amt);
10337 if (finfo.symbuf == NULL)
10338 goto error_return;
10339 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10340 {
10341 /* Wild guess at number of output symbols. realloc'd as needed. */
10342 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10343 finfo.shndxbuf_size = amt;
10344 amt *= sizeof (Elf_External_Sym_Shndx);
10345 finfo.symshndxbuf = bfd_zmalloc (amt);
10346 if (finfo.symshndxbuf == NULL)
10347 goto error_return;
10348 }
10349
10350 /* Start writing out the symbol table. The first symbol is always a
10351 dummy symbol. */
10352 if (info->strip != strip_all
10353 || emit_relocs)
10354 {
10355 elfsym.st_value = 0;
10356 elfsym.st_size = 0;
10357 elfsym.st_info = 0;
10358 elfsym.st_other = 0;
10359 elfsym.st_shndx = SHN_UNDEF;
10360 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10361 NULL) != 1)
10362 goto error_return;
10363 }
10364
10365 /* Output a symbol for each section. We output these even if we are
10366 discarding local symbols, since they are used for relocs. These
10367 symbols have no names. We store the index of each one in the
10368 index field of the section, so that we can find it again when
10369 outputting relocs. */
10370 if (info->strip != strip_all
10371 || emit_relocs)
10372 {
10373 elfsym.st_size = 0;
10374 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10375 elfsym.st_other = 0;
10376 elfsym.st_value = 0;
10377 for (i = 1; i < elf_numsections (abfd); i++)
10378 {
10379 o = bfd_section_from_elf_index (abfd, i);
10380 if (o != NULL)
10381 {
10382 o->target_index = bfd_get_symcount (abfd);
10383 elfsym.st_shndx = i;
10384 if (!info->relocatable)
10385 elfsym.st_value = o->vma;
10386 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10387 goto error_return;
10388 }
10389 }
10390 }
10391
10392 /* Allocate some memory to hold information read in from the input
10393 files. */
10394 if (max_contents_size != 0)
10395 {
10396 finfo.contents = bfd_malloc (max_contents_size);
10397 if (finfo.contents == NULL)
10398 goto error_return;
10399 }
10400
10401 if (max_external_reloc_size != 0)
10402 {
10403 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10404 if (finfo.external_relocs == NULL)
10405 goto error_return;
10406 }
10407
10408 if (max_internal_reloc_count != 0)
10409 {
10410 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10411 amt *= sizeof (Elf_Internal_Rela);
10412 finfo.internal_relocs = bfd_malloc (amt);
10413 if (finfo.internal_relocs == NULL)
10414 goto error_return;
10415 }
10416
10417 if (max_sym_count != 0)
10418 {
10419 amt = max_sym_count * bed->s->sizeof_sym;
10420 finfo.external_syms = bfd_malloc (amt);
10421 if (finfo.external_syms == NULL)
10422 goto error_return;
10423
10424 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10425 finfo.internal_syms = bfd_malloc (amt);
10426 if (finfo.internal_syms == NULL)
10427 goto error_return;
10428
10429 amt = max_sym_count * sizeof (long);
10430 finfo.indices = bfd_malloc (amt);
10431 if (finfo.indices == NULL)
10432 goto error_return;
10433
10434 amt = max_sym_count * sizeof (asection *);
10435 finfo.sections = bfd_malloc (amt);
10436 if (finfo.sections == NULL)
10437 goto error_return;
10438 }
10439
10440 if (max_sym_shndx_count != 0)
10441 {
10442 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10443 finfo.locsym_shndx = bfd_malloc (amt);
10444 if (finfo.locsym_shndx == NULL)
10445 goto error_return;
10446 }
10447
10448 if (elf_hash_table (info)->tls_sec)
10449 {
10450 bfd_vma base, end = 0;
10451 asection *sec;
10452
10453 for (sec = elf_hash_table (info)->tls_sec;
10454 sec && (sec->flags & SEC_THREAD_LOCAL);
10455 sec = sec->next)
10456 {
10457 bfd_size_type size = sec->size;
10458
10459 if (size == 0
10460 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10461 {
10462 struct bfd_link_order *o = sec->map_tail.link_order;
10463 if (o != NULL)
10464 size = o->offset + o->size;
10465 }
10466 end = sec->vma + size;
10467 }
10468 base = elf_hash_table (info)->tls_sec->vma;
10469 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10470 elf_hash_table (info)->tls_size = end - base;
10471 }
10472
10473 /* Reorder SHF_LINK_ORDER sections. */
10474 for (o = abfd->sections; o != NULL; o = o->next)
10475 {
10476 if (!elf_fixup_link_order (abfd, o))
10477 return FALSE;
10478 }
10479
10480 /* Since ELF permits relocations to be against local symbols, we
10481 must have the local symbols available when we do the relocations.
10482 Since we would rather only read the local symbols once, and we
10483 would rather not keep them in memory, we handle all the
10484 relocations for a single input file at the same time.
10485
10486 Unfortunately, there is no way to know the total number of local
10487 symbols until we have seen all of them, and the local symbol
10488 indices precede the global symbol indices. This means that when
10489 we are generating relocatable output, and we see a reloc against
10490 a global symbol, we can not know the symbol index until we have
10491 finished examining all the local symbols to see which ones we are
10492 going to output. To deal with this, we keep the relocations in
10493 memory, and don't output them until the end of the link. This is
10494 an unfortunate waste of memory, but I don't see a good way around
10495 it. Fortunately, it only happens when performing a relocatable
10496 link, which is not the common case. FIXME: If keep_memory is set
10497 we could write the relocs out and then read them again; I don't
10498 know how bad the memory loss will be. */
10499
10500 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10501 sub->output_has_begun = FALSE;
10502 for (o = abfd->sections; o != NULL; o = o->next)
10503 {
10504 for (p = o->map_head.link_order; p != NULL; p = p->next)
10505 {
10506 if (p->type == bfd_indirect_link_order
10507 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10508 == bfd_target_elf_flavour)
10509 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10510 {
10511 if (! sub->output_has_begun)
10512 {
10513 if (! elf_link_input_bfd (&finfo, sub))
10514 goto error_return;
10515 sub->output_has_begun = TRUE;
10516 }
10517 }
10518 else if (p->type == bfd_section_reloc_link_order
10519 || p->type == bfd_symbol_reloc_link_order)
10520 {
10521 if (! elf_reloc_link_order (abfd, info, o, p))
10522 goto error_return;
10523 }
10524 else
10525 {
10526 if (! _bfd_default_link_order (abfd, info, o, p))
10527 goto error_return;
10528 }
10529 }
10530 }
10531
10532 /* Free symbol buffer if needed. */
10533 if (!info->reduce_memory_overheads)
10534 {
10535 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10536 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10537 && elf_tdata (sub)->symbuf)
10538 {
10539 free (elf_tdata (sub)->symbuf);
10540 elf_tdata (sub)->symbuf = NULL;
10541 }
10542 }
10543
10544 /* Output any global symbols that got converted to local in a
10545 version script or due to symbol visibility. We do this in a
10546 separate step since ELF requires all local symbols to appear
10547 prior to any global symbols. FIXME: We should only do this if
10548 some global symbols were, in fact, converted to become local.
10549 FIXME: Will this work correctly with the Irix 5 linker? */
10550 eoinfo.failed = FALSE;
10551 eoinfo.finfo = &finfo;
10552 eoinfo.localsyms = TRUE;
10553 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10554 &eoinfo);
10555 if (eoinfo.failed)
10556 return FALSE;
10557
10558 /* If backend needs to output some local symbols not present in the hash
10559 table, do it now. */
10560 if (bed->elf_backend_output_arch_local_syms)
10561 {
10562 typedef int (*out_sym_func)
10563 (void *, const char *, Elf_Internal_Sym *, asection *,
10564 struct elf_link_hash_entry *);
10565
10566 if (! ((*bed->elf_backend_output_arch_local_syms)
10567 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10568 return FALSE;
10569 }
10570
10571 /* That wrote out all the local symbols. Finish up the symbol table
10572 with the global symbols. Even if we want to strip everything we
10573 can, we still need to deal with those global symbols that got
10574 converted to local in a version script. */
10575
10576 /* The sh_info field records the index of the first non local symbol. */
10577 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10578
10579 if (dynamic
10580 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10581 {
10582 Elf_Internal_Sym sym;
10583 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10584 long last_local = 0;
10585
10586 /* Write out the section symbols for the output sections. */
10587 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10588 {
10589 asection *s;
10590
10591 sym.st_size = 0;
10592 sym.st_name = 0;
10593 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10594 sym.st_other = 0;
10595
10596 for (s = abfd->sections; s != NULL; s = s->next)
10597 {
10598 int indx;
10599 bfd_byte *dest;
10600 long dynindx;
10601
10602 dynindx = elf_section_data (s)->dynindx;
10603 if (dynindx <= 0)
10604 continue;
10605 indx = elf_section_data (s)->this_idx;
10606 BFD_ASSERT (indx > 0);
10607 sym.st_shndx = indx;
10608 if (! check_dynsym (abfd, &sym))
10609 return FALSE;
10610 sym.st_value = s->vma;
10611 dest = dynsym + dynindx * bed->s->sizeof_sym;
10612 if (last_local < dynindx)
10613 last_local = dynindx;
10614 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10615 }
10616 }
10617
10618 /* Write out the local dynsyms. */
10619 if (elf_hash_table (info)->dynlocal)
10620 {
10621 struct elf_link_local_dynamic_entry *e;
10622 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10623 {
10624 asection *s;
10625 bfd_byte *dest;
10626
10627 sym.st_size = e->isym.st_size;
10628 sym.st_other = e->isym.st_other;
10629
10630 /* Copy the internal symbol as is.
10631 Note that we saved a word of storage and overwrote
10632 the original st_name with the dynstr_index. */
10633 sym = e->isym;
10634
10635 s = bfd_section_from_elf_index (e->input_bfd,
10636 e->isym.st_shndx);
10637 if (s != NULL)
10638 {
10639 sym.st_shndx =
10640 elf_section_data (s->output_section)->this_idx;
10641 if (! check_dynsym (abfd, &sym))
10642 return FALSE;
10643 sym.st_value = (s->output_section->vma
10644 + s->output_offset
10645 + e->isym.st_value);
10646 }
10647
10648 if (last_local < e->dynindx)
10649 last_local = e->dynindx;
10650
10651 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10652 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10653 }
10654 }
10655
10656 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10657 last_local + 1;
10658 }
10659
10660 /* We get the global symbols from the hash table. */
10661 eoinfo.failed = FALSE;
10662 eoinfo.localsyms = FALSE;
10663 eoinfo.finfo = &finfo;
10664 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10665 &eoinfo);
10666 if (eoinfo.failed)
10667 return FALSE;
10668
10669 /* If backend needs to output some symbols not present in the hash
10670 table, do it now. */
10671 if (bed->elf_backend_output_arch_syms)
10672 {
10673 typedef int (*out_sym_func)
10674 (void *, const char *, Elf_Internal_Sym *, asection *,
10675 struct elf_link_hash_entry *);
10676
10677 if (! ((*bed->elf_backend_output_arch_syms)
10678 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10679 return FALSE;
10680 }
10681
10682 /* Flush all symbols to the file. */
10683 if (! elf_link_flush_output_syms (&finfo, bed))
10684 return FALSE;
10685
10686 /* Now we know the size of the symtab section. */
10687 off += symtab_hdr->sh_size;
10688
10689 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10690 if (symtab_shndx_hdr->sh_name != 0)
10691 {
10692 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10693 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10694 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10695 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10696 symtab_shndx_hdr->sh_size = amt;
10697
10698 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10699 off, TRUE);
10700
10701 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10702 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10703 return FALSE;
10704 }
10705
10706
10707 /* Finish up and write out the symbol string table (.strtab)
10708 section. */
10709 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10710 /* sh_name was set in prep_headers. */
10711 symstrtab_hdr->sh_type = SHT_STRTAB;
10712 symstrtab_hdr->sh_flags = 0;
10713 symstrtab_hdr->sh_addr = 0;
10714 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10715 symstrtab_hdr->sh_entsize = 0;
10716 symstrtab_hdr->sh_link = 0;
10717 symstrtab_hdr->sh_info = 0;
10718 /* sh_offset is set just below. */
10719 symstrtab_hdr->sh_addralign = 1;
10720
10721 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10722 elf_tdata (abfd)->next_file_pos = off;
10723
10724 if (bfd_get_symcount (abfd) > 0)
10725 {
10726 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10727 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10728 return FALSE;
10729 }
10730
10731 /* Adjust the relocs to have the correct symbol indices. */
10732 for (o = abfd->sections; o != NULL; o = o->next)
10733 {
10734 if ((o->flags & SEC_RELOC) == 0)
10735 continue;
10736
10737 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10738 elf_section_data (o)->rel_count,
10739 elf_section_data (o)->rel_hashes);
10740 if (elf_section_data (o)->rel_hdr2 != NULL)
10741 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10742 elf_section_data (o)->rel_count2,
10743 (elf_section_data (o)->rel_hashes
10744 + elf_section_data (o)->rel_count));
10745
10746 /* Set the reloc_count field to 0 to prevent write_relocs from
10747 trying to swap the relocs out itself. */
10748 o->reloc_count = 0;
10749 }
10750
10751 if (dynamic && info->combreloc && dynobj != NULL)
10752 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10753
10754 /* If we are linking against a dynamic object, or generating a
10755 shared library, finish up the dynamic linking information. */
10756 if (dynamic)
10757 {
10758 bfd_byte *dyncon, *dynconend;
10759
10760 /* Fix up .dynamic entries. */
10761 o = bfd_get_section_by_name (dynobj, ".dynamic");
10762 BFD_ASSERT (o != NULL);
10763
10764 dyncon = o->contents;
10765 dynconend = o->contents + o->size;
10766 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10767 {
10768 Elf_Internal_Dyn dyn;
10769 const char *name;
10770 unsigned int type;
10771
10772 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10773
10774 switch (dyn.d_tag)
10775 {
10776 default:
10777 continue;
10778 case DT_NULL:
10779 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10780 {
10781 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10782 {
10783 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10784 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10785 default: continue;
10786 }
10787 dyn.d_un.d_val = relativecount;
10788 relativecount = 0;
10789 break;
10790 }
10791 continue;
10792
10793 case DT_INIT:
10794 name = info->init_function;
10795 goto get_sym;
10796 case DT_FINI:
10797 name = info->fini_function;
10798 get_sym:
10799 {
10800 struct elf_link_hash_entry *h;
10801
10802 h = elf_link_hash_lookup (elf_hash_table (info), name,
10803 FALSE, FALSE, TRUE);
10804 if (h != NULL
10805 && (h->root.type == bfd_link_hash_defined
10806 || h->root.type == bfd_link_hash_defweak))
10807 {
10808 dyn.d_un.d_ptr = h->root.u.def.value;
10809 o = h->root.u.def.section;
10810 if (o->output_section != NULL)
10811 dyn.d_un.d_ptr += (o->output_section->vma
10812 + o->output_offset);
10813 else
10814 {
10815 /* The symbol is imported from another shared
10816 library and does not apply to this one. */
10817 dyn.d_un.d_ptr = 0;
10818 }
10819 break;
10820 }
10821 }
10822 continue;
10823
10824 case DT_PREINIT_ARRAYSZ:
10825 name = ".preinit_array";
10826 goto get_size;
10827 case DT_INIT_ARRAYSZ:
10828 name = ".init_array";
10829 goto get_size;
10830 case DT_FINI_ARRAYSZ:
10831 name = ".fini_array";
10832 get_size:
10833 o = bfd_get_section_by_name (abfd, name);
10834 if (o == NULL)
10835 {
10836 (*_bfd_error_handler)
10837 (_("%B: could not find output section %s"), abfd, name);
10838 goto error_return;
10839 }
10840 if (o->size == 0)
10841 (*_bfd_error_handler)
10842 (_("warning: %s section has zero size"), name);
10843 dyn.d_un.d_val = o->size;
10844 break;
10845
10846 case DT_PREINIT_ARRAY:
10847 name = ".preinit_array";
10848 goto get_vma;
10849 case DT_INIT_ARRAY:
10850 name = ".init_array";
10851 goto get_vma;
10852 case DT_FINI_ARRAY:
10853 name = ".fini_array";
10854 goto get_vma;
10855
10856 case DT_HASH:
10857 name = ".hash";
10858 goto get_vma;
10859 case DT_GNU_HASH:
10860 name = ".gnu.hash";
10861 goto get_vma;
10862 case DT_STRTAB:
10863 name = ".dynstr";
10864 goto get_vma;
10865 case DT_SYMTAB:
10866 name = ".dynsym";
10867 goto get_vma;
10868 case DT_VERDEF:
10869 name = ".gnu.version_d";
10870 goto get_vma;
10871 case DT_VERNEED:
10872 name = ".gnu.version_r";
10873 goto get_vma;
10874 case DT_VERSYM:
10875 name = ".gnu.version";
10876 get_vma:
10877 o = bfd_get_section_by_name (abfd, name);
10878 if (o == NULL)
10879 {
10880 (*_bfd_error_handler)
10881 (_("%B: could not find output section %s"), abfd, name);
10882 goto error_return;
10883 }
10884 dyn.d_un.d_ptr = o->vma;
10885 break;
10886
10887 case DT_REL:
10888 case DT_RELA:
10889 case DT_RELSZ:
10890 case DT_RELASZ:
10891 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10892 type = SHT_REL;
10893 else
10894 type = SHT_RELA;
10895 dyn.d_un.d_val = 0;
10896 dyn.d_un.d_ptr = 0;
10897 for (i = 1; i < elf_numsections (abfd); i++)
10898 {
10899 Elf_Internal_Shdr *hdr;
10900
10901 hdr = elf_elfsections (abfd)[i];
10902 if (hdr->sh_type == type
10903 && (hdr->sh_flags & SHF_ALLOC) != 0)
10904 {
10905 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10906 dyn.d_un.d_val += hdr->sh_size;
10907 else
10908 {
10909 if (dyn.d_un.d_ptr == 0
10910 || hdr->sh_addr < dyn.d_un.d_ptr)
10911 dyn.d_un.d_ptr = hdr->sh_addr;
10912 }
10913 }
10914 }
10915 break;
10916 }
10917 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10918 }
10919 }
10920
10921 /* If we have created any dynamic sections, then output them. */
10922 if (dynobj != NULL)
10923 {
10924 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10925 goto error_return;
10926
10927 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10928 if (info->warn_shared_textrel && info->shared)
10929 {
10930 bfd_byte *dyncon, *dynconend;
10931
10932 /* Fix up .dynamic entries. */
10933 o = bfd_get_section_by_name (dynobj, ".dynamic");
10934 BFD_ASSERT (o != NULL);
10935
10936 dyncon = o->contents;
10937 dynconend = o->contents + o->size;
10938 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10939 {
10940 Elf_Internal_Dyn dyn;
10941
10942 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10943
10944 if (dyn.d_tag == DT_TEXTREL)
10945 {
10946 info->callbacks->einfo
10947 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10948 break;
10949 }
10950 }
10951 }
10952
10953 for (o = dynobj->sections; o != NULL; o = o->next)
10954 {
10955 if ((o->flags & SEC_HAS_CONTENTS) == 0
10956 || o->size == 0
10957 || o->output_section == bfd_abs_section_ptr)
10958 continue;
10959 if ((o->flags & SEC_LINKER_CREATED) == 0)
10960 {
10961 /* At this point, we are only interested in sections
10962 created by _bfd_elf_link_create_dynamic_sections. */
10963 continue;
10964 }
10965 if (elf_hash_table (info)->stab_info.stabstr == o)
10966 continue;
10967 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10968 continue;
10969 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10970 != SHT_STRTAB)
10971 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10972 {
10973 if (! bfd_set_section_contents (abfd, o->output_section,
10974 o->contents,
10975 (file_ptr) o->output_offset,
10976 o->size))
10977 goto error_return;
10978 }
10979 else
10980 {
10981 /* The contents of the .dynstr section are actually in a
10982 stringtab. */
10983 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10984 if (bfd_seek (abfd, off, SEEK_SET) != 0
10985 || ! _bfd_elf_strtab_emit (abfd,
10986 elf_hash_table (info)->dynstr))
10987 goto error_return;
10988 }
10989 }
10990 }
10991
10992 if (info->relocatable)
10993 {
10994 bfd_boolean failed = FALSE;
10995
10996 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10997 if (failed)
10998 goto error_return;
10999 }
11000
11001 /* If we have optimized stabs strings, output them. */
11002 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11003 {
11004 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11005 goto error_return;
11006 }
11007
11008 if (info->eh_frame_hdr)
11009 {
11010 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11011 goto error_return;
11012 }
11013
11014 if (finfo.symstrtab != NULL)
11015 _bfd_stringtab_free (finfo.symstrtab);
11016 if (finfo.contents != NULL)
11017 free (finfo.contents);
11018 if (finfo.external_relocs != NULL)
11019 free (finfo.external_relocs);
11020 if (finfo.internal_relocs != NULL)
11021 free (finfo.internal_relocs);
11022 if (finfo.external_syms != NULL)
11023 free (finfo.external_syms);
11024 if (finfo.locsym_shndx != NULL)
11025 free (finfo.locsym_shndx);
11026 if (finfo.internal_syms != NULL)
11027 free (finfo.internal_syms);
11028 if (finfo.indices != NULL)
11029 free (finfo.indices);
11030 if (finfo.sections != NULL)
11031 free (finfo.sections);
11032 if (finfo.symbuf != NULL)
11033 free (finfo.symbuf);
11034 if (finfo.symshndxbuf != NULL)
11035 free (finfo.symshndxbuf);
11036 for (o = abfd->sections; o != NULL; o = o->next)
11037 {
11038 if ((o->flags & SEC_RELOC) != 0
11039 && elf_section_data (o)->rel_hashes != NULL)
11040 free (elf_section_data (o)->rel_hashes);
11041 }
11042
11043 elf_tdata (abfd)->linker = TRUE;
11044
11045 if (attr_section)
11046 {
11047 bfd_byte *contents = bfd_malloc (attr_size);
11048 if (contents == NULL)
11049 return FALSE; /* Bail out and fail. */
11050 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11051 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11052 free (contents);
11053 }
11054
11055 return TRUE;
11056
11057 error_return:
11058 if (finfo.symstrtab != NULL)
11059 _bfd_stringtab_free (finfo.symstrtab);
11060 if (finfo.contents != NULL)
11061 free (finfo.contents);
11062 if (finfo.external_relocs != NULL)
11063 free (finfo.external_relocs);
11064 if (finfo.internal_relocs != NULL)
11065 free (finfo.internal_relocs);
11066 if (finfo.external_syms != NULL)
11067 free (finfo.external_syms);
11068 if (finfo.locsym_shndx != NULL)
11069 free (finfo.locsym_shndx);
11070 if (finfo.internal_syms != NULL)
11071 free (finfo.internal_syms);
11072 if (finfo.indices != NULL)
11073 free (finfo.indices);
11074 if (finfo.sections != NULL)
11075 free (finfo.sections);
11076 if (finfo.symbuf != NULL)
11077 free (finfo.symbuf);
11078 if (finfo.symshndxbuf != NULL)
11079 free (finfo.symshndxbuf);
11080 for (o = abfd->sections; o != NULL; o = o->next)
11081 {
11082 if ((o->flags & SEC_RELOC) != 0
11083 && elf_section_data (o)->rel_hashes != NULL)
11084 free (elf_section_data (o)->rel_hashes);
11085 }
11086
11087 return FALSE;
11088 }
11089 \f
11090 /* Initialize COOKIE for input bfd ABFD. */
11091
11092 static bfd_boolean
11093 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11094 struct bfd_link_info *info, bfd *abfd)
11095 {
11096 Elf_Internal_Shdr *symtab_hdr;
11097 const struct elf_backend_data *bed;
11098
11099 bed = get_elf_backend_data (abfd);
11100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11101
11102 cookie->abfd = abfd;
11103 cookie->sym_hashes = elf_sym_hashes (abfd);
11104 cookie->bad_symtab = elf_bad_symtab (abfd);
11105 if (cookie->bad_symtab)
11106 {
11107 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11108 cookie->extsymoff = 0;
11109 }
11110 else
11111 {
11112 cookie->locsymcount = symtab_hdr->sh_info;
11113 cookie->extsymoff = symtab_hdr->sh_info;
11114 }
11115
11116 if (bed->s->arch_size == 32)
11117 cookie->r_sym_shift = 8;
11118 else
11119 cookie->r_sym_shift = 32;
11120
11121 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11122 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11123 {
11124 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11125 cookie->locsymcount, 0,
11126 NULL, NULL, NULL);
11127 if (cookie->locsyms == NULL)
11128 {
11129 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11130 return FALSE;
11131 }
11132 if (info->keep_memory)
11133 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11134 }
11135 return TRUE;
11136 }
11137
11138 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11139
11140 static void
11141 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11142 {
11143 Elf_Internal_Shdr *symtab_hdr;
11144
11145 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11146 if (cookie->locsyms != NULL
11147 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11148 free (cookie->locsyms);
11149 }
11150
11151 /* Initialize the relocation information in COOKIE for input section SEC
11152 of input bfd ABFD. */
11153
11154 static bfd_boolean
11155 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11156 struct bfd_link_info *info, bfd *abfd,
11157 asection *sec)
11158 {
11159 const struct elf_backend_data *bed;
11160
11161 if (sec->reloc_count == 0)
11162 {
11163 cookie->rels = NULL;
11164 cookie->relend = NULL;
11165 }
11166 else
11167 {
11168 bed = get_elf_backend_data (abfd);
11169
11170 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11171 info->keep_memory);
11172 if (cookie->rels == NULL)
11173 return FALSE;
11174 cookie->rel = cookie->rels;
11175 cookie->relend = (cookie->rels
11176 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11177 }
11178 cookie->rel = cookie->rels;
11179 return TRUE;
11180 }
11181
11182 /* Free the memory allocated by init_reloc_cookie_rels,
11183 if appropriate. */
11184
11185 static void
11186 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11187 asection *sec)
11188 {
11189 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11190 free (cookie->rels);
11191 }
11192
11193 /* Initialize the whole of COOKIE for input section SEC. */
11194
11195 static bfd_boolean
11196 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11197 struct bfd_link_info *info,
11198 asection *sec)
11199 {
11200 if (!init_reloc_cookie (cookie, info, sec->owner))
11201 goto error1;
11202 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11203 goto error2;
11204 return TRUE;
11205
11206 error2:
11207 fini_reloc_cookie (cookie, sec->owner);
11208 error1:
11209 return FALSE;
11210 }
11211
11212 /* Free the memory allocated by init_reloc_cookie_for_section,
11213 if appropriate. */
11214
11215 static void
11216 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11217 asection *sec)
11218 {
11219 fini_reloc_cookie_rels (cookie, sec);
11220 fini_reloc_cookie (cookie, sec->owner);
11221 }
11222 \f
11223 /* Garbage collect unused sections. */
11224
11225 /* Default gc_mark_hook. */
11226
11227 asection *
11228 _bfd_elf_gc_mark_hook (asection *sec,
11229 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11230 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11231 struct elf_link_hash_entry *h,
11232 Elf_Internal_Sym *sym)
11233 {
11234 if (h != NULL)
11235 {
11236 switch (h->root.type)
11237 {
11238 case bfd_link_hash_defined:
11239 case bfd_link_hash_defweak:
11240 return h->root.u.def.section;
11241
11242 case bfd_link_hash_common:
11243 return h->root.u.c.p->section;
11244
11245 default:
11246 break;
11247 }
11248 }
11249 else
11250 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11251
11252 return NULL;
11253 }
11254
11255 /* COOKIE->rel describes a relocation against section SEC, which is
11256 a section we've decided to keep. Return the section that contains
11257 the relocation symbol, or NULL if no section contains it. */
11258
11259 asection *
11260 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11261 elf_gc_mark_hook_fn gc_mark_hook,
11262 struct elf_reloc_cookie *cookie)
11263 {
11264 unsigned long r_symndx;
11265 struct elf_link_hash_entry *h;
11266
11267 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11268 if (r_symndx == 0)
11269 return NULL;
11270
11271 if (r_symndx >= cookie->locsymcount
11272 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11273 {
11274 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11275 while (h->root.type == bfd_link_hash_indirect
11276 || h->root.type == bfd_link_hash_warning)
11277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11278 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11279 }
11280
11281 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11282 &cookie->locsyms[r_symndx]);
11283 }
11284
11285 /* COOKIE->rel describes a relocation against section SEC, which is
11286 a section we've decided to keep. Mark the section that contains
11287 the relocation symbol. */
11288
11289 bfd_boolean
11290 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11291 asection *sec,
11292 elf_gc_mark_hook_fn gc_mark_hook,
11293 struct elf_reloc_cookie *cookie)
11294 {
11295 asection *rsec;
11296
11297 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11298 if (rsec && !rsec->gc_mark)
11299 {
11300 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11301 rsec->gc_mark = 1;
11302 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11303 return FALSE;
11304 }
11305 return TRUE;
11306 }
11307
11308 /* The mark phase of garbage collection. For a given section, mark
11309 it and any sections in this section's group, and all the sections
11310 which define symbols to which it refers. */
11311
11312 bfd_boolean
11313 _bfd_elf_gc_mark (struct bfd_link_info *info,
11314 asection *sec,
11315 elf_gc_mark_hook_fn gc_mark_hook)
11316 {
11317 bfd_boolean ret;
11318 asection *group_sec, *eh_frame;
11319
11320 sec->gc_mark = 1;
11321
11322 /* Mark all the sections in the group. */
11323 group_sec = elf_section_data (sec)->next_in_group;
11324 if (group_sec && !group_sec->gc_mark)
11325 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11326 return FALSE;
11327
11328 /* Look through the section relocs. */
11329 ret = TRUE;
11330 eh_frame = elf_eh_frame_section (sec->owner);
11331 if ((sec->flags & SEC_RELOC) != 0
11332 && sec->reloc_count > 0
11333 && sec != eh_frame)
11334 {
11335 struct elf_reloc_cookie cookie;
11336
11337 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11338 ret = FALSE;
11339 else
11340 {
11341 for (; cookie.rel < cookie.relend; cookie.rel++)
11342 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11343 {
11344 ret = FALSE;
11345 break;
11346 }
11347 fini_reloc_cookie_for_section (&cookie, sec);
11348 }
11349 }
11350
11351 if (ret && eh_frame && elf_fde_list (sec))
11352 {
11353 struct elf_reloc_cookie cookie;
11354
11355 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11356 ret = FALSE;
11357 else
11358 {
11359 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11360 gc_mark_hook, &cookie))
11361 ret = FALSE;
11362 fini_reloc_cookie_for_section (&cookie, eh_frame);
11363 }
11364 }
11365
11366 return ret;
11367 }
11368
11369 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11370
11371 struct elf_gc_sweep_symbol_info
11372 {
11373 struct bfd_link_info *info;
11374 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11375 bfd_boolean);
11376 };
11377
11378 static bfd_boolean
11379 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11380 {
11381 if (h->root.type == bfd_link_hash_warning)
11382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11383
11384 if ((h->root.type == bfd_link_hash_defined
11385 || h->root.type == bfd_link_hash_defweak)
11386 && !h->root.u.def.section->gc_mark
11387 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11388 {
11389 struct elf_gc_sweep_symbol_info *inf = data;
11390 (*inf->hide_symbol) (inf->info, h, TRUE);
11391 }
11392
11393 return TRUE;
11394 }
11395
11396 /* The sweep phase of garbage collection. Remove all garbage sections. */
11397
11398 typedef bfd_boolean (*gc_sweep_hook_fn)
11399 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11400
11401 static bfd_boolean
11402 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11403 {
11404 bfd *sub;
11405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11406 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11407 unsigned long section_sym_count;
11408 struct elf_gc_sweep_symbol_info sweep_info;
11409
11410 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11411 {
11412 asection *o;
11413
11414 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11415 continue;
11416
11417 for (o = sub->sections; o != NULL; o = o->next)
11418 {
11419 /* When any section in a section group is kept, we keep all
11420 sections in the section group. If the first member of
11421 the section group is excluded, we will also exclude the
11422 group section. */
11423 if (o->flags & SEC_GROUP)
11424 {
11425 asection *first = elf_next_in_group (o);
11426 o->gc_mark = first->gc_mark;
11427 }
11428 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11429 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11430 {
11431 /* Keep debug and special sections. */
11432 o->gc_mark = 1;
11433 }
11434
11435 if (o->gc_mark)
11436 continue;
11437
11438 /* Skip sweeping sections already excluded. */
11439 if (o->flags & SEC_EXCLUDE)
11440 continue;
11441
11442 /* Since this is early in the link process, it is simple
11443 to remove a section from the output. */
11444 o->flags |= SEC_EXCLUDE;
11445
11446 if (info->print_gc_sections && o->size != 0)
11447 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11448
11449 /* But we also have to update some of the relocation
11450 info we collected before. */
11451 if (gc_sweep_hook
11452 && (o->flags & SEC_RELOC) != 0
11453 && o->reloc_count > 0
11454 && !bfd_is_abs_section (o->output_section))
11455 {
11456 Elf_Internal_Rela *internal_relocs;
11457 bfd_boolean r;
11458
11459 internal_relocs
11460 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11461 info->keep_memory);
11462 if (internal_relocs == NULL)
11463 return FALSE;
11464
11465 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11466
11467 if (elf_section_data (o)->relocs != internal_relocs)
11468 free (internal_relocs);
11469
11470 if (!r)
11471 return FALSE;
11472 }
11473 }
11474 }
11475
11476 /* Remove the symbols that were in the swept sections from the dynamic
11477 symbol table. GCFIXME: Anyone know how to get them out of the
11478 static symbol table as well? */
11479 sweep_info.info = info;
11480 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11481 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11482 &sweep_info);
11483
11484 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11485 return TRUE;
11486 }
11487
11488 /* Propagate collected vtable information. This is called through
11489 elf_link_hash_traverse. */
11490
11491 static bfd_boolean
11492 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11493 {
11494 if (h->root.type == bfd_link_hash_warning)
11495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11496
11497 /* Those that are not vtables. */
11498 if (h->vtable == NULL || h->vtable->parent == NULL)
11499 return TRUE;
11500
11501 /* Those vtables that do not have parents, we cannot merge. */
11502 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11503 return TRUE;
11504
11505 /* If we've already been done, exit. */
11506 if (h->vtable->used && h->vtable->used[-1])
11507 return TRUE;
11508
11509 /* Make sure the parent's table is up to date. */
11510 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11511
11512 if (h->vtable->used == NULL)
11513 {
11514 /* None of this table's entries were referenced. Re-use the
11515 parent's table. */
11516 h->vtable->used = h->vtable->parent->vtable->used;
11517 h->vtable->size = h->vtable->parent->vtable->size;
11518 }
11519 else
11520 {
11521 size_t n;
11522 bfd_boolean *cu, *pu;
11523
11524 /* Or the parent's entries into ours. */
11525 cu = h->vtable->used;
11526 cu[-1] = TRUE;
11527 pu = h->vtable->parent->vtable->used;
11528 if (pu != NULL)
11529 {
11530 const struct elf_backend_data *bed;
11531 unsigned int log_file_align;
11532
11533 bed = get_elf_backend_data (h->root.u.def.section->owner);
11534 log_file_align = bed->s->log_file_align;
11535 n = h->vtable->parent->vtable->size >> log_file_align;
11536 while (n--)
11537 {
11538 if (*pu)
11539 *cu = TRUE;
11540 pu++;
11541 cu++;
11542 }
11543 }
11544 }
11545
11546 return TRUE;
11547 }
11548
11549 static bfd_boolean
11550 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11551 {
11552 asection *sec;
11553 bfd_vma hstart, hend;
11554 Elf_Internal_Rela *relstart, *relend, *rel;
11555 const struct elf_backend_data *bed;
11556 unsigned int log_file_align;
11557
11558 if (h->root.type == bfd_link_hash_warning)
11559 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11560
11561 /* Take care of both those symbols that do not describe vtables as
11562 well as those that are not loaded. */
11563 if (h->vtable == NULL || h->vtable->parent == NULL)
11564 return TRUE;
11565
11566 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11567 || h->root.type == bfd_link_hash_defweak);
11568
11569 sec = h->root.u.def.section;
11570 hstart = h->root.u.def.value;
11571 hend = hstart + h->size;
11572
11573 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11574 if (!relstart)
11575 return *(bfd_boolean *) okp = FALSE;
11576 bed = get_elf_backend_data (sec->owner);
11577 log_file_align = bed->s->log_file_align;
11578
11579 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11580
11581 for (rel = relstart; rel < relend; ++rel)
11582 if (rel->r_offset >= hstart && rel->r_offset < hend)
11583 {
11584 /* If the entry is in use, do nothing. */
11585 if (h->vtable->used
11586 && (rel->r_offset - hstart) < h->vtable->size)
11587 {
11588 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11589 if (h->vtable->used[entry])
11590 continue;
11591 }
11592 /* Otherwise, kill it. */
11593 rel->r_offset = rel->r_info = rel->r_addend = 0;
11594 }
11595
11596 return TRUE;
11597 }
11598
11599 /* Mark sections containing dynamically referenced symbols. When
11600 building shared libraries, we must assume that any visible symbol is
11601 referenced. */
11602
11603 bfd_boolean
11604 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11605 {
11606 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11607
11608 if (h->root.type == bfd_link_hash_warning)
11609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11610
11611 if ((h->root.type == bfd_link_hash_defined
11612 || h->root.type == bfd_link_hash_defweak)
11613 && (h->ref_dynamic
11614 || (!info->executable
11615 && h->def_regular
11616 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11617 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11618 h->root.u.def.section->flags |= SEC_KEEP;
11619
11620 return TRUE;
11621 }
11622
11623 /* Keep all sections containing symbols undefined on the command-line,
11624 and the section containing the entry symbol. */
11625
11626 void
11627 _bfd_elf_gc_keep (struct bfd_link_info *info)
11628 {
11629 struct bfd_sym_chain *sym;
11630
11631 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11632 {
11633 struct elf_link_hash_entry *h;
11634
11635 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11636 FALSE, FALSE, FALSE);
11637
11638 if (h != NULL
11639 && (h->root.type == bfd_link_hash_defined
11640 || h->root.type == bfd_link_hash_defweak)
11641 && !bfd_is_abs_section (h->root.u.def.section))
11642 h->root.u.def.section->flags |= SEC_KEEP;
11643 }
11644 }
11645
11646 /* Do mark and sweep of unused sections. */
11647
11648 bfd_boolean
11649 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11650 {
11651 bfd_boolean ok = TRUE;
11652 bfd *sub;
11653 elf_gc_mark_hook_fn gc_mark_hook;
11654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11655
11656 if (!bed->can_gc_sections
11657 || !is_elf_hash_table (info->hash))
11658 {
11659 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11660 return TRUE;
11661 }
11662
11663 bed->gc_keep (info);
11664
11665 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11666 at the .eh_frame section if we can mark the FDEs individually. */
11667 _bfd_elf_begin_eh_frame_parsing (info);
11668 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11669 {
11670 asection *sec;
11671 struct elf_reloc_cookie cookie;
11672
11673 sec = bfd_get_section_by_name (sub, ".eh_frame");
11674 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11675 {
11676 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11677 if (elf_section_data (sec)->sec_info)
11678 elf_eh_frame_section (sub) = sec;
11679 fini_reloc_cookie_for_section (&cookie, sec);
11680 }
11681 }
11682 _bfd_elf_end_eh_frame_parsing (info);
11683
11684 /* Apply transitive closure to the vtable entry usage info. */
11685 elf_link_hash_traverse (elf_hash_table (info),
11686 elf_gc_propagate_vtable_entries_used,
11687 &ok);
11688 if (!ok)
11689 return FALSE;
11690
11691 /* Kill the vtable relocations that were not used. */
11692 elf_link_hash_traverse (elf_hash_table (info),
11693 elf_gc_smash_unused_vtentry_relocs,
11694 &ok);
11695 if (!ok)
11696 return FALSE;
11697
11698 /* Mark dynamically referenced symbols. */
11699 if (elf_hash_table (info)->dynamic_sections_created)
11700 elf_link_hash_traverse (elf_hash_table (info),
11701 bed->gc_mark_dynamic_ref,
11702 info);
11703
11704 /* Grovel through relocs to find out who stays ... */
11705 gc_mark_hook = bed->gc_mark_hook;
11706 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11707 {
11708 asection *o;
11709
11710 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11711 continue;
11712
11713 for (o = sub->sections; o != NULL; o = o->next)
11714 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11715 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11716 return FALSE;
11717 }
11718
11719 /* Allow the backend to mark additional target specific sections. */
11720 if (bed->gc_mark_extra_sections)
11721 bed->gc_mark_extra_sections (info, gc_mark_hook);
11722
11723 /* ... and mark SEC_EXCLUDE for those that go. */
11724 return elf_gc_sweep (abfd, info);
11725 }
11726 \f
11727 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11728
11729 bfd_boolean
11730 bfd_elf_gc_record_vtinherit (bfd *abfd,
11731 asection *sec,
11732 struct elf_link_hash_entry *h,
11733 bfd_vma offset)
11734 {
11735 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11736 struct elf_link_hash_entry **search, *child;
11737 bfd_size_type extsymcount;
11738 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11739
11740 /* The sh_info field of the symtab header tells us where the
11741 external symbols start. We don't care about the local symbols at
11742 this point. */
11743 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11744 if (!elf_bad_symtab (abfd))
11745 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11746
11747 sym_hashes = elf_sym_hashes (abfd);
11748 sym_hashes_end = sym_hashes + extsymcount;
11749
11750 /* Hunt down the child symbol, which is in this section at the same
11751 offset as the relocation. */
11752 for (search = sym_hashes; search != sym_hashes_end; ++search)
11753 {
11754 if ((child = *search) != NULL
11755 && (child->root.type == bfd_link_hash_defined
11756 || child->root.type == bfd_link_hash_defweak)
11757 && child->root.u.def.section == sec
11758 && child->root.u.def.value == offset)
11759 goto win;
11760 }
11761
11762 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11763 abfd, sec, (unsigned long) offset);
11764 bfd_set_error (bfd_error_invalid_operation);
11765 return FALSE;
11766
11767 win:
11768 if (!child->vtable)
11769 {
11770 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11771 if (!child->vtable)
11772 return FALSE;
11773 }
11774 if (!h)
11775 {
11776 /* This *should* only be the absolute section. It could potentially
11777 be that someone has defined a non-global vtable though, which
11778 would be bad. It isn't worth paging in the local symbols to be
11779 sure though; that case should simply be handled by the assembler. */
11780
11781 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11782 }
11783 else
11784 child->vtable->parent = h;
11785
11786 return TRUE;
11787 }
11788
11789 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11790
11791 bfd_boolean
11792 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11793 asection *sec ATTRIBUTE_UNUSED,
11794 struct elf_link_hash_entry *h,
11795 bfd_vma addend)
11796 {
11797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11798 unsigned int log_file_align = bed->s->log_file_align;
11799
11800 if (!h->vtable)
11801 {
11802 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11803 if (!h->vtable)
11804 return FALSE;
11805 }
11806
11807 if (addend >= h->vtable->size)
11808 {
11809 size_t size, bytes, file_align;
11810 bfd_boolean *ptr = h->vtable->used;
11811
11812 /* While the symbol is undefined, we have to be prepared to handle
11813 a zero size. */
11814 file_align = 1 << log_file_align;
11815 if (h->root.type == bfd_link_hash_undefined)
11816 size = addend + file_align;
11817 else
11818 {
11819 size = h->size;
11820 if (addend >= size)
11821 {
11822 /* Oops! We've got a reference past the defined end of
11823 the table. This is probably a bug -- shall we warn? */
11824 size = addend + file_align;
11825 }
11826 }
11827 size = (size + file_align - 1) & -file_align;
11828
11829 /* Allocate one extra entry for use as a "done" flag for the
11830 consolidation pass. */
11831 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11832
11833 if (ptr)
11834 {
11835 ptr = bfd_realloc (ptr - 1, bytes);
11836
11837 if (ptr != NULL)
11838 {
11839 size_t oldbytes;
11840
11841 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11842 * sizeof (bfd_boolean));
11843 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11844 }
11845 }
11846 else
11847 ptr = bfd_zmalloc (bytes);
11848
11849 if (ptr == NULL)
11850 return FALSE;
11851
11852 /* And arrange for that done flag to be at index -1. */
11853 h->vtable->used = ptr + 1;
11854 h->vtable->size = size;
11855 }
11856
11857 h->vtable->used[addend >> log_file_align] = TRUE;
11858
11859 return TRUE;
11860 }
11861
11862 struct alloc_got_off_arg {
11863 bfd_vma gotoff;
11864 struct bfd_link_info *info;
11865 };
11866
11867 /* We need a special top-level link routine to convert got reference counts
11868 to real got offsets. */
11869
11870 static bfd_boolean
11871 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11872 {
11873 struct alloc_got_off_arg *gofarg = arg;
11874 bfd *obfd = gofarg->info->output_bfd;
11875 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11876
11877 if (h->root.type == bfd_link_hash_warning)
11878 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11879
11880 if (h->got.refcount > 0)
11881 {
11882 h->got.offset = gofarg->gotoff;
11883 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11884 }
11885 else
11886 h->got.offset = (bfd_vma) -1;
11887
11888 return TRUE;
11889 }
11890
11891 /* And an accompanying bit to work out final got entry offsets once
11892 we're done. Should be called from final_link. */
11893
11894 bfd_boolean
11895 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11896 struct bfd_link_info *info)
11897 {
11898 bfd *i;
11899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11900 bfd_vma gotoff;
11901 struct alloc_got_off_arg gofarg;
11902
11903 BFD_ASSERT (abfd == info->output_bfd);
11904
11905 if (! is_elf_hash_table (info->hash))
11906 return FALSE;
11907
11908 /* The GOT offset is relative to the .got section, but the GOT header is
11909 put into the .got.plt section, if the backend uses it. */
11910 if (bed->want_got_plt)
11911 gotoff = 0;
11912 else
11913 gotoff = bed->got_header_size;
11914
11915 /* Do the local .got entries first. */
11916 for (i = info->input_bfds; i; i = i->link_next)
11917 {
11918 bfd_signed_vma *local_got;
11919 bfd_size_type j, locsymcount;
11920 Elf_Internal_Shdr *symtab_hdr;
11921
11922 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11923 continue;
11924
11925 local_got = elf_local_got_refcounts (i);
11926 if (!local_got)
11927 continue;
11928
11929 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11930 if (elf_bad_symtab (i))
11931 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11932 else
11933 locsymcount = symtab_hdr->sh_info;
11934
11935 for (j = 0; j < locsymcount; ++j)
11936 {
11937 if (local_got[j] > 0)
11938 {
11939 local_got[j] = gotoff;
11940 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11941 }
11942 else
11943 local_got[j] = (bfd_vma) -1;
11944 }
11945 }
11946
11947 /* Then the global .got entries. .plt refcounts are handled by
11948 adjust_dynamic_symbol */
11949 gofarg.gotoff = gotoff;
11950 gofarg.info = info;
11951 elf_link_hash_traverse (elf_hash_table (info),
11952 elf_gc_allocate_got_offsets,
11953 &gofarg);
11954 return TRUE;
11955 }
11956
11957 /* Many folk need no more in the way of final link than this, once
11958 got entry reference counting is enabled. */
11959
11960 bfd_boolean
11961 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11962 {
11963 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11964 return FALSE;
11965
11966 /* Invoke the regular ELF backend linker to do all the work. */
11967 return bfd_elf_final_link (abfd, info);
11968 }
11969
11970 bfd_boolean
11971 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11972 {
11973 struct elf_reloc_cookie *rcookie = cookie;
11974
11975 if (rcookie->bad_symtab)
11976 rcookie->rel = rcookie->rels;
11977
11978 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11979 {
11980 unsigned long r_symndx;
11981
11982 if (! rcookie->bad_symtab)
11983 if (rcookie->rel->r_offset > offset)
11984 return FALSE;
11985 if (rcookie->rel->r_offset != offset)
11986 continue;
11987
11988 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11989 if (r_symndx == SHN_UNDEF)
11990 return TRUE;
11991
11992 if (r_symndx >= rcookie->locsymcount
11993 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11994 {
11995 struct elf_link_hash_entry *h;
11996
11997 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11998
11999 while (h->root.type == bfd_link_hash_indirect
12000 || h->root.type == bfd_link_hash_warning)
12001 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12002
12003 if ((h->root.type == bfd_link_hash_defined
12004 || h->root.type == bfd_link_hash_defweak)
12005 && elf_discarded_section (h->root.u.def.section))
12006 return TRUE;
12007 else
12008 return FALSE;
12009 }
12010 else
12011 {
12012 /* It's not a relocation against a global symbol,
12013 but it could be a relocation against a local
12014 symbol for a discarded section. */
12015 asection *isec;
12016 Elf_Internal_Sym *isym;
12017
12018 /* Need to: get the symbol; get the section. */
12019 isym = &rcookie->locsyms[r_symndx];
12020 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12021 if (isec != NULL && elf_discarded_section (isec))
12022 return TRUE;
12023 }
12024 return FALSE;
12025 }
12026 return FALSE;
12027 }
12028
12029 /* Discard unneeded references to discarded sections.
12030 Returns TRUE if any section's size was changed. */
12031 /* This function assumes that the relocations are in sorted order,
12032 which is true for all known assemblers. */
12033
12034 bfd_boolean
12035 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12036 {
12037 struct elf_reloc_cookie cookie;
12038 asection *stab, *eh;
12039 const struct elf_backend_data *bed;
12040 bfd *abfd;
12041 bfd_boolean ret = FALSE;
12042
12043 if (info->traditional_format
12044 || !is_elf_hash_table (info->hash))
12045 return FALSE;
12046
12047 _bfd_elf_begin_eh_frame_parsing (info);
12048 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12049 {
12050 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12051 continue;
12052
12053 bed = get_elf_backend_data (abfd);
12054
12055 if ((abfd->flags & DYNAMIC) != 0)
12056 continue;
12057
12058 eh = NULL;
12059 if (!info->relocatable)
12060 {
12061 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12062 if (eh != NULL
12063 && (eh->size == 0
12064 || bfd_is_abs_section (eh->output_section)))
12065 eh = NULL;
12066 }
12067
12068 stab = bfd_get_section_by_name (abfd, ".stab");
12069 if (stab != NULL
12070 && (stab->size == 0
12071 || bfd_is_abs_section (stab->output_section)
12072 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12073 stab = NULL;
12074
12075 if (stab == NULL
12076 && eh == NULL
12077 && bed->elf_backend_discard_info == NULL)
12078 continue;
12079
12080 if (!init_reloc_cookie (&cookie, info, abfd))
12081 return FALSE;
12082
12083 if (stab != NULL
12084 && stab->reloc_count > 0
12085 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12086 {
12087 if (_bfd_discard_section_stabs (abfd, stab,
12088 elf_section_data (stab)->sec_info,
12089 bfd_elf_reloc_symbol_deleted_p,
12090 &cookie))
12091 ret = TRUE;
12092 fini_reloc_cookie_rels (&cookie, stab);
12093 }
12094
12095 if (eh != NULL
12096 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12097 {
12098 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12099 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12100 bfd_elf_reloc_symbol_deleted_p,
12101 &cookie))
12102 ret = TRUE;
12103 fini_reloc_cookie_rels (&cookie, eh);
12104 }
12105
12106 if (bed->elf_backend_discard_info != NULL
12107 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12108 ret = TRUE;
12109
12110 fini_reloc_cookie (&cookie, abfd);
12111 }
12112 _bfd_elf_end_eh_frame_parsing (info);
12113
12114 if (info->eh_frame_hdr
12115 && !info->relocatable
12116 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12117 ret = TRUE;
12118
12119 return ret;
12120 }
12121
12122 /* For a SHT_GROUP section, return the group signature. For other
12123 sections, return the normal section name. */
12124
12125 static const char *
12126 section_signature (asection *sec)
12127 {
12128 if ((sec->flags & SEC_GROUP) != 0
12129 && elf_next_in_group (sec) != NULL
12130 && elf_group_name (elf_next_in_group (sec)) != NULL)
12131 return elf_group_name (elf_next_in_group (sec));
12132 return sec->name;
12133 }
12134
12135 void
12136 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12137 struct bfd_link_info *info)
12138 {
12139 flagword flags;
12140 const char *name, *p;
12141 struct bfd_section_already_linked *l;
12142 struct bfd_section_already_linked_hash_entry *already_linked_list;
12143
12144 if (sec->output_section == bfd_abs_section_ptr)
12145 return;
12146
12147 flags = sec->flags;
12148
12149 /* Return if it isn't a linkonce section. A comdat group section
12150 also has SEC_LINK_ONCE set. */
12151 if ((flags & SEC_LINK_ONCE) == 0)
12152 return;
12153
12154 /* Don't put group member sections on our list of already linked
12155 sections. They are handled as a group via their group section. */
12156 if (elf_sec_group (sec) != NULL)
12157 return;
12158
12159 /* FIXME: When doing a relocatable link, we may have trouble
12160 copying relocations in other sections that refer to local symbols
12161 in the section being discarded. Those relocations will have to
12162 be converted somehow; as of this writing I'm not sure that any of
12163 the backends handle that correctly.
12164
12165 It is tempting to instead not discard link once sections when
12166 doing a relocatable link (technically, they should be discarded
12167 whenever we are building constructors). However, that fails,
12168 because the linker winds up combining all the link once sections
12169 into a single large link once section, which defeats the purpose
12170 of having link once sections in the first place.
12171
12172 Also, not merging link once sections in a relocatable link
12173 causes trouble for MIPS ELF, which relies on link once semantics
12174 to handle the .reginfo section correctly. */
12175
12176 name = section_signature (sec);
12177
12178 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12179 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12180 p++;
12181 else
12182 p = name;
12183
12184 already_linked_list = bfd_section_already_linked_table_lookup (p);
12185
12186 for (l = already_linked_list->entry; l != NULL; l = l->next)
12187 {
12188 /* We may have 2 different types of sections on the list: group
12189 sections and linkonce sections. Match like sections. */
12190 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12191 && strcmp (name, section_signature (l->sec)) == 0
12192 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12193 {
12194 /* The section has already been linked. See if we should
12195 issue a warning. */
12196 switch (flags & SEC_LINK_DUPLICATES)
12197 {
12198 default:
12199 abort ();
12200
12201 case SEC_LINK_DUPLICATES_DISCARD:
12202 break;
12203
12204 case SEC_LINK_DUPLICATES_ONE_ONLY:
12205 (*_bfd_error_handler)
12206 (_("%B: ignoring duplicate section `%A'"),
12207 abfd, sec);
12208 break;
12209
12210 case SEC_LINK_DUPLICATES_SAME_SIZE:
12211 if (sec->size != l->sec->size)
12212 (*_bfd_error_handler)
12213 (_("%B: duplicate section `%A' has different size"),
12214 abfd, sec);
12215 break;
12216
12217 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12218 if (sec->size != l->sec->size)
12219 (*_bfd_error_handler)
12220 (_("%B: duplicate section `%A' has different size"),
12221 abfd, sec);
12222 else if (sec->size != 0)
12223 {
12224 bfd_byte *sec_contents, *l_sec_contents;
12225
12226 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12227 (*_bfd_error_handler)
12228 (_("%B: warning: could not read contents of section `%A'"),
12229 abfd, sec);
12230 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12231 &l_sec_contents))
12232 (*_bfd_error_handler)
12233 (_("%B: warning: could not read contents of section `%A'"),
12234 l->sec->owner, l->sec);
12235 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12236 (*_bfd_error_handler)
12237 (_("%B: warning: duplicate section `%A' has different contents"),
12238 abfd, sec);
12239
12240 if (sec_contents)
12241 free (sec_contents);
12242 if (l_sec_contents)
12243 free (l_sec_contents);
12244 }
12245 break;
12246 }
12247
12248 /* Set the output_section field so that lang_add_section
12249 does not create a lang_input_section structure for this
12250 section. Since there might be a symbol in the section
12251 being discarded, we must retain a pointer to the section
12252 which we are really going to use. */
12253 sec->output_section = bfd_abs_section_ptr;
12254 sec->kept_section = l->sec;
12255
12256 if (flags & SEC_GROUP)
12257 {
12258 asection *first = elf_next_in_group (sec);
12259 asection *s = first;
12260
12261 while (s != NULL)
12262 {
12263 s->output_section = bfd_abs_section_ptr;
12264 /* Record which group discards it. */
12265 s->kept_section = l->sec;
12266 s = elf_next_in_group (s);
12267 /* These lists are circular. */
12268 if (s == first)
12269 break;
12270 }
12271 }
12272
12273 return;
12274 }
12275 }
12276
12277 /* A single member comdat group section may be discarded by a
12278 linkonce section and vice versa. */
12279
12280 if ((flags & SEC_GROUP) != 0)
12281 {
12282 asection *first = elf_next_in_group (sec);
12283
12284 if (first != NULL && elf_next_in_group (first) == first)
12285 /* Check this single member group against linkonce sections. */
12286 for (l = already_linked_list->entry; l != NULL; l = l->next)
12287 if ((l->sec->flags & SEC_GROUP) == 0
12288 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12289 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12290 {
12291 first->output_section = bfd_abs_section_ptr;
12292 first->kept_section = l->sec;
12293 sec->output_section = bfd_abs_section_ptr;
12294 break;
12295 }
12296 }
12297 else
12298 /* Check this linkonce section against single member groups. */
12299 for (l = already_linked_list->entry; l != NULL; l = l->next)
12300 if (l->sec->flags & SEC_GROUP)
12301 {
12302 asection *first = elf_next_in_group (l->sec);
12303
12304 if (first != NULL
12305 && elf_next_in_group (first) == first
12306 && bfd_elf_match_symbols_in_sections (first, sec, info))
12307 {
12308 sec->output_section = bfd_abs_section_ptr;
12309 sec->kept_section = first;
12310 break;
12311 }
12312 }
12313
12314 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12315 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12316 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12317 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12318 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12319 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12320 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12321 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12322 The reverse order cannot happen as there is never a bfd with only the
12323 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12324 matter as here were are looking only for cross-bfd sections. */
12325
12326 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12327 for (l = already_linked_list->entry; l != NULL; l = l->next)
12328 if ((l->sec->flags & SEC_GROUP) == 0
12329 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12330 {
12331 if (abfd != l->sec->owner)
12332 sec->output_section = bfd_abs_section_ptr;
12333 break;
12334 }
12335
12336 /* This is the first section with this name. Record it. */
12337 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12338 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12339 }
12340
12341 bfd_boolean
12342 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12343 {
12344 return sym->st_shndx == SHN_COMMON;
12345 }
12346
12347 unsigned int
12348 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12349 {
12350 return SHN_COMMON;
12351 }
12352
12353 asection *
12354 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12355 {
12356 return bfd_com_section_ptr;
12357 }
12358
12359 bfd_vma
12360 _bfd_elf_default_got_elt_size (bfd *abfd,
12361 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12362 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12363 bfd *ibfd ATTRIBUTE_UNUSED,
12364 unsigned long symndx ATTRIBUTE_UNUSED)
12365 {
12366 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12367 return bed->s->arch_size / 8;
12368 }
12369
12370 /* Routines to support the creation of dynamic relocs. */
12371
12372 /* Return true if NAME is a name of a relocation
12373 section associated with section S. */
12374
12375 static bfd_boolean
12376 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12377 {
12378 if (rela)
12379 return CONST_STRNEQ (name, ".rela")
12380 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12381
12382 return CONST_STRNEQ (name, ".rel")
12383 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12384 }
12385
12386 /* Returns the name of the dynamic reloc section associated with SEC. */
12387
12388 static const char *
12389 get_dynamic_reloc_section_name (bfd * abfd,
12390 asection * sec,
12391 bfd_boolean is_rela)
12392 {
12393 const char * name;
12394 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12395 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12396
12397 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12398 if (name == NULL)
12399 return NULL;
12400
12401 if (! is_reloc_section (is_rela, name, sec))
12402 {
12403 static bfd_boolean complained = FALSE;
12404
12405 if (! complained)
12406 {
12407 (*_bfd_error_handler)
12408 (_("%B: bad relocation section name `%s\'"), abfd, name);
12409 complained = TRUE;
12410 }
12411 name = NULL;
12412 }
12413
12414 return name;
12415 }
12416
12417 /* Returns the dynamic reloc section associated with SEC.
12418 If necessary compute the name of the dynamic reloc section based
12419 on SEC's name (looked up in ABFD's string table) and the setting
12420 of IS_RELA. */
12421
12422 asection *
12423 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12424 asection * sec,
12425 bfd_boolean is_rela)
12426 {
12427 asection * reloc_sec = elf_section_data (sec)->sreloc;
12428
12429 if (reloc_sec == NULL)
12430 {
12431 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12432
12433 if (name != NULL)
12434 {
12435 reloc_sec = bfd_get_section_by_name (abfd, name);
12436
12437 if (reloc_sec != NULL)
12438 elf_section_data (sec)->sreloc = reloc_sec;
12439 }
12440 }
12441
12442 return reloc_sec;
12443 }
12444
12445 /* Returns the dynamic reloc section associated with SEC. If the
12446 section does not exist it is created and attached to the DYNOBJ
12447 bfd and stored in the SRELOC field of SEC's elf_section_data
12448 structure.
12449
12450 ALIGNMENT is the alignment for the newly created section and
12451 IS_RELA defines whether the name should be .rela.<SEC's name>
12452 or .rel.<SEC's name>. The section name is looked up in the
12453 string table associated with ABFD. */
12454
12455 asection *
12456 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12457 bfd * dynobj,
12458 unsigned int alignment,
12459 bfd * abfd,
12460 bfd_boolean is_rela)
12461 {
12462 asection * reloc_sec = elf_section_data (sec)->sreloc;
12463
12464 if (reloc_sec == NULL)
12465 {
12466 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12467
12468 if (name == NULL)
12469 return NULL;
12470
12471 reloc_sec = bfd_get_section_by_name (dynobj, name);
12472
12473 if (reloc_sec == NULL)
12474 {
12475 flagword flags;
12476
12477 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12478 if ((sec->flags & SEC_ALLOC) != 0)
12479 flags |= SEC_ALLOC | SEC_LOAD;
12480
12481 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12482 if (reloc_sec != NULL)
12483 {
12484 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12485 reloc_sec = NULL;
12486 }
12487 }
12488
12489 elf_section_data (sec)->sreloc = reloc_sec;
12490 }
12491
12492 return reloc_sec;
12493 }
This page took 0.299271 seconds and 4 git commands to generate.