Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 hash_table->dynobj = abfd;
208
209 if (hash_table->dynstr == NULL)
210 {
211 hash_table->dynstr = _bfd_elf_strtab_init ();
212 if (hash_table->dynstr == NULL)
213 return FALSE;
214 }
215 return TRUE;
216 }
217
218 /* Create some sections which will be filled in with dynamic linking
219 information. ABFD is an input file which requires dynamic sections
220 to be created. The dynamic sections take up virtual memory space
221 when the final executable is run, so we need to create them before
222 addresses are assigned to the output sections. We work out the
223 actual contents and size of these sections later. */
224
225 bfd_boolean
226 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
227 {
228 flagword flags;
229 asection *s;
230 const struct elf_backend_data *bed;
231 struct elf_link_hash_entry *h;
232
233 if (! is_elf_hash_table (info->hash))
234 return FALSE;
235
236 if (elf_hash_table (info)->dynamic_sections_created)
237 return TRUE;
238
239 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
240 return FALSE;
241
242 abfd = elf_hash_table (info)->dynobj;
243 bed = get_elf_backend_data (abfd);
244
245 flags = bed->dynamic_sec_flags;
246
247 /* A dynamically linked executable has a .interp section, but a
248 shared library does not. */
249 if (bfd_link_executable (info))
250 {
251 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
252 flags | SEC_READONLY);
253 if (s == NULL)
254 return FALSE;
255 }
256
257 /* Create sections to hold version informations. These are removed
258 if they are not needed. */
259 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
260 flags | SEC_READONLY);
261 if (s == NULL
262 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
263 return FALSE;
264
265 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
266 flags | SEC_READONLY);
267 if (s == NULL
268 || ! bfd_set_section_alignment (abfd, s, 1))
269 return FALSE;
270
271 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276
277 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
278 flags | SEC_READONLY);
279 if (s == NULL
280 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 return FALSE;
282 elf_hash_table (info)->dynsym = s;
283
284 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
285 flags | SEC_READONLY);
286 if (s == NULL)
287 return FALSE;
288
289 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 /* The special symbol _DYNAMIC is always set to the start of the
295 .dynamic section. We could set _DYNAMIC in a linker script, but we
296 only want to define it if we are, in fact, creating a .dynamic
297 section. We don't want to define it if there is no .dynamic
298 section, since on some ELF platforms the start up code examines it
299 to decide how to initialize the process. */
300 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
301 elf_hash_table (info)->hdynamic = h;
302 if (h == NULL)
303 return FALSE;
304
305 if (info->emit_hash)
306 {
307 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
308 flags | SEC_READONLY);
309 if (s == NULL
310 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 return FALSE;
312 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
313 }
314
315 if (info->emit_gnu_hash)
316 {
317 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
318 flags | SEC_READONLY);
319 if (s == NULL
320 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 return FALSE;
322 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
323 4 32-bit words followed by variable count of 64-bit words, then
324 variable count of 32-bit words. */
325 if (bed->s->arch_size == 64)
326 elf_section_data (s)->this_hdr.sh_entsize = 0;
327 else
328 elf_section_data (s)->this_hdr.sh_entsize = 4;
329 }
330
331 /* Let the backend create the rest of the sections. This lets the
332 backend set the right flags. The backend will normally create
333 the .got and .plt sections. */
334 if (bed->elf_backend_create_dynamic_sections == NULL
335 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
336 return FALSE;
337
338 elf_hash_table (info)->dynamic_sections_created = TRUE;
339
340 return TRUE;
341 }
342
343 /* Create dynamic sections when linking against a dynamic object. */
344
345 bfd_boolean
346 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
347 {
348 flagword flags, pltflags;
349 struct elf_link_hash_entry *h;
350 asection *s;
351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
352 struct elf_link_hash_table *htab = elf_hash_table (info);
353
354 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
355 .rel[a].bss sections. */
356 flags = bed->dynamic_sec_flags;
357
358 pltflags = flags;
359 if (bed->plt_not_loaded)
360 /* We do not clear SEC_ALLOC here because we still want the OS to
361 allocate space for the section; it's just that there's nothing
362 to read in from the object file. */
363 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
364 else
365 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
366 if (bed->plt_readonly)
367 pltflags |= SEC_READONLY;
368
369 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
370 if (s == NULL
371 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
372 return FALSE;
373 htab->splt = s;
374
375 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
376 .plt section. */
377 if (bed->want_plt_sym)
378 {
379 h = _bfd_elf_define_linkage_sym (abfd, info, s,
380 "_PROCEDURE_LINKAGE_TABLE_");
381 elf_hash_table (info)->hplt = h;
382 if (h == NULL)
383 return FALSE;
384 }
385
386 s = bfd_make_section_anyway_with_flags (abfd,
387 (bed->rela_plts_and_copies_p
388 ? ".rela.plt" : ".rel.plt"),
389 flags | SEC_READONLY);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 return FALSE;
393 htab->srelplt = s;
394
395 if (! _bfd_elf_create_got_section (abfd, info))
396 return FALSE;
397
398 if (bed->want_dynbss)
399 {
400 /* The .dynbss section is a place to put symbols which are defined
401 by dynamic objects, are referenced by regular objects, and are
402 not functions. We must allocate space for them in the process
403 image and use a R_*_COPY reloc to tell the dynamic linker to
404 initialize them at run time. The linker script puts the .dynbss
405 section into the .bss section of the final image. */
406 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
407 (SEC_ALLOC | SEC_LINKER_CREATED));
408 if (s == NULL)
409 return FALSE;
410
411 /* The .rel[a].bss section holds copy relocs. This section is not
412 normally needed. We need to create it here, though, so that the
413 linker will map it to an output section. We can't just create it
414 only if we need it, because we will not know whether we need it
415 until we have seen all the input files, and the first time the
416 main linker code calls BFD after examining all the input files
417 (size_dynamic_sections) the input sections have already been
418 mapped to the output sections. If the section turns out not to
419 be needed, we can discard it later. We will never need this
420 section when generating a shared object, since they do not use
421 copy relocs. */
422 if (! bfd_link_pic (info))
423 {
424 s = bfd_make_section_anyway_with_flags (abfd,
425 (bed->rela_plts_and_copies_p
426 ? ".rela.bss" : ".rel.bss"),
427 flags | SEC_READONLY);
428 if (s == NULL
429 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
430 return FALSE;
431 }
432 }
433
434 return TRUE;
435 }
436 \f
437 /* Record a new dynamic symbol. We record the dynamic symbols as we
438 read the input files, since we need to have a list of all of them
439 before we can determine the final sizes of the output sections.
440 Note that we may actually call this function even though we are not
441 going to output any dynamic symbols; in some cases we know that a
442 symbol should be in the dynamic symbol table, but only if there is
443 one. */
444
445 bfd_boolean
446 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
447 struct elf_link_hash_entry *h)
448 {
449 if (h->dynindx == -1)
450 {
451 struct elf_strtab_hash *dynstr;
452 char *p;
453 const char *name;
454 bfd_size_type indx;
455
456 /* XXX: The ABI draft says the linker must turn hidden and
457 internal symbols into STB_LOCAL symbols when producing the
458 DSO. However, if ld.so honors st_other in the dynamic table,
459 this would not be necessary. */
460 switch (ELF_ST_VISIBILITY (h->other))
461 {
462 case STV_INTERNAL:
463 case STV_HIDDEN:
464 if (h->root.type != bfd_link_hash_undefined
465 && h->root.type != bfd_link_hash_undefweak)
466 {
467 h->forced_local = 1;
468 if (!elf_hash_table (info)->is_relocatable_executable)
469 return TRUE;
470 }
471
472 default:
473 break;
474 }
475
476 h->dynindx = elf_hash_table (info)->dynsymcount;
477 ++elf_hash_table (info)->dynsymcount;
478
479 dynstr = elf_hash_table (info)->dynstr;
480 if (dynstr == NULL)
481 {
482 /* Create a strtab to hold the dynamic symbol names. */
483 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
484 if (dynstr == NULL)
485 return FALSE;
486 }
487
488 /* We don't put any version information in the dynamic string
489 table. */
490 name = h->root.root.string;
491 p = strchr (name, ELF_VER_CHR);
492 if (p != NULL)
493 /* We know that the p points into writable memory. In fact,
494 there are only a few symbols that have read-only names, being
495 those like _GLOBAL_OFFSET_TABLE_ that are created specially
496 by the backends. Most symbols will have names pointing into
497 an ELF string table read from a file, or to objalloc memory. */
498 *p = 0;
499
500 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
501
502 if (p != NULL)
503 *p = ELF_VER_CHR;
504
505 if (indx == (bfd_size_type) -1)
506 return FALSE;
507 h->dynstr_index = indx;
508 }
509
510 return TRUE;
511 }
512 \f
513 /* Mark a symbol dynamic. */
514
515 static void
516 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
517 struct elf_link_hash_entry *h,
518 Elf_Internal_Sym *sym)
519 {
520 struct bfd_elf_dynamic_list *d = info->dynamic_list;
521
522 /* It may be called more than once on the same H. */
523 if(h->dynamic || bfd_link_relocatable (info))
524 return;
525
526 if ((info->dynamic_data
527 && (h->type == STT_OBJECT
528 || (sym != NULL
529 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
530 || (d != NULL
531 && h->root.type == bfd_link_hash_new
532 && (*d->match) (&d->head, NULL, h->root.root.string)))
533 h->dynamic = 1;
534 }
535
536 /* Record an assignment to a symbol made by a linker script. We need
537 this in case some dynamic object refers to this symbol. */
538
539 bfd_boolean
540 bfd_elf_record_link_assignment (bfd *output_bfd,
541 struct bfd_link_info *info,
542 const char *name,
543 bfd_boolean provide,
544 bfd_boolean hidden)
545 {
546 struct elf_link_hash_entry *h, *hv;
547 struct elf_link_hash_table *htab;
548 const struct elf_backend_data *bed;
549
550 if (!is_elf_hash_table (info->hash))
551 return TRUE;
552
553 htab = elf_hash_table (info);
554 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
555 if (h == NULL)
556 return provide;
557
558 switch (h->root.type)
559 {
560 case bfd_link_hash_defined:
561 case bfd_link_hash_defweak:
562 case bfd_link_hash_common:
563 break;
564 case bfd_link_hash_undefweak:
565 case bfd_link_hash_undefined:
566 /* Since we're defining the symbol, don't let it seem to have not
567 been defined. record_dynamic_symbol and size_dynamic_sections
568 may depend on this. */
569 h->root.type = bfd_link_hash_new;
570 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
571 bfd_link_repair_undef_list (&htab->root);
572 break;
573 case bfd_link_hash_new:
574 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
575 h->non_elf = 0;
576 break;
577 case bfd_link_hash_indirect:
578 /* We had a versioned symbol in a dynamic library. We make the
579 the versioned symbol point to this one. */
580 bed = get_elf_backend_data (output_bfd);
581 hv = h;
582 while (hv->root.type == bfd_link_hash_indirect
583 || hv->root.type == bfd_link_hash_warning)
584 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
585 /* We don't need to update h->root.u since linker will set them
586 later. */
587 h->root.type = bfd_link_hash_undefined;
588 hv->root.type = bfd_link_hash_indirect;
589 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
590 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
591 break;
592 case bfd_link_hash_warning:
593 abort ();
594 break;
595 }
596
597 /* If this symbol is being provided by the linker script, and it is
598 currently defined by a dynamic object, but not by a regular
599 object, then mark it as undefined so that the generic linker will
600 force the correct value. */
601 if (provide
602 && h->def_dynamic
603 && !h->def_regular)
604 h->root.type = bfd_link_hash_undefined;
605
606 /* If this symbol is not being provided by the linker script, and it is
607 currently defined by a dynamic object, but not by a regular object,
608 then clear out any version information because the symbol will not be
609 associated with the dynamic object any more. */
610 if (!provide
611 && h->def_dynamic
612 && !h->def_regular)
613 h->verinfo.verdef = NULL;
614
615 h->def_regular = 1;
616
617 if (hidden)
618 {
619 bed = get_elf_backend_data (output_bfd);
620 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
621 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
622 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
623 }
624
625 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
626 and executables. */
627 if (!bfd_link_relocatable (info)
628 && h->dynindx != -1
629 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
630 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
631 h->forced_local = 1;
632
633 if ((h->def_dynamic
634 || h->ref_dynamic
635 || bfd_link_pic (info)
636 || (bfd_link_pde (info)
637 && elf_hash_table (info)->is_relocatable_executable))
638 && h->dynindx == -1)
639 {
640 if (! bfd_elf_link_record_dynamic_symbol (info, h))
641 return FALSE;
642
643 /* If this is a weak defined symbol, and we know a corresponding
644 real symbol from the same dynamic object, make sure the real
645 symbol is also made into a dynamic symbol. */
646 if (h->u.weakdef != NULL
647 && h->u.weakdef->dynindx == -1)
648 {
649 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
650 return FALSE;
651 }
652 }
653
654 return TRUE;
655 }
656
657 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
658 success, and 2 on a failure caused by attempting to record a symbol
659 in a discarded section, eg. a discarded link-once section symbol. */
660
661 int
662 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
663 bfd *input_bfd,
664 long input_indx)
665 {
666 bfd_size_type amt;
667 struct elf_link_local_dynamic_entry *entry;
668 struct elf_link_hash_table *eht;
669 struct elf_strtab_hash *dynstr;
670 unsigned long dynstr_index;
671 char *name;
672 Elf_External_Sym_Shndx eshndx;
673 char esym[sizeof (Elf64_External_Sym)];
674
675 if (! is_elf_hash_table (info->hash))
676 return 0;
677
678 /* See if the entry exists already. */
679 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
680 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
681 return 1;
682
683 amt = sizeof (*entry);
684 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
685 if (entry == NULL)
686 return 0;
687
688 /* Go find the symbol, so that we can find it's name. */
689 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
690 1, input_indx, &entry->isym, esym, &eshndx))
691 {
692 bfd_release (input_bfd, entry);
693 return 0;
694 }
695
696 if (entry->isym.st_shndx != SHN_UNDEF
697 && entry->isym.st_shndx < SHN_LORESERVE)
698 {
699 asection *s;
700
701 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
702 if (s == NULL || bfd_is_abs_section (s->output_section))
703 {
704 /* We can still bfd_release here as nothing has done another
705 bfd_alloc. We can't do this later in this function. */
706 bfd_release (input_bfd, entry);
707 return 2;
708 }
709 }
710
711 name = (bfd_elf_string_from_elf_section
712 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
713 entry->isym.st_name));
714
715 dynstr = elf_hash_table (info)->dynstr;
716 if (dynstr == NULL)
717 {
718 /* Create a strtab to hold the dynamic symbol names. */
719 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
720 if (dynstr == NULL)
721 return 0;
722 }
723
724 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
725 if (dynstr_index == (unsigned long) -1)
726 return 0;
727 entry->isym.st_name = dynstr_index;
728
729 eht = elf_hash_table (info);
730
731 entry->next = eht->dynlocal;
732 eht->dynlocal = entry;
733 entry->input_bfd = input_bfd;
734 entry->input_indx = input_indx;
735 eht->dynsymcount++;
736
737 /* Whatever binding the symbol had before, it's now local. */
738 entry->isym.st_info
739 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
740
741 /* The dynindx will be set at the end of size_dynamic_sections. */
742
743 return 1;
744 }
745
746 /* Return the dynindex of a local dynamic symbol. */
747
748 long
749 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
750 bfd *input_bfd,
751 long input_indx)
752 {
753 struct elf_link_local_dynamic_entry *e;
754
755 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
756 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
757 return e->dynindx;
758 return -1;
759 }
760
761 /* This function is used to renumber the dynamic symbols, if some of
762 them are removed because they are marked as local. This is called
763 via elf_link_hash_traverse. */
764
765 static bfd_boolean
766 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
767 void *data)
768 {
769 size_t *count = (size_t *) data;
770
771 if (h->forced_local)
772 return TRUE;
773
774 if (h->dynindx != -1)
775 h->dynindx = ++(*count);
776
777 return TRUE;
778 }
779
780
781 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
782 STB_LOCAL binding. */
783
784 static bfd_boolean
785 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
786 void *data)
787 {
788 size_t *count = (size_t *) data;
789
790 if (!h->forced_local)
791 return TRUE;
792
793 if (h->dynindx != -1)
794 h->dynindx = ++(*count);
795
796 return TRUE;
797 }
798
799 /* Return true if the dynamic symbol for a given section should be
800 omitted when creating a shared library. */
801 bfd_boolean
802 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
803 struct bfd_link_info *info,
804 asection *p)
805 {
806 struct elf_link_hash_table *htab;
807 asection *ip;
808
809 switch (elf_section_data (p)->this_hdr.sh_type)
810 {
811 case SHT_PROGBITS:
812 case SHT_NOBITS:
813 /* If sh_type is yet undecided, assume it could be
814 SHT_PROGBITS/SHT_NOBITS. */
815 case SHT_NULL:
816 htab = elf_hash_table (info);
817 if (p == htab->tls_sec)
818 return FALSE;
819
820 if (htab->text_index_section != NULL)
821 return p != htab->text_index_section && p != htab->data_index_section;
822
823 return (htab->dynobj != NULL
824 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
825 && ip->output_section == p);
826
827 /* There shouldn't be section relative relocations
828 against any other section. */
829 default:
830 return TRUE;
831 }
832 }
833
834 /* Assign dynsym indices. In a shared library we generate a section
835 symbol for each output section, which come first. Next come symbols
836 which have been forced to local binding. Then all of the back-end
837 allocated local dynamic syms, followed by the rest of the global
838 symbols. */
839
840 static unsigned long
841 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
842 struct bfd_link_info *info,
843 unsigned long *section_sym_count)
844 {
845 unsigned long dynsymcount = 0;
846
847 if (bfd_link_pic (info)
848 || elf_hash_table (info)->is_relocatable_executable)
849 {
850 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
851 asection *p;
852 for (p = output_bfd->sections; p ; p = p->next)
853 if ((p->flags & SEC_EXCLUDE) == 0
854 && (p->flags & SEC_ALLOC) != 0
855 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
856 elf_section_data (p)->dynindx = ++dynsymcount;
857 else
858 elf_section_data (p)->dynindx = 0;
859 }
860 *section_sym_count = dynsymcount;
861
862 elf_link_hash_traverse (elf_hash_table (info),
863 elf_link_renumber_local_hash_table_dynsyms,
864 &dynsymcount);
865
866 if (elf_hash_table (info)->dynlocal)
867 {
868 struct elf_link_local_dynamic_entry *p;
869 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
870 p->dynindx = ++dynsymcount;
871 }
872
873 elf_link_hash_traverse (elf_hash_table (info),
874 elf_link_renumber_hash_table_dynsyms,
875 &dynsymcount);
876
877 /* There is an unused NULL entry at the head of the table which
878 we must account for in our count. Unless there weren't any
879 symbols, which means we'll have no table at all. */
880 if (dynsymcount != 0)
881 ++dynsymcount;
882
883 elf_hash_table (info)->dynsymcount = dynsymcount;
884 return dynsymcount;
885 }
886
887 /* Merge st_other field. */
888
889 static void
890 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
891 const Elf_Internal_Sym *isym, asection *sec,
892 bfd_boolean definition, bfd_boolean dynamic)
893 {
894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
895
896 /* If st_other has a processor-specific meaning, specific
897 code might be needed here. */
898 if (bed->elf_backend_merge_symbol_attribute)
899 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
900 dynamic);
901
902 if (!dynamic)
903 {
904 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
905 unsigned hvis = ELF_ST_VISIBILITY (h->other);
906
907 /* Keep the most constraining visibility. Leave the remainder
908 of the st_other field to elf_backend_merge_symbol_attribute. */
909 if (symvis - 1 < hvis - 1)
910 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
911 }
912 else if (definition
913 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
914 && (sec->flags & SEC_READONLY) == 0)
915 h->protected_def = 1;
916 }
917
918 /* This function is called when we want to merge a new symbol with an
919 existing symbol. It handles the various cases which arise when we
920 find a definition in a dynamic object, or when there is already a
921 definition in a dynamic object. The new symbol is described by
922 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
923 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
924 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
925 of an old common symbol. We set OVERRIDE if the old symbol is
926 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
927 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
928 to change. By OK to change, we mean that we shouldn't warn if the
929 type or size does change. */
930
931 static bfd_boolean
932 _bfd_elf_merge_symbol (bfd *abfd,
933 struct bfd_link_info *info,
934 const char *name,
935 Elf_Internal_Sym *sym,
936 asection **psec,
937 bfd_vma *pvalue,
938 struct elf_link_hash_entry **sym_hash,
939 bfd **poldbfd,
940 bfd_boolean *pold_weak,
941 unsigned int *pold_alignment,
942 bfd_boolean *skip,
943 bfd_boolean *override,
944 bfd_boolean *type_change_ok,
945 bfd_boolean *size_change_ok,
946 bfd_boolean *matched)
947 {
948 asection *sec, *oldsec;
949 struct elf_link_hash_entry *h;
950 struct elf_link_hash_entry *hi;
951 struct elf_link_hash_entry *flip;
952 int bind;
953 bfd *oldbfd;
954 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
955 bfd_boolean newweak, oldweak, newfunc, oldfunc;
956 const struct elf_backend_data *bed;
957 char *new_version;
958
959 *skip = FALSE;
960 *override = FALSE;
961
962 sec = *psec;
963 bind = ELF_ST_BIND (sym->st_info);
964
965 if (! bfd_is_und_section (sec))
966 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
967 else
968 h = ((struct elf_link_hash_entry *)
969 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
970 if (h == NULL)
971 return FALSE;
972 *sym_hash = h;
973
974 bed = get_elf_backend_data (abfd);
975
976 /* NEW_VERSION is the symbol version of the new symbol. */
977 if (h->versioned != unversioned)
978 {
979 /* Symbol version is unknown or versioned. */
980 new_version = strrchr (name, ELF_VER_CHR);
981 if (new_version)
982 {
983 if (h->versioned == unknown)
984 {
985 if (new_version > name && new_version[-1] != ELF_VER_CHR)
986 h->versioned = versioned_hidden;
987 else
988 h->versioned = versioned;
989 }
990 new_version += 1;
991 if (new_version[0] == '\0')
992 new_version = NULL;
993 }
994 else
995 h->versioned = unversioned;
996 }
997 else
998 new_version = NULL;
999
1000 /* For merging, we only care about real symbols. But we need to make
1001 sure that indirect symbol dynamic flags are updated. */
1002 hi = h;
1003 while (h->root.type == bfd_link_hash_indirect
1004 || h->root.type == bfd_link_hash_warning)
1005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1006
1007 if (!*matched)
1008 {
1009 if (hi == h || h->root.type == bfd_link_hash_new)
1010 *matched = TRUE;
1011 else
1012 {
1013 /* OLD_HIDDEN is true if the existing symbol is only visibile
1014 to the symbol with the same symbol version. NEW_HIDDEN is
1015 true if the new symbol is only visibile to the symbol with
1016 the same symbol version. */
1017 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1018 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1019 if (!old_hidden && !new_hidden)
1020 /* The new symbol matches the existing symbol if both
1021 aren't hidden. */
1022 *matched = TRUE;
1023 else
1024 {
1025 /* OLD_VERSION is the symbol version of the existing
1026 symbol. */
1027 char *old_version;
1028
1029 if (h->versioned >= versioned)
1030 old_version = strrchr (h->root.root.string,
1031 ELF_VER_CHR) + 1;
1032 else
1033 old_version = NULL;
1034
1035 /* The new symbol matches the existing symbol if they
1036 have the same symbol version. */
1037 *matched = (old_version == new_version
1038 || (old_version != NULL
1039 && new_version != NULL
1040 && strcmp (old_version, new_version) == 0));
1041 }
1042 }
1043 }
1044
1045 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1046 existing symbol. */
1047
1048 oldbfd = NULL;
1049 oldsec = NULL;
1050 switch (h->root.type)
1051 {
1052 default:
1053 break;
1054
1055 case bfd_link_hash_undefined:
1056 case bfd_link_hash_undefweak:
1057 oldbfd = h->root.u.undef.abfd;
1058 break;
1059
1060 case bfd_link_hash_defined:
1061 case bfd_link_hash_defweak:
1062 oldbfd = h->root.u.def.section->owner;
1063 oldsec = h->root.u.def.section;
1064 break;
1065
1066 case bfd_link_hash_common:
1067 oldbfd = h->root.u.c.p->section->owner;
1068 oldsec = h->root.u.c.p->section;
1069 if (pold_alignment)
1070 *pold_alignment = h->root.u.c.p->alignment_power;
1071 break;
1072 }
1073 if (poldbfd && *poldbfd == NULL)
1074 *poldbfd = oldbfd;
1075
1076 /* Differentiate strong and weak symbols. */
1077 newweak = bind == STB_WEAK;
1078 oldweak = (h->root.type == bfd_link_hash_defweak
1079 || h->root.type == bfd_link_hash_undefweak);
1080 if (pold_weak)
1081 *pold_weak = oldweak;
1082
1083 /* This code is for coping with dynamic objects, and is only useful
1084 if we are doing an ELF link. */
1085 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1086 return TRUE;
1087
1088 /* We have to check it for every instance since the first few may be
1089 references and not all compilers emit symbol type for undefined
1090 symbols. */
1091 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1092
1093 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1094 respectively, is from a dynamic object. */
1095
1096 newdyn = (abfd->flags & DYNAMIC) != 0;
1097
1098 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1099 syms and defined syms in dynamic libraries respectively.
1100 ref_dynamic on the other hand can be set for a symbol defined in
1101 a dynamic library, and def_dynamic may not be set; When the
1102 definition in a dynamic lib is overridden by a definition in the
1103 executable use of the symbol in the dynamic lib becomes a
1104 reference to the executable symbol. */
1105 if (newdyn)
1106 {
1107 if (bfd_is_und_section (sec))
1108 {
1109 if (bind != STB_WEAK)
1110 {
1111 h->ref_dynamic_nonweak = 1;
1112 hi->ref_dynamic_nonweak = 1;
1113 }
1114 }
1115 else
1116 {
1117 /* Update the existing symbol only if they match. */
1118 if (*matched)
1119 h->dynamic_def = 1;
1120 hi->dynamic_def = 1;
1121 }
1122 }
1123
1124 /* If we just created the symbol, mark it as being an ELF symbol.
1125 Other than that, there is nothing to do--there is no merge issue
1126 with a newly defined symbol--so we just return. */
1127
1128 if (h->root.type == bfd_link_hash_new)
1129 {
1130 h->non_elf = 0;
1131 return TRUE;
1132 }
1133
1134 /* In cases involving weak versioned symbols, we may wind up trying
1135 to merge a symbol with itself. Catch that here, to avoid the
1136 confusion that results if we try to override a symbol with
1137 itself. The additional tests catch cases like
1138 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1139 dynamic object, which we do want to handle here. */
1140 if (abfd == oldbfd
1141 && (newweak || oldweak)
1142 && ((abfd->flags & DYNAMIC) == 0
1143 || !h->def_regular))
1144 return TRUE;
1145
1146 olddyn = FALSE;
1147 if (oldbfd != NULL)
1148 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1149 else if (oldsec != NULL)
1150 {
1151 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1152 indices used by MIPS ELF. */
1153 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1154 }
1155
1156 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1157 respectively, appear to be a definition rather than reference. */
1158
1159 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1160
1161 olddef = (h->root.type != bfd_link_hash_undefined
1162 && h->root.type != bfd_link_hash_undefweak
1163 && h->root.type != bfd_link_hash_common);
1164
1165 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1166 respectively, appear to be a function. */
1167
1168 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1169 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1170
1171 oldfunc = (h->type != STT_NOTYPE
1172 && bed->is_function_type (h->type));
1173
1174 /* When we try to create a default indirect symbol from the dynamic
1175 definition with the default version, we skip it if its type and
1176 the type of existing regular definition mismatch. */
1177 if (pold_alignment == NULL
1178 && newdyn
1179 && newdef
1180 && !olddyn
1181 && (((olddef || h->root.type == bfd_link_hash_common)
1182 && ELF_ST_TYPE (sym->st_info) != h->type
1183 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1184 && h->type != STT_NOTYPE
1185 && !(newfunc && oldfunc))
1186 || (olddef
1187 && ((h->type == STT_GNU_IFUNC)
1188 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1189 {
1190 *skip = TRUE;
1191 return TRUE;
1192 }
1193
1194 /* Check TLS symbols. We don't check undefined symbols introduced
1195 by "ld -u" which have no type (and oldbfd NULL), and we don't
1196 check symbols from plugins because they also have no type. */
1197 if (oldbfd != NULL
1198 && (oldbfd->flags & BFD_PLUGIN) == 0
1199 && (abfd->flags & BFD_PLUGIN) == 0
1200 && ELF_ST_TYPE (sym->st_info) != h->type
1201 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1202 {
1203 bfd *ntbfd, *tbfd;
1204 bfd_boolean ntdef, tdef;
1205 asection *ntsec, *tsec;
1206
1207 if (h->type == STT_TLS)
1208 {
1209 ntbfd = abfd;
1210 ntsec = sec;
1211 ntdef = newdef;
1212 tbfd = oldbfd;
1213 tsec = oldsec;
1214 tdef = olddef;
1215 }
1216 else
1217 {
1218 ntbfd = oldbfd;
1219 ntsec = oldsec;
1220 ntdef = olddef;
1221 tbfd = abfd;
1222 tsec = sec;
1223 tdef = newdef;
1224 }
1225
1226 if (tdef && ntdef)
1227 (*_bfd_error_handler)
1228 (_("%s: TLS definition in %B section %A "
1229 "mismatches non-TLS definition in %B section %A"),
1230 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1231 else if (!tdef && !ntdef)
1232 (*_bfd_error_handler)
1233 (_("%s: TLS reference in %B "
1234 "mismatches non-TLS reference in %B"),
1235 tbfd, ntbfd, h->root.root.string);
1236 else if (tdef)
1237 (*_bfd_error_handler)
1238 (_("%s: TLS definition in %B section %A "
1239 "mismatches non-TLS reference in %B"),
1240 tbfd, tsec, ntbfd, h->root.root.string);
1241 else
1242 (*_bfd_error_handler)
1243 (_("%s: TLS reference in %B "
1244 "mismatches non-TLS definition in %B section %A"),
1245 tbfd, ntbfd, ntsec, h->root.root.string);
1246
1247 bfd_set_error (bfd_error_bad_value);
1248 return FALSE;
1249 }
1250
1251 /* If the old symbol has non-default visibility, we ignore the new
1252 definition from a dynamic object. */
1253 if (newdyn
1254 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1255 && !bfd_is_und_section (sec))
1256 {
1257 *skip = TRUE;
1258 /* Make sure this symbol is dynamic. */
1259 h->ref_dynamic = 1;
1260 hi->ref_dynamic = 1;
1261 /* A protected symbol has external availability. Make sure it is
1262 recorded as dynamic.
1263
1264 FIXME: Should we check type and size for protected symbol? */
1265 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1266 return bfd_elf_link_record_dynamic_symbol (info, h);
1267 else
1268 return TRUE;
1269 }
1270 else if (!newdyn
1271 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1272 && h->def_dynamic)
1273 {
1274 /* If the new symbol with non-default visibility comes from a
1275 relocatable file and the old definition comes from a dynamic
1276 object, we remove the old definition. */
1277 if (hi->root.type == bfd_link_hash_indirect)
1278 {
1279 /* Handle the case where the old dynamic definition is
1280 default versioned. We need to copy the symbol info from
1281 the symbol with default version to the normal one if it
1282 was referenced before. */
1283 if (h->ref_regular)
1284 {
1285 hi->root.type = h->root.type;
1286 h->root.type = bfd_link_hash_indirect;
1287 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1288
1289 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1290 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1291 {
1292 /* If the new symbol is hidden or internal, completely undo
1293 any dynamic link state. */
1294 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1295 h->forced_local = 0;
1296 h->ref_dynamic = 0;
1297 }
1298 else
1299 h->ref_dynamic = 1;
1300
1301 h->def_dynamic = 0;
1302 /* FIXME: Should we check type and size for protected symbol? */
1303 h->size = 0;
1304 h->type = 0;
1305
1306 h = hi;
1307 }
1308 else
1309 h = hi;
1310 }
1311
1312 /* If the old symbol was undefined before, then it will still be
1313 on the undefs list. If the new symbol is undefined or
1314 common, we can't make it bfd_link_hash_new here, because new
1315 undefined or common symbols will be added to the undefs list
1316 by _bfd_generic_link_add_one_symbol. Symbols may not be
1317 added twice to the undefs list. Also, if the new symbol is
1318 undefweak then we don't want to lose the strong undef. */
1319 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1320 {
1321 h->root.type = bfd_link_hash_undefined;
1322 h->root.u.undef.abfd = abfd;
1323 }
1324 else
1325 {
1326 h->root.type = bfd_link_hash_new;
1327 h->root.u.undef.abfd = NULL;
1328 }
1329
1330 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1331 {
1332 /* If the new symbol is hidden or internal, completely undo
1333 any dynamic link state. */
1334 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1335 h->forced_local = 0;
1336 h->ref_dynamic = 0;
1337 }
1338 else
1339 h->ref_dynamic = 1;
1340 h->def_dynamic = 0;
1341 /* FIXME: Should we check type and size for protected symbol? */
1342 h->size = 0;
1343 h->type = 0;
1344 return TRUE;
1345 }
1346
1347 /* If a new weak symbol definition comes from a regular file and the
1348 old symbol comes from a dynamic library, we treat the new one as
1349 strong. Similarly, an old weak symbol definition from a regular
1350 file is treated as strong when the new symbol comes from a dynamic
1351 library. Further, an old weak symbol from a dynamic library is
1352 treated as strong if the new symbol is from a dynamic library.
1353 This reflects the way glibc's ld.so works.
1354
1355 Do this before setting *type_change_ok or *size_change_ok so that
1356 we warn properly when dynamic library symbols are overridden. */
1357
1358 if (newdef && !newdyn && olddyn)
1359 newweak = FALSE;
1360 if (olddef && newdyn)
1361 oldweak = FALSE;
1362
1363 /* Allow changes between different types of function symbol. */
1364 if (newfunc && oldfunc)
1365 *type_change_ok = TRUE;
1366
1367 /* It's OK to change the type if either the existing symbol or the
1368 new symbol is weak. A type change is also OK if the old symbol
1369 is undefined and the new symbol is defined. */
1370
1371 if (oldweak
1372 || newweak
1373 || (newdef
1374 && h->root.type == bfd_link_hash_undefined))
1375 *type_change_ok = TRUE;
1376
1377 /* It's OK to change the size if either the existing symbol or the
1378 new symbol is weak, or if the old symbol is undefined. */
1379
1380 if (*type_change_ok
1381 || h->root.type == bfd_link_hash_undefined)
1382 *size_change_ok = TRUE;
1383
1384 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1385 symbol, respectively, appears to be a common symbol in a dynamic
1386 object. If a symbol appears in an uninitialized section, and is
1387 not weak, and is not a function, then it may be a common symbol
1388 which was resolved when the dynamic object was created. We want
1389 to treat such symbols specially, because they raise special
1390 considerations when setting the symbol size: if the symbol
1391 appears as a common symbol in a regular object, and the size in
1392 the regular object is larger, we must make sure that we use the
1393 larger size. This problematic case can always be avoided in C,
1394 but it must be handled correctly when using Fortran shared
1395 libraries.
1396
1397 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1398 likewise for OLDDYNCOMMON and OLDDEF.
1399
1400 Note that this test is just a heuristic, and that it is quite
1401 possible to have an uninitialized symbol in a shared object which
1402 is really a definition, rather than a common symbol. This could
1403 lead to some minor confusion when the symbol really is a common
1404 symbol in some regular object. However, I think it will be
1405 harmless. */
1406
1407 if (newdyn
1408 && newdef
1409 && !newweak
1410 && (sec->flags & SEC_ALLOC) != 0
1411 && (sec->flags & SEC_LOAD) == 0
1412 && sym->st_size > 0
1413 && !newfunc)
1414 newdyncommon = TRUE;
1415 else
1416 newdyncommon = FALSE;
1417
1418 if (olddyn
1419 && olddef
1420 && h->root.type == bfd_link_hash_defined
1421 && h->def_dynamic
1422 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1423 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1424 && h->size > 0
1425 && !oldfunc)
1426 olddyncommon = TRUE;
1427 else
1428 olddyncommon = FALSE;
1429
1430 /* We now know everything about the old and new symbols. We ask the
1431 backend to check if we can merge them. */
1432 if (bed->merge_symbol != NULL)
1433 {
1434 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1435 return FALSE;
1436 sec = *psec;
1437 }
1438
1439 /* If both the old and the new symbols look like common symbols in a
1440 dynamic object, set the size of the symbol to the larger of the
1441 two. */
1442
1443 if (olddyncommon
1444 && newdyncommon
1445 && sym->st_size != h->size)
1446 {
1447 /* Since we think we have two common symbols, issue a multiple
1448 common warning if desired. Note that we only warn if the
1449 size is different. If the size is the same, we simply let
1450 the old symbol override the new one as normally happens with
1451 symbols defined in dynamic objects. */
1452
1453 if (! ((*info->callbacks->multiple_common)
1454 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1455 return FALSE;
1456
1457 if (sym->st_size > h->size)
1458 h->size = sym->st_size;
1459
1460 *size_change_ok = TRUE;
1461 }
1462
1463 /* If we are looking at a dynamic object, and we have found a
1464 definition, we need to see if the symbol was already defined by
1465 some other object. If so, we want to use the existing
1466 definition, and we do not want to report a multiple symbol
1467 definition error; we do this by clobbering *PSEC to be
1468 bfd_und_section_ptr.
1469
1470 We treat a common symbol as a definition if the symbol in the
1471 shared library is a function, since common symbols always
1472 represent variables; this can cause confusion in principle, but
1473 any such confusion would seem to indicate an erroneous program or
1474 shared library. We also permit a common symbol in a regular
1475 object to override a weak symbol in a shared object. */
1476
1477 if (newdyn
1478 && newdef
1479 && (olddef
1480 || (h->root.type == bfd_link_hash_common
1481 && (newweak || newfunc))))
1482 {
1483 *override = TRUE;
1484 newdef = FALSE;
1485 newdyncommon = FALSE;
1486
1487 *psec = sec = bfd_und_section_ptr;
1488 *size_change_ok = TRUE;
1489
1490 /* If we get here when the old symbol is a common symbol, then
1491 we are explicitly letting it override a weak symbol or
1492 function in a dynamic object, and we don't want to warn about
1493 a type change. If the old symbol is a defined symbol, a type
1494 change warning may still be appropriate. */
1495
1496 if (h->root.type == bfd_link_hash_common)
1497 *type_change_ok = TRUE;
1498 }
1499
1500 /* Handle the special case of an old common symbol merging with a
1501 new symbol which looks like a common symbol in a shared object.
1502 We change *PSEC and *PVALUE to make the new symbol look like a
1503 common symbol, and let _bfd_generic_link_add_one_symbol do the
1504 right thing. */
1505
1506 if (newdyncommon
1507 && h->root.type == bfd_link_hash_common)
1508 {
1509 *override = TRUE;
1510 newdef = FALSE;
1511 newdyncommon = FALSE;
1512 *pvalue = sym->st_size;
1513 *psec = sec = bed->common_section (oldsec);
1514 *size_change_ok = TRUE;
1515 }
1516
1517 /* Skip weak definitions of symbols that are already defined. */
1518 if (newdef && olddef && newweak)
1519 {
1520 /* Don't skip new non-IR weak syms. */
1521 if (!(oldbfd != NULL
1522 && (oldbfd->flags & BFD_PLUGIN) != 0
1523 && (abfd->flags & BFD_PLUGIN) == 0))
1524 {
1525 newdef = FALSE;
1526 *skip = TRUE;
1527 }
1528
1529 /* Merge st_other. If the symbol already has a dynamic index,
1530 but visibility says it should not be visible, turn it into a
1531 local symbol. */
1532 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1533 if (h->dynindx != -1)
1534 switch (ELF_ST_VISIBILITY (h->other))
1535 {
1536 case STV_INTERNAL:
1537 case STV_HIDDEN:
1538 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1539 break;
1540 }
1541 }
1542
1543 /* If the old symbol is from a dynamic object, and the new symbol is
1544 a definition which is not from a dynamic object, then the new
1545 symbol overrides the old symbol. Symbols from regular files
1546 always take precedence over symbols from dynamic objects, even if
1547 they are defined after the dynamic object in the link.
1548
1549 As above, we again permit a common symbol in a regular object to
1550 override a definition in a shared object if the shared object
1551 symbol is a function or is weak. */
1552
1553 flip = NULL;
1554 if (!newdyn
1555 && (newdef
1556 || (bfd_is_com_section (sec)
1557 && (oldweak || oldfunc)))
1558 && olddyn
1559 && olddef
1560 && h->def_dynamic)
1561 {
1562 /* Change the hash table entry to undefined, and let
1563 _bfd_generic_link_add_one_symbol do the right thing with the
1564 new definition. */
1565
1566 h->root.type = bfd_link_hash_undefined;
1567 h->root.u.undef.abfd = h->root.u.def.section->owner;
1568 *size_change_ok = TRUE;
1569
1570 olddef = FALSE;
1571 olddyncommon = FALSE;
1572
1573 /* We again permit a type change when a common symbol may be
1574 overriding a function. */
1575
1576 if (bfd_is_com_section (sec))
1577 {
1578 if (oldfunc)
1579 {
1580 /* If a common symbol overrides a function, make sure
1581 that it isn't defined dynamically nor has type
1582 function. */
1583 h->def_dynamic = 0;
1584 h->type = STT_NOTYPE;
1585 }
1586 *type_change_ok = TRUE;
1587 }
1588
1589 if (hi->root.type == bfd_link_hash_indirect)
1590 flip = hi;
1591 else
1592 /* This union may have been set to be non-NULL when this symbol
1593 was seen in a dynamic object. We must force the union to be
1594 NULL, so that it is correct for a regular symbol. */
1595 h->verinfo.vertree = NULL;
1596 }
1597
1598 /* Handle the special case of a new common symbol merging with an
1599 old symbol that looks like it might be a common symbol defined in
1600 a shared object. Note that we have already handled the case in
1601 which a new common symbol should simply override the definition
1602 in the shared library. */
1603
1604 if (! newdyn
1605 && bfd_is_com_section (sec)
1606 && olddyncommon)
1607 {
1608 /* It would be best if we could set the hash table entry to a
1609 common symbol, but we don't know what to use for the section
1610 or the alignment. */
1611 if (! ((*info->callbacks->multiple_common)
1612 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1613 return FALSE;
1614
1615 /* If the presumed common symbol in the dynamic object is
1616 larger, pretend that the new symbol has its size. */
1617
1618 if (h->size > *pvalue)
1619 *pvalue = h->size;
1620
1621 /* We need to remember the alignment required by the symbol
1622 in the dynamic object. */
1623 BFD_ASSERT (pold_alignment);
1624 *pold_alignment = h->root.u.def.section->alignment_power;
1625
1626 olddef = FALSE;
1627 olddyncommon = FALSE;
1628
1629 h->root.type = bfd_link_hash_undefined;
1630 h->root.u.undef.abfd = h->root.u.def.section->owner;
1631
1632 *size_change_ok = TRUE;
1633 *type_change_ok = TRUE;
1634
1635 if (hi->root.type == bfd_link_hash_indirect)
1636 flip = hi;
1637 else
1638 h->verinfo.vertree = NULL;
1639 }
1640
1641 if (flip != NULL)
1642 {
1643 /* Handle the case where we had a versioned symbol in a dynamic
1644 library and now find a definition in a normal object. In this
1645 case, we make the versioned symbol point to the normal one. */
1646 flip->root.type = h->root.type;
1647 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1650 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1651 if (h->def_dynamic)
1652 {
1653 h->def_dynamic = 0;
1654 flip->ref_dynamic = 1;
1655 }
1656 }
1657
1658 return TRUE;
1659 }
1660
1661 /* This function is called to create an indirect symbol from the
1662 default for the symbol with the default version if needed. The
1663 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1664 set DYNSYM if the new indirect symbol is dynamic. */
1665
1666 static bfd_boolean
1667 _bfd_elf_add_default_symbol (bfd *abfd,
1668 struct bfd_link_info *info,
1669 struct elf_link_hash_entry *h,
1670 const char *name,
1671 Elf_Internal_Sym *sym,
1672 asection *sec,
1673 bfd_vma value,
1674 bfd **poldbfd,
1675 bfd_boolean *dynsym)
1676 {
1677 bfd_boolean type_change_ok;
1678 bfd_boolean size_change_ok;
1679 bfd_boolean skip;
1680 char *shortname;
1681 struct elf_link_hash_entry *hi;
1682 struct bfd_link_hash_entry *bh;
1683 const struct elf_backend_data *bed;
1684 bfd_boolean collect;
1685 bfd_boolean dynamic;
1686 bfd_boolean override;
1687 char *p;
1688 size_t len, shortlen;
1689 asection *tmp_sec;
1690 bfd_boolean matched;
1691
1692 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1693 return TRUE;
1694
1695 /* If this symbol has a version, and it is the default version, we
1696 create an indirect symbol from the default name to the fully
1697 decorated name. This will cause external references which do not
1698 specify a version to be bound to this version of the symbol. */
1699 p = strchr (name, ELF_VER_CHR);
1700 if (h->versioned == unknown)
1701 {
1702 if (p == NULL)
1703 {
1704 h->versioned = unversioned;
1705 return TRUE;
1706 }
1707 else
1708 {
1709 if (p[1] != ELF_VER_CHR)
1710 {
1711 h->versioned = versioned_hidden;
1712 return TRUE;
1713 }
1714 else
1715 h->versioned = versioned;
1716 }
1717 }
1718
1719 bed = get_elf_backend_data (abfd);
1720 collect = bed->collect;
1721 dynamic = (abfd->flags & DYNAMIC) != 0;
1722
1723 shortlen = p - name;
1724 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1725 if (shortname == NULL)
1726 return FALSE;
1727 memcpy (shortname, name, shortlen);
1728 shortname[shortlen] = '\0';
1729
1730 /* We are going to create a new symbol. Merge it with any existing
1731 symbol with this name. For the purposes of the merge, act as
1732 though we were defining the symbol we just defined, although we
1733 actually going to define an indirect symbol. */
1734 type_change_ok = FALSE;
1735 size_change_ok = FALSE;
1736 matched = TRUE;
1737 tmp_sec = sec;
1738 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1739 &hi, poldbfd, NULL, NULL, &skip, &override,
1740 &type_change_ok, &size_change_ok, &matched))
1741 return FALSE;
1742
1743 if (skip)
1744 goto nondefault;
1745
1746 if (! override)
1747 {
1748 /* Add the default symbol if not performing a relocatable link. */
1749 if (! bfd_link_relocatable (info))
1750 {
1751 bh = &hi->root;
1752 if (! (_bfd_generic_link_add_one_symbol
1753 (info, abfd, shortname, BSF_INDIRECT,
1754 bfd_ind_section_ptr,
1755 0, name, FALSE, collect, &bh)))
1756 return FALSE;
1757 hi = (struct elf_link_hash_entry *) bh;
1758 }
1759 }
1760 else
1761 {
1762 /* In this case the symbol named SHORTNAME is overriding the
1763 indirect symbol we want to add. We were planning on making
1764 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1765 is the name without a version. NAME is the fully versioned
1766 name, and it is the default version.
1767
1768 Overriding means that we already saw a definition for the
1769 symbol SHORTNAME in a regular object, and it is overriding
1770 the symbol defined in the dynamic object.
1771
1772 When this happens, we actually want to change NAME, the
1773 symbol we just added, to refer to SHORTNAME. This will cause
1774 references to NAME in the shared object to become references
1775 to SHORTNAME in the regular object. This is what we expect
1776 when we override a function in a shared object: that the
1777 references in the shared object will be mapped to the
1778 definition in the regular object. */
1779
1780 while (hi->root.type == bfd_link_hash_indirect
1781 || hi->root.type == bfd_link_hash_warning)
1782 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1783
1784 h->root.type = bfd_link_hash_indirect;
1785 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1786 if (h->def_dynamic)
1787 {
1788 h->def_dynamic = 0;
1789 hi->ref_dynamic = 1;
1790 if (hi->ref_regular
1791 || hi->def_regular)
1792 {
1793 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1794 return FALSE;
1795 }
1796 }
1797
1798 /* Now set HI to H, so that the following code will set the
1799 other fields correctly. */
1800 hi = h;
1801 }
1802
1803 /* Check if HI is a warning symbol. */
1804 if (hi->root.type == bfd_link_hash_warning)
1805 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1806
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error to
1809 the user in that case. */
1810
1811 if (hi->root.type == bfd_link_hash_indirect)
1812 {
1813 struct elf_link_hash_entry *ht;
1814
1815 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1816 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1817
1818 /* A reference to the SHORTNAME symbol from a dynamic library
1819 will be satisfied by the versioned symbol at runtime. In
1820 effect, we have a reference to the versioned symbol. */
1821 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1822 hi->dynamic_def |= ht->dynamic_def;
1823
1824 /* See if the new flags lead us to realize that the symbol must
1825 be dynamic. */
1826 if (! *dynsym)
1827 {
1828 if (! dynamic)
1829 {
1830 if (! bfd_link_executable (info)
1831 || hi->def_dynamic
1832 || hi->ref_dynamic)
1833 *dynsym = TRUE;
1834 }
1835 else
1836 {
1837 if (hi->ref_regular)
1838 *dynsym = TRUE;
1839 }
1840 }
1841 }
1842
1843 /* We also need to define an indirection from the nondefault version
1844 of the symbol. */
1845
1846 nondefault:
1847 len = strlen (name);
1848 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1849 if (shortname == NULL)
1850 return FALSE;
1851 memcpy (shortname, name, shortlen);
1852 memcpy (shortname + shortlen, p + 1, len - shortlen);
1853
1854 /* Once again, merge with any existing symbol. */
1855 type_change_ok = FALSE;
1856 size_change_ok = FALSE;
1857 tmp_sec = sec;
1858 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1859 &hi, poldbfd, NULL, NULL, &skip, &override,
1860 &type_change_ok, &size_change_ok, &matched))
1861 return FALSE;
1862
1863 if (skip)
1864 return TRUE;
1865
1866 if (override)
1867 {
1868 /* Here SHORTNAME is a versioned name, so we don't expect to see
1869 the type of override we do in the case above unless it is
1870 overridden by a versioned definition. */
1871 if (hi->root.type != bfd_link_hash_defined
1872 && hi->root.type != bfd_link_hash_defweak)
1873 (*_bfd_error_handler)
1874 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1875 abfd, shortname);
1876 }
1877 else
1878 {
1879 bh = &hi->root;
1880 if (! (_bfd_generic_link_add_one_symbol
1881 (info, abfd, shortname, BSF_INDIRECT,
1882 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1883 return FALSE;
1884 hi = (struct elf_link_hash_entry *) bh;
1885
1886 /* If there is a duplicate definition somewhere, then HI may not
1887 point to an indirect symbol. We will have reported an error
1888 to the user in that case. */
1889
1890 if (hi->root.type == bfd_link_hash_indirect)
1891 {
1892 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1893 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1894 hi->dynamic_def |= h->dynamic_def;
1895
1896 /* See if the new flags lead us to realize that the symbol
1897 must be dynamic. */
1898 if (! *dynsym)
1899 {
1900 if (! dynamic)
1901 {
1902 if (! bfd_link_executable (info)
1903 || hi->ref_dynamic)
1904 *dynsym = TRUE;
1905 }
1906 else
1907 {
1908 if (hi->ref_regular)
1909 *dynsym = TRUE;
1910 }
1911 }
1912 }
1913 }
1914
1915 return TRUE;
1916 }
1917 \f
1918 /* This routine is used to export all defined symbols into the dynamic
1919 symbol table. It is called via elf_link_hash_traverse. */
1920
1921 static bfd_boolean
1922 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1923 {
1924 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1925
1926 /* Ignore indirect symbols. These are added by the versioning code. */
1927 if (h->root.type == bfd_link_hash_indirect)
1928 return TRUE;
1929
1930 /* Ignore this if we won't export it. */
1931 if (!eif->info->export_dynamic && !h->dynamic)
1932 return TRUE;
1933
1934 if (h->dynindx == -1
1935 && (h->def_regular || h->ref_regular)
1936 && ! bfd_hide_sym_by_version (eif->info->version_info,
1937 h->root.root.string))
1938 {
1939 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1940 {
1941 eif->failed = TRUE;
1942 return FALSE;
1943 }
1944 }
1945
1946 return TRUE;
1947 }
1948 \f
1949 /* Look through the symbols which are defined in other shared
1950 libraries and referenced here. Update the list of version
1951 dependencies. This will be put into the .gnu.version_r section.
1952 This function is called via elf_link_hash_traverse. */
1953
1954 static bfd_boolean
1955 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1956 void *data)
1957 {
1958 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1959 Elf_Internal_Verneed *t;
1960 Elf_Internal_Vernaux *a;
1961 bfd_size_type amt;
1962
1963 /* We only care about symbols defined in shared objects with version
1964 information. */
1965 if (!h->def_dynamic
1966 || h->def_regular
1967 || h->dynindx == -1
1968 || h->verinfo.verdef == NULL
1969 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1970 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1971 return TRUE;
1972
1973 /* See if we already know about this version. */
1974 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1975 t != NULL;
1976 t = t->vn_nextref)
1977 {
1978 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1979 continue;
1980
1981 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1982 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1983 return TRUE;
1984
1985 break;
1986 }
1987
1988 /* This is a new version. Add it to tree we are building. */
1989
1990 if (t == NULL)
1991 {
1992 amt = sizeof *t;
1993 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1994 if (t == NULL)
1995 {
1996 rinfo->failed = TRUE;
1997 return FALSE;
1998 }
1999
2000 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2001 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2002 elf_tdata (rinfo->info->output_bfd)->verref = t;
2003 }
2004
2005 amt = sizeof *a;
2006 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2007 if (a == NULL)
2008 {
2009 rinfo->failed = TRUE;
2010 return FALSE;
2011 }
2012
2013 /* Note that we are copying a string pointer here, and testing it
2014 above. If bfd_elf_string_from_elf_section is ever changed to
2015 discard the string data when low in memory, this will have to be
2016 fixed. */
2017 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2018
2019 a->vna_flags = h->verinfo.verdef->vd_flags;
2020 a->vna_nextptr = t->vn_auxptr;
2021
2022 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2023 ++rinfo->vers;
2024
2025 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2026
2027 t->vn_auxptr = a;
2028
2029 return TRUE;
2030 }
2031
2032 /* Figure out appropriate versions for all the symbols. We may not
2033 have the version number script until we have read all of the input
2034 files, so until that point we don't know which symbols should be
2035 local. This function is called via elf_link_hash_traverse. */
2036
2037 static bfd_boolean
2038 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2039 {
2040 struct elf_info_failed *sinfo;
2041 struct bfd_link_info *info;
2042 const struct elf_backend_data *bed;
2043 struct elf_info_failed eif;
2044 char *p;
2045 bfd_size_type amt;
2046
2047 sinfo = (struct elf_info_failed *) data;
2048 info = sinfo->info;
2049
2050 /* Fix the symbol flags. */
2051 eif.failed = FALSE;
2052 eif.info = info;
2053 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2054 {
2055 if (eif.failed)
2056 sinfo->failed = TRUE;
2057 return FALSE;
2058 }
2059
2060 /* We only need version numbers for symbols defined in regular
2061 objects. */
2062 if (!h->def_regular)
2063 return TRUE;
2064
2065 bed = get_elf_backend_data (info->output_bfd);
2066 p = strchr (h->root.root.string, ELF_VER_CHR);
2067 if (p != NULL && h->verinfo.vertree == NULL)
2068 {
2069 struct bfd_elf_version_tree *t;
2070
2071 ++p;
2072 if (*p == ELF_VER_CHR)
2073 ++p;
2074
2075 /* If there is no version string, we can just return out. */
2076 if (*p == '\0')
2077 return TRUE;
2078
2079 /* Look for the version. If we find it, it is no longer weak. */
2080 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2081 {
2082 if (strcmp (t->name, p) == 0)
2083 {
2084 size_t len;
2085 char *alc;
2086 struct bfd_elf_version_expr *d;
2087
2088 len = p - h->root.root.string;
2089 alc = (char *) bfd_malloc (len);
2090 if (alc == NULL)
2091 {
2092 sinfo->failed = TRUE;
2093 return FALSE;
2094 }
2095 memcpy (alc, h->root.root.string, len - 1);
2096 alc[len - 1] = '\0';
2097 if (alc[len - 2] == ELF_VER_CHR)
2098 alc[len - 2] = '\0';
2099
2100 h->verinfo.vertree = t;
2101 t->used = TRUE;
2102 d = NULL;
2103
2104 if (t->globals.list != NULL)
2105 d = (*t->match) (&t->globals, NULL, alc);
2106
2107 /* See if there is anything to force this symbol to
2108 local scope. */
2109 if (d == NULL && t->locals.list != NULL)
2110 {
2111 d = (*t->match) (&t->locals, NULL, alc);
2112 if (d != NULL
2113 && h->dynindx != -1
2114 && ! info->export_dynamic)
2115 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2116 }
2117
2118 free (alc);
2119 break;
2120 }
2121 }
2122
2123 /* If we are building an application, we need to create a
2124 version node for this version. */
2125 if (t == NULL && bfd_link_executable (info))
2126 {
2127 struct bfd_elf_version_tree **pp;
2128 int version_index;
2129
2130 /* If we aren't going to export this symbol, we don't need
2131 to worry about it. */
2132 if (h->dynindx == -1)
2133 return TRUE;
2134
2135 amt = sizeof *t;
2136 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2137 if (t == NULL)
2138 {
2139 sinfo->failed = TRUE;
2140 return FALSE;
2141 }
2142
2143 t->name = p;
2144 t->name_indx = (unsigned int) -1;
2145 t->used = TRUE;
2146
2147 version_index = 1;
2148 /* Don't count anonymous version tag. */
2149 if (sinfo->info->version_info != NULL
2150 && sinfo->info->version_info->vernum == 0)
2151 version_index = 0;
2152 for (pp = &sinfo->info->version_info;
2153 *pp != NULL;
2154 pp = &(*pp)->next)
2155 ++version_index;
2156 t->vernum = version_index;
2157
2158 *pp = t;
2159
2160 h->verinfo.vertree = t;
2161 }
2162 else if (t == NULL)
2163 {
2164 /* We could not find the version for a symbol when
2165 generating a shared archive. Return an error. */
2166 (*_bfd_error_handler)
2167 (_("%B: version node not found for symbol %s"),
2168 info->output_bfd, h->root.root.string);
2169 bfd_set_error (bfd_error_bad_value);
2170 sinfo->failed = TRUE;
2171 return FALSE;
2172 }
2173 }
2174
2175 /* If we don't have a version for this symbol, see if we can find
2176 something. */
2177 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2178 {
2179 bfd_boolean hide;
2180
2181 h->verinfo.vertree
2182 = bfd_find_version_for_sym (sinfo->info->version_info,
2183 h->root.root.string, &hide);
2184 if (h->verinfo.vertree != NULL && hide)
2185 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2186 }
2187
2188 return TRUE;
2189 }
2190 \f
2191 /* Read and swap the relocs from the section indicated by SHDR. This
2192 may be either a REL or a RELA section. The relocations are
2193 translated into RELA relocations and stored in INTERNAL_RELOCS,
2194 which should have already been allocated to contain enough space.
2195 The EXTERNAL_RELOCS are a buffer where the external form of the
2196 relocations should be stored.
2197
2198 Returns FALSE if something goes wrong. */
2199
2200 static bfd_boolean
2201 elf_link_read_relocs_from_section (bfd *abfd,
2202 asection *sec,
2203 Elf_Internal_Shdr *shdr,
2204 void *external_relocs,
2205 Elf_Internal_Rela *internal_relocs)
2206 {
2207 const struct elf_backend_data *bed;
2208 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2209 const bfd_byte *erela;
2210 const bfd_byte *erelaend;
2211 Elf_Internal_Rela *irela;
2212 Elf_Internal_Shdr *symtab_hdr;
2213 size_t nsyms;
2214
2215 /* Position ourselves at the start of the section. */
2216 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2217 return FALSE;
2218
2219 /* Read the relocations. */
2220 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2221 return FALSE;
2222
2223 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2224 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2225
2226 bed = get_elf_backend_data (abfd);
2227
2228 /* Convert the external relocations to the internal format. */
2229 if (shdr->sh_entsize == bed->s->sizeof_rel)
2230 swap_in = bed->s->swap_reloc_in;
2231 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2232 swap_in = bed->s->swap_reloca_in;
2233 else
2234 {
2235 bfd_set_error (bfd_error_wrong_format);
2236 return FALSE;
2237 }
2238
2239 erela = (const bfd_byte *) external_relocs;
2240 erelaend = erela + shdr->sh_size;
2241 irela = internal_relocs;
2242 while (erela < erelaend)
2243 {
2244 bfd_vma r_symndx;
2245
2246 (*swap_in) (abfd, erela, irela);
2247 r_symndx = ELF32_R_SYM (irela->r_info);
2248 if (bed->s->arch_size == 64)
2249 r_symndx >>= 24;
2250 if (nsyms > 0)
2251 {
2252 if ((size_t) r_symndx >= nsyms)
2253 {
2254 (*_bfd_error_handler)
2255 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2256 " for offset 0x%lx in section `%A'"),
2257 abfd, sec,
2258 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2259 bfd_set_error (bfd_error_bad_value);
2260 return FALSE;
2261 }
2262 }
2263 else if (r_symndx != STN_UNDEF)
2264 {
2265 (*_bfd_error_handler)
2266 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2267 " when the object file has no symbol table"),
2268 abfd, sec,
2269 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2270 bfd_set_error (bfd_error_bad_value);
2271 return FALSE;
2272 }
2273 irela += bed->s->int_rels_per_ext_rel;
2274 erela += shdr->sh_entsize;
2275 }
2276
2277 return TRUE;
2278 }
2279
2280 /* Read and swap the relocs for a section O. They may have been
2281 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2282 not NULL, they are used as buffers to read into. They are known to
2283 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2284 the return value is allocated using either malloc or bfd_alloc,
2285 according to the KEEP_MEMORY argument. If O has two relocation
2286 sections (both REL and RELA relocations), then the REL_HDR
2287 relocations will appear first in INTERNAL_RELOCS, followed by the
2288 RELA_HDR relocations. */
2289
2290 Elf_Internal_Rela *
2291 _bfd_elf_link_read_relocs (bfd *abfd,
2292 asection *o,
2293 void *external_relocs,
2294 Elf_Internal_Rela *internal_relocs,
2295 bfd_boolean keep_memory)
2296 {
2297 void *alloc1 = NULL;
2298 Elf_Internal_Rela *alloc2 = NULL;
2299 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2300 struct bfd_elf_section_data *esdo = elf_section_data (o);
2301 Elf_Internal_Rela *internal_rela_relocs;
2302
2303 if (esdo->relocs != NULL)
2304 return esdo->relocs;
2305
2306 if (o->reloc_count == 0)
2307 return NULL;
2308
2309 if (internal_relocs == NULL)
2310 {
2311 bfd_size_type size;
2312
2313 size = o->reloc_count;
2314 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2315 if (keep_memory)
2316 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2317 else
2318 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2319 if (internal_relocs == NULL)
2320 goto error_return;
2321 }
2322
2323 if (external_relocs == NULL)
2324 {
2325 bfd_size_type size = 0;
2326
2327 if (esdo->rel.hdr)
2328 size += esdo->rel.hdr->sh_size;
2329 if (esdo->rela.hdr)
2330 size += esdo->rela.hdr->sh_size;
2331
2332 alloc1 = bfd_malloc (size);
2333 if (alloc1 == NULL)
2334 goto error_return;
2335 external_relocs = alloc1;
2336 }
2337
2338 internal_rela_relocs = internal_relocs;
2339 if (esdo->rel.hdr)
2340 {
2341 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2342 external_relocs,
2343 internal_relocs))
2344 goto error_return;
2345 external_relocs = (((bfd_byte *) external_relocs)
2346 + esdo->rel.hdr->sh_size);
2347 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2348 * bed->s->int_rels_per_ext_rel);
2349 }
2350
2351 if (esdo->rela.hdr
2352 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2353 external_relocs,
2354 internal_rela_relocs)))
2355 goto error_return;
2356
2357 /* Cache the results for next time, if we can. */
2358 if (keep_memory)
2359 esdo->relocs = internal_relocs;
2360
2361 if (alloc1 != NULL)
2362 free (alloc1);
2363
2364 /* Don't free alloc2, since if it was allocated we are passing it
2365 back (under the name of internal_relocs). */
2366
2367 return internal_relocs;
2368
2369 error_return:
2370 if (alloc1 != NULL)
2371 free (alloc1);
2372 if (alloc2 != NULL)
2373 {
2374 if (keep_memory)
2375 bfd_release (abfd, alloc2);
2376 else
2377 free (alloc2);
2378 }
2379 return NULL;
2380 }
2381
2382 /* Compute the size of, and allocate space for, REL_HDR which is the
2383 section header for a section containing relocations for O. */
2384
2385 static bfd_boolean
2386 _bfd_elf_link_size_reloc_section (bfd *abfd,
2387 struct bfd_elf_section_reloc_data *reldata)
2388 {
2389 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2390
2391 /* That allows us to calculate the size of the section. */
2392 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2393
2394 /* The contents field must last into write_object_contents, so we
2395 allocate it with bfd_alloc rather than malloc. Also since we
2396 cannot be sure that the contents will actually be filled in,
2397 we zero the allocated space. */
2398 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2399 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2400 return FALSE;
2401
2402 if (reldata->hashes == NULL && reldata->count)
2403 {
2404 struct elf_link_hash_entry **p;
2405
2406 p = ((struct elf_link_hash_entry **)
2407 bfd_zmalloc (reldata->count * sizeof (*p)));
2408 if (p == NULL)
2409 return FALSE;
2410
2411 reldata->hashes = p;
2412 }
2413
2414 return TRUE;
2415 }
2416
2417 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2418 originated from the section given by INPUT_REL_HDR) to the
2419 OUTPUT_BFD. */
2420
2421 bfd_boolean
2422 _bfd_elf_link_output_relocs (bfd *output_bfd,
2423 asection *input_section,
2424 Elf_Internal_Shdr *input_rel_hdr,
2425 Elf_Internal_Rela *internal_relocs,
2426 struct elf_link_hash_entry **rel_hash
2427 ATTRIBUTE_UNUSED)
2428 {
2429 Elf_Internal_Rela *irela;
2430 Elf_Internal_Rela *irelaend;
2431 bfd_byte *erel;
2432 struct bfd_elf_section_reloc_data *output_reldata;
2433 asection *output_section;
2434 const struct elf_backend_data *bed;
2435 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2436 struct bfd_elf_section_data *esdo;
2437
2438 output_section = input_section->output_section;
2439
2440 bed = get_elf_backend_data (output_bfd);
2441 esdo = elf_section_data (output_section);
2442 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2443 {
2444 output_reldata = &esdo->rel;
2445 swap_out = bed->s->swap_reloc_out;
2446 }
2447 else if (esdo->rela.hdr
2448 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2449 {
2450 output_reldata = &esdo->rela;
2451 swap_out = bed->s->swap_reloca_out;
2452 }
2453 else
2454 {
2455 (*_bfd_error_handler)
2456 (_("%B: relocation size mismatch in %B section %A"),
2457 output_bfd, input_section->owner, input_section);
2458 bfd_set_error (bfd_error_wrong_format);
2459 return FALSE;
2460 }
2461
2462 erel = output_reldata->hdr->contents;
2463 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2464 irela = internal_relocs;
2465 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2466 * bed->s->int_rels_per_ext_rel);
2467 while (irela < irelaend)
2468 {
2469 (*swap_out) (output_bfd, irela, erel);
2470 irela += bed->s->int_rels_per_ext_rel;
2471 erel += input_rel_hdr->sh_entsize;
2472 }
2473
2474 /* Bump the counter, so that we know where to add the next set of
2475 relocations. */
2476 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2477
2478 return TRUE;
2479 }
2480 \f
2481 /* Make weak undefined symbols in PIE dynamic. */
2482
2483 bfd_boolean
2484 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2485 struct elf_link_hash_entry *h)
2486 {
2487 if (bfd_link_pie (info)
2488 && h->dynindx == -1
2489 && h->root.type == bfd_link_hash_undefweak)
2490 return bfd_elf_link_record_dynamic_symbol (info, h);
2491
2492 return TRUE;
2493 }
2494
2495 /* Fix up the flags for a symbol. This handles various cases which
2496 can only be fixed after all the input files are seen. This is
2497 currently called by both adjust_dynamic_symbol and
2498 assign_sym_version, which is unnecessary but perhaps more robust in
2499 the face of future changes. */
2500
2501 static bfd_boolean
2502 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2503 struct elf_info_failed *eif)
2504 {
2505 const struct elf_backend_data *bed;
2506
2507 /* If this symbol was mentioned in a non-ELF file, try to set
2508 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2509 permit a non-ELF file to correctly refer to a symbol defined in
2510 an ELF dynamic object. */
2511 if (h->non_elf)
2512 {
2513 while (h->root.type == bfd_link_hash_indirect)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2515
2516 if (h->root.type != bfd_link_hash_defined
2517 && h->root.type != bfd_link_hash_defweak)
2518 {
2519 h->ref_regular = 1;
2520 h->ref_regular_nonweak = 1;
2521 }
2522 else
2523 {
2524 if (h->root.u.def.section->owner != NULL
2525 && (bfd_get_flavour (h->root.u.def.section->owner)
2526 == bfd_target_elf_flavour))
2527 {
2528 h->ref_regular = 1;
2529 h->ref_regular_nonweak = 1;
2530 }
2531 else
2532 h->def_regular = 1;
2533 }
2534
2535 if (h->dynindx == -1
2536 && (h->def_dynamic
2537 || h->ref_dynamic))
2538 {
2539 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2540 {
2541 eif->failed = TRUE;
2542 return FALSE;
2543 }
2544 }
2545 }
2546 else
2547 {
2548 /* Unfortunately, NON_ELF is only correct if the symbol
2549 was first seen in a non-ELF file. Fortunately, if the symbol
2550 was first seen in an ELF file, we're probably OK unless the
2551 symbol was defined in a non-ELF file. Catch that case here.
2552 FIXME: We're still in trouble if the symbol was first seen in
2553 a dynamic object, and then later in a non-ELF regular object. */
2554 if ((h->root.type == bfd_link_hash_defined
2555 || h->root.type == bfd_link_hash_defweak)
2556 && !h->def_regular
2557 && (h->root.u.def.section->owner != NULL
2558 ? (bfd_get_flavour (h->root.u.def.section->owner)
2559 != bfd_target_elf_flavour)
2560 : (bfd_is_abs_section (h->root.u.def.section)
2561 && !h->def_dynamic)))
2562 h->def_regular = 1;
2563 }
2564
2565 /* Backend specific symbol fixup. */
2566 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2567 if (bed->elf_backend_fixup_symbol
2568 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2569 return FALSE;
2570
2571 /* If this is a final link, and the symbol was defined as a common
2572 symbol in a regular object file, and there was no definition in
2573 any dynamic object, then the linker will have allocated space for
2574 the symbol in a common section but the DEF_REGULAR
2575 flag will not have been set. */
2576 if (h->root.type == bfd_link_hash_defined
2577 && !h->def_regular
2578 && h->ref_regular
2579 && !h->def_dynamic
2580 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2581 h->def_regular = 1;
2582
2583 /* If -Bsymbolic was used (which means to bind references to global
2584 symbols to the definition within the shared object), and this
2585 symbol was defined in a regular object, then it actually doesn't
2586 need a PLT entry. Likewise, if the symbol has non-default
2587 visibility. If the symbol has hidden or internal visibility, we
2588 will force it local. */
2589 if (h->needs_plt
2590 && bfd_link_pic (eif->info)
2591 && is_elf_hash_table (eif->info->hash)
2592 && (SYMBOLIC_BIND (eif->info, h)
2593 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2594 && h->def_regular)
2595 {
2596 bfd_boolean force_local;
2597
2598 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2599 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2600 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2601 }
2602
2603 /* If a weak undefined symbol has non-default visibility, we also
2604 hide it from the dynamic linker. */
2605 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2606 && h->root.type == bfd_link_hash_undefweak)
2607 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2608
2609 /* If this is a weak defined symbol in a dynamic object, and we know
2610 the real definition in the dynamic object, copy interesting flags
2611 over to the real definition. */
2612 if (h->u.weakdef != NULL)
2613 {
2614 /* If the real definition is defined by a regular object file,
2615 don't do anything special. See the longer description in
2616 _bfd_elf_adjust_dynamic_symbol, below. */
2617 if (h->u.weakdef->def_regular)
2618 h->u.weakdef = NULL;
2619 else
2620 {
2621 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2622
2623 while (h->root.type == bfd_link_hash_indirect)
2624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2625
2626 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2627 || h->root.type == bfd_link_hash_defweak);
2628 BFD_ASSERT (weakdef->def_dynamic);
2629 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2630 || weakdef->root.type == bfd_link_hash_defweak);
2631 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2632 }
2633 }
2634
2635 return TRUE;
2636 }
2637
2638 /* Make the backend pick a good value for a dynamic symbol. This is
2639 called via elf_link_hash_traverse, and also calls itself
2640 recursively. */
2641
2642 static bfd_boolean
2643 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2644 {
2645 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2646 bfd *dynobj;
2647 const struct elf_backend_data *bed;
2648
2649 if (! is_elf_hash_table (eif->info->hash))
2650 return FALSE;
2651
2652 /* Ignore indirect symbols. These are added by the versioning code. */
2653 if (h->root.type == bfd_link_hash_indirect)
2654 return TRUE;
2655
2656 /* Fix the symbol flags. */
2657 if (! _bfd_elf_fix_symbol_flags (h, eif))
2658 return FALSE;
2659
2660 /* If this symbol does not require a PLT entry, and it is not
2661 defined by a dynamic object, or is not referenced by a regular
2662 object, ignore it. We do have to handle a weak defined symbol,
2663 even if no regular object refers to it, if we decided to add it
2664 to the dynamic symbol table. FIXME: Do we normally need to worry
2665 about symbols which are defined by one dynamic object and
2666 referenced by another one? */
2667 if (!h->needs_plt
2668 && h->type != STT_GNU_IFUNC
2669 && (h->def_regular
2670 || !h->def_dynamic
2671 || (!h->ref_regular
2672 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2673 {
2674 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2675 return TRUE;
2676 }
2677
2678 /* If we've already adjusted this symbol, don't do it again. This
2679 can happen via a recursive call. */
2680 if (h->dynamic_adjusted)
2681 return TRUE;
2682
2683 /* Don't look at this symbol again. Note that we must set this
2684 after checking the above conditions, because we may look at a
2685 symbol once, decide not to do anything, and then get called
2686 recursively later after REF_REGULAR is set below. */
2687 h->dynamic_adjusted = 1;
2688
2689 /* If this is a weak definition, and we know a real definition, and
2690 the real symbol is not itself defined by a regular object file,
2691 then get a good value for the real definition. We handle the
2692 real symbol first, for the convenience of the backend routine.
2693
2694 Note that there is a confusing case here. If the real definition
2695 is defined by a regular object file, we don't get the real symbol
2696 from the dynamic object, but we do get the weak symbol. If the
2697 processor backend uses a COPY reloc, then if some routine in the
2698 dynamic object changes the real symbol, we will not see that
2699 change in the corresponding weak symbol. This is the way other
2700 ELF linkers work as well, and seems to be a result of the shared
2701 library model.
2702
2703 I will clarify this issue. Most SVR4 shared libraries define the
2704 variable _timezone and define timezone as a weak synonym. The
2705 tzset call changes _timezone. If you write
2706 extern int timezone;
2707 int _timezone = 5;
2708 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2709 you might expect that, since timezone is a synonym for _timezone,
2710 the same number will print both times. However, if the processor
2711 backend uses a COPY reloc, then actually timezone will be copied
2712 into your process image, and, since you define _timezone
2713 yourself, _timezone will not. Thus timezone and _timezone will
2714 wind up at different memory locations. The tzset call will set
2715 _timezone, leaving timezone unchanged. */
2716
2717 if (h->u.weakdef != NULL)
2718 {
2719 /* If we get to this point, there is an implicit reference to
2720 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2721 h->u.weakdef->ref_regular = 1;
2722
2723 /* Ensure that the backend adjust_dynamic_symbol function sees
2724 H->U.WEAKDEF before H by recursively calling ourselves. */
2725 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2726 return FALSE;
2727 }
2728
2729 /* If a symbol has no type and no size and does not require a PLT
2730 entry, then we are probably about to do the wrong thing here: we
2731 are probably going to create a COPY reloc for an empty object.
2732 This case can arise when a shared object is built with assembly
2733 code, and the assembly code fails to set the symbol type. */
2734 if (h->size == 0
2735 && h->type == STT_NOTYPE
2736 && !h->needs_plt)
2737 (*_bfd_error_handler)
2738 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2739 h->root.root.string);
2740
2741 dynobj = elf_hash_table (eif->info)->dynobj;
2742 bed = get_elf_backend_data (dynobj);
2743
2744 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2745 {
2746 eif->failed = TRUE;
2747 return FALSE;
2748 }
2749
2750 return TRUE;
2751 }
2752
2753 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2754 DYNBSS. */
2755
2756 bfd_boolean
2757 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2758 struct elf_link_hash_entry *h,
2759 asection *dynbss)
2760 {
2761 unsigned int power_of_two;
2762 bfd_vma mask;
2763 asection *sec = h->root.u.def.section;
2764
2765 /* The section aligment of definition is the maximum alignment
2766 requirement of symbols defined in the section. Since we don't
2767 know the symbol alignment requirement, we start with the
2768 maximum alignment and check low bits of the symbol address
2769 for the minimum alignment. */
2770 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2771 mask = ((bfd_vma) 1 << power_of_two) - 1;
2772 while ((h->root.u.def.value & mask) != 0)
2773 {
2774 mask >>= 1;
2775 --power_of_two;
2776 }
2777
2778 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2779 dynbss))
2780 {
2781 /* Adjust the section alignment if needed. */
2782 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2783 power_of_two))
2784 return FALSE;
2785 }
2786
2787 /* We make sure that the symbol will be aligned properly. */
2788 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2789
2790 /* Define the symbol as being at this point in DYNBSS. */
2791 h->root.u.def.section = dynbss;
2792 h->root.u.def.value = dynbss->size;
2793
2794 /* Increment the size of DYNBSS to make room for the symbol. */
2795 dynbss->size += h->size;
2796
2797 /* No error if extern_protected_data is true. */
2798 if (h->protected_def
2799 && (!info->extern_protected_data
2800 || (info->extern_protected_data < 0
2801 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2802 info->callbacks->einfo
2803 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2804 h->root.root.string);
2805
2806 return TRUE;
2807 }
2808
2809 /* Adjust all external symbols pointing into SEC_MERGE sections
2810 to reflect the object merging within the sections. */
2811
2812 static bfd_boolean
2813 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2814 {
2815 asection *sec;
2816
2817 if ((h->root.type == bfd_link_hash_defined
2818 || h->root.type == bfd_link_hash_defweak)
2819 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2820 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2821 {
2822 bfd *output_bfd = (bfd *) data;
2823
2824 h->root.u.def.value =
2825 _bfd_merged_section_offset (output_bfd,
2826 &h->root.u.def.section,
2827 elf_section_data (sec)->sec_info,
2828 h->root.u.def.value);
2829 }
2830
2831 return TRUE;
2832 }
2833
2834 /* Returns false if the symbol referred to by H should be considered
2835 to resolve local to the current module, and true if it should be
2836 considered to bind dynamically. */
2837
2838 bfd_boolean
2839 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2840 struct bfd_link_info *info,
2841 bfd_boolean not_local_protected)
2842 {
2843 bfd_boolean binding_stays_local_p;
2844 const struct elf_backend_data *bed;
2845 struct elf_link_hash_table *hash_table;
2846
2847 if (h == NULL)
2848 return FALSE;
2849
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 /* If it was forced local, then clearly it's not dynamic. */
2855 if (h->dynindx == -1)
2856 return FALSE;
2857 if (h->forced_local)
2858 return FALSE;
2859
2860 /* Identify the cases where name binding rules say that a
2861 visible symbol resolves locally. */
2862 binding_stays_local_p = (bfd_link_executable (info)
2863 || SYMBOLIC_BIND (info, h));
2864
2865 switch (ELF_ST_VISIBILITY (h->other))
2866 {
2867 case STV_INTERNAL:
2868 case STV_HIDDEN:
2869 return FALSE;
2870
2871 case STV_PROTECTED:
2872 hash_table = elf_hash_table (info);
2873 if (!is_elf_hash_table (hash_table))
2874 return FALSE;
2875
2876 bed = get_elf_backend_data (hash_table->dynobj);
2877
2878 /* Proper resolution for function pointer equality may require
2879 that these symbols perhaps be resolved dynamically, even though
2880 we should be resolving them to the current module. */
2881 if (!not_local_protected || !bed->is_function_type (h->type))
2882 binding_stays_local_p = TRUE;
2883 break;
2884
2885 default:
2886 break;
2887 }
2888
2889 /* If it isn't defined locally, then clearly it's dynamic. */
2890 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2891 return TRUE;
2892
2893 /* Otherwise, the symbol is dynamic if binding rules don't tell
2894 us that it remains local. */
2895 return !binding_stays_local_p;
2896 }
2897
2898 /* Return true if the symbol referred to by H should be considered
2899 to resolve local to the current module, and false otherwise. Differs
2900 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2901 undefined symbols. The two functions are virtually identical except
2902 for the place where forced_local and dynindx == -1 are tested. If
2903 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2904 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2905 the symbol is local only for defined symbols.
2906 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2907 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2908 treatment of undefined weak symbols. For those that do not make
2909 undefined weak symbols dynamic, both functions may return false. */
2910
2911 bfd_boolean
2912 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2913 struct bfd_link_info *info,
2914 bfd_boolean local_protected)
2915 {
2916 const struct elf_backend_data *bed;
2917 struct elf_link_hash_table *hash_table;
2918
2919 /* If it's a local sym, of course we resolve locally. */
2920 if (h == NULL)
2921 return TRUE;
2922
2923 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2924 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2925 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2926 return TRUE;
2927
2928 /* Common symbols that become definitions don't get the DEF_REGULAR
2929 flag set, so test it first, and don't bail out. */
2930 if (ELF_COMMON_DEF_P (h))
2931 /* Do nothing. */;
2932 /* If we don't have a definition in a regular file, then we can't
2933 resolve locally. The sym is either undefined or dynamic. */
2934 else if (!h->def_regular)
2935 return FALSE;
2936
2937 /* Forced local symbols resolve locally. */
2938 if (h->forced_local)
2939 return TRUE;
2940
2941 /* As do non-dynamic symbols. */
2942 if (h->dynindx == -1)
2943 return TRUE;
2944
2945 /* At this point, we know the symbol is defined and dynamic. In an
2946 executable it must resolve locally, likewise when building symbolic
2947 shared libraries. */
2948 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
2949 return TRUE;
2950
2951 /* Now deal with defined dynamic symbols in shared libraries. Ones
2952 with default visibility might not resolve locally. */
2953 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2954 return FALSE;
2955
2956 hash_table = elf_hash_table (info);
2957 if (!is_elf_hash_table (hash_table))
2958 return TRUE;
2959
2960 bed = get_elf_backend_data (hash_table->dynobj);
2961
2962 /* If extern_protected_data is false, STV_PROTECTED non-function
2963 symbols are local. */
2964 if ((!info->extern_protected_data
2965 || (info->extern_protected_data < 0
2966 && !bed->extern_protected_data))
2967 && !bed->is_function_type (h->type))
2968 return TRUE;
2969
2970 /* Function pointer equality tests may require that STV_PROTECTED
2971 symbols be treated as dynamic symbols. If the address of a
2972 function not defined in an executable is set to that function's
2973 plt entry in the executable, then the address of the function in
2974 a shared library must also be the plt entry in the executable. */
2975 return local_protected;
2976 }
2977
2978 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2979 aligned. Returns the first TLS output section. */
2980
2981 struct bfd_section *
2982 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2983 {
2984 struct bfd_section *sec, *tls;
2985 unsigned int align = 0;
2986
2987 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2988 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2989 break;
2990 tls = sec;
2991
2992 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2993 if (sec->alignment_power > align)
2994 align = sec->alignment_power;
2995
2996 elf_hash_table (info)->tls_sec = tls;
2997
2998 /* Ensure the alignment of the first section is the largest alignment,
2999 so that the tls segment starts aligned. */
3000 if (tls != NULL)
3001 tls->alignment_power = align;
3002
3003 return tls;
3004 }
3005
3006 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3007 static bfd_boolean
3008 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3009 Elf_Internal_Sym *sym)
3010 {
3011 const struct elf_backend_data *bed;
3012
3013 /* Local symbols do not count, but target specific ones might. */
3014 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3015 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3016 return FALSE;
3017
3018 bed = get_elf_backend_data (abfd);
3019 /* Function symbols do not count. */
3020 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3021 return FALSE;
3022
3023 /* If the section is undefined, then so is the symbol. */
3024 if (sym->st_shndx == SHN_UNDEF)
3025 return FALSE;
3026
3027 /* If the symbol is defined in the common section, then
3028 it is a common definition and so does not count. */
3029 if (bed->common_definition (sym))
3030 return FALSE;
3031
3032 /* If the symbol is in a target specific section then we
3033 must rely upon the backend to tell us what it is. */
3034 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3035 /* FIXME - this function is not coded yet:
3036
3037 return _bfd_is_global_symbol_definition (abfd, sym);
3038
3039 Instead for now assume that the definition is not global,
3040 Even if this is wrong, at least the linker will behave
3041 in the same way that it used to do. */
3042 return FALSE;
3043
3044 return TRUE;
3045 }
3046
3047 /* Search the symbol table of the archive element of the archive ABFD
3048 whose archive map contains a mention of SYMDEF, and determine if
3049 the symbol is defined in this element. */
3050 static bfd_boolean
3051 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3052 {
3053 Elf_Internal_Shdr * hdr;
3054 bfd_size_type symcount;
3055 bfd_size_type extsymcount;
3056 bfd_size_type extsymoff;
3057 Elf_Internal_Sym *isymbuf;
3058 Elf_Internal_Sym *isym;
3059 Elf_Internal_Sym *isymend;
3060 bfd_boolean result;
3061
3062 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3063 if (abfd == NULL)
3064 return FALSE;
3065
3066 /* Return FALSE if the object has been claimed by plugin. */
3067 if (abfd->plugin_format == bfd_plugin_yes)
3068 return FALSE;
3069
3070 if (! bfd_check_format (abfd, bfd_object))
3071 return FALSE;
3072
3073 /* Select the appropriate symbol table. */
3074 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3075 hdr = &elf_tdata (abfd)->symtab_hdr;
3076 else
3077 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3078
3079 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3080
3081 /* The sh_info field of the symtab header tells us where the
3082 external symbols start. We don't care about the local symbols. */
3083 if (elf_bad_symtab (abfd))
3084 {
3085 extsymcount = symcount;
3086 extsymoff = 0;
3087 }
3088 else
3089 {
3090 extsymcount = symcount - hdr->sh_info;
3091 extsymoff = hdr->sh_info;
3092 }
3093
3094 if (extsymcount == 0)
3095 return FALSE;
3096
3097 /* Read in the symbol table. */
3098 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3099 NULL, NULL, NULL);
3100 if (isymbuf == NULL)
3101 return FALSE;
3102
3103 /* Scan the symbol table looking for SYMDEF. */
3104 result = FALSE;
3105 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3106 {
3107 const char *name;
3108
3109 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3110 isym->st_name);
3111 if (name == NULL)
3112 break;
3113
3114 if (strcmp (name, symdef->name) == 0)
3115 {
3116 result = is_global_data_symbol_definition (abfd, isym);
3117 break;
3118 }
3119 }
3120
3121 free (isymbuf);
3122
3123 return result;
3124 }
3125 \f
3126 /* Add an entry to the .dynamic table. */
3127
3128 bfd_boolean
3129 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3130 bfd_vma tag,
3131 bfd_vma val)
3132 {
3133 struct elf_link_hash_table *hash_table;
3134 const struct elf_backend_data *bed;
3135 asection *s;
3136 bfd_size_type newsize;
3137 bfd_byte *newcontents;
3138 Elf_Internal_Dyn dyn;
3139
3140 hash_table = elf_hash_table (info);
3141 if (! is_elf_hash_table (hash_table))
3142 return FALSE;
3143
3144 bed = get_elf_backend_data (hash_table->dynobj);
3145 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3146 BFD_ASSERT (s != NULL);
3147
3148 newsize = s->size + bed->s->sizeof_dyn;
3149 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3150 if (newcontents == NULL)
3151 return FALSE;
3152
3153 dyn.d_tag = tag;
3154 dyn.d_un.d_val = val;
3155 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3156
3157 s->size = newsize;
3158 s->contents = newcontents;
3159
3160 return TRUE;
3161 }
3162
3163 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3164 otherwise just check whether one already exists. Returns -1 on error,
3165 1 if a DT_NEEDED tag already exists, and 0 on success. */
3166
3167 static int
3168 elf_add_dt_needed_tag (bfd *abfd,
3169 struct bfd_link_info *info,
3170 const char *soname,
3171 bfd_boolean do_it)
3172 {
3173 struct elf_link_hash_table *hash_table;
3174 bfd_size_type strindex;
3175
3176 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3177 return -1;
3178
3179 hash_table = elf_hash_table (info);
3180 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3181 if (strindex == (bfd_size_type) -1)
3182 return -1;
3183
3184 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3185 {
3186 asection *sdyn;
3187 const struct elf_backend_data *bed;
3188 bfd_byte *extdyn;
3189
3190 bed = get_elf_backend_data (hash_table->dynobj);
3191 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3192 if (sdyn != NULL)
3193 for (extdyn = sdyn->contents;
3194 extdyn < sdyn->contents + sdyn->size;
3195 extdyn += bed->s->sizeof_dyn)
3196 {
3197 Elf_Internal_Dyn dyn;
3198
3199 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3200 if (dyn.d_tag == DT_NEEDED
3201 && dyn.d_un.d_val == strindex)
3202 {
3203 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3204 return 1;
3205 }
3206 }
3207 }
3208
3209 if (do_it)
3210 {
3211 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3212 return -1;
3213
3214 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3215 return -1;
3216 }
3217 else
3218 /* We were just checking for existence of the tag. */
3219 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3220
3221 return 0;
3222 }
3223
3224 static bfd_boolean
3225 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3226 {
3227 for (; needed != NULL; needed = needed->next)
3228 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3229 && strcmp (soname, needed->name) == 0)
3230 return TRUE;
3231
3232 return FALSE;
3233 }
3234
3235 /* Sort symbol by value, section, and size. */
3236 static int
3237 elf_sort_symbol (const void *arg1, const void *arg2)
3238 {
3239 const struct elf_link_hash_entry *h1;
3240 const struct elf_link_hash_entry *h2;
3241 bfd_signed_vma vdiff;
3242
3243 h1 = *(const struct elf_link_hash_entry **) arg1;
3244 h2 = *(const struct elf_link_hash_entry **) arg2;
3245 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3246 if (vdiff != 0)
3247 return vdiff > 0 ? 1 : -1;
3248 else
3249 {
3250 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3251 if (sdiff != 0)
3252 return sdiff > 0 ? 1 : -1;
3253 }
3254 vdiff = h1->size - h2->size;
3255 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3256 }
3257
3258 /* This function is used to adjust offsets into .dynstr for
3259 dynamic symbols. This is called via elf_link_hash_traverse. */
3260
3261 static bfd_boolean
3262 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3263 {
3264 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3265
3266 if (h->dynindx != -1)
3267 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3268 return TRUE;
3269 }
3270
3271 /* Assign string offsets in .dynstr, update all structures referencing
3272 them. */
3273
3274 static bfd_boolean
3275 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3276 {
3277 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3278 struct elf_link_local_dynamic_entry *entry;
3279 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3280 bfd *dynobj = hash_table->dynobj;
3281 asection *sdyn;
3282 bfd_size_type size;
3283 const struct elf_backend_data *bed;
3284 bfd_byte *extdyn;
3285
3286 _bfd_elf_strtab_finalize (dynstr);
3287 size = _bfd_elf_strtab_size (dynstr);
3288
3289 bed = get_elf_backend_data (dynobj);
3290 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3291 BFD_ASSERT (sdyn != NULL);
3292
3293 /* Update all .dynamic entries referencing .dynstr strings. */
3294 for (extdyn = sdyn->contents;
3295 extdyn < sdyn->contents + sdyn->size;
3296 extdyn += bed->s->sizeof_dyn)
3297 {
3298 Elf_Internal_Dyn dyn;
3299
3300 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3301 switch (dyn.d_tag)
3302 {
3303 case DT_STRSZ:
3304 dyn.d_un.d_val = size;
3305 break;
3306 case DT_NEEDED:
3307 case DT_SONAME:
3308 case DT_RPATH:
3309 case DT_RUNPATH:
3310 case DT_FILTER:
3311 case DT_AUXILIARY:
3312 case DT_AUDIT:
3313 case DT_DEPAUDIT:
3314 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3315 break;
3316 default:
3317 continue;
3318 }
3319 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3320 }
3321
3322 /* Now update local dynamic symbols. */
3323 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3324 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3325 entry->isym.st_name);
3326
3327 /* And the rest of dynamic symbols. */
3328 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3329
3330 /* Adjust version definitions. */
3331 if (elf_tdata (output_bfd)->cverdefs)
3332 {
3333 asection *s;
3334 bfd_byte *p;
3335 bfd_size_type i;
3336 Elf_Internal_Verdef def;
3337 Elf_Internal_Verdaux defaux;
3338
3339 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3340 p = s->contents;
3341 do
3342 {
3343 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3344 &def);
3345 p += sizeof (Elf_External_Verdef);
3346 if (def.vd_aux != sizeof (Elf_External_Verdef))
3347 continue;
3348 for (i = 0; i < def.vd_cnt; ++i)
3349 {
3350 _bfd_elf_swap_verdaux_in (output_bfd,
3351 (Elf_External_Verdaux *) p, &defaux);
3352 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3353 defaux.vda_name);
3354 _bfd_elf_swap_verdaux_out (output_bfd,
3355 &defaux, (Elf_External_Verdaux *) p);
3356 p += sizeof (Elf_External_Verdaux);
3357 }
3358 }
3359 while (def.vd_next);
3360 }
3361
3362 /* Adjust version references. */
3363 if (elf_tdata (output_bfd)->verref)
3364 {
3365 asection *s;
3366 bfd_byte *p;
3367 bfd_size_type i;
3368 Elf_Internal_Verneed need;
3369 Elf_Internal_Vernaux needaux;
3370
3371 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3372 p = s->contents;
3373 do
3374 {
3375 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3376 &need);
3377 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3378 _bfd_elf_swap_verneed_out (output_bfd, &need,
3379 (Elf_External_Verneed *) p);
3380 p += sizeof (Elf_External_Verneed);
3381 for (i = 0; i < need.vn_cnt; ++i)
3382 {
3383 _bfd_elf_swap_vernaux_in (output_bfd,
3384 (Elf_External_Vernaux *) p, &needaux);
3385 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3386 needaux.vna_name);
3387 _bfd_elf_swap_vernaux_out (output_bfd,
3388 &needaux,
3389 (Elf_External_Vernaux *) p);
3390 p += sizeof (Elf_External_Vernaux);
3391 }
3392 }
3393 while (need.vn_next);
3394 }
3395
3396 return TRUE;
3397 }
3398 \f
3399 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3400 The default is to only match when the INPUT and OUTPUT are exactly
3401 the same target. */
3402
3403 bfd_boolean
3404 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3405 const bfd_target *output)
3406 {
3407 return input == output;
3408 }
3409
3410 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3411 This version is used when different targets for the same architecture
3412 are virtually identical. */
3413
3414 bfd_boolean
3415 _bfd_elf_relocs_compatible (const bfd_target *input,
3416 const bfd_target *output)
3417 {
3418 const struct elf_backend_data *obed, *ibed;
3419
3420 if (input == output)
3421 return TRUE;
3422
3423 ibed = xvec_get_elf_backend_data (input);
3424 obed = xvec_get_elf_backend_data (output);
3425
3426 if (ibed->arch != obed->arch)
3427 return FALSE;
3428
3429 /* If both backends are using this function, deem them compatible. */
3430 return ibed->relocs_compatible == obed->relocs_compatible;
3431 }
3432
3433 /* Make a special call to the linker "notice" function to tell it that
3434 we are about to handle an as-needed lib, or have finished
3435 processing the lib. */
3436
3437 bfd_boolean
3438 _bfd_elf_notice_as_needed (bfd *ibfd,
3439 struct bfd_link_info *info,
3440 enum notice_asneeded_action act)
3441 {
3442 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3443 }
3444
3445 /* Add symbols from an ELF object file to the linker hash table. */
3446
3447 static bfd_boolean
3448 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3449 {
3450 Elf_Internal_Ehdr *ehdr;
3451 Elf_Internal_Shdr *hdr;
3452 bfd_size_type symcount;
3453 bfd_size_type extsymcount;
3454 bfd_size_type extsymoff;
3455 struct elf_link_hash_entry **sym_hash;
3456 bfd_boolean dynamic;
3457 Elf_External_Versym *extversym = NULL;
3458 Elf_External_Versym *ever;
3459 struct elf_link_hash_entry *weaks;
3460 struct elf_link_hash_entry **nondeflt_vers = NULL;
3461 bfd_size_type nondeflt_vers_cnt = 0;
3462 Elf_Internal_Sym *isymbuf = NULL;
3463 Elf_Internal_Sym *isym;
3464 Elf_Internal_Sym *isymend;
3465 const struct elf_backend_data *bed;
3466 bfd_boolean add_needed;
3467 struct elf_link_hash_table *htab;
3468 bfd_size_type amt;
3469 void *alloc_mark = NULL;
3470 struct bfd_hash_entry **old_table = NULL;
3471 unsigned int old_size = 0;
3472 unsigned int old_count = 0;
3473 void *old_tab = NULL;
3474 void *old_ent;
3475 struct bfd_link_hash_entry *old_undefs = NULL;
3476 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3477 long old_dynsymcount = 0;
3478 bfd_size_type old_dynstr_size = 0;
3479 size_t tabsize = 0;
3480 asection *s;
3481 bfd_boolean just_syms;
3482
3483 htab = elf_hash_table (info);
3484 bed = get_elf_backend_data (abfd);
3485
3486 if ((abfd->flags & DYNAMIC) == 0)
3487 dynamic = FALSE;
3488 else
3489 {
3490 dynamic = TRUE;
3491
3492 /* You can't use -r against a dynamic object. Also, there's no
3493 hope of using a dynamic object which does not exactly match
3494 the format of the output file. */
3495 if (bfd_link_relocatable (info)
3496 || !is_elf_hash_table (htab)
3497 || info->output_bfd->xvec != abfd->xvec)
3498 {
3499 if (bfd_link_relocatable (info))
3500 bfd_set_error (bfd_error_invalid_operation);
3501 else
3502 bfd_set_error (bfd_error_wrong_format);
3503 goto error_return;
3504 }
3505 }
3506
3507 ehdr = elf_elfheader (abfd);
3508 if (info->warn_alternate_em
3509 && bed->elf_machine_code != ehdr->e_machine
3510 && ((bed->elf_machine_alt1 != 0
3511 && ehdr->e_machine == bed->elf_machine_alt1)
3512 || (bed->elf_machine_alt2 != 0
3513 && ehdr->e_machine == bed->elf_machine_alt2)))
3514 info->callbacks->einfo
3515 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3516 ehdr->e_machine, abfd, bed->elf_machine_code);
3517
3518 /* As a GNU extension, any input sections which are named
3519 .gnu.warning.SYMBOL are treated as warning symbols for the given
3520 symbol. This differs from .gnu.warning sections, which generate
3521 warnings when they are included in an output file. */
3522 /* PR 12761: Also generate this warning when building shared libraries. */
3523 for (s = abfd->sections; s != NULL; s = s->next)
3524 {
3525 const char *name;
3526
3527 name = bfd_get_section_name (abfd, s);
3528 if (CONST_STRNEQ (name, ".gnu.warning."))
3529 {
3530 char *msg;
3531 bfd_size_type sz;
3532
3533 name += sizeof ".gnu.warning." - 1;
3534
3535 /* If this is a shared object, then look up the symbol
3536 in the hash table. If it is there, and it is already
3537 been defined, then we will not be using the entry
3538 from this shared object, so we don't need to warn.
3539 FIXME: If we see the definition in a regular object
3540 later on, we will warn, but we shouldn't. The only
3541 fix is to keep track of what warnings we are supposed
3542 to emit, and then handle them all at the end of the
3543 link. */
3544 if (dynamic)
3545 {
3546 struct elf_link_hash_entry *h;
3547
3548 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3549
3550 /* FIXME: What about bfd_link_hash_common? */
3551 if (h != NULL
3552 && (h->root.type == bfd_link_hash_defined
3553 || h->root.type == bfd_link_hash_defweak))
3554 continue;
3555 }
3556
3557 sz = s->size;
3558 msg = (char *) bfd_alloc (abfd, sz + 1);
3559 if (msg == NULL)
3560 goto error_return;
3561
3562 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3563 goto error_return;
3564
3565 msg[sz] = '\0';
3566
3567 if (! (_bfd_generic_link_add_one_symbol
3568 (info, abfd, name, BSF_WARNING, s, 0, msg,
3569 FALSE, bed->collect, NULL)))
3570 goto error_return;
3571
3572 if (bfd_link_executable (info))
3573 {
3574 /* Clobber the section size so that the warning does
3575 not get copied into the output file. */
3576 s->size = 0;
3577
3578 /* Also set SEC_EXCLUDE, so that symbols defined in
3579 the warning section don't get copied to the output. */
3580 s->flags |= SEC_EXCLUDE;
3581 }
3582 }
3583 }
3584
3585 just_syms = ((s = abfd->sections) != NULL
3586 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3587
3588 add_needed = TRUE;
3589 if (! dynamic)
3590 {
3591 /* If we are creating a shared library, create all the dynamic
3592 sections immediately. We need to attach them to something,
3593 so we attach them to this BFD, provided it is the right
3594 format and is not from ld --just-symbols. FIXME: If there
3595 are no input BFD's of the same format as the output, we can't
3596 make a shared library. */
3597 if (!just_syms
3598 && bfd_link_pic (info)
3599 && is_elf_hash_table (htab)
3600 && info->output_bfd->xvec == abfd->xvec
3601 && !htab->dynamic_sections_created)
3602 {
3603 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3604 goto error_return;
3605 }
3606 }
3607 else if (!is_elf_hash_table (htab))
3608 goto error_return;
3609 else
3610 {
3611 const char *soname = NULL;
3612 char *audit = NULL;
3613 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3614 int ret;
3615
3616 /* ld --just-symbols and dynamic objects don't mix very well.
3617 ld shouldn't allow it. */
3618 if (just_syms)
3619 abort ();
3620
3621 /* If this dynamic lib was specified on the command line with
3622 --as-needed in effect, then we don't want to add a DT_NEEDED
3623 tag unless the lib is actually used. Similary for libs brought
3624 in by another lib's DT_NEEDED. When --no-add-needed is used
3625 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3626 any dynamic library in DT_NEEDED tags in the dynamic lib at
3627 all. */
3628 add_needed = (elf_dyn_lib_class (abfd)
3629 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3630 | DYN_NO_NEEDED)) == 0;
3631
3632 s = bfd_get_section_by_name (abfd, ".dynamic");
3633 if (s != NULL)
3634 {
3635 bfd_byte *dynbuf;
3636 bfd_byte *extdyn;
3637 unsigned int elfsec;
3638 unsigned long shlink;
3639
3640 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3641 {
3642 error_free_dyn:
3643 free (dynbuf);
3644 goto error_return;
3645 }
3646
3647 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3648 if (elfsec == SHN_BAD)
3649 goto error_free_dyn;
3650 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3651
3652 for (extdyn = dynbuf;
3653 extdyn < dynbuf + s->size;
3654 extdyn += bed->s->sizeof_dyn)
3655 {
3656 Elf_Internal_Dyn dyn;
3657
3658 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3659 if (dyn.d_tag == DT_SONAME)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 if (soname == NULL)
3664 goto error_free_dyn;
3665 }
3666 if (dyn.d_tag == DT_NEEDED)
3667 {
3668 struct bfd_link_needed_list *n, **pn;
3669 char *fnm, *anm;
3670 unsigned int tagv = dyn.d_un.d_val;
3671
3672 amt = sizeof (struct bfd_link_needed_list);
3673 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3674 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3675 if (n == NULL || fnm == NULL)
3676 goto error_free_dyn;
3677 amt = strlen (fnm) + 1;
3678 anm = (char *) bfd_alloc (abfd, amt);
3679 if (anm == NULL)
3680 goto error_free_dyn;
3681 memcpy (anm, fnm, amt);
3682 n->name = anm;
3683 n->by = abfd;
3684 n->next = NULL;
3685 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3686 ;
3687 *pn = n;
3688 }
3689 if (dyn.d_tag == DT_RUNPATH)
3690 {
3691 struct bfd_link_needed_list *n, **pn;
3692 char *fnm, *anm;
3693 unsigned int tagv = dyn.d_un.d_val;
3694
3695 amt = sizeof (struct bfd_link_needed_list);
3696 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3697 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3698 if (n == NULL || fnm == NULL)
3699 goto error_free_dyn;
3700 amt = strlen (fnm) + 1;
3701 anm = (char *) bfd_alloc (abfd, amt);
3702 if (anm == NULL)
3703 goto error_free_dyn;
3704 memcpy (anm, fnm, amt);
3705 n->name = anm;
3706 n->by = abfd;
3707 n->next = NULL;
3708 for (pn = & runpath;
3709 *pn != NULL;
3710 pn = &(*pn)->next)
3711 ;
3712 *pn = n;
3713 }
3714 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3715 if (!runpath && dyn.d_tag == DT_RPATH)
3716 {
3717 struct bfd_link_needed_list *n, **pn;
3718 char *fnm, *anm;
3719 unsigned int tagv = dyn.d_un.d_val;
3720
3721 amt = sizeof (struct bfd_link_needed_list);
3722 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3723 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3724 if (n == NULL || fnm == NULL)
3725 goto error_free_dyn;
3726 amt = strlen (fnm) + 1;
3727 anm = (char *) bfd_alloc (abfd, amt);
3728 if (anm == NULL)
3729 goto error_free_dyn;
3730 memcpy (anm, fnm, amt);
3731 n->name = anm;
3732 n->by = abfd;
3733 n->next = NULL;
3734 for (pn = & rpath;
3735 *pn != NULL;
3736 pn = &(*pn)->next)
3737 ;
3738 *pn = n;
3739 }
3740 if (dyn.d_tag == DT_AUDIT)
3741 {
3742 unsigned int tagv = dyn.d_un.d_val;
3743 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3744 }
3745 }
3746
3747 free (dynbuf);
3748 }
3749
3750 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3751 frees all more recently bfd_alloc'd blocks as well. */
3752 if (runpath)
3753 rpath = runpath;
3754
3755 if (rpath)
3756 {
3757 struct bfd_link_needed_list **pn;
3758 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3759 ;
3760 *pn = rpath;
3761 }
3762
3763 /* We do not want to include any of the sections in a dynamic
3764 object in the output file. We hack by simply clobbering the
3765 list of sections in the BFD. This could be handled more
3766 cleanly by, say, a new section flag; the existing
3767 SEC_NEVER_LOAD flag is not the one we want, because that one
3768 still implies that the section takes up space in the output
3769 file. */
3770 bfd_section_list_clear (abfd);
3771
3772 /* Find the name to use in a DT_NEEDED entry that refers to this
3773 object. If the object has a DT_SONAME entry, we use it.
3774 Otherwise, if the generic linker stuck something in
3775 elf_dt_name, we use that. Otherwise, we just use the file
3776 name. */
3777 if (soname == NULL || *soname == '\0')
3778 {
3779 soname = elf_dt_name (abfd);
3780 if (soname == NULL || *soname == '\0')
3781 soname = bfd_get_filename (abfd);
3782 }
3783
3784 /* Save the SONAME because sometimes the linker emulation code
3785 will need to know it. */
3786 elf_dt_name (abfd) = soname;
3787
3788 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3789 if (ret < 0)
3790 goto error_return;
3791
3792 /* If we have already included this dynamic object in the
3793 link, just ignore it. There is no reason to include a
3794 particular dynamic object more than once. */
3795 if (ret > 0)
3796 return TRUE;
3797
3798 /* Save the DT_AUDIT entry for the linker emulation code. */
3799 elf_dt_audit (abfd) = audit;
3800 }
3801
3802 /* If this is a dynamic object, we always link against the .dynsym
3803 symbol table, not the .symtab symbol table. The dynamic linker
3804 will only see the .dynsym symbol table, so there is no reason to
3805 look at .symtab for a dynamic object. */
3806
3807 if (! dynamic || elf_dynsymtab (abfd) == 0)
3808 hdr = &elf_tdata (abfd)->symtab_hdr;
3809 else
3810 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3811
3812 symcount = hdr->sh_size / bed->s->sizeof_sym;
3813
3814 /* The sh_info field of the symtab header tells us where the
3815 external symbols start. We don't care about the local symbols at
3816 this point. */
3817 if (elf_bad_symtab (abfd))
3818 {
3819 extsymcount = symcount;
3820 extsymoff = 0;
3821 }
3822 else
3823 {
3824 extsymcount = symcount - hdr->sh_info;
3825 extsymoff = hdr->sh_info;
3826 }
3827
3828 sym_hash = elf_sym_hashes (abfd);
3829 if (extsymcount != 0)
3830 {
3831 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3832 NULL, NULL, NULL);
3833 if (isymbuf == NULL)
3834 goto error_return;
3835
3836 if (sym_hash == NULL)
3837 {
3838 /* We store a pointer to the hash table entry for each
3839 external symbol. */
3840 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3841 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3842 if (sym_hash == NULL)
3843 goto error_free_sym;
3844 elf_sym_hashes (abfd) = sym_hash;
3845 }
3846 }
3847
3848 if (dynamic)
3849 {
3850 /* Read in any version definitions. */
3851 if (!_bfd_elf_slurp_version_tables (abfd,
3852 info->default_imported_symver))
3853 goto error_free_sym;
3854
3855 /* Read in the symbol versions, but don't bother to convert them
3856 to internal format. */
3857 if (elf_dynversym (abfd) != 0)
3858 {
3859 Elf_Internal_Shdr *versymhdr;
3860
3861 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3862 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3863 if (extversym == NULL)
3864 goto error_free_sym;
3865 amt = versymhdr->sh_size;
3866 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3867 || bfd_bread (extversym, amt, abfd) != amt)
3868 goto error_free_vers;
3869 }
3870 }
3871
3872 /* If we are loading an as-needed shared lib, save the symbol table
3873 state before we start adding symbols. If the lib turns out
3874 to be unneeded, restore the state. */
3875 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3876 {
3877 unsigned int i;
3878 size_t entsize;
3879
3880 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3881 {
3882 struct bfd_hash_entry *p;
3883 struct elf_link_hash_entry *h;
3884
3885 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3886 {
3887 h = (struct elf_link_hash_entry *) p;
3888 entsize += htab->root.table.entsize;
3889 if (h->root.type == bfd_link_hash_warning)
3890 entsize += htab->root.table.entsize;
3891 }
3892 }
3893
3894 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3895 old_tab = bfd_malloc (tabsize + entsize);
3896 if (old_tab == NULL)
3897 goto error_free_vers;
3898
3899 /* Remember the current objalloc pointer, so that all mem for
3900 symbols added can later be reclaimed. */
3901 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3902 if (alloc_mark == NULL)
3903 goto error_free_vers;
3904
3905 /* Make a special call to the linker "notice" function to
3906 tell it that we are about to handle an as-needed lib. */
3907 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3908 goto error_free_vers;
3909
3910 /* Clone the symbol table. Remember some pointers into the
3911 symbol table, and dynamic symbol count. */
3912 old_ent = (char *) old_tab + tabsize;
3913 memcpy (old_tab, htab->root.table.table, tabsize);
3914 old_undefs = htab->root.undefs;
3915 old_undefs_tail = htab->root.undefs_tail;
3916 old_table = htab->root.table.table;
3917 old_size = htab->root.table.size;
3918 old_count = htab->root.table.count;
3919 old_dynsymcount = htab->dynsymcount;
3920 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3921
3922 for (i = 0; i < htab->root.table.size; i++)
3923 {
3924 struct bfd_hash_entry *p;
3925 struct elf_link_hash_entry *h;
3926
3927 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3928 {
3929 memcpy (old_ent, p, htab->root.table.entsize);
3930 old_ent = (char *) old_ent + htab->root.table.entsize;
3931 h = (struct elf_link_hash_entry *) p;
3932 if (h->root.type == bfd_link_hash_warning)
3933 {
3934 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3935 old_ent = (char *) old_ent + htab->root.table.entsize;
3936 }
3937 }
3938 }
3939 }
3940
3941 weaks = NULL;
3942 ever = extversym != NULL ? extversym + extsymoff : NULL;
3943 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3944 isym < isymend;
3945 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3946 {
3947 int bind;
3948 bfd_vma value;
3949 asection *sec, *new_sec;
3950 flagword flags;
3951 const char *name;
3952 struct elf_link_hash_entry *h;
3953 struct elf_link_hash_entry *hi;
3954 bfd_boolean definition;
3955 bfd_boolean size_change_ok;
3956 bfd_boolean type_change_ok;
3957 bfd_boolean new_weakdef;
3958 bfd_boolean new_weak;
3959 bfd_boolean old_weak;
3960 bfd_boolean override;
3961 bfd_boolean common;
3962 unsigned int old_alignment;
3963 bfd *old_bfd;
3964 bfd_boolean matched;
3965
3966 override = FALSE;
3967
3968 flags = BSF_NO_FLAGS;
3969 sec = NULL;
3970 value = isym->st_value;
3971 common = bed->common_definition (isym);
3972
3973 bind = ELF_ST_BIND (isym->st_info);
3974 switch (bind)
3975 {
3976 case STB_LOCAL:
3977 /* This should be impossible, since ELF requires that all
3978 global symbols follow all local symbols, and that sh_info
3979 point to the first global symbol. Unfortunately, Irix 5
3980 screws this up. */
3981 continue;
3982
3983 case STB_GLOBAL:
3984 if (isym->st_shndx != SHN_UNDEF && !common)
3985 flags = BSF_GLOBAL;
3986 break;
3987
3988 case STB_WEAK:
3989 flags = BSF_WEAK;
3990 break;
3991
3992 case STB_GNU_UNIQUE:
3993 flags = BSF_GNU_UNIQUE;
3994 break;
3995
3996 default:
3997 /* Leave it up to the processor backend. */
3998 break;
3999 }
4000
4001 if (isym->st_shndx == SHN_UNDEF)
4002 sec = bfd_und_section_ptr;
4003 else if (isym->st_shndx == SHN_ABS)
4004 sec = bfd_abs_section_ptr;
4005 else if (isym->st_shndx == SHN_COMMON)
4006 {
4007 sec = bfd_com_section_ptr;
4008 /* What ELF calls the size we call the value. What ELF
4009 calls the value we call the alignment. */
4010 value = isym->st_size;
4011 }
4012 else
4013 {
4014 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4015 if (sec == NULL)
4016 sec = bfd_abs_section_ptr;
4017 else if (discarded_section (sec))
4018 {
4019 /* Symbols from discarded section are undefined. We keep
4020 its visibility. */
4021 sec = bfd_und_section_ptr;
4022 isym->st_shndx = SHN_UNDEF;
4023 }
4024 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4025 value -= sec->vma;
4026 }
4027
4028 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4029 isym->st_name);
4030 if (name == NULL)
4031 goto error_free_vers;
4032
4033 if (isym->st_shndx == SHN_COMMON
4034 && (abfd->flags & BFD_PLUGIN) != 0)
4035 {
4036 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4037
4038 if (xc == NULL)
4039 {
4040 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4041 | SEC_EXCLUDE);
4042 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4043 if (xc == NULL)
4044 goto error_free_vers;
4045 }
4046 sec = xc;
4047 }
4048 else if (isym->st_shndx == SHN_COMMON
4049 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4050 && !bfd_link_relocatable (info))
4051 {
4052 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4053
4054 if (tcomm == NULL)
4055 {
4056 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4057 | SEC_LINKER_CREATED);
4058 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4059 if (tcomm == NULL)
4060 goto error_free_vers;
4061 }
4062 sec = tcomm;
4063 }
4064 else if (bed->elf_add_symbol_hook)
4065 {
4066 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4067 &sec, &value))
4068 goto error_free_vers;
4069
4070 /* The hook function sets the name to NULL if this symbol
4071 should be skipped for some reason. */
4072 if (name == NULL)
4073 continue;
4074 }
4075
4076 /* Sanity check that all possibilities were handled. */
4077 if (sec == NULL)
4078 {
4079 bfd_set_error (bfd_error_bad_value);
4080 goto error_free_vers;
4081 }
4082
4083 /* Silently discard TLS symbols from --just-syms. There's
4084 no way to combine a static TLS block with a new TLS block
4085 for this executable. */
4086 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4087 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4088 continue;
4089
4090 if (bfd_is_und_section (sec)
4091 || bfd_is_com_section (sec))
4092 definition = FALSE;
4093 else
4094 definition = TRUE;
4095
4096 size_change_ok = FALSE;
4097 type_change_ok = bed->type_change_ok;
4098 old_weak = FALSE;
4099 matched = FALSE;
4100 old_alignment = 0;
4101 old_bfd = NULL;
4102 new_sec = sec;
4103
4104 if (is_elf_hash_table (htab))
4105 {
4106 Elf_Internal_Versym iver;
4107 unsigned int vernum = 0;
4108 bfd_boolean skip;
4109
4110 if (ever == NULL)
4111 {
4112 if (info->default_imported_symver)
4113 /* Use the default symbol version created earlier. */
4114 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4115 else
4116 iver.vs_vers = 0;
4117 }
4118 else
4119 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4120
4121 vernum = iver.vs_vers & VERSYM_VERSION;
4122
4123 /* If this is a hidden symbol, or if it is not version
4124 1, we append the version name to the symbol name.
4125 However, we do not modify a non-hidden absolute symbol
4126 if it is not a function, because it might be the version
4127 symbol itself. FIXME: What if it isn't? */
4128 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4129 || (vernum > 1
4130 && (!bfd_is_abs_section (sec)
4131 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4132 {
4133 const char *verstr;
4134 size_t namelen, verlen, newlen;
4135 char *newname, *p;
4136
4137 if (isym->st_shndx != SHN_UNDEF)
4138 {
4139 if (vernum > elf_tdata (abfd)->cverdefs)
4140 verstr = NULL;
4141 else if (vernum > 1)
4142 verstr =
4143 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4144 else
4145 verstr = "";
4146
4147 if (verstr == NULL)
4148 {
4149 (*_bfd_error_handler)
4150 (_("%B: %s: invalid version %u (max %d)"),
4151 abfd, name, vernum,
4152 elf_tdata (abfd)->cverdefs);
4153 bfd_set_error (bfd_error_bad_value);
4154 goto error_free_vers;
4155 }
4156 }
4157 else
4158 {
4159 /* We cannot simply test for the number of
4160 entries in the VERNEED section since the
4161 numbers for the needed versions do not start
4162 at 0. */
4163 Elf_Internal_Verneed *t;
4164
4165 verstr = NULL;
4166 for (t = elf_tdata (abfd)->verref;
4167 t != NULL;
4168 t = t->vn_nextref)
4169 {
4170 Elf_Internal_Vernaux *a;
4171
4172 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4173 {
4174 if (a->vna_other == vernum)
4175 {
4176 verstr = a->vna_nodename;
4177 break;
4178 }
4179 }
4180 if (a != NULL)
4181 break;
4182 }
4183 if (verstr == NULL)
4184 {
4185 (*_bfd_error_handler)
4186 (_("%B: %s: invalid needed version %d"),
4187 abfd, name, vernum);
4188 bfd_set_error (bfd_error_bad_value);
4189 goto error_free_vers;
4190 }
4191 }
4192
4193 namelen = strlen (name);
4194 verlen = strlen (verstr);
4195 newlen = namelen + verlen + 2;
4196 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4197 && isym->st_shndx != SHN_UNDEF)
4198 ++newlen;
4199
4200 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4201 if (newname == NULL)
4202 goto error_free_vers;
4203 memcpy (newname, name, namelen);
4204 p = newname + namelen;
4205 *p++ = ELF_VER_CHR;
4206 /* If this is a defined non-hidden version symbol,
4207 we add another @ to the name. This indicates the
4208 default version of the symbol. */
4209 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4210 && isym->st_shndx != SHN_UNDEF)
4211 *p++ = ELF_VER_CHR;
4212 memcpy (p, verstr, verlen + 1);
4213
4214 name = newname;
4215 }
4216
4217 /* If this symbol has default visibility and the user has
4218 requested we not re-export it, then mark it as hidden. */
4219 if (definition
4220 && !dynamic
4221 && abfd->no_export
4222 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4223 isym->st_other = (STV_HIDDEN
4224 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4225
4226 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4227 sym_hash, &old_bfd, &old_weak,
4228 &old_alignment, &skip, &override,
4229 &type_change_ok, &size_change_ok,
4230 &matched))
4231 goto error_free_vers;
4232
4233 if (skip)
4234 continue;
4235
4236 /* Override a definition only if the new symbol matches the
4237 existing one. */
4238 if (override && matched)
4239 definition = FALSE;
4240
4241 h = *sym_hash;
4242 while (h->root.type == bfd_link_hash_indirect
4243 || h->root.type == bfd_link_hash_warning)
4244 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4245
4246 if (elf_tdata (abfd)->verdef != NULL
4247 && vernum > 1
4248 && definition)
4249 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4250 }
4251
4252 if (! (_bfd_generic_link_add_one_symbol
4253 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4254 (struct bfd_link_hash_entry **) sym_hash)))
4255 goto error_free_vers;
4256
4257 h = *sym_hash;
4258 /* We need to make sure that indirect symbol dynamic flags are
4259 updated. */
4260 hi = h;
4261 while (h->root.type == bfd_link_hash_indirect
4262 || h->root.type == bfd_link_hash_warning)
4263 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4264
4265 *sym_hash = h;
4266
4267 new_weak = (flags & BSF_WEAK) != 0;
4268 new_weakdef = FALSE;
4269 if (dynamic
4270 && definition
4271 && new_weak
4272 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4273 && is_elf_hash_table (htab)
4274 && h->u.weakdef == NULL)
4275 {
4276 /* Keep a list of all weak defined non function symbols from
4277 a dynamic object, using the weakdef field. Later in this
4278 function we will set the weakdef field to the correct
4279 value. We only put non-function symbols from dynamic
4280 objects on this list, because that happens to be the only
4281 time we need to know the normal symbol corresponding to a
4282 weak symbol, and the information is time consuming to
4283 figure out. If the weakdef field is not already NULL,
4284 then this symbol was already defined by some previous
4285 dynamic object, and we will be using that previous
4286 definition anyhow. */
4287
4288 h->u.weakdef = weaks;
4289 weaks = h;
4290 new_weakdef = TRUE;
4291 }
4292
4293 /* Set the alignment of a common symbol. */
4294 if ((common || bfd_is_com_section (sec))
4295 && h->root.type == bfd_link_hash_common)
4296 {
4297 unsigned int align;
4298
4299 if (common)
4300 align = bfd_log2 (isym->st_value);
4301 else
4302 {
4303 /* The new symbol is a common symbol in a shared object.
4304 We need to get the alignment from the section. */
4305 align = new_sec->alignment_power;
4306 }
4307 if (align > old_alignment)
4308 h->root.u.c.p->alignment_power = align;
4309 else
4310 h->root.u.c.p->alignment_power = old_alignment;
4311 }
4312
4313 if (is_elf_hash_table (htab))
4314 {
4315 /* Set a flag in the hash table entry indicating the type of
4316 reference or definition we just found. A dynamic symbol
4317 is one which is referenced or defined by both a regular
4318 object and a shared object. */
4319 bfd_boolean dynsym = FALSE;
4320
4321 /* Plugin symbols aren't normal. Don't set def_regular or
4322 ref_regular for them, or make them dynamic. */
4323 if ((abfd->flags & BFD_PLUGIN) != 0)
4324 ;
4325 else if (! dynamic)
4326 {
4327 if (! definition)
4328 {
4329 h->ref_regular = 1;
4330 if (bind != STB_WEAK)
4331 h->ref_regular_nonweak = 1;
4332 }
4333 else
4334 {
4335 h->def_regular = 1;
4336 if (h->def_dynamic)
4337 {
4338 h->def_dynamic = 0;
4339 h->ref_dynamic = 1;
4340 }
4341 }
4342
4343 /* If the indirect symbol has been forced local, don't
4344 make the real symbol dynamic. */
4345 if ((h == hi || !hi->forced_local)
4346 && (bfd_link_dll (info)
4347 || h->def_dynamic
4348 || h->ref_dynamic))
4349 dynsym = TRUE;
4350 }
4351 else
4352 {
4353 if (! definition)
4354 {
4355 h->ref_dynamic = 1;
4356 hi->ref_dynamic = 1;
4357 }
4358 else
4359 {
4360 h->def_dynamic = 1;
4361 hi->def_dynamic = 1;
4362 }
4363
4364 /* If the indirect symbol has been forced local, don't
4365 make the real symbol dynamic. */
4366 if ((h == hi || !hi->forced_local)
4367 && (h->def_regular
4368 || h->ref_regular
4369 || (h->u.weakdef != NULL
4370 && ! new_weakdef
4371 && h->u.weakdef->dynindx != -1)))
4372 dynsym = TRUE;
4373 }
4374
4375 /* Check to see if we need to add an indirect symbol for
4376 the default name. */
4377 if (definition
4378 || (!override && h->root.type == bfd_link_hash_common))
4379 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4380 sec, value, &old_bfd, &dynsym))
4381 goto error_free_vers;
4382
4383 /* Check the alignment when a common symbol is involved. This
4384 can change when a common symbol is overridden by a normal
4385 definition or a common symbol is ignored due to the old
4386 normal definition. We need to make sure the maximum
4387 alignment is maintained. */
4388 if ((old_alignment || common)
4389 && h->root.type != bfd_link_hash_common)
4390 {
4391 unsigned int common_align;
4392 unsigned int normal_align;
4393 unsigned int symbol_align;
4394 bfd *normal_bfd;
4395 bfd *common_bfd;
4396
4397 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4398 || h->root.type == bfd_link_hash_defweak);
4399
4400 symbol_align = ffs (h->root.u.def.value) - 1;
4401 if (h->root.u.def.section->owner != NULL
4402 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4403 {
4404 normal_align = h->root.u.def.section->alignment_power;
4405 if (normal_align > symbol_align)
4406 normal_align = symbol_align;
4407 }
4408 else
4409 normal_align = symbol_align;
4410
4411 if (old_alignment)
4412 {
4413 common_align = old_alignment;
4414 common_bfd = old_bfd;
4415 normal_bfd = abfd;
4416 }
4417 else
4418 {
4419 common_align = bfd_log2 (isym->st_value);
4420 common_bfd = abfd;
4421 normal_bfd = old_bfd;
4422 }
4423
4424 if (normal_align < common_align)
4425 {
4426 /* PR binutils/2735 */
4427 if (normal_bfd == NULL)
4428 (*_bfd_error_handler)
4429 (_("Warning: alignment %u of common symbol `%s' in %B is"
4430 " greater than the alignment (%u) of its section %A"),
4431 common_bfd, h->root.u.def.section,
4432 1 << common_align, name, 1 << normal_align);
4433 else
4434 (*_bfd_error_handler)
4435 (_("Warning: alignment %u of symbol `%s' in %B"
4436 " is smaller than %u in %B"),
4437 normal_bfd, common_bfd,
4438 1 << normal_align, name, 1 << common_align);
4439 }
4440 }
4441
4442 /* Remember the symbol size if it isn't undefined. */
4443 if (isym->st_size != 0
4444 && isym->st_shndx != SHN_UNDEF
4445 && (definition || h->size == 0))
4446 {
4447 if (h->size != 0
4448 && h->size != isym->st_size
4449 && ! size_change_ok)
4450 (*_bfd_error_handler)
4451 (_("Warning: size of symbol `%s' changed"
4452 " from %lu in %B to %lu in %B"),
4453 old_bfd, abfd,
4454 name, (unsigned long) h->size,
4455 (unsigned long) isym->st_size);
4456
4457 h->size = isym->st_size;
4458 }
4459
4460 /* If this is a common symbol, then we always want H->SIZE
4461 to be the size of the common symbol. The code just above
4462 won't fix the size if a common symbol becomes larger. We
4463 don't warn about a size change here, because that is
4464 covered by --warn-common. Allow changes between different
4465 function types. */
4466 if (h->root.type == bfd_link_hash_common)
4467 h->size = h->root.u.c.size;
4468
4469 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4470 && ((definition && !new_weak)
4471 || (old_weak && h->root.type == bfd_link_hash_common)
4472 || h->type == STT_NOTYPE))
4473 {
4474 unsigned int type = ELF_ST_TYPE (isym->st_info);
4475
4476 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4477 symbol. */
4478 if (type == STT_GNU_IFUNC
4479 && (abfd->flags & DYNAMIC) != 0)
4480 type = STT_FUNC;
4481
4482 if (h->type != type)
4483 {
4484 if (h->type != STT_NOTYPE && ! type_change_ok)
4485 (*_bfd_error_handler)
4486 (_("Warning: type of symbol `%s' changed"
4487 " from %d to %d in %B"),
4488 abfd, name, h->type, type);
4489
4490 h->type = type;
4491 }
4492 }
4493
4494 /* Merge st_other field. */
4495 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4496
4497 /* We don't want to make debug symbol dynamic. */
4498 if (definition
4499 && (sec->flags & SEC_DEBUGGING)
4500 && !bfd_link_relocatable (info))
4501 dynsym = FALSE;
4502
4503 /* Nor should we make plugin symbols dynamic. */
4504 if ((abfd->flags & BFD_PLUGIN) != 0)
4505 dynsym = FALSE;
4506
4507 if (definition)
4508 {
4509 h->target_internal = isym->st_target_internal;
4510 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4511 }
4512
4513 if (definition && !dynamic)
4514 {
4515 char *p = strchr (name, ELF_VER_CHR);
4516 if (p != NULL && p[1] != ELF_VER_CHR)
4517 {
4518 /* Queue non-default versions so that .symver x, x@FOO
4519 aliases can be checked. */
4520 if (!nondeflt_vers)
4521 {
4522 amt = ((isymend - isym + 1)
4523 * sizeof (struct elf_link_hash_entry *));
4524 nondeflt_vers
4525 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4526 if (!nondeflt_vers)
4527 goto error_free_vers;
4528 }
4529 nondeflt_vers[nondeflt_vers_cnt++] = h;
4530 }
4531 }
4532
4533 if (dynsym && h->dynindx == -1)
4534 {
4535 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4536 goto error_free_vers;
4537 if (h->u.weakdef != NULL
4538 && ! new_weakdef
4539 && h->u.weakdef->dynindx == -1)
4540 {
4541 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4542 goto error_free_vers;
4543 }
4544 }
4545 else if (dynsym && h->dynindx != -1)
4546 /* If the symbol already has a dynamic index, but
4547 visibility says it should not be visible, turn it into
4548 a local symbol. */
4549 switch (ELF_ST_VISIBILITY (h->other))
4550 {
4551 case STV_INTERNAL:
4552 case STV_HIDDEN:
4553 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4554 dynsym = FALSE;
4555 break;
4556 }
4557
4558 /* Don't add DT_NEEDED for references from the dummy bfd. */
4559 if (!add_needed
4560 && definition
4561 && ((dynsym
4562 && h->ref_regular_nonweak
4563 && (old_bfd == NULL
4564 || (old_bfd->flags & BFD_PLUGIN) == 0))
4565 || (h->ref_dynamic_nonweak
4566 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4567 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4568 {
4569 int ret;
4570 const char *soname = elf_dt_name (abfd);
4571
4572 info->callbacks->minfo ("%!", soname, old_bfd,
4573 h->root.root.string);
4574
4575 /* A symbol from a library loaded via DT_NEEDED of some
4576 other library is referenced by a regular object.
4577 Add a DT_NEEDED entry for it. Issue an error if
4578 --no-add-needed is used and the reference was not
4579 a weak one. */
4580 if (old_bfd != NULL
4581 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4582 {
4583 (*_bfd_error_handler)
4584 (_("%B: undefined reference to symbol '%s'"),
4585 old_bfd, name);
4586 bfd_set_error (bfd_error_missing_dso);
4587 goto error_free_vers;
4588 }
4589
4590 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4591 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4592
4593 add_needed = TRUE;
4594 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4595 if (ret < 0)
4596 goto error_free_vers;
4597
4598 BFD_ASSERT (ret == 0);
4599 }
4600 }
4601 }
4602
4603 if (extversym != NULL)
4604 {
4605 free (extversym);
4606 extversym = NULL;
4607 }
4608
4609 if (isymbuf != NULL)
4610 {
4611 free (isymbuf);
4612 isymbuf = NULL;
4613 }
4614
4615 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4616 {
4617 unsigned int i;
4618
4619 /* Restore the symbol table. */
4620 old_ent = (char *) old_tab + tabsize;
4621 memset (elf_sym_hashes (abfd), 0,
4622 extsymcount * sizeof (struct elf_link_hash_entry *));
4623 htab->root.table.table = old_table;
4624 htab->root.table.size = old_size;
4625 htab->root.table.count = old_count;
4626 memcpy (htab->root.table.table, old_tab, tabsize);
4627 htab->root.undefs = old_undefs;
4628 htab->root.undefs_tail = old_undefs_tail;
4629 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4630 for (i = 0; i < htab->root.table.size; i++)
4631 {
4632 struct bfd_hash_entry *p;
4633 struct elf_link_hash_entry *h;
4634 bfd_size_type size;
4635 unsigned int alignment_power;
4636
4637 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4638 {
4639 h = (struct elf_link_hash_entry *) p;
4640 if (h->root.type == bfd_link_hash_warning)
4641 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4642 if (h->dynindx >= old_dynsymcount
4643 && h->dynstr_index < old_dynstr_size)
4644 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4645
4646 /* Preserve the maximum alignment and size for common
4647 symbols even if this dynamic lib isn't on DT_NEEDED
4648 since it can still be loaded at run time by another
4649 dynamic lib. */
4650 if (h->root.type == bfd_link_hash_common)
4651 {
4652 size = h->root.u.c.size;
4653 alignment_power = h->root.u.c.p->alignment_power;
4654 }
4655 else
4656 {
4657 size = 0;
4658 alignment_power = 0;
4659 }
4660 memcpy (p, old_ent, htab->root.table.entsize);
4661 old_ent = (char *) old_ent + htab->root.table.entsize;
4662 h = (struct elf_link_hash_entry *) p;
4663 if (h->root.type == bfd_link_hash_warning)
4664 {
4665 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4666 old_ent = (char *) old_ent + htab->root.table.entsize;
4667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4668 }
4669 if (h->root.type == bfd_link_hash_common)
4670 {
4671 if (size > h->root.u.c.size)
4672 h->root.u.c.size = size;
4673 if (alignment_power > h->root.u.c.p->alignment_power)
4674 h->root.u.c.p->alignment_power = alignment_power;
4675 }
4676 }
4677 }
4678
4679 /* Make a special call to the linker "notice" function to
4680 tell it that symbols added for crefs may need to be removed. */
4681 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4682 goto error_free_vers;
4683
4684 free (old_tab);
4685 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4686 alloc_mark);
4687 if (nondeflt_vers != NULL)
4688 free (nondeflt_vers);
4689 return TRUE;
4690 }
4691
4692 if (old_tab != NULL)
4693 {
4694 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4695 goto error_free_vers;
4696 free (old_tab);
4697 old_tab = NULL;
4698 }
4699
4700 /* Now that all the symbols from this input file are created, if
4701 not performing a relocatable link, handle .symver foo, foo@BAR
4702 such that any relocs against foo become foo@BAR. */
4703 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4704 {
4705 bfd_size_type cnt, symidx;
4706
4707 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4708 {
4709 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4710 char *shortname, *p;
4711
4712 p = strchr (h->root.root.string, ELF_VER_CHR);
4713 if (p == NULL
4714 || (h->root.type != bfd_link_hash_defined
4715 && h->root.type != bfd_link_hash_defweak))
4716 continue;
4717
4718 amt = p - h->root.root.string;
4719 shortname = (char *) bfd_malloc (amt + 1);
4720 if (!shortname)
4721 goto error_free_vers;
4722 memcpy (shortname, h->root.root.string, amt);
4723 shortname[amt] = '\0';
4724
4725 hi = (struct elf_link_hash_entry *)
4726 bfd_link_hash_lookup (&htab->root, shortname,
4727 FALSE, FALSE, FALSE);
4728 if (hi != NULL
4729 && hi->root.type == h->root.type
4730 && hi->root.u.def.value == h->root.u.def.value
4731 && hi->root.u.def.section == h->root.u.def.section)
4732 {
4733 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4734 hi->root.type = bfd_link_hash_indirect;
4735 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4736 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4737 sym_hash = elf_sym_hashes (abfd);
4738 if (sym_hash)
4739 for (symidx = 0; symidx < extsymcount; ++symidx)
4740 if (sym_hash[symidx] == hi)
4741 {
4742 sym_hash[symidx] = h;
4743 break;
4744 }
4745 }
4746 free (shortname);
4747 }
4748 free (nondeflt_vers);
4749 nondeflt_vers = NULL;
4750 }
4751
4752 /* Now set the weakdefs field correctly for all the weak defined
4753 symbols we found. The only way to do this is to search all the
4754 symbols. Since we only need the information for non functions in
4755 dynamic objects, that's the only time we actually put anything on
4756 the list WEAKS. We need this information so that if a regular
4757 object refers to a symbol defined weakly in a dynamic object, the
4758 real symbol in the dynamic object is also put in the dynamic
4759 symbols; we also must arrange for both symbols to point to the
4760 same memory location. We could handle the general case of symbol
4761 aliasing, but a general symbol alias can only be generated in
4762 assembler code, handling it correctly would be very time
4763 consuming, and other ELF linkers don't handle general aliasing
4764 either. */
4765 if (weaks != NULL)
4766 {
4767 struct elf_link_hash_entry **hpp;
4768 struct elf_link_hash_entry **hppend;
4769 struct elf_link_hash_entry **sorted_sym_hash;
4770 struct elf_link_hash_entry *h;
4771 size_t sym_count;
4772
4773 /* Since we have to search the whole symbol list for each weak
4774 defined symbol, search time for N weak defined symbols will be
4775 O(N^2). Binary search will cut it down to O(NlogN). */
4776 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4777 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4778 if (sorted_sym_hash == NULL)
4779 goto error_return;
4780 sym_hash = sorted_sym_hash;
4781 hpp = elf_sym_hashes (abfd);
4782 hppend = hpp + extsymcount;
4783 sym_count = 0;
4784 for (; hpp < hppend; hpp++)
4785 {
4786 h = *hpp;
4787 if (h != NULL
4788 && h->root.type == bfd_link_hash_defined
4789 && !bed->is_function_type (h->type))
4790 {
4791 *sym_hash = h;
4792 sym_hash++;
4793 sym_count++;
4794 }
4795 }
4796
4797 qsort (sorted_sym_hash, sym_count,
4798 sizeof (struct elf_link_hash_entry *),
4799 elf_sort_symbol);
4800
4801 while (weaks != NULL)
4802 {
4803 struct elf_link_hash_entry *hlook;
4804 asection *slook;
4805 bfd_vma vlook;
4806 size_t i, j, idx = 0;
4807
4808 hlook = weaks;
4809 weaks = hlook->u.weakdef;
4810 hlook->u.weakdef = NULL;
4811
4812 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4813 || hlook->root.type == bfd_link_hash_defweak
4814 || hlook->root.type == bfd_link_hash_common
4815 || hlook->root.type == bfd_link_hash_indirect);
4816 slook = hlook->root.u.def.section;
4817 vlook = hlook->root.u.def.value;
4818
4819 i = 0;
4820 j = sym_count;
4821 while (i != j)
4822 {
4823 bfd_signed_vma vdiff;
4824 idx = (i + j) / 2;
4825 h = sorted_sym_hash[idx];
4826 vdiff = vlook - h->root.u.def.value;
4827 if (vdiff < 0)
4828 j = idx;
4829 else if (vdiff > 0)
4830 i = idx + 1;
4831 else
4832 {
4833 int sdiff = slook->id - h->root.u.def.section->id;
4834 if (sdiff < 0)
4835 j = idx;
4836 else if (sdiff > 0)
4837 i = idx + 1;
4838 else
4839 break;
4840 }
4841 }
4842
4843 /* We didn't find a value/section match. */
4844 if (i == j)
4845 continue;
4846
4847 /* With multiple aliases, or when the weak symbol is already
4848 strongly defined, we have multiple matching symbols and
4849 the binary search above may land on any of them. Step
4850 one past the matching symbol(s). */
4851 while (++idx != j)
4852 {
4853 h = sorted_sym_hash[idx];
4854 if (h->root.u.def.section != slook
4855 || h->root.u.def.value != vlook)
4856 break;
4857 }
4858
4859 /* Now look back over the aliases. Since we sorted by size
4860 as well as value and section, we'll choose the one with
4861 the largest size. */
4862 while (idx-- != i)
4863 {
4864 h = sorted_sym_hash[idx];
4865
4866 /* Stop if value or section doesn't match. */
4867 if (h->root.u.def.section != slook
4868 || h->root.u.def.value != vlook)
4869 break;
4870 else if (h != hlook)
4871 {
4872 hlook->u.weakdef = h;
4873
4874 /* If the weak definition is in the list of dynamic
4875 symbols, make sure the real definition is put
4876 there as well. */
4877 if (hlook->dynindx != -1 && h->dynindx == -1)
4878 {
4879 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4880 {
4881 err_free_sym_hash:
4882 free (sorted_sym_hash);
4883 goto error_return;
4884 }
4885 }
4886
4887 /* If the real definition is in the list of dynamic
4888 symbols, make sure the weak definition is put
4889 there as well. If we don't do this, then the
4890 dynamic loader might not merge the entries for the
4891 real definition and the weak definition. */
4892 if (h->dynindx != -1 && hlook->dynindx == -1)
4893 {
4894 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4895 goto err_free_sym_hash;
4896 }
4897 break;
4898 }
4899 }
4900 }
4901
4902 free (sorted_sym_hash);
4903 }
4904
4905 if (bed->check_directives
4906 && !(*bed->check_directives) (abfd, info))
4907 return FALSE;
4908
4909 /* If this object is the same format as the output object, and it is
4910 not a shared library, then let the backend look through the
4911 relocs.
4912
4913 This is required to build global offset table entries and to
4914 arrange for dynamic relocs. It is not required for the
4915 particular common case of linking non PIC code, even when linking
4916 against shared libraries, but unfortunately there is no way of
4917 knowing whether an object file has been compiled PIC or not.
4918 Looking through the relocs is not particularly time consuming.
4919 The problem is that we must either (1) keep the relocs in memory,
4920 which causes the linker to require additional runtime memory or
4921 (2) read the relocs twice from the input file, which wastes time.
4922 This would be a good case for using mmap.
4923
4924 I have no idea how to handle linking PIC code into a file of a
4925 different format. It probably can't be done. */
4926 if (! dynamic
4927 && is_elf_hash_table (htab)
4928 && bed->check_relocs != NULL
4929 && elf_object_id (abfd) == elf_hash_table_id (htab)
4930 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4931 {
4932 asection *o;
4933
4934 for (o = abfd->sections; o != NULL; o = o->next)
4935 {
4936 Elf_Internal_Rela *internal_relocs;
4937 bfd_boolean ok;
4938
4939 if ((o->flags & SEC_RELOC) == 0
4940 || o->reloc_count == 0
4941 || ((info->strip == strip_all || info->strip == strip_debugger)
4942 && (o->flags & SEC_DEBUGGING) != 0)
4943 || bfd_is_abs_section (o->output_section))
4944 continue;
4945
4946 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4947 info->keep_memory);
4948 if (internal_relocs == NULL)
4949 goto error_return;
4950
4951 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4952
4953 if (elf_section_data (o)->relocs != internal_relocs)
4954 free (internal_relocs);
4955
4956 if (! ok)
4957 goto error_return;
4958 }
4959 }
4960
4961 /* If this is a non-traditional link, try to optimize the handling
4962 of the .stab/.stabstr sections. */
4963 if (! dynamic
4964 && ! info->traditional_format
4965 && is_elf_hash_table (htab)
4966 && (info->strip != strip_all && info->strip != strip_debugger))
4967 {
4968 asection *stabstr;
4969
4970 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4971 if (stabstr != NULL)
4972 {
4973 bfd_size_type string_offset = 0;
4974 asection *stab;
4975
4976 for (stab = abfd->sections; stab; stab = stab->next)
4977 if (CONST_STRNEQ (stab->name, ".stab")
4978 && (!stab->name[5] ||
4979 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4980 && (stab->flags & SEC_MERGE) == 0
4981 && !bfd_is_abs_section (stab->output_section))
4982 {
4983 struct bfd_elf_section_data *secdata;
4984
4985 secdata = elf_section_data (stab);
4986 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4987 stabstr, &secdata->sec_info,
4988 &string_offset))
4989 goto error_return;
4990 if (secdata->sec_info)
4991 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4992 }
4993 }
4994 }
4995
4996 if (is_elf_hash_table (htab) && add_needed)
4997 {
4998 /* Add this bfd to the loaded list. */
4999 struct elf_link_loaded_list *n;
5000
5001 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5002 if (n == NULL)
5003 goto error_return;
5004 n->abfd = abfd;
5005 n->next = htab->loaded;
5006 htab->loaded = n;
5007 }
5008
5009 return TRUE;
5010
5011 error_free_vers:
5012 if (old_tab != NULL)
5013 free (old_tab);
5014 if (nondeflt_vers != NULL)
5015 free (nondeflt_vers);
5016 if (extversym != NULL)
5017 free (extversym);
5018 error_free_sym:
5019 if (isymbuf != NULL)
5020 free (isymbuf);
5021 error_return:
5022 return FALSE;
5023 }
5024
5025 /* Return the linker hash table entry of a symbol that might be
5026 satisfied by an archive symbol. Return -1 on error. */
5027
5028 struct elf_link_hash_entry *
5029 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5030 struct bfd_link_info *info,
5031 const char *name)
5032 {
5033 struct elf_link_hash_entry *h;
5034 char *p, *copy;
5035 size_t len, first;
5036
5037 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5038 if (h != NULL)
5039 return h;
5040
5041 /* If this is a default version (the name contains @@), look up the
5042 symbol again with only one `@' as well as without the version.
5043 The effect is that references to the symbol with and without the
5044 version will be matched by the default symbol in the archive. */
5045
5046 p = strchr (name, ELF_VER_CHR);
5047 if (p == NULL || p[1] != ELF_VER_CHR)
5048 return h;
5049
5050 /* First check with only one `@'. */
5051 len = strlen (name);
5052 copy = (char *) bfd_alloc (abfd, len);
5053 if (copy == NULL)
5054 return (struct elf_link_hash_entry *) 0 - 1;
5055
5056 first = p - name + 1;
5057 memcpy (copy, name, first);
5058 memcpy (copy + first, name + first + 1, len - first);
5059
5060 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5061 if (h == NULL)
5062 {
5063 /* We also need to check references to the symbol without the
5064 version. */
5065 copy[first - 1] = '\0';
5066 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5067 FALSE, FALSE, TRUE);
5068 }
5069
5070 bfd_release (abfd, copy);
5071 return h;
5072 }
5073
5074 /* Add symbols from an ELF archive file to the linker hash table. We
5075 don't use _bfd_generic_link_add_archive_symbols because we need to
5076 handle versioned symbols.
5077
5078 Fortunately, ELF archive handling is simpler than that done by
5079 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5080 oddities. In ELF, if we find a symbol in the archive map, and the
5081 symbol is currently undefined, we know that we must pull in that
5082 object file.
5083
5084 Unfortunately, we do have to make multiple passes over the symbol
5085 table until nothing further is resolved. */
5086
5087 static bfd_boolean
5088 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5089 {
5090 symindex c;
5091 unsigned char *included = NULL;
5092 carsym *symdefs;
5093 bfd_boolean loop;
5094 bfd_size_type amt;
5095 const struct elf_backend_data *bed;
5096 struct elf_link_hash_entry * (*archive_symbol_lookup)
5097 (bfd *, struct bfd_link_info *, const char *);
5098
5099 if (! bfd_has_map (abfd))
5100 {
5101 /* An empty archive is a special case. */
5102 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5103 return TRUE;
5104 bfd_set_error (bfd_error_no_armap);
5105 return FALSE;
5106 }
5107
5108 /* Keep track of all symbols we know to be already defined, and all
5109 files we know to be already included. This is to speed up the
5110 second and subsequent passes. */
5111 c = bfd_ardata (abfd)->symdef_count;
5112 if (c == 0)
5113 return TRUE;
5114 amt = c;
5115 amt *= sizeof (*included);
5116 included = (unsigned char *) bfd_zmalloc (amt);
5117 if (included == NULL)
5118 return FALSE;
5119
5120 symdefs = bfd_ardata (abfd)->symdefs;
5121 bed = get_elf_backend_data (abfd);
5122 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5123
5124 do
5125 {
5126 file_ptr last;
5127 symindex i;
5128 carsym *symdef;
5129 carsym *symdefend;
5130
5131 loop = FALSE;
5132 last = -1;
5133
5134 symdef = symdefs;
5135 symdefend = symdef + c;
5136 for (i = 0; symdef < symdefend; symdef++, i++)
5137 {
5138 struct elf_link_hash_entry *h;
5139 bfd *element;
5140 struct bfd_link_hash_entry *undefs_tail;
5141 symindex mark;
5142
5143 if (included[i])
5144 continue;
5145 if (symdef->file_offset == last)
5146 {
5147 included[i] = TRUE;
5148 continue;
5149 }
5150
5151 h = archive_symbol_lookup (abfd, info, symdef->name);
5152 if (h == (struct elf_link_hash_entry *) 0 - 1)
5153 goto error_return;
5154
5155 if (h == NULL)
5156 continue;
5157
5158 if (h->root.type == bfd_link_hash_common)
5159 {
5160 /* We currently have a common symbol. The archive map contains
5161 a reference to this symbol, so we may want to include it. We
5162 only want to include it however, if this archive element
5163 contains a definition of the symbol, not just another common
5164 declaration of it.
5165
5166 Unfortunately some archivers (including GNU ar) will put
5167 declarations of common symbols into their archive maps, as
5168 well as real definitions, so we cannot just go by the archive
5169 map alone. Instead we must read in the element's symbol
5170 table and check that to see what kind of symbol definition
5171 this is. */
5172 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5173 continue;
5174 }
5175 else if (h->root.type != bfd_link_hash_undefined)
5176 {
5177 if (h->root.type != bfd_link_hash_undefweak)
5178 /* Symbol must be defined. Don't check it again. */
5179 included[i] = TRUE;
5180 continue;
5181 }
5182
5183 /* We need to include this archive member. */
5184 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5185 if (element == NULL)
5186 goto error_return;
5187
5188 if (! bfd_check_format (element, bfd_object))
5189 goto error_return;
5190
5191 undefs_tail = info->hash->undefs_tail;
5192
5193 if (!(*info->callbacks
5194 ->add_archive_element) (info, element, symdef->name, &element))
5195 goto error_return;
5196 if (!bfd_link_add_symbols (element, info))
5197 goto error_return;
5198
5199 /* If there are any new undefined symbols, we need to make
5200 another pass through the archive in order to see whether
5201 they can be defined. FIXME: This isn't perfect, because
5202 common symbols wind up on undefs_tail and because an
5203 undefined symbol which is defined later on in this pass
5204 does not require another pass. This isn't a bug, but it
5205 does make the code less efficient than it could be. */
5206 if (undefs_tail != info->hash->undefs_tail)
5207 loop = TRUE;
5208
5209 /* Look backward to mark all symbols from this object file
5210 which we have already seen in this pass. */
5211 mark = i;
5212 do
5213 {
5214 included[mark] = TRUE;
5215 if (mark == 0)
5216 break;
5217 --mark;
5218 }
5219 while (symdefs[mark].file_offset == symdef->file_offset);
5220
5221 /* We mark subsequent symbols from this object file as we go
5222 on through the loop. */
5223 last = symdef->file_offset;
5224 }
5225 }
5226 while (loop);
5227
5228 free (included);
5229
5230 return TRUE;
5231
5232 error_return:
5233 if (included != NULL)
5234 free (included);
5235 return FALSE;
5236 }
5237
5238 /* Given an ELF BFD, add symbols to the global hash table as
5239 appropriate. */
5240
5241 bfd_boolean
5242 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5243 {
5244 switch (bfd_get_format (abfd))
5245 {
5246 case bfd_object:
5247 return elf_link_add_object_symbols (abfd, info);
5248 case bfd_archive:
5249 return elf_link_add_archive_symbols (abfd, info);
5250 default:
5251 bfd_set_error (bfd_error_wrong_format);
5252 return FALSE;
5253 }
5254 }
5255 \f
5256 struct hash_codes_info
5257 {
5258 unsigned long *hashcodes;
5259 bfd_boolean error;
5260 };
5261
5262 /* This function will be called though elf_link_hash_traverse to store
5263 all hash value of the exported symbols in an array. */
5264
5265 static bfd_boolean
5266 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5267 {
5268 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5269 const char *name;
5270 unsigned long ha;
5271 char *alc = NULL;
5272
5273 /* Ignore indirect symbols. These are added by the versioning code. */
5274 if (h->dynindx == -1)
5275 return TRUE;
5276
5277 name = h->root.root.string;
5278 if (h->versioned >= versioned)
5279 {
5280 char *p = strchr (name, ELF_VER_CHR);
5281 if (p != NULL)
5282 {
5283 alc = (char *) bfd_malloc (p - name + 1);
5284 if (alc == NULL)
5285 {
5286 inf->error = TRUE;
5287 return FALSE;
5288 }
5289 memcpy (alc, name, p - name);
5290 alc[p - name] = '\0';
5291 name = alc;
5292 }
5293 }
5294
5295 /* Compute the hash value. */
5296 ha = bfd_elf_hash (name);
5297
5298 /* Store the found hash value in the array given as the argument. */
5299 *(inf->hashcodes)++ = ha;
5300
5301 /* And store it in the struct so that we can put it in the hash table
5302 later. */
5303 h->u.elf_hash_value = ha;
5304
5305 if (alc != NULL)
5306 free (alc);
5307
5308 return TRUE;
5309 }
5310
5311 struct collect_gnu_hash_codes
5312 {
5313 bfd *output_bfd;
5314 const struct elf_backend_data *bed;
5315 unsigned long int nsyms;
5316 unsigned long int maskbits;
5317 unsigned long int *hashcodes;
5318 unsigned long int *hashval;
5319 unsigned long int *indx;
5320 unsigned long int *counts;
5321 bfd_vma *bitmask;
5322 bfd_byte *contents;
5323 long int min_dynindx;
5324 unsigned long int bucketcount;
5325 unsigned long int symindx;
5326 long int local_indx;
5327 long int shift1, shift2;
5328 unsigned long int mask;
5329 bfd_boolean error;
5330 };
5331
5332 /* This function will be called though elf_link_hash_traverse to store
5333 all hash value of the exported symbols in an array. */
5334
5335 static bfd_boolean
5336 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5337 {
5338 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5339 const char *name;
5340 unsigned long ha;
5341 char *alc = NULL;
5342
5343 /* Ignore indirect symbols. These are added by the versioning code. */
5344 if (h->dynindx == -1)
5345 return TRUE;
5346
5347 /* Ignore also local symbols and undefined symbols. */
5348 if (! (*s->bed->elf_hash_symbol) (h))
5349 return TRUE;
5350
5351 name = h->root.root.string;
5352 if (h->versioned >= versioned)
5353 {
5354 char *p = strchr (name, ELF_VER_CHR);
5355 if (p != NULL)
5356 {
5357 alc = (char *) bfd_malloc (p - name + 1);
5358 if (alc == NULL)
5359 {
5360 s->error = TRUE;
5361 return FALSE;
5362 }
5363 memcpy (alc, name, p - name);
5364 alc[p - name] = '\0';
5365 name = alc;
5366 }
5367 }
5368
5369 /* Compute the hash value. */
5370 ha = bfd_elf_gnu_hash (name);
5371
5372 /* Store the found hash value in the array for compute_bucket_count,
5373 and also for .dynsym reordering purposes. */
5374 s->hashcodes[s->nsyms] = ha;
5375 s->hashval[h->dynindx] = ha;
5376 ++s->nsyms;
5377 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5378 s->min_dynindx = h->dynindx;
5379
5380 if (alc != NULL)
5381 free (alc);
5382
5383 return TRUE;
5384 }
5385
5386 /* This function will be called though elf_link_hash_traverse to do
5387 final dynaminc symbol renumbering. */
5388
5389 static bfd_boolean
5390 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5391 {
5392 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5393 unsigned long int bucket;
5394 unsigned long int val;
5395
5396 /* Ignore indirect symbols. */
5397 if (h->dynindx == -1)
5398 return TRUE;
5399
5400 /* Ignore also local symbols and undefined symbols. */
5401 if (! (*s->bed->elf_hash_symbol) (h))
5402 {
5403 if (h->dynindx >= s->min_dynindx)
5404 h->dynindx = s->local_indx++;
5405 return TRUE;
5406 }
5407
5408 bucket = s->hashval[h->dynindx] % s->bucketcount;
5409 val = (s->hashval[h->dynindx] >> s->shift1)
5410 & ((s->maskbits >> s->shift1) - 1);
5411 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5412 s->bitmask[val]
5413 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5414 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5415 if (s->counts[bucket] == 1)
5416 /* Last element terminates the chain. */
5417 val |= 1;
5418 bfd_put_32 (s->output_bfd, val,
5419 s->contents + (s->indx[bucket] - s->symindx) * 4);
5420 --s->counts[bucket];
5421 h->dynindx = s->indx[bucket]++;
5422 return TRUE;
5423 }
5424
5425 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5426
5427 bfd_boolean
5428 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5429 {
5430 return !(h->forced_local
5431 || h->root.type == bfd_link_hash_undefined
5432 || h->root.type == bfd_link_hash_undefweak
5433 || ((h->root.type == bfd_link_hash_defined
5434 || h->root.type == bfd_link_hash_defweak)
5435 && h->root.u.def.section->output_section == NULL));
5436 }
5437
5438 /* Array used to determine the number of hash table buckets to use
5439 based on the number of symbols there are. If there are fewer than
5440 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5441 fewer than 37 we use 17 buckets, and so forth. We never use more
5442 than 32771 buckets. */
5443
5444 static const size_t elf_buckets[] =
5445 {
5446 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5447 16411, 32771, 0
5448 };
5449
5450 /* Compute bucket count for hashing table. We do not use a static set
5451 of possible tables sizes anymore. Instead we determine for all
5452 possible reasonable sizes of the table the outcome (i.e., the
5453 number of collisions etc) and choose the best solution. The
5454 weighting functions are not too simple to allow the table to grow
5455 without bounds. Instead one of the weighting factors is the size.
5456 Therefore the result is always a good payoff between few collisions
5457 (= short chain lengths) and table size. */
5458 static size_t
5459 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5460 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5461 unsigned long int nsyms,
5462 int gnu_hash)
5463 {
5464 size_t best_size = 0;
5465 unsigned long int i;
5466
5467 /* We have a problem here. The following code to optimize the table
5468 size requires an integer type with more the 32 bits. If
5469 BFD_HOST_U_64_BIT is set we know about such a type. */
5470 #ifdef BFD_HOST_U_64_BIT
5471 if (info->optimize)
5472 {
5473 size_t minsize;
5474 size_t maxsize;
5475 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5476 bfd *dynobj = elf_hash_table (info)->dynobj;
5477 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5478 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5479 unsigned long int *counts;
5480 bfd_size_type amt;
5481 unsigned int no_improvement_count = 0;
5482
5483 /* Possible optimization parameters: if we have NSYMS symbols we say
5484 that the hashing table must at least have NSYMS/4 and at most
5485 2*NSYMS buckets. */
5486 minsize = nsyms / 4;
5487 if (minsize == 0)
5488 minsize = 1;
5489 best_size = maxsize = nsyms * 2;
5490 if (gnu_hash)
5491 {
5492 if (minsize < 2)
5493 minsize = 2;
5494 if ((best_size & 31) == 0)
5495 ++best_size;
5496 }
5497
5498 /* Create array where we count the collisions in. We must use bfd_malloc
5499 since the size could be large. */
5500 amt = maxsize;
5501 amt *= sizeof (unsigned long int);
5502 counts = (unsigned long int *) bfd_malloc (amt);
5503 if (counts == NULL)
5504 return 0;
5505
5506 /* Compute the "optimal" size for the hash table. The criteria is a
5507 minimal chain length. The minor criteria is (of course) the size
5508 of the table. */
5509 for (i = minsize; i < maxsize; ++i)
5510 {
5511 /* Walk through the array of hashcodes and count the collisions. */
5512 BFD_HOST_U_64_BIT max;
5513 unsigned long int j;
5514 unsigned long int fact;
5515
5516 if (gnu_hash && (i & 31) == 0)
5517 continue;
5518
5519 memset (counts, '\0', i * sizeof (unsigned long int));
5520
5521 /* Determine how often each hash bucket is used. */
5522 for (j = 0; j < nsyms; ++j)
5523 ++counts[hashcodes[j] % i];
5524
5525 /* For the weight function we need some information about the
5526 pagesize on the target. This is information need not be 100%
5527 accurate. Since this information is not available (so far) we
5528 define it here to a reasonable default value. If it is crucial
5529 to have a better value some day simply define this value. */
5530 # ifndef BFD_TARGET_PAGESIZE
5531 # define BFD_TARGET_PAGESIZE (4096)
5532 # endif
5533
5534 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5535 and the chains. */
5536 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5537
5538 # if 1
5539 /* Variant 1: optimize for short chains. We add the squares
5540 of all the chain lengths (which favors many small chain
5541 over a few long chains). */
5542 for (j = 0; j < i; ++j)
5543 max += counts[j] * counts[j];
5544
5545 /* This adds penalties for the overall size of the table. */
5546 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5547 max *= fact * fact;
5548 # else
5549 /* Variant 2: Optimize a lot more for small table. Here we
5550 also add squares of the size but we also add penalties for
5551 empty slots (the +1 term). */
5552 for (j = 0; j < i; ++j)
5553 max += (1 + counts[j]) * (1 + counts[j]);
5554
5555 /* The overall size of the table is considered, but not as
5556 strong as in variant 1, where it is squared. */
5557 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5558 max *= fact;
5559 # endif
5560
5561 /* Compare with current best results. */
5562 if (max < best_chlen)
5563 {
5564 best_chlen = max;
5565 best_size = i;
5566 no_improvement_count = 0;
5567 }
5568 /* PR 11843: Avoid futile long searches for the best bucket size
5569 when there are a large number of symbols. */
5570 else if (++no_improvement_count == 100)
5571 break;
5572 }
5573
5574 free (counts);
5575 }
5576 else
5577 #endif /* defined (BFD_HOST_U_64_BIT) */
5578 {
5579 /* This is the fallback solution if no 64bit type is available or if we
5580 are not supposed to spend much time on optimizations. We select the
5581 bucket count using a fixed set of numbers. */
5582 for (i = 0; elf_buckets[i] != 0; i++)
5583 {
5584 best_size = elf_buckets[i];
5585 if (nsyms < elf_buckets[i + 1])
5586 break;
5587 }
5588 if (gnu_hash && best_size < 2)
5589 best_size = 2;
5590 }
5591
5592 return best_size;
5593 }
5594
5595 /* Size any SHT_GROUP section for ld -r. */
5596
5597 bfd_boolean
5598 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5599 {
5600 bfd *ibfd;
5601
5602 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5603 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5604 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5605 return FALSE;
5606 return TRUE;
5607 }
5608
5609 /* Set a default stack segment size. The value in INFO wins. If it
5610 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5611 undefined it is initialized. */
5612
5613 bfd_boolean
5614 bfd_elf_stack_segment_size (bfd *output_bfd,
5615 struct bfd_link_info *info,
5616 const char *legacy_symbol,
5617 bfd_vma default_size)
5618 {
5619 struct elf_link_hash_entry *h = NULL;
5620
5621 /* Look for legacy symbol. */
5622 if (legacy_symbol)
5623 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5624 FALSE, FALSE, FALSE);
5625 if (h && (h->root.type == bfd_link_hash_defined
5626 || h->root.type == bfd_link_hash_defweak)
5627 && h->def_regular
5628 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5629 {
5630 /* The symbol has no type if specified on the command line. */
5631 h->type = STT_OBJECT;
5632 if (info->stacksize)
5633 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5634 output_bfd, legacy_symbol);
5635 else if (h->root.u.def.section != bfd_abs_section_ptr)
5636 (*_bfd_error_handler) (_("%B: %s not absolute"),
5637 output_bfd, legacy_symbol);
5638 else
5639 info->stacksize = h->root.u.def.value;
5640 }
5641
5642 if (!info->stacksize)
5643 /* If the user didn't set a size, or explicitly inhibit the
5644 size, set it now. */
5645 info->stacksize = default_size;
5646
5647 /* Provide the legacy symbol, if it is referenced. */
5648 if (h && (h->root.type == bfd_link_hash_undefined
5649 || h->root.type == bfd_link_hash_undefweak))
5650 {
5651 struct bfd_link_hash_entry *bh = NULL;
5652
5653 if (!(_bfd_generic_link_add_one_symbol
5654 (info, output_bfd, legacy_symbol,
5655 BSF_GLOBAL, bfd_abs_section_ptr,
5656 info->stacksize >= 0 ? info->stacksize : 0,
5657 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5658 return FALSE;
5659
5660 h = (struct elf_link_hash_entry *) bh;
5661 h->def_regular = 1;
5662 h->type = STT_OBJECT;
5663 }
5664
5665 return TRUE;
5666 }
5667
5668 /* Set up the sizes and contents of the ELF dynamic sections. This is
5669 called by the ELF linker emulation before_allocation routine. We
5670 must set the sizes of the sections before the linker sets the
5671 addresses of the various sections. */
5672
5673 bfd_boolean
5674 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5675 const char *soname,
5676 const char *rpath,
5677 const char *filter_shlib,
5678 const char *audit,
5679 const char *depaudit,
5680 const char * const *auxiliary_filters,
5681 struct bfd_link_info *info,
5682 asection **sinterpptr)
5683 {
5684 bfd_size_type soname_indx;
5685 bfd *dynobj;
5686 const struct elf_backend_data *bed;
5687 struct elf_info_failed asvinfo;
5688
5689 *sinterpptr = NULL;
5690
5691 soname_indx = (bfd_size_type) -1;
5692
5693 if (!is_elf_hash_table (info->hash))
5694 return TRUE;
5695
5696 bed = get_elf_backend_data (output_bfd);
5697
5698 /* Any syms created from now on start with -1 in
5699 got.refcount/offset and plt.refcount/offset. */
5700 elf_hash_table (info)->init_got_refcount
5701 = elf_hash_table (info)->init_got_offset;
5702 elf_hash_table (info)->init_plt_refcount
5703 = elf_hash_table (info)->init_plt_offset;
5704
5705 if (bfd_link_relocatable (info)
5706 && !_bfd_elf_size_group_sections (info))
5707 return FALSE;
5708
5709 /* The backend may have to create some sections regardless of whether
5710 we're dynamic or not. */
5711 if (bed->elf_backend_always_size_sections
5712 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5713 return FALSE;
5714
5715 /* Determine any GNU_STACK segment requirements, after the backend
5716 has had a chance to set a default segment size. */
5717 if (info->execstack)
5718 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5719 else if (info->noexecstack)
5720 elf_stack_flags (output_bfd) = PF_R | PF_W;
5721 else
5722 {
5723 bfd *inputobj;
5724 asection *notesec = NULL;
5725 int exec = 0;
5726
5727 for (inputobj = info->input_bfds;
5728 inputobj;
5729 inputobj = inputobj->link.next)
5730 {
5731 asection *s;
5732
5733 if (inputobj->flags
5734 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5735 continue;
5736 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5737 if (s)
5738 {
5739 if (s->flags & SEC_CODE)
5740 exec = PF_X;
5741 notesec = s;
5742 }
5743 else if (bed->default_execstack)
5744 exec = PF_X;
5745 }
5746 if (notesec || info->stacksize > 0)
5747 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5748 if (notesec && exec && bfd_link_relocatable (info)
5749 && notesec->output_section != bfd_abs_section_ptr)
5750 notesec->output_section->flags |= SEC_CODE;
5751 }
5752
5753 dynobj = elf_hash_table (info)->dynobj;
5754
5755 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5756 {
5757 struct elf_info_failed eif;
5758 struct elf_link_hash_entry *h;
5759 asection *dynstr;
5760 struct bfd_elf_version_tree *t;
5761 struct bfd_elf_version_expr *d;
5762 asection *s;
5763 bfd_boolean all_defined;
5764
5765 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5766 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info));
5767
5768 if (soname != NULL)
5769 {
5770 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5771 soname, TRUE);
5772 if (soname_indx == (bfd_size_type) -1
5773 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5774 return FALSE;
5775 }
5776
5777 if (info->symbolic)
5778 {
5779 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5780 return FALSE;
5781 info->flags |= DF_SYMBOLIC;
5782 }
5783
5784 if (rpath != NULL)
5785 {
5786 bfd_size_type indx;
5787 bfd_vma tag;
5788
5789 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5790 TRUE);
5791 if (indx == (bfd_size_type) -1)
5792 return FALSE;
5793
5794 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5795 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5796 return FALSE;
5797 }
5798
5799 if (filter_shlib != NULL)
5800 {
5801 bfd_size_type indx;
5802
5803 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5804 filter_shlib, TRUE);
5805 if (indx == (bfd_size_type) -1
5806 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5807 return FALSE;
5808 }
5809
5810 if (auxiliary_filters != NULL)
5811 {
5812 const char * const *p;
5813
5814 for (p = auxiliary_filters; *p != NULL; p++)
5815 {
5816 bfd_size_type indx;
5817
5818 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5819 *p, TRUE);
5820 if (indx == (bfd_size_type) -1
5821 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5822 return FALSE;
5823 }
5824 }
5825
5826 if (audit != NULL)
5827 {
5828 bfd_size_type indx;
5829
5830 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5831 TRUE);
5832 if (indx == (bfd_size_type) -1
5833 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5834 return FALSE;
5835 }
5836
5837 if (depaudit != NULL)
5838 {
5839 bfd_size_type indx;
5840
5841 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5842 TRUE);
5843 if (indx == (bfd_size_type) -1
5844 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5845 return FALSE;
5846 }
5847
5848 eif.info = info;
5849 eif.failed = FALSE;
5850
5851 /* If we are supposed to export all symbols into the dynamic symbol
5852 table (this is not the normal case), then do so. */
5853 if (info->export_dynamic
5854 || (bfd_link_executable (info) && info->dynamic))
5855 {
5856 elf_link_hash_traverse (elf_hash_table (info),
5857 _bfd_elf_export_symbol,
5858 &eif);
5859 if (eif.failed)
5860 return FALSE;
5861 }
5862
5863 /* Make all global versions with definition. */
5864 for (t = info->version_info; t != NULL; t = t->next)
5865 for (d = t->globals.list; d != NULL; d = d->next)
5866 if (!d->symver && d->literal)
5867 {
5868 const char *verstr, *name;
5869 size_t namelen, verlen, newlen;
5870 char *newname, *p, leading_char;
5871 struct elf_link_hash_entry *newh;
5872
5873 leading_char = bfd_get_symbol_leading_char (output_bfd);
5874 name = d->pattern;
5875 namelen = strlen (name) + (leading_char != '\0');
5876 verstr = t->name;
5877 verlen = strlen (verstr);
5878 newlen = namelen + verlen + 3;
5879
5880 newname = (char *) bfd_malloc (newlen);
5881 if (newname == NULL)
5882 return FALSE;
5883 newname[0] = leading_char;
5884 memcpy (newname + (leading_char != '\0'), name, namelen);
5885
5886 /* Check the hidden versioned definition. */
5887 p = newname + namelen;
5888 *p++ = ELF_VER_CHR;
5889 memcpy (p, verstr, verlen + 1);
5890 newh = elf_link_hash_lookup (elf_hash_table (info),
5891 newname, FALSE, FALSE,
5892 FALSE);
5893 if (newh == NULL
5894 || (newh->root.type != bfd_link_hash_defined
5895 && newh->root.type != bfd_link_hash_defweak))
5896 {
5897 /* Check the default versioned definition. */
5898 *p++ = ELF_VER_CHR;
5899 memcpy (p, verstr, verlen + 1);
5900 newh = elf_link_hash_lookup (elf_hash_table (info),
5901 newname, FALSE, FALSE,
5902 FALSE);
5903 }
5904 free (newname);
5905
5906 /* Mark this version if there is a definition and it is
5907 not defined in a shared object. */
5908 if (newh != NULL
5909 && !newh->def_dynamic
5910 && (newh->root.type == bfd_link_hash_defined
5911 || newh->root.type == bfd_link_hash_defweak))
5912 d->symver = 1;
5913 }
5914
5915 /* Attach all the symbols to their version information. */
5916 asvinfo.info = info;
5917 asvinfo.failed = FALSE;
5918
5919 elf_link_hash_traverse (elf_hash_table (info),
5920 _bfd_elf_link_assign_sym_version,
5921 &asvinfo);
5922 if (asvinfo.failed)
5923 return FALSE;
5924
5925 if (!info->allow_undefined_version)
5926 {
5927 /* Check if all global versions have a definition. */
5928 all_defined = TRUE;
5929 for (t = info->version_info; t != NULL; t = t->next)
5930 for (d = t->globals.list; d != NULL; d = d->next)
5931 if (d->literal && !d->symver && !d->script)
5932 {
5933 (*_bfd_error_handler)
5934 (_("%s: undefined version: %s"),
5935 d->pattern, t->name);
5936 all_defined = FALSE;
5937 }
5938
5939 if (!all_defined)
5940 {
5941 bfd_set_error (bfd_error_bad_value);
5942 return FALSE;
5943 }
5944 }
5945
5946 /* Find all symbols which were defined in a dynamic object and make
5947 the backend pick a reasonable value for them. */
5948 elf_link_hash_traverse (elf_hash_table (info),
5949 _bfd_elf_adjust_dynamic_symbol,
5950 &eif);
5951 if (eif.failed)
5952 return FALSE;
5953
5954 /* Add some entries to the .dynamic section. We fill in some of the
5955 values later, in bfd_elf_final_link, but we must add the entries
5956 now so that we know the final size of the .dynamic section. */
5957
5958 /* If there are initialization and/or finalization functions to
5959 call then add the corresponding DT_INIT/DT_FINI entries. */
5960 h = (info->init_function
5961 ? elf_link_hash_lookup (elf_hash_table (info),
5962 info->init_function, FALSE,
5963 FALSE, FALSE)
5964 : NULL);
5965 if (h != NULL
5966 && (h->ref_regular
5967 || h->def_regular))
5968 {
5969 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5970 return FALSE;
5971 }
5972 h = (info->fini_function
5973 ? elf_link_hash_lookup (elf_hash_table (info),
5974 info->fini_function, FALSE,
5975 FALSE, FALSE)
5976 : NULL);
5977 if (h != NULL
5978 && (h->ref_regular
5979 || h->def_regular))
5980 {
5981 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5982 return FALSE;
5983 }
5984
5985 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5986 if (s != NULL && s->linker_has_input)
5987 {
5988 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5989 if (! bfd_link_executable (info))
5990 {
5991 bfd *sub;
5992 asection *o;
5993
5994 for (sub = info->input_bfds; sub != NULL;
5995 sub = sub->link.next)
5996 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5997 for (o = sub->sections; o != NULL; o = o->next)
5998 if (elf_section_data (o)->this_hdr.sh_type
5999 == SHT_PREINIT_ARRAY)
6000 {
6001 (*_bfd_error_handler)
6002 (_("%B: .preinit_array section is not allowed in DSO"),
6003 sub);
6004 break;
6005 }
6006
6007 bfd_set_error (bfd_error_nonrepresentable_section);
6008 return FALSE;
6009 }
6010
6011 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6012 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6013 return FALSE;
6014 }
6015 s = bfd_get_section_by_name (output_bfd, ".init_array");
6016 if (s != NULL && s->linker_has_input)
6017 {
6018 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6019 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6020 return FALSE;
6021 }
6022 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6023 if (s != NULL && s->linker_has_input)
6024 {
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6026 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6027 return FALSE;
6028 }
6029
6030 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6031 /* If .dynstr is excluded from the link, we don't want any of
6032 these tags. Strictly, we should be checking each section
6033 individually; This quick check covers for the case where
6034 someone does a /DISCARD/ : { *(*) }. */
6035 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6036 {
6037 bfd_size_type strsize;
6038
6039 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6040 if ((info->emit_hash
6041 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6042 || (info->emit_gnu_hash
6043 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6044 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6045 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6046 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6047 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6048 bed->s->sizeof_sym))
6049 return FALSE;
6050 }
6051 }
6052
6053 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6054 return FALSE;
6055
6056 /* The backend must work out the sizes of all the other dynamic
6057 sections. */
6058 if (dynobj != NULL
6059 && bed->elf_backend_size_dynamic_sections != NULL
6060 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6061 return FALSE;
6062
6063 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6064 {
6065 unsigned long section_sym_count;
6066 struct bfd_elf_version_tree *verdefs;
6067 asection *s;
6068
6069 /* Set up the version definition section. */
6070 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6071 BFD_ASSERT (s != NULL);
6072
6073 /* We may have created additional version definitions if we are
6074 just linking a regular application. */
6075 verdefs = info->version_info;
6076
6077 /* Skip anonymous version tag. */
6078 if (verdefs != NULL && verdefs->vernum == 0)
6079 verdefs = verdefs->next;
6080
6081 if (verdefs == NULL && !info->create_default_symver)
6082 s->flags |= SEC_EXCLUDE;
6083 else
6084 {
6085 unsigned int cdefs;
6086 bfd_size_type size;
6087 struct bfd_elf_version_tree *t;
6088 bfd_byte *p;
6089 Elf_Internal_Verdef def;
6090 Elf_Internal_Verdaux defaux;
6091 struct bfd_link_hash_entry *bh;
6092 struct elf_link_hash_entry *h;
6093 const char *name;
6094
6095 cdefs = 0;
6096 size = 0;
6097
6098 /* Make space for the base version. */
6099 size += sizeof (Elf_External_Verdef);
6100 size += sizeof (Elf_External_Verdaux);
6101 ++cdefs;
6102
6103 /* Make space for the default version. */
6104 if (info->create_default_symver)
6105 {
6106 size += sizeof (Elf_External_Verdef);
6107 ++cdefs;
6108 }
6109
6110 for (t = verdefs; t != NULL; t = t->next)
6111 {
6112 struct bfd_elf_version_deps *n;
6113
6114 /* Don't emit base version twice. */
6115 if (t->vernum == 0)
6116 continue;
6117
6118 size += sizeof (Elf_External_Verdef);
6119 size += sizeof (Elf_External_Verdaux);
6120 ++cdefs;
6121
6122 for (n = t->deps; n != NULL; n = n->next)
6123 size += sizeof (Elf_External_Verdaux);
6124 }
6125
6126 s->size = size;
6127 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6128 if (s->contents == NULL && s->size != 0)
6129 return FALSE;
6130
6131 /* Fill in the version definition section. */
6132
6133 p = s->contents;
6134
6135 def.vd_version = VER_DEF_CURRENT;
6136 def.vd_flags = VER_FLG_BASE;
6137 def.vd_ndx = 1;
6138 def.vd_cnt = 1;
6139 if (info->create_default_symver)
6140 {
6141 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6142 def.vd_next = sizeof (Elf_External_Verdef);
6143 }
6144 else
6145 {
6146 def.vd_aux = sizeof (Elf_External_Verdef);
6147 def.vd_next = (sizeof (Elf_External_Verdef)
6148 + sizeof (Elf_External_Verdaux));
6149 }
6150
6151 if (soname_indx != (bfd_size_type) -1)
6152 {
6153 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6154 soname_indx);
6155 def.vd_hash = bfd_elf_hash (soname);
6156 defaux.vda_name = soname_indx;
6157 name = soname;
6158 }
6159 else
6160 {
6161 bfd_size_type indx;
6162
6163 name = lbasename (output_bfd->filename);
6164 def.vd_hash = bfd_elf_hash (name);
6165 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6166 name, FALSE);
6167 if (indx == (bfd_size_type) -1)
6168 return FALSE;
6169 defaux.vda_name = indx;
6170 }
6171 defaux.vda_next = 0;
6172
6173 _bfd_elf_swap_verdef_out (output_bfd, &def,
6174 (Elf_External_Verdef *) p);
6175 p += sizeof (Elf_External_Verdef);
6176 if (info->create_default_symver)
6177 {
6178 /* Add a symbol representing this version. */
6179 bh = NULL;
6180 if (! (_bfd_generic_link_add_one_symbol
6181 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6182 0, NULL, FALSE,
6183 get_elf_backend_data (dynobj)->collect, &bh)))
6184 return FALSE;
6185 h = (struct elf_link_hash_entry *) bh;
6186 h->non_elf = 0;
6187 h->def_regular = 1;
6188 h->type = STT_OBJECT;
6189 h->verinfo.vertree = NULL;
6190
6191 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6192 return FALSE;
6193
6194 /* Create a duplicate of the base version with the same
6195 aux block, but different flags. */
6196 def.vd_flags = 0;
6197 def.vd_ndx = 2;
6198 def.vd_aux = sizeof (Elf_External_Verdef);
6199 if (verdefs)
6200 def.vd_next = (sizeof (Elf_External_Verdef)
6201 + sizeof (Elf_External_Verdaux));
6202 else
6203 def.vd_next = 0;
6204 _bfd_elf_swap_verdef_out (output_bfd, &def,
6205 (Elf_External_Verdef *) p);
6206 p += sizeof (Elf_External_Verdef);
6207 }
6208 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6209 (Elf_External_Verdaux *) p);
6210 p += sizeof (Elf_External_Verdaux);
6211
6212 for (t = verdefs; t != NULL; t = t->next)
6213 {
6214 unsigned int cdeps;
6215 struct bfd_elf_version_deps *n;
6216
6217 /* Don't emit the base version twice. */
6218 if (t->vernum == 0)
6219 continue;
6220
6221 cdeps = 0;
6222 for (n = t->deps; n != NULL; n = n->next)
6223 ++cdeps;
6224
6225 /* Add a symbol representing this version. */
6226 bh = NULL;
6227 if (! (_bfd_generic_link_add_one_symbol
6228 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6229 0, NULL, FALSE,
6230 get_elf_backend_data (dynobj)->collect, &bh)))
6231 return FALSE;
6232 h = (struct elf_link_hash_entry *) bh;
6233 h->non_elf = 0;
6234 h->def_regular = 1;
6235 h->type = STT_OBJECT;
6236 h->verinfo.vertree = t;
6237
6238 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6239 return FALSE;
6240
6241 def.vd_version = VER_DEF_CURRENT;
6242 def.vd_flags = 0;
6243 if (t->globals.list == NULL
6244 && t->locals.list == NULL
6245 && ! t->used)
6246 def.vd_flags |= VER_FLG_WEAK;
6247 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6248 def.vd_cnt = cdeps + 1;
6249 def.vd_hash = bfd_elf_hash (t->name);
6250 def.vd_aux = sizeof (Elf_External_Verdef);
6251 def.vd_next = 0;
6252
6253 /* If a basever node is next, it *must* be the last node in
6254 the chain, otherwise Verdef construction breaks. */
6255 if (t->next != NULL && t->next->vernum == 0)
6256 BFD_ASSERT (t->next->next == NULL);
6257
6258 if (t->next != NULL && t->next->vernum != 0)
6259 def.vd_next = (sizeof (Elf_External_Verdef)
6260 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6261
6262 _bfd_elf_swap_verdef_out (output_bfd, &def,
6263 (Elf_External_Verdef *) p);
6264 p += sizeof (Elf_External_Verdef);
6265
6266 defaux.vda_name = h->dynstr_index;
6267 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6268 h->dynstr_index);
6269 defaux.vda_next = 0;
6270 if (t->deps != NULL)
6271 defaux.vda_next = sizeof (Elf_External_Verdaux);
6272 t->name_indx = defaux.vda_name;
6273
6274 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6275 (Elf_External_Verdaux *) p);
6276 p += sizeof (Elf_External_Verdaux);
6277
6278 for (n = t->deps; n != NULL; n = n->next)
6279 {
6280 if (n->version_needed == NULL)
6281 {
6282 /* This can happen if there was an error in the
6283 version script. */
6284 defaux.vda_name = 0;
6285 }
6286 else
6287 {
6288 defaux.vda_name = n->version_needed->name_indx;
6289 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6290 defaux.vda_name);
6291 }
6292 if (n->next == NULL)
6293 defaux.vda_next = 0;
6294 else
6295 defaux.vda_next = sizeof (Elf_External_Verdaux);
6296
6297 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6298 (Elf_External_Verdaux *) p);
6299 p += sizeof (Elf_External_Verdaux);
6300 }
6301 }
6302
6303 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6304 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6305 return FALSE;
6306
6307 elf_tdata (output_bfd)->cverdefs = cdefs;
6308 }
6309
6310 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6311 {
6312 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6313 return FALSE;
6314 }
6315 else if (info->flags & DF_BIND_NOW)
6316 {
6317 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6318 return FALSE;
6319 }
6320
6321 if (info->flags_1)
6322 {
6323 if (bfd_link_executable (info))
6324 info->flags_1 &= ~ (DF_1_INITFIRST
6325 | DF_1_NODELETE
6326 | DF_1_NOOPEN);
6327 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6328 return FALSE;
6329 }
6330
6331 /* Work out the size of the version reference section. */
6332
6333 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6334 BFD_ASSERT (s != NULL);
6335 {
6336 struct elf_find_verdep_info sinfo;
6337
6338 sinfo.info = info;
6339 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6340 if (sinfo.vers == 0)
6341 sinfo.vers = 1;
6342 sinfo.failed = FALSE;
6343
6344 elf_link_hash_traverse (elf_hash_table (info),
6345 _bfd_elf_link_find_version_dependencies,
6346 &sinfo);
6347 if (sinfo.failed)
6348 return FALSE;
6349
6350 if (elf_tdata (output_bfd)->verref == NULL)
6351 s->flags |= SEC_EXCLUDE;
6352 else
6353 {
6354 Elf_Internal_Verneed *t;
6355 unsigned int size;
6356 unsigned int crefs;
6357 bfd_byte *p;
6358
6359 /* Build the version dependency section. */
6360 size = 0;
6361 crefs = 0;
6362 for (t = elf_tdata (output_bfd)->verref;
6363 t != NULL;
6364 t = t->vn_nextref)
6365 {
6366 Elf_Internal_Vernaux *a;
6367
6368 size += sizeof (Elf_External_Verneed);
6369 ++crefs;
6370 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6371 size += sizeof (Elf_External_Vernaux);
6372 }
6373
6374 s->size = size;
6375 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6376 if (s->contents == NULL)
6377 return FALSE;
6378
6379 p = s->contents;
6380 for (t = elf_tdata (output_bfd)->verref;
6381 t != NULL;
6382 t = t->vn_nextref)
6383 {
6384 unsigned int caux;
6385 Elf_Internal_Vernaux *a;
6386 bfd_size_type indx;
6387
6388 caux = 0;
6389 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6390 ++caux;
6391
6392 t->vn_version = VER_NEED_CURRENT;
6393 t->vn_cnt = caux;
6394 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6395 elf_dt_name (t->vn_bfd) != NULL
6396 ? elf_dt_name (t->vn_bfd)
6397 : lbasename (t->vn_bfd->filename),
6398 FALSE);
6399 if (indx == (bfd_size_type) -1)
6400 return FALSE;
6401 t->vn_file = indx;
6402 t->vn_aux = sizeof (Elf_External_Verneed);
6403 if (t->vn_nextref == NULL)
6404 t->vn_next = 0;
6405 else
6406 t->vn_next = (sizeof (Elf_External_Verneed)
6407 + caux * sizeof (Elf_External_Vernaux));
6408
6409 _bfd_elf_swap_verneed_out (output_bfd, t,
6410 (Elf_External_Verneed *) p);
6411 p += sizeof (Elf_External_Verneed);
6412
6413 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6414 {
6415 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6416 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6417 a->vna_nodename, FALSE);
6418 if (indx == (bfd_size_type) -1)
6419 return FALSE;
6420 a->vna_name = indx;
6421 if (a->vna_nextptr == NULL)
6422 a->vna_next = 0;
6423 else
6424 a->vna_next = sizeof (Elf_External_Vernaux);
6425
6426 _bfd_elf_swap_vernaux_out (output_bfd, a,
6427 (Elf_External_Vernaux *) p);
6428 p += sizeof (Elf_External_Vernaux);
6429 }
6430 }
6431
6432 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6433 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6434 return FALSE;
6435
6436 elf_tdata (output_bfd)->cverrefs = crefs;
6437 }
6438 }
6439
6440 if ((elf_tdata (output_bfd)->cverrefs == 0
6441 && elf_tdata (output_bfd)->cverdefs == 0)
6442 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6443 &section_sym_count) == 0)
6444 {
6445 s = bfd_get_linker_section (dynobj, ".gnu.version");
6446 s->flags |= SEC_EXCLUDE;
6447 }
6448 }
6449 return TRUE;
6450 }
6451
6452 /* Find the first non-excluded output section. We'll use its
6453 section symbol for some emitted relocs. */
6454 void
6455 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6456 {
6457 asection *s;
6458
6459 for (s = output_bfd->sections; s != NULL; s = s->next)
6460 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6461 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6462 {
6463 elf_hash_table (info)->text_index_section = s;
6464 break;
6465 }
6466 }
6467
6468 /* Find two non-excluded output sections, one for code, one for data.
6469 We'll use their section symbols for some emitted relocs. */
6470 void
6471 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6472 {
6473 asection *s;
6474
6475 /* Data first, since setting text_index_section changes
6476 _bfd_elf_link_omit_section_dynsym. */
6477 for (s = output_bfd->sections; s != NULL; s = s->next)
6478 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6479 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6480 {
6481 elf_hash_table (info)->data_index_section = s;
6482 break;
6483 }
6484
6485 for (s = output_bfd->sections; s != NULL; s = s->next)
6486 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6487 == (SEC_ALLOC | SEC_READONLY))
6488 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6489 {
6490 elf_hash_table (info)->text_index_section = s;
6491 break;
6492 }
6493
6494 if (elf_hash_table (info)->text_index_section == NULL)
6495 elf_hash_table (info)->text_index_section
6496 = elf_hash_table (info)->data_index_section;
6497 }
6498
6499 bfd_boolean
6500 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6501 {
6502 const struct elf_backend_data *bed;
6503
6504 if (!is_elf_hash_table (info->hash))
6505 return TRUE;
6506
6507 bed = get_elf_backend_data (output_bfd);
6508 (*bed->elf_backend_init_index_section) (output_bfd, info);
6509
6510 if (elf_hash_table (info)->dynamic_sections_created)
6511 {
6512 bfd *dynobj;
6513 asection *s;
6514 bfd_size_type dynsymcount;
6515 unsigned long section_sym_count;
6516 unsigned int dtagcount;
6517
6518 dynobj = elf_hash_table (info)->dynobj;
6519
6520 /* Assign dynsym indicies. In a shared library we generate a
6521 section symbol for each output section, which come first.
6522 Next come all of the back-end allocated local dynamic syms,
6523 followed by the rest of the global symbols. */
6524
6525 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6526 &section_sym_count);
6527
6528 /* Work out the size of the symbol version section. */
6529 s = bfd_get_linker_section (dynobj, ".gnu.version");
6530 BFD_ASSERT (s != NULL);
6531 if (dynsymcount != 0
6532 && (s->flags & SEC_EXCLUDE) == 0)
6533 {
6534 s->size = dynsymcount * sizeof (Elf_External_Versym);
6535 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6536 if (s->contents == NULL)
6537 return FALSE;
6538
6539 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6540 return FALSE;
6541 }
6542
6543 /* Set the size of the .dynsym and .hash sections. We counted
6544 the number of dynamic symbols in elf_link_add_object_symbols.
6545 We will build the contents of .dynsym and .hash when we build
6546 the final symbol table, because until then we do not know the
6547 correct value to give the symbols. We built the .dynstr
6548 section as we went along in elf_link_add_object_symbols. */
6549 s = elf_hash_table (info)->dynsym;
6550 BFD_ASSERT (s != NULL);
6551 s->size = dynsymcount * bed->s->sizeof_sym;
6552
6553 if (dynsymcount != 0)
6554 {
6555 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6556 if (s->contents == NULL)
6557 return FALSE;
6558
6559 /* The first entry in .dynsym is a dummy symbol.
6560 Clear all the section syms, in case we don't output them all. */
6561 ++section_sym_count;
6562 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6563 }
6564
6565 elf_hash_table (info)->bucketcount = 0;
6566
6567 /* Compute the size of the hashing table. As a side effect this
6568 computes the hash values for all the names we export. */
6569 if (info->emit_hash)
6570 {
6571 unsigned long int *hashcodes;
6572 struct hash_codes_info hashinf;
6573 bfd_size_type amt;
6574 unsigned long int nsyms;
6575 size_t bucketcount;
6576 size_t hash_entry_size;
6577
6578 /* Compute the hash values for all exported symbols. At the same
6579 time store the values in an array so that we could use them for
6580 optimizations. */
6581 amt = dynsymcount * sizeof (unsigned long int);
6582 hashcodes = (unsigned long int *) bfd_malloc (amt);
6583 if (hashcodes == NULL)
6584 return FALSE;
6585 hashinf.hashcodes = hashcodes;
6586 hashinf.error = FALSE;
6587
6588 /* Put all hash values in HASHCODES. */
6589 elf_link_hash_traverse (elf_hash_table (info),
6590 elf_collect_hash_codes, &hashinf);
6591 if (hashinf.error)
6592 {
6593 free (hashcodes);
6594 return FALSE;
6595 }
6596
6597 nsyms = hashinf.hashcodes - hashcodes;
6598 bucketcount
6599 = compute_bucket_count (info, hashcodes, nsyms, 0);
6600 free (hashcodes);
6601
6602 if (bucketcount == 0)
6603 return FALSE;
6604
6605 elf_hash_table (info)->bucketcount = bucketcount;
6606
6607 s = bfd_get_linker_section (dynobj, ".hash");
6608 BFD_ASSERT (s != NULL);
6609 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6610 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6611 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6612 if (s->contents == NULL)
6613 return FALSE;
6614
6615 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6616 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6617 s->contents + hash_entry_size);
6618 }
6619
6620 if (info->emit_gnu_hash)
6621 {
6622 size_t i, cnt;
6623 unsigned char *contents;
6624 struct collect_gnu_hash_codes cinfo;
6625 bfd_size_type amt;
6626 size_t bucketcount;
6627
6628 memset (&cinfo, 0, sizeof (cinfo));
6629
6630 /* Compute the hash values for all exported symbols. At the same
6631 time store the values in an array so that we could use them for
6632 optimizations. */
6633 amt = dynsymcount * 2 * sizeof (unsigned long int);
6634 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6635 if (cinfo.hashcodes == NULL)
6636 return FALSE;
6637
6638 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6639 cinfo.min_dynindx = -1;
6640 cinfo.output_bfd = output_bfd;
6641 cinfo.bed = bed;
6642
6643 /* Put all hash values in HASHCODES. */
6644 elf_link_hash_traverse (elf_hash_table (info),
6645 elf_collect_gnu_hash_codes, &cinfo);
6646 if (cinfo.error)
6647 {
6648 free (cinfo.hashcodes);
6649 return FALSE;
6650 }
6651
6652 bucketcount
6653 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6654
6655 if (bucketcount == 0)
6656 {
6657 free (cinfo.hashcodes);
6658 return FALSE;
6659 }
6660
6661 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6662 BFD_ASSERT (s != NULL);
6663
6664 if (cinfo.nsyms == 0)
6665 {
6666 /* Empty .gnu.hash section is special. */
6667 BFD_ASSERT (cinfo.min_dynindx == -1);
6668 free (cinfo.hashcodes);
6669 s->size = 5 * 4 + bed->s->arch_size / 8;
6670 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6671 if (contents == NULL)
6672 return FALSE;
6673 s->contents = contents;
6674 /* 1 empty bucket. */
6675 bfd_put_32 (output_bfd, 1, contents);
6676 /* SYMIDX above the special symbol 0. */
6677 bfd_put_32 (output_bfd, 1, contents + 4);
6678 /* Just one word for bitmask. */
6679 bfd_put_32 (output_bfd, 1, contents + 8);
6680 /* Only hash fn bloom filter. */
6681 bfd_put_32 (output_bfd, 0, contents + 12);
6682 /* No hashes are valid - empty bitmask. */
6683 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6684 /* No hashes in the only bucket. */
6685 bfd_put_32 (output_bfd, 0,
6686 contents + 16 + bed->s->arch_size / 8);
6687 }
6688 else
6689 {
6690 unsigned long int maskwords, maskbitslog2, x;
6691 BFD_ASSERT (cinfo.min_dynindx != -1);
6692
6693 x = cinfo.nsyms;
6694 maskbitslog2 = 1;
6695 while ((x >>= 1) != 0)
6696 ++maskbitslog2;
6697 if (maskbitslog2 < 3)
6698 maskbitslog2 = 5;
6699 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6700 maskbitslog2 = maskbitslog2 + 3;
6701 else
6702 maskbitslog2 = maskbitslog2 + 2;
6703 if (bed->s->arch_size == 64)
6704 {
6705 if (maskbitslog2 == 5)
6706 maskbitslog2 = 6;
6707 cinfo.shift1 = 6;
6708 }
6709 else
6710 cinfo.shift1 = 5;
6711 cinfo.mask = (1 << cinfo.shift1) - 1;
6712 cinfo.shift2 = maskbitslog2;
6713 cinfo.maskbits = 1 << maskbitslog2;
6714 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6715 amt = bucketcount * sizeof (unsigned long int) * 2;
6716 amt += maskwords * sizeof (bfd_vma);
6717 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6718 if (cinfo.bitmask == NULL)
6719 {
6720 free (cinfo.hashcodes);
6721 return FALSE;
6722 }
6723
6724 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6725 cinfo.indx = cinfo.counts + bucketcount;
6726 cinfo.symindx = dynsymcount - cinfo.nsyms;
6727 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6728
6729 /* Determine how often each hash bucket is used. */
6730 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6731 for (i = 0; i < cinfo.nsyms; ++i)
6732 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6733
6734 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6735 if (cinfo.counts[i] != 0)
6736 {
6737 cinfo.indx[i] = cnt;
6738 cnt += cinfo.counts[i];
6739 }
6740 BFD_ASSERT (cnt == dynsymcount);
6741 cinfo.bucketcount = bucketcount;
6742 cinfo.local_indx = cinfo.min_dynindx;
6743
6744 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6745 s->size += cinfo.maskbits / 8;
6746 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6747 if (contents == NULL)
6748 {
6749 free (cinfo.bitmask);
6750 free (cinfo.hashcodes);
6751 return FALSE;
6752 }
6753
6754 s->contents = contents;
6755 bfd_put_32 (output_bfd, bucketcount, contents);
6756 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6757 bfd_put_32 (output_bfd, maskwords, contents + 8);
6758 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6759 contents += 16 + cinfo.maskbits / 8;
6760
6761 for (i = 0; i < bucketcount; ++i)
6762 {
6763 if (cinfo.counts[i] == 0)
6764 bfd_put_32 (output_bfd, 0, contents);
6765 else
6766 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6767 contents += 4;
6768 }
6769
6770 cinfo.contents = contents;
6771
6772 /* Renumber dynamic symbols, populate .gnu.hash section. */
6773 elf_link_hash_traverse (elf_hash_table (info),
6774 elf_renumber_gnu_hash_syms, &cinfo);
6775
6776 contents = s->contents + 16;
6777 for (i = 0; i < maskwords; ++i)
6778 {
6779 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6780 contents);
6781 contents += bed->s->arch_size / 8;
6782 }
6783
6784 free (cinfo.bitmask);
6785 free (cinfo.hashcodes);
6786 }
6787 }
6788
6789 s = bfd_get_linker_section (dynobj, ".dynstr");
6790 BFD_ASSERT (s != NULL);
6791
6792 elf_finalize_dynstr (output_bfd, info);
6793
6794 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6795
6796 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6797 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6798 return FALSE;
6799 }
6800
6801 return TRUE;
6802 }
6803 \f
6804 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6805
6806 static void
6807 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6808 asection *sec)
6809 {
6810 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6811 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6812 }
6813
6814 /* Finish SHF_MERGE section merging. */
6815
6816 bfd_boolean
6817 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6818 {
6819 bfd *ibfd;
6820 asection *sec;
6821
6822 if (!is_elf_hash_table (info->hash))
6823 return FALSE;
6824
6825 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6826 if ((ibfd->flags & DYNAMIC) == 0)
6827 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6828 if ((sec->flags & SEC_MERGE) != 0
6829 && !bfd_is_abs_section (sec->output_section))
6830 {
6831 struct bfd_elf_section_data *secdata;
6832
6833 secdata = elf_section_data (sec);
6834 if (! _bfd_add_merge_section (abfd,
6835 &elf_hash_table (info)->merge_info,
6836 sec, &secdata->sec_info))
6837 return FALSE;
6838 else if (secdata->sec_info)
6839 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6840 }
6841
6842 if (elf_hash_table (info)->merge_info != NULL)
6843 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6844 merge_sections_remove_hook);
6845 return TRUE;
6846 }
6847
6848 /* Create an entry in an ELF linker hash table. */
6849
6850 struct bfd_hash_entry *
6851 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6852 struct bfd_hash_table *table,
6853 const char *string)
6854 {
6855 /* Allocate the structure if it has not already been allocated by a
6856 subclass. */
6857 if (entry == NULL)
6858 {
6859 entry = (struct bfd_hash_entry *)
6860 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6861 if (entry == NULL)
6862 return entry;
6863 }
6864
6865 /* Call the allocation method of the superclass. */
6866 entry = _bfd_link_hash_newfunc (entry, table, string);
6867 if (entry != NULL)
6868 {
6869 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6870 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6871
6872 /* Set local fields. */
6873 ret->indx = -1;
6874 ret->dynindx = -1;
6875 ret->got = htab->init_got_refcount;
6876 ret->plt = htab->init_plt_refcount;
6877 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6878 - offsetof (struct elf_link_hash_entry, size)));
6879 /* Assume that we have been called by a non-ELF symbol reader.
6880 This flag is then reset by the code which reads an ELF input
6881 file. This ensures that a symbol created by a non-ELF symbol
6882 reader will have the flag set correctly. */
6883 ret->non_elf = 1;
6884 }
6885
6886 return entry;
6887 }
6888
6889 /* Copy data from an indirect symbol to its direct symbol, hiding the
6890 old indirect symbol. Also used for copying flags to a weakdef. */
6891
6892 void
6893 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6894 struct elf_link_hash_entry *dir,
6895 struct elf_link_hash_entry *ind)
6896 {
6897 struct elf_link_hash_table *htab;
6898
6899 /* Copy down any references that we may have already seen to the
6900 symbol which just became indirect if DIR isn't a hidden versioned
6901 symbol. */
6902
6903 if (dir->versioned != versioned_hidden)
6904 {
6905 dir->ref_dynamic |= ind->ref_dynamic;
6906 dir->ref_regular |= ind->ref_regular;
6907 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6908 dir->non_got_ref |= ind->non_got_ref;
6909 dir->needs_plt |= ind->needs_plt;
6910 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6911 }
6912
6913 if (ind->root.type != bfd_link_hash_indirect)
6914 return;
6915
6916 /* Copy over the global and procedure linkage table refcount entries.
6917 These may have been already set up by a check_relocs routine. */
6918 htab = elf_hash_table (info);
6919 if (ind->got.refcount > htab->init_got_refcount.refcount)
6920 {
6921 if (dir->got.refcount < 0)
6922 dir->got.refcount = 0;
6923 dir->got.refcount += ind->got.refcount;
6924 ind->got.refcount = htab->init_got_refcount.refcount;
6925 }
6926
6927 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6928 {
6929 if (dir->plt.refcount < 0)
6930 dir->plt.refcount = 0;
6931 dir->plt.refcount += ind->plt.refcount;
6932 ind->plt.refcount = htab->init_plt_refcount.refcount;
6933 }
6934
6935 if (ind->dynindx != -1)
6936 {
6937 if (dir->dynindx != -1)
6938 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6939 dir->dynindx = ind->dynindx;
6940 dir->dynstr_index = ind->dynstr_index;
6941 ind->dynindx = -1;
6942 ind->dynstr_index = 0;
6943 }
6944 }
6945
6946 void
6947 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6948 struct elf_link_hash_entry *h,
6949 bfd_boolean force_local)
6950 {
6951 /* STT_GNU_IFUNC symbol must go through PLT. */
6952 if (h->type != STT_GNU_IFUNC)
6953 {
6954 h->plt = elf_hash_table (info)->init_plt_offset;
6955 h->needs_plt = 0;
6956 }
6957 if (force_local)
6958 {
6959 h->forced_local = 1;
6960 if (h->dynindx != -1)
6961 {
6962 h->dynindx = -1;
6963 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6964 h->dynstr_index);
6965 }
6966 }
6967 }
6968
6969 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6970 caller. */
6971
6972 bfd_boolean
6973 _bfd_elf_link_hash_table_init
6974 (struct elf_link_hash_table *table,
6975 bfd *abfd,
6976 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6977 struct bfd_hash_table *,
6978 const char *),
6979 unsigned int entsize,
6980 enum elf_target_id target_id)
6981 {
6982 bfd_boolean ret;
6983 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6984
6985 table->init_got_refcount.refcount = can_refcount - 1;
6986 table->init_plt_refcount.refcount = can_refcount - 1;
6987 table->init_got_offset.offset = -(bfd_vma) 1;
6988 table->init_plt_offset.offset = -(bfd_vma) 1;
6989 /* The first dynamic symbol is a dummy. */
6990 table->dynsymcount = 1;
6991
6992 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6993
6994 table->root.type = bfd_link_elf_hash_table;
6995 table->hash_table_id = target_id;
6996
6997 return ret;
6998 }
6999
7000 /* Create an ELF linker hash table. */
7001
7002 struct bfd_link_hash_table *
7003 _bfd_elf_link_hash_table_create (bfd *abfd)
7004 {
7005 struct elf_link_hash_table *ret;
7006 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7007
7008 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7009 if (ret == NULL)
7010 return NULL;
7011
7012 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7013 sizeof (struct elf_link_hash_entry),
7014 GENERIC_ELF_DATA))
7015 {
7016 free (ret);
7017 return NULL;
7018 }
7019 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7020
7021 return &ret->root;
7022 }
7023
7024 /* Destroy an ELF linker hash table. */
7025
7026 void
7027 _bfd_elf_link_hash_table_free (bfd *obfd)
7028 {
7029 struct elf_link_hash_table *htab;
7030
7031 htab = (struct elf_link_hash_table *) obfd->link.hash;
7032 if (htab->dynstr != NULL)
7033 _bfd_elf_strtab_free (htab->dynstr);
7034 _bfd_merge_sections_free (htab->merge_info);
7035 _bfd_generic_link_hash_table_free (obfd);
7036 }
7037
7038 /* This is a hook for the ELF emulation code in the generic linker to
7039 tell the backend linker what file name to use for the DT_NEEDED
7040 entry for a dynamic object. */
7041
7042 void
7043 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7044 {
7045 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7046 && bfd_get_format (abfd) == bfd_object)
7047 elf_dt_name (abfd) = name;
7048 }
7049
7050 int
7051 bfd_elf_get_dyn_lib_class (bfd *abfd)
7052 {
7053 int lib_class;
7054 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7055 && bfd_get_format (abfd) == bfd_object)
7056 lib_class = elf_dyn_lib_class (abfd);
7057 else
7058 lib_class = 0;
7059 return lib_class;
7060 }
7061
7062 void
7063 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7064 {
7065 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7066 && bfd_get_format (abfd) == bfd_object)
7067 elf_dyn_lib_class (abfd) = lib_class;
7068 }
7069
7070 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7071 the linker ELF emulation code. */
7072
7073 struct bfd_link_needed_list *
7074 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7075 struct bfd_link_info *info)
7076 {
7077 if (! is_elf_hash_table (info->hash))
7078 return NULL;
7079 return elf_hash_table (info)->needed;
7080 }
7081
7082 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7083 hook for the linker ELF emulation code. */
7084
7085 struct bfd_link_needed_list *
7086 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7087 struct bfd_link_info *info)
7088 {
7089 if (! is_elf_hash_table (info->hash))
7090 return NULL;
7091 return elf_hash_table (info)->runpath;
7092 }
7093
7094 /* Get the name actually used for a dynamic object for a link. This
7095 is the SONAME entry if there is one. Otherwise, it is the string
7096 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7097
7098 const char *
7099 bfd_elf_get_dt_soname (bfd *abfd)
7100 {
7101 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7102 && bfd_get_format (abfd) == bfd_object)
7103 return elf_dt_name (abfd);
7104 return NULL;
7105 }
7106
7107 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7108 the ELF linker emulation code. */
7109
7110 bfd_boolean
7111 bfd_elf_get_bfd_needed_list (bfd *abfd,
7112 struct bfd_link_needed_list **pneeded)
7113 {
7114 asection *s;
7115 bfd_byte *dynbuf = NULL;
7116 unsigned int elfsec;
7117 unsigned long shlink;
7118 bfd_byte *extdyn, *extdynend;
7119 size_t extdynsize;
7120 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7121
7122 *pneeded = NULL;
7123
7124 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7125 || bfd_get_format (abfd) != bfd_object)
7126 return TRUE;
7127
7128 s = bfd_get_section_by_name (abfd, ".dynamic");
7129 if (s == NULL || s->size == 0)
7130 return TRUE;
7131
7132 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7133 goto error_return;
7134
7135 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7136 if (elfsec == SHN_BAD)
7137 goto error_return;
7138
7139 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7140
7141 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7142 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7143
7144 extdyn = dynbuf;
7145 extdynend = extdyn + s->size;
7146 for (; extdyn < extdynend; extdyn += extdynsize)
7147 {
7148 Elf_Internal_Dyn dyn;
7149
7150 (*swap_dyn_in) (abfd, extdyn, &dyn);
7151
7152 if (dyn.d_tag == DT_NULL)
7153 break;
7154
7155 if (dyn.d_tag == DT_NEEDED)
7156 {
7157 const char *string;
7158 struct bfd_link_needed_list *l;
7159 unsigned int tagv = dyn.d_un.d_val;
7160 bfd_size_type amt;
7161
7162 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7163 if (string == NULL)
7164 goto error_return;
7165
7166 amt = sizeof *l;
7167 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7168 if (l == NULL)
7169 goto error_return;
7170
7171 l->by = abfd;
7172 l->name = string;
7173 l->next = *pneeded;
7174 *pneeded = l;
7175 }
7176 }
7177
7178 free (dynbuf);
7179
7180 return TRUE;
7181
7182 error_return:
7183 if (dynbuf != NULL)
7184 free (dynbuf);
7185 return FALSE;
7186 }
7187
7188 struct elf_symbuf_symbol
7189 {
7190 unsigned long st_name; /* Symbol name, index in string tbl */
7191 unsigned char st_info; /* Type and binding attributes */
7192 unsigned char st_other; /* Visibilty, and target specific */
7193 };
7194
7195 struct elf_symbuf_head
7196 {
7197 struct elf_symbuf_symbol *ssym;
7198 bfd_size_type count;
7199 unsigned int st_shndx;
7200 };
7201
7202 struct elf_symbol
7203 {
7204 union
7205 {
7206 Elf_Internal_Sym *isym;
7207 struct elf_symbuf_symbol *ssym;
7208 } u;
7209 const char *name;
7210 };
7211
7212 /* Sort references to symbols by ascending section number. */
7213
7214 static int
7215 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7216 {
7217 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7218 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7219
7220 return s1->st_shndx - s2->st_shndx;
7221 }
7222
7223 static int
7224 elf_sym_name_compare (const void *arg1, const void *arg2)
7225 {
7226 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7227 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7228 return strcmp (s1->name, s2->name);
7229 }
7230
7231 static struct elf_symbuf_head *
7232 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7233 {
7234 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7235 struct elf_symbuf_symbol *ssym;
7236 struct elf_symbuf_head *ssymbuf, *ssymhead;
7237 bfd_size_type i, shndx_count, total_size;
7238
7239 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7240 if (indbuf == NULL)
7241 return NULL;
7242
7243 for (ind = indbuf, i = 0; i < symcount; i++)
7244 if (isymbuf[i].st_shndx != SHN_UNDEF)
7245 *ind++ = &isymbuf[i];
7246 indbufend = ind;
7247
7248 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7249 elf_sort_elf_symbol);
7250
7251 shndx_count = 0;
7252 if (indbufend > indbuf)
7253 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7254 if (ind[0]->st_shndx != ind[1]->st_shndx)
7255 shndx_count++;
7256
7257 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7258 + (indbufend - indbuf) * sizeof (*ssym));
7259 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7260 if (ssymbuf == NULL)
7261 {
7262 free (indbuf);
7263 return NULL;
7264 }
7265
7266 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7267 ssymbuf->ssym = NULL;
7268 ssymbuf->count = shndx_count;
7269 ssymbuf->st_shndx = 0;
7270 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7271 {
7272 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7273 {
7274 ssymhead++;
7275 ssymhead->ssym = ssym;
7276 ssymhead->count = 0;
7277 ssymhead->st_shndx = (*ind)->st_shndx;
7278 }
7279 ssym->st_name = (*ind)->st_name;
7280 ssym->st_info = (*ind)->st_info;
7281 ssym->st_other = (*ind)->st_other;
7282 ssymhead->count++;
7283 }
7284 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7285 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7286 == total_size));
7287
7288 free (indbuf);
7289 return ssymbuf;
7290 }
7291
7292 /* Check if 2 sections define the same set of local and global
7293 symbols. */
7294
7295 static bfd_boolean
7296 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7297 struct bfd_link_info *info)
7298 {
7299 bfd *bfd1, *bfd2;
7300 const struct elf_backend_data *bed1, *bed2;
7301 Elf_Internal_Shdr *hdr1, *hdr2;
7302 bfd_size_type symcount1, symcount2;
7303 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7304 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7305 Elf_Internal_Sym *isym, *isymend;
7306 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7307 bfd_size_type count1, count2, i;
7308 unsigned int shndx1, shndx2;
7309 bfd_boolean result;
7310
7311 bfd1 = sec1->owner;
7312 bfd2 = sec2->owner;
7313
7314 /* Both sections have to be in ELF. */
7315 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7316 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7317 return FALSE;
7318
7319 if (elf_section_type (sec1) != elf_section_type (sec2))
7320 return FALSE;
7321
7322 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7323 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7324 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7325 return FALSE;
7326
7327 bed1 = get_elf_backend_data (bfd1);
7328 bed2 = get_elf_backend_data (bfd2);
7329 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7330 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7331 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7332 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7333
7334 if (symcount1 == 0 || symcount2 == 0)
7335 return FALSE;
7336
7337 result = FALSE;
7338 isymbuf1 = NULL;
7339 isymbuf2 = NULL;
7340 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7341 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7342
7343 if (ssymbuf1 == NULL)
7344 {
7345 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7346 NULL, NULL, NULL);
7347 if (isymbuf1 == NULL)
7348 goto done;
7349
7350 if (!info->reduce_memory_overheads)
7351 elf_tdata (bfd1)->symbuf = ssymbuf1
7352 = elf_create_symbuf (symcount1, isymbuf1);
7353 }
7354
7355 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7356 {
7357 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7358 NULL, NULL, NULL);
7359 if (isymbuf2 == NULL)
7360 goto done;
7361
7362 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7363 elf_tdata (bfd2)->symbuf = ssymbuf2
7364 = elf_create_symbuf (symcount2, isymbuf2);
7365 }
7366
7367 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7368 {
7369 /* Optimized faster version. */
7370 bfd_size_type lo, hi, mid;
7371 struct elf_symbol *symp;
7372 struct elf_symbuf_symbol *ssym, *ssymend;
7373
7374 lo = 0;
7375 hi = ssymbuf1->count;
7376 ssymbuf1++;
7377 count1 = 0;
7378 while (lo < hi)
7379 {
7380 mid = (lo + hi) / 2;
7381 if (shndx1 < ssymbuf1[mid].st_shndx)
7382 hi = mid;
7383 else if (shndx1 > ssymbuf1[mid].st_shndx)
7384 lo = mid + 1;
7385 else
7386 {
7387 count1 = ssymbuf1[mid].count;
7388 ssymbuf1 += mid;
7389 break;
7390 }
7391 }
7392
7393 lo = 0;
7394 hi = ssymbuf2->count;
7395 ssymbuf2++;
7396 count2 = 0;
7397 while (lo < hi)
7398 {
7399 mid = (lo + hi) / 2;
7400 if (shndx2 < ssymbuf2[mid].st_shndx)
7401 hi = mid;
7402 else if (shndx2 > ssymbuf2[mid].st_shndx)
7403 lo = mid + 1;
7404 else
7405 {
7406 count2 = ssymbuf2[mid].count;
7407 ssymbuf2 += mid;
7408 break;
7409 }
7410 }
7411
7412 if (count1 == 0 || count2 == 0 || count1 != count2)
7413 goto done;
7414
7415 symtable1
7416 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7417 symtable2
7418 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7419 if (symtable1 == NULL || symtable2 == NULL)
7420 goto done;
7421
7422 symp = symtable1;
7423 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7424 ssym < ssymend; ssym++, symp++)
7425 {
7426 symp->u.ssym = ssym;
7427 symp->name = bfd_elf_string_from_elf_section (bfd1,
7428 hdr1->sh_link,
7429 ssym->st_name);
7430 }
7431
7432 symp = symtable2;
7433 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7434 ssym < ssymend; ssym++, symp++)
7435 {
7436 symp->u.ssym = ssym;
7437 symp->name = bfd_elf_string_from_elf_section (bfd2,
7438 hdr2->sh_link,
7439 ssym->st_name);
7440 }
7441
7442 /* Sort symbol by name. */
7443 qsort (symtable1, count1, sizeof (struct elf_symbol),
7444 elf_sym_name_compare);
7445 qsort (symtable2, count1, sizeof (struct elf_symbol),
7446 elf_sym_name_compare);
7447
7448 for (i = 0; i < count1; i++)
7449 /* Two symbols must have the same binding, type and name. */
7450 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7451 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7452 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7453 goto done;
7454
7455 result = TRUE;
7456 goto done;
7457 }
7458
7459 symtable1 = (struct elf_symbol *)
7460 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7461 symtable2 = (struct elf_symbol *)
7462 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7463 if (symtable1 == NULL || symtable2 == NULL)
7464 goto done;
7465
7466 /* Count definitions in the section. */
7467 count1 = 0;
7468 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7469 if (isym->st_shndx == shndx1)
7470 symtable1[count1++].u.isym = isym;
7471
7472 count2 = 0;
7473 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7474 if (isym->st_shndx == shndx2)
7475 symtable2[count2++].u.isym = isym;
7476
7477 if (count1 == 0 || count2 == 0 || count1 != count2)
7478 goto done;
7479
7480 for (i = 0; i < count1; i++)
7481 symtable1[i].name
7482 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7483 symtable1[i].u.isym->st_name);
7484
7485 for (i = 0; i < count2; i++)
7486 symtable2[i].name
7487 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7488 symtable2[i].u.isym->st_name);
7489
7490 /* Sort symbol by name. */
7491 qsort (symtable1, count1, sizeof (struct elf_symbol),
7492 elf_sym_name_compare);
7493 qsort (symtable2, count1, sizeof (struct elf_symbol),
7494 elf_sym_name_compare);
7495
7496 for (i = 0; i < count1; i++)
7497 /* Two symbols must have the same binding, type and name. */
7498 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7499 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7500 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7501 goto done;
7502
7503 result = TRUE;
7504
7505 done:
7506 if (symtable1)
7507 free (symtable1);
7508 if (symtable2)
7509 free (symtable2);
7510 if (isymbuf1)
7511 free (isymbuf1);
7512 if (isymbuf2)
7513 free (isymbuf2);
7514
7515 return result;
7516 }
7517
7518 /* Return TRUE if 2 section types are compatible. */
7519
7520 bfd_boolean
7521 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7522 bfd *bbfd, const asection *bsec)
7523 {
7524 if (asec == NULL
7525 || bsec == NULL
7526 || abfd->xvec->flavour != bfd_target_elf_flavour
7527 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7528 return TRUE;
7529
7530 return elf_section_type (asec) == elf_section_type (bsec);
7531 }
7532 \f
7533 /* Final phase of ELF linker. */
7534
7535 /* A structure we use to avoid passing large numbers of arguments. */
7536
7537 struct elf_final_link_info
7538 {
7539 /* General link information. */
7540 struct bfd_link_info *info;
7541 /* Output BFD. */
7542 bfd *output_bfd;
7543 /* Symbol string table. */
7544 struct elf_strtab_hash *symstrtab;
7545 /* .hash section. */
7546 asection *hash_sec;
7547 /* symbol version section (.gnu.version). */
7548 asection *symver_sec;
7549 /* Buffer large enough to hold contents of any section. */
7550 bfd_byte *contents;
7551 /* Buffer large enough to hold external relocs of any section. */
7552 void *external_relocs;
7553 /* Buffer large enough to hold internal relocs of any section. */
7554 Elf_Internal_Rela *internal_relocs;
7555 /* Buffer large enough to hold external local symbols of any input
7556 BFD. */
7557 bfd_byte *external_syms;
7558 /* And a buffer for symbol section indices. */
7559 Elf_External_Sym_Shndx *locsym_shndx;
7560 /* Buffer large enough to hold internal local symbols of any input
7561 BFD. */
7562 Elf_Internal_Sym *internal_syms;
7563 /* Array large enough to hold a symbol index for each local symbol
7564 of any input BFD. */
7565 long *indices;
7566 /* Array large enough to hold a section pointer for each local
7567 symbol of any input BFD. */
7568 asection **sections;
7569 /* Buffer for SHT_SYMTAB_SHNDX section. */
7570 Elf_External_Sym_Shndx *symshndxbuf;
7571 /* Number of STT_FILE syms seen. */
7572 size_t filesym_count;
7573 };
7574
7575 /* This struct is used to pass information to elf_link_output_extsym. */
7576
7577 struct elf_outext_info
7578 {
7579 bfd_boolean failed;
7580 bfd_boolean localsyms;
7581 bfd_boolean file_sym_done;
7582 struct elf_final_link_info *flinfo;
7583 };
7584
7585
7586 /* Support for evaluating a complex relocation.
7587
7588 Complex relocations are generalized, self-describing relocations. The
7589 implementation of them consists of two parts: complex symbols, and the
7590 relocations themselves.
7591
7592 The relocations are use a reserved elf-wide relocation type code (R_RELC
7593 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7594 information (start bit, end bit, word width, etc) into the addend. This
7595 information is extracted from CGEN-generated operand tables within gas.
7596
7597 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7598 internal) representing prefix-notation expressions, including but not
7599 limited to those sorts of expressions normally encoded as addends in the
7600 addend field. The symbol mangling format is:
7601
7602 <node> := <literal>
7603 | <unary-operator> ':' <node>
7604 | <binary-operator> ':' <node> ':' <node>
7605 ;
7606
7607 <literal> := 's' <digits=N> ':' <N character symbol name>
7608 | 'S' <digits=N> ':' <N character section name>
7609 | '#' <hexdigits>
7610 ;
7611
7612 <binary-operator> := as in C
7613 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7614
7615 static void
7616 set_symbol_value (bfd *bfd_with_globals,
7617 Elf_Internal_Sym *isymbuf,
7618 size_t locsymcount,
7619 size_t symidx,
7620 bfd_vma val)
7621 {
7622 struct elf_link_hash_entry **sym_hashes;
7623 struct elf_link_hash_entry *h;
7624 size_t extsymoff = locsymcount;
7625
7626 if (symidx < locsymcount)
7627 {
7628 Elf_Internal_Sym *sym;
7629
7630 sym = isymbuf + symidx;
7631 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7632 {
7633 /* It is a local symbol: move it to the
7634 "absolute" section and give it a value. */
7635 sym->st_shndx = SHN_ABS;
7636 sym->st_value = val;
7637 return;
7638 }
7639 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7640 extsymoff = 0;
7641 }
7642
7643 /* It is a global symbol: set its link type
7644 to "defined" and give it a value. */
7645
7646 sym_hashes = elf_sym_hashes (bfd_with_globals);
7647 h = sym_hashes [symidx - extsymoff];
7648 while (h->root.type == bfd_link_hash_indirect
7649 || h->root.type == bfd_link_hash_warning)
7650 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7651 h->root.type = bfd_link_hash_defined;
7652 h->root.u.def.value = val;
7653 h->root.u.def.section = bfd_abs_section_ptr;
7654 }
7655
7656 static bfd_boolean
7657 resolve_symbol (const char *name,
7658 bfd *input_bfd,
7659 struct elf_final_link_info *flinfo,
7660 bfd_vma *result,
7661 Elf_Internal_Sym *isymbuf,
7662 size_t locsymcount)
7663 {
7664 Elf_Internal_Sym *sym;
7665 struct bfd_link_hash_entry *global_entry;
7666 const char *candidate = NULL;
7667 Elf_Internal_Shdr *symtab_hdr;
7668 size_t i;
7669
7670 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7671
7672 for (i = 0; i < locsymcount; ++ i)
7673 {
7674 sym = isymbuf + i;
7675
7676 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7677 continue;
7678
7679 candidate = bfd_elf_string_from_elf_section (input_bfd,
7680 symtab_hdr->sh_link,
7681 sym->st_name);
7682 #ifdef DEBUG
7683 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7684 name, candidate, (unsigned long) sym->st_value);
7685 #endif
7686 if (candidate && strcmp (candidate, name) == 0)
7687 {
7688 asection *sec = flinfo->sections [i];
7689
7690 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7691 *result += sec->output_offset + sec->output_section->vma;
7692 #ifdef DEBUG
7693 printf ("Found symbol with value %8.8lx\n",
7694 (unsigned long) *result);
7695 #endif
7696 return TRUE;
7697 }
7698 }
7699
7700 /* Hmm, haven't found it yet. perhaps it is a global. */
7701 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7702 FALSE, FALSE, TRUE);
7703 if (!global_entry)
7704 return FALSE;
7705
7706 if (global_entry->type == bfd_link_hash_defined
7707 || global_entry->type == bfd_link_hash_defweak)
7708 {
7709 *result = (global_entry->u.def.value
7710 + global_entry->u.def.section->output_section->vma
7711 + global_entry->u.def.section->output_offset);
7712 #ifdef DEBUG
7713 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7714 global_entry->root.string, (unsigned long) *result);
7715 #endif
7716 return TRUE;
7717 }
7718
7719 return FALSE;
7720 }
7721
7722 static bfd_boolean
7723 resolve_section (const char *name,
7724 asection *sections,
7725 bfd_vma *result)
7726 {
7727 asection *curr;
7728 unsigned int len;
7729
7730 for (curr = sections; curr; curr = curr->next)
7731 if (strcmp (curr->name, name) == 0)
7732 {
7733 *result = curr->vma;
7734 return TRUE;
7735 }
7736
7737 /* Hmm. still haven't found it. try pseudo-section names. */
7738 for (curr = sections; curr; curr = curr->next)
7739 {
7740 len = strlen (curr->name);
7741 if (len > strlen (name))
7742 continue;
7743
7744 if (strncmp (curr->name, name, len) == 0)
7745 {
7746 if (strncmp (".end", name + len, 4) == 0)
7747 {
7748 *result = curr->vma + curr->size;
7749 return TRUE;
7750 }
7751
7752 /* Insert more pseudo-section names here, if you like. */
7753 }
7754 }
7755
7756 return FALSE;
7757 }
7758
7759 static void
7760 undefined_reference (const char *reftype, const char *name)
7761 {
7762 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7763 reftype, name);
7764 }
7765
7766 static bfd_boolean
7767 eval_symbol (bfd_vma *result,
7768 const char **symp,
7769 bfd *input_bfd,
7770 struct elf_final_link_info *flinfo,
7771 bfd_vma dot,
7772 Elf_Internal_Sym *isymbuf,
7773 size_t locsymcount,
7774 int signed_p)
7775 {
7776 size_t len;
7777 size_t symlen;
7778 bfd_vma a;
7779 bfd_vma b;
7780 char symbuf[4096];
7781 const char *sym = *symp;
7782 const char *symend;
7783 bfd_boolean symbol_is_section = FALSE;
7784
7785 len = strlen (sym);
7786 symend = sym + len;
7787
7788 if (len < 1 || len > sizeof (symbuf))
7789 {
7790 bfd_set_error (bfd_error_invalid_operation);
7791 return FALSE;
7792 }
7793
7794 switch (* sym)
7795 {
7796 case '.':
7797 *result = dot;
7798 *symp = sym + 1;
7799 return TRUE;
7800
7801 case '#':
7802 ++sym;
7803 *result = strtoul (sym, (char **) symp, 16);
7804 return TRUE;
7805
7806 case 'S':
7807 symbol_is_section = TRUE;
7808 case 's':
7809 ++sym;
7810 symlen = strtol (sym, (char **) symp, 10);
7811 sym = *symp + 1; /* Skip the trailing ':'. */
7812
7813 if (symend < sym || symlen + 1 > sizeof (symbuf))
7814 {
7815 bfd_set_error (bfd_error_invalid_operation);
7816 return FALSE;
7817 }
7818
7819 memcpy (symbuf, sym, symlen);
7820 symbuf[symlen] = '\0';
7821 *symp = sym + symlen;
7822
7823 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7824 the symbol as a section, or vice-versa. so we're pretty liberal in our
7825 interpretation here; section means "try section first", not "must be a
7826 section", and likewise with symbol. */
7827
7828 if (symbol_is_section)
7829 {
7830 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7831 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7832 isymbuf, locsymcount))
7833 {
7834 undefined_reference ("section", symbuf);
7835 return FALSE;
7836 }
7837 }
7838 else
7839 {
7840 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7841 isymbuf, locsymcount)
7842 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7843 result))
7844 {
7845 undefined_reference ("symbol", symbuf);
7846 return FALSE;
7847 }
7848 }
7849
7850 return TRUE;
7851
7852 /* All that remains are operators. */
7853
7854 #define UNARY_OP(op) \
7855 if (strncmp (sym, #op, strlen (#op)) == 0) \
7856 { \
7857 sym += strlen (#op); \
7858 if (*sym == ':') \
7859 ++sym; \
7860 *symp = sym; \
7861 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7862 isymbuf, locsymcount, signed_p)) \
7863 return FALSE; \
7864 if (signed_p) \
7865 *result = op ((bfd_signed_vma) a); \
7866 else \
7867 *result = op a; \
7868 return TRUE; \
7869 }
7870
7871 #define BINARY_OP(op) \
7872 if (strncmp (sym, #op, strlen (#op)) == 0) \
7873 { \
7874 sym += strlen (#op); \
7875 if (*sym == ':') \
7876 ++sym; \
7877 *symp = sym; \
7878 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7879 isymbuf, locsymcount, signed_p)) \
7880 return FALSE; \
7881 ++*symp; \
7882 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7883 isymbuf, locsymcount, signed_p)) \
7884 return FALSE; \
7885 if (signed_p) \
7886 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7887 else \
7888 *result = a op b; \
7889 return TRUE; \
7890 }
7891
7892 default:
7893 UNARY_OP (0-);
7894 BINARY_OP (<<);
7895 BINARY_OP (>>);
7896 BINARY_OP (==);
7897 BINARY_OP (!=);
7898 BINARY_OP (<=);
7899 BINARY_OP (>=);
7900 BINARY_OP (&&);
7901 BINARY_OP (||);
7902 UNARY_OP (~);
7903 UNARY_OP (!);
7904 BINARY_OP (*);
7905 BINARY_OP (/);
7906 BINARY_OP (%);
7907 BINARY_OP (^);
7908 BINARY_OP (|);
7909 BINARY_OP (&);
7910 BINARY_OP (+);
7911 BINARY_OP (-);
7912 BINARY_OP (<);
7913 BINARY_OP (>);
7914 #undef UNARY_OP
7915 #undef BINARY_OP
7916 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7917 bfd_set_error (bfd_error_invalid_operation);
7918 return FALSE;
7919 }
7920 }
7921
7922 static void
7923 put_value (bfd_vma size,
7924 unsigned long chunksz,
7925 bfd *input_bfd,
7926 bfd_vma x,
7927 bfd_byte *location)
7928 {
7929 location += (size - chunksz);
7930
7931 for (; size; size -= chunksz, location -= chunksz)
7932 {
7933 switch (chunksz)
7934 {
7935 case 1:
7936 bfd_put_8 (input_bfd, x, location);
7937 x >>= 8;
7938 break;
7939 case 2:
7940 bfd_put_16 (input_bfd, x, location);
7941 x >>= 16;
7942 break;
7943 case 4:
7944 bfd_put_32 (input_bfd, x, location);
7945 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7946 x >>= 16;
7947 x >>= 16;
7948 break;
7949 #ifdef BFD64
7950 case 8:
7951 bfd_put_64 (input_bfd, x, location);
7952 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7953 x >>= 32;
7954 x >>= 32;
7955 break;
7956 #endif
7957 default:
7958 abort ();
7959 break;
7960 }
7961 }
7962 }
7963
7964 static bfd_vma
7965 get_value (bfd_vma size,
7966 unsigned long chunksz,
7967 bfd *input_bfd,
7968 bfd_byte *location)
7969 {
7970 int shift;
7971 bfd_vma x = 0;
7972
7973 /* Sanity checks. */
7974 BFD_ASSERT (chunksz <= sizeof (x)
7975 && size >= chunksz
7976 && chunksz != 0
7977 && (size % chunksz) == 0
7978 && input_bfd != NULL
7979 && location != NULL);
7980
7981 if (chunksz == sizeof (x))
7982 {
7983 BFD_ASSERT (size == chunksz);
7984
7985 /* Make sure that we do not perform an undefined shift operation.
7986 We know that size == chunksz so there will only be one iteration
7987 of the loop below. */
7988 shift = 0;
7989 }
7990 else
7991 shift = 8 * chunksz;
7992
7993 for (; size; size -= chunksz, location += chunksz)
7994 {
7995 switch (chunksz)
7996 {
7997 case 1:
7998 x = (x << shift) | bfd_get_8 (input_bfd, location);
7999 break;
8000 case 2:
8001 x = (x << shift) | bfd_get_16 (input_bfd, location);
8002 break;
8003 case 4:
8004 x = (x << shift) | bfd_get_32 (input_bfd, location);
8005 break;
8006 #ifdef BFD64
8007 case 8:
8008 x = (x << shift) | bfd_get_64 (input_bfd, location);
8009 break;
8010 #endif
8011 default:
8012 abort ();
8013 }
8014 }
8015 return x;
8016 }
8017
8018 static void
8019 decode_complex_addend (unsigned long *start, /* in bits */
8020 unsigned long *oplen, /* in bits */
8021 unsigned long *len, /* in bits */
8022 unsigned long *wordsz, /* in bytes */
8023 unsigned long *chunksz, /* in bytes */
8024 unsigned long *lsb0_p,
8025 unsigned long *signed_p,
8026 unsigned long *trunc_p,
8027 unsigned long encoded)
8028 {
8029 * start = encoded & 0x3F;
8030 * len = (encoded >> 6) & 0x3F;
8031 * oplen = (encoded >> 12) & 0x3F;
8032 * wordsz = (encoded >> 18) & 0xF;
8033 * chunksz = (encoded >> 22) & 0xF;
8034 * lsb0_p = (encoded >> 27) & 1;
8035 * signed_p = (encoded >> 28) & 1;
8036 * trunc_p = (encoded >> 29) & 1;
8037 }
8038
8039 bfd_reloc_status_type
8040 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8041 asection *input_section ATTRIBUTE_UNUSED,
8042 bfd_byte *contents,
8043 Elf_Internal_Rela *rel,
8044 bfd_vma relocation)
8045 {
8046 bfd_vma shift, x, mask;
8047 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8048 bfd_reloc_status_type r;
8049
8050 /* Perform this reloc, since it is complex.
8051 (this is not to say that it necessarily refers to a complex
8052 symbol; merely that it is a self-describing CGEN based reloc.
8053 i.e. the addend has the complete reloc information (bit start, end,
8054 word size, etc) encoded within it.). */
8055
8056 decode_complex_addend (&start, &oplen, &len, &wordsz,
8057 &chunksz, &lsb0_p, &signed_p,
8058 &trunc_p, rel->r_addend);
8059
8060 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8061
8062 if (lsb0_p)
8063 shift = (start + 1) - len;
8064 else
8065 shift = (8 * wordsz) - (start + len);
8066
8067 /* FIXME: octets_per_byte. */
8068 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8069
8070 #ifdef DEBUG
8071 printf ("Doing complex reloc: "
8072 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8073 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8074 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8075 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8076 oplen, (unsigned long) x, (unsigned long) mask,
8077 (unsigned long) relocation);
8078 #endif
8079
8080 r = bfd_reloc_ok;
8081 if (! trunc_p)
8082 /* Now do an overflow check. */
8083 r = bfd_check_overflow ((signed_p
8084 ? complain_overflow_signed
8085 : complain_overflow_unsigned),
8086 len, 0, (8 * wordsz),
8087 relocation);
8088
8089 /* Do the deed. */
8090 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8091
8092 #ifdef DEBUG
8093 printf (" relocation: %8.8lx\n"
8094 " shifted mask: %8.8lx\n"
8095 " shifted/masked reloc: %8.8lx\n"
8096 " result: %8.8lx\n",
8097 (unsigned long) relocation, (unsigned long) (mask << shift),
8098 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8099 #endif
8100 /* FIXME: octets_per_byte. */
8101 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8102 return r;
8103 }
8104
8105 /* Functions to read r_offset from external (target order) reloc
8106 entry. Faster than bfd_getl32 et al, because we let the compiler
8107 know the value is aligned. */
8108
8109 static bfd_vma
8110 ext32l_r_offset (const void *p)
8111 {
8112 union aligned32
8113 {
8114 uint32_t v;
8115 unsigned char c[4];
8116 };
8117 const union aligned32 *a
8118 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8119
8120 uint32_t aval = ( (uint32_t) a->c[0]
8121 | (uint32_t) a->c[1] << 8
8122 | (uint32_t) a->c[2] << 16
8123 | (uint32_t) a->c[3] << 24);
8124 return aval;
8125 }
8126
8127 static bfd_vma
8128 ext32b_r_offset (const void *p)
8129 {
8130 union aligned32
8131 {
8132 uint32_t v;
8133 unsigned char c[4];
8134 };
8135 const union aligned32 *a
8136 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8137
8138 uint32_t aval = ( (uint32_t) a->c[0] << 24
8139 | (uint32_t) a->c[1] << 16
8140 | (uint32_t) a->c[2] << 8
8141 | (uint32_t) a->c[3]);
8142 return aval;
8143 }
8144
8145 #ifdef BFD_HOST_64_BIT
8146 static bfd_vma
8147 ext64l_r_offset (const void *p)
8148 {
8149 union aligned64
8150 {
8151 uint64_t v;
8152 unsigned char c[8];
8153 };
8154 const union aligned64 *a
8155 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8156
8157 uint64_t aval = ( (uint64_t) a->c[0]
8158 | (uint64_t) a->c[1] << 8
8159 | (uint64_t) a->c[2] << 16
8160 | (uint64_t) a->c[3] << 24
8161 | (uint64_t) a->c[4] << 32
8162 | (uint64_t) a->c[5] << 40
8163 | (uint64_t) a->c[6] << 48
8164 | (uint64_t) a->c[7] << 56);
8165 return aval;
8166 }
8167
8168 static bfd_vma
8169 ext64b_r_offset (const void *p)
8170 {
8171 union aligned64
8172 {
8173 uint64_t v;
8174 unsigned char c[8];
8175 };
8176 const union aligned64 *a
8177 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8178
8179 uint64_t aval = ( (uint64_t) a->c[0] << 56
8180 | (uint64_t) a->c[1] << 48
8181 | (uint64_t) a->c[2] << 40
8182 | (uint64_t) a->c[3] << 32
8183 | (uint64_t) a->c[4] << 24
8184 | (uint64_t) a->c[5] << 16
8185 | (uint64_t) a->c[6] << 8
8186 | (uint64_t) a->c[7]);
8187 return aval;
8188 }
8189 #endif
8190
8191 /* When performing a relocatable link, the input relocations are
8192 preserved. But, if they reference global symbols, the indices
8193 referenced must be updated. Update all the relocations found in
8194 RELDATA. */
8195
8196 static void
8197 elf_link_adjust_relocs (bfd *abfd,
8198 struct bfd_elf_section_reloc_data *reldata,
8199 bfd_boolean sort)
8200 {
8201 unsigned int i;
8202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8203 bfd_byte *erela;
8204 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8205 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8206 bfd_vma r_type_mask;
8207 int r_sym_shift;
8208 unsigned int count = reldata->count;
8209 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8210
8211 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8212 {
8213 swap_in = bed->s->swap_reloc_in;
8214 swap_out = bed->s->swap_reloc_out;
8215 }
8216 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8217 {
8218 swap_in = bed->s->swap_reloca_in;
8219 swap_out = bed->s->swap_reloca_out;
8220 }
8221 else
8222 abort ();
8223
8224 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8225 abort ();
8226
8227 if (bed->s->arch_size == 32)
8228 {
8229 r_type_mask = 0xff;
8230 r_sym_shift = 8;
8231 }
8232 else
8233 {
8234 r_type_mask = 0xffffffff;
8235 r_sym_shift = 32;
8236 }
8237
8238 erela = reldata->hdr->contents;
8239 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8240 {
8241 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8242 unsigned int j;
8243
8244 if (*rel_hash == NULL)
8245 continue;
8246
8247 BFD_ASSERT ((*rel_hash)->indx >= 0);
8248
8249 (*swap_in) (abfd, erela, irela);
8250 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8251 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8252 | (irela[j].r_info & r_type_mask));
8253 (*swap_out) (abfd, irela, erela);
8254 }
8255
8256 if (sort && count != 0)
8257 {
8258 bfd_vma (*ext_r_off) (const void *);
8259 bfd_vma r_off;
8260 size_t elt_size;
8261 bfd_byte *base, *end, *p, *loc;
8262 bfd_byte buf[sizeof (Elf64_External_Rela)];
8263
8264 if (bed->s->arch_size == 32)
8265 {
8266 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8267 ext_r_off = ext32l_r_offset;
8268 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8269 ext_r_off = ext32b_r_offset;
8270 else
8271 abort ();
8272 }
8273 else
8274 {
8275 #ifdef BFD_HOST_64_BIT
8276 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8277 ext_r_off = ext64l_r_offset;
8278 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8279 ext_r_off = ext64b_r_offset;
8280 else
8281 #endif
8282 abort ();
8283 }
8284
8285 /* Must use a stable sort here. Insertion sort, since the
8286 relocs are mostly sorted already. */
8287 elt_size = reldata->hdr->sh_entsize;
8288 base = reldata->hdr->contents;
8289 end = base + count * elt_size;
8290 if (elt_size > sizeof (buf))
8291 abort ();
8292
8293 /* Ensure the first element is lowest. This acts as a sentinel,
8294 speeding the main loop below. */
8295 r_off = (*ext_r_off) (base);
8296 for (p = loc = base; (p += elt_size) < end; )
8297 {
8298 bfd_vma r_off2 = (*ext_r_off) (p);
8299 if (r_off > r_off2)
8300 {
8301 r_off = r_off2;
8302 loc = p;
8303 }
8304 }
8305 if (loc != base)
8306 {
8307 /* Don't just swap *base and *loc as that changes the order
8308 of the original base[0] and base[1] if they happen to
8309 have the same r_offset. */
8310 memcpy (buf, loc, elt_size);
8311 memmove (base + elt_size, base, loc - base);
8312 memcpy (base, buf, elt_size);
8313 }
8314
8315 for (p = base + elt_size; (p += elt_size) < end; )
8316 {
8317 /* base to p is sorted, *p is next to insert. */
8318 r_off = (*ext_r_off) (p);
8319 /* Search the sorted region for location to insert. */
8320 loc = p - elt_size;
8321 while (r_off < (*ext_r_off) (loc))
8322 loc -= elt_size;
8323 loc += elt_size;
8324 if (loc != p)
8325 {
8326 memcpy (buf, p, elt_size);
8327 memmove (loc + elt_size, loc, p - loc);
8328 memcpy (loc, buf, elt_size);
8329 }
8330 }
8331 /* Hashes are no longer valid. */
8332 free (reldata->hashes);
8333 reldata->hashes = NULL;
8334 }
8335 }
8336
8337 struct elf_link_sort_rela
8338 {
8339 union {
8340 bfd_vma offset;
8341 bfd_vma sym_mask;
8342 } u;
8343 enum elf_reloc_type_class type;
8344 /* We use this as an array of size int_rels_per_ext_rel. */
8345 Elf_Internal_Rela rela[1];
8346 };
8347
8348 static int
8349 elf_link_sort_cmp1 (const void *A, const void *B)
8350 {
8351 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8352 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8353 int relativea, relativeb;
8354
8355 relativea = a->type == reloc_class_relative;
8356 relativeb = b->type == reloc_class_relative;
8357
8358 if (relativea < relativeb)
8359 return 1;
8360 if (relativea > relativeb)
8361 return -1;
8362 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8363 return -1;
8364 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8365 return 1;
8366 if (a->rela->r_offset < b->rela->r_offset)
8367 return -1;
8368 if (a->rela->r_offset > b->rela->r_offset)
8369 return 1;
8370 return 0;
8371 }
8372
8373 static int
8374 elf_link_sort_cmp2 (const void *A, const void *B)
8375 {
8376 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8377 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8378
8379 if (a->type < b->type)
8380 return -1;
8381 if (a->type > b->type)
8382 return 1;
8383 if (a->u.offset < b->u.offset)
8384 return -1;
8385 if (a->u.offset > b->u.offset)
8386 return 1;
8387 if (a->rela->r_offset < b->rela->r_offset)
8388 return -1;
8389 if (a->rela->r_offset > b->rela->r_offset)
8390 return 1;
8391 return 0;
8392 }
8393
8394 static size_t
8395 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8396 {
8397 asection *dynamic_relocs;
8398 asection *rela_dyn;
8399 asection *rel_dyn;
8400 bfd_size_type count, size;
8401 size_t i, ret, sort_elt, ext_size;
8402 bfd_byte *sort, *s_non_relative, *p;
8403 struct elf_link_sort_rela *sq;
8404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8405 int i2e = bed->s->int_rels_per_ext_rel;
8406 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8407 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8408 struct bfd_link_order *lo;
8409 bfd_vma r_sym_mask;
8410 bfd_boolean use_rela;
8411
8412 /* Find a dynamic reloc section. */
8413 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8414 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8415 if (rela_dyn != NULL && rela_dyn->size > 0
8416 && rel_dyn != NULL && rel_dyn->size > 0)
8417 {
8418 bfd_boolean use_rela_initialised = FALSE;
8419
8420 /* This is just here to stop gcc from complaining.
8421 It's initialization checking code is not perfect. */
8422 use_rela = TRUE;
8423
8424 /* Both sections are present. Examine the sizes
8425 of the indirect sections to help us choose. */
8426 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8427 if (lo->type == bfd_indirect_link_order)
8428 {
8429 asection *o = lo->u.indirect.section;
8430
8431 if ((o->size % bed->s->sizeof_rela) == 0)
8432 {
8433 if ((o->size % bed->s->sizeof_rel) == 0)
8434 /* Section size is divisible by both rel and rela sizes.
8435 It is of no help to us. */
8436 ;
8437 else
8438 {
8439 /* Section size is only divisible by rela. */
8440 if (use_rela_initialised && (use_rela == FALSE))
8441 {
8442 _bfd_error_handler
8443 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8444 bfd_set_error (bfd_error_invalid_operation);
8445 return 0;
8446 }
8447 else
8448 {
8449 use_rela = TRUE;
8450 use_rela_initialised = TRUE;
8451 }
8452 }
8453 }
8454 else if ((o->size % bed->s->sizeof_rel) == 0)
8455 {
8456 /* Section size is only divisible by rel. */
8457 if (use_rela_initialised && (use_rela == TRUE))
8458 {
8459 _bfd_error_handler
8460 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8461 bfd_set_error (bfd_error_invalid_operation);
8462 return 0;
8463 }
8464 else
8465 {
8466 use_rela = FALSE;
8467 use_rela_initialised = TRUE;
8468 }
8469 }
8470 else
8471 {
8472 /* The section size is not divisible by either - something is wrong. */
8473 _bfd_error_handler
8474 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8475 bfd_set_error (bfd_error_invalid_operation);
8476 return 0;
8477 }
8478 }
8479
8480 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8481 if (lo->type == bfd_indirect_link_order)
8482 {
8483 asection *o = lo->u.indirect.section;
8484
8485 if ((o->size % bed->s->sizeof_rela) == 0)
8486 {
8487 if ((o->size % bed->s->sizeof_rel) == 0)
8488 /* Section size is divisible by both rel and rela sizes.
8489 It is of no help to us. */
8490 ;
8491 else
8492 {
8493 /* Section size is only divisible by rela. */
8494 if (use_rela_initialised && (use_rela == FALSE))
8495 {
8496 _bfd_error_handler
8497 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8498 bfd_set_error (bfd_error_invalid_operation);
8499 return 0;
8500 }
8501 else
8502 {
8503 use_rela = TRUE;
8504 use_rela_initialised = TRUE;
8505 }
8506 }
8507 }
8508 else if ((o->size % bed->s->sizeof_rel) == 0)
8509 {
8510 /* Section size is only divisible by rel. */
8511 if (use_rela_initialised && (use_rela == TRUE))
8512 {
8513 _bfd_error_handler
8514 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8515 bfd_set_error (bfd_error_invalid_operation);
8516 return 0;
8517 }
8518 else
8519 {
8520 use_rela = FALSE;
8521 use_rela_initialised = TRUE;
8522 }
8523 }
8524 else
8525 {
8526 /* The section size is not divisible by either - something is wrong. */
8527 _bfd_error_handler
8528 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8529 bfd_set_error (bfd_error_invalid_operation);
8530 return 0;
8531 }
8532 }
8533
8534 if (! use_rela_initialised)
8535 /* Make a guess. */
8536 use_rela = TRUE;
8537 }
8538 else if (rela_dyn != NULL && rela_dyn->size > 0)
8539 use_rela = TRUE;
8540 else if (rel_dyn != NULL && rel_dyn->size > 0)
8541 use_rela = FALSE;
8542 else
8543 return 0;
8544
8545 if (use_rela)
8546 {
8547 dynamic_relocs = rela_dyn;
8548 ext_size = bed->s->sizeof_rela;
8549 swap_in = bed->s->swap_reloca_in;
8550 swap_out = bed->s->swap_reloca_out;
8551 }
8552 else
8553 {
8554 dynamic_relocs = rel_dyn;
8555 ext_size = bed->s->sizeof_rel;
8556 swap_in = bed->s->swap_reloc_in;
8557 swap_out = bed->s->swap_reloc_out;
8558 }
8559
8560 size = 0;
8561 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8562 if (lo->type == bfd_indirect_link_order)
8563 size += lo->u.indirect.section->size;
8564
8565 if (size != dynamic_relocs->size)
8566 return 0;
8567
8568 sort_elt = (sizeof (struct elf_link_sort_rela)
8569 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8570
8571 count = dynamic_relocs->size / ext_size;
8572 if (count == 0)
8573 return 0;
8574 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8575
8576 if (sort == NULL)
8577 {
8578 (*info->callbacks->warning)
8579 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8580 return 0;
8581 }
8582
8583 if (bed->s->arch_size == 32)
8584 r_sym_mask = ~(bfd_vma) 0xff;
8585 else
8586 r_sym_mask = ~(bfd_vma) 0xffffffff;
8587
8588 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8589 if (lo->type == bfd_indirect_link_order)
8590 {
8591 bfd_byte *erel, *erelend;
8592 asection *o = lo->u.indirect.section;
8593
8594 if (o->contents == NULL && o->size != 0)
8595 {
8596 /* This is a reloc section that is being handled as a normal
8597 section. See bfd_section_from_shdr. We can't combine
8598 relocs in this case. */
8599 free (sort);
8600 return 0;
8601 }
8602 erel = o->contents;
8603 erelend = o->contents + o->size;
8604 /* FIXME: octets_per_byte. */
8605 p = sort + o->output_offset / ext_size * sort_elt;
8606
8607 while (erel < erelend)
8608 {
8609 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8610
8611 (*swap_in) (abfd, erel, s->rela);
8612 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8613 s->u.sym_mask = r_sym_mask;
8614 p += sort_elt;
8615 erel += ext_size;
8616 }
8617 }
8618
8619 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8620
8621 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8622 {
8623 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8624 if (s->type != reloc_class_relative)
8625 break;
8626 }
8627 ret = i;
8628 s_non_relative = p;
8629
8630 sq = (struct elf_link_sort_rela *) s_non_relative;
8631 for (; i < count; i++, p += sort_elt)
8632 {
8633 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8634 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8635 sq = sp;
8636 sp->u.offset = sq->rela->r_offset;
8637 }
8638
8639 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8640
8641 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8642 if (lo->type == bfd_indirect_link_order)
8643 {
8644 bfd_byte *erel, *erelend;
8645 asection *o = lo->u.indirect.section;
8646
8647 erel = o->contents;
8648 erelend = o->contents + o->size;
8649 /* FIXME: octets_per_byte. */
8650 p = sort + o->output_offset / ext_size * sort_elt;
8651 while (erel < erelend)
8652 {
8653 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8654 (*swap_out) (abfd, s->rela, erel);
8655 p += sort_elt;
8656 erel += ext_size;
8657 }
8658 }
8659
8660 free (sort);
8661 *psec = dynamic_relocs;
8662 return ret;
8663 }
8664
8665 /* Add a symbol to the output symbol string table. */
8666
8667 static int
8668 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8669 const char *name,
8670 Elf_Internal_Sym *elfsym,
8671 asection *input_sec,
8672 struct elf_link_hash_entry *h)
8673 {
8674 int (*output_symbol_hook)
8675 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8676 struct elf_link_hash_entry *);
8677 struct elf_link_hash_table *hash_table;
8678 const struct elf_backend_data *bed;
8679 bfd_size_type strtabsize;
8680
8681 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8682
8683 bed = get_elf_backend_data (flinfo->output_bfd);
8684 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8685 if (output_symbol_hook != NULL)
8686 {
8687 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8688 if (ret != 1)
8689 return ret;
8690 }
8691
8692 if (name == NULL
8693 || *name == '\0'
8694 || (input_sec->flags & SEC_EXCLUDE))
8695 elfsym->st_name = (unsigned long) -1;
8696 else
8697 {
8698 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8699 to get the final offset for st_name. */
8700 elfsym->st_name
8701 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8702 name, FALSE);
8703 if (elfsym->st_name == (unsigned long) -1)
8704 return 0;
8705 }
8706
8707 hash_table = elf_hash_table (flinfo->info);
8708 strtabsize = hash_table->strtabsize;
8709 if (strtabsize <= hash_table->strtabcount)
8710 {
8711 strtabsize += strtabsize;
8712 hash_table->strtabsize = strtabsize;
8713 strtabsize *= sizeof (*hash_table->strtab);
8714 hash_table->strtab
8715 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8716 strtabsize);
8717 if (hash_table->strtab == NULL)
8718 return 0;
8719 }
8720 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8721 hash_table->strtab[hash_table->strtabcount].dest_index
8722 = hash_table->strtabcount;
8723 hash_table->strtab[hash_table->strtabcount].destshndx_index
8724 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8725
8726 bfd_get_symcount (flinfo->output_bfd) += 1;
8727 hash_table->strtabcount += 1;
8728
8729 return 1;
8730 }
8731
8732 /* Swap symbols out to the symbol table and flush the output symbols to
8733 the file. */
8734
8735 static bfd_boolean
8736 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8737 {
8738 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8739 bfd_size_type amt, i;
8740 const struct elf_backend_data *bed;
8741 bfd_byte *symbuf;
8742 Elf_Internal_Shdr *hdr;
8743 file_ptr pos;
8744 bfd_boolean ret;
8745
8746 if (!hash_table->strtabcount)
8747 return TRUE;
8748
8749 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8750
8751 bed = get_elf_backend_data (flinfo->output_bfd);
8752
8753 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8754 symbuf = (bfd_byte *) bfd_malloc (amt);
8755 if (symbuf == NULL)
8756 return FALSE;
8757
8758 if (flinfo->symshndxbuf)
8759 {
8760 amt = (sizeof (Elf_External_Sym_Shndx)
8761 * (bfd_get_symcount (flinfo->output_bfd)));
8762 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8763 if (flinfo->symshndxbuf == NULL)
8764 {
8765 free (symbuf);
8766 return FALSE;
8767 }
8768 }
8769
8770 for (i = 0; i < hash_table->strtabcount; i++)
8771 {
8772 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8773 if (elfsym->sym.st_name == (unsigned long) -1)
8774 elfsym->sym.st_name = 0;
8775 else
8776 elfsym->sym.st_name
8777 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8778 elfsym->sym.st_name);
8779 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8780 ((bfd_byte *) symbuf
8781 + (elfsym->dest_index
8782 * bed->s->sizeof_sym)),
8783 (flinfo->symshndxbuf
8784 + elfsym->destshndx_index));
8785 }
8786
8787 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8788 pos = hdr->sh_offset + hdr->sh_size;
8789 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8790 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8791 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8792 {
8793 hdr->sh_size += amt;
8794 ret = TRUE;
8795 }
8796 else
8797 ret = FALSE;
8798
8799 free (symbuf);
8800
8801 free (hash_table->strtab);
8802 hash_table->strtab = NULL;
8803
8804 return ret;
8805 }
8806
8807 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8808
8809 static bfd_boolean
8810 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8811 {
8812 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8813 && sym->st_shndx < SHN_LORESERVE)
8814 {
8815 /* The gABI doesn't support dynamic symbols in output sections
8816 beyond 64k. */
8817 (*_bfd_error_handler)
8818 (_("%B: Too many sections: %d (>= %d)"),
8819 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8820 bfd_set_error (bfd_error_nonrepresentable_section);
8821 return FALSE;
8822 }
8823 return TRUE;
8824 }
8825
8826 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8827 allowing an unsatisfied unversioned symbol in the DSO to match a
8828 versioned symbol that would normally require an explicit version.
8829 We also handle the case that a DSO references a hidden symbol
8830 which may be satisfied by a versioned symbol in another DSO. */
8831
8832 static bfd_boolean
8833 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8834 const struct elf_backend_data *bed,
8835 struct elf_link_hash_entry *h)
8836 {
8837 bfd *abfd;
8838 struct elf_link_loaded_list *loaded;
8839
8840 if (!is_elf_hash_table (info->hash))
8841 return FALSE;
8842
8843 /* Check indirect symbol. */
8844 while (h->root.type == bfd_link_hash_indirect)
8845 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8846
8847 switch (h->root.type)
8848 {
8849 default:
8850 abfd = NULL;
8851 break;
8852
8853 case bfd_link_hash_undefined:
8854 case bfd_link_hash_undefweak:
8855 abfd = h->root.u.undef.abfd;
8856 if ((abfd->flags & DYNAMIC) == 0
8857 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8858 return FALSE;
8859 break;
8860
8861 case bfd_link_hash_defined:
8862 case bfd_link_hash_defweak:
8863 abfd = h->root.u.def.section->owner;
8864 break;
8865
8866 case bfd_link_hash_common:
8867 abfd = h->root.u.c.p->section->owner;
8868 break;
8869 }
8870 BFD_ASSERT (abfd != NULL);
8871
8872 for (loaded = elf_hash_table (info)->loaded;
8873 loaded != NULL;
8874 loaded = loaded->next)
8875 {
8876 bfd *input;
8877 Elf_Internal_Shdr *hdr;
8878 bfd_size_type symcount;
8879 bfd_size_type extsymcount;
8880 bfd_size_type extsymoff;
8881 Elf_Internal_Shdr *versymhdr;
8882 Elf_Internal_Sym *isym;
8883 Elf_Internal_Sym *isymend;
8884 Elf_Internal_Sym *isymbuf;
8885 Elf_External_Versym *ever;
8886 Elf_External_Versym *extversym;
8887
8888 input = loaded->abfd;
8889
8890 /* We check each DSO for a possible hidden versioned definition. */
8891 if (input == abfd
8892 || (input->flags & DYNAMIC) == 0
8893 || elf_dynversym (input) == 0)
8894 continue;
8895
8896 hdr = &elf_tdata (input)->dynsymtab_hdr;
8897
8898 symcount = hdr->sh_size / bed->s->sizeof_sym;
8899 if (elf_bad_symtab (input))
8900 {
8901 extsymcount = symcount;
8902 extsymoff = 0;
8903 }
8904 else
8905 {
8906 extsymcount = symcount - hdr->sh_info;
8907 extsymoff = hdr->sh_info;
8908 }
8909
8910 if (extsymcount == 0)
8911 continue;
8912
8913 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8914 NULL, NULL, NULL);
8915 if (isymbuf == NULL)
8916 return FALSE;
8917
8918 /* Read in any version definitions. */
8919 versymhdr = &elf_tdata (input)->dynversym_hdr;
8920 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8921 if (extversym == NULL)
8922 goto error_ret;
8923
8924 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8925 || (bfd_bread (extversym, versymhdr->sh_size, input)
8926 != versymhdr->sh_size))
8927 {
8928 free (extversym);
8929 error_ret:
8930 free (isymbuf);
8931 return FALSE;
8932 }
8933
8934 ever = extversym + extsymoff;
8935 isymend = isymbuf + extsymcount;
8936 for (isym = isymbuf; isym < isymend; isym++, ever++)
8937 {
8938 const char *name;
8939 Elf_Internal_Versym iver;
8940 unsigned short version_index;
8941
8942 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8943 || isym->st_shndx == SHN_UNDEF)
8944 continue;
8945
8946 name = bfd_elf_string_from_elf_section (input,
8947 hdr->sh_link,
8948 isym->st_name);
8949 if (strcmp (name, h->root.root.string) != 0)
8950 continue;
8951
8952 _bfd_elf_swap_versym_in (input, ever, &iver);
8953
8954 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8955 && !(h->def_regular
8956 && h->forced_local))
8957 {
8958 /* If we have a non-hidden versioned sym, then it should
8959 have provided a definition for the undefined sym unless
8960 it is defined in a non-shared object and forced local.
8961 */
8962 abort ();
8963 }
8964
8965 version_index = iver.vs_vers & VERSYM_VERSION;
8966 if (version_index == 1 || version_index == 2)
8967 {
8968 /* This is the base or first version. We can use it. */
8969 free (extversym);
8970 free (isymbuf);
8971 return TRUE;
8972 }
8973 }
8974
8975 free (extversym);
8976 free (isymbuf);
8977 }
8978
8979 return FALSE;
8980 }
8981
8982 /* Add an external symbol to the symbol table. This is called from
8983 the hash table traversal routine. When generating a shared object,
8984 we go through the symbol table twice. The first time we output
8985 anything that might have been forced to local scope in a version
8986 script. The second time we output the symbols that are still
8987 global symbols. */
8988
8989 static bfd_boolean
8990 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8991 {
8992 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8993 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8994 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8995 bfd_boolean strip;
8996 Elf_Internal_Sym sym;
8997 asection *input_sec;
8998 const struct elf_backend_data *bed;
8999 long indx;
9000 int ret;
9001 /* A symbol is bound locally if it is forced local or it is locally
9002 defined, hidden versioned, not referenced by shared library and
9003 not exported when linking executable. */
9004 bfd_boolean local_bind = (h->forced_local
9005 || (bfd_link_executable (flinfo->info)
9006 && !flinfo->info->export_dynamic
9007 && !h->dynamic
9008 && !h->ref_dynamic
9009 && h->def_regular
9010 && h->versioned == versioned_hidden));
9011
9012 if (h->root.type == bfd_link_hash_warning)
9013 {
9014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9015 if (h->root.type == bfd_link_hash_new)
9016 return TRUE;
9017 }
9018
9019 /* Decide whether to output this symbol in this pass. */
9020 if (eoinfo->localsyms)
9021 {
9022 if (!local_bind)
9023 return TRUE;
9024 }
9025 else
9026 {
9027 if (local_bind)
9028 return TRUE;
9029 }
9030
9031 bed = get_elf_backend_data (flinfo->output_bfd);
9032
9033 if (h->root.type == bfd_link_hash_undefined)
9034 {
9035 /* If we have an undefined symbol reference here then it must have
9036 come from a shared library that is being linked in. (Undefined
9037 references in regular files have already been handled unless
9038 they are in unreferenced sections which are removed by garbage
9039 collection). */
9040 bfd_boolean ignore_undef = FALSE;
9041
9042 /* Some symbols may be special in that the fact that they're
9043 undefined can be safely ignored - let backend determine that. */
9044 if (bed->elf_backend_ignore_undef_symbol)
9045 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9046
9047 /* If we are reporting errors for this situation then do so now. */
9048 if (!ignore_undef
9049 && h->ref_dynamic
9050 && (!h->ref_regular || flinfo->info->gc_sections)
9051 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9052 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9053 {
9054 if (!(flinfo->info->callbacks->undefined_symbol
9055 (flinfo->info, h->root.root.string,
9056 h->ref_regular ? NULL : h->root.u.undef.abfd,
9057 NULL, 0,
9058 (flinfo->info->unresolved_syms_in_shared_libs
9059 == RM_GENERATE_ERROR))))
9060 {
9061 bfd_set_error (bfd_error_bad_value);
9062 eoinfo->failed = TRUE;
9063 return FALSE;
9064 }
9065 }
9066 }
9067
9068 /* We should also warn if a forced local symbol is referenced from
9069 shared libraries. */
9070 if (bfd_link_executable (flinfo->info)
9071 && h->forced_local
9072 && h->ref_dynamic
9073 && h->def_regular
9074 && !h->dynamic_def
9075 && h->ref_dynamic_nonweak
9076 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9077 {
9078 bfd *def_bfd;
9079 const char *msg;
9080 struct elf_link_hash_entry *hi = h;
9081
9082 /* Check indirect symbol. */
9083 while (hi->root.type == bfd_link_hash_indirect)
9084 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9085
9086 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9087 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9088 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9089 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9090 else
9091 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9092 def_bfd = flinfo->output_bfd;
9093 if (hi->root.u.def.section != bfd_abs_section_ptr)
9094 def_bfd = hi->root.u.def.section->owner;
9095 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9096 h->root.root.string);
9097 bfd_set_error (bfd_error_bad_value);
9098 eoinfo->failed = TRUE;
9099 return FALSE;
9100 }
9101
9102 /* We don't want to output symbols that have never been mentioned by
9103 a regular file, or that we have been told to strip. However, if
9104 h->indx is set to -2, the symbol is used by a reloc and we must
9105 output it. */
9106 strip = FALSE;
9107 if (h->indx == -2)
9108 ;
9109 else if ((h->def_dynamic
9110 || h->ref_dynamic
9111 || h->root.type == bfd_link_hash_new)
9112 && !h->def_regular
9113 && !h->ref_regular)
9114 strip = TRUE;
9115 else if (flinfo->info->strip == strip_all)
9116 strip = TRUE;
9117 else if (flinfo->info->strip == strip_some
9118 && bfd_hash_lookup (flinfo->info->keep_hash,
9119 h->root.root.string, FALSE, FALSE) == NULL)
9120 strip = TRUE;
9121 else if ((h->root.type == bfd_link_hash_defined
9122 || h->root.type == bfd_link_hash_defweak)
9123 && ((flinfo->info->strip_discarded
9124 && discarded_section (h->root.u.def.section))
9125 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9126 && h->root.u.def.section->owner != NULL
9127 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9128 strip = TRUE;
9129 else if ((h->root.type == bfd_link_hash_undefined
9130 || h->root.type == bfd_link_hash_undefweak)
9131 && h->root.u.undef.abfd != NULL
9132 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9133 strip = TRUE;
9134
9135 /* If we're stripping it, and it's not a dynamic symbol, there's
9136 nothing else to do. However, if it is a forced local symbol or
9137 an ifunc symbol we need to give the backend finish_dynamic_symbol
9138 function a chance to make it dynamic. */
9139 if (strip
9140 && h->dynindx == -1
9141 && h->type != STT_GNU_IFUNC
9142 && !h->forced_local)
9143 return TRUE;
9144
9145 sym.st_value = 0;
9146 sym.st_size = h->size;
9147 sym.st_other = h->other;
9148 if (local_bind)
9149 {
9150 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
9151 /* Turn off visibility on local symbol. */
9152 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9153 }
9154 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9155 else if (h->unique_global && h->def_regular)
9156 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
9157 else if (h->root.type == bfd_link_hash_undefweak
9158 || h->root.type == bfd_link_hash_defweak)
9159 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
9160 else
9161 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
9162 sym.st_target_internal = h->target_internal;
9163
9164 switch (h->root.type)
9165 {
9166 default:
9167 case bfd_link_hash_new:
9168 case bfd_link_hash_warning:
9169 abort ();
9170 return FALSE;
9171
9172 case bfd_link_hash_undefined:
9173 case bfd_link_hash_undefweak:
9174 input_sec = bfd_und_section_ptr;
9175 sym.st_shndx = SHN_UNDEF;
9176 break;
9177
9178 case bfd_link_hash_defined:
9179 case bfd_link_hash_defweak:
9180 {
9181 input_sec = h->root.u.def.section;
9182 if (input_sec->output_section != NULL)
9183 {
9184 sym.st_shndx =
9185 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9186 input_sec->output_section);
9187 if (sym.st_shndx == SHN_BAD)
9188 {
9189 (*_bfd_error_handler)
9190 (_("%B: could not find output section %A for input section %A"),
9191 flinfo->output_bfd, input_sec->output_section, input_sec);
9192 bfd_set_error (bfd_error_nonrepresentable_section);
9193 eoinfo->failed = TRUE;
9194 return FALSE;
9195 }
9196
9197 /* ELF symbols in relocatable files are section relative,
9198 but in nonrelocatable files they are virtual
9199 addresses. */
9200 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9201 if (!bfd_link_relocatable (flinfo->info))
9202 {
9203 sym.st_value += input_sec->output_section->vma;
9204 if (h->type == STT_TLS)
9205 {
9206 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9207 if (tls_sec != NULL)
9208 sym.st_value -= tls_sec->vma;
9209 }
9210 }
9211 }
9212 else
9213 {
9214 BFD_ASSERT (input_sec->owner == NULL
9215 || (input_sec->owner->flags & DYNAMIC) != 0);
9216 sym.st_shndx = SHN_UNDEF;
9217 input_sec = bfd_und_section_ptr;
9218 }
9219 }
9220 break;
9221
9222 case bfd_link_hash_common:
9223 input_sec = h->root.u.c.p->section;
9224 sym.st_shndx = bed->common_section_index (input_sec);
9225 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9226 break;
9227
9228 case bfd_link_hash_indirect:
9229 /* These symbols are created by symbol versioning. They point
9230 to the decorated version of the name. For example, if the
9231 symbol foo@@GNU_1.2 is the default, which should be used when
9232 foo is used with no version, then we add an indirect symbol
9233 foo which points to foo@@GNU_1.2. We ignore these symbols,
9234 since the indirected symbol is already in the hash table. */
9235 return TRUE;
9236 }
9237
9238 /* Give the processor backend a chance to tweak the symbol value,
9239 and also to finish up anything that needs to be done for this
9240 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9241 forced local syms when non-shared is due to a historical quirk.
9242 STT_GNU_IFUNC symbol must go through PLT. */
9243 if ((h->type == STT_GNU_IFUNC
9244 && h->def_regular
9245 && !bfd_link_relocatable (flinfo->info))
9246 || ((h->dynindx != -1
9247 || h->forced_local)
9248 && ((bfd_link_pic (flinfo->info)
9249 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9250 || h->root.type != bfd_link_hash_undefweak))
9251 || !h->forced_local)
9252 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9253 {
9254 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9255 (flinfo->output_bfd, flinfo->info, h, &sym)))
9256 {
9257 eoinfo->failed = TRUE;
9258 return FALSE;
9259 }
9260 }
9261
9262 /* If we are marking the symbol as undefined, and there are no
9263 non-weak references to this symbol from a regular object, then
9264 mark the symbol as weak undefined; if there are non-weak
9265 references, mark the symbol as strong. We can't do this earlier,
9266 because it might not be marked as undefined until the
9267 finish_dynamic_symbol routine gets through with it. */
9268 if (sym.st_shndx == SHN_UNDEF
9269 && h->ref_regular
9270 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9271 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9272 {
9273 int bindtype;
9274 unsigned int type = ELF_ST_TYPE (sym.st_info);
9275
9276 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9277 if (type == STT_GNU_IFUNC)
9278 type = STT_FUNC;
9279
9280 if (h->ref_regular_nonweak)
9281 bindtype = STB_GLOBAL;
9282 else
9283 bindtype = STB_WEAK;
9284 sym.st_info = ELF_ST_INFO (bindtype, type);
9285 }
9286
9287 /* If this is a symbol defined in a dynamic library, don't use the
9288 symbol size from the dynamic library. Relinking an executable
9289 against a new library may introduce gratuitous changes in the
9290 executable's symbols if we keep the size. */
9291 if (sym.st_shndx == SHN_UNDEF
9292 && !h->def_regular
9293 && h->def_dynamic)
9294 sym.st_size = 0;
9295
9296 /* If a non-weak symbol with non-default visibility is not defined
9297 locally, it is a fatal error. */
9298 if (!bfd_link_relocatable (flinfo->info)
9299 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9300 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9301 && h->root.type == bfd_link_hash_undefined
9302 && !h->def_regular)
9303 {
9304 const char *msg;
9305
9306 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9307 msg = _("%B: protected symbol `%s' isn't defined");
9308 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9309 msg = _("%B: internal symbol `%s' isn't defined");
9310 else
9311 msg = _("%B: hidden symbol `%s' isn't defined");
9312 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9313 bfd_set_error (bfd_error_bad_value);
9314 eoinfo->failed = TRUE;
9315 return FALSE;
9316 }
9317
9318 /* If this symbol should be put in the .dynsym section, then put it
9319 there now. We already know the symbol index. We also fill in
9320 the entry in the .hash section. */
9321 if (elf_hash_table (flinfo->info)->dynsym != NULL
9322 && h->dynindx != -1
9323 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9324 {
9325 bfd_byte *esym;
9326
9327 /* Since there is no version information in the dynamic string,
9328 if there is no version info in symbol version section, we will
9329 have a run-time problem if not linking executable, referenced
9330 by shared library, not locally defined, or not bound locally.
9331 */
9332 if (h->verinfo.verdef == NULL
9333 && !local_bind
9334 && (!bfd_link_executable (flinfo->info)
9335 || h->ref_dynamic
9336 || !h->def_regular))
9337 {
9338 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9339
9340 if (p && p [1] != '\0')
9341 {
9342 (*_bfd_error_handler)
9343 (_("%B: No symbol version section for versioned symbol `%s'"),
9344 flinfo->output_bfd, h->root.root.string);
9345 eoinfo->failed = TRUE;
9346 return FALSE;
9347 }
9348 }
9349
9350 sym.st_name = h->dynstr_index;
9351 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9352 + h->dynindx * bed->s->sizeof_sym);
9353 if (!check_dynsym (flinfo->output_bfd, &sym))
9354 {
9355 eoinfo->failed = TRUE;
9356 return FALSE;
9357 }
9358 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9359
9360 if (flinfo->hash_sec != NULL)
9361 {
9362 size_t hash_entry_size;
9363 bfd_byte *bucketpos;
9364 bfd_vma chain;
9365 size_t bucketcount;
9366 size_t bucket;
9367
9368 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9369 bucket = h->u.elf_hash_value % bucketcount;
9370
9371 hash_entry_size
9372 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9373 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9374 + (bucket + 2) * hash_entry_size);
9375 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9376 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9377 bucketpos);
9378 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9379 ((bfd_byte *) flinfo->hash_sec->contents
9380 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9381 }
9382
9383 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9384 {
9385 Elf_Internal_Versym iversym;
9386 Elf_External_Versym *eversym;
9387
9388 if (!h->def_regular)
9389 {
9390 if (h->verinfo.verdef == NULL
9391 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9392 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9393 iversym.vs_vers = 0;
9394 else
9395 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9396 }
9397 else
9398 {
9399 if (h->verinfo.vertree == NULL)
9400 iversym.vs_vers = 1;
9401 else
9402 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9403 if (flinfo->info->create_default_symver)
9404 iversym.vs_vers++;
9405 }
9406
9407 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9408 defined locally. */
9409 if (h->versioned == versioned_hidden && h->def_regular)
9410 iversym.vs_vers |= VERSYM_HIDDEN;
9411
9412 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9413 eversym += h->dynindx;
9414 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9415 }
9416 }
9417
9418 /* If the symbol is undefined, and we didn't output it to .dynsym,
9419 strip it from .symtab too. Obviously we can't do this for
9420 relocatable output or when needed for --emit-relocs. */
9421 else if (input_sec == bfd_und_section_ptr
9422 && h->indx != -2
9423 && !bfd_link_relocatable (flinfo->info))
9424 return TRUE;
9425 /* Also strip others that we couldn't earlier due to dynamic symbol
9426 processing. */
9427 if (strip)
9428 return TRUE;
9429 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9430 return TRUE;
9431
9432 /* Output a FILE symbol so that following locals are not associated
9433 with the wrong input file. We need one for forced local symbols
9434 if we've seen more than one FILE symbol or when we have exactly
9435 one FILE symbol but global symbols are present in a file other
9436 than the one with the FILE symbol. We also need one if linker
9437 defined symbols are present. In practice these conditions are
9438 always met, so just emit the FILE symbol unconditionally. */
9439 if (eoinfo->localsyms
9440 && !eoinfo->file_sym_done
9441 && eoinfo->flinfo->filesym_count != 0)
9442 {
9443 Elf_Internal_Sym fsym;
9444
9445 memset (&fsym, 0, sizeof (fsym));
9446 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9447 fsym.st_shndx = SHN_ABS;
9448 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9449 bfd_und_section_ptr, NULL))
9450 return FALSE;
9451
9452 eoinfo->file_sym_done = TRUE;
9453 }
9454
9455 indx = bfd_get_symcount (flinfo->output_bfd);
9456 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9457 input_sec, h);
9458 if (ret == 0)
9459 {
9460 eoinfo->failed = TRUE;
9461 return FALSE;
9462 }
9463 else if (ret == 1)
9464 h->indx = indx;
9465 else if (h->indx == -2)
9466 abort();
9467
9468 return TRUE;
9469 }
9470
9471 /* Return TRUE if special handling is done for relocs in SEC against
9472 symbols defined in discarded sections. */
9473
9474 static bfd_boolean
9475 elf_section_ignore_discarded_relocs (asection *sec)
9476 {
9477 const struct elf_backend_data *bed;
9478
9479 switch (sec->sec_info_type)
9480 {
9481 case SEC_INFO_TYPE_STABS:
9482 case SEC_INFO_TYPE_EH_FRAME:
9483 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9484 return TRUE;
9485 default:
9486 break;
9487 }
9488
9489 bed = get_elf_backend_data (sec->owner);
9490 if (bed->elf_backend_ignore_discarded_relocs != NULL
9491 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9492 return TRUE;
9493
9494 return FALSE;
9495 }
9496
9497 /* Return a mask saying how ld should treat relocations in SEC against
9498 symbols defined in discarded sections. If this function returns
9499 COMPLAIN set, ld will issue a warning message. If this function
9500 returns PRETEND set, and the discarded section was link-once and the
9501 same size as the kept link-once section, ld will pretend that the
9502 symbol was actually defined in the kept section. Otherwise ld will
9503 zero the reloc (at least that is the intent, but some cooperation by
9504 the target dependent code is needed, particularly for REL targets). */
9505
9506 unsigned int
9507 _bfd_elf_default_action_discarded (asection *sec)
9508 {
9509 if (sec->flags & SEC_DEBUGGING)
9510 return PRETEND;
9511
9512 if (strcmp (".eh_frame", sec->name) == 0)
9513 return 0;
9514
9515 if (strcmp (".gcc_except_table", sec->name) == 0)
9516 return 0;
9517
9518 return COMPLAIN | PRETEND;
9519 }
9520
9521 /* Find a match between a section and a member of a section group. */
9522
9523 static asection *
9524 match_group_member (asection *sec, asection *group,
9525 struct bfd_link_info *info)
9526 {
9527 asection *first = elf_next_in_group (group);
9528 asection *s = first;
9529
9530 while (s != NULL)
9531 {
9532 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9533 return s;
9534
9535 s = elf_next_in_group (s);
9536 if (s == first)
9537 break;
9538 }
9539
9540 return NULL;
9541 }
9542
9543 /* Check if the kept section of a discarded section SEC can be used
9544 to replace it. Return the replacement if it is OK. Otherwise return
9545 NULL. */
9546
9547 asection *
9548 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9549 {
9550 asection *kept;
9551
9552 kept = sec->kept_section;
9553 if (kept != NULL)
9554 {
9555 if ((kept->flags & SEC_GROUP) != 0)
9556 kept = match_group_member (sec, kept, info);
9557 if (kept != NULL
9558 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9559 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9560 kept = NULL;
9561 sec->kept_section = kept;
9562 }
9563 return kept;
9564 }
9565
9566 /* Link an input file into the linker output file. This function
9567 handles all the sections and relocations of the input file at once.
9568 This is so that we only have to read the local symbols once, and
9569 don't have to keep them in memory. */
9570
9571 static bfd_boolean
9572 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9573 {
9574 int (*relocate_section)
9575 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9576 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9577 bfd *output_bfd;
9578 Elf_Internal_Shdr *symtab_hdr;
9579 size_t locsymcount;
9580 size_t extsymoff;
9581 Elf_Internal_Sym *isymbuf;
9582 Elf_Internal_Sym *isym;
9583 Elf_Internal_Sym *isymend;
9584 long *pindex;
9585 asection **ppsection;
9586 asection *o;
9587 const struct elf_backend_data *bed;
9588 struct elf_link_hash_entry **sym_hashes;
9589 bfd_size_type address_size;
9590 bfd_vma r_type_mask;
9591 int r_sym_shift;
9592 bfd_boolean have_file_sym = FALSE;
9593
9594 output_bfd = flinfo->output_bfd;
9595 bed = get_elf_backend_data (output_bfd);
9596 relocate_section = bed->elf_backend_relocate_section;
9597
9598 /* If this is a dynamic object, we don't want to do anything here:
9599 we don't want the local symbols, and we don't want the section
9600 contents. */
9601 if ((input_bfd->flags & DYNAMIC) != 0)
9602 return TRUE;
9603
9604 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9605 if (elf_bad_symtab (input_bfd))
9606 {
9607 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9608 extsymoff = 0;
9609 }
9610 else
9611 {
9612 locsymcount = symtab_hdr->sh_info;
9613 extsymoff = symtab_hdr->sh_info;
9614 }
9615
9616 /* Read the local symbols. */
9617 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9618 if (isymbuf == NULL && locsymcount != 0)
9619 {
9620 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9621 flinfo->internal_syms,
9622 flinfo->external_syms,
9623 flinfo->locsym_shndx);
9624 if (isymbuf == NULL)
9625 return FALSE;
9626 }
9627
9628 /* Find local symbol sections and adjust values of symbols in
9629 SEC_MERGE sections. Write out those local symbols we know are
9630 going into the output file. */
9631 isymend = isymbuf + locsymcount;
9632 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9633 isym < isymend;
9634 isym++, pindex++, ppsection++)
9635 {
9636 asection *isec;
9637 const char *name;
9638 Elf_Internal_Sym osym;
9639 long indx;
9640 int ret;
9641
9642 *pindex = -1;
9643
9644 if (elf_bad_symtab (input_bfd))
9645 {
9646 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9647 {
9648 *ppsection = NULL;
9649 continue;
9650 }
9651 }
9652
9653 if (isym->st_shndx == SHN_UNDEF)
9654 isec = bfd_und_section_ptr;
9655 else if (isym->st_shndx == SHN_ABS)
9656 isec = bfd_abs_section_ptr;
9657 else if (isym->st_shndx == SHN_COMMON)
9658 isec = bfd_com_section_ptr;
9659 else
9660 {
9661 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9662 if (isec == NULL)
9663 {
9664 /* Don't attempt to output symbols with st_shnx in the
9665 reserved range other than SHN_ABS and SHN_COMMON. */
9666 *ppsection = NULL;
9667 continue;
9668 }
9669 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9670 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9671 isym->st_value =
9672 _bfd_merged_section_offset (output_bfd, &isec,
9673 elf_section_data (isec)->sec_info,
9674 isym->st_value);
9675 }
9676
9677 *ppsection = isec;
9678
9679 /* Don't output the first, undefined, symbol. In fact, don't
9680 output any undefined local symbol. */
9681 if (isec == bfd_und_section_ptr)
9682 continue;
9683
9684 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9685 {
9686 /* We never output section symbols. Instead, we use the
9687 section symbol of the corresponding section in the output
9688 file. */
9689 continue;
9690 }
9691
9692 /* If we are stripping all symbols, we don't want to output this
9693 one. */
9694 if (flinfo->info->strip == strip_all)
9695 continue;
9696
9697 /* If we are discarding all local symbols, we don't want to
9698 output this one. If we are generating a relocatable output
9699 file, then some of the local symbols may be required by
9700 relocs; we output them below as we discover that they are
9701 needed. */
9702 if (flinfo->info->discard == discard_all)
9703 continue;
9704
9705 /* If this symbol is defined in a section which we are
9706 discarding, we don't need to keep it. */
9707 if (isym->st_shndx != SHN_UNDEF
9708 && isym->st_shndx < SHN_LORESERVE
9709 && bfd_section_removed_from_list (output_bfd,
9710 isec->output_section))
9711 continue;
9712
9713 /* Get the name of the symbol. */
9714 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9715 isym->st_name);
9716 if (name == NULL)
9717 return FALSE;
9718
9719 /* See if we are discarding symbols with this name. */
9720 if ((flinfo->info->strip == strip_some
9721 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9722 == NULL))
9723 || (((flinfo->info->discard == discard_sec_merge
9724 && (isec->flags & SEC_MERGE)
9725 && !bfd_link_relocatable (flinfo->info))
9726 || flinfo->info->discard == discard_l)
9727 && bfd_is_local_label_name (input_bfd, name)))
9728 continue;
9729
9730 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9731 {
9732 if (input_bfd->lto_output)
9733 /* -flto puts a temp file name here. This means builds
9734 are not reproducible. Discard the symbol. */
9735 continue;
9736 have_file_sym = TRUE;
9737 flinfo->filesym_count += 1;
9738 }
9739 if (!have_file_sym)
9740 {
9741 /* In the absence of debug info, bfd_find_nearest_line uses
9742 FILE symbols to determine the source file for local
9743 function symbols. Provide a FILE symbol here if input
9744 files lack such, so that their symbols won't be
9745 associated with a previous input file. It's not the
9746 source file, but the best we can do. */
9747 have_file_sym = TRUE;
9748 flinfo->filesym_count += 1;
9749 memset (&osym, 0, sizeof (osym));
9750 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9751 osym.st_shndx = SHN_ABS;
9752 if (!elf_link_output_symstrtab (flinfo,
9753 (input_bfd->lto_output ? NULL
9754 : input_bfd->filename),
9755 &osym, bfd_abs_section_ptr,
9756 NULL))
9757 return FALSE;
9758 }
9759
9760 osym = *isym;
9761
9762 /* Adjust the section index for the output file. */
9763 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9764 isec->output_section);
9765 if (osym.st_shndx == SHN_BAD)
9766 return FALSE;
9767
9768 /* ELF symbols in relocatable files are section relative, but
9769 in executable files they are virtual addresses. Note that
9770 this code assumes that all ELF sections have an associated
9771 BFD section with a reasonable value for output_offset; below
9772 we assume that they also have a reasonable value for
9773 output_section. Any special sections must be set up to meet
9774 these requirements. */
9775 osym.st_value += isec->output_offset;
9776 if (!bfd_link_relocatable (flinfo->info))
9777 {
9778 osym.st_value += isec->output_section->vma;
9779 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9780 {
9781 /* STT_TLS symbols are relative to PT_TLS segment base. */
9782 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9783 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9784 }
9785 }
9786
9787 indx = bfd_get_symcount (output_bfd);
9788 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
9789 if (ret == 0)
9790 return FALSE;
9791 else if (ret == 1)
9792 *pindex = indx;
9793 }
9794
9795 if (bed->s->arch_size == 32)
9796 {
9797 r_type_mask = 0xff;
9798 r_sym_shift = 8;
9799 address_size = 4;
9800 }
9801 else
9802 {
9803 r_type_mask = 0xffffffff;
9804 r_sym_shift = 32;
9805 address_size = 8;
9806 }
9807
9808 /* Relocate the contents of each section. */
9809 sym_hashes = elf_sym_hashes (input_bfd);
9810 for (o = input_bfd->sections; o != NULL; o = o->next)
9811 {
9812 bfd_byte *contents;
9813
9814 if (! o->linker_mark)
9815 {
9816 /* This section was omitted from the link. */
9817 continue;
9818 }
9819
9820 if (bfd_link_relocatable (flinfo->info)
9821 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9822 {
9823 /* Deal with the group signature symbol. */
9824 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9825 unsigned long symndx = sec_data->this_hdr.sh_info;
9826 asection *osec = o->output_section;
9827
9828 if (symndx >= locsymcount
9829 || (elf_bad_symtab (input_bfd)
9830 && flinfo->sections[symndx] == NULL))
9831 {
9832 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9833 while (h->root.type == bfd_link_hash_indirect
9834 || h->root.type == bfd_link_hash_warning)
9835 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9836 /* Arrange for symbol to be output. */
9837 h->indx = -2;
9838 elf_section_data (osec)->this_hdr.sh_info = -2;
9839 }
9840 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9841 {
9842 /* We'll use the output section target_index. */
9843 asection *sec = flinfo->sections[symndx]->output_section;
9844 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9845 }
9846 else
9847 {
9848 if (flinfo->indices[symndx] == -1)
9849 {
9850 /* Otherwise output the local symbol now. */
9851 Elf_Internal_Sym sym = isymbuf[symndx];
9852 asection *sec = flinfo->sections[symndx]->output_section;
9853 const char *name;
9854 long indx;
9855 int ret;
9856
9857 name = bfd_elf_string_from_elf_section (input_bfd,
9858 symtab_hdr->sh_link,
9859 sym.st_name);
9860 if (name == NULL)
9861 return FALSE;
9862
9863 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9864 sec);
9865 if (sym.st_shndx == SHN_BAD)
9866 return FALSE;
9867
9868 sym.st_value += o->output_offset;
9869
9870 indx = bfd_get_symcount (output_bfd);
9871 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
9872 NULL);
9873 if (ret == 0)
9874 return FALSE;
9875 else if (ret == 1)
9876 flinfo->indices[symndx] = indx;
9877 else
9878 abort ();
9879 }
9880 elf_section_data (osec)->this_hdr.sh_info
9881 = flinfo->indices[symndx];
9882 }
9883 }
9884
9885 if ((o->flags & SEC_HAS_CONTENTS) == 0
9886 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9887 continue;
9888
9889 if ((o->flags & SEC_LINKER_CREATED) != 0)
9890 {
9891 /* Section was created by _bfd_elf_link_create_dynamic_sections
9892 or somesuch. */
9893 continue;
9894 }
9895
9896 /* Get the contents of the section. They have been cached by a
9897 relaxation routine. Note that o is a section in an input
9898 file, so the contents field will not have been set by any of
9899 the routines which work on output files. */
9900 if (elf_section_data (o)->this_hdr.contents != NULL)
9901 {
9902 contents = elf_section_data (o)->this_hdr.contents;
9903 if (bed->caches_rawsize
9904 && o->rawsize != 0
9905 && o->rawsize < o->size)
9906 {
9907 memcpy (flinfo->contents, contents, o->rawsize);
9908 contents = flinfo->contents;
9909 }
9910 }
9911 else
9912 {
9913 contents = flinfo->contents;
9914 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9915 return FALSE;
9916 }
9917
9918 if ((o->flags & SEC_RELOC) != 0)
9919 {
9920 Elf_Internal_Rela *internal_relocs;
9921 Elf_Internal_Rela *rel, *relend;
9922 int action_discarded;
9923 int ret;
9924
9925 /* Get the swapped relocs. */
9926 internal_relocs
9927 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9928 flinfo->internal_relocs, FALSE);
9929 if (internal_relocs == NULL
9930 && o->reloc_count > 0)
9931 return FALSE;
9932
9933 /* We need to reverse-copy input .ctors/.dtors sections if
9934 they are placed in .init_array/.finit_array for output. */
9935 if (o->size > address_size
9936 && ((strncmp (o->name, ".ctors", 6) == 0
9937 && strcmp (o->output_section->name,
9938 ".init_array") == 0)
9939 || (strncmp (o->name, ".dtors", 6) == 0
9940 && strcmp (o->output_section->name,
9941 ".fini_array") == 0))
9942 && (o->name[6] == 0 || o->name[6] == '.'))
9943 {
9944 if (o->size != o->reloc_count * address_size)
9945 {
9946 (*_bfd_error_handler)
9947 (_("error: %B: size of section %A is not "
9948 "multiple of address size"),
9949 input_bfd, o);
9950 bfd_set_error (bfd_error_on_input);
9951 return FALSE;
9952 }
9953 o->flags |= SEC_ELF_REVERSE_COPY;
9954 }
9955
9956 action_discarded = -1;
9957 if (!elf_section_ignore_discarded_relocs (o))
9958 action_discarded = (*bed->action_discarded) (o);
9959
9960 /* Run through the relocs evaluating complex reloc symbols and
9961 looking for relocs against symbols from discarded sections
9962 or section symbols from removed link-once sections.
9963 Complain about relocs against discarded sections. Zero
9964 relocs against removed link-once sections. */
9965
9966 rel = internal_relocs;
9967 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9968 for ( ; rel < relend; rel++)
9969 {
9970 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9971 unsigned int s_type;
9972 asection **ps, *sec;
9973 struct elf_link_hash_entry *h = NULL;
9974 const char *sym_name;
9975
9976 if (r_symndx == STN_UNDEF)
9977 continue;
9978
9979 if (r_symndx >= locsymcount
9980 || (elf_bad_symtab (input_bfd)
9981 && flinfo->sections[r_symndx] == NULL))
9982 {
9983 h = sym_hashes[r_symndx - extsymoff];
9984
9985 /* Badly formatted input files can contain relocs that
9986 reference non-existant symbols. Check here so that
9987 we do not seg fault. */
9988 if (h == NULL)
9989 {
9990 char buffer [32];
9991
9992 sprintf_vma (buffer, rel->r_info);
9993 (*_bfd_error_handler)
9994 (_("error: %B contains a reloc (0x%s) for section %A "
9995 "that references a non-existent global symbol"),
9996 input_bfd, o, buffer);
9997 bfd_set_error (bfd_error_bad_value);
9998 return FALSE;
9999 }
10000
10001 while (h->root.type == bfd_link_hash_indirect
10002 || h->root.type == bfd_link_hash_warning)
10003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10004
10005 s_type = h->type;
10006
10007 /* If a plugin symbol is referenced from a non-IR file,
10008 mark the symbol as undefined. Note that the
10009 linker may attach linker created dynamic sections
10010 to the plugin bfd. Symbols defined in linker
10011 created sections are not plugin symbols. */
10012 if (h->root.non_ir_ref
10013 && (h->root.type == bfd_link_hash_defined
10014 || h->root.type == bfd_link_hash_defweak)
10015 && (h->root.u.def.section->flags
10016 & SEC_LINKER_CREATED) == 0
10017 && h->root.u.def.section->owner != NULL
10018 && (h->root.u.def.section->owner->flags
10019 & BFD_PLUGIN) != 0)
10020 {
10021 h->root.type = bfd_link_hash_undefined;
10022 h->root.u.undef.abfd = h->root.u.def.section->owner;
10023 }
10024
10025 ps = NULL;
10026 if (h->root.type == bfd_link_hash_defined
10027 || h->root.type == bfd_link_hash_defweak)
10028 ps = &h->root.u.def.section;
10029
10030 sym_name = h->root.root.string;
10031 }
10032 else
10033 {
10034 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10035
10036 s_type = ELF_ST_TYPE (sym->st_info);
10037 ps = &flinfo->sections[r_symndx];
10038 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10039 sym, *ps);
10040 }
10041
10042 if ((s_type == STT_RELC || s_type == STT_SRELC)
10043 && !bfd_link_relocatable (flinfo->info))
10044 {
10045 bfd_vma val;
10046 bfd_vma dot = (rel->r_offset
10047 + o->output_offset + o->output_section->vma);
10048 #ifdef DEBUG
10049 printf ("Encountered a complex symbol!");
10050 printf (" (input_bfd %s, section %s, reloc %ld\n",
10051 input_bfd->filename, o->name,
10052 (long) (rel - internal_relocs));
10053 printf (" symbol: idx %8.8lx, name %s\n",
10054 r_symndx, sym_name);
10055 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10056 (unsigned long) rel->r_info,
10057 (unsigned long) rel->r_offset);
10058 #endif
10059 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10060 isymbuf, locsymcount, s_type == STT_SRELC))
10061 return FALSE;
10062
10063 /* Symbol evaluated OK. Update to absolute value. */
10064 set_symbol_value (input_bfd, isymbuf, locsymcount,
10065 r_symndx, val);
10066 continue;
10067 }
10068
10069 if (action_discarded != -1 && ps != NULL)
10070 {
10071 /* Complain if the definition comes from a
10072 discarded section. */
10073 if ((sec = *ps) != NULL && discarded_section (sec))
10074 {
10075 BFD_ASSERT (r_symndx != STN_UNDEF);
10076 if (action_discarded & COMPLAIN)
10077 (*flinfo->info->callbacks->einfo)
10078 (_("%X`%s' referenced in section `%A' of %B: "
10079 "defined in discarded section `%A' of %B\n"),
10080 sym_name, o, input_bfd, sec, sec->owner);
10081
10082 /* Try to do the best we can to support buggy old
10083 versions of gcc. Pretend that the symbol is
10084 really defined in the kept linkonce section.
10085 FIXME: This is quite broken. Modifying the
10086 symbol here means we will be changing all later
10087 uses of the symbol, not just in this section. */
10088 if (action_discarded & PRETEND)
10089 {
10090 asection *kept;
10091
10092 kept = _bfd_elf_check_kept_section (sec,
10093 flinfo->info);
10094 if (kept != NULL)
10095 {
10096 *ps = kept;
10097 continue;
10098 }
10099 }
10100 }
10101 }
10102 }
10103
10104 /* Relocate the section by invoking a back end routine.
10105
10106 The back end routine is responsible for adjusting the
10107 section contents as necessary, and (if using Rela relocs
10108 and generating a relocatable output file) adjusting the
10109 reloc addend as necessary.
10110
10111 The back end routine does not have to worry about setting
10112 the reloc address or the reloc symbol index.
10113
10114 The back end routine is given a pointer to the swapped in
10115 internal symbols, and can access the hash table entries
10116 for the external symbols via elf_sym_hashes (input_bfd).
10117
10118 When generating relocatable output, the back end routine
10119 must handle STB_LOCAL/STT_SECTION symbols specially. The
10120 output symbol is going to be a section symbol
10121 corresponding to the output section, which will require
10122 the addend to be adjusted. */
10123
10124 ret = (*relocate_section) (output_bfd, flinfo->info,
10125 input_bfd, o, contents,
10126 internal_relocs,
10127 isymbuf,
10128 flinfo->sections);
10129 if (!ret)
10130 return FALSE;
10131
10132 if (ret == 2
10133 || bfd_link_relocatable (flinfo->info)
10134 || flinfo->info->emitrelocations)
10135 {
10136 Elf_Internal_Rela *irela;
10137 Elf_Internal_Rela *irelaend, *irelamid;
10138 bfd_vma last_offset;
10139 struct elf_link_hash_entry **rel_hash;
10140 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10141 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10142 unsigned int next_erel;
10143 bfd_boolean rela_normal;
10144 struct bfd_elf_section_data *esdi, *esdo;
10145
10146 esdi = elf_section_data (o);
10147 esdo = elf_section_data (o->output_section);
10148 rela_normal = FALSE;
10149
10150 /* Adjust the reloc addresses and symbol indices. */
10151
10152 irela = internal_relocs;
10153 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10154 rel_hash = esdo->rel.hashes + esdo->rel.count;
10155 /* We start processing the REL relocs, if any. When we reach
10156 IRELAMID in the loop, we switch to the RELA relocs. */
10157 irelamid = irela;
10158 if (esdi->rel.hdr != NULL)
10159 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10160 * bed->s->int_rels_per_ext_rel);
10161 rel_hash_list = rel_hash;
10162 rela_hash_list = NULL;
10163 last_offset = o->output_offset;
10164 if (!bfd_link_relocatable (flinfo->info))
10165 last_offset += o->output_section->vma;
10166 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10167 {
10168 unsigned long r_symndx;
10169 asection *sec;
10170 Elf_Internal_Sym sym;
10171
10172 if (next_erel == bed->s->int_rels_per_ext_rel)
10173 {
10174 rel_hash++;
10175 next_erel = 0;
10176 }
10177
10178 if (irela == irelamid)
10179 {
10180 rel_hash = esdo->rela.hashes + esdo->rela.count;
10181 rela_hash_list = rel_hash;
10182 rela_normal = bed->rela_normal;
10183 }
10184
10185 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10186 flinfo->info, o,
10187 irela->r_offset);
10188 if (irela->r_offset >= (bfd_vma) -2)
10189 {
10190 /* This is a reloc for a deleted entry or somesuch.
10191 Turn it into an R_*_NONE reloc, at the same
10192 offset as the last reloc. elf_eh_frame.c and
10193 bfd_elf_discard_info rely on reloc offsets
10194 being ordered. */
10195 irela->r_offset = last_offset;
10196 irela->r_info = 0;
10197 irela->r_addend = 0;
10198 continue;
10199 }
10200
10201 irela->r_offset += o->output_offset;
10202
10203 /* Relocs in an executable have to be virtual addresses. */
10204 if (!bfd_link_relocatable (flinfo->info))
10205 irela->r_offset += o->output_section->vma;
10206
10207 last_offset = irela->r_offset;
10208
10209 r_symndx = irela->r_info >> r_sym_shift;
10210 if (r_symndx == STN_UNDEF)
10211 continue;
10212
10213 if (r_symndx >= locsymcount
10214 || (elf_bad_symtab (input_bfd)
10215 && flinfo->sections[r_symndx] == NULL))
10216 {
10217 struct elf_link_hash_entry *rh;
10218 unsigned long indx;
10219
10220 /* This is a reloc against a global symbol. We
10221 have not yet output all the local symbols, so
10222 we do not know the symbol index of any global
10223 symbol. We set the rel_hash entry for this
10224 reloc to point to the global hash table entry
10225 for this symbol. The symbol index is then
10226 set at the end of bfd_elf_final_link. */
10227 indx = r_symndx - extsymoff;
10228 rh = elf_sym_hashes (input_bfd)[indx];
10229 while (rh->root.type == bfd_link_hash_indirect
10230 || rh->root.type == bfd_link_hash_warning)
10231 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10232
10233 /* Setting the index to -2 tells
10234 elf_link_output_extsym that this symbol is
10235 used by a reloc. */
10236 BFD_ASSERT (rh->indx < 0);
10237 rh->indx = -2;
10238
10239 *rel_hash = rh;
10240
10241 continue;
10242 }
10243
10244 /* This is a reloc against a local symbol. */
10245
10246 *rel_hash = NULL;
10247 sym = isymbuf[r_symndx];
10248 sec = flinfo->sections[r_symndx];
10249 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10250 {
10251 /* I suppose the backend ought to fill in the
10252 section of any STT_SECTION symbol against a
10253 processor specific section. */
10254 r_symndx = STN_UNDEF;
10255 if (bfd_is_abs_section (sec))
10256 ;
10257 else if (sec == NULL || sec->owner == NULL)
10258 {
10259 bfd_set_error (bfd_error_bad_value);
10260 return FALSE;
10261 }
10262 else
10263 {
10264 asection *osec = sec->output_section;
10265
10266 /* If we have discarded a section, the output
10267 section will be the absolute section. In
10268 case of discarded SEC_MERGE sections, use
10269 the kept section. relocate_section should
10270 have already handled discarded linkonce
10271 sections. */
10272 if (bfd_is_abs_section (osec)
10273 && sec->kept_section != NULL
10274 && sec->kept_section->output_section != NULL)
10275 {
10276 osec = sec->kept_section->output_section;
10277 irela->r_addend -= osec->vma;
10278 }
10279
10280 if (!bfd_is_abs_section (osec))
10281 {
10282 r_symndx = osec->target_index;
10283 if (r_symndx == STN_UNDEF)
10284 {
10285 irela->r_addend += osec->vma;
10286 osec = _bfd_nearby_section (output_bfd, osec,
10287 osec->vma);
10288 irela->r_addend -= osec->vma;
10289 r_symndx = osec->target_index;
10290 }
10291 }
10292 }
10293
10294 /* Adjust the addend according to where the
10295 section winds up in the output section. */
10296 if (rela_normal)
10297 irela->r_addend += sec->output_offset;
10298 }
10299 else
10300 {
10301 if (flinfo->indices[r_symndx] == -1)
10302 {
10303 unsigned long shlink;
10304 const char *name;
10305 asection *osec;
10306 long indx;
10307
10308 if (flinfo->info->strip == strip_all)
10309 {
10310 /* You can't do ld -r -s. */
10311 bfd_set_error (bfd_error_invalid_operation);
10312 return FALSE;
10313 }
10314
10315 /* This symbol was skipped earlier, but
10316 since it is needed by a reloc, we
10317 must output it now. */
10318 shlink = symtab_hdr->sh_link;
10319 name = (bfd_elf_string_from_elf_section
10320 (input_bfd, shlink, sym.st_name));
10321 if (name == NULL)
10322 return FALSE;
10323
10324 osec = sec->output_section;
10325 sym.st_shndx =
10326 _bfd_elf_section_from_bfd_section (output_bfd,
10327 osec);
10328 if (sym.st_shndx == SHN_BAD)
10329 return FALSE;
10330
10331 sym.st_value += sec->output_offset;
10332 if (!bfd_link_relocatable (flinfo->info))
10333 {
10334 sym.st_value += osec->vma;
10335 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10336 {
10337 /* STT_TLS symbols are relative to PT_TLS
10338 segment base. */
10339 BFD_ASSERT (elf_hash_table (flinfo->info)
10340 ->tls_sec != NULL);
10341 sym.st_value -= (elf_hash_table (flinfo->info)
10342 ->tls_sec->vma);
10343 }
10344 }
10345
10346 indx = bfd_get_symcount (output_bfd);
10347 ret = elf_link_output_symstrtab (flinfo, name,
10348 &sym, sec,
10349 NULL);
10350 if (ret == 0)
10351 return FALSE;
10352 else if (ret == 1)
10353 flinfo->indices[r_symndx] = indx;
10354 else
10355 abort ();
10356 }
10357
10358 r_symndx = flinfo->indices[r_symndx];
10359 }
10360
10361 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10362 | (irela->r_info & r_type_mask));
10363 }
10364
10365 /* Swap out the relocs. */
10366 input_rel_hdr = esdi->rel.hdr;
10367 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10368 {
10369 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10370 input_rel_hdr,
10371 internal_relocs,
10372 rel_hash_list))
10373 return FALSE;
10374 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10375 * bed->s->int_rels_per_ext_rel);
10376 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10377 }
10378
10379 input_rela_hdr = esdi->rela.hdr;
10380 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10381 {
10382 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10383 input_rela_hdr,
10384 internal_relocs,
10385 rela_hash_list))
10386 return FALSE;
10387 }
10388 }
10389 }
10390
10391 /* Write out the modified section contents. */
10392 if (bed->elf_backend_write_section
10393 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10394 contents))
10395 {
10396 /* Section written out. */
10397 }
10398 else switch (o->sec_info_type)
10399 {
10400 case SEC_INFO_TYPE_STABS:
10401 if (! (_bfd_write_section_stabs
10402 (output_bfd,
10403 &elf_hash_table (flinfo->info)->stab_info,
10404 o, &elf_section_data (o)->sec_info, contents)))
10405 return FALSE;
10406 break;
10407 case SEC_INFO_TYPE_MERGE:
10408 if (! _bfd_write_merged_section (output_bfd, o,
10409 elf_section_data (o)->sec_info))
10410 return FALSE;
10411 break;
10412 case SEC_INFO_TYPE_EH_FRAME:
10413 {
10414 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10415 o, contents))
10416 return FALSE;
10417 }
10418 break;
10419 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10420 {
10421 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10422 flinfo->info,
10423 o, contents))
10424 return FALSE;
10425 }
10426 break;
10427 default:
10428 {
10429 /* FIXME: octets_per_byte. */
10430 if (! (o->flags & SEC_EXCLUDE))
10431 {
10432 file_ptr offset = (file_ptr) o->output_offset;
10433 bfd_size_type todo = o->size;
10434 if ((o->flags & SEC_ELF_REVERSE_COPY))
10435 {
10436 /* Reverse-copy input section to output. */
10437 do
10438 {
10439 todo -= address_size;
10440 if (! bfd_set_section_contents (output_bfd,
10441 o->output_section,
10442 contents + todo,
10443 offset,
10444 address_size))
10445 return FALSE;
10446 if (todo == 0)
10447 break;
10448 offset += address_size;
10449 }
10450 while (1);
10451 }
10452 else if (! bfd_set_section_contents (output_bfd,
10453 o->output_section,
10454 contents,
10455 offset, todo))
10456 return FALSE;
10457 }
10458 }
10459 break;
10460 }
10461 }
10462
10463 return TRUE;
10464 }
10465
10466 /* Generate a reloc when linking an ELF file. This is a reloc
10467 requested by the linker, and does not come from any input file. This
10468 is used to build constructor and destructor tables when linking
10469 with -Ur. */
10470
10471 static bfd_boolean
10472 elf_reloc_link_order (bfd *output_bfd,
10473 struct bfd_link_info *info,
10474 asection *output_section,
10475 struct bfd_link_order *link_order)
10476 {
10477 reloc_howto_type *howto;
10478 long indx;
10479 bfd_vma offset;
10480 bfd_vma addend;
10481 struct bfd_elf_section_reloc_data *reldata;
10482 struct elf_link_hash_entry **rel_hash_ptr;
10483 Elf_Internal_Shdr *rel_hdr;
10484 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10485 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10486 bfd_byte *erel;
10487 unsigned int i;
10488 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10489
10490 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10491 if (howto == NULL)
10492 {
10493 bfd_set_error (bfd_error_bad_value);
10494 return FALSE;
10495 }
10496
10497 addend = link_order->u.reloc.p->addend;
10498
10499 if (esdo->rel.hdr)
10500 reldata = &esdo->rel;
10501 else if (esdo->rela.hdr)
10502 reldata = &esdo->rela;
10503 else
10504 {
10505 reldata = NULL;
10506 BFD_ASSERT (0);
10507 }
10508
10509 /* Figure out the symbol index. */
10510 rel_hash_ptr = reldata->hashes + reldata->count;
10511 if (link_order->type == bfd_section_reloc_link_order)
10512 {
10513 indx = link_order->u.reloc.p->u.section->target_index;
10514 BFD_ASSERT (indx != 0);
10515 *rel_hash_ptr = NULL;
10516 }
10517 else
10518 {
10519 struct elf_link_hash_entry *h;
10520
10521 /* Treat a reloc against a defined symbol as though it were
10522 actually against the section. */
10523 h = ((struct elf_link_hash_entry *)
10524 bfd_wrapped_link_hash_lookup (output_bfd, info,
10525 link_order->u.reloc.p->u.name,
10526 FALSE, FALSE, TRUE));
10527 if (h != NULL
10528 && (h->root.type == bfd_link_hash_defined
10529 || h->root.type == bfd_link_hash_defweak))
10530 {
10531 asection *section;
10532
10533 section = h->root.u.def.section;
10534 indx = section->output_section->target_index;
10535 *rel_hash_ptr = NULL;
10536 /* It seems that we ought to add the symbol value to the
10537 addend here, but in practice it has already been added
10538 because it was passed to constructor_callback. */
10539 addend += section->output_section->vma + section->output_offset;
10540 }
10541 else if (h != NULL)
10542 {
10543 /* Setting the index to -2 tells elf_link_output_extsym that
10544 this symbol is used by a reloc. */
10545 h->indx = -2;
10546 *rel_hash_ptr = h;
10547 indx = 0;
10548 }
10549 else
10550 {
10551 if (! ((*info->callbacks->unattached_reloc)
10552 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10553 return FALSE;
10554 indx = 0;
10555 }
10556 }
10557
10558 /* If this is an inplace reloc, we must write the addend into the
10559 object file. */
10560 if (howto->partial_inplace && addend != 0)
10561 {
10562 bfd_size_type size;
10563 bfd_reloc_status_type rstat;
10564 bfd_byte *buf;
10565 bfd_boolean ok;
10566 const char *sym_name;
10567
10568 size = (bfd_size_type) bfd_get_reloc_size (howto);
10569 buf = (bfd_byte *) bfd_zmalloc (size);
10570 if (buf == NULL && size != 0)
10571 return FALSE;
10572 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10573 switch (rstat)
10574 {
10575 case bfd_reloc_ok:
10576 break;
10577
10578 default:
10579 case bfd_reloc_outofrange:
10580 abort ();
10581
10582 case bfd_reloc_overflow:
10583 if (link_order->type == bfd_section_reloc_link_order)
10584 sym_name = bfd_section_name (output_bfd,
10585 link_order->u.reloc.p->u.section);
10586 else
10587 sym_name = link_order->u.reloc.p->u.name;
10588 if (! ((*info->callbacks->reloc_overflow)
10589 (info, NULL, sym_name, howto->name, addend, NULL,
10590 NULL, (bfd_vma) 0)))
10591 {
10592 free (buf);
10593 return FALSE;
10594 }
10595 break;
10596 }
10597 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10598 link_order->offset, size);
10599 free (buf);
10600 if (! ok)
10601 return FALSE;
10602 }
10603
10604 /* The address of a reloc is relative to the section in a
10605 relocatable file, and is a virtual address in an executable
10606 file. */
10607 offset = link_order->offset;
10608 if (! bfd_link_relocatable (info))
10609 offset += output_section->vma;
10610
10611 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10612 {
10613 irel[i].r_offset = offset;
10614 irel[i].r_info = 0;
10615 irel[i].r_addend = 0;
10616 }
10617 if (bed->s->arch_size == 32)
10618 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10619 else
10620 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10621
10622 rel_hdr = reldata->hdr;
10623 erel = rel_hdr->contents;
10624 if (rel_hdr->sh_type == SHT_REL)
10625 {
10626 erel += reldata->count * bed->s->sizeof_rel;
10627 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10628 }
10629 else
10630 {
10631 irel[0].r_addend = addend;
10632 erel += reldata->count * bed->s->sizeof_rela;
10633 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10634 }
10635
10636 ++reldata->count;
10637
10638 return TRUE;
10639 }
10640
10641
10642 /* Get the output vma of the section pointed to by the sh_link field. */
10643
10644 static bfd_vma
10645 elf_get_linked_section_vma (struct bfd_link_order *p)
10646 {
10647 Elf_Internal_Shdr **elf_shdrp;
10648 asection *s;
10649 int elfsec;
10650
10651 s = p->u.indirect.section;
10652 elf_shdrp = elf_elfsections (s->owner);
10653 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10654 elfsec = elf_shdrp[elfsec]->sh_link;
10655 /* PR 290:
10656 The Intel C compiler generates SHT_IA_64_UNWIND with
10657 SHF_LINK_ORDER. But it doesn't set the sh_link or
10658 sh_info fields. Hence we could get the situation
10659 where elfsec is 0. */
10660 if (elfsec == 0)
10661 {
10662 const struct elf_backend_data *bed
10663 = get_elf_backend_data (s->owner);
10664 if (bed->link_order_error_handler)
10665 bed->link_order_error_handler
10666 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10667 return 0;
10668 }
10669 else
10670 {
10671 s = elf_shdrp[elfsec]->bfd_section;
10672 return s->output_section->vma + s->output_offset;
10673 }
10674 }
10675
10676
10677 /* Compare two sections based on the locations of the sections they are
10678 linked to. Used by elf_fixup_link_order. */
10679
10680 static int
10681 compare_link_order (const void * a, const void * b)
10682 {
10683 bfd_vma apos;
10684 bfd_vma bpos;
10685
10686 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10687 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10688 if (apos < bpos)
10689 return -1;
10690 return apos > bpos;
10691 }
10692
10693
10694 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10695 order as their linked sections. Returns false if this could not be done
10696 because an output section includes both ordered and unordered
10697 sections. Ideally we'd do this in the linker proper. */
10698
10699 static bfd_boolean
10700 elf_fixup_link_order (bfd *abfd, asection *o)
10701 {
10702 int seen_linkorder;
10703 int seen_other;
10704 int n;
10705 struct bfd_link_order *p;
10706 bfd *sub;
10707 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10708 unsigned elfsec;
10709 struct bfd_link_order **sections;
10710 asection *s, *other_sec, *linkorder_sec;
10711 bfd_vma offset;
10712
10713 other_sec = NULL;
10714 linkorder_sec = NULL;
10715 seen_other = 0;
10716 seen_linkorder = 0;
10717 for (p = o->map_head.link_order; p != NULL; p = p->next)
10718 {
10719 if (p->type == bfd_indirect_link_order)
10720 {
10721 s = p->u.indirect.section;
10722 sub = s->owner;
10723 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10724 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10725 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10726 && elfsec < elf_numsections (sub)
10727 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10728 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10729 {
10730 seen_linkorder++;
10731 linkorder_sec = s;
10732 }
10733 else
10734 {
10735 seen_other++;
10736 other_sec = s;
10737 }
10738 }
10739 else
10740 seen_other++;
10741
10742 if (seen_other && seen_linkorder)
10743 {
10744 if (other_sec && linkorder_sec)
10745 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10746 o, linkorder_sec,
10747 linkorder_sec->owner, other_sec,
10748 other_sec->owner);
10749 else
10750 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10751 o);
10752 bfd_set_error (bfd_error_bad_value);
10753 return FALSE;
10754 }
10755 }
10756
10757 if (!seen_linkorder)
10758 return TRUE;
10759
10760 sections = (struct bfd_link_order **)
10761 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10762 if (sections == NULL)
10763 return FALSE;
10764 seen_linkorder = 0;
10765
10766 for (p = o->map_head.link_order; p != NULL; p = p->next)
10767 {
10768 sections[seen_linkorder++] = p;
10769 }
10770 /* Sort the input sections in the order of their linked section. */
10771 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10772 compare_link_order);
10773
10774 /* Change the offsets of the sections. */
10775 offset = 0;
10776 for (n = 0; n < seen_linkorder; n++)
10777 {
10778 s = sections[n]->u.indirect.section;
10779 offset &= ~(bfd_vma) 0 << s->alignment_power;
10780 s->output_offset = offset;
10781 sections[n]->offset = offset;
10782 /* FIXME: octets_per_byte. */
10783 offset += sections[n]->size;
10784 }
10785
10786 free (sections);
10787 return TRUE;
10788 }
10789
10790 static void
10791 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10792 {
10793 asection *o;
10794
10795 if (flinfo->symstrtab != NULL)
10796 _bfd_elf_strtab_free (flinfo->symstrtab);
10797 if (flinfo->contents != NULL)
10798 free (flinfo->contents);
10799 if (flinfo->external_relocs != NULL)
10800 free (flinfo->external_relocs);
10801 if (flinfo->internal_relocs != NULL)
10802 free (flinfo->internal_relocs);
10803 if (flinfo->external_syms != NULL)
10804 free (flinfo->external_syms);
10805 if (flinfo->locsym_shndx != NULL)
10806 free (flinfo->locsym_shndx);
10807 if (flinfo->internal_syms != NULL)
10808 free (flinfo->internal_syms);
10809 if (flinfo->indices != NULL)
10810 free (flinfo->indices);
10811 if (flinfo->sections != NULL)
10812 free (flinfo->sections);
10813 if (flinfo->symshndxbuf != NULL)
10814 free (flinfo->symshndxbuf);
10815 for (o = obfd->sections; o != NULL; o = o->next)
10816 {
10817 struct bfd_elf_section_data *esdo = elf_section_data (o);
10818 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10819 free (esdo->rel.hashes);
10820 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10821 free (esdo->rela.hashes);
10822 }
10823 }
10824
10825 /* Do the final step of an ELF link. */
10826
10827 bfd_boolean
10828 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10829 {
10830 bfd_boolean dynamic;
10831 bfd_boolean emit_relocs;
10832 bfd *dynobj;
10833 struct elf_final_link_info flinfo;
10834 asection *o;
10835 struct bfd_link_order *p;
10836 bfd *sub;
10837 bfd_size_type max_contents_size;
10838 bfd_size_type max_external_reloc_size;
10839 bfd_size_type max_internal_reloc_count;
10840 bfd_size_type max_sym_count;
10841 bfd_size_type max_sym_shndx_count;
10842 Elf_Internal_Sym elfsym;
10843 unsigned int i;
10844 Elf_Internal_Shdr *symtab_hdr;
10845 Elf_Internal_Shdr *symtab_shndx_hdr;
10846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10847 struct elf_outext_info eoinfo;
10848 bfd_boolean merged;
10849 size_t relativecount = 0;
10850 asection *reldyn = 0;
10851 bfd_size_type amt;
10852 asection *attr_section = NULL;
10853 bfd_vma attr_size = 0;
10854 const char *std_attrs_section;
10855
10856 if (! is_elf_hash_table (info->hash))
10857 return FALSE;
10858
10859 if (bfd_link_pic (info))
10860 abfd->flags |= DYNAMIC;
10861
10862 dynamic = elf_hash_table (info)->dynamic_sections_created;
10863 dynobj = elf_hash_table (info)->dynobj;
10864
10865 emit_relocs = (bfd_link_relocatable (info)
10866 || info->emitrelocations);
10867
10868 flinfo.info = info;
10869 flinfo.output_bfd = abfd;
10870 flinfo.symstrtab = _bfd_elf_strtab_init ();
10871 if (flinfo.symstrtab == NULL)
10872 return FALSE;
10873
10874 if (! dynamic)
10875 {
10876 flinfo.hash_sec = NULL;
10877 flinfo.symver_sec = NULL;
10878 }
10879 else
10880 {
10881 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10882 /* Note that dynsym_sec can be NULL (on VMS). */
10883 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10884 /* Note that it is OK if symver_sec is NULL. */
10885 }
10886
10887 flinfo.contents = NULL;
10888 flinfo.external_relocs = NULL;
10889 flinfo.internal_relocs = NULL;
10890 flinfo.external_syms = NULL;
10891 flinfo.locsym_shndx = NULL;
10892 flinfo.internal_syms = NULL;
10893 flinfo.indices = NULL;
10894 flinfo.sections = NULL;
10895 flinfo.symshndxbuf = NULL;
10896 flinfo.filesym_count = 0;
10897
10898 /* The object attributes have been merged. Remove the input
10899 sections from the link, and set the contents of the output
10900 secton. */
10901 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10902 for (o = abfd->sections; o != NULL; o = o->next)
10903 {
10904 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10905 || strcmp (o->name, ".gnu.attributes") == 0)
10906 {
10907 for (p = o->map_head.link_order; p != NULL; p = p->next)
10908 {
10909 asection *input_section;
10910
10911 if (p->type != bfd_indirect_link_order)
10912 continue;
10913 input_section = p->u.indirect.section;
10914 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10915 elf_link_input_bfd ignores this section. */
10916 input_section->flags &= ~SEC_HAS_CONTENTS;
10917 }
10918
10919 attr_size = bfd_elf_obj_attr_size (abfd);
10920 if (attr_size)
10921 {
10922 bfd_set_section_size (abfd, o, attr_size);
10923 attr_section = o;
10924 /* Skip this section later on. */
10925 o->map_head.link_order = NULL;
10926 }
10927 else
10928 o->flags |= SEC_EXCLUDE;
10929 }
10930 }
10931
10932 /* Count up the number of relocations we will output for each output
10933 section, so that we know the sizes of the reloc sections. We
10934 also figure out some maximum sizes. */
10935 max_contents_size = 0;
10936 max_external_reloc_size = 0;
10937 max_internal_reloc_count = 0;
10938 max_sym_count = 0;
10939 max_sym_shndx_count = 0;
10940 merged = FALSE;
10941 for (o = abfd->sections; o != NULL; o = o->next)
10942 {
10943 struct bfd_elf_section_data *esdo = elf_section_data (o);
10944 o->reloc_count = 0;
10945
10946 for (p = o->map_head.link_order; p != NULL; p = p->next)
10947 {
10948 unsigned int reloc_count = 0;
10949 struct bfd_elf_section_data *esdi = NULL;
10950
10951 if (p->type == bfd_section_reloc_link_order
10952 || p->type == bfd_symbol_reloc_link_order)
10953 reloc_count = 1;
10954 else if (p->type == bfd_indirect_link_order)
10955 {
10956 asection *sec;
10957
10958 sec = p->u.indirect.section;
10959 esdi = elf_section_data (sec);
10960
10961 /* Mark all sections which are to be included in the
10962 link. This will normally be every section. We need
10963 to do this so that we can identify any sections which
10964 the linker has decided to not include. */
10965 sec->linker_mark = TRUE;
10966
10967 if (sec->flags & SEC_MERGE)
10968 merged = TRUE;
10969
10970 if (esdo->this_hdr.sh_type == SHT_REL
10971 || esdo->this_hdr.sh_type == SHT_RELA)
10972 /* Some backends use reloc_count in relocation sections
10973 to count particular types of relocs. Of course,
10974 reloc sections themselves can't have relocations. */
10975 reloc_count = 0;
10976 else if (emit_relocs)
10977 reloc_count = sec->reloc_count;
10978 else if (bed->elf_backend_count_relocs)
10979 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10980
10981 if (sec->rawsize > max_contents_size)
10982 max_contents_size = sec->rawsize;
10983 if (sec->size > max_contents_size)
10984 max_contents_size = sec->size;
10985
10986 /* We are interested in just local symbols, not all
10987 symbols. */
10988 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10989 && (sec->owner->flags & DYNAMIC) == 0)
10990 {
10991 size_t sym_count;
10992
10993 if (elf_bad_symtab (sec->owner))
10994 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10995 / bed->s->sizeof_sym);
10996 else
10997 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10998
10999 if (sym_count > max_sym_count)
11000 max_sym_count = sym_count;
11001
11002 if (sym_count > max_sym_shndx_count
11003 && elf_symtab_shndx (sec->owner) != 0)
11004 max_sym_shndx_count = sym_count;
11005
11006 if ((sec->flags & SEC_RELOC) != 0)
11007 {
11008 size_t ext_size = 0;
11009
11010 if (esdi->rel.hdr != NULL)
11011 ext_size = esdi->rel.hdr->sh_size;
11012 if (esdi->rela.hdr != NULL)
11013 ext_size += esdi->rela.hdr->sh_size;
11014
11015 if (ext_size > max_external_reloc_size)
11016 max_external_reloc_size = ext_size;
11017 if (sec->reloc_count > max_internal_reloc_count)
11018 max_internal_reloc_count = sec->reloc_count;
11019 }
11020 }
11021 }
11022
11023 if (reloc_count == 0)
11024 continue;
11025
11026 o->reloc_count += reloc_count;
11027
11028 if (p->type == bfd_indirect_link_order && emit_relocs)
11029 {
11030 if (esdi->rel.hdr)
11031 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11032 if (esdi->rela.hdr)
11033 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11034 }
11035 else
11036 {
11037 if (o->use_rela_p)
11038 esdo->rela.count += reloc_count;
11039 else
11040 esdo->rel.count += reloc_count;
11041 }
11042 }
11043
11044 if (o->reloc_count > 0)
11045 o->flags |= SEC_RELOC;
11046 else
11047 {
11048 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11049 set it (this is probably a bug) and if it is set
11050 assign_section_numbers will create a reloc section. */
11051 o->flags &=~ SEC_RELOC;
11052 }
11053
11054 /* If the SEC_ALLOC flag is not set, force the section VMA to
11055 zero. This is done in elf_fake_sections as well, but forcing
11056 the VMA to 0 here will ensure that relocs against these
11057 sections are handled correctly. */
11058 if ((o->flags & SEC_ALLOC) == 0
11059 && ! o->user_set_vma)
11060 o->vma = 0;
11061 }
11062
11063 if (! bfd_link_relocatable (info) && merged)
11064 elf_link_hash_traverse (elf_hash_table (info),
11065 _bfd_elf_link_sec_merge_syms, abfd);
11066
11067 /* Figure out the file positions for everything but the symbol table
11068 and the relocs. We set symcount to force assign_section_numbers
11069 to create a symbol table. */
11070 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11071 BFD_ASSERT (! abfd->output_has_begun);
11072 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11073 goto error_return;
11074
11075 /* Set sizes, and assign file positions for reloc sections. */
11076 for (o = abfd->sections; o != NULL; o = o->next)
11077 {
11078 struct bfd_elf_section_data *esdo = elf_section_data (o);
11079 if ((o->flags & SEC_RELOC) != 0)
11080 {
11081 if (esdo->rel.hdr
11082 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11083 goto error_return;
11084
11085 if (esdo->rela.hdr
11086 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11087 goto error_return;
11088 }
11089
11090 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11091 to count upwards while actually outputting the relocations. */
11092 esdo->rel.count = 0;
11093 esdo->rela.count = 0;
11094
11095 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11096 {
11097 /* Cache the section contents so that they can be compressed
11098 later. Use bfd_malloc since it will be freed by
11099 bfd_compress_section_contents. */
11100 unsigned char *contents = esdo->this_hdr.contents;
11101 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11102 abort ();
11103 contents
11104 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11105 if (contents == NULL)
11106 goto error_return;
11107 esdo->this_hdr.contents = contents;
11108 }
11109 }
11110
11111 /* We have now assigned file positions for all the sections except
11112 .symtab, .strtab, and non-loaded reloc sections. We start the
11113 .symtab section at the current file position, and write directly
11114 to it. We build the .strtab section in memory. */
11115 bfd_get_symcount (abfd) = 0;
11116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11117 /* sh_name is set in prep_headers. */
11118 symtab_hdr->sh_type = SHT_SYMTAB;
11119 /* sh_flags, sh_addr and sh_size all start off zero. */
11120 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11121 /* sh_link is set in assign_section_numbers. */
11122 /* sh_info is set below. */
11123 /* sh_offset is set just below. */
11124 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11125
11126 if (max_sym_count < 20)
11127 max_sym_count = 20;
11128 elf_hash_table (info)->strtabsize = max_sym_count;
11129 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11130 elf_hash_table (info)->strtab
11131 = (struct elf_sym_strtab *) bfd_malloc (amt);
11132 if (elf_hash_table (info)->strtab == NULL)
11133 goto error_return;
11134 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11135 flinfo.symshndxbuf
11136 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11137 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11138
11139 if (info->strip != strip_all || emit_relocs)
11140 {
11141 file_ptr off = elf_next_file_pos (abfd);
11142
11143 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11144
11145 /* Note that at this point elf_next_file_pos (abfd) is
11146 incorrect. We do not yet know the size of the .symtab section.
11147 We correct next_file_pos below, after we do know the size. */
11148
11149 /* Start writing out the symbol table. The first symbol is always a
11150 dummy symbol. */
11151 elfsym.st_value = 0;
11152 elfsym.st_size = 0;
11153 elfsym.st_info = 0;
11154 elfsym.st_other = 0;
11155 elfsym.st_shndx = SHN_UNDEF;
11156 elfsym.st_target_internal = 0;
11157 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11158 bfd_und_section_ptr, NULL) != 1)
11159 goto error_return;
11160
11161 /* Output a symbol for each section. We output these even if we are
11162 discarding local symbols, since they are used for relocs. These
11163 symbols have no names. We store the index of each one in the
11164 index field of the section, so that we can find it again when
11165 outputting relocs. */
11166
11167 elfsym.st_size = 0;
11168 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11169 elfsym.st_other = 0;
11170 elfsym.st_value = 0;
11171 elfsym.st_target_internal = 0;
11172 for (i = 1; i < elf_numsections (abfd); i++)
11173 {
11174 o = bfd_section_from_elf_index (abfd, i);
11175 if (o != NULL)
11176 {
11177 o->target_index = bfd_get_symcount (abfd);
11178 elfsym.st_shndx = i;
11179 if (!bfd_link_relocatable (info))
11180 elfsym.st_value = o->vma;
11181 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11182 NULL) != 1)
11183 goto error_return;
11184 }
11185 }
11186 }
11187
11188 /* Allocate some memory to hold information read in from the input
11189 files. */
11190 if (max_contents_size != 0)
11191 {
11192 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11193 if (flinfo.contents == NULL)
11194 goto error_return;
11195 }
11196
11197 if (max_external_reloc_size != 0)
11198 {
11199 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11200 if (flinfo.external_relocs == NULL)
11201 goto error_return;
11202 }
11203
11204 if (max_internal_reloc_count != 0)
11205 {
11206 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11207 amt *= sizeof (Elf_Internal_Rela);
11208 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11209 if (flinfo.internal_relocs == NULL)
11210 goto error_return;
11211 }
11212
11213 if (max_sym_count != 0)
11214 {
11215 amt = max_sym_count * bed->s->sizeof_sym;
11216 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11217 if (flinfo.external_syms == NULL)
11218 goto error_return;
11219
11220 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11221 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11222 if (flinfo.internal_syms == NULL)
11223 goto error_return;
11224
11225 amt = max_sym_count * sizeof (long);
11226 flinfo.indices = (long int *) bfd_malloc (amt);
11227 if (flinfo.indices == NULL)
11228 goto error_return;
11229
11230 amt = max_sym_count * sizeof (asection *);
11231 flinfo.sections = (asection **) bfd_malloc (amt);
11232 if (flinfo.sections == NULL)
11233 goto error_return;
11234 }
11235
11236 if (max_sym_shndx_count != 0)
11237 {
11238 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11239 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11240 if (flinfo.locsym_shndx == NULL)
11241 goto error_return;
11242 }
11243
11244 if (elf_hash_table (info)->tls_sec)
11245 {
11246 bfd_vma base, end = 0;
11247 asection *sec;
11248
11249 for (sec = elf_hash_table (info)->tls_sec;
11250 sec && (sec->flags & SEC_THREAD_LOCAL);
11251 sec = sec->next)
11252 {
11253 bfd_size_type size = sec->size;
11254
11255 if (size == 0
11256 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11257 {
11258 struct bfd_link_order *ord = sec->map_tail.link_order;
11259
11260 if (ord != NULL)
11261 size = ord->offset + ord->size;
11262 }
11263 end = sec->vma + size;
11264 }
11265 base = elf_hash_table (info)->tls_sec->vma;
11266 /* Only align end of TLS section if static TLS doesn't have special
11267 alignment requirements. */
11268 if (bed->static_tls_alignment == 1)
11269 end = align_power (end,
11270 elf_hash_table (info)->tls_sec->alignment_power);
11271 elf_hash_table (info)->tls_size = end - base;
11272 }
11273
11274 /* Reorder SHF_LINK_ORDER sections. */
11275 for (o = abfd->sections; o != NULL; o = o->next)
11276 {
11277 if (!elf_fixup_link_order (abfd, o))
11278 return FALSE;
11279 }
11280
11281 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11282 return FALSE;
11283
11284 /* Since ELF permits relocations to be against local symbols, we
11285 must have the local symbols available when we do the relocations.
11286 Since we would rather only read the local symbols once, and we
11287 would rather not keep them in memory, we handle all the
11288 relocations for a single input file at the same time.
11289
11290 Unfortunately, there is no way to know the total number of local
11291 symbols until we have seen all of them, and the local symbol
11292 indices precede the global symbol indices. This means that when
11293 we are generating relocatable output, and we see a reloc against
11294 a global symbol, we can not know the symbol index until we have
11295 finished examining all the local symbols to see which ones we are
11296 going to output. To deal with this, we keep the relocations in
11297 memory, and don't output them until the end of the link. This is
11298 an unfortunate waste of memory, but I don't see a good way around
11299 it. Fortunately, it only happens when performing a relocatable
11300 link, which is not the common case. FIXME: If keep_memory is set
11301 we could write the relocs out and then read them again; I don't
11302 know how bad the memory loss will be. */
11303
11304 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11305 sub->output_has_begun = FALSE;
11306 for (o = abfd->sections; o != NULL; o = o->next)
11307 {
11308 for (p = o->map_head.link_order; p != NULL; p = p->next)
11309 {
11310 if (p->type == bfd_indirect_link_order
11311 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11312 == bfd_target_elf_flavour)
11313 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11314 {
11315 if (! sub->output_has_begun)
11316 {
11317 if (! elf_link_input_bfd (&flinfo, sub))
11318 goto error_return;
11319 sub->output_has_begun = TRUE;
11320 }
11321 }
11322 else if (p->type == bfd_section_reloc_link_order
11323 || p->type == bfd_symbol_reloc_link_order)
11324 {
11325 if (! elf_reloc_link_order (abfd, info, o, p))
11326 goto error_return;
11327 }
11328 else
11329 {
11330 if (! _bfd_default_link_order (abfd, info, o, p))
11331 {
11332 if (p->type == bfd_indirect_link_order
11333 && (bfd_get_flavour (sub)
11334 == bfd_target_elf_flavour)
11335 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11336 != bed->s->elfclass))
11337 {
11338 const char *iclass, *oclass;
11339
11340 if (bed->s->elfclass == ELFCLASS64)
11341 {
11342 iclass = "ELFCLASS32";
11343 oclass = "ELFCLASS64";
11344 }
11345 else
11346 {
11347 iclass = "ELFCLASS64";
11348 oclass = "ELFCLASS32";
11349 }
11350
11351 bfd_set_error (bfd_error_wrong_format);
11352 (*_bfd_error_handler)
11353 (_("%B: file class %s incompatible with %s"),
11354 sub, iclass, oclass);
11355 }
11356
11357 goto error_return;
11358 }
11359 }
11360 }
11361 }
11362
11363 /* Free symbol buffer if needed. */
11364 if (!info->reduce_memory_overheads)
11365 {
11366 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11367 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11368 && elf_tdata (sub)->symbuf)
11369 {
11370 free (elf_tdata (sub)->symbuf);
11371 elf_tdata (sub)->symbuf = NULL;
11372 }
11373 }
11374
11375 /* Output any global symbols that got converted to local in a
11376 version script or due to symbol visibility. We do this in a
11377 separate step since ELF requires all local symbols to appear
11378 prior to any global symbols. FIXME: We should only do this if
11379 some global symbols were, in fact, converted to become local.
11380 FIXME: Will this work correctly with the Irix 5 linker? */
11381 eoinfo.failed = FALSE;
11382 eoinfo.flinfo = &flinfo;
11383 eoinfo.localsyms = TRUE;
11384 eoinfo.file_sym_done = FALSE;
11385 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11386 if (eoinfo.failed)
11387 return FALSE;
11388
11389 /* If backend needs to output some local symbols not present in the hash
11390 table, do it now. */
11391 if (bed->elf_backend_output_arch_local_syms
11392 && (info->strip != strip_all || emit_relocs))
11393 {
11394 typedef int (*out_sym_func)
11395 (void *, const char *, Elf_Internal_Sym *, asection *,
11396 struct elf_link_hash_entry *);
11397
11398 if (! ((*bed->elf_backend_output_arch_local_syms)
11399 (abfd, info, &flinfo,
11400 (out_sym_func) elf_link_output_symstrtab)))
11401 return FALSE;
11402 }
11403
11404 /* That wrote out all the local symbols. Finish up the symbol table
11405 with the global symbols. Even if we want to strip everything we
11406 can, we still need to deal with those global symbols that got
11407 converted to local in a version script. */
11408
11409 /* The sh_info field records the index of the first non local symbol. */
11410 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11411
11412 if (dynamic
11413 && elf_hash_table (info)->dynsym != NULL
11414 && (elf_hash_table (info)->dynsym->output_section
11415 != bfd_abs_section_ptr))
11416 {
11417 Elf_Internal_Sym sym;
11418 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11419 long last_local = 0;
11420
11421 /* Write out the section symbols for the output sections. */
11422 if (bfd_link_pic (info)
11423 || elf_hash_table (info)->is_relocatable_executable)
11424 {
11425 asection *s;
11426
11427 sym.st_size = 0;
11428 sym.st_name = 0;
11429 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11430 sym.st_other = 0;
11431 sym.st_target_internal = 0;
11432
11433 for (s = abfd->sections; s != NULL; s = s->next)
11434 {
11435 int indx;
11436 bfd_byte *dest;
11437 long dynindx;
11438
11439 dynindx = elf_section_data (s)->dynindx;
11440 if (dynindx <= 0)
11441 continue;
11442 indx = elf_section_data (s)->this_idx;
11443 BFD_ASSERT (indx > 0);
11444 sym.st_shndx = indx;
11445 if (! check_dynsym (abfd, &sym))
11446 return FALSE;
11447 sym.st_value = s->vma;
11448 dest = dynsym + dynindx * bed->s->sizeof_sym;
11449 if (last_local < dynindx)
11450 last_local = dynindx;
11451 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11452 }
11453 }
11454
11455 /* Write out the local dynsyms. */
11456 if (elf_hash_table (info)->dynlocal)
11457 {
11458 struct elf_link_local_dynamic_entry *e;
11459 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11460 {
11461 asection *s;
11462 bfd_byte *dest;
11463
11464 /* Copy the internal symbol and turn off visibility.
11465 Note that we saved a word of storage and overwrote
11466 the original st_name with the dynstr_index. */
11467 sym = e->isym;
11468 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11469
11470 s = bfd_section_from_elf_index (e->input_bfd,
11471 e->isym.st_shndx);
11472 if (s != NULL)
11473 {
11474 sym.st_shndx =
11475 elf_section_data (s->output_section)->this_idx;
11476 if (! check_dynsym (abfd, &sym))
11477 return FALSE;
11478 sym.st_value = (s->output_section->vma
11479 + s->output_offset
11480 + e->isym.st_value);
11481 }
11482
11483 if (last_local < e->dynindx)
11484 last_local = e->dynindx;
11485
11486 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11487 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11488 }
11489 }
11490
11491 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11492 last_local + 1;
11493 }
11494
11495 /* We get the global symbols from the hash table. */
11496 eoinfo.failed = FALSE;
11497 eoinfo.localsyms = FALSE;
11498 eoinfo.flinfo = &flinfo;
11499 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11500 if (eoinfo.failed)
11501 return FALSE;
11502
11503 /* If backend needs to output some symbols not present in the hash
11504 table, do it now. */
11505 if (bed->elf_backend_output_arch_syms
11506 && (info->strip != strip_all || emit_relocs))
11507 {
11508 typedef int (*out_sym_func)
11509 (void *, const char *, Elf_Internal_Sym *, asection *,
11510 struct elf_link_hash_entry *);
11511
11512 if (! ((*bed->elf_backend_output_arch_syms)
11513 (abfd, info, &flinfo,
11514 (out_sym_func) elf_link_output_symstrtab)))
11515 return FALSE;
11516 }
11517
11518 /* Finalize the .strtab section. */
11519 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11520
11521 /* Swap out the .strtab section. */
11522 if (!elf_link_swap_symbols_out (&flinfo))
11523 return FALSE;
11524
11525 /* Now we know the size of the symtab section. */
11526 if (bfd_get_symcount (abfd) > 0)
11527 {
11528 /* Finish up and write out the symbol string table (.strtab)
11529 section. */
11530 Elf_Internal_Shdr *symstrtab_hdr;
11531 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11532
11533 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11534 if (symtab_shndx_hdr->sh_name != 0)
11535 {
11536 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11537 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11538 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11539 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11540 symtab_shndx_hdr->sh_size = amt;
11541
11542 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11543 off, TRUE);
11544
11545 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11546 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11547 return FALSE;
11548 }
11549
11550 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11551 /* sh_name was set in prep_headers. */
11552 symstrtab_hdr->sh_type = SHT_STRTAB;
11553 symstrtab_hdr->sh_flags = 0;
11554 symstrtab_hdr->sh_addr = 0;
11555 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11556 symstrtab_hdr->sh_entsize = 0;
11557 symstrtab_hdr->sh_link = 0;
11558 symstrtab_hdr->sh_info = 0;
11559 /* sh_offset is set just below. */
11560 symstrtab_hdr->sh_addralign = 1;
11561
11562 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11563 off, TRUE);
11564 elf_next_file_pos (abfd) = off;
11565
11566 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11567 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11568 return FALSE;
11569 }
11570
11571 /* Adjust the relocs to have the correct symbol indices. */
11572 for (o = abfd->sections; o != NULL; o = o->next)
11573 {
11574 struct bfd_elf_section_data *esdo = elf_section_data (o);
11575 bfd_boolean sort;
11576 if ((o->flags & SEC_RELOC) == 0)
11577 continue;
11578
11579 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11580 if (esdo->rel.hdr != NULL)
11581 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11582 if (esdo->rela.hdr != NULL)
11583 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11584
11585 /* Set the reloc_count field to 0 to prevent write_relocs from
11586 trying to swap the relocs out itself. */
11587 o->reloc_count = 0;
11588 }
11589
11590 if (dynamic && info->combreloc && dynobj != NULL)
11591 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11592
11593 /* If we are linking against a dynamic object, or generating a
11594 shared library, finish up the dynamic linking information. */
11595 if (dynamic)
11596 {
11597 bfd_byte *dyncon, *dynconend;
11598
11599 /* Fix up .dynamic entries. */
11600 o = bfd_get_linker_section (dynobj, ".dynamic");
11601 BFD_ASSERT (o != NULL);
11602
11603 dyncon = o->contents;
11604 dynconend = o->contents + o->size;
11605 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11606 {
11607 Elf_Internal_Dyn dyn;
11608 const char *name;
11609 unsigned int type;
11610
11611 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11612
11613 switch (dyn.d_tag)
11614 {
11615 default:
11616 continue;
11617 case DT_NULL:
11618 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11619 {
11620 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11621 {
11622 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11623 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11624 default: continue;
11625 }
11626 dyn.d_un.d_val = relativecount;
11627 relativecount = 0;
11628 break;
11629 }
11630 continue;
11631
11632 case DT_INIT:
11633 name = info->init_function;
11634 goto get_sym;
11635 case DT_FINI:
11636 name = info->fini_function;
11637 get_sym:
11638 {
11639 struct elf_link_hash_entry *h;
11640
11641 h = elf_link_hash_lookup (elf_hash_table (info), name,
11642 FALSE, FALSE, TRUE);
11643 if (h != NULL
11644 && (h->root.type == bfd_link_hash_defined
11645 || h->root.type == bfd_link_hash_defweak))
11646 {
11647 dyn.d_un.d_ptr = h->root.u.def.value;
11648 o = h->root.u.def.section;
11649 if (o->output_section != NULL)
11650 dyn.d_un.d_ptr += (o->output_section->vma
11651 + o->output_offset);
11652 else
11653 {
11654 /* The symbol is imported from another shared
11655 library and does not apply to this one. */
11656 dyn.d_un.d_ptr = 0;
11657 }
11658 break;
11659 }
11660 }
11661 continue;
11662
11663 case DT_PREINIT_ARRAYSZ:
11664 name = ".preinit_array";
11665 goto get_size;
11666 case DT_INIT_ARRAYSZ:
11667 name = ".init_array";
11668 goto get_size;
11669 case DT_FINI_ARRAYSZ:
11670 name = ".fini_array";
11671 get_size:
11672 o = bfd_get_section_by_name (abfd, name);
11673 if (o == NULL)
11674 {
11675 (*_bfd_error_handler)
11676 (_("%B: could not find output section %s"), abfd, name);
11677 goto error_return;
11678 }
11679 if (o->size == 0)
11680 (*_bfd_error_handler)
11681 (_("warning: %s section has zero size"), name);
11682 dyn.d_un.d_val = o->size;
11683 break;
11684
11685 case DT_PREINIT_ARRAY:
11686 name = ".preinit_array";
11687 goto get_vma;
11688 case DT_INIT_ARRAY:
11689 name = ".init_array";
11690 goto get_vma;
11691 case DT_FINI_ARRAY:
11692 name = ".fini_array";
11693 goto get_vma;
11694
11695 case DT_HASH:
11696 name = ".hash";
11697 goto get_vma;
11698 case DT_GNU_HASH:
11699 name = ".gnu.hash";
11700 goto get_vma;
11701 case DT_STRTAB:
11702 name = ".dynstr";
11703 goto get_vma;
11704 case DT_SYMTAB:
11705 name = ".dynsym";
11706 goto get_vma;
11707 case DT_VERDEF:
11708 name = ".gnu.version_d";
11709 goto get_vma;
11710 case DT_VERNEED:
11711 name = ".gnu.version_r";
11712 goto get_vma;
11713 case DT_VERSYM:
11714 name = ".gnu.version";
11715 get_vma:
11716 o = bfd_get_section_by_name (abfd, name);
11717 if (o == NULL)
11718 {
11719 (*_bfd_error_handler)
11720 (_("%B: could not find output section %s"), abfd, name);
11721 goto error_return;
11722 }
11723 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11724 {
11725 (*_bfd_error_handler)
11726 (_("warning: section '%s' is being made into a note"), name);
11727 bfd_set_error (bfd_error_nonrepresentable_section);
11728 goto error_return;
11729 }
11730 dyn.d_un.d_ptr = o->vma;
11731 break;
11732
11733 case DT_REL:
11734 case DT_RELA:
11735 case DT_RELSZ:
11736 case DT_RELASZ:
11737 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11738 type = SHT_REL;
11739 else
11740 type = SHT_RELA;
11741 dyn.d_un.d_val = 0;
11742 dyn.d_un.d_ptr = 0;
11743 for (i = 1; i < elf_numsections (abfd); i++)
11744 {
11745 Elf_Internal_Shdr *hdr;
11746
11747 hdr = elf_elfsections (abfd)[i];
11748 if (hdr->sh_type == type
11749 && (hdr->sh_flags & SHF_ALLOC) != 0)
11750 {
11751 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11752 dyn.d_un.d_val += hdr->sh_size;
11753 else
11754 {
11755 if (dyn.d_un.d_ptr == 0
11756 || hdr->sh_addr < dyn.d_un.d_ptr)
11757 dyn.d_un.d_ptr = hdr->sh_addr;
11758 }
11759 }
11760 }
11761 break;
11762 }
11763 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11764 }
11765 }
11766
11767 /* If we have created any dynamic sections, then output them. */
11768 if (dynobj != NULL)
11769 {
11770 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11771 goto error_return;
11772
11773 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11774 if (((info->warn_shared_textrel && bfd_link_pic (info))
11775 || info->error_textrel)
11776 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11777 {
11778 bfd_byte *dyncon, *dynconend;
11779
11780 dyncon = o->contents;
11781 dynconend = o->contents + o->size;
11782 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11783 {
11784 Elf_Internal_Dyn dyn;
11785
11786 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11787
11788 if (dyn.d_tag == DT_TEXTREL)
11789 {
11790 if (info->error_textrel)
11791 info->callbacks->einfo
11792 (_("%P%X: read-only segment has dynamic relocations.\n"));
11793 else
11794 info->callbacks->einfo
11795 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11796 break;
11797 }
11798 }
11799 }
11800
11801 for (o = dynobj->sections; o != NULL; o = o->next)
11802 {
11803 if ((o->flags & SEC_HAS_CONTENTS) == 0
11804 || o->size == 0
11805 || o->output_section == bfd_abs_section_ptr)
11806 continue;
11807 if ((o->flags & SEC_LINKER_CREATED) == 0)
11808 {
11809 /* At this point, we are only interested in sections
11810 created by _bfd_elf_link_create_dynamic_sections. */
11811 continue;
11812 }
11813 if (elf_hash_table (info)->stab_info.stabstr == o)
11814 continue;
11815 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11816 continue;
11817 if (strcmp (o->name, ".dynstr") != 0)
11818 {
11819 /* FIXME: octets_per_byte. */
11820 if (! bfd_set_section_contents (abfd, o->output_section,
11821 o->contents,
11822 (file_ptr) o->output_offset,
11823 o->size))
11824 goto error_return;
11825 }
11826 else
11827 {
11828 /* The contents of the .dynstr section are actually in a
11829 stringtab. */
11830 file_ptr off;
11831
11832 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11833 if (bfd_seek (abfd, off, SEEK_SET) != 0
11834 || ! _bfd_elf_strtab_emit (abfd,
11835 elf_hash_table (info)->dynstr))
11836 goto error_return;
11837 }
11838 }
11839 }
11840
11841 if (bfd_link_relocatable (info))
11842 {
11843 bfd_boolean failed = FALSE;
11844
11845 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11846 if (failed)
11847 goto error_return;
11848 }
11849
11850 /* If we have optimized stabs strings, output them. */
11851 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11852 {
11853 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11854 goto error_return;
11855 }
11856
11857 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11858 goto error_return;
11859
11860 elf_final_link_free (abfd, &flinfo);
11861
11862 elf_linker (abfd) = TRUE;
11863
11864 if (attr_section)
11865 {
11866 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11867 if (contents == NULL)
11868 return FALSE; /* Bail out and fail. */
11869 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11870 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11871 free (contents);
11872 }
11873
11874 return TRUE;
11875
11876 error_return:
11877 elf_final_link_free (abfd, &flinfo);
11878 return FALSE;
11879 }
11880 \f
11881 /* Initialize COOKIE for input bfd ABFD. */
11882
11883 static bfd_boolean
11884 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11885 struct bfd_link_info *info, bfd *abfd)
11886 {
11887 Elf_Internal_Shdr *symtab_hdr;
11888 const struct elf_backend_data *bed;
11889
11890 bed = get_elf_backend_data (abfd);
11891 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11892
11893 cookie->abfd = abfd;
11894 cookie->sym_hashes = elf_sym_hashes (abfd);
11895 cookie->bad_symtab = elf_bad_symtab (abfd);
11896 if (cookie->bad_symtab)
11897 {
11898 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11899 cookie->extsymoff = 0;
11900 }
11901 else
11902 {
11903 cookie->locsymcount = symtab_hdr->sh_info;
11904 cookie->extsymoff = symtab_hdr->sh_info;
11905 }
11906
11907 if (bed->s->arch_size == 32)
11908 cookie->r_sym_shift = 8;
11909 else
11910 cookie->r_sym_shift = 32;
11911
11912 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11913 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11914 {
11915 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11916 cookie->locsymcount, 0,
11917 NULL, NULL, NULL);
11918 if (cookie->locsyms == NULL)
11919 {
11920 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11921 return FALSE;
11922 }
11923 if (info->keep_memory)
11924 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11925 }
11926 return TRUE;
11927 }
11928
11929 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11930
11931 static void
11932 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11933 {
11934 Elf_Internal_Shdr *symtab_hdr;
11935
11936 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11937 if (cookie->locsyms != NULL
11938 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11939 free (cookie->locsyms);
11940 }
11941
11942 /* Initialize the relocation information in COOKIE for input section SEC
11943 of input bfd ABFD. */
11944
11945 static bfd_boolean
11946 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11947 struct bfd_link_info *info, bfd *abfd,
11948 asection *sec)
11949 {
11950 const struct elf_backend_data *bed;
11951
11952 if (sec->reloc_count == 0)
11953 {
11954 cookie->rels = NULL;
11955 cookie->relend = NULL;
11956 }
11957 else
11958 {
11959 bed = get_elf_backend_data (abfd);
11960
11961 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11962 info->keep_memory);
11963 if (cookie->rels == NULL)
11964 return FALSE;
11965 cookie->rel = cookie->rels;
11966 cookie->relend = (cookie->rels
11967 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11968 }
11969 cookie->rel = cookie->rels;
11970 return TRUE;
11971 }
11972
11973 /* Free the memory allocated by init_reloc_cookie_rels,
11974 if appropriate. */
11975
11976 static void
11977 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11978 asection *sec)
11979 {
11980 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11981 free (cookie->rels);
11982 }
11983
11984 /* Initialize the whole of COOKIE for input section SEC. */
11985
11986 static bfd_boolean
11987 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11988 struct bfd_link_info *info,
11989 asection *sec)
11990 {
11991 if (!init_reloc_cookie (cookie, info, sec->owner))
11992 goto error1;
11993 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11994 goto error2;
11995 return TRUE;
11996
11997 error2:
11998 fini_reloc_cookie (cookie, sec->owner);
11999 error1:
12000 return FALSE;
12001 }
12002
12003 /* Free the memory allocated by init_reloc_cookie_for_section,
12004 if appropriate. */
12005
12006 static void
12007 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12008 asection *sec)
12009 {
12010 fini_reloc_cookie_rels (cookie, sec);
12011 fini_reloc_cookie (cookie, sec->owner);
12012 }
12013 \f
12014 /* Garbage collect unused sections. */
12015
12016 /* Default gc_mark_hook. */
12017
12018 asection *
12019 _bfd_elf_gc_mark_hook (asection *sec,
12020 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12021 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12022 struct elf_link_hash_entry *h,
12023 Elf_Internal_Sym *sym)
12024 {
12025 const char *sec_name;
12026
12027 if (h != NULL)
12028 {
12029 switch (h->root.type)
12030 {
12031 case bfd_link_hash_defined:
12032 case bfd_link_hash_defweak:
12033 return h->root.u.def.section;
12034
12035 case bfd_link_hash_common:
12036 return h->root.u.c.p->section;
12037
12038 case bfd_link_hash_undefined:
12039 case bfd_link_hash_undefweak:
12040 /* To work around a glibc bug, keep all XXX input sections
12041 when there is an as yet undefined reference to __start_XXX
12042 or __stop_XXX symbols. The linker will later define such
12043 symbols for orphan input sections that have a name
12044 representable as a C identifier. */
12045 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12046 sec_name = h->root.root.string + 8;
12047 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12048 sec_name = h->root.root.string + 7;
12049 else
12050 sec_name = NULL;
12051
12052 if (sec_name && *sec_name != '\0')
12053 {
12054 bfd *i;
12055
12056 for (i = info->input_bfds; i; i = i->link.next)
12057 {
12058 sec = bfd_get_section_by_name (i, sec_name);
12059 if (sec)
12060 sec->flags |= SEC_KEEP;
12061 }
12062 }
12063 break;
12064
12065 default:
12066 break;
12067 }
12068 }
12069 else
12070 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12071
12072 return NULL;
12073 }
12074
12075 /* COOKIE->rel describes a relocation against section SEC, which is
12076 a section we've decided to keep. Return the section that contains
12077 the relocation symbol, or NULL if no section contains it. */
12078
12079 asection *
12080 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12081 elf_gc_mark_hook_fn gc_mark_hook,
12082 struct elf_reloc_cookie *cookie)
12083 {
12084 unsigned long r_symndx;
12085 struct elf_link_hash_entry *h;
12086
12087 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12088 if (r_symndx == STN_UNDEF)
12089 return NULL;
12090
12091 if (r_symndx >= cookie->locsymcount
12092 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12093 {
12094 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12095 if (h == NULL)
12096 {
12097 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12098 sec->owner);
12099 return NULL;
12100 }
12101 while (h->root.type == bfd_link_hash_indirect
12102 || h->root.type == bfd_link_hash_warning)
12103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12104 h->mark = 1;
12105 /* If this symbol is weak and there is a non-weak definition, we
12106 keep the non-weak definition because many backends put
12107 dynamic reloc info on the non-weak definition for code
12108 handling copy relocs. */
12109 if (h->u.weakdef != NULL)
12110 h->u.weakdef->mark = 1;
12111 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12112 }
12113
12114 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12115 &cookie->locsyms[r_symndx]);
12116 }
12117
12118 /* COOKIE->rel describes a relocation against section SEC, which is
12119 a section we've decided to keep. Mark the section that contains
12120 the relocation symbol. */
12121
12122 bfd_boolean
12123 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12124 asection *sec,
12125 elf_gc_mark_hook_fn gc_mark_hook,
12126 struct elf_reloc_cookie *cookie)
12127 {
12128 asection *rsec;
12129
12130 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
12131 if (rsec && !rsec->gc_mark)
12132 {
12133 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12134 || (rsec->owner->flags & DYNAMIC) != 0)
12135 rsec->gc_mark = 1;
12136 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12137 return FALSE;
12138 }
12139 return TRUE;
12140 }
12141
12142 /* The mark phase of garbage collection. For a given section, mark
12143 it and any sections in this section's group, and all the sections
12144 which define symbols to which it refers. */
12145
12146 bfd_boolean
12147 _bfd_elf_gc_mark (struct bfd_link_info *info,
12148 asection *sec,
12149 elf_gc_mark_hook_fn gc_mark_hook)
12150 {
12151 bfd_boolean ret;
12152 asection *group_sec, *eh_frame;
12153
12154 sec->gc_mark = 1;
12155
12156 /* Mark all the sections in the group. */
12157 group_sec = elf_section_data (sec)->next_in_group;
12158 if (group_sec && !group_sec->gc_mark)
12159 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12160 return FALSE;
12161
12162 /* Look through the section relocs. */
12163 ret = TRUE;
12164 eh_frame = elf_eh_frame_section (sec->owner);
12165 if ((sec->flags & SEC_RELOC) != 0
12166 && sec->reloc_count > 0
12167 && sec != eh_frame)
12168 {
12169 struct elf_reloc_cookie cookie;
12170
12171 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12172 ret = FALSE;
12173 else
12174 {
12175 for (; cookie.rel < cookie.relend; cookie.rel++)
12176 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12177 {
12178 ret = FALSE;
12179 break;
12180 }
12181 fini_reloc_cookie_for_section (&cookie, sec);
12182 }
12183 }
12184
12185 if (ret && eh_frame && elf_fde_list (sec))
12186 {
12187 struct elf_reloc_cookie cookie;
12188
12189 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12190 ret = FALSE;
12191 else
12192 {
12193 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12194 gc_mark_hook, &cookie))
12195 ret = FALSE;
12196 fini_reloc_cookie_for_section (&cookie, eh_frame);
12197 }
12198 }
12199
12200 eh_frame = elf_section_eh_frame_entry (sec);
12201 if (ret && eh_frame && !eh_frame->gc_mark)
12202 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12203 ret = FALSE;
12204
12205 return ret;
12206 }
12207
12208 /* Scan and mark sections in a special or debug section group. */
12209
12210 static void
12211 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12212 {
12213 /* Point to first section of section group. */
12214 asection *ssec;
12215 /* Used to iterate the section group. */
12216 asection *msec;
12217
12218 bfd_boolean is_special_grp = TRUE;
12219 bfd_boolean is_debug_grp = TRUE;
12220
12221 /* First scan to see if group contains any section other than debug
12222 and special section. */
12223 ssec = msec = elf_next_in_group (grp);
12224 do
12225 {
12226 if ((msec->flags & SEC_DEBUGGING) == 0)
12227 is_debug_grp = FALSE;
12228
12229 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12230 is_special_grp = FALSE;
12231
12232 msec = elf_next_in_group (msec);
12233 }
12234 while (msec != ssec);
12235
12236 /* If this is a pure debug section group or pure special section group,
12237 keep all sections in this group. */
12238 if (is_debug_grp || is_special_grp)
12239 {
12240 do
12241 {
12242 msec->gc_mark = 1;
12243 msec = elf_next_in_group (msec);
12244 }
12245 while (msec != ssec);
12246 }
12247 }
12248
12249 /* Keep debug and special sections. */
12250
12251 bfd_boolean
12252 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12253 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12254 {
12255 bfd *ibfd;
12256
12257 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12258 {
12259 asection *isec;
12260 bfd_boolean some_kept;
12261 bfd_boolean debug_frag_seen;
12262
12263 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12264 continue;
12265
12266 /* Ensure all linker created sections are kept,
12267 see if any other section is already marked,
12268 and note if we have any fragmented debug sections. */
12269 debug_frag_seen = some_kept = FALSE;
12270 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12271 {
12272 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12273 isec->gc_mark = 1;
12274 else if (isec->gc_mark)
12275 some_kept = TRUE;
12276
12277 if (debug_frag_seen == FALSE
12278 && (isec->flags & SEC_DEBUGGING)
12279 && CONST_STRNEQ (isec->name, ".debug_line."))
12280 debug_frag_seen = TRUE;
12281 }
12282
12283 /* If no section in this file will be kept, then we can
12284 toss out the debug and special sections. */
12285 if (!some_kept)
12286 continue;
12287
12288 /* Keep debug and special sections like .comment when they are
12289 not part of a group. Also keep section groups that contain
12290 just debug sections or special sections. */
12291 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12292 {
12293 if ((isec->flags & SEC_GROUP) != 0)
12294 _bfd_elf_gc_mark_debug_special_section_group (isec);
12295 else if (((isec->flags & SEC_DEBUGGING) != 0
12296 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12297 && elf_next_in_group (isec) == NULL)
12298 isec->gc_mark = 1;
12299 }
12300
12301 if (! debug_frag_seen)
12302 continue;
12303
12304 /* Look for CODE sections which are going to be discarded,
12305 and find and discard any fragmented debug sections which
12306 are associated with that code section. */
12307 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12308 if ((isec->flags & SEC_CODE) != 0
12309 && isec->gc_mark == 0)
12310 {
12311 unsigned int ilen;
12312 asection *dsec;
12313
12314 ilen = strlen (isec->name);
12315
12316 /* Association is determined by the name of the debug section
12317 containing the name of the code section as a suffix. For
12318 example .debug_line.text.foo is a debug section associated
12319 with .text.foo. */
12320 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12321 {
12322 unsigned int dlen;
12323
12324 if (dsec->gc_mark == 0
12325 || (dsec->flags & SEC_DEBUGGING) == 0)
12326 continue;
12327
12328 dlen = strlen (dsec->name);
12329
12330 if (dlen > ilen
12331 && strncmp (dsec->name + (dlen - ilen),
12332 isec->name, ilen) == 0)
12333 {
12334 dsec->gc_mark = 0;
12335 }
12336 }
12337 }
12338 }
12339 return TRUE;
12340 }
12341
12342 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12343
12344 struct elf_gc_sweep_symbol_info
12345 {
12346 struct bfd_link_info *info;
12347 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12348 bfd_boolean);
12349 };
12350
12351 static bfd_boolean
12352 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12353 {
12354 if (!h->mark
12355 && (((h->root.type == bfd_link_hash_defined
12356 || h->root.type == bfd_link_hash_defweak)
12357 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12358 && h->root.u.def.section->gc_mark))
12359 || h->root.type == bfd_link_hash_undefined
12360 || h->root.type == bfd_link_hash_undefweak))
12361 {
12362 struct elf_gc_sweep_symbol_info *inf;
12363
12364 inf = (struct elf_gc_sweep_symbol_info *) data;
12365 (*inf->hide_symbol) (inf->info, h, TRUE);
12366 h->def_regular = 0;
12367 h->ref_regular = 0;
12368 h->ref_regular_nonweak = 0;
12369 }
12370
12371 return TRUE;
12372 }
12373
12374 /* The sweep phase of garbage collection. Remove all garbage sections. */
12375
12376 typedef bfd_boolean (*gc_sweep_hook_fn)
12377 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12378
12379 static bfd_boolean
12380 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12381 {
12382 bfd *sub;
12383 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12384 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12385 unsigned long section_sym_count;
12386 struct elf_gc_sweep_symbol_info sweep_info;
12387
12388 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12389 {
12390 asection *o;
12391
12392 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12393 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12394 continue;
12395
12396 for (o = sub->sections; o != NULL; o = o->next)
12397 {
12398 /* When any section in a section group is kept, we keep all
12399 sections in the section group. If the first member of
12400 the section group is excluded, we will also exclude the
12401 group section. */
12402 if (o->flags & SEC_GROUP)
12403 {
12404 asection *first = elf_next_in_group (o);
12405 o->gc_mark = first->gc_mark;
12406 }
12407
12408 if (o->gc_mark)
12409 continue;
12410
12411 /* Skip sweeping sections already excluded. */
12412 if (o->flags & SEC_EXCLUDE)
12413 continue;
12414
12415 /* Since this is early in the link process, it is simple
12416 to remove a section from the output. */
12417 o->flags |= SEC_EXCLUDE;
12418
12419 if (info->print_gc_sections && o->size != 0)
12420 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12421
12422 /* But we also have to update some of the relocation
12423 info we collected before. */
12424 if (gc_sweep_hook
12425 && (o->flags & SEC_RELOC) != 0
12426 && o->reloc_count != 0
12427 && !((info->strip == strip_all || info->strip == strip_debugger)
12428 && (o->flags & SEC_DEBUGGING) != 0)
12429 && !bfd_is_abs_section (o->output_section))
12430 {
12431 Elf_Internal_Rela *internal_relocs;
12432 bfd_boolean r;
12433
12434 internal_relocs
12435 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12436 info->keep_memory);
12437 if (internal_relocs == NULL)
12438 return FALSE;
12439
12440 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12441
12442 if (elf_section_data (o)->relocs != internal_relocs)
12443 free (internal_relocs);
12444
12445 if (!r)
12446 return FALSE;
12447 }
12448 }
12449 }
12450
12451 /* Remove the symbols that were in the swept sections from the dynamic
12452 symbol table. GCFIXME: Anyone know how to get them out of the
12453 static symbol table as well? */
12454 sweep_info.info = info;
12455 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12456 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12457 &sweep_info);
12458
12459 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12460 return TRUE;
12461 }
12462
12463 /* Propagate collected vtable information. This is called through
12464 elf_link_hash_traverse. */
12465
12466 static bfd_boolean
12467 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12468 {
12469 /* Those that are not vtables. */
12470 if (h->vtable == NULL || h->vtable->parent == NULL)
12471 return TRUE;
12472
12473 /* Those vtables that do not have parents, we cannot merge. */
12474 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12475 return TRUE;
12476
12477 /* If we've already been done, exit. */
12478 if (h->vtable->used && h->vtable->used[-1])
12479 return TRUE;
12480
12481 /* Make sure the parent's table is up to date. */
12482 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12483
12484 if (h->vtable->used == NULL)
12485 {
12486 /* None of this table's entries were referenced. Re-use the
12487 parent's table. */
12488 h->vtable->used = h->vtable->parent->vtable->used;
12489 h->vtable->size = h->vtable->parent->vtable->size;
12490 }
12491 else
12492 {
12493 size_t n;
12494 bfd_boolean *cu, *pu;
12495
12496 /* Or the parent's entries into ours. */
12497 cu = h->vtable->used;
12498 cu[-1] = TRUE;
12499 pu = h->vtable->parent->vtable->used;
12500 if (pu != NULL)
12501 {
12502 const struct elf_backend_data *bed;
12503 unsigned int log_file_align;
12504
12505 bed = get_elf_backend_data (h->root.u.def.section->owner);
12506 log_file_align = bed->s->log_file_align;
12507 n = h->vtable->parent->vtable->size >> log_file_align;
12508 while (n--)
12509 {
12510 if (*pu)
12511 *cu = TRUE;
12512 pu++;
12513 cu++;
12514 }
12515 }
12516 }
12517
12518 return TRUE;
12519 }
12520
12521 static bfd_boolean
12522 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12523 {
12524 asection *sec;
12525 bfd_vma hstart, hend;
12526 Elf_Internal_Rela *relstart, *relend, *rel;
12527 const struct elf_backend_data *bed;
12528 unsigned int log_file_align;
12529
12530 /* Take care of both those symbols that do not describe vtables as
12531 well as those that are not loaded. */
12532 if (h->vtable == NULL || h->vtable->parent == NULL)
12533 return TRUE;
12534
12535 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12536 || h->root.type == bfd_link_hash_defweak);
12537
12538 sec = h->root.u.def.section;
12539 hstart = h->root.u.def.value;
12540 hend = hstart + h->size;
12541
12542 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12543 if (!relstart)
12544 return *(bfd_boolean *) okp = FALSE;
12545 bed = get_elf_backend_data (sec->owner);
12546 log_file_align = bed->s->log_file_align;
12547
12548 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12549
12550 for (rel = relstart; rel < relend; ++rel)
12551 if (rel->r_offset >= hstart && rel->r_offset < hend)
12552 {
12553 /* If the entry is in use, do nothing. */
12554 if (h->vtable->used
12555 && (rel->r_offset - hstart) < h->vtable->size)
12556 {
12557 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12558 if (h->vtable->used[entry])
12559 continue;
12560 }
12561 /* Otherwise, kill it. */
12562 rel->r_offset = rel->r_info = rel->r_addend = 0;
12563 }
12564
12565 return TRUE;
12566 }
12567
12568 /* Mark sections containing dynamically referenced symbols. When
12569 building shared libraries, we must assume that any visible symbol is
12570 referenced. */
12571
12572 bfd_boolean
12573 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12574 {
12575 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12576 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12577
12578 if ((h->root.type == bfd_link_hash_defined
12579 || h->root.type == bfd_link_hash_defweak)
12580 && (h->ref_dynamic
12581 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12582 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12583 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12584 && (!bfd_link_executable (info)
12585 || info->export_dynamic
12586 || (h->dynamic
12587 && d != NULL
12588 && (*d->match) (&d->head, NULL, h->root.root.string)))
12589 && (h->versioned >= versioned
12590 || !bfd_hide_sym_by_version (info->version_info,
12591 h->root.root.string)))))
12592 h->root.u.def.section->flags |= SEC_KEEP;
12593
12594 return TRUE;
12595 }
12596
12597 /* Keep all sections containing symbols undefined on the command-line,
12598 and the section containing the entry symbol. */
12599
12600 void
12601 _bfd_elf_gc_keep (struct bfd_link_info *info)
12602 {
12603 struct bfd_sym_chain *sym;
12604
12605 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12606 {
12607 struct elf_link_hash_entry *h;
12608
12609 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12610 FALSE, FALSE, FALSE);
12611
12612 if (h != NULL
12613 && (h->root.type == bfd_link_hash_defined
12614 || h->root.type == bfd_link_hash_defweak)
12615 && !bfd_is_abs_section (h->root.u.def.section))
12616 h->root.u.def.section->flags |= SEC_KEEP;
12617 }
12618 }
12619
12620 bfd_boolean
12621 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12622 struct bfd_link_info *info)
12623 {
12624 bfd *ibfd = info->input_bfds;
12625
12626 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12627 {
12628 asection *sec;
12629 struct elf_reloc_cookie cookie;
12630
12631 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12632 continue;
12633
12634 if (!init_reloc_cookie (&cookie, info, ibfd))
12635 return FALSE;
12636
12637 for (sec = ibfd->sections; sec; sec = sec->next)
12638 {
12639 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12640 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12641 {
12642 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12643 fini_reloc_cookie_rels (&cookie, sec);
12644 }
12645 }
12646 }
12647 return TRUE;
12648 }
12649
12650 /* Do mark and sweep of unused sections. */
12651
12652 bfd_boolean
12653 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12654 {
12655 bfd_boolean ok = TRUE;
12656 bfd *sub;
12657 elf_gc_mark_hook_fn gc_mark_hook;
12658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12659 struct elf_link_hash_table *htab;
12660
12661 if (!bed->can_gc_sections
12662 || !is_elf_hash_table (info->hash))
12663 {
12664 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12665 return TRUE;
12666 }
12667
12668 bed->gc_keep (info);
12669 htab = elf_hash_table (info);
12670
12671 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12672 at the .eh_frame section if we can mark the FDEs individually. */
12673 for (sub = info->input_bfds;
12674 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12675 sub = sub->link.next)
12676 {
12677 asection *sec;
12678 struct elf_reloc_cookie cookie;
12679
12680 sec = bfd_get_section_by_name (sub, ".eh_frame");
12681 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12682 {
12683 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12684 if (elf_section_data (sec)->sec_info
12685 && (sec->flags & SEC_LINKER_CREATED) == 0)
12686 elf_eh_frame_section (sub) = sec;
12687 fini_reloc_cookie_for_section (&cookie, sec);
12688 sec = bfd_get_next_section_by_name (sec);
12689 }
12690 }
12691
12692 /* Apply transitive closure to the vtable entry usage info. */
12693 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12694 if (!ok)
12695 return FALSE;
12696
12697 /* Kill the vtable relocations that were not used. */
12698 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12699 if (!ok)
12700 return FALSE;
12701
12702 /* Mark dynamically referenced symbols. */
12703 if (htab->dynamic_sections_created)
12704 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12705
12706 /* Grovel through relocs to find out who stays ... */
12707 gc_mark_hook = bed->gc_mark_hook;
12708 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12709 {
12710 asection *o;
12711
12712 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12713 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12714 continue;
12715
12716 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12717 Also treat note sections as a root, if the section is not part
12718 of a group. */
12719 for (o = sub->sections; o != NULL; o = o->next)
12720 if (!o->gc_mark
12721 && (o->flags & SEC_EXCLUDE) == 0
12722 && ((o->flags & SEC_KEEP) != 0
12723 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12724 && elf_next_in_group (o) == NULL )))
12725 {
12726 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12727 return FALSE;
12728 }
12729 }
12730
12731 /* Allow the backend to mark additional target specific sections. */
12732 bed->gc_mark_extra_sections (info, gc_mark_hook);
12733
12734 /* ... and mark SEC_EXCLUDE for those that go. */
12735 return elf_gc_sweep (abfd, info);
12736 }
12737 \f
12738 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12739
12740 bfd_boolean
12741 bfd_elf_gc_record_vtinherit (bfd *abfd,
12742 asection *sec,
12743 struct elf_link_hash_entry *h,
12744 bfd_vma offset)
12745 {
12746 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12747 struct elf_link_hash_entry **search, *child;
12748 bfd_size_type extsymcount;
12749 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12750
12751 /* The sh_info field of the symtab header tells us where the
12752 external symbols start. We don't care about the local symbols at
12753 this point. */
12754 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12755 if (!elf_bad_symtab (abfd))
12756 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12757
12758 sym_hashes = elf_sym_hashes (abfd);
12759 sym_hashes_end = sym_hashes + extsymcount;
12760
12761 /* Hunt down the child symbol, which is in this section at the same
12762 offset as the relocation. */
12763 for (search = sym_hashes; search != sym_hashes_end; ++search)
12764 {
12765 if ((child = *search) != NULL
12766 && (child->root.type == bfd_link_hash_defined
12767 || child->root.type == bfd_link_hash_defweak)
12768 && child->root.u.def.section == sec
12769 && child->root.u.def.value == offset)
12770 goto win;
12771 }
12772
12773 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12774 abfd, sec, (unsigned long) offset);
12775 bfd_set_error (bfd_error_invalid_operation);
12776 return FALSE;
12777
12778 win:
12779 if (!child->vtable)
12780 {
12781 child->vtable = ((struct elf_link_virtual_table_entry *)
12782 bfd_zalloc (abfd, sizeof (*child->vtable)));
12783 if (!child->vtable)
12784 return FALSE;
12785 }
12786 if (!h)
12787 {
12788 /* This *should* only be the absolute section. It could potentially
12789 be that someone has defined a non-global vtable though, which
12790 would be bad. It isn't worth paging in the local symbols to be
12791 sure though; that case should simply be handled by the assembler. */
12792
12793 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12794 }
12795 else
12796 child->vtable->parent = h;
12797
12798 return TRUE;
12799 }
12800
12801 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12802
12803 bfd_boolean
12804 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12805 asection *sec ATTRIBUTE_UNUSED,
12806 struct elf_link_hash_entry *h,
12807 bfd_vma addend)
12808 {
12809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12810 unsigned int log_file_align = bed->s->log_file_align;
12811
12812 if (!h->vtable)
12813 {
12814 h->vtable = ((struct elf_link_virtual_table_entry *)
12815 bfd_zalloc (abfd, sizeof (*h->vtable)));
12816 if (!h->vtable)
12817 return FALSE;
12818 }
12819
12820 if (addend >= h->vtable->size)
12821 {
12822 size_t size, bytes, file_align;
12823 bfd_boolean *ptr = h->vtable->used;
12824
12825 /* While the symbol is undefined, we have to be prepared to handle
12826 a zero size. */
12827 file_align = 1 << log_file_align;
12828 if (h->root.type == bfd_link_hash_undefined)
12829 size = addend + file_align;
12830 else
12831 {
12832 size = h->size;
12833 if (addend >= size)
12834 {
12835 /* Oops! We've got a reference past the defined end of
12836 the table. This is probably a bug -- shall we warn? */
12837 size = addend + file_align;
12838 }
12839 }
12840 size = (size + file_align - 1) & -file_align;
12841
12842 /* Allocate one extra entry for use as a "done" flag for the
12843 consolidation pass. */
12844 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12845
12846 if (ptr)
12847 {
12848 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12849
12850 if (ptr != NULL)
12851 {
12852 size_t oldbytes;
12853
12854 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12855 * sizeof (bfd_boolean));
12856 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12857 }
12858 }
12859 else
12860 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12861
12862 if (ptr == NULL)
12863 return FALSE;
12864
12865 /* And arrange for that done flag to be at index -1. */
12866 h->vtable->used = ptr + 1;
12867 h->vtable->size = size;
12868 }
12869
12870 h->vtable->used[addend >> log_file_align] = TRUE;
12871
12872 return TRUE;
12873 }
12874
12875 /* Map an ELF section header flag to its corresponding string. */
12876 typedef struct
12877 {
12878 char *flag_name;
12879 flagword flag_value;
12880 } elf_flags_to_name_table;
12881
12882 static elf_flags_to_name_table elf_flags_to_names [] =
12883 {
12884 { "SHF_WRITE", SHF_WRITE },
12885 { "SHF_ALLOC", SHF_ALLOC },
12886 { "SHF_EXECINSTR", SHF_EXECINSTR },
12887 { "SHF_MERGE", SHF_MERGE },
12888 { "SHF_STRINGS", SHF_STRINGS },
12889 { "SHF_INFO_LINK", SHF_INFO_LINK},
12890 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12891 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12892 { "SHF_GROUP", SHF_GROUP },
12893 { "SHF_TLS", SHF_TLS },
12894 { "SHF_MASKOS", SHF_MASKOS },
12895 { "SHF_EXCLUDE", SHF_EXCLUDE },
12896 };
12897
12898 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12899 bfd_boolean
12900 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12901 struct flag_info *flaginfo,
12902 asection *section)
12903 {
12904 const bfd_vma sh_flags = elf_section_flags (section);
12905
12906 if (!flaginfo->flags_initialized)
12907 {
12908 bfd *obfd = info->output_bfd;
12909 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12910 struct flag_info_list *tf = flaginfo->flag_list;
12911 int with_hex = 0;
12912 int without_hex = 0;
12913
12914 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12915 {
12916 unsigned i;
12917 flagword (*lookup) (char *);
12918
12919 lookup = bed->elf_backend_lookup_section_flags_hook;
12920 if (lookup != NULL)
12921 {
12922 flagword hexval = (*lookup) ((char *) tf->name);
12923
12924 if (hexval != 0)
12925 {
12926 if (tf->with == with_flags)
12927 with_hex |= hexval;
12928 else if (tf->with == without_flags)
12929 without_hex |= hexval;
12930 tf->valid = TRUE;
12931 continue;
12932 }
12933 }
12934 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12935 {
12936 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12937 {
12938 if (tf->with == with_flags)
12939 with_hex |= elf_flags_to_names[i].flag_value;
12940 else if (tf->with == without_flags)
12941 without_hex |= elf_flags_to_names[i].flag_value;
12942 tf->valid = TRUE;
12943 break;
12944 }
12945 }
12946 if (!tf->valid)
12947 {
12948 info->callbacks->einfo
12949 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12950 return FALSE;
12951 }
12952 }
12953 flaginfo->flags_initialized = TRUE;
12954 flaginfo->only_with_flags |= with_hex;
12955 flaginfo->not_with_flags |= without_hex;
12956 }
12957
12958 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12959 return FALSE;
12960
12961 if ((flaginfo->not_with_flags & sh_flags) != 0)
12962 return FALSE;
12963
12964 return TRUE;
12965 }
12966
12967 struct alloc_got_off_arg {
12968 bfd_vma gotoff;
12969 struct bfd_link_info *info;
12970 };
12971
12972 /* We need a special top-level link routine to convert got reference counts
12973 to real got offsets. */
12974
12975 static bfd_boolean
12976 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12977 {
12978 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12979 bfd *obfd = gofarg->info->output_bfd;
12980 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12981
12982 if (h->got.refcount > 0)
12983 {
12984 h->got.offset = gofarg->gotoff;
12985 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12986 }
12987 else
12988 h->got.offset = (bfd_vma) -1;
12989
12990 return TRUE;
12991 }
12992
12993 /* And an accompanying bit to work out final got entry offsets once
12994 we're done. Should be called from final_link. */
12995
12996 bfd_boolean
12997 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12998 struct bfd_link_info *info)
12999 {
13000 bfd *i;
13001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13002 bfd_vma gotoff;
13003 struct alloc_got_off_arg gofarg;
13004
13005 BFD_ASSERT (abfd == info->output_bfd);
13006
13007 if (! is_elf_hash_table (info->hash))
13008 return FALSE;
13009
13010 /* The GOT offset is relative to the .got section, but the GOT header is
13011 put into the .got.plt section, if the backend uses it. */
13012 if (bed->want_got_plt)
13013 gotoff = 0;
13014 else
13015 gotoff = bed->got_header_size;
13016
13017 /* Do the local .got entries first. */
13018 for (i = info->input_bfds; i; i = i->link.next)
13019 {
13020 bfd_signed_vma *local_got;
13021 bfd_size_type j, locsymcount;
13022 Elf_Internal_Shdr *symtab_hdr;
13023
13024 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13025 continue;
13026
13027 local_got = elf_local_got_refcounts (i);
13028 if (!local_got)
13029 continue;
13030
13031 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13032 if (elf_bad_symtab (i))
13033 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13034 else
13035 locsymcount = symtab_hdr->sh_info;
13036
13037 for (j = 0; j < locsymcount; ++j)
13038 {
13039 if (local_got[j] > 0)
13040 {
13041 local_got[j] = gotoff;
13042 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13043 }
13044 else
13045 local_got[j] = (bfd_vma) -1;
13046 }
13047 }
13048
13049 /* Then the global .got entries. .plt refcounts are handled by
13050 adjust_dynamic_symbol */
13051 gofarg.gotoff = gotoff;
13052 gofarg.info = info;
13053 elf_link_hash_traverse (elf_hash_table (info),
13054 elf_gc_allocate_got_offsets,
13055 &gofarg);
13056 return TRUE;
13057 }
13058
13059 /* Many folk need no more in the way of final link than this, once
13060 got entry reference counting is enabled. */
13061
13062 bfd_boolean
13063 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13064 {
13065 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13066 return FALSE;
13067
13068 /* Invoke the regular ELF backend linker to do all the work. */
13069 return bfd_elf_final_link (abfd, info);
13070 }
13071
13072 bfd_boolean
13073 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13074 {
13075 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13076
13077 if (rcookie->bad_symtab)
13078 rcookie->rel = rcookie->rels;
13079
13080 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13081 {
13082 unsigned long r_symndx;
13083
13084 if (! rcookie->bad_symtab)
13085 if (rcookie->rel->r_offset > offset)
13086 return FALSE;
13087 if (rcookie->rel->r_offset != offset)
13088 continue;
13089
13090 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13091 if (r_symndx == STN_UNDEF)
13092 return TRUE;
13093
13094 if (r_symndx >= rcookie->locsymcount
13095 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13096 {
13097 struct elf_link_hash_entry *h;
13098
13099 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13100
13101 while (h->root.type == bfd_link_hash_indirect
13102 || h->root.type == bfd_link_hash_warning)
13103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13104
13105 if ((h->root.type == bfd_link_hash_defined
13106 || h->root.type == bfd_link_hash_defweak)
13107 && (h->root.u.def.section->owner != rcookie->abfd
13108 || h->root.u.def.section->kept_section != NULL
13109 || discarded_section (h->root.u.def.section)))
13110 return TRUE;
13111 }
13112 else
13113 {
13114 /* It's not a relocation against a global symbol,
13115 but it could be a relocation against a local
13116 symbol for a discarded section. */
13117 asection *isec;
13118 Elf_Internal_Sym *isym;
13119
13120 /* Need to: get the symbol; get the section. */
13121 isym = &rcookie->locsyms[r_symndx];
13122 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13123 if (isec != NULL
13124 && (isec->kept_section != NULL
13125 || discarded_section (isec)))
13126 return TRUE;
13127 }
13128 return FALSE;
13129 }
13130 return FALSE;
13131 }
13132
13133 /* Discard unneeded references to discarded sections.
13134 Returns -1 on error, 1 if any section's size was changed, 0 if
13135 nothing changed. This function assumes that the relocations are in
13136 sorted order, which is true for all known assemblers. */
13137
13138 int
13139 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13140 {
13141 struct elf_reloc_cookie cookie;
13142 asection *o;
13143 bfd *abfd;
13144 int changed = 0;
13145
13146 if (info->traditional_format
13147 || !is_elf_hash_table (info->hash))
13148 return 0;
13149
13150 o = bfd_get_section_by_name (output_bfd, ".stab");
13151 if (o != NULL)
13152 {
13153 asection *i;
13154
13155 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13156 {
13157 if (i->size == 0
13158 || i->reloc_count == 0
13159 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13160 continue;
13161
13162 abfd = i->owner;
13163 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13164 continue;
13165
13166 if (!init_reloc_cookie_for_section (&cookie, info, i))
13167 return -1;
13168
13169 if (_bfd_discard_section_stabs (abfd, i,
13170 elf_section_data (i)->sec_info,
13171 bfd_elf_reloc_symbol_deleted_p,
13172 &cookie))
13173 changed = 1;
13174
13175 fini_reloc_cookie_for_section (&cookie, i);
13176 }
13177 }
13178
13179 o = NULL;
13180 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13181 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13182 if (o != NULL)
13183 {
13184 asection *i;
13185
13186 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13187 {
13188 if (i->size == 0)
13189 continue;
13190
13191 abfd = i->owner;
13192 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13193 continue;
13194
13195 if (!init_reloc_cookie_for_section (&cookie, info, i))
13196 return -1;
13197
13198 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13199 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13200 bfd_elf_reloc_symbol_deleted_p,
13201 &cookie))
13202 changed = 1;
13203
13204 fini_reloc_cookie_for_section (&cookie, i);
13205 }
13206 }
13207
13208 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13209 {
13210 const struct elf_backend_data *bed;
13211
13212 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13213 continue;
13214
13215 bed = get_elf_backend_data (abfd);
13216
13217 if (bed->elf_backend_discard_info != NULL)
13218 {
13219 if (!init_reloc_cookie (&cookie, info, abfd))
13220 return -1;
13221
13222 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13223 changed = 1;
13224
13225 fini_reloc_cookie (&cookie, abfd);
13226 }
13227 }
13228
13229 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13230 _bfd_elf_end_eh_frame_parsing (info);
13231
13232 if (info->eh_frame_hdr_type
13233 && !bfd_link_relocatable (info)
13234 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13235 changed = 1;
13236
13237 return changed;
13238 }
13239
13240 bfd_boolean
13241 _bfd_elf_section_already_linked (bfd *abfd,
13242 asection *sec,
13243 struct bfd_link_info *info)
13244 {
13245 flagword flags;
13246 const char *name, *key;
13247 struct bfd_section_already_linked *l;
13248 struct bfd_section_already_linked_hash_entry *already_linked_list;
13249
13250 if (sec->output_section == bfd_abs_section_ptr)
13251 return FALSE;
13252
13253 flags = sec->flags;
13254
13255 /* Return if it isn't a linkonce section. A comdat group section
13256 also has SEC_LINK_ONCE set. */
13257 if ((flags & SEC_LINK_ONCE) == 0)
13258 return FALSE;
13259
13260 /* Don't put group member sections on our list of already linked
13261 sections. They are handled as a group via their group section. */
13262 if (elf_sec_group (sec) != NULL)
13263 return FALSE;
13264
13265 /* For a SHT_GROUP section, use the group signature as the key. */
13266 name = sec->name;
13267 if ((flags & SEC_GROUP) != 0
13268 && elf_next_in_group (sec) != NULL
13269 && elf_group_name (elf_next_in_group (sec)) != NULL)
13270 key = elf_group_name (elf_next_in_group (sec));
13271 else
13272 {
13273 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13274 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13275 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13276 key++;
13277 else
13278 /* Must be a user linkonce section that doesn't follow gcc's
13279 naming convention. In this case we won't be matching
13280 single member groups. */
13281 key = name;
13282 }
13283
13284 already_linked_list = bfd_section_already_linked_table_lookup (key);
13285
13286 for (l = already_linked_list->entry; l != NULL; l = l->next)
13287 {
13288 /* We may have 2 different types of sections on the list: group
13289 sections with a signature of <key> (<key> is some string),
13290 and linkonce sections named .gnu.linkonce.<type>.<key>.
13291 Match like sections. LTO plugin sections are an exception.
13292 They are always named .gnu.linkonce.t.<key> and match either
13293 type of section. */
13294 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13295 && ((flags & SEC_GROUP) != 0
13296 || strcmp (name, l->sec->name) == 0))
13297 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13298 {
13299 /* The section has already been linked. See if we should
13300 issue a warning. */
13301 if (!_bfd_handle_already_linked (sec, l, info))
13302 return FALSE;
13303
13304 if (flags & SEC_GROUP)
13305 {
13306 asection *first = elf_next_in_group (sec);
13307 asection *s = first;
13308
13309 while (s != NULL)
13310 {
13311 s->output_section = bfd_abs_section_ptr;
13312 /* Record which group discards it. */
13313 s->kept_section = l->sec;
13314 s = elf_next_in_group (s);
13315 /* These lists are circular. */
13316 if (s == first)
13317 break;
13318 }
13319 }
13320
13321 return TRUE;
13322 }
13323 }
13324
13325 /* A single member comdat group section may be discarded by a
13326 linkonce section and vice versa. */
13327 if ((flags & SEC_GROUP) != 0)
13328 {
13329 asection *first = elf_next_in_group (sec);
13330
13331 if (first != NULL && elf_next_in_group (first) == first)
13332 /* Check this single member group against linkonce sections. */
13333 for (l = already_linked_list->entry; l != NULL; l = l->next)
13334 if ((l->sec->flags & SEC_GROUP) == 0
13335 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13336 {
13337 first->output_section = bfd_abs_section_ptr;
13338 first->kept_section = l->sec;
13339 sec->output_section = bfd_abs_section_ptr;
13340 break;
13341 }
13342 }
13343 else
13344 /* Check this linkonce section against single member groups. */
13345 for (l = already_linked_list->entry; l != NULL; l = l->next)
13346 if (l->sec->flags & SEC_GROUP)
13347 {
13348 asection *first = elf_next_in_group (l->sec);
13349
13350 if (first != NULL
13351 && elf_next_in_group (first) == first
13352 && bfd_elf_match_symbols_in_sections (first, sec, info))
13353 {
13354 sec->output_section = bfd_abs_section_ptr;
13355 sec->kept_section = first;
13356 break;
13357 }
13358 }
13359
13360 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13361 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13362 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13363 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13364 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13365 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13366 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13367 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13368 The reverse order cannot happen as there is never a bfd with only the
13369 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13370 matter as here were are looking only for cross-bfd sections. */
13371
13372 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13373 for (l = already_linked_list->entry; l != NULL; l = l->next)
13374 if ((l->sec->flags & SEC_GROUP) == 0
13375 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13376 {
13377 if (abfd != l->sec->owner)
13378 sec->output_section = bfd_abs_section_ptr;
13379 break;
13380 }
13381
13382 /* This is the first section with this name. Record it. */
13383 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13384 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13385 return sec->output_section == bfd_abs_section_ptr;
13386 }
13387
13388 bfd_boolean
13389 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13390 {
13391 return sym->st_shndx == SHN_COMMON;
13392 }
13393
13394 unsigned int
13395 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13396 {
13397 return SHN_COMMON;
13398 }
13399
13400 asection *
13401 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13402 {
13403 return bfd_com_section_ptr;
13404 }
13405
13406 bfd_vma
13407 _bfd_elf_default_got_elt_size (bfd *abfd,
13408 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13409 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13410 bfd *ibfd ATTRIBUTE_UNUSED,
13411 unsigned long symndx ATTRIBUTE_UNUSED)
13412 {
13413 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13414 return bed->s->arch_size / 8;
13415 }
13416
13417 /* Routines to support the creation of dynamic relocs. */
13418
13419 /* Returns the name of the dynamic reloc section associated with SEC. */
13420
13421 static const char *
13422 get_dynamic_reloc_section_name (bfd * abfd,
13423 asection * sec,
13424 bfd_boolean is_rela)
13425 {
13426 char *name;
13427 const char *old_name = bfd_get_section_name (NULL, sec);
13428 const char *prefix = is_rela ? ".rela" : ".rel";
13429
13430 if (old_name == NULL)
13431 return NULL;
13432
13433 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13434 sprintf (name, "%s%s", prefix, old_name);
13435
13436 return name;
13437 }
13438
13439 /* Returns the dynamic reloc section associated with SEC.
13440 If necessary compute the name of the dynamic reloc section based
13441 on SEC's name (looked up in ABFD's string table) and the setting
13442 of IS_RELA. */
13443
13444 asection *
13445 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13446 asection * sec,
13447 bfd_boolean is_rela)
13448 {
13449 asection * reloc_sec = elf_section_data (sec)->sreloc;
13450
13451 if (reloc_sec == NULL)
13452 {
13453 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13454
13455 if (name != NULL)
13456 {
13457 reloc_sec = bfd_get_linker_section (abfd, name);
13458
13459 if (reloc_sec != NULL)
13460 elf_section_data (sec)->sreloc = reloc_sec;
13461 }
13462 }
13463
13464 return reloc_sec;
13465 }
13466
13467 /* Returns the dynamic reloc section associated with SEC. If the
13468 section does not exist it is created and attached to the DYNOBJ
13469 bfd and stored in the SRELOC field of SEC's elf_section_data
13470 structure.
13471
13472 ALIGNMENT is the alignment for the newly created section and
13473 IS_RELA defines whether the name should be .rela.<SEC's name>
13474 or .rel.<SEC's name>. The section name is looked up in the
13475 string table associated with ABFD. */
13476
13477 asection *
13478 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13479 bfd *dynobj,
13480 unsigned int alignment,
13481 bfd *abfd,
13482 bfd_boolean is_rela)
13483 {
13484 asection * reloc_sec = elf_section_data (sec)->sreloc;
13485
13486 if (reloc_sec == NULL)
13487 {
13488 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13489
13490 if (name == NULL)
13491 return NULL;
13492
13493 reloc_sec = bfd_get_linker_section (dynobj, name);
13494
13495 if (reloc_sec == NULL)
13496 {
13497 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13498 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13499 if ((sec->flags & SEC_ALLOC) != 0)
13500 flags |= SEC_ALLOC | SEC_LOAD;
13501
13502 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13503 if (reloc_sec != NULL)
13504 {
13505 /* _bfd_elf_get_sec_type_attr chooses a section type by
13506 name. Override as it may be wrong, eg. for a user
13507 section named "auto" we'll get ".relauto" which is
13508 seen to be a .rela section. */
13509 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13510 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13511 reloc_sec = NULL;
13512 }
13513 }
13514
13515 elf_section_data (sec)->sreloc = reloc_sec;
13516 }
13517
13518 return reloc_sec;
13519 }
13520
13521 /* Copy the ELF symbol type and other attributes for a linker script
13522 assignment from HSRC to HDEST. Generally this should be treated as
13523 if we found a strong non-dynamic definition for HDEST (except that
13524 ld ignores multiple definition errors). */
13525 void
13526 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13527 struct bfd_link_hash_entry *hdest,
13528 struct bfd_link_hash_entry *hsrc)
13529 {
13530 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13531 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13532 Elf_Internal_Sym isym;
13533
13534 ehdest->type = ehsrc->type;
13535 ehdest->target_internal = ehsrc->target_internal;
13536
13537 isym.st_other = ehsrc->other;
13538 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13539 }
13540
13541 /* Append a RELA relocation REL to section S in BFD. */
13542
13543 void
13544 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13545 {
13546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13547 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13548 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13549 bed->s->swap_reloca_out (abfd, rel, loc);
13550 }
13551
13552 /* Append a REL relocation REL to section S in BFD. */
13553
13554 void
13555 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13556 {
13557 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13558 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13559 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13560 bed->s->swap_reloc_out (abfd, rel, loc);
13561 }
This page took 0.312521 seconds and 4 git commands to generate.