include/elf
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 int ptralign;
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 switch (bed->s->arch_size)
112 {
113 case 32:
114 ptralign = 2;
115 break;
116
117 case 64:
118 ptralign = 3;
119 break;
120
121 default:
122 bfd_set_error (bfd_error_bad_value);
123 return FALSE;
124 }
125
126 flags = bed->dynamic_sec_flags;
127
128 s = bfd_make_section_with_flags (abfd, ".got", flags);
129 if (s == NULL
130 || !bfd_set_section_alignment (abfd, s, ptralign))
131 return FALSE;
132
133 if (bed->want_got_plt)
134 {
135 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
136 if (s == NULL
137 || !bfd_set_section_alignment (abfd, s, ptralign))
138 return FALSE;
139 }
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
148 elf_hash_table (info)->hgot = h;
149 if (h == NULL)
150 return FALSE;
151 }
152
153 /* The first bit of the global offset table is the header. */
154 s->size += bed->got_header_size;
155
156 return TRUE;
157 }
158 \f
159 /* Create a strtab to hold the dynamic symbol names. */
160 static bfd_boolean
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 {
163 struct elf_link_hash_table *hash_table;
164
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
168
169 if (hash_table->dynstr == NULL)
170 {
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
173 return FALSE;
174 }
175 return TRUE;
176 }
177
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
184
185 bfd_boolean
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
187 {
188 flagword flags;
189 register asection *s;
190 const struct elf_backend_data *bed;
191
192 if (! is_elf_hash_table (info->hash))
193 return FALSE;
194
195 if (elf_hash_table (info)->dynamic_sections_created)
196 return TRUE;
197
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
199 return FALSE;
200
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
203
204 flags = bed->dynamic_sec_flags;
205
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
209 {
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
212 if (s == NULL)
213 return FALSE;
214 }
215
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
220 if (s == NULL
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
222 return FALSE;
223
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
226 if (s == NULL
227 || ! bfd_set_section_alignment (abfd, s, 1))
228 return FALSE;
229
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
232 if (s == NULL
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
234 return FALSE;
235
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
238 if (s == NULL
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
240 return FALSE;
241
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
244 if (s == NULL)
245 return FALSE;
246
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 if (s == NULL
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
250 return FALSE;
251
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
259 return FALSE;
260
261 if (info->emit_hash)
262 {
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 if (s == NULL
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 return FALSE;
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
268 }
269
270 if (info->emit_gnu_hash)
271 {
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
274 if (s == NULL
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 return FALSE;
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 else
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
284 }
285
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
290 return FALSE;
291
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
293
294 return TRUE;
295 }
296
297 /* Create dynamic sections when linking against a dynamic object. */
298
299 bfd_boolean
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 {
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
304 asection *s;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326
327 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
328 .plt section. */
329 if (bed->want_plt_sym)
330 {
331 h = _bfd_elf_define_linkage_sym (abfd, info, s,
332 "_PROCEDURE_LINKAGE_TABLE_");
333 elf_hash_table (info)->hplt = h;
334 if (h == NULL)
335 return FALSE;
336 }
337
338 s = bfd_make_section_with_flags (abfd,
339 (bed->rela_plts_and_copies_p
340 ? ".rela.plt" : ".rel.plt"),
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345
346 if (! _bfd_elf_create_got_section (abfd, info))
347 return FALSE;
348
349 if (bed->want_dynbss)
350 {
351 /* The .dynbss section is a place to put symbols which are defined
352 by dynamic objects, are referenced by regular objects, and are
353 not functions. We must allocate space for them in the process
354 image and use a R_*_COPY reloc to tell the dynamic linker to
355 initialize them at run time. The linker script puts the .dynbss
356 section into the .bss section of the final image. */
357 s = bfd_make_section_with_flags (abfd, ".dynbss",
358 (SEC_ALLOC
359 | SEC_LINKER_CREATED));
360 if (s == NULL)
361 return FALSE;
362
363 /* The .rel[a].bss section holds copy relocs. This section is not
364 normally needed. We need to create it here, though, so that the
365 linker will map it to an output section. We can't just create it
366 only if we need it, because we will not know whether we need it
367 until we have seen all the input files, and the first time the
368 main linker code calls BFD after examining all the input files
369 (size_dynamic_sections) the input sections have already been
370 mapped to the output sections. If the section turns out not to
371 be needed, we can discard it later. We will never need this
372 section when generating a shared object, since they do not use
373 copy relocs. */
374 if (! info->shared)
375 {
376 s = bfd_make_section_with_flags (abfd,
377 (bed->rela_plts_and_copies_p
378 ? ".rela.bss" : ".rel.bss"),
379 flags | SEC_READONLY);
380 if (s == NULL
381 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
382 return FALSE;
383 }
384 }
385
386 return TRUE;
387 }
388 \f
389 /* Record a new dynamic symbol. We record the dynamic symbols as we
390 read the input files, since we need to have a list of all of them
391 before we can determine the final sizes of the output sections.
392 Note that we may actually call this function even though we are not
393 going to output any dynamic symbols; in some cases we know that a
394 symbol should be in the dynamic symbol table, but only if there is
395 one. */
396
397 bfd_boolean
398 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
399 struct elf_link_hash_entry *h)
400 {
401 if (h->dynindx == -1)
402 {
403 struct elf_strtab_hash *dynstr;
404 char *p;
405 const char *name;
406 bfd_size_type indx;
407
408 /* XXX: The ABI draft says the linker must turn hidden and
409 internal symbols into STB_LOCAL symbols when producing the
410 DSO. However, if ld.so honors st_other in the dynamic table,
411 this would not be necessary. */
412 switch (ELF_ST_VISIBILITY (h->other))
413 {
414 case STV_INTERNAL:
415 case STV_HIDDEN:
416 if (h->root.type != bfd_link_hash_undefined
417 && h->root.type != bfd_link_hash_undefweak)
418 {
419 h->forced_local = 1;
420 if (!elf_hash_table (info)->is_relocatable_executable)
421 return TRUE;
422 }
423
424 default:
425 break;
426 }
427
428 h->dynindx = elf_hash_table (info)->dynsymcount;
429 ++elf_hash_table (info)->dynsymcount;
430
431 dynstr = elf_hash_table (info)->dynstr;
432 if (dynstr == NULL)
433 {
434 /* Create a strtab to hold the dynamic symbol names. */
435 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
436 if (dynstr == NULL)
437 return FALSE;
438 }
439
440 /* We don't put any version information in the dynamic string
441 table. */
442 name = h->root.root.string;
443 p = strchr (name, ELF_VER_CHR);
444 if (p != NULL)
445 /* We know that the p points into writable memory. In fact,
446 there are only a few symbols that have read-only names, being
447 those like _GLOBAL_OFFSET_TABLE_ that are created specially
448 by the backends. Most symbols will have names pointing into
449 an ELF string table read from a file, or to objalloc memory. */
450 *p = 0;
451
452 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
453
454 if (p != NULL)
455 *p = ELF_VER_CHR;
456
457 if (indx == (bfd_size_type) -1)
458 return FALSE;
459 h->dynstr_index = indx;
460 }
461
462 return TRUE;
463 }
464 \f
465 /* Mark a symbol dynamic. */
466
467 static void
468 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
469 struct elf_link_hash_entry *h,
470 Elf_Internal_Sym *sym)
471 {
472 struct bfd_elf_dynamic_list *d = info->dynamic_list;
473
474 /* It may be called more than once on the same H. */
475 if(h->dynamic || info->relocatable)
476 return;
477
478 if ((info->dynamic_data
479 && (h->type == STT_OBJECT
480 || (sym != NULL
481 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
482 || (d != NULL
483 && h->root.type == bfd_link_hash_new
484 && (*d->match) (&d->head, NULL, h->root.root.string)))
485 h->dynamic = 1;
486 }
487
488 /* Record an assignment to a symbol made by a linker script. We need
489 this in case some dynamic object refers to this symbol. */
490
491 bfd_boolean
492 bfd_elf_record_link_assignment (bfd *output_bfd,
493 struct bfd_link_info *info,
494 const char *name,
495 bfd_boolean provide,
496 bfd_boolean hidden)
497 {
498 struct elf_link_hash_entry *h, *hv;
499 struct elf_link_hash_table *htab;
500 const struct elf_backend_data *bed;
501
502 if (!is_elf_hash_table (info->hash))
503 return TRUE;
504
505 htab = elf_hash_table (info);
506 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
507 if (h == NULL)
508 return provide;
509
510 switch (h->root.type)
511 {
512 case bfd_link_hash_defined:
513 case bfd_link_hash_defweak:
514 case bfd_link_hash_common:
515 break;
516 case bfd_link_hash_undefweak:
517 case bfd_link_hash_undefined:
518 /* Since we're defining the symbol, don't let it seem to have not
519 been defined. record_dynamic_symbol and size_dynamic_sections
520 may depend on this. */
521 h->root.type = bfd_link_hash_new;
522 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
523 bfd_link_repair_undef_list (&htab->root);
524 break;
525 case bfd_link_hash_new:
526 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
527 h->non_elf = 0;
528 break;
529 case bfd_link_hash_indirect:
530 /* We had a versioned symbol in a dynamic library. We make the
531 the versioned symbol point to this one. */
532 bed = get_elf_backend_data (output_bfd);
533 hv = h;
534 while (hv->root.type == bfd_link_hash_indirect
535 || hv->root.type == bfd_link_hash_warning)
536 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
537 /* We don't need to update h->root.u since linker will set them
538 later. */
539 h->root.type = bfd_link_hash_undefined;
540 hv->root.type = bfd_link_hash_indirect;
541 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
542 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
543 break;
544 case bfd_link_hash_warning:
545 abort ();
546 break;
547 }
548
549 /* If this symbol is being provided by the linker script, and it is
550 currently defined by a dynamic object, but not by a regular
551 object, then mark it as undefined so that the generic linker will
552 force the correct value. */
553 if (provide
554 && h->def_dynamic
555 && !h->def_regular)
556 h->root.type = bfd_link_hash_undefined;
557
558 /* If this symbol is not being provided by the linker script, and it is
559 currently defined by a dynamic object, but not by a regular object,
560 then clear out any version information because the symbol will not be
561 associated with the dynamic object any more. */
562 if (!provide
563 && h->def_dynamic
564 && !h->def_regular)
565 h->verinfo.verdef = NULL;
566
567 h->def_regular = 1;
568
569 if (provide && hidden)
570 {
571 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
572
573 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
575 }
576
577 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
578 and executables. */
579 if (!info->relocatable
580 && h->dynindx != -1
581 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
582 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
583 h->forced_local = 1;
584
585 if ((h->def_dynamic
586 || h->ref_dynamic
587 || info->shared
588 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
589 && h->dynindx == -1)
590 {
591 if (! bfd_elf_link_record_dynamic_symbol (info, h))
592 return FALSE;
593
594 /* If this is a weak defined symbol, and we know a corresponding
595 real symbol from the same dynamic object, make sure the real
596 symbol is also made into a dynamic symbol. */
597 if (h->u.weakdef != NULL
598 && h->u.weakdef->dynindx == -1)
599 {
600 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
601 return FALSE;
602 }
603 }
604
605 return TRUE;
606 }
607
608 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
609 success, and 2 on a failure caused by attempting to record a symbol
610 in a discarded section, eg. a discarded link-once section symbol. */
611
612 int
613 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
614 bfd *input_bfd,
615 long input_indx)
616 {
617 bfd_size_type amt;
618 struct elf_link_local_dynamic_entry *entry;
619 struct elf_link_hash_table *eht;
620 struct elf_strtab_hash *dynstr;
621 unsigned long dynstr_index;
622 char *name;
623 Elf_External_Sym_Shndx eshndx;
624 char esym[sizeof (Elf64_External_Sym)];
625
626 if (! is_elf_hash_table (info->hash))
627 return 0;
628
629 /* See if the entry exists already. */
630 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
631 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
632 return 1;
633
634 amt = sizeof (*entry);
635 entry = bfd_alloc (input_bfd, amt);
636 if (entry == NULL)
637 return 0;
638
639 /* Go find the symbol, so that we can find it's name. */
640 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
641 1, input_indx, &entry->isym, esym, &eshndx))
642 {
643 bfd_release (input_bfd, entry);
644 return 0;
645 }
646
647 if (entry->isym.st_shndx != SHN_UNDEF
648 && entry->isym.st_shndx < SHN_LORESERVE)
649 {
650 asection *s;
651
652 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
653 if (s == NULL || bfd_is_abs_section (s->output_section))
654 {
655 /* We can still bfd_release here as nothing has done another
656 bfd_alloc. We can't do this later in this function. */
657 bfd_release (input_bfd, entry);
658 return 2;
659 }
660 }
661
662 name = (bfd_elf_string_from_elf_section
663 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
664 entry->isym.st_name));
665
666 dynstr = elf_hash_table (info)->dynstr;
667 if (dynstr == NULL)
668 {
669 /* Create a strtab to hold the dynamic symbol names. */
670 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
671 if (dynstr == NULL)
672 return 0;
673 }
674
675 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
676 if (dynstr_index == (unsigned long) -1)
677 return 0;
678 entry->isym.st_name = dynstr_index;
679
680 eht = elf_hash_table (info);
681
682 entry->next = eht->dynlocal;
683 eht->dynlocal = entry;
684 entry->input_bfd = input_bfd;
685 entry->input_indx = input_indx;
686 eht->dynsymcount++;
687
688 /* Whatever binding the symbol had before, it's now local. */
689 entry->isym.st_info
690 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
691
692 /* The dynindx will be set at the end of size_dynamic_sections. */
693
694 return 1;
695 }
696
697 /* Return the dynindex of a local dynamic symbol. */
698
699 long
700 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
701 bfd *input_bfd,
702 long input_indx)
703 {
704 struct elf_link_local_dynamic_entry *e;
705
706 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
707 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
708 return e->dynindx;
709 return -1;
710 }
711
712 /* This function is used to renumber the dynamic symbols, if some of
713 them are removed because they are marked as local. This is called
714 via elf_link_hash_traverse. */
715
716 static bfd_boolean
717 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
718 void *data)
719 {
720 size_t *count = data;
721
722 if (h->root.type == bfd_link_hash_warning)
723 h = (struct elf_link_hash_entry *) h->root.u.i.link;
724
725 if (h->forced_local)
726 return TRUE;
727
728 if (h->dynindx != -1)
729 h->dynindx = ++(*count);
730
731 return TRUE;
732 }
733
734
735 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
736 STB_LOCAL binding. */
737
738 static bfd_boolean
739 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
740 void *data)
741 {
742 size_t *count = data;
743
744 if (h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746
747 if (!h->forced_local)
748 return TRUE;
749
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
752
753 return TRUE;
754 }
755
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
758 bfd_boolean
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
761 asection *p)
762 {
763 struct elf_link_hash_table *htab;
764
765 switch (elf_section_data (p)->this_hdr.sh_type)
766 {
767 case SHT_PROGBITS:
768 case SHT_NOBITS:
769 /* If sh_type is yet undecided, assume it could be
770 SHT_PROGBITS/SHT_NOBITS. */
771 case SHT_NULL:
772 htab = elf_hash_table (info);
773 if (p == htab->tls_sec)
774 return FALSE;
775
776 if (htab->text_index_section != NULL)
777 return p != htab->text_index_section && p != htab->data_index_section;
778
779 if (strcmp (p->name, ".got") == 0
780 || strcmp (p->name, ".got.plt") == 0
781 || strcmp (p->name, ".plt") == 0)
782 {
783 asection *ip;
784
785 if (htab->dynobj != NULL
786 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
787 && (ip->flags & SEC_LINKER_CREATED)
788 && ip->output_section == p)
789 return TRUE;
790 }
791 return FALSE;
792
793 /* There shouldn't be section relative relocations
794 against any other section. */
795 default:
796 return TRUE;
797 }
798 }
799
800 /* Assign dynsym indices. In a shared library we generate a section
801 symbol for each output section, which come first. Next come symbols
802 which have been forced to local binding. Then all of the back-end
803 allocated local dynamic syms, followed by the rest of the global
804 symbols. */
805
806 static unsigned long
807 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
808 struct bfd_link_info *info,
809 unsigned long *section_sym_count)
810 {
811 unsigned long dynsymcount = 0;
812
813 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
814 {
815 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
816 asection *p;
817 for (p = output_bfd->sections; p ; p = p->next)
818 if ((p->flags & SEC_EXCLUDE) == 0
819 && (p->flags & SEC_ALLOC) != 0
820 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
821 elf_section_data (p)->dynindx = ++dynsymcount;
822 else
823 elf_section_data (p)->dynindx = 0;
824 }
825 *section_sym_count = dynsymcount;
826
827 elf_link_hash_traverse (elf_hash_table (info),
828 elf_link_renumber_local_hash_table_dynsyms,
829 &dynsymcount);
830
831 if (elf_hash_table (info)->dynlocal)
832 {
833 struct elf_link_local_dynamic_entry *p;
834 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
835 p->dynindx = ++dynsymcount;
836 }
837
838 elf_link_hash_traverse (elf_hash_table (info),
839 elf_link_renumber_hash_table_dynsyms,
840 &dynsymcount);
841
842 /* There is an unused NULL entry at the head of the table which
843 we must account for in our count. Unless there weren't any
844 symbols, which means we'll have no table at all. */
845 if (dynsymcount != 0)
846 ++dynsymcount;
847
848 elf_hash_table (info)->dynsymcount = dynsymcount;
849 return dynsymcount;
850 }
851
852 /* Merge st_other field. */
853
854 static void
855 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
856 Elf_Internal_Sym *isym, bfd_boolean definition,
857 bfd_boolean dynamic)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860
861 /* If st_other has a processor-specific meaning, specific
862 code might be needed here. We never merge the visibility
863 attribute with the one from a dynamic object. */
864 if (bed->elf_backend_merge_symbol_attribute)
865 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 dynamic);
867
868 /* If this symbol has default visibility and the user has requested
869 we not re-export it, then mark it as hidden. */
870 if (definition
871 && !dynamic
872 && (abfd->no_export
873 || (abfd->my_archive && abfd->my_archive->no_export))
874 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
875 isym->st_other = (STV_HIDDEN
876 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
877
878 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
879 {
880 unsigned char hvis, symvis, other, nvis;
881
882 /* Only merge the visibility. Leave the remainder of the
883 st_other field to elf_backend_merge_symbol_attribute. */
884 other = h->other & ~ELF_ST_VISIBILITY (-1);
885
886 /* Combine visibilities, using the most constraining one. */
887 hvis = ELF_ST_VISIBILITY (h->other);
888 symvis = ELF_ST_VISIBILITY (isym->st_other);
889 if (! hvis)
890 nvis = symvis;
891 else if (! symvis)
892 nvis = hvis;
893 else
894 nvis = hvis < symvis ? hvis : symvis;
895
896 h->other = other | nvis;
897 }
898 }
899
900 /* This function is called when we want to define a new symbol. It
901 handles the various cases which arise when we find a definition in
902 a dynamic object, or when there is already a definition in a
903 dynamic object. The new symbol is described by NAME, SYM, PSEC,
904 and PVALUE. We set SYM_HASH to the hash table entry. We set
905 OVERRIDE if the old symbol is overriding a new definition. We set
906 TYPE_CHANGE_OK if it is OK for the type to change. We set
907 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
908 change, we mean that we shouldn't warn if the type or size does
909 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
910 object is overridden by a regular object. */
911
912 bfd_boolean
913 _bfd_elf_merge_symbol (bfd *abfd,
914 struct bfd_link_info *info,
915 const char *name,
916 Elf_Internal_Sym *sym,
917 asection **psec,
918 bfd_vma *pvalue,
919 unsigned int *pold_alignment,
920 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *skip,
922 bfd_boolean *override,
923 bfd_boolean *type_change_ok,
924 bfd_boolean *size_change_ok)
925 {
926 asection *sec, *oldsec;
927 struct elf_link_hash_entry *h;
928 struct elf_link_hash_entry *flip;
929 int bind;
930 bfd *oldbfd;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
934
935 *skip = FALSE;
936 *override = FALSE;
937
938 sec = *psec;
939 bind = ELF_ST_BIND (sym->st_info);
940
941 /* Silently discard TLS symbols from --just-syms. There's no way to
942 combine a static TLS block with a new TLS block for this executable. */
943 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
944 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
945 {
946 *skip = TRUE;
947 return TRUE;
948 }
949
950 if (! bfd_is_und_section (sec))
951 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
952 else
953 h = ((struct elf_link_hash_entry *)
954 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 if (h == NULL)
956 return FALSE;
957 *sym_hash = h;
958
959 bed = get_elf_backend_data (abfd);
960
961 /* This code is for coping with dynamic objects, and is only useful
962 if we are doing an ELF link. */
963 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
964 return TRUE;
965
966 /* For merging, we only care about real symbols. */
967
968 while (h->root.type == bfd_link_hash_indirect
969 || h->root.type == bfd_link_hash_warning)
970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
971
972 /* We have to check it for every instance since the first few may be
973 refereences and not all compilers emit symbol type for undefined
974 symbols. */
975 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
976
977 /* If we just created the symbol, mark it as being an ELF symbol.
978 Other than that, there is nothing to do--there is no merge issue
979 with a newly defined symbol--so we just return. */
980
981 if (h->root.type == bfd_link_hash_new)
982 {
983 h->non_elf = 0;
984 return TRUE;
985 }
986
987 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
988 existing symbol. */
989
990 switch (h->root.type)
991 {
992 default:
993 oldbfd = NULL;
994 oldsec = NULL;
995 break;
996
997 case bfd_link_hash_undefined:
998 case bfd_link_hash_undefweak:
999 oldbfd = h->root.u.undef.abfd;
1000 oldsec = NULL;
1001 break;
1002
1003 case bfd_link_hash_defined:
1004 case bfd_link_hash_defweak:
1005 oldbfd = h->root.u.def.section->owner;
1006 oldsec = h->root.u.def.section;
1007 break;
1008
1009 case bfd_link_hash_common:
1010 oldbfd = h->root.u.c.p->section->owner;
1011 oldsec = h->root.u.c.p->section;
1012 break;
1013 }
1014
1015 /* In cases involving weak versioned symbols, we may wind up trying
1016 to merge a symbol with itself. Catch that here, to avoid the
1017 confusion that results if we try to override a symbol with
1018 itself. The additional tests catch cases like
1019 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1020 dynamic object, which we do want to handle here. */
1021 if (abfd == oldbfd
1022 && ((abfd->flags & DYNAMIC) == 0
1023 || !h->def_regular))
1024 return TRUE;
1025
1026 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1027 respectively, is from a dynamic object. */
1028
1029 newdyn = (abfd->flags & DYNAMIC) != 0;
1030
1031 olddyn = FALSE;
1032 if (oldbfd != NULL)
1033 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1034 else if (oldsec != NULL)
1035 {
1036 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1037 indices used by MIPS ELF. */
1038 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1039 }
1040
1041 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1042 respectively, appear to be a definition rather than reference. */
1043
1044 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1045
1046 olddef = (h->root.type != bfd_link_hash_undefined
1047 && h->root.type != bfd_link_hash_undefweak
1048 && h->root.type != bfd_link_hash_common);
1049
1050 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1051 respectively, appear to be a function. */
1052
1053 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1054 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1055
1056 oldfunc = (h->type != STT_NOTYPE
1057 && bed->is_function_type (h->type));
1058
1059 /* When we try to create a default indirect symbol from the dynamic
1060 definition with the default version, we skip it if its type and
1061 the type of existing regular definition mismatch. We only do it
1062 if the existing regular definition won't be dynamic. */
1063 if (pold_alignment == NULL
1064 && !info->shared
1065 && !info->export_dynamic
1066 && !h->ref_dynamic
1067 && newdyn
1068 && newdef
1069 && !olddyn
1070 && (olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1075 {
1076 *skip = TRUE;
1077 return TRUE;
1078 }
1079
1080 /* Check TLS symbol. We don't check undefined symbol introduced by
1081 "ld -u". */
1082 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1083 && ELF_ST_TYPE (sym->st_info) != h->type
1084 && oldbfd != NULL)
1085 {
1086 bfd *ntbfd, *tbfd;
1087 bfd_boolean ntdef, tdef;
1088 asection *ntsec, *tsec;
1089
1090 if (h->type == STT_TLS)
1091 {
1092 ntbfd = abfd;
1093 ntsec = sec;
1094 ntdef = newdef;
1095 tbfd = oldbfd;
1096 tsec = oldsec;
1097 tdef = olddef;
1098 }
1099 else
1100 {
1101 ntbfd = oldbfd;
1102 ntsec = oldsec;
1103 ntdef = olddef;
1104 tbfd = abfd;
1105 tsec = sec;
1106 tdef = newdef;
1107 }
1108
1109 if (tdef && ntdef)
1110 (*_bfd_error_handler)
1111 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1112 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1113 else if (!tdef && !ntdef)
1114 (*_bfd_error_handler)
1115 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1116 tbfd, ntbfd, h->root.root.string);
1117 else if (tdef)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1120 tbfd, tsec, ntbfd, h->root.root.string);
1121 else
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1124 tbfd, ntbfd, ntsec, h->root.root.string);
1125
1126 bfd_set_error (bfd_error_bad_value);
1127 return FALSE;
1128 }
1129
1130 /* We need to remember if a symbol has a definition in a dynamic
1131 object or is weak in all dynamic objects. Internal and hidden
1132 visibility will make it unavailable to dynamic objects. */
1133 if (newdyn && !h->dynamic_def)
1134 {
1135 if (!bfd_is_und_section (sec))
1136 h->dynamic_def = 1;
1137 else
1138 {
1139 /* Check if this symbol is weak in all dynamic objects. If it
1140 is the first time we see it in a dynamic object, we mark
1141 if it is weak. Otherwise, we clear it. */
1142 if (!h->ref_dynamic)
1143 {
1144 if (bind == STB_WEAK)
1145 h->dynamic_weak = 1;
1146 }
1147 else if (bind != STB_WEAK)
1148 h->dynamic_weak = 0;
1149 }
1150 }
1151
1152 /* If the old symbol has non-default visibility, we ignore the new
1153 definition from a dynamic object. */
1154 if (newdyn
1155 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1156 && !bfd_is_und_section (sec))
1157 {
1158 *skip = TRUE;
1159 /* Make sure this symbol is dynamic. */
1160 h->ref_dynamic = 1;
1161 /* A protected symbol has external availability. Make sure it is
1162 recorded as dynamic.
1163
1164 FIXME: Should we check type and size for protected symbol? */
1165 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1166 return bfd_elf_link_record_dynamic_symbol (info, h);
1167 else
1168 return TRUE;
1169 }
1170 else if (!newdyn
1171 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1172 && h->def_dynamic)
1173 {
1174 /* If the new symbol with non-default visibility comes from a
1175 relocatable file and the old definition comes from a dynamic
1176 object, we remove the old definition. */
1177 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1178 {
1179 /* Handle the case where the old dynamic definition is
1180 default versioned. We need to copy the symbol info from
1181 the symbol with default version to the normal one if it
1182 was referenced before. */
1183 if (h->ref_regular)
1184 {
1185 const struct elf_backend_data *bed
1186 = get_elf_backend_data (abfd);
1187 struct elf_link_hash_entry *vh = *sym_hash;
1188 vh->root.type = h->root.type;
1189 h->root.type = bfd_link_hash_indirect;
1190 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1191 /* Protected symbols will override the dynamic definition
1192 with default version. */
1193 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1194 {
1195 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1196 vh->dynamic_def = 1;
1197 vh->ref_dynamic = 1;
1198 }
1199 else
1200 {
1201 h->root.type = vh->root.type;
1202 vh->ref_dynamic = 0;
1203 /* We have to hide it here since it was made dynamic
1204 global with extra bits when the symbol info was
1205 copied from the old dynamic definition. */
1206 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1207 }
1208 h = vh;
1209 }
1210 else
1211 h = *sym_hash;
1212 }
1213
1214 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1215 && bfd_is_und_section (sec))
1216 {
1217 /* If the new symbol is undefined and the old symbol was
1218 also undefined before, we need to make sure
1219 _bfd_generic_link_add_one_symbol doesn't mess
1220 up the linker hash table undefs list. Since the old
1221 definition came from a dynamic object, it is still on the
1222 undefs list. */
1223 h->root.type = bfd_link_hash_undefined;
1224 h->root.u.undef.abfd = abfd;
1225 }
1226 else
1227 {
1228 h->root.type = bfd_link_hash_new;
1229 h->root.u.undef.abfd = NULL;
1230 }
1231
1232 if (h->def_dynamic)
1233 {
1234 h->def_dynamic = 0;
1235 h->ref_dynamic = 1;
1236 h->dynamic_def = 1;
1237 }
1238 /* FIXME: Should we check type and size for protected symbol? */
1239 h->size = 0;
1240 h->type = 0;
1241 return TRUE;
1242 }
1243
1244 /* Differentiate strong and weak symbols. */
1245 newweak = bind == STB_WEAK;
1246 oldweak = (h->root.type == bfd_link_hash_defweak
1247 || h->root.type == bfd_link_hash_undefweak);
1248
1249 /* If a new weak symbol definition comes from a regular file and the
1250 old symbol comes from a dynamic library, we treat the new one as
1251 strong. Similarly, an old weak symbol definition from a regular
1252 file is treated as strong when the new symbol comes from a dynamic
1253 library. Further, an old weak symbol from a dynamic library is
1254 treated as strong if the new symbol is from a dynamic library.
1255 This reflects the way glibc's ld.so works.
1256
1257 Do this before setting *type_change_ok or *size_change_ok so that
1258 we warn properly when dynamic library symbols are overridden. */
1259
1260 if (newdef && !newdyn && olddyn)
1261 newweak = FALSE;
1262 if (olddef && newdyn)
1263 oldweak = FALSE;
1264
1265 /* Allow changes between different types of function symbol. */
1266 if (newfunc && oldfunc)
1267 *type_change_ok = TRUE;
1268
1269 /* It's OK to change the type if either the existing symbol or the
1270 new symbol is weak. A type change is also OK if the old symbol
1271 is undefined and the new symbol is defined. */
1272
1273 if (oldweak
1274 || newweak
1275 || (newdef
1276 && h->root.type == bfd_link_hash_undefined))
1277 *type_change_ok = TRUE;
1278
1279 /* It's OK to change the size if either the existing symbol or the
1280 new symbol is weak, or if the old symbol is undefined. */
1281
1282 if (*type_change_ok
1283 || h->root.type == bfd_link_hash_undefined)
1284 *size_change_ok = TRUE;
1285
1286 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1287 symbol, respectively, appears to be a common symbol in a dynamic
1288 object. If a symbol appears in an uninitialized section, and is
1289 not weak, and is not a function, then it may be a common symbol
1290 which was resolved when the dynamic object was created. We want
1291 to treat such symbols specially, because they raise special
1292 considerations when setting the symbol size: if the symbol
1293 appears as a common symbol in a regular object, and the size in
1294 the regular object is larger, we must make sure that we use the
1295 larger size. This problematic case can always be avoided in C,
1296 but it must be handled correctly when using Fortran shared
1297 libraries.
1298
1299 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1300 likewise for OLDDYNCOMMON and OLDDEF.
1301
1302 Note that this test is just a heuristic, and that it is quite
1303 possible to have an uninitialized symbol in a shared object which
1304 is really a definition, rather than a common symbol. This could
1305 lead to some minor confusion when the symbol really is a common
1306 symbol in some regular object. However, I think it will be
1307 harmless. */
1308
1309 if (newdyn
1310 && newdef
1311 && !newweak
1312 && (sec->flags & SEC_ALLOC) != 0
1313 && (sec->flags & SEC_LOAD) == 0
1314 && sym->st_size > 0
1315 && !newfunc)
1316 newdyncommon = TRUE;
1317 else
1318 newdyncommon = FALSE;
1319
1320 if (olddyn
1321 && olddef
1322 && h->root.type == bfd_link_hash_defined
1323 && h->def_dynamic
1324 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1325 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1326 && h->size > 0
1327 && !oldfunc)
1328 olddyncommon = TRUE;
1329 else
1330 olddyncommon = FALSE;
1331
1332 /* We now know everything about the old and new symbols. We ask the
1333 backend to check if we can merge them. */
1334 if (bed->merge_symbol
1335 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1336 pold_alignment, skip, override,
1337 type_change_ok, size_change_ok,
1338 &newdyn, &newdef, &newdyncommon, &newweak,
1339 abfd, &sec,
1340 &olddyn, &olddef, &olddyncommon, &oldweak,
1341 oldbfd, &oldsec))
1342 return FALSE;
1343
1344 /* If both the old and the new symbols look like common symbols in a
1345 dynamic object, set the size of the symbol to the larger of the
1346 two. */
1347
1348 if (olddyncommon
1349 && newdyncommon
1350 && sym->st_size != h->size)
1351 {
1352 /* Since we think we have two common symbols, issue a multiple
1353 common warning if desired. Note that we only warn if the
1354 size is different. If the size is the same, we simply let
1355 the old symbol override the new one as normally happens with
1356 symbols defined in dynamic objects. */
1357
1358 if (! ((*info->callbacks->multiple_common)
1359 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1360 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1361 return FALSE;
1362
1363 if (sym->st_size > h->size)
1364 h->size = sym->st_size;
1365
1366 *size_change_ok = TRUE;
1367 }
1368
1369 /* If we are looking at a dynamic object, and we have found a
1370 definition, we need to see if the symbol was already defined by
1371 some other object. If so, we want to use the existing
1372 definition, and we do not want to report a multiple symbol
1373 definition error; we do this by clobbering *PSEC to be
1374 bfd_und_section_ptr.
1375
1376 We treat a common symbol as a definition if the symbol in the
1377 shared library is a function, since common symbols always
1378 represent variables; this can cause confusion in principle, but
1379 any such confusion would seem to indicate an erroneous program or
1380 shared library. We also permit a common symbol in a regular
1381 object to override a weak symbol in a shared object. */
1382
1383 if (newdyn
1384 && newdef
1385 && (olddef
1386 || (h->root.type == bfd_link_hash_common
1387 && (newweak || newfunc))))
1388 {
1389 *override = TRUE;
1390 newdef = FALSE;
1391 newdyncommon = FALSE;
1392
1393 *psec = sec = bfd_und_section_ptr;
1394 *size_change_ok = TRUE;
1395
1396 /* If we get here when the old symbol is a common symbol, then
1397 we are explicitly letting it override a weak symbol or
1398 function in a dynamic object, and we don't want to warn about
1399 a type change. If the old symbol is a defined symbol, a type
1400 change warning may still be appropriate. */
1401
1402 if (h->root.type == bfd_link_hash_common)
1403 *type_change_ok = TRUE;
1404 }
1405
1406 /* Handle the special case of an old common symbol merging with a
1407 new symbol which looks like a common symbol in a shared object.
1408 We change *PSEC and *PVALUE to make the new symbol look like a
1409 common symbol, and let _bfd_generic_link_add_one_symbol do the
1410 right thing. */
1411
1412 if (newdyncommon
1413 && h->root.type == bfd_link_hash_common)
1414 {
1415 *override = TRUE;
1416 newdef = FALSE;
1417 newdyncommon = FALSE;
1418 *pvalue = sym->st_size;
1419 *psec = sec = bed->common_section (oldsec);
1420 *size_change_ok = TRUE;
1421 }
1422
1423 /* Skip weak definitions of symbols that are already defined. */
1424 if (newdef && olddef && newweak)
1425 {
1426 *skip = TRUE;
1427
1428 /* Merge st_other. If the symbol already has a dynamic index,
1429 but visibility says it should not be visible, turn it into a
1430 local symbol. */
1431 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1432 if (h->dynindx != -1)
1433 switch (ELF_ST_VISIBILITY (h->other))
1434 {
1435 case STV_INTERNAL:
1436 case STV_HIDDEN:
1437 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1438 break;
1439 }
1440 }
1441
1442 /* If the old symbol is from a dynamic object, and the new symbol is
1443 a definition which is not from a dynamic object, then the new
1444 symbol overrides the old symbol. Symbols from regular files
1445 always take precedence over symbols from dynamic objects, even if
1446 they are defined after the dynamic object in the link.
1447
1448 As above, we again permit a common symbol in a regular object to
1449 override a definition in a shared object if the shared object
1450 symbol is a function or is weak. */
1451
1452 flip = NULL;
1453 if (!newdyn
1454 && (newdef
1455 || (bfd_is_com_section (sec)
1456 && (oldweak || oldfunc)))
1457 && olddyn
1458 && olddef
1459 && h->def_dynamic)
1460 {
1461 /* Change the hash table entry to undefined, and let
1462 _bfd_generic_link_add_one_symbol do the right thing with the
1463 new definition. */
1464
1465 h->root.type = bfd_link_hash_undefined;
1466 h->root.u.undef.abfd = h->root.u.def.section->owner;
1467 *size_change_ok = TRUE;
1468
1469 olddef = FALSE;
1470 olddyncommon = FALSE;
1471
1472 /* We again permit a type change when a common symbol may be
1473 overriding a function. */
1474
1475 if (bfd_is_com_section (sec))
1476 {
1477 if (oldfunc)
1478 {
1479 /* If a common symbol overrides a function, make sure
1480 that it isn't defined dynamically nor has type
1481 function. */
1482 h->def_dynamic = 0;
1483 h->type = STT_NOTYPE;
1484 }
1485 *type_change_ok = TRUE;
1486 }
1487
1488 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1489 flip = *sym_hash;
1490 else
1491 /* This union may have been set to be non-NULL when this symbol
1492 was seen in a dynamic object. We must force the union to be
1493 NULL, so that it is correct for a regular symbol. */
1494 h->verinfo.vertree = NULL;
1495 }
1496
1497 /* Handle the special case of a new common symbol merging with an
1498 old symbol that looks like it might be a common symbol defined in
1499 a shared object. Note that we have already handled the case in
1500 which a new common symbol should simply override the definition
1501 in the shared library. */
1502
1503 if (! newdyn
1504 && bfd_is_com_section (sec)
1505 && olddyncommon)
1506 {
1507 /* It would be best if we could set the hash table entry to a
1508 common symbol, but we don't know what to use for the section
1509 or the alignment. */
1510 if (! ((*info->callbacks->multiple_common)
1511 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1512 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1513 return FALSE;
1514
1515 /* If the presumed common symbol in the dynamic object is
1516 larger, pretend that the new symbol has its size. */
1517
1518 if (h->size > *pvalue)
1519 *pvalue = h->size;
1520
1521 /* We need to remember the alignment required by the symbol
1522 in the dynamic object. */
1523 BFD_ASSERT (pold_alignment);
1524 *pold_alignment = h->root.u.def.section->alignment_power;
1525
1526 olddef = FALSE;
1527 olddyncommon = FALSE;
1528
1529 h->root.type = bfd_link_hash_undefined;
1530 h->root.u.undef.abfd = h->root.u.def.section->owner;
1531
1532 *size_change_ok = TRUE;
1533 *type_change_ok = TRUE;
1534
1535 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1536 flip = *sym_hash;
1537 else
1538 h->verinfo.vertree = NULL;
1539 }
1540
1541 if (flip != NULL)
1542 {
1543 /* Handle the case where we had a versioned symbol in a dynamic
1544 library and now find a definition in a normal object. In this
1545 case, we make the versioned symbol point to the normal one. */
1546 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1547 flip->root.type = h->root.type;
1548 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1549 h->root.type = bfd_link_hash_indirect;
1550 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1551 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1552 if (h->def_dynamic)
1553 {
1554 h->def_dynamic = 0;
1555 flip->ref_dynamic = 1;
1556 }
1557 }
1558
1559 return TRUE;
1560 }
1561
1562 /* This function is called to create an indirect symbol from the
1563 default for the symbol with the default version if needed. The
1564 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1565 set DYNSYM if the new indirect symbol is dynamic. */
1566
1567 static bfd_boolean
1568 _bfd_elf_add_default_symbol (bfd *abfd,
1569 struct bfd_link_info *info,
1570 struct elf_link_hash_entry *h,
1571 const char *name,
1572 Elf_Internal_Sym *sym,
1573 asection **psec,
1574 bfd_vma *value,
1575 bfd_boolean *dynsym,
1576 bfd_boolean override)
1577 {
1578 bfd_boolean type_change_ok;
1579 bfd_boolean size_change_ok;
1580 bfd_boolean skip;
1581 char *shortname;
1582 struct elf_link_hash_entry *hi;
1583 struct bfd_link_hash_entry *bh;
1584 const struct elf_backend_data *bed;
1585 bfd_boolean collect;
1586 bfd_boolean dynamic;
1587 char *p;
1588 size_t len, shortlen;
1589 asection *sec;
1590
1591 /* If this symbol has a version, and it is the default version, we
1592 create an indirect symbol from the default name to the fully
1593 decorated name. This will cause external references which do not
1594 specify a version to be bound to this version of the symbol. */
1595 p = strchr (name, ELF_VER_CHR);
1596 if (p == NULL || p[1] != ELF_VER_CHR)
1597 return TRUE;
1598
1599 if (override)
1600 {
1601 /* We are overridden by an old definition. We need to check if we
1602 need to create the indirect symbol from the default name. */
1603 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1604 FALSE, FALSE);
1605 BFD_ASSERT (hi != NULL);
1606 if (hi == h)
1607 return TRUE;
1608 while (hi->root.type == bfd_link_hash_indirect
1609 || hi->root.type == bfd_link_hash_warning)
1610 {
1611 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1612 if (hi == h)
1613 return TRUE;
1614 }
1615 }
1616
1617 bed = get_elf_backend_data (abfd);
1618 collect = bed->collect;
1619 dynamic = (abfd->flags & DYNAMIC) != 0;
1620
1621 shortlen = p - name;
1622 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1623 if (shortname == NULL)
1624 return FALSE;
1625 memcpy (shortname, name, shortlen);
1626 shortname[shortlen] = '\0';
1627
1628 /* We are going to create a new symbol. Merge it with any existing
1629 symbol with this name. For the purposes of the merge, act as
1630 though we were defining the symbol we just defined, although we
1631 actually going to define an indirect symbol. */
1632 type_change_ok = FALSE;
1633 size_change_ok = FALSE;
1634 sec = *psec;
1635 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1636 NULL, &hi, &skip, &override,
1637 &type_change_ok, &size_change_ok))
1638 return FALSE;
1639
1640 if (skip)
1641 goto nondefault;
1642
1643 if (! override)
1644 {
1645 bh = &hi->root;
1646 if (! (_bfd_generic_link_add_one_symbol
1647 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1648 0, name, FALSE, collect, &bh)))
1649 return FALSE;
1650 hi = (struct elf_link_hash_entry *) bh;
1651 }
1652 else
1653 {
1654 /* In this case the symbol named SHORTNAME is overriding the
1655 indirect symbol we want to add. We were planning on making
1656 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1657 is the name without a version. NAME is the fully versioned
1658 name, and it is the default version.
1659
1660 Overriding means that we already saw a definition for the
1661 symbol SHORTNAME in a regular object, and it is overriding
1662 the symbol defined in the dynamic object.
1663
1664 When this happens, we actually want to change NAME, the
1665 symbol we just added, to refer to SHORTNAME. This will cause
1666 references to NAME in the shared object to become references
1667 to SHORTNAME in the regular object. This is what we expect
1668 when we override a function in a shared object: that the
1669 references in the shared object will be mapped to the
1670 definition in the regular object. */
1671
1672 while (hi->root.type == bfd_link_hash_indirect
1673 || hi->root.type == bfd_link_hash_warning)
1674 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1675
1676 h->root.type = bfd_link_hash_indirect;
1677 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1678 if (h->def_dynamic)
1679 {
1680 h->def_dynamic = 0;
1681 hi->ref_dynamic = 1;
1682 if (hi->ref_regular
1683 || hi->def_regular)
1684 {
1685 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1686 return FALSE;
1687 }
1688 }
1689
1690 /* Now set HI to H, so that the following code will set the
1691 other fields correctly. */
1692 hi = h;
1693 }
1694
1695 /* Check if HI is a warning symbol. */
1696 if (hi->root.type == bfd_link_hash_warning)
1697 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1698
1699 /* If there is a duplicate definition somewhere, then HI may not
1700 point to an indirect symbol. We will have reported an error to
1701 the user in that case. */
1702
1703 if (hi->root.type == bfd_link_hash_indirect)
1704 {
1705 struct elf_link_hash_entry *ht;
1706
1707 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1709
1710 /* See if the new flags lead us to realize that the symbol must
1711 be dynamic. */
1712 if (! *dynsym)
1713 {
1714 if (! dynamic)
1715 {
1716 if (info->shared
1717 || hi->ref_dynamic)
1718 *dynsym = TRUE;
1719 }
1720 else
1721 {
1722 if (hi->ref_regular)
1723 *dynsym = TRUE;
1724 }
1725 }
1726 }
1727
1728 /* We also need to define an indirection from the nondefault version
1729 of the symbol. */
1730
1731 nondefault:
1732 len = strlen (name);
1733 shortname = bfd_hash_allocate (&info->hash->table, len);
1734 if (shortname == NULL)
1735 return FALSE;
1736 memcpy (shortname, name, shortlen);
1737 memcpy (shortname + shortlen, p + 1, len - shortlen);
1738
1739 /* Once again, merge with any existing symbol. */
1740 type_change_ok = FALSE;
1741 size_change_ok = FALSE;
1742 sec = *psec;
1743 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1744 NULL, &hi, &skip, &override,
1745 &type_change_ok, &size_change_ok))
1746 return FALSE;
1747
1748 if (skip)
1749 return TRUE;
1750
1751 if (override)
1752 {
1753 /* Here SHORTNAME is a versioned name, so we don't expect to see
1754 the type of override we do in the case above unless it is
1755 overridden by a versioned definition. */
1756 if (hi->root.type != bfd_link_hash_defined
1757 && hi->root.type != bfd_link_hash_defweak)
1758 (*_bfd_error_handler)
1759 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1760 abfd, shortname);
1761 }
1762 else
1763 {
1764 bh = &hi->root;
1765 if (! (_bfd_generic_link_add_one_symbol
1766 (info, abfd, shortname, BSF_INDIRECT,
1767 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1768 return FALSE;
1769 hi = (struct elf_link_hash_entry *) bh;
1770
1771 /* If there is a duplicate definition somewhere, then HI may not
1772 point to an indirect symbol. We will have reported an error
1773 to the user in that case. */
1774
1775 if (hi->root.type == bfd_link_hash_indirect)
1776 {
1777 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1778
1779 /* See if the new flags lead us to realize that the symbol
1780 must be dynamic. */
1781 if (! *dynsym)
1782 {
1783 if (! dynamic)
1784 {
1785 if (info->shared
1786 || hi->ref_dynamic)
1787 *dynsym = TRUE;
1788 }
1789 else
1790 {
1791 if (hi->ref_regular)
1792 *dynsym = TRUE;
1793 }
1794 }
1795 }
1796 }
1797
1798 return TRUE;
1799 }
1800 \f
1801 static struct bfd_elf_version_tree *
1802 find_version_for_sym (struct bfd_elf_version_tree *verdefs,
1803 const char *sym_name,
1804 bfd_boolean *hide)
1805 {
1806 struct bfd_elf_version_tree *t;
1807 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
1808
1809 local_ver = NULL;
1810 global_ver = NULL;
1811 exist_ver = NULL;
1812 for (t = verdefs; t != NULL; t = t->next)
1813 {
1814 if (t->globals.list != NULL)
1815 {
1816 struct bfd_elf_version_expr *d = NULL;
1817
1818 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
1819 {
1820 global_ver = t;
1821 if (d->symver)
1822 exist_ver = t;
1823 d->script = 1;
1824 /* If the match is a wildcard pattern, keep looking for
1825 a more explicit, perhaps even local, match. */
1826 if (d->literal)
1827 break;
1828 }
1829
1830 if (d != NULL)
1831 break;
1832 }
1833
1834 if (t->locals.list != NULL)
1835 {
1836 struct bfd_elf_version_expr *d = NULL;
1837
1838 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
1839 {
1840 local_ver = t;
1841 /* If the match is a wildcard pattern, keep looking for
1842 a more explicit, perhaps even global, match. */
1843 if (d->literal)
1844 {
1845 /* An exact match overrides a global wildcard. */
1846 global_ver = NULL;
1847 break;
1848 }
1849 }
1850
1851 if (d != NULL)
1852 break;
1853 }
1854 }
1855
1856 if (global_ver != NULL)
1857 {
1858 /* If we already have a versioned symbol that matches the
1859 node for this symbol, then we don't want to create a
1860 duplicate from the unversioned symbol. Instead hide the
1861 unversioned symbol. */
1862 *hide = exist_ver == global_ver;
1863 return global_ver;
1864 }
1865
1866 if (local_ver != NULL)
1867 {
1868 *hide = TRUE;
1869 return local_ver;
1870 }
1871
1872 return NULL;
1873 }
1874
1875 /* This routine is used to export all defined symbols into the dynamic
1876 symbol table. It is called via elf_link_hash_traverse. */
1877
1878 static bfd_boolean
1879 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1880 {
1881 struct elf_info_failed *eif = data;
1882
1883 /* Ignore this if we won't export it. */
1884 if (!eif->info->export_dynamic && !h->dynamic)
1885 return TRUE;
1886
1887 /* Ignore indirect symbols. These are added by the versioning code. */
1888 if (h->root.type == bfd_link_hash_indirect)
1889 return TRUE;
1890
1891 if (h->root.type == bfd_link_hash_warning)
1892 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1893
1894 if (h->dynindx == -1
1895 && (h->def_regular
1896 || h->ref_regular))
1897 {
1898 bfd_boolean hide;
1899
1900 if (eif->verdefs == NULL
1901 || (find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1902 && !hide))
1903 {
1904 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1905 {
1906 eif->failed = TRUE;
1907 return FALSE;
1908 }
1909 }
1910 }
1911
1912 return TRUE;
1913 }
1914 \f
1915 /* Look through the symbols which are defined in other shared
1916 libraries and referenced here. Update the list of version
1917 dependencies. This will be put into the .gnu.version_r section.
1918 This function is called via elf_link_hash_traverse. */
1919
1920 static bfd_boolean
1921 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1922 void *data)
1923 {
1924 struct elf_find_verdep_info *rinfo = data;
1925 Elf_Internal_Verneed *t;
1926 Elf_Internal_Vernaux *a;
1927 bfd_size_type amt;
1928
1929 if (h->root.type == bfd_link_hash_warning)
1930 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1931
1932 /* We only care about symbols defined in shared objects with version
1933 information. */
1934 if (!h->def_dynamic
1935 || h->def_regular
1936 || h->dynindx == -1
1937 || h->verinfo.verdef == NULL)
1938 return TRUE;
1939
1940 /* See if we already know about this version. */
1941 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1942 t != NULL;
1943 t = t->vn_nextref)
1944 {
1945 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1946 continue;
1947
1948 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1949 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1950 return TRUE;
1951
1952 break;
1953 }
1954
1955 /* This is a new version. Add it to tree we are building. */
1956
1957 if (t == NULL)
1958 {
1959 amt = sizeof *t;
1960 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1961 if (t == NULL)
1962 {
1963 rinfo->failed = TRUE;
1964 return FALSE;
1965 }
1966
1967 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1968 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1969 elf_tdata (rinfo->info->output_bfd)->verref = t;
1970 }
1971
1972 amt = sizeof *a;
1973 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1974 if (a == NULL)
1975 {
1976 rinfo->failed = TRUE;
1977 return FALSE;
1978 }
1979
1980 /* Note that we are copying a string pointer here, and testing it
1981 above. If bfd_elf_string_from_elf_section is ever changed to
1982 discard the string data when low in memory, this will have to be
1983 fixed. */
1984 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1985
1986 a->vna_flags = h->verinfo.verdef->vd_flags;
1987 a->vna_nextptr = t->vn_auxptr;
1988
1989 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1990 ++rinfo->vers;
1991
1992 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1993
1994 t->vn_auxptr = a;
1995
1996 return TRUE;
1997 }
1998
1999 /* Figure out appropriate versions for all the symbols. We may not
2000 have the version number script until we have read all of the input
2001 files, so until that point we don't know which symbols should be
2002 local. This function is called via elf_link_hash_traverse. */
2003
2004 static bfd_boolean
2005 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2006 {
2007 struct elf_info_failed *sinfo;
2008 struct bfd_link_info *info;
2009 const struct elf_backend_data *bed;
2010 struct elf_info_failed eif;
2011 char *p;
2012 bfd_size_type amt;
2013
2014 sinfo = data;
2015 info = sinfo->info;
2016
2017 if (h->root.type == bfd_link_hash_warning)
2018 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2019
2020 /* Fix the symbol flags. */
2021 eif.failed = FALSE;
2022 eif.info = info;
2023 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2024 {
2025 if (eif.failed)
2026 sinfo->failed = TRUE;
2027 return FALSE;
2028 }
2029
2030 /* We only need version numbers for symbols defined in regular
2031 objects. */
2032 if (!h->def_regular)
2033 return TRUE;
2034
2035 bed = get_elf_backend_data (info->output_bfd);
2036 p = strchr (h->root.root.string, ELF_VER_CHR);
2037 if (p != NULL && h->verinfo.vertree == NULL)
2038 {
2039 struct bfd_elf_version_tree *t;
2040 bfd_boolean hidden;
2041
2042 hidden = TRUE;
2043
2044 /* There are two consecutive ELF_VER_CHR characters if this is
2045 not a hidden symbol. */
2046 ++p;
2047 if (*p == ELF_VER_CHR)
2048 {
2049 hidden = FALSE;
2050 ++p;
2051 }
2052
2053 /* If there is no version string, we can just return out. */
2054 if (*p == '\0')
2055 {
2056 if (hidden)
2057 h->hidden = 1;
2058 return TRUE;
2059 }
2060
2061 /* Look for the version. If we find it, it is no longer weak. */
2062 for (t = sinfo->verdefs; t != NULL; t = t->next)
2063 {
2064 if (strcmp (t->name, p) == 0)
2065 {
2066 size_t len;
2067 char *alc;
2068 struct bfd_elf_version_expr *d;
2069
2070 len = p - h->root.root.string;
2071 alc = bfd_malloc (len);
2072 if (alc == NULL)
2073 {
2074 sinfo->failed = TRUE;
2075 return FALSE;
2076 }
2077 memcpy (alc, h->root.root.string, len - 1);
2078 alc[len - 1] = '\0';
2079 if (alc[len - 2] == ELF_VER_CHR)
2080 alc[len - 2] = '\0';
2081
2082 h->verinfo.vertree = t;
2083 t->used = TRUE;
2084 d = NULL;
2085
2086 if (t->globals.list != NULL)
2087 d = (*t->match) (&t->globals, NULL, alc);
2088
2089 /* See if there is anything to force this symbol to
2090 local scope. */
2091 if (d == NULL && t->locals.list != NULL)
2092 {
2093 d = (*t->match) (&t->locals, NULL, alc);
2094 if (d != NULL
2095 && h->dynindx != -1
2096 && ! info->export_dynamic)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 }
2099
2100 free (alc);
2101 break;
2102 }
2103 }
2104
2105 /* If we are building an application, we need to create a
2106 version node for this version. */
2107 if (t == NULL && info->executable)
2108 {
2109 struct bfd_elf_version_tree **pp;
2110 int version_index;
2111
2112 /* If we aren't going to export this symbol, we don't need
2113 to worry about it. */
2114 if (h->dynindx == -1)
2115 return TRUE;
2116
2117 amt = sizeof *t;
2118 t = bfd_zalloc (info->output_bfd, amt);
2119 if (t == NULL)
2120 {
2121 sinfo->failed = TRUE;
2122 return FALSE;
2123 }
2124
2125 t->name = p;
2126 t->name_indx = (unsigned int) -1;
2127 t->used = TRUE;
2128
2129 version_index = 1;
2130 /* Don't count anonymous version tag. */
2131 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2132 version_index = 0;
2133 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2134 ++version_index;
2135 t->vernum = version_index;
2136
2137 *pp = t;
2138
2139 h->verinfo.vertree = t;
2140 }
2141 else if (t == NULL)
2142 {
2143 /* We could not find the version for a symbol when
2144 generating a shared archive. Return an error. */
2145 (*_bfd_error_handler)
2146 (_("%B: version node not found for symbol %s"),
2147 info->output_bfd, h->root.root.string);
2148 bfd_set_error (bfd_error_bad_value);
2149 sinfo->failed = TRUE;
2150 return FALSE;
2151 }
2152
2153 if (hidden)
2154 h->hidden = 1;
2155 }
2156
2157 /* If we don't have a version for this symbol, see if we can find
2158 something. */
2159 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2160 {
2161 bfd_boolean hide;
2162
2163 h->verinfo.vertree = find_version_for_sym (sinfo->verdefs,
2164 h->root.root.string, &hide);
2165 if (h->verinfo.vertree != NULL && hide)
2166 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2167 }
2168
2169 return TRUE;
2170 }
2171 \f
2172 /* Read and swap the relocs from the section indicated by SHDR. This
2173 may be either a REL or a RELA section. The relocations are
2174 translated into RELA relocations and stored in INTERNAL_RELOCS,
2175 which should have already been allocated to contain enough space.
2176 The EXTERNAL_RELOCS are a buffer where the external form of the
2177 relocations should be stored.
2178
2179 Returns FALSE if something goes wrong. */
2180
2181 static bfd_boolean
2182 elf_link_read_relocs_from_section (bfd *abfd,
2183 asection *sec,
2184 Elf_Internal_Shdr *shdr,
2185 void *external_relocs,
2186 Elf_Internal_Rela *internal_relocs)
2187 {
2188 const struct elf_backend_data *bed;
2189 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2190 const bfd_byte *erela;
2191 const bfd_byte *erelaend;
2192 Elf_Internal_Rela *irela;
2193 Elf_Internal_Shdr *symtab_hdr;
2194 size_t nsyms;
2195
2196 /* Position ourselves at the start of the section. */
2197 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2198 return FALSE;
2199
2200 /* Read the relocations. */
2201 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2202 return FALSE;
2203
2204 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2205 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2206
2207 bed = get_elf_backend_data (abfd);
2208
2209 /* Convert the external relocations to the internal format. */
2210 if (shdr->sh_entsize == bed->s->sizeof_rel)
2211 swap_in = bed->s->swap_reloc_in;
2212 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2213 swap_in = bed->s->swap_reloca_in;
2214 else
2215 {
2216 bfd_set_error (bfd_error_wrong_format);
2217 return FALSE;
2218 }
2219
2220 erela = external_relocs;
2221 erelaend = erela + shdr->sh_size;
2222 irela = internal_relocs;
2223 while (erela < erelaend)
2224 {
2225 bfd_vma r_symndx;
2226
2227 (*swap_in) (abfd, erela, irela);
2228 r_symndx = ELF32_R_SYM (irela->r_info);
2229 if (bed->s->arch_size == 64)
2230 r_symndx >>= 24;
2231 if (nsyms > 0)
2232 {
2233 if ((size_t) r_symndx >= nsyms)
2234 {
2235 (*_bfd_error_handler)
2236 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2237 " for offset 0x%lx in section `%A'"),
2238 abfd, sec,
2239 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2240 bfd_set_error (bfd_error_bad_value);
2241 return FALSE;
2242 }
2243 }
2244 else if (r_symndx != 0)
2245 {
2246 (*_bfd_error_handler)
2247 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2248 " when the object file has no symbol table"),
2249 abfd, sec,
2250 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2251 bfd_set_error (bfd_error_bad_value);
2252 return FALSE;
2253 }
2254 irela += bed->s->int_rels_per_ext_rel;
2255 erela += shdr->sh_entsize;
2256 }
2257
2258 return TRUE;
2259 }
2260
2261 /* Read and swap the relocs for a section O. They may have been
2262 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2263 not NULL, they are used as buffers to read into. They are known to
2264 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2265 the return value is allocated using either malloc or bfd_alloc,
2266 according to the KEEP_MEMORY argument. If O has two relocation
2267 sections (both REL and RELA relocations), then the REL_HDR
2268 relocations will appear first in INTERNAL_RELOCS, followed by the
2269 REL_HDR2 relocations. */
2270
2271 Elf_Internal_Rela *
2272 _bfd_elf_link_read_relocs (bfd *abfd,
2273 asection *o,
2274 void *external_relocs,
2275 Elf_Internal_Rela *internal_relocs,
2276 bfd_boolean keep_memory)
2277 {
2278 Elf_Internal_Shdr *rel_hdr;
2279 void *alloc1 = NULL;
2280 Elf_Internal_Rela *alloc2 = NULL;
2281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2282
2283 if (elf_section_data (o)->relocs != NULL)
2284 return elf_section_data (o)->relocs;
2285
2286 if (o->reloc_count == 0)
2287 return NULL;
2288
2289 rel_hdr = &elf_section_data (o)->rel_hdr;
2290
2291 if (internal_relocs == NULL)
2292 {
2293 bfd_size_type size;
2294
2295 size = o->reloc_count;
2296 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2297 if (keep_memory)
2298 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2299 else
2300 internal_relocs = alloc2 = bfd_malloc (size);
2301 if (internal_relocs == NULL)
2302 goto error_return;
2303 }
2304
2305 if (external_relocs == NULL)
2306 {
2307 bfd_size_type size = rel_hdr->sh_size;
2308
2309 if (elf_section_data (o)->rel_hdr2)
2310 size += elf_section_data (o)->rel_hdr2->sh_size;
2311 alloc1 = bfd_malloc (size);
2312 if (alloc1 == NULL)
2313 goto error_return;
2314 external_relocs = alloc1;
2315 }
2316
2317 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2318 external_relocs,
2319 internal_relocs))
2320 goto error_return;
2321 if (elf_section_data (o)->rel_hdr2
2322 && (!elf_link_read_relocs_from_section
2323 (abfd, o,
2324 elf_section_data (o)->rel_hdr2,
2325 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2326 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2327 * bed->s->int_rels_per_ext_rel))))
2328 goto error_return;
2329
2330 /* Cache the results for next time, if we can. */
2331 if (keep_memory)
2332 elf_section_data (o)->relocs = internal_relocs;
2333
2334 if (alloc1 != NULL)
2335 free (alloc1);
2336
2337 /* Don't free alloc2, since if it was allocated we are passing it
2338 back (under the name of internal_relocs). */
2339
2340 return internal_relocs;
2341
2342 error_return:
2343 if (alloc1 != NULL)
2344 free (alloc1);
2345 if (alloc2 != NULL)
2346 {
2347 if (keep_memory)
2348 bfd_release (abfd, alloc2);
2349 else
2350 free (alloc2);
2351 }
2352 return NULL;
2353 }
2354
2355 /* Compute the size of, and allocate space for, REL_HDR which is the
2356 section header for a section containing relocations for O. */
2357
2358 static bfd_boolean
2359 _bfd_elf_link_size_reloc_section (bfd *abfd,
2360 Elf_Internal_Shdr *rel_hdr,
2361 asection *o)
2362 {
2363 bfd_size_type reloc_count;
2364 bfd_size_type num_rel_hashes;
2365
2366 /* Figure out how many relocations there will be. */
2367 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2368 reloc_count = elf_section_data (o)->rel_count;
2369 else
2370 reloc_count = elf_section_data (o)->rel_count2;
2371
2372 num_rel_hashes = o->reloc_count;
2373 if (num_rel_hashes < reloc_count)
2374 num_rel_hashes = reloc_count;
2375
2376 /* That allows us to calculate the size of the section. */
2377 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2378
2379 /* The contents field must last into write_object_contents, so we
2380 allocate it with bfd_alloc rather than malloc. Also since we
2381 cannot be sure that the contents will actually be filled in,
2382 we zero the allocated space. */
2383 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2384 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2385 return FALSE;
2386
2387 /* We only allocate one set of hash entries, so we only do it the
2388 first time we are called. */
2389 if (elf_section_data (o)->rel_hashes == NULL
2390 && num_rel_hashes)
2391 {
2392 struct elf_link_hash_entry **p;
2393
2394 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2395 if (p == NULL)
2396 return FALSE;
2397
2398 elf_section_data (o)->rel_hashes = p;
2399 }
2400
2401 return TRUE;
2402 }
2403
2404 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2405 originated from the section given by INPUT_REL_HDR) to the
2406 OUTPUT_BFD. */
2407
2408 bfd_boolean
2409 _bfd_elf_link_output_relocs (bfd *output_bfd,
2410 asection *input_section,
2411 Elf_Internal_Shdr *input_rel_hdr,
2412 Elf_Internal_Rela *internal_relocs,
2413 struct elf_link_hash_entry **rel_hash
2414 ATTRIBUTE_UNUSED)
2415 {
2416 Elf_Internal_Rela *irela;
2417 Elf_Internal_Rela *irelaend;
2418 bfd_byte *erel;
2419 Elf_Internal_Shdr *output_rel_hdr;
2420 asection *output_section;
2421 unsigned int *rel_countp = NULL;
2422 const struct elf_backend_data *bed;
2423 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2424
2425 output_section = input_section->output_section;
2426 output_rel_hdr = NULL;
2427
2428 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2429 == input_rel_hdr->sh_entsize)
2430 {
2431 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2432 rel_countp = &elf_section_data (output_section)->rel_count;
2433 }
2434 else if (elf_section_data (output_section)->rel_hdr2
2435 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2436 == input_rel_hdr->sh_entsize))
2437 {
2438 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2439 rel_countp = &elf_section_data (output_section)->rel_count2;
2440 }
2441 else
2442 {
2443 (*_bfd_error_handler)
2444 (_("%B: relocation size mismatch in %B section %A"),
2445 output_bfd, input_section->owner, input_section);
2446 bfd_set_error (bfd_error_wrong_format);
2447 return FALSE;
2448 }
2449
2450 bed = get_elf_backend_data (output_bfd);
2451 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2452 swap_out = bed->s->swap_reloc_out;
2453 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2454 swap_out = bed->s->swap_reloca_out;
2455 else
2456 abort ();
2457
2458 erel = output_rel_hdr->contents;
2459 erel += *rel_countp * input_rel_hdr->sh_entsize;
2460 irela = internal_relocs;
2461 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2462 * bed->s->int_rels_per_ext_rel);
2463 while (irela < irelaend)
2464 {
2465 (*swap_out) (output_bfd, irela, erel);
2466 irela += bed->s->int_rels_per_ext_rel;
2467 erel += input_rel_hdr->sh_entsize;
2468 }
2469
2470 /* Bump the counter, so that we know where to add the next set of
2471 relocations. */
2472 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2473
2474 return TRUE;
2475 }
2476 \f
2477 /* Make weak undefined symbols in PIE dynamic. */
2478
2479 bfd_boolean
2480 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2481 struct elf_link_hash_entry *h)
2482 {
2483 if (info->pie
2484 && h->dynindx == -1
2485 && h->root.type == bfd_link_hash_undefweak)
2486 return bfd_elf_link_record_dynamic_symbol (info, h);
2487
2488 return TRUE;
2489 }
2490
2491 /* Fix up the flags for a symbol. This handles various cases which
2492 can only be fixed after all the input files are seen. This is
2493 currently called by both adjust_dynamic_symbol and
2494 assign_sym_version, which is unnecessary but perhaps more robust in
2495 the face of future changes. */
2496
2497 static bfd_boolean
2498 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2499 struct elf_info_failed *eif)
2500 {
2501 const struct elf_backend_data *bed;
2502
2503 /* If this symbol was mentioned in a non-ELF file, try to set
2504 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2505 permit a non-ELF file to correctly refer to a symbol defined in
2506 an ELF dynamic object. */
2507 if (h->non_elf)
2508 {
2509 while (h->root.type == bfd_link_hash_indirect)
2510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2511
2512 if (h->root.type != bfd_link_hash_defined
2513 && h->root.type != bfd_link_hash_defweak)
2514 {
2515 h->ref_regular = 1;
2516 h->ref_regular_nonweak = 1;
2517 }
2518 else
2519 {
2520 if (h->root.u.def.section->owner != NULL
2521 && (bfd_get_flavour (h->root.u.def.section->owner)
2522 == bfd_target_elf_flavour))
2523 {
2524 h->ref_regular = 1;
2525 h->ref_regular_nonweak = 1;
2526 }
2527 else
2528 h->def_regular = 1;
2529 }
2530
2531 if (h->dynindx == -1
2532 && (h->def_dynamic
2533 || h->ref_dynamic))
2534 {
2535 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2536 {
2537 eif->failed = TRUE;
2538 return FALSE;
2539 }
2540 }
2541 }
2542 else
2543 {
2544 /* Unfortunately, NON_ELF is only correct if the symbol
2545 was first seen in a non-ELF file. Fortunately, if the symbol
2546 was first seen in an ELF file, we're probably OK unless the
2547 symbol was defined in a non-ELF file. Catch that case here.
2548 FIXME: We're still in trouble if the symbol was first seen in
2549 a dynamic object, and then later in a non-ELF regular object. */
2550 if ((h->root.type == bfd_link_hash_defined
2551 || h->root.type == bfd_link_hash_defweak)
2552 && !h->def_regular
2553 && (h->root.u.def.section->owner != NULL
2554 ? (bfd_get_flavour (h->root.u.def.section->owner)
2555 != bfd_target_elf_flavour)
2556 : (bfd_is_abs_section (h->root.u.def.section)
2557 && !h->def_dynamic)))
2558 h->def_regular = 1;
2559 }
2560
2561 /* Backend specific symbol fixup. */
2562 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2563 if (bed->elf_backend_fixup_symbol
2564 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2565 return FALSE;
2566
2567 /* If this is a final link, and the symbol was defined as a common
2568 symbol in a regular object file, and there was no definition in
2569 any dynamic object, then the linker will have allocated space for
2570 the symbol in a common section but the DEF_REGULAR
2571 flag will not have been set. */
2572 if (h->root.type == bfd_link_hash_defined
2573 && !h->def_regular
2574 && h->ref_regular
2575 && !h->def_dynamic
2576 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2577 h->def_regular = 1;
2578
2579 /* If -Bsymbolic was used (which means to bind references to global
2580 symbols to the definition within the shared object), and this
2581 symbol was defined in a regular object, then it actually doesn't
2582 need a PLT entry. Likewise, if the symbol has non-default
2583 visibility. If the symbol has hidden or internal visibility, we
2584 will force it local. */
2585 if (h->needs_plt
2586 && eif->info->shared
2587 && is_elf_hash_table (eif->info->hash)
2588 && (SYMBOLIC_BIND (eif->info, h)
2589 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2590 && h->def_regular)
2591 {
2592 bfd_boolean force_local;
2593
2594 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2595 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2596 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2597 }
2598
2599 /* If a weak undefined symbol has non-default visibility, we also
2600 hide it from the dynamic linker. */
2601 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2602 && h->root.type == bfd_link_hash_undefweak)
2603 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2604
2605 /* If this is a weak defined symbol in a dynamic object, and we know
2606 the real definition in the dynamic object, copy interesting flags
2607 over to the real definition. */
2608 if (h->u.weakdef != NULL)
2609 {
2610 struct elf_link_hash_entry *weakdef;
2611
2612 weakdef = h->u.weakdef;
2613 if (h->root.type == bfd_link_hash_indirect)
2614 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2615
2616 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2617 || h->root.type == bfd_link_hash_defweak);
2618 BFD_ASSERT (weakdef->def_dynamic);
2619
2620 /* If the real definition is defined by a regular object file,
2621 don't do anything special. See the longer description in
2622 _bfd_elf_adjust_dynamic_symbol, below. */
2623 if (weakdef->def_regular)
2624 h->u.weakdef = NULL;
2625 else
2626 {
2627 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2628 || weakdef->root.type == bfd_link_hash_defweak);
2629 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2630 }
2631 }
2632
2633 return TRUE;
2634 }
2635
2636 /* Make the backend pick a good value for a dynamic symbol. This is
2637 called via elf_link_hash_traverse, and also calls itself
2638 recursively. */
2639
2640 static bfd_boolean
2641 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2642 {
2643 struct elf_info_failed *eif = data;
2644 bfd *dynobj;
2645 const struct elf_backend_data *bed;
2646
2647 if (! is_elf_hash_table (eif->info->hash))
2648 return FALSE;
2649
2650 if (h->root.type == bfd_link_hash_warning)
2651 {
2652 h->got = elf_hash_table (eif->info)->init_got_offset;
2653 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2654
2655 /* When warning symbols are created, they **replace** the "real"
2656 entry in the hash table, thus we never get to see the real
2657 symbol in a hash traversal. So look at it now. */
2658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2659 }
2660
2661 /* Ignore indirect symbols. These are added by the versioning code. */
2662 if (h->root.type == bfd_link_hash_indirect)
2663 return TRUE;
2664
2665 /* Fix the symbol flags. */
2666 if (! _bfd_elf_fix_symbol_flags (h, eif))
2667 return FALSE;
2668
2669 /* If this symbol does not require a PLT entry, and it is not
2670 defined by a dynamic object, or is not referenced by a regular
2671 object, ignore it. We do have to handle a weak defined symbol,
2672 even if no regular object refers to it, if we decided to add it
2673 to the dynamic symbol table. FIXME: Do we normally need to worry
2674 about symbols which are defined by one dynamic object and
2675 referenced by another one? */
2676 if (!h->needs_plt
2677 && (h->def_regular
2678 || !h->def_dynamic
2679 || (!h->ref_regular
2680 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2681 {
2682 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2683 return TRUE;
2684 }
2685
2686 /* If we've already adjusted this symbol, don't do it again. This
2687 can happen via a recursive call. */
2688 if (h->dynamic_adjusted)
2689 return TRUE;
2690
2691 /* Don't look at this symbol again. Note that we must set this
2692 after checking the above conditions, because we may look at a
2693 symbol once, decide not to do anything, and then get called
2694 recursively later after REF_REGULAR is set below. */
2695 h->dynamic_adjusted = 1;
2696
2697 /* If this is a weak definition, and we know a real definition, and
2698 the real symbol is not itself defined by a regular object file,
2699 then get a good value for the real definition. We handle the
2700 real symbol first, for the convenience of the backend routine.
2701
2702 Note that there is a confusing case here. If the real definition
2703 is defined by a regular object file, we don't get the real symbol
2704 from the dynamic object, but we do get the weak symbol. If the
2705 processor backend uses a COPY reloc, then if some routine in the
2706 dynamic object changes the real symbol, we will not see that
2707 change in the corresponding weak symbol. This is the way other
2708 ELF linkers work as well, and seems to be a result of the shared
2709 library model.
2710
2711 I will clarify this issue. Most SVR4 shared libraries define the
2712 variable _timezone and define timezone as a weak synonym. The
2713 tzset call changes _timezone. If you write
2714 extern int timezone;
2715 int _timezone = 5;
2716 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2717 you might expect that, since timezone is a synonym for _timezone,
2718 the same number will print both times. However, if the processor
2719 backend uses a COPY reloc, then actually timezone will be copied
2720 into your process image, and, since you define _timezone
2721 yourself, _timezone will not. Thus timezone and _timezone will
2722 wind up at different memory locations. The tzset call will set
2723 _timezone, leaving timezone unchanged. */
2724
2725 if (h->u.weakdef != NULL)
2726 {
2727 /* If we get to this point, we know there is an implicit
2728 reference by a regular object file via the weak symbol H.
2729 FIXME: Is this really true? What if the traversal finds
2730 H->U.WEAKDEF before it finds H? */
2731 h->u.weakdef->ref_regular = 1;
2732
2733 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2734 return FALSE;
2735 }
2736
2737 /* If a symbol has no type and no size and does not require a PLT
2738 entry, then we are probably about to do the wrong thing here: we
2739 are probably going to create a COPY reloc for an empty object.
2740 This case can arise when a shared object is built with assembly
2741 code, and the assembly code fails to set the symbol type. */
2742 if (h->size == 0
2743 && h->type == STT_NOTYPE
2744 && !h->needs_plt)
2745 (*_bfd_error_handler)
2746 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2747 h->root.root.string);
2748
2749 dynobj = elf_hash_table (eif->info)->dynobj;
2750 bed = get_elf_backend_data (dynobj);
2751
2752
2753 if (h->type == STT_GNU_IFUNC
2754 && (bed->elf_osabi == ELFOSABI_LINUX
2755 /* GNU/Linux is still using the default value 0. */
2756 || bed->elf_osabi == ELFOSABI_NONE))
2757 h->needs_plt = 1;
2758
2759 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2760 {
2761 eif->failed = TRUE;
2762 return FALSE;
2763 }
2764
2765 return TRUE;
2766 }
2767
2768 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2769 DYNBSS. */
2770
2771 bfd_boolean
2772 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2773 asection *dynbss)
2774 {
2775 unsigned int power_of_two;
2776 bfd_vma mask;
2777 asection *sec = h->root.u.def.section;
2778
2779 /* The section aligment of definition is the maximum alignment
2780 requirement of symbols defined in the section. Since we don't
2781 know the symbol alignment requirement, we start with the
2782 maximum alignment and check low bits of the symbol address
2783 for the minimum alignment. */
2784 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2785 mask = ((bfd_vma) 1 << power_of_two) - 1;
2786 while ((h->root.u.def.value & mask) != 0)
2787 {
2788 mask >>= 1;
2789 --power_of_two;
2790 }
2791
2792 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2793 dynbss))
2794 {
2795 /* Adjust the section alignment if needed. */
2796 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2797 power_of_two))
2798 return FALSE;
2799 }
2800
2801 /* We make sure that the symbol will be aligned properly. */
2802 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2803
2804 /* Define the symbol as being at this point in DYNBSS. */
2805 h->root.u.def.section = dynbss;
2806 h->root.u.def.value = dynbss->size;
2807
2808 /* Increment the size of DYNBSS to make room for the symbol. */
2809 dynbss->size += h->size;
2810
2811 return TRUE;
2812 }
2813
2814 /* Adjust all external symbols pointing into SEC_MERGE sections
2815 to reflect the object merging within the sections. */
2816
2817 static bfd_boolean
2818 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2819 {
2820 asection *sec;
2821
2822 if (h->root.type == bfd_link_hash_warning)
2823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2824
2825 if ((h->root.type == bfd_link_hash_defined
2826 || h->root.type == bfd_link_hash_defweak)
2827 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2828 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2829 {
2830 bfd *output_bfd = data;
2831
2832 h->root.u.def.value =
2833 _bfd_merged_section_offset (output_bfd,
2834 &h->root.u.def.section,
2835 elf_section_data (sec)->sec_info,
2836 h->root.u.def.value);
2837 }
2838
2839 return TRUE;
2840 }
2841
2842 /* Returns false if the symbol referred to by H should be considered
2843 to resolve local to the current module, and true if it should be
2844 considered to bind dynamically. */
2845
2846 bfd_boolean
2847 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2848 struct bfd_link_info *info,
2849 bfd_boolean ignore_protected)
2850 {
2851 bfd_boolean binding_stays_local_p;
2852 const struct elf_backend_data *bed;
2853 struct elf_link_hash_table *hash_table;
2854
2855 if (h == NULL)
2856 return FALSE;
2857
2858 while (h->root.type == bfd_link_hash_indirect
2859 || h->root.type == bfd_link_hash_warning)
2860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2861
2862 /* If it was forced local, then clearly it's not dynamic. */
2863 if (h->dynindx == -1)
2864 return FALSE;
2865 if (h->forced_local)
2866 return FALSE;
2867
2868 /* Identify the cases where name binding rules say that a
2869 visible symbol resolves locally. */
2870 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2871
2872 switch (ELF_ST_VISIBILITY (h->other))
2873 {
2874 case STV_INTERNAL:
2875 case STV_HIDDEN:
2876 return FALSE;
2877
2878 case STV_PROTECTED:
2879 hash_table = elf_hash_table (info);
2880 if (!is_elf_hash_table (hash_table))
2881 return FALSE;
2882
2883 bed = get_elf_backend_data (hash_table->dynobj);
2884
2885 /* Proper resolution for function pointer equality may require
2886 that these symbols perhaps be resolved dynamically, even though
2887 we should be resolving them to the current module. */
2888 if (!ignore_protected || !bed->is_function_type (h->type))
2889 binding_stays_local_p = TRUE;
2890 break;
2891
2892 default:
2893 break;
2894 }
2895
2896 /* If it isn't defined locally, then clearly it's dynamic. */
2897 if (!h->def_regular)
2898 return TRUE;
2899
2900 /* Otherwise, the symbol is dynamic if binding rules don't tell
2901 us that it remains local. */
2902 return !binding_stays_local_p;
2903 }
2904
2905 /* Return true if the symbol referred to by H should be considered
2906 to resolve local to the current module, and false otherwise. Differs
2907 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2908 undefined symbols and weak symbols. */
2909
2910 bfd_boolean
2911 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2912 struct bfd_link_info *info,
2913 bfd_boolean local_protected)
2914 {
2915 const struct elf_backend_data *bed;
2916 struct elf_link_hash_table *hash_table;
2917
2918 /* If it's a local sym, of course we resolve locally. */
2919 if (h == NULL)
2920 return TRUE;
2921
2922 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2923 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2924 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2925 return TRUE;
2926
2927 /* Common symbols that become definitions don't get the DEF_REGULAR
2928 flag set, so test it first, and don't bail out. */
2929 if (ELF_COMMON_DEF_P (h))
2930 /* Do nothing. */;
2931 /* If we don't have a definition in a regular file, then we can't
2932 resolve locally. The sym is either undefined or dynamic. */
2933 else if (!h->def_regular)
2934 return FALSE;
2935
2936 /* Forced local symbols resolve locally. */
2937 if (h->forced_local)
2938 return TRUE;
2939
2940 /* As do non-dynamic symbols. */
2941 if (h->dynindx == -1)
2942 return TRUE;
2943
2944 /* At this point, we know the symbol is defined and dynamic. In an
2945 executable it must resolve locally, likewise when building symbolic
2946 shared libraries. */
2947 if (info->executable || SYMBOLIC_BIND (info, h))
2948 return TRUE;
2949
2950 /* Now deal with defined dynamic symbols in shared libraries. Ones
2951 with default visibility might not resolve locally. */
2952 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2953 return FALSE;
2954
2955 hash_table = elf_hash_table (info);
2956 if (!is_elf_hash_table (hash_table))
2957 return TRUE;
2958
2959 bed = get_elf_backend_data (hash_table->dynobj);
2960
2961 /* STV_PROTECTED non-function symbols are local. */
2962 if (!bed->is_function_type (h->type))
2963 return TRUE;
2964
2965 /* Function pointer equality tests may require that STV_PROTECTED
2966 symbols be treated as dynamic symbols, even when we know that the
2967 dynamic linker will resolve them locally. */
2968 return local_protected;
2969 }
2970
2971 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2972 aligned. Returns the first TLS output section. */
2973
2974 struct bfd_section *
2975 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2976 {
2977 struct bfd_section *sec, *tls;
2978 unsigned int align = 0;
2979
2980 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2981 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2982 break;
2983 tls = sec;
2984
2985 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2986 if (sec->alignment_power > align)
2987 align = sec->alignment_power;
2988
2989 elf_hash_table (info)->tls_sec = tls;
2990
2991 /* Ensure the alignment of the first section is the largest alignment,
2992 so that the tls segment starts aligned. */
2993 if (tls != NULL)
2994 tls->alignment_power = align;
2995
2996 return tls;
2997 }
2998
2999 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3000 static bfd_boolean
3001 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3002 Elf_Internal_Sym *sym)
3003 {
3004 const struct elf_backend_data *bed;
3005
3006 /* Local symbols do not count, but target specific ones might. */
3007 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3008 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3009 return FALSE;
3010
3011 bed = get_elf_backend_data (abfd);
3012 /* Function symbols do not count. */
3013 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3014 return FALSE;
3015
3016 /* If the section is undefined, then so is the symbol. */
3017 if (sym->st_shndx == SHN_UNDEF)
3018 return FALSE;
3019
3020 /* If the symbol is defined in the common section, then
3021 it is a common definition and so does not count. */
3022 if (bed->common_definition (sym))
3023 return FALSE;
3024
3025 /* If the symbol is in a target specific section then we
3026 must rely upon the backend to tell us what it is. */
3027 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3028 /* FIXME - this function is not coded yet:
3029
3030 return _bfd_is_global_symbol_definition (abfd, sym);
3031
3032 Instead for now assume that the definition is not global,
3033 Even if this is wrong, at least the linker will behave
3034 in the same way that it used to do. */
3035 return FALSE;
3036
3037 return TRUE;
3038 }
3039
3040 /* Search the symbol table of the archive element of the archive ABFD
3041 whose archive map contains a mention of SYMDEF, and determine if
3042 the symbol is defined in this element. */
3043 static bfd_boolean
3044 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3045 {
3046 Elf_Internal_Shdr * hdr;
3047 bfd_size_type symcount;
3048 bfd_size_type extsymcount;
3049 bfd_size_type extsymoff;
3050 Elf_Internal_Sym *isymbuf;
3051 Elf_Internal_Sym *isym;
3052 Elf_Internal_Sym *isymend;
3053 bfd_boolean result;
3054
3055 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3056 if (abfd == NULL)
3057 return FALSE;
3058
3059 if (! bfd_check_format (abfd, bfd_object))
3060 return FALSE;
3061
3062 /* If we have already included the element containing this symbol in the
3063 link then we do not need to include it again. Just claim that any symbol
3064 it contains is not a definition, so that our caller will not decide to
3065 (re)include this element. */
3066 if (abfd->archive_pass)
3067 return FALSE;
3068
3069 /* Select the appropriate symbol table. */
3070 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3071 hdr = &elf_tdata (abfd)->symtab_hdr;
3072 else
3073 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3074
3075 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3076
3077 /* The sh_info field of the symtab header tells us where the
3078 external symbols start. We don't care about the local symbols. */
3079 if (elf_bad_symtab (abfd))
3080 {
3081 extsymcount = symcount;
3082 extsymoff = 0;
3083 }
3084 else
3085 {
3086 extsymcount = symcount - hdr->sh_info;
3087 extsymoff = hdr->sh_info;
3088 }
3089
3090 if (extsymcount == 0)
3091 return FALSE;
3092
3093 /* Read in the symbol table. */
3094 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3095 NULL, NULL, NULL);
3096 if (isymbuf == NULL)
3097 return FALSE;
3098
3099 /* Scan the symbol table looking for SYMDEF. */
3100 result = FALSE;
3101 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3102 {
3103 const char *name;
3104
3105 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3106 isym->st_name);
3107 if (name == NULL)
3108 break;
3109
3110 if (strcmp (name, symdef->name) == 0)
3111 {
3112 result = is_global_data_symbol_definition (abfd, isym);
3113 break;
3114 }
3115 }
3116
3117 free (isymbuf);
3118
3119 return result;
3120 }
3121 \f
3122 /* Add an entry to the .dynamic table. */
3123
3124 bfd_boolean
3125 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3126 bfd_vma tag,
3127 bfd_vma val)
3128 {
3129 struct elf_link_hash_table *hash_table;
3130 const struct elf_backend_data *bed;
3131 asection *s;
3132 bfd_size_type newsize;
3133 bfd_byte *newcontents;
3134 Elf_Internal_Dyn dyn;
3135
3136 hash_table = elf_hash_table (info);
3137 if (! is_elf_hash_table (hash_table))
3138 return FALSE;
3139
3140 bed = get_elf_backend_data (hash_table->dynobj);
3141 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3142 BFD_ASSERT (s != NULL);
3143
3144 newsize = s->size + bed->s->sizeof_dyn;
3145 newcontents = bfd_realloc (s->contents, newsize);
3146 if (newcontents == NULL)
3147 return FALSE;
3148
3149 dyn.d_tag = tag;
3150 dyn.d_un.d_val = val;
3151 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3152
3153 s->size = newsize;
3154 s->contents = newcontents;
3155
3156 return TRUE;
3157 }
3158
3159 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3160 otherwise just check whether one already exists. Returns -1 on error,
3161 1 if a DT_NEEDED tag already exists, and 0 on success. */
3162
3163 static int
3164 elf_add_dt_needed_tag (bfd *abfd,
3165 struct bfd_link_info *info,
3166 const char *soname,
3167 bfd_boolean do_it)
3168 {
3169 struct elf_link_hash_table *hash_table;
3170 bfd_size_type oldsize;
3171 bfd_size_type strindex;
3172
3173 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3174 return -1;
3175
3176 hash_table = elf_hash_table (info);
3177 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3178 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3179 if (strindex == (bfd_size_type) -1)
3180 return -1;
3181
3182 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3183 {
3184 asection *sdyn;
3185 const struct elf_backend_data *bed;
3186 bfd_byte *extdyn;
3187
3188 bed = get_elf_backend_data (hash_table->dynobj);
3189 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3190 if (sdyn != NULL)
3191 for (extdyn = sdyn->contents;
3192 extdyn < sdyn->contents + sdyn->size;
3193 extdyn += bed->s->sizeof_dyn)
3194 {
3195 Elf_Internal_Dyn dyn;
3196
3197 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3198 if (dyn.d_tag == DT_NEEDED
3199 && dyn.d_un.d_val == strindex)
3200 {
3201 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3202 return 1;
3203 }
3204 }
3205 }
3206
3207 if (do_it)
3208 {
3209 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3210 return -1;
3211
3212 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3213 return -1;
3214 }
3215 else
3216 /* We were just checking for existence of the tag. */
3217 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3218
3219 return 0;
3220 }
3221
3222 static bfd_boolean
3223 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3224 {
3225 for (; needed != NULL; needed = needed->next)
3226 if (strcmp (soname, needed->name) == 0)
3227 return TRUE;
3228
3229 return FALSE;
3230 }
3231
3232 /* Sort symbol by value and section. */
3233 static int
3234 elf_sort_symbol (const void *arg1, const void *arg2)
3235 {
3236 const struct elf_link_hash_entry *h1;
3237 const struct elf_link_hash_entry *h2;
3238 bfd_signed_vma vdiff;
3239
3240 h1 = *(const struct elf_link_hash_entry **) arg1;
3241 h2 = *(const struct elf_link_hash_entry **) arg2;
3242 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3243 if (vdiff != 0)
3244 return vdiff > 0 ? 1 : -1;
3245 else
3246 {
3247 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3248 if (sdiff != 0)
3249 return sdiff > 0 ? 1 : -1;
3250 }
3251 return 0;
3252 }
3253
3254 /* This function is used to adjust offsets into .dynstr for
3255 dynamic symbols. This is called via elf_link_hash_traverse. */
3256
3257 static bfd_boolean
3258 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3259 {
3260 struct elf_strtab_hash *dynstr = data;
3261
3262 if (h->root.type == bfd_link_hash_warning)
3263 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3264
3265 if (h->dynindx != -1)
3266 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3267 return TRUE;
3268 }
3269
3270 /* Assign string offsets in .dynstr, update all structures referencing
3271 them. */
3272
3273 static bfd_boolean
3274 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3275 {
3276 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3277 struct elf_link_local_dynamic_entry *entry;
3278 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3279 bfd *dynobj = hash_table->dynobj;
3280 asection *sdyn;
3281 bfd_size_type size;
3282 const struct elf_backend_data *bed;
3283 bfd_byte *extdyn;
3284
3285 _bfd_elf_strtab_finalize (dynstr);
3286 size = _bfd_elf_strtab_size (dynstr);
3287
3288 bed = get_elf_backend_data (dynobj);
3289 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3290 BFD_ASSERT (sdyn != NULL);
3291
3292 /* Update all .dynamic entries referencing .dynstr strings. */
3293 for (extdyn = sdyn->contents;
3294 extdyn < sdyn->contents + sdyn->size;
3295 extdyn += bed->s->sizeof_dyn)
3296 {
3297 Elf_Internal_Dyn dyn;
3298
3299 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3300 switch (dyn.d_tag)
3301 {
3302 case DT_STRSZ:
3303 dyn.d_un.d_val = size;
3304 break;
3305 case DT_NEEDED:
3306 case DT_SONAME:
3307 case DT_RPATH:
3308 case DT_RUNPATH:
3309 case DT_FILTER:
3310 case DT_AUXILIARY:
3311 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3312 break;
3313 default:
3314 continue;
3315 }
3316 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3317 }
3318
3319 /* Now update local dynamic symbols. */
3320 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3321 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3322 entry->isym.st_name);
3323
3324 /* And the rest of dynamic symbols. */
3325 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3326
3327 /* Adjust version definitions. */
3328 if (elf_tdata (output_bfd)->cverdefs)
3329 {
3330 asection *s;
3331 bfd_byte *p;
3332 bfd_size_type i;
3333 Elf_Internal_Verdef def;
3334 Elf_Internal_Verdaux defaux;
3335
3336 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3337 p = s->contents;
3338 do
3339 {
3340 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3341 &def);
3342 p += sizeof (Elf_External_Verdef);
3343 if (def.vd_aux != sizeof (Elf_External_Verdef))
3344 continue;
3345 for (i = 0; i < def.vd_cnt; ++i)
3346 {
3347 _bfd_elf_swap_verdaux_in (output_bfd,
3348 (Elf_External_Verdaux *) p, &defaux);
3349 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3350 defaux.vda_name);
3351 _bfd_elf_swap_verdaux_out (output_bfd,
3352 &defaux, (Elf_External_Verdaux *) p);
3353 p += sizeof (Elf_External_Verdaux);
3354 }
3355 }
3356 while (def.vd_next);
3357 }
3358
3359 /* Adjust version references. */
3360 if (elf_tdata (output_bfd)->verref)
3361 {
3362 asection *s;
3363 bfd_byte *p;
3364 bfd_size_type i;
3365 Elf_Internal_Verneed need;
3366 Elf_Internal_Vernaux needaux;
3367
3368 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3369 p = s->contents;
3370 do
3371 {
3372 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3373 &need);
3374 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3375 _bfd_elf_swap_verneed_out (output_bfd, &need,
3376 (Elf_External_Verneed *) p);
3377 p += sizeof (Elf_External_Verneed);
3378 for (i = 0; i < need.vn_cnt; ++i)
3379 {
3380 _bfd_elf_swap_vernaux_in (output_bfd,
3381 (Elf_External_Vernaux *) p, &needaux);
3382 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3383 needaux.vna_name);
3384 _bfd_elf_swap_vernaux_out (output_bfd,
3385 &needaux,
3386 (Elf_External_Vernaux *) p);
3387 p += sizeof (Elf_External_Vernaux);
3388 }
3389 }
3390 while (need.vn_next);
3391 }
3392
3393 return TRUE;
3394 }
3395 \f
3396 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3397 The default is to only match when the INPUT and OUTPUT are exactly
3398 the same target. */
3399
3400 bfd_boolean
3401 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3402 const bfd_target *output)
3403 {
3404 return input == output;
3405 }
3406
3407 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3408 This version is used when different targets for the same architecture
3409 are virtually identical. */
3410
3411 bfd_boolean
3412 _bfd_elf_relocs_compatible (const bfd_target *input,
3413 const bfd_target *output)
3414 {
3415 const struct elf_backend_data *obed, *ibed;
3416
3417 if (input == output)
3418 return TRUE;
3419
3420 ibed = xvec_get_elf_backend_data (input);
3421 obed = xvec_get_elf_backend_data (output);
3422
3423 if (ibed->arch != obed->arch)
3424 return FALSE;
3425
3426 /* If both backends are using this function, deem them compatible. */
3427 return ibed->relocs_compatible == obed->relocs_compatible;
3428 }
3429
3430 /* Add symbols from an ELF object file to the linker hash table. */
3431
3432 static bfd_boolean
3433 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3434 {
3435 Elf_Internal_Ehdr *ehdr;
3436 Elf_Internal_Shdr *hdr;
3437 bfd_size_type symcount;
3438 bfd_size_type extsymcount;
3439 bfd_size_type extsymoff;
3440 struct elf_link_hash_entry **sym_hash;
3441 bfd_boolean dynamic;
3442 Elf_External_Versym *extversym = NULL;
3443 Elf_External_Versym *ever;
3444 struct elf_link_hash_entry *weaks;
3445 struct elf_link_hash_entry **nondeflt_vers = NULL;
3446 bfd_size_type nondeflt_vers_cnt = 0;
3447 Elf_Internal_Sym *isymbuf = NULL;
3448 Elf_Internal_Sym *isym;
3449 Elf_Internal_Sym *isymend;
3450 const struct elf_backend_data *bed;
3451 bfd_boolean add_needed;
3452 struct elf_link_hash_table *htab;
3453 bfd_size_type amt;
3454 void *alloc_mark = NULL;
3455 struct bfd_hash_entry **old_table = NULL;
3456 unsigned int old_size = 0;
3457 unsigned int old_count = 0;
3458 void *old_tab = NULL;
3459 void *old_hash;
3460 void *old_ent;
3461 struct bfd_link_hash_entry *old_undefs = NULL;
3462 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3463 long old_dynsymcount = 0;
3464 size_t tabsize = 0;
3465 size_t hashsize = 0;
3466
3467 htab = elf_hash_table (info);
3468 bed = get_elf_backend_data (abfd);
3469
3470 if ((abfd->flags & DYNAMIC) == 0)
3471 dynamic = FALSE;
3472 else
3473 {
3474 dynamic = TRUE;
3475
3476 /* You can't use -r against a dynamic object. Also, there's no
3477 hope of using a dynamic object which does not exactly match
3478 the format of the output file. */
3479 if (info->relocatable
3480 || !is_elf_hash_table (htab)
3481 || info->output_bfd->xvec != abfd->xvec)
3482 {
3483 if (info->relocatable)
3484 bfd_set_error (bfd_error_invalid_operation);
3485 else
3486 bfd_set_error (bfd_error_wrong_format);
3487 goto error_return;
3488 }
3489 }
3490
3491 ehdr = elf_elfheader (abfd);
3492 if (info->warn_alternate_em
3493 && bed->elf_machine_code != ehdr->e_machine
3494 && ((bed->elf_machine_alt1 != 0
3495 && ehdr->e_machine == bed->elf_machine_alt1)
3496 || (bed->elf_machine_alt2 != 0
3497 && ehdr->e_machine == bed->elf_machine_alt2)))
3498 info->callbacks->einfo
3499 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3500 ehdr->e_machine, abfd, bed->elf_machine_code);
3501
3502 /* As a GNU extension, any input sections which are named
3503 .gnu.warning.SYMBOL are treated as warning symbols for the given
3504 symbol. This differs from .gnu.warning sections, which generate
3505 warnings when they are included in an output file. */
3506 if (info->executable)
3507 {
3508 asection *s;
3509
3510 for (s = abfd->sections; s != NULL; s = s->next)
3511 {
3512 const char *name;
3513
3514 name = bfd_get_section_name (abfd, s);
3515 if (CONST_STRNEQ (name, ".gnu.warning."))
3516 {
3517 char *msg;
3518 bfd_size_type sz;
3519
3520 name += sizeof ".gnu.warning." - 1;
3521
3522 /* If this is a shared object, then look up the symbol
3523 in the hash table. If it is there, and it is already
3524 been defined, then we will not be using the entry
3525 from this shared object, so we don't need to warn.
3526 FIXME: If we see the definition in a regular object
3527 later on, we will warn, but we shouldn't. The only
3528 fix is to keep track of what warnings we are supposed
3529 to emit, and then handle them all at the end of the
3530 link. */
3531 if (dynamic)
3532 {
3533 struct elf_link_hash_entry *h;
3534
3535 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3536
3537 /* FIXME: What about bfd_link_hash_common? */
3538 if (h != NULL
3539 && (h->root.type == bfd_link_hash_defined
3540 || h->root.type == bfd_link_hash_defweak))
3541 {
3542 /* We don't want to issue this warning. Clobber
3543 the section size so that the warning does not
3544 get copied into the output file. */
3545 s->size = 0;
3546 continue;
3547 }
3548 }
3549
3550 sz = s->size;
3551 msg = bfd_alloc (abfd, sz + 1);
3552 if (msg == NULL)
3553 goto error_return;
3554
3555 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3556 goto error_return;
3557
3558 msg[sz] = '\0';
3559
3560 if (! (_bfd_generic_link_add_one_symbol
3561 (info, abfd, name, BSF_WARNING, s, 0, msg,
3562 FALSE, bed->collect, NULL)))
3563 goto error_return;
3564
3565 if (! info->relocatable)
3566 {
3567 /* Clobber the section size so that the warning does
3568 not get copied into the output file. */
3569 s->size = 0;
3570
3571 /* Also set SEC_EXCLUDE, so that symbols defined in
3572 the warning section don't get copied to the output. */
3573 s->flags |= SEC_EXCLUDE;
3574 }
3575 }
3576 }
3577 }
3578
3579 add_needed = TRUE;
3580 if (! dynamic)
3581 {
3582 /* If we are creating a shared library, create all the dynamic
3583 sections immediately. We need to attach them to something,
3584 so we attach them to this BFD, provided it is the right
3585 format. FIXME: If there are no input BFD's of the same
3586 format as the output, we can't make a shared library. */
3587 if (info->shared
3588 && is_elf_hash_table (htab)
3589 && info->output_bfd->xvec == abfd->xvec
3590 && !htab->dynamic_sections_created)
3591 {
3592 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3593 goto error_return;
3594 }
3595 }
3596 else if (!is_elf_hash_table (htab))
3597 goto error_return;
3598 else
3599 {
3600 asection *s;
3601 const char *soname = NULL;
3602 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3603 int ret;
3604
3605 /* ld --just-symbols and dynamic objects don't mix very well.
3606 ld shouldn't allow it. */
3607 if ((s = abfd->sections) != NULL
3608 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3609 abort ();
3610
3611 /* If this dynamic lib was specified on the command line with
3612 --as-needed in effect, then we don't want to add a DT_NEEDED
3613 tag unless the lib is actually used. Similary for libs brought
3614 in by another lib's DT_NEEDED. When --no-add-needed is used
3615 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3616 any dynamic library in DT_NEEDED tags in the dynamic lib at
3617 all. */
3618 add_needed = (elf_dyn_lib_class (abfd)
3619 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3620 | DYN_NO_NEEDED)) == 0;
3621
3622 s = bfd_get_section_by_name (abfd, ".dynamic");
3623 if (s != NULL)
3624 {
3625 bfd_byte *dynbuf;
3626 bfd_byte *extdyn;
3627 unsigned int elfsec;
3628 unsigned long shlink;
3629
3630 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3631 goto error_free_dyn;
3632
3633 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3634 if (elfsec == SHN_BAD)
3635 goto error_free_dyn;
3636 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3637
3638 for (extdyn = dynbuf;
3639 extdyn < dynbuf + s->size;
3640 extdyn += bed->s->sizeof_dyn)
3641 {
3642 Elf_Internal_Dyn dyn;
3643
3644 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3645 if (dyn.d_tag == DT_SONAME)
3646 {
3647 unsigned int tagv = dyn.d_un.d_val;
3648 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3649 if (soname == NULL)
3650 goto error_free_dyn;
3651 }
3652 if (dyn.d_tag == DT_NEEDED)
3653 {
3654 struct bfd_link_needed_list *n, **pn;
3655 char *fnm, *anm;
3656 unsigned int tagv = dyn.d_un.d_val;
3657
3658 amt = sizeof (struct bfd_link_needed_list);
3659 n = bfd_alloc (abfd, amt);
3660 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3661 if (n == NULL || fnm == NULL)
3662 goto error_free_dyn;
3663 amt = strlen (fnm) + 1;
3664 anm = bfd_alloc (abfd, amt);
3665 if (anm == NULL)
3666 goto error_free_dyn;
3667 memcpy (anm, fnm, amt);
3668 n->name = anm;
3669 n->by = abfd;
3670 n->next = NULL;
3671 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3672 ;
3673 *pn = n;
3674 }
3675 if (dyn.d_tag == DT_RUNPATH)
3676 {
3677 struct bfd_link_needed_list *n, **pn;
3678 char *fnm, *anm;
3679 unsigned int tagv = dyn.d_un.d_val;
3680
3681 amt = sizeof (struct bfd_link_needed_list);
3682 n = bfd_alloc (abfd, amt);
3683 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3684 if (n == NULL || fnm == NULL)
3685 goto error_free_dyn;
3686 amt = strlen (fnm) + 1;
3687 anm = bfd_alloc (abfd, amt);
3688 if (anm == NULL)
3689 goto error_free_dyn;
3690 memcpy (anm, fnm, amt);
3691 n->name = anm;
3692 n->by = abfd;
3693 n->next = NULL;
3694 for (pn = & runpath;
3695 *pn != NULL;
3696 pn = &(*pn)->next)
3697 ;
3698 *pn = n;
3699 }
3700 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3701 if (!runpath && dyn.d_tag == DT_RPATH)
3702 {
3703 struct bfd_link_needed_list *n, **pn;
3704 char *fnm, *anm;
3705 unsigned int tagv = dyn.d_un.d_val;
3706
3707 amt = sizeof (struct bfd_link_needed_list);
3708 n = bfd_alloc (abfd, amt);
3709 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3710 if (n == NULL || fnm == NULL)
3711 goto error_free_dyn;
3712 amt = strlen (fnm) + 1;
3713 anm = bfd_alloc (abfd, amt);
3714 if (anm == NULL)
3715 {
3716 error_free_dyn:
3717 free (dynbuf);
3718 goto error_return;
3719 }
3720 memcpy (anm, fnm, amt);
3721 n->name = anm;
3722 n->by = abfd;
3723 n->next = NULL;
3724 for (pn = & rpath;
3725 *pn != NULL;
3726 pn = &(*pn)->next)
3727 ;
3728 *pn = n;
3729 }
3730 }
3731
3732 free (dynbuf);
3733 }
3734
3735 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3736 frees all more recently bfd_alloc'd blocks as well. */
3737 if (runpath)
3738 rpath = runpath;
3739
3740 if (rpath)
3741 {
3742 struct bfd_link_needed_list **pn;
3743 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3744 ;
3745 *pn = rpath;
3746 }
3747
3748 /* We do not want to include any of the sections in a dynamic
3749 object in the output file. We hack by simply clobbering the
3750 list of sections in the BFD. This could be handled more
3751 cleanly by, say, a new section flag; the existing
3752 SEC_NEVER_LOAD flag is not the one we want, because that one
3753 still implies that the section takes up space in the output
3754 file. */
3755 bfd_section_list_clear (abfd);
3756
3757 /* Find the name to use in a DT_NEEDED entry that refers to this
3758 object. If the object has a DT_SONAME entry, we use it.
3759 Otherwise, if the generic linker stuck something in
3760 elf_dt_name, we use that. Otherwise, we just use the file
3761 name. */
3762 if (soname == NULL || *soname == '\0')
3763 {
3764 soname = elf_dt_name (abfd);
3765 if (soname == NULL || *soname == '\0')
3766 soname = bfd_get_filename (abfd);
3767 }
3768
3769 /* Save the SONAME because sometimes the linker emulation code
3770 will need to know it. */
3771 elf_dt_name (abfd) = soname;
3772
3773 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3774 if (ret < 0)
3775 goto error_return;
3776
3777 /* If we have already included this dynamic object in the
3778 link, just ignore it. There is no reason to include a
3779 particular dynamic object more than once. */
3780 if (ret > 0)
3781 return TRUE;
3782 }
3783
3784 /* If this is a dynamic object, we always link against the .dynsym
3785 symbol table, not the .symtab symbol table. The dynamic linker
3786 will only see the .dynsym symbol table, so there is no reason to
3787 look at .symtab for a dynamic object. */
3788
3789 if (! dynamic || elf_dynsymtab (abfd) == 0)
3790 hdr = &elf_tdata (abfd)->symtab_hdr;
3791 else
3792 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3793
3794 symcount = hdr->sh_size / bed->s->sizeof_sym;
3795
3796 /* The sh_info field of the symtab header tells us where the
3797 external symbols start. We don't care about the local symbols at
3798 this point. */
3799 if (elf_bad_symtab (abfd))
3800 {
3801 extsymcount = symcount;
3802 extsymoff = 0;
3803 }
3804 else
3805 {
3806 extsymcount = symcount - hdr->sh_info;
3807 extsymoff = hdr->sh_info;
3808 }
3809
3810 sym_hash = NULL;
3811 if (extsymcount != 0)
3812 {
3813 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3814 NULL, NULL, NULL);
3815 if (isymbuf == NULL)
3816 goto error_return;
3817
3818 /* We store a pointer to the hash table entry for each external
3819 symbol. */
3820 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3821 sym_hash = bfd_alloc (abfd, amt);
3822 if (sym_hash == NULL)
3823 goto error_free_sym;
3824 elf_sym_hashes (abfd) = sym_hash;
3825 }
3826
3827 if (dynamic)
3828 {
3829 /* Read in any version definitions. */
3830 if (!_bfd_elf_slurp_version_tables (abfd,
3831 info->default_imported_symver))
3832 goto error_free_sym;
3833
3834 /* Read in the symbol versions, but don't bother to convert them
3835 to internal format. */
3836 if (elf_dynversym (abfd) != 0)
3837 {
3838 Elf_Internal_Shdr *versymhdr;
3839
3840 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3841 extversym = bfd_malloc (versymhdr->sh_size);
3842 if (extversym == NULL)
3843 goto error_free_sym;
3844 amt = versymhdr->sh_size;
3845 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3846 || bfd_bread (extversym, amt, abfd) != amt)
3847 goto error_free_vers;
3848 }
3849 }
3850
3851 /* If we are loading an as-needed shared lib, save the symbol table
3852 state before we start adding symbols. If the lib turns out
3853 to be unneeded, restore the state. */
3854 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3855 {
3856 unsigned int i;
3857 size_t entsize;
3858
3859 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3860 {
3861 struct bfd_hash_entry *p;
3862 struct elf_link_hash_entry *h;
3863
3864 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3865 {
3866 h = (struct elf_link_hash_entry *) p;
3867 entsize += htab->root.table.entsize;
3868 if (h->root.type == bfd_link_hash_warning)
3869 entsize += htab->root.table.entsize;
3870 }
3871 }
3872
3873 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3874 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3875 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3876 if (old_tab == NULL)
3877 goto error_free_vers;
3878
3879 /* Remember the current objalloc pointer, so that all mem for
3880 symbols added can later be reclaimed. */
3881 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3882 if (alloc_mark == NULL)
3883 goto error_free_vers;
3884
3885 /* Make a special call to the linker "notice" function to
3886 tell it that we are about to handle an as-needed lib. */
3887 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3888 notice_as_needed))
3889 goto error_free_vers;
3890
3891 /* Clone the symbol table and sym hashes. Remember some
3892 pointers into the symbol table, and dynamic symbol count. */
3893 old_hash = (char *) old_tab + tabsize;
3894 old_ent = (char *) old_hash + hashsize;
3895 memcpy (old_tab, htab->root.table.table, tabsize);
3896 memcpy (old_hash, sym_hash, hashsize);
3897 old_undefs = htab->root.undefs;
3898 old_undefs_tail = htab->root.undefs_tail;
3899 old_table = htab->root.table.table;
3900 old_size = htab->root.table.size;
3901 old_count = htab->root.table.count;
3902 old_dynsymcount = htab->dynsymcount;
3903
3904 for (i = 0; i < htab->root.table.size; i++)
3905 {
3906 struct bfd_hash_entry *p;
3907 struct elf_link_hash_entry *h;
3908
3909 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3910 {
3911 memcpy (old_ent, p, htab->root.table.entsize);
3912 old_ent = (char *) old_ent + htab->root.table.entsize;
3913 h = (struct elf_link_hash_entry *) p;
3914 if (h->root.type == bfd_link_hash_warning)
3915 {
3916 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3917 old_ent = (char *) old_ent + htab->root.table.entsize;
3918 }
3919 }
3920 }
3921 }
3922
3923 weaks = NULL;
3924 ever = extversym != NULL ? extversym + extsymoff : NULL;
3925 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3926 isym < isymend;
3927 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3928 {
3929 int bind;
3930 bfd_vma value;
3931 asection *sec, *new_sec;
3932 flagword flags;
3933 const char *name;
3934 struct elf_link_hash_entry *h;
3935 bfd_boolean definition;
3936 bfd_boolean size_change_ok;
3937 bfd_boolean type_change_ok;
3938 bfd_boolean new_weakdef;
3939 bfd_boolean override;
3940 bfd_boolean common;
3941 unsigned int old_alignment;
3942 bfd *old_bfd;
3943
3944 override = FALSE;
3945
3946 flags = BSF_NO_FLAGS;
3947 sec = NULL;
3948 value = isym->st_value;
3949 *sym_hash = NULL;
3950 common = bed->common_definition (isym);
3951
3952 bind = ELF_ST_BIND (isym->st_info);
3953 if (bind == STB_LOCAL)
3954 {
3955 /* This should be impossible, since ELF requires that all
3956 global symbols follow all local symbols, and that sh_info
3957 point to the first global symbol. Unfortunately, Irix 5
3958 screws this up. */
3959 continue;
3960 }
3961 else if (bind == STB_GLOBAL)
3962 {
3963 if (isym->st_shndx != SHN_UNDEF && !common)
3964 flags = BSF_GLOBAL;
3965 }
3966 else if (bind == STB_WEAK)
3967 flags = BSF_WEAK;
3968 else
3969 {
3970 /* Leave it up to the processor backend. */
3971 }
3972
3973 if (isym->st_shndx == SHN_UNDEF)
3974 sec = bfd_und_section_ptr;
3975 else if (isym->st_shndx == SHN_ABS)
3976 sec = bfd_abs_section_ptr;
3977 else if (isym->st_shndx == SHN_COMMON)
3978 {
3979 sec = bfd_com_section_ptr;
3980 /* What ELF calls the size we call the value. What ELF
3981 calls the value we call the alignment. */
3982 value = isym->st_size;
3983 }
3984 else
3985 {
3986 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3987 if (sec == NULL)
3988 sec = bfd_abs_section_ptr;
3989 else if (sec->kept_section)
3990 {
3991 /* Symbols from discarded section are undefined. We keep
3992 its visibility. */
3993 sec = bfd_und_section_ptr;
3994 isym->st_shndx = SHN_UNDEF;
3995 }
3996 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3997 value -= sec->vma;
3998 }
3999
4000 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4001 isym->st_name);
4002 if (name == NULL)
4003 goto error_free_vers;
4004
4005 if (isym->st_shndx == SHN_COMMON
4006 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4007 && !info->relocatable)
4008 {
4009 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4010
4011 if (tcomm == NULL)
4012 {
4013 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
4014 (SEC_ALLOC
4015 | SEC_IS_COMMON
4016 | SEC_LINKER_CREATED
4017 | SEC_THREAD_LOCAL));
4018 if (tcomm == NULL)
4019 goto error_free_vers;
4020 }
4021 sec = tcomm;
4022 }
4023 else if (bed->elf_add_symbol_hook)
4024 {
4025 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4026 &sec, &value))
4027 goto error_free_vers;
4028
4029 /* The hook function sets the name to NULL if this symbol
4030 should be skipped for some reason. */
4031 if (name == NULL)
4032 continue;
4033 }
4034
4035 /* Sanity check that all possibilities were handled. */
4036 if (sec == NULL)
4037 {
4038 bfd_set_error (bfd_error_bad_value);
4039 goto error_free_vers;
4040 }
4041
4042 if (bfd_is_und_section (sec)
4043 || bfd_is_com_section (sec))
4044 definition = FALSE;
4045 else
4046 definition = TRUE;
4047
4048 size_change_ok = FALSE;
4049 type_change_ok = bed->type_change_ok;
4050 old_alignment = 0;
4051 old_bfd = NULL;
4052 new_sec = sec;
4053
4054 if (is_elf_hash_table (htab))
4055 {
4056 Elf_Internal_Versym iver;
4057 unsigned int vernum = 0;
4058 bfd_boolean skip;
4059
4060 if (ever == NULL)
4061 {
4062 if (info->default_imported_symver)
4063 /* Use the default symbol version created earlier. */
4064 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4065 else
4066 iver.vs_vers = 0;
4067 }
4068 else
4069 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4070
4071 vernum = iver.vs_vers & VERSYM_VERSION;
4072
4073 /* If this is a hidden symbol, or if it is not version
4074 1, we append the version name to the symbol name.
4075 However, we do not modify a non-hidden absolute symbol
4076 if it is not a function, because it might be the version
4077 symbol itself. FIXME: What if it isn't? */
4078 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4079 || (vernum > 1
4080 && (!bfd_is_abs_section (sec)
4081 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4082 {
4083 const char *verstr;
4084 size_t namelen, verlen, newlen;
4085 char *newname, *p;
4086
4087 if (isym->st_shndx != SHN_UNDEF)
4088 {
4089 if (vernum > elf_tdata (abfd)->cverdefs)
4090 verstr = NULL;
4091 else if (vernum > 1)
4092 verstr =
4093 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4094 else
4095 verstr = "";
4096
4097 if (verstr == NULL)
4098 {
4099 (*_bfd_error_handler)
4100 (_("%B: %s: invalid version %u (max %d)"),
4101 abfd, name, vernum,
4102 elf_tdata (abfd)->cverdefs);
4103 bfd_set_error (bfd_error_bad_value);
4104 goto error_free_vers;
4105 }
4106 }
4107 else
4108 {
4109 /* We cannot simply test for the number of
4110 entries in the VERNEED section since the
4111 numbers for the needed versions do not start
4112 at 0. */
4113 Elf_Internal_Verneed *t;
4114
4115 verstr = NULL;
4116 for (t = elf_tdata (abfd)->verref;
4117 t != NULL;
4118 t = t->vn_nextref)
4119 {
4120 Elf_Internal_Vernaux *a;
4121
4122 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4123 {
4124 if (a->vna_other == vernum)
4125 {
4126 verstr = a->vna_nodename;
4127 break;
4128 }
4129 }
4130 if (a != NULL)
4131 break;
4132 }
4133 if (verstr == NULL)
4134 {
4135 (*_bfd_error_handler)
4136 (_("%B: %s: invalid needed version %d"),
4137 abfd, name, vernum);
4138 bfd_set_error (bfd_error_bad_value);
4139 goto error_free_vers;
4140 }
4141 }
4142
4143 namelen = strlen (name);
4144 verlen = strlen (verstr);
4145 newlen = namelen + verlen + 2;
4146 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4147 && isym->st_shndx != SHN_UNDEF)
4148 ++newlen;
4149
4150 newname = bfd_hash_allocate (&htab->root.table, newlen);
4151 if (newname == NULL)
4152 goto error_free_vers;
4153 memcpy (newname, name, namelen);
4154 p = newname + namelen;
4155 *p++ = ELF_VER_CHR;
4156 /* If this is a defined non-hidden version symbol,
4157 we add another @ to the name. This indicates the
4158 default version of the symbol. */
4159 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4160 && isym->st_shndx != SHN_UNDEF)
4161 *p++ = ELF_VER_CHR;
4162 memcpy (p, verstr, verlen + 1);
4163
4164 name = newname;
4165 }
4166
4167 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4168 &value, &old_alignment,
4169 sym_hash, &skip, &override,
4170 &type_change_ok, &size_change_ok))
4171 goto error_free_vers;
4172
4173 if (skip)
4174 continue;
4175
4176 if (override)
4177 definition = FALSE;
4178
4179 h = *sym_hash;
4180 while (h->root.type == bfd_link_hash_indirect
4181 || h->root.type == bfd_link_hash_warning)
4182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4183
4184 /* Remember the old alignment if this is a common symbol, so
4185 that we don't reduce the alignment later on. We can't
4186 check later, because _bfd_generic_link_add_one_symbol
4187 will set a default for the alignment which we want to
4188 override. We also remember the old bfd where the existing
4189 definition comes from. */
4190 switch (h->root.type)
4191 {
4192 default:
4193 break;
4194
4195 case bfd_link_hash_defined:
4196 case bfd_link_hash_defweak:
4197 old_bfd = h->root.u.def.section->owner;
4198 break;
4199
4200 case bfd_link_hash_common:
4201 old_bfd = h->root.u.c.p->section->owner;
4202 old_alignment = h->root.u.c.p->alignment_power;
4203 break;
4204 }
4205
4206 if (elf_tdata (abfd)->verdef != NULL
4207 && ! override
4208 && vernum > 1
4209 && definition)
4210 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4211 }
4212
4213 if (! (_bfd_generic_link_add_one_symbol
4214 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4215 (struct bfd_link_hash_entry **) sym_hash)))
4216 goto error_free_vers;
4217
4218 h = *sym_hash;
4219 while (h->root.type == bfd_link_hash_indirect
4220 || h->root.type == bfd_link_hash_warning)
4221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4222 *sym_hash = h;
4223
4224 new_weakdef = FALSE;
4225 if (dynamic
4226 && definition
4227 && (flags & BSF_WEAK) != 0
4228 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4229 && is_elf_hash_table (htab)
4230 && h->u.weakdef == NULL)
4231 {
4232 /* Keep a list of all weak defined non function symbols from
4233 a dynamic object, using the weakdef field. Later in this
4234 function we will set the weakdef field to the correct
4235 value. We only put non-function symbols from dynamic
4236 objects on this list, because that happens to be the only
4237 time we need to know the normal symbol corresponding to a
4238 weak symbol, and the information is time consuming to
4239 figure out. If the weakdef field is not already NULL,
4240 then this symbol was already defined by some previous
4241 dynamic object, and we will be using that previous
4242 definition anyhow. */
4243
4244 h->u.weakdef = weaks;
4245 weaks = h;
4246 new_weakdef = TRUE;
4247 }
4248
4249 /* Set the alignment of a common symbol. */
4250 if ((common || bfd_is_com_section (sec))
4251 && h->root.type == bfd_link_hash_common)
4252 {
4253 unsigned int align;
4254
4255 if (common)
4256 align = bfd_log2 (isym->st_value);
4257 else
4258 {
4259 /* The new symbol is a common symbol in a shared object.
4260 We need to get the alignment from the section. */
4261 align = new_sec->alignment_power;
4262 }
4263 if (align > old_alignment
4264 /* Permit an alignment power of zero if an alignment of one
4265 is specified and no other alignments have been specified. */
4266 || (isym->st_value == 1 && old_alignment == 0))
4267 h->root.u.c.p->alignment_power = align;
4268 else
4269 h->root.u.c.p->alignment_power = old_alignment;
4270 }
4271
4272 if (is_elf_hash_table (htab))
4273 {
4274 bfd_boolean dynsym;
4275
4276 /* Check the alignment when a common symbol is involved. This
4277 can change when a common symbol is overridden by a normal
4278 definition or a common symbol is ignored due to the old
4279 normal definition. We need to make sure the maximum
4280 alignment is maintained. */
4281 if ((old_alignment || common)
4282 && h->root.type != bfd_link_hash_common)
4283 {
4284 unsigned int common_align;
4285 unsigned int normal_align;
4286 unsigned int symbol_align;
4287 bfd *normal_bfd;
4288 bfd *common_bfd;
4289
4290 symbol_align = ffs (h->root.u.def.value) - 1;
4291 if (h->root.u.def.section->owner != NULL
4292 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4293 {
4294 normal_align = h->root.u.def.section->alignment_power;
4295 if (normal_align > symbol_align)
4296 normal_align = symbol_align;
4297 }
4298 else
4299 normal_align = symbol_align;
4300
4301 if (old_alignment)
4302 {
4303 common_align = old_alignment;
4304 common_bfd = old_bfd;
4305 normal_bfd = abfd;
4306 }
4307 else
4308 {
4309 common_align = bfd_log2 (isym->st_value);
4310 common_bfd = abfd;
4311 normal_bfd = old_bfd;
4312 }
4313
4314 if (normal_align < common_align)
4315 {
4316 /* PR binutils/2735 */
4317 if (normal_bfd == NULL)
4318 (*_bfd_error_handler)
4319 (_("Warning: alignment %u of common symbol `%s' in %B"
4320 " is greater than the alignment (%u) of its section %A"),
4321 common_bfd, h->root.u.def.section,
4322 1 << common_align, name, 1 << normal_align);
4323 else
4324 (*_bfd_error_handler)
4325 (_("Warning: alignment %u of symbol `%s' in %B"
4326 " is smaller than %u in %B"),
4327 normal_bfd, common_bfd,
4328 1 << normal_align, name, 1 << common_align);
4329 }
4330 }
4331
4332 /* Remember the symbol size if it isn't undefined. */
4333 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4334 && (definition || h->size == 0))
4335 {
4336 if (h->size != 0
4337 && h->size != isym->st_size
4338 && ! size_change_ok)
4339 (*_bfd_error_handler)
4340 (_("Warning: size of symbol `%s' changed"
4341 " from %lu in %B to %lu in %B"),
4342 old_bfd, abfd,
4343 name, (unsigned long) h->size,
4344 (unsigned long) isym->st_size);
4345
4346 h->size = isym->st_size;
4347 }
4348
4349 /* If this is a common symbol, then we always want H->SIZE
4350 to be the size of the common symbol. The code just above
4351 won't fix the size if a common symbol becomes larger. We
4352 don't warn about a size change here, because that is
4353 covered by --warn-common. Allow changed between different
4354 function types. */
4355 if (h->root.type == bfd_link_hash_common)
4356 h->size = h->root.u.c.size;
4357
4358 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4359 && (definition || h->type == STT_NOTYPE))
4360 {
4361 if (h->type != STT_NOTYPE
4362 && h->type != ELF_ST_TYPE (isym->st_info)
4363 && ! type_change_ok)
4364 (*_bfd_error_handler)
4365 (_("Warning: type of symbol `%s' changed"
4366 " from %d to %d in %B"),
4367 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4368
4369 h->type = ELF_ST_TYPE (isym->st_info);
4370 }
4371
4372 /* Merge st_other field. */
4373 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4374
4375 /* Set a flag in the hash table entry indicating the type of
4376 reference or definition we just found. Keep a count of
4377 the number of dynamic symbols we find. A dynamic symbol
4378 is one which is referenced or defined by both a regular
4379 object and a shared object. */
4380 dynsym = FALSE;
4381 if (! dynamic)
4382 {
4383 if (! definition)
4384 {
4385 h->ref_regular = 1;
4386 if (bind != STB_WEAK)
4387 h->ref_regular_nonweak = 1;
4388 }
4389 else
4390 {
4391 h->def_regular = 1;
4392 if (h->def_dynamic)
4393 {
4394 h->def_dynamic = 0;
4395 h->ref_dynamic = 1;
4396 h->dynamic_def = 1;
4397 }
4398 }
4399 if (! info->executable
4400 || h->def_dynamic
4401 || h->ref_dynamic)
4402 dynsym = TRUE;
4403 }
4404 else
4405 {
4406 if (! definition)
4407 h->ref_dynamic = 1;
4408 else
4409 h->def_dynamic = 1;
4410 if (h->def_regular
4411 || h->ref_regular
4412 || (h->u.weakdef != NULL
4413 && ! new_weakdef
4414 && h->u.weakdef->dynindx != -1))
4415 dynsym = TRUE;
4416 }
4417
4418 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4419 {
4420 /* We don't want to make debug symbol dynamic. */
4421 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4422 dynsym = FALSE;
4423 }
4424
4425 /* Check to see if we need to add an indirect symbol for
4426 the default name. */
4427 if (definition || h->root.type == bfd_link_hash_common)
4428 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4429 &sec, &value, &dynsym,
4430 override))
4431 goto error_free_vers;
4432
4433 if (definition && !dynamic)
4434 {
4435 char *p = strchr (name, ELF_VER_CHR);
4436 if (p != NULL && p[1] != ELF_VER_CHR)
4437 {
4438 /* Queue non-default versions so that .symver x, x@FOO
4439 aliases can be checked. */
4440 if (!nondeflt_vers)
4441 {
4442 amt = ((isymend - isym + 1)
4443 * sizeof (struct elf_link_hash_entry *));
4444 nondeflt_vers = bfd_malloc (amt);
4445 if (!nondeflt_vers)
4446 goto error_free_vers;
4447 }
4448 nondeflt_vers[nondeflt_vers_cnt++] = h;
4449 }
4450 }
4451
4452 if (dynsym && h->dynindx == -1)
4453 {
4454 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4455 goto error_free_vers;
4456 if (h->u.weakdef != NULL
4457 && ! new_weakdef
4458 && h->u.weakdef->dynindx == -1)
4459 {
4460 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4461 goto error_free_vers;
4462 }
4463 }
4464 else if (dynsym && h->dynindx != -1)
4465 /* If the symbol already has a dynamic index, but
4466 visibility says it should not be visible, turn it into
4467 a local symbol. */
4468 switch (ELF_ST_VISIBILITY (h->other))
4469 {
4470 case STV_INTERNAL:
4471 case STV_HIDDEN:
4472 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4473 dynsym = FALSE;
4474 break;
4475 }
4476
4477 if (!add_needed
4478 && definition
4479 && ((dynsym
4480 && h->ref_regular)
4481 || (h->ref_dynamic
4482 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4483 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4484 {
4485 int ret;
4486 const char *soname = elf_dt_name (abfd);
4487
4488 /* A symbol from a library loaded via DT_NEEDED of some
4489 other library is referenced by a regular object.
4490 Add a DT_NEEDED entry for it. Issue an error if
4491 --no-add-needed is used. */
4492 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4493 {
4494 (*_bfd_error_handler)
4495 (_("%s: invalid DSO for symbol `%s' definition"),
4496 abfd, name);
4497 bfd_set_error (bfd_error_bad_value);
4498 goto error_free_vers;
4499 }
4500
4501 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4502
4503 add_needed = TRUE;
4504 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4505 if (ret < 0)
4506 goto error_free_vers;
4507
4508 BFD_ASSERT (ret == 0);
4509 }
4510 }
4511 }
4512
4513 if (extversym != NULL)
4514 {
4515 free (extversym);
4516 extversym = NULL;
4517 }
4518
4519 if (isymbuf != NULL)
4520 {
4521 free (isymbuf);
4522 isymbuf = NULL;
4523 }
4524
4525 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4526 {
4527 unsigned int i;
4528
4529 /* Restore the symbol table. */
4530 if (bed->as_needed_cleanup)
4531 (*bed->as_needed_cleanup) (abfd, info);
4532 old_hash = (char *) old_tab + tabsize;
4533 old_ent = (char *) old_hash + hashsize;
4534 sym_hash = elf_sym_hashes (abfd);
4535 htab->root.table.table = old_table;
4536 htab->root.table.size = old_size;
4537 htab->root.table.count = old_count;
4538 memcpy (htab->root.table.table, old_tab, tabsize);
4539 memcpy (sym_hash, old_hash, hashsize);
4540 htab->root.undefs = old_undefs;
4541 htab->root.undefs_tail = old_undefs_tail;
4542 for (i = 0; i < htab->root.table.size; i++)
4543 {
4544 struct bfd_hash_entry *p;
4545 struct elf_link_hash_entry *h;
4546
4547 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4548 {
4549 h = (struct elf_link_hash_entry *) p;
4550 if (h->root.type == bfd_link_hash_warning)
4551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4552 if (h->dynindx >= old_dynsymcount)
4553 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4554
4555 memcpy (p, old_ent, htab->root.table.entsize);
4556 old_ent = (char *) old_ent + htab->root.table.entsize;
4557 h = (struct elf_link_hash_entry *) p;
4558 if (h->root.type == bfd_link_hash_warning)
4559 {
4560 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4561 old_ent = (char *) old_ent + htab->root.table.entsize;
4562 }
4563 }
4564 }
4565
4566 /* Make a special call to the linker "notice" function to
4567 tell it that symbols added for crefs may need to be removed. */
4568 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4569 notice_not_needed))
4570 goto error_free_vers;
4571
4572 free (old_tab);
4573 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4574 alloc_mark);
4575 if (nondeflt_vers != NULL)
4576 free (nondeflt_vers);
4577 return TRUE;
4578 }
4579
4580 if (old_tab != NULL)
4581 {
4582 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4583 notice_needed))
4584 goto error_free_vers;
4585 free (old_tab);
4586 old_tab = NULL;
4587 }
4588
4589 /* Now that all the symbols from this input file are created, handle
4590 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4591 if (nondeflt_vers != NULL)
4592 {
4593 bfd_size_type cnt, symidx;
4594
4595 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4596 {
4597 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4598 char *shortname, *p;
4599
4600 p = strchr (h->root.root.string, ELF_VER_CHR);
4601 if (p == NULL
4602 || (h->root.type != bfd_link_hash_defined
4603 && h->root.type != bfd_link_hash_defweak))
4604 continue;
4605
4606 amt = p - h->root.root.string;
4607 shortname = bfd_malloc (amt + 1);
4608 if (!shortname)
4609 goto error_free_vers;
4610 memcpy (shortname, h->root.root.string, amt);
4611 shortname[amt] = '\0';
4612
4613 hi = (struct elf_link_hash_entry *)
4614 bfd_link_hash_lookup (&htab->root, shortname,
4615 FALSE, FALSE, FALSE);
4616 if (hi != NULL
4617 && hi->root.type == h->root.type
4618 && hi->root.u.def.value == h->root.u.def.value
4619 && hi->root.u.def.section == h->root.u.def.section)
4620 {
4621 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4622 hi->root.type = bfd_link_hash_indirect;
4623 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4624 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4625 sym_hash = elf_sym_hashes (abfd);
4626 if (sym_hash)
4627 for (symidx = 0; symidx < extsymcount; ++symidx)
4628 if (sym_hash[symidx] == hi)
4629 {
4630 sym_hash[symidx] = h;
4631 break;
4632 }
4633 }
4634 free (shortname);
4635 }
4636 free (nondeflt_vers);
4637 nondeflt_vers = NULL;
4638 }
4639
4640 /* Now set the weakdefs field correctly for all the weak defined
4641 symbols we found. The only way to do this is to search all the
4642 symbols. Since we only need the information for non functions in
4643 dynamic objects, that's the only time we actually put anything on
4644 the list WEAKS. We need this information so that if a regular
4645 object refers to a symbol defined weakly in a dynamic object, the
4646 real symbol in the dynamic object is also put in the dynamic
4647 symbols; we also must arrange for both symbols to point to the
4648 same memory location. We could handle the general case of symbol
4649 aliasing, but a general symbol alias can only be generated in
4650 assembler code, handling it correctly would be very time
4651 consuming, and other ELF linkers don't handle general aliasing
4652 either. */
4653 if (weaks != NULL)
4654 {
4655 struct elf_link_hash_entry **hpp;
4656 struct elf_link_hash_entry **hppend;
4657 struct elf_link_hash_entry **sorted_sym_hash;
4658 struct elf_link_hash_entry *h;
4659 size_t sym_count;
4660
4661 /* Since we have to search the whole symbol list for each weak
4662 defined symbol, search time for N weak defined symbols will be
4663 O(N^2). Binary search will cut it down to O(NlogN). */
4664 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4665 sorted_sym_hash = bfd_malloc (amt);
4666 if (sorted_sym_hash == NULL)
4667 goto error_return;
4668 sym_hash = sorted_sym_hash;
4669 hpp = elf_sym_hashes (abfd);
4670 hppend = hpp + extsymcount;
4671 sym_count = 0;
4672 for (; hpp < hppend; hpp++)
4673 {
4674 h = *hpp;
4675 if (h != NULL
4676 && h->root.type == bfd_link_hash_defined
4677 && !bed->is_function_type (h->type))
4678 {
4679 *sym_hash = h;
4680 sym_hash++;
4681 sym_count++;
4682 }
4683 }
4684
4685 qsort (sorted_sym_hash, sym_count,
4686 sizeof (struct elf_link_hash_entry *),
4687 elf_sort_symbol);
4688
4689 while (weaks != NULL)
4690 {
4691 struct elf_link_hash_entry *hlook;
4692 asection *slook;
4693 bfd_vma vlook;
4694 long ilook;
4695 size_t i, j, idx;
4696
4697 hlook = weaks;
4698 weaks = hlook->u.weakdef;
4699 hlook->u.weakdef = NULL;
4700
4701 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4702 || hlook->root.type == bfd_link_hash_defweak
4703 || hlook->root.type == bfd_link_hash_common
4704 || hlook->root.type == bfd_link_hash_indirect);
4705 slook = hlook->root.u.def.section;
4706 vlook = hlook->root.u.def.value;
4707
4708 ilook = -1;
4709 i = 0;
4710 j = sym_count;
4711 while (i < j)
4712 {
4713 bfd_signed_vma vdiff;
4714 idx = (i + j) / 2;
4715 h = sorted_sym_hash [idx];
4716 vdiff = vlook - h->root.u.def.value;
4717 if (vdiff < 0)
4718 j = idx;
4719 else if (vdiff > 0)
4720 i = idx + 1;
4721 else
4722 {
4723 long sdiff = slook->id - h->root.u.def.section->id;
4724 if (sdiff < 0)
4725 j = idx;
4726 else if (sdiff > 0)
4727 i = idx + 1;
4728 else
4729 {
4730 ilook = idx;
4731 break;
4732 }
4733 }
4734 }
4735
4736 /* We didn't find a value/section match. */
4737 if (ilook == -1)
4738 continue;
4739
4740 for (i = ilook; i < sym_count; i++)
4741 {
4742 h = sorted_sym_hash [i];
4743
4744 /* Stop if value or section doesn't match. */
4745 if (h->root.u.def.value != vlook
4746 || h->root.u.def.section != slook)
4747 break;
4748 else if (h != hlook)
4749 {
4750 hlook->u.weakdef = h;
4751
4752 /* If the weak definition is in the list of dynamic
4753 symbols, make sure the real definition is put
4754 there as well. */
4755 if (hlook->dynindx != -1 && h->dynindx == -1)
4756 {
4757 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4758 {
4759 err_free_sym_hash:
4760 free (sorted_sym_hash);
4761 goto error_return;
4762 }
4763 }
4764
4765 /* If the real definition is in the list of dynamic
4766 symbols, make sure the weak definition is put
4767 there as well. If we don't do this, then the
4768 dynamic loader might not merge the entries for the
4769 real definition and the weak definition. */
4770 if (h->dynindx != -1 && hlook->dynindx == -1)
4771 {
4772 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4773 goto err_free_sym_hash;
4774 }
4775 break;
4776 }
4777 }
4778 }
4779
4780 free (sorted_sym_hash);
4781 }
4782
4783 if (bed->check_directives
4784 && !(*bed->check_directives) (abfd, info))
4785 return FALSE;
4786
4787 /* If this object is the same format as the output object, and it is
4788 not a shared library, then let the backend look through the
4789 relocs.
4790
4791 This is required to build global offset table entries and to
4792 arrange for dynamic relocs. It is not required for the
4793 particular common case of linking non PIC code, even when linking
4794 against shared libraries, but unfortunately there is no way of
4795 knowing whether an object file has been compiled PIC or not.
4796 Looking through the relocs is not particularly time consuming.
4797 The problem is that we must either (1) keep the relocs in memory,
4798 which causes the linker to require additional runtime memory or
4799 (2) read the relocs twice from the input file, which wastes time.
4800 This would be a good case for using mmap.
4801
4802 I have no idea how to handle linking PIC code into a file of a
4803 different format. It probably can't be done. */
4804 if (! dynamic
4805 && is_elf_hash_table (htab)
4806 && bed->check_relocs != NULL
4807 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4808 {
4809 asection *o;
4810
4811 for (o = abfd->sections; o != NULL; o = o->next)
4812 {
4813 Elf_Internal_Rela *internal_relocs;
4814 bfd_boolean ok;
4815
4816 if ((o->flags & SEC_RELOC) == 0
4817 || o->reloc_count == 0
4818 || ((info->strip == strip_all || info->strip == strip_debugger)
4819 && (o->flags & SEC_DEBUGGING) != 0)
4820 || bfd_is_abs_section (o->output_section))
4821 continue;
4822
4823 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4824 info->keep_memory);
4825 if (internal_relocs == NULL)
4826 goto error_return;
4827
4828 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4829
4830 if (elf_section_data (o)->relocs != internal_relocs)
4831 free (internal_relocs);
4832
4833 if (! ok)
4834 goto error_return;
4835 }
4836 }
4837
4838 /* If this is a non-traditional link, try to optimize the handling
4839 of the .stab/.stabstr sections. */
4840 if (! dynamic
4841 && ! info->traditional_format
4842 && is_elf_hash_table (htab)
4843 && (info->strip != strip_all && info->strip != strip_debugger))
4844 {
4845 asection *stabstr;
4846
4847 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4848 if (stabstr != NULL)
4849 {
4850 bfd_size_type string_offset = 0;
4851 asection *stab;
4852
4853 for (stab = abfd->sections; stab; stab = stab->next)
4854 if (CONST_STRNEQ (stab->name, ".stab")
4855 && (!stab->name[5] ||
4856 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4857 && (stab->flags & SEC_MERGE) == 0
4858 && !bfd_is_abs_section (stab->output_section))
4859 {
4860 struct bfd_elf_section_data *secdata;
4861
4862 secdata = elf_section_data (stab);
4863 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4864 stabstr, &secdata->sec_info,
4865 &string_offset))
4866 goto error_return;
4867 if (secdata->sec_info)
4868 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4869 }
4870 }
4871 }
4872
4873 if (is_elf_hash_table (htab) && add_needed)
4874 {
4875 /* Add this bfd to the loaded list. */
4876 struct elf_link_loaded_list *n;
4877
4878 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4879 if (n == NULL)
4880 goto error_return;
4881 n->abfd = abfd;
4882 n->next = htab->loaded;
4883 htab->loaded = n;
4884 }
4885
4886 return TRUE;
4887
4888 error_free_vers:
4889 if (old_tab != NULL)
4890 free (old_tab);
4891 if (nondeflt_vers != NULL)
4892 free (nondeflt_vers);
4893 if (extversym != NULL)
4894 free (extversym);
4895 error_free_sym:
4896 if (isymbuf != NULL)
4897 free (isymbuf);
4898 error_return:
4899 return FALSE;
4900 }
4901
4902 /* Return the linker hash table entry of a symbol that might be
4903 satisfied by an archive symbol. Return -1 on error. */
4904
4905 struct elf_link_hash_entry *
4906 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4907 struct bfd_link_info *info,
4908 const char *name)
4909 {
4910 struct elf_link_hash_entry *h;
4911 char *p, *copy;
4912 size_t len, first;
4913
4914 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4915 if (h != NULL)
4916 return h;
4917
4918 /* If this is a default version (the name contains @@), look up the
4919 symbol again with only one `@' as well as without the version.
4920 The effect is that references to the symbol with and without the
4921 version will be matched by the default symbol in the archive. */
4922
4923 p = strchr (name, ELF_VER_CHR);
4924 if (p == NULL || p[1] != ELF_VER_CHR)
4925 return h;
4926
4927 /* First check with only one `@'. */
4928 len = strlen (name);
4929 copy = bfd_alloc (abfd, len);
4930 if (copy == NULL)
4931 return (struct elf_link_hash_entry *) 0 - 1;
4932
4933 first = p - name + 1;
4934 memcpy (copy, name, first);
4935 memcpy (copy + first, name + first + 1, len - first);
4936
4937 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4938 if (h == NULL)
4939 {
4940 /* We also need to check references to the symbol without the
4941 version. */
4942 copy[first - 1] = '\0';
4943 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4944 FALSE, FALSE, FALSE);
4945 }
4946
4947 bfd_release (abfd, copy);
4948 return h;
4949 }
4950
4951 /* Add symbols from an ELF archive file to the linker hash table. We
4952 don't use _bfd_generic_link_add_archive_symbols because of a
4953 problem which arises on UnixWare. The UnixWare libc.so is an
4954 archive which includes an entry libc.so.1 which defines a bunch of
4955 symbols. The libc.so archive also includes a number of other
4956 object files, which also define symbols, some of which are the same
4957 as those defined in libc.so.1. Correct linking requires that we
4958 consider each object file in turn, and include it if it defines any
4959 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4960 this; it looks through the list of undefined symbols, and includes
4961 any object file which defines them. When this algorithm is used on
4962 UnixWare, it winds up pulling in libc.so.1 early and defining a
4963 bunch of symbols. This means that some of the other objects in the
4964 archive are not included in the link, which is incorrect since they
4965 precede libc.so.1 in the archive.
4966
4967 Fortunately, ELF archive handling is simpler than that done by
4968 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4969 oddities. In ELF, if we find a symbol in the archive map, and the
4970 symbol is currently undefined, we know that we must pull in that
4971 object file.
4972
4973 Unfortunately, we do have to make multiple passes over the symbol
4974 table until nothing further is resolved. */
4975
4976 static bfd_boolean
4977 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4978 {
4979 symindex c;
4980 bfd_boolean *defined = NULL;
4981 bfd_boolean *included = NULL;
4982 carsym *symdefs;
4983 bfd_boolean loop;
4984 bfd_size_type amt;
4985 const struct elf_backend_data *bed;
4986 struct elf_link_hash_entry * (*archive_symbol_lookup)
4987 (bfd *, struct bfd_link_info *, const char *);
4988
4989 if (! bfd_has_map (abfd))
4990 {
4991 /* An empty archive is a special case. */
4992 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4993 return TRUE;
4994 bfd_set_error (bfd_error_no_armap);
4995 return FALSE;
4996 }
4997
4998 /* Keep track of all symbols we know to be already defined, and all
4999 files we know to be already included. This is to speed up the
5000 second and subsequent passes. */
5001 c = bfd_ardata (abfd)->symdef_count;
5002 if (c == 0)
5003 return TRUE;
5004 amt = c;
5005 amt *= sizeof (bfd_boolean);
5006 defined = bfd_zmalloc (amt);
5007 included = bfd_zmalloc (amt);
5008 if (defined == NULL || included == NULL)
5009 goto error_return;
5010
5011 symdefs = bfd_ardata (abfd)->symdefs;
5012 bed = get_elf_backend_data (abfd);
5013 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5014
5015 do
5016 {
5017 file_ptr last;
5018 symindex i;
5019 carsym *symdef;
5020 carsym *symdefend;
5021
5022 loop = FALSE;
5023 last = -1;
5024
5025 symdef = symdefs;
5026 symdefend = symdef + c;
5027 for (i = 0; symdef < symdefend; symdef++, i++)
5028 {
5029 struct elf_link_hash_entry *h;
5030 bfd *element;
5031 struct bfd_link_hash_entry *undefs_tail;
5032 symindex mark;
5033
5034 if (defined[i] || included[i])
5035 continue;
5036 if (symdef->file_offset == last)
5037 {
5038 included[i] = TRUE;
5039 continue;
5040 }
5041
5042 h = archive_symbol_lookup (abfd, info, symdef->name);
5043 if (h == (struct elf_link_hash_entry *) 0 - 1)
5044 goto error_return;
5045
5046 if (h == NULL)
5047 continue;
5048
5049 if (h->root.type == bfd_link_hash_common)
5050 {
5051 /* We currently have a common symbol. The archive map contains
5052 a reference to this symbol, so we may want to include it. We
5053 only want to include it however, if this archive element
5054 contains a definition of the symbol, not just another common
5055 declaration of it.
5056
5057 Unfortunately some archivers (including GNU ar) will put
5058 declarations of common symbols into their archive maps, as
5059 well as real definitions, so we cannot just go by the archive
5060 map alone. Instead we must read in the element's symbol
5061 table and check that to see what kind of symbol definition
5062 this is. */
5063 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5064 continue;
5065 }
5066 else if (h->root.type != bfd_link_hash_undefined)
5067 {
5068 if (h->root.type != bfd_link_hash_undefweak)
5069 defined[i] = TRUE;
5070 continue;
5071 }
5072
5073 /* We need to include this archive member. */
5074 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5075 if (element == NULL)
5076 goto error_return;
5077
5078 if (! bfd_check_format (element, bfd_object))
5079 goto error_return;
5080
5081 /* Doublecheck that we have not included this object
5082 already--it should be impossible, but there may be
5083 something wrong with the archive. */
5084 if (element->archive_pass != 0)
5085 {
5086 bfd_set_error (bfd_error_bad_value);
5087 goto error_return;
5088 }
5089 element->archive_pass = 1;
5090
5091 undefs_tail = info->hash->undefs_tail;
5092
5093 if (! (*info->callbacks->add_archive_element) (info, element,
5094 symdef->name))
5095 goto error_return;
5096 if (! bfd_link_add_symbols (element, info))
5097 goto error_return;
5098
5099 /* If there are any new undefined symbols, we need to make
5100 another pass through the archive in order to see whether
5101 they can be defined. FIXME: This isn't perfect, because
5102 common symbols wind up on undefs_tail and because an
5103 undefined symbol which is defined later on in this pass
5104 does not require another pass. This isn't a bug, but it
5105 does make the code less efficient than it could be. */
5106 if (undefs_tail != info->hash->undefs_tail)
5107 loop = TRUE;
5108
5109 /* Look backward to mark all symbols from this object file
5110 which we have already seen in this pass. */
5111 mark = i;
5112 do
5113 {
5114 included[mark] = TRUE;
5115 if (mark == 0)
5116 break;
5117 --mark;
5118 }
5119 while (symdefs[mark].file_offset == symdef->file_offset);
5120
5121 /* We mark subsequent symbols from this object file as we go
5122 on through the loop. */
5123 last = symdef->file_offset;
5124 }
5125 }
5126 while (loop);
5127
5128 free (defined);
5129 free (included);
5130
5131 return TRUE;
5132
5133 error_return:
5134 if (defined != NULL)
5135 free (defined);
5136 if (included != NULL)
5137 free (included);
5138 return FALSE;
5139 }
5140
5141 /* Given an ELF BFD, add symbols to the global hash table as
5142 appropriate. */
5143
5144 bfd_boolean
5145 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5146 {
5147 switch (bfd_get_format (abfd))
5148 {
5149 case bfd_object:
5150 return elf_link_add_object_symbols (abfd, info);
5151 case bfd_archive:
5152 return elf_link_add_archive_symbols (abfd, info);
5153 default:
5154 bfd_set_error (bfd_error_wrong_format);
5155 return FALSE;
5156 }
5157 }
5158 \f
5159 struct hash_codes_info
5160 {
5161 unsigned long *hashcodes;
5162 bfd_boolean error;
5163 };
5164
5165 /* This function will be called though elf_link_hash_traverse to store
5166 all hash value of the exported symbols in an array. */
5167
5168 static bfd_boolean
5169 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5170 {
5171 struct hash_codes_info *inf = data;
5172 const char *name;
5173 char *p;
5174 unsigned long ha;
5175 char *alc = NULL;
5176
5177 if (h->root.type == bfd_link_hash_warning)
5178 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5179
5180 /* Ignore indirect symbols. These are added by the versioning code. */
5181 if (h->dynindx == -1)
5182 return TRUE;
5183
5184 name = h->root.root.string;
5185 p = strchr (name, ELF_VER_CHR);
5186 if (p != NULL)
5187 {
5188 alc = bfd_malloc (p - name + 1);
5189 if (alc == NULL)
5190 {
5191 inf->error = TRUE;
5192 return FALSE;
5193 }
5194 memcpy (alc, name, p - name);
5195 alc[p - name] = '\0';
5196 name = alc;
5197 }
5198
5199 /* Compute the hash value. */
5200 ha = bfd_elf_hash (name);
5201
5202 /* Store the found hash value in the array given as the argument. */
5203 *(inf->hashcodes)++ = ha;
5204
5205 /* And store it in the struct so that we can put it in the hash table
5206 later. */
5207 h->u.elf_hash_value = ha;
5208
5209 if (alc != NULL)
5210 free (alc);
5211
5212 return TRUE;
5213 }
5214
5215 struct collect_gnu_hash_codes
5216 {
5217 bfd *output_bfd;
5218 const struct elf_backend_data *bed;
5219 unsigned long int nsyms;
5220 unsigned long int maskbits;
5221 unsigned long int *hashcodes;
5222 unsigned long int *hashval;
5223 unsigned long int *indx;
5224 unsigned long int *counts;
5225 bfd_vma *bitmask;
5226 bfd_byte *contents;
5227 long int min_dynindx;
5228 unsigned long int bucketcount;
5229 unsigned long int symindx;
5230 long int local_indx;
5231 long int shift1, shift2;
5232 unsigned long int mask;
5233 bfd_boolean error;
5234 };
5235
5236 /* This function will be called though elf_link_hash_traverse to store
5237 all hash value of the exported symbols in an array. */
5238
5239 static bfd_boolean
5240 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5241 {
5242 struct collect_gnu_hash_codes *s = data;
5243 const char *name;
5244 char *p;
5245 unsigned long ha;
5246 char *alc = NULL;
5247
5248 if (h->root.type == bfd_link_hash_warning)
5249 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5250
5251 /* Ignore indirect symbols. These are added by the versioning code. */
5252 if (h->dynindx == -1)
5253 return TRUE;
5254
5255 /* Ignore also local symbols and undefined symbols. */
5256 if (! (*s->bed->elf_hash_symbol) (h))
5257 return TRUE;
5258
5259 name = h->root.root.string;
5260 p = strchr (name, ELF_VER_CHR);
5261 if (p != NULL)
5262 {
5263 alc = bfd_malloc (p - name + 1);
5264 if (alc == NULL)
5265 {
5266 s->error = TRUE;
5267 return FALSE;
5268 }
5269 memcpy (alc, name, p - name);
5270 alc[p - name] = '\0';
5271 name = alc;
5272 }
5273
5274 /* Compute the hash value. */
5275 ha = bfd_elf_gnu_hash (name);
5276
5277 /* Store the found hash value in the array for compute_bucket_count,
5278 and also for .dynsym reordering purposes. */
5279 s->hashcodes[s->nsyms] = ha;
5280 s->hashval[h->dynindx] = ha;
5281 ++s->nsyms;
5282 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5283 s->min_dynindx = h->dynindx;
5284
5285 if (alc != NULL)
5286 free (alc);
5287
5288 return TRUE;
5289 }
5290
5291 /* This function will be called though elf_link_hash_traverse to do
5292 final dynaminc symbol renumbering. */
5293
5294 static bfd_boolean
5295 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5296 {
5297 struct collect_gnu_hash_codes *s = data;
5298 unsigned long int bucket;
5299 unsigned long int val;
5300
5301 if (h->root.type == bfd_link_hash_warning)
5302 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5303
5304 /* Ignore indirect symbols. */
5305 if (h->dynindx == -1)
5306 return TRUE;
5307
5308 /* Ignore also local symbols and undefined symbols. */
5309 if (! (*s->bed->elf_hash_symbol) (h))
5310 {
5311 if (h->dynindx >= s->min_dynindx)
5312 h->dynindx = s->local_indx++;
5313 return TRUE;
5314 }
5315
5316 bucket = s->hashval[h->dynindx] % s->bucketcount;
5317 val = (s->hashval[h->dynindx] >> s->shift1)
5318 & ((s->maskbits >> s->shift1) - 1);
5319 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5320 s->bitmask[val]
5321 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5322 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5323 if (s->counts[bucket] == 1)
5324 /* Last element terminates the chain. */
5325 val |= 1;
5326 bfd_put_32 (s->output_bfd, val,
5327 s->contents + (s->indx[bucket] - s->symindx) * 4);
5328 --s->counts[bucket];
5329 h->dynindx = s->indx[bucket]++;
5330 return TRUE;
5331 }
5332
5333 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5334
5335 bfd_boolean
5336 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5337 {
5338 return !(h->forced_local
5339 || h->root.type == bfd_link_hash_undefined
5340 || h->root.type == bfd_link_hash_undefweak
5341 || ((h->root.type == bfd_link_hash_defined
5342 || h->root.type == bfd_link_hash_defweak)
5343 && h->root.u.def.section->output_section == NULL));
5344 }
5345
5346 /* Array used to determine the number of hash table buckets to use
5347 based on the number of symbols there are. If there are fewer than
5348 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5349 fewer than 37 we use 17 buckets, and so forth. We never use more
5350 than 32771 buckets. */
5351
5352 static const size_t elf_buckets[] =
5353 {
5354 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5355 16411, 32771, 0
5356 };
5357
5358 /* Compute bucket count for hashing table. We do not use a static set
5359 of possible tables sizes anymore. Instead we determine for all
5360 possible reasonable sizes of the table the outcome (i.e., the
5361 number of collisions etc) and choose the best solution. The
5362 weighting functions are not too simple to allow the table to grow
5363 without bounds. Instead one of the weighting factors is the size.
5364 Therefore the result is always a good payoff between few collisions
5365 (= short chain lengths) and table size. */
5366 static size_t
5367 compute_bucket_count (struct bfd_link_info *info,
5368 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5369 unsigned long int nsyms,
5370 int gnu_hash)
5371 {
5372 size_t best_size = 0;
5373 unsigned long int i;
5374
5375 /* We have a problem here. The following code to optimize the table
5376 size requires an integer type with more the 32 bits. If
5377 BFD_HOST_U_64_BIT is set we know about such a type. */
5378 #ifdef BFD_HOST_U_64_BIT
5379 if (info->optimize)
5380 {
5381 size_t minsize;
5382 size_t maxsize;
5383 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5384 bfd *dynobj = elf_hash_table (info)->dynobj;
5385 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5386 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5387 unsigned long int *counts;
5388 bfd_size_type amt;
5389
5390 /* Possible optimization parameters: if we have NSYMS symbols we say
5391 that the hashing table must at least have NSYMS/4 and at most
5392 2*NSYMS buckets. */
5393 minsize = nsyms / 4;
5394 if (minsize == 0)
5395 minsize = 1;
5396 best_size = maxsize = nsyms * 2;
5397 if (gnu_hash)
5398 {
5399 if (minsize < 2)
5400 minsize = 2;
5401 if ((best_size & 31) == 0)
5402 ++best_size;
5403 }
5404
5405 /* Create array where we count the collisions in. We must use bfd_malloc
5406 since the size could be large. */
5407 amt = maxsize;
5408 amt *= sizeof (unsigned long int);
5409 counts = bfd_malloc (amt);
5410 if (counts == NULL)
5411 return 0;
5412
5413 /* Compute the "optimal" size for the hash table. The criteria is a
5414 minimal chain length. The minor criteria is (of course) the size
5415 of the table. */
5416 for (i = minsize; i < maxsize; ++i)
5417 {
5418 /* Walk through the array of hashcodes and count the collisions. */
5419 BFD_HOST_U_64_BIT max;
5420 unsigned long int j;
5421 unsigned long int fact;
5422
5423 if (gnu_hash && (i & 31) == 0)
5424 continue;
5425
5426 memset (counts, '\0', i * sizeof (unsigned long int));
5427
5428 /* Determine how often each hash bucket is used. */
5429 for (j = 0; j < nsyms; ++j)
5430 ++counts[hashcodes[j] % i];
5431
5432 /* For the weight function we need some information about the
5433 pagesize on the target. This is information need not be 100%
5434 accurate. Since this information is not available (so far) we
5435 define it here to a reasonable default value. If it is crucial
5436 to have a better value some day simply define this value. */
5437 # ifndef BFD_TARGET_PAGESIZE
5438 # define BFD_TARGET_PAGESIZE (4096)
5439 # endif
5440
5441 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5442 and the chains. */
5443 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5444
5445 # if 1
5446 /* Variant 1: optimize for short chains. We add the squares
5447 of all the chain lengths (which favors many small chain
5448 over a few long chains). */
5449 for (j = 0; j < i; ++j)
5450 max += counts[j] * counts[j];
5451
5452 /* This adds penalties for the overall size of the table. */
5453 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5454 max *= fact * fact;
5455 # else
5456 /* Variant 2: Optimize a lot more for small table. Here we
5457 also add squares of the size but we also add penalties for
5458 empty slots (the +1 term). */
5459 for (j = 0; j < i; ++j)
5460 max += (1 + counts[j]) * (1 + counts[j]);
5461
5462 /* The overall size of the table is considered, but not as
5463 strong as in variant 1, where it is squared. */
5464 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5465 max *= fact;
5466 # endif
5467
5468 /* Compare with current best results. */
5469 if (max < best_chlen)
5470 {
5471 best_chlen = max;
5472 best_size = i;
5473 }
5474 }
5475
5476 free (counts);
5477 }
5478 else
5479 #endif /* defined (BFD_HOST_U_64_BIT) */
5480 {
5481 /* This is the fallback solution if no 64bit type is available or if we
5482 are not supposed to spend much time on optimizations. We select the
5483 bucket count using a fixed set of numbers. */
5484 for (i = 0; elf_buckets[i] != 0; i++)
5485 {
5486 best_size = elf_buckets[i];
5487 if (nsyms < elf_buckets[i + 1])
5488 break;
5489 }
5490 if (gnu_hash && best_size < 2)
5491 best_size = 2;
5492 }
5493
5494 return best_size;
5495 }
5496
5497 /* Set up the sizes and contents of the ELF dynamic sections. This is
5498 called by the ELF linker emulation before_allocation routine. We
5499 must set the sizes of the sections before the linker sets the
5500 addresses of the various sections. */
5501
5502 bfd_boolean
5503 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5504 const char *soname,
5505 const char *rpath,
5506 const char *filter_shlib,
5507 const char * const *auxiliary_filters,
5508 struct bfd_link_info *info,
5509 asection **sinterpptr,
5510 struct bfd_elf_version_tree *verdefs)
5511 {
5512 bfd_size_type soname_indx;
5513 bfd *dynobj;
5514 const struct elf_backend_data *bed;
5515 struct elf_info_failed asvinfo;
5516
5517 *sinterpptr = NULL;
5518
5519 soname_indx = (bfd_size_type) -1;
5520
5521 if (!is_elf_hash_table (info->hash))
5522 return TRUE;
5523
5524 bed = get_elf_backend_data (output_bfd);
5525 if (info->execstack)
5526 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5527 else if (info->noexecstack)
5528 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5529 else
5530 {
5531 bfd *inputobj;
5532 asection *notesec = NULL;
5533 int exec = 0;
5534
5535 for (inputobj = info->input_bfds;
5536 inputobj;
5537 inputobj = inputobj->link_next)
5538 {
5539 asection *s;
5540
5541 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5542 continue;
5543 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5544 if (s)
5545 {
5546 if (s->flags & SEC_CODE)
5547 exec = PF_X;
5548 notesec = s;
5549 }
5550 else if (bed->default_execstack)
5551 exec = PF_X;
5552 }
5553 if (notesec)
5554 {
5555 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5556 if (exec && info->relocatable
5557 && notesec->output_section != bfd_abs_section_ptr)
5558 notesec->output_section->flags |= SEC_CODE;
5559 }
5560 }
5561
5562 /* Any syms created from now on start with -1 in
5563 got.refcount/offset and plt.refcount/offset. */
5564 elf_hash_table (info)->init_got_refcount
5565 = elf_hash_table (info)->init_got_offset;
5566 elf_hash_table (info)->init_plt_refcount
5567 = elf_hash_table (info)->init_plt_offset;
5568
5569 /* The backend may have to create some sections regardless of whether
5570 we're dynamic or not. */
5571 if (bed->elf_backend_always_size_sections
5572 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5573 return FALSE;
5574
5575 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5576 return FALSE;
5577
5578 dynobj = elf_hash_table (info)->dynobj;
5579
5580 /* If there were no dynamic objects in the link, there is nothing to
5581 do here. */
5582 if (dynobj == NULL)
5583 return TRUE;
5584
5585 if (elf_hash_table (info)->dynamic_sections_created)
5586 {
5587 struct elf_info_failed eif;
5588 struct elf_link_hash_entry *h;
5589 asection *dynstr;
5590 struct bfd_elf_version_tree *t;
5591 struct bfd_elf_version_expr *d;
5592 asection *s;
5593 bfd_boolean all_defined;
5594
5595 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5596 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5597
5598 if (soname != NULL)
5599 {
5600 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5601 soname, TRUE);
5602 if (soname_indx == (bfd_size_type) -1
5603 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5604 return FALSE;
5605 }
5606
5607 if (info->symbolic)
5608 {
5609 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5610 return FALSE;
5611 info->flags |= DF_SYMBOLIC;
5612 }
5613
5614 if (rpath != NULL)
5615 {
5616 bfd_size_type indx;
5617
5618 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5619 TRUE);
5620 if (indx == (bfd_size_type) -1
5621 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5622 return FALSE;
5623
5624 if (info->new_dtags)
5625 {
5626 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5627 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5628 return FALSE;
5629 }
5630 }
5631
5632 if (filter_shlib != NULL)
5633 {
5634 bfd_size_type indx;
5635
5636 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5637 filter_shlib, TRUE);
5638 if (indx == (bfd_size_type) -1
5639 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5640 return FALSE;
5641 }
5642
5643 if (auxiliary_filters != NULL)
5644 {
5645 const char * const *p;
5646
5647 for (p = auxiliary_filters; *p != NULL; p++)
5648 {
5649 bfd_size_type indx;
5650
5651 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5652 *p, TRUE);
5653 if (indx == (bfd_size_type) -1
5654 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5655 return FALSE;
5656 }
5657 }
5658
5659 eif.info = info;
5660 eif.verdefs = verdefs;
5661 eif.failed = FALSE;
5662
5663 /* If we are supposed to export all symbols into the dynamic symbol
5664 table (this is not the normal case), then do so. */
5665 if (info->export_dynamic
5666 || (info->executable && info->dynamic))
5667 {
5668 elf_link_hash_traverse (elf_hash_table (info),
5669 _bfd_elf_export_symbol,
5670 &eif);
5671 if (eif.failed)
5672 return FALSE;
5673 }
5674
5675 /* Make all global versions with definition. */
5676 for (t = verdefs; t != NULL; t = t->next)
5677 for (d = t->globals.list; d != NULL; d = d->next)
5678 if (!d->symver && d->literal)
5679 {
5680 const char *verstr, *name;
5681 size_t namelen, verlen, newlen;
5682 char *newname, *p;
5683 struct elf_link_hash_entry *newh;
5684
5685 name = d->pattern;
5686 namelen = strlen (name);
5687 verstr = t->name;
5688 verlen = strlen (verstr);
5689 newlen = namelen + verlen + 3;
5690
5691 newname = bfd_malloc (newlen);
5692 if (newname == NULL)
5693 return FALSE;
5694 memcpy (newname, name, namelen);
5695
5696 /* Check the hidden versioned definition. */
5697 p = newname + namelen;
5698 *p++ = ELF_VER_CHR;
5699 memcpy (p, verstr, verlen + 1);
5700 newh = elf_link_hash_lookup (elf_hash_table (info),
5701 newname, FALSE, FALSE,
5702 FALSE);
5703 if (newh == NULL
5704 || (newh->root.type != bfd_link_hash_defined
5705 && newh->root.type != bfd_link_hash_defweak))
5706 {
5707 /* Check the default versioned definition. */
5708 *p++ = ELF_VER_CHR;
5709 memcpy (p, verstr, verlen + 1);
5710 newh = elf_link_hash_lookup (elf_hash_table (info),
5711 newname, FALSE, FALSE,
5712 FALSE);
5713 }
5714 free (newname);
5715
5716 /* Mark this version if there is a definition and it is
5717 not defined in a shared object. */
5718 if (newh != NULL
5719 && !newh->def_dynamic
5720 && (newh->root.type == bfd_link_hash_defined
5721 || newh->root.type == bfd_link_hash_defweak))
5722 d->symver = 1;
5723 }
5724
5725 /* Attach all the symbols to their version information. */
5726 asvinfo.info = info;
5727 asvinfo.verdefs = verdefs;
5728 asvinfo.failed = FALSE;
5729
5730 elf_link_hash_traverse (elf_hash_table (info),
5731 _bfd_elf_link_assign_sym_version,
5732 &asvinfo);
5733 if (asvinfo.failed)
5734 return FALSE;
5735
5736 if (!info->allow_undefined_version)
5737 {
5738 /* Check if all global versions have a definition. */
5739 all_defined = TRUE;
5740 for (t = verdefs; t != NULL; t = t->next)
5741 for (d = t->globals.list; d != NULL; d = d->next)
5742 if (d->literal && !d->symver && !d->script)
5743 {
5744 (*_bfd_error_handler)
5745 (_("%s: undefined version: %s"),
5746 d->pattern, t->name);
5747 all_defined = FALSE;
5748 }
5749
5750 if (!all_defined)
5751 {
5752 bfd_set_error (bfd_error_bad_value);
5753 return FALSE;
5754 }
5755 }
5756
5757 /* Find all symbols which were defined in a dynamic object and make
5758 the backend pick a reasonable value for them. */
5759 elf_link_hash_traverse (elf_hash_table (info),
5760 _bfd_elf_adjust_dynamic_symbol,
5761 &eif);
5762 if (eif.failed)
5763 return FALSE;
5764
5765 /* Add some entries to the .dynamic section. We fill in some of the
5766 values later, in bfd_elf_final_link, but we must add the entries
5767 now so that we know the final size of the .dynamic section. */
5768
5769 /* If there are initialization and/or finalization functions to
5770 call then add the corresponding DT_INIT/DT_FINI entries. */
5771 h = (info->init_function
5772 ? elf_link_hash_lookup (elf_hash_table (info),
5773 info->init_function, FALSE,
5774 FALSE, FALSE)
5775 : NULL);
5776 if (h != NULL
5777 && (h->ref_regular
5778 || h->def_regular))
5779 {
5780 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5781 return FALSE;
5782 }
5783 h = (info->fini_function
5784 ? elf_link_hash_lookup (elf_hash_table (info),
5785 info->fini_function, FALSE,
5786 FALSE, FALSE)
5787 : NULL);
5788 if (h != NULL
5789 && (h->ref_regular
5790 || h->def_regular))
5791 {
5792 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5793 return FALSE;
5794 }
5795
5796 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5797 if (s != NULL && s->linker_has_input)
5798 {
5799 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5800 if (! info->executable)
5801 {
5802 bfd *sub;
5803 asection *o;
5804
5805 for (sub = info->input_bfds; sub != NULL;
5806 sub = sub->link_next)
5807 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5808 for (o = sub->sections; o != NULL; o = o->next)
5809 if (elf_section_data (o)->this_hdr.sh_type
5810 == SHT_PREINIT_ARRAY)
5811 {
5812 (*_bfd_error_handler)
5813 (_("%B: .preinit_array section is not allowed in DSO"),
5814 sub);
5815 break;
5816 }
5817
5818 bfd_set_error (bfd_error_nonrepresentable_section);
5819 return FALSE;
5820 }
5821
5822 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5823 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5824 return FALSE;
5825 }
5826 s = bfd_get_section_by_name (output_bfd, ".init_array");
5827 if (s != NULL && s->linker_has_input)
5828 {
5829 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5830 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5831 return FALSE;
5832 }
5833 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5834 if (s != NULL && s->linker_has_input)
5835 {
5836 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5837 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5838 return FALSE;
5839 }
5840
5841 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5842 /* If .dynstr is excluded from the link, we don't want any of
5843 these tags. Strictly, we should be checking each section
5844 individually; This quick check covers for the case where
5845 someone does a /DISCARD/ : { *(*) }. */
5846 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5847 {
5848 bfd_size_type strsize;
5849
5850 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5851 if ((info->emit_hash
5852 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5853 || (info->emit_gnu_hash
5854 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5855 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5856 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5858 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5859 bed->s->sizeof_sym))
5860 return FALSE;
5861 }
5862 }
5863
5864 /* The backend must work out the sizes of all the other dynamic
5865 sections. */
5866 if (bed->elf_backend_size_dynamic_sections
5867 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5868 return FALSE;
5869
5870 if (elf_hash_table (info)->dynamic_sections_created)
5871 {
5872 unsigned long section_sym_count;
5873 asection *s;
5874
5875 /* Set up the version definition section. */
5876 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5877 BFD_ASSERT (s != NULL);
5878
5879 /* We may have created additional version definitions if we are
5880 just linking a regular application. */
5881 verdefs = asvinfo.verdefs;
5882
5883 /* Skip anonymous version tag. */
5884 if (verdefs != NULL && verdefs->vernum == 0)
5885 verdefs = verdefs->next;
5886
5887 if (verdefs == NULL && !info->create_default_symver)
5888 s->flags |= SEC_EXCLUDE;
5889 else
5890 {
5891 unsigned int cdefs;
5892 bfd_size_type size;
5893 struct bfd_elf_version_tree *t;
5894 bfd_byte *p;
5895 Elf_Internal_Verdef def;
5896 Elf_Internal_Verdaux defaux;
5897 struct bfd_link_hash_entry *bh;
5898 struct elf_link_hash_entry *h;
5899 const char *name;
5900
5901 cdefs = 0;
5902 size = 0;
5903
5904 /* Make space for the base version. */
5905 size += sizeof (Elf_External_Verdef);
5906 size += sizeof (Elf_External_Verdaux);
5907 ++cdefs;
5908
5909 /* Make space for the default version. */
5910 if (info->create_default_symver)
5911 {
5912 size += sizeof (Elf_External_Verdef);
5913 ++cdefs;
5914 }
5915
5916 for (t = verdefs; t != NULL; t = t->next)
5917 {
5918 struct bfd_elf_version_deps *n;
5919
5920 size += sizeof (Elf_External_Verdef);
5921 size += sizeof (Elf_External_Verdaux);
5922 ++cdefs;
5923
5924 for (n = t->deps; n != NULL; n = n->next)
5925 size += sizeof (Elf_External_Verdaux);
5926 }
5927
5928 s->size = size;
5929 s->contents = bfd_alloc (output_bfd, s->size);
5930 if (s->contents == NULL && s->size != 0)
5931 return FALSE;
5932
5933 /* Fill in the version definition section. */
5934
5935 p = s->contents;
5936
5937 def.vd_version = VER_DEF_CURRENT;
5938 def.vd_flags = VER_FLG_BASE;
5939 def.vd_ndx = 1;
5940 def.vd_cnt = 1;
5941 if (info->create_default_symver)
5942 {
5943 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5944 def.vd_next = sizeof (Elf_External_Verdef);
5945 }
5946 else
5947 {
5948 def.vd_aux = sizeof (Elf_External_Verdef);
5949 def.vd_next = (sizeof (Elf_External_Verdef)
5950 + sizeof (Elf_External_Verdaux));
5951 }
5952
5953 if (soname_indx != (bfd_size_type) -1)
5954 {
5955 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5956 soname_indx);
5957 def.vd_hash = bfd_elf_hash (soname);
5958 defaux.vda_name = soname_indx;
5959 name = soname;
5960 }
5961 else
5962 {
5963 bfd_size_type indx;
5964
5965 name = lbasename (output_bfd->filename);
5966 def.vd_hash = bfd_elf_hash (name);
5967 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5968 name, FALSE);
5969 if (indx == (bfd_size_type) -1)
5970 return FALSE;
5971 defaux.vda_name = indx;
5972 }
5973 defaux.vda_next = 0;
5974
5975 _bfd_elf_swap_verdef_out (output_bfd, &def,
5976 (Elf_External_Verdef *) p);
5977 p += sizeof (Elf_External_Verdef);
5978 if (info->create_default_symver)
5979 {
5980 /* Add a symbol representing this version. */
5981 bh = NULL;
5982 if (! (_bfd_generic_link_add_one_symbol
5983 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5984 0, NULL, FALSE,
5985 get_elf_backend_data (dynobj)->collect, &bh)))
5986 return FALSE;
5987 h = (struct elf_link_hash_entry *) bh;
5988 h->non_elf = 0;
5989 h->def_regular = 1;
5990 h->type = STT_OBJECT;
5991 h->verinfo.vertree = NULL;
5992
5993 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5994 return FALSE;
5995
5996 /* Create a duplicate of the base version with the same
5997 aux block, but different flags. */
5998 def.vd_flags = 0;
5999 def.vd_ndx = 2;
6000 def.vd_aux = sizeof (Elf_External_Verdef);
6001 if (verdefs)
6002 def.vd_next = (sizeof (Elf_External_Verdef)
6003 + sizeof (Elf_External_Verdaux));
6004 else
6005 def.vd_next = 0;
6006 _bfd_elf_swap_verdef_out (output_bfd, &def,
6007 (Elf_External_Verdef *) p);
6008 p += sizeof (Elf_External_Verdef);
6009 }
6010 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6011 (Elf_External_Verdaux *) p);
6012 p += sizeof (Elf_External_Verdaux);
6013
6014 for (t = verdefs; t != NULL; t = t->next)
6015 {
6016 unsigned int cdeps;
6017 struct bfd_elf_version_deps *n;
6018
6019 cdeps = 0;
6020 for (n = t->deps; n != NULL; n = n->next)
6021 ++cdeps;
6022
6023 /* Add a symbol representing this version. */
6024 bh = NULL;
6025 if (! (_bfd_generic_link_add_one_symbol
6026 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6027 0, NULL, FALSE,
6028 get_elf_backend_data (dynobj)->collect, &bh)))
6029 return FALSE;
6030 h = (struct elf_link_hash_entry *) bh;
6031 h->non_elf = 0;
6032 h->def_regular = 1;
6033 h->type = STT_OBJECT;
6034 h->verinfo.vertree = t;
6035
6036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6037 return FALSE;
6038
6039 def.vd_version = VER_DEF_CURRENT;
6040 def.vd_flags = 0;
6041 if (t->globals.list == NULL
6042 && t->locals.list == NULL
6043 && ! t->used)
6044 def.vd_flags |= VER_FLG_WEAK;
6045 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6046 def.vd_cnt = cdeps + 1;
6047 def.vd_hash = bfd_elf_hash (t->name);
6048 def.vd_aux = sizeof (Elf_External_Verdef);
6049 def.vd_next = 0;
6050 if (t->next != NULL)
6051 def.vd_next = (sizeof (Elf_External_Verdef)
6052 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6053
6054 _bfd_elf_swap_verdef_out (output_bfd, &def,
6055 (Elf_External_Verdef *) p);
6056 p += sizeof (Elf_External_Verdef);
6057
6058 defaux.vda_name = h->dynstr_index;
6059 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6060 h->dynstr_index);
6061 defaux.vda_next = 0;
6062 if (t->deps != NULL)
6063 defaux.vda_next = sizeof (Elf_External_Verdaux);
6064 t->name_indx = defaux.vda_name;
6065
6066 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6067 (Elf_External_Verdaux *) p);
6068 p += sizeof (Elf_External_Verdaux);
6069
6070 for (n = t->deps; n != NULL; n = n->next)
6071 {
6072 if (n->version_needed == NULL)
6073 {
6074 /* This can happen if there was an error in the
6075 version script. */
6076 defaux.vda_name = 0;
6077 }
6078 else
6079 {
6080 defaux.vda_name = n->version_needed->name_indx;
6081 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6082 defaux.vda_name);
6083 }
6084 if (n->next == NULL)
6085 defaux.vda_next = 0;
6086 else
6087 defaux.vda_next = sizeof (Elf_External_Verdaux);
6088
6089 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6090 (Elf_External_Verdaux *) p);
6091 p += sizeof (Elf_External_Verdaux);
6092 }
6093 }
6094
6095 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6096 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6097 return FALSE;
6098
6099 elf_tdata (output_bfd)->cverdefs = cdefs;
6100 }
6101
6102 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6103 {
6104 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6105 return FALSE;
6106 }
6107 else if (info->flags & DF_BIND_NOW)
6108 {
6109 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6110 return FALSE;
6111 }
6112
6113 if (info->flags_1)
6114 {
6115 if (info->executable)
6116 info->flags_1 &= ~ (DF_1_INITFIRST
6117 | DF_1_NODELETE
6118 | DF_1_NOOPEN);
6119 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6120 return FALSE;
6121 }
6122
6123 /* Work out the size of the version reference section. */
6124
6125 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6126 BFD_ASSERT (s != NULL);
6127 {
6128 struct elf_find_verdep_info sinfo;
6129
6130 sinfo.info = info;
6131 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6132 if (sinfo.vers == 0)
6133 sinfo.vers = 1;
6134 sinfo.failed = FALSE;
6135
6136 elf_link_hash_traverse (elf_hash_table (info),
6137 _bfd_elf_link_find_version_dependencies,
6138 &sinfo);
6139 if (sinfo.failed)
6140 return FALSE;
6141
6142 if (elf_tdata (output_bfd)->verref == NULL)
6143 s->flags |= SEC_EXCLUDE;
6144 else
6145 {
6146 Elf_Internal_Verneed *t;
6147 unsigned int size;
6148 unsigned int crefs;
6149 bfd_byte *p;
6150
6151 /* Build the version definition section. */
6152 size = 0;
6153 crefs = 0;
6154 for (t = elf_tdata (output_bfd)->verref;
6155 t != NULL;
6156 t = t->vn_nextref)
6157 {
6158 Elf_Internal_Vernaux *a;
6159
6160 size += sizeof (Elf_External_Verneed);
6161 ++crefs;
6162 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6163 size += sizeof (Elf_External_Vernaux);
6164 }
6165
6166 s->size = size;
6167 s->contents = bfd_alloc (output_bfd, s->size);
6168 if (s->contents == NULL)
6169 return FALSE;
6170
6171 p = s->contents;
6172 for (t = elf_tdata (output_bfd)->verref;
6173 t != NULL;
6174 t = t->vn_nextref)
6175 {
6176 unsigned int caux;
6177 Elf_Internal_Vernaux *a;
6178 bfd_size_type indx;
6179
6180 caux = 0;
6181 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6182 ++caux;
6183
6184 t->vn_version = VER_NEED_CURRENT;
6185 t->vn_cnt = caux;
6186 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6187 elf_dt_name (t->vn_bfd) != NULL
6188 ? elf_dt_name (t->vn_bfd)
6189 : lbasename (t->vn_bfd->filename),
6190 FALSE);
6191 if (indx == (bfd_size_type) -1)
6192 return FALSE;
6193 t->vn_file = indx;
6194 t->vn_aux = sizeof (Elf_External_Verneed);
6195 if (t->vn_nextref == NULL)
6196 t->vn_next = 0;
6197 else
6198 t->vn_next = (sizeof (Elf_External_Verneed)
6199 + caux * sizeof (Elf_External_Vernaux));
6200
6201 _bfd_elf_swap_verneed_out (output_bfd, t,
6202 (Elf_External_Verneed *) p);
6203 p += sizeof (Elf_External_Verneed);
6204
6205 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6206 {
6207 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6208 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6209 a->vna_nodename, FALSE);
6210 if (indx == (bfd_size_type) -1)
6211 return FALSE;
6212 a->vna_name = indx;
6213 if (a->vna_nextptr == NULL)
6214 a->vna_next = 0;
6215 else
6216 a->vna_next = sizeof (Elf_External_Vernaux);
6217
6218 _bfd_elf_swap_vernaux_out (output_bfd, a,
6219 (Elf_External_Vernaux *) p);
6220 p += sizeof (Elf_External_Vernaux);
6221 }
6222 }
6223
6224 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6225 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6226 return FALSE;
6227
6228 elf_tdata (output_bfd)->cverrefs = crefs;
6229 }
6230 }
6231
6232 if ((elf_tdata (output_bfd)->cverrefs == 0
6233 && elf_tdata (output_bfd)->cverdefs == 0)
6234 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6235 &section_sym_count) == 0)
6236 {
6237 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6238 s->flags |= SEC_EXCLUDE;
6239 }
6240 }
6241 return TRUE;
6242 }
6243
6244 /* Find the first non-excluded output section. We'll use its
6245 section symbol for some emitted relocs. */
6246 void
6247 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6248 {
6249 asection *s;
6250
6251 for (s = output_bfd->sections; s != NULL; s = s->next)
6252 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6253 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6254 {
6255 elf_hash_table (info)->text_index_section = s;
6256 break;
6257 }
6258 }
6259
6260 /* Find two non-excluded output sections, one for code, one for data.
6261 We'll use their section symbols for some emitted relocs. */
6262 void
6263 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6264 {
6265 asection *s;
6266
6267 /* Data first, since setting text_index_section changes
6268 _bfd_elf_link_omit_section_dynsym. */
6269 for (s = output_bfd->sections; s != NULL; s = s->next)
6270 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6271 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6272 {
6273 elf_hash_table (info)->data_index_section = s;
6274 break;
6275 }
6276
6277 for (s = output_bfd->sections; s != NULL; s = s->next)
6278 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6279 == (SEC_ALLOC | SEC_READONLY))
6280 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6281 {
6282 elf_hash_table (info)->text_index_section = s;
6283 break;
6284 }
6285
6286 if (elf_hash_table (info)->text_index_section == NULL)
6287 elf_hash_table (info)->text_index_section
6288 = elf_hash_table (info)->data_index_section;
6289 }
6290
6291 bfd_boolean
6292 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6293 {
6294 const struct elf_backend_data *bed;
6295
6296 if (!is_elf_hash_table (info->hash))
6297 return TRUE;
6298
6299 bed = get_elf_backend_data (output_bfd);
6300 (*bed->elf_backend_init_index_section) (output_bfd, info);
6301
6302 if (elf_hash_table (info)->dynamic_sections_created)
6303 {
6304 bfd *dynobj;
6305 asection *s;
6306 bfd_size_type dynsymcount;
6307 unsigned long section_sym_count;
6308 unsigned int dtagcount;
6309
6310 dynobj = elf_hash_table (info)->dynobj;
6311
6312 /* Assign dynsym indicies. In a shared library we generate a
6313 section symbol for each output section, which come first.
6314 Next come all of the back-end allocated local dynamic syms,
6315 followed by the rest of the global symbols. */
6316
6317 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6318 &section_sym_count);
6319
6320 /* Work out the size of the symbol version section. */
6321 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6322 BFD_ASSERT (s != NULL);
6323 if (dynsymcount != 0
6324 && (s->flags & SEC_EXCLUDE) == 0)
6325 {
6326 s->size = dynsymcount * sizeof (Elf_External_Versym);
6327 s->contents = bfd_zalloc (output_bfd, s->size);
6328 if (s->contents == NULL)
6329 return FALSE;
6330
6331 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6332 return FALSE;
6333 }
6334
6335 /* Set the size of the .dynsym and .hash sections. We counted
6336 the number of dynamic symbols in elf_link_add_object_symbols.
6337 We will build the contents of .dynsym and .hash when we build
6338 the final symbol table, because until then we do not know the
6339 correct value to give the symbols. We built the .dynstr
6340 section as we went along in elf_link_add_object_symbols. */
6341 s = bfd_get_section_by_name (dynobj, ".dynsym");
6342 BFD_ASSERT (s != NULL);
6343 s->size = dynsymcount * bed->s->sizeof_sym;
6344
6345 if (dynsymcount != 0)
6346 {
6347 s->contents = bfd_alloc (output_bfd, s->size);
6348 if (s->contents == NULL)
6349 return FALSE;
6350
6351 /* The first entry in .dynsym is a dummy symbol.
6352 Clear all the section syms, in case we don't output them all. */
6353 ++section_sym_count;
6354 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6355 }
6356
6357 elf_hash_table (info)->bucketcount = 0;
6358
6359 /* Compute the size of the hashing table. As a side effect this
6360 computes the hash values for all the names we export. */
6361 if (info->emit_hash)
6362 {
6363 unsigned long int *hashcodes;
6364 struct hash_codes_info hashinf;
6365 bfd_size_type amt;
6366 unsigned long int nsyms;
6367 size_t bucketcount;
6368 size_t hash_entry_size;
6369
6370 /* Compute the hash values for all exported symbols. At the same
6371 time store the values in an array so that we could use them for
6372 optimizations. */
6373 amt = dynsymcount * sizeof (unsigned long int);
6374 hashcodes = bfd_malloc (amt);
6375 if (hashcodes == NULL)
6376 return FALSE;
6377 hashinf.hashcodes = hashcodes;
6378 hashinf.error = FALSE;
6379
6380 /* Put all hash values in HASHCODES. */
6381 elf_link_hash_traverse (elf_hash_table (info),
6382 elf_collect_hash_codes, &hashinf);
6383 if (hashinf.error)
6384 {
6385 free (hashcodes);
6386 return FALSE;
6387 }
6388
6389 nsyms = hashinf.hashcodes - hashcodes;
6390 bucketcount
6391 = compute_bucket_count (info, hashcodes, nsyms, 0);
6392 free (hashcodes);
6393
6394 if (bucketcount == 0)
6395 return FALSE;
6396
6397 elf_hash_table (info)->bucketcount = bucketcount;
6398
6399 s = bfd_get_section_by_name (dynobj, ".hash");
6400 BFD_ASSERT (s != NULL);
6401 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6402 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6403 s->contents = bfd_zalloc (output_bfd, s->size);
6404 if (s->contents == NULL)
6405 return FALSE;
6406
6407 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6408 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6409 s->contents + hash_entry_size);
6410 }
6411
6412 if (info->emit_gnu_hash)
6413 {
6414 size_t i, cnt;
6415 unsigned char *contents;
6416 struct collect_gnu_hash_codes cinfo;
6417 bfd_size_type amt;
6418 size_t bucketcount;
6419
6420 memset (&cinfo, 0, sizeof (cinfo));
6421
6422 /* Compute the hash values for all exported symbols. At the same
6423 time store the values in an array so that we could use them for
6424 optimizations. */
6425 amt = dynsymcount * 2 * sizeof (unsigned long int);
6426 cinfo.hashcodes = bfd_malloc (amt);
6427 if (cinfo.hashcodes == NULL)
6428 return FALSE;
6429
6430 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6431 cinfo.min_dynindx = -1;
6432 cinfo.output_bfd = output_bfd;
6433 cinfo.bed = bed;
6434
6435 /* Put all hash values in HASHCODES. */
6436 elf_link_hash_traverse (elf_hash_table (info),
6437 elf_collect_gnu_hash_codes, &cinfo);
6438 if (cinfo.error)
6439 {
6440 free (cinfo.hashcodes);
6441 return FALSE;
6442 }
6443
6444 bucketcount
6445 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6446
6447 if (bucketcount == 0)
6448 {
6449 free (cinfo.hashcodes);
6450 return FALSE;
6451 }
6452
6453 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6454 BFD_ASSERT (s != NULL);
6455
6456 if (cinfo.nsyms == 0)
6457 {
6458 /* Empty .gnu.hash section is special. */
6459 BFD_ASSERT (cinfo.min_dynindx == -1);
6460 free (cinfo.hashcodes);
6461 s->size = 5 * 4 + bed->s->arch_size / 8;
6462 contents = bfd_zalloc (output_bfd, s->size);
6463 if (contents == NULL)
6464 return FALSE;
6465 s->contents = contents;
6466 /* 1 empty bucket. */
6467 bfd_put_32 (output_bfd, 1, contents);
6468 /* SYMIDX above the special symbol 0. */
6469 bfd_put_32 (output_bfd, 1, contents + 4);
6470 /* Just one word for bitmask. */
6471 bfd_put_32 (output_bfd, 1, contents + 8);
6472 /* Only hash fn bloom filter. */
6473 bfd_put_32 (output_bfd, 0, contents + 12);
6474 /* No hashes are valid - empty bitmask. */
6475 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6476 /* No hashes in the only bucket. */
6477 bfd_put_32 (output_bfd, 0,
6478 contents + 16 + bed->s->arch_size / 8);
6479 }
6480 else
6481 {
6482 unsigned long int maskwords, maskbitslog2;
6483 BFD_ASSERT (cinfo.min_dynindx != -1);
6484
6485 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6486 if (maskbitslog2 < 3)
6487 maskbitslog2 = 5;
6488 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6489 maskbitslog2 = maskbitslog2 + 3;
6490 else
6491 maskbitslog2 = maskbitslog2 + 2;
6492 if (bed->s->arch_size == 64)
6493 {
6494 if (maskbitslog2 == 5)
6495 maskbitslog2 = 6;
6496 cinfo.shift1 = 6;
6497 }
6498 else
6499 cinfo.shift1 = 5;
6500 cinfo.mask = (1 << cinfo.shift1) - 1;
6501 cinfo.shift2 = maskbitslog2;
6502 cinfo.maskbits = 1 << maskbitslog2;
6503 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6504 amt = bucketcount * sizeof (unsigned long int) * 2;
6505 amt += maskwords * sizeof (bfd_vma);
6506 cinfo.bitmask = bfd_malloc (amt);
6507 if (cinfo.bitmask == NULL)
6508 {
6509 free (cinfo.hashcodes);
6510 return FALSE;
6511 }
6512
6513 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6514 cinfo.indx = cinfo.counts + bucketcount;
6515 cinfo.symindx = dynsymcount - cinfo.nsyms;
6516 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6517
6518 /* Determine how often each hash bucket is used. */
6519 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6520 for (i = 0; i < cinfo.nsyms; ++i)
6521 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6522
6523 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6524 if (cinfo.counts[i] != 0)
6525 {
6526 cinfo.indx[i] = cnt;
6527 cnt += cinfo.counts[i];
6528 }
6529 BFD_ASSERT (cnt == dynsymcount);
6530 cinfo.bucketcount = bucketcount;
6531 cinfo.local_indx = cinfo.min_dynindx;
6532
6533 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6534 s->size += cinfo.maskbits / 8;
6535 contents = bfd_zalloc (output_bfd, s->size);
6536 if (contents == NULL)
6537 {
6538 free (cinfo.bitmask);
6539 free (cinfo.hashcodes);
6540 return FALSE;
6541 }
6542
6543 s->contents = contents;
6544 bfd_put_32 (output_bfd, bucketcount, contents);
6545 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6546 bfd_put_32 (output_bfd, maskwords, contents + 8);
6547 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6548 contents += 16 + cinfo.maskbits / 8;
6549
6550 for (i = 0; i < bucketcount; ++i)
6551 {
6552 if (cinfo.counts[i] == 0)
6553 bfd_put_32 (output_bfd, 0, contents);
6554 else
6555 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6556 contents += 4;
6557 }
6558
6559 cinfo.contents = contents;
6560
6561 /* Renumber dynamic symbols, populate .gnu.hash section. */
6562 elf_link_hash_traverse (elf_hash_table (info),
6563 elf_renumber_gnu_hash_syms, &cinfo);
6564
6565 contents = s->contents + 16;
6566 for (i = 0; i < maskwords; ++i)
6567 {
6568 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6569 contents);
6570 contents += bed->s->arch_size / 8;
6571 }
6572
6573 free (cinfo.bitmask);
6574 free (cinfo.hashcodes);
6575 }
6576 }
6577
6578 s = bfd_get_section_by_name (dynobj, ".dynstr");
6579 BFD_ASSERT (s != NULL);
6580
6581 elf_finalize_dynstr (output_bfd, info);
6582
6583 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6584
6585 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6586 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6587 return FALSE;
6588 }
6589
6590 return TRUE;
6591 }
6592 \f
6593 /* Indicate that we are only retrieving symbol values from this
6594 section. */
6595
6596 void
6597 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6598 {
6599 if (is_elf_hash_table (info->hash))
6600 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6601 _bfd_generic_link_just_syms (sec, info);
6602 }
6603
6604 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6605
6606 static void
6607 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6608 asection *sec)
6609 {
6610 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6611 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6612 }
6613
6614 /* Finish SHF_MERGE section merging. */
6615
6616 bfd_boolean
6617 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6618 {
6619 bfd *ibfd;
6620 asection *sec;
6621
6622 if (!is_elf_hash_table (info->hash))
6623 return FALSE;
6624
6625 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6626 if ((ibfd->flags & DYNAMIC) == 0)
6627 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6628 if ((sec->flags & SEC_MERGE) != 0
6629 && !bfd_is_abs_section (sec->output_section))
6630 {
6631 struct bfd_elf_section_data *secdata;
6632
6633 secdata = elf_section_data (sec);
6634 if (! _bfd_add_merge_section (abfd,
6635 &elf_hash_table (info)->merge_info,
6636 sec, &secdata->sec_info))
6637 return FALSE;
6638 else if (secdata->sec_info)
6639 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6640 }
6641
6642 if (elf_hash_table (info)->merge_info != NULL)
6643 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6644 merge_sections_remove_hook);
6645 return TRUE;
6646 }
6647
6648 /* Create an entry in an ELF linker hash table. */
6649
6650 struct bfd_hash_entry *
6651 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6652 struct bfd_hash_table *table,
6653 const char *string)
6654 {
6655 /* Allocate the structure if it has not already been allocated by a
6656 subclass. */
6657 if (entry == NULL)
6658 {
6659 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6660 if (entry == NULL)
6661 return entry;
6662 }
6663
6664 /* Call the allocation method of the superclass. */
6665 entry = _bfd_link_hash_newfunc (entry, table, string);
6666 if (entry != NULL)
6667 {
6668 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6669 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6670
6671 /* Set local fields. */
6672 ret->indx = -1;
6673 ret->dynindx = -1;
6674 ret->got = htab->init_got_refcount;
6675 ret->plt = htab->init_plt_refcount;
6676 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6677 - offsetof (struct elf_link_hash_entry, size)));
6678 /* Assume that we have been called by a non-ELF symbol reader.
6679 This flag is then reset by the code which reads an ELF input
6680 file. This ensures that a symbol created by a non-ELF symbol
6681 reader will have the flag set correctly. */
6682 ret->non_elf = 1;
6683 }
6684
6685 return entry;
6686 }
6687
6688 /* Copy data from an indirect symbol to its direct symbol, hiding the
6689 old indirect symbol. Also used for copying flags to a weakdef. */
6690
6691 void
6692 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6693 struct elf_link_hash_entry *dir,
6694 struct elf_link_hash_entry *ind)
6695 {
6696 struct elf_link_hash_table *htab;
6697
6698 /* Copy down any references that we may have already seen to the
6699 symbol which just became indirect. */
6700
6701 dir->ref_dynamic |= ind->ref_dynamic;
6702 dir->ref_regular |= ind->ref_regular;
6703 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6704 dir->non_got_ref |= ind->non_got_ref;
6705 dir->needs_plt |= ind->needs_plt;
6706 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6707
6708 if (ind->root.type != bfd_link_hash_indirect)
6709 return;
6710
6711 /* Copy over the global and procedure linkage table refcount entries.
6712 These may have been already set up by a check_relocs routine. */
6713 htab = elf_hash_table (info);
6714 if (ind->got.refcount > htab->init_got_refcount.refcount)
6715 {
6716 if (dir->got.refcount < 0)
6717 dir->got.refcount = 0;
6718 dir->got.refcount += ind->got.refcount;
6719 ind->got.refcount = htab->init_got_refcount.refcount;
6720 }
6721
6722 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6723 {
6724 if (dir->plt.refcount < 0)
6725 dir->plt.refcount = 0;
6726 dir->plt.refcount += ind->plt.refcount;
6727 ind->plt.refcount = htab->init_plt_refcount.refcount;
6728 }
6729
6730 if (ind->dynindx != -1)
6731 {
6732 if (dir->dynindx != -1)
6733 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6734 dir->dynindx = ind->dynindx;
6735 dir->dynstr_index = ind->dynstr_index;
6736 ind->dynindx = -1;
6737 ind->dynstr_index = 0;
6738 }
6739 }
6740
6741 void
6742 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6743 struct elf_link_hash_entry *h,
6744 bfd_boolean force_local)
6745 {
6746 h->plt = elf_hash_table (info)->init_plt_offset;
6747 h->needs_plt = 0;
6748 if (force_local)
6749 {
6750 h->forced_local = 1;
6751 if (h->dynindx != -1)
6752 {
6753 h->dynindx = -1;
6754 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6755 h->dynstr_index);
6756 }
6757 }
6758 }
6759
6760 /* Initialize an ELF linker hash table. */
6761
6762 bfd_boolean
6763 _bfd_elf_link_hash_table_init
6764 (struct elf_link_hash_table *table,
6765 bfd *abfd,
6766 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6767 struct bfd_hash_table *,
6768 const char *),
6769 unsigned int entsize)
6770 {
6771 bfd_boolean ret;
6772 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6773
6774 memset (table, 0, sizeof * table);
6775 table->init_got_refcount.refcount = can_refcount - 1;
6776 table->init_plt_refcount.refcount = can_refcount - 1;
6777 table->init_got_offset.offset = -(bfd_vma) 1;
6778 table->init_plt_offset.offset = -(bfd_vma) 1;
6779 /* The first dynamic symbol is a dummy. */
6780 table->dynsymcount = 1;
6781
6782 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6783 table->root.type = bfd_link_elf_hash_table;
6784
6785 return ret;
6786 }
6787
6788 /* Create an ELF linker hash table. */
6789
6790 struct bfd_link_hash_table *
6791 _bfd_elf_link_hash_table_create (bfd *abfd)
6792 {
6793 struct elf_link_hash_table *ret;
6794 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6795
6796 ret = bfd_malloc (amt);
6797 if (ret == NULL)
6798 return NULL;
6799
6800 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6801 sizeof (struct elf_link_hash_entry)))
6802 {
6803 free (ret);
6804 return NULL;
6805 }
6806
6807 return &ret->root;
6808 }
6809
6810 /* This is a hook for the ELF emulation code in the generic linker to
6811 tell the backend linker what file name to use for the DT_NEEDED
6812 entry for a dynamic object. */
6813
6814 void
6815 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6816 {
6817 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6818 && bfd_get_format (abfd) == bfd_object)
6819 elf_dt_name (abfd) = name;
6820 }
6821
6822 int
6823 bfd_elf_get_dyn_lib_class (bfd *abfd)
6824 {
6825 int lib_class;
6826 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6827 && bfd_get_format (abfd) == bfd_object)
6828 lib_class = elf_dyn_lib_class (abfd);
6829 else
6830 lib_class = 0;
6831 return lib_class;
6832 }
6833
6834 void
6835 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6836 {
6837 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6838 && bfd_get_format (abfd) == bfd_object)
6839 elf_dyn_lib_class (abfd) = lib_class;
6840 }
6841
6842 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6843 the linker ELF emulation code. */
6844
6845 struct bfd_link_needed_list *
6846 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6847 struct bfd_link_info *info)
6848 {
6849 if (! is_elf_hash_table (info->hash))
6850 return NULL;
6851 return elf_hash_table (info)->needed;
6852 }
6853
6854 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6855 hook for the linker ELF emulation code. */
6856
6857 struct bfd_link_needed_list *
6858 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6859 struct bfd_link_info *info)
6860 {
6861 if (! is_elf_hash_table (info->hash))
6862 return NULL;
6863 return elf_hash_table (info)->runpath;
6864 }
6865
6866 /* Get the name actually used for a dynamic object for a link. This
6867 is the SONAME entry if there is one. Otherwise, it is the string
6868 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6869
6870 const char *
6871 bfd_elf_get_dt_soname (bfd *abfd)
6872 {
6873 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6874 && bfd_get_format (abfd) == bfd_object)
6875 return elf_dt_name (abfd);
6876 return NULL;
6877 }
6878
6879 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6880 the ELF linker emulation code. */
6881
6882 bfd_boolean
6883 bfd_elf_get_bfd_needed_list (bfd *abfd,
6884 struct bfd_link_needed_list **pneeded)
6885 {
6886 asection *s;
6887 bfd_byte *dynbuf = NULL;
6888 unsigned int elfsec;
6889 unsigned long shlink;
6890 bfd_byte *extdyn, *extdynend;
6891 size_t extdynsize;
6892 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6893
6894 *pneeded = NULL;
6895
6896 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6897 || bfd_get_format (abfd) != bfd_object)
6898 return TRUE;
6899
6900 s = bfd_get_section_by_name (abfd, ".dynamic");
6901 if (s == NULL || s->size == 0)
6902 return TRUE;
6903
6904 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6905 goto error_return;
6906
6907 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6908 if (elfsec == SHN_BAD)
6909 goto error_return;
6910
6911 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6912
6913 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6914 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6915
6916 extdyn = dynbuf;
6917 extdynend = extdyn + s->size;
6918 for (; extdyn < extdynend; extdyn += extdynsize)
6919 {
6920 Elf_Internal_Dyn dyn;
6921
6922 (*swap_dyn_in) (abfd, extdyn, &dyn);
6923
6924 if (dyn.d_tag == DT_NULL)
6925 break;
6926
6927 if (dyn.d_tag == DT_NEEDED)
6928 {
6929 const char *string;
6930 struct bfd_link_needed_list *l;
6931 unsigned int tagv = dyn.d_un.d_val;
6932 bfd_size_type amt;
6933
6934 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6935 if (string == NULL)
6936 goto error_return;
6937
6938 amt = sizeof *l;
6939 l = bfd_alloc (abfd, amt);
6940 if (l == NULL)
6941 goto error_return;
6942
6943 l->by = abfd;
6944 l->name = string;
6945 l->next = *pneeded;
6946 *pneeded = l;
6947 }
6948 }
6949
6950 free (dynbuf);
6951
6952 return TRUE;
6953
6954 error_return:
6955 if (dynbuf != NULL)
6956 free (dynbuf);
6957 return FALSE;
6958 }
6959
6960 struct elf_symbuf_symbol
6961 {
6962 unsigned long st_name; /* Symbol name, index in string tbl */
6963 unsigned char st_info; /* Type and binding attributes */
6964 unsigned char st_other; /* Visibilty, and target specific */
6965 };
6966
6967 struct elf_symbuf_head
6968 {
6969 struct elf_symbuf_symbol *ssym;
6970 bfd_size_type count;
6971 unsigned int st_shndx;
6972 };
6973
6974 struct elf_symbol
6975 {
6976 union
6977 {
6978 Elf_Internal_Sym *isym;
6979 struct elf_symbuf_symbol *ssym;
6980 } u;
6981 const char *name;
6982 };
6983
6984 /* Sort references to symbols by ascending section number. */
6985
6986 static int
6987 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6988 {
6989 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6990 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6991
6992 return s1->st_shndx - s2->st_shndx;
6993 }
6994
6995 static int
6996 elf_sym_name_compare (const void *arg1, const void *arg2)
6997 {
6998 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6999 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7000 return strcmp (s1->name, s2->name);
7001 }
7002
7003 static struct elf_symbuf_head *
7004 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7005 {
7006 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7007 struct elf_symbuf_symbol *ssym;
7008 struct elf_symbuf_head *ssymbuf, *ssymhead;
7009 bfd_size_type i, shndx_count, total_size;
7010
7011 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
7012 if (indbuf == NULL)
7013 return NULL;
7014
7015 for (ind = indbuf, i = 0; i < symcount; i++)
7016 if (isymbuf[i].st_shndx != SHN_UNDEF)
7017 *ind++ = &isymbuf[i];
7018 indbufend = ind;
7019
7020 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7021 elf_sort_elf_symbol);
7022
7023 shndx_count = 0;
7024 if (indbufend > indbuf)
7025 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7026 if (ind[0]->st_shndx != ind[1]->st_shndx)
7027 shndx_count++;
7028
7029 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7030 + (indbufend - indbuf) * sizeof (*ssym));
7031 ssymbuf = bfd_malloc (total_size);
7032 if (ssymbuf == NULL)
7033 {
7034 free (indbuf);
7035 return NULL;
7036 }
7037
7038 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7039 ssymbuf->ssym = NULL;
7040 ssymbuf->count = shndx_count;
7041 ssymbuf->st_shndx = 0;
7042 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7043 {
7044 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7045 {
7046 ssymhead++;
7047 ssymhead->ssym = ssym;
7048 ssymhead->count = 0;
7049 ssymhead->st_shndx = (*ind)->st_shndx;
7050 }
7051 ssym->st_name = (*ind)->st_name;
7052 ssym->st_info = (*ind)->st_info;
7053 ssym->st_other = (*ind)->st_other;
7054 ssymhead->count++;
7055 }
7056 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7057 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7058 == total_size));
7059
7060 free (indbuf);
7061 return ssymbuf;
7062 }
7063
7064 /* Check if 2 sections define the same set of local and global
7065 symbols. */
7066
7067 static bfd_boolean
7068 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7069 struct bfd_link_info *info)
7070 {
7071 bfd *bfd1, *bfd2;
7072 const struct elf_backend_data *bed1, *bed2;
7073 Elf_Internal_Shdr *hdr1, *hdr2;
7074 bfd_size_type symcount1, symcount2;
7075 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7076 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7077 Elf_Internal_Sym *isym, *isymend;
7078 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7079 bfd_size_type count1, count2, i;
7080 unsigned int shndx1, shndx2;
7081 bfd_boolean result;
7082
7083 bfd1 = sec1->owner;
7084 bfd2 = sec2->owner;
7085
7086 /* Both sections have to be in ELF. */
7087 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7088 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7089 return FALSE;
7090
7091 if (elf_section_type (sec1) != elf_section_type (sec2))
7092 return FALSE;
7093
7094 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7095 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7096 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7097 return FALSE;
7098
7099 bed1 = get_elf_backend_data (bfd1);
7100 bed2 = get_elf_backend_data (bfd2);
7101 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7102 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7103 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7104 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7105
7106 if (symcount1 == 0 || symcount2 == 0)
7107 return FALSE;
7108
7109 result = FALSE;
7110 isymbuf1 = NULL;
7111 isymbuf2 = NULL;
7112 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7113 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7114
7115 if (ssymbuf1 == NULL)
7116 {
7117 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7118 NULL, NULL, NULL);
7119 if (isymbuf1 == NULL)
7120 goto done;
7121
7122 if (!info->reduce_memory_overheads)
7123 elf_tdata (bfd1)->symbuf = ssymbuf1
7124 = elf_create_symbuf (symcount1, isymbuf1);
7125 }
7126
7127 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7128 {
7129 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7130 NULL, NULL, NULL);
7131 if (isymbuf2 == NULL)
7132 goto done;
7133
7134 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7135 elf_tdata (bfd2)->symbuf = ssymbuf2
7136 = elf_create_symbuf (symcount2, isymbuf2);
7137 }
7138
7139 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7140 {
7141 /* Optimized faster version. */
7142 bfd_size_type lo, hi, mid;
7143 struct elf_symbol *symp;
7144 struct elf_symbuf_symbol *ssym, *ssymend;
7145
7146 lo = 0;
7147 hi = ssymbuf1->count;
7148 ssymbuf1++;
7149 count1 = 0;
7150 while (lo < hi)
7151 {
7152 mid = (lo + hi) / 2;
7153 if (shndx1 < ssymbuf1[mid].st_shndx)
7154 hi = mid;
7155 else if (shndx1 > ssymbuf1[mid].st_shndx)
7156 lo = mid + 1;
7157 else
7158 {
7159 count1 = ssymbuf1[mid].count;
7160 ssymbuf1 += mid;
7161 break;
7162 }
7163 }
7164
7165 lo = 0;
7166 hi = ssymbuf2->count;
7167 ssymbuf2++;
7168 count2 = 0;
7169 while (lo < hi)
7170 {
7171 mid = (lo + hi) / 2;
7172 if (shndx2 < ssymbuf2[mid].st_shndx)
7173 hi = mid;
7174 else if (shndx2 > ssymbuf2[mid].st_shndx)
7175 lo = mid + 1;
7176 else
7177 {
7178 count2 = ssymbuf2[mid].count;
7179 ssymbuf2 += mid;
7180 break;
7181 }
7182 }
7183
7184 if (count1 == 0 || count2 == 0 || count1 != count2)
7185 goto done;
7186
7187 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7188 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7189 if (symtable1 == NULL || symtable2 == NULL)
7190 goto done;
7191
7192 symp = symtable1;
7193 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7194 ssym < ssymend; ssym++, symp++)
7195 {
7196 symp->u.ssym = ssym;
7197 symp->name = bfd_elf_string_from_elf_section (bfd1,
7198 hdr1->sh_link,
7199 ssym->st_name);
7200 }
7201
7202 symp = symtable2;
7203 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7204 ssym < ssymend; ssym++, symp++)
7205 {
7206 symp->u.ssym = ssym;
7207 symp->name = bfd_elf_string_from_elf_section (bfd2,
7208 hdr2->sh_link,
7209 ssym->st_name);
7210 }
7211
7212 /* Sort symbol by name. */
7213 qsort (symtable1, count1, sizeof (struct elf_symbol),
7214 elf_sym_name_compare);
7215 qsort (symtable2, count1, sizeof (struct elf_symbol),
7216 elf_sym_name_compare);
7217
7218 for (i = 0; i < count1; i++)
7219 /* Two symbols must have the same binding, type and name. */
7220 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7221 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7222 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7223 goto done;
7224
7225 result = TRUE;
7226 goto done;
7227 }
7228
7229 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7230 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7231 if (symtable1 == NULL || symtable2 == NULL)
7232 goto done;
7233
7234 /* Count definitions in the section. */
7235 count1 = 0;
7236 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7237 if (isym->st_shndx == shndx1)
7238 symtable1[count1++].u.isym = isym;
7239
7240 count2 = 0;
7241 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7242 if (isym->st_shndx == shndx2)
7243 symtable2[count2++].u.isym = isym;
7244
7245 if (count1 == 0 || count2 == 0 || count1 != count2)
7246 goto done;
7247
7248 for (i = 0; i < count1; i++)
7249 symtable1[i].name
7250 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7251 symtable1[i].u.isym->st_name);
7252
7253 for (i = 0; i < count2; i++)
7254 symtable2[i].name
7255 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7256 symtable2[i].u.isym->st_name);
7257
7258 /* Sort symbol by name. */
7259 qsort (symtable1, count1, sizeof (struct elf_symbol),
7260 elf_sym_name_compare);
7261 qsort (symtable2, count1, sizeof (struct elf_symbol),
7262 elf_sym_name_compare);
7263
7264 for (i = 0; i < count1; i++)
7265 /* Two symbols must have the same binding, type and name. */
7266 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7267 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7268 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7269 goto done;
7270
7271 result = TRUE;
7272
7273 done:
7274 if (symtable1)
7275 free (symtable1);
7276 if (symtable2)
7277 free (symtable2);
7278 if (isymbuf1)
7279 free (isymbuf1);
7280 if (isymbuf2)
7281 free (isymbuf2);
7282
7283 return result;
7284 }
7285
7286 /* Return TRUE if 2 section types are compatible. */
7287
7288 bfd_boolean
7289 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7290 bfd *bbfd, const asection *bsec)
7291 {
7292 if (asec == NULL
7293 || bsec == NULL
7294 || abfd->xvec->flavour != bfd_target_elf_flavour
7295 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7296 return TRUE;
7297
7298 return elf_section_type (asec) == elf_section_type (bsec);
7299 }
7300 \f
7301 /* Final phase of ELF linker. */
7302
7303 /* A structure we use to avoid passing large numbers of arguments. */
7304
7305 struct elf_final_link_info
7306 {
7307 /* General link information. */
7308 struct bfd_link_info *info;
7309 /* Output BFD. */
7310 bfd *output_bfd;
7311 /* Symbol string table. */
7312 struct bfd_strtab_hash *symstrtab;
7313 /* .dynsym section. */
7314 asection *dynsym_sec;
7315 /* .hash section. */
7316 asection *hash_sec;
7317 /* symbol version section (.gnu.version). */
7318 asection *symver_sec;
7319 /* Buffer large enough to hold contents of any section. */
7320 bfd_byte *contents;
7321 /* Buffer large enough to hold external relocs of any section. */
7322 void *external_relocs;
7323 /* Buffer large enough to hold internal relocs of any section. */
7324 Elf_Internal_Rela *internal_relocs;
7325 /* Buffer large enough to hold external local symbols of any input
7326 BFD. */
7327 bfd_byte *external_syms;
7328 /* And a buffer for symbol section indices. */
7329 Elf_External_Sym_Shndx *locsym_shndx;
7330 /* Buffer large enough to hold internal local symbols of any input
7331 BFD. */
7332 Elf_Internal_Sym *internal_syms;
7333 /* Array large enough to hold a symbol index for each local symbol
7334 of any input BFD. */
7335 long *indices;
7336 /* Array large enough to hold a section pointer for each local
7337 symbol of any input BFD. */
7338 asection **sections;
7339 /* Buffer to hold swapped out symbols. */
7340 bfd_byte *symbuf;
7341 /* And one for symbol section indices. */
7342 Elf_External_Sym_Shndx *symshndxbuf;
7343 /* Number of swapped out symbols in buffer. */
7344 size_t symbuf_count;
7345 /* Number of symbols which fit in symbuf. */
7346 size_t symbuf_size;
7347 /* And same for symshndxbuf. */
7348 size_t shndxbuf_size;
7349 };
7350
7351 /* This struct is used to pass information to elf_link_output_extsym. */
7352
7353 struct elf_outext_info
7354 {
7355 bfd_boolean failed;
7356 bfd_boolean localsyms;
7357 struct elf_final_link_info *finfo;
7358 };
7359
7360
7361 /* Support for evaluating a complex relocation.
7362
7363 Complex relocations are generalized, self-describing relocations. The
7364 implementation of them consists of two parts: complex symbols, and the
7365 relocations themselves.
7366
7367 The relocations are use a reserved elf-wide relocation type code (R_RELC
7368 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7369 information (start bit, end bit, word width, etc) into the addend. This
7370 information is extracted from CGEN-generated operand tables within gas.
7371
7372 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7373 internal) representing prefix-notation expressions, including but not
7374 limited to those sorts of expressions normally encoded as addends in the
7375 addend field. The symbol mangling format is:
7376
7377 <node> := <literal>
7378 | <unary-operator> ':' <node>
7379 | <binary-operator> ':' <node> ':' <node>
7380 ;
7381
7382 <literal> := 's' <digits=N> ':' <N character symbol name>
7383 | 'S' <digits=N> ':' <N character section name>
7384 | '#' <hexdigits>
7385 ;
7386
7387 <binary-operator> := as in C
7388 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7389
7390 static void
7391 set_symbol_value (bfd *bfd_with_globals,
7392 Elf_Internal_Sym *isymbuf,
7393 size_t locsymcount,
7394 size_t symidx,
7395 bfd_vma val)
7396 {
7397 struct elf_link_hash_entry **sym_hashes;
7398 struct elf_link_hash_entry *h;
7399 size_t extsymoff = locsymcount;
7400
7401 if (symidx < locsymcount)
7402 {
7403 Elf_Internal_Sym *sym;
7404
7405 sym = isymbuf + symidx;
7406 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7407 {
7408 /* It is a local symbol: move it to the
7409 "absolute" section and give it a value. */
7410 sym->st_shndx = SHN_ABS;
7411 sym->st_value = val;
7412 return;
7413 }
7414 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7415 extsymoff = 0;
7416 }
7417
7418 /* It is a global symbol: set its link type
7419 to "defined" and give it a value. */
7420
7421 sym_hashes = elf_sym_hashes (bfd_with_globals);
7422 h = sym_hashes [symidx - extsymoff];
7423 while (h->root.type == bfd_link_hash_indirect
7424 || h->root.type == bfd_link_hash_warning)
7425 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7426 h->root.type = bfd_link_hash_defined;
7427 h->root.u.def.value = val;
7428 h->root.u.def.section = bfd_abs_section_ptr;
7429 }
7430
7431 static bfd_boolean
7432 resolve_symbol (const char *name,
7433 bfd *input_bfd,
7434 struct elf_final_link_info *finfo,
7435 bfd_vma *result,
7436 Elf_Internal_Sym *isymbuf,
7437 size_t locsymcount)
7438 {
7439 Elf_Internal_Sym *sym;
7440 struct bfd_link_hash_entry *global_entry;
7441 const char *candidate = NULL;
7442 Elf_Internal_Shdr *symtab_hdr;
7443 size_t i;
7444
7445 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7446
7447 for (i = 0; i < locsymcount; ++ i)
7448 {
7449 sym = isymbuf + i;
7450
7451 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7452 continue;
7453
7454 candidate = bfd_elf_string_from_elf_section (input_bfd,
7455 symtab_hdr->sh_link,
7456 sym->st_name);
7457 #ifdef DEBUG
7458 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7459 name, candidate, (unsigned long) sym->st_value);
7460 #endif
7461 if (candidate && strcmp (candidate, name) == 0)
7462 {
7463 asection *sec = finfo->sections [i];
7464
7465 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7466 *result += sec->output_offset + sec->output_section->vma;
7467 #ifdef DEBUG
7468 printf ("Found symbol with value %8.8lx\n",
7469 (unsigned long) *result);
7470 #endif
7471 return TRUE;
7472 }
7473 }
7474
7475 /* Hmm, haven't found it yet. perhaps it is a global. */
7476 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7477 FALSE, FALSE, TRUE);
7478 if (!global_entry)
7479 return FALSE;
7480
7481 if (global_entry->type == bfd_link_hash_defined
7482 || global_entry->type == bfd_link_hash_defweak)
7483 {
7484 *result = (global_entry->u.def.value
7485 + global_entry->u.def.section->output_section->vma
7486 + global_entry->u.def.section->output_offset);
7487 #ifdef DEBUG
7488 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7489 global_entry->root.string, (unsigned long) *result);
7490 #endif
7491 return TRUE;
7492 }
7493
7494 return FALSE;
7495 }
7496
7497 static bfd_boolean
7498 resolve_section (const char *name,
7499 asection *sections,
7500 bfd_vma *result)
7501 {
7502 asection *curr;
7503 unsigned int len;
7504
7505 for (curr = sections; curr; curr = curr->next)
7506 if (strcmp (curr->name, name) == 0)
7507 {
7508 *result = curr->vma;
7509 return TRUE;
7510 }
7511
7512 /* Hmm. still haven't found it. try pseudo-section names. */
7513 for (curr = sections; curr; curr = curr->next)
7514 {
7515 len = strlen (curr->name);
7516 if (len > strlen (name))
7517 continue;
7518
7519 if (strncmp (curr->name, name, len) == 0)
7520 {
7521 if (strncmp (".end", name + len, 4) == 0)
7522 {
7523 *result = curr->vma + curr->size;
7524 return TRUE;
7525 }
7526
7527 /* Insert more pseudo-section names here, if you like. */
7528 }
7529 }
7530
7531 return FALSE;
7532 }
7533
7534 static void
7535 undefined_reference (const char *reftype, const char *name)
7536 {
7537 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7538 reftype, name);
7539 }
7540
7541 static bfd_boolean
7542 eval_symbol (bfd_vma *result,
7543 const char **symp,
7544 bfd *input_bfd,
7545 struct elf_final_link_info *finfo,
7546 bfd_vma dot,
7547 Elf_Internal_Sym *isymbuf,
7548 size_t locsymcount,
7549 int signed_p)
7550 {
7551 size_t len;
7552 size_t symlen;
7553 bfd_vma a;
7554 bfd_vma b;
7555 char symbuf[4096];
7556 const char *sym = *symp;
7557 const char *symend;
7558 bfd_boolean symbol_is_section = FALSE;
7559
7560 len = strlen (sym);
7561 symend = sym + len;
7562
7563 if (len < 1 || len > sizeof (symbuf))
7564 {
7565 bfd_set_error (bfd_error_invalid_operation);
7566 return FALSE;
7567 }
7568
7569 switch (* sym)
7570 {
7571 case '.':
7572 *result = dot;
7573 *symp = sym + 1;
7574 return TRUE;
7575
7576 case '#':
7577 ++sym;
7578 *result = strtoul (sym, (char **) symp, 16);
7579 return TRUE;
7580
7581 case 'S':
7582 symbol_is_section = TRUE;
7583 case 's':
7584 ++sym;
7585 symlen = strtol (sym, (char **) symp, 10);
7586 sym = *symp + 1; /* Skip the trailing ':'. */
7587
7588 if (symend < sym || symlen + 1 > sizeof (symbuf))
7589 {
7590 bfd_set_error (bfd_error_invalid_operation);
7591 return FALSE;
7592 }
7593
7594 memcpy (symbuf, sym, symlen);
7595 symbuf[symlen] = '\0';
7596 *symp = sym + symlen;
7597
7598 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7599 the symbol as a section, or vice-versa. so we're pretty liberal in our
7600 interpretation here; section means "try section first", not "must be a
7601 section", and likewise with symbol. */
7602
7603 if (symbol_is_section)
7604 {
7605 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7606 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7607 isymbuf, locsymcount))
7608 {
7609 undefined_reference ("section", symbuf);
7610 return FALSE;
7611 }
7612 }
7613 else
7614 {
7615 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7616 isymbuf, locsymcount)
7617 && !resolve_section (symbuf, finfo->output_bfd->sections,
7618 result))
7619 {
7620 undefined_reference ("symbol", symbuf);
7621 return FALSE;
7622 }
7623 }
7624
7625 return TRUE;
7626
7627 /* All that remains are operators. */
7628
7629 #define UNARY_OP(op) \
7630 if (strncmp (sym, #op, strlen (#op)) == 0) \
7631 { \
7632 sym += strlen (#op); \
7633 if (*sym == ':') \
7634 ++sym; \
7635 *symp = sym; \
7636 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7637 isymbuf, locsymcount, signed_p)) \
7638 return FALSE; \
7639 if (signed_p) \
7640 *result = op ((bfd_signed_vma) a); \
7641 else \
7642 *result = op a; \
7643 return TRUE; \
7644 }
7645
7646 #define BINARY_OP(op) \
7647 if (strncmp (sym, #op, strlen (#op)) == 0) \
7648 { \
7649 sym += strlen (#op); \
7650 if (*sym == ':') \
7651 ++sym; \
7652 *symp = sym; \
7653 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7654 isymbuf, locsymcount, signed_p)) \
7655 return FALSE; \
7656 ++*symp; \
7657 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7658 isymbuf, locsymcount, signed_p)) \
7659 return FALSE; \
7660 if (signed_p) \
7661 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7662 else \
7663 *result = a op b; \
7664 return TRUE; \
7665 }
7666
7667 default:
7668 UNARY_OP (0-);
7669 BINARY_OP (<<);
7670 BINARY_OP (>>);
7671 BINARY_OP (==);
7672 BINARY_OP (!=);
7673 BINARY_OP (<=);
7674 BINARY_OP (>=);
7675 BINARY_OP (&&);
7676 BINARY_OP (||);
7677 UNARY_OP (~);
7678 UNARY_OP (!);
7679 BINARY_OP (*);
7680 BINARY_OP (/);
7681 BINARY_OP (%);
7682 BINARY_OP (^);
7683 BINARY_OP (|);
7684 BINARY_OP (&);
7685 BINARY_OP (+);
7686 BINARY_OP (-);
7687 BINARY_OP (<);
7688 BINARY_OP (>);
7689 #undef UNARY_OP
7690 #undef BINARY_OP
7691 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7692 bfd_set_error (bfd_error_invalid_operation);
7693 return FALSE;
7694 }
7695 }
7696
7697 static void
7698 put_value (bfd_vma size,
7699 unsigned long chunksz,
7700 bfd *input_bfd,
7701 bfd_vma x,
7702 bfd_byte *location)
7703 {
7704 location += (size - chunksz);
7705
7706 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7707 {
7708 switch (chunksz)
7709 {
7710 default:
7711 case 0:
7712 abort ();
7713 case 1:
7714 bfd_put_8 (input_bfd, x, location);
7715 break;
7716 case 2:
7717 bfd_put_16 (input_bfd, x, location);
7718 break;
7719 case 4:
7720 bfd_put_32 (input_bfd, x, location);
7721 break;
7722 case 8:
7723 #ifdef BFD64
7724 bfd_put_64 (input_bfd, x, location);
7725 #else
7726 abort ();
7727 #endif
7728 break;
7729 }
7730 }
7731 }
7732
7733 static bfd_vma
7734 get_value (bfd_vma size,
7735 unsigned long chunksz,
7736 bfd *input_bfd,
7737 bfd_byte *location)
7738 {
7739 bfd_vma x = 0;
7740
7741 for (; size; size -= chunksz, location += chunksz)
7742 {
7743 switch (chunksz)
7744 {
7745 default:
7746 case 0:
7747 abort ();
7748 case 1:
7749 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7750 break;
7751 case 2:
7752 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7753 break;
7754 case 4:
7755 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7756 break;
7757 case 8:
7758 #ifdef BFD64
7759 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7760 #else
7761 abort ();
7762 #endif
7763 break;
7764 }
7765 }
7766 return x;
7767 }
7768
7769 static void
7770 decode_complex_addend (unsigned long *start, /* in bits */
7771 unsigned long *oplen, /* in bits */
7772 unsigned long *len, /* in bits */
7773 unsigned long *wordsz, /* in bytes */
7774 unsigned long *chunksz, /* in bytes */
7775 unsigned long *lsb0_p,
7776 unsigned long *signed_p,
7777 unsigned long *trunc_p,
7778 unsigned long encoded)
7779 {
7780 * start = encoded & 0x3F;
7781 * len = (encoded >> 6) & 0x3F;
7782 * oplen = (encoded >> 12) & 0x3F;
7783 * wordsz = (encoded >> 18) & 0xF;
7784 * chunksz = (encoded >> 22) & 0xF;
7785 * lsb0_p = (encoded >> 27) & 1;
7786 * signed_p = (encoded >> 28) & 1;
7787 * trunc_p = (encoded >> 29) & 1;
7788 }
7789
7790 bfd_reloc_status_type
7791 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7792 asection *input_section ATTRIBUTE_UNUSED,
7793 bfd_byte *contents,
7794 Elf_Internal_Rela *rel,
7795 bfd_vma relocation)
7796 {
7797 bfd_vma shift, x, mask;
7798 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7799 bfd_reloc_status_type r;
7800
7801 /* Perform this reloc, since it is complex.
7802 (this is not to say that it necessarily refers to a complex
7803 symbol; merely that it is a self-describing CGEN based reloc.
7804 i.e. the addend has the complete reloc information (bit start, end,
7805 word size, etc) encoded within it.). */
7806
7807 decode_complex_addend (&start, &oplen, &len, &wordsz,
7808 &chunksz, &lsb0_p, &signed_p,
7809 &trunc_p, rel->r_addend);
7810
7811 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7812
7813 if (lsb0_p)
7814 shift = (start + 1) - len;
7815 else
7816 shift = (8 * wordsz) - (start + len);
7817
7818 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7819
7820 #ifdef DEBUG
7821 printf ("Doing complex reloc: "
7822 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7823 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7824 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7825 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7826 oplen, x, mask, relocation);
7827 #endif
7828
7829 r = bfd_reloc_ok;
7830 if (! trunc_p)
7831 /* Now do an overflow check. */
7832 r = bfd_check_overflow ((signed_p
7833 ? complain_overflow_signed
7834 : complain_overflow_unsigned),
7835 len, 0, (8 * wordsz),
7836 relocation);
7837
7838 /* Do the deed. */
7839 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7840
7841 #ifdef DEBUG
7842 printf (" relocation: %8.8lx\n"
7843 " shifted mask: %8.8lx\n"
7844 " shifted/masked reloc: %8.8lx\n"
7845 " result: %8.8lx\n",
7846 relocation, (mask << shift),
7847 ((relocation & mask) << shift), x);
7848 #endif
7849 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7850 return r;
7851 }
7852
7853 /* When performing a relocatable link, the input relocations are
7854 preserved. But, if they reference global symbols, the indices
7855 referenced must be updated. Update all the relocations in
7856 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7857
7858 static void
7859 elf_link_adjust_relocs (bfd *abfd,
7860 Elf_Internal_Shdr *rel_hdr,
7861 unsigned int count,
7862 struct elf_link_hash_entry **rel_hash)
7863 {
7864 unsigned int i;
7865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7866 bfd_byte *erela;
7867 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7868 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7869 bfd_vma r_type_mask;
7870 int r_sym_shift;
7871
7872 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7873 {
7874 swap_in = bed->s->swap_reloc_in;
7875 swap_out = bed->s->swap_reloc_out;
7876 }
7877 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7878 {
7879 swap_in = bed->s->swap_reloca_in;
7880 swap_out = bed->s->swap_reloca_out;
7881 }
7882 else
7883 abort ();
7884
7885 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7886 abort ();
7887
7888 if (bed->s->arch_size == 32)
7889 {
7890 r_type_mask = 0xff;
7891 r_sym_shift = 8;
7892 }
7893 else
7894 {
7895 r_type_mask = 0xffffffff;
7896 r_sym_shift = 32;
7897 }
7898
7899 erela = rel_hdr->contents;
7900 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7901 {
7902 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7903 unsigned int j;
7904
7905 if (*rel_hash == NULL)
7906 continue;
7907
7908 BFD_ASSERT ((*rel_hash)->indx >= 0);
7909
7910 (*swap_in) (abfd, erela, irela);
7911 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7912 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7913 | (irela[j].r_info & r_type_mask));
7914 (*swap_out) (abfd, irela, erela);
7915 }
7916 }
7917
7918 struct elf_link_sort_rela
7919 {
7920 union {
7921 bfd_vma offset;
7922 bfd_vma sym_mask;
7923 } u;
7924 enum elf_reloc_type_class type;
7925 /* We use this as an array of size int_rels_per_ext_rel. */
7926 Elf_Internal_Rela rela[1];
7927 };
7928
7929 static int
7930 elf_link_sort_cmp1 (const void *A, const void *B)
7931 {
7932 const struct elf_link_sort_rela *a = A;
7933 const struct elf_link_sort_rela *b = B;
7934 int relativea, relativeb;
7935
7936 relativea = a->type == reloc_class_relative;
7937 relativeb = b->type == reloc_class_relative;
7938
7939 if (relativea < relativeb)
7940 return 1;
7941 if (relativea > relativeb)
7942 return -1;
7943 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7944 return -1;
7945 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7946 return 1;
7947 if (a->rela->r_offset < b->rela->r_offset)
7948 return -1;
7949 if (a->rela->r_offset > b->rela->r_offset)
7950 return 1;
7951 return 0;
7952 }
7953
7954 static int
7955 elf_link_sort_cmp2 (const void *A, const void *B)
7956 {
7957 const struct elf_link_sort_rela *a = A;
7958 const struct elf_link_sort_rela *b = B;
7959 int copya, copyb;
7960
7961 if (a->u.offset < b->u.offset)
7962 return -1;
7963 if (a->u.offset > b->u.offset)
7964 return 1;
7965 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7966 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7967 if (copya < copyb)
7968 return -1;
7969 if (copya > copyb)
7970 return 1;
7971 if (a->rela->r_offset < b->rela->r_offset)
7972 return -1;
7973 if (a->rela->r_offset > b->rela->r_offset)
7974 return 1;
7975 return 0;
7976 }
7977
7978 static size_t
7979 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7980 {
7981 asection *dynamic_relocs;
7982 asection *rela_dyn;
7983 asection *rel_dyn;
7984 bfd_size_type count, size;
7985 size_t i, ret, sort_elt, ext_size;
7986 bfd_byte *sort, *s_non_relative, *p;
7987 struct elf_link_sort_rela *sq;
7988 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7989 int i2e = bed->s->int_rels_per_ext_rel;
7990 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7991 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7992 struct bfd_link_order *lo;
7993 bfd_vma r_sym_mask;
7994 bfd_boolean use_rela;
7995
7996 /* Find a dynamic reloc section. */
7997 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7998 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7999 if (rela_dyn != NULL && rela_dyn->size > 0
8000 && rel_dyn != NULL && rel_dyn->size > 0)
8001 {
8002 bfd_boolean use_rela_initialised = FALSE;
8003
8004 /* This is just here to stop gcc from complaining.
8005 It's initialization checking code is not perfect. */
8006 use_rela = TRUE;
8007
8008 /* Both sections are present. Examine the sizes
8009 of the indirect sections to help us choose. */
8010 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8011 if (lo->type == bfd_indirect_link_order)
8012 {
8013 asection *o = lo->u.indirect.section;
8014
8015 if ((o->size % bed->s->sizeof_rela) == 0)
8016 {
8017 if ((o->size % bed->s->sizeof_rel) == 0)
8018 /* Section size is divisible by both rel and rela sizes.
8019 It is of no help to us. */
8020 ;
8021 else
8022 {
8023 /* Section size is only divisible by rela. */
8024 if (use_rela_initialised && (use_rela == FALSE))
8025 {
8026 _bfd_error_handler
8027 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8028 bfd_set_error (bfd_error_invalid_operation);
8029 return 0;
8030 }
8031 else
8032 {
8033 use_rela = TRUE;
8034 use_rela_initialised = TRUE;
8035 }
8036 }
8037 }
8038 else if ((o->size % bed->s->sizeof_rel) == 0)
8039 {
8040 /* Section size is only divisible by rel. */
8041 if (use_rela_initialised && (use_rela == TRUE))
8042 {
8043 _bfd_error_handler
8044 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8045 bfd_set_error (bfd_error_invalid_operation);
8046 return 0;
8047 }
8048 else
8049 {
8050 use_rela = FALSE;
8051 use_rela_initialised = TRUE;
8052 }
8053 }
8054 else
8055 {
8056 /* The section size is not divisible by either - something is wrong. */
8057 _bfd_error_handler
8058 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8059 bfd_set_error (bfd_error_invalid_operation);
8060 return 0;
8061 }
8062 }
8063
8064 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8065 if (lo->type == bfd_indirect_link_order)
8066 {
8067 asection *o = lo->u.indirect.section;
8068
8069 if ((o->size % bed->s->sizeof_rela) == 0)
8070 {
8071 if ((o->size % bed->s->sizeof_rel) == 0)
8072 /* Section size is divisible by both rel and rela sizes.
8073 It is of no help to us. */
8074 ;
8075 else
8076 {
8077 /* Section size is only divisible by rela. */
8078 if (use_rela_initialised && (use_rela == FALSE))
8079 {
8080 _bfd_error_handler
8081 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8082 bfd_set_error (bfd_error_invalid_operation);
8083 return 0;
8084 }
8085 else
8086 {
8087 use_rela = TRUE;
8088 use_rela_initialised = TRUE;
8089 }
8090 }
8091 }
8092 else if ((o->size % bed->s->sizeof_rel) == 0)
8093 {
8094 /* Section size is only divisible by rel. */
8095 if (use_rela_initialised && (use_rela == TRUE))
8096 {
8097 _bfd_error_handler
8098 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8099 bfd_set_error (bfd_error_invalid_operation);
8100 return 0;
8101 }
8102 else
8103 {
8104 use_rela = FALSE;
8105 use_rela_initialised = TRUE;
8106 }
8107 }
8108 else
8109 {
8110 /* The section size is not divisible by either - something is wrong. */
8111 _bfd_error_handler
8112 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8113 bfd_set_error (bfd_error_invalid_operation);
8114 return 0;
8115 }
8116 }
8117
8118 if (! use_rela_initialised)
8119 /* Make a guess. */
8120 use_rela = TRUE;
8121 }
8122 else if (rela_dyn != NULL && rela_dyn->size > 0)
8123 use_rela = TRUE;
8124 else if (rel_dyn != NULL && rel_dyn->size > 0)
8125 use_rela = FALSE;
8126 else
8127 return 0;
8128
8129 if (use_rela)
8130 {
8131 dynamic_relocs = rela_dyn;
8132 ext_size = bed->s->sizeof_rela;
8133 swap_in = bed->s->swap_reloca_in;
8134 swap_out = bed->s->swap_reloca_out;
8135 }
8136 else
8137 {
8138 dynamic_relocs = rel_dyn;
8139 ext_size = bed->s->sizeof_rel;
8140 swap_in = bed->s->swap_reloc_in;
8141 swap_out = bed->s->swap_reloc_out;
8142 }
8143
8144 size = 0;
8145 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8146 if (lo->type == bfd_indirect_link_order)
8147 size += lo->u.indirect.section->size;
8148
8149 if (size != dynamic_relocs->size)
8150 return 0;
8151
8152 sort_elt = (sizeof (struct elf_link_sort_rela)
8153 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8154
8155 count = dynamic_relocs->size / ext_size;
8156 sort = bfd_zmalloc (sort_elt * count);
8157
8158 if (sort == NULL)
8159 {
8160 (*info->callbacks->warning)
8161 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8162 return 0;
8163 }
8164
8165 if (bed->s->arch_size == 32)
8166 r_sym_mask = ~(bfd_vma) 0xff;
8167 else
8168 r_sym_mask = ~(bfd_vma) 0xffffffff;
8169
8170 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8171 if (lo->type == bfd_indirect_link_order)
8172 {
8173 bfd_byte *erel, *erelend;
8174 asection *o = lo->u.indirect.section;
8175
8176 if (o->contents == NULL && o->size != 0)
8177 {
8178 /* This is a reloc section that is being handled as a normal
8179 section. See bfd_section_from_shdr. We can't combine
8180 relocs in this case. */
8181 free (sort);
8182 return 0;
8183 }
8184 erel = o->contents;
8185 erelend = o->contents + o->size;
8186 p = sort + o->output_offset / ext_size * sort_elt;
8187
8188 while (erel < erelend)
8189 {
8190 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8191
8192 (*swap_in) (abfd, erel, s->rela);
8193 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8194 s->u.sym_mask = r_sym_mask;
8195 p += sort_elt;
8196 erel += ext_size;
8197 }
8198 }
8199
8200 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8201
8202 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8203 {
8204 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8205 if (s->type != reloc_class_relative)
8206 break;
8207 }
8208 ret = i;
8209 s_non_relative = p;
8210
8211 sq = (struct elf_link_sort_rela *) s_non_relative;
8212 for (; i < count; i++, p += sort_elt)
8213 {
8214 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8215 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8216 sq = sp;
8217 sp->u.offset = sq->rela->r_offset;
8218 }
8219
8220 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8221
8222 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8223 if (lo->type == bfd_indirect_link_order)
8224 {
8225 bfd_byte *erel, *erelend;
8226 asection *o = lo->u.indirect.section;
8227
8228 erel = o->contents;
8229 erelend = o->contents + o->size;
8230 p = sort + o->output_offset / ext_size * sort_elt;
8231 while (erel < erelend)
8232 {
8233 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8234 (*swap_out) (abfd, s->rela, erel);
8235 p += sort_elt;
8236 erel += ext_size;
8237 }
8238 }
8239
8240 free (sort);
8241 *psec = dynamic_relocs;
8242 return ret;
8243 }
8244
8245 /* Flush the output symbols to the file. */
8246
8247 static bfd_boolean
8248 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8249 const struct elf_backend_data *bed)
8250 {
8251 if (finfo->symbuf_count > 0)
8252 {
8253 Elf_Internal_Shdr *hdr;
8254 file_ptr pos;
8255 bfd_size_type amt;
8256
8257 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8258 pos = hdr->sh_offset + hdr->sh_size;
8259 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8260 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8261 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8262 return FALSE;
8263
8264 hdr->sh_size += amt;
8265 finfo->symbuf_count = 0;
8266 }
8267
8268 return TRUE;
8269 }
8270
8271 /* Add a symbol to the output symbol table. */
8272
8273 static bfd_boolean
8274 elf_link_output_sym (struct elf_final_link_info *finfo,
8275 const char *name,
8276 Elf_Internal_Sym *elfsym,
8277 asection *input_sec,
8278 struct elf_link_hash_entry *h)
8279 {
8280 bfd_byte *dest;
8281 Elf_External_Sym_Shndx *destshndx;
8282 bfd_boolean (*output_symbol_hook)
8283 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8284 struct elf_link_hash_entry *);
8285 const struct elf_backend_data *bed;
8286
8287 bed = get_elf_backend_data (finfo->output_bfd);
8288 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8289 if (output_symbol_hook != NULL)
8290 {
8291 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8292 return FALSE;
8293 }
8294
8295 if (name == NULL || *name == '\0')
8296 elfsym->st_name = 0;
8297 else if (input_sec->flags & SEC_EXCLUDE)
8298 elfsym->st_name = 0;
8299 else
8300 {
8301 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8302 name, TRUE, FALSE);
8303 if (elfsym->st_name == (unsigned long) -1)
8304 return FALSE;
8305 }
8306
8307 if (finfo->symbuf_count >= finfo->symbuf_size)
8308 {
8309 if (! elf_link_flush_output_syms (finfo, bed))
8310 return FALSE;
8311 }
8312
8313 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8314 destshndx = finfo->symshndxbuf;
8315 if (destshndx != NULL)
8316 {
8317 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8318 {
8319 bfd_size_type amt;
8320
8321 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8322 destshndx = bfd_realloc (destshndx, amt * 2);
8323 if (destshndx == NULL)
8324 return FALSE;
8325 finfo->symshndxbuf = destshndx;
8326 memset ((char *) destshndx + amt, 0, amt);
8327 finfo->shndxbuf_size *= 2;
8328 }
8329 destshndx += bfd_get_symcount (finfo->output_bfd);
8330 }
8331
8332 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8333 finfo->symbuf_count += 1;
8334 bfd_get_symcount (finfo->output_bfd) += 1;
8335
8336 return TRUE;
8337 }
8338
8339 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8340
8341 static bfd_boolean
8342 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8343 {
8344 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8345 && sym->st_shndx < SHN_LORESERVE)
8346 {
8347 /* The gABI doesn't support dynamic symbols in output sections
8348 beyond 64k. */
8349 (*_bfd_error_handler)
8350 (_("%B: Too many sections: %d (>= %d)"),
8351 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8352 bfd_set_error (bfd_error_nonrepresentable_section);
8353 return FALSE;
8354 }
8355 return TRUE;
8356 }
8357
8358 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8359 allowing an unsatisfied unversioned symbol in the DSO to match a
8360 versioned symbol that would normally require an explicit version.
8361 We also handle the case that a DSO references a hidden symbol
8362 which may be satisfied by a versioned symbol in another DSO. */
8363
8364 static bfd_boolean
8365 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8366 const struct elf_backend_data *bed,
8367 struct elf_link_hash_entry *h)
8368 {
8369 bfd *abfd;
8370 struct elf_link_loaded_list *loaded;
8371
8372 if (!is_elf_hash_table (info->hash))
8373 return FALSE;
8374
8375 switch (h->root.type)
8376 {
8377 default:
8378 abfd = NULL;
8379 break;
8380
8381 case bfd_link_hash_undefined:
8382 case bfd_link_hash_undefweak:
8383 abfd = h->root.u.undef.abfd;
8384 if ((abfd->flags & DYNAMIC) == 0
8385 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8386 return FALSE;
8387 break;
8388
8389 case bfd_link_hash_defined:
8390 case bfd_link_hash_defweak:
8391 abfd = h->root.u.def.section->owner;
8392 break;
8393
8394 case bfd_link_hash_common:
8395 abfd = h->root.u.c.p->section->owner;
8396 break;
8397 }
8398 BFD_ASSERT (abfd != NULL);
8399
8400 for (loaded = elf_hash_table (info)->loaded;
8401 loaded != NULL;
8402 loaded = loaded->next)
8403 {
8404 bfd *input;
8405 Elf_Internal_Shdr *hdr;
8406 bfd_size_type symcount;
8407 bfd_size_type extsymcount;
8408 bfd_size_type extsymoff;
8409 Elf_Internal_Shdr *versymhdr;
8410 Elf_Internal_Sym *isym;
8411 Elf_Internal_Sym *isymend;
8412 Elf_Internal_Sym *isymbuf;
8413 Elf_External_Versym *ever;
8414 Elf_External_Versym *extversym;
8415
8416 input = loaded->abfd;
8417
8418 /* We check each DSO for a possible hidden versioned definition. */
8419 if (input == abfd
8420 || (input->flags & DYNAMIC) == 0
8421 || elf_dynversym (input) == 0)
8422 continue;
8423
8424 hdr = &elf_tdata (input)->dynsymtab_hdr;
8425
8426 symcount = hdr->sh_size / bed->s->sizeof_sym;
8427 if (elf_bad_symtab (input))
8428 {
8429 extsymcount = symcount;
8430 extsymoff = 0;
8431 }
8432 else
8433 {
8434 extsymcount = symcount - hdr->sh_info;
8435 extsymoff = hdr->sh_info;
8436 }
8437
8438 if (extsymcount == 0)
8439 continue;
8440
8441 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8442 NULL, NULL, NULL);
8443 if (isymbuf == NULL)
8444 return FALSE;
8445
8446 /* Read in any version definitions. */
8447 versymhdr = &elf_tdata (input)->dynversym_hdr;
8448 extversym = bfd_malloc (versymhdr->sh_size);
8449 if (extversym == NULL)
8450 goto error_ret;
8451
8452 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8453 || (bfd_bread (extversym, versymhdr->sh_size, input)
8454 != versymhdr->sh_size))
8455 {
8456 free (extversym);
8457 error_ret:
8458 free (isymbuf);
8459 return FALSE;
8460 }
8461
8462 ever = extversym + extsymoff;
8463 isymend = isymbuf + extsymcount;
8464 for (isym = isymbuf; isym < isymend; isym++, ever++)
8465 {
8466 const char *name;
8467 Elf_Internal_Versym iver;
8468 unsigned short version_index;
8469
8470 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8471 || isym->st_shndx == SHN_UNDEF)
8472 continue;
8473
8474 name = bfd_elf_string_from_elf_section (input,
8475 hdr->sh_link,
8476 isym->st_name);
8477 if (strcmp (name, h->root.root.string) != 0)
8478 continue;
8479
8480 _bfd_elf_swap_versym_in (input, ever, &iver);
8481
8482 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8483 {
8484 /* If we have a non-hidden versioned sym, then it should
8485 have provided a definition for the undefined sym. */
8486 abort ();
8487 }
8488
8489 version_index = iver.vs_vers & VERSYM_VERSION;
8490 if (version_index == 1 || version_index == 2)
8491 {
8492 /* This is the base or first version. We can use it. */
8493 free (extversym);
8494 free (isymbuf);
8495 return TRUE;
8496 }
8497 }
8498
8499 free (extversym);
8500 free (isymbuf);
8501 }
8502
8503 return FALSE;
8504 }
8505
8506 /* Add an external symbol to the symbol table. This is called from
8507 the hash table traversal routine. When generating a shared object,
8508 we go through the symbol table twice. The first time we output
8509 anything that might have been forced to local scope in a version
8510 script. The second time we output the symbols that are still
8511 global symbols. */
8512
8513 static bfd_boolean
8514 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8515 {
8516 struct elf_outext_info *eoinfo = data;
8517 struct elf_final_link_info *finfo = eoinfo->finfo;
8518 bfd_boolean strip;
8519 Elf_Internal_Sym sym;
8520 asection *input_sec;
8521 const struct elf_backend_data *bed;
8522
8523 if (h->root.type == bfd_link_hash_warning)
8524 {
8525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8526 if (h->root.type == bfd_link_hash_new)
8527 return TRUE;
8528 }
8529
8530 /* Decide whether to output this symbol in this pass. */
8531 if (eoinfo->localsyms)
8532 {
8533 if (!h->forced_local)
8534 return TRUE;
8535 }
8536 else
8537 {
8538 if (h->forced_local)
8539 return TRUE;
8540 }
8541
8542 bed = get_elf_backend_data (finfo->output_bfd);
8543
8544 if (h->root.type == bfd_link_hash_undefined)
8545 {
8546 /* If we have an undefined symbol reference here then it must have
8547 come from a shared library that is being linked in. (Undefined
8548 references in regular files have already been handled). */
8549 bfd_boolean ignore_undef = FALSE;
8550
8551 /* Some symbols may be special in that the fact that they're
8552 undefined can be safely ignored - let backend determine that. */
8553 if (bed->elf_backend_ignore_undef_symbol)
8554 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8555
8556 /* If we are reporting errors for this situation then do so now. */
8557 if (ignore_undef == FALSE
8558 && h->ref_dynamic
8559 && ! h->ref_regular
8560 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8561 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8562 {
8563 if (! (finfo->info->callbacks->undefined_symbol
8564 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8565 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8566 {
8567 eoinfo->failed = TRUE;
8568 return FALSE;
8569 }
8570 }
8571 }
8572
8573 /* We should also warn if a forced local symbol is referenced from
8574 shared libraries. */
8575 if (! finfo->info->relocatable
8576 && (! finfo->info->shared)
8577 && h->forced_local
8578 && h->ref_dynamic
8579 && !h->dynamic_def
8580 && !h->dynamic_weak
8581 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8582 {
8583 (*_bfd_error_handler)
8584 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8585 finfo->output_bfd,
8586 h->root.u.def.section == bfd_abs_section_ptr
8587 ? finfo->output_bfd : h->root.u.def.section->owner,
8588 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8589 ? "internal"
8590 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8591 ? "hidden" : "local",
8592 h->root.root.string);
8593 eoinfo->failed = TRUE;
8594 return FALSE;
8595 }
8596
8597 /* We don't want to output symbols that have never been mentioned by
8598 a regular file, or that we have been told to strip. However, if
8599 h->indx is set to -2, the symbol is used by a reloc and we must
8600 output it. */
8601 if (h->indx == -2)
8602 strip = FALSE;
8603 else if ((h->def_dynamic
8604 || h->ref_dynamic
8605 || h->root.type == bfd_link_hash_new)
8606 && !h->def_regular
8607 && !h->ref_regular)
8608 strip = TRUE;
8609 else if (finfo->info->strip == strip_all)
8610 strip = TRUE;
8611 else if (finfo->info->strip == strip_some
8612 && bfd_hash_lookup (finfo->info->keep_hash,
8613 h->root.root.string, FALSE, FALSE) == NULL)
8614 strip = TRUE;
8615 else if (finfo->info->strip_discarded
8616 && (h->root.type == bfd_link_hash_defined
8617 || h->root.type == bfd_link_hash_defweak)
8618 && elf_discarded_section (h->root.u.def.section))
8619 strip = TRUE;
8620 else
8621 strip = FALSE;
8622
8623 /* If we're stripping it, and it's not a dynamic symbol, there's
8624 nothing else to do unless it is a forced local symbol. */
8625 if (strip
8626 && h->dynindx == -1
8627 && !h->forced_local)
8628 return TRUE;
8629
8630 sym.st_value = 0;
8631 sym.st_size = h->size;
8632 sym.st_other = h->other;
8633 if (h->forced_local)
8634 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8635 else if (h->root.type == bfd_link_hash_undefweak
8636 || h->root.type == bfd_link_hash_defweak)
8637 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8638 else
8639 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8640
8641 switch (h->root.type)
8642 {
8643 default:
8644 case bfd_link_hash_new:
8645 case bfd_link_hash_warning:
8646 abort ();
8647 return FALSE;
8648
8649 case bfd_link_hash_undefined:
8650 case bfd_link_hash_undefweak:
8651 input_sec = bfd_und_section_ptr;
8652 sym.st_shndx = SHN_UNDEF;
8653 break;
8654
8655 case bfd_link_hash_defined:
8656 case bfd_link_hash_defweak:
8657 {
8658 input_sec = h->root.u.def.section;
8659 if (input_sec->output_section != NULL)
8660 {
8661 sym.st_shndx =
8662 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8663 input_sec->output_section);
8664 if (sym.st_shndx == SHN_BAD)
8665 {
8666 (*_bfd_error_handler)
8667 (_("%B: could not find output section %A for input section %A"),
8668 finfo->output_bfd, input_sec->output_section, input_sec);
8669 eoinfo->failed = TRUE;
8670 return FALSE;
8671 }
8672
8673 /* ELF symbols in relocatable files are section relative,
8674 but in nonrelocatable files they are virtual
8675 addresses. */
8676 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8677 if (! finfo->info->relocatable)
8678 {
8679 sym.st_value += input_sec->output_section->vma;
8680 if (h->type == STT_TLS)
8681 {
8682 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8683 if (tls_sec != NULL)
8684 sym.st_value -= tls_sec->vma;
8685 else
8686 {
8687 /* The TLS section may have been garbage collected. */
8688 BFD_ASSERT (finfo->info->gc_sections
8689 && !input_sec->gc_mark);
8690 }
8691 }
8692 }
8693 }
8694 else
8695 {
8696 BFD_ASSERT (input_sec->owner == NULL
8697 || (input_sec->owner->flags & DYNAMIC) != 0);
8698 sym.st_shndx = SHN_UNDEF;
8699 input_sec = bfd_und_section_ptr;
8700 }
8701 }
8702 break;
8703
8704 case bfd_link_hash_common:
8705 input_sec = h->root.u.c.p->section;
8706 sym.st_shndx = bed->common_section_index (input_sec);
8707 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8708 break;
8709
8710 case bfd_link_hash_indirect:
8711 /* These symbols are created by symbol versioning. They point
8712 to the decorated version of the name. For example, if the
8713 symbol foo@@GNU_1.2 is the default, which should be used when
8714 foo is used with no version, then we add an indirect symbol
8715 foo which points to foo@@GNU_1.2. We ignore these symbols,
8716 since the indirected symbol is already in the hash table. */
8717 return TRUE;
8718 }
8719
8720 /* Give the processor backend a chance to tweak the symbol value,
8721 and also to finish up anything that needs to be done for this
8722 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8723 forced local syms when non-shared is due to a historical quirk. */
8724 if ((h->dynindx != -1
8725 || h->forced_local)
8726 && ((finfo->info->shared
8727 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8728 || h->root.type != bfd_link_hash_undefweak))
8729 || !h->forced_local)
8730 && elf_hash_table (finfo->info)->dynamic_sections_created)
8731 {
8732 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8733 (finfo->output_bfd, finfo->info, h, &sym)))
8734 {
8735 eoinfo->failed = TRUE;
8736 return FALSE;
8737 }
8738 }
8739
8740 /* If we are marking the symbol as undefined, and there are no
8741 non-weak references to this symbol from a regular object, then
8742 mark the symbol as weak undefined; if there are non-weak
8743 references, mark the symbol as strong. We can't do this earlier,
8744 because it might not be marked as undefined until the
8745 finish_dynamic_symbol routine gets through with it. */
8746 if (sym.st_shndx == SHN_UNDEF
8747 && h->ref_regular
8748 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8749 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8750 {
8751 int bindtype;
8752
8753 if (h->ref_regular_nonweak)
8754 bindtype = STB_GLOBAL;
8755 else
8756 bindtype = STB_WEAK;
8757 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8758 }
8759
8760 /* If this is a symbol defined in a dynamic library, don't use the
8761 symbol size from the dynamic library. Relinking an executable
8762 against a new library may introduce gratuitous changes in the
8763 executable's symbols if we keep the size. */
8764 if (sym.st_shndx == SHN_UNDEF
8765 && !h->def_regular
8766 && h->def_dynamic)
8767 sym.st_size = 0;
8768
8769 /* If a non-weak symbol with non-default visibility is not defined
8770 locally, it is a fatal error. */
8771 if (! finfo->info->relocatable
8772 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8773 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8774 && h->root.type == bfd_link_hash_undefined
8775 && !h->def_regular)
8776 {
8777 (*_bfd_error_handler)
8778 (_("%B: %s symbol `%s' isn't defined"),
8779 finfo->output_bfd,
8780 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8781 ? "protected"
8782 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8783 ? "internal" : "hidden",
8784 h->root.root.string);
8785 eoinfo->failed = TRUE;
8786 return FALSE;
8787 }
8788
8789 /* If this symbol should be put in the .dynsym section, then put it
8790 there now. We already know the symbol index. We also fill in
8791 the entry in the .hash section. */
8792 if (h->dynindx != -1
8793 && elf_hash_table (finfo->info)->dynamic_sections_created)
8794 {
8795 bfd_byte *esym;
8796
8797 sym.st_name = h->dynstr_index;
8798 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8799 if (! check_dynsym (finfo->output_bfd, &sym))
8800 {
8801 eoinfo->failed = TRUE;
8802 return FALSE;
8803 }
8804 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8805
8806 if (finfo->hash_sec != NULL)
8807 {
8808 size_t hash_entry_size;
8809 bfd_byte *bucketpos;
8810 bfd_vma chain;
8811 size_t bucketcount;
8812 size_t bucket;
8813
8814 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8815 bucket = h->u.elf_hash_value % bucketcount;
8816
8817 hash_entry_size
8818 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8819 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8820 + (bucket + 2) * hash_entry_size);
8821 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8822 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8823 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8824 ((bfd_byte *) finfo->hash_sec->contents
8825 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8826 }
8827
8828 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8829 {
8830 Elf_Internal_Versym iversym;
8831 Elf_External_Versym *eversym;
8832
8833 if (!h->def_regular)
8834 {
8835 if (h->verinfo.verdef == NULL)
8836 iversym.vs_vers = 0;
8837 else
8838 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8839 }
8840 else
8841 {
8842 if (h->verinfo.vertree == NULL)
8843 iversym.vs_vers = 1;
8844 else
8845 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8846 if (finfo->info->create_default_symver)
8847 iversym.vs_vers++;
8848 }
8849
8850 if (h->hidden)
8851 iversym.vs_vers |= VERSYM_HIDDEN;
8852
8853 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8854 eversym += h->dynindx;
8855 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8856 }
8857 }
8858
8859 /* If we're stripping it, then it was just a dynamic symbol, and
8860 there's nothing else to do. */
8861 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8862 return TRUE;
8863
8864 h->indx = bfd_get_symcount (finfo->output_bfd);
8865
8866 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8867 {
8868 eoinfo->failed = TRUE;
8869 return FALSE;
8870 }
8871
8872 return TRUE;
8873 }
8874
8875 /* Return TRUE if special handling is done for relocs in SEC against
8876 symbols defined in discarded sections. */
8877
8878 static bfd_boolean
8879 elf_section_ignore_discarded_relocs (asection *sec)
8880 {
8881 const struct elf_backend_data *bed;
8882
8883 switch (sec->sec_info_type)
8884 {
8885 case ELF_INFO_TYPE_STABS:
8886 case ELF_INFO_TYPE_EH_FRAME:
8887 return TRUE;
8888 default:
8889 break;
8890 }
8891
8892 bed = get_elf_backend_data (sec->owner);
8893 if (bed->elf_backend_ignore_discarded_relocs != NULL
8894 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8895 return TRUE;
8896
8897 return FALSE;
8898 }
8899
8900 /* Return a mask saying how ld should treat relocations in SEC against
8901 symbols defined in discarded sections. If this function returns
8902 COMPLAIN set, ld will issue a warning message. If this function
8903 returns PRETEND set, and the discarded section was link-once and the
8904 same size as the kept link-once section, ld will pretend that the
8905 symbol was actually defined in the kept section. Otherwise ld will
8906 zero the reloc (at least that is the intent, but some cooperation by
8907 the target dependent code is needed, particularly for REL targets). */
8908
8909 unsigned int
8910 _bfd_elf_default_action_discarded (asection *sec)
8911 {
8912 if (sec->flags & SEC_DEBUGGING)
8913 return PRETEND;
8914
8915 if (strcmp (".eh_frame", sec->name) == 0)
8916 return 0;
8917
8918 if (strcmp (".gcc_except_table", sec->name) == 0)
8919 return 0;
8920
8921 return COMPLAIN | PRETEND;
8922 }
8923
8924 /* Find a match between a section and a member of a section group. */
8925
8926 static asection *
8927 match_group_member (asection *sec, asection *group,
8928 struct bfd_link_info *info)
8929 {
8930 asection *first = elf_next_in_group (group);
8931 asection *s = first;
8932
8933 while (s != NULL)
8934 {
8935 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8936 return s;
8937
8938 s = elf_next_in_group (s);
8939 if (s == first)
8940 break;
8941 }
8942
8943 return NULL;
8944 }
8945
8946 /* Check if the kept section of a discarded section SEC can be used
8947 to replace it. Return the replacement if it is OK. Otherwise return
8948 NULL. */
8949
8950 asection *
8951 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8952 {
8953 asection *kept;
8954
8955 kept = sec->kept_section;
8956 if (kept != NULL)
8957 {
8958 if ((kept->flags & SEC_GROUP) != 0)
8959 kept = match_group_member (sec, kept, info);
8960 if (kept != NULL
8961 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8962 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8963 kept = NULL;
8964 sec->kept_section = kept;
8965 }
8966 return kept;
8967 }
8968
8969 /* Link an input file into the linker output file. This function
8970 handles all the sections and relocations of the input file at once.
8971 This is so that we only have to read the local symbols once, and
8972 don't have to keep them in memory. */
8973
8974 static bfd_boolean
8975 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8976 {
8977 int (*relocate_section)
8978 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8979 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8980 bfd *output_bfd;
8981 Elf_Internal_Shdr *symtab_hdr;
8982 size_t locsymcount;
8983 size_t extsymoff;
8984 Elf_Internal_Sym *isymbuf;
8985 Elf_Internal_Sym *isym;
8986 Elf_Internal_Sym *isymend;
8987 long *pindex;
8988 asection **ppsection;
8989 asection *o;
8990 const struct elf_backend_data *bed;
8991 struct elf_link_hash_entry **sym_hashes;
8992
8993 output_bfd = finfo->output_bfd;
8994 bed = get_elf_backend_data (output_bfd);
8995 relocate_section = bed->elf_backend_relocate_section;
8996
8997 /* If this is a dynamic object, we don't want to do anything here:
8998 we don't want the local symbols, and we don't want the section
8999 contents. */
9000 if ((input_bfd->flags & DYNAMIC) != 0)
9001 return TRUE;
9002
9003 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9004 if (elf_bad_symtab (input_bfd))
9005 {
9006 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9007 extsymoff = 0;
9008 }
9009 else
9010 {
9011 locsymcount = symtab_hdr->sh_info;
9012 extsymoff = symtab_hdr->sh_info;
9013 }
9014
9015 /* Read the local symbols. */
9016 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9017 if (isymbuf == NULL && locsymcount != 0)
9018 {
9019 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9020 finfo->internal_syms,
9021 finfo->external_syms,
9022 finfo->locsym_shndx);
9023 if (isymbuf == NULL)
9024 return FALSE;
9025 }
9026
9027 /* Find local symbol sections and adjust values of symbols in
9028 SEC_MERGE sections. Write out those local symbols we know are
9029 going into the output file. */
9030 isymend = isymbuf + locsymcount;
9031 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9032 isym < isymend;
9033 isym++, pindex++, ppsection++)
9034 {
9035 asection *isec;
9036 const char *name;
9037 Elf_Internal_Sym osym;
9038
9039 *pindex = -1;
9040
9041 if (elf_bad_symtab (input_bfd))
9042 {
9043 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9044 {
9045 *ppsection = NULL;
9046 continue;
9047 }
9048 }
9049
9050 if (isym->st_shndx == SHN_UNDEF)
9051 isec = bfd_und_section_ptr;
9052 else if (isym->st_shndx == SHN_ABS)
9053 isec = bfd_abs_section_ptr;
9054 else if (isym->st_shndx == SHN_COMMON)
9055 isec = bfd_com_section_ptr;
9056 else
9057 {
9058 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9059 if (isec == NULL)
9060 {
9061 /* Don't attempt to output symbols with st_shnx in the
9062 reserved range other than SHN_ABS and SHN_COMMON. */
9063 *ppsection = NULL;
9064 continue;
9065 }
9066 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9067 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9068 isym->st_value =
9069 _bfd_merged_section_offset (output_bfd, &isec,
9070 elf_section_data (isec)->sec_info,
9071 isym->st_value);
9072 }
9073
9074 *ppsection = isec;
9075
9076 /* Don't output the first, undefined, symbol. */
9077 if (ppsection == finfo->sections)
9078 continue;
9079
9080 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9081 {
9082 /* We never output section symbols. Instead, we use the
9083 section symbol of the corresponding section in the output
9084 file. */
9085 continue;
9086 }
9087
9088 /* If we are stripping all symbols, we don't want to output this
9089 one. */
9090 if (finfo->info->strip == strip_all)
9091 continue;
9092
9093 /* If we are discarding all local symbols, we don't want to
9094 output this one. If we are generating a relocatable output
9095 file, then some of the local symbols may be required by
9096 relocs; we output them below as we discover that they are
9097 needed. */
9098 if (finfo->info->discard == discard_all)
9099 continue;
9100
9101 /* If this symbol is defined in a section which we are
9102 discarding, we don't need to keep it. */
9103 if (isym->st_shndx != SHN_UNDEF
9104 && isym->st_shndx < SHN_LORESERVE
9105 && bfd_section_removed_from_list (output_bfd,
9106 isec->output_section))
9107 continue;
9108
9109 /* Get the name of the symbol. */
9110 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9111 isym->st_name);
9112 if (name == NULL)
9113 return FALSE;
9114
9115 /* See if we are discarding symbols with this name. */
9116 if ((finfo->info->strip == strip_some
9117 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9118 == NULL))
9119 || (((finfo->info->discard == discard_sec_merge
9120 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9121 || finfo->info->discard == discard_l)
9122 && bfd_is_local_label_name (input_bfd, name)))
9123 continue;
9124
9125 /* If we get here, we are going to output this symbol. */
9126
9127 osym = *isym;
9128
9129 /* Adjust the section index for the output file. */
9130 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9131 isec->output_section);
9132 if (osym.st_shndx == SHN_BAD)
9133 return FALSE;
9134
9135 *pindex = bfd_get_symcount (output_bfd);
9136
9137 /* ELF symbols in relocatable files are section relative, but
9138 in executable files they are virtual addresses. Note that
9139 this code assumes that all ELF sections have an associated
9140 BFD section with a reasonable value for output_offset; below
9141 we assume that they also have a reasonable value for
9142 output_section. Any special sections must be set up to meet
9143 these requirements. */
9144 osym.st_value += isec->output_offset;
9145 if (! finfo->info->relocatable)
9146 {
9147 osym.st_value += isec->output_section->vma;
9148 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9149 {
9150 /* STT_TLS symbols are relative to PT_TLS segment base. */
9151 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9152 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9153 }
9154 }
9155
9156 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9157 return FALSE;
9158 }
9159
9160 /* Relocate the contents of each section. */
9161 sym_hashes = elf_sym_hashes (input_bfd);
9162 for (o = input_bfd->sections; o != NULL; o = o->next)
9163 {
9164 bfd_byte *contents;
9165
9166 if (! o->linker_mark)
9167 {
9168 /* This section was omitted from the link. */
9169 continue;
9170 }
9171
9172 if (finfo->info->relocatable
9173 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9174 {
9175 /* Deal with the group signature symbol. */
9176 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9177 unsigned long symndx = sec_data->this_hdr.sh_info;
9178 asection *osec = o->output_section;
9179
9180 if (symndx >= locsymcount
9181 || (elf_bad_symtab (input_bfd)
9182 && finfo->sections[symndx] == NULL))
9183 {
9184 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9185 while (h->root.type == bfd_link_hash_indirect
9186 || h->root.type == bfd_link_hash_warning)
9187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9188 /* Arrange for symbol to be output. */
9189 h->indx = -2;
9190 elf_section_data (osec)->this_hdr.sh_info = -2;
9191 }
9192 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9193 {
9194 /* We'll use the output section target_index. */
9195 asection *sec = finfo->sections[symndx]->output_section;
9196 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9197 }
9198 else
9199 {
9200 if (finfo->indices[symndx] == -1)
9201 {
9202 /* Otherwise output the local symbol now. */
9203 Elf_Internal_Sym sym = isymbuf[symndx];
9204 asection *sec = finfo->sections[symndx]->output_section;
9205 const char *name;
9206
9207 name = bfd_elf_string_from_elf_section (input_bfd,
9208 symtab_hdr->sh_link,
9209 sym.st_name);
9210 if (name == NULL)
9211 return FALSE;
9212
9213 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9214 sec);
9215 if (sym.st_shndx == SHN_BAD)
9216 return FALSE;
9217
9218 sym.st_value += o->output_offset;
9219
9220 finfo->indices[symndx] = bfd_get_symcount (output_bfd);
9221 if (! elf_link_output_sym (finfo, name, &sym, o, NULL))
9222 return FALSE;
9223 }
9224 elf_section_data (osec)->this_hdr.sh_info
9225 = finfo->indices[symndx];
9226 }
9227 }
9228
9229 if ((o->flags & SEC_HAS_CONTENTS) == 0
9230 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9231 continue;
9232
9233 if ((o->flags & SEC_LINKER_CREATED) != 0)
9234 {
9235 /* Section was created by _bfd_elf_link_create_dynamic_sections
9236 or somesuch. */
9237 continue;
9238 }
9239
9240 /* Get the contents of the section. They have been cached by a
9241 relaxation routine. Note that o is a section in an input
9242 file, so the contents field will not have been set by any of
9243 the routines which work on output files. */
9244 if (elf_section_data (o)->this_hdr.contents != NULL)
9245 contents = elf_section_data (o)->this_hdr.contents;
9246 else
9247 {
9248 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9249
9250 contents = finfo->contents;
9251 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9252 return FALSE;
9253 }
9254
9255 if ((o->flags & SEC_RELOC) != 0)
9256 {
9257 Elf_Internal_Rela *internal_relocs;
9258 Elf_Internal_Rela *rel, *relend;
9259 bfd_vma r_type_mask;
9260 int r_sym_shift;
9261 int action_discarded;
9262 int ret;
9263
9264 /* Get the swapped relocs. */
9265 internal_relocs
9266 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9267 finfo->internal_relocs, FALSE);
9268 if (internal_relocs == NULL
9269 && o->reloc_count > 0)
9270 return FALSE;
9271
9272 if (bed->s->arch_size == 32)
9273 {
9274 r_type_mask = 0xff;
9275 r_sym_shift = 8;
9276 }
9277 else
9278 {
9279 r_type_mask = 0xffffffff;
9280 r_sym_shift = 32;
9281 }
9282
9283 action_discarded = -1;
9284 if (!elf_section_ignore_discarded_relocs (o))
9285 action_discarded = (*bed->action_discarded) (o);
9286
9287 /* Run through the relocs evaluating complex reloc symbols and
9288 looking for relocs against symbols from discarded sections
9289 or section symbols from removed link-once sections.
9290 Complain about relocs against discarded sections. Zero
9291 relocs against removed link-once sections. */
9292
9293 rel = internal_relocs;
9294 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9295 for ( ; rel < relend; rel++)
9296 {
9297 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9298 unsigned int s_type;
9299 asection **ps, *sec;
9300 struct elf_link_hash_entry *h = NULL;
9301 const char *sym_name;
9302
9303 if (r_symndx == STN_UNDEF)
9304 continue;
9305
9306 if (r_symndx >= locsymcount
9307 || (elf_bad_symtab (input_bfd)
9308 && finfo->sections[r_symndx] == NULL))
9309 {
9310 h = sym_hashes[r_symndx - extsymoff];
9311
9312 /* Badly formatted input files can contain relocs that
9313 reference non-existant symbols. Check here so that
9314 we do not seg fault. */
9315 if (h == NULL)
9316 {
9317 char buffer [32];
9318
9319 sprintf_vma (buffer, rel->r_info);
9320 (*_bfd_error_handler)
9321 (_("error: %B contains a reloc (0x%s) for section %A "
9322 "that references a non-existent global symbol"),
9323 input_bfd, o, buffer);
9324 bfd_set_error (bfd_error_bad_value);
9325 return FALSE;
9326 }
9327
9328 while (h->root.type == bfd_link_hash_indirect
9329 || h->root.type == bfd_link_hash_warning)
9330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9331
9332 s_type = h->type;
9333
9334 ps = NULL;
9335 if (h->root.type == bfd_link_hash_defined
9336 || h->root.type == bfd_link_hash_defweak)
9337 ps = &h->root.u.def.section;
9338
9339 sym_name = h->root.root.string;
9340 }
9341 else
9342 {
9343 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9344
9345 s_type = ELF_ST_TYPE (sym->st_info);
9346 ps = &finfo->sections[r_symndx];
9347 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9348 sym, *ps);
9349 }
9350
9351 if ((s_type == STT_RELC || s_type == STT_SRELC)
9352 && !finfo->info->relocatable)
9353 {
9354 bfd_vma val;
9355 bfd_vma dot = (rel->r_offset
9356 + o->output_offset + o->output_section->vma);
9357 #ifdef DEBUG
9358 printf ("Encountered a complex symbol!");
9359 printf (" (input_bfd %s, section %s, reloc %ld\n",
9360 input_bfd->filename, o->name, rel - internal_relocs);
9361 printf (" symbol: idx %8.8lx, name %s\n",
9362 r_symndx, sym_name);
9363 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9364 (unsigned long) rel->r_info,
9365 (unsigned long) rel->r_offset);
9366 #endif
9367 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9368 isymbuf, locsymcount, s_type == STT_SRELC))
9369 return FALSE;
9370
9371 /* Symbol evaluated OK. Update to absolute value. */
9372 set_symbol_value (input_bfd, isymbuf, locsymcount,
9373 r_symndx, val);
9374 continue;
9375 }
9376
9377 if (action_discarded != -1 && ps != NULL)
9378 {
9379 /* Complain if the definition comes from a
9380 discarded section. */
9381 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9382 {
9383 BFD_ASSERT (r_symndx != 0);
9384 if (action_discarded & COMPLAIN)
9385 (*finfo->info->callbacks->einfo)
9386 (_("%X`%s' referenced in section `%A' of %B: "
9387 "defined in discarded section `%A' of %B\n"),
9388 sym_name, o, input_bfd, sec, sec->owner);
9389
9390 /* Try to do the best we can to support buggy old
9391 versions of gcc. Pretend that the symbol is
9392 really defined in the kept linkonce section.
9393 FIXME: This is quite broken. Modifying the
9394 symbol here means we will be changing all later
9395 uses of the symbol, not just in this section. */
9396 if (action_discarded & PRETEND)
9397 {
9398 asection *kept;
9399
9400 kept = _bfd_elf_check_kept_section (sec,
9401 finfo->info);
9402 if (kept != NULL)
9403 {
9404 *ps = kept;
9405 continue;
9406 }
9407 }
9408 }
9409 }
9410 }
9411
9412 /* Relocate the section by invoking a back end routine.
9413
9414 The back end routine is responsible for adjusting the
9415 section contents as necessary, and (if using Rela relocs
9416 and generating a relocatable output file) adjusting the
9417 reloc addend as necessary.
9418
9419 The back end routine does not have to worry about setting
9420 the reloc address or the reloc symbol index.
9421
9422 The back end routine is given a pointer to the swapped in
9423 internal symbols, and can access the hash table entries
9424 for the external symbols via elf_sym_hashes (input_bfd).
9425
9426 When generating relocatable output, the back end routine
9427 must handle STB_LOCAL/STT_SECTION symbols specially. The
9428 output symbol is going to be a section symbol
9429 corresponding to the output section, which will require
9430 the addend to be adjusted. */
9431
9432 ret = (*relocate_section) (output_bfd, finfo->info,
9433 input_bfd, o, contents,
9434 internal_relocs,
9435 isymbuf,
9436 finfo->sections);
9437 if (!ret)
9438 return FALSE;
9439
9440 if (ret == 2
9441 || finfo->info->relocatable
9442 || finfo->info->emitrelocations)
9443 {
9444 Elf_Internal_Rela *irela;
9445 Elf_Internal_Rela *irelaend;
9446 bfd_vma last_offset;
9447 struct elf_link_hash_entry **rel_hash;
9448 struct elf_link_hash_entry **rel_hash_list;
9449 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9450 unsigned int next_erel;
9451 bfd_boolean rela_normal;
9452
9453 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9454 rela_normal = (bed->rela_normal
9455 && (input_rel_hdr->sh_entsize
9456 == bed->s->sizeof_rela));
9457
9458 /* Adjust the reloc addresses and symbol indices. */
9459
9460 irela = internal_relocs;
9461 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9462 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9463 + elf_section_data (o->output_section)->rel_count
9464 + elf_section_data (o->output_section)->rel_count2);
9465 rel_hash_list = rel_hash;
9466 last_offset = o->output_offset;
9467 if (!finfo->info->relocatable)
9468 last_offset += o->output_section->vma;
9469 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9470 {
9471 unsigned long r_symndx;
9472 asection *sec;
9473 Elf_Internal_Sym sym;
9474
9475 if (next_erel == bed->s->int_rels_per_ext_rel)
9476 {
9477 rel_hash++;
9478 next_erel = 0;
9479 }
9480
9481 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9482 finfo->info, o,
9483 irela->r_offset);
9484 if (irela->r_offset >= (bfd_vma) -2)
9485 {
9486 /* This is a reloc for a deleted entry or somesuch.
9487 Turn it into an R_*_NONE reloc, at the same
9488 offset as the last reloc. elf_eh_frame.c and
9489 bfd_elf_discard_info rely on reloc offsets
9490 being ordered. */
9491 irela->r_offset = last_offset;
9492 irela->r_info = 0;
9493 irela->r_addend = 0;
9494 continue;
9495 }
9496
9497 irela->r_offset += o->output_offset;
9498
9499 /* Relocs in an executable have to be virtual addresses. */
9500 if (!finfo->info->relocatable)
9501 irela->r_offset += o->output_section->vma;
9502
9503 last_offset = irela->r_offset;
9504
9505 r_symndx = irela->r_info >> r_sym_shift;
9506 if (r_symndx == STN_UNDEF)
9507 continue;
9508
9509 if (r_symndx >= locsymcount
9510 || (elf_bad_symtab (input_bfd)
9511 && finfo->sections[r_symndx] == NULL))
9512 {
9513 struct elf_link_hash_entry *rh;
9514 unsigned long indx;
9515
9516 /* This is a reloc against a global symbol. We
9517 have not yet output all the local symbols, so
9518 we do not know the symbol index of any global
9519 symbol. We set the rel_hash entry for this
9520 reloc to point to the global hash table entry
9521 for this symbol. The symbol index is then
9522 set at the end of bfd_elf_final_link. */
9523 indx = r_symndx - extsymoff;
9524 rh = elf_sym_hashes (input_bfd)[indx];
9525 while (rh->root.type == bfd_link_hash_indirect
9526 || rh->root.type == bfd_link_hash_warning)
9527 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9528
9529 /* Setting the index to -2 tells
9530 elf_link_output_extsym that this symbol is
9531 used by a reloc. */
9532 BFD_ASSERT (rh->indx < 0);
9533 rh->indx = -2;
9534
9535 *rel_hash = rh;
9536
9537 continue;
9538 }
9539
9540 /* This is a reloc against a local symbol. */
9541
9542 *rel_hash = NULL;
9543 sym = isymbuf[r_symndx];
9544 sec = finfo->sections[r_symndx];
9545 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9546 {
9547 /* I suppose the backend ought to fill in the
9548 section of any STT_SECTION symbol against a
9549 processor specific section. */
9550 r_symndx = 0;
9551 if (bfd_is_abs_section (sec))
9552 ;
9553 else if (sec == NULL || sec->owner == NULL)
9554 {
9555 bfd_set_error (bfd_error_bad_value);
9556 return FALSE;
9557 }
9558 else
9559 {
9560 asection *osec = sec->output_section;
9561
9562 /* If we have discarded a section, the output
9563 section will be the absolute section. In
9564 case of discarded SEC_MERGE sections, use
9565 the kept section. relocate_section should
9566 have already handled discarded linkonce
9567 sections. */
9568 if (bfd_is_abs_section (osec)
9569 && sec->kept_section != NULL
9570 && sec->kept_section->output_section != NULL)
9571 {
9572 osec = sec->kept_section->output_section;
9573 irela->r_addend -= osec->vma;
9574 }
9575
9576 if (!bfd_is_abs_section (osec))
9577 {
9578 r_symndx = osec->target_index;
9579 if (r_symndx == 0)
9580 {
9581 struct elf_link_hash_table *htab;
9582 asection *oi;
9583
9584 htab = elf_hash_table (finfo->info);
9585 oi = htab->text_index_section;
9586 if ((osec->flags & SEC_READONLY) == 0
9587 && htab->data_index_section != NULL)
9588 oi = htab->data_index_section;
9589
9590 if (oi != NULL)
9591 {
9592 irela->r_addend += osec->vma - oi->vma;
9593 r_symndx = oi->target_index;
9594 }
9595 }
9596
9597 BFD_ASSERT (r_symndx != 0);
9598 }
9599 }
9600
9601 /* Adjust the addend according to where the
9602 section winds up in the output section. */
9603 if (rela_normal)
9604 irela->r_addend += sec->output_offset;
9605 }
9606 else
9607 {
9608 if (finfo->indices[r_symndx] == -1)
9609 {
9610 unsigned long shlink;
9611 const char *name;
9612 asection *osec;
9613
9614 if (finfo->info->strip == strip_all)
9615 {
9616 /* You can't do ld -r -s. */
9617 bfd_set_error (bfd_error_invalid_operation);
9618 return FALSE;
9619 }
9620
9621 /* This symbol was skipped earlier, but
9622 since it is needed by a reloc, we
9623 must output it now. */
9624 shlink = symtab_hdr->sh_link;
9625 name = (bfd_elf_string_from_elf_section
9626 (input_bfd, shlink, sym.st_name));
9627 if (name == NULL)
9628 return FALSE;
9629
9630 osec = sec->output_section;
9631 sym.st_shndx =
9632 _bfd_elf_section_from_bfd_section (output_bfd,
9633 osec);
9634 if (sym.st_shndx == SHN_BAD)
9635 return FALSE;
9636
9637 sym.st_value += sec->output_offset;
9638 if (! finfo->info->relocatable)
9639 {
9640 sym.st_value += osec->vma;
9641 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9642 {
9643 /* STT_TLS symbols are relative to PT_TLS
9644 segment base. */
9645 BFD_ASSERT (elf_hash_table (finfo->info)
9646 ->tls_sec != NULL);
9647 sym.st_value -= (elf_hash_table (finfo->info)
9648 ->tls_sec->vma);
9649 }
9650 }
9651
9652 finfo->indices[r_symndx]
9653 = bfd_get_symcount (output_bfd);
9654
9655 if (! elf_link_output_sym (finfo, name, &sym, sec,
9656 NULL))
9657 return FALSE;
9658 }
9659
9660 r_symndx = finfo->indices[r_symndx];
9661 }
9662
9663 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9664 | (irela->r_info & r_type_mask));
9665 }
9666
9667 /* Swap out the relocs. */
9668 if (input_rel_hdr->sh_size != 0
9669 && !bed->elf_backend_emit_relocs (output_bfd, o,
9670 input_rel_hdr,
9671 internal_relocs,
9672 rel_hash_list))
9673 return FALSE;
9674
9675 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9676 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9677 {
9678 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9679 * bed->s->int_rels_per_ext_rel);
9680 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9681 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9682 input_rel_hdr2,
9683 internal_relocs,
9684 rel_hash_list))
9685 return FALSE;
9686 }
9687 }
9688 }
9689
9690 /* Write out the modified section contents. */
9691 if (bed->elf_backend_write_section
9692 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9693 contents))
9694 {
9695 /* Section written out. */
9696 }
9697 else switch (o->sec_info_type)
9698 {
9699 case ELF_INFO_TYPE_STABS:
9700 if (! (_bfd_write_section_stabs
9701 (output_bfd,
9702 &elf_hash_table (finfo->info)->stab_info,
9703 o, &elf_section_data (o)->sec_info, contents)))
9704 return FALSE;
9705 break;
9706 case ELF_INFO_TYPE_MERGE:
9707 if (! _bfd_write_merged_section (output_bfd, o,
9708 elf_section_data (o)->sec_info))
9709 return FALSE;
9710 break;
9711 case ELF_INFO_TYPE_EH_FRAME:
9712 {
9713 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9714 o, contents))
9715 return FALSE;
9716 }
9717 break;
9718 default:
9719 {
9720 if (! (o->flags & SEC_EXCLUDE)
9721 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9722 && ! bfd_set_section_contents (output_bfd, o->output_section,
9723 contents,
9724 (file_ptr) o->output_offset,
9725 o->size))
9726 return FALSE;
9727 }
9728 break;
9729 }
9730 }
9731
9732 return TRUE;
9733 }
9734
9735 /* Generate a reloc when linking an ELF file. This is a reloc
9736 requested by the linker, and does not come from any input file. This
9737 is used to build constructor and destructor tables when linking
9738 with -Ur. */
9739
9740 static bfd_boolean
9741 elf_reloc_link_order (bfd *output_bfd,
9742 struct bfd_link_info *info,
9743 asection *output_section,
9744 struct bfd_link_order *link_order)
9745 {
9746 reloc_howto_type *howto;
9747 long indx;
9748 bfd_vma offset;
9749 bfd_vma addend;
9750 struct elf_link_hash_entry **rel_hash_ptr;
9751 Elf_Internal_Shdr *rel_hdr;
9752 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9753 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9754 bfd_byte *erel;
9755 unsigned int i;
9756
9757 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9758 if (howto == NULL)
9759 {
9760 bfd_set_error (bfd_error_bad_value);
9761 return FALSE;
9762 }
9763
9764 addend = link_order->u.reloc.p->addend;
9765
9766 /* Figure out the symbol index. */
9767 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9768 + elf_section_data (output_section)->rel_count
9769 + elf_section_data (output_section)->rel_count2);
9770 if (link_order->type == bfd_section_reloc_link_order)
9771 {
9772 indx = link_order->u.reloc.p->u.section->target_index;
9773 BFD_ASSERT (indx != 0);
9774 *rel_hash_ptr = NULL;
9775 }
9776 else
9777 {
9778 struct elf_link_hash_entry *h;
9779
9780 /* Treat a reloc against a defined symbol as though it were
9781 actually against the section. */
9782 h = ((struct elf_link_hash_entry *)
9783 bfd_wrapped_link_hash_lookup (output_bfd, info,
9784 link_order->u.reloc.p->u.name,
9785 FALSE, FALSE, TRUE));
9786 if (h != NULL
9787 && (h->root.type == bfd_link_hash_defined
9788 || h->root.type == bfd_link_hash_defweak))
9789 {
9790 asection *section;
9791
9792 section = h->root.u.def.section;
9793 indx = section->output_section->target_index;
9794 *rel_hash_ptr = NULL;
9795 /* It seems that we ought to add the symbol value to the
9796 addend here, but in practice it has already been added
9797 because it was passed to constructor_callback. */
9798 addend += section->output_section->vma + section->output_offset;
9799 }
9800 else if (h != NULL)
9801 {
9802 /* Setting the index to -2 tells elf_link_output_extsym that
9803 this symbol is used by a reloc. */
9804 h->indx = -2;
9805 *rel_hash_ptr = h;
9806 indx = 0;
9807 }
9808 else
9809 {
9810 if (! ((*info->callbacks->unattached_reloc)
9811 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9812 return FALSE;
9813 indx = 0;
9814 }
9815 }
9816
9817 /* If this is an inplace reloc, we must write the addend into the
9818 object file. */
9819 if (howto->partial_inplace && addend != 0)
9820 {
9821 bfd_size_type size;
9822 bfd_reloc_status_type rstat;
9823 bfd_byte *buf;
9824 bfd_boolean ok;
9825 const char *sym_name;
9826
9827 size = bfd_get_reloc_size (howto);
9828 buf = bfd_zmalloc (size);
9829 if (buf == NULL)
9830 return FALSE;
9831 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9832 switch (rstat)
9833 {
9834 case bfd_reloc_ok:
9835 break;
9836
9837 default:
9838 case bfd_reloc_outofrange:
9839 abort ();
9840
9841 case bfd_reloc_overflow:
9842 if (link_order->type == bfd_section_reloc_link_order)
9843 sym_name = bfd_section_name (output_bfd,
9844 link_order->u.reloc.p->u.section);
9845 else
9846 sym_name = link_order->u.reloc.p->u.name;
9847 if (! ((*info->callbacks->reloc_overflow)
9848 (info, NULL, sym_name, howto->name, addend, NULL,
9849 NULL, (bfd_vma) 0)))
9850 {
9851 free (buf);
9852 return FALSE;
9853 }
9854 break;
9855 }
9856 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9857 link_order->offset, size);
9858 free (buf);
9859 if (! ok)
9860 return FALSE;
9861 }
9862
9863 /* The address of a reloc is relative to the section in a
9864 relocatable file, and is a virtual address in an executable
9865 file. */
9866 offset = link_order->offset;
9867 if (! info->relocatable)
9868 offset += output_section->vma;
9869
9870 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9871 {
9872 irel[i].r_offset = offset;
9873 irel[i].r_info = 0;
9874 irel[i].r_addend = 0;
9875 }
9876 if (bed->s->arch_size == 32)
9877 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9878 else
9879 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9880
9881 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9882 erel = rel_hdr->contents;
9883 if (rel_hdr->sh_type == SHT_REL)
9884 {
9885 erel += (elf_section_data (output_section)->rel_count
9886 * bed->s->sizeof_rel);
9887 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9888 }
9889 else
9890 {
9891 irel[0].r_addend = addend;
9892 erel += (elf_section_data (output_section)->rel_count
9893 * bed->s->sizeof_rela);
9894 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9895 }
9896
9897 ++elf_section_data (output_section)->rel_count;
9898
9899 return TRUE;
9900 }
9901
9902
9903 /* Get the output vma of the section pointed to by the sh_link field. */
9904
9905 static bfd_vma
9906 elf_get_linked_section_vma (struct bfd_link_order *p)
9907 {
9908 Elf_Internal_Shdr **elf_shdrp;
9909 asection *s;
9910 int elfsec;
9911
9912 s = p->u.indirect.section;
9913 elf_shdrp = elf_elfsections (s->owner);
9914 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9915 elfsec = elf_shdrp[elfsec]->sh_link;
9916 /* PR 290:
9917 The Intel C compiler generates SHT_IA_64_UNWIND with
9918 SHF_LINK_ORDER. But it doesn't set the sh_link or
9919 sh_info fields. Hence we could get the situation
9920 where elfsec is 0. */
9921 if (elfsec == 0)
9922 {
9923 const struct elf_backend_data *bed
9924 = get_elf_backend_data (s->owner);
9925 if (bed->link_order_error_handler)
9926 bed->link_order_error_handler
9927 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9928 return 0;
9929 }
9930 else
9931 {
9932 s = elf_shdrp[elfsec]->bfd_section;
9933 return s->output_section->vma + s->output_offset;
9934 }
9935 }
9936
9937
9938 /* Compare two sections based on the locations of the sections they are
9939 linked to. Used by elf_fixup_link_order. */
9940
9941 static int
9942 compare_link_order (const void * a, const void * b)
9943 {
9944 bfd_vma apos;
9945 bfd_vma bpos;
9946
9947 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9948 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9949 if (apos < bpos)
9950 return -1;
9951 return apos > bpos;
9952 }
9953
9954
9955 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9956 order as their linked sections. Returns false if this could not be done
9957 because an output section includes both ordered and unordered
9958 sections. Ideally we'd do this in the linker proper. */
9959
9960 static bfd_boolean
9961 elf_fixup_link_order (bfd *abfd, asection *o)
9962 {
9963 int seen_linkorder;
9964 int seen_other;
9965 int n;
9966 struct bfd_link_order *p;
9967 bfd *sub;
9968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9969 unsigned elfsec;
9970 struct bfd_link_order **sections;
9971 asection *s, *other_sec, *linkorder_sec;
9972 bfd_vma offset;
9973
9974 other_sec = NULL;
9975 linkorder_sec = NULL;
9976 seen_other = 0;
9977 seen_linkorder = 0;
9978 for (p = o->map_head.link_order; p != NULL; p = p->next)
9979 {
9980 if (p->type == bfd_indirect_link_order)
9981 {
9982 s = p->u.indirect.section;
9983 sub = s->owner;
9984 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9985 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9986 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9987 && elfsec < elf_numsections (sub)
9988 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9989 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9990 {
9991 seen_linkorder++;
9992 linkorder_sec = s;
9993 }
9994 else
9995 {
9996 seen_other++;
9997 other_sec = s;
9998 }
9999 }
10000 else
10001 seen_other++;
10002
10003 if (seen_other && seen_linkorder)
10004 {
10005 if (other_sec && linkorder_sec)
10006 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10007 o, linkorder_sec,
10008 linkorder_sec->owner, other_sec,
10009 other_sec->owner);
10010 else
10011 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10012 o);
10013 bfd_set_error (bfd_error_bad_value);
10014 return FALSE;
10015 }
10016 }
10017
10018 if (!seen_linkorder)
10019 return TRUE;
10020
10021 sections = (struct bfd_link_order **)
10022 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10023 if (sections == NULL)
10024 return FALSE;
10025 seen_linkorder = 0;
10026
10027 for (p = o->map_head.link_order; p != NULL; p = p->next)
10028 {
10029 sections[seen_linkorder++] = p;
10030 }
10031 /* Sort the input sections in the order of their linked section. */
10032 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10033 compare_link_order);
10034
10035 /* Change the offsets of the sections. */
10036 offset = 0;
10037 for (n = 0; n < seen_linkorder; n++)
10038 {
10039 s = sections[n]->u.indirect.section;
10040 offset &= ~(bfd_vma) 0 << s->alignment_power;
10041 s->output_offset = offset;
10042 sections[n]->offset = offset;
10043 offset += sections[n]->size;
10044 }
10045
10046 free (sections);
10047 return TRUE;
10048 }
10049
10050
10051 /* Do the final step of an ELF link. */
10052
10053 bfd_boolean
10054 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10055 {
10056 bfd_boolean dynamic;
10057 bfd_boolean emit_relocs;
10058 bfd *dynobj;
10059 struct elf_final_link_info finfo;
10060 register asection *o;
10061 register struct bfd_link_order *p;
10062 register bfd *sub;
10063 bfd_size_type max_contents_size;
10064 bfd_size_type max_external_reloc_size;
10065 bfd_size_type max_internal_reloc_count;
10066 bfd_size_type max_sym_count;
10067 bfd_size_type max_sym_shndx_count;
10068 file_ptr off;
10069 Elf_Internal_Sym elfsym;
10070 unsigned int i;
10071 Elf_Internal_Shdr *symtab_hdr;
10072 Elf_Internal_Shdr *symtab_shndx_hdr;
10073 Elf_Internal_Shdr *symstrtab_hdr;
10074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10075 struct elf_outext_info eoinfo;
10076 bfd_boolean merged;
10077 size_t relativecount = 0;
10078 asection *reldyn = 0;
10079 bfd_size_type amt;
10080 asection *attr_section = NULL;
10081 bfd_vma attr_size = 0;
10082 const char *std_attrs_section;
10083
10084 if (! is_elf_hash_table (info->hash))
10085 return FALSE;
10086
10087 if (info->shared)
10088 abfd->flags |= DYNAMIC;
10089
10090 dynamic = elf_hash_table (info)->dynamic_sections_created;
10091 dynobj = elf_hash_table (info)->dynobj;
10092
10093 emit_relocs = (info->relocatable
10094 || info->emitrelocations);
10095
10096 finfo.info = info;
10097 finfo.output_bfd = abfd;
10098 finfo.symstrtab = _bfd_elf_stringtab_init ();
10099 if (finfo.symstrtab == NULL)
10100 return FALSE;
10101
10102 if (! dynamic)
10103 {
10104 finfo.dynsym_sec = NULL;
10105 finfo.hash_sec = NULL;
10106 finfo.symver_sec = NULL;
10107 }
10108 else
10109 {
10110 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10111 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10112 BFD_ASSERT (finfo.dynsym_sec != NULL);
10113 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10114 /* Note that it is OK if symver_sec is NULL. */
10115 }
10116
10117 finfo.contents = NULL;
10118 finfo.external_relocs = NULL;
10119 finfo.internal_relocs = NULL;
10120 finfo.external_syms = NULL;
10121 finfo.locsym_shndx = NULL;
10122 finfo.internal_syms = NULL;
10123 finfo.indices = NULL;
10124 finfo.sections = NULL;
10125 finfo.symbuf = NULL;
10126 finfo.symshndxbuf = NULL;
10127 finfo.symbuf_count = 0;
10128 finfo.shndxbuf_size = 0;
10129
10130 /* The object attributes have been merged. Remove the input
10131 sections from the link, and set the contents of the output
10132 secton. */
10133 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10134 for (o = abfd->sections; o != NULL; o = o->next)
10135 {
10136 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10137 || strcmp (o->name, ".gnu.attributes") == 0)
10138 {
10139 for (p = o->map_head.link_order; p != NULL; p = p->next)
10140 {
10141 asection *input_section;
10142
10143 if (p->type != bfd_indirect_link_order)
10144 continue;
10145 input_section = p->u.indirect.section;
10146 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10147 elf_link_input_bfd ignores this section. */
10148 input_section->flags &= ~SEC_HAS_CONTENTS;
10149 }
10150
10151 attr_size = bfd_elf_obj_attr_size (abfd);
10152 if (attr_size)
10153 {
10154 bfd_set_section_size (abfd, o, attr_size);
10155 attr_section = o;
10156 /* Skip this section later on. */
10157 o->map_head.link_order = NULL;
10158 }
10159 else
10160 o->flags |= SEC_EXCLUDE;
10161 }
10162 }
10163
10164 /* Count up the number of relocations we will output for each output
10165 section, so that we know the sizes of the reloc sections. We
10166 also figure out some maximum sizes. */
10167 max_contents_size = 0;
10168 max_external_reloc_size = 0;
10169 max_internal_reloc_count = 0;
10170 max_sym_count = 0;
10171 max_sym_shndx_count = 0;
10172 merged = FALSE;
10173 for (o = abfd->sections; o != NULL; o = o->next)
10174 {
10175 struct bfd_elf_section_data *esdo = elf_section_data (o);
10176 o->reloc_count = 0;
10177
10178 for (p = o->map_head.link_order; p != NULL; p = p->next)
10179 {
10180 unsigned int reloc_count = 0;
10181 struct bfd_elf_section_data *esdi = NULL;
10182 unsigned int *rel_count1;
10183
10184 if (p->type == bfd_section_reloc_link_order
10185 || p->type == bfd_symbol_reloc_link_order)
10186 reloc_count = 1;
10187 else if (p->type == bfd_indirect_link_order)
10188 {
10189 asection *sec;
10190
10191 sec = p->u.indirect.section;
10192 esdi = elf_section_data (sec);
10193
10194 /* Mark all sections which are to be included in the
10195 link. This will normally be every section. We need
10196 to do this so that we can identify any sections which
10197 the linker has decided to not include. */
10198 sec->linker_mark = TRUE;
10199
10200 if (sec->flags & SEC_MERGE)
10201 merged = TRUE;
10202
10203 if (info->relocatable || info->emitrelocations)
10204 reloc_count = sec->reloc_count;
10205 else if (bed->elf_backend_count_relocs)
10206 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10207
10208 if (sec->rawsize > max_contents_size)
10209 max_contents_size = sec->rawsize;
10210 if (sec->size > max_contents_size)
10211 max_contents_size = sec->size;
10212
10213 /* We are interested in just local symbols, not all
10214 symbols. */
10215 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10216 && (sec->owner->flags & DYNAMIC) == 0)
10217 {
10218 size_t sym_count;
10219
10220 if (elf_bad_symtab (sec->owner))
10221 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10222 / bed->s->sizeof_sym);
10223 else
10224 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10225
10226 if (sym_count > max_sym_count)
10227 max_sym_count = sym_count;
10228
10229 if (sym_count > max_sym_shndx_count
10230 && elf_symtab_shndx (sec->owner) != 0)
10231 max_sym_shndx_count = sym_count;
10232
10233 if ((sec->flags & SEC_RELOC) != 0)
10234 {
10235 size_t ext_size;
10236
10237 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10238 if (ext_size > max_external_reloc_size)
10239 max_external_reloc_size = ext_size;
10240 if (sec->reloc_count > max_internal_reloc_count)
10241 max_internal_reloc_count = sec->reloc_count;
10242 }
10243 }
10244 }
10245
10246 if (reloc_count == 0)
10247 continue;
10248
10249 o->reloc_count += reloc_count;
10250
10251 /* MIPS may have a mix of REL and RELA relocs on sections.
10252 To support this curious ABI we keep reloc counts in
10253 elf_section_data too. We must be careful to add the
10254 relocations from the input section to the right output
10255 count. FIXME: Get rid of one count. We have
10256 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10257 rel_count1 = &esdo->rel_count;
10258 if (esdi != NULL)
10259 {
10260 bfd_boolean same_size;
10261 bfd_size_type entsize1;
10262
10263 entsize1 = esdi->rel_hdr.sh_entsize;
10264 /* PR 9827: If the header size has not been set yet then
10265 assume that it will match the output section's reloc type. */
10266 if (entsize1 == 0)
10267 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10268 else
10269 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10270 || entsize1 == bed->s->sizeof_rela);
10271 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10272
10273 if (!same_size)
10274 rel_count1 = &esdo->rel_count2;
10275
10276 if (esdi->rel_hdr2 != NULL)
10277 {
10278 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10279 unsigned int alt_count;
10280 unsigned int *rel_count2;
10281
10282 BFD_ASSERT (entsize2 != entsize1
10283 && (entsize2 == bed->s->sizeof_rel
10284 || entsize2 == bed->s->sizeof_rela));
10285
10286 rel_count2 = &esdo->rel_count2;
10287 if (!same_size)
10288 rel_count2 = &esdo->rel_count;
10289
10290 /* The following is probably too simplistic if the
10291 backend counts output relocs unusually. */
10292 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10293 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10294 *rel_count2 += alt_count;
10295 reloc_count -= alt_count;
10296 }
10297 }
10298 *rel_count1 += reloc_count;
10299 }
10300
10301 if (o->reloc_count > 0)
10302 o->flags |= SEC_RELOC;
10303 else
10304 {
10305 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10306 set it (this is probably a bug) and if it is set
10307 assign_section_numbers will create a reloc section. */
10308 o->flags &=~ SEC_RELOC;
10309 }
10310
10311 /* If the SEC_ALLOC flag is not set, force the section VMA to
10312 zero. This is done in elf_fake_sections as well, but forcing
10313 the VMA to 0 here will ensure that relocs against these
10314 sections are handled correctly. */
10315 if ((o->flags & SEC_ALLOC) == 0
10316 && ! o->user_set_vma)
10317 o->vma = 0;
10318 }
10319
10320 if (! info->relocatable && merged)
10321 elf_link_hash_traverse (elf_hash_table (info),
10322 _bfd_elf_link_sec_merge_syms, abfd);
10323
10324 /* Figure out the file positions for everything but the symbol table
10325 and the relocs. We set symcount to force assign_section_numbers
10326 to create a symbol table. */
10327 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10328 BFD_ASSERT (! abfd->output_has_begun);
10329 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10330 goto error_return;
10331
10332 /* Set sizes, and assign file positions for reloc sections. */
10333 for (o = abfd->sections; o != NULL; o = o->next)
10334 {
10335 if ((o->flags & SEC_RELOC) != 0)
10336 {
10337 if (!(_bfd_elf_link_size_reloc_section
10338 (abfd, &elf_section_data (o)->rel_hdr, o)))
10339 goto error_return;
10340
10341 if (elf_section_data (o)->rel_hdr2
10342 && !(_bfd_elf_link_size_reloc_section
10343 (abfd, elf_section_data (o)->rel_hdr2, o)))
10344 goto error_return;
10345 }
10346
10347 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10348 to count upwards while actually outputting the relocations. */
10349 elf_section_data (o)->rel_count = 0;
10350 elf_section_data (o)->rel_count2 = 0;
10351 }
10352
10353 _bfd_elf_assign_file_positions_for_relocs (abfd);
10354
10355 /* We have now assigned file positions for all the sections except
10356 .symtab and .strtab. We start the .symtab section at the current
10357 file position, and write directly to it. We build the .strtab
10358 section in memory. */
10359 bfd_get_symcount (abfd) = 0;
10360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10361 /* sh_name is set in prep_headers. */
10362 symtab_hdr->sh_type = SHT_SYMTAB;
10363 /* sh_flags, sh_addr and sh_size all start off zero. */
10364 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10365 /* sh_link is set in assign_section_numbers. */
10366 /* sh_info is set below. */
10367 /* sh_offset is set just below. */
10368 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10369
10370 off = elf_tdata (abfd)->next_file_pos;
10371 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10372
10373 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10374 incorrect. We do not yet know the size of the .symtab section.
10375 We correct next_file_pos below, after we do know the size. */
10376
10377 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10378 continuously seeking to the right position in the file. */
10379 if (! info->keep_memory || max_sym_count < 20)
10380 finfo.symbuf_size = 20;
10381 else
10382 finfo.symbuf_size = max_sym_count;
10383 amt = finfo.symbuf_size;
10384 amt *= bed->s->sizeof_sym;
10385 finfo.symbuf = bfd_malloc (amt);
10386 if (finfo.symbuf == NULL)
10387 goto error_return;
10388 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10389 {
10390 /* Wild guess at number of output symbols. realloc'd as needed. */
10391 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10392 finfo.shndxbuf_size = amt;
10393 amt *= sizeof (Elf_External_Sym_Shndx);
10394 finfo.symshndxbuf = bfd_zmalloc (amt);
10395 if (finfo.symshndxbuf == NULL)
10396 goto error_return;
10397 }
10398
10399 /* Start writing out the symbol table. The first symbol is always a
10400 dummy symbol. */
10401 if (info->strip != strip_all
10402 || emit_relocs)
10403 {
10404 elfsym.st_value = 0;
10405 elfsym.st_size = 0;
10406 elfsym.st_info = 0;
10407 elfsym.st_other = 0;
10408 elfsym.st_shndx = SHN_UNDEF;
10409 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10410 NULL))
10411 goto error_return;
10412 }
10413
10414 /* Output a symbol for each section. We output these even if we are
10415 discarding local symbols, since they are used for relocs. These
10416 symbols have no names. We store the index of each one in the
10417 index field of the section, so that we can find it again when
10418 outputting relocs. */
10419 if (info->strip != strip_all
10420 || emit_relocs)
10421 {
10422 elfsym.st_size = 0;
10423 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10424 elfsym.st_other = 0;
10425 elfsym.st_value = 0;
10426 for (i = 1; i < elf_numsections (abfd); i++)
10427 {
10428 o = bfd_section_from_elf_index (abfd, i);
10429 if (o != NULL)
10430 {
10431 o->target_index = bfd_get_symcount (abfd);
10432 elfsym.st_shndx = i;
10433 if (!info->relocatable)
10434 elfsym.st_value = o->vma;
10435 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10436 goto error_return;
10437 }
10438 }
10439 }
10440
10441 /* Allocate some memory to hold information read in from the input
10442 files. */
10443 if (max_contents_size != 0)
10444 {
10445 finfo.contents = bfd_malloc (max_contents_size);
10446 if (finfo.contents == NULL)
10447 goto error_return;
10448 }
10449
10450 if (max_external_reloc_size != 0)
10451 {
10452 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10453 if (finfo.external_relocs == NULL)
10454 goto error_return;
10455 }
10456
10457 if (max_internal_reloc_count != 0)
10458 {
10459 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10460 amt *= sizeof (Elf_Internal_Rela);
10461 finfo.internal_relocs = bfd_malloc (amt);
10462 if (finfo.internal_relocs == NULL)
10463 goto error_return;
10464 }
10465
10466 if (max_sym_count != 0)
10467 {
10468 amt = max_sym_count * bed->s->sizeof_sym;
10469 finfo.external_syms = bfd_malloc (amt);
10470 if (finfo.external_syms == NULL)
10471 goto error_return;
10472
10473 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10474 finfo.internal_syms = bfd_malloc (amt);
10475 if (finfo.internal_syms == NULL)
10476 goto error_return;
10477
10478 amt = max_sym_count * sizeof (long);
10479 finfo.indices = bfd_malloc (amt);
10480 if (finfo.indices == NULL)
10481 goto error_return;
10482
10483 amt = max_sym_count * sizeof (asection *);
10484 finfo.sections = bfd_malloc (amt);
10485 if (finfo.sections == NULL)
10486 goto error_return;
10487 }
10488
10489 if (max_sym_shndx_count != 0)
10490 {
10491 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10492 finfo.locsym_shndx = bfd_malloc (amt);
10493 if (finfo.locsym_shndx == NULL)
10494 goto error_return;
10495 }
10496
10497 if (elf_hash_table (info)->tls_sec)
10498 {
10499 bfd_vma base, end = 0;
10500 asection *sec;
10501
10502 for (sec = elf_hash_table (info)->tls_sec;
10503 sec && (sec->flags & SEC_THREAD_LOCAL);
10504 sec = sec->next)
10505 {
10506 bfd_size_type size = sec->size;
10507
10508 if (size == 0
10509 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10510 {
10511 struct bfd_link_order *o = sec->map_tail.link_order;
10512 if (o != NULL)
10513 size = o->offset + o->size;
10514 }
10515 end = sec->vma + size;
10516 }
10517 base = elf_hash_table (info)->tls_sec->vma;
10518 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10519 elf_hash_table (info)->tls_size = end - base;
10520 }
10521
10522 /* Reorder SHF_LINK_ORDER sections. */
10523 for (o = abfd->sections; o != NULL; o = o->next)
10524 {
10525 if (!elf_fixup_link_order (abfd, o))
10526 return FALSE;
10527 }
10528
10529 /* Since ELF permits relocations to be against local symbols, we
10530 must have the local symbols available when we do the relocations.
10531 Since we would rather only read the local symbols once, and we
10532 would rather not keep them in memory, we handle all the
10533 relocations for a single input file at the same time.
10534
10535 Unfortunately, there is no way to know the total number of local
10536 symbols until we have seen all of them, and the local symbol
10537 indices precede the global symbol indices. This means that when
10538 we are generating relocatable output, and we see a reloc against
10539 a global symbol, we can not know the symbol index until we have
10540 finished examining all the local symbols to see which ones we are
10541 going to output. To deal with this, we keep the relocations in
10542 memory, and don't output them until the end of the link. This is
10543 an unfortunate waste of memory, but I don't see a good way around
10544 it. Fortunately, it only happens when performing a relocatable
10545 link, which is not the common case. FIXME: If keep_memory is set
10546 we could write the relocs out and then read them again; I don't
10547 know how bad the memory loss will be. */
10548
10549 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10550 sub->output_has_begun = FALSE;
10551 for (o = abfd->sections; o != NULL; o = o->next)
10552 {
10553 for (p = o->map_head.link_order; p != NULL; p = p->next)
10554 {
10555 if (p->type == bfd_indirect_link_order
10556 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10557 == bfd_target_elf_flavour)
10558 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10559 {
10560 if (! sub->output_has_begun)
10561 {
10562 if (! elf_link_input_bfd (&finfo, sub))
10563 goto error_return;
10564 sub->output_has_begun = TRUE;
10565 }
10566 }
10567 else if (p->type == bfd_section_reloc_link_order
10568 || p->type == bfd_symbol_reloc_link_order)
10569 {
10570 if (! elf_reloc_link_order (abfd, info, o, p))
10571 goto error_return;
10572 }
10573 else
10574 {
10575 if (! _bfd_default_link_order (abfd, info, o, p))
10576 goto error_return;
10577 }
10578 }
10579 }
10580
10581 /* Free symbol buffer if needed. */
10582 if (!info->reduce_memory_overheads)
10583 {
10584 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10585 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10586 && elf_tdata (sub)->symbuf)
10587 {
10588 free (elf_tdata (sub)->symbuf);
10589 elf_tdata (sub)->symbuf = NULL;
10590 }
10591 }
10592
10593 /* Output any global symbols that got converted to local in a
10594 version script or due to symbol visibility. We do this in a
10595 separate step since ELF requires all local symbols to appear
10596 prior to any global symbols. FIXME: We should only do this if
10597 some global symbols were, in fact, converted to become local.
10598 FIXME: Will this work correctly with the Irix 5 linker? */
10599 eoinfo.failed = FALSE;
10600 eoinfo.finfo = &finfo;
10601 eoinfo.localsyms = TRUE;
10602 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10603 &eoinfo);
10604 if (eoinfo.failed)
10605 return FALSE;
10606
10607 /* If backend needs to output some local symbols not present in the hash
10608 table, do it now. */
10609 if (bed->elf_backend_output_arch_local_syms)
10610 {
10611 typedef bfd_boolean (*out_sym_func)
10612 (void *, const char *, Elf_Internal_Sym *, asection *,
10613 struct elf_link_hash_entry *);
10614
10615 if (! ((*bed->elf_backend_output_arch_local_syms)
10616 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10617 return FALSE;
10618 }
10619
10620 /* That wrote out all the local symbols. Finish up the symbol table
10621 with the global symbols. Even if we want to strip everything we
10622 can, we still need to deal with those global symbols that got
10623 converted to local in a version script. */
10624
10625 /* The sh_info field records the index of the first non local symbol. */
10626 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10627
10628 if (dynamic
10629 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10630 {
10631 Elf_Internal_Sym sym;
10632 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10633 long last_local = 0;
10634
10635 /* Write out the section symbols for the output sections. */
10636 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10637 {
10638 asection *s;
10639
10640 sym.st_size = 0;
10641 sym.st_name = 0;
10642 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10643 sym.st_other = 0;
10644
10645 for (s = abfd->sections; s != NULL; s = s->next)
10646 {
10647 int indx;
10648 bfd_byte *dest;
10649 long dynindx;
10650
10651 dynindx = elf_section_data (s)->dynindx;
10652 if (dynindx <= 0)
10653 continue;
10654 indx = elf_section_data (s)->this_idx;
10655 BFD_ASSERT (indx > 0);
10656 sym.st_shndx = indx;
10657 if (! check_dynsym (abfd, &sym))
10658 return FALSE;
10659 sym.st_value = s->vma;
10660 dest = dynsym + dynindx * bed->s->sizeof_sym;
10661 if (last_local < dynindx)
10662 last_local = dynindx;
10663 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10664 }
10665 }
10666
10667 /* Write out the local dynsyms. */
10668 if (elf_hash_table (info)->dynlocal)
10669 {
10670 struct elf_link_local_dynamic_entry *e;
10671 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10672 {
10673 asection *s;
10674 bfd_byte *dest;
10675
10676 sym.st_size = e->isym.st_size;
10677 sym.st_other = e->isym.st_other;
10678
10679 /* Copy the internal symbol as is.
10680 Note that we saved a word of storage and overwrote
10681 the original st_name with the dynstr_index. */
10682 sym = e->isym;
10683
10684 s = bfd_section_from_elf_index (e->input_bfd,
10685 e->isym.st_shndx);
10686 if (s != NULL)
10687 {
10688 sym.st_shndx =
10689 elf_section_data (s->output_section)->this_idx;
10690 if (! check_dynsym (abfd, &sym))
10691 return FALSE;
10692 sym.st_value = (s->output_section->vma
10693 + s->output_offset
10694 + e->isym.st_value);
10695 }
10696
10697 if (last_local < e->dynindx)
10698 last_local = e->dynindx;
10699
10700 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10701 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10702 }
10703 }
10704
10705 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10706 last_local + 1;
10707 }
10708
10709 /* We get the global symbols from the hash table. */
10710 eoinfo.failed = FALSE;
10711 eoinfo.localsyms = FALSE;
10712 eoinfo.finfo = &finfo;
10713 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10714 &eoinfo);
10715 if (eoinfo.failed)
10716 return FALSE;
10717
10718 /* If backend needs to output some symbols not present in the hash
10719 table, do it now. */
10720 if (bed->elf_backend_output_arch_syms)
10721 {
10722 typedef bfd_boolean (*out_sym_func)
10723 (void *, const char *, Elf_Internal_Sym *, asection *,
10724 struct elf_link_hash_entry *);
10725
10726 if (! ((*bed->elf_backend_output_arch_syms)
10727 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10728 return FALSE;
10729 }
10730
10731 /* Flush all symbols to the file. */
10732 if (! elf_link_flush_output_syms (&finfo, bed))
10733 return FALSE;
10734
10735 /* Now we know the size of the symtab section. */
10736 off += symtab_hdr->sh_size;
10737
10738 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10739 if (symtab_shndx_hdr->sh_name != 0)
10740 {
10741 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10742 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10743 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10744 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10745 symtab_shndx_hdr->sh_size = amt;
10746
10747 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10748 off, TRUE);
10749
10750 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10751 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10752 return FALSE;
10753 }
10754
10755
10756 /* Finish up and write out the symbol string table (.strtab)
10757 section. */
10758 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10759 /* sh_name was set in prep_headers. */
10760 symstrtab_hdr->sh_type = SHT_STRTAB;
10761 symstrtab_hdr->sh_flags = 0;
10762 symstrtab_hdr->sh_addr = 0;
10763 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10764 symstrtab_hdr->sh_entsize = 0;
10765 symstrtab_hdr->sh_link = 0;
10766 symstrtab_hdr->sh_info = 0;
10767 /* sh_offset is set just below. */
10768 symstrtab_hdr->sh_addralign = 1;
10769
10770 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10771 elf_tdata (abfd)->next_file_pos = off;
10772
10773 if (bfd_get_symcount (abfd) > 0)
10774 {
10775 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10776 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10777 return FALSE;
10778 }
10779
10780 /* Adjust the relocs to have the correct symbol indices. */
10781 for (o = abfd->sections; o != NULL; o = o->next)
10782 {
10783 if ((o->flags & SEC_RELOC) == 0)
10784 continue;
10785
10786 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10787 elf_section_data (o)->rel_count,
10788 elf_section_data (o)->rel_hashes);
10789 if (elf_section_data (o)->rel_hdr2 != NULL)
10790 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10791 elf_section_data (o)->rel_count2,
10792 (elf_section_data (o)->rel_hashes
10793 + elf_section_data (o)->rel_count));
10794
10795 /* Set the reloc_count field to 0 to prevent write_relocs from
10796 trying to swap the relocs out itself. */
10797 o->reloc_count = 0;
10798 }
10799
10800 if (dynamic && info->combreloc && dynobj != NULL)
10801 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10802
10803 /* If we are linking against a dynamic object, or generating a
10804 shared library, finish up the dynamic linking information. */
10805 if (dynamic)
10806 {
10807 bfd_byte *dyncon, *dynconend;
10808
10809 /* Fix up .dynamic entries. */
10810 o = bfd_get_section_by_name (dynobj, ".dynamic");
10811 BFD_ASSERT (o != NULL);
10812
10813 dyncon = o->contents;
10814 dynconend = o->contents + o->size;
10815 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10816 {
10817 Elf_Internal_Dyn dyn;
10818 const char *name;
10819 unsigned int type;
10820
10821 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10822
10823 switch (dyn.d_tag)
10824 {
10825 default:
10826 continue;
10827 case DT_NULL:
10828 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10829 {
10830 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10831 {
10832 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10833 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10834 default: continue;
10835 }
10836 dyn.d_un.d_val = relativecount;
10837 relativecount = 0;
10838 break;
10839 }
10840 continue;
10841
10842 case DT_INIT:
10843 name = info->init_function;
10844 goto get_sym;
10845 case DT_FINI:
10846 name = info->fini_function;
10847 get_sym:
10848 {
10849 struct elf_link_hash_entry *h;
10850
10851 h = elf_link_hash_lookup (elf_hash_table (info), name,
10852 FALSE, FALSE, TRUE);
10853 if (h != NULL
10854 && (h->root.type == bfd_link_hash_defined
10855 || h->root.type == bfd_link_hash_defweak))
10856 {
10857 dyn.d_un.d_ptr = h->root.u.def.value;
10858 o = h->root.u.def.section;
10859 if (o->output_section != NULL)
10860 dyn.d_un.d_ptr += (o->output_section->vma
10861 + o->output_offset);
10862 else
10863 {
10864 /* The symbol is imported from another shared
10865 library and does not apply to this one. */
10866 dyn.d_un.d_ptr = 0;
10867 }
10868 break;
10869 }
10870 }
10871 continue;
10872
10873 case DT_PREINIT_ARRAYSZ:
10874 name = ".preinit_array";
10875 goto get_size;
10876 case DT_INIT_ARRAYSZ:
10877 name = ".init_array";
10878 goto get_size;
10879 case DT_FINI_ARRAYSZ:
10880 name = ".fini_array";
10881 get_size:
10882 o = bfd_get_section_by_name (abfd, name);
10883 if (o == NULL)
10884 {
10885 (*_bfd_error_handler)
10886 (_("%B: could not find output section %s"), abfd, name);
10887 goto error_return;
10888 }
10889 if (o->size == 0)
10890 (*_bfd_error_handler)
10891 (_("warning: %s section has zero size"), name);
10892 dyn.d_un.d_val = o->size;
10893 break;
10894
10895 case DT_PREINIT_ARRAY:
10896 name = ".preinit_array";
10897 goto get_vma;
10898 case DT_INIT_ARRAY:
10899 name = ".init_array";
10900 goto get_vma;
10901 case DT_FINI_ARRAY:
10902 name = ".fini_array";
10903 goto get_vma;
10904
10905 case DT_HASH:
10906 name = ".hash";
10907 goto get_vma;
10908 case DT_GNU_HASH:
10909 name = ".gnu.hash";
10910 goto get_vma;
10911 case DT_STRTAB:
10912 name = ".dynstr";
10913 goto get_vma;
10914 case DT_SYMTAB:
10915 name = ".dynsym";
10916 goto get_vma;
10917 case DT_VERDEF:
10918 name = ".gnu.version_d";
10919 goto get_vma;
10920 case DT_VERNEED:
10921 name = ".gnu.version_r";
10922 goto get_vma;
10923 case DT_VERSYM:
10924 name = ".gnu.version";
10925 get_vma:
10926 o = bfd_get_section_by_name (abfd, name);
10927 if (o == NULL)
10928 {
10929 (*_bfd_error_handler)
10930 (_("%B: could not find output section %s"), abfd, name);
10931 goto error_return;
10932 }
10933 dyn.d_un.d_ptr = o->vma;
10934 break;
10935
10936 case DT_REL:
10937 case DT_RELA:
10938 case DT_RELSZ:
10939 case DT_RELASZ:
10940 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10941 type = SHT_REL;
10942 else
10943 type = SHT_RELA;
10944 dyn.d_un.d_val = 0;
10945 dyn.d_un.d_ptr = 0;
10946 for (i = 1; i < elf_numsections (abfd); i++)
10947 {
10948 Elf_Internal_Shdr *hdr;
10949
10950 hdr = elf_elfsections (abfd)[i];
10951 if (hdr->sh_type == type
10952 && (hdr->sh_flags & SHF_ALLOC) != 0)
10953 {
10954 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10955 dyn.d_un.d_val += hdr->sh_size;
10956 else
10957 {
10958 if (dyn.d_un.d_ptr == 0
10959 || hdr->sh_addr < dyn.d_un.d_ptr)
10960 dyn.d_un.d_ptr = hdr->sh_addr;
10961 }
10962 }
10963 }
10964 break;
10965 }
10966 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10967 }
10968 }
10969
10970 /* If we have created any dynamic sections, then output them. */
10971 if (dynobj != NULL)
10972 {
10973 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10974 goto error_return;
10975
10976 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10977 if (info->warn_shared_textrel && info->shared)
10978 {
10979 bfd_byte *dyncon, *dynconend;
10980
10981 /* Fix up .dynamic entries. */
10982 o = bfd_get_section_by_name (dynobj, ".dynamic");
10983 BFD_ASSERT (o != NULL);
10984
10985 dyncon = o->contents;
10986 dynconend = o->contents + o->size;
10987 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10988 {
10989 Elf_Internal_Dyn dyn;
10990
10991 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10992
10993 if (dyn.d_tag == DT_TEXTREL)
10994 {
10995 info->callbacks->einfo
10996 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10997 break;
10998 }
10999 }
11000 }
11001
11002 for (o = dynobj->sections; o != NULL; o = o->next)
11003 {
11004 if ((o->flags & SEC_HAS_CONTENTS) == 0
11005 || o->size == 0
11006 || o->output_section == bfd_abs_section_ptr)
11007 continue;
11008 if ((o->flags & SEC_LINKER_CREATED) == 0)
11009 {
11010 /* At this point, we are only interested in sections
11011 created by _bfd_elf_link_create_dynamic_sections. */
11012 continue;
11013 }
11014 if (elf_hash_table (info)->stab_info.stabstr == o)
11015 continue;
11016 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11017 continue;
11018 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11019 != SHT_STRTAB)
11020 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11021 {
11022 if (! bfd_set_section_contents (abfd, o->output_section,
11023 o->contents,
11024 (file_ptr) o->output_offset,
11025 o->size))
11026 goto error_return;
11027 }
11028 else
11029 {
11030 /* The contents of the .dynstr section are actually in a
11031 stringtab. */
11032 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11033 if (bfd_seek (abfd, off, SEEK_SET) != 0
11034 || ! _bfd_elf_strtab_emit (abfd,
11035 elf_hash_table (info)->dynstr))
11036 goto error_return;
11037 }
11038 }
11039 }
11040
11041 if (info->relocatable)
11042 {
11043 bfd_boolean failed = FALSE;
11044
11045 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11046 if (failed)
11047 goto error_return;
11048 }
11049
11050 /* If we have optimized stabs strings, output them. */
11051 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11052 {
11053 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11054 goto error_return;
11055 }
11056
11057 if (info->eh_frame_hdr)
11058 {
11059 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11060 goto error_return;
11061 }
11062
11063 if (finfo.symstrtab != NULL)
11064 _bfd_stringtab_free (finfo.symstrtab);
11065 if (finfo.contents != NULL)
11066 free (finfo.contents);
11067 if (finfo.external_relocs != NULL)
11068 free (finfo.external_relocs);
11069 if (finfo.internal_relocs != NULL)
11070 free (finfo.internal_relocs);
11071 if (finfo.external_syms != NULL)
11072 free (finfo.external_syms);
11073 if (finfo.locsym_shndx != NULL)
11074 free (finfo.locsym_shndx);
11075 if (finfo.internal_syms != NULL)
11076 free (finfo.internal_syms);
11077 if (finfo.indices != NULL)
11078 free (finfo.indices);
11079 if (finfo.sections != NULL)
11080 free (finfo.sections);
11081 if (finfo.symbuf != NULL)
11082 free (finfo.symbuf);
11083 if (finfo.symshndxbuf != NULL)
11084 free (finfo.symshndxbuf);
11085 for (o = abfd->sections; o != NULL; o = o->next)
11086 {
11087 if ((o->flags & SEC_RELOC) != 0
11088 && elf_section_data (o)->rel_hashes != NULL)
11089 free (elf_section_data (o)->rel_hashes);
11090 }
11091
11092 elf_tdata (abfd)->linker = TRUE;
11093
11094 if (attr_section)
11095 {
11096 bfd_byte *contents = bfd_malloc (attr_size);
11097 if (contents == NULL)
11098 return FALSE; /* Bail out and fail. */
11099 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11100 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11101 free (contents);
11102 }
11103
11104 return TRUE;
11105
11106 error_return:
11107 if (finfo.symstrtab != NULL)
11108 _bfd_stringtab_free (finfo.symstrtab);
11109 if (finfo.contents != NULL)
11110 free (finfo.contents);
11111 if (finfo.external_relocs != NULL)
11112 free (finfo.external_relocs);
11113 if (finfo.internal_relocs != NULL)
11114 free (finfo.internal_relocs);
11115 if (finfo.external_syms != NULL)
11116 free (finfo.external_syms);
11117 if (finfo.locsym_shndx != NULL)
11118 free (finfo.locsym_shndx);
11119 if (finfo.internal_syms != NULL)
11120 free (finfo.internal_syms);
11121 if (finfo.indices != NULL)
11122 free (finfo.indices);
11123 if (finfo.sections != NULL)
11124 free (finfo.sections);
11125 if (finfo.symbuf != NULL)
11126 free (finfo.symbuf);
11127 if (finfo.symshndxbuf != NULL)
11128 free (finfo.symshndxbuf);
11129 for (o = abfd->sections; o != NULL; o = o->next)
11130 {
11131 if ((o->flags & SEC_RELOC) != 0
11132 && elf_section_data (o)->rel_hashes != NULL)
11133 free (elf_section_data (o)->rel_hashes);
11134 }
11135
11136 return FALSE;
11137 }
11138 \f
11139 /* Initialize COOKIE for input bfd ABFD. */
11140
11141 static bfd_boolean
11142 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11143 struct bfd_link_info *info, bfd *abfd)
11144 {
11145 Elf_Internal_Shdr *symtab_hdr;
11146 const struct elf_backend_data *bed;
11147
11148 bed = get_elf_backend_data (abfd);
11149 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11150
11151 cookie->abfd = abfd;
11152 cookie->sym_hashes = elf_sym_hashes (abfd);
11153 cookie->bad_symtab = elf_bad_symtab (abfd);
11154 if (cookie->bad_symtab)
11155 {
11156 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11157 cookie->extsymoff = 0;
11158 }
11159 else
11160 {
11161 cookie->locsymcount = symtab_hdr->sh_info;
11162 cookie->extsymoff = symtab_hdr->sh_info;
11163 }
11164
11165 if (bed->s->arch_size == 32)
11166 cookie->r_sym_shift = 8;
11167 else
11168 cookie->r_sym_shift = 32;
11169
11170 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11171 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11172 {
11173 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11174 cookie->locsymcount, 0,
11175 NULL, NULL, NULL);
11176 if (cookie->locsyms == NULL)
11177 {
11178 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11179 return FALSE;
11180 }
11181 if (info->keep_memory)
11182 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11183 }
11184 return TRUE;
11185 }
11186
11187 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11188
11189 static void
11190 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11191 {
11192 Elf_Internal_Shdr *symtab_hdr;
11193
11194 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11195 if (cookie->locsyms != NULL
11196 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11197 free (cookie->locsyms);
11198 }
11199
11200 /* Initialize the relocation information in COOKIE for input section SEC
11201 of input bfd ABFD. */
11202
11203 static bfd_boolean
11204 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11205 struct bfd_link_info *info, bfd *abfd,
11206 asection *sec)
11207 {
11208 const struct elf_backend_data *bed;
11209
11210 if (sec->reloc_count == 0)
11211 {
11212 cookie->rels = NULL;
11213 cookie->relend = NULL;
11214 }
11215 else
11216 {
11217 bed = get_elf_backend_data (abfd);
11218
11219 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11220 info->keep_memory);
11221 if (cookie->rels == NULL)
11222 return FALSE;
11223 cookie->rel = cookie->rels;
11224 cookie->relend = (cookie->rels
11225 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11226 }
11227 cookie->rel = cookie->rels;
11228 return TRUE;
11229 }
11230
11231 /* Free the memory allocated by init_reloc_cookie_rels,
11232 if appropriate. */
11233
11234 static void
11235 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11236 asection *sec)
11237 {
11238 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11239 free (cookie->rels);
11240 }
11241
11242 /* Initialize the whole of COOKIE for input section SEC. */
11243
11244 static bfd_boolean
11245 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11246 struct bfd_link_info *info,
11247 asection *sec)
11248 {
11249 if (!init_reloc_cookie (cookie, info, sec->owner))
11250 goto error1;
11251 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11252 goto error2;
11253 return TRUE;
11254
11255 error2:
11256 fini_reloc_cookie (cookie, sec->owner);
11257 error1:
11258 return FALSE;
11259 }
11260
11261 /* Free the memory allocated by init_reloc_cookie_for_section,
11262 if appropriate. */
11263
11264 static void
11265 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11266 asection *sec)
11267 {
11268 fini_reloc_cookie_rels (cookie, sec);
11269 fini_reloc_cookie (cookie, sec->owner);
11270 }
11271 \f
11272 /* Garbage collect unused sections. */
11273
11274 /* Default gc_mark_hook. */
11275
11276 asection *
11277 _bfd_elf_gc_mark_hook (asection *sec,
11278 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11279 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11280 struct elf_link_hash_entry *h,
11281 Elf_Internal_Sym *sym)
11282 {
11283 if (h != NULL)
11284 {
11285 switch (h->root.type)
11286 {
11287 case bfd_link_hash_defined:
11288 case bfd_link_hash_defweak:
11289 return h->root.u.def.section;
11290
11291 case bfd_link_hash_common:
11292 return h->root.u.c.p->section;
11293
11294 default:
11295 break;
11296 }
11297 }
11298 else
11299 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11300
11301 return NULL;
11302 }
11303
11304 /* COOKIE->rel describes a relocation against section SEC, which is
11305 a section we've decided to keep. Return the section that contains
11306 the relocation symbol, or NULL if no section contains it. */
11307
11308 asection *
11309 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11310 elf_gc_mark_hook_fn gc_mark_hook,
11311 struct elf_reloc_cookie *cookie)
11312 {
11313 unsigned long r_symndx;
11314 struct elf_link_hash_entry *h;
11315
11316 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11317 if (r_symndx == 0)
11318 return NULL;
11319
11320 if (r_symndx >= cookie->locsymcount
11321 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11322 {
11323 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11324 while (h->root.type == bfd_link_hash_indirect
11325 || h->root.type == bfd_link_hash_warning)
11326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11327 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11328 }
11329
11330 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11331 &cookie->locsyms[r_symndx]);
11332 }
11333
11334 /* COOKIE->rel describes a relocation against section SEC, which is
11335 a section we've decided to keep. Mark the section that contains
11336 the relocation symbol. */
11337
11338 bfd_boolean
11339 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11340 asection *sec,
11341 elf_gc_mark_hook_fn gc_mark_hook,
11342 struct elf_reloc_cookie *cookie)
11343 {
11344 asection *rsec;
11345
11346 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11347 if (rsec && !rsec->gc_mark)
11348 {
11349 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11350 rsec->gc_mark = 1;
11351 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11352 return FALSE;
11353 }
11354 return TRUE;
11355 }
11356
11357 /* The mark phase of garbage collection. For a given section, mark
11358 it and any sections in this section's group, and all the sections
11359 which define symbols to which it refers. */
11360
11361 bfd_boolean
11362 _bfd_elf_gc_mark (struct bfd_link_info *info,
11363 asection *sec,
11364 elf_gc_mark_hook_fn gc_mark_hook)
11365 {
11366 bfd_boolean ret;
11367 asection *group_sec, *eh_frame;
11368
11369 sec->gc_mark = 1;
11370
11371 /* Mark all the sections in the group. */
11372 group_sec = elf_section_data (sec)->next_in_group;
11373 if (group_sec && !group_sec->gc_mark)
11374 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11375 return FALSE;
11376
11377 /* Look through the section relocs. */
11378 ret = TRUE;
11379 eh_frame = elf_eh_frame_section (sec->owner);
11380 if ((sec->flags & SEC_RELOC) != 0
11381 && sec->reloc_count > 0
11382 && sec != eh_frame)
11383 {
11384 struct elf_reloc_cookie cookie;
11385
11386 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11387 ret = FALSE;
11388 else
11389 {
11390 for (; cookie.rel < cookie.relend; cookie.rel++)
11391 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11392 {
11393 ret = FALSE;
11394 break;
11395 }
11396 fini_reloc_cookie_for_section (&cookie, sec);
11397 }
11398 }
11399
11400 if (ret && eh_frame && elf_fde_list (sec))
11401 {
11402 struct elf_reloc_cookie cookie;
11403
11404 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11405 ret = FALSE;
11406 else
11407 {
11408 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11409 gc_mark_hook, &cookie))
11410 ret = FALSE;
11411 fini_reloc_cookie_for_section (&cookie, eh_frame);
11412 }
11413 }
11414
11415 return ret;
11416 }
11417
11418 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11419
11420 struct elf_gc_sweep_symbol_info
11421 {
11422 struct bfd_link_info *info;
11423 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11424 bfd_boolean);
11425 };
11426
11427 static bfd_boolean
11428 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11429 {
11430 if (h->root.type == bfd_link_hash_warning)
11431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11432
11433 if ((h->root.type == bfd_link_hash_defined
11434 || h->root.type == bfd_link_hash_defweak)
11435 && !h->root.u.def.section->gc_mark
11436 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11437 {
11438 struct elf_gc_sweep_symbol_info *inf = data;
11439 (*inf->hide_symbol) (inf->info, h, TRUE);
11440 }
11441
11442 return TRUE;
11443 }
11444
11445 /* The sweep phase of garbage collection. Remove all garbage sections. */
11446
11447 typedef bfd_boolean (*gc_sweep_hook_fn)
11448 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11449
11450 static bfd_boolean
11451 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11452 {
11453 bfd *sub;
11454 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11455 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11456 unsigned long section_sym_count;
11457 struct elf_gc_sweep_symbol_info sweep_info;
11458
11459 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11460 {
11461 asection *o;
11462
11463 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11464 continue;
11465
11466 for (o = sub->sections; o != NULL; o = o->next)
11467 {
11468 /* When any section in a section group is kept, we keep all
11469 sections in the section group. If the first member of
11470 the section group is excluded, we will also exclude the
11471 group section. */
11472 if (o->flags & SEC_GROUP)
11473 {
11474 asection *first = elf_next_in_group (o);
11475 o->gc_mark = first->gc_mark;
11476 }
11477 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11478 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11479 {
11480 /* Keep debug and special sections. */
11481 o->gc_mark = 1;
11482 }
11483
11484 if (o->gc_mark)
11485 continue;
11486
11487 /* Skip sweeping sections already excluded. */
11488 if (o->flags & SEC_EXCLUDE)
11489 continue;
11490
11491 /* Since this is early in the link process, it is simple
11492 to remove a section from the output. */
11493 o->flags |= SEC_EXCLUDE;
11494
11495 if (info->print_gc_sections && o->size != 0)
11496 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11497
11498 /* But we also have to update some of the relocation
11499 info we collected before. */
11500 if (gc_sweep_hook
11501 && (o->flags & SEC_RELOC) != 0
11502 && o->reloc_count > 0
11503 && !bfd_is_abs_section (o->output_section))
11504 {
11505 Elf_Internal_Rela *internal_relocs;
11506 bfd_boolean r;
11507
11508 internal_relocs
11509 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11510 info->keep_memory);
11511 if (internal_relocs == NULL)
11512 return FALSE;
11513
11514 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11515
11516 if (elf_section_data (o)->relocs != internal_relocs)
11517 free (internal_relocs);
11518
11519 if (!r)
11520 return FALSE;
11521 }
11522 }
11523 }
11524
11525 /* Remove the symbols that were in the swept sections from the dynamic
11526 symbol table. GCFIXME: Anyone know how to get them out of the
11527 static symbol table as well? */
11528 sweep_info.info = info;
11529 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11530 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11531 &sweep_info);
11532
11533 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11534 return TRUE;
11535 }
11536
11537 /* Propagate collected vtable information. This is called through
11538 elf_link_hash_traverse. */
11539
11540 static bfd_boolean
11541 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11542 {
11543 if (h->root.type == bfd_link_hash_warning)
11544 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11545
11546 /* Those that are not vtables. */
11547 if (h->vtable == NULL || h->vtable->parent == NULL)
11548 return TRUE;
11549
11550 /* Those vtables that do not have parents, we cannot merge. */
11551 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11552 return TRUE;
11553
11554 /* If we've already been done, exit. */
11555 if (h->vtable->used && h->vtable->used[-1])
11556 return TRUE;
11557
11558 /* Make sure the parent's table is up to date. */
11559 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11560
11561 if (h->vtable->used == NULL)
11562 {
11563 /* None of this table's entries were referenced. Re-use the
11564 parent's table. */
11565 h->vtable->used = h->vtable->parent->vtable->used;
11566 h->vtable->size = h->vtable->parent->vtable->size;
11567 }
11568 else
11569 {
11570 size_t n;
11571 bfd_boolean *cu, *pu;
11572
11573 /* Or the parent's entries into ours. */
11574 cu = h->vtable->used;
11575 cu[-1] = TRUE;
11576 pu = h->vtable->parent->vtable->used;
11577 if (pu != NULL)
11578 {
11579 const struct elf_backend_data *bed;
11580 unsigned int log_file_align;
11581
11582 bed = get_elf_backend_data (h->root.u.def.section->owner);
11583 log_file_align = bed->s->log_file_align;
11584 n = h->vtable->parent->vtable->size >> log_file_align;
11585 while (n--)
11586 {
11587 if (*pu)
11588 *cu = TRUE;
11589 pu++;
11590 cu++;
11591 }
11592 }
11593 }
11594
11595 return TRUE;
11596 }
11597
11598 static bfd_boolean
11599 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11600 {
11601 asection *sec;
11602 bfd_vma hstart, hend;
11603 Elf_Internal_Rela *relstart, *relend, *rel;
11604 const struct elf_backend_data *bed;
11605 unsigned int log_file_align;
11606
11607 if (h->root.type == bfd_link_hash_warning)
11608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11609
11610 /* Take care of both those symbols that do not describe vtables as
11611 well as those that are not loaded. */
11612 if (h->vtable == NULL || h->vtable->parent == NULL)
11613 return TRUE;
11614
11615 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11616 || h->root.type == bfd_link_hash_defweak);
11617
11618 sec = h->root.u.def.section;
11619 hstart = h->root.u.def.value;
11620 hend = hstart + h->size;
11621
11622 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11623 if (!relstart)
11624 return *(bfd_boolean *) okp = FALSE;
11625 bed = get_elf_backend_data (sec->owner);
11626 log_file_align = bed->s->log_file_align;
11627
11628 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11629
11630 for (rel = relstart; rel < relend; ++rel)
11631 if (rel->r_offset >= hstart && rel->r_offset < hend)
11632 {
11633 /* If the entry is in use, do nothing. */
11634 if (h->vtable->used
11635 && (rel->r_offset - hstart) < h->vtable->size)
11636 {
11637 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11638 if (h->vtable->used[entry])
11639 continue;
11640 }
11641 /* Otherwise, kill it. */
11642 rel->r_offset = rel->r_info = rel->r_addend = 0;
11643 }
11644
11645 return TRUE;
11646 }
11647
11648 /* Mark sections containing dynamically referenced symbols. When
11649 building shared libraries, we must assume that any visible symbol is
11650 referenced. */
11651
11652 bfd_boolean
11653 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11654 {
11655 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11656
11657 if (h->root.type == bfd_link_hash_warning)
11658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11659
11660 if ((h->root.type == bfd_link_hash_defined
11661 || h->root.type == bfd_link_hash_defweak)
11662 && (h->ref_dynamic
11663 || (!info->executable
11664 && h->def_regular
11665 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11666 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11667 h->root.u.def.section->flags |= SEC_KEEP;
11668
11669 return TRUE;
11670 }
11671
11672 /* Keep all sections containing symbols undefined on the command-line,
11673 and the section containing the entry symbol. */
11674
11675 void
11676 _bfd_elf_gc_keep (struct bfd_link_info *info)
11677 {
11678 struct bfd_sym_chain *sym;
11679
11680 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11681 {
11682 struct elf_link_hash_entry *h;
11683
11684 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11685 FALSE, FALSE, FALSE);
11686
11687 if (h != NULL
11688 && (h->root.type == bfd_link_hash_defined
11689 || h->root.type == bfd_link_hash_defweak)
11690 && !bfd_is_abs_section (h->root.u.def.section))
11691 h->root.u.def.section->flags |= SEC_KEEP;
11692 }
11693 }
11694
11695 /* Do mark and sweep of unused sections. */
11696
11697 bfd_boolean
11698 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11699 {
11700 bfd_boolean ok = TRUE;
11701 bfd *sub;
11702 elf_gc_mark_hook_fn gc_mark_hook;
11703 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11704
11705 if (!bed->can_gc_sections
11706 || !is_elf_hash_table (info->hash))
11707 {
11708 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11709 return TRUE;
11710 }
11711
11712 bed->gc_keep (info);
11713
11714 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11715 at the .eh_frame section if we can mark the FDEs individually. */
11716 _bfd_elf_begin_eh_frame_parsing (info);
11717 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11718 {
11719 asection *sec;
11720 struct elf_reloc_cookie cookie;
11721
11722 sec = bfd_get_section_by_name (sub, ".eh_frame");
11723 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11724 {
11725 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11726 if (elf_section_data (sec)->sec_info)
11727 elf_eh_frame_section (sub) = sec;
11728 fini_reloc_cookie_for_section (&cookie, sec);
11729 }
11730 }
11731 _bfd_elf_end_eh_frame_parsing (info);
11732
11733 /* Apply transitive closure to the vtable entry usage info. */
11734 elf_link_hash_traverse (elf_hash_table (info),
11735 elf_gc_propagate_vtable_entries_used,
11736 &ok);
11737 if (!ok)
11738 return FALSE;
11739
11740 /* Kill the vtable relocations that were not used. */
11741 elf_link_hash_traverse (elf_hash_table (info),
11742 elf_gc_smash_unused_vtentry_relocs,
11743 &ok);
11744 if (!ok)
11745 return FALSE;
11746
11747 /* Mark dynamically referenced symbols. */
11748 if (elf_hash_table (info)->dynamic_sections_created)
11749 elf_link_hash_traverse (elf_hash_table (info),
11750 bed->gc_mark_dynamic_ref,
11751 info);
11752
11753 /* Grovel through relocs to find out who stays ... */
11754 gc_mark_hook = bed->gc_mark_hook;
11755 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11756 {
11757 asection *o;
11758
11759 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11760 continue;
11761
11762 for (o = sub->sections; o != NULL; o = o->next)
11763 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11764 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11765 return FALSE;
11766 }
11767
11768 /* Allow the backend to mark additional target specific sections. */
11769 if (bed->gc_mark_extra_sections)
11770 bed->gc_mark_extra_sections (info, gc_mark_hook);
11771
11772 /* ... and mark SEC_EXCLUDE for those that go. */
11773 return elf_gc_sweep (abfd, info);
11774 }
11775 \f
11776 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11777
11778 bfd_boolean
11779 bfd_elf_gc_record_vtinherit (bfd *abfd,
11780 asection *sec,
11781 struct elf_link_hash_entry *h,
11782 bfd_vma offset)
11783 {
11784 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11785 struct elf_link_hash_entry **search, *child;
11786 bfd_size_type extsymcount;
11787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11788
11789 /* The sh_info field of the symtab header tells us where the
11790 external symbols start. We don't care about the local symbols at
11791 this point. */
11792 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11793 if (!elf_bad_symtab (abfd))
11794 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11795
11796 sym_hashes = elf_sym_hashes (abfd);
11797 sym_hashes_end = sym_hashes + extsymcount;
11798
11799 /* Hunt down the child symbol, which is in this section at the same
11800 offset as the relocation. */
11801 for (search = sym_hashes; search != sym_hashes_end; ++search)
11802 {
11803 if ((child = *search) != NULL
11804 && (child->root.type == bfd_link_hash_defined
11805 || child->root.type == bfd_link_hash_defweak)
11806 && child->root.u.def.section == sec
11807 && child->root.u.def.value == offset)
11808 goto win;
11809 }
11810
11811 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11812 abfd, sec, (unsigned long) offset);
11813 bfd_set_error (bfd_error_invalid_operation);
11814 return FALSE;
11815
11816 win:
11817 if (!child->vtable)
11818 {
11819 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11820 if (!child->vtable)
11821 return FALSE;
11822 }
11823 if (!h)
11824 {
11825 /* This *should* only be the absolute section. It could potentially
11826 be that someone has defined a non-global vtable though, which
11827 would be bad. It isn't worth paging in the local symbols to be
11828 sure though; that case should simply be handled by the assembler. */
11829
11830 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11831 }
11832 else
11833 child->vtable->parent = h;
11834
11835 return TRUE;
11836 }
11837
11838 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11839
11840 bfd_boolean
11841 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11842 asection *sec ATTRIBUTE_UNUSED,
11843 struct elf_link_hash_entry *h,
11844 bfd_vma addend)
11845 {
11846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11847 unsigned int log_file_align = bed->s->log_file_align;
11848
11849 if (!h->vtable)
11850 {
11851 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11852 if (!h->vtable)
11853 return FALSE;
11854 }
11855
11856 if (addend >= h->vtable->size)
11857 {
11858 size_t size, bytes, file_align;
11859 bfd_boolean *ptr = h->vtable->used;
11860
11861 /* While the symbol is undefined, we have to be prepared to handle
11862 a zero size. */
11863 file_align = 1 << log_file_align;
11864 if (h->root.type == bfd_link_hash_undefined)
11865 size = addend + file_align;
11866 else
11867 {
11868 size = h->size;
11869 if (addend >= size)
11870 {
11871 /* Oops! We've got a reference past the defined end of
11872 the table. This is probably a bug -- shall we warn? */
11873 size = addend + file_align;
11874 }
11875 }
11876 size = (size + file_align - 1) & -file_align;
11877
11878 /* Allocate one extra entry for use as a "done" flag for the
11879 consolidation pass. */
11880 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11881
11882 if (ptr)
11883 {
11884 ptr = bfd_realloc (ptr - 1, bytes);
11885
11886 if (ptr != NULL)
11887 {
11888 size_t oldbytes;
11889
11890 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11891 * sizeof (bfd_boolean));
11892 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11893 }
11894 }
11895 else
11896 ptr = bfd_zmalloc (bytes);
11897
11898 if (ptr == NULL)
11899 return FALSE;
11900
11901 /* And arrange for that done flag to be at index -1. */
11902 h->vtable->used = ptr + 1;
11903 h->vtable->size = size;
11904 }
11905
11906 h->vtable->used[addend >> log_file_align] = TRUE;
11907
11908 return TRUE;
11909 }
11910
11911 struct alloc_got_off_arg {
11912 bfd_vma gotoff;
11913 struct bfd_link_info *info;
11914 };
11915
11916 /* We need a special top-level link routine to convert got reference counts
11917 to real got offsets. */
11918
11919 static bfd_boolean
11920 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11921 {
11922 struct alloc_got_off_arg *gofarg = arg;
11923 bfd *obfd = gofarg->info->output_bfd;
11924 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11925
11926 if (h->root.type == bfd_link_hash_warning)
11927 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11928
11929 if (h->got.refcount > 0)
11930 {
11931 h->got.offset = gofarg->gotoff;
11932 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11933 }
11934 else
11935 h->got.offset = (bfd_vma) -1;
11936
11937 return TRUE;
11938 }
11939
11940 /* And an accompanying bit to work out final got entry offsets once
11941 we're done. Should be called from final_link. */
11942
11943 bfd_boolean
11944 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11945 struct bfd_link_info *info)
11946 {
11947 bfd *i;
11948 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11949 bfd_vma gotoff;
11950 struct alloc_got_off_arg gofarg;
11951
11952 BFD_ASSERT (abfd == info->output_bfd);
11953
11954 if (! is_elf_hash_table (info->hash))
11955 return FALSE;
11956
11957 /* The GOT offset is relative to the .got section, but the GOT header is
11958 put into the .got.plt section, if the backend uses it. */
11959 if (bed->want_got_plt)
11960 gotoff = 0;
11961 else
11962 gotoff = bed->got_header_size;
11963
11964 /* Do the local .got entries first. */
11965 for (i = info->input_bfds; i; i = i->link_next)
11966 {
11967 bfd_signed_vma *local_got;
11968 bfd_size_type j, locsymcount;
11969 Elf_Internal_Shdr *symtab_hdr;
11970
11971 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11972 continue;
11973
11974 local_got = elf_local_got_refcounts (i);
11975 if (!local_got)
11976 continue;
11977
11978 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11979 if (elf_bad_symtab (i))
11980 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11981 else
11982 locsymcount = symtab_hdr->sh_info;
11983
11984 for (j = 0; j < locsymcount; ++j)
11985 {
11986 if (local_got[j] > 0)
11987 {
11988 local_got[j] = gotoff;
11989 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11990 }
11991 else
11992 local_got[j] = (bfd_vma) -1;
11993 }
11994 }
11995
11996 /* Then the global .got entries. .plt refcounts are handled by
11997 adjust_dynamic_symbol */
11998 gofarg.gotoff = gotoff;
11999 gofarg.info = info;
12000 elf_link_hash_traverse (elf_hash_table (info),
12001 elf_gc_allocate_got_offsets,
12002 &gofarg);
12003 return TRUE;
12004 }
12005
12006 /* Many folk need no more in the way of final link than this, once
12007 got entry reference counting is enabled. */
12008
12009 bfd_boolean
12010 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12011 {
12012 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12013 return FALSE;
12014
12015 /* Invoke the regular ELF backend linker to do all the work. */
12016 return bfd_elf_final_link (abfd, info);
12017 }
12018
12019 bfd_boolean
12020 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12021 {
12022 struct elf_reloc_cookie *rcookie = cookie;
12023
12024 if (rcookie->bad_symtab)
12025 rcookie->rel = rcookie->rels;
12026
12027 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12028 {
12029 unsigned long r_symndx;
12030
12031 if (! rcookie->bad_symtab)
12032 if (rcookie->rel->r_offset > offset)
12033 return FALSE;
12034 if (rcookie->rel->r_offset != offset)
12035 continue;
12036
12037 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12038 if (r_symndx == SHN_UNDEF)
12039 return TRUE;
12040
12041 if (r_symndx >= rcookie->locsymcount
12042 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12043 {
12044 struct elf_link_hash_entry *h;
12045
12046 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12047
12048 while (h->root.type == bfd_link_hash_indirect
12049 || h->root.type == bfd_link_hash_warning)
12050 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12051
12052 if ((h->root.type == bfd_link_hash_defined
12053 || h->root.type == bfd_link_hash_defweak)
12054 && elf_discarded_section (h->root.u.def.section))
12055 return TRUE;
12056 else
12057 return FALSE;
12058 }
12059 else
12060 {
12061 /* It's not a relocation against a global symbol,
12062 but it could be a relocation against a local
12063 symbol for a discarded section. */
12064 asection *isec;
12065 Elf_Internal_Sym *isym;
12066
12067 /* Need to: get the symbol; get the section. */
12068 isym = &rcookie->locsyms[r_symndx];
12069 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12070 if (isec != NULL && elf_discarded_section (isec))
12071 return TRUE;
12072 }
12073 return FALSE;
12074 }
12075 return FALSE;
12076 }
12077
12078 /* Discard unneeded references to discarded sections.
12079 Returns TRUE if any section's size was changed. */
12080 /* This function assumes that the relocations are in sorted order,
12081 which is true for all known assemblers. */
12082
12083 bfd_boolean
12084 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12085 {
12086 struct elf_reloc_cookie cookie;
12087 asection *stab, *eh;
12088 const struct elf_backend_data *bed;
12089 bfd *abfd;
12090 bfd_boolean ret = FALSE;
12091
12092 if (info->traditional_format
12093 || !is_elf_hash_table (info->hash))
12094 return FALSE;
12095
12096 _bfd_elf_begin_eh_frame_parsing (info);
12097 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12098 {
12099 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12100 continue;
12101
12102 bed = get_elf_backend_data (abfd);
12103
12104 if ((abfd->flags & DYNAMIC) != 0)
12105 continue;
12106
12107 eh = NULL;
12108 if (!info->relocatable)
12109 {
12110 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12111 if (eh != NULL
12112 && (eh->size == 0
12113 || bfd_is_abs_section (eh->output_section)))
12114 eh = NULL;
12115 }
12116
12117 stab = bfd_get_section_by_name (abfd, ".stab");
12118 if (stab != NULL
12119 && (stab->size == 0
12120 || bfd_is_abs_section (stab->output_section)
12121 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12122 stab = NULL;
12123
12124 if (stab == NULL
12125 && eh == NULL
12126 && bed->elf_backend_discard_info == NULL)
12127 continue;
12128
12129 if (!init_reloc_cookie (&cookie, info, abfd))
12130 return FALSE;
12131
12132 if (stab != NULL
12133 && stab->reloc_count > 0
12134 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12135 {
12136 if (_bfd_discard_section_stabs (abfd, stab,
12137 elf_section_data (stab)->sec_info,
12138 bfd_elf_reloc_symbol_deleted_p,
12139 &cookie))
12140 ret = TRUE;
12141 fini_reloc_cookie_rels (&cookie, stab);
12142 }
12143
12144 if (eh != NULL
12145 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12146 {
12147 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12148 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12149 bfd_elf_reloc_symbol_deleted_p,
12150 &cookie))
12151 ret = TRUE;
12152 fini_reloc_cookie_rels (&cookie, eh);
12153 }
12154
12155 if (bed->elf_backend_discard_info != NULL
12156 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12157 ret = TRUE;
12158
12159 fini_reloc_cookie (&cookie, abfd);
12160 }
12161 _bfd_elf_end_eh_frame_parsing (info);
12162
12163 if (info->eh_frame_hdr
12164 && !info->relocatable
12165 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12166 ret = TRUE;
12167
12168 return ret;
12169 }
12170
12171 /* For a SHT_GROUP section, return the group signature. For other
12172 sections, return the normal section name. */
12173
12174 static const char *
12175 section_signature (asection *sec)
12176 {
12177 if ((sec->flags & SEC_GROUP) != 0
12178 && elf_next_in_group (sec) != NULL
12179 && elf_group_name (elf_next_in_group (sec)) != NULL)
12180 return elf_group_name (elf_next_in_group (sec));
12181 return sec->name;
12182 }
12183
12184 void
12185 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12186 struct bfd_link_info *info)
12187 {
12188 flagword flags;
12189 const char *name, *p;
12190 struct bfd_section_already_linked *l;
12191 struct bfd_section_already_linked_hash_entry *already_linked_list;
12192
12193 if (sec->output_section == bfd_abs_section_ptr)
12194 return;
12195
12196 flags = sec->flags;
12197
12198 /* Return if it isn't a linkonce section. A comdat group section
12199 also has SEC_LINK_ONCE set. */
12200 if ((flags & SEC_LINK_ONCE) == 0)
12201 return;
12202
12203 /* Don't put group member sections on our list of already linked
12204 sections. They are handled as a group via their group section. */
12205 if (elf_sec_group (sec) != NULL)
12206 return;
12207
12208 /* FIXME: When doing a relocatable link, we may have trouble
12209 copying relocations in other sections that refer to local symbols
12210 in the section being discarded. Those relocations will have to
12211 be converted somehow; as of this writing I'm not sure that any of
12212 the backends handle that correctly.
12213
12214 It is tempting to instead not discard link once sections when
12215 doing a relocatable link (technically, they should be discarded
12216 whenever we are building constructors). However, that fails,
12217 because the linker winds up combining all the link once sections
12218 into a single large link once section, which defeats the purpose
12219 of having link once sections in the first place.
12220
12221 Also, not merging link once sections in a relocatable link
12222 causes trouble for MIPS ELF, which relies on link once semantics
12223 to handle the .reginfo section correctly. */
12224
12225 name = section_signature (sec);
12226
12227 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12228 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12229 p++;
12230 else
12231 p = name;
12232
12233 already_linked_list = bfd_section_already_linked_table_lookup (p);
12234
12235 for (l = already_linked_list->entry; l != NULL; l = l->next)
12236 {
12237 /* We may have 2 different types of sections on the list: group
12238 sections and linkonce sections. Match like sections. */
12239 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12240 && strcmp (name, section_signature (l->sec)) == 0
12241 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12242 {
12243 /* The section has already been linked. See if we should
12244 issue a warning. */
12245 switch (flags & SEC_LINK_DUPLICATES)
12246 {
12247 default:
12248 abort ();
12249
12250 case SEC_LINK_DUPLICATES_DISCARD:
12251 break;
12252
12253 case SEC_LINK_DUPLICATES_ONE_ONLY:
12254 (*_bfd_error_handler)
12255 (_("%B: ignoring duplicate section `%A'"),
12256 abfd, sec);
12257 break;
12258
12259 case SEC_LINK_DUPLICATES_SAME_SIZE:
12260 if (sec->size != l->sec->size)
12261 (*_bfd_error_handler)
12262 (_("%B: duplicate section `%A' has different size"),
12263 abfd, sec);
12264 break;
12265
12266 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12267 if (sec->size != l->sec->size)
12268 (*_bfd_error_handler)
12269 (_("%B: duplicate section `%A' has different size"),
12270 abfd, sec);
12271 else if (sec->size != 0)
12272 {
12273 bfd_byte *sec_contents, *l_sec_contents;
12274
12275 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12276 (*_bfd_error_handler)
12277 (_("%B: warning: could not read contents of section `%A'"),
12278 abfd, sec);
12279 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12280 &l_sec_contents))
12281 (*_bfd_error_handler)
12282 (_("%B: warning: could not read contents of section `%A'"),
12283 l->sec->owner, l->sec);
12284 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12285 (*_bfd_error_handler)
12286 (_("%B: warning: duplicate section `%A' has different contents"),
12287 abfd, sec);
12288
12289 if (sec_contents)
12290 free (sec_contents);
12291 if (l_sec_contents)
12292 free (l_sec_contents);
12293 }
12294 break;
12295 }
12296
12297 /* Set the output_section field so that lang_add_section
12298 does not create a lang_input_section structure for this
12299 section. Since there might be a symbol in the section
12300 being discarded, we must retain a pointer to the section
12301 which we are really going to use. */
12302 sec->output_section = bfd_abs_section_ptr;
12303 sec->kept_section = l->sec;
12304
12305 if (flags & SEC_GROUP)
12306 {
12307 asection *first = elf_next_in_group (sec);
12308 asection *s = first;
12309
12310 while (s != NULL)
12311 {
12312 s->output_section = bfd_abs_section_ptr;
12313 /* Record which group discards it. */
12314 s->kept_section = l->sec;
12315 s = elf_next_in_group (s);
12316 /* These lists are circular. */
12317 if (s == first)
12318 break;
12319 }
12320 }
12321
12322 return;
12323 }
12324 }
12325
12326 /* A single member comdat group section may be discarded by a
12327 linkonce section and vice versa. */
12328
12329 if ((flags & SEC_GROUP) != 0)
12330 {
12331 asection *first = elf_next_in_group (sec);
12332
12333 if (first != NULL && elf_next_in_group (first) == first)
12334 /* Check this single member group against linkonce sections. */
12335 for (l = already_linked_list->entry; l != NULL; l = l->next)
12336 if ((l->sec->flags & SEC_GROUP) == 0
12337 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12338 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12339 {
12340 first->output_section = bfd_abs_section_ptr;
12341 first->kept_section = l->sec;
12342 sec->output_section = bfd_abs_section_ptr;
12343 break;
12344 }
12345 }
12346 else
12347 /* Check this linkonce section against single member groups. */
12348 for (l = already_linked_list->entry; l != NULL; l = l->next)
12349 if (l->sec->flags & SEC_GROUP)
12350 {
12351 asection *first = elf_next_in_group (l->sec);
12352
12353 if (first != NULL
12354 && elf_next_in_group (first) == first
12355 && bfd_elf_match_symbols_in_sections (first, sec, info))
12356 {
12357 sec->output_section = bfd_abs_section_ptr;
12358 sec->kept_section = first;
12359 break;
12360 }
12361 }
12362
12363 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12364 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12365 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12366 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12367 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12368 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12369 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12370 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12371 The reverse order cannot happen as there is never a bfd with only the
12372 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12373 matter as here were are looking only for cross-bfd sections. */
12374
12375 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12376 for (l = already_linked_list->entry; l != NULL; l = l->next)
12377 if ((l->sec->flags & SEC_GROUP) == 0
12378 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12379 {
12380 if (abfd != l->sec->owner)
12381 sec->output_section = bfd_abs_section_ptr;
12382 break;
12383 }
12384
12385 /* This is the first section with this name. Record it. */
12386 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12387 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12388 }
12389
12390 bfd_boolean
12391 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12392 {
12393 return sym->st_shndx == SHN_COMMON;
12394 }
12395
12396 unsigned int
12397 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12398 {
12399 return SHN_COMMON;
12400 }
12401
12402 asection *
12403 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12404 {
12405 return bfd_com_section_ptr;
12406 }
12407
12408 bfd_vma
12409 _bfd_elf_default_got_elt_size (bfd *abfd,
12410 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12411 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12412 bfd *ibfd ATTRIBUTE_UNUSED,
12413 unsigned long symndx ATTRIBUTE_UNUSED)
12414 {
12415 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12416 return bed->s->arch_size / 8;
12417 }
12418
12419 /* Routines to support the creation of dynamic relocs. */
12420
12421 /* Return true if NAME is a name of a relocation
12422 section associated with section S. */
12423
12424 static bfd_boolean
12425 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12426 {
12427 if (rela)
12428 return CONST_STRNEQ (name, ".rela")
12429 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12430
12431 return CONST_STRNEQ (name, ".rel")
12432 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12433 }
12434
12435 /* Returns the name of the dynamic reloc section associated with SEC. */
12436
12437 static const char *
12438 get_dynamic_reloc_section_name (bfd * abfd,
12439 asection * sec,
12440 bfd_boolean is_rela)
12441 {
12442 const char * name;
12443 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12444 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12445
12446 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12447 if (name == NULL)
12448 return NULL;
12449
12450 if (! is_reloc_section (is_rela, name, sec))
12451 {
12452 static bfd_boolean complained = FALSE;
12453
12454 if (! complained)
12455 {
12456 (*_bfd_error_handler)
12457 (_("%B: bad relocation section name `%s\'"), abfd, name);
12458 complained = TRUE;
12459 }
12460 name = NULL;
12461 }
12462
12463 return name;
12464 }
12465
12466 /* Returns the dynamic reloc section associated with SEC.
12467 If necessary compute the name of the dynamic reloc section based
12468 on SEC's name (looked up in ABFD's string table) and the setting
12469 of IS_RELA. */
12470
12471 asection *
12472 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12473 asection * sec,
12474 bfd_boolean is_rela)
12475 {
12476 asection * reloc_sec = elf_section_data (sec)->sreloc;
12477
12478 if (reloc_sec == NULL)
12479 {
12480 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12481
12482 if (name != NULL)
12483 {
12484 reloc_sec = bfd_get_section_by_name (abfd, name);
12485
12486 if (reloc_sec != NULL)
12487 elf_section_data (sec)->sreloc = reloc_sec;
12488 }
12489 }
12490
12491 return reloc_sec;
12492 }
12493
12494 /* Returns the dynamic reloc section associated with SEC. If the
12495 section does not exist it is created and attached to the DYNOBJ
12496 bfd and stored in the SRELOC field of SEC's elf_section_data
12497 structure.
12498
12499 ALIGNMENT is the alignment for the newly created section and
12500 IS_RELA defines whether the name should be .rela.<SEC's name>
12501 or .rel.<SEC's name>. The section name is looked up in the
12502 string table associated with ABFD. */
12503
12504 asection *
12505 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12506 bfd * dynobj,
12507 unsigned int alignment,
12508 bfd * abfd,
12509 bfd_boolean is_rela)
12510 {
12511 asection * reloc_sec = elf_section_data (sec)->sreloc;
12512
12513 if (reloc_sec == NULL)
12514 {
12515 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12516
12517 if (name == NULL)
12518 return NULL;
12519
12520 reloc_sec = bfd_get_section_by_name (dynobj, name);
12521
12522 if (reloc_sec == NULL)
12523 {
12524 flagword flags;
12525
12526 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12527 if ((sec->flags & SEC_ALLOC) != 0)
12528 flags |= SEC_ALLOC | SEC_LOAD;
12529
12530 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12531 if (reloc_sec != NULL)
12532 {
12533 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12534 reloc_sec = NULL;
12535 }
12536 }
12537
12538 elf_section_data (sec)->sreloc = reloc_sec;
12539 }
12540
12541 return reloc_sec;
12542 }
12543
12544 /* Returns the name of the ifunc using dynamic reloc section associated with SEC. */
12545 #define IFUNC_INFIX ".ifunc"
12546
12547 static const char *
12548 get_ifunc_reloc_section_name (bfd * abfd,
12549 asection * sec)
12550 {
12551 const char * dot;
12552 char * name;
12553 const char * base_name;
12554 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12555 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12556
12557 base_name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12558 if (base_name == NULL)
12559 return NULL;
12560
12561 dot = strchr (base_name + 1, '.');
12562 name = bfd_alloc (abfd, strlen (base_name) + strlen (IFUNC_INFIX) + 1);
12563 sprintf (name, "%.*s%s%s", (int)(dot - base_name), base_name, IFUNC_INFIX, dot);
12564
12565 return name;
12566 }
12567
12568 /* Like _bfd_elf_make_dynamic_reloc_section but it creates a
12569 section for holding relocs against symbols with the STT_GNU_IFUNC
12570 type. The section is attached to the OWNER bfd but it is created
12571 with a name based on SEC from ABFD. */
12572
12573 asection *
12574 _bfd_elf_make_ifunc_reloc_section (bfd * abfd,
12575 asection * sec,
12576 bfd * owner,
12577 unsigned int align)
12578 {
12579 asection * reloc_sec = elf_section_data (sec)->indirect_relocs;
12580
12581 if (reloc_sec == NULL)
12582 {
12583 const char * name = get_ifunc_reloc_section_name (abfd, sec);
12584
12585 if (name == NULL)
12586 return NULL;
12587
12588 reloc_sec = bfd_get_section_by_name (owner, name);
12589
12590 if (reloc_sec == NULL)
12591 {
12592 flagword flags;
12593
12594 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12595 if ((sec->flags & SEC_ALLOC) != 0)
12596 flags |= SEC_ALLOC | SEC_LOAD;
12597
12598 reloc_sec = bfd_make_section_with_flags (owner, name, flags);
12599
12600 if (reloc_sec != NULL
12601 && ! bfd_set_section_alignment (owner, reloc_sec, align))
12602 reloc_sec = NULL;
12603 }
12604
12605 elf_section_data (sec)->indirect_relocs = reloc_sec;
12606 }
12607
12608 return reloc_sec;
12609 }
This page took 0.292382 seconds and 4 git commands to generate.