gas: avoid spurious failures in non-ELF targets in the SPARC testsuite.
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 }
123
124 bh = &h->root;
125 bed = get_elf_backend_data (abfd);
126 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127 sec, 0, NULL, FALSE, bed->collect,
128 &bh))
129 return NULL;
130 h = (struct elf_link_hash_entry *) bh;
131 h->def_regular = 1;
132 h->non_elf = 0;
133 h->root.linker_def = 1;
134 h->type = STT_OBJECT;
135 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139 return h;
140 }
141
142 bfd_boolean
143 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144 {
145 flagword flags;
146 asection *s;
147 struct elf_link_hash_entry *h;
148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149 struct elf_link_hash_table *htab = elf_hash_table (info);
150
151 /* This function may be called more than once. */
152 s = bfd_get_linker_section (abfd, ".got");
153 if (s != NULL)
154 return TRUE;
155
156 flags = bed->dynamic_sec_flags;
157
158 s = bfd_make_section_anyway_with_flags (abfd,
159 (bed->rela_plts_and_copies_p
160 ? ".rela.got" : ".rel.got"),
161 (bed->dynamic_sec_flags
162 | SEC_READONLY));
163 if (s == NULL
164 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
165 return FALSE;
166 htab->srelgot = s;
167
168 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
169 if (s == NULL
170 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
171 return FALSE;
172 htab->sgot = s;
173
174 if (bed->want_got_plt)
175 {
176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (abfd, s,
179 bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
220 if ((ibfd->flags
221 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
222 {
223 abfd = ibfd;
224 break;
225 }
226 }
227 hash_table->dynobj = abfd;
228 }
229
230 if (hash_table->dynstr == NULL)
231 {
232 hash_table->dynstr = _bfd_elf_strtab_init ();
233 if (hash_table->dynstr == NULL)
234 return FALSE;
235 }
236 return TRUE;
237 }
238
239 /* Create some sections which will be filled in with dynamic linking
240 information. ABFD is an input file which requires dynamic sections
241 to be created. The dynamic sections take up virtual memory space
242 when the final executable is run, so we need to create them before
243 addresses are assigned to the output sections. We work out the
244 actual contents and size of these sections later. */
245
246 bfd_boolean
247 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
248 {
249 flagword flags;
250 asection *s;
251 const struct elf_backend_data *bed;
252 struct elf_link_hash_entry *h;
253
254 if (! is_elf_hash_table (info->hash))
255 return FALSE;
256
257 if (elf_hash_table (info)->dynamic_sections_created)
258 return TRUE;
259
260 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
261 return FALSE;
262
263 abfd = elf_hash_table (info)->dynobj;
264 bed = get_elf_backend_data (abfd);
265
266 flags = bed->dynamic_sec_flags;
267
268 /* A dynamically linked executable has a .interp section, but a
269 shared library does not. */
270 if (bfd_link_executable (info) && !info->nointerp)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
273 flags | SEC_READONLY);
274 if (s == NULL)
275 return FALSE;
276 }
277
278 /* Create sections to hold version informations. These are removed
279 if they are not needed. */
280 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
281 flags | SEC_READONLY);
282 if (s == NULL
283 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
284 return FALSE;
285
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, 1))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303 elf_hash_table (info)->dynsym = s;
304
305 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
306 flags | SEC_READONLY);
307 if (s == NULL)
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
311 if (s == NULL
312 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
313 return FALSE;
314
315 /* The special symbol _DYNAMIC is always set to the start of the
316 .dynamic section. We could set _DYNAMIC in a linker script, but we
317 only want to define it if we are, in fact, creating a .dynamic
318 section. We don't want to define it if there is no .dynamic
319 section, since on some ELF platforms the start up code examines it
320 to decide how to initialize the process. */
321 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
322 elf_hash_table (info)->hdynamic = h;
323 if (h == NULL)
324 return FALSE;
325
326 if (info->emit_hash)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
329 flags | SEC_READONLY);
330 if (s == NULL
331 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
332 return FALSE;
333 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
334 }
335
336 if (info->emit_gnu_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
342 return FALSE;
343 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
344 4 32-bit words followed by variable count of 64-bit words, then
345 variable count of 32-bit words. */
346 if (bed->s->arch_size == 64)
347 elf_section_data (s)->this_hdr.sh_entsize = 0;
348 else
349 elf_section_data (s)->this_hdr.sh_entsize = 4;
350 }
351
352 /* Let the backend create the rest of the sections. This lets the
353 backend set the right flags. The backend will normally create
354 the .got and .plt sections. */
355 if (bed->elf_backend_create_dynamic_sections == NULL
356 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
357 return FALSE;
358
359 elf_hash_table (info)->dynamic_sections_created = TRUE;
360
361 return TRUE;
362 }
363
364 /* Create dynamic sections when linking against a dynamic object. */
365
366 bfd_boolean
367 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
368 {
369 flagword flags, pltflags;
370 struct elf_link_hash_entry *h;
371 asection *s;
372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
373 struct elf_link_hash_table *htab = elf_hash_table (info);
374
375 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
376 .rel[a].bss sections. */
377 flags = bed->dynamic_sec_flags;
378
379 pltflags = flags;
380 if (bed->plt_not_loaded)
381 /* We do not clear SEC_ALLOC here because we still want the OS to
382 allocate space for the section; it's just that there's nothing
383 to read in from the object file. */
384 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
385 else
386 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
387 if (bed->plt_readonly)
388 pltflags |= SEC_READONLY;
389
390 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
391 if (s == NULL
392 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
393 return FALSE;
394 htab->splt = s;
395
396 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
397 .plt section. */
398 if (bed->want_plt_sym)
399 {
400 h = _bfd_elf_define_linkage_sym (abfd, info, s,
401 "_PROCEDURE_LINKAGE_TABLE_");
402 elf_hash_table (info)->hplt = h;
403 if (h == NULL)
404 return FALSE;
405 }
406
407 s = bfd_make_section_anyway_with_flags (abfd,
408 (bed->rela_plts_and_copies_p
409 ? ".rela.plt" : ".rel.plt"),
410 flags | SEC_READONLY);
411 if (s == NULL
412 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
413 return FALSE;
414 htab->srelplt = s;
415
416 if (! _bfd_elf_create_got_section (abfd, info))
417 return FALSE;
418
419 if (bed->want_dynbss)
420 {
421 /* The .dynbss section is a place to put symbols which are defined
422 by dynamic objects, are referenced by regular objects, and are
423 not functions. We must allocate space for them in the process
424 image and use a R_*_COPY reloc to tell the dynamic linker to
425 initialize them at run time. The linker script puts the .dynbss
426 section into the .bss section of the final image. */
427 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
428 (SEC_ALLOC | SEC_LINKER_CREATED));
429 if (s == NULL)
430 return FALSE;
431
432 /* The .rel[a].bss section holds copy relocs. This section is not
433 normally needed. We need to create it here, though, so that the
434 linker will map it to an output section. We can't just create it
435 only if we need it, because we will not know whether we need it
436 until we have seen all the input files, and the first time the
437 main linker code calls BFD after examining all the input files
438 (size_dynamic_sections) the input sections have already been
439 mapped to the output sections. If the section turns out not to
440 be needed, we can discard it later. We will never need this
441 section when generating a shared object, since they do not use
442 copy relocs. */
443 if (! bfd_link_pic (info))
444 {
445 s = bfd_make_section_anyway_with_flags (abfd,
446 (bed->rela_plts_and_copies_p
447 ? ".rela.bss" : ".rel.bss"),
448 flags | SEC_READONLY);
449 if (s == NULL
450 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
451 return FALSE;
452 }
453 }
454
455 return TRUE;
456 }
457 \f
458 /* Record a new dynamic symbol. We record the dynamic symbols as we
459 read the input files, since we need to have a list of all of them
460 before we can determine the final sizes of the output sections.
461 Note that we may actually call this function even though we are not
462 going to output any dynamic symbols; in some cases we know that a
463 symbol should be in the dynamic symbol table, but only if there is
464 one. */
465
466 bfd_boolean
467 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
468 struct elf_link_hash_entry *h)
469 {
470 if (h->dynindx == -1)
471 {
472 struct elf_strtab_hash *dynstr;
473 char *p;
474 const char *name;
475 size_t indx;
476
477 /* XXX: The ABI draft says the linker must turn hidden and
478 internal symbols into STB_LOCAL symbols when producing the
479 DSO. However, if ld.so honors st_other in the dynamic table,
480 this would not be necessary. */
481 switch (ELF_ST_VISIBILITY (h->other))
482 {
483 case STV_INTERNAL:
484 case STV_HIDDEN:
485 if (h->root.type != bfd_link_hash_undefined
486 && h->root.type != bfd_link_hash_undefweak)
487 {
488 h->forced_local = 1;
489 if (!elf_hash_table (info)->is_relocatable_executable)
490 return TRUE;
491 }
492
493 default:
494 break;
495 }
496
497 h->dynindx = elf_hash_table (info)->dynsymcount;
498 ++elf_hash_table (info)->dynsymcount;
499
500 dynstr = elf_hash_table (info)->dynstr;
501 if (dynstr == NULL)
502 {
503 /* Create a strtab to hold the dynamic symbol names. */
504 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
505 if (dynstr == NULL)
506 return FALSE;
507 }
508
509 /* We don't put any version information in the dynamic string
510 table. */
511 name = h->root.root.string;
512 p = strchr (name, ELF_VER_CHR);
513 if (p != NULL)
514 /* We know that the p points into writable memory. In fact,
515 there are only a few symbols that have read-only names, being
516 those like _GLOBAL_OFFSET_TABLE_ that are created specially
517 by the backends. Most symbols will have names pointing into
518 an ELF string table read from a file, or to objalloc memory. */
519 *p = 0;
520
521 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
522
523 if (p != NULL)
524 *p = ELF_VER_CHR;
525
526 if (indx == (size_t) -1)
527 return FALSE;
528 h->dynstr_index = indx;
529 }
530
531 return TRUE;
532 }
533 \f
534 /* Mark a symbol dynamic. */
535
536 static void
537 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
538 struct elf_link_hash_entry *h,
539 Elf_Internal_Sym *sym)
540 {
541 struct bfd_elf_dynamic_list *d = info->dynamic_list;
542
543 /* It may be called more than once on the same H. */
544 if(h->dynamic || bfd_link_relocatable (info))
545 return;
546
547 if ((info->dynamic_data
548 && (h->type == STT_OBJECT
549 || h->type == STT_COMMON
550 || (sym != NULL
551 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
552 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
553 || (d != NULL
554 && h->root.type == bfd_link_hash_new
555 && (*d->match) (&d->head, NULL, h->root.root.string)))
556 h->dynamic = 1;
557 }
558
559 /* Record an assignment to a symbol made by a linker script. We need
560 this in case some dynamic object refers to this symbol. */
561
562 bfd_boolean
563 bfd_elf_record_link_assignment (bfd *output_bfd,
564 struct bfd_link_info *info,
565 const char *name,
566 bfd_boolean provide,
567 bfd_boolean hidden)
568 {
569 struct elf_link_hash_entry *h, *hv;
570 struct elf_link_hash_table *htab;
571 const struct elf_backend_data *bed;
572
573 if (!is_elf_hash_table (info->hash))
574 return TRUE;
575
576 htab = elf_hash_table (info);
577 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
578 if (h == NULL)
579 return provide;
580
581 if (h->versioned == unknown)
582 {
583 /* Set versioned if symbol version is unknown. */
584 char *version = strrchr (name, ELF_VER_CHR);
585 if (version)
586 {
587 if (version > name && version[-1] != ELF_VER_CHR)
588 h->versioned = versioned_hidden;
589 else
590 h->versioned = versioned;
591 }
592 }
593
594 switch (h->root.type)
595 {
596 case bfd_link_hash_defined:
597 case bfd_link_hash_defweak:
598 case bfd_link_hash_common:
599 break;
600 case bfd_link_hash_undefweak:
601 case bfd_link_hash_undefined:
602 /* Since we're defining the symbol, don't let it seem to have not
603 been defined. record_dynamic_symbol and size_dynamic_sections
604 may depend on this. */
605 h->root.type = bfd_link_hash_new;
606 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
607 bfd_link_repair_undef_list (&htab->root);
608 break;
609 case bfd_link_hash_new:
610 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
611 h->non_elf = 0;
612 break;
613 case bfd_link_hash_indirect:
614 /* We had a versioned symbol in a dynamic library. We make the
615 the versioned symbol point to this one. */
616 bed = get_elf_backend_data (output_bfd);
617 hv = h;
618 while (hv->root.type == bfd_link_hash_indirect
619 || hv->root.type == bfd_link_hash_warning)
620 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
621 /* We don't need to update h->root.u since linker will set them
622 later. */
623 h->root.type = bfd_link_hash_undefined;
624 hv->root.type = bfd_link_hash_indirect;
625 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
626 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
627 break;
628 case bfd_link_hash_warning:
629 abort ();
630 break;
631 }
632
633 /* If this symbol is being provided by the linker script, and it is
634 currently defined by a dynamic object, but not by a regular
635 object, then mark it as undefined so that the generic linker will
636 force the correct value. */
637 if (provide
638 && h->def_dynamic
639 && !h->def_regular)
640 h->root.type = bfd_link_hash_undefined;
641
642 /* If this symbol is not being provided by the linker script, and it is
643 currently defined by a dynamic object, but not by a regular object,
644 then clear out any version information because the symbol will not be
645 associated with the dynamic object any more. */
646 if (!provide
647 && h->def_dynamic
648 && !h->def_regular)
649 h->verinfo.verdef = NULL;
650
651 h->def_regular = 1;
652
653 if (hidden)
654 {
655 bed = get_elf_backend_data (output_bfd);
656 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
657 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
658 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
659 }
660
661 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
662 and executables. */
663 if (!bfd_link_relocatable (info)
664 && h->dynindx != -1
665 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
666 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
667 h->forced_local = 1;
668
669 if ((h->def_dynamic
670 || h->ref_dynamic
671 || bfd_link_dll (info)
672 || elf_hash_table (info)->is_relocatable_executable)
673 && h->dynindx == -1)
674 {
675 if (! bfd_elf_link_record_dynamic_symbol (info, h))
676 return FALSE;
677
678 /* If this is a weak defined symbol, and we know a corresponding
679 real symbol from the same dynamic object, make sure the real
680 symbol is also made into a dynamic symbol. */
681 if (h->u.weakdef != NULL
682 && h->u.weakdef->dynindx == -1)
683 {
684 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
685 return FALSE;
686 }
687 }
688
689 return TRUE;
690 }
691
692 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
693 success, and 2 on a failure caused by attempting to record a symbol
694 in a discarded section, eg. a discarded link-once section symbol. */
695
696 int
697 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
698 bfd *input_bfd,
699 long input_indx)
700 {
701 bfd_size_type amt;
702 struct elf_link_local_dynamic_entry *entry;
703 struct elf_link_hash_table *eht;
704 struct elf_strtab_hash *dynstr;
705 size_t dynstr_index;
706 char *name;
707 Elf_External_Sym_Shndx eshndx;
708 char esym[sizeof (Elf64_External_Sym)];
709
710 if (! is_elf_hash_table (info->hash))
711 return 0;
712
713 /* See if the entry exists already. */
714 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
715 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
716 return 1;
717
718 amt = sizeof (*entry);
719 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
720 if (entry == NULL)
721 return 0;
722
723 /* Go find the symbol, so that we can find it's name. */
724 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
725 1, input_indx, &entry->isym, esym, &eshndx))
726 {
727 bfd_release (input_bfd, entry);
728 return 0;
729 }
730
731 if (entry->isym.st_shndx != SHN_UNDEF
732 && entry->isym.st_shndx < SHN_LORESERVE)
733 {
734 asection *s;
735
736 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
737 if (s == NULL || bfd_is_abs_section (s->output_section))
738 {
739 /* We can still bfd_release here as nothing has done another
740 bfd_alloc. We can't do this later in this function. */
741 bfd_release (input_bfd, entry);
742 return 2;
743 }
744 }
745
746 name = (bfd_elf_string_from_elf_section
747 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
748 entry->isym.st_name));
749
750 dynstr = elf_hash_table (info)->dynstr;
751 if (dynstr == NULL)
752 {
753 /* Create a strtab to hold the dynamic symbol names. */
754 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
755 if (dynstr == NULL)
756 return 0;
757 }
758
759 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
760 if (dynstr_index == (size_t) -1)
761 return 0;
762 entry->isym.st_name = dynstr_index;
763
764 eht = elf_hash_table (info);
765
766 entry->next = eht->dynlocal;
767 eht->dynlocal = entry;
768 entry->input_bfd = input_bfd;
769 entry->input_indx = input_indx;
770 eht->dynsymcount++;
771
772 /* Whatever binding the symbol had before, it's now local. */
773 entry->isym.st_info
774 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
775
776 /* The dynindx will be set at the end of size_dynamic_sections. */
777
778 return 1;
779 }
780
781 /* Return the dynindex of a local dynamic symbol. */
782
783 long
784 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
785 bfd *input_bfd,
786 long input_indx)
787 {
788 struct elf_link_local_dynamic_entry *e;
789
790 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
791 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
792 return e->dynindx;
793 return -1;
794 }
795
796 /* This function is used to renumber the dynamic symbols, if some of
797 them are removed because they are marked as local. This is called
798 via elf_link_hash_traverse. */
799
800 static bfd_boolean
801 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
802 void *data)
803 {
804 size_t *count = (size_t *) data;
805
806 if (h->forced_local)
807 return TRUE;
808
809 if (h->dynindx != -1)
810 h->dynindx = ++(*count);
811
812 return TRUE;
813 }
814
815
816 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
817 STB_LOCAL binding. */
818
819 static bfd_boolean
820 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
821 void *data)
822 {
823 size_t *count = (size_t *) data;
824
825 if (!h->forced_local)
826 return TRUE;
827
828 if (h->dynindx != -1)
829 h->dynindx = ++(*count);
830
831 return TRUE;
832 }
833
834 /* Return true if the dynamic symbol for a given section should be
835 omitted when creating a shared library. */
836 bfd_boolean
837 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
838 struct bfd_link_info *info,
839 asection *p)
840 {
841 struct elf_link_hash_table *htab;
842 asection *ip;
843
844 switch (elf_section_data (p)->this_hdr.sh_type)
845 {
846 case SHT_PROGBITS:
847 case SHT_NOBITS:
848 /* If sh_type is yet undecided, assume it could be
849 SHT_PROGBITS/SHT_NOBITS. */
850 case SHT_NULL:
851 htab = elf_hash_table (info);
852 if (p == htab->tls_sec)
853 return FALSE;
854
855 if (htab->text_index_section != NULL)
856 return p != htab->text_index_section && p != htab->data_index_section;
857
858 return (htab->dynobj != NULL
859 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
860 && ip->output_section == p);
861
862 /* There shouldn't be section relative relocations
863 against any other section. */
864 default:
865 return TRUE;
866 }
867 }
868
869 /* Assign dynsym indices. In a shared library we generate a section
870 symbol for each output section, which come first. Next come symbols
871 which have been forced to local binding. Then all of the back-end
872 allocated local dynamic syms, followed by the rest of the global
873 symbols. */
874
875 static unsigned long
876 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
877 struct bfd_link_info *info,
878 unsigned long *section_sym_count)
879 {
880 unsigned long dynsymcount = 0;
881
882 if (bfd_link_pic (info)
883 || elf_hash_table (info)->is_relocatable_executable)
884 {
885 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
886 asection *p;
887 for (p = output_bfd->sections; p ; p = p->next)
888 if ((p->flags & SEC_EXCLUDE) == 0
889 && (p->flags & SEC_ALLOC) != 0
890 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
891 elf_section_data (p)->dynindx = ++dynsymcount;
892 else
893 elf_section_data (p)->dynindx = 0;
894 }
895 *section_sym_count = dynsymcount;
896
897 elf_link_hash_traverse (elf_hash_table (info),
898 elf_link_renumber_local_hash_table_dynsyms,
899 &dynsymcount);
900
901 if (elf_hash_table (info)->dynlocal)
902 {
903 struct elf_link_local_dynamic_entry *p;
904 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
905 p->dynindx = ++dynsymcount;
906 }
907
908 elf_link_hash_traverse (elf_hash_table (info),
909 elf_link_renumber_hash_table_dynsyms,
910 &dynsymcount);
911
912 /* There is an unused NULL entry at the head of the table which we
913 must account for in our count even if the table is empty since it
914 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
915 .dynamic section. */
916 dynsymcount++;
917
918 elf_hash_table (info)->dynsymcount = dynsymcount;
919 return dynsymcount;
920 }
921
922 /* Merge st_other field. */
923
924 static void
925 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
926 const Elf_Internal_Sym *isym, asection *sec,
927 bfd_boolean definition, bfd_boolean dynamic)
928 {
929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
930
931 /* If st_other has a processor-specific meaning, specific
932 code might be needed here. */
933 if (bed->elf_backend_merge_symbol_attribute)
934 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
935 dynamic);
936
937 if (!dynamic)
938 {
939 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
940 unsigned hvis = ELF_ST_VISIBILITY (h->other);
941
942 /* Keep the most constraining visibility. Leave the remainder
943 of the st_other field to elf_backend_merge_symbol_attribute. */
944 if (symvis - 1 < hvis - 1)
945 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
946 }
947 else if (definition
948 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
949 && (sec->flags & SEC_READONLY) == 0)
950 h->protected_def = 1;
951 }
952
953 /* This function is called when we want to merge a new symbol with an
954 existing symbol. It handles the various cases which arise when we
955 find a definition in a dynamic object, or when there is already a
956 definition in a dynamic object. The new symbol is described by
957 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
958 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
959 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
960 of an old common symbol. We set OVERRIDE if the old symbol is
961 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
962 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
963 to change. By OK to change, we mean that we shouldn't warn if the
964 type or size does change. */
965
966 static bfd_boolean
967 _bfd_elf_merge_symbol (bfd *abfd,
968 struct bfd_link_info *info,
969 const char *name,
970 Elf_Internal_Sym *sym,
971 asection **psec,
972 bfd_vma *pvalue,
973 struct elf_link_hash_entry **sym_hash,
974 bfd **poldbfd,
975 bfd_boolean *pold_weak,
976 unsigned int *pold_alignment,
977 bfd_boolean *skip,
978 bfd_boolean *override,
979 bfd_boolean *type_change_ok,
980 bfd_boolean *size_change_ok,
981 bfd_boolean *matched)
982 {
983 asection *sec, *oldsec;
984 struct elf_link_hash_entry *h;
985 struct elf_link_hash_entry *hi;
986 struct elf_link_hash_entry *flip;
987 int bind;
988 bfd *oldbfd;
989 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
990 bfd_boolean newweak, oldweak, newfunc, oldfunc;
991 const struct elf_backend_data *bed;
992 char *new_version;
993
994 *skip = FALSE;
995 *override = FALSE;
996
997 sec = *psec;
998 bind = ELF_ST_BIND (sym->st_info);
999
1000 if (! bfd_is_und_section (sec))
1001 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1002 else
1003 h = ((struct elf_link_hash_entry *)
1004 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1005 if (h == NULL)
1006 return FALSE;
1007 *sym_hash = h;
1008
1009 bed = get_elf_backend_data (abfd);
1010
1011 /* NEW_VERSION is the symbol version of the new symbol. */
1012 if (h->versioned != unversioned)
1013 {
1014 /* Symbol version is unknown or versioned. */
1015 new_version = strrchr (name, ELF_VER_CHR);
1016 if (new_version)
1017 {
1018 if (h->versioned == unknown)
1019 {
1020 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1021 h->versioned = versioned_hidden;
1022 else
1023 h->versioned = versioned;
1024 }
1025 new_version += 1;
1026 if (new_version[0] == '\0')
1027 new_version = NULL;
1028 }
1029 else
1030 h->versioned = unversioned;
1031 }
1032 else
1033 new_version = NULL;
1034
1035 /* For merging, we only care about real symbols. But we need to make
1036 sure that indirect symbol dynamic flags are updated. */
1037 hi = h;
1038 while (h->root.type == bfd_link_hash_indirect
1039 || h->root.type == bfd_link_hash_warning)
1040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1041
1042 if (!*matched)
1043 {
1044 if (hi == h || h->root.type == bfd_link_hash_new)
1045 *matched = TRUE;
1046 else
1047 {
1048 /* OLD_HIDDEN is true if the existing symbol is only visible
1049 to the symbol with the same symbol version. NEW_HIDDEN is
1050 true if the new symbol is only visible to the symbol with
1051 the same symbol version. */
1052 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1053 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1054 if (!old_hidden && !new_hidden)
1055 /* The new symbol matches the existing symbol if both
1056 aren't hidden. */
1057 *matched = TRUE;
1058 else
1059 {
1060 /* OLD_VERSION is the symbol version of the existing
1061 symbol. */
1062 char *old_version;
1063
1064 if (h->versioned >= versioned)
1065 old_version = strrchr (h->root.root.string,
1066 ELF_VER_CHR) + 1;
1067 else
1068 old_version = NULL;
1069
1070 /* The new symbol matches the existing symbol if they
1071 have the same symbol version. */
1072 *matched = (old_version == new_version
1073 || (old_version != NULL
1074 && new_version != NULL
1075 && strcmp (old_version, new_version) == 0));
1076 }
1077 }
1078 }
1079
1080 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1081 existing symbol. */
1082
1083 oldbfd = NULL;
1084 oldsec = NULL;
1085 switch (h->root.type)
1086 {
1087 default:
1088 break;
1089
1090 case bfd_link_hash_undefined:
1091 case bfd_link_hash_undefweak:
1092 oldbfd = h->root.u.undef.abfd;
1093 break;
1094
1095 case bfd_link_hash_defined:
1096 case bfd_link_hash_defweak:
1097 oldbfd = h->root.u.def.section->owner;
1098 oldsec = h->root.u.def.section;
1099 break;
1100
1101 case bfd_link_hash_common:
1102 oldbfd = h->root.u.c.p->section->owner;
1103 oldsec = h->root.u.c.p->section;
1104 if (pold_alignment)
1105 *pold_alignment = h->root.u.c.p->alignment_power;
1106 break;
1107 }
1108 if (poldbfd && *poldbfd == NULL)
1109 *poldbfd = oldbfd;
1110
1111 /* Differentiate strong and weak symbols. */
1112 newweak = bind == STB_WEAK;
1113 oldweak = (h->root.type == bfd_link_hash_defweak
1114 || h->root.type == bfd_link_hash_undefweak);
1115 if (pold_weak)
1116 *pold_weak = oldweak;
1117
1118 /* This code is for coping with dynamic objects, and is only useful
1119 if we are doing an ELF link. */
1120 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1121 return TRUE;
1122
1123 /* We have to check it for every instance since the first few may be
1124 references and not all compilers emit symbol type for undefined
1125 symbols. */
1126 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1127
1128 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1129 respectively, is from a dynamic object. */
1130
1131 newdyn = (abfd->flags & DYNAMIC) != 0;
1132
1133 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1134 syms and defined syms in dynamic libraries respectively.
1135 ref_dynamic on the other hand can be set for a symbol defined in
1136 a dynamic library, and def_dynamic may not be set; When the
1137 definition in a dynamic lib is overridden by a definition in the
1138 executable use of the symbol in the dynamic lib becomes a
1139 reference to the executable symbol. */
1140 if (newdyn)
1141 {
1142 if (bfd_is_und_section (sec))
1143 {
1144 if (bind != STB_WEAK)
1145 {
1146 h->ref_dynamic_nonweak = 1;
1147 hi->ref_dynamic_nonweak = 1;
1148 }
1149 }
1150 else
1151 {
1152 /* Update the existing symbol only if they match. */
1153 if (*matched)
1154 h->dynamic_def = 1;
1155 hi->dynamic_def = 1;
1156 }
1157 }
1158
1159 /* If we just created the symbol, mark it as being an ELF symbol.
1160 Other than that, there is nothing to do--there is no merge issue
1161 with a newly defined symbol--so we just return. */
1162
1163 if (h->root.type == bfd_link_hash_new)
1164 {
1165 h->non_elf = 0;
1166 return TRUE;
1167 }
1168
1169 /* In cases involving weak versioned symbols, we may wind up trying
1170 to merge a symbol with itself. Catch that here, to avoid the
1171 confusion that results if we try to override a symbol with
1172 itself. The additional tests catch cases like
1173 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1174 dynamic object, which we do want to handle here. */
1175 if (abfd == oldbfd
1176 && (newweak || oldweak)
1177 && ((abfd->flags & DYNAMIC) == 0
1178 || !h->def_regular))
1179 return TRUE;
1180
1181 olddyn = FALSE;
1182 if (oldbfd != NULL)
1183 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1184 else if (oldsec != NULL)
1185 {
1186 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1187 indices used by MIPS ELF. */
1188 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1189 }
1190
1191 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1192 respectively, appear to be a definition rather than reference. */
1193
1194 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1195
1196 olddef = (h->root.type != bfd_link_hash_undefined
1197 && h->root.type != bfd_link_hash_undefweak
1198 && h->root.type != bfd_link_hash_common);
1199
1200 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1201 respectively, appear to be a function. */
1202
1203 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1204 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1205
1206 oldfunc = (h->type != STT_NOTYPE
1207 && bed->is_function_type (h->type));
1208
1209 /* If creating a default indirect symbol ("foo" or "foo@") from a
1210 dynamic versioned definition ("foo@@") skip doing so if there is
1211 an existing regular definition with a different type. We don't
1212 want, for example, a "time" variable in the executable overriding
1213 a "time" function in a shared library. */
1214 if (pold_alignment == NULL
1215 && newdyn
1216 && newdef
1217 && !olddyn
1218 && (olddef || h->root.type == bfd_link_hash_common)
1219 && ELF_ST_TYPE (sym->st_info) != h->type
1220 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1221 && h->type != STT_NOTYPE
1222 && !(newfunc && oldfunc))
1223 {
1224 *skip = TRUE;
1225 return TRUE;
1226 }
1227
1228 /* Check TLS symbols. We don't check undefined symbols introduced
1229 by "ld -u" which have no type (and oldbfd NULL), and we don't
1230 check symbols from plugins because they also have no type. */
1231 if (oldbfd != NULL
1232 && (oldbfd->flags & BFD_PLUGIN) == 0
1233 && (abfd->flags & BFD_PLUGIN) == 0
1234 && ELF_ST_TYPE (sym->st_info) != h->type
1235 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1236 {
1237 bfd *ntbfd, *tbfd;
1238 bfd_boolean ntdef, tdef;
1239 asection *ntsec, *tsec;
1240
1241 if (h->type == STT_TLS)
1242 {
1243 ntbfd = abfd;
1244 ntsec = sec;
1245 ntdef = newdef;
1246 tbfd = oldbfd;
1247 tsec = oldsec;
1248 tdef = olddef;
1249 }
1250 else
1251 {
1252 ntbfd = oldbfd;
1253 ntsec = oldsec;
1254 ntdef = olddef;
1255 tbfd = abfd;
1256 tsec = sec;
1257 tdef = newdef;
1258 }
1259
1260 if (tdef && ntdef)
1261 (*_bfd_error_handler)
1262 (_("%s: TLS definition in %B section %A "
1263 "mismatches non-TLS definition in %B section %A"),
1264 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1265 else if (!tdef && !ntdef)
1266 (*_bfd_error_handler)
1267 (_("%s: TLS reference in %B "
1268 "mismatches non-TLS reference in %B"),
1269 tbfd, ntbfd, h->root.root.string);
1270 else if (tdef)
1271 (*_bfd_error_handler)
1272 (_("%s: TLS definition in %B section %A "
1273 "mismatches non-TLS reference in %B"),
1274 tbfd, tsec, ntbfd, h->root.root.string);
1275 else
1276 (*_bfd_error_handler)
1277 (_("%s: TLS reference in %B "
1278 "mismatches non-TLS definition in %B section %A"),
1279 tbfd, ntbfd, ntsec, h->root.root.string);
1280
1281 bfd_set_error (bfd_error_bad_value);
1282 return FALSE;
1283 }
1284
1285 /* If the old symbol has non-default visibility, we ignore the new
1286 definition from a dynamic object. */
1287 if (newdyn
1288 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1289 && !bfd_is_und_section (sec))
1290 {
1291 *skip = TRUE;
1292 /* Make sure this symbol is dynamic. */
1293 h->ref_dynamic = 1;
1294 hi->ref_dynamic = 1;
1295 /* A protected symbol has external availability. Make sure it is
1296 recorded as dynamic.
1297
1298 FIXME: Should we check type and size for protected symbol? */
1299 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1300 return bfd_elf_link_record_dynamic_symbol (info, h);
1301 else
1302 return TRUE;
1303 }
1304 else if (!newdyn
1305 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1306 && h->def_dynamic)
1307 {
1308 /* If the new symbol with non-default visibility comes from a
1309 relocatable file and the old definition comes from a dynamic
1310 object, we remove the old definition. */
1311 if (hi->root.type == bfd_link_hash_indirect)
1312 {
1313 /* Handle the case where the old dynamic definition is
1314 default versioned. We need to copy the symbol info from
1315 the symbol with default version to the normal one if it
1316 was referenced before. */
1317 if (h->ref_regular)
1318 {
1319 hi->root.type = h->root.type;
1320 h->root.type = bfd_link_hash_indirect;
1321 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1322
1323 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1324 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1325 {
1326 /* If the new symbol is hidden or internal, completely undo
1327 any dynamic link state. */
1328 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1329 h->forced_local = 0;
1330 h->ref_dynamic = 0;
1331 }
1332 else
1333 h->ref_dynamic = 1;
1334
1335 h->def_dynamic = 0;
1336 /* FIXME: Should we check type and size for protected symbol? */
1337 h->size = 0;
1338 h->type = 0;
1339
1340 h = hi;
1341 }
1342 else
1343 h = hi;
1344 }
1345
1346 /* If the old symbol was undefined before, then it will still be
1347 on the undefs list. If the new symbol is undefined or
1348 common, we can't make it bfd_link_hash_new here, because new
1349 undefined or common symbols will be added to the undefs list
1350 by _bfd_generic_link_add_one_symbol. Symbols may not be
1351 added twice to the undefs list. Also, if the new symbol is
1352 undefweak then we don't want to lose the strong undef. */
1353 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1354 {
1355 h->root.type = bfd_link_hash_undefined;
1356 h->root.u.undef.abfd = abfd;
1357 }
1358 else
1359 {
1360 h->root.type = bfd_link_hash_new;
1361 h->root.u.undef.abfd = NULL;
1362 }
1363
1364 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1365 {
1366 /* If the new symbol is hidden or internal, completely undo
1367 any dynamic link state. */
1368 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1369 h->forced_local = 0;
1370 h->ref_dynamic = 0;
1371 }
1372 else
1373 h->ref_dynamic = 1;
1374 h->def_dynamic = 0;
1375 /* FIXME: Should we check type and size for protected symbol? */
1376 h->size = 0;
1377 h->type = 0;
1378 return TRUE;
1379 }
1380
1381 /* If a new weak symbol definition comes from a regular file and the
1382 old symbol comes from a dynamic library, we treat the new one as
1383 strong. Similarly, an old weak symbol definition from a regular
1384 file is treated as strong when the new symbol comes from a dynamic
1385 library. Further, an old weak symbol from a dynamic library is
1386 treated as strong if the new symbol is from a dynamic library.
1387 This reflects the way glibc's ld.so works.
1388
1389 Do this before setting *type_change_ok or *size_change_ok so that
1390 we warn properly when dynamic library symbols are overridden. */
1391
1392 if (newdef && !newdyn && olddyn)
1393 newweak = FALSE;
1394 if (olddef && newdyn)
1395 oldweak = FALSE;
1396
1397 /* Allow changes between different types of function symbol. */
1398 if (newfunc && oldfunc)
1399 *type_change_ok = TRUE;
1400
1401 /* It's OK to change the type if either the existing symbol or the
1402 new symbol is weak. A type change is also OK if the old symbol
1403 is undefined and the new symbol is defined. */
1404
1405 if (oldweak
1406 || newweak
1407 || (newdef
1408 && h->root.type == bfd_link_hash_undefined))
1409 *type_change_ok = TRUE;
1410
1411 /* It's OK to change the size if either the existing symbol or the
1412 new symbol is weak, or if the old symbol is undefined. */
1413
1414 if (*type_change_ok
1415 || h->root.type == bfd_link_hash_undefined)
1416 *size_change_ok = TRUE;
1417
1418 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1419 symbol, respectively, appears to be a common symbol in a dynamic
1420 object. If a symbol appears in an uninitialized section, and is
1421 not weak, and is not a function, then it may be a common symbol
1422 which was resolved when the dynamic object was created. We want
1423 to treat such symbols specially, because they raise special
1424 considerations when setting the symbol size: if the symbol
1425 appears as a common symbol in a regular object, and the size in
1426 the regular object is larger, we must make sure that we use the
1427 larger size. This problematic case can always be avoided in C,
1428 but it must be handled correctly when using Fortran shared
1429 libraries.
1430
1431 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1432 likewise for OLDDYNCOMMON and OLDDEF.
1433
1434 Note that this test is just a heuristic, and that it is quite
1435 possible to have an uninitialized symbol in a shared object which
1436 is really a definition, rather than a common symbol. This could
1437 lead to some minor confusion when the symbol really is a common
1438 symbol in some regular object. However, I think it will be
1439 harmless. */
1440
1441 if (newdyn
1442 && newdef
1443 && !newweak
1444 && (sec->flags & SEC_ALLOC) != 0
1445 && (sec->flags & SEC_LOAD) == 0
1446 && sym->st_size > 0
1447 && !newfunc)
1448 newdyncommon = TRUE;
1449 else
1450 newdyncommon = FALSE;
1451
1452 if (olddyn
1453 && olddef
1454 && h->root.type == bfd_link_hash_defined
1455 && h->def_dynamic
1456 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1457 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1458 && h->size > 0
1459 && !oldfunc)
1460 olddyncommon = TRUE;
1461 else
1462 olddyncommon = FALSE;
1463
1464 /* We now know everything about the old and new symbols. We ask the
1465 backend to check if we can merge them. */
1466 if (bed->merge_symbol != NULL)
1467 {
1468 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1469 return FALSE;
1470 sec = *psec;
1471 }
1472
1473 /* If both the old and the new symbols look like common symbols in a
1474 dynamic object, set the size of the symbol to the larger of the
1475 two. */
1476
1477 if (olddyncommon
1478 && newdyncommon
1479 && sym->st_size != h->size)
1480 {
1481 /* Since we think we have two common symbols, issue a multiple
1482 common warning if desired. Note that we only warn if the
1483 size is different. If the size is the same, we simply let
1484 the old symbol override the new one as normally happens with
1485 symbols defined in dynamic objects. */
1486
1487 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1488 bfd_link_hash_common, sym->st_size);
1489 if (sym->st_size > h->size)
1490 h->size = sym->st_size;
1491
1492 *size_change_ok = TRUE;
1493 }
1494
1495 /* If we are looking at a dynamic object, and we have found a
1496 definition, we need to see if the symbol was already defined by
1497 some other object. If so, we want to use the existing
1498 definition, and we do not want to report a multiple symbol
1499 definition error; we do this by clobbering *PSEC to be
1500 bfd_und_section_ptr.
1501
1502 We treat a common symbol as a definition if the symbol in the
1503 shared library is a function, since common symbols always
1504 represent variables; this can cause confusion in principle, but
1505 any such confusion would seem to indicate an erroneous program or
1506 shared library. We also permit a common symbol in a regular
1507 object to override a weak symbol in a shared object. A common
1508 symbol in executable also overrides a symbol in a shared object. */
1509
1510 if (newdyn
1511 && newdef
1512 && (olddef
1513 || (h->root.type == bfd_link_hash_common
1514 && (newweak
1515 || newfunc
1516 || (!olddyn && bfd_link_executable (info))))))
1517 {
1518 *override = TRUE;
1519 newdef = FALSE;
1520 newdyncommon = FALSE;
1521
1522 *psec = sec = bfd_und_section_ptr;
1523 *size_change_ok = TRUE;
1524
1525 /* If we get here when the old symbol is a common symbol, then
1526 we are explicitly letting it override a weak symbol or
1527 function in a dynamic object, and we don't want to warn about
1528 a type change. If the old symbol is a defined symbol, a type
1529 change warning may still be appropriate. */
1530
1531 if (h->root.type == bfd_link_hash_common)
1532 *type_change_ok = TRUE;
1533 }
1534
1535 /* Handle the special case of an old common symbol merging with a
1536 new symbol which looks like a common symbol in a shared object.
1537 We change *PSEC and *PVALUE to make the new symbol look like a
1538 common symbol, and let _bfd_generic_link_add_one_symbol do the
1539 right thing. */
1540
1541 if (newdyncommon
1542 && h->root.type == bfd_link_hash_common)
1543 {
1544 *override = TRUE;
1545 newdef = FALSE;
1546 newdyncommon = FALSE;
1547 *pvalue = sym->st_size;
1548 *psec = sec = bed->common_section (oldsec);
1549 *size_change_ok = TRUE;
1550 }
1551
1552 /* Skip weak definitions of symbols that are already defined. */
1553 if (newdef && olddef && newweak)
1554 {
1555 /* Don't skip new non-IR weak syms. */
1556 if (!(oldbfd != NULL
1557 && (oldbfd->flags & BFD_PLUGIN) != 0
1558 && (abfd->flags & BFD_PLUGIN) == 0))
1559 {
1560 newdef = FALSE;
1561 *skip = TRUE;
1562 }
1563
1564 /* Merge st_other. If the symbol already has a dynamic index,
1565 but visibility says it should not be visible, turn it into a
1566 local symbol. */
1567 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1568 if (h->dynindx != -1)
1569 switch (ELF_ST_VISIBILITY (h->other))
1570 {
1571 case STV_INTERNAL:
1572 case STV_HIDDEN:
1573 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1574 break;
1575 }
1576 }
1577
1578 /* If the old symbol is from a dynamic object, and the new symbol is
1579 a definition which is not from a dynamic object, then the new
1580 symbol overrides the old symbol. Symbols from regular files
1581 always take precedence over symbols from dynamic objects, even if
1582 they are defined after the dynamic object in the link.
1583
1584 As above, we again permit a common symbol in a regular object to
1585 override a definition in a shared object if the shared object
1586 symbol is a function or is weak. */
1587
1588 flip = NULL;
1589 if (!newdyn
1590 && (newdef
1591 || (bfd_is_com_section (sec)
1592 && (oldweak || oldfunc)))
1593 && olddyn
1594 && olddef
1595 && h->def_dynamic)
1596 {
1597 /* Change the hash table entry to undefined, and let
1598 _bfd_generic_link_add_one_symbol do the right thing with the
1599 new definition. */
1600
1601 h->root.type = bfd_link_hash_undefined;
1602 h->root.u.undef.abfd = h->root.u.def.section->owner;
1603 *size_change_ok = TRUE;
1604
1605 olddef = FALSE;
1606 olddyncommon = FALSE;
1607
1608 /* We again permit a type change when a common symbol may be
1609 overriding a function. */
1610
1611 if (bfd_is_com_section (sec))
1612 {
1613 if (oldfunc)
1614 {
1615 /* If a common symbol overrides a function, make sure
1616 that it isn't defined dynamically nor has type
1617 function. */
1618 h->def_dynamic = 0;
1619 h->type = STT_NOTYPE;
1620 }
1621 *type_change_ok = TRUE;
1622 }
1623
1624 if (hi->root.type == bfd_link_hash_indirect)
1625 flip = hi;
1626 else
1627 /* This union may have been set to be non-NULL when this symbol
1628 was seen in a dynamic object. We must force the union to be
1629 NULL, so that it is correct for a regular symbol. */
1630 h->verinfo.vertree = NULL;
1631 }
1632
1633 /* Handle the special case of a new common symbol merging with an
1634 old symbol that looks like it might be a common symbol defined in
1635 a shared object. Note that we have already handled the case in
1636 which a new common symbol should simply override the definition
1637 in the shared library. */
1638
1639 if (! newdyn
1640 && bfd_is_com_section (sec)
1641 && olddyncommon)
1642 {
1643 /* It would be best if we could set the hash table entry to a
1644 common symbol, but we don't know what to use for the section
1645 or the alignment. */
1646 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1647 bfd_link_hash_common, sym->st_size);
1648
1649 /* If the presumed common symbol in the dynamic object is
1650 larger, pretend that the new symbol has its size. */
1651
1652 if (h->size > *pvalue)
1653 *pvalue = h->size;
1654
1655 /* We need to remember the alignment required by the symbol
1656 in the dynamic object. */
1657 BFD_ASSERT (pold_alignment);
1658 *pold_alignment = h->root.u.def.section->alignment_power;
1659
1660 olddef = FALSE;
1661 olddyncommon = FALSE;
1662
1663 h->root.type = bfd_link_hash_undefined;
1664 h->root.u.undef.abfd = h->root.u.def.section->owner;
1665
1666 *size_change_ok = TRUE;
1667 *type_change_ok = TRUE;
1668
1669 if (hi->root.type == bfd_link_hash_indirect)
1670 flip = hi;
1671 else
1672 h->verinfo.vertree = NULL;
1673 }
1674
1675 if (flip != NULL)
1676 {
1677 /* Handle the case where we had a versioned symbol in a dynamic
1678 library and now find a definition in a normal object. In this
1679 case, we make the versioned symbol point to the normal one. */
1680 flip->root.type = h->root.type;
1681 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1682 h->root.type = bfd_link_hash_indirect;
1683 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1684 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1685 if (h->def_dynamic)
1686 {
1687 h->def_dynamic = 0;
1688 flip->ref_dynamic = 1;
1689 }
1690 }
1691
1692 return TRUE;
1693 }
1694
1695 /* This function is called to create an indirect symbol from the
1696 default for the symbol with the default version if needed. The
1697 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1698 set DYNSYM if the new indirect symbol is dynamic. */
1699
1700 static bfd_boolean
1701 _bfd_elf_add_default_symbol (bfd *abfd,
1702 struct bfd_link_info *info,
1703 struct elf_link_hash_entry *h,
1704 const char *name,
1705 Elf_Internal_Sym *sym,
1706 asection *sec,
1707 bfd_vma value,
1708 bfd **poldbfd,
1709 bfd_boolean *dynsym)
1710 {
1711 bfd_boolean type_change_ok;
1712 bfd_boolean size_change_ok;
1713 bfd_boolean skip;
1714 char *shortname;
1715 struct elf_link_hash_entry *hi;
1716 struct bfd_link_hash_entry *bh;
1717 const struct elf_backend_data *bed;
1718 bfd_boolean collect;
1719 bfd_boolean dynamic;
1720 bfd_boolean override;
1721 char *p;
1722 size_t len, shortlen;
1723 asection *tmp_sec;
1724 bfd_boolean matched;
1725
1726 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1727 return TRUE;
1728
1729 /* If this symbol has a version, and it is the default version, we
1730 create an indirect symbol from the default name to the fully
1731 decorated name. This will cause external references which do not
1732 specify a version to be bound to this version of the symbol. */
1733 p = strchr (name, ELF_VER_CHR);
1734 if (h->versioned == unknown)
1735 {
1736 if (p == NULL)
1737 {
1738 h->versioned = unversioned;
1739 return TRUE;
1740 }
1741 else
1742 {
1743 if (p[1] != ELF_VER_CHR)
1744 {
1745 h->versioned = versioned_hidden;
1746 return TRUE;
1747 }
1748 else
1749 h->versioned = versioned;
1750 }
1751 }
1752 else
1753 {
1754 /* PR ld/19073: We may see an unversioned definition after the
1755 default version. */
1756 if (p == NULL)
1757 return TRUE;
1758 }
1759
1760 bed = get_elf_backend_data (abfd);
1761 collect = bed->collect;
1762 dynamic = (abfd->flags & DYNAMIC) != 0;
1763
1764 shortlen = p - name;
1765 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1766 if (shortname == NULL)
1767 return FALSE;
1768 memcpy (shortname, name, shortlen);
1769 shortname[shortlen] = '\0';
1770
1771 /* We are going to create a new symbol. Merge it with any existing
1772 symbol with this name. For the purposes of the merge, act as
1773 though we were defining the symbol we just defined, although we
1774 actually going to define an indirect symbol. */
1775 type_change_ok = FALSE;
1776 size_change_ok = FALSE;
1777 matched = TRUE;
1778 tmp_sec = sec;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1780 &hi, poldbfd, NULL, NULL, &skip, &override,
1781 &type_change_ok, &size_change_ok, &matched))
1782 return FALSE;
1783
1784 if (skip)
1785 goto nondefault;
1786
1787 if (hi->def_regular)
1788 {
1789 /* If the undecorated symbol will have a version added by a
1790 script different to H, then don't indirect to/from the
1791 undecorated symbol. This isn't ideal because we may not yet
1792 have seen symbol versions, if given by a script on the
1793 command line rather than via --version-script. */
1794 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1795 {
1796 bfd_boolean hide;
1797
1798 hi->verinfo.vertree
1799 = bfd_find_version_for_sym (info->version_info,
1800 hi->root.root.string, &hide);
1801 if (hi->verinfo.vertree != NULL && hide)
1802 {
1803 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1804 goto nondefault;
1805 }
1806 }
1807 if (hi->verinfo.vertree != NULL
1808 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1809 goto nondefault;
1810 }
1811
1812 if (! override)
1813 {
1814 /* Add the default symbol if not performing a relocatable link. */
1815 if (! bfd_link_relocatable (info))
1816 {
1817 bh = &hi->root;
1818 if (! (_bfd_generic_link_add_one_symbol
1819 (info, abfd, shortname, BSF_INDIRECT,
1820 bfd_ind_section_ptr,
1821 0, name, FALSE, collect, &bh)))
1822 return FALSE;
1823 hi = (struct elf_link_hash_entry *) bh;
1824 }
1825 }
1826 else
1827 {
1828 /* In this case the symbol named SHORTNAME is overriding the
1829 indirect symbol we want to add. We were planning on making
1830 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1831 is the name without a version. NAME is the fully versioned
1832 name, and it is the default version.
1833
1834 Overriding means that we already saw a definition for the
1835 symbol SHORTNAME in a regular object, and it is overriding
1836 the symbol defined in the dynamic object.
1837
1838 When this happens, we actually want to change NAME, the
1839 symbol we just added, to refer to SHORTNAME. This will cause
1840 references to NAME in the shared object to become references
1841 to SHORTNAME in the regular object. This is what we expect
1842 when we override a function in a shared object: that the
1843 references in the shared object will be mapped to the
1844 definition in the regular object. */
1845
1846 while (hi->root.type == bfd_link_hash_indirect
1847 || hi->root.type == bfd_link_hash_warning)
1848 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1849
1850 h->root.type = bfd_link_hash_indirect;
1851 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1852 if (h->def_dynamic)
1853 {
1854 h->def_dynamic = 0;
1855 hi->ref_dynamic = 1;
1856 if (hi->ref_regular
1857 || hi->def_regular)
1858 {
1859 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1860 return FALSE;
1861 }
1862 }
1863
1864 /* Now set HI to H, so that the following code will set the
1865 other fields correctly. */
1866 hi = h;
1867 }
1868
1869 /* Check if HI is a warning symbol. */
1870 if (hi->root.type == bfd_link_hash_warning)
1871 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1872
1873 /* If there is a duplicate definition somewhere, then HI may not
1874 point to an indirect symbol. We will have reported an error to
1875 the user in that case. */
1876
1877 if (hi->root.type == bfd_link_hash_indirect)
1878 {
1879 struct elf_link_hash_entry *ht;
1880
1881 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1882 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1883
1884 /* A reference to the SHORTNAME symbol from a dynamic library
1885 will be satisfied by the versioned symbol at runtime. In
1886 effect, we have a reference to the versioned symbol. */
1887 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1888 hi->dynamic_def |= ht->dynamic_def;
1889
1890 /* See if the new flags lead us to realize that the symbol must
1891 be dynamic. */
1892 if (! *dynsym)
1893 {
1894 if (! dynamic)
1895 {
1896 if (! bfd_link_executable (info)
1897 || hi->def_dynamic
1898 || hi->ref_dynamic)
1899 *dynsym = TRUE;
1900 }
1901 else
1902 {
1903 if (hi->ref_regular)
1904 *dynsym = TRUE;
1905 }
1906 }
1907 }
1908
1909 /* We also need to define an indirection from the nondefault version
1910 of the symbol. */
1911
1912 nondefault:
1913 len = strlen (name);
1914 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1915 if (shortname == NULL)
1916 return FALSE;
1917 memcpy (shortname, name, shortlen);
1918 memcpy (shortname + shortlen, p + 1, len - shortlen);
1919
1920 /* Once again, merge with any existing symbol. */
1921 type_change_ok = FALSE;
1922 size_change_ok = FALSE;
1923 tmp_sec = sec;
1924 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1925 &hi, poldbfd, NULL, NULL, &skip, &override,
1926 &type_change_ok, &size_change_ok, &matched))
1927 return FALSE;
1928
1929 if (skip)
1930 return TRUE;
1931
1932 if (override)
1933 {
1934 /* Here SHORTNAME is a versioned name, so we don't expect to see
1935 the type of override we do in the case above unless it is
1936 overridden by a versioned definition. */
1937 if (hi->root.type != bfd_link_hash_defined
1938 && hi->root.type != bfd_link_hash_defweak)
1939 (*_bfd_error_handler)
1940 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1941 abfd, shortname);
1942 }
1943 else
1944 {
1945 bh = &hi->root;
1946 if (! (_bfd_generic_link_add_one_symbol
1947 (info, abfd, shortname, BSF_INDIRECT,
1948 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1949 return FALSE;
1950 hi = (struct elf_link_hash_entry *) bh;
1951
1952 /* If there is a duplicate definition somewhere, then HI may not
1953 point to an indirect symbol. We will have reported an error
1954 to the user in that case. */
1955
1956 if (hi->root.type == bfd_link_hash_indirect)
1957 {
1958 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1959 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1960 hi->dynamic_def |= h->dynamic_def;
1961
1962 /* See if the new flags lead us to realize that the symbol
1963 must be dynamic. */
1964 if (! *dynsym)
1965 {
1966 if (! dynamic)
1967 {
1968 if (! bfd_link_executable (info)
1969 || hi->ref_dynamic)
1970 *dynsym = TRUE;
1971 }
1972 else
1973 {
1974 if (hi->ref_regular)
1975 *dynsym = TRUE;
1976 }
1977 }
1978 }
1979 }
1980
1981 return TRUE;
1982 }
1983 \f
1984 /* This routine is used to export all defined symbols into the dynamic
1985 symbol table. It is called via elf_link_hash_traverse. */
1986
1987 static bfd_boolean
1988 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1989 {
1990 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1991
1992 /* Ignore indirect symbols. These are added by the versioning code. */
1993 if (h->root.type == bfd_link_hash_indirect)
1994 return TRUE;
1995
1996 /* Ignore this if we won't export it. */
1997 if (!eif->info->export_dynamic && !h->dynamic)
1998 return TRUE;
1999
2000 if (h->dynindx == -1
2001 && (h->def_regular || h->ref_regular)
2002 && ! bfd_hide_sym_by_version (eif->info->version_info,
2003 h->root.root.string))
2004 {
2005 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2006 {
2007 eif->failed = TRUE;
2008 return FALSE;
2009 }
2010 }
2011
2012 return TRUE;
2013 }
2014 \f
2015 /* Look through the symbols which are defined in other shared
2016 libraries and referenced here. Update the list of version
2017 dependencies. This will be put into the .gnu.version_r section.
2018 This function is called via elf_link_hash_traverse. */
2019
2020 static bfd_boolean
2021 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2022 void *data)
2023 {
2024 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2025 Elf_Internal_Verneed *t;
2026 Elf_Internal_Vernaux *a;
2027 bfd_size_type amt;
2028
2029 /* We only care about symbols defined in shared objects with version
2030 information. */
2031 if (!h->def_dynamic
2032 || h->def_regular
2033 || h->dynindx == -1
2034 || h->verinfo.verdef == NULL
2035 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2036 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2037 return TRUE;
2038
2039 /* See if we already know about this version. */
2040 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2041 t != NULL;
2042 t = t->vn_nextref)
2043 {
2044 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2045 continue;
2046
2047 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2048 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2049 return TRUE;
2050
2051 break;
2052 }
2053
2054 /* This is a new version. Add it to tree we are building. */
2055
2056 if (t == NULL)
2057 {
2058 amt = sizeof *t;
2059 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2060 if (t == NULL)
2061 {
2062 rinfo->failed = TRUE;
2063 return FALSE;
2064 }
2065
2066 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2067 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2068 elf_tdata (rinfo->info->output_bfd)->verref = t;
2069 }
2070
2071 amt = sizeof *a;
2072 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2073 if (a == NULL)
2074 {
2075 rinfo->failed = TRUE;
2076 return FALSE;
2077 }
2078
2079 /* Note that we are copying a string pointer here, and testing it
2080 above. If bfd_elf_string_from_elf_section is ever changed to
2081 discard the string data when low in memory, this will have to be
2082 fixed. */
2083 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2084
2085 a->vna_flags = h->verinfo.verdef->vd_flags;
2086 a->vna_nextptr = t->vn_auxptr;
2087
2088 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2089 ++rinfo->vers;
2090
2091 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2092
2093 t->vn_auxptr = a;
2094
2095 return TRUE;
2096 }
2097
2098 /* Figure out appropriate versions for all the symbols. We may not
2099 have the version number script until we have read all of the input
2100 files, so until that point we don't know which symbols should be
2101 local. This function is called via elf_link_hash_traverse. */
2102
2103 static bfd_boolean
2104 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2105 {
2106 struct elf_info_failed *sinfo;
2107 struct bfd_link_info *info;
2108 const struct elf_backend_data *bed;
2109 struct elf_info_failed eif;
2110 char *p;
2111
2112 sinfo = (struct elf_info_failed *) data;
2113 info = sinfo->info;
2114
2115 /* Fix the symbol flags. */
2116 eif.failed = FALSE;
2117 eif.info = info;
2118 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2119 {
2120 if (eif.failed)
2121 sinfo->failed = TRUE;
2122 return FALSE;
2123 }
2124
2125 /* We only need version numbers for symbols defined in regular
2126 objects. */
2127 if (!h->def_regular)
2128 return TRUE;
2129
2130 bed = get_elf_backend_data (info->output_bfd);
2131 p = strchr (h->root.root.string, ELF_VER_CHR);
2132 if (p != NULL && h->verinfo.vertree == NULL)
2133 {
2134 struct bfd_elf_version_tree *t;
2135
2136 ++p;
2137 if (*p == ELF_VER_CHR)
2138 ++p;
2139
2140 /* If there is no version string, we can just return out. */
2141 if (*p == '\0')
2142 return TRUE;
2143
2144 /* Look for the version. If we find it, it is no longer weak. */
2145 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2146 {
2147 if (strcmp (t->name, p) == 0)
2148 {
2149 size_t len;
2150 char *alc;
2151 struct bfd_elf_version_expr *d;
2152
2153 len = p - h->root.root.string;
2154 alc = (char *) bfd_malloc (len);
2155 if (alc == NULL)
2156 {
2157 sinfo->failed = TRUE;
2158 return FALSE;
2159 }
2160 memcpy (alc, h->root.root.string, len - 1);
2161 alc[len - 1] = '\0';
2162 if (alc[len - 2] == ELF_VER_CHR)
2163 alc[len - 2] = '\0';
2164
2165 h->verinfo.vertree = t;
2166 t->used = TRUE;
2167 d = NULL;
2168
2169 if (t->globals.list != NULL)
2170 d = (*t->match) (&t->globals, NULL, alc);
2171
2172 /* See if there is anything to force this symbol to
2173 local scope. */
2174 if (d == NULL && t->locals.list != NULL)
2175 {
2176 d = (*t->match) (&t->locals, NULL, alc);
2177 if (d != NULL
2178 && h->dynindx != -1
2179 && ! info->export_dynamic)
2180 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2181 }
2182
2183 free (alc);
2184 break;
2185 }
2186 }
2187
2188 /* If we are building an application, we need to create a
2189 version node for this version. */
2190 if (t == NULL && bfd_link_executable (info))
2191 {
2192 struct bfd_elf_version_tree **pp;
2193 int version_index;
2194
2195 /* If we aren't going to export this symbol, we don't need
2196 to worry about it. */
2197 if (h->dynindx == -1)
2198 return TRUE;
2199
2200 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2201 sizeof *t);
2202 if (t == NULL)
2203 {
2204 sinfo->failed = TRUE;
2205 return FALSE;
2206 }
2207
2208 t->name = p;
2209 t->name_indx = (unsigned int) -1;
2210 t->used = TRUE;
2211
2212 version_index = 1;
2213 /* Don't count anonymous version tag. */
2214 if (sinfo->info->version_info != NULL
2215 && sinfo->info->version_info->vernum == 0)
2216 version_index = 0;
2217 for (pp = &sinfo->info->version_info;
2218 *pp != NULL;
2219 pp = &(*pp)->next)
2220 ++version_index;
2221 t->vernum = version_index;
2222
2223 *pp = t;
2224
2225 h->verinfo.vertree = t;
2226 }
2227 else if (t == NULL)
2228 {
2229 /* We could not find the version for a symbol when
2230 generating a shared archive. Return an error. */
2231 (*_bfd_error_handler)
2232 (_("%B: version node not found for symbol %s"),
2233 info->output_bfd, h->root.root.string);
2234 bfd_set_error (bfd_error_bad_value);
2235 sinfo->failed = TRUE;
2236 return FALSE;
2237 }
2238 }
2239
2240 /* If we don't have a version for this symbol, see if we can find
2241 something. */
2242 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2243 {
2244 bfd_boolean hide;
2245
2246 h->verinfo.vertree
2247 = bfd_find_version_for_sym (sinfo->info->version_info,
2248 h->root.root.string, &hide);
2249 if (h->verinfo.vertree != NULL && hide)
2250 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2251 }
2252
2253 return TRUE;
2254 }
2255 \f
2256 /* Read and swap the relocs from the section indicated by SHDR. This
2257 may be either a REL or a RELA section. The relocations are
2258 translated into RELA relocations and stored in INTERNAL_RELOCS,
2259 which should have already been allocated to contain enough space.
2260 The EXTERNAL_RELOCS are a buffer where the external form of the
2261 relocations should be stored.
2262
2263 Returns FALSE if something goes wrong. */
2264
2265 static bfd_boolean
2266 elf_link_read_relocs_from_section (bfd *abfd,
2267 asection *sec,
2268 Elf_Internal_Shdr *shdr,
2269 void *external_relocs,
2270 Elf_Internal_Rela *internal_relocs)
2271 {
2272 const struct elf_backend_data *bed;
2273 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2274 const bfd_byte *erela;
2275 const bfd_byte *erelaend;
2276 Elf_Internal_Rela *irela;
2277 Elf_Internal_Shdr *symtab_hdr;
2278 size_t nsyms;
2279
2280 /* Position ourselves at the start of the section. */
2281 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2282 return FALSE;
2283
2284 /* Read the relocations. */
2285 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2286 return FALSE;
2287
2288 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2289 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2290
2291 bed = get_elf_backend_data (abfd);
2292
2293 /* Convert the external relocations to the internal format. */
2294 if (shdr->sh_entsize == bed->s->sizeof_rel)
2295 swap_in = bed->s->swap_reloc_in;
2296 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2297 swap_in = bed->s->swap_reloca_in;
2298 else
2299 {
2300 bfd_set_error (bfd_error_wrong_format);
2301 return FALSE;
2302 }
2303
2304 erela = (const bfd_byte *) external_relocs;
2305 erelaend = erela + shdr->sh_size;
2306 irela = internal_relocs;
2307 while (erela < erelaend)
2308 {
2309 bfd_vma r_symndx;
2310
2311 (*swap_in) (abfd, erela, irela);
2312 r_symndx = ELF32_R_SYM (irela->r_info);
2313 if (bed->s->arch_size == 64)
2314 r_symndx >>= 24;
2315 if (nsyms > 0)
2316 {
2317 if ((size_t) r_symndx >= nsyms)
2318 {
2319 (*_bfd_error_handler)
2320 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2321 " for offset 0x%lx in section `%A'"),
2322 abfd, sec,
2323 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2324 bfd_set_error (bfd_error_bad_value);
2325 return FALSE;
2326 }
2327 }
2328 else if (r_symndx != STN_UNDEF)
2329 {
2330 (*_bfd_error_handler)
2331 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2332 " when the object file has no symbol table"),
2333 abfd, sec,
2334 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2335 bfd_set_error (bfd_error_bad_value);
2336 return FALSE;
2337 }
2338 irela += bed->s->int_rels_per_ext_rel;
2339 erela += shdr->sh_entsize;
2340 }
2341
2342 return TRUE;
2343 }
2344
2345 /* Read and swap the relocs for a section O. They may have been
2346 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2347 not NULL, they are used as buffers to read into. They are known to
2348 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2349 the return value is allocated using either malloc or bfd_alloc,
2350 according to the KEEP_MEMORY argument. If O has two relocation
2351 sections (both REL and RELA relocations), then the REL_HDR
2352 relocations will appear first in INTERNAL_RELOCS, followed by the
2353 RELA_HDR relocations. */
2354
2355 Elf_Internal_Rela *
2356 _bfd_elf_link_read_relocs (bfd *abfd,
2357 asection *o,
2358 void *external_relocs,
2359 Elf_Internal_Rela *internal_relocs,
2360 bfd_boolean keep_memory)
2361 {
2362 void *alloc1 = NULL;
2363 Elf_Internal_Rela *alloc2 = NULL;
2364 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2365 struct bfd_elf_section_data *esdo = elf_section_data (o);
2366 Elf_Internal_Rela *internal_rela_relocs;
2367
2368 if (esdo->relocs != NULL)
2369 return esdo->relocs;
2370
2371 if (o->reloc_count == 0)
2372 return NULL;
2373
2374 if (internal_relocs == NULL)
2375 {
2376 bfd_size_type size;
2377
2378 size = o->reloc_count;
2379 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2380 if (keep_memory)
2381 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2382 else
2383 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2384 if (internal_relocs == NULL)
2385 goto error_return;
2386 }
2387
2388 if (external_relocs == NULL)
2389 {
2390 bfd_size_type size = 0;
2391
2392 if (esdo->rel.hdr)
2393 size += esdo->rel.hdr->sh_size;
2394 if (esdo->rela.hdr)
2395 size += esdo->rela.hdr->sh_size;
2396
2397 alloc1 = bfd_malloc (size);
2398 if (alloc1 == NULL)
2399 goto error_return;
2400 external_relocs = alloc1;
2401 }
2402
2403 internal_rela_relocs = internal_relocs;
2404 if (esdo->rel.hdr)
2405 {
2406 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2407 external_relocs,
2408 internal_relocs))
2409 goto error_return;
2410 external_relocs = (((bfd_byte *) external_relocs)
2411 + esdo->rel.hdr->sh_size);
2412 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2413 * bed->s->int_rels_per_ext_rel);
2414 }
2415
2416 if (esdo->rela.hdr
2417 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2418 external_relocs,
2419 internal_rela_relocs)))
2420 goto error_return;
2421
2422 /* Cache the results for next time, if we can. */
2423 if (keep_memory)
2424 esdo->relocs = internal_relocs;
2425
2426 if (alloc1 != NULL)
2427 free (alloc1);
2428
2429 /* Don't free alloc2, since if it was allocated we are passing it
2430 back (under the name of internal_relocs). */
2431
2432 return internal_relocs;
2433
2434 error_return:
2435 if (alloc1 != NULL)
2436 free (alloc1);
2437 if (alloc2 != NULL)
2438 {
2439 if (keep_memory)
2440 bfd_release (abfd, alloc2);
2441 else
2442 free (alloc2);
2443 }
2444 return NULL;
2445 }
2446
2447 /* Compute the size of, and allocate space for, REL_HDR which is the
2448 section header for a section containing relocations for O. */
2449
2450 static bfd_boolean
2451 _bfd_elf_link_size_reloc_section (bfd *abfd,
2452 struct bfd_elf_section_reloc_data *reldata)
2453 {
2454 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2455
2456 /* That allows us to calculate the size of the section. */
2457 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2458
2459 /* The contents field must last into write_object_contents, so we
2460 allocate it with bfd_alloc rather than malloc. Also since we
2461 cannot be sure that the contents will actually be filled in,
2462 we zero the allocated space. */
2463 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2464 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2465 return FALSE;
2466
2467 if (reldata->hashes == NULL && reldata->count)
2468 {
2469 struct elf_link_hash_entry **p;
2470
2471 p = ((struct elf_link_hash_entry **)
2472 bfd_zmalloc (reldata->count * sizeof (*p)));
2473 if (p == NULL)
2474 return FALSE;
2475
2476 reldata->hashes = p;
2477 }
2478
2479 return TRUE;
2480 }
2481
2482 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2483 originated from the section given by INPUT_REL_HDR) to the
2484 OUTPUT_BFD. */
2485
2486 bfd_boolean
2487 _bfd_elf_link_output_relocs (bfd *output_bfd,
2488 asection *input_section,
2489 Elf_Internal_Shdr *input_rel_hdr,
2490 Elf_Internal_Rela *internal_relocs,
2491 struct elf_link_hash_entry **rel_hash
2492 ATTRIBUTE_UNUSED)
2493 {
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Rela *irelaend;
2496 bfd_byte *erel;
2497 struct bfd_elf_section_reloc_data *output_reldata;
2498 asection *output_section;
2499 const struct elf_backend_data *bed;
2500 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2501 struct bfd_elf_section_data *esdo;
2502
2503 output_section = input_section->output_section;
2504
2505 bed = get_elf_backend_data (output_bfd);
2506 esdo = elf_section_data (output_section);
2507 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2508 {
2509 output_reldata = &esdo->rel;
2510 swap_out = bed->s->swap_reloc_out;
2511 }
2512 else if (esdo->rela.hdr
2513 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2514 {
2515 output_reldata = &esdo->rela;
2516 swap_out = bed->s->swap_reloca_out;
2517 }
2518 else
2519 {
2520 (*_bfd_error_handler)
2521 (_("%B: relocation size mismatch in %B section %A"),
2522 output_bfd, input_section->owner, input_section);
2523 bfd_set_error (bfd_error_wrong_format);
2524 return FALSE;
2525 }
2526
2527 erel = output_reldata->hdr->contents;
2528 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2529 irela = internal_relocs;
2530 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2531 * bed->s->int_rels_per_ext_rel);
2532 while (irela < irelaend)
2533 {
2534 (*swap_out) (output_bfd, irela, erel);
2535 irela += bed->s->int_rels_per_ext_rel;
2536 erel += input_rel_hdr->sh_entsize;
2537 }
2538
2539 /* Bump the counter, so that we know where to add the next set of
2540 relocations. */
2541 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2542
2543 return TRUE;
2544 }
2545 \f
2546 /* Make weak undefined symbols in PIE dynamic. */
2547
2548 bfd_boolean
2549 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2550 struct elf_link_hash_entry *h)
2551 {
2552 if (bfd_link_pie (info)
2553 && h->dynindx == -1
2554 && h->root.type == bfd_link_hash_undefweak)
2555 return bfd_elf_link_record_dynamic_symbol (info, h);
2556
2557 return TRUE;
2558 }
2559
2560 /* Fix up the flags for a symbol. This handles various cases which
2561 can only be fixed after all the input files are seen. This is
2562 currently called by both adjust_dynamic_symbol and
2563 assign_sym_version, which is unnecessary but perhaps more robust in
2564 the face of future changes. */
2565
2566 static bfd_boolean
2567 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2568 struct elf_info_failed *eif)
2569 {
2570 const struct elf_backend_data *bed;
2571
2572 /* If this symbol was mentioned in a non-ELF file, try to set
2573 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2574 permit a non-ELF file to correctly refer to a symbol defined in
2575 an ELF dynamic object. */
2576 if (h->non_elf)
2577 {
2578 while (h->root.type == bfd_link_hash_indirect)
2579 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2580
2581 if (h->root.type != bfd_link_hash_defined
2582 && h->root.type != bfd_link_hash_defweak)
2583 {
2584 h->ref_regular = 1;
2585 h->ref_regular_nonweak = 1;
2586 }
2587 else
2588 {
2589 if (h->root.u.def.section->owner != NULL
2590 && (bfd_get_flavour (h->root.u.def.section->owner)
2591 == bfd_target_elf_flavour))
2592 {
2593 h->ref_regular = 1;
2594 h->ref_regular_nonweak = 1;
2595 }
2596 else
2597 h->def_regular = 1;
2598 }
2599
2600 if (h->dynindx == -1
2601 && (h->def_dynamic
2602 || h->ref_dynamic))
2603 {
2604 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2605 {
2606 eif->failed = TRUE;
2607 return FALSE;
2608 }
2609 }
2610 }
2611 else
2612 {
2613 /* Unfortunately, NON_ELF is only correct if the symbol
2614 was first seen in a non-ELF file. Fortunately, if the symbol
2615 was first seen in an ELF file, we're probably OK unless the
2616 symbol was defined in a non-ELF file. Catch that case here.
2617 FIXME: We're still in trouble if the symbol was first seen in
2618 a dynamic object, and then later in a non-ELF regular object. */
2619 if ((h->root.type == bfd_link_hash_defined
2620 || h->root.type == bfd_link_hash_defweak)
2621 && !h->def_regular
2622 && (h->root.u.def.section->owner != NULL
2623 ? (bfd_get_flavour (h->root.u.def.section->owner)
2624 != bfd_target_elf_flavour)
2625 : (bfd_is_abs_section (h->root.u.def.section)
2626 && !h->def_dynamic)))
2627 h->def_regular = 1;
2628 }
2629
2630 /* Backend specific symbol fixup. */
2631 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2632 if (bed->elf_backend_fixup_symbol
2633 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2634 return FALSE;
2635
2636 /* If this is a final link, and the symbol was defined as a common
2637 symbol in a regular object file, and there was no definition in
2638 any dynamic object, then the linker will have allocated space for
2639 the symbol in a common section but the DEF_REGULAR
2640 flag will not have been set. */
2641 if (h->root.type == bfd_link_hash_defined
2642 && !h->def_regular
2643 && h->ref_regular
2644 && !h->def_dynamic
2645 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2646 h->def_regular = 1;
2647
2648 /* If -Bsymbolic was used (which means to bind references to global
2649 symbols to the definition within the shared object), and this
2650 symbol was defined in a regular object, then it actually doesn't
2651 need a PLT entry. Likewise, if the symbol has non-default
2652 visibility. If the symbol has hidden or internal visibility, we
2653 will force it local. */
2654 if (h->needs_plt
2655 && bfd_link_pic (eif->info)
2656 && is_elf_hash_table (eif->info->hash)
2657 && (SYMBOLIC_BIND (eif->info, h)
2658 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2659 && h->def_regular)
2660 {
2661 bfd_boolean force_local;
2662
2663 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2664 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2665 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2666 }
2667
2668 /* If a weak undefined symbol has non-default visibility, we also
2669 hide it from the dynamic linker. */
2670 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2671 && h->root.type == bfd_link_hash_undefweak)
2672 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2673
2674 /* If this is a weak defined symbol in a dynamic object, and we know
2675 the real definition in the dynamic object, copy interesting flags
2676 over to the real definition. */
2677 if (h->u.weakdef != NULL)
2678 {
2679 /* If the real definition is defined by a regular object file,
2680 don't do anything special. See the longer description in
2681 _bfd_elf_adjust_dynamic_symbol, below. */
2682 if (h->u.weakdef->def_regular)
2683 h->u.weakdef = NULL;
2684 else
2685 {
2686 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2687
2688 while (h->root.type == bfd_link_hash_indirect)
2689 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2690
2691 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2692 || h->root.type == bfd_link_hash_defweak);
2693 BFD_ASSERT (weakdef->def_dynamic);
2694 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2695 || weakdef->root.type == bfd_link_hash_defweak);
2696 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2697 }
2698 }
2699
2700 return TRUE;
2701 }
2702
2703 /* Make the backend pick a good value for a dynamic symbol. This is
2704 called via elf_link_hash_traverse, and also calls itself
2705 recursively. */
2706
2707 static bfd_boolean
2708 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2709 {
2710 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2711 bfd *dynobj;
2712 const struct elf_backend_data *bed;
2713
2714 if (! is_elf_hash_table (eif->info->hash))
2715 return FALSE;
2716
2717 /* Ignore indirect symbols. These are added by the versioning code. */
2718 if (h->root.type == bfd_link_hash_indirect)
2719 return TRUE;
2720
2721 /* Fix the symbol flags. */
2722 if (! _bfd_elf_fix_symbol_flags (h, eif))
2723 return FALSE;
2724
2725 /* If this symbol does not require a PLT entry, and it is not
2726 defined by a dynamic object, or is not referenced by a regular
2727 object, ignore it. We do have to handle a weak defined symbol,
2728 even if no regular object refers to it, if we decided to add it
2729 to the dynamic symbol table. FIXME: Do we normally need to worry
2730 about symbols which are defined by one dynamic object and
2731 referenced by another one? */
2732 if (!h->needs_plt
2733 && h->type != STT_GNU_IFUNC
2734 && (h->def_regular
2735 || !h->def_dynamic
2736 || (!h->ref_regular
2737 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2738 {
2739 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2740 return TRUE;
2741 }
2742
2743 /* If we've already adjusted this symbol, don't do it again. This
2744 can happen via a recursive call. */
2745 if (h->dynamic_adjusted)
2746 return TRUE;
2747
2748 /* Don't look at this symbol again. Note that we must set this
2749 after checking the above conditions, because we may look at a
2750 symbol once, decide not to do anything, and then get called
2751 recursively later after REF_REGULAR is set below. */
2752 h->dynamic_adjusted = 1;
2753
2754 /* If this is a weak definition, and we know a real definition, and
2755 the real symbol is not itself defined by a regular object file,
2756 then get a good value for the real definition. We handle the
2757 real symbol first, for the convenience of the backend routine.
2758
2759 Note that there is a confusing case here. If the real definition
2760 is defined by a regular object file, we don't get the real symbol
2761 from the dynamic object, but we do get the weak symbol. If the
2762 processor backend uses a COPY reloc, then if some routine in the
2763 dynamic object changes the real symbol, we will not see that
2764 change in the corresponding weak symbol. This is the way other
2765 ELF linkers work as well, and seems to be a result of the shared
2766 library model.
2767
2768 I will clarify this issue. Most SVR4 shared libraries define the
2769 variable _timezone and define timezone as a weak synonym. The
2770 tzset call changes _timezone. If you write
2771 extern int timezone;
2772 int _timezone = 5;
2773 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2774 you might expect that, since timezone is a synonym for _timezone,
2775 the same number will print both times. However, if the processor
2776 backend uses a COPY reloc, then actually timezone will be copied
2777 into your process image, and, since you define _timezone
2778 yourself, _timezone will not. Thus timezone and _timezone will
2779 wind up at different memory locations. The tzset call will set
2780 _timezone, leaving timezone unchanged. */
2781
2782 if (h->u.weakdef != NULL)
2783 {
2784 /* If we get to this point, there is an implicit reference to
2785 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2786 h->u.weakdef->ref_regular = 1;
2787
2788 /* Ensure that the backend adjust_dynamic_symbol function sees
2789 H->U.WEAKDEF before H by recursively calling ourselves. */
2790 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2791 return FALSE;
2792 }
2793
2794 /* If a symbol has no type and no size and does not require a PLT
2795 entry, then we are probably about to do the wrong thing here: we
2796 are probably going to create a COPY reloc for an empty object.
2797 This case can arise when a shared object is built with assembly
2798 code, and the assembly code fails to set the symbol type. */
2799 if (h->size == 0
2800 && h->type == STT_NOTYPE
2801 && !h->needs_plt)
2802 (*_bfd_error_handler)
2803 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2804 h->root.root.string);
2805
2806 dynobj = elf_hash_table (eif->info)->dynobj;
2807 bed = get_elf_backend_data (dynobj);
2808
2809 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2810 {
2811 eif->failed = TRUE;
2812 return FALSE;
2813 }
2814
2815 return TRUE;
2816 }
2817
2818 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2819 DYNBSS. */
2820
2821 bfd_boolean
2822 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2823 struct elf_link_hash_entry *h,
2824 asection *dynbss)
2825 {
2826 unsigned int power_of_two;
2827 bfd_vma mask;
2828 asection *sec = h->root.u.def.section;
2829
2830 /* The section aligment of definition is the maximum alignment
2831 requirement of symbols defined in the section. Since we don't
2832 know the symbol alignment requirement, we start with the
2833 maximum alignment and check low bits of the symbol address
2834 for the minimum alignment. */
2835 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2836 mask = ((bfd_vma) 1 << power_of_two) - 1;
2837 while ((h->root.u.def.value & mask) != 0)
2838 {
2839 mask >>= 1;
2840 --power_of_two;
2841 }
2842
2843 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2844 dynbss))
2845 {
2846 /* Adjust the section alignment if needed. */
2847 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2848 power_of_two))
2849 return FALSE;
2850 }
2851
2852 /* We make sure that the symbol will be aligned properly. */
2853 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2854
2855 /* Define the symbol as being at this point in DYNBSS. */
2856 h->root.u.def.section = dynbss;
2857 h->root.u.def.value = dynbss->size;
2858
2859 /* Increment the size of DYNBSS to make room for the symbol. */
2860 dynbss->size += h->size;
2861
2862 /* No error if extern_protected_data is true. */
2863 if (h->protected_def
2864 && (!info->extern_protected_data
2865 || (info->extern_protected_data < 0
2866 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2867 info->callbacks->einfo
2868 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2869 h->root.root.string);
2870
2871 return TRUE;
2872 }
2873
2874 /* Adjust all external symbols pointing into SEC_MERGE sections
2875 to reflect the object merging within the sections. */
2876
2877 static bfd_boolean
2878 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2879 {
2880 asection *sec;
2881
2882 if ((h->root.type == bfd_link_hash_defined
2883 || h->root.type == bfd_link_hash_defweak)
2884 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2885 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2886 {
2887 bfd *output_bfd = (bfd *) data;
2888
2889 h->root.u.def.value =
2890 _bfd_merged_section_offset (output_bfd,
2891 &h->root.u.def.section,
2892 elf_section_data (sec)->sec_info,
2893 h->root.u.def.value);
2894 }
2895
2896 return TRUE;
2897 }
2898
2899 /* Returns false if the symbol referred to by H should be considered
2900 to resolve local to the current module, and true if it should be
2901 considered to bind dynamically. */
2902
2903 bfd_boolean
2904 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2905 struct bfd_link_info *info,
2906 bfd_boolean not_local_protected)
2907 {
2908 bfd_boolean binding_stays_local_p;
2909 const struct elf_backend_data *bed;
2910 struct elf_link_hash_table *hash_table;
2911
2912 if (h == NULL)
2913 return FALSE;
2914
2915 while (h->root.type == bfd_link_hash_indirect
2916 || h->root.type == bfd_link_hash_warning)
2917 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2918
2919 /* If it was forced local, then clearly it's not dynamic. */
2920 if (h->dynindx == -1)
2921 return FALSE;
2922 if (h->forced_local)
2923 return FALSE;
2924
2925 /* Identify the cases where name binding rules say that a
2926 visible symbol resolves locally. */
2927 binding_stays_local_p = (bfd_link_executable (info)
2928 || SYMBOLIC_BIND (info, h));
2929
2930 switch (ELF_ST_VISIBILITY (h->other))
2931 {
2932 case STV_INTERNAL:
2933 case STV_HIDDEN:
2934 return FALSE;
2935
2936 case STV_PROTECTED:
2937 hash_table = elf_hash_table (info);
2938 if (!is_elf_hash_table (hash_table))
2939 return FALSE;
2940
2941 bed = get_elf_backend_data (hash_table->dynobj);
2942
2943 /* Proper resolution for function pointer equality may require
2944 that these symbols perhaps be resolved dynamically, even though
2945 we should be resolving them to the current module. */
2946 if (!not_local_protected || !bed->is_function_type (h->type))
2947 binding_stays_local_p = TRUE;
2948 break;
2949
2950 default:
2951 break;
2952 }
2953
2954 /* If it isn't defined locally, then clearly it's dynamic. */
2955 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2956 return TRUE;
2957
2958 /* Otherwise, the symbol is dynamic if binding rules don't tell
2959 us that it remains local. */
2960 return !binding_stays_local_p;
2961 }
2962
2963 /* Return true if the symbol referred to by H should be considered
2964 to resolve local to the current module, and false otherwise. Differs
2965 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2966 undefined symbols. The two functions are virtually identical except
2967 for the place where forced_local and dynindx == -1 are tested. If
2968 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2969 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2970 the symbol is local only for defined symbols.
2971 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2972 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2973 treatment of undefined weak symbols. For those that do not make
2974 undefined weak symbols dynamic, both functions may return false. */
2975
2976 bfd_boolean
2977 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2978 struct bfd_link_info *info,
2979 bfd_boolean local_protected)
2980 {
2981 const struct elf_backend_data *bed;
2982 struct elf_link_hash_table *hash_table;
2983
2984 /* If it's a local sym, of course we resolve locally. */
2985 if (h == NULL)
2986 return TRUE;
2987
2988 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2989 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2990 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2991 return TRUE;
2992
2993 /* Common symbols that become definitions don't get the DEF_REGULAR
2994 flag set, so test it first, and don't bail out. */
2995 if (ELF_COMMON_DEF_P (h))
2996 /* Do nothing. */;
2997 /* If we don't have a definition in a regular file, then we can't
2998 resolve locally. The sym is either undefined or dynamic. */
2999 else if (!h->def_regular)
3000 return FALSE;
3001
3002 /* Forced local symbols resolve locally. */
3003 if (h->forced_local)
3004 return TRUE;
3005
3006 /* As do non-dynamic symbols. */
3007 if (h->dynindx == -1)
3008 return TRUE;
3009
3010 /* At this point, we know the symbol is defined and dynamic. In an
3011 executable it must resolve locally, likewise when building symbolic
3012 shared libraries. */
3013 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3014 return TRUE;
3015
3016 /* Now deal with defined dynamic symbols in shared libraries. Ones
3017 with default visibility might not resolve locally. */
3018 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3019 return FALSE;
3020
3021 hash_table = elf_hash_table (info);
3022 if (!is_elf_hash_table (hash_table))
3023 return TRUE;
3024
3025 bed = get_elf_backend_data (hash_table->dynobj);
3026
3027 /* If extern_protected_data is false, STV_PROTECTED non-function
3028 symbols are local. */
3029 if ((!info->extern_protected_data
3030 || (info->extern_protected_data < 0
3031 && !bed->extern_protected_data))
3032 && !bed->is_function_type (h->type))
3033 return TRUE;
3034
3035 /* Function pointer equality tests may require that STV_PROTECTED
3036 symbols be treated as dynamic symbols. If the address of a
3037 function not defined in an executable is set to that function's
3038 plt entry in the executable, then the address of the function in
3039 a shared library must also be the plt entry in the executable. */
3040 return local_protected;
3041 }
3042
3043 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3044 aligned. Returns the first TLS output section. */
3045
3046 struct bfd_section *
3047 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3048 {
3049 struct bfd_section *sec, *tls;
3050 unsigned int align = 0;
3051
3052 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3053 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3054 break;
3055 tls = sec;
3056
3057 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3058 if (sec->alignment_power > align)
3059 align = sec->alignment_power;
3060
3061 elf_hash_table (info)->tls_sec = tls;
3062
3063 /* Ensure the alignment of the first section is the largest alignment,
3064 so that the tls segment starts aligned. */
3065 if (tls != NULL)
3066 tls->alignment_power = align;
3067
3068 return tls;
3069 }
3070
3071 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3072 static bfd_boolean
3073 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3074 Elf_Internal_Sym *sym)
3075 {
3076 const struct elf_backend_data *bed;
3077
3078 /* Local symbols do not count, but target specific ones might. */
3079 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3080 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3081 return FALSE;
3082
3083 bed = get_elf_backend_data (abfd);
3084 /* Function symbols do not count. */
3085 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3086 return FALSE;
3087
3088 /* If the section is undefined, then so is the symbol. */
3089 if (sym->st_shndx == SHN_UNDEF)
3090 return FALSE;
3091
3092 /* If the symbol is defined in the common section, then
3093 it is a common definition and so does not count. */
3094 if (bed->common_definition (sym))
3095 return FALSE;
3096
3097 /* If the symbol is in a target specific section then we
3098 must rely upon the backend to tell us what it is. */
3099 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3100 /* FIXME - this function is not coded yet:
3101
3102 return _bfd_is_global_symbol_definition (abfd, sym);
3103
3104 Instead for now assume that the definition is not global,
3105 Even if this is wrong, at least the linker will behave
3106 in the same way that it used to do. */
3107 return FALSE;
3108
3109 return TRUE;
3110 }
3111
3112 /* Search the symbol table of the archive element of the archive ABFD
3113 whose archive map contains a mention of SYMDEF, and determine if
3114 the symbol is defined in this element. */
3115 static bfd_boolean
3116 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3117 {
3118 Elf_Internal_Shdr * hdr;
3119 size_t symcount;
3120 size_t extsymcount;
3121 size_t extsymoff;
3122 Elf_Internal_Sym *isymbuf;
3123 Elf_Internal_Sym *isym;
3124 Elf_Internal_Sym *isymend;
3125 bfd_boolean result;
3126
3127 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3128 if (abfd == NULL)
3129 return FALSE;
3130
3131 if (! bfd_check_format (abfd, bfd_object))
3132 return FALSE;
3133
3134 /* Select the appropriate symbol table. If we don't know if the
3135 object file is an IR object, give linker LTO plugin a chance to
3136 get the correct symbol table. */
3137 if (abfd->plugin_format == bfd_plugin_yes
3138 #if BFD_SUPPORTS_PLUGINS
3139 || (abfd->plugin_format == bfd_plugin_unknown
3140 && bfd_link_plugin_object_p (abfd))
3141 #endif
3142 )
3143 {
3144 /* Use the IR symbol table if the object has been claimed by
3145 plugin. */
3146 abfd = abfd->plugin_dummy_bfd;
3147 hdr = &elf_tdata (abfd)->symtab_hdr;
3148 }
3149 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3150 hdr = &elf_tdata (abfd)->symtab_hdr;
3151 else
3152 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3153
3154 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3155
3156 /* The sh_info field of the symtab header tells us where the
3157 external symbols start. We don't care about the local symbols. */
3158 if (elf_bad_symtab (abfd))
3159 {
3160 extsymcount = symcount;
3161 extsymoff = 0;
3162 }
3163 else
3164 {
3165 extsymcount = symcount - hdr->sh_info;
3166 extsymoff = hdr->sh_info;
3167 }
3168
3169 if (extsymcount == 0)
3170 return FALSE;
3171
3172 /* Read in the symbol table. */
3173 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3174 NULL, NULL, NULL);
3175 if (isymbuf == NULL)
3176 return FALSE;
3177
3178 /* Scan the symbol table looking for SYMDEF. */
3179 result = FALSE;
3180 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3181 {
3182 const char *name;
3183
3184 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3185 isym->st_name);
3186 if (name == NULL)
3187 break;
3188
3189 if (strcmp (name, symdef->name) == 0)
3190 {
3191 result = is_global_data_symbol_definition (abfd, isym);
3192 break;
3193 }
3194 }
3195
3196 free (isymbuf);
3197
3198 return result;
3199 }
3200 \f
3201 /* Add an entry to the .dynamic table. */
3202
3203 bfd_boolean
3204 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3205 bfd_vma tag,
3206 bfd_vma val)
3207 {
3208 struct elf_link_hash_table *hash_table;
3209 const struct elf_backend_data *bed;
3210 asection *s;
3211 bfd_size_type newsize;
3212 bfd_byte *newcontents;
3213 Elf_Internal_Dyn dyn;
3214
3215 hash_table = elf_hash_table (info);
3216 if (! is_elf_hash_table (hash_table))
3217 return FALSE;
3218
3219 bed = get_elf_backend_data (hash_table->dynobj);
3220 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3221 BFD_ASSERT (s != NULL);
3222
3223 newsize = s->size + bed->s->sizeof_dyn;
3224 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3225 if (newcontents == NULL)
3226 return FALSE;
3227
3228 dyn.d_tag = tag;
3229 dyn.d_un.d_val = val;
3230 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3231
3232 s->size = newsize;
3233 s->contents = newcontents;
3234
3235 return TRUE;
3236 }
3237
3238 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3239 otherwise just check whether one already exists. Returns -1 on error,
3240 1 if a DT_NEEDED tag already exists, and 0 on success. */
3241
3242 static int
3243 elf_add_dt_needed_tag (bfd *abfd,
3244 struct bfd_link_info *info,
3245 const char *soname,
3246 bfd_boolean do_it)
3247 {
3248 struct elf_link_hash_table *hash_table;
3249 size_t strindex;
3250
3251 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3252 return -1;
3253
3254 hash_table = elf_hash_table (info);
3255 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3256 if (strindex == (size_t) -1)
3257 return -1;
3258
3259 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3260 {
3261 asection *sdyn;
3262 const struct elf_backend_data *bed;
3263 bfd_byte *extdyn;
3264
3265 bed = get_elf_backend_data (hash_table->dynobj);
3266 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3267 if (sdyn != NULL)
3268 for (extdyn = sdyn->contents;
3269 extdyn < sdyn->contents + sdyn->size;
3270 extdyn += bed->s->sizeof_dyn)
3271 {
3272 Elf_Internal_Dyn dyn;
3273
3274 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3275 if (dyn.d_tag == DT_NEEDED
3276 && dyn.d_un.d_val == strindex)
3277 {
3278 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3279 return 1;
3280 }
3281 }
3282 }
3283
3284 if (do_it)
3285 {
3286 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3287 return -1;
3288
3289 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3290 return -1;
3291 }
3292 else
3293 /* We were just checking for existence of the tag. */
3294 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3295
3296 return 0;
3297 }
3298
3299 /* Return true if SONAME is on the needed list between NEEDED and STOP
3300 (or the end of list if STOP is NULL), and needed by a library that
3301 will be loaded. */
3302
3303 static bfd_boolean
3304 on_needed_list (const char *soname,
3305 struct bfd_link_needed_list *needed,
3306 struct bfd_link_needed_list *stop)
3307 {
3308 struct bfd_link_needed_list *look;
3309 for (look = needed; look != stop; look = look->next)
3310 if (strcmp (soname, look->name) == 0
3311 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3312 /* If needed by a library that itself is not directly
3313 needed, recursively check whether that library is
3314 indirectly needed. Since we add DT_NEEDED entries to
3315 the end of the list, library dependencies appear after
3316 the library. Therefore search prior to the current
3317 LOOK, preventing possible infinite recursion. */
3318 || on_needed_list (elf_dt_name (look->by), needed, look)))
3319 return TRUE;
3320
3321 return FALSE;
3322 }
3323
3324 /* Sort symbol by value, section, and size. */
3325 static int
3326 elf_sort_symbol (const void *arg1, const void *arg2)
3327 {
3328 const struct elf_link_hash_entry *h1;
3329 const struct elf_link_hash_entry *h2;
3330 bfd_signed_vma vdiff;
3331
3332 h1 = *(const struct elf_link_hash_entry **) arg1;
3333 h2 = *(const struct elf_link_hash_entry **) arg2;
3334 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3335 if (vdiff != 0)
3336 return vdiff > 0 ? 1 : -1;
3337 else
3338 {
3339 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3340 if (sdiff != 0)
3341 return sdiff > 0 ? 1 : -1;
3342 }
3343 vdiff = h1->size - h2->size;
3344 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3345 }
3346
3347 /* This function is used to adjust offsets into .dynstr for
3348 dynamic symbols. This is called via elf_link_hash_traverse. */
3349
3350 static bfd_boolean
3351 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3352 {
3353 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3354
3355 if (h->dynindx != -1)
3356 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3357 return TRUE;
3358 }
3359
3360 /* Assign string offsets in .dynstr, update all structures referencing
3361 them. */
3362
3363 static bfd_boolean
3364 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3365 {
3366 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3367 struct elf_link_local_dynamic_entry *entry;
3368 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3369 bfd *dynobj = hash_table->dynobj;
3370 asection *sdyn;
3371 bfd_size_type size;
3372 const struct elf_backend_data *bed;
3373 bfd_byte *extdyn;
3374
3375 _bfd_elf_strtab_finalize (dynstr);
3376 size = _bfd_elf_strtab_size (dynstr);
3377
3378 bed = get_elf_backend_data (dynobj);
3379 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3380 BFD_ASSERT (sdyn != NULL);
3381
3382 /* Update all .dynamic entries referencing .dynstr strings. */
3383 for (extdyn = sdyn->contents;
3384 extdyn < sdyn->contents + sdyn->size;
3385 extdyn += bed->s->sizeof_dyn)
3386 {
3387 Elf_Internal_Dyn dyn;
3388
3389 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3390 switch (dyn.d_tag)
3391 {
3392 case DT_STRSZ:
3393 dyn.d_un.d_val = size;
3394 break;
3395 case DT_NEEDED:
3396 case DT_SONAME:
3397 case DT_RPATH:
3398 case DT_RUNPATH:
3399 case DT_FILTER:
3400 case DT_AUXILIARY:
3401 case DT_AUDIT:
3402 case DT_DEPAUDIT:
3403 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3404 break;
3405 default:
3406 continue;
3407 }
3408 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3409 }
3410
3411 /* Now update local dynamic symbols. */
3412 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3413 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3414 entry->isym.st_name);
3415
3416 /* And the rest of dynamic symbols. */
3417 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3418
3419 /* Adjust version definitions. */
3420 if (elf_tdata (output_bfd)->cverdefs)
3421 {
3422 asection *s;
3423 bfd_byte *p;
3424 size_t i;
3425 Elf_Internal_Verdef def;
3426 Elf_Internal_Verdaux defaux;
3427
3428 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3429 p = s->contents;
3430 do
3431 {
3432 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3433 &def);
3434 p += sizeof (Elf_External_Verdef);
3435 if (def.vd_aux != sizeof (Elf_External_Verdef))
3436 continue;
3437 for (i = 0; i < def.vd_cnt; ++i)
3438 {
3439 _bfd_elf_swap_verdaux_in (output_bfd,
3440 (Elf_External_Verdaux *) p, &defaux);
3441 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3442 defaux.vda_name);
3443 _bfd_elf_swap_verdaux_out (output_bfd,
3444 &defaux, (Elf_External_Verdaux *) p);
3445 p += sizeof (Elf_External_Verdaux);
3446 }
3447 }
3448 while (def.vd_next);
3449 }
3450
3451 /* Adjust version references. */
3452 if (elf_tdata (output_bfd)->verref)
3453 {
3454 asection *s;
3455 bfd_byte *p;
3456 size_t i;
3457 Elf_Internal_Verneed need;
3458 Elf_Internal_Vernaux needaux;
3459
3460 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3461 p = s->contents;
3462 do
3463 {
3464 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3465 &need);
3466 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3467 _bfd_elf_swap_verneed_out (output_bfd, &need,
3468 (Elf_External_Verneed *) p);
3469 p += sizeof (Elf_External_Verneed);
3470 for (i = 0; i < need.vn_cnt; ++i)
3471 {
3472 _bfd_elf_swap_vernaux_in (output_bfd,
3473 (Elf_External_Vernaux *) p, &needaux);
3474 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3475 needaux.vna_name);
3476 _bfd_elf_swap_vernaux_out (output_bfd,
3477 &needaux,
3478 (Elf_External_Vernaux *) p);
3479 p += sizeof (Elf_External_Vernaux);
3480 }
3481 }
3482 while (need.vn_next);
3483 }
3484
3485 return TRUE;
3486 }
3487 \f
3488 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3489 The default is to only match when the INPUT and OUTPUT are exactly
3490 the same target. */
3491
3492 bfd_boolean
3493 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3494 const bfd_target *output)
3495 {
3496 return input == output;
3497 }
3498
3499 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3500 This version is used when different targets for the same architecture
3501 are virtually identical. */
3502
3503 bfd_boolean
3504 _bfd_elf_relocs_compatible (const bfd_target *input,
3505 const bfd_target *output)
3506 {
3507 const struct elf_backend_data *obed, *ibed;
3508
3509 if (input == output)
3510 return TRUE;
3511
3512 ibed = xvec_get_elf_backend_data (input);
3513 obed = xvec_get_elf_backend_data (output);
3514
3515 if (ibed->arch != obed->arch)
3516 return FALSE;
3517
3518 /* If both backends are using this function, deem them compatible. */
3519 return ibed->relocs_compatible == obed->relocs_compatible;
3520 }
3521
3522 /* Make a special call to the linker "notice" function to tell it that
3523 we are about to handle an as-needed lib, or have finished
3524 processing the lib. */
3525
3526 bfd_boolean
3527 _bfd_elf_notice_as_needed (bfd *ibfd,
3528 struct bfd_link_info *info,
3529 enum notice_asneeded_action act)
3530 {
3531 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3532 }
3533
3534 /* Check relocations an ELF object file. */
3535
3536 bfd_boolean
3537 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3538 {
3539 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3540 struct elf_link_hash_table *htab = elf_hash_table (info);
3541
3542 /* If this object is the same format as the output object, and it is
3543 not a shared library, then let the backend look through the
3544 relocs.
3545
3546 This is required to build global offset table entries and to
3547 arrange for dynamic relocs. It is not required for the
3548 particular common case of linking non PIC code, even when linking
3549 against shared libraries, but unfortunately there is no way of
3550 knowing whether an object file has been compiled PIC or not.
3551 Looking through the relocs is not particularly time consuming.
3552 The problem is that we must either (1) keep the relocs in memory,
3553 which causes the linker to require additional runtime memory or
3554 (2) read the relocs twice from the input file, which wastes time.
3555 This would be a good case for using mmap.
3556
3557 I have no idea how to handle linking PIC code into a file of a
3558 different format. It probably can't be done. */
3559 if ((abfd->flags & DYNAMIC) == 0
3560 && is_elf_hash_table (htab)
3561 && bed->check_relocs != NULL
3562 && elf_object_id (abfd) == elf_hash_table_id (htab)
3563 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3564 {
3565 asection *o;
3566
3567 for (o = abfd->sections; o != NULL; o = o->next)
3568 {
3569 Elf_Internal_Rela *internal_relocs;
3570 bfd_boolean ok;
3571
3572 /* Don't check relocations in excluded sections. */
3573 if ((o->flags & SEC_RELOC) == 0
3574 || (o->flags & SEC_EXCLUDE) != 0
3575 || o->reloc_count == 0
3576 || ((info->strip == strip_all || info->strip == strip_debugger)
3577 && (o->flags & SEC_DEBUGGING) != 0)
3578 || bfd_is_abs_section (o->output_section))
3579 continue;
3580
3581 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3582 info->keep_memory);
3583 if (internal_relocs == NULL)
3584 return FALSE;
3585
3586 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3587
3588 if (elf_section_data (o)->relocs != internal_relocs)
3589 free (internal_relocs);
3590
3591 if (! ok)
3592 return FALSE;
3593 }
3594 }
3595
3596 return TRUE;
3597 }
3598
3599 /* Add symbols from an ELF object file to the linker hash table. */
3600
3601 static bfd_boolean
3602 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3603 {
3604 Elf_Internal_Ehdr *ehdr;
3605 Elf_Internal_Shdr *hdr;
3606 size_t symcount;
3607 size_t extsymcount;
3608 size_t extsymoff;
3609 struct elf_link_hash_entry **sym_hash;
3610 bfd_boolean dynamic;
3611 Elf_External_Versym *extversym = NULL;
3612 Elf_External_Versym *ever;
3613 struct elf_link_hash_entry *weaks;
3614 struct elf_link_hash_entry **nondeflt_vers = NULL;
3615 size_t nondeflt_vers_cnt = 0;
3616 Elf_Internal_Sym *isymbuf = NULL;
3617 Elf_Internal_Sym *isym;
3618 Elf_Internal_Sym *isymend;
3619 const struct elf_backend_data *bed;
3620 bfd_boolean add_needed;
3621 struct elf_link_hash_table *htab;
3622 bfd_size_type amt;
3623 void *alloc_mark = NULL;
3624 struct bfd_hash_entry **old_table = NULL;
3625 unsigned int old_size = 0;
3626 unsigned int old_count = 0;
3627 void *old_tab = NULL;
3628 void *old_ent;
3629 struct bfd_link_hash_entry *old_undefs = NULL;
3630 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3631 void *old_strtab = NULL;
3632 size_t tabsize = 0;
3633 asection *s;
3634 bfd_boolean just_syms;
3635
3636 htab = elf_hash_table (info);
3637 bed = get_elf_backend_data (abfd);
3638
3639 if ((abfd->flags & DYNAMIC) == 0)
3640 dynamic = FALSE;
3641 else
3642 {
3643 dynamic = TRUE;
3644
3645 /* You can't use -r against a dynamic object. Also, there's no
3646 hope of using a dynamic object which does not exactly match
3647 the format of the output file. */
3648 if (bfd_link_relocatable (info)
3649 || !is_elf_hash_table (htab)
3650 || info->output_bfd->xvec != abfd->xvec)
3651 {
3652 if (bfd_link_relocatable (info))
3653 bfd_set_error (bfd_error_invalid_operation);
3654 else
3655 bfd_set_error (bfd_error_wrong_format);
3656 goto error_return;
3657 }
3658 }
3659
3660 ehdr = elf_elfheader (abfd);
3661 if (info->warn_alternate_em
3662 && bed->elf_machine_code != ehdr->e_machine
3663 && ((bed->elf_machine_alt1 != 0
3664 && ehdr->e_machine == bed->elf_machine_alt1)
3665 || (bed->elf_machine_alt2 != 0
3666 && ehdr->e_machine == bed->elf_machine_alt2)))
3667 info->callbacks->einfo
3668 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3669 ehdr->e_machine, abfd, bed->elf_machine_code);
3670
3671 /* As a GNU extension, any input sections which are named
3672 .gnu.warning.SYMBOL are treated as warning symbols for the given
3673 symbol. This differs from .gnu.warning sections, which generate
3674 warnings when they are included in an output file. */
3675 /* PR 12761: Also generate this warning when building shared libraries. */
3676 for (s = abfd->sections; s != NULL; s = s->next)
3677 {
3678 const char *name;
3679
3680 name = bfd_get_section_name (abfd, s);
3681 if (CONST_STRNEQ (name, ".gnu.warning."))
3682 {
3683 char *msg;
3684 bfd_size_type sz;
3685
3686 name += sizeof ".gnu.warning." - 1;
3687
3688 /* If this is a shared object, then look up the symbol
3689 in the hash table. If it is there, and it is already
3690 been defined, then we will not be using the entry
3691 from this shared object, so we don't need to warn.
3692 FIXME: If we see the definition in a regular object
3693 later on, we will warn, but we shouldn't. The only
3694 fix is to keep track of what warnings we are supposed
3695 to emit, and then handle them all at the end of the
3696 link. */
3697 if (dynamic)
3698 {
3699 struct elf_link_hash_entry *h;
3700
3701 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3702
3703 /* FIXME: What about bfd_link_hash_common? */
3704 if (h != NULL
3705 && (h->root.type == bfd_link_hash_defined
3706 || h->root.type == bfd_link_hash_defweak))
3707 continue;
3708 }
3709
3710 sz = s->size;
3711 msg = (char *) bfd_alloc (abfd, sz + 1);
3712 if (msg == NULL)
3713 goto error_return;
3714
3715 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3716 goto error_return;
3717
3718 msg[sz] = '\0';
3719
3720 if (! (_bfd_generic_link_add_one_symbol
3721 (info, abfd, name, BSF_WARNING, s, 0, msg,
3722 FALSE, bed->collect, NULL)))
3723 goto error_return;
3724
3725 if (bfd_link_executable (info))
3726 {
3727 /* Clobber the section size so that the warning does
3728 not get copied into the output file. */
3729 s->size = 0;
3730
3731 /* Also set SEC_EXCLUDE, so that symbols defined in
3732 the warning section don't get copied to the output. */
3733 s->flags |= SEC_EXCLUDE;
3734 }
3735 }
3736 }
3737
3738 just_syms = ((s = abfd->sections) != NULL
3739 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3740
3741 add_needed = TRUE;
3742 if (! dynamic)
3743 {
3744 /* If we are creating a shared library, create all the dynamic
3745 sections immediately. We need to attach them to something,
3746 so we attach them to this BFD, provided it is the right
3747 format and is not from ld --just-symbols. Always create the
3748 dynamic sections for -E/--dynamic-list. FIXME: If there
3749 are no input BFD's of the same format as the output, we can't
3750 make a shared library. */
3751 if (!just_syms
3752 && (bfd_link_pic (info)
3753 || (!bfd_link_relocatable (info)
3754 && (info->export_dynamic || info->dynamic)))
3755 && is_elf_hash_table (htab)
3756 && info->output_bfd->xvec == abfd->xvec
3757 && !htab->dynamic_sections_created)
3758 {
3759 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3760 goto error_return;
3761 }
3762 }
3763 else if (!is_elf_hash_table (htab))
3764 goto error_return;
3765 else
3766 {
3767 const char *soname = NULL;
3768 char *audit = NULL;
3769 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3770 int ret;
3771
3772 /* ld --just-symbols and dynamic objects don't mix very well.
3773 ld shouldn't allow it. */
3774 if (just_syms)
3775 abort ();
3776
3777 /* If this dynamic lib was specified on the command line with
3778 --as-needed in effect, then we don't want to add a DT_NEEDED
3779 tag unless the lib is actually used. Similary for libs brought
3780 in by another lib's DT_NEEDED. When --no-add-needed is used
3781 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3782 any dynamic library in DT_NEEDED tags in the dynamic lib at
3783 all. */
3784 add_needed = (elf_dyn_lib_class (abfd)
3785 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3786 | DYN_NO_NEEDED)) == 0;
3787
3788 s = bfd_get_section_by_name (abfd, ".dynamic");
3789 if (s != NULL)
3790 {
3791 bfd_byte *dynbuf;
3792 bfd_byte *extdyn;
3793 unsigned int elfsec;
3794 unsigned long shlink;
3795
3796 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3797 {
3798 error_free_dyn:
3799 free (dynbuf);
3800 goto error_return;
3801 }
3802
3803 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3804 if (elfsec == SHN_BAD)
3805 goto error_free_dyn;
3806 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3807
3808 for (extdyn = dynbuf;
3809 extdyn < dynbuf + s->size;
3810 extdyn += bed->s->sizeof_dyn)
3811 {
3812 Elf_Internal_Dyn dyn;
3813
3814 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3815 if (dyn.d_tag == DT_SONAME)
3816 {
3817 unsigned int tagv = dyn.d_un.d_val;
3818 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3819 if (soname == NULL)
3820 goto error_free_dyn;
3821 }
3822 if (dyn.d_tag == DT_NEEDED)
3823 {
3824 struct bfd_link_needed_list *n, **pn;
3825 char *fnm, *anm;
3826 unsigned int tagv = dyn.d_un.d_val;
3827
3828 amt = sizeof (struct bfd_link_needed_list);
3829 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3830 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3831 if (n == NULL || fnm == NULL)
3832 goto error_free_dyn;
3833 amt = strlen (fnm) + 1;
3834 anm = (char *) bfd_alloc (abfd, amt);
3835 if (anm == NULL)
3836 goto error_free_dyn;
3837 memcpy (anm, fnm, amt);
3838 n->name = anm;
3839 n->by = abfd;
3840 n->next = NULL;
3841 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3842 ;
3843 *pn = n;
3844 }
3845 if (dyn.d_tag == DT_RUNPATH)
3846 {
3847 struct bfd_link_needed_list *n, **pn;
3848 char *fnm, *anm;
3849 unsigned int tagv = dyn.d_un.d_val;
3850
3851 amt = sizeof (struct bfd_link_needed_list);
3852 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3853 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3854 if (n == NULL || fnm == NULL)
3855 goto error_free_dyn;
3856 amt = strlen (fnm) + 1;
3857 anm = (char *) bfd_alloc (abfd, amt);
3858 if (anm == NULL)
3859 goto error_free_dyn;
3860 memcpy (anm, fnm, amt);
3861 n->name = anm;
3862 n->by = abfd;
3863 n->next = NULL;
3864 for (pn = & runpath;
3865 *pn != NULL;
3866 pn = &(*pn)->next)
3867 ;
3868 *pn = n;
3869 }
3870 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3871 if (!runpath && dyn.d_tag == DT_RPATH)
3872 {
3873 struct bfd_link_needed_list *n, **pn;
3874 char *fnm, *anm;
3875 unsigned int tagv = dyn.d_un.d_val;
3876
3877 amt = sizeof (struct bfd_link_needed_list);
3878 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3879 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3880 if (n == NULL || fnm == NULL)
3881 goto error_free_dyn;
3882 amt = strlen (fnm) + 1;
3883 anm = (char *) bfd_alloc (abfd, amt);
3884 if (anm == NULL)
3885 goto error_free_dyn;
3886 memcpy (anm, fnm, amt);
3887 n->name = anm;
3888 n->by = abfd;
3889 n->next = NULL;
3890 for (pn = & rpath;
3891 *pn != NULL;
3892 pn = &(*pn)->next)
3893 ;
3894 *pn = n;
3895 }
3896 if (dyn.d_tag == DT_AUDIT)
3897 {
3898 unsigned int tagv = dyn.d_un.d_val;
3899 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3900 }
3901 }
3902
3903 free (dynbuf);
3904 }
3905
3906 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3907 frees all more recently bfd_alloc'd blocks as well. */
3908 if (runpath)
3909 rpath = runpath;
3910
3911 if (rpath)
3912 {
3913 struct bfd_link_needed_list **pn;
3914 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3915 ;
3916 *pn = rpath;
3917 }
3918
3919 /* We do not want to include any of the sections in a dynamic
3920 object in the output file. We hack by simply clobbering the
3921 list of sections in the BFD. This could be handled more
3922 cleanly by, say, a new section flag; the existing
3923 SEC_NEVER_LOAD flag is not the one we want, because that one
3924 still implies that the section takes up space in the output
3925 file. */
3926 bfd_section_list_clear (abfd);
3927
3928 /* Find the name to use in a DT_NEEDED entry that refers to this
3929 object. If the object has a DT_SONAME entry, we use it.
3930 Otherwise, if the generic linker stuck something in
3931 elf_dt_name, we use that. Otherwise, we just use the file
3932 name. */
3933 if (soname == NULL || *soname == '\0')
3934 {
3935 soname = elf_dt_name (abfd);
3936 if (soname == NULL || *soname == '\0')
3937 soname = bfd_get_filename (abfd);
3938 }
3939
3940 /* Save the SONAME because sometimes the linker emulation code
3941 will need to know it. */
3942 elf_dt_name (abfd) = soname;
3943
3944 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3945 if (ret < 0)
3946 goto error_return;
3947
3948 /* If we have already included this dynamic object in the
3949 link, just ignore it. There is no reason to include a
3950 particular dynamic object more than once. */
3951 if (ret > 0)
3952 return TRUE;
3953
3954 /* Save the DT_AUDIT entry for the linker emulation code. */
3955 elf_dt_audit (abfd) = audit;
3956 }
3957
3958 /* If this is a dynamic object, we always link against the .dynsym
3959 symbol table, not the .symtab symbol table. The dynamic linker
3960 will only see the .dynsym symbol table, so there is no reason to
3961 look at .symtab for a dynamic object. */
3962
3963 if (! dynamic || elf_dynsymtab (abfd) == 0)
3964 hdr = &elf_tdata (abfd)->symtab_hdr;
3965 else
3966 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3967
3968 symcount = hdr->sh_size / bed->s->sizeof_sym;
3969
3970 /* The sh_info field of the symtab header tells us where the
3971 external symbols start. We don't care about the local symbols at
3972 this point. */
3973 if (elf_bad_symtab (abfd))
3974 {
3975 extsymcount = symcount;
3976 extsymoff = 0;
3977 }
3978 else
3979 {
3980 extsymcount = symcount - hdr->sh_info;
3981 extsymoff = hdr->sh_info;
3982 }
3983
3984 sym_hash = elf_sym_hashes (abfd);
3985 if (extsymcount != 0)
3986 {
3987 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3988 NULL, NULL, NULL);
3989 if (isymbuf == NULL)
3990 goto error_return;
3991
3992 if (sym_hash == NULL)
3993 {
3994 /* We store a pointer to the hash table entry for each
3995 external symbol. */
3996 amt = extsymcount;
3997 amt *= sizeof (struct elf_link_hash_entry *);
3998 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3999 if (sym_hash == NULL)
4000 goto error_free_sym;
4001 elf_sym_hashes (abfd) = sym_hash;
4002 }
4003 }
4004
4005 if (dynamic)
4006 {
4007 /* Read in any version definitions. */
4008 if (!_bfd_elf_slurp_version_tables (abfd,
4009 info->default_imported_symver))
4010 goto error_free_sym;
4011
4012 /* Read in the symbol versions, but don't bother to convert them
4013 to internal format. */
4014 if (elf_dynversym (abfd) != 0)
4015 {
4016 Elf_Internal_Shdr *versymhdr;
4017
4018 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4019 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4020 if (extversym == NULL)
4021 goto error_free_sym;
4022 amt = versymhdr->sh_size;
4023 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4024 || bfd_bread (extversym, amt, abfd) != amt)
4025 goto error_free_vers;
4026 }
4027 }
4028
4029 /* If we are loading an as-needed shared lib, save the symbol table
4030 state before we start adding symbols. If the lib turns out
4031 to be unneeded, restore the state. */
4032 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4033 {
4034 unsigned int i;
4035 size_t entsize;
4036
4037 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4038 {
4039 struct bfd_hash_entry *p;
4040 struct elf_link_hash_entry *h;
4041
4042 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4043 {
4044 h = (struct elf_link_hash_entry *) p;
4045 entsize += htab->root.table.entsize;
4046 if (h->root.type == bfd_link_hash_warning)
4047 entsize += htab->root.table.entsize;
4048 }
4049 }
4050
4051 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4052 old_tab = bfd_malloc (tabsize + entsize);
4053 if (old_tab == NULL)
4054 goto error_free_vers;
4055
4056 /* Remember the current objalloc pointer, so that all mem for
4057 symbols added can later be reclaimed. */
4058 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4059 if (alloc_mark == NULL)
4060 goto error_free_vers;
4061
4062 /* Make a special call to the linker "notice" function to
4063 tell it that we are about to handle an as-needed lib. */
4064 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4065 goto error_free_vers;
4066
4067 /* Clone the symbol table. Remember some pointers into the
4068 symbol table, and dynamic symbol count. */
4069 old_ent = (char *) old_tab + tabsize;
4070 memcpy (old_tab, htab->root.table.table, tabsize);
4071 old_undefs = htab->root.undefs;
4072 old_undefs_tail = htab->root.undefs_tail;
4073 old_table = htab->root.table.table;
4074 old_size = htab->root.table.size;
4075 old_count = htab->root.table.count;
4076 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4077 if (old_strtab == NULL)
4078 goto error_free_vers;
4079
4080 for (i = 0; i < htab->root.table.size; i++)
4081 {
4082 struct bfd_hash_entry *p;
4083 struct elf_link_hash_entry *h;
4084
4085 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4086 {
4087 memcpy (old_ent, p, htab->root.table.entsize);
4088 old_ent = (char *) old_ent + htab->root.table.entsize;
4089 h = (struct elf_link_hash_entry *) p;
4090 if (h->root.type == bfd_link_hash_warning)
4091 {
4092 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4093 old_ent = (char *) old_ent + htab->root.table.entsize;
4094 }
4095 }
4096 }
4097 }
4098
4099 weaks = NULL;
4100 ever = extversym != NULL ? extversym + extsymoff : NULL;
4101 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4102 isym < isymend;
4103 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4104 {
4105 int bind;
4106 bfd_vma value;
4107 asection *sec, *new_sec;
4108 flagword flags;
4109 const char *name;
4110 struct elf_link_hash_entry *h;
4111 struct elf_link_hash_entry *hi;
4112 bfd_boolean definition;
4113 bfd_boolean size_change_ok;
4114 bfd_boolean type_change_ok;
4115 bfd_boolean new_weakdef;
4116 bfd_boolean new_weak;
4117 bfd_boolean old_weak;
4118 bfd_boolean override;
4119 bfd_boolean common;
4120 bfd_boolean discarded;
4121 unsigned int old_alignment;
4122 bfd *old_bfd;
4123 bfd_boolean matched;
4124
4125 override = FALSE;
4126
4127 flags = BSF_NO_FLAGS;
4128 sec = NULL;
4129 value = isym->st_value;
4130 common = bed->common_definition (isym);
4131 discarded = FALSE;
4132
4133 bind = ELF_ST_BIND (isym->st_info);
4134 switch (bind)
4135 {
4136 case STB_LOCAL:
4137 /* This should be impossible, since ELF requires that all
4138 global symbols follow all local symbols, and that sh_info
4139 point to the first global symbol. Unfortunately, Irix 5
4140 screws this up. */
4141 continue;
4142
4143 case STB_GLOBAL:
4144 if (isym->st_shndx != SHN_UNDEF && !common)
4145 flags = BSF_GLOBAL;
4146 break;
4147
4148 case STB_WEAK:
4149 flags = BSF_WEAK;
4150 break;
4151
4152 case STB_GNU_UNIQUE:
4153 flags = BSF_GNU_UNIQUE;
4154 break;
4155
4156 default:
4157 /* Leave it up to the processor backend. */
4158 break;
4159 }
4160
4161 if (isym->st_shndx == SHN_UNDEF)
4162 sec = bfd_und_section_ptr;
4163 else if (isym->st_shndx == SHN_ABS)
4164 sec = bfd_abs_section_ptr;
4165 else if (isym->st_shndx == SHN_COMMON)
4166 {
4167 sec = bfd_com_section_ptr;
4168 /* What ELF calls the size we call the value. What ELF
4169 calls the value we call the alignment. */
4170 value = isym->st_size;
4171 }
4172 else
4173 {
4174 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4175 if (sec == NULL)
4176 sec = bfd_abs_section_ptr;
4177 else if (discarded_section (sec))
4178 {
4179 /* Symbols from discarded section are undefined. We keep
4180 its visibility. */
4181 sec = bfd_und_section_ptr;
4182 discarded = TRUE;
4183 isym->st_shndx = SHN_UNDEF;
4184 }
4185 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4186 value -= sec->vma;
4187 }
4188
4189 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4190 isym->st_name);
4191 if (name == NULL)
4192 goto error_free_vers;
4193
4194 if (isym->st_shndx == SHN_COMMON
4195 && (abfd->flags & BFD_PLUGIN) != 0)
4196 {
4197 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4198
4199 if (xc == NULL)
4200 {
4201 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4202 | SEC_EXCLUDE);
4203 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4204 if (xc == NULL)
4205 goto error_free_vers;
4206 }
4207 sec = xc;
4208 }
4209 else if (isym->st_shndx == SHN_COMMON
4210 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4211 && !bfd_link_relocatable (info))
4212 {
4213 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4214
4215 if (tcomm == NULL)
4216 {
4217 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4218 | SEC_LINKER_CREATED);
4219 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4220 if (tcomm == NULL)
4221 goto error_free_vers;
4222 }
4223 sec = tcomm;
4224 }
4225 else if (bed->elf_add_symbol_hook)
4226 {
4227 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4228 &sec, &value))
4229 goto error_free_vers;
4230
4231 /* The hook function sets the name to NULL if this symbol
4232 should be skipped for some reason. */
4233 if (name == NULL)
4234 continue;
4235 }
4236
4237 /* Sanity check that all possibilities were handled. */
4238 if (sec == NULL)
4239 {
4240 bfd_set_error (bfd_error_bad_value);
4241 goto error_free_vers;
4242 }
4243
4244 /* Silently discard TLS symbols from --just-syms. There's
4245 no way to combine a static TLS block with a new TLS block
4246 for this executable. */
4247 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4248 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4249 continue;
4250
4251 if (bfd_is_und_section (sec)
4252 || bfd_is_com_section (sec))
4253 definition = FALSE;
4254 else
4255 definition = TRUE;
4256
4257 size_change_ok = FALSE;
4258 type_change_ok = bed->type_change_ok;
4259 old_weak = FALSE;
4260 matched = FALSE;
4261 old_alignment = 0;
4262 old_bfd = NULL;
4263 new_sec = sec;
4264
4265 if (is_elf_hash_table (htab))
4266 {
4267 Elf_Internal_Versym iver;
4268 unsigned int vernum = 0;
4269 bfd_boolean skip;
4270
4271 if (ever == NULL)
4272 {
4273 if (info->default_imported_symver)
4274 /* Use the default symbol version created earlier. */
4275 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4276 else
4277 iver.vs_vers = 0;
4278 }
4279 else
4280 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4281
4282 vernum = iver.vs_vers & VERSYM_VERSION;
4283
4284 /* If this is a hidden symbol, or if it is not version
4285 1, we append the version name to the symbol name.
4286 However, we do not modify a non-hidden absolute symbol
4287 if it is not a function, because it might be the version
4288 symbol itself. FIXME: What if it isn't? */
4289 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4290 || (vernum > 1
4291 && (!bfd_is_abs_section (sec)
4292 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4293 {
4294 const char *verstr;
4295 size_t namelen, verlen, newlen;
4296 char *newname, *p;
4297
4298 if (isym->st_shndx != SHN_UNDEF)
4299 {
4300 if (vernum > elf_tdata (abfd)->cverdefs)
4301 verstr = NULL;
4302 else if (vernum > 1)
4303 verstr =
4304 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4305 else
4306 verstr = "";
4307
4308 if (verstr == NULL)
4309 {
4310 (*_bfd_error_handler)
4311 (_("%B: %s: invalid version %u (max %d)"),
4312 abfd, name, vernum,
4313 elf_tdata (abfd)->cverdefs);
4314 bfd_set_error (bfd_error_bad_value);
4315 goto error_free_vers;
4316 }
4317 }
4318 else
4319 {
4320 /* We cannot simply test for the number of
4321 entries in the VERNEED section since the
4322 numbers for the needed versions do not start
4323 at 0. */
4324 Elf_Internal_Verneed *t;
4325
4326 verstr = NULL;
4327 for (t = elf_tdata (abfd)->verref;
4328 t != NULL;
4329 t = t->vn_nextref)
4330 {
4331 Elf_Internal_Vernaux *a;
4332
4333 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4334 {
4335 if (a->vna_other == vernum)
4336 {
4337 verstr = a->vna_nodename;
4338 break;
4339 }
4340 }
4341 if (a != NULL)
4342 break;
4343 }
4344 if (verstr == NULL)
4345 {
4346 (*_bfd_error_handler)
4347 (_("%B: %s: invalid needed version %d"),
4348 abfd, name, vernum);
4349 bfd_set_error (bfd_error_bad_value);
4350 goto error_free_vers;
4351 }
4352 }
4353
4354 namelen = strlen (name);
4355 verlen = strlen (verstr);
4356 newlen = namelen + verlen + 2;
4357 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4358 && isym->st_shndx != SHN_UNDEF)
4359 ++newlen;
4360
4361 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4362 if (newname == NULL)
4363 goto error_free_vers;
4364 memcpy (newname, name, namelen);
4365 p = newname + namelen;
4366 *p++ = ELF_VER_CHR;
4367 /* If this is a defined non-hidden version symbol,
4368 we add another @ to the name. This indicates the
4369 default version of the symbol. */
4370 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4371 && isym->st_shndx != SHN_UNDEF)
4372 *p++ = ELF_VER_CHR;
4373 memcpy (p, verstr, verlen + 1);
4374
4375 name = newname;
4376 }
4377
4378 /* If this symbol has default visibility and the user has
4379 requested we not re-export it, then mark it as hidden. */
4380 if (!bfd_is_und_section (sec)
4381 && !dynamic
4382 && abfd->no_export
4383 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4384 isym->st_other = (STV_HIDDEN
4385 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4386
4387 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4388 sym_hash, &old_bfd, &old_weak,
4389 &old_alignment, &skip, &override,
4390 &type_change_ok, &size_change_ok,
4391 &matched))
4392 goto error_free_vers;
4393
4394 if (skip)
4395 continue;
4396
4397 /* Override a definition only if the new symbol matches the
4398 existing one. */
4399 if (override && matched)
4400 definition = FALSE;
4401
4402 h = *sym_hash;
4403 while (h->root.type == bfd_link_hash_indirect
4404 || h->root.type == bfd_link_hash_warning)
4405 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4406
4407 if (elf_tdata (abfd)->verdef != NULL
4408 && vernum > 1
4409 && definition)
4410 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4411 }
4412
4413 if (! (_bfd_generic_link_add_one_symbol
4414 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4415 (struct bfd_link_hash_entry **) sym_hash)))
4416 goto error_free_vers;
4417
4418 if ((flags & BSF_GNU_UNIQUE)
4419 && (abfd->flags & DYNAMIC) == 0
4420 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4421 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4422
4423 h = *sym_hash;
4424 /* We need to make sure that indirect symbol dynamic flags are
4425 updated. */
4426 hi = h;
4427 while (h->root.type == bfd_link_hash_indirect
4428 || h->root.type == bfd_link_hash_warning)
4429 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4430
4431 /* Setting the index to -3 tells elf_link_output_extsym that
4432 this symbol is defined in a discarded section. */
4433 if (discarded)
4434 h->indx = -3;
4435
4436 *sym_hash = h;
4437
4438 new_weak = (flags & BSF_WEAK) != 0;
4439 new_weakdef = FALSE;
4440 if (dynamic
4441 && definition
4442 && new_weak
4443 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4444 && is_elf_hash_table (htab)
4445 && h->u.weakdef == NULL)
4446 {
4447 /* Keep a list of all weak defined non function symbols from
4448 a dynamic object, using the weakdef field. Later in this
4449 function we will set the weakdef field to the correct
4450 value. We only put non-function symbols from dynamic
4451 objects on this list, because that happens to be the only
4452 time we need to know the normal symbol corresponding to a
4453 weak symbol, and the information is time consuming to
4454 figure out. If the weakdef field is not already NULL,
4455 then this symbol was already defined by some previous
4456 dynamic object, and we will be using that previous
4457 definition anyhow. */
4458
4459 h->u.weakdef = weaks;
4460 weaks = h;
4461 new_weakdef = TRUE;
4462 }
4463
4464 /* Set the alignment of a common symbol. */
4465 if ((common || bfd_is_com_section (sec))
4466 && h->root.type == bfd_link_hash_common)
4467 {
4468 unsigned int align;
4469
4470 if (common)
4471 align = bfd_log2 (isym->st_value);
4472 else
4473 {
4474 /* The new symbol is a common symbol in a shared object.
4475 We need to get the alignment from the section. */
4476 align = new_sec->alignment_power;
4477 }
4478 if (align > old_alignment)
4479 h->root.u.c.p->alignment_power = align;
4480 else
4481 h->root.u.c.p->alignment_power = old_alignment;
4482 }
4483
4484 if (is_elf_hash_table (htab))
4485 {
4486 /* Set a flag in the hash table entry indicating the type of
4487 reference or definition we just found. A dynamic symbol
4488 is one which is referenced or defined by both a regular
4489 object and a shared object. */
4490 bfd_boolean dynsym = FALSE;
4491
4492 /* Plugin symbols aren't normal. Don't set def_regular or
4493 ref_regular for them, or make them dynamic. */
4494 if ((abfd->flags & BFD_PLUGIN) != 0)
4495 ;
4496 else if (! dynamic)
4497 {
4498 if (! definition)
4499 {
4500 h->ref_regular = 1;
4501 if (bind != STB_WEAK)
4502 h->ref_regular_nonweak = 1;
4503 }
4504 else
4505 {
4506 h->def_regular = 1;
4507 if (h->def_dynamic)
4508 {
4509 h->def_dynamic = 0;
4510 h->ref_dynamic = 1;
4511 }
4512 }
4513
4514 /* If the indirect symbol has been forced local, don't
4515 make the real symbol dynamic. */
4516 if ((h == hi || !hi->forced_local)
4517 && (bfd_link_dll (info)
4518 || h->def_dynamic
4519 || h->ref_dynamic))
4520 dynsym = TRUE;
4521 }
4522 else
4523 {
4524 if (! definition)
4525 {
4526 h->ref_dynamic = 1;
4527 hi->ref_dynamic = 1;
4528 }
4529 else
4530 {
4531 h->def_dynamic = 1;
4532 hi->def_dynamic = 1;
4533 }
4534
4535 /* If the indirect symbol has been forced local, don't
4536 make the real symbol dynamic. */
4537 if ((h == hi || !hi->forced_local)
4538 && (h->def_regular
4539 || h->ref_regular
4540 || (h->u.weakdef != NULL
4541 && ! new_weakdef
4542 && h->u.weakdef->dynindx != -1)))
4543 dynsym = TRUE;
4544 }
4545
4546 /* Check to see if we need to add an indirect symbol for
4547 the default name. */
4548 if (definition
4549 || (!override && h->root.type == bfd_link_hash_common))
4550 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4551 sec, value, &old_bfd, &dynsym))
4552 goto error_free_vers;
4553
4554 /* Check the alignment when a common symbol is involved. This
4555 can change when a common symbol is overridden by a normal
4556 definition or a common symbol is ignored due to the old
4557 normal definition. We need to make sure the maximum
4558 alignment is maintained. */
4559 if ((old_alignment || common)
4560 && h->root.type != bfd_link_hash_common)
4561 {
4562 unsigned int common_align;
4563 unsigned int normal_align;
4564 unsigned int symbol_align;
4565 bfd *normal_bfd;
4566 bfd *common_bfd;
4567
4568 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4569 || h->root.type == bfd_link_hash_defweak);
4570
4571 symbol_align = ffs (h->root.u.def.value) - 1;
4572 if (h->root.u.def.section->owner != NULL
4573 && (h->root.u.def.section->owner->flags
4574 & (DYNAMIC | BFD_PLUGIN)) == 0)
4575 {
4576 normal_align = h->root.u.def.section->alignment_power;
4577 if (normal_align > symbol_align)
4578 normal_align = symbol_align;
4579 }
4580 else
4581 normal_align = symbol_align;
4582
4583 if (old_alignment)
4584 {
4585 common_align = old_alignment;
4586 common_bfd = old_bfd;
4587 normal_bfd = abfd;
4588 }
4589 else
4590 {
4591 common_align = bfd_log2 (isym->st_value);
4592 common_bfd = abfd;
4593 normal_bfd = old_bfd;
4594 }
4595
4596 if (normal_align < common_align)
4597 {
4598 /* PR binutils/2735 */
4599 if (normal_bfd == NULL)
4600 (*_bfd_error_handler)
4601 (_("Warning: alignment %u of common symbol `%s' in %B is"
4602 " greater than the alignment (%u) of its section %A"),
4603 common_bfd, h->root.u.def.section,
4604 1 << common_align, name, 1 << normal_align);
4605 else
4606 (*_bfd_error_handler)
4607 (_("Warning: alignment %u of symbol `%s' in %B"
4608 " is smaller than %u in %B"),
4609 normal_bfd, common_bfd,
4610 1 << normal_align, name, 1 << common_align);
4611 }
4612 }
4613
4614 /* Remember the symbol size if it isn't undefined. */
4615 if (isym->st_size != 0
4616 && isym->st_shndx != SHN_UNDEF
4617 && (definition || h->size == 0))
4618 {
4619 if (h->size != 0
4620 && h->size != isym->st_size
4621 && ! size_change_ok)
4622 (*_bfd_error_handler)
4623 (_("Warning: size of symbol `%s' changed"
4624 " from %lu in %B to %lu in %B"),
4625 old_bfd, abfd,
4626 name, (unsigned long) h->size,
4627 (unsigned long) isym->st_size);
4628
4629 h->size = isym->st_size;
4630 }
4631
4632 /* If this is a common symbol, then we always want H->SIZE
4633 to be the size of the common symbol. The code just above
4634 won't fix the size if a common symbol becomes larger. We
4635 don't warn about a size change here, because that is
4636 covered by --warn-common. Allow changes between different
4637 function types. */
4638 if (h->root.type == bfd_link_hash_common)
4639 h->size = h->root.u.c.size;
4640
4641 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4642 && ((definition && !new_weak)
4643 || (old_weak && h->root.type == bfd_link_hash_common)
4644 || h->type == STT_NOTYPE))
4645 {
4646 unsigned int type = ELF_ST_TYPE (isym->st_info);
4647
4648 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4649 symbol. */
4650 if (type == STT_GNU_IFUNC
4651 && (abfd->flags & DYNAMIC) != 0)
4652 type = STT_FUNC;
4653
4654 if (h->type != type)
4655 {
4656 if (h->type != STT_NOTYPE && ! type_change_ok)
4657 (*_bfd_error_handler)
4658 (_("Warning: type of symbol `%s' changed"
4659 " from %d to %d in %B"),
4660 abfd, name, h->type, type);
4661
4662 h->type = type;
4663 }
4664 }
4665
4666 /* Merge st_other field. */
4667 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4668
4669 /* We don't want to make debug symbol dynamic. */
4670 if (definition
4671 && (sec->flags & SEC_DEBUGGING)
4672 && !bfd_link_relocatable (info))
4673 dynsym = FALSE;
4674
4675 /* Nor should we make plugin symbols dynamic. */
4676 if ((abfd->flags & BFD_PLUGIN) != 0)
4677 dynsym = FALSE;
4678
4679 if (definition)
4680 {
4681 h->target_internal = isym->st_target_internal;
4682 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4683 }
4684
4685 if (definition && !dynamic)
4686 {
4687 char *p = strchr (name, ELF_VER_CHR);
4688 if (p != NULL && p[1] != ELF_VER_CHR)
4689 {
4690 /* Queue non-default versions so that .symver x, x@FOO
4691 aliases can be checked. */
4692 if (!nondeflt_vers)
4693 {
4694 amt = ((isymend - isym + 1)
4695 * sizeof (struct elf_link_hash_entry *));
4696 nondeflt_vers
4697 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4698 if (!nondeflt_vers)
4699 goto error_free_vers;
4700 }
4701 nondeflt_vers[nondeflt_vers_cnt++] = h;
4702 }
4703 }
4704
4705 if (dynsym && h->dynindx == -1)
4706 {
4707 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4708 goto error_free_vers;
4709 if (h->u.weakdef != NULL
4710 && ! new_weakdef
4711 && h->u.weakdef->dynindx == -1)
4712 {
4713 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4714 goto error_free_vers;
4715 }
4716 }
4717 else if (h->dynindx != -1)
4718 /* If the symbol already has a dynamic index, but
4719 visibility says it should not be visible, turn it into
4720 a local symbol. */
4721 switch (ELF_ST_VISIBILITY (h->other))
4722 {
4723 case STV_INTERNAL:
4724 case STV_HIDDEN:
4725 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4726 dynsym = FALSE;
4727 break;
4728 }
4729
4730 /* Don't add DT_NEEDED for references from the dummy bfd nor
4731 for unmatched symbol. */
4732 if (!add_needed
4733 && matched
4734 && definition
4735 && ((dynsym
4736 && h->ref_regular_nonweak
4737 && (old_bfd == NULL
4738 || (old_bfd->flags & BFD_PLUGIN) == 0))
4739 || (h->ref_dynamic_nonweak
4740 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4741 && !on_needed_list (elf_dt_name (abfd),
4742 htab->needed, NULL))))
4743 {
4744 int ret;
4745 const char *soname = elf_dt_name (abfd);
4746
4747 info->callbacks->minfo ("%!", soname, old_bfd,
4748 h->root.root.string);
4749
4750 /* A symbol from a library loaded via DT_NEEDED of some
4751 other library is referenced by a regular object.
4752 Add a DT_NEEDED entry for it. Issue an error if
4753 --no-add-needed is used and the reference was not
4754 a weak one. */
4755 if (old_bfd != NULL
4756 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4757 {
4758 (*_bfd_error_handler)
4759 (_("%B: undefined reference to symbol '%s'"),
4760 old_bfd, name);
4761 bfd_set_error (bfd_error_missing_dso);
4762 goto error_free_vers;
4763 }
4764
4765 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4766 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4767
4768 add_needed = TRUE;
4769 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4770 if (ret < 0)
4771 goto error_free_vers;
4772
4773 BFD_ASSERT (ret == 0);
4774 }
4775 }
4776 }
4777
4778 if (extversym != NULL)
4779 {
4780 free (extversym);
4781 extversym = NULL;
4782 }
4783
4784 if (isymbuf != NULL)
4785 {
4786 free (isymbuf);
4787 isymbuf = NULL;
4788 }
4789
4790 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4791 {
4792 unsigned int i;
4793
4794 /* Restore the symbol table. */
4795 old_ent = (char *) old_tab + tabsize;
4796 memset (elf_sym_hashes (abfd), 0,
4797 extsymcount * sizeof (struct elf_link_hash_entry *));
4798 htab->root.table.table = old_table;
4799 htab->root.table.size = old_size;
4800 htab->root.table.count = old_count;
4801 memcpy (htab->root.table.table, old_tab, tabsize);
4802 htab->root.undefs = old_undefs;
4803 htab->root.undefs_tail = old_undefs_tail;
4804 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4805 free (old_strtab);
4806 old_strtab = NULL;
4807 for (i = 0; i < htab->root.table.size; i++)
4808 {
4809 struct bfd_hash_entry *p;
4810 struct elf_link_hash_entry *h;
4811 bfd_size_type size;
4812 unsigned int alignment_power;
4813
4814 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4815 {
4816 h = (struct elf_link_hash_entry *) p;
4817 if (h->root.type == bfd_link_hash_warning)
4818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4819
4820 /* Preserve the maximum alignment and size for common
4821 symbols even if this dynamic lib isn't on DT_NEEDED
4822 since it can still be loaded at run time by another
4823 dynamic lib. */
4824 if (h->root.type == bfd_link_hash_common)
4825 {
4826 size = h->root.u.c.size;
4827 alignment_power = h->root.u.c.p->alignment_power;
4828 }
4829 else
4830 {
4831 size = 0;
4832 alignment_power = 0;
4833 }
4834 memcpy (p, old_ent, htab->root.table.entsize);
4835 old_ent = (char *) old_ent + htab->root.table.entsize;
4836 h = (struct elf_link_hash_entry *) p;
4837 if (h->root.type == bfd_link_hash_warning)
4838 {
4839 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4840 old_ent = (char *) old_ent + htab->root.table.entsize;
4841 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4842 }
4843 if (h->root.type == bfd_link_hash_common)
4844 {
4845 if (size > h->root.u.c.size)
4846 h->root.u.c.size = size;
4847 if (alignment_power > h->root.u.c.p->alignment_power)
4848 h->root.u.c.p->alignment_power = alignment_power;
4849 }
4850 }
4851 }
4852
4853 /* Make a special call to the linker "notice" function to
4854 tell it that symbols added for crefs may need to be removed. */
4855 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4856 goto error_free_vers;
4857
4858 free (old_tab);
4859 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4860 alloc_mark);
4861 if (nondeflt_vers != NULL)
4862 free (nondeflt_vers);
4863 return TRUE;
4864 }
4865
4866 if (old_tab != NULL)
4867 {
4868 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4869 goto error_free_vers;
4870 free (old_tab);
4871 old_tab = NULL;
4872 }
4873
4874 /* Now that all the symbols from this input file are created, if
4875 not performing a relocatable link, handle .symver foo, foo@BAR
4876 such that any relocs against foo become foo@BAR. */
4877 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4878 {
4879 size_t cnt, symidx;
4880
4881 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4882 {
4883 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4884 char *shortname, *p;
4885
4886 p = strchr (h->root.root.string, ELF_VER_CHR);
4887 if (p == NULL
4888 || (h->root.type != bfd_link_hash_defined
4889 && h->root.type != bfd_link_hash_defweak))
4890 continue;
4891
4892 amt = p - h->root.root.string;
4893 shortname = (char *) bfd_malloc (amt + 1);
4894 if (!shortname)
4895 goto error_free_vers;
4896 memcpy (shortname, h->root.root.string, amt);
4897 shortname[amt] = '\0';
4898
4899 hi = (struct elf_link_hash_entry *)
4900 bfd_link_hash_lookup (&htab->root, shortname,
4901 FALSE, FALSE, FALSE);
4902 if (hi != NULL
4903 && hi->root.type == h->root.type
4904 && hi->root.u.def.value == h->root.u.def.value
4905 && hi->root.u.def.section == h->root.u.def.section)
4906 {
4907 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4908 hi->root.type = bfd_link_hash_indirect;
4909 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4910 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4911 sym_hash = elf_sym_hashes (abfd);
4912 if (sym_hash)
4913 for (symidx = 0; symidx < extsymcount; ++symidx)
4914 if (sym_hash[symidx] == hi)
4915 {
4916 sym_hash[symidx] = h;
4917 break;
4918 }
4919 }
4920 free (shortname);
4921 }
4922 free (nondeflt_vers);
4923 nondeflt_vers = NULL;
4924 }
4925
4926 /* Now set the weakdefs field correctly for all the weak defined
4927 symbols we found. The only way to do this is to search all the
4928 symbols. Since we only need the information for non functions in
4929 dynamic objects, that's the only time we actually put anything on
4930 the list WEAKS. We need this information so that if a regular
4931 object refers to a symbol defined weakly in a dynamic object, the
4932 real symbol in the dynamic object is also put in the dynamic
4933 symbols; we also must arrange for both symbols to point to the
4934 same memory location. We could handle the general case of symbol
4935 aliasing, but a general symbol alias can only be generated in
4936 assembler code, handling it correctly would be very time
4937 consuming, and other ELF linkers don't handle general aliasing
4938 either. */
4939 if (weaks != NULL)
4940 {
4941 struct elf_link_hash_entry **hpp;
4942 struct elf_link_hash_entry **hppend;
4943 struct elf_link_hash_entry **sorted_sym_hash;
4944 struct elf_link_hash_entry *h;
4945 size_t sym_count;
4946
4947 /* Since we have to search the whole symbol list for each weak
4948 defined symbol, search time for N weak defined symbols will be
4949 O(N^2). Binary search will cut it down to O(NlogN). */
4950 amt = extsymcount;
4951 amt *= sizeof (struct elf_link_hash_entry *);
4952 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4953 if (sorted_sym_hash == NULL)
4954 goto error_return;
4955 sym_hash = sorted_sym_hash;
4956 hpp = elf_sym_hashes (abfd);
4957 hppend = hpp + extsymcount;
4958 sym_count = 0;
4959 for (; hpp < hppend; hpp++)
4960 {
4961 h = *hpp;
4962 if (h != NULL
4963 && h->root.type == bfd_link_hash_defined
4964 && !bed->is_function_type (h->type))
4965 {
4966 *sym_hash = h;
4967 sym_hash++;
4968 sym_count++;
4969 }
4970 }
4971
4972 qsort (sorted_sym_hash, sym_count,
4973 sizeof (struct elf_link_hash_entry *),
4974 elf_sort_symbol);
4975
4976 while (weaks != NULL)
4977 {
4978 struct elf_link_hash_entry *hlook;
4979 asection *slook;
4980 bfd_vma vlook;
4981 size_t i, j, idx = 0;
4982
4983 hlook = weaks;
4984 weaks = hlook->u.weakdef;
4985 hlook->u.weakdef = NULL;
4986
4987 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4988 || hlook->root.type == bfd_link_hash_defweak
4989 || hlook->root.type == bfd_link_hash_common
4990 || hlook->root.type == bfd_link_hash_indirect);
4991 slook = hlook->root.u.def.section;
4992 vlook = hlook->root.u.def.value;
4993
4994 i = 0;
4995 j = sym_count;
4996 while (i != j)
4997 {
4998 bfd_signed_vma vdiff;
4999 idx = (i + j) / 2;
5000 h = sorted_sym_hash[idx];
5001 vdiff = vlook - h->root.u.def.value;
5002 if (vdiff < 0)
5003 j = idx;
5004 else if (vdiff > 0)
5005 i = idx + 1;
5006 else
5007 {
5008 int sdiff = slook->id - h->root.u.def.section->id;
5009 if (sdiff < 0)
5010 j = idx;
5011 else if (sdiff > 0)
5012 i = idx + 1;
5013 else
5014 break;
5015 }
5016 }
5017
5018 /* We didn't find a value/section match. */
5019 if (i == j)
5020 continue;
5021
5022 /* With multiple aliases, or when the weak symbol is already
5023 strongly defined, we have multiple matching symbols and
5024 the binary search above may land on any of them. Step
5025 one past the matching symbol(s). */
5026 while (++idx != j)
5027 {
5028 h = sorted_sym_hash[idx];
5029 if (h->root.u.def.section != slook
5030 || h->root.u.def.value != vlook)
5031 break;
5032 }
5033
5034 /* Now look back over the aliases. Since we sorted by size
5035 as well as value and section, we'll choose the one with
5036 the largest size. */
5037 while (idx-- != i)
5038 {
5039 h = sorted_sym_hash[idx];
5040
5041 /* Stop if value or section doesn't match. */
5042 if (h->root.u.def.section != slook
5043 || h->root.u.def.value != vlook)
5044 break;
5045 else if (h != hlook)
5046 {
5047 hlook->u.weakdef = h;
5048
5049 /* If the weak definition is in the list of dynamic
5050 symbols, make sure the real definition is put
5051 there as well. */
5052 if (hlook->dynindx != -1 && h->dynindx == -1)
5053 {
5054 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5055 {
5056 err_free_sym_hash:
5057 free (sorted_sym_hash);
5058 goto error_return;
5059 }
5060 }
5061
5062 /* If the real definition is in the list of dynamic
5063 symbols, make sure the weak definition is put
5064 there as well. If we don't do this, then the
5065 dynamic loader might not merge the entries for the
5066 real definition and the weak definition. */
5067 if (h->dynindx != -1 && hlook->dynindx == -1)
5068 {
5069 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5070 goto err_free_sym_hash;
5071 }
5072 break;
5073 }
5074 }
5075 }
5076
5077 free (sorted_sym_hash);
5078 }
5079
5080 if (bed->check_directives
5081 && !(*bed->check_directives) (abfd, info))
5082 return FALSE;
5083
5084 if (!info->check_relocs_after_open_input
5085 && !_bfd_elf_link_check_relocs (abfd, info))
5086 return FALSE;
5087
5088 /* If this is a non-traditional link, try to optimize the handling
5089 of the .stab/.stabstr sections. */
5090 if (! dynamic
5091 && ! info->traditional_format
5092 && is_elf_hash_table (htab)
5093 && (info->strip != strip_all && info->strip != strip_debugger))
5094 {
5095 asection *stabstr;
5096
5097 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5098 if (stabstr != NULL)
5099 {
5100 bfd_size_type string_offset = 0;
5101 asection *stab;
5102
5103 for (stab = abfd->sections; stab; stab = stab->next)
5104 if (CONST_STRNEQ (stab->name, ".stab")
5105 && (!stab->name[5] ||
5106 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5107 && (stab->flags & SEC_MERGE) == 0
5108 && !bfd_is_abs_section (stab->output_section))
5109 {
5110 struct bfd_elf_section_data *secdata;
5111
5112 secdata = elf_section_data (stab);
5113 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5114 stabstr, &secdata->sec_info,
5115 &string_offset))
5116 goto error_return;
5117 if (secdata->sec_info)
5118 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5119 }
5120 }
5121 }
5122
5123 if (is_elf_hash_table (htab) && add_needed)
5124 {
5125 /* Add this bfd to the loaded list. */
5126 struct elf_link_loaded_list *n;
5127
5128 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5129 if (n == NULL)
5130 goto error_return;
5131 n->abfd = abfd;
5132 n->next = htab->loaded;
5133 htab->loaded = n;
5134 }
5135
5136 return TRUE;
5137
5138 error_free_vers:
5139 if (old_tab != NULL)
5140 free (old_tab);
5141 if (old_strtab != NULL)
5142 free (old_strtab);
5143 if (nondeflt_vers != NULL)
5144 free (nondeflt_vers);
5145 if (extversym != NULL)
5146 free (extversym);
5147 error_free_sym:
5148 if (isymbuf != NULL)
5149 free (isymbuf);
5150 error_return:
5151 return FALSE;
5152 }
5153
5154 /* Return the linker hash table entry of a symbol that might be
5155 satisfied by an archive symbol. Return -1 on error. */
5156
5157 struct elf_link_hash_entry *
5158 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5159 struct bfd_link_info *info,
5160 const char *name)
5161 {
5162 struct elf_link_hash_entry *h;
5163 char *p, *copy;
5164 size_t len, first;
5165
5166 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5167 if (h != NULL)
5168 return h;
5169
5170 /* If this is a default version (the name contains @@), look up the
5171 symbol again with only one `@' as well as without the version.
5172 The effect is that references to the symbol with and without the
5173 version will be matched by the default symbol in the archive. */
5174
5175 p = strchr (name, ELF_VER_CHR);
5176 if (p == NULL || p[1] != ELF_VER_CHR)
5177 return h;
5178
5179 /* First check with only one `@'. */
5180 len = strlen (name);
5181 copy = (char *) bfd_alloc (abfd, len);
5182 if (copy == NULL)
5183 return (struct elf_link_hash_entry *) 0 - 1;
5184
5185 first = p - name + 1;
5186 memcpy (copy, name, first);
5187 memcpy (copy + first, name + first + 1, len - first);
5188
5189 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5190 if (h == NULL)
5191 {
5192 /* We also need to check references to the symbol without the
5193 version. */
5194 copy[first - 1] = '\0';
5195 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5196 FALSE, FALSE, TRUE);
5197 }
5198
5199 bfd_release (abfd, copy);
5200 return h;
5201 }
5202
5203 /* Add symbols from an ELF archive file to the linker hash table. We
5204 don't use _bfd_generic_link_add_archive_symbols because we need to
5205 handle versioned symbols.
5206
5207 Fortunately, ELF archive handling is simpler than that done by
5208 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5209 oddities. In ELF, if we find a symbol in the archive map, and the
5210 symbol is currently undefined, we know that we must pull in that
5211 object file.
5212
5213 Unfortunately, we do have to make multiple passes over the symbol
5214 table until nothing further is resolved. */
5215
5216 static bfd_boolean
5217 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5218 {
5219 symindex c;
5220 unsigned char *included = NULL;
5221 carsym *symdefs;
5222 bfd_boolean loop;
5223 bfd_size_type amt;
5224 const struct elf_backend_data *bed;
5225 struct elf_link_hash_entry * (*archive_symbol_lookup)
5226 (bfd *, struct bfd_link_info *, const char *);
5227
5228 if (! bfd_has_map (abfd))
5229 {
5230 /* An empty archive is a special case. */
5231 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5232 return TRUE;
5233 bfd_set_error (bfd_error_no_armap);
5234 return FALSE;
5235 }
5236
5237 /* Keep track of all symbols we know to be already defined, and all
5238 files we know to be already included. This is to speed up the
5239 second and subsequent passes. */
5240 c = bfd_ardata (abfd)->symdef_count;
5241 if (c == 0)
5242 return TRUE;
5243 amt = c;
5244 amt *= sizeof (*included);
5245 included = (unsigned char *) bfd_zmalloc (amt);
5246 if (included == NULL)
5247 return FALSE;
5248
5249 symdefs = bfd_ardata (abfd)->symdefs;
5250 bed = get_elf_backend_data (abfd);
5251 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5252
5253 do
5254 {
5255 file_ptr last;
5256 symindex i;
5257 carsym *symdef;
5258 carsym *symdefend;
5259
5260 loop = FALSE;
5261 last = -1;
5262
5263 symdef = symdefs;
5264 symdefend = symdef + c;
5265 for (i = 0; symdef < symdefend; symdef++, i++)
5266 {
5267 struct elf_link_hash_entry *h;
5268 bfd *element;
5269 struct bfd_link_hash_entry *undefs_tail;
5270 symindex mark;
5271
5272 if (included[i])
5273 continue;
5274 if (symdef->file_offset == last)
5275 {
5276 included[i] = TRUE;
5277 continue;
5278 }
5279
5280 h = archive_symbol_lookup (abfd, info, symdef->name);
5281 if (h == (struct elf_link_hash_entry *) 0 - 1)
5282 goto error_return;
5283
5284 if (h == NULL)
5285 continue;
5286
5287 if (h->root.type == bfd_link_hash_common)
5288 {
5289 /* We currently have a common symbol. The archive map contains
5290 a reference to this symbol, so we may want to include it. We
5291 only want to include it however, if this archive element
5292 contains a definition of the symbol, not just another common
5293 declaration of it.
5294
5295 Unfortunately some archivers (including GNU ar) will put
5296 declarations of common symbols into their archive maps, as
5297 well as real definitions, so we cannot just go by the archive
5298 map alone. Instead we must read in the element's symbol
5299 table and check that to see what kind of symbol definition
5300 this is. */
5301 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5302 continue;
5303 }
5304 else if (h->root.type != bfd_link_hash_undefined)
5305 {
5306 if (h->root.type != bfd_link_hash_undefweak)
5307 /* Symbol must be defined. Don't check it again. */
5308 included[i] = TRUE;
5309 continue;
5310 }
5311
5312 /* We need to include this archive member. */
5313 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5314 if (element == NULL)
5315 goto error_return;
5316
5317 if (! bfd_check_format (element, bfd_object))
5318 goto error_return;
5319
5320 undefs_tail = info->hash->undefs_tail;
5321
5322 if (!(*info->callbacks
5323 ->add_archive_element) (info, element, symdef->name, &element))
5324 continue;
5325 if (!bfd_link_add_symbols (element, info))
5326 goto error_return;
5327
5328 /* If there are any new undefined symbols, we need to make
5329 another pass through the archive in order to see whether
5330 they can be defined. FIXME: This isn't perfect, because
5331 common symbols wind up on undefs_tail and because an
5332 undefined symbol which is defined later on in this pass
5333 does not require another pass. This isn't a bug, but it
5334 does make the code less efficient than it could be. */
5335 if (undefs_tail != info->hash->undefs_tail)
5336 loop = TRUE;
5337
5338 /* Look backward to mark all symbols from this object file
5339 which we have already seen in this pass. */
5340 mark = i;
5341 do
5342 {
5343 included[mark] = TRUE;
5344 if (mark == 0)
5345 break;
5346 --mark;
5347 }
5348 while (symdefs[mark].file_offset == symdef->file_offset);
5349
5350 /* We mark subsequent symbols from this object file as we go
5351 on through the loop. */
5352 last = symdef->file_offset;
5353 }
5354 }
5355 while (loop);
5356
5357 free (included);
5358
5359 return TRUE;
5360
5361 error_return:
5362 if (included != NULL)
5363 free (included);
5364 return FALSE;
5365 }
5366
5367 /* Given an ELF BFD, add symbols to the global hash table as
5368 appropriate. */
5369
5370 bfd_boolean
5371 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5372 {
5373 switch (bfd_get_format (abfd))
5374 {
5375 case bfd_object:
5376 return elf_link_add_object_symbols (abfd, info);
5377 case bfd_archive:
5378 return elf_link_add_archive_symbols (abfd, info);
5379 default:
5380 bfd_set_error (bfd_error_wrong_format);
5381 return FALSE;
5382 }
5383 }
5384 \f
5385 struct hash_codes_info
5386 {
5387 unsigned long *hashcodes;
5388 bfd_boolean error;
5389 };
5390
5391 /* This function will be called though elf_link_hash_traverse to store
5392 all hash value of the exported symbols in an array. */
5393
5394 static bfd_boolean
5395 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5396 {
5397 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5398 const char *name;
5399 unsigned long ha;
5400 char *alc = NULL;
5401
5402 /* Ignore indirect symbols. These are added by the versioning code. */
5403 if (h->dynindx == -1)
5404 return TRUE;
5405
5406 name = h->root.root.string;
5407 if (h->versioned >= versioned)
5408 {
5409 char *p = strchr (name, ELF_VER_CHR);
5410 if (p != NULL)
5411 {
5412 alc = (char *) bfd_malloc (p - name + 1);
5413 if (alc == NULL)
5414 {
5415 inf->error = TRUE;
5416 return FALSE;
5417 }
5418 memcpy (alc, name, p - name);
5419 alc[p - name] = '\0';
5420 name = alc;
5421 }
5422 }
5423
5424 /* Compute the hash value. */
5425 ha = bfd_elf_hash (name);
5426
5427 /* Store the found hash value in the array given as the argument. */
5428 *(inf->hashcodes)++ = ha;
5429
5430 /* And store it in the struct so that we can put it in the hash table
5431 later. */
5432 h->u.elf_hash_value = ha;
5433
5434 if (alc != NULL)
5435 free (alc);
5436
5437 return TRUE;
5438 }
5439
5440 struct collect_gnu_hash_codes
5441 {
5442 bfd *output_bfd;
5443 const struct elf_backend_data *bed;
5444 unsigned long int nsyms;
5445 unsigned long int maskbits;
5446 unsigned long int *hashcodes;
5447 unsigned long int *hashval;
5448 unsigned long int *indx;
5449 unsigned long int *counts;
5450 bfd_vma *bitmask;
5451 bfd_byte *contents;
5452 long int min_dynindx;
5453 unsigned long int bucketcount;
5454 unsigned long int symindx;
5455 long int local_indx;
5456 long int shift1, shift2;
5457 unsigned long int mask;
5458 bfd_boolean error;
5459 };
5460
5461 /* This function will be called though elf_link_hash_traverse to store
5462 all hash value of the exported symbols in an array. */
5463
5464 static bfd_boolean
5465 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5466 {
5467 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5468 const char *name;
5469 unsigned long ha;
5470 char *alc = NULL;
5471
5472 /* Ignore indirect symbols. These are added by the versioning code. */
5473 if (h->dynindx == -1)
5474 return TRUE;
5475
5476 /* Ignore also local symbols and undefined symbols. */
5477 if (! (*s->bed->elf_hash_symbol) (h))
5478 return TRUE;
5479
5480 name = h->root.root.string;
5481 if (h->versioned >= versioned)
5482 {
5483 char *p = strchr (name, ELF_VER_CHR);
5484 if (p != NULL)
5485 {
5486 alc = (char *) bfd_malloc (p - name + 1);
5487 if (alc == NULL)
5488 {
5489 s->error = TRUE;
5490 return FALSE;
5491 }
5492 memcpy (alc, name, p - name);
5493 alc[p - name] = '\0';
5494 name = alc;
5495 }
5496 }
5497
5498 /* Compute the hash value. */
5499 ha = bfd_elf_gnu_hash (name);
5500
5501 /* Store the found hash value in the array for compute_bucket_count,
5502 and also for .dynsym reordering purposes. */
5503 s->hashcodes[s->nsyms] = ha;
5504 s->hashval[h->dynindx] = ha;
5505 ++s->nsyms;
5506 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5507 s->min_dynindx = h->dynindx;
5508
5509 if (alc != NULL)
5510 free (alc);
5511
5512 return TRUE;
5513 }
5514
5515 /* This function will be called though elf_link_hash_traverse to do
5516 final dynaminc symbol renumbering. */
5517
5518 static bfd_boolean
5519 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5520 {
5521 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5522 unsigned long int bucket;
5523 unsigned long int val;
5524
5525 /* Ignore indirect symbols. */
5526 if (h->dynindx == -1)
5527 return TRUE;
5528
5529 /* Ignore also local symbols and undefined symbols. */
5530 if (! (*s->bed->elf_hash_symbol) (h))
5531 {
5532 if (h->dynindx >= s->min_dynindx)
5533 h->dynindx = s->local_indx++;
5534 return TRUE;
5535 }
5536
5537 bucket = s->hashval[h->dynindx] % s->bucketcount;
5538 val = (s->hashval[h->dynindx] >> s->shift1)
5539 & ((s->maskbits >> s->shift1) - 1);
5540 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5541 s->bitmask[val]
5542 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5543 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5544 if (s->counts[bucket] == 1)
5545 /* Last element terminates the chain. */
5546 val |= 1;
5547 bfd_put_32 (s->output_bfd, val,
5548 s->contents + (s->indx[bucket] - s->symindx) * 4);
5549 --s->counts[bucket];
5550 h->dynindx = s->indx[bucket]++;
5551 return TRUE;
5552 }
5553
5554 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5555
5556 bfd_boolean
5557 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5558 {
5559 return !(h->forced_local
5560 || h->root.type == bfd_link_hash_undefined
5561 || h->root.type == bfd_link_hash_undefweak
5562 || ((h->root.type == bfd_link_hash_defined
5563 || h->root.type == bfd_link_hash_defweak)
5564 && h->root.u.def.section->output_section == NULL));
5565 }
5566
5567 /* Array used to determine the number of hash table buckets to use
5568 based on the number of symbols there are. If there are fewer than
5569 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5570 fewer than 37 we use 17 buckets, and so forth. We never use more
5571 than 32771 buckets. */
5572
5573 static const size_t elf_buckets[] =
5574 {
5575 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5576 16411, 32771, 0
5577 };
5578
5579 /* Compute bucket count for hashing table. We do not use a static set
5580 of possible tables sizes anymore. Instead we determine for all
5581 possible reasonable sizes of the table the outcome (i.e., the
5582 number of collisions etc) and choose the best solution. The
5583 weighting functions are not too simple to allow the table to grow
5584 without bounds. Instead one of the weighting factors is the size.
5585 Therefore the result is always a good payoff between few collisions
5586 (= short chain lengths) and table size. */
5587 static size_t
5588 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5589 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5590 unsigned long int nsyms,
5591 int gnu_hash)
5592 {
5593 size_t best_size = 0;
5594 unsigned long int i;
5595
5596 /* We have a problem here. The following code to optimize the table
5597 size requires an integer type with more the 32 bits. If
5598 BFD_HOST_U_64_BIT is set we know about such a type. */
5599 #ifdef BFD_HOST_U_64_BIT
5600 if (info->optimize)
5601 {
5602 size_t minsize;
5603 size_t maxsize;
5604 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5605 bfd *dynobj = elf_hash_table (info)->dynobj;
5606 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5607 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5608 unsigned long int *counts;
5609 bfd_size_type amt;
5610 unsigned int no_improvement_count = 0;
5611
5612 /* Possible optimization parameters: if we have NSYMS symbols we say
5613 that the hashing table must at least have NSYMS/4 and at most
5614 2*NSYMS buckets. */
5615 minsize = nsyms / 4;
5616 if (minsize == 0)
5617 minsize = 1;
5618 best_size = maxsize = nsyms * 2;
5619 if (gnu_hash)
5620 {
5621 if (minsize < 2)
5622 minsize = 2;
5623 if ((best_size & 31) == 0)
5624 ++best_size;
5625 }
5626
5627 /* Create array where we count the collisions in. We must use bfd_malloc
5628 since the size could be large. */
5629 amt = maxsize;
5630 amt *= sizeof (unsigned long int);
5631 counts = (unsigned long int *) bfd_malloc (amt);
5632 if (counts == NULL)
5633 return 0;
5634
5635 /* Compute the "optimal" size for the hash table. The criteria is a
5636 minimal chain length. The minor criteria is (of course) the size
5637 of the table. */
5638 for (i = minsize; i < maxsize; ++i)
5639 {
5640 /* Walk through the array of hashcodes and count the collisions. */
5641 BFD_HOST_U_64_BIT max;
5642 unsigned long int j;
5643 unsigned long int fact;
5644
5645 if (gnu_hash && (i & 31) == 0)
5646 continue;
5647
5648 memset (counts, '\0', i * sizeof (unsigned long int));
5649
5650 /* Determine how often each hash bucket is used. */
5651 for (j = 0; j < nsyms; ++j)
5652 ++counts[hashcodes[j] % i];
5653
5654 /* For the weight function we need some information about the
5655 pagesize on the target. This is information need not be 100%
5656 accurate. Since this information is not available (so far) we
5657 define it here to a reasonable default value. If it is crucial
5658 to have a better value some day simply define this value. */
5659 # ifndef BFD_TARGET_PAGESIZE
5660 # define BFD_TARGET_PAGESIZE (4096)
5661 # endif
5662
5663 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5664 and the chains. */
5665 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5666
5667 # if 1
5668 /* Variant 1: optimize for short chains. We add the squares
5669 of all the chain lengths (which favors many small chain
5670 over a few long chains). */
5671 for (j = 0; j < i; ++j)
5672 max += counts[j] * counts[j];
5673
5674 /* This adds penalties for the overall size of the table. */
5675 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5676 max *= fact * fact;
5677 # else
5678 /* Variant 2: Optimize a lot more for small table. Here we
5679 also add squares of the size but we also add penalties for
5680 empty slots (the +1 term). */
5681 for (j = 0; j < i; ++j)
5682 max += (1 + counts[j]) * (1 + counts[j]);
5683
5684 /* The overall size of the table is considered, but not as
5685 strong as in variant 1, where it is squared. */
5686 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5687 max *= fact;
5688 # endif
5689
5690 /* Compare with current best results. */
5691 if (max < best_chlen)
5692 {
5693 best_chlen = max;
5694 best_size = i;
5695 no_improvement_count = 0;
5696 }
5697 /* PR 11843: Avoid futile long searches for the best bucket size
5698 when there are a large number of symbols. */
5699 else if (++no_improvement_count == 100)
5700 break;
5701 }
5702
5703 free (counts);
5704 }
5705 else
5706 #endif /* defined (BFD_HOST_U_64_BIT) */
5707 {
5708 /* This is the fallback solution if no 64bit type is available or if we
5709 are not supposed to spend much time on optimizations. We select the
5710 bucket count using a fixed set of numbers. */
5711 for (i = 0; elf_buckets[i] != 0; i++)
5712 {
5713 best_size = elf_buckets[i];
5714 if (nsyms < elf_buckets[i + 1])
5715 break;
5716 }
5717 if (gnu_hash && best_size < 2)
5718 best_size = 2;
5719 }
5720
5721 return best_size;
5722 }
5723
5724 /* Size any SHT_GROUP section for ld -r. */
5725
5726 bfd_boolean
5727 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5728 {
5729 bfd *ibfd;
5730
5731 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5732 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5733 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5734 return FALSE;
5735 return TRUE;
5736 }
5737
5738 /* Set a default stack segment size. The value in INFO wins. If it
5739 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5740 undefined it is initialized. */
5741
5742 bfd_boolean
5743 bfd_elf_stack_segment_size (bfd *output_bfd,
5744 struct bfd_link_info *info,
5745 const char *legacy_symbol,
5746 bfd_vma default_size)
5747 {
5748 struct elf_link_hash_entry *h = NULL;
5749
5750 /* Look for legacy symbol. */
5751 if (legacy_symbol)
5752 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5753 FALSE, FALSE, FALSE);
5754 if (h && (h->root.type == bfd_link_hash_defined
5755 || h->root.type == bfd_link_hash_defweak)
5756 && h->def_regular
5757 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5758 {
5759 /* The symbol has no type if specified on the command line. */
5760 h->type = STT_OBJECT;
5761 if (info->stacksize)
5762 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5763 output_bfd, legacy_symbol);
5764 else if (h->root.u.def.section != bfd_abs_section_ptr)
5765 (*_bfd_error_handler) (_("%B: %s not absolute"),
5766 output_bfd, legacy_symbol);
5767 else
5768 info->stacksize = h->root.u.def.value;
5769 }
5770
5771 if (!info->stacksize)
5772 /* If the user didn't set a size, or explicitly inhibit the
5773 size, set it now. */
5774 info->stacksize = default_size;
5775
5776 /* Provide the legacy symbol, if it is referenced. */
5777 if (h && (h->root.type == bfd_link_hash_undefined
5778 || h->root.type == bfd_link_hash_undefweak))
5779 {
5780 struct bfd_link_hash_entry *bh = NULL;
5781
5782 if (!(_bfd_generic_link_add_one_symbol
5783 (info, output_bfd, legacy_symbol,
5784 BSF_GLOBAL, bfd_abs_section_ptr,
5785 info->stacksize >= 0 ? info->stacksize : 0,
5786 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5787 return FALSE;
5788
5789 h = (struct elf_link_hash_entry *) bh;
5790 h->def_regular = 1;
5791 h->type = STT_OBJECT;
5792 }
5793
5794 return TRUE;
5795 }
5796
5797 /* Set up the sizes and contents of the ELF dynamic sections. This is
5798 called by the ELF linker emulation before_allocation routine. We
5799 must set the sizes of the sections before the linker sets the
5800 addresses of the various sections. */
5801
5802 bfd_boolean
5803 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5804 const char *soname,
5805 const char *rpath,
5806 const char *filter_shlib,
5807 const char *audit,
5808 const char *depaudit,
5809 const char * const *auxiliary_filters,
5810 struct bfd_link_info *info,
5811 asection **sinterpptr)
5812 {
5813 size_t soname_indx;
5814 bfd *dynobj;
5815 const struct elf_backend_data *bed;
5816 struct elf_info_failed asvinfo;
5817
5818 *sinterpptr = NULL;
5819
5820 soname_indx = (size_t) -1;
5821
5822 if (!is_elf_hash_table (info->hash))
5823 return TRUE;
5824
5825 bed = get_elf_backend_data (output_bfd);
5826
5827 /* Any syms created from now on start with -1 in
5828 got.refcount/offset and plt.refcount/offset. */
5829 elf_hash_table (info)->init_got_refcount
5830 = elf_hash_table (info)->init_got_offset;
5831 elf_hash_table (info)->init_plt_refcount
5832 = elf_hash_table (info)->init_plt_offset;
5833
5834 if (bfd_link_relocatable (info)
5835 && !_bfd_elf_size_group_sections (info))
5836 return FALSE;
5837
5838 /* The backend may have to create some sections regardless of whether
5839 we're dynamic or not. */
5840 if (bed->elf_backend_always_size_sections
5841 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5842 return FALSE;
5843
5844 /* Determine any GNU_STACK segment requirements, after the backend
5845 has had a chance to set a default segment size. */
5846 if (info->execstack)
5847 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5848 else if (info->noexecstack)
5849 elf_stack_flags (output_bfd) = PF_R | PF_W;
5850 else
5851 {
5852 bfd *inputobj;
5853 asection *notesec = NULL;
5854 int exec = 0;
5855
5856 for (inputobj = info->input_bfds;
5857 inputobj;
5858 inputobj = inputobj->link.next)
5859 {
5860 asection *s;
5861
5862 if (inputobj->flags
5863 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5864 continue;
5865 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5866 if (s)
5867 {
5868 if (s->flags & SEC_CODE)
5869 exec = PF_X;
5870 notesec = s;
5871 }
5872 else if (bed->default_execstack)
5873 exec = PF_X;
5874 }
5875 if (notesec || info->stacksize > 0)
5876 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5877 if (notesec && exec && bfd_link_relocatable (info)
5878 && notesec->output_section != bfd_abs_section_ptr)
5879 notesec->output_section->flags |= SEC_CODE;
5880 }
5881
5882 dynobj = elf_hash_table (info)->dynobj;
5883
5884 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5885 {
5886 struct elf_info_failed eif;
5887 struct elf_link_hash_entry *h;
5888 asection *dynstr;
5889 struct bfd_elf_version_tree *t;
5890 struct bfd_elf_version_expr *d;
5891 asection *s;
5892 bfd_boolean all_defined;
5893
5894 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5895 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5896
5897 if (soname != NULL)
5898 {
5899 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5900 soname, TRUE);
5901 if (soname_indx == (size_t) -1
5902 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5903 return FALSE;
5904 }
5905
5906 if (info->symbolic)
5907 {
5908 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5909 return FALSE;
5910 info->flags |= DF_SYMBOLIC;
5911 }
5912
5913 if (rpath != NULL)
5914 {
5915 size_t indx;
5916 bfd_vma tag;
5917
5918 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5919 TRUE);
5920 if (indx == (size_t) -1)
5921 return FALSE;
5922
5923 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5924 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5925 return FALSE;
5926 }
5927
5928 if (filter_shlib != NULL)
5929 {
5930 size_t indx;
5931
5932 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5933 filter_shlib, TRUE);
5934 if (indx == (size_t) -1
5935 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5936 return FALSE;
5937 }
5938
5939 if (auxiliary_filters != NULL)
5940 {
5941 const char * const *p;
5942
5943 for (p = auxiliary_filters; *p != NULL; p++)
5944 {
5945 size_t indx;
5946
5947 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5948 *p, TRUE);
5949 if (indx == (size_t) -1
5950 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5951 return FALSE;
5952 }
5953 }
5954
5955 if (audit != NULL)
5956 {
5957 size_t indx;
5958
5959 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5960 TRUE);
5961 if (indx == (size_t) -1
5962 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5963 return FALSE;
5964 }
5965
5966 if (depaudit != NULL)
5967 {
5968 size_t indx;
5969
5970 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5971 TRUE);
5972 if (indx == (size_t) -1
5973 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5974 return FALSE;
5975 }
5976
5977 eif.info = info;
5978 eif.failed = FALSE;
5979
5980 /* If we are supposed to export all symbols into the dynamic symbol
5981 table (this is not the normal case), then do so. */
5982 if (info->export_dynamic
5983 || (bfd_link_executable (info) && info->dynamic))
5984 {
5985 elf_link_hash_traverse (elf_hash_table (info),
5986 _bfd_elf_export_symbol,
5987 &eif);
5988 if (eif.failed)
5989 return FALSE;
5990 }
5991
5992 /* Make all global versions with definition. */
5993 for (t = info->version_info; t != NULL; t = t->next)
5994 for (d = t->globals.list; d != NULL; d = d->next)
5995 if (!d->symver && d->literal)
5996 {
5997 const char *verstr, *name;
5998 size_t namelen, verlen, newlen;
5999 char *newname, *p, leading_char;
6000 struct elf_link_hash_entry *newh;
6001
6002 leading_char = bfd_get_symbol_leading_char (output_bfd);
6003 name = d->pattern;
6004 namelen = strlen (name) + (leading_char != '\0');
6005 verstr = t->name;
6006 verlen = strlen (verstr);
6007 newlen = namelen + verlen + 3;
6008
6009 newname = (char *) bfd_malloc (newlen);
6010 if (newname == NULL)
6011 return FALSE;
6012 newname[0] = leading_char;
6013 memcpy (newname + (leading_char != '\0'), name, namelen);
6014
6015 /* Check the hidden versioned definition. */
6016 p = newname + namelen;
6017 *p++ = ELF_VER_CHR;
6018 memcpy (p, verstr, verlen + 1);
6019 newh = elf_link_hash_lookup (elf_hash_table (info),
6020 newname, FALSE, FALSE,
6021 FALSE);
6022 if (newh == NULL
6023 || (newh->root.type != bfd_link_hash_defined
6024 && newh->root.type != bfd_link_hash_defweak))
6025 {
6026 /* Check the default versioned definition. */
6027 *p++ = ELF_VER_CHR;
6028 memcpy (p, verstr, verlen + 1);
6029 newh = elf_link_hash_lookup (elf_hash_table (info),
6030 newname, FALSE, FALSE,
6031 FALSE);
6032 }
6033 free (newname);
6034
6035 /* Mark this version if there is a definition and it is
6036 not defined in a shared object. */
6037 if (newh != NULL
6038 && !newh->def_dynamic
6039 && (newh->root.type == bfd_link_hash_defined
6040 || newh->root.type == bfd_link_hash_defweak))
6041 d->symver = 1;
6042 }
6043
6044 /* Attach all the symbols to their version information. */
6045 asvinfo.info = info;
6046 asvinfo.failed = FALSE;
6047
6048 elf_link_hash_traverse (elf_hash_table (info),
6049 _bfd_elf_link_assign_sym_version,
6050 &asvinfo);
6051 if (asvinfo.failed)
6052 return FALSE;
6053
6054 if (!info->allow_undefined_version)
6055 {
6056 /* Check if all global versions have a definition. */
6057 all_defined = TRUE;
6058 for (t = info->version_info; t != NULL; t = t->next)
6059 for (d = t->globals.list; d != NULL; d = d->next)
6060 if (d->literal && !d->symver && !d->script)
6061 {
6062 (*_bfd_error_handler)
6063 (_("%s: undefined version: %s"),
6064 d->pattern, t->name);
6065 all_defined = FALSE;
6066 }
6067
6068 if (!all_defined)
6069 {
6070 bfd_set_error (bfd_error_bad_value);
6071 return FALSE;
6072 }
6073 }
6074
6075 /* Find all symbols which were defined in a dynamic object and make
6076 the backend pick a reasonable value for them. */
6077 elf_link_hash_traverse (elf_hash_table (info),
6078 _bfd_elf_adjust_dynamic_symbol,
6079 &eif);
6080 if (eif.failed)
6081 return FALSE;
6082
6083 /* Add some entries to the .dynamic section. We fill in some of the
6084 values later, in bfd_elf_final_link, but we must add the entries
6085 now so that we know the final size of the .dynamic section. */
6086
6087 /* If there are initialization and/or finalization functions to
6088 call then add the corresponding DT_INIT/DT_FINI entries. */
6089 h = (info->init_function
6090 ? elf_link_hash_lookup (elf_hash_table (info),
6091 info->init_function, FALSE,
6092 FALSE, FALSE)
6093 : NULL);
6094 if (h != NULL
6095 && (h->ref_regular
6096 || h->def_regular))
6097 {
6098 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6099 return FALSE;
6100 }
6101 h = (info->fini_function
6102 ? elf_link_hash_lookup (elf_hash_table (info),
6103 info->fini_function, FALSE,
6104 FALSE, FALSE)
6105 : NULL);
6106 if (h != NULL
6107 && (h->ref_regular
6108 || h->def_regular))
6109 {
6110 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6111 return FALSE;
6112 }
6113
6114 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6115 if (s != NULL && s->linker_has_input)
6116 {
6117 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6118 if (! bfd_link_executable (info))
6119 {
6120 bfd *sub;
6121 asection *o;
6122
6123 for (sub = info->input_bfds; sub != NULL;
6124 sub = sub->link.next)
6125 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6126 for (o = sub->sections; o != NULL; o = o->next)
6127 if (elf_section_data (o)->this_hdr.sh_type
6128 == SHT_PREINIT_ARRAY)
6129 {
6130 (*_bfd_error_handler)
6131 (_("%B: .preinit_array section is not allowed in DSO"),
6132 sub);
6133 break;
6134 }
6135
6136 bfd_set_error (bfd_error_nonrepresentable_section);
6137 return FALSE;
6138 }
6139
6140 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6141 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6142 return FALSE;
6143 }
6144 s = bfd_get_section_by_name (output_bfd, ".init_array");
6145 if (s != NULL && s->linker_has_input)
6146 {
6147 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6148 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6149 return FALSE;
6150 }
6151 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6152 if (s != NULL && s->linker_has_input)
6153 {
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6155 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6156 return FALSE;
6157 }
6158
6159 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6160 /* If .dynstr is excluded from the link, we don't want any of
6161 these tags. Strictly, we should be checking each section
6162 individually; This quick check covers for the case where
6163 someone does a /DISCARD/ : { *(*) }. */
6164 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6165 {
6166 bfd_size_type strsize;
6167
6168 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6169 if ((info->emit_hash
6170 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6171 || (info->emit_gnu_hash
6172 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6173 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6174 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6175 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6176 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6177 bed->s->sizeof_sym))
6178 return FALSE;
6179 }
6180 }
6181
6182 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6183 return FALSE;
6184
6185 /* The backend must work out the sizes of all the other dynamic
6186 sections. */
6187 if (dynobj != NULL
6188 && bed->elf_backend_size_dynamic_sections != NULL
6189 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6190 return FALSE;
6191
6192 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6193 {
6194 unsigned long section_sym_count;
6195 struct bfd_elf_version_tree *verdefs;
6196 asection *s;
6197
6198 /* Set up the version definition section. */
6199 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6200 BFD_ASSERT (s != NULL);
6201
6202 /* We may have created additional version definitions if we are
6203 just linking a regular application. */
6204 verdefs = info->version_info;
6205
6206 /* Skip anonymous version tag. */
6207 if (verdefs != NULL && verdefs->vernum == 0)
6208 verdefs = verdefs->next;
6209
6210 if (verdefs == NULL && !info->create_default_symver)
6211 s->flags |= SEC_EXCLUDE;
6212 else
6213 {
6214 unsigned int cdefs;
6215 bfd_size_type size;
6216 struct bfd_elf_version_tree *t;
6217 bfd_byte *p;
6218 Elf_Internal_Verdef def;
6219 Elf_Internal_Verdaux defaux;
6220 struct bfd_link_hash_entry *bh;
6221 struct elf_link_hash_entry *h;
6222 const char *name;
6223
6224 cdefs = 0;
6225 size = 0;
6226
6227 /* Make space for the base version. */
6228 size += sizeof (Elf_External_Verdef);
6229 size += sizeof (Elf_External_Verdaux);
6230 ++cdefs;
6231
6232 /* Make space for the default version. */
6233 if (info->create_default_symver)
6234 {
6235 size += sizeof (Elf_External_Verdef);
6236 ++cdefs;
6237 }
6238
6239 for (t = verdefs; t != NULL; t = t->next)
6240 {
6241 struct bfd_elf_version_deps *n;
6242
6243 /* Don't emit base version twice. */
6244 if (t->vernum == 0)
6245 continue;
6246
6247 size += sizeof (Elf_External_Verdef);
6248 size += sizeof (Elf_External_Verdaux);
6249 ++cdefs;
6250
6251 for (n = t->deps; n != NULL; n = n->next)
6252 size += sizeof (Elf_External_Verdaux);
6253 }
6254
6255 s->size = size;
6256 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6257 if (s->contents == NULL && s->size != 0)
6258 return FALSE;
6259
6260 /* Fill in the version definition section. */
6261
6262 p = s->contents;
6263
6264 def.vd_version = VER_DEF_CURRENT;
6265 def.vd_flags = VER_FLG_BASE;
6266 def.vd_ndx = 1;
6267 def.vd_cnt = 1;
6268 if (info->create_default_symver)
6269 {
6270 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6271 def.vd_next = sizeof (Elf_External_Verdef);
6272 }
6273 else
6274 {
6275 def.vd_aux = sizeof (Elf_External_Verdef);
6276 def.vd_next = (sizeof (Elf_External_Verdef)
6277 + sizeof (Elf_External_Verdaux));
6278 }
6279
6280 if (soname_indx != (size_t) -1)
6281 {
6282 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6283 soname_indx);
6284 def.vd_hash = bfd_elf_hash (soname);
6285 defaux.vda_name = soname_indx;
6286 name = soname;
6287 }
6288 else
6289 {
6290 size_t indx;
6291
6292 name = lbasename (output_bfd->filename);
6293 def.vd_hash = bfd_elf_hash (name);
6294 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6295 name, FALSE);
6296 if (indx == (size_t) -1)
6297 return FALSE;
6298 defaux.vda_name = indx;
6299 }
6300 defaux.vda_next = 0;
6301
6302 _bfd_elf_swap_verdef_out (output_bfd, &def,
6303 (Elf_External_Verdef *) p);
6304 p += sizeof (Elf_External_Verdef);
6305 if (info->create_default_symver)
6306 {
6307 /* Add a symbol representing this version. */
6308 bh = NULL;
6309 if (! (_bfd_generic_link_add_one_symbol
6310 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6311 0, NULL, FALSE,
6312 get_elf_backend_data (dynobj)->collect, &bh)))
6313 return FALSE;
6314 h = (struct elf_link_hash_entry *) bh;
6315 h->non_elf = 0;
6316 h->def_regular = 1;
6317 h->type = STT_OBJECT;
6318 h->verinfo.vertree = NULL;
6319
6320 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6321 return FALSE;
6322
6323 /* Create a duplicate of the base version with the same
6324 aux block, but different flags. */
6325 def.vd_flags = 0;
6326 def.vd_ndx = 2;
6327 def.vd_aux = sizeof (Elf_External_Verdef);
6328 if (verdefs)
6329 def.vd_next = (sizeof (Elf_External_Verdef)
6330 + sizeof (Elf_External_Verdaux));
6331 else
6332 def.vd_next = 0;
6333 _bfd_elf_swap_verdef_out (output_bfd, &def,
6334 (Elf_External_Verdef *) p);
6335 p += sizeof (Elf_External_Verdef);
6336 }
6337 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6338 (Elf_External_Verdaux *) p);
6339 p += sizeof (Elf_External_Verdaux);
6340
6341 for (t = verdefs; t != NULL; t = t->next)
6342 {
6343 unsigned int cdeps;
6344 struct bfd_elf_version_deps *n;
6345
6346 /* Don't emit the base version twice. */
6347 if (t->vernum == 0)
6348 continue;
6349
6350 cdeps = 0;
6351 for (n = t->deps; n != NULL; n = n->next)
6352 ++cdeps;
6353
6354 /* Add a symbol representing this version. */
6355 bh = NULL;
6356 if (! (_bfd_generic_link_add_one_symbol
6357 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6358 0, NULL, FALSE,
6359 get_elf_backend_data (dynobj)->collect, &bh)))
6360 return FALSE;
6361 h = (struct elf_link_hash_entry *) bh;
6362 h->non_elf = 0;
6363 h->def_regular = 1;
6364 h->type = STT_OBJECT;
6365 h->verinfo.vertree = t;
6366
6367 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6368 return FALSE;
6369
6370 def.vd_version = VER_DEF_CURRENT;
6371 def.vd_flags = 0;
6372 if (t->globals.list == NULL
6373 && t->locals.list == NULL
6374 && ! t->used)
6375 def.vd_flags |= VER_FLG_WEAK;
6376 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6377 def.vd_cnt = cdeps + 1;
6378 def.vd_hash = bfd_elf_hash (t->name);
6379 def.vd_aux = sizeof (Elf_External_Verdef);
6380 def.vd_next = 0;
6381
6382 /* If a basever node is next, it *must* be the last node in
6383 the chain, otherwise Verdef construction breaks. */
6384 if (t->next != NULL && t->next->vernum == 0)
6385 BFD_ASSERT (t->next->next == NULL);
6386
6387 if (t->next != NULL && t->next->vernum != 0)
6388 def.vd_next = (sizeof (Elf_External_Verdef)
6389 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6390
6391 _bfd_elf_swap_verdef_out (output_bfd, &def,
6392 (Elf_External_Verdef *) p);
6393 p += sizeof (Elf_External_Verdef);
6394
6395 defaux.vda_name = h->dynstr_index;
6396 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6397 h->dynstr_index);
6398 defaux.vda_next = 0;
6399 if (t->deps != NULL)
6400 defaux.vda_next = sizeof (Elf_External_Verdaux);
6401 t->name_indx = defaux.vda_name;
6402
6403 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6404 (Elf_External_Verdaux *) p);
6405 p += sizeof (Elf_External_Verdaux);
6406
6407 for (n = t->deps; n != NULL; n = n->next)
6408 {
6409 if (n->version_needed == NULL)
6410 {
6411 /* This can happen if there was an error in the
6412 version script. */
6413 defaux.vda_name = 0;
6414 }
6415 else
6416 {
6417 defaux.vda_name = n->version_needed->name_indx;
6418 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6419 defaux.vda_name);
6420 }
6421 if (n->next == NULL)
6422 defaux.vda_next = 0;
6423 else
6424 defaux.vda_next = sizeof (Elf_External_Verdaux);
6425
6426 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6427 (Elf_External_Verdaux *) p);
6428 p += sizeof (Elf_External_Verdaux);
6429 }
6430 }
6431
6432 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6433 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6434 return FALSE;
6435
6436 elf_tdata (output_bfd)->cverdefs = cdefs;
6437 }
6438
6439 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6440 {
6441 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6442 return FALSE;
6443 }
6444 else if (info->flags & DF_BIND_NOW)
6445 {
6446 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6447 return FALSE;
6448 }
6449
6450 if (info->flags_1)
6451 {
6452 if (bfd_link_executable (info))
6453 info->flags_1 &= ~ (DF_1_INITFIRST
6454 | DF_1_NODELETE
6455 | DF_1_NOOPEN);
6456 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6457 return FALSE;
6458 }
6459
6460 /* Work out the size of the version reference section. */
6461
6462 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6463 BFD_ASSERT (s != NULL);
6464 {
6465 struct elf_find_verdep_info sinfo;
6466
6467 sinfo.info = info;
6468 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6469 if (sinfo.vers == 0)
6470 sinfo.vers = 1;
6471 sinfo.failed = FALSE;
6472
6473 elf_link_hash_traverse (elf_hash_table (info),
6474 _bfd_elf_link_find_version_dependencies,
6475 &sinfo);
6476 if (sinfo.failed)
6477 return FALSE;
6478
6479 if (elf_tdata (output_bfd)->verref == NULL)
6480 s->flags |= SEC_EXCLUDE;
6481 else
6482 {
6483 Elf_Internal_Verneed *t;
6484 unsigned int size;
6485 unsigned int crefs;
6486 bfd_byte *p;
6487
6488 /* Build the version dependency section. */
6489 size = 0;
6490 crefs = 0;
6491 for (t = elf_tdata (output_bfd)->verref;
6492 t != NULL;
6493 t = t->vn_nextref)
6494 {
6495 Elf_Internal_Vernaux *a;
6496
6497 size += sizeof (Elf_External_Verneed);
6498 ++crefs;
6499 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6500 size += sizeof (Elf_External_Vernaux);
6501 }
6502
6503 s->size = size;
6504 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6505 if (s->contents == NULL)
6506 return FALSE;
6507
6508 p = s->contents;
6509 for (t = elf_tdata (output_bfd)->verref;
6510 t != NULL;
6511 t = t->vn_nextref)
6512 {
6513 unsigned int caux;
6514 Elf_Internal_Vernaux *a;
6515 size_t indx;
6516
6517 caux = 0;
6518 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6519 ++caux;
6520
6521 t->vn_version = VER_NEED_CURRENT;
6522 t->vn_cnt = caux;
6523 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6524 elf_dt_name (t->vn_bfd) != NULL
6525 ? elf_dt_name (t->vn_bfd)
6526 : lbasename (t->vn_bfd->filename),
6527 FALSE);
6528 if (indx == (size_t) -1)
6529 return FALSE;
6530 t->vn_file = indx;
6531 t->vn_aux = sizeof (Elf_External_Verneed);
6532 if (t->vn_nextref == NULL)
6533 t->vn_next = 0;
6534 else
6535 t->vn_next = (sizeof (Elf_External_Verneed)
6536 + caux * sizeof (Elf_External_Vernaux));
6537
6538 _bfd_elf_swap_verneed_out (output_bfd, t,
6539 (Elf_External_Verneed *) p);
6540 p += sizeof (Elf_External_Verneed);
6541
6542 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6543 {
6544 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6545 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6546 a->vna_nodename, FALSE);
6547 if (indx == (size_t) -1)
6548 return FALSE;
6549 a->vna_name = indx;
6550 if (a->vna_nextptr == NULL)
6551 a->vna_next = 0;
6552 else
6553 a->vna_next = sizeof (Elf_External_Vernaux);
6554
6555 _bfd_elf_swap_vernaux_out (output_bfd, a,
6556 (Elf_External_Vernaux *) p);
6557 p += sizeof (Elf_External_Vernaux);
6558 }
6559 }
6560
6561 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6562 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6563 return FALSE;
6564
6565 elf_tdata (output_bfd)->cverrefs = crefs;
6566 }
6567 }
6568
6569 if ((elf_tdata (output_bfd)->cverrefs == 0
6570 && elf_tdata (output_bfd)->cverdefs == 0)
6571 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6572 &section_sym_count) == 0)
6573 {
6574 s = bfd_get_linker_section (dynobj, ".gnu.version");
6575 s->flags |= SEC_EXCLUDE;
6576 }
6577 }
6578 return TRUE;
6579 }
6580
6581 /* Find the first non-excluded output section. We'll use its
6582 section symbol for some emitted relocs. */
6583 void
6584 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6585 {
6586 asection *s;
6587
6588 for (s = output_bfd->sections; s != NULL; s = s->next)
6589 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6590 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6591 {
6592 elf_hash_table (info)->text_index_section = s;
6593 break;
6594 }
6595 }
6596
6597 /* Find two non-excluded output sections, one for code, one for data.
6598 We'll use their section symbols for some emitted relocs. */
6599 void
6600 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6601 {
6602 asection *s;
6603
6604 /* Data first, since setting text_index_section changes
6605 _bfd_elf_link_omit_section_dynsym. */
6606 for (s = output_bfd->sections; s != NULL; s = s->next)
6607 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6608 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6609 {
6610 elf_hash_table (info)->data_index_section = s;
6611 break;
6612 }
6613
6614 for (s = output_bfd->sections; s != NULL; s = s->next)
6615 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6616 == (SEC_ALLOC | SEC_READONLY))
6617 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6618 {
6619 elf_hash_table (info)->text_index_section = s;
6620 break;
6621 }
6622
6623 if (elf_hash_table (info)->text_index_section == NULL)
6624 elf_hash_table (info)->text_index_section
6625 = elf_hash_table (info)->data_index_section;
6626 }
6627
6628 bfd_boolean
6629 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6630 {
6631 const struct elf_backend_data *bed;
6632
6633 if (!is_elf_hash_table (info->hash))
6634 return TRUE;
6635
6636 bed = get_elf_backend_data (output_bfd);
6637 (*bed->elf_backend_init_index_section) (output_bfd, info);
6638
6639 if (elf_hash_table (info)->dynamic_sections_created)
6640 {
6641 bfd *dynobj;
6642 asection *s;
6643 bfd_size_type dynsymcount;
6644 unsigned long section_sym_count;
6645 unsigned int dtagcount;
6646
6647 dynobj = elf_hash_table (info)->dynobj;
6648
6649 /* Assign dynsym indicies. In a shared library we generate a
6650 section symbol for each output section, which come first.
6651 Next come all of the back-end allocated local dynamic syms,
6652 followed by the rest of the global symbols. */
6653
6654 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6655 &section_sym_count);
6656
6657 /* Work out the size of the symbol version section. */
6658 s = bfd_get_linker_section (dynobj, ".gnu.version");
6659 BFD_ASSERT (s != NULL);
6660 if ((s->flags & SEC_EXCLUDE) == 0)
6661 {
6662 s->size = dynsymcount * sizeof (Elf_External_Versym);
6663 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6664 if (s->contents == NULL)
6665 return FALSE;
6666
6667 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6668 return FALSE;
6669 }
6670
6671 /* Set the size of the .dynsym and .hash sections. We counted
6672 the number of dynamic symbols in elf_link_add_object_symbols.
6673 We will build the contents of .dynsym and .hash when we build
6674 the final symbol table, because until then we do not know the
6675 correct value to give the symbols. We built the .dynstr
6676 section as we went along in elf_link_add_object_symbols. */
6677 s = elf_hash_table (info)->dynsym;
6678 BFD_ASSERT (s != NULL);
6679 s->size = dynsymcount * bed->s->sizeof_sym;
6680
6681 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6682 if (s->contents == NULL)
6683 return FALSE;
6684
6685 /* The first entry in .dynsym is a dummy symbol. Clear all the
6686 section syms, in case we don't output them all. */
6687 ++section_sym_count;
6688 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6689
6690 elf_hash_table (info)->bucketcount = 0;
6691
6692 /* Compute the size of the hashing table. As a side effect this
6693 computes the hash values for all the names we export. */
6694 if (info->emit_hash)
6695 {
6696 unsigned long int *hashcodes;
6697 struct hash_codes_info hashinf;
6698 bfd_size_type amt;
6699 unsigned long int nsyms;
6700 size_t bucketcount;
6701 size_t hash_entry_size;
6702
6703 /* Compute the hash values for all exported symbols. At the same
6704 time store the values in an array so that we could use them for
6705 optimizations. */
6706 amt = dynsymcount * sizeof (unsigned long int);
6707 hashcodes = (unsigned long int *) bfd_malloc (amt);
6708 if (hashcodes == NULL)
6709 return FALSE;
6710 hashinf.hashcodes = hashcodes;
6711 hashinf.error = FALSE;
6712
6713 /* Put all hash values in HASHCODES. */
6714 elf_link_hash_traverse (elf_hash_table (info),
6715 elf_collect_hash_codes, &hashinf);
6716 if (hashinf.error)
6717 {
6718 free (hashcodes);
6719 return FALSE;
6720 }
6721
6722 nsyms = hashinf.hashcodes - hashcodes;
6723 bucketcount
6724 = compute_bucket_count (info, hashcodes, nsyms, 0);
6725 free (hashcodes);
6726
6727 if (bucketcount == 0)
6728 return FALSE;
6729
6730 elf_hash_table (info)->bucketcount = bucketcount;
6731
6732 s = bfd_get_linker_section (dynobj, ".hash");
6733 BFD_ASSERT (s != NULL);
6734 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6735 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6736 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6737 if (s->contents == NULL)
6738 return FALSE;
6739
6740 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6741 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6742 s->contents + hash_entry_size);
6743 }
6744
6745 if (info->emit_gnu_hash)
6746 {
6747 size_t i, cnt;
6748 unsigned char *contents;
6749 struct collect_gnu_hash_codes cinfo;
6750 bfd_size_type amt;
6751 size_t bucketcount;
6752
6753 memset (&cinfo, 0, sizeof (cinfo));
6754
6755 /* Compute the hash values for all exported symbols. At the same
6756 time store the values in an array so that we could use them for
6757 optimizations. */
6758 amt = dynsymcount * 2 * sizeof (unsigned long int);
6759 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6760 if (cinfo.hashcodes == NULL)
6761 return FALSE;
6762
6763 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6764 cinfo.min_dynindx = -1;
6765 cinfo.output_bfd = output_bfd;
6766 cinfo.bed = bed;
6767
6768 /* Put all hash values in HASHCODES. */
6769 elf_link_hash_traverse (elf_hash_table (info),
6770 elf_collect_gnu_hash_codes, &cinfo);
6771 if (cinfo.error)
6772 {
6773 free (cinfo.hashcodes);
6774 return FALSE;
6775 }
6776
6777 bucketcount
6778 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6779
6780 if (bucketcount == 0)
6781 {
6782 free (cinfo.hashcodes);
6783 return FALSE;
6784 }
6785
6786 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6787 BFD_ASSERT (s != NULL);
6788
6789 if (cinfo.nsyms == 0)
6790 {
6791 /* Empty .gnu.hash section is special. */
6792 BFD_ASSERT (cinfo.min_dynindx == -1);
6793 free (cinfo.hashcodes);
6794 s->size = 5 * 4 + bed->s->arch_size / 8;
6795 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6796 if (contents == NULL)
6797 return FALSE;
6798 s->contents = contents;
6799 /* 1 empty bucket. */
6800 bfd_put_32 (output_bfd, 1, contents);
6801 /* SYMIDX above the special symbol 0. */
6802 bfd_put_32 (output_bfd, 1, contents + 4);
6803 /* Just one word for bitmask. */
6804 bfd_put_32 (output_bfd, 1, contents + 8);
6805 /* Only hash fn bloom filter. */
6806 bfd_put_32 (output_bfd, 0, contents + 12);
6807 /* No hashes are valid - empty bitmask. */
6808 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6809 /* No hashes in the only bucket. */
6810 bfd_put_32 (output_bfd, 0,
6811 contents + 16 + bed->s->arch_size / 8);
6812 }
6813 else
6814 {
6815 unsigned long int maskwords, maskbitslog2, x;
6816 BFD_ASSERT (cinfo.min_dynindx != -1);
6817
6818 x = cinfo.nsyms;
6819 maskbitslog2 = 1;
6820 while ((x >>= 1) != 0)
6821 ++maskbitslog2;
6822 if (maskbitslog2 < 3)
6823 maskbitslog2 = 5;
6824 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6825 maskbitslog2 = maskbitslog2 + 3;
6826 else
6827 maskbitslog2 = maskbitslog2 + 2;
6828 if (bed->s->arch_size == 64)
6829 {
6830 if (maskbitslog2 == 5)
6831 maskbitslog2 = 6;
6832 cinfo.shift1 = 6;
6833 }
6834 else
6835 cinfo.shift1 = 5;
6836 cinfo.mask = (1 << cinfo.shift1) - 1;
6837 cinfo.shift2 = maskbitslog2;
6838 cinfo.maskbits = 1 << maskbitslog2;
6839 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6840 amt = bucketcount * sizeof (unsigned long int) * 2;
6841 amt += maskwords * sizeof (bfd_vma);
6842 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6843 if (cinfo.bitmask == NULL)
6844 {
6845 free (cinfo.hashcodes);
6846 return FALSE;
6847 }
6848
6849 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6850 cinfo.indx = cinfo.counts + bucketcount;
6851 cinfo.symindx = dynsymcount - cinfo.nsyms;
6852 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6853
6854 /* Determine how often each hash bucket is used. */
6855 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6856 for (i = 0; i < cinfo.nsyms; ++i)
6857 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6858
6859 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6860 if (cinfo.counts[i] != 0)
6861 {
6862 cinfo.indx[i] = cnt;
6863 cnt += cinfo.counts[i];
6864 }
6865 BFD_ASSERT (cnt == dynsymcount);
6866 cinfo.bucketcount = bucketcount;
6867 cinfo.local_indx = cinfo.min_dynindx;
6868
6869 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6870 s->size += cinfo.maskbits / 8;
6871 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6872 if (contents == NULL)
6873 {
6874 free (cinfo.bitmask);
6875 free (cinfo.hashcodes);
6876 return FALSE;
6877 }
6878
6879 s->contents = contents;
6880 bfd_put_32 (output_bfd, bucketcount, contents);
6881 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6882 bfd_put_32 (output_bfd, maskwords, contents + 8);
6883 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6884 contents += 16 + cinfo.maskbits / 8;
6885
6886 for (i = 0; i < bucketcount; ++i)
6887 {
6888 if (cinfo.counts[i] == 0)
6889 bfd_put_32 (output_bfd, 0, contents);
6890 else
6891 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6892 contents += 4;
6893 }
6894
6895 cinfo.contents = contents;
6896
6897 /* Renumber dynamic symbols, populate .gnu.hash section. */
6898 elf_link_hash_traverse (elf_hash_table (info),
6899 elf_renumber_gnu_hash_syms, &cinfo);
6900
6901 contents = s->contents + 16;
6902 for (i = 0; i < maskwords; ++i)
6903 {
6904 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6905 contents);
6906 contents += bed->s->arch_size / 8;
6907 }
6908
6909 free (cinfo.bitmask);
6910 free (cinfo.hashcodes);
6911 }
6912 }
6913
6914 s = bfd_get_linker_section (dynobj, ".dynstr");
6915 BFD_ASSERT (s != NULL);
6916
6917 elf_finalize_dynstr (output_bfd, info);
6918
6919 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6920
6921 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6922 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6923 return FALSE;
6924 }
6925
6926 return TRUE;
6927 }
6928 \f
6929 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6930
6931 static void
6932 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6933 asection *sec)
6934 {
6935 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6936 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6937 }
6938
6939 /* Finish SHF_MERGE section merging. */
6940
6941 bfd_boolean
6942 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6943 {
6944 bfd *ibfd;
6945 asection *sec;
6946
6947 if (!is_elf_hash_table (info->hash))
6948 return FALSE;
6949
6950 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6951 if ((ibfd->flags & DYNAMIC) == 0
6952 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6953 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6954 == get_elf_backend_data (obfd)->s->elfclass))
6955 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6956 if ((sec->flags & SEC_MERGE) != 0
6957 && !bfd_is_abs_section (sec->output_section))
6958 {
6959 struct bfd_elf_section_data *secdata;
6960
6961 secdata = elf_section_data (sec);
6962 if (! _bfd_add_merge_section (obfd,
6963 &elf_hash_table (info)->merge_info,
6964 sec, &secdata->sec_info))
6965 return FALSE;
6966 else if (secdata->sec_info)
6967 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6968 }
6969
6970 if (elf_hash_table (info)->merge_info != NULL)
6971 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6972 merge_sections_remove_hook);
6973 return TRUE;
6974 }
6975
6976 /* Create an entry in an ELF linker hash table. */
6977
6978 struct bfd_hash_entry *
6979 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6980 struct bfd_hash_table *table,
6981 const char *string)
6982 {
6983 /* Allocate the structure if it has not already been allocated by a
6984 subclass. */
6985 if (entry == NULL)
6986 {
6987 entry = (struct bfd_hash_entry *)
6988 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6989 if (entry == NULL)
6990 return entry;
6991 }
6992
6993 /* Call the allocation method of the superclass. */
6994 entry = _bfd_link_hash_newfunc (entry, table, string);
6995 if (entry != NULL)
6996 {
6997 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6998 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6999
7000 /* Set local fields. */
7001 ret->indx = -1;
7002 ret->dynindx = -1;
7003 ret->got = htab->init_got_refcount;
7004 ret->plt = htab->init_plt_refcount;
7005 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7006 - offsetof (struct elf_link_hash_entry, size)));
7007 /* Assume that we have been called by a non-ELF symbol reader.
7008 This flag is then reset by the code which reads an ELF input
7009 file. This ensures that a symbol created by a non-ELF symbol
7010 reader will have the flag set correctly. */
7011 ret->non_elf = 1;
7012 }
7013
7014 return entry;
7015 }
7016
7017 /* Copy data from an indirect symbol to its direct symbol, hiding the
7018 old indirect symbol. Also used for copying flags to a weakdef. */
7019
7020 void
7021 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7022 struct elf_link_hash_entry *dir,
7023 struct elf_link_hash_entry *ind)
7024 {
7025 struct elf_link_hash_table *htab;
7026
7027 /* Copy down any references that we may have already seen to the
7028 symbol which just became indirect if DIR isn't a hidden versioned
7029 symbol. */
7030
7031 if (dir->versioned != versioned_hidden)
7032 {
7033 dir->ref_dynamic |= ind->ref_dynamic;
7034 dir->ref_regular |= ind->ref_regular;
7035 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7036 dir->non_got_ref |= ind->non_got_ref;
7037 dir->needs_plt |= ind->needs_plt;
7038 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7039 }
7040
7041 if (ind->root.type != bfd_link_hash_indirect)
7042 return;
7043
7044 /* Copy over the global and procedure linkage table refcount entries.
7045 These may have been already set up by a check_relocs routine. */
7046 htab = elf_hash_table (info);
7047 if (ind->got.refcount > htab->init_got_refcount.refcount)
7048 {
7049 if (dir->got.refcount < 0)
7050 dir->got.refcount = 0;
7051 dir->got.refcount += ind->got.refcount;
7052 ind->got.refcount = htab->init_got_refcount.refcount;
7053 }
7054
7055 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7056 {
7057 if (dir->plt.refcount < 0)
7058 dir->plt.refcount = 0;
7059 dir->plt.refcount += ind->plt.refcount;
7060 ind->plt.refcount = htab->init_plt_refcount.refcount;
7061 }
7062
7063 if (ind->dynindx != -1)
7064 {
7065 if (dir->dynindx != -1)
7066 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7067 dir->dynindx = ind->dynindx;
7068 dir->dynstr_index = ind->dynstr_index;
7069 ind->dynindx = -1;
7070 ind->dynstr_index = 0;
7071 }
7072 }
7073
7074 void
7075 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7076 struct elf_link_hash_entry *h,
7077 bfd_boolean force_local)
7078 {
7079 /* STT_GNU_IFUNC symbol must go through PLT. */
7080 if (h->type != STT_GNU_IFUNC)
7081 {
7082 h->plt = elf_hash_table (info)->init_plt_offset;
7083 h->needs_plt = 0;
7084 }
7085 if (force_local)
7086 {
7087 h->forced_local = 1;
7088 if (h->dynindx != -1)
7089 {
7090 h->dynindx = -1;
7091 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7092 h->dynstr_index);
7093 }
7094 }
7095 }
7096
7097 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7098 caller. */
7099
7100 bfd_boolean
7101 _bfd_elf_link_hash_table_init
7102 (struct elf_link_hash_table *table,
7103 bfd *abfd,
7104 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7105 struct bfd_hash_table *,
7106 const char *),
7107 unsigned int entsize,
7108 enum elf_target_id target_id)
7109 {
7110 bfd_boolean ret;
7111 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7112
7113 table->init_got_refcount.refcount = can_refcount - 1;
7114 table->init_plt_refcount.refcount = can_refcount - 1;
7115 table->init_got_offset.offset = -(bfd_vma) 1;
7116 table->init_plt_offset.offset = -(bfd_vma) 1;
7117 /* The first dynamic symbol is a dummy. */
7118 table->dynsymcount = 1;
7119
7120 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7121
7122 table->root.type = bfd_link_elf_hash_table;
7123 table->hash_table_id = target_id;
7124
7125 return ret;
7126 }
7127
7128 /* Create an ELF linker hash table. */
7129
7130 struct bfd_link_hash_table *
7131 _bfd_elf_link_hash_table_create (bfd *abfd)
7132 {
7133 struct elf_link_hash_table *ret;
7134 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7135
7136 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7137 if (ret == NULL)
7138 return NULL;
7139
7140 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7141 sizeof (struct elf_link_hash_entry),
7142 GENERIC_ELF_DATA))
7143 {
7144 free (ret);
7145 return NULL;
7146 }
7147 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7148
7149 return &ret->root;
7150 }
7151
7152 /* Destroy an ELF linker hash table. */
7153
7154 void
7155 _bfd_elf_link_hash_table_free (bfd *obfd)
7156 {
7157 struct elf_link_hash_table *htab;
7158
7159 htab = (struct elf_link_hash_table *) obfd->link.hash;
7160 if (htab->dynstr != NULL)
7161 _bfd_elf_strtab_free (htab->dynstr);
7162 _bfd_merge_sections_free (htab->merge_info);
7163 _bfd_generic_link_hash_table_free (obfd);
7164 }
7165
7166 /* This is a hook for the ELF emulation code in the generic linker to
7167 tell the backend linker what file name to use for the DT_NEEDED
7168 entry for a dynamic object. */
7169
7170 void
7171 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7172 {
7173 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7174 && bfd_get_format (abfd) == bfd_object)
7175 elf_dt_name (abfd) = name;
7176 }
7177
7178 int
7179 bfd_elf_get_dyn_lib_class (bfd *abfd)
7180 {
7181 int lib_class;
7182 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7183 && bfd_get_format (abfd) == bfd_object)
7184 lib_class = elf_dyn_lib_class (abfd);
7185 else
7186 lib_class = 0;
7187 return lib_class;
7188 }
7189
7190 void
7191 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7192 {
7193 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7194 && bfd_get_format (abfd) == bfd_object)
7195 elf_dyn_lib_class (abfd) = lib_class;
7196 }
7197
7198 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7199 the linker ELF emulation code. */
7200
7201 struct bfd_link_needed_list *
7202 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7203 struct bfd_link_info *info)
7204 {
7205 if (! is_elf_hash_table (info->hash))
7206 return NULL;
7207 return elf_hash_table (info)->needed;
7208 }
7209
7210 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7211 hook for the linker ELF emulation code. */
7212
7213 struct bfd_link_needed_list *
7214 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7215 struct bfd_link_info *info)
7216 {
7217 if (! is_elf_hash_table (info->hash))
7218 return NULL;
7219 return elf_hash_table (info)->runpath;
7220 }
7221
7222 /* Get the name actually used for a dynamic object for a link. This
7223 is the SONAME entry if there is one. Otherwise, it is the string
7224 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7225
7226 const char *
7227 bfd_elf_get_dt_soname (bfd *abfd)
7228 {
7229 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7230 && bfd_get_format (abfd) == bfd_object)
7231 return elf_dt_name (abfd);
7232 return NULL;
7233 }
7234
7235 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7236 the ELF linker emulation code. */
7237
7238 bfd_boolean
7239 bfd_elf_get_bfd_needed_list (bfd *abfd,
7240 struct bfd_link_needed_list **pneeded)
7241 {
7242 asection *s;
7243 bfd_byte *dynbuf = NULL;
7244 unsigned int elfsec;
7245 unsigned long shlink;
7246 bfd_byte *extdyn, *extdynend;
7247 size_t extdynsize;
7248 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7249
7250 *pneeded = NULL;
7251
7252 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7253 || bfd_get_format (abfd) != bfd_object)
7254 return TRUE;
7255
7256 s = bfd_get_section_by_name (abfd, ".dynamic");
7257 if (s == NULL || s->size == 0)
7258 return TRUE;
7259
7260 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7261 goto error_return;
7262
7263 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7264 if (elfsec == SHN_BAD)
7265 goto error_return;
7266
7267 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7268
7269 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7270 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7271
7272 extdyn = dynbuf;
7273 extdynend = extdyn + s->size;
7274 for (; extdyn < extdynend; extdyn += extdynsize)
7275 {
7276 Elf_Internal_Dyn dyn;
7277
7278 (*swap_dyn_in) (abfd, extdyn, &dyn);
7279
7280 if (dyn.d_tag == DT_NULL)
7281 break;
7282
7283 if (dyn.d_tag == DT_NEEDED)
7284 {
7285 const char *string;
7286 struct bfd_link_needed_list *l;
7287 unsigned int tagv = dyn.d_un.d_val;
7288 bfd_size_type amt;
7289
7290 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7291 if (string == NULL)
7292 goto error_return;
7293
7294 amt = sizeof *l;
7295 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7296 if (l == NULL)
7297 goto error_return;
7298
7299 l->by = abfd;
7300 l->name = string;
7301 l->next = *pneeded;
7302 *pneeded = l;
7303 }
7304 }
7305
7306 free (dynbuf);
7307
7308 return TRUE;
7309
7310 error_return:
7311 if (dynbuf != NULL)
7312 free (dynbuf);
7313 return FALSE;
7314 }
7315
7316 struct elf_symbuf_symbol
7317 {
7318 unsigned long st_name; /* Symbol name, index in string tbl */
7319 unsigned char st_info; /* Type and binding attributes */
7320 unsigned char st_other; /* Visibilty, and target specific */
7321 };
7322
7323 struct elf_symbuf_head
7324 {
7325 struct elf_symbuf_symbol *ssym;
7326 size_t count;
7327 unsigned int st_shndx;
7328 };
7329
7330 struct elf_symbol
7331 {
7332 union
7333 {
7334 Elf_Internal_Sym *isym;
7335 struct elf_symbuf_symbol *ssym;
7336 } u;
7337 const char *name;
7338 };
7339
7340 /* Sort references to symbols by ascending section number. */
7341
7342 static int
7343 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7344 {
7345 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7346 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7347
7348 return s1->st_shndx - s2->st_shndx;
7349 }
7350
7351 static int
7352 elf_sym_name_compare (const void *arg1, const void *arg2)
7353 {
7354 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7355 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7356 return strcmp (s1->name, s2->name);
7357 }
7358
7359 static struct elf_symbuf_head *
7360 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7361 {
7362 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7363 struct elf_symbuf_symbol *ssym;
7364 struct elf_symbuf_head *ssymbuf, *ssymhead;
7365 size_t i, shndx_count, total_size;
7366
7367 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7368 if (indbuf == NULL)
7369 return NULL;
7370
7371 for (ind = indbuf, i = 0; i < symcount; i++)
7372 if (isymbuf[i].st_shndx != SHN_UNDEF)
7373 *ind++ = &isymbuf[i];
7374 indbufend = ind;
7375
7376 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7377 elf_sort_elf_symbol);
7378
7379 shndx_count = 0;
7380 if (indbufend > indbuf)
7381 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7382 if (ind[0]->st_shndx != ind[1]->st_shndx)
7383 shndx_count++;
7384
7385 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7386 + (indbufend - indbuf) * sizeof (*ssym));
7387 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7388 if (ssymbuf == NULL)
7389 {
7390 free (indbuf);
7391 return NULL;
7392 }
7393
7394 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7395 ssymbuf->ssym = NULL;
7396 ssymbuf->count = shndx_count;
7397 ssymbuf->st_shndx = 0;
7398 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7399 {
7400 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7401 {
7402 ssymhead++;
7403 ssymhead->ssym = ssym;
7404 ssymhead->count = 0;
7405 ssymhead->st_shndx = (*ind)->st_shndx;
7406 }
7407 ssym->st_name = (*ind)->st_name;
7408 ssym->st_info = (*ind)->st_info;
7409 ssym->st_other = (*ind)->st_other;
7410 ssymhead->count++;
7411 }
7412 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7413 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7414 == total_size));
7415
7416 free (indbuf);
7417 return ssymbuf;
7418 }
7419
7420 /* Check if 2 sections define the same set of local and global
7421 symbols. */
7422
7423 static bfd_boolean
7424 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7425 struct bfd_link_info *info)
7426 {
7427 bfd *bfd1, *bfd2;
7428 const struct elf_backend_data *bed1, *bed2;
7429 Elf_Internal_Shdr *hdr1, *hdr2;
7430 size_t symcount1, symcount2;
7431 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7432 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7433 Elf_Internal_Sym *isym, *isymend;
7434 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7435 size_t count1, count2, i;
7436 unsigned int shndx1, shndx2;
7437 bfd_boolean result;
7438
7439 bfd1 = sec1->owner;
7440 bfd2 = sec2->owner;
7441
7442 /* Both sections have to be in ELF. */
7443 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7444 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7445 return FALSE;
7446
7447 if (elf_section_type (sec1) != elf_section_type (sec2))
7448 return FALSE;
7449
7450 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7451 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7452 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7453 return FALSE;
7454
7455 bed1 = get_elf_backend_data (bfd1);
7456 bed2 = get_elf_backend_data (bfd2);
7457 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7458 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7459 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7460 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7461
7462 if (symcount1 == 0 || symcount2 == 0)
7463 return FALSE;
7464
7465 result = FALSE;
7466 isymbuf1 = NULL;
7467 isymbuf2 = NULL;
7468 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7469 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7470
7471 if (ssymbuf1 == NULL)
7472 {
7473 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7474 NULL, NULL, NULL);
7475 if (isymbuf1 == NULL)
7476 goto done;
7477
7478 if (!info->reduce_memory_overheads)
7479 elf_tdata (bfd1)->symbuf = ssymbuf1
7480 = elf_create_symbuf (symcount1, isymbuf1);
7481 }
7482
7483 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7484 {
7485 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7486 NULL, NULL, NULL);
7487 if (isymbuf2 == NULL)
7488 goto done;
7489
7490 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7491 elf_tdata (bfd2)->symbuf = ssymbuf2
7492 = elf_create_symbuf (symcount2, isymbuf2);
7493 }
7494
7495 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7496 {
7497 /* Optimized faster version. */
7498 size_t lo, hi, mid;
7499 struct elf_symbol *symp;
7500 struct elf_symbuf_symbol *ssym, *ssymend;
7501
7502 lo = 0;
7503 hi = ssymbuf1->count;
7504 ssymbuf1++;
7505 count1 = 0;
7506 while (lo < hi)
7507 {
7508 mid = (lo + hi) / 2;
7509 if (shndx1 < ssymbuf1[mid].st_shndx)
7510 hi = mid;
7511 else if (shndx1 > ssymbuf1[mid].st_shndx)
7512 lo = mid + 1;
7513 else
7514 {
7515 count1 = ssymbuf1[mid].count;
7516 ssymbuf1 += mid;
7517 break;
7518 }
7519 }
7520
7521 lo = 0;
7522 hi = ssymbuf2->count;
7523 ssymbuf2++;
7524 count2 = 0;
7525 while (lo < hi)
7526 {
7527 mid = (lo + hi) / 2;
7528 if (shndx2 < ssymbuf2[mid].st_shndx)
7529 hi = mid;
7530 else if (shndx2 > ssymbuf2[mid].st_shndx)
7531 lo = mid + 1;
7532 else
7533 {
7534 count2 = ssymbuf2[mid].count;
7535 ssymbuf2 += mid;
7536 break;
7537 }
7538 }
7539
7540 if (count1 == 0 || count2 == 0 || count1 != count2)
7541 goto done;
7542
7543 symtable1
7544 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7545 symtable2
7546 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7547 if (symtable1 == NULL || symtable2 == NULL)
7548 goto done;
7549
7550 symp = symtable1;
7551 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7552 ssym < ssymend; ssym++, symp++)
7553 {
7554 symp->u.ssym = ssym;
7555 symp->name = bfd_elf_string_from_elf_section (bfd1,
7556 hdr1->sh_link,
7557 ssym->st_name);
7558 }
7559
7560 symp = symtable2;
7561 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7562 ssym < ssymend; ssym++, symp++)
7563 {
7564 symp->u.ssym = ssym;
7565 symp->name = bfd_elf_string_from_elf_section (bfd2,
7566 hdr2->sh_link,
7567 ssym->st_name);
7568 }
7569
7570 /* Sort symbol by name. */
7571 qsort (symtable1, count1, sizeof (struct elf_symbol),
7572 elf_sym_name_compare);
7573 qsort (symtable2, count1, sizeof (struct elf_symbol),
7574 elf_sym_name_compare);
7575
7576 for (i = 0; i < count1; i++)
7577 /* Two symbols must have the same binding, type and name. */
7578 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7579 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7580 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7581 goto done;
7582
7583 result = TRUE;
7584 goto done;
7585 }
7586
7587 symtable1 = (struct elf_symbol *)
7588 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7589 symtable2 = (struct elf_symbol *)
7590 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7591 if (symtable1 == NULL || symtable2 == NULL)
7592 goto done;
7593
7594 /* Count definitions in the section. */
7595 count1 = 0;
7596 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7597 if (isym->st_shndx == shndx1)
7598 symtable1[count1++].u.isym = isym;
7599
7600 count2 = 0;
7601 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7602 if (isym->st_shndx == shndx2)
7603 symtable2[count2++].u.isym = isym;
7604
7605 if (count1 == 0 || count2 == 0 || count1 != count2)
7606 goto done;
7607
7608 for (i = 0; i < count1; i++)
7609 symtable1[i].name
7610 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7611 symtable1[i].u.isym->st_name);
7612
7613 for (i = 0; i < count2; i++)
7614 symtable2[i].name
7615 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7616 symtable2[i].u.isym->st_name);
7617
7618 /* Sort symbol by name. */
7619 qsort (symtable1, count1, sizeof (struct elf_symbol),
7620 elf_sym_name_compare);
7621 qsort (symtable2, count1, sizeof (struct elf_symbol),
7622 elf_sym_name_compare);
7623
7624 for (i = 0; i < count1; i++)
7625 /* Two symbols must have the same binding, type and name. */
7626 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7627 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7628 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7629 goto done;
7630
7631 result = TRUE;
7632
7633 done:
7634 if (symtable1)
7635 free (symtable1);
7636 if (symtable2)
7637 free (symtable2);
7638 if (isymbuf1)
7639 free (isymbuf1);
7640 if (isymbuf2)
7641 free (isymbuf2);
7642
7643 return result;
7644 }
7645
7646 /* Return TRUE if 2 section types are compatible. */
7647
7648 bfd_boolean
7649 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7650 bfd *bbfd, const asection *bsec)
7651 {
7652 if (asec == NULL
7653 || bsec == NULL
7654 || abfd->xvec->flavour != bfd_target_elf_flavour
7655 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7656 return TRUE;
7657
7658 return elf_section_type (asec) == elf_section_type (bsec);
7659 }
7660 \f
7661 /* Final phase of ELF linker. */
7662
7663 /* A structure we use to avoid passing large numbers of arguments. */
7664
7665 struct elf_final_link_info
7666 {
7667 /* General link information. */
7668 struct bfd_link_info *info;
7669 /* Output BFD. */
7670 bfd *output_bfd;
7671 /* Symbol string table. */
7672 struct elf_strtab_hash *symstrtab;
7673 /* .hash section. */
7674 asection *hash_sec;
7675 /* symbol version section (.gnu.version). */
7676 asection *symver_sec;
7677 /* Buffer large enough to hold contents of any section. */
7678 bfd_byte *contents;
7679 /* Buffer large enough to hold external relocs of any section. */
7680 void *external_relocs;
7681 /* Buffer large enough to hold internal relocs of any section. */
7682 Elf_Internal_Rela *internal_relocs;
7683 /* Buffer large enough to hold external local symbols of any input
7684 BFD. */
7685 bfd_byte *external_syms;
7686 /* And a buffer for symbol section indices. */
7687 Elf_External_Sym_Shndx *locsym_shndx;
7688 /* Buffer large enough to hold internal local symbols of any input
7689 BFD. */
7690 Elf_Internal_Sym *internal_syms;
7691 /* Array large enough to hold a symbol index for each local symbol
7692 of any input BFD. */
7693 long *indices;
7694 /* Array large enough to hold a section pointer for each local
7695 symbol of any input BFD. */
7696 asection **sections;
7697 /* Buffer for SHT_SYMTAB_SHNDX section. */
7698 Elf_External_Sym_Shndx *symshndxbuf;
7699 /* Number of STT_FILE syms seen. */
7700 size_t filesym_count;
7701 };
7702
7703 /* This struct is used to pass information to elf_link_output_extsym. */
7704
7705 struct elf_outext_info
7706 {
7707 bfd_boolean failed;
7708 bfd_boolean localsyms;
7709 bfd_boolean file_sym_done;
7710 struct elf_final_link_info *flinfo;
7711 };
7712
7713
7714 /* Support for evaluating a complex relocation.
7715
7716 Complex relocations are generalized, self-describing relocations. The
7717 implementation of them consists of two parts: complex symbols, and the
7718 relocations themselves.
7719
7720 The relocations are use a reserved elf-wide relocation type code (R_RELC
7721 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7722 information (start bit, end bit, word width, etc) into the addend. This
7723 information is extracted from CGEN-generated operand tables within gas.
7724
7725 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7726 internal) representing prefix-notation expressions, including but not
7727 limited to those sorts of expressions normally encoded as addends in the
7728 addend field. The symbol mangling format is:
7729
7730 <node> := <literal>
7731 | <unary-operator> ':' <node>
7732 | <binary-operator> ':' <node> ':' <node>
7733 ;
7734
7735 <literal> := 's' <digits=N> ':' <N character symbol name>
7736 | 'S' <digits=N> ':' <N character section name>
7737 | '#' <hexdigits>
7738 ;
7739
7740 <binary-operator> := as in C
7741 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7742
7743 static void
7744 set_symbol_value (bfd *bfd_with_globals,
7745 Elf_Internal_Sym *isymbuf,
7746 size_t locsymcount,
7747 size_t symidx,
7748 bfd_vma val)
7749 {
7750 struct elf_link_hash_entry **sym_hashes;
7751 struct elf_link_hash_entry *h;
7752 size_t extsymoff = locsymcount;
7753
7754 if (symidx < locsymcount)
7755 {
7756 Elf_Internal_Sym *sym;
7757
7758 sym = isymbuf + symidx;
7759 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7760 {
7761 /* It is a local symbol: move it to the
7762 "absolute" section and give it a value. */
7763 sym->st_shndx = SHN_ABS;
7764 sym->st_value = val;
7765 return;
7766 }
7767 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7768 extsymoff = 0;
7769 }
7770
7771 /* It is a global symbol: set its link type
7772 to "defined" and give it a value. */
7773
7774 sym_hashes = elf_sym_hashes (bfd_with_globals);
7775 h = sym_hashes [symidx - extsymoff];
7776 while (h->root.type == bfd_link_hash_indirect
7777 || h->root.type == bfd_link_hash_warning)
7778 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7779 h->root.type = bfd_link_hash_defined;
7780 h->root.u.def.value = val;
7781 h->root.u.def.section = bfd_abs_section_ptr;
7782 }
7783
7784 static bfd_boolean
7785 resolve_symbol (const char *name,
7786 bfd *input_bfd,
7787 struct elf_final_link_info *flinfo,
7788 bfd_vma *result,
7789 Elf_Internal_Sym *isymbuf,
7790 size_t locsymcount)
7791 {
7792 Elf_Internal_Sym *sym;
7793 struct bfd_link_hash_entry *global_entry;
7794 const char *candidate = NULL;
7795 Elf_Internal_Shdr *symtab_hdr;
7796 size_t i;
7797
7798 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7799
7800 for (i = 0; i < locsymcount; ++ i)
7801 {
7802 sym = isymbuf + i;
7803
7804 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7805 continue;
7806
7807 candidate = bfd_elf_string_from_elf_section (input_bfd,
7808 symtab_hdr->sh_link,
7809 sym->st_name);
7810 #ifdef DEBUG
7811 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7812 name, candidate, (unsigned long) sym->st_value);
7813 #endif
7814 if (candidate && strcmp (candidate, name) == 0)
7815 {
7816 asection *sec = flinfo->sections [i];
7817
7818 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7819 *result += sec->output_offset + sec->output_section->vma;
7820 #ifdef DEBUG
7821 printf ("Found symbol with value %8.8lx\n",
7822 (unsigned long) *result);
7823 #endif
7824 return TRUE;
7825 }
7826 }
7827
7828 /* Hmm, haven't found it yet. perhaps it is a global. */
7829 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7830 FALSE, FALSE, TRUE);
7831 if (!global_entry)
7832 return FALSE;
7833
7834 if (global_entry->type == bfd_link_hash_defined
7835 || global_entry->type == bfd_link_hash_defweak)
7836 {
7837 *result = (global_entry->u.def.value
7838 + global_entry->u.def.section->output_section->vma
7839 + global_entry->u.def.section->output_offset);
7840 #ifdef DEBUG
7841 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7842 global_entry->root.string, (unsigned long) *result);
7843 #endif
7844 return TRUE;
7845 }
7846
7847 return FALSE;
7848 }
7849
7850 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7851 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7852 names like "foo.end" which is the end address of section "foo". */
7853
7854 static bfd_boolean
7855 resolve_section (const char *name,
7856 asection *sections,
7857 bfd_vma *result,
7858 bfd * abfd)
7859 {
7860 asection *curr;
7861 unsigned int len;
7862
7863 for (curr = sections; curr; curr = curr->next)
7864 if (strcmp (curr->name, name) == 0)
7865 {
7866 *result = curr->vma;
7867 return TRUE;
7868 }
7869
7870 /* Hmm. still haven't found it. try pseudo-section names. */
7871 /* FIXME: This could be coded more efficiently... */
7872 for (curr = sections; curr; curr = curr->next)
7873 {
7874 len = strlen (curr->name);
7875 if (len > strlen (name))
7876 continue;
7877
7878 if (strncmp (curr->name, name, len) == 0)
7879 {
7880 if (strncmp (".end", name + len, 4) == 0)
7881 {
7882 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7883 return TRUE;
7884 }
7885
7886 /* Insert more pseudo-section names here, if you like. */
7887 }
7888 }
7889
7890 return FALSE;
7891 }
7892
7893 static void
7894 undefined_reference (const char *reftype, const char *name)
7895 {
7896 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7897 reftype, name);
7898 }
7899
7900 static bfd_boolean
7901 eval_symbol (bfd_vma *result,
7902 const char **symp,
7903 bfd *input_bfd,
7904 struct elf_final_link_info *flinfo,
7905 bfd_vma dot,
7906 Elf_Internal_Sym *isymbuf,
7907 size_t locsymcount,
7908 int signed_p)
7909 {
7910 size_t len;
7911 size_t symlen;
7912 bfd_vma a;
7913 bfd_vma b;
7914 char symbuf[4096];
7915 const char *sym = *symp;
7916 const char *symend;
7917 bfd_boolean symbol_is_section = FALSE;
7918
7919 len = strlen (sym);
7920 symend = sym + len;
7921
7922 if (len < 1 || len > sizeof (symbuf))
7923 {
7924 bfd_set_error (bfd_error_invalid_operation);
7925 return FALSE;
7926 }
7927
7928 switch (* sym)
7929 {
7930 case '.':
7931 *result = dot;
7932 *symp = sym + 1;
7933 return TRUE;
7934
7935 case '#':
7936 ++sym;
7937 *result = strtoul (sym, (char **) symp, 16);
7938 return TRUE;
7939
7940 case 'S':
7941 symbol_is_section = TRUE;
7942 case 's':
7943 ++sym;
7944 symlen = strtol (sym, (char **) symp, 10);
7945 sym = *symp + 1; /* Skip the trailing ':'. */
7946
7947 if (symend < sym || symlen + 1 > sizeof (symbuf))
7948 {
7949 bfd_set_error (bfd_error_invalid_operation);
7950 return FALSE;
7951 }
7952
7953 memcpy (symbuf, sym, symlen);
7954 symbuf[symlen] = '\0';
7955 *symp = sym + symlen;
7956
7957 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7958 the symbol as a section, or vice-versa. so we're pretty liberal in our
7959 interpretation here; section means "try section first", not "must be a
7960 section", and likewise with symbol. */
7961
7962 if (symbol_is_section)
7963 {
7964 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7965 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7966 isymbuf, locsymcount))
7967 {
7968 undefined_reference ("section", symbuf);
7969 return FALSE;
7970 }
7971 }
7972 else
7973 {
7974 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7975 isymbuf, locsymcount)
7976 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7977 result, input_bfd))
7978 {
7979 undefined_reference ("symbol", symbuf);
7980 return FALSE;
7981 }
7982 }
7983
7984 return TRUE;
7985
7986 /* All that remains are operators. */
7987
7988 #define UNARY_OP(op) \
7989 if (strncmp (sym, #op, strlen (#op)) == 0) \
7990 { \
7991 sym += strlen (#op); \
7992 if (*sym == ':') \
7993 ++sym; \
7994 *symp = sym; \
7995 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7996 isymbuf, locsymcount, signed_p)) \
7997 return FALSE; \
7998 if (signed_p) \
7999 *result = op ((bfd_signed_vma) a); \
8000 else \
8001 *result = op a; \
8002 return TRUE; \
8003 }
8004
8005 #define BINARY_OP(op) \
8006 if (strncmp (sym, #op, strlen (#op)) == 0) \
8007 { \
8008 sym += strlen (#op); \
8009 if (*sym == ':') \
8010 ++sym; \
8011 *symp = sym; \
8012 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8013 isymbuf, locsymcount, signed_p)) \
8014 return FALSE; \
8015 ++*symp; \
8016 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8017 isymbuf, locsymcount, signed_p)) \
8018 return FALSE; \
8019 if (signed_p) \
8020 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8021 else \
8022 *result = a op b; \
8023 return TRUE; \
8024 }
8025
8026 default:
8027 UNARY_OP (0-);
8028 BINARY_OP (<<);
8029 BINARY_OP (>>);
8030 BINARY_OP (==);
8031 BINARY_OP (!=);
8032 BINARY_OP (<=);
8033 BINARY_OP (>=);
8034 BINARY_OP (&&);
8035 BINARY_OP (||);
8036 UNARY_OP (~);
8037 UNARY_OP (!);
8038 BINARY_OP (*);
8039 BINARY_OP (/);
8040 BINARY_OP (%);
8041 BINARY_OP (^);
8042 BINARY_OP (|);
8043 BINARY_OP (&);
8044 BINARY_OP (+);
8045 BINARY_OP (-);
8046 BINARY_OP (<);
8047 BINARY_OP (>);
8048 #undef UNARY_OP
8049 #undef BINARY_OP
8050 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8051 bfd_set_error (bfd_error_invalid_operation);
8052 return FALSE;
8053 }
8054 }
8055
8056 static void
8057 put_value (bfd_vma size,
8058 unsigned long chunksz,
8059 bfd *input_bfd,
8060 bfd_vma x,
8061 bfd_byte *location)
8062 {
8063 location += (size - chunksz);
8064
8065 for (; size; size -= chunksz, location -= chunksz)
8066 {
8067 switch (chunksz)
8068 {
8069 case 1:
8070 bfd_put_8 (input_bfd, x, location);
8071 x >>= 8;
8072 break;
8073 case 2:
8074 bfd_put_16 (input_bfd, x, location);
8075 x >>= 16;
8076 break;
8077 case 4:
8078 bfd_put_32 (input_bfd, x, location);
8079 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8080 x >>= 16;
8081 x >>= 16;
8082 break;
8083 #ifdef BFD64
8084 case 8:
8085 bfd_put_64 (input_bfd, x, location);
8086 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8087 x >>= 32;
8088 x >>= 32;
8089 break;
8090 #endif
8091 default:
8092 abort ();
8093 break;
8094 }
8095 }
8096 }
8097
8098 static bfd_vma
8099 get_value (bfd_vma size,
8100 unsigned long chunksz,
8101 bfd *input_bfd,
8102 bfd_byte *location)
8103 {
8104 int shift;
8105 bfd_vma x = 0;
8106
8107 /* Sanity checks. */
8108 BFD_ASSERT (chunksz <= sizeof (x)
8109 && size >= chunksz
8110 && chunksz != 0
8111 && (size % chunksz) == 0
8112 && input_bfd != NULL
8113 && location != NULL);
8114
8115 if (chunksz == sizeof (x))
8116 {
8117 BFD_ASSERT (size == chunksz);
8118
8119 /* Make sure that we do not perform an undefined shift operation.
8120 We know that size == chunksz so there will only be one iteration
8121 of the loop below. */
8122 shift = 0;
8123 }
8124 else
8125 shift = 8 * chunksz;
8126
8127 for (; size; size -= chunksz, location += chunksz)
8128 {
8129 switch (chunksz)
8130 {
8131 case 1:
8132 x = (x << shift) | bfd_get_8 (input_bfd, location);
8133 break;
8134 case 2:
8135 x = (x << shift) | bfd_get_16 (input_bfd, location);
8136 break;
8137 case 4:
8138 x = (x << shift) | bfd_get_32 (input_bfd, location);
8139 break;
8140 #ifdef BFD64
8141 case 8:
8142 x = (x << shift) | bfd_get_64 (input_bfd, location);
8143 break;
8144 #endif
8145 default:
8146 abort ();
8147 }
8148 }
8149 return x;
8150 }
8151
8152 static void
8153 decode_complex_addend (unsigned long *start, /* in bits */
8154 unsigned long *oplen, /* in bits */
8155 unsigned long *len, /* in bits */
8156 unsigned long *wordsz, /* in bytes */
8157 unsigned long *chunksz, /* in bytes */
8158 unsigned long *lsb0_p,
8159 unsigned long *signed_p,
8160 unsigned long *trunc_p,
8161 unsigned long encoded)
8162 {
8163 * start = encoded & 0x3F;
8164 * len = (encoded >> 6) & 0x3F;
8165 * oplen = (encoded >> 12) & 0x3F;
8166 * wordsz = (encoded >> 18) & 0xF;
8167 * chunksz = (encoded >> 22) & 0xF;
8168 * lsb0_p = (encoded >> 27) & 1;
8169 * signed_p = (encoded >> 28) & 1;
8170 * trunc_p = (encoded >> 29) & 1;
8171 }
8172
8173 bfd_reloc_status_type
8174 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8175 asection *input_section ATTRIBUTE_UNUSED,
8176 bfd_byte *contents,
8177 Elf_Internal_Rela *rel,
8178 bfd_vma relocation)
8179 {
8180 bfd_vma shift, x, mask;
8181 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8182 bfd_reloc_status_type r;
8183
8184 /* Perform this reloc, since it is complex.
8185 (this is not to say that it necessarily refers to a complex
8186 symbol; merely that it is a self-describing CGEN based reloc.
8187 i.e. the addend has the complete reloc information (bit start, end,
8188 word size, etc) encoded within it.). */
8189
8190 decode_complex_addend (&start, &oplen, &len, &wordsz,
8191 &chunksz, &lsb0_p, &signed_p,
8192 &trunc_p, rel->r_addend);
8193
8194 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8195
8196 if (lsb0_p)
8197 shift = (start + 1) - len;
8198 else
8199 shift = (8 * wordsz) - (start + len);
8200
8201 x = get_value (wordsz, chunksz, input_bfd,
8202 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8203
8204 #ifdef DEBUG
8205 printf ("Doing complex reloc: "
8206 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8207 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8208 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8209 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8210 oplen, (unsigned long) x, (unsigned long) mask,
8211 (unsigned long) relocation);
8212 #endif
8213
8214 r = bfd_reloc_ok;
8215 if (! trunc_p)
8216 /* Now do an overflow check. */
8217 r = bfd_check_overflow ((signed_p
8218 ? complain_overflow_signed
8219 : complain_overflow_unsigned),
8220 len, 0, (8 * wordsz),
8221 relocation);
8222
8223 /* Do the deed. */
8224 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8225
8226 #ifdef DEBUG
8227 printf (" relocation: %8.8lx\n"
8228 " shifted mask: %8.8lx\n"
8229 " shifted/masked reloc: %8.8lx\n"
8230 " result: %8.8lx\n",
8231 (unsigned long) relocation, (unsigned long) (mask << shift),
8232 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8233 #endif
8234 put_value (wordsz, chunksz, input_bfd, x,
8235 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8236 return r;
8237 }
8238
8239 /* Functions to read r_offset from external (target order) reloc
8240 entry. Faster than bfd_getl32 et al, because we let the compiler
8241 know the value is aligned. */
8242
8243 static bfd_vma
8244 ext32l_r_offset (const void *p)
8245 {
8246 union aligned32
8247 {
8248 uint32_t v;
8249 unsigned char c[4];
8250 };
8251 const union aligned32 *a
8252 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8253
8254 uint32_t aval = ( (uint32_t) a->c[0]
8255 | (uint32_t) a->c[1] << 8
8256 | (uint32_t) a->c[2] << 16
8257 | (uint32_t) a->c[3] << 24);
8258 return aval;
8259 }
8260
8261 static bfd_vma
8262 ext32b_r_offset (const void *p)
8263 {
8264 union aligned32
8265 {
8266 uint32_t v;
8267 unsigned char c[4];
8268 };
8269 const union aligned32 *a
8270 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8271
8272 uint32_t aval = ( (uint32_t) a->c[0] << 24
8273 | (uint32_t) a->c[1] << 16
8274 | (uint32_t) a->c[2] << 8
8275 | (uint32_t) a->c[3]);
8276 return aval;
8277 }
8278
8279 #ifdef BFD_HOST_64_BIT
8280 static bfd_vma
8281 ext64l_r_offset (const void *p)
8282 {
8283 union aligned64
8284 {
8285 uint64_t v;
8286 unsigned char c[8];
8287 };
8288 const union aligned64 *a
8289 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8290
8291 uint64_t aval = ( (uint64_t) a->c[0]
8292 | (uint64_t) a->c[1] << 8
8293 | (uint64_t) a->c[2] << 16
8294 | (uint64_t) a->c[3] << 24
8295 | (uint64_t) a->c[4] << 32
8296 | (uint64_t) a->c[5] << 40
8297 | (uint64_t) a->c[6] << 48
8298 | (uint64_t) a->c[7] << 56);
8299 return aval;
8300 }
8301
8302 static bfd_vma
8303 ext64b_r_offset (const void *p)
8304 {
8305 union aligned64
8306 {
8307 uint64_t v;
8308 unsigned char c[8];
8309 };
8310 const union aligned64 *a
8311 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8312
8313 uint64_t aval = ( (uint64_t) a->c[0] << 56
8314 | (uint64_t) a->c[1] << 48
8315 | (uint64_t) a->c[2] << 40
8316 | (uint64_t) a->c[3] << 32
8317 | (uint64_t) a->c[4] << 24
8318 | (uint64_t) a->c[5] << 16
8319 | (uint64_t) a->c[6] << 8
8320 | (uint64_t) a->c[7]);
8321 return aval;
8322 }
8323 #endif
8324
8325 /* When performing a relocatable link, the input relocations are
8326 preserved. But, if they reference global symbols, the indices
8327 referenced must be updated. Update all the relocations found in
8328 RELDATA. */
8329
8330 static bfd_boolean
8331 elf_link_adjust_relocs (bfd *abfd,
8332 struct bfd_elf_section_reloc_data *reldata,
8333 bfd_boolean sort)
8334 {
8335 unsigned int i;
8336 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8337 bfd_byte *erela;
8338 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8339 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8340 bfd_vma r_type_mask;
8341 int r_sym_shift;
8342 unsigned int count = reldata->count;
8343 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8344
8345 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8346 {
8347 swap_in = bed->s->swap_reloc_in;
8348 swap_out = bed->s->swap_reloc_out;
8349 }
8350 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8351 {
8352 swap_in = bed->s->swap_reloca_in;
8353 swap_out = bed->s->swap_reloca_out;
8354 }
8355 else
8356 abort ();
8357
8358 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8359 abort ();
8360
8361 if (bed->s->arch_size == 32)
8362 {
8363 r_type_mask = 0xff;
8364 r_sym_shift = 8;
8365 }
8366 else
8367 {
8368 r_type_mask = 0xffffffff;
8369 r_sym_shift = 32;
8370 }
8371
8372 erela = reldata->hdr->contents;
8373 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8374 {
8375 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8376 unsigned int j;
8377
8378 if (*rel_hash == NULL)
8379 continue;
8380
8381 BFD_ASSERT ((*rel_hash)->indx >= 0);
8382
8383 (*swap_in) (abfd, erela, irela);
8384 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8385 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8386 | (irela[j].r_info & r_type_mask));
8387 (*swap_out) (abfd, irela, erela);
8388 }
8389
8390 if (sort && count != 0)
8391 {
8392 bfd_vma (*ext_r_off) (const void *);
8393 bfd_vma r_off;
8394 size_t elt_size;
8395 bfd_byte *base, *end, *p, *loc;
8396 bfd_byte *buf = NULL;
8397
8398 if (bed->s->arch_size == 32)
8399 {
8400 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8401 ext_r_off = ext32l_r_offset;
8402 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8403 ext_r_off = ext32b_r_offset;
8404 else
8405 abort ();
8406 }
8407 else
8408 {
8409 #ifdef BFD_HOST_64_BIT
8410 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8411 ext_r_off = ext64l_r_offset;
8412 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8413 ext_r_off = ext64b_r_offset;
8414 else
8415 #endif
8416 abort ();
8417 }
8418
8419 /* Must use a stable sort here. A modified insertion sort,
8420 since the relocs are mostly sorted already. */
8421 elt_size = reldata->hdr->sh_entsize;
8422 base = reldata->hdr->contents;
8423 end = base + count * elt_size;
8424 if (elt_size > sizeof (Elf64_External_Rela))
8425 abort ();
8426
8427 /* Ensure the first element is lowest. This acts as a sentinel,
8428 speeding the main loop below. */
8429 r_off = (*ext_r_off) (base);
8430 for (p = loc = base; (p += elt_size) < end; )
8431 {
8432 bfd_vma r_off2 = (*ext_r_off) (p);
8433 if (r_off > r_off2)
8434 {
8435 r_off = r_off2;
8436 loc = p;
8437 }
8438 }
8439 if (loc != base)
8440 {
8441 /* Don't just swap *base and *loc as that changes the order
8442 of the original base[0] and base[1] if they happen to
8443 have the same r_offset. */
8444 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8445 memcpy (onebuf, loc, elt_size);
8446 memmove (base + elt_size, base, loc - base);
8447 memcpy (base, onebuf, elt_size);
8448 }
8449
8450 for (p = base + elt_size; (p += elt_size) < end; )
8451 {
8452 /* base to p is sorted, *p is next to insert. */
8453 r_off = (*ext_r_off) (p);
8454 /* Search the sorted region for location to insert. */
8455 loc = p - elt_size;
8456 while (r_off < (*ext_r_off) (loc))
8457 loc -= elt_size;
8458 loc += elt_size;
8459 if (loc != p)
8460 {
8461 /* Chances are there is a run of relocs to insert here,
8462 from one of more input files. Files are not always
8463 linked in order due to the way elf_link_input_bfd is
8464 called. See pr17666. */
8465 size_t sortlen = p - loc;
8466 bfd_vma r_off2 = (*ext_r_off) (loc);
8467 size_t runlen = elt_size;
8468 size_t buf_size = 96 * 1024;
8469 while (p + runlen < end
8470 && (sortlen <= buf_size
8471 || runlen + elt_size <= buf_size)
8472 && r_off2 > (*ext_r_off) (p + runlen))
8473 runlen += elt_size;
8474 if (buf == NULL)
8475 {
8476 buf = bfd_malloc (buf_size);
8477 if (buf == NULL)
8478 return FALSE;
8479 }
8480 if (runlen < sortlen)
8481 {
8482 memcpy (buf, p, runlen);
8483 memmove (loc + runlen, loc, sortlen);
8484 memcpy (loc, buf, runlen);
8485 }
8486 else
8487 {
8488 memcpy (buf, loc, sortlen);
8489 memmove (loc, p, runlen);
8490 memcpy (loc + runlen, buf, sortlen);
8491 }
8492 p += runlen - elt_size;
8493 }
8494 }
8495 /* Hashes are no longer valid. */
8496 free (reldata->hashes);
8497 reldata->hashes = NULL;
8498 free (buf);
8499 }
8500 return TRUE;
8501 }
8502
8503 struct elf_link_sort_rela
8504 {
8505 union {
8506 bfd_vma offset;
8507 bfd_vma sym_mask;
8508 } u;
8509 enum elf_reloc_type_class type;
8510 /* We use this as an array of size int_rels_per_ext_rel. */
8511 Elf_Internal_Rela rela[1];
8512 };
8513
8514 static int
8515 elf_link_sort_cmp1 (const void *A, const void *B)
8516 {
8517 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8518 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8519 int relativea, relativeb;
8520
8521 relativea = a->type == reloc_class_relative;
8522 relativeb = b->type == reloc_class_relative;
8523
8524 if (relativea < relativeb)
8525 return 1;
8526 if (relativea > relativeb)
8527 return -1;
8528 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8529 return -1;
8530 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8531 return 1;
8532 if (a->rela->r_offset < b->rela->r_offset)
8533 return -1;
8534 if (a->rela->r_offset > b->rela->r_offset)
8535 return 1;
8536 return 0;
8537 }
8538
8539 static int
8540 elf_link_sort_cmp2 (const void *A, const void *B)
8541 {
8542 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8543 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8544
8545 if (a->type < b->type)
8546 return -1;
8547 if (a->type > b->type)
8548 return 1;
8549 if (a->u.offset < b->u.offset)
8550 return -1;
8551 if (a->u.offset > b->u.offset)
8552 return 1;
8553 if (a->rela->r_offset < b->rela->r_offset)
8554 return -1;
8555 if (a->rela->r_offset > b->rela->r_offset)
8556 return 1;
8557 return 0;
8558 }
8559
8560 static size_t
8561 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8562 {
8563 asection *dynamic_relocs;
8564 asection *rela_dyn;
8565 asection *rel_dyn;
8566 bfd_size_type count, size;
8567 size_t i, ret, sort_elt, ext_size;
8568 bfd_byte *sort, *s_non_relative, *p;
8569 struct elf_link_sort_rela *sq;
8570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8571 int i2e = bed->s->int_rels_per_ext_rel;
8572 unsigned int opb = bfd_octets_per_byte (abfd);
8573 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8574 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8575 struct bfd_link_order *lo;
8576 bfd_vma r_sym_mask;
8577 bfd_boolean use_rela;
8578
8579 /* Find a dynamic reloc section. */
8580 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8581 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8582 if (rela_dyn != NULL && rela_dyn->size > 0
8583 && rel_dyn != NULL && rel_dyn->size > 0)
8584 {
8585 bfd_boolean use_rela_initialised = FALSE;
8586
8587 /* This is just here to stop gcc from complaining.
8588 Its initialization checking code is not perfect. */
8589 use_rela = TRUE;
8590
8591 /* Both sections are present. Examine the sizes
8592 of the indirect sections to help us choose. */
8593 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8594 if (lo->type == bfd_indirect_link_order)
8595 {
8596 asection *o = lo->u.indirect.section;
8597
8598 if ((o->size % bed->s->sizeof_rela) == 0)
8599 {
8600 if ((o->size % bed->s->sizeof_rel) == 0)
8601 /* Section size is divisible by both rel and rela sizes.
8602 It is of no help to us. */
8603 ;
8604 else
8605 {
8606 /* Section size is only divisible by rela. */
8607 if (use_rela_initialised && (use_rela == FALSE))
8608 {
8609 _bfd_error_handler (_("%B: Unable to sort relocs - "
8610 "they are in more than one size"),
8611 abfd);
8612 bfd_set_error (bfd_error_invalid_operation);
8613 return 0;
8614 }
8615 else
8616 {
8617 use_rela = TRUE;
8618 use_rela_initialised = TRUE;
8619 }
8620 }
8621 }
8622 else if ((o->size % bed->s->sizeof_rel) == 0)
8623 {
8624 /* Section size is only divisible by rel. */
8625 if (use_rela_initialised && (use_rela == TRUE))
8626 {
8627 _bfd_error_handler (_("%B: Unable to sort relocs - "
8628 "they are in more than one size"),
8629 abfd);
8630 bfd_set_error (bfd_error_invalid_operation);
8631 return 0;
8632 }
8633 else
8634 {
8635 use_rela = FALSE;
8636 use_rela_initialised = TRUE;
8637 }
8638 }
8639 else
8640 {
8641 /* The section size is not divisible by either -
8642 something is wrong. */
8643 _bfd_error_handler (_("%B: Unable to sort relocs - "
8644 "they are of an unknown size"), abfd);
8645 bfd_set_error (bfd_error_invalid_operation);
8646 return 0;
8647 }
8648 }
8649
8650 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8651 if (lo->type == bfd_indirect_link_order)
8652 {
8653 asection *o = lo->u.indirect.section;
8654
8655 if ((o->size % bed->s->sizeof_rela) == 0)
8656 {
8657 if ((o->size % bed->s->sizeof_rel) == 0)
8658 /* Section size is divisible by both rel and rela sizes.
8659 It is of no help to us. */
8660 ;
8661 else
8662 {
8663 /* Section size is only divisible by rela. */
8664 if (use_rela_initialised && (use_rela == FALSE))
8665 {
8666 _bfd_error_handler (_("%B: Unable to sort relocs - "
8667 "they are in more than one size"),
8668 abfd);
8669 bfd_set_error (bfd_error_invalid_operation);
8670 return 0;
8671 }
8672 else
8673 {
8674 use_rela = TRUE;
8675 use_rela_initialised = TRUE;
8676 }
8677 }
8678 }
8679 else if ((o->size % bed->s->sizeof_rel) == 0)
8680 {
8681 /* Section size is only divisible by rel. */
8682 if (use_rela_initialised && (use_rela == TRUE))
8683 {
8684 _bfd_error_handler (_("%B: Unable to sort relocs - "
8685 "they are in more than one size"),
8686 abfd);
8687 bfd_set_error (bfd_error_invalid_operation);
8688 return 0;
8689 }
8690 else
8691 {
8692 use_rela = FALSE;
8693 use_rela_initialised = TRUE;
8694 }
8695 }
8696 else
8697 {
8698 /* The section size is not divisible by either -
8699 something is wrong. */
8700 _bfd_error_handler (_("%B: Unable to sort relocs - "
8701 "they are of an unknown size"), abfd);
8702 bfd_set_error (bfd_error_invalid_operation);
8703 return 0;
8704 }
8705 }
8706
8707 if (! use_rela_initialised)
8708 /* Make a guess. */
8709 use_rela = TRUE;
8710 }
8711 else if (rela_dyn != NULL && rela_dyn->size > 0)
8712 use_rela = TRUE;
8713 else if (rel_dyn != NULL && rel_dyn->size > 0)
8714 use_rela = FALSE;
8715 else
8716 return 0;
8717
8718 if (use_rela)
8719 {
8720 dynamic_relocs = rela_dyn;
8721 ext_size = bed->s->sizeof_rela;
8722 swap_in = bed->s->swap_reloca_in;
8723 swap_out = bed->s->swap_reloca_out;
8724 }
8725 else
8726 {
8727 dynamic_relocs = rel_dyn;
8728 ext_size = bed->s->sizeof_rel;
8729 swap_in = bed->s->swap_reloc_in;
8730 swap_out = bed->s->swap_reloc_out;
8731 }
8732
8733 size = 0;
8734 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8735 if (lo->type == bfd_indirect_link_order)
8736 size += lo->u.indirect.section->size;
8737
8738 if (size != dynamic_relocs->size)
8739 return 0;
8740
8741 sort_elt = (sizeof (struct elf_link_sort_rela)
8742 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8743
8744 count = dynamic_relocs->size / ext_size;
8745 if (count == 0)
8746 return 0;
8747 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8748
8749 if (sort == NULL)
8750 {
8751 (*info->callbacks->warning)
8752 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8753 return 0;
8754 }
8755
8756 if (bed->s->arch_size == 32)
8757 r_sym_mask = ~(bfd_vma) 0xff;
8758 else
8759 r_sym_mask = ~(bfd_vma) 0xffffffff;
8760
8761 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8762 if (lo->type == bfd_indirect_link_order)
8763 {
8764 bfd_byte *erel, *erelend;
8765 asection *o = lo->u.indirect.section;
8766
8767 if (o->contents == NULL && o->size != 0)
8768 {
8769 /* This is a reloc section that is being handled as a normal
8770 section. See bfd_section_from_shdr. We can't combine
8771 relocs in this case. */
8772 free (sort);
8773 return 0;
8774 }
8775 erel = o->contents;
8776 erelend = o->contents + o->size;
8777 p = sort + o->output_offset * opb / ext_size * sort_elt;
8778
8779 while (erel < erelend)
8780 {
8781 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8782
8783 (*swap_in) (abfd, erel, s->rela);
8784 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8785 s->u.sym_mask = r_sym_mask;
8786 p += sort_elt;
8787 erel += ext_size;
8788 }
8789 }
8790
8791 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8792
8793 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8794 {
8795 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8796 if (s->type != reloc_class_relative)
8797 break;
8798 }
8799 ret = i;
8800 s_non_relative = p;
8801
8802 sq = (struct elf_link_sort_rela *) s_non_relative;
8803 for (; i < count; i++, p += sort_elt)
8804 {
8805 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8806 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8807 sq = sp;
8808 sp->u.offset = sq->rela->r_offset;
8809 }
8810
8811 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8812
8813 struct elf_link_hash_table *htab = elf_hash_table (info);
8814 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8815 {
8816 /* We have plt relocs in .rela.dyn. */
8817 sq = (struct elf_link_sort_rela *) sort;
8818 for (i = 0; i < count; i++)
8819 if (sq[count - i - 1].type != reloc_class_plt)
8820 break;
8821 if (i != 0 && htab->srelplt->size == i * ext_size)
8822 {
8823 struct bfd_link_order **plo;
8824 /* Put srelplt link_order last. This is so the output_offset
8825 set in the next loop is correct for DT_JMPREL. */
8826 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8827 if ((*plo)->type == bfd_indirect_link_order
8828 && (*plo)->u.indirect.section == htab->srelplt)
8829 {
8830 lo = *plo;
8831 *plo = lo->next;
8832 }
8833 else
8834 plo = &(*plo)->next;
8835 *plo = lo;
8836 lo->next = NULL;
8837 dynamic_relocs->map_tail.link_order = lo;
8838 }
8839 }
8840
8841 p = sort;
8842 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8843 if (lo->type == bfd_indirect_link_order)
8844 {
8845 bfd_byte *erel, *erelend;
8846 asection *o = lo->u.indirect.section;
8847
8848 erel = o->contents;
8849 erelend = o->contents + o->size;
8850 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8851 while (erel < erelend)
8852 {
8853 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8854 (*swap_out) (abfd, s->rela, erel);
8855 p += sort_elt;
8856 erel += ext_size;
8857 }
8858 }
8859
8860 free (sort);
8861 *psec = dynamic_relocs;
8862 return ret;
8863 }
8864
8865 /* Add a symbol to the output symbol string table. */
8866
8867 static int
8868 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8869 const char *name,
8870 Elf_Internal_Sym *elfsym,
8871 asection *input_sec,
8872 struct elf_link_hash_entry *h)
8873 {
8874 int (*output_symbol_hook)
8875 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8876 struct elf_link_hash_entry *);
8877 struct elf_link_hash_table *hash_table;
8878 const struct elf_backend_data *bed;
8879 bfd_size_type strtabsize;
8880
8881 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8882
8883 bed = get_elf_backend_data (flinfo->output_bfd);
8884 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8885 if (output_symbol_hook != NULL)
8886 {
8887 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8888 if (ret != 1)
8889 return ret;
8890 }
8891
8892 if (name == NULL
8893 || *name == '\0'
8894 || (input_sec->flags & SEC_EXCLUDE))
8895 elfsym->st_name = (unsigned long) -1;
8896 else
8897 {
8898 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8899 to get the final offset for st_name. */
8900 elfsym->st_name
8901 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8902 name, FALSE);
8903 if (elfsym->st_name == (unsigned long) -1)
8904 return 0;
8905 }
8906
8907 hash_table = elf_hash_table (flinfo->info);
8908 strtabsize = hash_table->strtabsize;
8909 if (strtabsize <= hash_table->strtabcount)
8910 {
8911 strtabsize += strtabsize;
8912 hash_table->strtabsize = strtabsize;
8913 strtabsize *= sizeof (*hash_table->strtab);
8914 hash_table->strtab
8915 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8916 strtabsize);
8917 if (hash_table->strtab == NULL)
8918 return 0;
8919 }
8920 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8921 hash_table->strtab[hash_table->strtabcount].dest_index
8922 = hash_table->strtabcount;
8923 hash_table->strtab[hash_table->strtabcount].destshndx_index
8924 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8925
8926 bfd_get_symcount (flinfo->output_bfd) += 1;
8927 hash_table->strtabcount += 1;
8928
8929 return 1;
8930 }
8931
8932 /* Swap symbols out to the symbol table and flush the output symbols to
8933 the file. */
8934
8935 static bfd_boolean
8936 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8937 {
8938 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8939 bfd_size_type amt;
8940 size_t i;
8941 const struct elf_backend_data *bed;
8942 bfd_byte *symbuf;
8943 Elf_Internal_Shdr *hdr;
8944 file_ptr pos;
8945 bfd_boolean ret;
8946
8947 if (!hash_table->strtabcount)
8948 return TRUE;
8949
8950 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8951
8952 bed = get_elf_backend_data (flinfo->output_bfd);
8953
8954 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8955 symbuf = (bfd_byte *) bfd_malloc (amt);
8956 if (symbuf == NULL)
8957 return FALSE;
8958
8959 if (flinfo->symshndxbuf)
8960 {
8961 amt = sizeof (Elf_External_Sym_Shndx);
8962 amt *= bfd_get_symcount (flinfo->output_bfd);
8963 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8964 if (flinfo->symshndxbuf == NULL)
8965 {
8966 free (symbuf);
8967 return FALSE;
8968 }
8969 }
8970
8971 for (i = 0; i < hash_table->strtabcount; i++)
8972 {
8973 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8974 if (elfsym->sym.st_name == (unsigned long) -1)
8975 elfsym->sym.st_name = 0;
8976 else
8977 elfsym->sym.st_name
8978 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8979 elfsym->sym.st_name);
8980 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8981 ((bfd_byte *) symbuf
8982 + (elfsym->dest_index
8983 * bed->s->sizeof_sym)),
8984 (flinfo->symshndxbuf
8985 + elfsym->destshndx_index));
8986 }
8987
8988 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8989 pos = hdr->sh_offset + hdr->sh_size;
8990 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8991 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8992 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8993 {
8994 hdr->sh_size += amt;
8995 ret = TRUE;
8996 }
8997 else
8998 ret = FALSE;
8999
9000 free (symbuf);
9001
9002 free (hash_table->strtab);
9003 hash_table->strtab = NULL;
9004
9005 return ret;
9006 }
9007
9008 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9009
9010 static bfd_boolean
9011 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9012 {
9013 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9014 && sym->st_shndx < SHN_LORESERVE)
9015 {
9016 /* The gABI doesn't support dynamic symbols in output sections
9017 beyond 64k. */
9018 (*_bfd_error_handler)
9019 (_("%B: Too many sections: %d (>= %d)"),
9020 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9021 bfd_set_error (bfd_error_nonrepresentable_section);
9022 return FALSE;
9023 }
9024 return TRUE;
9025 }
9026
9027 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9028 allowing an unsatisfied unversioned symbol in the DSO to match a
9029 versioned symbol that would normally require an explicit version.
9030 We also handle the case that a DSO references a hidden symbol
9031 which may be satisfied by a versioned symbol in another DSO. */
9032
9033 static bfd_boolean
9034 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9035 const struct elf_backend_data *bed,
9036 struct elf_link_hash_entry *h)
9037 {
9038 bfd *abfd;
9039 struct elf_link_loaded_list *loaded;
9040
9041 if (!is_elf_hash_table (info->hash))
9042 return FALSE;
9043
9044 /* Check indirect symbol. */
9045 while (h->root.type == bfd_link_hash_indirect)
9046 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9047
9048 switch (h->root.type)
9049 {
9050 default:
9051 abfd = NULL;
9052 break;
9053
9054 case bfd_link_hash_undefined:
9055 case bfd_link_hash_undefweak:
9056 abfd = h->root.u.undef.abfd;
9057 if (abfd == NULL
9058 || (abfd->flags & DYNAMIC) == 0
9059 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9060 return FALSE;
9061 break;
9062
9063 case bfd_link_hash_defined:
9064 case bfd_link_hash_defweak:
9065 abfd = h->root.u.def.section->owner;
9066 break;
9067
9068 case bfd_link_hash_common:
9069 abfd = h->root.u.c.p->section->owner;
9070 break;
9071 }
9072 BFD_ASSERT (abfd != NULL);
9073
9074 for (loaded = elf_hash_table (info)->loaded;
9075 loaded != NULL;
9076 loaded = loaded->next)
9077 {
9078 bfd *input;
9079 Elf_Internal_Shdr *hdr;
9080 size_t symcount;
9081 size_t extsymcount;
9082 size_t extsymoff;
9083 Elf_Internal_Shdr *versymhdr;
9084 Elf_Internal_Sym *isym;
9085 Elf_Internal_Sym *isymend;
9086 Elf_Internal_Sym *isymbuf;
9087 Elf_External_Versym *ever;
9088 Elf_External_Versym *extversym;
9089
9090 input = loaded->abfd;
9091
9092 /* We check each DSO for a possible hidden versioned definition. */
9093 if (input == abfd
9094 || (input->flags & DYNAMIC) == 0
9095 || elf_dynversym (input) == 0)
9096 continue;
9097
9098 hdr = &elf_tdata (input)->dynsymtab_hdr;
9099
9100 symcount = hdr->sh_size / bed->s->sizeof_sym;
9101 if (elf_bad_symtab (input))
9102 {
9103 extsymcount = symcount;
9104 extsymoff = 0;
9105 }
9106 else
9107 {
9108 extsymcount = symcount - hdr->sh_info;
9109 extsymoff = hdr->sh_info;
9110 }
9111
9112 if (extsymcount == 0)
9113 continue;
9114
9115 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9116 NULL, NULL, NULL);
9117 if (isymbuf == NULL)
9118 return FALSE;
9119
9120 /* Read in any version definitions. */
9121 versymhdr = &elf_tdata (input)->dynversym_hdr;
9122 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9123 if (extversym == NULL)
9124 goto error_ret;
9125
9126 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9127 || (bfd_bread (extversym, versymhdr->sh_size, input)
9128 != versymhdr->sh_size))
9129 {
9130 free (extversym);
9131 error_ret:
9132 free (isymbuf);
9133 return FALSE;
9134 }
9135
9136 ever = extversym + extsymoff;
9137 isymend = isymbuf + extsymcount;
9138 for (isym = isymbuf; isym < isymend; isym++, ever++)
9139 {
9140 const char *name;
9141 Elf_Internal_Versym iver;
9142 unsigned short version_index;
9143
9144 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9145 || isym->st_shndx == SHN_UNDEF)
9146 continue;
9147
9148 name = bfd_elf_string_from_elf_section (input,
9149 hdr->sh_link,
9150 isym->st_name);
9151 if (strcmp (name, h->root.root.string) != 0)
9152 continue;
9153
9154 _bfd_elf_swap_versym_in (input, ever, &iver);
9155
9156 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9157 && !(h->def_regular
9158 && h->forced_local))
9159 {
9160 /* If we have a non-hidden versioned sym, then it should
9161 have provided a definition for the undefined sym unless
9162 it is defined in a non-shared object and forced local.
9163 */
9164 abort ();
9165 }
9166
9167 version_index = iver.vs_vers & VERSYM_VERSION;
9168 if (version_index == 1 || version_index == 2)
9169 {
9170 /* This is the base or first version. We can use it. */
9171 free (extversym);
9172 free (isymbuf);
9173 return TRUE;
9174 }
9175 }
9176
9177 free (extversym);
9178 free (isymbuf);
9179 }
9180
9181 return FALSE;
9182 }
9183
9184 /* Convert ELF common symbol TYPE. */
9185
9186 static int
9187 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9188 {
9189 /* Commom symbol can only appear in relocatable link. */
9190 if (!bfd_link_relocatable (info))
9191 abort ();
9192 switch (info->elf_stt_common)
9193 {
9194 case unchanged:
9195 break;
9196 case elf_stt_common:
9197 type = STT_COMMON;
9198 break;
9199 case no_elf_stt_common:
9200 type = STT_OBJECT;
9201 break;
9202 }
9203 return type;
9204 }
9205
9206 /* Add an external symbol to the symbol table. This is called from
9207 the hash table traversal routine. When generating a shared object,
9208 we go through the symbol table twice. The first time we output
9209 anything that might have been forced to local scope in a version
9210 script. The second time we output the symbols that are still
9211 global symbols. */
9212
9213 static bfd_boolean
9214 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9215 {
9216 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9217 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9218 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9219 bfd_boolean strip;
9220 Elf_Internal_Sym sym;
9221 asection *input_sec;
9222 const struct elf_backend_data *bed;
9223 long indx;
9224 int ret;
9225 unsigned int type;
9226 /* A symbol is bound locally if it is forced local or it is locally
9227 defined, hidden versioned, not referenced by shared library and
9228 not exported when linking executable. */
9229 bfd_boolean local_bind = (h->forced_local
9230 || (bfd_link_executable (flinfo->info)
9231 && !flinfo->info->export_dynamic
9232 && !h->dynamic
9233 && !h->ref_dynamic
9234 && h->def_regular
9235 && h->versioned == versioned_hidden));
9236
9237 if (h->root.type == bfd_link_hash_warning)
9238 {
9239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9240 if (h->root.type == bfd_link_hash_new)
9241 return TRUE;
9242 }
9243
9244 /* Decide whether to output this symbol in this pass. */
9245 if (eoinfo->localsyms)
9246 {
9247 if (!local_bind)
9248 return TRUE;
9249 }
9250 else
9251 {
9252 if (local_bind)
9253 return TRUE;
9254 }
9255
9256 bed = get_elf_backend_data (flinfo->output_bfd);
9257
9258 if (h->root.type == bfd_link_hash_undefined)
9259 {
9260 /* If we have an undefined symbol reference here then it must have
9261 come from a shared library that is being linked in. (Undefined
9262 references in regular files have already been handled unless
9263 they are in unreferenced sections which are removed by garbage
9264 collection). */
9265 bfd_boolean ignore_undef = FALSE;
9266
9267 /* Some symbols may be special in that the fact that they're
9268 undefined can be safely ignored - let backend determine that. */
9269 if (bed->elf_backend_ignore_undef_symbol)
9270 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9271
9272 /* If we are reporting errors for this situation then do so now. */
9273 if (!ignore_undef
9274 && h->ref_dynamic
9275 && (!h->ref_regular || flinfo->info->gc_sections)
9276 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9277 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9278 (*flinfo->info->callbacks->undefined_symbol)
9279 (flinfo->info, h->root.root.string,
9280 h->ref_regular ? NULL : h->root.u.undef.abfd,
9281 NULL, 0,
9282 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9283
9284 /* Strip a global symbol defined in a discarded section. */
9285 if (h->indx == -3)
9286 return TRUE;
9287 }
9288
9289 /* We should also warn if a forced local symbol is referenced from
9290 shared libraries. */
9291 if (bfd_link_executable (flinfo->info)
9292 && h->forced_local
9293 && h->ref_dynamic
9294 && h->def_regular
9295 && !h->dynamic_def
9296 && h->ref_dynamic_nonweak
9297 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9298 {
9299 bfd *def_bfd;
9300 const char *msg;
9301 struct elf_link_hash_entry *hi = h;
9302
9303 /* Check indirect symbol. */
9304 while (hi->root.type == bfd_link_hash_indirect)
9305 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9306
9307 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9308 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9309 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9310 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9311 else
9312 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9313 def_bfd = flinfo->output_bfd;
9314 if (hi->root.u.def.section != bfd_abs_section_ptr)
9315 def_bfd = hi->root.u.def.section->owner;
9316 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9317 h->root.root.string);
9318 bfd_set_error (bfd_error_bad_value);
9319 eoinfo->failed = TRUE;
9320 return FALSE;
9321 }
9322
9323 /* We don't want to output symbols that have never been mentioned by
9324 a regular file, or that we have been told to strip. However, if
9325 h->indx is set to -2, the symbol is used by a reloc and we must
9326 output it. */
9327 strip = FALSE;
9328 if (h->indx == -2)
9329 ;
9330 else if ((h->def_dynamic
9331 || h->ref_dynamic
9332 || h->root.type == bfd_link_hash_new)
9333 && !h->def_regular
9334 && !h->ref_regular)
9335 strip = TRUE;
9336 else if (flinfo->info->strip == strip_all)
9337 strip = TRUE;
9338 else if (flinfo->info->strip == strip_some
9339 && bfd_hash_lookup (flinfo->info->keep_hash,
9340 h->root.root.string, FALSE, FALSE) == NULL)
9341 strip = TRUE;
9342 else if ((h->root.type == bfd_link_hash_defined
9343 || h->root.type == bfd_link_hash_defweak)
9344 && ((flinfo->info->strip_discarded
9345 && discarded_section (h->root.u.def.section))
9346 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9347 && h->root.u.def.section->owner != NULL
9348 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9349 strip = TRUE;
9350 else if ((h->root.type == bfd_link_hash_undefined
9351 || h->root.type == bfd_link_hash_undefweak)
9352 && h->root.u.undef.abfd != NULL
9353 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9354 strip = TRUE;
9355
9356 type = h->type;
9357
9358 /* If we're stripping it, and it's not a dynamic symbol, there's
9359 nothing else to do. However, if it is a forced local symbol or
9360 an ifunc symbol we need to give the backend finish_dynamic_symbol
9361 function a chance to make it dynamic. */
9362 if (strip
9363 && h->dynindx == -1
9364 && type != STT_GNU_IFUNC
9365 && !h->forced_local)
9366 return TRUE;
9367
9368 sym.st_value = 0;
9369 sym.st_size = h->size;
9370 sym.st_other = h->other;
9371 switch (h->root.type)
9372 {
9373 default:
9374 case bfd_link_hash_new:
9375 case bfd_link_hash_warning:
9376 abort ();
9377 return FALSE;
9378
9379 case bfd_link_hash_undefined:
9380 case bfd_link_hash_undefweak:
9381 input_sec = bfd_und_section_ptr;
9382 sym.st_shndx = SHN_UNDEF;
9383 break;
9384
9385 case bfd_link_hash_defined:
9386 case bfd_link_hash_defweak:
9387 {
9388 input_sec = h->root.u.def.section;
9389 if (input_sec->output_section != NULL)
9390 {
9391 sym.st_shndx =
9392 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9393 input_sec->output_section);
9394 if (sym.st_shndx == SHN_BAD)
9395 {
9396 (*_bfd_error_handler)
9397 (_("%B: could not find output section %A for input section %A"),
9398 flinfo->output_bfd, input_sec->output_section, input_sec);
9399 bfd_set_error (bfd_error_nonrepresentable_section);
9400 eoinfo->failed = TRUE;
9401 return FALSE;
9402 }
9403
9404 /* ELF symbols in relocatable files are section relative,
9405 but in nonrelocatable files they are virtual
9406 addresses. */
9407 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9408 if (!bfd_link_relocatable (flinfo->info))
9409 {
9410 sym.st_value += input_sec->output_section->vma;
9411 if (h->type == STT_TLS)
9412 {
9413 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9414 if (tls_sec != NULL)
9415 sym.st_value -= tls_sec->vma;
9416 }
9417 }
9418 }
9419 else
9420 {
9421 BFD_ASSERT (input_sec->owner == NULL
9422 || (input_sec->owner->flags & DYNAMIC) != 0);
9423 sym.st_shndx = SHN_UNDEF;
9424 input_sec = bfd_und_section_ptr;
9425 }
9426 }
9427 break;
9428
9429 case bfd_link_hash_common:
9430 input_sec = h->root.u.c.p->section;
9431 sym.st_shndx = bed->common_section_index (input_sec);
9432 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9433 break;
9434
9435 case bfd_link_hash_indirect:
9436 /* These symbols are created by symbol versioning. They point
9437 to the decorated version of the name. For example, if the
9438 symbol foo@@GNU_1.2 is the default, which should be used when
9439 foo is used with no version, then we add an indirect symbol
9440 foo which points to foo@@GNU_1.2. We ignore these symbols,
9441 since the indirected symbol is already in the hash table. */
9442 return TRUE;
9443 }
9444
9445 if (type == STT_COMMON || type == STT_OBJECT)
9446 switch (h->root.type)
9447 {
9448 case bfd_link_hash_common:
9449 type = elf_link_convert_common_type (flinfo->info, type);
9450 break;
9451 case bfd_link_hash_defined:
9452 case bfd_link_hash_defweak:
9453 if (bed->common_definition (&sym))
9454 type = elf_link_convert_common_type (flinfo->info, type);
9455 else
9456 type = STT_OBJECT;
9457 break;
9458 case bfd_link_hash_undefined:
9459 case bfd_link_hash_undefweak:
9460 break;
9461 default:
9462 abort ();
9463 }
9464
9465 if (local_bind)
9466 {
9467 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9468 /* Turn off visibility on local symbol. */
9469 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9470 }
9471 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9472 else if (h->unique_global && h->def_regular)
9473 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9474 else if (h->root.type == bfd_link_hash_undefweak
9475 || h->root.type == bfd_link_hash_defweak)
9476 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9477 else
9478 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9479 sym.st_target_internal = h->target_internal;
9480
9481 /* Give the processor backend a chance to tweak the symbol value,
9482 and also to finish up anything that needs to be done for this
9483 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9484 forced local syms when non-shared is due to a historical quirk.
9485 STT_GNU_IFUNC symbol must go through PLT. */
9486 if ((h->type == STT_GNU_IFUNC
9487 && h->def_regular
9488 && !bfd_link_relocatable (flinfo->info))
9489 || ((h->dynindx != -1
9490 || h->forced_local)
9491 && ((bfd_link_pic (flinfo->info)
9492 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9493 || h->root.type != bfd_link_hash_undefweak))
9494 || !h->forced_local)
9495 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9496 {
9497 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9498 (flinfo->output_bfd, flinfo->info, h, &sym)))
9499 {
9500 eoinfo->failed = TRUE;
9501 return FALSE;
9502 }
9503 }
9504
9505 /* If we are marking the symbol as undefined, and there are no
9506 non-weak references to this symbol from a regular object, then
9507 mark the symbol as weak undefined; if there are non-weak
9508 references, mark the symbol as strong. We can't do this earlier,
9509 because it might not be marked as undefined until the
9510 finish_dynamic_symbol routine gets through with it. */
9511 if (sym.st_shndx == SHN_UNDEF
9512 && h->ref_regular
9513 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9514 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9515 {
9516 int bindtype;
9517 type = ELF_ST_TYPE (sym.st_info);
9518
9519 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9520 if (type == STT_GNU_IFUNC)
9521 type = STT_FUNC;
9522
9523 if (h->ref_regular_nonweak)
9524 bindtype = STB_GLOBAL;
9525 else
9526 bindtype = STB_WEAK;
9527 sym.st_info = ELF_ST_INFO (bindtype, type);
9528 }
9529
9530 /* If this is a symbol defined in a dynamic library, don't use the
9531 symbol size from the dynamic library. Relinking an executable
9532 against a new library may introduce gratuitous changes in the
9533 executable's symbols if we keep the size. */
9534 if (sym.st_shndx == SHN_UNDEF
9535 && !h->def_regular
9536 && h->def_dynamic)
9537 sym.st_size = 0;
9538
9539 /* If a non-weak symbol with non-default visibility is not defined
9540 locally, it is a fatal error. */
9541 if (!bfd_link_relocatable (flinfo->info)
9542 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9543 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9544 && h->root.type == bfd_link_hash_undefined
9545 && !h->def_regular)
9546 {
9547 const char *msg;
9548
9549 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9550 msg = _("%B: protected symbol `%s' isn't defined");
9551 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9552 msg = _("%B: internal symbol `%s' isn't defined");
9553 else
9554 msg = _("%B: hidden symbol `%s' isn't defined");
9555 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9556 bfd_set_error (bfd_error_bad_value);
9557 eoinfo->failed = TRUE;
9558 return FALSE;
9559 }
9560
9561 /* If this symbol should be put in the .dynsym section, then put it
9562 there now. We already know the symbol index. We also fill in
9563 the entry in the .hash section. */
9564 if (elf_hash_table (flinfo->info)->dynsym != NULL
9565 && h->dynindx != -1
9566 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9567 {
9568 bfd_byte *esym;
9569
9570 /* Since there is no version information in the dynamic string,
9571 if there is no version info in symbol version section, we will
9572 have a run-time problem if not linking executable, referenced
9573 by shared library, not locally defined, or not bound locally.
9574 */
9575 if (h->verinfo.verdef == NULL
9576 && !local_bind
9577 && (!bfd_link_executable (flinfo->info)
9578 || h->ref_dynamic
9579 || !h->def_regular))
9580 {
9581 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9582
9583 if (p && p [1] != '\0')
9584 {
9585 (*_bfd_error_handler)
9586 (_("%B: No symbol version section for versioned symbol `%s'"),
9587 flinfo->output_bfd, h->root.root.string);
9588 eoinfo->failed = TRUE;
9589 return FALSE;
9590 }
9591 }
9592
9593 sym.st_name = h->dynstr_index;
9594 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9595 + h->dynindx * bed->s->sizeof_sym);
9596 if (!check_dynsym (flinfo->output_bfd, &sym))
9597 {
9598 eoinfo->failed = TRUE;
9599 return FALSE;
9600 }
9601 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9602
9603 if (flinfo->hash_sec != NULL)
9604 {
9605 size_t hash_entry_size;
9606 bfd_byte *bucketpos;
9607 bfd_vma chain;
9608 size_t bucketcount;
9609 size_t bucket;
9610
9611 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9612 bucket = h->u.elf_hash_value % bucketcount;
9613
9614 hash_entry_size
9615 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9616 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9617 + (bucket + 2) * hash_entry_size);
9618 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9619 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9620 bucketpos);
9621 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9622 ((bfd_byte *) flinfo->hash_sec->contents
9623 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9624 }
9625
9626 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9627 {
9628 Elf_Internal_Versym iversym;
9629 Elf_External_Versym *eversym;
9630
9631 if (!h->def_regular)
9632 {
9633 if (h->verinfo.verdef == NULL
9634 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9635 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9636 iversym.vs_vers = 0;
9637 else
9638 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9639 }
9640 else
9641 {
9642 if (h->verinfo.vertree == NULL)
9643 iversym.vs_vers = 1;
9644 else
9645 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9646 if (flinfo->info->create_default_symver)
9647 iversym.vs_vers++;
9648 }
9649
9650 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9651 defined locally. */
9652 if (h->versioned == versioned_hidden && h->def_regular)
9653 iversym.vs_vers |= VERSYM_HIDDEN;
9654
9655 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9656 eversym += h->dynindx;
9657 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9658 }
9659 }
9660
9661 /* If the symbol is undefined, and we didn't output it to .dynsym,
9662 strip it from .symtab too. Obviously we can't do this for
9663 relocatable output or when needed for --emit-relocs. */
9664 else if (input_sec == bfd_und_section_ptr
9665 && h->indx != -2
9666 && !bfd_link_relocatable (flinfo->info))
9667 return TRUE;
9668 /* Also strip others that we couldn't earlier due to dynamic symbol
9669 processing. */
9670 if (strip)
9671 return TRUE;
9672 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9673 return TRUE;
9674
9675 /* Output a FILE symbol so that following locals are not associated
9676 with the wrong input file. We need one for forced local symbols
9677 if we've seen more than one FILE symbol or when we have exactly
9678 one FILE symbol but global symbols are present in a file other
9679 than the one with the FILE symbol. We also need one if linker
9680 defined symbols are present. In practice these conditions are
9681 always met, so just emit the FILE symbol unconditionally. */
9682 if (eoinfo->localsyms
9683 && !eoinfo->file_sym_done
9684 && eoinfo->flinfo->filesym_count != 0)
9685 {
9686 Elf_Internal_Sym fsym;
9687
9688 memset (&fsym, 0, sizeof (fsym));
9689 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9690 fsym.st_shndx = SHN_ABS;
9691 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9692 bfd_und_section_ptr, NULL))
9693 return FALSE;
9694
9695 eoinfo->file_sym_done = TRUE;
9696 }
9697
9698 indx = bfd_get_symcount (flinfo->output_bfd);
9699 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9700 input_sec, h);
9701 if (ret == 0)
9702 {
9703 eoinfo->failed = TRUE;
9704 return FALSE;
9705 }
9706 else if (ret == 1)
9707 h->indx = indx;
9708 else if (h->indx == -2)
9709 abort();
9710
9711 return TRUE;
9712 }
9713
9714 /* Return TRUE if special handling is done for relocs in SEC against
9715 symbols defined in discarded sections. */
9716
9717 static bfd_boolean
9718 elf_section_ignore_discarded_relocs (asection *sec)
9719 {
9720 const struct elf_backend_data *bed;
9721
9722 switch (sec->sec_info_type)
9723 {
9724 case SEC_INFO_TYPE_STABS:
9725 case SEC_INFO_TYPE_EH_FRAME:
9726 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9727 return TRUE;
9728 default:
9729 break;
9730 }
9731
9732 bed = get_elf_backend_data (sec->owner);
9733 if (bed->elf_backend_ignore_discarded_relocs != NULL
9734 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9735 return TRUE;
9736
9737 return FALSE;
9738 }
9739
9740 /* Return a mask saying how ld should treat relocations in SEC against
9741 symbols defined in discarded sections. If this function returns
9742 COMPLAIN set, ld will issue a warning message. If this function
9743 returns PRETEND set, and the discarded section was link-once and the
9744 same size as the kept link-once section, ld will pretend that the
9745 symbol was actually defined in the kept section. Otherwise ld will
9746 zero the reloc (at least that is the intent, but some cooperation by
9747 the target dependent code is needed, particularly for REL targets). */
9748
9749 unsigned int
9750 _bfd_elf_default_action_discarded (asection *sec)
9751 {
9752 if (sec->flags & SEC_DEBUGGING)
9753 return PRETEND;
9754
9755 if (strcmp (".eh_frame", sec->name) == 0)
9756 return 0;
9757
9758 if (strcmp (".gcc_except_table", sec->name) == 0)
9759 return 0;
9760
9761 return COMPLAIN | PRETEND;
9762 }
9763
9764 /* Find a match between a section and a member of a section group. */
9765
9766 static asection *
9767 match_group_member (asection *sec, asection *group,
9768 struct bfd_link_info *info)
9769 {
9770 asection *first = elf_next_in_group (group);
9771 asection *s = first;
9772
9773 while (s != NULL)
9774 {
9775 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9776 return s;
9777
9778 s = elf_next_in_group (s);
9779 if (s == first)
9780 break;
9781 }
9782
9783 return NULL;
9784 }
9785
9786 /* Check if the kept section of a discarded section SEC can be used
9787 to replace it. Return the replacement if it is OK. Otherwise return
9788 NULL. */
9789
9790 asection *
9791 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9792 {
9793 asection *kept;
9794
9795 kept = sec->kept_section;
9796 if (kept != NULL)
9797 {
9798 if ((kept->flags & SEC_GROUP) != 0)
9799 kept = match_group_member (sec, kept, info);
9800 if (kept != NULL
9801 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9802 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9803 kept = NULL;
9804 sec->kept_section = kept;
9805 }
9806 return kept;
9807 }
9808
9809 /* Link an input file into the linker output file. This function
9810 handles all the sections and relocations of the input file at once.
9811 This is so that we only have to read the local symbols once, and
9812 don't have to keep them in memory. */
9813
9814 static bfd_boolean
9815 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9816 {
9817 int (*relocate_section)
9818 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9819 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9820 bfd *output_bfd;
9821 Elf_Internal_Shdr *symtab_hdr;
9822 size_t locsymcount;
9823 size_t extsymoff;
9824 Elf_Internal_Sym *isymbuf;
9825 Elf_Internal_Sym *isym;
9826 Elf_Internal_Sym *isymend;
9827 long *pindex;
9828 asection **ppsection;
9829 asection *o;
9830 const struct elf_backend_data *bed;
9831 struct elf_link_hash_entry **sym_hashes;
9832 bfd_size_type address_size;
9833 bfd_vma r_type_mask;
9834 int r_sym_shift;
9835 bfd_boolean have_file_sym = FALSE;
9836
9837 output_bfd = flinfo->output_bfd;
9838 bed = get_elf_backend_data (output_bfd);
9839 relocate_section = bed->elf_backend_relocate_section;
9840
9841 /* If this is a dynamic object, we don't want to do anything here:
9842 we don't want the local symbols, and we don't want the section
9843 contents. */
9844 if ((input_bfd->flags & DYNAMIC) != 0)
9845 return TRUE;
9846
9847 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9848 if (elf_bad_symtab (input_bfd))
9849 {
9850 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9851 extsymoff = 0;
9852 }
9853 else
9854 {
9855 locsymcount = symtab_hdr->sh_info;
9856 extsymoff = symtab_hdr->sh_info;
9857 }
9858
9859 /* Read the local symbols. */
9860 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9861 if (isymbuf == NULL && locsymcount != 0)
9862 {
9863 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9864 flinfo->internal_syms,
9865 flinfo->external_syms,
9866 flinfo->locsym_shndx);
9867 if (isymbuf == NULL)
9868 return FALSE;
9869 }
9870
9871 /* Find local symbol sections and adjust values of symbols in
9872 SEC_MERGE sections. Write out those local symbols we know are
9873 going into the output file. */
9874 isymend = isymbuf + locsymcount;
9875 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9876 isym < isymend;
9877 isym++, pindex++, ppsection++)
9878 {
9879 asection *isec;
9880 const char *name;
9881 Elf_Internal_Sym osym;
9882 long indx;
9883 int ret;
9884
9885 *pindex = -1;
9886
9887 if (elf_bad_symtab (input_bfd))
9888 {
9889 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9890 {
9891 *ppsection = NULL;
9892 continue;
9893 }
9894 }
9895
9896 if (isym->st_shndx == SHN_UNDEF)
9897 isec = bfd_und_section_ptr;
9898 else if (isym->st_shndx == SHN_ABS)
9899 isec = bfd_abs_section_ptr;
9900 else if (isym->st_shndx == SHN_COMMON)
9901 isec = bfd_com_section_ptr;
9902 else
9903 {
9904 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9905 if (isec == NULL)
9906 {
9907 /* Don't attempt to output symbols with st_shnx in the
9908 reserved range other than SHN_ABS and SHN_COMMON. */
9909 *ppsection = NULL;
9910 continue;
9911 }
9912 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9913 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9914 isym->st_value =
9915 _bfd_merged_section_offset (output_bfd, &isec,
9916 elf_section_data (isec)->sec_info,
9917 isym->st_value);
9918 }
9919
9920 *ppsection = isec;
9921
9922 /* Don't output the first, undefined, symbol. In fact, don't
9923 output any undefined local symbol. */
9924 if (isec == bfd_und_section_ptr)
9925 continue;
9926
9927 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9928 {
9929 /* We never output section symbols. Instead, we use the
9930 section symbol of the corresponding section in the output
9931 file. */
9932 continue;
9933 }
9934
9935 /* If we are stripping all symbols, we don't want to output this
9936 one. */
9937 if (flinfo->info->strip == strip_all)
9938 continue;
9939
9940 /* If we are discarding all local symbols, we don't want to
9941 output this one. If we are generating a relocatable output
9942 file, then some of the local symbols may be required by
9943 relocs; we output them below as we discover that they are
9944 needed. */
9945 if (flinfo->info->discard == discard_all)
9946 continue;
9947
9948 /* If this symbol is defined in a section which we are
9949 discarding, we don't need to keep it. */
9950 if (isym->st_shndx != SHN_UNDEF
9951 && isym->st_shndx < SHN_LORESERVE
9952 && bfd_section_removed_from_list (output_bfd,
9953 isec->output_section))
9954 continue;
9955
9956 /* Get the name of the symbol. */
9957 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9958 isym->st_name);
9959 if (name == NULL)
9960 return FALSE;
9961
9962 /* See if we are discarding symbols with this name. */
9963 if ((flinfo->info->strip == strip_some
9964 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9965 == NULL))
9966 || (((flinfo->info->discard == discard_sec_merge
9967 && (isec->flags & SEC_MERGE)
9968 && !bfd_link_relocatable (flinfo->info))
9969 || flinfo->info->discard == discard_l)
9970 && bfd_is_local_label_name (input_bfd, name)))
9971 continue;
9972
9973 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9974 {
9975 if (input_bfd->lto_output)
9976 /* -flto puts a temp file name here. This means builds
9977 are not reproducible. Discard the symbol. */
9978 continue;
9979 have_file_sym = TRUE;
9980 flinfo->filesym_count += 1;
9981 }
9982 if (!have_file_sym)
9983 {
9984 /* In the absence of debug info, bfd_find_nearest_line uses
9985 FILE symbols to determine the source file for local
9986 function symbols. Provide a FILE symbol here if input
9987 files lack such, so that their symbols won't be
9988 associated with a previous input file. It's not the
9989 source file, but the best we can do. */
9990 have_file_sym = TRUE;
9991 flinfo->filesym_count += 1;
9992 memset (&osym, 0, sizeof (osym));
9993 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9994 osym.st_shndx = SHN_ABS;
9995 if (!elf_link_output_symstrtab (flinfo,
9996 (input_bfd->lto_output ? NULL
9997 : input_bfd->filename),
9998 &osym, bfd_abs_section_ptr,
9999 NULL))
10000 return FALSE;
10001 }
10002
10003 osym = *isym;
10004
10005 /* Adjust the section index for the output file. */
10006 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10007 isec->output_section);
10008 if (osym.st_shndx == SHN_BAD)
10009 return FALSE;
10010
10011 /* ELF symbols in relocatable files are section relative, but
10012 in executable files they are virtual addresses. Note that
10013 this code assumes that all ELF sections have an associated
10014 BFD section with a reasonable value for output_offset; below
10015 we assume that they also have a reasonable value for
10016 output_section. Any special sections must be set up to meet
10017 these requirements. */
10018 osym.st_value += isec->output_offset;
10019 if (!bfd_link_relocatable (flinfo->info))
10020 {
10021 osym.st_value += isec->output_section->vma;
10022 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10023 {
10024 /* STT_TLS symbols are relative to PT_TLS segment base. */
10025 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10026 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10027 }
10028 }
10029
10030 indx = bfd_get_symcount (output_bfd);
10031 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10032 if (ret == 0)
10033 return FALSE;
10034 else if (ret == 1)
10035 *pindex = indx;
10036 }
10037
10038 if (bed->s->arch_size == 32)
10039 {
10040 r_type_mask = 0xff;
10041 r_sym_shift = 8;
10042 address_size = 4;
10043 }
10044 else
10045 {
10046 r_type_mask = 0xffffffff;
10047 r_sym_shift = 32;
10048 address_size = 8;
10049 }
10050
10051 /* Relocate the contents of each section. */
10052 sym_hashes = elf_sym_hashes (input_bfd);
10053 for (o = input_bfd->sections; o != NULL; o = o->next)
10054 {
10055 bfd_byte *contents;
10056
10057 if (! o->linker_mark)
10058 {
10059 /* This section was omitted from the link. */
10060 continue;
10061 }
10062
10063 if (bfd_link_relocatable (flinfo->info)
10064 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10065 {
10066 /* Deal with the group signature symbol. */
10067 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10068 unsigned long symndx = sec_data->this_hdr.sh_info;
10069 asection *osec = o->output_section;
10070
10071 if (symndx >= locsymcount
10072 || (elf_bad_symtab (input_bfd)
10073 && flinfo->sections[symndx] == NULL))
10074 {
10075 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10076 while (h->root.type == bfd_link_hash_indirect
10077 || h->root.type == bfd_link_hash_warning)
10078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10079 /* Arrange for symbol to be output. */
10080 h->indx = -2;
10081 elf_section_data (osec)->this_hdr.sh_info = -2;
10082 }
10083 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10084 {
10085 /* We'll use the output section target_index. */
10086 asection *sec = flinfo->sections[symndx]->output_section;
10087 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10088 }
10089 else
10090 {
10091 if (flinfo->indices[symndx] == -1)
10092 {
10093 /* Otherwise output the local symbol now. */
10094 Elf_Internal_Sym sym = isymbuf[symndx];
10095 asection *sec = flinfo->sections[symndx]->output_section;
10096 const char *name;
10097 long indx;
10098 int ret;
10099
10100 name = bfd_elf_string_from_elf_section (input_bfd,
10101 symtab_hdr->sh_link,
10102 sym.st_name);
10103 if (name == NULL)
10104 return FALSE;
10105
10106 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10107 sec);
10108 if (sym.st_shndx == SHN_BAD)
10109 return FALSE;
10110
10111 sym.st_value += o->output_offset;
10112
10113 indx = bfd_get_symcount (output_bfd);
10114 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10115 NULL);
10116 if (ret == 0)
10117 return FALSE;
10118 else if (ret == 1)
10119 flinfo->indices[symndx] = indx;
10120 else
10121 abort ();
10122 }
10123 elf_section_data (osec)->this_hdr.sh_info
10124 = flinfo->indices[symndx];
10125 }
10126 }
10127
10128 if ((o->flags & SEC_HAS_CONTENTS) == 0
10129 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10130 continue;
10131
10132 if ((o->flags & SEC_LINKER_CREATED) != 0)
10133 {
10134 /* Section was created by _bfd_elf_link_create_dynamic_sections
10135 or somesuch. */
10136 continue;
10137 }
10138
10139 /* Get the contents of the section. They have been cached by a
10140 relaxation routine. Note that o is a section in an input
10141 file, so the contents field will not have been set by any of
10142 the routines which work on output files. */
10143 if (elf_section_data (o)->this_hdr.contents != NULL)
10144 {
10145 contents = elf_section_data (o)->this_hdr.contents;
10146 if (bed->caches_rawsize
10147 && o->rawsize != 0
10148 && o->rawsize < o->size)
10149 {
10150 memcpy (flinfo->contents, contents, o->rawsize);
10151 contents = flinfo->contents;
10152 }
10153 }
10154 else
10155 {
10156 contents = flinfo->contents;
10157 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10158 return FALSE;
10159 }
10160
10161 if ((o->flags & SEC_RELOC) != 0)
10162 {
10163 Elf_Internal_Rela *internal_relocs;
10164 Elf_Internal_Rela *rel, *relend;
10165 int action_discarded;
10166 int ret;
10167
10168 /* Get the swapped relocs. */
10169 internal_relocs
10170 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10171 flinfo->internal_relocs, FALSE);
10172 if (internal_relocs == NULL
10173 && o->reloc_count > 0)
10174 return FALSE;
10175
10176 /* We need to reverse-copy input .ctors/.dtors sections if
10177 they are placed in .init_array/.finit_array for output. */
10178 if (o->size > address_size
10179 && ((strncmp (o->name, ".ctors", 6) == 0
10180 && strcmp (o->output_section->name,
10181 ".init_array") == 0)
10182 || (strncmp (o->name, ".dtors", 6) == 0
10183 && strcmp (o->output_section->name,
10184 ".fini_array") == 0))
10185 && (o->name[6] == 0 || o->name[6] == '.'))
10186 {
10187 if (o->size != o->reloc_count * address_size)
10188 {
10189 (*_bfd_error_handler)
10190 (_("error: %B: size of section %A is not "
10191 "multiple of address size"),
10192 input_bfd, o);
10193 bfd_set_error (bfd_error_on_input);
10194 return FALSE;
10195 }
10196 o->flags |= SEC_ELF_REVERSE_COPY;
10197 }
10198
10199 action_discarded = -1;
10200 if (!elf_section_ignore_discarded_relocs (o))
10201 action_discarded = (*bed->action_discarded) (o);
10202
10203 /* Run through the relocs evaluating complex reloc symbols and
10204 looking for relocs against symbols from discarded sections
10205 or section symbols from removed link-once sections.
10206 Complain about relocs against discarded sections. Zero
10207 relocs against removed link-once sections. */
10208
10209 rel = internal_relocs;
10210 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10211 for ( ; rel < relend; rel++)
10212 {
10213 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10214 unsigned int s_type;
10215 asection **ps, *sec;
10216 struct elf_link_hash_entry *h = NULL;
10217 const char *sym_name;
10218
10219 if (r_symndx == STN_UNDEF)
10220 continue;
10221
10222 if (r_symndx >= locsymcount
10223 || (elf_bad_symtab (input_bfd)
10224 && flinfo->sections[r_symndx] == NULL))
10225 {
10226 h = sym_hashes[r_symndx - extsymoff];
10227
10228 /* Badly formatted input files can contain relocs that
10229 reference non-existant symbols. Check here so that
10230 we do not seg fault. */
10231 if (h == NULL)
10232 {
10233 char buffer [32];
10234
10235 sprintf_vma (buffer, rel->r_info);
10236 (*_bfd_error_handler)
10237 (_("error: %B contains a reloc (0x%s) for section %A "
10238 "that references a non-existent global symbol"),
10239 input_bfd, o, buffer);
10240 bfd_set_error (bfd_error_bad_value);
10241 return FALSE;
10242 }
10243
10244 while (h->root.type == bfd_link_hash_indirect
10245 || h->root.type == bfd_link_hash_warning)
10246 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10247
10248 s_type = h->type;
10249
10250 /* If a plugin symbol is referenced from a non-IR file,
10251 mark the symbol as undefined. Note that the
10252 linker may attach linker created dynamic sections
10253 to the plugin bfd. Symbols defined in linker
10254 created sections are not plugin symbols. */
10255 if (h->root.non_ir_ref
10256 && (h->root.type == bfd_link_hash_defined
10257 || h->root.type == bfd_link_hash_defweak)
10258 && (h->root.u.def.section->flags
10259 & SEC_LINKER_CREATED) == 0
10260 && h->root.u.def.section->owner != NULL
10261 && (h->root.u.def.section->owner->flags
10262 & BFD_PLUGIN) != 0)
10263 {
10264 h->root.type = bfd_link_hash_undefined;
10265 h->root.u.undef.abfd = h->root.u.def.section->owner;
10266 }
10267
10268 ps = NULL;
10269 if (h->root.type == bfd_link_hash_defined
10270 || h->root.type == bfd_link_hash_defweak)
10271 ps = &h->root.u.def.section;
10272
10273 sym_name = h->root.root.string;
10274 }
10275 else
10276 {
10277 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10278
10279 s_type = ELF_ST_TYPE (sym->st_info);
10280 ps = &flinfo->sections[r_symndx];
10281 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10282 sym, *ps);
10283 }
10284
10285 if ((s_type == STT_RELC || s_type == STT_SRELC)
10286 && !bfd_link_relocatable (flinfo->info))
10287 {
10288 bfd_vma val;
10289 bfd_vma dot = (rel->r_offset
10290 + o->output_offset + o->output_section->vma);
10291 #ifdef DEBUG
10292 printf ("Encountered a complex symbol!");
10293 printf (" (input_bfd %s, section %s, reloc %ld\n",
10294 input_bfd->filename, o->name,
10295 (long) (rel - internal_relocs));
10296 printf (" symbol: idx %8.8lx, name %s\n",
10297 r_symndx, sym_name);
10298 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10299 (unsigned long) rel->r_info,
10300 (unsigned long) rel->r_offset);
10301 #endif
10302 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10303 isymbuf, locsymcount, s_type == STT_SRELC))
10304 return FALSE;
10305
10306 /* Symbol evaluated OK. Update to absolute value. */
10307 set_symbol_value (input_bfd, isymbuf, locsymcount,
10308 r_symndx, val);
10309 continue;
10310 }
10311
10312 if (action_discarded != -1 && ps != NULL)
10313 {
10314 /* Complain if the definition comes from a
10315 discarded section. */
10316 if ((sec = *ps) != NULL && discarded_section (sec))
10317 {
10318 BFD_ASSERT (r_symndx != STN_UNDEF);
10319 if (action_discarded & COMPLAIN)
10320 (*flinfo->info->callbacks->einfo)
10321 (_("%X`%s' referenced in section `%A' of %B: "
10322 "defined in discarded section `%A' of %B\n"),
10323 sym_name, o, input_bfd, sec, sec->owner);
10324
10325 /* Try to do the best we can to support buggy old
10326 versions of gcc. Pretend that the symbol is
10327 really defined in the kept linkonce section.
10328 FIXME: This is quite broken. Modifying the
10329 symbol here means we will be changing all later
10330 uses of the symbol, not just in this section. */
10331 if (action_discarded & PRETEND)
10332 {
10333 asection *kept;
10334
10335 kept = _bfd_elf_check_kept_section (sec,
10336 flinfo->info);
10337 if (kept != NULL)
10338 {
10339 *ps = kept;
10340 continue;
10341 }
10342 }
10343 }
10344 }
10345 }
10346
10347 /* Relocate the section by invoking a back end routine.
10348
10349 The back end routine is responsible for adjusting the
10350 section contents as necessary, and (if using Rela relocs
10351 and generating a relocatable output file) adjusting the
10352 reloc addend as necessary.
10353
10354 The back end routine does not have to worry about setting
10355 the reloc address or the reloc symbol index.
10356
10357 The back end routine is given a pointer to the swapped in
10358 internal symbols, and can access the hash table entries
10359 for the external symbols via elf_sym_hashes (input_bfd).
10360
10361 When generating relocatable output, the back end routine
10362 must handle STB_LOCAL/STT_SECTION symbols specially. The
10363 output symbol is going to be a section symbol
10364 corresponding to the output section, which will require
10365 the addend to be adjusted. */
10366
10367 ret = (*relocate_section) (output_bfd, flinfo->info,
10368 input_bfd, o, contents,
10369 internal_relocs,
10370 isymbuf,
10371 flinfo->sections);
10372 if (!ret)
10373 return FALSE;
10374
10375 if (ret == 2
10376 || bfd_link_relocatable (flinfo->info)
10377 || flinfo->info->emitrelocations)
10378 {
10379 Elf_Internal_Rela *irela;
10380 Elf_Internal_Rela *irelaend, *irelamid;
10381 bfd_vma last_offset;
10382 struct elf_link_hash_entry **rel_hash;
10383 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10384 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10385 unsigned int next_erel;
10386 bfd_boolean rela_normal;
10387 struct bfd_elf_section_data *esdi, *esdo;
10388
10389 esdi = elf_section_data (o);
10390 esdo = elf_section_data (o->output_section);
10391 rela_normal = FALSE;
10392
10393 /* Adjust the reloc addresses and symbol indices. */
10394
10395 irela = internal_relocs;
10396 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10397 rel_hash = esdo->rel.hashes + esdo->rel.count;
10398 /* We start processing the REL relocs, if any. When we reach
10399 IRELAMID in the loop, we switch to the RELA relocs. */
10400 irelamid = irela;
10401 if (esdi->rel.hdr != NULL)
10402 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10403 * bed->s->int_rels_per_ext_rel);
10404 rel_hash_list = rel_hash;
10405 rela_hash_list = NULL;
10406 last_offset = o->output_offset;
10407 if (!bfd_link_relocatable (flinfo->info))
10408 last_offset += o->output_section->vma;
10409 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10410 {
10411 unsigned long r_symndx;
10412 asection *sec;
10413 Elf_Internal_Sym sym;
10414
10415 if (next_erel == bed->s->int_rels_per_ext_rel)
10416 {
10417 rel_hash++;
10418 next_erel = 0;
10419 }
10420
10421 if (irela == irelamid)
10422 {
10423 rel_hash = esdo->rela.hashes + esdo->rela.count;
10424 rela_hash_list = rel_hash;
10425 rela_normal = bed->rela_normal;
10426 }
10427
10428 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10429 flinfo->info, o,
10430 irela->r_offset);
10431 if (irela->r_offset >= (bfd_vma) -2)
10432 {
10433 /* This is a reloc for a deleted entry or somesuch.
10434 Turn it into an R_*_NONE reloc, at the same
10435 offset as the last reloc. elf_eh_frame.c and
10436 bfd_elf_discard_info rely on reloc offsets
10437 being ordered. */
10438 irela->r_offset = last_offset;
10439 irela->r_info = 0;
10440 irela->r_addend = 0;
10441 continue;
10442 }
10443
10444 irela->r_offset += o->output_offset;
10445
10446 /* Relocs in an executable have to be virtual addresses. */
10447 if (!bfd_link_relocatable (flinfo->info))
10448 irela->r_offset += o->output_section->vma;
10449
10450 last_offset = irela->r_offset;
10451
10452 r_symndx = irela->r_info >> r_sym_shift;
10453 if (r_symndx == STN_UNDEF)
10454 continue;
10455
10456 if (r_symndx >= locsymcount
10457 || (elf_bad_symtab (input_bfd)
10458 && flinfo->sections[r_symndx] == NULL))
10459 {
10460 struct elf_link_hash_entry *rh;
10461 unsigned long indx;
10462
10463 /* This is a reloc against a global symbol. We
10464 have not yet output all the local symbols, so
10465 we do not know the symbol index of any global
10466 symbol. We set the rel_hash entry for this
10467 reloc to point to the global hash table entry
10468 for this symbol. The symbol index is then
10469 set at the end of bfd_elf_final_link. */
10470 indx = r_symndx - extsymoff;
10471 rh = elf_sym_hashes (input_bfd)[indx];
10472 while (rh->root.type == bfd_link_hash_indirect
10473 || rh->root.type == bfd_link_hash_warning)
10474 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10475
10476 /* Setting the index to -2 tells
10477 elf_link_output_extsym that this symbol is
10478 used by a reloc. */
10479 BFD_ASSERT (rh->indx < 0);
10480 rh->indx = -2;
10481
10482 *rel_hash = rh;
10483
10484 continue;
10485 }
10486
10487 /* This is a reloc against a local symbol. */
10488
10489 *rel_hash = NULL;
10490 sym = isymbuf[r_symndx];
10491 sec = flinfo->sections[r_symndx];
10492 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10493 {
10494 /* I suppose the backend ought to fill in the
10495 section of any STT_SECTION symbol against a
10496 processor specific section. */
10497 r_symndx = STN_UNDEF;
10498 if (bfd_is_abs_section (sec))
10499 ;
10500 else if (sec == NULL || sec->owner == NULL)
10501 {
10502 bfd_set_error (bfd_error_bad_value);
10503 return FALSE;
10504 }
10505 else
10506 {
10507 asection *osec = sec->output_section;
10508
10509 /* If we have discarded a section, the output
10510 section will be the absolute section. In
10511 case of discarded SEC_MERGE sections, use
10512 the kept section. relocate_section should
10513 have already handled discarded linkonce
10514 sections. */
10515 if (bfd_is_abs_section (osec)
10516 && sec->kept_section != NULL
10517 && sec->kept_section->output_section != NULL)
10518 {
10519 osec = sec->kept_section->output_section;
10520 irela->r_addend -= osec->vma;
10521 }
10522
10523 if (!bfd_is_abs_section (osec))
10524 {
10525 r_symndx = osec->target_index;
10526 if (r_symndx == STN_UNDEF)
10527 {
10528 irela->r_addend += osec->vma;
10529 osec = _bfd_nearby_section (output_bfd, osec,
10530 osec->vma);
10531 irela->r_addend -= osec->vma;
10532 r_symndx = osec->target_index;
10533 }
10534 }
10535 }
10536
10537 /* Adjust the addend according to where the
10538 section winds up in the output section. */
10539 if (rela_normal)
10540 irela->r_addend += sec->output_offset;
10541 }
10542 else
10543 {
10544 if (flinfo->indices[r_symndx] == -1)
10545 {
10546 unsigned long shlink;
10547 const char *name;
10548 asection *osec;
10549 long indx;
10550
10551 if (flinfo->info->strip == strip_all)
10552 {
10553 /* You can't do ld -r -s. */
10554 bfd_set_error (bfd_error_invalid_operation);
10555 return FALSE;
10556 }
10557
10558 /* This symbol was skipped earlier, but
10559 since it is needed by a reloc, we
10560 must output it now. */
10561 shlink = symtab_hdr->sh_link;
10562 name = (bfd_elf_string_from_elf_section
10563 (input_bfd, shlink, sym.st_name));
10564 if (name == NULL)
10565 return FALSE;
10566
10567 osec = sec->output_section;
10568 sym.st_shndx =
10569 _bfd_elf_section_from_bfd_section (output_bfd,
10570 osec);
10571 if (sym.st_shndx == SHN_BAD)
10572 return FALSE;
10573
10574 sym.st_value += sec->output_offset;
10575 if (!bfd_link_relocatable (flinfo->info))
10576 {
10577 sym.st_value += osec->vma;
10578 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10579 {
10580 /* STT_TLS symbols are relative to PT_TLS
10581 segment base. */
10582 BFD_ASSERT (elf_hash_table (flinfo->info)
10583 ->tls_sec != NULL);
10584 sym.st_value -= (elf_hash_table (flinfo->info)
10585 ->tls_sec->vma);
10586 }
10587 }
10588
10589 indx = bfd_get_symcount (output_bfd);
10590 ret = elf_link_output_symstrtab (flinfo, name,
10591 &sym, sec,
10592 NULL);
10593 if (ret == 0)
10594 return FALSE;
10595 else if (ret == 1)
10596 flinfo->indices[r_symndx] = indx;
10597 else
10598 abort ();
10599 }
10600
10601 r_symndx = flinfo->indices[r_symndx];
10602 }
10603
10604 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10605 | (irela->r_info & r_type_mask));
10606 }
10607
10608 /* Swap out the relocs. */
10609 input_rel_hdr = esdi->rel.hdr;
10610 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10611 {
10612 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10613 input_rel_hdr,
10614 internal_relocs,
10615 rel_hash_list))
10616 return FALSE;
10617 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10618 * bed->s->int_rels_per_ext_rel);
10619 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10620 }
10621
10622 input_rela_hdr = esdi->rela.hdr;
10623 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10624 {
10625 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10626 input_rela_hdr,
10627 internal_relocs,
10628 rela_hash_list))
10629 return FALSE;
10630 }
10631 }
10632 }
10633
10634 /* Write out the modified section contents. */
10635 if (bed->elf_backend_write_section
10636 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10637 contents))
10638 {
10639 /* Section written out. */
10640 }
10641 else switch (o->sec_info_type)
10642 {
10643 case SEC_INFO_TYPE_STABS:
10644 if (! (_bfd_write_section_stabs
10645 (output_bfd,
10646 &elf_hash_table (flinfo->info)->stab_info,
10647 o, &elf_section_data (o)->sec_info, contents)))
10648 return FALSE;
10649 break;
10650 case SEC_INFO_TYPE_MERGE:
10651 if (! _bfd_write_merged_section (output_bfd, o,
10652 elf_section_data (o)->sec_info))
10653 return FALSE;
10654 break;
10655 case SEC_INFO_TYPE_EH_FRAME:
10656 {
10657 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10658 o, contents))
10659 return FALSE;
10660 }
10661 break;
10662 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10663 {
10664 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10665 flinfo->info,
10666 o, contents))
10667 return FALSE;
10668 }
10669 break;
10670 default:
10671 {
10672 if (! (o->flags & SEC_EXCLUDE))
10673 {
10674 file_ptr offset = (file_ptr) o->output_offset;
10675 bfd_size_type todo = o->size;
10676
10677 offset *= bfd_octets_per_byte (output_bfd);
10678
10679 if ((o->flags & SEC_ELF_REVERSE_COPY))
10680 {
10681 /* Reverse-copy input section to output. */
10682 do
10683 {
10684 todo -= address_size;
10685 if (! bfd_set_section_contents (output_bfd,
10686 o->output_section,
10687 contents + todo,
10688 offset,
10689 address_size))
10690 return FALSE;
10691 if (todo == 0)
10692 break;
10693 offset += address_size;
10694 }
10695 while (1);
10696 }
10697 else if (! bfd_set_section_contents (output_bfd,
10698 o->output_section,
10699 contents,
10700 offset, todo))
10701 return FALSE;
10702 }
10703 }
10704 break;
10705 }
10706 }
10707
10708 return TRUE;
10709 }
10710
10711 /* Generate a reloc when linking an ELF file. This is a reloc
10712 requested by the linker, and does not come from any input file. This
10713 is used to build constructor and destructor tables when linking
10714 with -Ur. */
10715
10716 static bfd_boolean
10717 elf_reloc_link_order (bfd *output_bfd,
10718 struct bfd_link_info *info,
10719 asection *output_section,
10720 struct bfd_link_order *link_order)
10721 {
10722 reloc_howto_type *howto;
10723 long indx;
10724 bfd_vma offset;
10725 bfd_vma addend;
10726 struct bfd_elf_section_reloc_data *reldata;
10727 struct elf_link_hash_entry **rel_hash_ptr;
10728 Elf_Internal_Shdr *rel_hdr;
10729 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10730 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10731 bfd_byte *erel;
10732 unsigned int i;
10733 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10734
10735 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10736 if (howto == NULL)
10737 {
10738 bfd_set_error (bfd_error_bad_value);
10739 return FALSE;
10740 }
10741
10742 addend = link_order->u.reloc.p->addend;
10743
10744 if (esdo->rel.hdr)
10745 reldata = &esdo->rel;
10746 else if (esdo->rela.hdr)
10747 reldata = &esdo->rela;
10748 else
10749 {
10750 reldata = NULL;
10751 BFD_ASSERT (0);
10752 }
10753
10754 /* Figure out the symbol index. */
10755 rel_hash_ptr = reldata->hashes + reldata->count;
10756 if (link_order->type == bfd_section_reloc_link_order)
10757 {
10758 indx = link_order->u.reloc.p->u.section->target_index;
10759 BFD_ASSERT (indx != 0);
10760 *rel_hash_ptr = NULL;
10761 }
10762 else
10763 {
10764 struct elf_link_hash_entry *h;
10765
10766 /* Treat a reloc against a defined symbol as though it were
10767 actually against the section. */
10768 h = ((struct elf_link_hash_entry *)
10769 bfd_wrapped_link_hash_lookup (output_bfd, info,
10770 link_order->u.reloc.p->u.name,
10771 FALSE, FALSE, TRUE));
10772 if (h != NULL
10773 && (h->root.type == bfd_link_hash_defined
10774 || h->root.type == bfd_link_hash_defweak))
10775 {
10776 asection *section;
10777
10778 section = h->root.u.def.section;
10779 indx = section->output_section->target_index;
10780 *rel_hash_ptr = NULL;
10781 /* It seems that we ought to add the symbol value to the
10782 addend here, but in practice it has already been added
10783 because it was passed to constructor_callback. */
10784 addend += section->output_section->vma + section->output_offset;
10785 }
10786 else if (h != NULL)
10787 {
10788 /* Setting the index to -2 tells elf_link_output_extsym that
10789 this symbol is used by a reloc. */
10790 h->indx = -2;
10791 *rel_hash_ptr = h;
10792 indx = 0;
10793 }
10794 else
10795 {
10796 (*info->callbacks->unattached_reloc)
10797 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10798 indx = 0;
10799 }
10800 }
10801
10802 /* If this is an inplace reloc, we must write the addend into the
10803 object file. */
10804 if (howto->partial_inplace && addend != 0)
10805 {
10806 bfd_size_type size;
10807 bfd_reloc_status_type rstat;
10808 bfd_byte *buf;
10809 bfd_boolean ok;
10810 const char *sym_name;
10811
10812 size = (bfd_size_type) bfd_get_reloc_size (howto);
10813 buf = (bfd_byte *) bfd_zmalloc (size);
10814 if (buf == NULL && size != 0)
10815 return FALSE;
10816 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10817 switch (rstat)
10818 {
10819 case bfd_reloc_ok:
10820 break;
10821
10822 default:
10823 case bfd_reloc_outofrange:
10824 abort ();
10825
10826 case bfd_reloc_overflow:
10827 if (link_order->type == bfd_section_reloc_link_order)
10828 sym_name = bfd_section_name (output_bfd,
10829 link_order->u.reloc.p->u.section);
10830 else
10831 sym_name = link_order->u.reloc.p->u.name;
10832 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10833 howto->name, addend, NULL, NULL,
10834 (bfd_vma) 0);
10835 break;
10836 }
10837
10838 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10839 link_order->offset
10840 * bfd_octets_per_byte (output_bfd),
10841 size);
10842 free (buf);
10843 if (! ok)
10844 return FALSE;
10845 }
10846
10847 /* The address of a reloc is relative to the section in a
10848 relocatable file, and is a virtual address in an executable
10849 file. */
10850 offset = link_order->offset;
10851 if (! bfd_link_relocatable (info))
10852 offset += output_section->vma;
10853
10854 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10855 {
10856 irel[i].r_offset = offset;
10857 irel[i].r_info = 0;
10858 irel[i].r_addend = 0;
10859 }
10860 if (bed->s->arch_size == 32)
10861 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10862 else
10863 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10864
10865 rel_hdr = reldata->hdr;
10866 erel = rel_hdr->contents;
10867 if (rel_hdr->sh_type == SHT_REL)
10868 {
10869 erel += reldata->count * bed->s->sizeof_rel;
10870 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10871 }
10872 else
10873 {
10874 irel[0].r_addend = addend;
10875 erel += reldata->count * bed->s->sizeof_rela;
10876 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10877 }
10878
10879 ++reldata->count;
10880
10881 return TRUE;
10882 }
10883
10884
10885 /* Get the output vma of the section pointed to by the sh_link field. */
10886
10887 static bfd_vma
10888 elf_get_linked_section_vma (struct bfd_link_order *p)
10889 {
10890 Elf_Internal_Shdr **elf_shdrp;
10891 asection *s;
10892 int elfsec;
10893
10894 s = p->u.indirect.section;
10895 elf_shdrp = elf_elfsections (s->owner);
10896 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10897 elfsec = elf_shdrp[elfsec]->sh_link;
10898 /* PR 290:
10899 The Intel C compiler generates SHT_IA_64_UNWIND with
10900 SHF_LINK_ORDER. But it doesn't set the sh_link or
10901 sh_info fields. Hence we could get the situation
10902 where elfsec is 0. */
10903 if (elfsec == 0)
10904 {
10905 const struct elf_backend_data *bed
10906 = get_elf_backend_data (s->owner);
10907 if (bed->link_order_error_handler)
10908 bed->link_order_error_handler
10909 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10910 return 0;
10911 }
10912 else
10913 {
10914 s = elf_shdrp[elfsec]->bfd_section;
10915 return s->output_section->vma + s->output_offset;
10916 }
10917 }
10918
10919
10920 /* Compare two sections based on the locations of the sections they are
10921 linked to. Used by elf_fixup_link_order. */
10922
10923 static int
10924 compare_link_order (const void * a, const void * b)
10925 {
10926 bfd_vma apos;
10927 bfd_vma bpos;
10928
10929 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10930 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10931 if (apos < bpos)
10932 return -1;
10933 return apos > bpos;
10934 }
10935
10936
10937 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10938 order as their linked sections. Returns false if this could not be done
10939 because an output section includes both ordered and unordered
10940 sections. Ideally we'd do this in the linker proper. */
10941
10942 static bfd_boolean
10943 elf_fixup_link_order (bfd *abfd, asection *o)
10944 {
10945 int seen_linkorder;
10946 int seen_other;
10947 int n;
10948 struct bfd_link_order *p;
10949 bfd *sub;
10950 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10951 unsigned elfsec;
10952 struct bfd_link_order **sections;
10953 asection *s, *other_sec, *linkorder_sec;
10954 bfd_vma offset;
10955
10956 other_sec = NULL;
10957 linkorder_sec = NULL;
10958 seen_other = 0;
10959 seen_linkorder = 0;
10960 for (p = o->map_head.link_order; p != NULL; p = p->next)
10961 {
10962 if (p->type == bfd_indirect_link_order)
10963 {
10964 s = p->u.indirect.section;
10965 sub = s->owner;
10966 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10967 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10968 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10969 && elfsec < elf_numsections (sub)
10970 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10971 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10972 {
10973 seen_linkorder++;
10974 linkorder_sec = s;
10975 }
10976 else
10977 {
10978 seen_other++;
10979 other_sec = s;
10980 }
10981 }
10982 else
10983 seen_other++;
10984
10985 if (seen_other && seen_linkorder)
10986 {
10987 if (other_sec && linkorder_sec)
10988 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10989 o, linkorder_sec,
10990 linkorder_sec->owner, other_sec,
10991 other_sec->owner);
10992 else
10993 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10994 o);
10995 bfd_set_error (bfd_error_bad_value);
10996 return FALSE;
10997 }
10998 }
10999
11000 if (!seen_linkorder)
11001 return TRUE;
11002
11003 sections = (struct bfd_link_order **)
11004 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11005 if (sections == NULL)
11006 return FALSE;
11007 seen_linkorder = 0;
11008
11009 for (p = o->map_head.link_order; p != NULL; p = p->next)
11010 {
11011 sections[seen_linkorder++] = p;
11012 }
11013 /* Sort the input sections in the order of their linked section. */
11014 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11015 compare_link_order);
11016
11017 /* Change the offsets of the sections. */
11018 offset = 0;
11019 for (n = 0; n < seen_linkorder; n++)
11020 {
11021 s = sections[n]->u.indirect.section;
11022 offset &= ~(bfd_vma) 0 << s->alignment_power;
11023 s->output_offset = offset / bfd_octets_per_byte (abfd);
11024 sections[n]->offset = offset;
11025 offset += sections[n]->size;
11026 }
11027
11028 free (sections);
11029 return TRUE;
11030 }
11031
11032 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11033 Returns TRUE upon success, FALSE otherwise. */
11034
11035 static bfd_boolean
11036 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11037 {
11038 bfd_boolean ret = FALSE;
11039 bfd *implib_bfd;
11040 const struct elf_backend_data *bed;
11041 flagword flags;
11042 enum bfd_architecture arch;
11043 unsigned int mach;
11044 asymbol **sympp = NULL;
11045 long symsize;
11046 long symcount;
11047 long src_count;
11048 elf_symbol_type *osymbuf;
11049
11050 implib_bfd = info->out_implib_bfd;
11051 bed = get_elf_backend_data (abfd);
11052
11053 if (!bfd_set_format (implib_bfd, bfd_object))
11054 return FALSE;
11055
11056 flags = bfd_get_file_flags (abfd);
11057 flags &= ~HAS_RELOC;
11058 if (!bfd_set_start_address (implib_bfd, 0)
11059 || !bfd_set_file_flags (implib_bfd, flags))
11060 return FALSE;
11061
11062 /* Copy architecture of output file to import library file. */
11063 arch = bfd_get_arch (abfd);
11064 mach = bfd_get_mach (abfd);
11065 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11066 && (abfd->target_defaulted
11067 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11068 return FALSE;
11069
11070 /* Get symbol table size. */
11071 symsize = bfd_get_symtab_upper_bound (abfd);
11072 if (symsize < 0)
11073 return FALSE;
11074
11075 /* Read in the symbol table. */
11076 sympp = (asymbol **) xmalloc (symsize);
11077 symcount = bfd_canonicalize_symtab (abfd, sympp);
11078 if (symcount < 0)
11079 goto free_sym_buf;
11080
11081 /* Allow the BFD backend to copy any private header data it
11082 understands from the output BFD to the import library BFD. */
11083 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11084 goto free_sym_buf;
11085
11086 /* Filter symbols to appear in the import library. */
11087 if (bed->elf_backend_filter_implib_symbols)
11088 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11089 symcount);
11090 else
11091 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11092 if (symcount == 0)
11093 {
11094 bfd_set_error (bfd_error_no_symbols);
11095 (*_bfd_error_handler) (_("%B: no symbol found for import library"),
11096 implib_bfd);
11097 goto free_sym_buf;
11098 }
11099
11100
11101 /* Make symbols absolute. */
11102 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11103 sizeof (*osymbuf));
11104 for (src_count = 0; src_count < symcount; src_count++)
11105 {
11106 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11107 sizeof (*osymbuf));
11108 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11109 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11110 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11111 osymbuf[src_count].internal_elf_sym.st_value =
11112 osymbuf[src_count].symbol.value;
11113 sympp[src_count] = &osymbuf[src_count].symbol;
11114 }
11115
11116 bfd_set_symtab (implib_bfd, sympp, symcount);
11117
11118 /* Allow the BFD backend to copy any private data it understands
11119 from the output BFD to the import library BFD. This is done last
11120 to permit the routine to look at the filtered symbol table. */
11121 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11122 goto free_sym_buf;
11123
11124 if (!bfd_close (implib_bfd))
11125 goto free_sym_buf;
11126
11127 ret = TRUE;
11128
11129 free_sym_buf:
11130 free (sympp);
11131 return ret;
11132 }
11133
11134 static void
11135 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11136 {
11137 asection *o;
11138
11139 if (flinfo->symstrtab != NULL)
11140 _bfd_elf_strtab_free (flinfo->symstrtab);
11141 if (flinfo->contents != NULL)
11142 free (flinfo->contents);
11143 if (flinfo->external_relocs != NULL)
11144 free (flinfo->external_relocs);
11145 if (flinfo->internal_relocs != NULL)
11146 free (flinfo->internal_relocs);
11147 if (flinfo->external_syms != NULL)
11148 free (flinfo->external_syms);
11149 if (flinfo->locsym_shndx != NULL)
11150 free (flinfo->locsym_shndx);
11151 if (flinfo->internal_syms != NULL)
11152 free (flinfo->internal_syms);
11153 if (flinfo->indices != NULL)
11154 free (flinfo->indices);
11155 if (flinfo->sections != NULL)
11156 free (flinfo->sections);
11157 if (flinfo->symshndxbuf != NULL)
11158 free (flinfo->symshndxbuf);
11159 for (o = obfd->sections; o != NULL; o = o->next)
11160 {
11161 struct bfd_elf_section_data *esdo = elf_section_data (o);
11162 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11163 free (esdo->rel.hashes);
11164 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11165 free (esdo->rela.hashes);
11166 }
11167 }
11168
11169 /* Do the final step of an ELF link. */
11170
11171 bfd_boolean
11172 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11173 {
11174 bfd_boolean dynamic;
11175 bfd_boolean emit_relocs;
11176 bfd *dynobj;
11177 struct elf_final_link_info flinfo;
11178 asection *o;
11179 struct bfd_link_order *p;
11180 bfd *sub;
11181 bfd_size_type max_contents_size;
11182 bfd_size_type max_external_reloc_size;
11183 bfd_size_type max_internal_reloc_count;
11184 bfd_size_type max_sym_count;
11185 bfd_size_type max_sym_shndx_count;
11186 Elf_Internal_Sym elfsym;
11187 unsigned int i;
11188 Elf_Internal_Shdr *symtab_hdr;
11189 Elf_Internal_Shdr *symtab_shndx_hdr;
11190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11191 struct elf_outext_info eoinfo;
11192 bfd_boolean merged;
11193 size_t relativecount = 0;
11194 asection *reldyn = 0;
11195 bfd_size_type amt;
11196 asection *attr_section = NULL;
11197 bfd_vma attr_size = 0;
11198 const char *std_attrs_section;
11199
11200 if (! is_elf_hash_table (info->hash))
11201 return FALSE;
11202
11203 if (bfd_link_pic (info))
11204 abfd->flags |= DYNAMIC;
11205
11206 dynamic = elf_hash_table (info)->dynamic_sections_created;
11207 dynobj = elf_hash_table (info)->dynobj;
11208
11209 emit_relocs = (bfd_link_relocatable (info)
11210 || info->emitrelocations);
11211
11212 flinfo.info = info;
11213 flinfo.output_bfd = abfd;
11214 flinfo.symstrtab = _bfd_elf_strtab_init ();
11215 if (flinfo.symstrtab == NULL)
11216 return FALSE;
11217
11218 if (! dynamic)
11219 {
11220 flinfo.hash_sec = NULL;
11221 flinfo.symver_sec = NULL;
11222 }
11223 else
11224 {
11225 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11226 /* Note that dynsym_sec can be NULL (on VMS). */
11227 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11228 /* Note that it is OK if symver_sec is NULL. */
11229 }
11230
11231 flinfo.contents = NULL;
11232 flinfo.external_relocs = NULL;
11233 flinfo.internal_relocs = NULL;
11234 flinfo.external_syms = NULL;
11235 flinfo.locsym_shndx = NULL;
11236 flinfo.internal_syms = NULL;
11237 flinfo.indices = NULL;
11238 flinfo.sections = NULL;
11239 flinfo.symshndxbuf = NULL;
11240 flinfo.filesym_count = 0;
11241
11242 /* The object attributes have been merged. Remove the input
11243 sections from the link, and set the contents of the output
11244 secton. */
11245 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11246 for (o = abfd->sections; o != NULL; o = o->next)
11247 {
11248 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11249 || strcmp (o->name, ".gnu.attributes") == 0)
11250 {
11251 for (p = o->map_head.link_order; p != NULL; p = p->next)
11252 {
11253 asection *input_section;
11254
11255 if (p->type != bfd_indirect_link_order)
11256 continue;
11257 input_section = p->u.indirect.section;
11258 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11259 elf_link_input_bfd ignores this section. */
11260 input_section->flags &= ~SEC_HAS_CONTENTS;
11261 }
11262
11263 attr_size = bfd_elf_obj_attr_size (abfd);
11264 if (attr_size)
11265 {
11266 bfd_set_section_size (abfd, o, attr_size);
11267 attr_section = o;
11268 /* Skip this section later on. */
11269 o->map_head.link_order = NULL;
11270 }
11271 else
11272 o->flags |= SEC_EXCLUDE;
11273 }
11274 }
11275
11276 /* Count up the number of relocations we will output for each output
11277 section, so that we know the sizes of the reloc sections. We
11278 also figure out some maximum sizes. */
11279 max_contents_size = 0;
11280 max_external_reloc_size = 0;
11281 max_internal_reloc_count = 0;
11282 max_sym_count = 0;
11283 max_sym_shndx_count = 0;
11284 merged = FALSE;
11285 for (o = abfd->sections; o != NULL; o = o->next)
11286 {
11287 struct bfd_elf_section_data *esdo = elf_section_data (o);
11288 o->reloc_count = 0;
11289
11290 for (p = o->map_head.link_order; p != NULL; p = p->next)
11291 {
11292 unsigned int reloc_count = 0;
11293 unsigned int additional_reloc_count = 0;
11294 struct bfd_elf_section_data *esdi = NULL;
11295
11296 if (p->type == bfd_section_reloc_link_order
11297 || p->type == bfd_symbol_reloc_link_order)
11298 reloc_count = 1;
11299 else if (p->type == bfd_indirect_link_order)
11300 {
11301 asection *sec;
11302
11303 sec = p->u.indirect.section;
11304 esdi = elf_section_data (sec);
11305
11306 /* Mark all sections which are to be included in the
11307 link. This will normally be every section. We need
11308 to do this so that we can identify any sections which
11309 the linker has decided to not include. */
11310 sec->linker_mark = TRUE;
11311
11312 if (sec->flags & SEC_MERGE)
11313 merged = TRUE;
11314
11315 if (esdo->this_hdr.sh_type == SHT_REL
11316 || esdo->this_hdr.sh_type == SHT_RELA)
11317 /* Some backends use reloc_count in relocation sections
11318 to count particular types of relocs. Of course,
11319 reloc sections themselves can't have relocations. */
11320 reloc_count = 0;
11321 else if (emit_relocs)
11322 {
11323 reloc_count = sec->reloc_count;
11324 if (bed->elf_backend_count_additional_relocs)
11325 {
11326 int c;
11327 c = (*bed->elf_backend_count_additional_relocs) (sec);
11328 additional_reloc_count += c;
11329 }
11330 }
11331 else if (bed->elf_backend_count_relocs)
11332 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11333
11334 if (sec->rawsize > max_contents_size)
11335 max_contents_size = sec->rawsize;
11336 if (sec->size > max_contents_size)
11337 max_contents_size = sec->size;
11338
11339 /* We are interested in just local symbols, not all
11340 symbols. */
11341 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11342 && (sec->owner->flags & DYNAMIC) == 0)
11343 {
11344 size_t sym_count;
11345
11346 if (elf_bad_symtab (sec->owner))
11347 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11348 / bed->s->sizeof_sym);
11349 else
11350 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11351
11352 if (sym_count > max_sym_count)
11353 max_sym_count = sym_count;
11354
11355 if (sym_count > max_sym_shndx_count
11356 && elf_symtab_shndx_list (sec->owner) != NULL)
11357 max_sym_shndx_count = sym_count;
11358
11359 if ((sec->flags & SEC_RELOC) != 0)
11360 {
11361 size_t ext_size = 0;
11362
11363 if (esdi->rel.hdr != NULL)
11364 ext_size = esdi->rel.hdr->sh_size;
11365 if (esdi->rela.hdr != NULL)
11366 ext_size += esdi->rela.hdr->sh_size;
11367
11368 if (ext_size > max_external_reloc_size)
11369 max_external_reloc_size = ext_size;
11370 if (sec->reloc_count > max_internal_reloc_count)
11371 max_internal_reloc_count = sec->reloc_count;
11372 }
11373 }
11374 }
11375
11376 if (reloc_count == 0)
11377 continue;
11378
11379 reloc_count += additional_reloc_count;
11380 o->reloc_count += reloc_count;
11381
11382 if (p->type == bfd_indirect_link_order && emit_relocs)
11383 {
11384 if (esdi->rel.hdr)
11385 {
11386 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11387 esdo->rel.count += additional_reloc_count;
11388 }
11389 if (esdi->rela.hdr)
11390 {
11391 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11392 esdo->rela.count += additional_reloc_count;
11393 }
11394 }
11395 else
11396 {
11397 if (o->use_rela_p)
11398 esdo->rela.count += reloc_count;
11399 else
11400 esdo->rel.count += reloc_count;
11401 }
11402 }
11403
11404 if (o->reloc_count > 0)
11405 o->flags |= SEC_RELOC;
11406 else
11407 {
11408 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11409 set it (this is probably a bug) and if it is set
11410 assign_section_numbers will create a reloc section. */
11411 o->flags &=~ SEC_RELOC;
11412 }
11413
11414 /* If the SEC_ALLOC flag is not set, force the section VMA to
11415 zero. This is done in elf_fake_sections as well, but forcing
11416 the VMA to 0 here will ensure that relocs against these
11417 sections are handled correctly. */
11418 if ((o->flags & SEC_ALLOC) == 0
11419 && ! o->user_set_vma)
11420 o->vma = 0;
11421 }
11422
11423 if (! bfd_link_relocatable (info) && merged)
11424 elf_link_hash_traverse (elf_hash_table (info),
11425 _bfd_elf_link_sec_merge_syms, abfd);
11426
11427 /* Figure out the file positions for everything but the symbol table
11428 and the relocs. We set symcount to force assign_section_numbers
11429 to create a symbol table. */
11430 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11431 BFD_ASSERT (! abfd->output_has_begun);
11432 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11433 goto error_return;
11434
11435 /* Set sizes, and assign file positions for reloc sections. */
11436 for (o = abfd->sections; o != NULL; o = o->next)
11437 {
11438 struct bfd_elf_section_data *esdo = elf_section_data (o);
11439 if ((o->flags & SEC_RELOC) != 0)
11440 {
11441 if (esdo->rel.hdr
11442 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11443 goto error_return;
11444
11445 if (esdo->rela.hdr
11446 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11447 goto error_return;
11448 }
11449
11450 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11451 to count upwards while actually outputting the relocations. */
11452 esdo->rel.count = 0;
11453 esdo->rela.count = 0;
11454
11455 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11456 {
11457 /* Cache the section contents so that they can be compressed
11458 later. Use bfd_malloc since it will be freed by
11459 bfd_compress_section_contents. */
11460 unsigned char *contents = esdo->this_hdr.contents;
11461 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11462 abort ();
11463 contents
11464 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11465 if (contents == NULL)
11466 goto error_return;
11467 esdo->this_hdr.contents = contents;
11468 }
11469 }
11470
11471 /* We have now assigned file positions for all the sections except
11472 .symtab, .strtab, and non-loaded reloc sections. We start the
11473 .symtab section at the current file position, and write directly
11474 to it. We build the .strtab section in memory. */
11475 bfd_get_symcount (abfd) = 0;
11476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11477 /* sh_name is set in prep_headers. */
11478 symtab_hdr->sh_type = SHT_SYMTAB;
11479 /* sh_flags, sh_addr and sh_size all start off zero. */
11480 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11481 /* sh_link is set in assign_section_numbers. */
11482 /* sh_info is set below. */
11483 /* sh_offset is set just below. */
11484 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11485
11486 if (max_sym_count < 20)
11487 max_sym_count = 20;
11488 elf_hash_table (info)->strtabsize = max_sym_count;
11489 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11490 elf_hash_table (info)->strtab
11491 = (struct elf_sym_strtab *) bfd_malloc (amt);
11492 if (elf_hash_table (info)->strtab == NULL)
11493 goto error_return;
11494 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11495 flinfo.symshndxbuf
11496 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11497 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11498
11499 if (info->strip != strip_all || emit_relocs)
11500 {
11501 file_ptr off = elf_next_file_pos (abfd);
11502
11503 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11504
11505 /* Note that at this point elf_next_file_pos (abfd) is
11506 incorrect. We do not yet know the size of the .symtab section.
11507 We correct next_file_pos below, after we do know the size. */
11508
11509 /* Start writing out the symbol table. The first symbol is always a
11510 dummy symbol. */
11511 elfsym.st_value = 0;
11512 elfsym.st_size = 0;
11513 elfsym.st_info = 0;
11514 elfsym.st_other = 0;
11515 elfsym.st_shndx = SHN_UNDEF;
11516 elfsym.st_target_internal = 0;
11517 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11518 bfd_und_section_ptr, NULL) != 1)
11519 goto error_return;
11520
11521 /* Output a symbol for each section. We output these even if we are
11522 discarding local symbols, since they are used for relocs. These
11523 symbols have no names. We store the index of each one in the
11524 index field of the section, so that we can find it again when
11525 outputting relocs. */
11526
11527 elfsym.st_size = 0;
11528 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11529 elfsym.st_other = 0;
11530 elfsym.st_value = 0;
11531 elfsym.st_target_internal = 0;
11532 for (i = 1; i < elf_numsections (abfd); i++)
11533 {
11534 o = bfd_section_from_elf_index (abfd, i);
11535 if (o != NULL)
11536 {
11537 o->target_index = bfd_get_symcount (abfd);
11538 elfsym.st_shndx = i;
11539 if (!bfd_link_relocatable (info))
11540 elfsym.st_value = o->vma;
11541 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11542 NULL) != 1)
11543 goto error_return;
11544 }
11545 }
11546 }
11547
11548 /* Allocate some memory to hold information read in from the input
11549 files. */
11550 if (max_contents_size != 0)
11551 {
11552 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11553 if (flinfo.contents == NULL)
11554 goto error_return;
11555 }
11556
11557 if (max_external_reloc_size != 0)
11558 {
11559 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11560 if (flinfo.external_relocs == NULL)
11561 goto error_return;
11562 }
11563
11564 if (max_internal_reloc_count != 0)
11565 {
11566 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11567 amt *= sizeof (Elf_Internal_Rela);
11568 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11569 if (flinfo.internal_relocs == NULL)
11570 goto error_return;
11571 }
11572
11573 if (max_sym_count != 0)
11574 {
11575 amt = max_sym_count * bed->s->sizeof_sym;
11576 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11577 if (flinfo.external_syms == NULL)
11578 goto error_return;
11579
11580 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11581 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11582 if (flinfo.internal_syms == NULL)
11583 goto error_return;
11584
11585 amt = max_sym_count * sizeof (long);
11586 flinfo.indices = (long int *) bfd_malloc (amt);
11587 if (flinfo.indices == NULL)
11588 goto error_return;
11589
11590 amt = max_sym_count * sizeof (asection *);
11591 flinfo.sections = (asection **) bfd_malloc (amt);
11592 if (flinfo.sections == NULL)
11593 goto error_return;
11594 }
11595
11596 if (max_sym_shndx_count != 0)
11597 {
11598 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11599 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11600 if (flinfo.locsym_shndx == NULL)
11601 goto error_return;
11602 }
11603
11604 if (elf_hash_table (info)->tls_sec)
11605 {
11606 bfd_vma base, end = 0;
11607 asection *sec;
11608
11609 for (sec = elf_hash_table (info)->tls_sec;
11610 sec && (sec->flags & SEC_THREAD_LOCAL);
11611 sec = sec->next)
11612 {
11613 bfd_size_type size = sec->size;
11614
11615 if (size == 0
11616 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11617 {
11618 struct bfd_link_order *ord = sec->map_tail.link_order;
11619
11620 if (ord != NULL)
11621 size = ord->offset + ord->size;
11622 }
11623 end = sec->vma + size;
11624 }
11625 base = elf_hash_table (info)->tls_sec->vma;
11626 /* Only align end of TLS section if static TLS doesn't have special
11627 alignment requirements. */
11628 if (bed->static_tls_alignment == 1)
11629 end = align_power (end,
11630 elf_hash_table (info)->tls_sec->alignment_power);
11631 elf_hash_table (info)->tls_size = end - base;
11632 }
11633
11634 /* Reorder SHF_LINK_ORDER sections. */
11635 for (o = abfd->sections; o != NULL; o = o->next)
11636 {
11637 if (!elf_fixup_link_order (abfd, o))
11638 return FALSE;
11639 }
11640
11641 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11642 return FALSE;
11643
11644 /* Since ELF permits relocations to be against local symbols, we
11645 must have the local symbols available when we do the relocations.
11646 Since we would rather only read the local symbols once, and we
11647 would rather not keep them in memory, we handle all the
11648 relocations for a single input file at the same time.
11649
11650 Unfortunately, there is no way to know the total number of local
11651 symbols until we have seen all of them, and the local symbol
11652 indices precede the global symbol indices. This means that when
11653 we are generating relocatable output, and we see a reloc against
11654 a global symbol, we can not know the symbol index until we have
11655 finished examining all the local symbols to see which ones we are
11656 going to output. To deal with this, we keep the relocations in
11657 memory, and don't output them until the end of the link. This is
11658 an unfortunate waste of memory, but I don't see a good way around
11659 it. Fortunately, it only happens when performing a relocatable
11660 link, which is not the common case. FIXME: If keep_memory is set
11661 we could write the relocs out and then read them again; I don't
11662 know how bad the memory loss will be. */
11663
11664 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11665 sub->output_has_begun = FALSE;
11666 for (o = abfd->sections; o != NULL; o = o->next)
11667 {
11668 for (p = o->map_head.link_order; p != NULL; p = p->next)
11669 {
11670 if (p->type == bfd_indirect_link_order
11671 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11672 == bfd_target_elf_flavour)
11673 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11674 {
11675 if (! sub->output_has_begun)
11676 {
11677 if (! elf_link_input_bfd (&flinfo, sub))
11678 goto error_return;
11679 sub->output_has_begun = TRUE;
11680 }
11681 }
11682 else if (p->type == bfd_section_reloc_link_order
11683 || p->type == bfd_symbol_reloc_link_order)
11684 {
11685 if (! elf_reloc_link_order (abfd, info, o, p))
11686 goto error_return;
11687 }
11688 else
11689 {
11690 if (! _bfd_default_link_order (abfd, info, o, p))
11691 {
11692 if (p->type == bfd_indirect_link_order
11693 && (bfd_get_flavour (sub)
11694 == bfd_target_elf_flavour)
11695 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11696 != bed->s->elfclass))
11697 {
11698 const char *iclass, *oclass;
11699
11700 switch (bed->s->elfclass)
11701 {
11702 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11703 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11704 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11705 default: abort ();
11706 }
11707
11708 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11709 {
11710 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11711 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11712 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11713 default: abort ();
11714 }
11715
11716 bfd_set_error (bfd_error_wrong_format);
11717 (*_bfd_error_handler)
11718 (_("%B: file class %s incompatible with %s"),
11719 sub, iclass, oclass);
11720 }
11721
11722 goto error_return;
11723 }
11724 }
11725 }
11726 }
11727
11728 /* Free symbol buffer if needed. */
11729 if (!info->reduce_memory_overheads)
11730 {
11731 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11732 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11733 && elf_tdata (sub)->symbuf)
11734 {
11735 free (elf_tdata (sub)->symbuf);
11736 elf_tdata (sub)->symbuf = NULL;
11737 }
11738 }
11739
11740 /* Output any global symbols that got converted to local in a
11741 version script or due to symbol visibility. We do this in a
11742 separate step since ELF requires all local symbols to appear
11743 prior to any global symbols. FIXME: We should only do this if
11744 some global symbols were, in fact, converted to become local.
11745 FIXME: Will this work correctly with the Irix 5 linker? */
11746 eoinfo.failed = FALSE;
11747 eoinfo.flinfo = &flinfo;
11748 eoinfo.localsyms = TRUE;
11749 eoinfo.file_sym_done = FALSE;
11750 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11751 if (eoinfo.failed)
11752 return FALSE;
11753
11754 /* If backend needs to output some local symbols not present in the hash
11755 table, do it now. */
11756 if (bed->elf_backend_output_arch_local_syms
11757 && (info->strip != strip_all || emit_relocs))
11758 {
11759 typedef int (*out_sym_func)
11760 (void *, const char *, Elf_Internal_Sym *, asection *,
11761 struct elf_link_hash_entry *);
11762
11763 if (! ((*bed->elf_backend_output_arch_local_syms)
11764 (abfd, info, &flinfo,
11765 (out_sym_func) elf_link_output_symstrtab)))
11766 return FALSE;
11767 }
11768
11769 /* That wrote out all the local symbols. Finish up the symbol table
11770 with the global symbols. Even if we want to strip everything we
11771 can, we still need to deal with those global symbols that got
11772 converted to local in a version script. */
11773
11774 /* The sh_info field records the index of the first non local symbol. */
11775 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11776
11777 if (dynamic
11778 && elf_hash_table (info)->dynsym != NULL
11779 && (elf_hash_table (info)->dynsym->output_section
11780 != bfd_abs_section_ptr))
11781 {
11782 Elf_Internal_Sym sym;
11783 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11784 long last_local = 0;
11785
11786 /* Write out the section symbols for the output sections. */
11787 if (bfd_link_pic (info)
11788 || elf_hash_table (info)->is_relocatable_executable)
11789 {
11790 asection *s;
11791
11792 sym.st_size = 0;
11793 sym.st_name = 0;
11794 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11795 sym.st_other = 0;
11796 sym.st_target_internal = 0;
11797
11798 for (s = abfd->sections; s != NULL; s = s->next)
11799 {
11800 int indx;
11801 bfd_byte *dest;
11802 long dynindx;
11803
11804 dynindx = elf_section_data (s)->dynindx;
11805 if (dynindx <= 0)
11806 continue;
11807 indx = elf_section_data (s)->this_idx;
11808 BFD_ASSERT (indx > 0);
11809 sym.st_shndx = indx;
11810 if (! check_dynsym (abfd, &sym))
11811 return FALSE;
11812 sym.st_value = s->vma;
11813 dest = dynsym + dynindx * bed->s->sizeof_sym;
11814 if (last_local < dynindx)
11815 last_local = dynindx;
11816 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11817 }
11818 }
11819
11820 /* Write out the local dynsyms. */
11821 if (elf_hash_table (info)->dynlocal)
11822 {
11823 struct elf_link_local_dynamic_entry *e;
11824 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11825 {
11826 asection *s;
11827 bfd_byte *dest;
11828
11829 /* Copy the internal symbol and turn off visibility.
11830 Note that we saved a word of storage and overwrote
11831 the original st_name with the dynstr_index. */
11832 sym = e->isym;
11833 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11834
11835 s = bfd_section_from_elf_index (e->input_bfd,
11836 e->isym.st_shndx);
11837 if (s != NULL)
11838 {
11839 sym.st_shndx =
11840 elf_section_data (s->output_section)->this_idx;
11841 if (! check_dynsym (abfd, &sym))
11842 return FALSE;
11843 sym.st_value = (s->output_section->vma
11844 + s->output_offset
11845 + e->isym.st_value);
11846 }
11847
11848 if (last_local < e->dynindx)
11849 last_local = e->dynindx;
11850
11851 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11852 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11853 }
11854 }
11855
11856 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11857 last_local + 1;
11858 }
11859
11860 /* We get the global symbols from the hash table. */
11861 eoinfo.failed = FALSE;
11862 eoinfo.localsyms = FALSE;
11863 eoinfo.flinfo = &flinfo;
11864 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11865 if (eoinfo.failed)
11866 return FALSE;
11867
11868 /* If backend needs to output some symbols not present in the hash
11869 table, do it now. */
11870 if (bed->elf_backend_output_arch_syms
11871 && (info->strip != strip_all || emit_relocs))
11872 {
11873 typedef int (*out_sym_func)
11874 (void *, const char *, Elf_Internal_Sym *, asection *,
11875 struct elf_link_hash_entry *);
11876
11877 if (! ((*bed->elf_backend_output_arch_syms)
11878 (abfd, info, &flinfo,
11879 (out_sym_func) elf_link_output_symstrtab)))
11880 return FALSE;
11881 }
11882
11883 /* Finalize the .strtab section. */
11884 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11885
11886 /* Swap out the .strtab section. */
11887 if (!elf_link_swap_symbols_out (&flinfo))
11888 return FALSE;
11889
11890 /* Now we know the size of the symtab section. */
11891 if (bfd_get_symcount (abfd) > 0)
11892 {
11893 /* Finish up and write out the symbol string table (.strtab)
11894 section. */
11895 Elf_Internal_Shdr *symstrtab_hdr;
11896 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11897
11898 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11899 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11900 {
11901 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11902 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11903 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11904 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11905 symtab_shndx_hdr->sh_size = amt;
11906
11907 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11908 off, TRUE);
11909
11910 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11911 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11912 return FALSE;
11913 }
11914
11915 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11916 /* sh_name was set in prep_headers. */
11917 symstrtab_hdr->sh_type = SHT_STRTAB;
11918 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11919 symstrtab_hdr->sh_addr = 0;
11920 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11921 symstrtab_hdr->sh_entsize = 0;
11922 symstrtab_hdr->sh_link = 0;
11923 symstrtab_hdr->sh_info = 0;
11924 /* sh_offset is set just below. */
11925 symstrtab_hdr->sh_addralign = 1;
11926
11927 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11928 off, TRUE);
11929 elf_next_file_pos (abfd) = off;
11930
11931 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11932 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11933 return FALSE;
11934 }
11935
11936 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
11937 {
11938 (*_bfd_error_handler) (_("%B: failed to generate import library"),
11939 info->out_implib_bfd);
11940 return FALSE;
11941 }
11942
11943 /* Adjust the relocs to have the correct symbol indices. */
11944 for (o = abfd->sections; o != NULL; o = o->next)
11945 {
11946 struct bfd_elf_section_data *esdo = elf_section_data (o);
11947 bfd_boolean sort;
11948 if ((o->flags & SEC_RELOC) == 0)
11949 continue;
11950
11951 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11952 if (esdo->rel.hdr != NULL
11953 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11954 return FALSE;
11955 if (esdo->rela.hdr != NULL
11956 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11957 return FALSE;
11958
11959 /* Set the reloc_count field to 0 to prevent write_relocs from
11960 trying to swap the relocs out itself. */
11961 o->reloc_count = 0;
11962 }
11963
11964 if (dynamic && info->combreloc && dynobj != NULL)
11965 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11966
11967 /* If we are linking against a dynamic object, or generating a
11968 shared library, finish up the dynamic linking information. */
11969 if (dynamic)
11970 {
11971 bfd_byte *dyncon, *dynconend;
11972
11973 /* Fix up .dynamic entries. */
11974 o = bfd_get_linker_section (dynobj, ".dynamic");
11975 BFD_ASSERT (o != NULL);
11976
11977 dyncon = o->contents;
11978 dynconend = o->contents + o->size;
11979 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11980 {
11981 Elf_Internal_Dyn dyn;
11982 const char *name;
11983 unsigned int type;
11984
11985 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11986
11987 switch (dyn.d_tag)
11988 {
11989 default:
11990 continue;
11991 case DT_NULL:
11992 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11993 {
11994 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11995 {
11996 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11997 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11998 default: continue;
11999 }
12000 dyn.d_un.d_val = relativecount;
12001 relativecount = 0;
12002 break;
12003 }
12004 continue;
12005
12006 case DT_INIT:
12007 name = info->init_function;
12008 goto get_sym;
12009 case DT_FINI:
12010 name = info->fini_function;
12011 get_sym:
12012 {
12013 struct elf_link_hash_entry *h;
12014
12015 h = elf_link_hash_lookup (elf_hash_table (info), name,
12016 FALSE, FALSE, TRUE);
12017 if (h != NULL
12018 && (h->root.type == bfd_link_hash_defined
12019 || h->root.type == bfd_link_hash_defweak))
12020 {
12021 dyn.d_un.d_ptr = h->root.u.def.value;
12022 o = h->root.u.def.section;
12023 if (o->output_section != NULL)
12024 dyn.d_un.d_ptr += (o->output_section->vma
12025 + o->output_offset);
12026 else
12027 {
12028 /* The symbol is imported from another shared
12029 library and does not apply to this one. */
12030 dyn.d_un.d_ptr = 0;
12031 }
12032 break;
12033 }
12034 }
12035 continue;
12036
12037 case DT_PREINIT_ARRAYSZ:
12038 name = ".preinit_array";
12039 goto get_out_size;
12040 case DT_INIT_ARRAYSZ:
12041 name = ".init_array";
12042 goto get_out_size;
12043 case DT_FINI_ARRAYSZ:
12044 name = ".fini_array";
12045 get_out_size:
12046 o = bfd_get_section_by_name (abfd, name);
12047 if (o == NULL)
12048 {
12049 (*_bfd_error_handler)
12050 (_("could not find section %s"), name);
12051 goto error_return;
12052 }
12053 if (o->size == 0)
12054 (*_bfd_error_handler)
12055 (_("warning: %s section has zero size"), name);
12056 dyn.d_un.d_val = o->size;
12057 break;
12058
12059 case DT_PREINIT_ARRAY:
12060 name = ".preinit_array";
12061 goto get_out_vma;
12062 case DT_INIT_ARRAY:
12063 name = ".init_array";
12064 goto get_out_vma;
12065 case DT_FINI_ARRAY:
12066 name = ".fini_array";
12067 get_out_vma:
12068 o = bfd_get_section_by_name (abfd, name);
12069 goto do_vma;
12070
12071 case DT_HASH:
12072 name = ".hash";
12073 goto get_vma;
12074 case DT_GNU_HASH:
12075 name = ".gnu.hash";
12076 goto get_vma;
12077 case DT_STRTAB:
12078 name = ".dynstr";
12079 goto get_vma;
12080 case DT_SYMTAB:
12081 name = ".dynsym";
12082 goto get_vma;
12083 case DT_VERDEF:
12084 name = ".gnu.version_d";
12085 goto get_vma;
12086 case DT_VERNEED:
12087 name = ".gnu.version_r";
12088 goto get_vma;
12089 case DT_VERSYM:
12090 name = ".gnu.version";
12091 get_vma:
12092 o = bfd_get_linker_section (dynobj, name);
12093 do_vma:
12094 if (o == NULL)
12095 {
12096 (*_bfd_error_handler)
12097 (_("could not find section %s"), name);
12098 goto error_return;
12099 }
12100 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12101 {
12102 (*_bfd_error_handler)
12103 (_("warning: section '%s' is being made into a note"), name);
12104 bfd_set_error (bfd_error_nonrepresentable_section);
12105 goto error_return;
12106 }
12107 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12108 break;
12109
12110 case DT_REL:
12111 case DT_RELA:
12112 case DT_RELSZ:
12113 case DT_RELASZ:
12114 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12115 type = SHT_REL;
12116 else
12117 type = SHT_RELA;
12118 dyn.d_un.d_val = 0;
12119 dyn.d_un.d_ptr = 0;
12120 for (i = 1; i < elf_numsections (abfd); i++)
12121 {
12122 Elf_Internal_Shdr *hdr;
12123
12124 hdr = elf_elfsections (abfd)[i];
12125 if (hdr->sh_type == type
12126 && (hdr->sh_flags & SHF_ALLOC) != 0)
12127 {
12128 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12129 dyn.d_un.d_val += hdr->sh_size;
12130 else
12131 {
12132 if (dyn.d_un.d_ptr == 0
12133 || hdr->sh_addr < dyn.d_un.d_ptr)
12134 dyn.d_un.d_ptr = hdr->sh_addr;
12135 }
12136 }
12137 }
12138 break;
12139 }
12140 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12141 }
12142 }
12143
12144 /* If we have created any dynamic sections, then output them. */
12145 if (dynobj != NULL)
12146 {
12147 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12148 goto error_return;
12149
12150 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12151 if (((info->warn_shared_textrel && bfd_link_pic (info))
12152 || info->error_textrel)
12153 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12154 {
12155 bfd_byte *dyncon, *dynconend;
12156
12157 dyncon = o->contents;
12158 dynconend = o->contents + o->size;
12159 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12160 {
12161 Elf_Internal_Dyn dyn;
12162
12163 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12164
12165 if (dyn.d_tag == DT_TEXTREL)
12166 {
12167 if (info->error_textrel)
12168 info->callbacks->einfo
12169 (_("%P%X: read-only segment has dynamic relocations.\n"));
12170 else
12171 info->callbacks->einfo
12172 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12173 break;
12174 }
12175 }
12176 }
12177
12178 for (o = dynobj->sections; o != NULL; o = o->next)
12179 {
12180 if ((o->flags & SEC_HAS_CONTENTS) == 0
12181 || o->size == 0
12182 || o->output_section == bfd_abs_section_ptr)
12183 continue;
12184 if ((o->flags & SEC_LINKER_CREATED) == 0)
12185 {
12186 /* At this point, we are only interested in sections
12187 created by _bfd_elf_link_create_dynamic_sections. */
12188 continue;
12189 }
12190 if (elf_hash_table (info)->stab_info.stabstr == o)
12191 continue;
12192 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12193 continue;
12194 if (strcmp (o->name, ".dynstr") != 0)
12195 {
12196 if (! bfd_set_section_contents (abfd, o->output_section,
12197 o->contents,
12198 (file_ptr) o->output_offset
12199 * bfd_octets_per_byte (abfd),
12200 o->size))
12201 goto error_return;
12202 }
12203 else
12204 {
12205 /* The contents of the .dynstr section are actually in a
12206 stringtab. */
12207 file_ptr off;
12208
12209 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12210 if (bfd_seek (abfd, off, SEEK_SET) != 0
12211 || ! _bfd_elf_strtab_emit (abfd,
12212 elf_hash_table (info)->dynstr))
12213 goto error_return;
12214 }
12215 }
12216 }
12217
12218 if (bfd_link_relocatable (info))
12219 {
12220 bfd_boolean failed = FALSE;
12221
12222 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12223 if (failed)
12224 goto error_return;
12225 }
12226
12227 /* If we have optimized stabs strings, output them. */
12228 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12229 {
12230 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12231 goto error_return;
12232 }
12233
12234 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12235 goto error_return;
12236
12237 elf_final_link_free (abfd, &flinfo);
12238
12239 elf_linker (abfd) = TRUE;
12240
12241 if (attr_section)
12242 {
12243 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12244 if (contents == NULL)
12245 return FALSE; /* Bail out and fail. */
12246 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12247 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12248 free (contents);
12249 }
12250
12251 return TRUE;
12252
12253 error_return:
12254 elf_final_link_free (abfd, &flinfo);
12255 return FALSE;
12256 }
12257 \f
12258 /* Initialize COOKIE for input bfd ABFD. */
12259
12260 static bfd_boolean
12261 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12262 struct bfd_link_info *info, bfd *abfd)
12263 {
12264 Elf_Internal_Shdr *symtab_hdr;
12265 const struct elf_backend_data *bed;
12266
12267 bed = get_elf_backend_data (abfd);
12268 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12269
12270 cookie->abfd = abfd;
12271 cookie->sym_hashes = elf_sym_hashes (abfd);
12272 cookie->bad_symtab = elf_bad_symtab (abfd);
12273 if (cookie->bad_symtab)
12274 {
12275 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12276 cookie->extsymoff = 0;
12277 }
12278 else
12279 {
12280 cookie->locsymcount = symtab_hdr->sh_info;
12281 cookie->extsymoff = symtab_hdr->sh_info;
12282 }
12283
12284 if (bed->s->arch_size == 32)
12285 cookie->r_sym_shift = 8;
12286 else
12287 cookie->r_sym_shift = 32;
12288
12289 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12290 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12291 {
12292 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12293 cookie->locsymcount, 0,
12294 NULL, NULL, NULL);
12295 if (cookie->locsyms == NULL)
12296 {
12297 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12298 return FALSE;
12299 }
12300 if (info->keep_memory)
12301 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12302 }
12303 return TRUE;
12304 }
12305
12306 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12307
12308 static void
12309 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12310 {
12311 Elf_Internal_Shdr *symtab_hdr;
12312
12313 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12314 if (cookie->locsyms != NULL
12315 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12316 free (cookie->locsyms);
12317 }
12318
12319 /* Initialize the relocation information in COOKIE for input section SEC
12320 of input bfd ABFD. */
12321
12322 static bfd_boolean
12323 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12324 struct bfd_link_info *info, bfd *abfd,
12325 asection *sec)
12326 {
12327 const struct elf_backend_data *bed;
12328
12329 if (sec->reloc_count == 0)
12330 {
12331 cookie->rels = NULL;
12332 cookie->relend = NULL;
12333 }
12334 else
12335 {
12336 bed = get_elf_backend_data (abfd);
12337
12338 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12339 info->keep_memory);
12340 if (cookie->rels == NULL)
12341 return FALSE;
12342 cookie->rel = cookie->rels;
12343 cookie->relend = (cookie->rels
12344 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12345 }
12346 cookie->rel = cookie->rels;
12347 return TRUE;
12348 }
12349
12350 /* Free the memory allocated by init_reloc_cookie_rels,
12351 if appropriate. */
12352
12353 static void
12354 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12355 asection *sec)
12356 {
12357 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12358 free (cookie->rels);
12359 }
12360
12361 /* Initialize the whole of COOKIE for input section SEC. */
12362
12363 static bfd_boolean
12364 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12365 struct bfd_link_info *info,
12366 asection *sec)
12367 {
12368 if (!init_reloc_cookie (cookie, info, sec->owner))
12369 goto error1;
12370 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12371 goto error2;
12372 return TRUE;
12373
12374 error2:
12375 fini_reloc_cookie (cookie, sec->owner);
12376 error1:
12377 return FALSE;
12378 }
12379
12380 /* Free the memory allocated by init_reloc_cookie_for_section,
12381 if appropriate. */
12382
12383 static void
12384 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12385 asection *sec)
12386 {
12387 fini_reloc_cookie_rels (cookie, sec);
12388 fini_reloc_cookie (cookie, sec->owner);
12389 }
12390 \f
12391 /* Garbage collect unused sections. */
12392
12393 /* Default gc_mark_hook. */
12394
12395 asection *
12396 _bfd_elf_gc_mark_hook (asection *sec,
12397 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12398 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12399 struct elf_link_hash_entry *h,
12400 Elf_Internal_Sym *sym)
12401 {
12402 if (h != NULL)
12403 {
12404 switch (h->root.type)
12405 {
12406 case bfd_link_hash_defined:
12407 case bfd_link_hash_defweak:
12408 return h->root.u.def.section;
12409
12410 case bfd_link_hash_common:
12411 return h->root.u.c.p->section;
12412
12413 default:
12414 break;
12415 }
12416 }
12417 else
12418 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12419
12420 return NULL;
12421 }
12422
12423 /* For undefined __start_<name> and __stop_<name> symbols, return the
12424 first input section matching <name>. Return NULL otherwise. */
12425
12426 asection *
12427 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12428 struct elf_link_hash_entry *h)
12429 {
12430 asection *s;
12431 const char *sec_name;
12432
12433 if (h->root.type != bfd_link_hash_undefined
12434 && h->root.type != bfd_link_hash_undefweak)
12435 return NULL;
12436
12437 s = h->root.u.undef.section;
12438 if (s != NULL)
12439 {
12440 if (s == (asection *) 0 - 1)
12441 return NULL;
12442 return s;
12443 }
12444
12445 sec_name = NULL;
12446 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12447 sec_name = h->root.root.string + 8;
12448 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12449 sec_name = h->root.root.string + 7;
12450
12451 if (sec_name != NULL && *sec_name != '\0')
12452 {
12453 bfd *i;
12454
12455 for (i = info->input_bfds; i != NULL; i = i->link.next)
12456 {
12457 s = bfd_get_section_by_name (i, sec_name);
12458 if (s != NULL)
12459 {
12460 h->root.u.undef.section = s;
12461 break;
12462 }
12463 }
12464 }
12465
12466 if (s == NULL)
12467 h->root.u.undef.section = (asection *) 0 - 1;
12468
12469 return s;
12470 }
12471
12472 /* COOKIE->rel describes a relocation against section SEC, which is
12473 a section we've decided to keep. Return the section that contains
12474 the relocation symbol, or NULL if no section contains it. */
12475
12476 asection *
12477 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12478 elf_gc_mark_hook_fn gc_mark_hook,
12479 struct elf_reloc_cookie *cookie,
12480 bfd_boolean *start_stop)
12481 {
12482 unsigned long r_symndx;
12483 struct elf_link_hash_entry *h;
12484
12485 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12486 if (r_symndx == STN_UNDEF)
12487 return NULL;
12488
12489 if (r_symndx >= cookie->locsymcount
12490 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12491 {
12492 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12493 if (h == NULL)
12494 {
12495 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12496 sec->owner);
12497 return NULL;
12498 }
12499 while (h->root.type == bfd_link_hash_indirect
12500 || h->root.type == bfd_link_hash_warning)
12501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12502 h->mark = 1;
12503 /* If this symbol is weak and there is a non-weak definition, we
12504 keep the non-weak definition because many backends put
12505 dynamic reloc info on the non-weak definition for code
12506 handling copy relocs. */
12507 if (h->u.weakdef != NULL)
12508 h->u.weakdef->mark = 1;
12509
12510 if (start_stop != NULL)
12511 {
12512 /* To work around a glibc bug, mark all XXX input sections
12513 when there is an as yet undefined reference to __start_XXX
12514 or __stop_XXX symbols. The linker will later define such
12515 symbols for orphan input sections that have a name
12516 representable as a C identifier. */
12517 asection *s = _bfd_elf_is_start_stop (info, h);
12518
12519 if (s != NULL)
12520 {
12521 *start_stop = !s->gc_mark;
12522 return s;
12523 }
12524 }
12525
12526 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12527 }
12528
12529 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12530 &cookie->locsyms[r_symndx]);
12531 }
12532
12533 /* COOKIE->rel describes a relocation against section SEC, which is
12534 a section we've decided to keep. Mark the section that contains
12535 the relocation symbol. */
12536
12537 bfd_boolean
12538 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12539 asection *sec,
12540 elf_gc_mark_hook_fn gc_mark_hook,
12541 struct elf_reloc_cookie *cookie)
12542 {
12543 asection *rsec;
12544 bfd_boolean start_stop = FALSE;
12545
12546 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12547 while (rsec != NULL)
12548 {
12549 if (!rsec->gc_mark)
12550 {
12551 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12552 || (rsec->owner->flags & DYNAMIC) != 0)
12553 rsec->gc_mark = 1;
12554 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12555 return FALSE;
12556 }
12557 if (!start_stop)
12558 break;
12559 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12560 }
12561 return TRUE;
12562 }
12563
12564 /* The mark phase of garbage collection. For a given section, mark
12565 it and any sections in this section's group, and all the sections
12566 which define symbols to which it refers. */
12567
12568 bfd_boolean
12569 _bfd_elf_gc_mark (struct bfd_link_info *info,
12570 asection *sec,
12571 elf_gc_mark_hook_fn gc_mark_hook)
12572 {
12573 bfd_boolean ret;
12574 asection *group_sec, *eh_frame;
12575
12576 sec->gc_mark = 1;
12577
12578 /* Mark all the sections in the group. */
12579 group_sec = elf_section_data (sec)->next_in_group;
12580 if (group_sec && !group_sec->gc_mark)
12581 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12582 return FALSE;
12583
12584 /* Look through the section relocs. */
12585 ret = TRUE;
12586 eh_frame = elf_eh_frame_section (sec->owner);
12587 if ((sec->flags & SEC_RELOC) != 0
12588 && sec->reloc_count > 0
12589 && sec != eh_frame)
12590 {
12591 struct elf_reloc_cookie cookie;
12592
12593 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12594 ret = FALSE;
12595 else
12596 {
12597 for (; cookie.rel < cookie.relend; cookie.rel++)
12598 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12599 {
12600 ret = FALSE;
12601 break;
12602 }
12603 fini_reloc_cookie_for_section (&cookie, sec);
12604 }
12605 }
12606
12607 if (ret && eh_frame && elf_fde_list (sec))
12608 {
12609 struct elf_reloc_cookie cookie;
12610
12611 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12612 ret = FALSE;
12613 else
12614 {
12615 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12616 gc_mark_hook, &cookie))
12617 ret = FALSE;
12618 fini_reloc_cookie_for_section (&cookie, eh_frame);
12619 }
12620 }
12621
12622 eh_frame = elf_section_eh_frame_entry (sec);
12623 if (ret && eh_frame && !eh_frame->gc_mark)
12624 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12625 ret = FALSE;
12626
12627 return ret;
12628 }
12629
12630 /* Scan and mark sections in a special or debug section group. */
12631
12632 static void
12633 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12634 {
12635 /* Point to first section of section group. */
12636 asection *ssec;
12637 /* Used to iterate the section group. */
12638 asection *msec;
12639
12640 bfd_boolean is_special_grp = TRUE;
12641 bfd_boolean is_debug_grp = TRUE;
12642
12643 /* First scan to see if group contains any section other than debug
12644 and special section. */
12645 ssec = msec = elf_next_in_group (grp);
12646 do
12647 {
12648 if ((msec->flags & SEC_DEBUGGING) == 0)
12649 is_debug_grp = FALSE;
12650
12651 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12652 is_special_grp = FALSE;
12653
12654 msec = elf_next_in_group (msec);
12655 }
12656 while (msec != ssec);
12657
12658 /* If this is a pure debug section group or pure special section group,
12659 keep all sections in this group. */
12660 if (is_debug_grp || is_special_grp)
12661 {
12662 do
12663 {
12664 msec->gc_mark = 1;
12665 msec = elf_next_in_group (msec);
12666 }
12667 while (msec != ssec);
12668 }
12669 }
12670
12671 /* Keep debug and special sections. */
12672
12673 bfd_boolean
12674 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12675 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12676 {
12677 bfd *ibfd;
12678
12679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12680 {
12681 asection *isec;
12682 bfd_boolean some_kept;
12683 bfd_boolean debug_frag_seen;
12684
12685 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12686 continue;
12687
12688 /* Ensure all linker created sections are kept,
12689 see if any other section is already marked,
12690 and note if we have any fragmented debug sections. */
12691 debug_frag_seen = some_kept = FALSE;
12692 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12693 {
12694 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12695 isec->gc_mark = 1;
12696 else if (isec->gc_mark)
12697 some_kept = TRUE;
12698
12699 if (debug_frag_seen == FALSE
12700 && (isec->flags & SEC_DEBUGGING)
12701 && CONST_STRNEQ (isec->name, ".debug_line."))
12702 debug_frag_seen = TRUE;
12703 }
12704
12705 /* If no section in this file will be kept, then we can
12706 toss out the debug and special sections. */
12707 if (!some_kept)
12708 continue;
12709
12710 /* Keep debug and special sections like .comment when they are
12711 not part of a group. Also keep section groups that contain
12712 just debug sections or special sections. */
12713 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12714 {
12715 if ((isec->flags & SEC_GROUP) != 0)
12716 _bfd_elf_gc_mark_debug_special_section_group (isec);
12717 else if (((isec->flags & SEC_DEBUGGING) != 0
12718 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12719 && elf_next_in_group (isec) == NULL)
12720 isec->gc_mark = 1;
12721 }
12722
12723 if (! debug_frag_seen)
12724 continue;
12725
12726 /* Look for CODE sections which are going to be discarded,
12727 and find and discard any fragmented debug sections which
12728 are associated with that code section. */
12729 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12730 if ((isec->flags & SEC_CODE) != 0
12731 && isec->gc_mark == 0)
12732 {
12733 unsigned int ilen;
12734 asection *dsec;
12735
12736 ilen = strlen (isec->name);
12737
12738 /* Association is determined by the name of the debug section
12739 containing the name of the code section as a suffix. For
12740 example .debug_line.text.foo is a debug section associated
12741 with .text.foo. */
12742 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12743 {
12744 unsigned int dlen;
12745
12746 if (dsec->gc_mark == 0
12747 || (dsec->flags & SEC_DEBUGGING) == 0)
12748 continue;
12749
12750 dlen = strlen (dsec->name);
12751
12752 if (dlen > ilen
12753 && strncmp (dsec->name + (dlen - ilen),
12754 isec->name, ilen) == 0)
12755 {
12756 dsec->gc_mark = 0;
12757 }
12758 }
12759 }
12760 }
12761 return TRUE;
12762 }
12763
12764 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12765
12766 struct elf_gc_sweep_symbol_info
12767 {
12768 struct bfd_link_info *info;
12769 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12770 bfd_boolean);
12771 };
12772
12773 static bfd_boolean
12774 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12775 {
12776 if (!h->mark
12777 && (((h->root.type == bfd_link_hash_defined
12778 || h->root.type == bfd_link_hash_defweak)
12779 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12780 && h->root.u.def.section->gc_mark))
12781 || h->root.type == bfd_link_hash_undefined
12782 || h->root.type == bfd_link_hash_undefweak))
12783 {
12784 struct elf_gc_sweep_symbol_info *inf;
12785
12786 inf = (struct elf_gc_sweep_symbol_info *) data;
12787 (*inf->hide_symbol) (inf->info, h, TRUE);
12788 h->def_regular = 0;
12789 h->ref_regular = 0;
12790 h->ref_regular_nonweak = 0;
12791 }
12792
12793 return TRUE;
12794 }
12795
12796 /* The sweep phase of garbage collection. Remove all garbage sections. */
12797
12798 typedef bfd_boolean (*gc_sweep_hook_fn)
12799 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12800
12801 static bfd_boolean
12802 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12803 {
12804 bfd *sub;
12805 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12806 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12807 unsigned long section_sym_count;
12808 struct elf_gc_sweep_symbol_info sweep_info;
12809
12810 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12811 {
12812 asection *o;
12813
12814 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12815 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12816 continue;
12817
12818 for (o = sub->sections; o != NULL; o = o->next)
12819 {
12820 /* When any section in a section group is kept, we keep all
12821 sections in the section group. If the first member of
12822 the section group is excluded, we will also exclude the
12823 group section. */
12824 if (o->flags & SEC_GROUP)
12825 {
12826 asection *first = elf_next_in_group (o);
12827 o->gc_mark = first->gc_mark;
12828 }
12829
12830 if (o->gc_mark)
12831 continue;
12832
12833 /* Skip sweeping sections already excluded. */
12834 if (o->flags & SEC_EXCLUDE)
12835 continue;
12836
12837 /* Since this is early in the link process, it is simple
12838 to remove a section from the output. */
12839 o->flags |= SEC_EXCLUDE;
12840
12841 if (info->print_gc_sections && o->size != 0)
12842 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12843
12844 /* But we also have to update some of the relocation
12845 info we collected before. */
12846 if (gc_sweep_hook
12847 && (o->flags & SEC_RELOC) != 0
12848 && o->reloc_count != 0
12849 && !((info->strip == strip_all || info->strip == strip_debugger)
12850 && (o->flags & SEC_DEBUGGING) != 0)
12851 && !bfd_is_abs_section (o->output_section))
12852 {
12853 Elf_Internal_Rela *internal_relocs;
12854 bfd_boolean r;
12855
12856 internal_relocs
12857 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12858 info->keep_memory);
12859 if (internal_relocs == NULL)
12860 return FALSE;
12861
12862 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12863
12864 if (elf_section_data (o)->relocs != internal_relocs)
12865 free (internal_relocs);
12866
12867 if (!r)
12868 return FALSE;
12869 }
12870 }
12871 }
12872
12873 /* Remove the symbols that were in the swept sections from the dynamic
12874 symbol table. GCFIXME: Anyone know how to get them out of the
12875 static symbol table as well? */
12876 sweep_info.info = info;
12877 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12878 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12879 &sweep_info);
12880
12881 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12882 return TRUE;
12883 }
12884
12885 /* Propagate collected vtable information. This is called through
12886 elf_link_hash_traverse. */
12887
12888 static bfd_boolean
12889 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12890 {
12891 /* Those that are not vtables. */
12892 if (h->vtable == NULL || h->vtable->parent == NULL)
12893 return TRUE;
12894
12895 /* Those vtables that do not have parents, we cannot merge. */
12896 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12897 return TRUE;
12898
12899 /* If we've already been done, exit. */
12900 if (h->vtable->used && h->vtable->used[-1])
12901 return TRUE;
12902
12903 /* Make sure the parent's table is up to date. */
12904 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12905
12906 if (h->vtable->used == NULL)
12907 {
12908 /* None of this table's entries were referenced. Re-use the
12909 parent's table. */
12910 h->vtable->used = h->vtable->parent->vtable->used;
12911 h->vtable->size = h->vtable->parent->vtable->size;
12912 }
12913 else
12914 {
12915 size_t n;
12916 bfd_boolean *cu, *pu;
12917
12918 /* Or the parent's entries into ours. */
12919 cu = h->vtable->used;
12920 cu[-1] = TRUE;
12921 pu = h->vtable->parent->vtable->used;
12922 if (pu != NULL)
12923 {
12924 const struct elf_backend_data *bed;
12925 unsigned int log_file_align;
12926
12927 bed = get_elf_backend_data (h->root.u.def.section->owner);
12928 log_file_align = bed->s->log_file_align;
12929 n = h->vtable->parent->vtable->size >> log_file_align;
12930 while (n--)
12931 {
12932 if (*pu)
12933 *cu = TRUE;
12934 pu++;
12935 cu++;
12936 }
12937 }
12938 }
12939
12940 return TRUE;
12941 }
12942
12943 static bfd_boolean
12944 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12945 {
12946 asection *sec;
12947 bfd_vma hstart, hend;
12948 Elf_Internal_Rela *relstart, *relend, *rel;
12949 const struct elf_backend_data *bed;
12950 unsigned int log_file_align;
12951
12952 /* Take care of both those symbols that do not describe vtables as
12953 well as those that are not loaded. */
12954 if (h->vtable == NULL || h->vtable->parent == NULL)
12955 return TRUE;
12956
12957 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12958 || h->root.type == bfd_link_hash_defweak);
12959
12960 sec = h->root.u.def.section;
12961 hstart = h->root.u.def.value;
12962 hend = hstart + h->size;
12963
12964 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12965 if (!relstart)
12966 return *(bfd_boolean *) okp = FALSE;
12967 bed = get_elf_backend_data (sec->owner);
12968 log_file_align = bed->s->log_file_align;
12969
12970 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12971
12972 for (rel = relstart; rel < relend; ++rel)
12973 if (rel->r_offset >= hstart && rel->r_offset < hend)
12974 {
12975 /* If the entry is in use, do nothing. */
12976 if (h->vtable->used
12977 && (rel->r_offset - hstart) < h->vtable->size)
12978 {
12979 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12980 if (h->vtable->used[entry])
12981 continue;
12982 }
12983 /* Otherwise, kill it. */
12984 rel->r_offset = rel->r_info = rel->r_addend = 0;
12985 }
12986
12987 return TRUE;
12988 }
12989
12990 /* Mark sections containing dynamically referenced symbols. When
12991 building shared libraries, we must assume that any visible symbol is
12992 referenced. */
12993
12994 bfd_boolean
12995 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12996 {
12997 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12998 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12999
13000 if ((h->root.type == bfd_link_hash_defined
13001 || h->root.type == bfd_link_hash_defweak)
13002 && (h->ref_dynamic
13003 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13004 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13005 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13006 && (!bfd_link_executable (info)
13007 || info->export_dynamic
13008 || (h->dynamic
13009 && d != NULL
13010 && (*d->match) (&d->head, NULL, h->root.root.string)))
13011 && (h->versioned >= versioned
13012 || !bfd_hide_sym_by_version (info->version_info,
13013 h->root.root.string)))))
13014 h->root.u.def.section->flags |= SEC_KEEP;
13015
13016 return TRUE;
13017 }
13018
13019 /* Keep all sections containing symbols undefined on the command-line,
13020 and the section containing the entry symbol. */
13021
13022 void
13023 _bfd_elf_gc_keep (struct bfd_link_info *info)
13024 {
13025 struct bfd_sym_chain *sym;
13026
13027 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13028 {
13029 struct elf_link_hash_entry *h;
13030
13031 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13032 FALSE, FALSE, FALSE);
13033
13034 if (h != NULL
13035 && (h->root.type == bfd_link_hash_defined
13036 || h->root.type == bfd_link_hash_defweak)
13037 && !bfd_is_abs_section (h->root.u.def.section))
13038 h->root.u.def.section->flags |= SEC_KEEP;
13039 }
13040 }
13041
13042 bfd_boolean
13043 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13044 struct bfd_link_info *info)
13045 {
13046 bfd *ibfd = info->input_bfds;
13047
13048 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13049 {
13050 asection *sec;
13051 struct elf_reloc_cookie cookie;
13052
13053 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13054 continue;
13055
13056 if (!init_reloc_cookie (&cookie, info, ibfd))
13057 return FALSE;
13058
13059 for (sec = ibfd->sections; sec; sec = sec->next)
13060 {
13061 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13062 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13063 {
13064 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13065 fini_reloc_cookie_rels (&cookie, sec);
13066 }
13067 }
13068 }
13069 return TRUE;
13070 }
13071
13072 /* Do mark and sweep of unused sections. */
13073
13074 bfd_boolean
13075 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13076 {
13077 bfd_boolean ok = TRUE;
13078 bfd *sub;
13079 elf_gc_mark_hook_fn gc_mark_hook;
13080 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13081 struct elf_link_hash_table *htab;
13082
13083 if (!bed->can_gc_sections
13084 || !is_elf_hash_table (info->hash))
13085 {
13086 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
13087 return TRUE;
13088 }
13089
13090 bed->gc_keep (info);
13091 htab = elf_hash_table (info);
13092
13093 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13094 at the .eh_frame section if we can mark the FDEs individually. */
13095 for (sub = info->input_bfds;
13096 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13097 sub = sub->link.next)
13098 {
13099 asection *sec;
13100 struct elf_reloc_cookie cookie;
13101
13102 sec = bfd_get_section_by_name (sub, ".eh_frame");
13103 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13104 {
13105 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13106 if (elf_section_data (sec)->sec_info
13107 && (sec->flags & SEC_LINKER_CREATED) == 0)
13108 elf_eh_frame_section (sub) = sec;
13109 fini_reloc_cookie_for_section (&cookie, sec);
13110 sec = bfd_get_next_section_by_name (NULL, sec);
13111 }
13112 }
13113
13114 /* Apply transitive closure to the vtable entry usage info. */
13115 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13116 if (!ok)
13117 return FALSE;
13118
13119 /* Kill the vtable relocations that were not used. */
13120 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13121 if (!ok)
13122 return FALSE;
13123
13124 /* Mark dynamically referenced symbols. */
13125 if (htab->dynamic_sections_created)
13126 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13127
13128 /* Grovel through relocs to find out who stays ... */
13129 gc_mark_hook = bed->gc_mark_hook;
13130 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13131 {
13132 asection *o;
13133
13134 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13135 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13136 continue;
13137
13138 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13139 Also treat note sections as a root, if the section is not part
13140 of a group. */
13141 for (o = sub->sections; o != NULL; o = o->next)
13142 if (!o->gc_mark
13143 && (o->flags & SEC_EXCLUDE) == 0
13144 && ((o->flags & SEC_KEEP) != 0
13145 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13146 && elf_next_in_group (o) == NULL )))
13147 {
13148 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13149 return FALSE;
13150 }
13151 }
13152
13153 /* Allow the backend to mark additional target specific sections. */
13154 bed->gc_mark_extra_sections (info, gc_mark_hook);
13155
13156 /* ... and mark SEC_EXCLUDE for those that go. */
13157 return elf_gc_sweep (abfd, info);
13158 }
13159 \f
13160 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13161
13162 bfd_boolean
13163 bfd_elf_gc_record_vtinherit (bfd *abfd,
13164 asection *sec,
13165 struct elf_link_hash_entry *h,
13166 bfd_vma offset)
13167 {
13168 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13169 struct elf_link_hash_entry **search, *child;
13170 size_t extsymcount;
13171 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13172
13173 /* The sh_info field of the symtab header tells us where the
13174 external symbols start. We don't care about the local symbols at
13175 this point. */
13176 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13177 if (!elf_bad_symtab (abfd))
13178 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13179
13180 sym_hashes = elf_sym_hashes (abfd);
13181 sym_hashes_end = sym_hashes + extsymcount;
13182
13183 /* Hunt down the child symbol, which is in this section at the same
13184 offset as the relocation. */
13185 for (search = sym_hashes; search != sym_hashes_end; ++search)
13186 {
13187 if ((child = *search) != NULL
13188 && (child->root.type == bfd_link_hash_defined
13189 || child->root.type == bfd_link_hash_defweak)
13190 && child->root.u.def.section == sec
13191 && child->root.u.def.value == offset)
13192 goto win;
13193 }
13194
13195 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13196 abfd, sec, (unsigned long) offset);
13197 bfd_set_error (bfd_error_invalid_operation);
13198 return FALSE;
13199
13200 win:
13201 if (!child->vtable)
13202 {
13203 child->vtable = ((struct elf_link_virtual_table_entry *)
13204 bfd_zalloc (abfd, sizeof (*child->vtable)));
13205 if (!child->vtable)
13206 return FALSE;
13207 }
13208 if (!h)
13209 {
13210 /* This *should* only be the absolute section. It could potentially
13211 be that someone has defined a non-global vtable though, which
13212 would be bad. It isn't worth paging in the local symbols to be
13213 sure though; that case should simply be handled by the assembler. */
13214
13215 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13216 }
13217 else
13218 child->vtable->parent = h;
13219
13220 return TRUE;
13221 }
13222
13223 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13224
13225 bfd_boolean
13226 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13227 asection *sec ATTRIBUTE_UNUSED,
13228 struct elf_link_hash_entry *h,
13229 bfd_vma addend)
13230 {
13231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13232 unsigned int log_file_align = bed->s->log_file_align;
13233
13234 if (!h->vtable)
13235 {
13236 h->vtable = ((struct elf_link_virtual_table_entry *)
13237 bfd_zalloc (abfd, sizeof (*h->vtable)));
13238 if (!h->vtable)
13239 return FALSE;
13240 }
13241
13242 if (addend >= h->vtable->size)
13243 {
13244 size_t size, bytes, file_align;
13245 bfd_boolean *ptr = h->vtable->used;
13246
13247 /* While the symbol is undefined, we have to be prepared to handle
13248 a zero size. */
13249 file_align = 1 << log_file_align;
13250 if (h->root.type == bfd_link_hash_undefined)
13251 size = addend + file_align;
13252 else
13253 {
13254 size = h->size;
13255 if (addend >= size)
13256 {
13257 /* Oops! We've got a reference past the defined end of
13258 the table. This is probably a bug -- shall we warn? */
13259 size = addend + file_align;
13260 }
13261 }
13262 size = (size + file_align - 1) & -file_align;
13263
13264 /* Allocate one extra entry for use as a "done" flag for the
13265 consolidation pass. */
13266 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13267
13268 if (ptr)
13269 {
13270 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13271
13272 if (ptr != NULL)
13273 {
13274 size_t oldbytes;
13275
13276 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13277 * sizeof (bfd_boolean));
13278 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13279 }
13280 }
13281 else
13282 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13283
13284 if (ptr == NULL)
13285 return FALSE;
13286
13287 /* And arrange for that done flag to be at index -1. */
13288 h->vtable->used = ptr + 1;
13289 h->vtable->size = size;
13290 }
13291
13292 h->vtable->used[addend >> log_file_align] = TRUE;
13293
13294 return TRUE;
13295 }
13296
13297 /* Map an ELF section header flag to its corresponding string. */
13298 typedef struct
13299 {
13300 char *flag_name;
13301 flagword flag_value;
13302 } elf_flags_to_name_table;
13303
13304 static elf_flags_to_name_table elf_flags_to_names [] =
13305 {
13306 { "SHF_WRITE", SHF_WRITE },
13307 { "SHF_ALLOC", SHF_ALLOC },
13308 { "SHF_EXECINSTR", SHF_EXECINSTR },
13309 { "SHF_MERGE", SHF_MERGE },
13310 { "SHF_STRINGS", SHF_STRINGS },
13311 { "SHF_INFO_LINK", SHF_INFO_LINK},
13312 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13313 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13314 { "SHF_GROUP", SHF_GROUP },
13315 { "SHF_TLS", SHF_TLS },
13316 { "SHF_MASKOS", SHF_MASKOS },
13317 { "SHF_EXCLUDE", SHF_EXCLUDE },
13318 };
13319
13320 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13321 bfd_boolean
13322 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13323 struct flag_info *flaginfo,
13324 asection *section)
13325 {
13326 const bfd_vma sh_flags = elf_section_flags (section);
13327
13328 if (!flaginfo->flags_initialized)
13329 {
13330 bfd *obfd = info->output_bfd;
13331 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13332 struct flag_info_list *tf = flaginfo->flag_list;
13333 int with_hex = 0;
13334 int without_hex = 0;
13335
13336 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13337 {
13338 unsigned i;
13339 flagword (*lookup) (char *);
13340
13341 lookup = bed->elf_backend_lookup_section_flags_hook;
13342 if (lookup != NULL)
13343 {
13344 flagword hexval = (*lookup) ((char *) tf->name);
13345
13346 if (hexval != 0)
13347 {
13348 if (tf->with == with_flags)
13349 with_hex |= hexval;
13350 else if (tf->with == without_flags)
13351 without_hex |= hexval;
13352 tf->valid = TRUE;
13353 continue;
13354 }
13355 }
13356 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13357 {
13358 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13359 {
13360 if (tf->with == with_flags)
13361 with_hex |= elf_flags_to_names[i].flag_value;
13362 else if (tf->with == without_flags)
13363 without_hex |= elf_flags_to_names[i].flag_value;
13364 tf->valid = TRUE;
13365 break;
13366 }
13367 }
13368 if (!tf->valid)
13369 {
13370 info->callbacks->einfo
13371 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13372 return FALSE;
13373 }
13374 }
13375 flaginfo->flags_initialized = TRUE;
13376 flaginfo->only_with_flags |= with_hex;
13377 flaginfo->not_with_flags |= without_hex;
13378 }
13379
13380 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13381 return FALSE;
13382
13383 if ((flaginfo->not_with_flags & sh_flags) != 0)
13384 return FALSE;
13385
13386 return TRUE;
13387 }
13388
13389 struct alloc_got_off_arg {
13390 bfd_vma gotoff;
13391 struct bfd_link_info *info;
13392 };
13393
13394 /* We need a special top-level link routine to convert got reference counts
13395 to real got offsets. */
13396
13397 static bfd_boolean
13398 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13399 {
13400 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13401 bfd *obfd = gofarg->info->output_bfd;
13402 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13403
13404 if (h->got.refcount > 0)
13405 {
13406 h->got.offset = gofarg->gotoff;
13407 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13408 }
13409 else
13410 h->got.offset = (bfd_vma) -1;
13411
13412 return TRUE;
13413 }
13414
13415 /* And an accompanying bit to work out final got entry offsets once
13416 we're done. Should be called from final_link. */
13417
13418 bfd_boolean
13419 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13420 struct bfd_link_info *info)
13421 {
13422 bfd *i;
13423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13424 bfd_vma gotoff;
13425 struct alloc_got_off_arg gofarg;
13426
13427 BFD_ASSERT (abfd == info->output_bfd);
13428
13429 if (! is_elf_hash_table (info->hash))
13430 return FALSE;
13431
13432 /* The GOT offset is relative to the .got section, but the GOT header is
13433 put into the .got.plt section, if the backend uses it. */
13434 if (bed->want_got_plt)
13435 gotoff = 0;
13436 else
13437 gotoff = bed->got_header_size;
13438
13439 /* Do the local .got entries first. */
13440 for (i = info->input_bfds; i; i = i->link.next)
13441 {
13442 bfd_signed_vma *local_got;
13443 size_t j, locsymcount;
13444 Elf_Internal_Shdr *symtab_hdr;
13445
13446 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13447 continue;
13448
13449 local_got = elf_local_got_refcounts (i);
13450 if (!local_got)
13451 continue;
13452
13453 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13454 if (elf_bad_symtab (i))
13455 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13456 else
13457 locsymcount = symtab_hdr->sh_info;
13458
13459 for (j = 0; j < locsymcount; ++j)
13460 {
13461 if (local_got[j] > 0)
13462 {
13463 local_got[j] = gotoff;
13464 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13465 }
13466 else
13467 local_got[j] = (bfd_vma) -1;
13468 }
13469 }
13470
13471 /* Then the global .got entries. .plt refcounts are handled by
13472 adjust_dynamic_symbol */
13473 gofarg.gotoff = gotoff;
13474 gofarg.info = info;
13475 elf_link_hash_traverse (elf_hash_table (info),
13476 elf_gc_allocate_got_offsets,
13477 &gofarg);
13478 return TRUE;
13479 }
13480
13481 /* Many folk need no more in the way of final link than this, once
13482 got entry reference counting is enabled. */
13483
13484 bfd_boolean
13485 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13486 {
13487 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13488 return FALSE;
13489
13490 /* Invoke the regular ELF backend linker to do all the work. */
13491 return bfd_elf_final_link (abfd, info);
13492 }
13493
13494 bfd_boolean
13495 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13496 {
13497 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13498
13499 if (rcookie->bad_symtab)
13500 rcookie->rel = rcookie->rels;
13501
13502 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13503 {
13504 unsigned long r_symndx;
13505
13506 if (! rcookie->bad_symtab)
13507 if (rcookie->rel->r_offset > offset)
13508 return FALSE;
13509 if (rcookie->rel->r_offset != offset)
13510 continue;
13511
13512 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13513 if (r_symndx == STN_UNDEF)
13514 return TRUE;
13515
13516 if (r_symndx >= rcookie->locsymcount
13517 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13518 {
13519 struct elf_link_hash_entry *h;
13520
13521 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13522
13523 while (h->root.type == bfd_link_hash_indirect
13524 || h->root.type == bfd_link_hash_warning)
13525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13526
13527 if ((h->root.type == bfd_link_hash_defined
13528 || h->root.type == bfd_link_hash_defweak)
13529 && (h->root.u.def.section->owner != rcookie->abfd
13530 || h->root.u.def.section->kept_section != NULL
13531 || discarded_section (h->root.u.def.section)))
13532 return TRUE;
13533 }
13534 else
13535 {
13536 /* It's not a relocation against a global symbol,
13537 but it could be a relocation against a local
13538 symbol for a discarded section. */
13539 asection *isec;
13540 Elf_Internal_Sym *isym;
13541
13542 /* Need to: get the symbol; get the section. */
13543 isym = &rcookie->locsyms[r_symndx];
13544 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13545 if (isec != NULL
13546 && (isec->kept_section != NULL
13547 || discarded_section (isec)))
13548 return TRUE;
13549 }
13550 return FALSE;
13551 }
13552 return FALSE;
13553 }
13554
13555 /* Discard unneeded references to discarded sections.
13556 Returns -1 on error, 1 if any section's size was changed, 0 if
13557 nothing changed. This function assumes that the relocations are in
13558 sorted order, which is true for all known assemblers. */
13559
13560 int
13561 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13562 {
13563 struct elf_reloc_cookie cookie;
13564 asection *o;
13565 bfd *abfd;
13566 int changed = 0;
13567
13568 if (info->traditional_format
13569 || !is_elf_hash_table (info->hash))
13570 return 0;
13571
13572 o = bfd_get_section_by_name (output_bfd, ".stab");
13573 if (o != NULL)
13574 {
13575 asection *i;
13576
13577 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13578 {
13579 if (i->size == 0
13580 || i->reloc_count == 0
13581 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13582 continue;
13583
13584 abfd = i->owner;
13585 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13586 continue;
13587
13588 if (!init_reloc_cookie_for_section (&cookie, info, i))
13589 return -1;
13590
13591 if (_bfd_discard_section_stabs (abfd, i,
13592 elf_section_data (i)->sec_info,
13593 bfd_elf_reloc_symbol_deleted_p,
13594 &cookie))
13595 changed = 1;
13596
13597 fini_reloc_cookie_for_section (&cookie, i);
13598 }
13599 }
13600
13601 o = NULL;
13602 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13603 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13604 if (o != NULL)
13605 {
13606 asection *i;
13607
13608 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13609 {
13610 if (i->size == 0)
13611 continue;
13612
13613 abfd = i->owner;
13614 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13615 continue;
13616
13617 if (!init_reloc_cookie_for_section (&cookie, info, i))
13618 return -1;
13619
13620 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13621 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13622 bfd_elf_reloc_symbol_deleted_p,
13623 &cookie))
13624 changed = 1;
13625
13626 fini_reloc_cookie_for_section (&cookie, i);
13627 }
13628 }
13629
13630 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13631 {
13632 const struct elf_backend_data *bed;
13633
13634 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13635 continue;
13636
13637 bed = get_elf_backend_data (abfd);
13638
13639 if (bed->elf_backend_discard_info != NULL)
13640 {
13641 if (!init_reloc_cookie (&cookie, info, abfd))
13642 return -1;
13643
13644 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13645 changed = 1;
13646
13647 fini_reloc_cookie (&cookie, abfd);
13648 }
13649 }
13650
13651 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13652 _bfd_elf_end_eh_frame_parsing (info);
13653
13654 if (info->eh_frame_hdr_type
13655 && !bfd_link_relocatable (info)
13656 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13657 changed = 1;
13658
13659 return changed;
13660 }
13661
13662 bfd_boolean
13663 _bfd_elf_section_already_linked (bfd *abfd,
13664 asection *sec,
13665 struct bfd_link_info *info)
13666 {
13667 flagword flags;
13668 const char *name, *key;
13669 struct bfd_section_already_linked *l;
13670 struct bfd_section_already_linked_hash_entry *already_linked_list;
13671
13672 if (sec->output_section == bfd_abs_section_ptr)
13673 return FALSE;
13674
13675 flags = sec->flags;
13676
13677 /* Return if it isn't a linkonce section. A comdat group section
13678 also has SEC_LINK_ONCE set. */
13679 if ((flags & SEC_LINK_ONCE) == 0)
13680 return FALSE;
13681
13682 /* Don't put group member sections on our list of already linked
13683 sections. They are handled as a group via their group section. */
13684 if (elf_sec_group (sec) != NULL)
13685 return FALSE;
13686
13687 /* For a SHT_GROUP section, use the group signature as the key. */
13688 name = sec->name;
13689 if ((flags & SEC_GROUP) != 0
13690 && elf_next_in_group (sec) != NULL
13691 && elf_group_name (elf_next_in_group (sec)) != NULL)
13692 key = elf_group_name (elf_next_in_group (sec));
13693 else
13694 {
13695 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13696 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13697 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13698 key++;
13699 else
13700 /* Must be a user linkonce section that doesn't follow gcc's
13701 naming convention. In this case we won't be matching
13702 single member groups. */
13703 key = name;
13704 }
13705
13706 already_linked_list = bfd_section_already_linked_table_lookup (key);
13707
13708 for (l = already_linked_list->entry; l != NULL; l = l->next)
13709 {
13710 /* We may have 2 different types of sections on the list: group
13711 sections with a signature of <key> (<key> is some string),
13712 and linkonce sections named .gnu.linkonce.<type>.<key>.
13713 Match like sections. LTO plugin sections are an exception.
13714 They are always named .gnu.linkonce.t.<key> and match either
13715 type of section. */
13716 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13717 && ((flags & SEC_GROUP) != 0
13718 || strcmp (name, l->sec->name) == 0))
13719 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13720 {
13721 /* The section has already been linked. See if we should
13722 issue a warning. */
13723 if (!_bfd_handle_already_linked (sec, l, info))
13724 return FALSE;
13725
13726 if (flags & SEC_GROUP)
13727 {
13728 asection *first = elf_next_in_group (sec);
13729 asection *s = first;
13730
13731 while (s != NULL)
13732 {
13733 s->output_section = bfd_abs_section_ptr;
13734 /* Record which group discards it. */
13735 s->kept_section = l->sec;
13736 s = elf_next_in_group (s);
13737 /* These lists are circular. */
13738 if (s == first)
13739 break;
13740 }
13741 }
13742
13743 return TRUE;
13744 }
13745 }
13746
13747 /* A single member comdat group section may be discarded by a
13748 linkonce section and vice versa. */
13749 if ((flags & SEC_GROUP) != 0)
13750 {
13751 asection *first = elf_next_in_group (sec);
13752
13753 if (first != NULL && elf_next_in_group (first) == first)
13754 /* Check this single member group against linkonce sections. */
13755 for (l = already_linked_list->entry; l != NULL; l = l->next)
13756 if ((l->sec->flags & SEC_GROUP) == 0
13757 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13758 {
13759 first->output_section = bfd_abs_section_ptr;
13760 first->kept_section = l->sec;
13761 sec->output_section = bfd_abs_section_ptr;
13762 break;
13763 }
13764 }
13765 else
13766 /* Check this linkonce section against single member groups. */
13767 for (l = already_linked_list->entry; l != NULL; l = l->next)
13768 if (l->sec->flags & SEC_GROUP)
13769 {
13770 asection *first = elf_next_in_group (l->sec);
13771
13772 if (first != NULL
13773 && elf_next_in_group (first) == first
13774 && bfd_elf_match_symbols_in_sections (first, sec, info))
13775 {
13776 sec->output_section = bfd_abs_section_ptr;
13777 sec->kept_section = first;
13778 break;
13779 }
13780 }
13781
13782 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13783 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13784 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13785 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13786 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13787 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13788 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13789 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13790 The reverse order cannot happen as there is never a bfd with only the
13791 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13792 matter as here were are looking only for cross-bfd sections. */
13793
13794 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13795 for (l = already_linked_list->entry; l != NULL; l = l->next)
13796 if ((l->sec->flags & SEC_GROUP) == 0
13797 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13798 {
13799 if (abfd != l->sec->owner)
13800 sec->output_section = bfd_abs_section_ptr;
13801 break;
13802 }
13803
13804 /* This is the first section with this name. Record it. */
13805 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13806 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13807 return sec->output_section == bfd_abs_section_ptr;
13808 }
13809
13810 bfd_boolean
13811 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13812 {
13813 return sym->st_shndx == SHN_COMMON;
13814 }
13815
13816 unsigned int
13817 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13818 {
13819 return SHN_COMMON;
13820 }
13821
13822 asection *
13823 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13824 {
13825 return bfd_com_section_ptr;
13826 }
13827
13828 bfd_vma
13829 _bfd_elf_default_got_elt_size (bfd *abfd,
13830 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13831 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13832 bfd *ibfd ATTRIBUTE_UNUSED,
13833 unsigned long symndx ATTRIBUTE_UNUSED)
13834 {
13835 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13836 return bed->s->arch_size / 8;
13837 }
13838
13839 /* Routines to support the creation of dynamic relocs. */
13840
13841 /* Returns the name of the dynamic reloc section associated with SEC. */
13842
13843 static const char *
13844 get_dynamic_reloc_section_name (bfd * abfd,
13845 asection * sec,
13846 bfd_boolean is_rela)
13847 {
13848 char *name;
13849 const char *old_name = bfd_get_section_name (NULL, sec);
13850 const char *prefix = is_rela ? ".rela" : ".rel";
13851
13852 if (old_name == NULL)
13853 return NULL;
13854
13855 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13856 sprintf (name, "%s%s", prefix, old_name);
13857
13858 return name;
13859 }
13860
13861 /* Returns the dynamic reloc section associated with SEC.
13862 If necessary compute the name of the dynamic reloc section based
13863 on SEC's name (looked up in ABFD's string table) and the setting
13864 of IS_RELA. */
13865
13866 asection *
13867 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13868 asection * sec,
13869 bfd_boolean is_rela)
13870 {
13871 asection * reloc_sec = elf_section_data (sec)->sreloc;
13872
13873 if (reloc_sec == NULL)
13874 {
13875 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13876
13877 if (name != NULL)
13878 {
13879 reloc_sec = bfd_get_linker_section (abfd, name);
13880
13881 if (reloc_sec != NULL)
13882 elf_section_data (sec)->sreloc = reloc_sec;
13883 }
13884 }
13885
13886 return reloc_sec;
13887 }
13888
13889 /* Returns the dynamic reloc section associated with SEC. If the
13890 section does not exist it is created and attached to the DYNOBJ
13891 bfd and stored in the SRELOC field of SEC's elf_section_data
13892 structure.
13893
13894 ALIGNMENT is the alignment for the newly created section and
13895 IS_RELA defines whether the name should be .rela.<SEC's name>
13896 or .rel.<SEC's name>. The section name is looked up in the
13897 string table associated with ABFD. */
13898
13899 asection *
13900 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13901 bfd *dynobj,
13902 unsigned int alignment,
13903 bfd *abfd,
13904 bfd_boolean is_rela)
13905 {
13906 asection * reloc_sec = elf_section_data (sec)->sreloc;
13907
13908 if (reloc_sec == NULL)
13909 {
13910 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13911
13912 if (name == NULL)
13913 return NULL;
13914
13915 reloc_sec = bfd_get_linker_section (dynobj, name);
13916
13917 if (reloc_sec == NULL)
13918 {
13919 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13920 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13921 if ((sec->flags & SEC_ALLOC) != 0)
13922 flags |= SEC_ALLOC | SEC_LOAD;
13923
13924 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13925 if (reloc_sec != NULL)
13926 {
13927 /* _bfd_elf_get_sec_type_attr chooses a section type by
13928 name. Override as it may be wrong, eg. for a user
13929 section named "auto" we'll get ".relauto" which is
13930 seen to be a .rela section. */
13931 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13932 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13933 reloc_sec = NULL;
13934 }
13935 }
13936
13937 elf_section_data (sec)->sreloc = reloc_sec;
13938 }
13939
13940 return reloc_sec;
13941 }
13942
13943 /* Copy the ELF symbol type and other attributes for a linker script
13944 assignment from HSRC to HDEST. Generally this should be treated as
13945 if we found a strong non-dynamic definition for HDEST (except that
13946 ld ignores multiple definition errors). */
13947 void
13948 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13949 struct bfd_link_hash_entry *hdest,
13950 struct bfd_link_hash_entry *hsrc)
13951 {
13952 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13953 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13954 Elf_Internal_Sym isym;
13955
13956 ehdest->type = ehsrc->type;
13957 ehdest->target_internal = ehsrc->target_internal;
13958
13959 isym.st_other = ehsrc->other;
13960 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13961 }
13962
13963 /* Append a RELA relocation REL to section S in BFD. */
13964
13965 void
13966 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13967 {
13968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13969 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13970 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13971 bed->s->swap_reloca_out (abfd, rel, loc);
13972 }
13973
13974 /* Append a REL relocation REL to section S in BFD. */
13975
13976 void
13977 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13978 {
13979 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13980 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13981 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13982 bed->s->swap_reloc_out (abfd, rel, loc);
13983 }
This page took 0.383244 seconds and 4 git commands to generate.