Index PowerPC64 linker generated .eh_frame in .eh_frame_hdr
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 const Elf_Internal_Sym *isym,
855 bfd_boolean definition, bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. */
861 if (bed->elf_backend_merge_symbol_attribute)
862 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 dynamic);
864
865 if (!dynamic)
866 {
867 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
868 unsigned hvis = ELF_ST_VISIBILITY (h->other);
869
870 /* Keep the most constraining visibility. Leave the remainder
871 of the st_other field to elf_backend_merge_symbol_attribute. */
872 if (symvis - 1 < hvis - 1)
873 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
874 }
875 }
876
877 /* This function is called when we want to merge a new symbol with an
878 existing symbol. It handles the various cases which arise when we
879 find a definition in a dynamic object, or when there is already a
880 definition in a dynamic object. The new symbol is described by
881 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
882 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
883 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
884 of an old common symbol. We set OVERRIDE if the old symbol is
885 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
886 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
887 to change. By OK to change, we mean that we shouldn't warn if the
888 type or size does change. */
889
890 static bfd_boolean
891 _bfd_elf_merge_symbol (bfd *abfd,
892 struct bfd_link_info *info,
893 const char *name,
894 Elf_Internal_Sym *sym,
895 asection **psec,
896 bfd_vma *pvalue,
897 struct elf_link_hash_entry **sym_hash,
898 bfd **poldbfd,
899 bfd_boolean *pold_weak,
900 unsigned int *pold_alignment,
901 bfd_boolean *skip,
902 bfd_boolean *override,
903 bfd_boolean *type_change_ok,
904 bfd_boolean *size_change_ok)
905 {
906 asection *sec, *oldsec;
907 struct elf_link_hash_entry *h;
908 struct elf_link_hash_entry *hi;
909 struct elf_link_hash_entry *flip;
910 int bind;
911 bfd *oldbfd;
912 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
913 bfd_boolean newweak, oldweak, newfunc, oldfunc;
914 const struct elf_backend_data *bed;
915
916 *skip = FALSE;
917 *override = FALSE;
918
919 sec = *psec;
920 bind = ELF_ST_BIND (sym->st_info);
921
922 if (! bfd_is_und_section (sec))
923 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
924 else
925 h = ((struct elf_link_hash_entry *)
926 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
927 if (h == NULL)
928 return FALSE;
929 *sym_hash = h;
930
931 bed = get_elf_backend_data (abfd);
932
933 /* For merging, we only care about real symbols. But we need to make
934 sure that indirect symbol dynamic flags are updated. */
935 hi = h;
936 while (h->root.type == bfd_link_hash_indirect
937 || h->root.type == bfd_link_hash_warning)
938 h = (struct elf_link_hash_entry *) h->root.u.i.link;
939
940 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
941 existing symbol. */
942
943 oldbfd = NULL;
944 oldsec = NULL;
945 switch (h->root.type)
946 {
947 default:
948 break;
949
950 case bfd_link_hash_undefined:
951 case bfd_link_hash_undefweak:
952 oldbfd = h->root.u.undef.abfd;
953 break;
954
955 case bfd_link_hash_defined:
956 case bfd_link_hash_defweak:
957 oldbfd = h->root.u.def.section->owner;
958 oldsec = h->root.u.def.section;
959 break;
960
961 case bfd_link_hash_common:
962 oldbfd = h->root.u.c.p->section->owner;
963 oldsec = h->root.u.c.p->section;
964 if (pold_alignment)
965 *pold_alignment = h->root.u.c.p->alignment_power;
966 break;
967 }
968 if (poldbfd && *poldbfd == NULL)
969 *poldbfd = oldbfd;
970
971 /* Differentiate strong and weak symbols. */
972 newweak = bind == STB_WEAK;
973 oldweak = (h->root.type == bfd_link_hash_defweak
974 || h->root.type == bfd_link_hash_undefweak);
975 if (pold_weak)
976 *pold_weak = oldweak;
977
978 /* This code is for coping with dynamic objects, and is only useful
979 if we are doing an ELF link. */
980 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
981 return TRUE;
982
983 /* We have to check it for every instance since the first few may be
984 references and not all compilers emit symbol type for undefined
985 symbols. */
986 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
987
988 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
989 respectively, is from a dynamic object. */
990
991 newdyn = (abfd->flags & DYNAMIC) != 0;
992
993 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
994 syms and defined syms in dynamic libraries respectively.
995 ref_dynamic on the other hand can be set for a symbol defined in
996 a dynamic library, and def_dynamic may not be set; When the
997 definition in a dynamic lib is overridden by a definition in the
998 executable use of the symbol in the dynamic lib becomes a
999 reference to the executable symbol. */
1000 if (newdyn)
1001 {
1002 if (bfd_is_und_section (sec))
1003 {
1004 if (bind != STB_WEAK)
1005 {
1006 h->ref_dynamic_nonweak = 1;
1007 hi->ref_dynamic_nonweak = 1;
1008 }
1009 }
1010 else
1011 {
1012 h->dynamic_def = 1;
1013 hi->dynamic_def = 1;
1014 }
1015 }
1016
1017 /* If we just created the symbol, mark it as being an ELF symbol.
1018 Other than that, there is nothing to do--there is no merge issue
1019 with a newly defined symbol--so we just return. */
1020
1021 if (h->root.type == bfd_link_hash_new)
1022 {
1023 h->non_elf = 0;
1024 return TRUE;
1025 }
1026
1027 /* In cases involving weak versioned symbols, we may wind up trying
1028 to merge a symbol with itself. Catch that here, to avoid the
1029 confusion that results if we try to override a symbol with
1030 itself. The additional tests catch cases like
1031 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1032 dynamic object, which we do want to handle here. */
1033 if (abfd == oldbfd
1034 && (newweak || oldweak)
1035 && ((abfd->flags & DYNAMIC) == 0
1036 || !h->def_regular))
1037 return TRUE;
1038
1039 olddyn = FALSE;
1040 if (oldbfd != NULL)
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1043 {
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047 }
1048
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1051
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1057
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1060
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1066
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. */
1070 if (pold_alignment == NULL
1071 && newdyn
1072 && newdef
1073 && !olddyn
1074 && (((olddef || h->root.type == bfd_link_hash_common)
1075 && ELF_ST_TYPE (sym->st_info) != h->type
1076 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1077 && h->type != STT_NOTYPE
1078 && !(newfunc && oldfunc))
1079 || (olddef
1080 && ((h->type == STT_GNU_IFUNC)
1081 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1082 {
1083 *skip = TRUE;
1084 return TRUE;
1085 }
1086
1087 /* Check TLS symbols. We don't check undefined symbols introduced
1088 by "ld -u" which have no type (and oldbfd NULL), and we don't
1089 check symbols from plugins because they also have no type. */
1090 if (oldbfd != NULL
1091 && (oldbfd->flags & BFD_PLUGIN) == 0
1092 && (abfd->flags & BFD_PLUGIN) == 0
1093 && ELF_ST_TYPE (sym->st_info) != h->type
1094 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1095 {
1096 bfd *ntbfd, *tbfd;
1097 bfd_boolean ntdef, tdef;
1098 asection *ntsec, *tsec;
1099
1100 if (h->type == STT_TLS)
1101 {
1102 ntbfd = abfd;
1103 ntsec = sec;
1104 ntdef = newdef;
1105 tbfd = oldbfd;
1106 tsec = oldsec;
1107 tdef = olddef;
1108 }
1109 else
1110 {
1111 ntbfd = oldbfd;
1112 ntsec = oldsec;
1113 ntdef = olddef;
1114 tbfd = abfd;
1115 tsec = sec;
1116 tdef = newdef;
1117 }
1118
1119 if (tdef && ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A "
1122 "mismatches non-TLS definition in %B section %A"),
1123 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1124 else if (!tdef && !ntdef)
1125 (*_bfd_error_handler)
1126 (_("%s: TLS reference in %B "
1127 "mismatches non-TLS reference in %B"),
1128 tbfd, ntbfd, h->root.root.string);
1129 else if (tdef)
1130 (*_bfd_error_handler)
1131 (_("%s: TLS definition in %B section %A "
1132 "mismatches non-TLS reference in %B"),
1133 tbfd, tsec, ntbfd, h->root.root.string);
1134 else
1135 (*_bfd_error_handler)
1136 (_("%s: TLS reference in %B "
1137 "mismatches non-TLS definition in %B section %A"),
1138 tbfd, ntbfd, ntsec, h->root.root.string);
1139
1140 bfd_set_error (bfd_error_bad_value);
1141 return FALSE;
1142 }
1143
1144 /* If the old symbol has non-default visibility, we ignore the new
1145 definition from a dynamic object. */
1146 if (newdyn
1147 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1148 && !bfd_is_und_section (sec))
1149 {
1150 *skip = TRUE;
1151 /* Make sure this symbol is dynamic. */
1152 h->ref_dynamic = 1;
1153 hi->ref_dynamic = 1;
1154 /* A protected symbol has external availability. Make sure it is
1155 recorded as dynamic.
1156
1157 FIXME: Should we check type and size for protected symbol? */
1158 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1159 return bfd_elf_link_record_dynamic_symbol (info, h);
1160 else
1161 return TRUE;
1162 }
1163 else if (!newdyn
1164 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1165 && h->def_dynamic)
1166 {
1167 /* If the new symbol with non-default visibility comes from a
1168 relocatable file and the old definition comes from a dynamic
1169 object, we remove the old definition. */
1170 if (hi->root.type == bfd_link_hash_indirect)
1171 {
1172 /* Handle the case where the old dynamic definition is
1173 default versioned. We need to copy the symbol info from
1174 the symbol with default version to the normal one if it
1175 was referenced before. */
1176 if (h->ref_regular)
1177 {
1178 hi->root.type = h->root.type;
1179 h->root.type = bfd_link_hash_indirect;
1180 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1181
1182 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1183 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1184 {
1185 /* If the new symbol is hidden or internal, completely undo
1186 any dynamic link state. */
1187 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1188 h->forced_local = 0;
1189 h->ref_dynamic = 0;
1190 }
1191 else
1192 h->ref_dynamic = 1;
1193
1194 h->def_dynamic = 0;
1195 /* FIXME: Should we check type and size for protected symbol? */
1196 h->size = 0;
1197 h->type = 0;
1198
1199 h = hi;
1200 }
1201 else
1202 h = hi;
1203 }
1204
1205 /* If the old symbol was undefined before, then it will still be
1206 on the undefs list. If the new symbol is undefined or
1207 common, we can't make it bfd_link_hash_new here, because new
1208 undefined or common symbols will be added to the undefs list
1209 by _bfd_generic_link_add_one_symbol. Symbols may not be
1210 added twice to the undefs list. Also, if the new symbol is
1211 undefweak then we don't want to lose the strong undef. */
1212 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1213 {
1214 h->root.type = bfd_link_hash_undefined;
1215 h->root.u.undef.abfd = abfd;
1216 }
1217 else
1218 {
1219 h->root.type = bfd_link_hash_new;
1220 h->root.u.undef.abfd = NULL;
1221 }
1222
1223 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1224 {
1225 /* If the new symbol is hidden or internal, completely undo
1226 any dynamic link state. */
1227 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1228 h->forced_local = 0;
1229 h->ref_dynamic = 0;
1230 }
1231 else
1232 h->ref_dynamic = 1;
1233 h->def_dynamic = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1235 h->size = 0;
1236 h->type = 0;
1237 return TRUE;
1238 }
1239
1240 /* If a new weak symbol definition comes from a regular file and the
1241 old symbol comes from a dynamic library, we treat the new one as
1242 strong. Similarly, an old weak symbol definition from a regular
1243 file is treated as strong when the new symbol comes from a dynamic
1244 library. Further, an old weak symbol from a dynamic library is
1245 treated as strong if the new symbol is from a dynamic library.
1246 This reflects the way glibc's ld.so works.
1247
1248 Do this before setting *type_change_ok or *size_change_ok so that
1249 we warn properly when dynamic library symbols are overridden. */
1250
1251 if (newdef && !newdyn && olddyn)
1252 newweak = FALSE;
1253 if (olddef && newdyn)
1254 oldweak = FALSE;
1255
1256 /* Allow changes between different types of function symbol. */
1257 if (newfunc && oldfunc)
1258 *type_change_ok = TRUE;
1259
1260 /* It's OK to change the type if either the existing symbol or the
1261 new symbol is weak. A type change is also OK if the old symbol
1262 is undefined and the new symbol is defined. */
1263
1264 if (oldweak
1265 || newweak
1266 || (newdef
1267 && h->root.type == bfd_link_hash_undefined))
1268 *type_change_ok = TRUE;
1269
1270 /* It's OK to change the size if either the existing symbol or the
1271 new symbol is weak, or if the old symbol is undefined. */
1272
1273 if (*type_change_ok
1274 || h->root.type == bfd_link_hash_undefined)
1275 *size_change_ok = TRUE;
1276
1277 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1278 symbol, respectively, appears to be a common symbol in a dynamic
1279 object. If a symbol appears in an uninitialized section, and is
1280 not weak, and is not a function, then it may be a common symbol
1281 which was resolved when the dynamic object was created. We want
1282 to treat such symbols specially, because they raise special
1283 considerations when setting the symbol size: if the symbol
1284 appears as a common symbol in a regular object, and the size in
1285 the regular object is larger, we must make sure that we use the
1286 larger size. This problematic case can always be avoided in C,
1287 but it must be handled correctly when using Fortran shared
1288 libraries.
1289
1290 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1291 likewise for OLDDYNCOMMON and OLDDEF.
1292
1293 Note that this test is just a heuristic, and that it is quite
1294 possible to have an uninitialized symbol in a shared object which
1295 is really a definition, rather than a common symbol. This could
1296 lead to some minor confusion when the symbol really is a common
1297 symbol in some regular object. However, I think it will be
1298 harmless. */
1299
1300 if (newdyn
1301 && newdef
1302 && !newweak
1303 && (sec->flags & SEC_ALLOC) != 0
1304 && (sec->flags & SEC_LOAD) == 0
1305 && sym->st_size > 0
1306 && !newfunc)
1307 newdyncommon = TRUE;
1308 else
1309 newdyncommon = FALSE;
1310
1311 if (olddyn
1312 && olddef
1313 && h->root.type == bfd_link_hash_defined
1314 && h->def_dynamic
1315 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1316 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1317 && h->size > 0
1318 && !oldfunc)
1319 olddyncommon = TRUE;
1320 else
1321 olddyncommon = FALSE;
1322
1323 /* We now know everything about the old and new symbols. We ask the
1324 backend to check if we can merge them. */
1325 if (bed->merge_symbol != NULL)
1326 {
1327 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1328 return FALSE;
1329 sec = *psec;
1330 }
1331
1332 /* If both the old and the new symbols look like common symbols in a
1333 dynamic object, set the size of the symbol to the larger of the
1334 two. */
1335
1336 if (olddyncommon
1337 && newdyncommon
1338 && sym->st_size != h->size)
1339 {
1340 /* Since we think we have two common symbols, issue a multiple
1341 common warning if desired. Note that we only warn if the
1342 size is different. If the size is the same, we simply let
1343 the old symbol override the new one as normally happens with
1344 symbols defined in dynamic objects. */
1345
1346 if (! ((*info->callbacks->multiple_common)
1347 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1348 return FALSE;
1349
1350 if (sym->st_size > h->size)
1351 h->size = sym->st_size;
1352
1353 *size_change_ok = TRUE;
1354 }
1355
1356 /* If we are looking at a dynamic object, and we have found a
1357 definition, we need to see if the symbol was already defined by
1358 some other object. If so, we want to use the existing
1359 definition, and we do not want to report a multiple symbol
1360 definition error; we do this by clobbering *PSEC to be
1361 bfd_und_section_ptr.
1362
1363 We treat a common symbol as a definition if the symbol in the
1364 shared library is a function, since common symbols always
1365 represent variables; this can cause confusion in principle, but
1366 any such confusion would seem to indicate an erroneous program or
1367 shared library. We also permit a common symbol in a regular
1368 object to override a weak symbol in a shared object. */
1369
1370 if (newdyn
1371 && newdef
1372 && (olddef
1373 || (h->root.type == bfd_link_hash_common
1374 && (newweak || newfunc))))
1375 {
1376 *override = TRUE;
1377 newdef = FALSE;
1378 newdyncommon = FALSE;
1379
1380 *psec = sec = bfd_und_section_ptr;
1381 *size_change_ok = TRUE;
1382
1383 /* If we get here when the old symbol is a common symbol, then
1384 we are explicitly letting it override a weak symbol or
1385 function in a dynamic object, and we don't want to warn about
1386 a type change. If the old symbol is a defined symbol, a type
1387 change warning may still be appropriate. */
1388
1389 if (h->root.type == bfd_link_hash_common)
1390 *type_change_ok = TRUE;
1391 }
1392
1393 /* Handle the special case of an old common symbol merging with a
1394 new symbol which looks like a common symbol in a shared object.
1395 We change *PSEC and *PVALUE to make the new symbol look like a
1396 common symbol, and let _bfd_generic_link_add_one_symbol do the
1397 right thing. */
1398
1399 if (newdyncommon
1400 && h->root.type == bfd_link_hash_common)
1401 {
1402 *override = TRUE;
1403 newdef = FALSE;
1404 newdyncommon = FALSE;
1405 *pvalue = sym->st_size;
1406 *psec = sec = bed->common_section (oldsec);
1407 *size_change_ok = TRUE;
1408 }
1409
1410 /* Skip weak definitions of symbols that are already defined. */
1411 if (newdef && olddef && newweak)
1412 {
1413 /* Don't skip new non-IR weak syms. */
1414 if (!(oldbfd != NULL
1415 && (oldbfd->flags & BFD_PLUGIN) != 0
1416 && (abfd->flags & BFD_PLUGIN) == 0))
1417 {
1418 newdef = FALSE;
1419 *skip = TRUE;
1420 }
1421
1422 /* Merge st_other. If the symbol already has a dynamic index,
1423 but visibility says it should not be visible, turn it into a
1424 local symbol. */
1425 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1426 if (h->dynindx != -1)
1427 switch (ELF_ST_VISIBILITY (h->other))
1428 {
1429 case STV_INTERNAL:
1430 case STV_HIDDEN:
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 break;
1433 }
1434 }
1435
1436 /* If the old symbol is from a dynamic object, and the new symbol is
1437 a definition which is not from a dynamic object, then the new
1438 symbol overrides the old symbol. Symbols from regular files
1439 always take precedence over symbols from dynamic objects, even if
1440 they are defined after the dynamic object in the link.
1441
1442 As above, we again permit a common symbol in a regular object to
1443 override a definition in a shared object if the shared object
1444 symbol is a function or is weak. */
1445
1446 flip = NULL;
1447 if (!newdyn
1448 && (newdef
1449 || (bfd_is_com_section (sec)
1450 && (oldweak || oldfunc)))
1451 && olddyn
1452 && olddef
1453 && h->def_dynamic)
1454 {
1455 /* Change the hash table entry to undefined, and let
1456 _bfd_generic_link_add_one_symbol do the right thing with the
1457 new definition. */
1458
1459 h->root.type = bfd_link_hash_undefined;
1460 h->root.u.undef.abfd = h->root.u.def.section->owner;
1461 *size_change_ok = TRUE;
1462
1463 olddef = FALSE;
1464 olddyncommon = FALSE;
1465
1466 /* We again permit a type change when a common symbol may be
1467 overriding a function. */
1468
1469 if (bfd_is_com_section (sec))
1470 {
1471 if (oldfunc)
1472 {
1473 /* If a common symbol overrides a function, make sure
1474 that it isn't defined dynamically nor has type
1475 function. */
1476 h->def_dynamic = 0;
1477 h->type = STT_NOTYPE;
1478 }
1479 *type_change_ok = TRUE;
1480 }
1481
1482 if (hi->root.type == bfd_link_hash_indirect)
1483 flip = hi;
1484 else
1485 /* This union may have been set to be non-NULL when this symbol
1486 was seen in a dynamic object. We must force the union to be
1487 NULL, so that it is correct for a regular symbol. */
1488 h->verinfo.vertree = NULL;
1489 }
1490
1491 /* Handle the special case of a new common symbol merging with an
1492 old symbol that looks like it might be a common symbol defined in
1493 a shared object. Note that we have already handled the case in
1494 which a new common symbol should simply override the definition
1495 in the shared library. */
1496
1497 if (! newdyn
1498 && bfd_is_com_section (sec)
1499 && olddyncommon)
1500 {
1501 /* It would be best if we could set the hash table entry to a
1502 common symbol, but we don't know what to use for the section
1503 or the alignment. */
1504 if (! ((*info->callbacks->multiple_common)
1505 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1506 return FALSE;
1507
1508 /* If the presumed common symbol in the dynamic object is
1509 larger, pretend that the new symbol has its size. */
1510
1511 if (h->size > *pvalue)
1512 *pvalue = h->size;
1513
1514 /* We need to remember the alignment required by the symbol
1515 in the dynamic object. */
1516 BFD_ASSERT (pold_alignment);
1517 *pold_alignment = h->root.u.def.section->alignment_power;
1518
1519 olddef = FALSE;
1520 olddyncommon = FALSE;
1521
1522 h->root.type = bfd_link_hash_undefined;
1523 h->root.u.undef.abfd = h->root.u.def.section->owner;
1524
1525 *size_change_ok = TRUE;
1526 *type_change_ok = TRUE;
1527
1528 if (hi->root.type == bfd_link_hash_indirect)
1529 flip = hi;
1530 else
1531 h->verinfo.vertree = NULL;
1532 }
1533
1534 if (flip != NULL)
1535 {
1536 /* Handle the case where we had a versioned symbol in a dynamic
1537 library and now find a definition in a normal object. In this
1538 case, we make the versioned symbol point to the normal one. */
1539 flip->root.type = h->root.type;
1540 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1541 h->root.type = bfd_link_hash_indirect;
1542 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1543 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1544 if (h->def_dynamic)
1545 {
1546 h->def_dynamic = 0;
1547 flip->ref_dynamic = 1;
1548 }
1549 }
1550
1551 return TRUE;
1552 }
1553
1554 /* This function is called to create an indirect symbol from the
1555 default for the symbol with the default version if needed. The
1556 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1557 set DYNSYM if the new indirect symbol is dynamic. */
1558
1559 static bfd_boolean
1560 _bfd_elf_add_default_symbol (bfd *abfd,
1561 struct bfd_link_info *info,
1562 struct elf_link_hash_entry *h,
1563 const char *name,
1564 Elf_Internal_Sym *sym,
1565 asection *sec,
1566 bfd_vma value,
1567 bfd **poldbfd,
1568 bfd_boolean *dynsym)
1569 {
1570 bfd_boolean type_change_ok;
1571 bfd_boolean size_change_ok;
1572 bfd_boolean skip;
1573 char *shortname;
1574 struct elf_link_hash_entry *hi;
1575 struct bfd_link_hash_entry *bh;
1576 const struct elf_backend_data *bed;
1577 bfd_boolean collect;
1578 bfd_boolean dynamic;
1579 bfd_boolean override;
1580 char *p;
1581 size_t len, shortlen;
1582 asection *tmp_sec;
1583
1584 /* If this symbol has a version, and it is the default version, we
1585 create an indirect symbol from the default name to the fully
1586 decorated name. This will cause external references which do not
1587 specify a version to be bound to this version of the symbol. */
1588 p = strchr (name, ELF_VER_CHR);
1589 if (p == NULL || p[1] != ELF_VER_CHR)
1590 return TRUE;
1591
1592 bed = get_elf_backend_data (abfd);
1593 collect = bed->collect;
1594 dynamic = (abfd->flags & DYNAMIC) != 0;
1595
1596 shortlen = p - name;
1597 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1598 if (shortname == NULL)
1599 return FALSE;
1600 memcpy (shortname, name, shortlen);
1601 shortname[shortlen] = '\0';
1602
1603 /* We are going to create a new symbol. Merge it with any existing
1604 symbol with this name. For the purposes of the merge, act as
1605 though we were defining the symbol we just defined, although we
1606 actually going to define an indirect symbol. */
1607 type_change_ok = FALSE;
1608 size_change_ok = FALSE;
1609 tmp_sec = sec;
1610 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1611 &hi, poldbfd, NULL, NULL, &skip, &override,
1612 &type_change_ok, &size_change_ok))
1613 return FALSE;
1614
1615 if (skip)
1616 goto nondefault;
1617
1618 if (! override)
1619 {
1620 bh = &hi->root;
1621 if (! (_bfd_generic_link_add_one_symbol
1622 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1623 0, name, FALSE, collect, &bh)))
1624 return FALSE;
1625 hi = (struct elf_link_hash_entry *) bh;
1626 }
1627 else
1628 {
1629 /* In this case the symbol named SHORTNAME is overriding the
1630 indirect symbol we want to add. We were planning on making
1631 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1632 is the name without a version. NAME is the fully versioned
1633 name, and it is the default version.
1634
1635 Overriding means that we already saw a definition for the
1636 symbol SHORTNAME in a regular object, and it is overriding
1637 the symbol defined in the dynamic object.
1638
1639 When this happens, we actually want to change NAME, the
1640 symbol we just added, to refer to SHORTNAME. This will cause
1641 references to NAME in the shared object to become references
1642 to SHORTNAME in the regular object. This is what we expect
1643 when we override a function in a shared object: that the
1644 references in the shared object will be mapped to the
1645 definition in the regular object. */
1646
1647 while (hi->root.type == bfd_link_hash_indirect
1648 || hi->root.type == bfd_link_hash_warning)
1649 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1650
1651 h->root.type = bfd_link_hash_indirect;
1652 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1653 if (h->def_dynamic)
1654 {
1655 h->def_dynamic = 0;
1656 hi->ref_dynamic = 1;
1657 if (hi->ref_regular
1658 || hi->def_regular)
1659 {
1660 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1661 return FALSE;
1662 }
1663 }
1664
1665 /* Now set HI to H, so that the following code will set the
1666 other fields correctly. */
1667 hi = h;
1668 }
1669
1670 /* Check if HI is a warning symbol. */
1671 if (hi->root.type == bfd_link_hash_warning)
1672 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1673
1674 /* If there is a duplicate definition somewhere, then HI may not
1675 point to an indirect symbol. We will have reported an error to
1676 the user in that case. */
1677
1678 if (hi->root.type == bfd_link_hash_indirect)
1679 {
1680 struct elf_link_hash_entry *ht;
1681
1682 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1683 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1684
1685 /* A reference to the SHORTNAME symbol from a dynamic library
1686 will be satisfied by the versioned symbol at runtime. In
1687 effect, we have a reference to the versioned symbol. */
1688 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1689 hi->dynamic_def |= ht->dynamic_def;
1690
1691 /* See if the new flags lead us to realize that the symbol must
1692 be dynamic. */
1693 if (! *dynsym)
1694 {
1695 if (! dynamic)
1696 {
1697 if (! info->executable
1698 || hi->def_dynamic
1699 || hi->ref_dynamic)
1700 *dynsym = TRUE;
1701 }
1702 else
1703 {
1704 if (hi->ref_regular)
1705 *dynsym = TRUE;
1706 }
1707 }
1708 }
1709
1710 /* We also need to define an indirection from the nondefault version
1711 of the symbol. */
1712
1713 nondefault:
1714 len = strlen (name);
1715 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1716 if (shortname == NULL)
1717 return FALSE;
1718 memcpy (shortname, name, shortlen);
1719 memcpy (shortname + shortlen, p + 1, len - shortlen);
1720
1721 /* Once again, merge with any existing symbol. */
1722 type_change_ok = FALSE;
1723 size_change_ok = FALSE;
1724 tmp_sec = sec;
1725 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1726 &hi, poldbfd, NULL, NULL, &skip, &override,
1727 &type_change_ok, &size_change_ok))
1728 return FALSE;
1729
1730 if (skip)
1731 return TRUE;
1732
1733 if (override)
1734 {
1735 /* Here SHORTNAME is a versioned name, so we don't expect to see
1736 the type of override we do in the case above unless it is
1737 overridden by a versioned definition. */
1738 if (hi->root.type != bfd_link_hash_defined
1739 && hi->root.type != bfd_link_hash_defweak)
1740 (*_bfd_error_handler)
1741 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1742 abfd, shortname);
1743 }
1744 else
1745 {
1746 bh = &hi->root;
1747 if (! (_bfd_generic_link_add_one_symbol
1748 (info, abfd, shortname, BSF_INDIRECT,
1749 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1750 return FALSE;
1751 hi = (struct elf_link_hash_entry *) bh;
1752
1753 /* If there is a duplicate definition somewhere, then HI may not
1754 point to an indirect symbol. We will have reported an error
1755 to the user in that case. */
1756
1757 if (hi->root.type == bfd_link_hash_indirect)
1758 {
1759 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1760 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1761 hi->dynamic_def |= h->dynamic_def;
1762
1763 /* See if the new flags lead us to realize that the symbol
1764 must be dynamic. */
1765 if (! *dynsym)
1766 {
1767 if (! dynamic)
1768 {
1769 if (! info->executable
1770 || hi->ref_dynamic)
1771 *dynsym = TRUE;
1772 }
1773 else
1774 {
1775 if (hi->ref_regular)
1776 *dynsym = TRUE;
1777 }
1778 }
1779 }
1780 }
1781
1782 return TRUE;
1783 }
1784 \f
1785 /* This routine is used to export all defined symbols into the dynamic
1786 symbol table. It is called via elf_link_hash_traverse. */
1787
1788 static bfd_boolean
1789 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1790 {
1791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1792
1793 /* Ignore indirect symbols. These are added by the versioning code. */
1794 if (h->root.type == bfd_link_hash_indirect)
1795 return TRUE;
1796
1797 /* Ignore this if we won't export it. */
1798 if (!eif->info->export_dynamic && !h->dynamic)
1799 return TRUE;
1800
1801 if (h->dynindx == -1
1802 && (h->def_regular || h->ref_regular)
1803 && ! bfd_hide_sym_by_version (eif->info->version_info,
1804 h->root.root.string))
1805 {
1806 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1807 {
1808 eif->failed = TRUE;
1809 return FALSE;
1810 }
1811 }
1812
1813 return TRUE;
1814 }
1815 \f
1816 /* Look through the symbols which are defined in other shared
1817 libraries and referenced here. Update the list of version
1818 dependencies. This will be put into the .gnu.version_r section.
1819 This function is called via elf_link_hash_traverse. */
1820
1821 static bfd_boolean
1822 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1823 void *data)
1824 {
1825 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1826 Elf_Internal_Verneed *t;
1827 Elf_Internal_Vernaux *a;
1828 bfd_size_type amt;
1829
1830 /* We only care about symbols defined in shared objects with version
1831 information. */
1832 if (!h->def_dynamic
1833 || h->def_regular
1834 || h->dynindx == -1
1835 || h->verinfo.verdef == NULL)
1836 return TRUE;
1837
1838 /* See if we already know about this version. */
1839 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1840 t != NULL;
1841 t = t->vn_nextref)
1842 {
1843 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1844 continue;
1845
1846 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1847 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1848 return TRUE;
1849
1850 break;
1851 }
1852
1853 /* This is a new version. Add it to tree we are building. */
1854
1855 if (t == NULL)
1856 {
1857 amt = sizeof *t;
1858 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1859 if (t == NULL)
1860 {
1861 rinfo->failed = TRUE;
1862 return FALSE;
1863 }
1864
1865 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1866 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1867 elf_tdata (rinfo->info->output_bfd)->verref = t;
1868 }
1869
1870 amt = sizeof *a;
1871 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 if (a == NULL)
1873 {
1874 rinfo->failed = TRUE;
1875 return FALSE;
1876 }
1877
1878 /* Note that we are copying a string pointer here, and testing it
1879 above. If bfd_elf_string_from_elf_section is ever changed to
1880 discard the string data when low in memory, this will have to be
1881 fixed. */
1882 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1883
1884 a->vna_flags = h->verinfo.verdef->vd_flags;
1885 a->vna_nextptr = t->vn_auxptr;
1886
1887 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1888 ++rinfo->vers;
1889
1890 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1891
1892 t->vn_auxptr = a;
1893
1894 return TRUE;
1895 }
1896
1897 /* Figure out appropriate versions for all the symbols. We may not
1898 have the version number script until we have read all of the input
1899 files, so until that point we don't know which symbols should be
1900 local. This function is called via elf_link_hash_traverse. */
1901
1902 static bfd_boolean
1903 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1904 {
1905 struct elf_info_failed *sinfo;
1906 struct bfd_link_info *info;
1907 const struct elf_backend_data *bed;
1908 struct elf_info_failed eif;
1909 char *p;
1910 bfd_size_type amt;
1911
1912 sinfo = (struct elf_info_failed *) data;
1913 info = sinfo->info;
1914
1915 /* Fix the symbol flags. */
1916 eif.failed = FALSE;
1917 eif.info = info;
1918 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1919 {
1920 if (eif.failed)
1921 sinfo->failed = TRUE;
1922 return FALSE;
1923 }
1924
1925 /* We only need version numbers for symbols defined in regular
1926 objects. */
1927 if (!h->def_regular)
1928 return TRUE;
1929
1930 bed = get_elf_backend_data (info->output_bfd);
1931 p = strchr (h->root.root.string, ELF_VER_CHR);
1932 if (p != NULL && h->verinfo.vertree == NULL)
1933 {
1934 struct bfd_elf_version_tree *t;
1935 bfd_boolean hidden;
1936
1937 hidden = TRUE;
1938
1939 /* There are two consecutive ELF_VER_CHR characters if this is
1940 not a hidden symbol. */
1941 ++p;
1942 if (*p == ELF_VER_CHR)
1943 {
1944 hidden = FALSE;
1945 ++p;
1946 }
1947
1948 /* If there is no version string, we can just return out. */
1949 if (*p == '\0')
1950 {
1951 if (hidden)
1952 h->hidden = 1;
1953 return TRUE;
1954 }
1955
1956 /* Look for the version. If we find it, it is no longer weak. */
1957 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1958 {
1959 if (strcmp (t->name, p) == 0)
1960 {
1961 size_t len;
1962 char *alc;
1963 struct bfd_elf_version_expr *d;
1964
1965 len = p - h->root.root.string;
1966 alc = (char *) bfd_malloc (len);
1967 if (alc == NULL)
1968 {
1969 sinfo->failed = TRUE;
1970 return FALSE;
1971 }
1972 memcpy (alc, h->root.root.string, len - 1);
1973 alc[len - 1] = '\0';
1974 if (alc[len - 2] == ELF_VER_CHR)
1975 alc[len - 2] = '\0';
1976
1977 h->verinfo.vertree = t;
1978 t->used = TRUE;
1979 d = NULL;
1980
1981 if (t->globals.list != NULL)
1982 d = (*t->match) (&t->globals, NULL, alc);
1983
1984 /* See if there is anything to force this symbol to
1985 local scope. */
1986 if (d == NULL && t->locals.list != NULL)
1987 {
1988 d = (*t->match) (&t->locals, NULL, alc);
1989 if (d != NULL
1990 && h->dynindx != -1
1991 && ! info->export_dynamic)
1992 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1993 }
1994
1995 free (alc);
1996 break;
1997 }
1998 }
1999
2000 /* If we are building an application, we need to create a
2001 version node for this version. */
2002 if (t == NULL && info->executable)
2003 {
2004 struct bfd_elf_version_tree **pp;
2005 int version_index;
2006
2007 /* If we aren't going to export this symbol, we don't need
2008 to worry about it. */
2009 if (h->dynindx == -1)
2010 return TRUE;
2011
2012 amt = sizeof *t;
2013 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2014 if (t == NULL)
2015 {
2016 sinfo->failed = TRUE;
2017 return FALSE;
2018 }
2019
2020 t->name = p;
2021 t->name_indx = (unsigned int) -1;
2022 t->used = TRUE;
2023
2024 version_index = 1;
2025 /* Don't count anonymous version tag. */
2026 if (sinfo->info->version_info != NULL
2027 && sinfo->info->version_info->vernum == 0)
2028 version_index = 0;
2029 for (pp = &sinfo->info->version_info;
2030 *pp != NULL;
2031 pp = &(*pp)->next)
2032 ++version_index;
2033 t->vernum = version_index;
2034
2035 *pp = t;
2036
2037 h->verinfo.vertree = t;
2038 }
2039 else if (t == NULL)
2040 {
2041 /* We could not find the version for a symbol when
2042 generating a shared archive. Return an error. */
2043 (*_bfd_error_handler)
2044 (_("%B: version node not found for symbol %s"),
2045 info->output_bfd, h->root.root.string);
2046 bfd_set_error (bfd_error_bad_value);
2047 sinfo->failed = TRUE;
2048 return FALSE;
2049 }
2050
2051 if (hidden)
2052 h->hidden = 1;
2053 }
2054
2055 /* If we don't have a version for this symbol, see if we can find
2056 something. */
2057 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2058 {
2059 bfd_boolean hide;
2060
2061 h->verinfo.vertree
2062 = bfd_find_version_for_sym (sinfo->info->version_info,
2063 h->root.root.string, &hide);
2064 if (h->verinfo.vertree != NULL && hide)
2065 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2066 }
2067
2068 return TRUE;
2069 }
2070 \f
2071 /* Read and swap the relocs from the section indicated by SHDR. This
2072 may be either a REL or a RELA section. The relocations are
2073 translated into RELA relocations and stored in INTERNAL_RELOCS,
2074 which should have already been allocated to contain enough space.
2075 The EXTERNAL_RELOCS are a buffer where the external form of the
2076 relocations should be stored.
2077
2078 Returns FALSE if something goes wrong. */
2079
2080 static bfd_boolean
2081 elf_link_read_relocs_from_section (bfd *abfd,
2082 asection *sec,
2083 Elf_Internal_Shdr *shdr,
2084 void *external_relocs,
2085 Elf_Internal_Rela *internal_relocs)
2086 {
2087 const struct elf_backend_data *bed;
2088 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2089 const bfd_byte *erela;
2090 const bfd_byte *erelaend;
2091 Elf_Internal_Rela *irela;
2092 Elf_Internal_Shdr *symtab_hdr;
2093 size_t nsyms;
2094
2095 /* Position ourselves at the start of the section. */
2096 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2097 return FALSE;
2098
2099 /* Read the relocations. */
2100 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2101 return FALSE;
2102
2103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2104 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2105
2106 bed = get_elf_backend_data (abfd);
2107
2108 /* Convert the external relocations to the internal format. */
2109 if (shdr->sh_entsize == bed->s->sizeof_rel)
2110 swap_in = bed->s->swap_reloc_in;
2111 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2112 swap_in = bed->s->swap_reloca_in;
2113 else
2114 {
2115 bfd_set_error (bfd_error_wrong_format);
2116 return FALSE;
2117 }
2118
2119 erela = (const bfd_byte *) external_relocs;
2120 erelaend = erela + shdr->sh_size;
2121 irela = internal_relocs;
2122 while (erela < erelaend)
2123 {
2124 bfd_vma r_symndx;
2125
2126 (*swap_in) (abfd, erela, irela);
2127 r_symndx = ELF32_R_SYM (irela->r_info);
2128 if (bed->s->arch_size == 64)
2129 r_symndx >>= 24;
2130 if (nsyms > 0)
2131 {
2132 if ((size_t) r_symndx >= nsyms)
2133 {
2134 (*_bfd_error_handler)
2135 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2136 " for offset 0x%lx in section `%A'"),
2137 abfd, sec,
2138 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2139 bfd_set_error (bfd_error_bad_value);
2140 return FALSE;
2141 }
2142 }
2143 else if (r_symndx != STN_UNDEF)
2144 {
2145 (*_bfd_error_handler)
2146 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2147 " when the object file has no symbol table"),
2148 abfd, sec,
2149 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2150 bfd_set_error (bfd_error_bad_value);
2151 return FALSE;
2152 }
2153 irela += bed->s->int_rels_per_ext_rel;
2154 erela += shdr->sh_entsize;
2155 }
2156
2157 return TRUE;
2158 }
2159
2160 /* Read and swap the relocs for a section O. They may have been
2161 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2162 not NULL, they are used as buffers to read into. They are known to
2163 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2164 the return value is allocated using either malloc or bfd_alloc,
2165 according to the KEEP_MEMORY argument. If O has two relocation
2166 sections (both REL and RELA relocations), then the REL_HDR
2167 relocations will appear first in INTERNAL_RELOCS, followed by the
2168 RELA_HDR relocations. */
2169
2170 Elf_Internal_Rela *
2171 _bfd_elf_link_read_relocs (bfd *abfd,
2172 asection *o,
2173 void *external_relocs,
2174 Elf_Internal_Rela *internal_relocs,
2175 bfd_boolean keep_memory)
2176 {
2177 void *alloc1 = NULL;
2178 Elf_Internal_Rela *alloc2 = NULL;
2179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2180 struct bfd_elf_section_data *esdo = elf_section_data (o);
2181 Elf_Internal_Rela *internal_rela_relocs;
2182
2183 if (esdo->relocs != NULL)
2184 return esdo->relocs;
2185
2186 if (o->reloc_count == 0)
2187 return NULL;
2188
2189 if (internal_relocs == NULL)
2190 {
2191 bfd_size_type size;
2192
2193 size = o->reloc_count;
2194 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195 if (keep_memory)
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2197 else
2198 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2199 if (internal_relocs == NULL)
2200 goto error_return;
2201 }
2202
2203 if (external_relocs == NULL)
2204 {
2205 bfd_size_type size = 0;
2206
2207 if (esdo->rel.hdr)
2208 size += esdo->rel.hdr->sh_size;
2209 if (esdo->rela.hdr)
2210 size += esdo->rela.hdr->sh_size;
2211
2212 alloc1 = bfd_malloc (size);
2213 if (alloc1 == NULL)
2214 goto error_return;
2215 external_relocs = alloc1;
2216 }
2217
2218 internal_rela_relocs = internal_relocs;
2219 if (esdo->rel.hdr)
2220 {
2221 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2222 external_relocs,
2223 internal_relocs))
2224 goto error_return;
2225 external_relocs = (((bfd_byte *) external_relocs)
2226 + esdo->rel.hdr->sh_size);
2227 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2228 * bed->s->int_rels_per_ext_rel);
2229 }
2230
2231 if (esdo->rela.hdr
2232 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2233 external_relocs,
2234 internal_rela_relocs)))
2235 goto error_return;
2236
2237 /* Cache the results for next time, if we can. */
2238 if (keep_memory)
2239 esdo->relocs = internal_relocs;
2240
2241 if (alloc1 != NULL)
2242 free (alloc1);
2243
2244 /* Don't free alloc2, since if it was allocated we are passing it
2245 back (under the name of internal_relocs). */
2246
2247 return internal_relocs;
2248
2249 error_return:
2250 if (alloc1 != NULL)
2251 free (alloc1);
2252 if (alloc2 != NULL)
2253 {
2254 if (keep_memory)
2255 bfd_release (abfd, alloc2);
2256 else
2257 free (alloc2);
2258 }
2259 return NULL;
2260 }
2261
2262 /* Compute the size of, and allocate space for, REL_HDR which is the
2263 section header for a section containing relocations for O. */
2264
2265 static bfd_boolean
2266 _bfd_elf_link_size_reloc_section (bfd *abfd,
2267 struct bfd_elf_section_reloc_data *reldata)
2268 {
2269 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2270
2271 /* That allows us to calculate the size of the section. */
2272 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2273
2274 /* The contents field must last into write_object_contents, so we
2275 allocate it with bfd_alloc rather than malloc. Also since we
2276 cannot be sure that the contents will actually be filled in,
2277 we zero the allocated space. */
2278 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2279 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2280 return FALSE;
2281
2282 if (reldata->hashes == NULL && reldata->count)
2283 {
2284 struct elf_link_hash_entry **p;
2285
2286 p = (struct elf_link_hash_entry **)
2287 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2288 if (p == NULL)
2289 return FALSE;
2290
2291 reldata->hashes = p;
2292 }
2293
2294 return TRUE;
2295 }
2296
2297 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2298 originated from the section given by INPUT_REL_HDR) to the
2299 OUTPUT_BFD. */
2300
2301 bfd_boolean
2302 _bfd_elf_link_output_relocs (bfd *output_bfd,
2303 asection *input_section,
2304 Elf_Internal_Shdr *input_rel_hdr,
2305 Elf_Internal_Rela *internal_relocs,
2306 struct elf_link_hash_entry **rel_hash
2307 ATTRIBUTE_UNUSED)
2308 {
2309 Elf_Internal_Rela *irela;
2310 Elf_Internal_Rela *irelaend;
2311 bfd_byte *erel;
2312 struct bfd_elf_section_reloc_data *output_reldata;
2313 asection *output_section;
2314 const struct elf_backend_data *bed;
2315 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2316 struct bfd_elf_section_data *esdo;
2317
2318 output_section = input_section->output_section;
2319
2320 bed = get_elf_backend_data (output_bfd);
2321 esdo = elf_section_data (output_section);
2322 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2323 {
2324 output_reldata = &esdo->rel;
2325 swap_out = bed->s->swap_reloc_out;
2326 }
2327 else if (esdo->rela.hdr
2328 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2329 {
2330 output_reldata = &esdo->rela;
2331 swap_out = bed->s->swap_reloca_out;
2332 }
2333 else
2334 {
2335 (*_bfd_error_handler)
2336 (_("%B: relocation size mismatch in %B section %A"),
2337 output_bfd, input_section->owner, input_section);
2338 bfd_set_error (bfd_error_wrong_format);
2339 return FALSE;
2340 }
2341
2342 erel = output_reldata->hdr->contents;
2343 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2344 irela = internal_relocs;
2345 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2346 * bed->s->int_rels_per_ext_rel);
2347 while (irela < irelaend)
2348 {
2349 (*swap_out) (output_bfd, irela, erel);
2350 irela += bed->s->int_rels_per_ext_rel;
2351 erel += input_rel_hdr->sh_entsize;
2352 }
2353
2354 /* Bump the counter, so that we know where to add the next set of
2355 relocations. */
2356 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2357
2358 return TRUE;
2359 }
2360 \f
2361 /* Make weak undefined symbols in PIE dynamic. */
2362
2363 bfd_boolean
2364 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2365 struct elf_link_hash_entry *h)
2366 {
2367 if (info->pie
2368 && h->dynindx == -1
2369 && h->root.type == bfd_link_hash_undefweak)
2370 return bfd_elf_link_record_dynamic_symbol (info, h);
2371
2372 return TRUE;
2373 }
2374
2375 /* Fix up the flags for a symbol. This handles various cases which
2376 can only be fixed after all the input files are seen. This is
2377 currently called by both adjust_dynamic_symbol and
2378 assign_sym_version, which is unnecessary but perhaps more robust in
2379 the face of future changes. */
2380
2381 static bfd_boolean
2382 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2383 struct elf_info_failed *eif)
2384 {
2385 const struct elf_backend_data *bed;
2386
2387 /* If this symbol was mentioned in a non-ELF file, try to set
2388 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2389 permit a non-ELF file to correctly refer to a symbol defined in
2390 an ELF dynamic object. */
2391 if (h->non_elf)
2392 {
2393 while (h->root.type == bfd_link_hash_indirect)
2394 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2395
2396 if (h->root.type != bfd_link_hash_defined
2397 && h->root.type != bfd_link_hash_defweak)
2398 {
2399 h->ref_regular = 1;
2400 h->ref_regular_nonweak = 1;
2401 }
2402 else
2403 {
2404 if (h->root.u.def.section->owner != NULL
2405 && (bfd_get_flavour (h->root.u.def.section->owner)
2406 == bfd_target_elf_flavour))
2407 {
2408 h->ref_regular = 1;
2409 h->ref_regular_nonweak = 1;
2410 }
2411 else
2412 h->def_regular = 1;
2413 }
2414
2415 if (h->dynindx == -1
2416 && (h->def_dynamic
2417 || h->ref_dynamic))
2418 {
2419 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2420 {
2421 eif->failed = TRUE;
2422 return FALSE;
2423 }
2424 }
2425 }
2426 else
2427 {
2428 /* Unfortunately, NON_ELF is only correct if the symbol
2429 was first seen in a non-ELF file. Fortunately, if the symbol
2430 was first seen in an ELF file, we're probably OK unless the
2431 symbol was defined in a non-ELF file. Catch that case here.
2432 FIXME: We're still in trouble if the symbol was first seen in
2433 a dynamic object, and then later in a non-ELF regular object. */
2434 if ((h->root.type == bfd_link_hash_defined
2435 || h->root.type == bfd_link_hash_defweak)
2436 && !h->def_regular
2437 && (h->root.u.def.section->owner != NULL
2438 ? (bfd_get_flavour (h->root.u.def.section->owner)
2439 != bfd_target_elf_flavour)
2440 : (bfd_is_abs_section (h->root.u.def.section)
2441 && !h->def_dynamic)))
2442 h->def_regular = 1;
2443 }
2444
2445 /* Backend specific symbol fixup. */
2446 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2447 if (bed->elf_backend_fixup_symbol
2448 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2449 return FALSE;
2450
2451 /* If this is a final link, and the symbol was defined as a common
2452 symbol in a regular object file, and there was no definition in
2453 any dynamic object, then the linker will have allocated space for
2454 the symbol in a common section but the DEF_REGULAR
2455 flag will not have been set. */
2456 if (h->root.type == bfd_link_hash_defined
2457 && !h->def_regular
2458 && h->ref_regular
2459 && !h->def_dynamic
2460 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2461 h->def_regular = 1;
2462
2463 /* If -Bsymbolic was used (which means to bind references to global
2464 symbols to the definition within the shared object), and this
2465 symbol was defined in a regular object, then it actually doesn't
2466 need a PLT entry. Likewise, if the symbol has non-default
2467 visibility. If the symbol has hidden or internal visibility, we
2468 will force it local. */
2469 if (h->needs_plt
2470 && eif->info->shared
2471 && is_elf_hash_table (eif->info->hash)
2472 && (SYMBOLIC_BIND (eif->info, h)
2473 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2474 && h->def_regular)
2475 {
2476 bfd_boolean force_local;
2477
2478 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2479 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2480 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2481 }
2482
2483 /* If a weak undefined symbol has non-default visibility, we also
2484 hide it from the dynamic linker. */
2485 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2486 && h->root.type == bfd_link_hash_undefweak)
2487 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2488
2489 /* If this is a weak defined symbol in a dynamic object, and we know
2490 the real definition in the dynamic object, copy interesting flags
2491 over to the real definition. */
2492 if (h->u.weakdef != NULL)
2493 {
2494 /* If the real definition is defined by a regular object file,
2495 don't do anything special. See the longer description in
2496 _bfd_elf_adjust_dynamic_symbol, below. */
2497 if (h->u.weakdef->def_regular)
2498 h->u.weakdef = NULL;
2499 else
2500 {
2501 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2502
2503 while (h->root.type == bfd_link_hash_indirect)
2504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2505
2506 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2507 || h->root.type == bfd_link_hash_defweak);
2508 BFD_ASSERT (weakdef->def_dynamic);
2509 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2510 || weakdef->root.type == bfd_link_hash_defweak);
2511 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2512 }
2513 }
2514
2515 return TRUE;
2516 }
2517
2518 /* Make the backend pick a good value for a dynamic symbol. This is
2519 called via elf_link_hash_traverse, and also calls itself
2520 recursively. */
2521
2522 static bfd_boolean
2523 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2524 {
2525 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2526 bfd *dynobj;
2527 const struct elf_backend_data *bed;
2528
2529 if (! is_elf_hash_table (eif->info->hash))
2530 return FALSE;
2531
2532 /* Ignore indirect symbols. These are added by the versioning code. */
2533 if (h->root.type == bfd_link_hash_indirect)
2534 return TRUE;
2535
2536 /* Fix the symbol flags. */
2537 if (! _bfd_elf_fix_symbol_flags (h, eif))
2538 return FALSE;
2539
2540 /* If this symbol does not require a PLT entry, and it is not
2541 defined by a dynamic object, or is not referenced by a regular
2542 object, ignore it. We do have to handle a weak defined symbol,
2543 even if no regular object refers to it, if we decided to add it
2544 to the dynamic symbol table. FIXME: Do we normally need to worry
2545 about symbols which are defined by one dynamic object and
2546 referenced by another one? */
2547 if (!h->needs_plt
2548 && h->type != STT_GNU_IFUNC
2549 && (h->def_regular
2550 || !h->def_dynamic
2551 || (!h->ref_regular
2552 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2553 {
2554 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2555 return TRUE;
2556 }
2557
2558 /* If we've already adjusted this symbol, don't do it again. This
2559 can happen via a recursive call. */
2560 if (h->dynamic_adjusted)
2561 return TRUE;
2562
2563 /* Don't look at this symbol again. Note that we must set this
2564 after checking the above conditions, because we may look at a
2565 symbol once, decide not to do anything, and then get called
2566 recursively later after REF_REGULAR is set below. */
2567 h->dynamic_adjusted = 1;
2568
2569 /* If this is a weak definition, and we know a real definition, and
2570 the real symbol is not itself defined by a regular object file,
2571 then get a good value for the real definition. We handle the
2572 real symbol first, for the convenience of the backend routine.
2573
2574 Note that there is a confusing case here. If the real definition
2575 is defined by a regular object file, we don't get the real symbol
2576 from the dynamic object, but we do get the weak symbol. If the
2577 processor backend uses a COPY reloc, then if some routine in the
2578 dynamic object changes the real symbol, we will not see that
2579 change in the corresponding weak symbol. This is the way other
2580 ELF linkers work as well, and seems to be a result of the shared
2581 library model.
2582
2583 I will clarify this issue. Most SVR4 shared libraries define the
2584 variable _timezone and define timezone as a weak synonym. The
2585 tzset call changes _timezone. If you write
2586 extern int timezone;
2587 int _timezone = 5;
2588 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2589 you might expect that, since timezone is a synonym for _timezone,
2590 the same number will print both times. However, if the processor
2591 backend uses a COPY reloc, then actually timezone will be copied
2592 into your process image, and, since you define _timezone
2593 yourself, _timezone will not. Thus timezone and _timezone will
2594 wind up at different memory locations. The tzset call will set
2595 _timezone, leaving timezone unchanged. */
2596
2597 if (h->u.weakdef != NULL)
2598 {
2599 /* If we get to this point, there is an implicit reference to
2600 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2601 h->u.weakdef->ref_regular = 1;
2602
2603 /* Ensure that the backend adjust_dynamic_symbol function sees
2604 H->U.WEAKDEF before H by recursively calling ourselves. */
2605 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2606 return FALSE;
2607 }
2608
2609 /* If a symbol has no type and no size and does not require a PLT
2610 entry, then we are probably about to do the wrong thing here: we
2611 are probably going to create a COPY reloc for an empty object.
2612 This case can arise when a shared object is built with assembly
2613 code, and the assembly code fails to set the symbol type. */
2614 if (h->size == 0
2615 && h->type == STT_NOTYPE
2616 && !h->needs_plt)
2617 (*_bfd_error_handler)
2618 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2619 h->root.root.string);
2620
2621 dynobj = elf_hash_table (eif->info)->dynobj;
2622 bed = get_elf_backend_data (dynobj);
2623
2624 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2625 {
2626 eif->failed = TRUE;
2627 return FALSE;
2628 }
2629
2630 return TRUE;
2631 }
2632
2633 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2634 DYNBSS. */
2635
2636 bfd_boolean
2637 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2638 asection *dynbss)
2639 {
2640 unsigned int power_of_two;
2641 bfd_vma mask;
2642 asection *sec = h->root.u.def.section;
2643
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2652 {
2653 mask >>= 1;
2654 --power_of_two;
2655 }
2656
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 dynbss))
2659 {
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 power_of_two))
2663 return FALSE;
2664 }
2665
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2672
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2675
2676 return TRUE;
2677 }
2678
2679 /* Adjust all external symbols pointing into SEC_MERGE sections
2680 to reflect the object merging within the sections. */
2681
2682 static bfd_boolean
2683 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2684 {
2685 asection *sec;
2686
2687 if ((h->root.type == bfd_link_hash_defined
2688 || h->root.type == bfd_link_hash_defweak)
2689 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2690 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2691 {
2692 bfd *output_bfd = (bfd *) data;
2693
2694 h->root.u.def.value =
2695 _bfd_merged_section_offset (output_bfd,
2696 &h->root.u.def.section,
2697 elf_section_data (sec)->sec_info,
2698 h->root.u.def.value);
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Returns false if the symbol referred to by H should be considered
2705 to resolve local to the current module, and true if it should be
2706 considered to bind dynamically. */
2707
2708 bfd_boolean
2709 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2710 struct bfd_link_info *info,
2711 bfd_boolean not_local_protected)
2712 {
2713 bfd_boolean binding_stays_local_p;
2714 const struct elf_backend_data *bed;
2715 struct elf_link_hash_table *hash_table;
2716
2717 if (h == NULL)
2718 return FALSE;
2719
2720 while (h->root.type == bfd_link_hash_indirect
2721 || h->root.type == bfd_link_hash_warning)
2722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2723
2724 /* If it was forced local, then clearly it's not dynamic. */
2725 if (h->dynindx == -1)
2726 return FALSE;
2727 if (h->forced_local)
2728 return FALSE;
2729
2730 /* Identify the cases where name binding rules say that a
2731 visible symbol resolves locally. */
2732 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2733
2734 switch (ELF_ST_VISIBILITY (h->other))
2735 {
2736 case STV_INTERNAL:
2737 case STV_HIDDEN:
2738 return FALSE;
2739
2740 case STV_PROTECTED:
2741 hash_table = elf_hash_table (info);
2742 if (!is_elf_hash_table (hash_table))
2743 return FALSE;
2744
2745 bed = get_elf_backend_data (hash_table->dynobj);
2746
2747 /* Proper resolution for function pointer equality may require
2748 that these symbols perhaps be resolved dynamically, even though
2749 we should be resolving them to the current module. */
2750 if (!not_local_protected || !bed->is_function_type (h->type))
2751 binding_stays_local_p = TRUE;
2752 break;
2753
2754 default:
2755 break;
2756 }
2757
2758 /* If it isn't defined locally, then clearly it's dynamic. */
2759 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2760 return TRUE;
2761
2762 /* Otherwise, the symbol is dynamic if binding rules don't tell
2763 us that it remains local. */
2764 return !binding_stays_local_p;
2765 }
2766
2767 /* Return true if the symbol referred to by H should be considered
2768 to resolve local to the current module, and false otherwise. Differs
2769 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2770 undefined symbols. The two functions are virtually identical except
2771 for the place where forced_local and dynindx == -1 are tested. If
2772 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2773 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2774 the symbol is local only for defined symbols.
2775 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2776 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2777 treatment of undefined weak symbols. For those that do not make
2778 undefined weak symbols dynamic, both functions may return false. */
2779
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2784 {
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2787
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2791
2792 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2793 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2794 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2795 return TRUE;
2796
2797 /* Common symbols that become definitions don't get the DEF_REGULAR
2798 flag set, so test it first, and don't bail out. */
2799 if (ELF_COMMON_DEF_P (h))
2800 /* Do nothing. */;
2801 /* If we don't have a definition in a regular file, then we can't
2802 resolve locally. The sym is either undefined or dynamic. */
2803 else if (!h->def_regular)
2804 return FALSE;
2805
2806 /* Forced local symbols resolve locally. */
2807 if (h->forced_local)
2808 return TRUE;
2809
2810 /* As do non-dynamic symbols. */
2811 if (h->dynindx == -1)
2812 return TRUE;
2813
2814 /* At this point, we know the symbol is defined and dynamic. In an
2815 executable it must resolve locally, likewise when building symbolic
2816 shared libraries. */
2817 if (info->executable || SYMBOLIC_BIND (info, h))
2818 return TRUE;
2819
2820 /* Now deal with defined dynamic symbols in shared libraries. Ones
2821 with default visibility might not resolve locally. */
2822 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2823 return FALSE;
2824
2825 hash_table = elf_hash_table (info);
2826 if (!is_elf_hash_table (hash_table))
2827 return TRUE;
2828
2829 bed = get_elf_backend_data (hash_table->dynobj);
2830
2831 /* STV_PROTECTED non-function symbols are local. */
2832 if (!bed->is_function_type (h->type))
2833 return TRUE;
2834
2835 /* Function pointer equality tests may require that STV_PROTECTED
2836 symbols be treated as dynamic symbols. If the address of a
2837 function not defined in an executable is set to that function's
2838 plt entry in the executable, then the address of the function in
2839 a shared library must also be the plt entry in the executable. */
2840 return local_protected;
2841 }
2842
2843 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2844 aligned. Returns the first TLS output section. */
2845
2846 struct bfd_section *
2847 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2848 {
2849 struct bfd_section *sec, *tls;
2850 unsigned int align = 0;
2851
2852 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2853 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2854 break;
2855 tls = sec;
2856
2857 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2858 if (sec->alignment_power > align)
2859 align = sec->alignment_power;
2860
2861 elf_hash_table (info)->tls_sec = tls;
2862
2863 /* Ensure the alignment of the first section is the largest alignment,
2864 so that the tls segment starts aligned. */
2865 if (tls != NULL)
2866 tls->alignment_power = align;
2867
2868 return tls;
2869 }
2870
2871 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2872 static bfd_boolean
2873 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2874 Elf_Internal_Sym *sym)
2875 {
2876 const struct elf_backend_data *bed;
2877
2878 /* Local symbols do not count, but target specific ones might. */
2879 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2880 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2881 return FALSE;
2882
2883 bed = get_elf_backend_data (abfd);
2884 /* Function symbols do not count. */
2885 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2886 return FALSE;
2887
2888 /* If the section is undefined, then so is the symbol. */
2889 if (sym->st_shndx == SHN_UNDEF)
2890 return FALSE;
2891
2892 /* If the symbol is defined in the common section, then
2893 it is a common definition and so does not count. */
2894 if (bed->common_definition (sym))
2895 return FALSE;
2896
2897 /* If the symbol is in a target specific section then we
2898 must rely upon the backend to tell us what it is. */
2899 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2900 /* FIXME - this function is not coded yet:
2901
2902 return _bfd_is_global_symbol_definition (abfd, sym);
2903
2904 Instead for now assume that the definition is not global,
2905 Even if this is wrong, at least the linker will behave
2906 in the same way that it used to do. */
2907 return FALSE;
2908
2909 return TRUE;
2910 }
2911
2912 /* Search the symbol table of the archive element of the archive ABFD
2913 whose archive map contains a mention of SYMDEF, and determine if
2914 the symbol is defined in this element. */
2915 static bfd_boolean
2916 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2917 {
2918 Elf_Internal_Shdr * hdr;
2919 bfd_size_type symcount;
2920 bfd_size_type extsymcount;
2921 bfd_size_type extsymoff;
2922 Elf_Internal_Sym *isymbuf;
2923 Elf_Internal_Sym *isym;
2924 Elf_Internal_Sym *isymend;
2925 bfd_boolean result;
2926
2927 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2928 if (abfd == NULL)
2929 return FALSE;
2930
2931 if (! bfd_check_format (abfd, bfd_object))
2932 return FALSE;
2933
2934 /* Select the appropriate symbol table. */
2935 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2936 hdr = &elf_tdata (abfd)->symtab_hdr;
2937 else
2938 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2939
2940 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2941
2942 /* The sh_info field of the symtab header tells us where the
2943 external symbols start. We don't care about the local symbols. */
2944 if (elf_bad_symtab (abfd))
2945 {
2946 extsymcount = symcount;
2947 extsymoff = 0;
2948 }
2949 else
2950 {
2951 extsymcount = symcount - hdr->sh_info;
2952 extsymoff = hdr->sh_info;
2953 }
2954
2955 if (extsymcount == 0)
2956 return FALSE;
2957
2958 /* Read in the symbol table. */
2959 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2960 NULL, NULL, NULL);
2961 if (isymbuf == NULL)
2962 return FALSE;
2963
2964 /* Scan the symbol table looking for SYMDEF. */
2965 result = FALSE;
2966 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2967 {
2968 const char *name;
2969
2970 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2971 isym->st_name);
2972 if (name == NULL)
2973 break;
2974
2975 if (strcmp (name, symdef->name) == 0)
2976 {
2977 result = is_global_data_symbol_definition (abfd, isym);
2978 break;
2979 }
2980 }
2981
2982 free (isymbuf);
2983
2984 return result;
2985 }
2986 \f
2987 /* Add an entry to the .dynamic table. */
2988
2989 bfd_boolean
2990 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2991 bfd_vma tag,
2992 bfd_vma val)
2993 {
2994 struct elf_link_hash_table *hash_table;
2995 const struct elf_backend_data *bed;
2996 asection *s;
2997 bfd_size_type newsize;
2998 bfd_byte *newcontents;
2999 Elf_Internal_Dyn dyn;
3000
3001 hash_table = elf_hash_table (info);
3002 if (! is_elf_hash_table (hash_table))
3003 return FALSE;
3004
3005 bed = get_elf_backend_data (hash_table->dynobj);
3006 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3007 BFD_ASSERT (s != NULL);
3008
3009 newsize = s->size + bed->s->sizeof_dyn;
3010 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3011 if (newcontents == NULL)
3012 return FALSE;
3013
3014 dyn.d_tag = tag;
3015 dyn.d_un.d_val = val;
3016 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3017
3018 s->size = newsize;
3019 s->contents = newcontents;
3020
3021 return TRUE;
3022 }
3023
3024 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3025 otherwise just check whether one already exists. Returns -1 on error,
3026 1 if a DT_NEEDED tag already exists, and 0 on success. */
3027
3028 static int
3029 elf_add_dt_needed_tag (bfd *abfd,
3030 struct bfd_link_info *info,
3031 const char *soname,
3032 bfd_boolean do_it)
3033 {
3034 struct elf_link_hash_table *hash_table;
3035 bfd_size_type strindex;
3036
3037 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3038 return -1;
3039
3040 hash_table = elf_hash_table (info);
3041 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3042 if (strindex == (bfd_size_type) -1)
3043 return -1;
3044
3045 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3046 {
3047 asection *sdyn;
3048 const struct elf_backend_data *bed;
3049 bfd_byte *extdyn;
3050
3051 bed = get_elf_backend_data (hash_table->dynobj);
3052 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3053 if (sdyn != NULL)
3054 for (extdyn = sdyn->contents;
3055 extdyn < sdyn->contents + sdyn->size;
3056 extdyn += bed->s->sizeof_dyn)
3057 {
3058 Elf_Internal_Dyn dyn;
3059
3060 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3061 if (dyn.d_tag == DT_NEEDED
3062 && dyn.d_un.d_val == strindex)
3063 {
3064 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3065 return 1;
3066 }
3067 }
3068 }
3069
3070 if (do_it)
3071 {
3072 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3073 return -1;
3074
3075 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3076 return -1;
3077 }
3078 else
3079 /* We were just checking for existence of the tag. */
3080 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3081
3082 return 0;
3083 }
3084
3085 static bfd_boolean
3086 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3087 {
3088 for (; needed != NULL; needed = needed->next)
3089 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3090 && strcmp (soname, needed->name) == 0)
3091 return TRUE;
3092
3093 return FALSE;
3094 }
3095
3096 /* Sort symbol by value, section, and size. */
3097 static int
3098 elf_sort_symbol (const void *arg1, const void *arg2)
3099 {
3100 const struct elf_link_hash_entry *h1;
3101 const struct elf_link_hash_entry *h2;
3102 bfd_signed_vma vdiff;
3103
3104 h1 = *(const struct elf_link_hash_entry **) arg1;
3105 h2 = *(const struct elf_link_hash_entry **) arg2;
3106 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3107 if (vdiff != 0)
3108 return vdiff > 0 ? 1 : -1;
3109 else
3110 {
3111 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3112 if (sdiff != 0)
3113 return sdiff > 0 ? 1 : -1;
3114 }
3115 vdiff = h1->size - h2->size;
3116 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3117 }
3118
3119 /* This function is used to adjust offsets into .dynstr for
3120 dynamic symbols. This is called via elf_link_hash_traverse. */
3121
3122 static bfd_boolean
3123 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3124 {
3125 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3126
3127 if (h->dynindx != -1)
3128 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3129 return TRUE;
3130 }
3131
3132 /* Assign string offsets in .dynstr, update all structures referencing
3133 them. */
3134
3135 static bfd_boolean
3136 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3137 {
3138 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3139 struct elf_link_local_dynamic_entry *entry;
3140 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3141 bfd *dynobj = hash_table->dynobj;
3142 asection *sdyn;
3143 bfd_size_type size;
3144 const struct elf_backend_data *bed;
3145 bfd_byte *extdyn;
3146
3147 _bfd_elf_strtab_finalize (dynstr);
3148 size = _bfd_elf_strtab_size (dynstr);
3149
3150 bed = get_elf_backend_data (dynobj);
3151 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3152 BFD_ASSERT (sdyn != NULL);
3153
3154 /* Update all .dynamic entries referencing .dynstr strings. */
3155 for (extdyn = sdyn->contents;
3156 extdyn < sdyn->contents + sdyn->size;
3157 extdyn += bed->s->sizeof_dyn)
3158 {
3159 Elf_Internal_Dyn dyn;
3160
3161 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3162 switch (dyn.d_tag)
3163 {
3164 case DT_STRSZ:
3165 dyn.d_un.d_val = size;
3166 break;
3167 case DT_NEEDED:
3168 case DT_SONAME:
3169 case DT_RPATH:
3170 case DT_RUNPATH:
3171 case DT_FILTER:
3172 case DT_AUXILIARY:
3173 case DT_AUDIT:
3174 case DT_DEPAUDIT:
3175 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3176 break;
3177 default:
3178 continue;
3179 }
3180 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3181 }
3182
3183 /* Now update local dynamic symbols. */
3184 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3185 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3186 entry->isym.st_name);
3187
3188 /* And the rest of dynamic symbols. */
3189 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3190
3191 /* Adjust version definitions. */
3192 if (elf_tdata (output_bfd)->cverdefs)
3193 {
3194 asection *s;
3195 bfd_byte *p;
3196 bfd_size_type i;
3197 Elf_Internal_Verdef def;
3198 Elf_Internal_Verdaux defaux;
3199
3200 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3201 p = s->contents;
3202 do
3203 {
3204 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3205 &def);
3206 p += sizeof (Elf_External_Verdef);
3207 if (def.vd_aux != sizeof (Elf_External_Verdef))
3208 continue;
3209 for (i = 0; i < def.vd_cnt; ++i)
3210 {
3211 _bfd_elf_swap_verdaux_in (output_bfd,
3212 (Elf_External_Verdaux *) p, &defaux);
3213 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3214 defaux.vda_name);
3215 _bfd_elf_swap_verdaux_out (output_bfd,
3216 &defaux, (Elf_External_Verdaux *) p);
3217 p += sizeof (Elf_External_Verdaux);
3218 }
3219 }
3220 while (def.vd_next);
3221 }
3222
3223 /* Adjust version references. */
3224 if (elf_tdata (output_bfd)->verref)
3225 {
3226 asection *s;
3227 bfd_byte *p;
3228 bfd_size_type i;
3229 Elf_Internal_Verneed need;
3230 Elf_Internal_Vernaux needaux;
3231
3232 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3233 p = s->contents;
3234 do
3235 {
3236 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3237 &need);
3238 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3239 _bfd_elf_swap_verneed_out (output_bfd, &need,
3240 (Elf_External_Verneed *) p);
3241 p += sizeof (Elf_External_Verneed);
3242 for (i = 0; i < need.vn_cnt; ++i)
3243 {
3244 _bfd_elf_swap_vernaux_in (output_bfd,
3245 (Elf_External_Vernaux *) p, &needaux);
3246 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3247 needaux.vna_name);
3248 _bfd_elf_swap_vernaux_out (output_bfd,
3249 &needaux,
3250 (Elf_External_Vernaux *) p);
3251 p += sizeof (Elf_External_Vernaux);
3252 }
3253 }
3254 while (need.vn_next);
3255 }
3256
3257 return TRUE;
3258 }
3259 \f
3260 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3261 The default is to only match when the INPUT and OUTPUT are exactly
3262 the same target. */
3263
3264 bfd_boolean
3265 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3266 const bfd_target *output)
3267 {
3268 return input == output;
3269 }
3270
3271 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3272 This version is used when different targets for the same architecture
3273 are virtually identical. */
3274
3275 bfd_boolean
3276 _bfd_elf_relocs_compatible (const bfd_target *input,
3277 const bfd_target *output)
3278 {
3279 const struct elf_backend_data *obed, *ibed;
3280
3281 if (input == output)
3282 return TRUE;
3283
3284 ibed = xvec_get_elf_backend_data (input);
3285 obed = xvec_get_elf_backend_data (output);
3286
3287 if (ibed->arch != obed->arch)
3288 return FALSE;
3289
3290 /* If both backends are using this function, deem them compatible. */
3291 return ibed->relocs_compatible == obed->relocs_compatible;
3292 }
3293
3294 /* Make a special call to the linker "notice" function to tell it that
3295 we are about to handle an as-needed lib, or have finished
3296 processing the lib. */
3297
3298 bfd_boolean
3299 _bfd_elf_notice_as_needed (bfd *ibfd,
3300 struct bfd_link_info *info,
3301 enum notice_asneeded_action act)
3302 {
3303 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3304 }
3305
3306 /* Add symbols from an ELF object file to the linker hash table. */
3307
3308 static bfd_boolean
3309 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3310 {
3311 Elf_Internal_Ehdr *ehdr;
3312 Elf_Internal_Shdr *hdr;
3313 bfd_size_type symcount;
3314 bfd_size_type extsymcount;
3315 bfd_size_type extsymoff;
3316 struct elf_link_hash_entry **sym_hash;
3317 bfd_boolean dynamic;
3318 Elf_External_Versym *extversym = NULL;
3319 Elf_External_Versym *ever;
3320 struct elf_link_hash_entry *weaks;
3321 struct elf_link_hash_entry **nondeflt_vers = NULL;
3322 bfd_size_type nondeflt_vers_cnt = 0;
3323 Elf_Internal_Sym *isymbuf = NULL;
3324 Elf_Internal_Sym *isym;
3325 Elf_Internal_Sym *isymend;
3326 const struct elf_backend_data *bed;
3327 bfd_boolean add_needed;
3328 struct elf_link_hash_table *htab;
3329 bfd_size_type amt;
3330 void *alloc_mark = NULL;
3331 struct bfd_hash_entry **old_table = NULL;
3332 unsigned int old_size = 0;
3333 unsigned int old_count = 0;
3334 void *old_tab = NULL;
3335 void *old_ent;
3336 struct bfd_link_hash_entry *old_undefs = NULL;
3337 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3338 long old_dynsymcount = 0;
3339 bfd_size_type old_dynstr_size = 0;
3340 size_t tabsize = 0;
3341 asection *s;
3342
3343 htab = elf_hash_table (info);
3344 bed = get_elf_backend_data (abfd);
3345
3346 if ((abfd->flags & DYNAMIC) == 0)
3347 dynamic = FALSE;
3348 else
3349 {
3350 dynamic = TRUE;
3351
3352 /* You can't use -r against a dynamic object. Also, there's no
3353 hope of using a dynamic object which does not exactly match
3354 the format of the output file. */
3355 if (info->relocatable
3356 || !is_elf_hash_table (htab)
3357 || info->output_bfd->xvec != abfd->xvec)
3358 {
3359 if (info->relocatable)
3360 bfd_set_error (bfd_error_invalid_operation);
3361 else
3362 bfd_set_error (bfd_error_wrong_format);
3363 goto error_return;
3364 }
3365 }
3366
3367 ehdr = elf_elfheader (abfd);
3368 if (info->warn_alternate_em
3369 && bed->elf_machine_code != ehdr->e_machine
3370 && ((bed->elf_machine_alt1 != 0
3371 && ehdr->e_machine == bed->elf_machine_alt1)
3372 || (bed->elf_machine_alt2 != 0
3373 && ehdr->e_machine == bed->elf_machine_alt2)))
3374 info->callbacks->einfo
3375 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3376 ehdr->e_machine, abfd, bed->elf_machine_code);
3377
3378 /* As a GNU extension, any input sections which are named
3379 .gnu.warning.SYMBOL are treated as warning symbols for the given
3380 symbol. This differs from .gnu.warning sections, which generate
3381 warnings when they are included in an output file. */
3382 /* PR 12761: Also generate this warning when building shared libraries. */
3383 for (s = abfd->sections; s != NULL; s = s->next)
3384 {
3385 const char *name;
3386
3387 name = bfd_get_section_name (abfd, s);
3388 if (CONST_STRNEQ (name, ".gnu.warning."))
3389 {
3390 char *msg;
3391 bfd_size_type sz;
3392
3393 name += sizeof ".gnu.warning." - 1;
3394
3395 /* If this is a shared object, then look up the symbol
3396 in the hash table. If it is there, and it is already
3397 been defined, then we will not be using the entry
3398 from this shared object, so we don't need to warn.
3399 FIXME: If we see the definition in a regular object
3400 later on, we will warn, but we shouldn't. The only
3401 fix is to keep track of what warnings we are supposed
3402 to emit, and then handle them all at the end of the
3403 link. */
3404 if (dynamic)
3405 {
3406 struct elf_link_hash_entry *h;
3407
3408 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3409
3410 /* FIXME: What about bfd_link_hash_common? */
3411 if (h != NULL
3412 && (h->root.type == bfd_link_hash_defined
3413 || h->root.type == bfd_link_hash_defweak))
3414 continue;
3415 }
3416
3417 sz = s->size;
3418 msg = (char *) bfd_alloc (abfd, sz + 1);
3419 if (msg == NULL)
3420 goto error_return;
3421
3422 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3423 goto error_return;
3424
3425 msg[sz] = '\0';
3426
3427 if (! (_bfd_generic_link_add_one_symbol
3428 (info, abfd, name, BSF_WARNING, s, 0, msg,
3429 FALSE, bed->collect, NULL)))
3430 goto error_return;
3431
3432 if (!info->relocatable && info->executable)
3433 {
3434 /* Clobber the section size so that the warning does
3435 not get copied into the output file. */
3436 s->size = 0;
3437
3438 /* Also set SEC_EXCLUDE, so that symbols defined in
3439 the warning section don't get copied to the output. */
3440 s->flags |= SEC_EXCLUDE;
3441 }
3442 }
3443 }
3444
3445 add_needed = TRUE;
3446 if (! dynamic)
3447 {
3448 /* If we are creating a shared library, create all the dynamic
3449 sections immediately. We need to attach them to something,
3450 so we attach them to this BFD, provided it is the right
3451 format. FIXME: If there are no input BFD's of the same
3452 format as the output, we can't make a shared library. */
3453 if (info->shared
3454 && is_elf_hash_table (htab)
3455 && info->output_bfd->xvec == abfd->xvec
3456 && !htab->dynamic_sections_created)
3457 {
3458 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3459 goto error_return;
3460 }
3461 }
3462 else if (!is_elf_hash_table (htab))
3463 goto error_return;
3464 else
3465 {
3466 const char *soname = NULL;
3467 char *audit = NULL;
3468 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3469 int ret;
3470
3471 /* ld --just-symbols and dynamic objects don't mix very well.
3472 ld shouldn't allow it. */
3473 if ((s = abfd->sections) != NULL
3474 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3475 abort ();
3476
3477 /* If this dynamic lib was specified on the command line with
3478 --as-needed in effect, then we don't want to add a DT_NEEDED
3479 tag unless the lib is actually used. Similary for libs brought
3480 in by another lib's DT_NEEDED. When --no-add-needed is used
3481 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3482 any dynamic library in DT_NEEDED tags in the dynamic lib at
3483 all. */
3484 add_needed = (elf_dyn_lib_class (abfd)
3485 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3486 | DYN_NO_NEEDED)) == 0;
3487
3488 s = bfd_get_section_by_name (abfd, ".dynamic");
3489 if (s != NULL)
3490 {
3491 bfd_byte *dynbuf;
3492 bfd_byte *extdyn;
3493 unsigned int elfsec;
3494 unsigned long shlink;
3495
3496 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3497 {
3498 error_free_dyn:
3499 free (dynbuf);
3500 goto error_return;
3501 }
3502
3503 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3504 if (elfsec == SHN_BAD)
3505 goto error_free_dyn;
3506 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3507
3508 for (extdyn = dynbuf;
3509 extdyn < dynbuf + s->size;
3510 extdyn += bed->s->sizeof_dyn)
3511 {
3512 Elf_Internal_Dyn dyn;
3513
3514 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3515 if (dyn.d_tag == DT_SONAME)
3516 {
3517 unsigned int tagv = dyn.d_un.d_val;
3518 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3519 if (soname == NULL)
3520 goto error_free_dyn;
3521 }
3522 if (dyn.d_tag == DT_NEEDED)
3523 {
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3527
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = (char *) bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3542 ;
3543 *pn = n;
3544 }
3545 if (dyn.d_tag == DT_RUNPATH)
3546 {
3547 struct bfd_link_needed_list *n, **pn;
3548 char *fnm, *anm;
3549 unsigned int tagv = dyn.d_un.d_val;
3550
3551 amt = sizeof (struct bfd_link_needed_list);
3552 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3553 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3554 if (n == NULL || fnm == NULL)
3555 goto error_free_dyn;
3556 amt = strlen (fnm) + 1;
3557 anm = (char *) bfd_alloc (abfd, amt);
3558 if (anm == NULL)
3559 goto error_free_dyn;
3560 memcpy (anm, fnm, amt);
3561 n->name = anm;
3562 n->by = abfd;
3563 n->next = NULL;
3564 for (pn = & runpath;
3565 *pn != NULL;
3566 pn = &(*pn)->next)
3567 ;
3568 *pn = n;
3569 }
3570 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3571 if (!runpath && dyn.d_tag == DT_RPATH)
3572 {
3573 struct bfd_link_needed_list *n, **pn;
3574 char *fnm, *anm;
3575 unsigned int tagv = dyn.d_un.d_val;
3576
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3584 if (anm == NULL)
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3587 n->name = anm;
3588 n->by = abfd;
3589 n->next = NULL;
3590 for (pn = & rpath;
3591 *pn != NULL;
3592 pn = &(*pn)->next)
3593 ;
3594 *pn = n;
3595 }
3596 if (dyn.d_tag == DT_AUDIT)
3597 {
3598 unsigned int tagv = dyn.d_un.d_val;
3599 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3600 }
3601 }
3602
3603 free (dynbuf);
3604 }
3605
3606 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3607 frees all more recently bfd_alloc'd blocks as well. */
3608 if (runpath)
3609 rpath = runpath;
3610
3611 if (rpath)
3612 {
3613 struct bfd_link_needed_list **pn;
3614 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3615 ;
3616 *pn = rpath;
3617 }
3618
3619 /* We do not want to include any of the sections in a dynamic
3620 object in the output file. We hack by simply clobbering the
3621 list of sections in the BFD. This could be handled more
3622 cleanly by, say, a new section flag; the existing
3623 SEC_NEVER_LOAD flag is not the one we want, because that one
3624 still implies that the section takes up space in the output
3625 file. */
3626 bfd_section_list_clear (abfd);
3627
3628 /* Find the name to use in a DT_NEEDED entry that refers to this
3629 object. If the object has a DT_SONAME entry, we use it.
3630 Otherwise, if the generic linker stuck something in
3631 elf_dt_name, we use that. Otherwise, we just use the file
3632 name. */
3633 if (soname == NULL || *soname == '\0')
3634 {
3635 soname = elf_dt_name (abfd);
3636 if (soname == NULL || *soname == '\0')
3637 soname = bfd_get_filename (abfd);
3638 }
3639
3640 /* Save the SONAME because sometimes the linker emulation code
3641 will need to know it. */
3642 elf_dt_name (abfd) = soname;
3643
3644 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3645 if (ret < 0)
3646 goto error_return;
3647
3648 /* If we have already included this dynamic object in the
3649 link, just ignore it. There is no reason to include a
3650 particular dynamic object more than once. */
3651 if (ret > 0)
3652 return TRUE;
3653
3654 /* Save the DT_AUDIT entry for the linker emulation code. */
3655 elf_dt_audit (abfd) = audit;
3656 }
3657
3658 /* If this is a dynamic object, we always link against the .dynsym
3659 symbol table, not the .symtab symbol table. The dynamic linker
3660 will only see the .dynsym symbol table, so there is no reason to
3661 look at .symtab for a dynamic object. */
3662
3663 if (! dynamic || elf_dynsymtab (abfd) == 0)
3664 hdr = &elf_tdata (abfd)->symtab_hdr;
3665 else
3666 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3667
3668 symcount = hdr->sh_size / bed->s->sizeof_sym;
3669
3670 /* The sh_info field of the symtab header tells us where the
3671 external symbols start. We don't care about the local symbols at
3672 this point. */
3673 if (elf_bad_symtab (abfd))
3674 {
3675 extsymcount = symcount;
3676 extsymoff = 0;
3677 }
3678 else
3679 {
3680 extsymcount = symcount - hdr->sh_info;
3681 extsymoff = hdr->sh_info;
3682 }
3683
3684 sym_hash = elf_sym_hashes (abfd);
3685 if (extsymcount != 0)
3686 {
3687 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3688 NULL, NULL, NULL);
3689 if (isymbuf == NULL)
3690 goto error_return;
3691
3692 if (sym_hash == NULL)
3693 {
3694 /* We store a pointer to the hash table entry for each
3695 external symbol. */
3696 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3697 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3698 if (sym_hash == NULL)
3699 goto error_free_sym;
3700 elf_sym_hashes (abfd) = sym_hash;
3701 }
3702 }
3703
3704 if (dynamic)
3705 {
3706 /* Read in any version definitions. */
3707 if (!_bfd_elf_slurp_version_tables (abfd,
3708 info->default_imported_symver))
3709 goto error_free_sym;
3710
3711 /* Read in the symbol versions, but don't bother to convert them
3712 to internal format. */
3713 if (elf_dynversym (abfd) != 0)
3714 {
3715 Elf_Internal_Shdr *versymhdr;
3716
3717 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3718 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3719 if (extversym == NULL)
3720 goto error_free_sym;
3721 amt = versymhdr->sh_size;
3722 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3723 || bfd_bread (extversym, amt, abfd) != amt)
3724 goto error_free_vers;
3725 }
3726 }
3727
3728 /* If we are loading an as-needed shared lib, save the symbol table
3729 state before we start adding symbols. If the lib turns out
3730 to be unneeded, restore the state. */
3731 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3732 {
3733 unsigned int i;
3734 size_t entsize;
3735
3736 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3737 {
3738 struct bfd_hash_entry *p;
3739 struct elf_link_hash_entry *h;
3740
3741 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3742 {
3743 h = (struct elf_link_hash_entry *) p;
3744 entsize += htab->root.table.entsize;
3745 if (h->root.type == bfd_link_hash_warning)
3746 entsize += htab->root.table.entsize;
3747 }
3748 }
3749
3750 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3751 old_tab = bfd_malloc (tabsize + entsize);
3752 if (old_tab == NULL)
3753 goto error_free_vers;
3754
3755 /* Remember the current objalloc pointer, so that all mem for
3756 symbols added can later be reclaimed. */
3757 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3758 if (alloc_mark == NULL)
3759 goto error_free_vers;
3760
3761 /* Make a special call to the linker "notice" function to
3762 tell it that we are about to handle an as-needed lib. */
3763 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3764 goto error_free_vers;
3765
3766 /* Clone the symbol table. Remember some pointers into the
3767 symbol table, and dynamic symbol count. */
3768 old_ent = (char *) old_tab + tabsize;
3769 memcpy (old_tab, htab->root.table.table, tabsize);
3770 old_undefs = htab->root.undefs;
3771 old_undefs_tail = htab->root.undefs_tail;
3772 old_table = htab->root.table.table;
3773 old_size = htab->root.table.size;
3774 old_count = htab->root.table.count;
3775 old_dynsymcount = htab->dynsymcount;
3776 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3777
3778 for (i = 0; i < htab->root.table.size; i++)
3779 {
3780 struct bfd_hash_entry *p;
3781 struct elf_link_hash_entry *h;
3782
3783 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3784 {
3785 memcpy (old_ent, p, htab->root.table.entsize);
3786 old_ent = (char *) old_ent + htab->root.table.entsize;
3787 h = (struct elf_link_hash_entry *) p;
3788 if (h->root.type == bfd_link_hash_warning)
3789 {
3790 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3791 old_ent = (char *) old_ent + htab->root.table.entsize;
3792 }
3793 }
3794 }
3795 }
3796
3797 weaks = NULL;
3798 ever = extversym != NULL ? extversym + extsymoff : NULL;
3799 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3800 isym < isymend;
3801 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3802 {
3803 int bind;
3804 bfd_vma value;
3805 asection *sec, *new_sec;
3806 flagword flags;
3807 const char *name;
3808 struct elf_link_hash_entry *h;
3809 struct elf_link_hash_entry *hi;
3810 bfd_boolean definition;
3811 bfd_boolean size_change_ok;
3812 bfd_boolean type_change_ok;
3813 bfd_boolean new_weakdef;
3814 bfd_boolean new_weak;
3815 bfd_boolean old_weak;
3816 bfd_boolean override;
3817 bfd_boolean common;
3818 unsigned int old_alignment;
3819 bfd *old_bfd;
3820
3821 override = FALSE;
3822
3823 flags = BSF_NO_FLAGS;
3824 sec = NULL;
3825 value = isym->st_value;
3826 common = bed->common_definition (isym);
3827
3828 bind = ELF_ST_BIND (isym->st_info);
3829 switch (bind)
3830 {
3831 case STB_LOCAL:
3832 /* This should be impossible, since ELF requires that all
3833 global symbols follow all local symbols, and that sh_info
3834 point to the first global symbol. Unfortunately, Irix 5
3835 screws this up. */
3836 continue;
3837
3838 case STB_GLOBAL:
3839 if (isym->st_shndx != SHN_UNDEF && !common)
3840 flags = BSF_GLOBAL;
3841 break;
3842
3843 case STB_WEAK:
3844 flags = BSF_WEAK;
3845 break;
3846
3847 case STB_GNU_UNIQUE:
3848 flags = BSF_GNU_UNIQUE;
3849 break;
3850
3851 default:
3852 /* Leave it up to the processor backend. */
3853 break;
3854 }
3855
3856 if (isym->st_shndx == SHN_UNDEF)
3857 sec = bfd_und_section_ptr;
3858 else if (isym->st_shndx == SHN_ABS)
3859 sec = bfd_abs_section_ptr;
3860 else if (isym->st_shndx == SHN_COMMON)
3861 {
3862 sec = bfd_com_section_ptr;
3863 /* What ELF calls the size we call the value. What ELF
3864 calls the value we call the alignment. */
3865 value = isym->st_size;
3866 }
3867 else
3868 {
3869 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3870 if (sec == NULL)
3871 sec = bfd_abs_section_ptr;
3872 else if (discarded_section (sec))
3873 {
3874 /* Symbols from discarded section are undefined. We keep
3875 its visibility. */
3876 sec = bfd_und_section_ptr;
3877 isym->st_shndx = SHN_UNDEF;
3878 }
3879 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3880 value -= sec->vma;
3881 }
3882
3883 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3884 isym->st_name);
3885 if (name == NULL)
3886 goto error_free_vers;
3887
3888 if (isym->st_shndx == SHN_COMMON
3889 && (abfd->flags & BFD_PLUGIN) != 0)
3890 {
3891 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3892
3893 if (xc == NULL)
3894 {
3895 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3896 | SEC_EXCLUDE);
3897 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3898 if (xc == NULL)
3899 goto error_free_vers;
3900 }
3901 sec = xc;
3902 }
3903 else if (isym->st_shndx == SHN_COMMON
3904 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3905 && !info->relocatable)
3906 {
3907 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3908
3909 if (tcomm == NULL)
3910 {
3911 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3912 | SEC_LINKER_CREATED);
3913 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3914 if (tcomm == NULL)
3915 goto error_free_vers;
3916 }
3917 sec = tcomm;
3918 }
3919 else if (bed->elf_add_symbol_hook)
3920 {
3921 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3922 &sec, &value))
3923 goto error_free_vers;
3924
3925 /* The hook function sets the name to NULL if this symbol
3926 should be skipped for some reason. */
3927 if (name == NULL)
3928 continue;
3929 }
3930
3931 /* Sanity check that all possibilities were handled. */
3932 if (sec == NULL)
3933 {
3934 bfd_set_error (bfd_error_bad_value);
3935 goto error_free_vers;
3936 }
3937
3938 /* Silently discard TLS symbols from --just-syms. There's
3939 no way to combine a static TLS block with a new TLS block
3940 for this executable. */
3941 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3942 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3943 continue;
3944
3945 if (bfd_is_und_section (sec)
3946 || bfd_is_com_section (sec))
3947 definition = FALSE;
3948 else
3949 definition = TRUE;
3950
3951 size_change_ok = FALSE;
3952 type_change_ok = bed->type_change_ok;
3953 old_weak = FALSE;
3954 old_alignment = 0;
3955 old_bfd = NULL;
3956 new_sec = sec;
3957
3958 if (is_elf_hash_table (htab))
3959 {
3960 Elf_Internal_Versym iver;
3961 unsigned int vernum = 0;
3962 bfd_boolean skip;
3963
3964 if (ever == NULL)
3965 {
3966 if (info->default_imported_symver)
3967 /* Use the default symbol version created earlier. */
3968 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3969 else
3970 iver.vs_vers = 0;
3971 }
3972 else
3973 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3974
3975 vernum = iver.vs_vers & VERSYM_VERSION;
3976
3977 /* If this is a hidden symbol, or if it is not version
3978 1, we append the version name to the symbol name.
3979 However, we do not modify a non-hidden absolute symbol
3980 if it is not a function, because it might be the version
3981 symbol itself. FIXME: What if it isn't? */
3982 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3983 || (vernum > 1
3984 && (!bfd_is_abs_section (sec)
3985 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3986 {
3987 const char *verstr;
3988 size_t namelen, verlen, newlen;
3989 char *newname, *p;
3990
3991 if (isym->st_shndx != SHN_UNDEF)
3992 {
3993 if (vernum > elf_tdata (abfd)->cverdefs)
3994 verstr = NULL;
3995 else if (vernum > 1)
3996 verstr =
3997 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3998 else
3999 verstr = "";
4000
4001 if (verstr == NULL)
4002 {
4003 (*_bfd_error_handler)
4004 (_("%B: %s: invalid version %u (max %d)"),
4005 abfd, name, vernum,
4006 elf_tdata (abfd)->cverdefs);
4007 bfd_set_error (bfd_error_bad_value);
4008 goto error_free_vers;
4009 }
4010 }
4011 else
4012 {
4013 /* We cannot simply test for the number of
4014 entries in the VERNEED section since the
4015 numbers for the needed versions do not start
4016 at 0. */
4017 Elf_Internal_Verneed *t;
4018
4019 verstr = NULL;
4020 for (t = elf_tdata (abfd)->verref;
4021 t != NULL;
4022 t = t->vn_nextref)
4023 {
4024 Elf_Internal_Vernaux *a;
4025
4026 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4027 {
4028 if (a->vna_other == vernum)
4029 {
4030 verstr = a->vna_nodename;
4031 break;
4032 }
4033 }
4034 if (a != NULL)
4035 break;
4036 }
4037 if (verstr == NULL)
4038 {
4039 (*_bfd_error_handler)
4040 (_("%B: %s: invalid needed version %d"),
4041 abfd, name, vernum);
4042 bfd_set_error (bfd_error_bad_value);
4043 goto error_free_vers;
4044 }
4045 }
4046
4047 namelen = strlen (name);
4048 verlen = strlen (verstr);
4049 newlen = namelen + verlen + 2;
4050 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4051 && isym->st_shndx != SHN_UNDEF)
4052 ++newlen;
4053
4054 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4055 if (newname == NULL)
4056 goto error_free_vers;
4057 memcpy (newname, name, namelen);
4058 p = newname + namelen;
4059 *p++ = ELF_VER_CHR;
4060 /* If this is a defined non-hidden version symbol,
4061 we add another @ to the name. This indicates the
4062 default version of the symbol. */
4063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4064 && isym->st_shndx != SHN_UNDEF)
4065 *p++ = ELF_VER_CHR;
4066 memcpy (p, verstr, verlen + 1);
4067
4068 name = newname;
4069 }
4070
4071 /* If this symbol has default visibility and the user has
4072 requested we not re-export it, then mark it as hidden. */
4073 if (definition
4074 && !dynamic
4075 && (abfd->no_export
4076 || (abfd->my_archive && abfd->my_archive->no_export))
4077 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4078 isym->st_other = (STV_HIDDEN
4079 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4080
4081 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4082 sym_hash, &old_bfd, &old_weak,
4083 &old_alignment, &skip, &override,
4084 &type_change_ok, &size_change_ok))
4085 goto error_free_vers;
4086
4087 if (skip)
4088 continue;
4089
4090 if (override)
4091 definition = FALSE;
4092
4093 h = *sym_hash;
4094 while (h->root.type == bfd_link_hash_indirect
4095 || h->root.type == bfd_link_hash_warning)
4096 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4097
4098 if (elf_tdata (abfd)->verdef != NULL
4099 && vernum > 1
4100 && definition)
4101 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4102 }
4103
4104 if (! (_bfd_generic_link_add_one_symbol
4105 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4106 (struct bfd_link_hash_entry **) sym_hash)))
4107 goto error_free_vers;
4108
4109 h = *sym_hash;
4110 /* We need to make sure that indirect symbol dynamic flags are
4111 updated. */
4112 hi = h;
4113 while (h->root.type == bfd_link_hash_indirect
4114 || h->root.type == bfd_link_hash_warning)
4115 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4116
4117 *sym_hash = h;
4118
4119 new_weak = (flags & BSF_WEAK) != 0;
4120 new_weakdef = FALSE;
4121 if (dynamic
4122 && definition
4123 && new_weak
4124 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4125 && is_elf_hash_table (htab)
4126 && h->u.weakdef == NULL)
4127 {
4128 /* Keep a list of all weak defined non function symbols from
4129 a dynamic object, using the weakdef field. Later in this
4130 function we will set the weakdef field to the correct
4131 value. We only put non-function symbols from dynamic
4132 objects on this list, because that happens to be the only
4133 time we need to know the normal symbol corresponding to a
4134 weak symbol, and the information is time consuming to
4135 figure out. If the weakdef field is not already NULL,
4136 then this symbol was already defined by some previous
4137 dynamic object, and we will be using that previous
4138 definition anyhow. */
4139
4140 h->u.weakdef = weaks;
4141 weaks = h;
4142 new_weakdef = TRUE;
4143 }
4144
4145 /* Set the alignment of a common symbol. */
4146 if ((common || bfd_is_com_section (sec))
4147 && h->root.type == bfd_link_hash_common)
4148 {
4149 unsigned int align;
4150
4151 if (common)
4152 align = bfd_log2 (isym->st_value);
4153 else
4154 {
4155 /* The new symbol is a common symbol in a shared object.
4156 We need to get the alignment from the section. */
4157 align = new_sec->alignment_power;
4158 }
4159 if (align > old_alignment)
4160 h->root.u.c.p->alignment_power = align;
4161 else
4162 h->root.u.c.p->alignment_power = old_alignment;
4163 }
4164
4165 if (is_elf_hash_table (htab))
4166 {
4167 /* Set a flag in the hash table entry indicating the type of
4168 reference or definition we just found. A dynamic symbol
4169 is one which is referenced or defined by both a regular
4170 object and a shared object. */
4171 bfd_boolean dynsym = FALSE;
4172
4173 /* Plugin symbols aren't normal. Don't set def_regular or
4174 ref_regular for them, or make them dynamic. */
4175 if ((abfd->flags & BFD_PLUGIN) != 0)
4176 ;
4177 else if (! dynamic)
4178 {
4179 if (! definition)
4180 {
4181 h->ref_regular = 1;
4182 if (bind != STB_WEAK)
4183 h->ref_regular_nonweak = 1;
4184 }
4185 else
4186 {
4187 h->def_regular = 1;
4188 if (h->def_dynamic)
4189 {
4190 h->def_dynamic = 0;
4191 h->ref_dynamic = 1;
4192 }
4193 }
4194
4195 /* If the indirect symbol has been forced local, don't
4196 make the real symbol dynamic. */
4197 if ((h == hi || !hi->forced_local)
4198 && (! info->executable
4199 || h->def_dynamic
4200 || h->ref_dynamic))
4201 dynsym = TRUE;
4202 }
4203 else
4204 {
4205 if (! definition)
4206 {
4207 h->ref_dynamic = 1;
4208 hi->ref_dynamic = 1;
4209 }
4210 else
4211 {
4212 h->def_dynamic = 1;
4213 hi->def_dynamic = 1;
4214 }
4215
4216 /* If the indirect symbol has been forced local, don't
4217 make the real symbol dynamic. */
4218 if ((h == hi || !hi->forced_local)
4219 && (h->def_regular
4220 || h->ref_regular
4221 || (h->u.weakdef != NULL
4222 && ! new_weakdef
4223 && h->u.weakdef->dynindx != -1)))
4224 dynsym = TRUE;
4225 }
4226
4227 /* Check to see if we need to add an indirect symbol for
4228 the default name. */
4229 if (definition
4230 || (!override && h->root.type == bfd_link_hash_common))
4231 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4232 sec, value, &old_bfd, &dynsym))
4233 goto error_free_vers;
4234
4235 /* Check the alignment when a common symbol is involved. This
4236 can change when a common symbol is overridden by a normal
4237 definition or a common symbol is ignored due to the old
4238 normal definition. We need to make sure the maximum
4239 alignment is maintained. */
4240 if ((old_alignment || common)
4241 && h->root.type != bfd_link_hash_common)
4242 {
4243 unsigned int common_align;
4244 unsigned int normal_align;
4245 unsigned int symbol_align;
4246 bfd *normal_bfd;
4247 bfd *common_bfd;
4248
4249 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4250 || h->root.type == bfd_link_hash_defweak);
4251
4252 symbol_align = ffs (h->root.u.def.value) - 1;
4253 if (h->root.u.def.section->owner != NULL
4254 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4255 {
4256 normal_align = h->root.u.def.section->alignment_power;
4257 if (normal_align > symbol_align)
4258 normal_align = symbol_align;
4259 }
4260 else
4261 normal_align = symbol_align;
4262
4263 if (old_alignment)
4264 {
4265 common_align = old_alignment;
4266 common_bfd = old_bfd;
4267 normal_bfd = abfd;
4268 }
4269 else
4270 {
4271 common_align = bfd_log2 (isym->st_value);
4272 common_bfd = abfd;
4273 normal_bfd = old_bfd;
4274 }
4275
4276 if (normal_align < common_align)
4277 {
4278 /* PR binutils/2735 */
4279 if (normal_bfd == NULL)
4280 (*_bfd_error_handler)
4281 (_("Warning: alignment %u of common symbol `%s' in %B is"
4282 " greater than the alignment (%u) of its section %A"),
4283 common_bfd, h->root.u.def.section,
4284 1 << common_align, name, 1 << normal_align);
4285 else
4286 (*_bfd_error_handler)
4287 (_("Warning: alignment %u of symbol `%s' in %B"
4288 " is smaller than %u in %B"),
4289 normal_bfd, common_bfd,
4290 1 << normal_align, name, 1 << common_align);
4291 }
4292 }
4293
4294 /* Remember the symbol size if it isn't undefined. */
4295 if (isym->st_size != 0
4296 && isym->st_shndx != SHN_UNDEF
4297 && (definition || h->size == 0))
4298 {
4299 if (h->size != 0
4300 && h->size != isym->st_size
4301 && ! size_change_ok)
4302 (*_bfd_error_handler)
4303 (_("Warning: size of symbol `%s' changed"
4304 " from %lu in %B to %lu in %B"),
4305 old_bfd, abfd,
4306 name, (unsigned long) h->size,
4307 (unsigned long) isym->st_size);
4308
4309 h->size = isym->st_size;
4310 }
4311
4312 /* If this is a common symbol, then we always want H->SIZE
4313 to be the size of the common symbol. The code just above
4314 won't fix the size if a common symbol becomes larger. We
4315 don't warn about a size change here, because that is
4316 covered by --warn-common. Allow changes between different
4317 function types. */
4318 if (h->root.type == bfd_link_hash_common)
4319 h->size = h->root.u.c.size;
4320
4321 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4322 && ((definition && !new_weak)
4323 || (old_weak && h->root.type == bfd_link_hash_common)
4324 || h->type == STT_NOTYPE))
4325 {
4326 unsigned int type = ELF_ST_TYPE (isym->st_info);
4327
4328 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4329 symbol. */
4330 if (type == STT_GNU_IFUNC
4331 && (abfd->flags & DYNAMIC) != 0)
4332 type = STT_FUNC;
4333
4334 if (h->type != type)
4335 {
4336 if (h->type != STT_NOTYPE && ! type_change_ok)
4337 (*_bfd_error_handler)
4338 (_("Warning: type of symbol `%s' changed"
4339 " from %d to %d in %B"),
4340 abfd, name, h->type, type);
4341
4342 h->type = type;
4343 }
4344 }
4345
4346 /* Merge st_other field. */
4347 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4348
4349 /* We don't want to make debug symbol dynamic. */
4350 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4351 dynsym = FALSE;
4352
4353 /* Nor should we make plugin symbols dynamic. */
4354 if ((abfd->flags & BFD_PLUGIN) != 0)
4355 dynsym = FALSE;
4356
4357 if (definition)
4358 {
4359 h->target_internal = isym->st_target_internal;
4360 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4361 }
4362
4363 if (definition && !dynamic)
4364 {
4365 char *p = strchr (name, ELF_VER_CHR);
4366 if (p != NULL && p[1] != ELF_VER_CHR)
4367 {
4368 /* Queue non-default versions so that .symver x, x@FOO
4369 aliases can be checked. */
4370 if (!nondeflt_vers)
4371 {
4372 amt = ((isymend - isym + 1)
4373 * sizeof (struct elf_link_hash_entry *));
4374 nondeflt_vers =
4375 (struct elf_link_hash_entry **) bfd_malloc (amt);
4376 if (!nondeflt_vers)
4377 goto error_free_vers;
4378 }
4379 nondeflt_vers[nondeflt_vers_cnt++] = h;
4380 }
4381 }
4382
4383 if (dynsym && h->dynindx == -1)
4384 {
4385 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4386 goto error_free_vers;
4387 if (h->u.weakdef != NULL
4388 && ! new_weakdef
4389 && h->u.weakdef->dynindx == -1)
4390 {
4391 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4392 goto error_free_vers;
4393 }
4394 }
4395 else if (dynsym && h->dynindx != -1)
4396 /* If the symbol already has a dynamic index, but
4397 visibility says it should not be visible, turn it into
4398 a local symbol. */
4399 switch (ELF_ST_VISIBILITY (h->other))
4400 {
4401 case STV_INTERNAL:
4402 case STV_HIDDEN:
4403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4404 dynsym = FALSE;
4405 break;
4406 }
4407
4408 /* Don't add DT_NEEDED for references from the dummy bfd. */
4409 if (!add_needed
4410 && definition
4411 && ((dynsym
4412 && h->ref_regular_nonweak
4413 && (old_bfd == NULL
4414 || (old_bfd->flags & BFD_PLUGIN) == 0))
4415 || (h->ref_dynamic_nonweak
4416 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4417 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4418 {
4419 int ret;
4420 const char *soname = elf_dt_name (abfd);
4421
4422 info->callbacks->minfo ("%!", soname, old_bfd,
4423 h->root.root.string);
4424
4425 /* A symbol from a library loaded via DT_NEEDED of some
4426 other library is referenced by a regular object.
4427 Add a DT_NEEDED entry for it. Issue an error if
4428 --no-add-needed is used and the reference was not
4429 a weak one. */
4430 if (old_bfd != NULL
4431 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4432 {
4433 (*_bfd_error_handler)
4434 (_("%B: undefined reference to symbol '%s'"),
4435 old_bfd, name);
4436 bfd_set_error (bfd_error_missing_dso);
4437 goto error_free_vers;
4438 }
4439
4440 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4441 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4442
4443 add_needed = TRUE;
4444 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4445 if (ret < 0)
4446 goto error_free_vers;
4447
4448 BFD_ASSERT (ret == 0);
4449 }
4450 }
4451 }
4452
4453 if (extversym != NULL)
4454 {
4455 free (extversym);
4456 extversym = NULL;
4457 }
4458
4459 if (isymbuf != NULL)
4460 {
4461 free (isymbuf);
4462 isymbuf = NULL;
4463 }
4464
4465 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4466 {
4467 unsigned int i;
4468
4469 /* Restore the symbol table. */
4470 old_ent = (char *) old_tab + tabsize;
4471 memset (elf_sym_hashes (abfd), 0,
4472 extsymcount * sizeof (struct elf_link_hash_entry *));
4473 htab->root.table.table = old_table;
4474 htab->root.table.size = old_size;
4475 htab->root.table.count = old_count;
4476 memcpy (htab->root.table.table, old_tab, tabsize);
4477 htab->root.undefs = old_undefs;
4478 htab->root.undefs_tail = old_undefs_tail;
4479 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4480 for (i = 0; i < htab->root.table.size; i++)
4481 {
4482 struct bfd_hash_entry *p;
4483 struct elf_link_hash_entry *h;
4484 bfd_size_type size;
4485 unsigned int alignment_power;
4486
4487 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4488 {
4489 h = (struct elf_link_hash_entry *) p;
4490 if (h->root.type == bfd_link_hash_warning)
4491 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4492 if (h->dynindx >= old_dynsymcount
4493 && h->dynstr_index < old_dynstr_size)
4494 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4495
4496 /* Preserve the maximum alignment and size for common
4497 symbols even if this dynamic lib isn't on DT_NEEDED
4498 since it can still be loaded at run time by another
4499 dynamic lib. */
4500 if (h->root.type == bfd_link_hash_common)
4501 {
4502 size = h->root.u.c.size;
4503 alignment_power = h->root.u.c.p->alignment_power;
4504 }
4505 else
4506 {
4507 size = 0;
4508 alignment_power = 0;
4509 }
4510 memcpy (p, old_ent, htab->root.table.entsize);
4511 old_ent = (char *) old_ent + htab->root.table.entsize;
4512 h = (struct elf_link_hash_entry *) p;
4513 if (h->root.type == bfd_link_hash_warning)
4514 {
4515 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4516 old_ent = (char *) old_ent + htab->root.table.entsize;
4517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4518 }
4519 if (h->root.type == bfd_link_hash_common)
4520 {
4521 if (size > h->root.u.c.size)
4522 h->root.u.c.size = size;
4523 if (alignment_power > h->root.u.c.p->alignment_power)
4524 h->root.u.c.p->alignment_power = alignment_power;
4525 }
4526 }
4527 }
4528
4529 /* Make a special call to the linker "notice" function to
4530 tell it that symbols added for crefs may need to be removed. */
4531 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4532 goto error_free_vers;
4533
4534 free (old_tab);
4535 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4536 alloc_mark);
4537 if (nondeflt_vers != NULL)
4538 free (nondeflt_vers);
4539 return TRUE;
4540 }
4541
4542 if (old_tab != NULL)
4543 {
4544 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4545 goto error_free_vers;
4546 free (old_tab);
4547 old_tab = NULL;
4548 }
4549
4550 /* Now that all the symbols from this input file are created, handle
4551 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4552 if (nondeflt_vers != NULL)
4553 {
4554 bfd_size_type cnt, symidx;
4555
4556 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4557 {
4558 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4559 char *shortname, *p;
4560
4561 p = strchr (h->root.root.string, ELF_VER_CHR);
4562 if (p == NULL
4563 || (h->root.type != bfd_link_hash_defined
4564 && h->root.type != bfd_link_hash_defweak))
4565 continue;
4566
4567 amt = p - h->root.root.string;
4568 shortname = (char *) bfd_malloc (amt + 1);
4569 if (!shortname)
4570 goto error_free_vers;
4571 memcpy (shortname, h->root.root.string, amt);
4572 shortname[amt] = '\0';
4573
4574 hi = (struct elf_link_hash_entry *)
4575 bfd_link_hash_lookup (&htab->root, shortname,
4576 FALSE, FALSE, FALSE);
4577 if (hi != NULL
4578 && hi->root.type == h->root.type
4579 && hi->root.u.def.value == h->root.u.def.value
4580 && hi->root.u.def.section == h->root.u.def.section)
4581 {
4582 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4583 hi->root.type = bfd_link_hash_indirect;
4584 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4585 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4586 sym_hash = elf_sym_hashes (abfd);
4587 if (sym_hash)
4588 for (symidx = 0; symidx < extsymcount; ++symidx)
4589 if (sym_hash[symidx] == hi)
4590 {
4591 sym_hash[symidx] = h;
4592 break;
4593 }
4594 }
4595 free (shortname);
4596 }
4597 free (nondeflt_vers);
4598 nondeflt_vers = NULL;
4599 }
4600
4601 /* Now set the weakdefs field correctly for all the weak defined
4602 symbols we found. The only way to do this is to search all the
4603 symbols. Since we only need the information for non functions in
4604 dynamic objects, that's the only time we actually put anything on
4605 the list WEAKS. We need this information so that if a regular
4606 object refers to a symbol defined weakly in a dynamic object, the
4607 real symbol in the dynamic object is also put in the dynamic
4608 symbols; we also must arrange for both symbols to point to the
4609 same memory location. We could handle the general case of symbol
4610 aliasing, but a general symbol alias can only be generated in
4611 assembler code, handling it correctly would be very time
4612 consuming, and other ELF linkers don't handle general aliasing
4613 either. */
4614 if (weaks != NULL)
4615 {
4616 struct elf_link_hash_entry **hpp;
4617 struct elf_link_hash_entry **hppend;
4618 struct elf_link_hash_entry **sorted_sym_hash;
4619 struct elf_link_hash_entry *h;
4620 size_t sym_count;
4621
4622 /* Since we have to search the whole symbol list for each weak
4623 defined symbol, search time for N weak defined symbols will be
4624 O(N^2). Binary search will cut it down to O(NlogN). */
4625 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4626 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4627 if (sorted_sym_hash == NULL)
4628 goto error_return;
4629 sym_hash = sorted_sym_hash;
4630 hpp = elf_sym_hashes (abfd);
4631 hppend = hpp + extsymcount;
4632 sym_count = 0;
4633 for (; hpp < hppend; hpp++)
4634 {
4635 h = *hpp;
4636 if (h != NULL
4637 && h->root.type == bfd_link_hash_defined
4638 && !bed->is_function_type (h->type))
4639 {
4640 *sym_hash = h;
4641 sym_hash++;
4642 sym_count++;
4643 }
4644 }
4645
4646 qsort (sorted_sym_hash, sym_count,
4647 sizeof (struct elf_link_hash_entry *),
4648 elf_sort_symbol);
4649
4650 while (weaks != NULL)
4651 {
4652 struct elf_link_hash_entry *hlook;
4653 asection *slook;
4654 bfd_vma vlook;
4655 size_t i, j, idx = 0;
4656
4657 hlook = weaks;
4658 weaks = hlook->u.weakdef;
4659 hlook->u.weakdef = NULL;
4660
4661 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4662 || hlook->root.type == bfd_link_hash_defweak
4663 || hlook->root.type == bfd_link_hash_common
4664 || hlook->root.type == bfd_link_hash_indirect);
4665 slook = hlook->root.u.def.section;
4666 vlook = hlook->root.u.def.value;
4667
4668 i = 0;
4669 j = sym_count;
4670 while (i != j)
4671 {
4672 bfd_signed_vma vdiff;
4673 idx = (i + j) / 2;
4674 h = sorted_sym_hash[idx];
4675 vdiff = vlook - h->root.u.def.value;
4676 if (vdiff < 0)
4677 j = idx;
4678 else if (vdiff > 0)
4679 i = idx + 1;
4680 else
4681 {
4682 long sdiff = slook->id - h->root.u.def.section->id;
4683 if (sdiff < 0)
4684 j = idx;
4685 else if (sdiff > 0)
4686 i = idx + 1;
4687 else
4688 break;
4689 }
4690 }
4691
4692 /* We didn't find a value/section match. */
4693 if (i == j)
4694 continue;
4695
4696 /* With multiple aliases, or when the weak symbol is already
4697 strongly defined, we have multiple matching symbols and
4698 the binary search above may land on any of them. Step
4699 one past the matching symbol(s). */
4700 while (++idx != j)
4701 {
4702 h = sorted_sym_hash[idx];
4703 if (h->root.u.def.section != slook
4704 || h->root.u.def.value != vlook)
4705 break;
4706 }
4707
4708 /* Now look back over the aliases. Since we sorted by size
4709 as well as value and section, we'll choose the one with
4710 the largest size. */
4711 while (idx-- != i)
4712 {
4713 h = sorted_sym_hash[idx];
4714
4715 /* Stop if value or section doesn't match. */
4716 if (h->root.u.def.section != slook
4717 || h->root.u.def.value != vlook)
4718 break;
4719 else if (h != hlook)
4720 {
4721 hlook->u.weakdef = h;
4722
4723 /* If the weak definition is in the list of dynamic
4724 symbols, make sure the real definition is put
4725 there as well. */
4726 if (hlook->dynindx != -1 && h->dynindx == -1)
4727 {
4728 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4729 {
4730 err_free_sym_hash:
4731 free (sorted_sym_hash);
4732 goto error_return;
4733 }
4734 }
4735
4736 /* If the real definition is in the list of dynamic
4737 symbols, make sure the weak definition is put
4738 there as well. If we don't do this, then the
4739 dynamic loader might not merge the entries for the
4740 real definition and the weak definition. */
4741 if (h->dynindx != -1 && hlook->dynindx == -1)
4742 {
4743 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4744 goto err_free_sym_hash;
4745 }
4746 break;
4747 }
4748 }
4749 }
4750
4751 free (sorted_sym_hash);
4752 }
4753
4754 if (bed->check_directives
4755 && !(*bed->check_directives) (abfd, info))
4756 return FALSE;
4757
4758 /* If this object is the same format as the output object, and it is
4759 not a shared library, then let the backend look through the
4760 relocs.
4761
4762 This is required to build global offset table entries and to
4763 arrange for dynamic relocs. It is not required for the
4764 particular common case of linking non PIC code, even when linking
4765 against shared libraries, but unfortunately there is no way of
4766 knowing whether an object file has been compiled PIC or not.
4767 Looking through the relocs is not particularly time consuming.
4768 The problem is that we must either (1) keep the relocs in memory,
4769 which causes the linker to require additional runtime memory or
4770 (2) read the relocs twice from the input file, which wastes time.
4771 This would be a good case for using mmap.
4772
4773 I have no idea how to handle linking PIC code into a file of a
4774 different format. It probably can't be done. */
4775 if (! dynamic
4776 && is_elf_hash_table (htab)
4777 && bed->check_relocs != NULL
4778 && elf_object_id (abfd) == elf_hash_table_id (htab)
4779 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4780 {
4781 asection *o;
4782
4783 for (o = abfd->sections; o != NULL; o = o->next)
4784 {
4785 Elf_Internal_Rela *internal_relocs;
4786 bfd_boolean ok;
4787
4788 if ((o->flags & SEC_RELOC) == 0
4789 || o->reloc_count == 0
4790 || ((info->strip == strip_all || info->strip == strip_debugger)
4791 && (o->flags & SEC_DEBUGGING) != 0)
4792 || bfd_is_abs_section (o->output_section))
4793 continue;
4794
4795 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4796 info->keep_memory);
4797 if (internal_relocs == NULL)
4798 goto error_return;
4799
4800 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4801
4802 if (elf_section_data (o)->relocs != internal_relocs)
4803 free (internal_relocs);
4804
4805 if (! ok)
4806 goto error_return;
4807 }
4808 }
4809
4810 /* If this is a non-traditional link, try to optimize the handling
4811 of the .stab/.stabstr sections. */
4812 if (! dynamic
4813 && ! info->traditional_format
4814 && is_elf_hash_table (htab)
4815 && (info->strip != strip_all && info->strip != strip_debugger))
4816 {
4817 asection *stabstr;
4818
4819 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4820 if (stabstr != NULL)
4821 {
4822 bfd_size_type string_offset = 0;
4823 asection *stab;
4824
4825 for (stab = abfd->sections; stab; stab = stab->next)
4826 if (CONST_STRNEQ (stab->name, ".stab")
4827 && (!stab->name[5] ||
4828 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4829 && (stab->flags & SEC_MERGE) == 0
4830 && !bfd_is_abs_section (stab->output_section))
4831 {
4832 struct bfd_elf_section_data *secdata;
4833
4834 secdata = elf_section_data (stab);
4835 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4836 stabstr, &secdata->sec_info,
4837 &string_offset))
4838 goto error_return;
4839 if (secdata->sec_info)
4840 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4841 }
4842 }
4843 }
4844
4845 if (is_elf_hash_table (htab) && add_needed)
4846 {
4847 /* Add this bfd to the loaded list. */
4848 struct elf_link_loaded_list *n;
4849
4850 n = (struct elf_link_loaded_list *)
4851 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4852 if (n == NULL)
4853 goto error_return;
4854 n->abfd = abfd;
4855 n->next = htab->loaded;
4856 htab->loaded = n;
4857 }
4858
4859 return TRUE;
4860
4861 error_free_vers:
4862 if (old_tab != NULL)
4863 free (old_tab);
4864 if (nondeflt_vers != NULL)
4865 free (nondeflt_vers);
4866 if (extversym != NULL)
4867 free (extversym);
4868 error_free_sym:
4869 if (isymbuf != NULL)
4870 free (isymbuf);
4871 error_return:
4872 return FALSE;
4873 }
4874
4875 /* Return the linker hash table entry of a symbol that might be
4876 satisfied by an archive symbol. Return -1 on error. */
4877
4878 struct elf_link_hash_entry *
4879 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4880 struct bfd_link_info *info,
4881 const char *name)
4882 {
4883 struct elf_link_hash_entry *h;
4884 char *p, *copy;
4885 size_t len, first;
4886
4887 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4888 if (h != NULL)
4889 return h;
4890
4891 /* If this is a default version (the name contains @@), look up the
4892 symbol again with only one `@' as well as without the version.
4893 The effect is that references to the symbol with and without the
4894 version will be matched by the default symbol in the archive. */
4895
4896 p = strchr (name, ELF_VER_CHR);
4897 if (p == NULL || p[1] != ELF_VER_CHR)
4898 return h;
4899
4900 /* First check with only one `@'. */
4901 len = strlen (name);
4902 copy = (char *) bfd_alloc (abfd, len);
4903 if (copy == NULL)
4904 return (struct elf_link_hash_entry *) 0 - 1;
4905
4906 first = p - name + 1;
4907 memcpy (copy, name, first);
4908 memcpy (copy + first, name + first + 1, len - first);
4909
4910 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4911 if (h == NULL)
4912 {
4913 /* We also need to check references to the symbol without the
4914 version. */
4915 copy[first - 1] = '\0';
4916 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4917 FALSE, FALSE, TRUE);
4918 }
4919
4920 bfd_release (abfd, copy);
4921 return h;
4922 }
4923
4924 /* Add symbols from an ELF archive file to the linker hash table. We
4925 don't use _bfd_generic_link_add_archive_symbols because we need to
4926 handle versioned symbols.
4927
4928 Fortunately, ELF archive handling is simpler than that done by
4929 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4930 oddities. In ELF, if we find a symbol in the archive map, and the
4931 symbol is currently undefined, we know that we must pull in that
4932 object file.
4933
4934 Unfortunately, we do have to make multiple passes over the symbol
4935 table until nothing further is resolved. */
4936
4937 static bfd_boolean
4938 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4939 {
4940 symindex c;
4941 unsigned char *included = NULL;
4942 carsym *symdefs;
4943 bfd_boolean loop;
4944 bfd_size_type amt;
4945 const struct elf_backend_data *bed;
4946 struct elf_link_hash_entry * (*archive_symbol_lookup)
4947 (bfd *, struct bfd_link_info *, const char *);
4948
4949 if (! bfd_has_map (abfd))
4950 {
4951 /* An empty archive is a special case. */
4952 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4953 return TRUE;
4954 bfd_set_error (bfd_error_no_armap);
4955 return FALSE;
4956 }
4957
4958 /* Keep track of all symbols we know to be already defined, and all
4959 files we know to be already included. This is to speed up the
4960 second and subsequent passes. */
4961 c = bfd_ardata (abfd)->symdef_count;
4962 if (c == 0)
4963 return TRUE;
4964 amt = c;
4965 amt *= sizeof (*included);
4966 included = (unsigned char *) bfd_zmalloc (amt);
4967 if (included == NULL)
4968 return FALSE;
4969
4970 symdefs = bfd_ardata (abfd)->symdefs;
4971 bed = get_elf_backend_data (abfd);
4972 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4973
4974 do
4975 {
4976 file_ptr last;
4977 symindex i;
4978 carsym *symdef;
4979 carsym *symdefend;
4980
4981 loop = FALSE;
4982 last = -1;
4983
4984 symdef = symdefs;
4985 symdefend = symdef + c;
4986 for (i = 0; symdef < symdefend; symdef++, i++)
4987 {
4988 struct elf_link_hash_entry *h;
4989 bfd *element;
4990 struct bfd_link_hash_entry *undefs_tail;
4991 symindex mark;
4992
4993 if (included[i])
4994 continue;
4995 if (symdef->file_offset == last)
4996 {
4997 included[i] = TRUE;
4998 continue;
4999 }
5000
5001 h = archive_symbol_lookup (abfd, info, symdef->name);
5002 if (h == (struct elf_link_hash_entry *) 0 - 1)
5003 goto error_return;
5004
5005 if (h == NULL)
5006 continue;
5007
5008 if (h->root.type == bfd_link_hash_common)
5009 {
5010 /* We currently have a common symbol. The archive map contains
5011 a reference to this symbol, so we may want to include it. We
5012 only want to include it however, if this archive element
5013 contains a definition of the symbol, not just another common
5014 declaration of it.
5015
5016 Unfortunately some archivers (including GNU ar) will put
5017 declarations of common symbols into their archive maps, as
5018 well as real definitions, so we cannot just go by the archive
5019 map alone. Instead we must read in the element's symbol
5020 table and check that to see what kind of symbol definition
5021 this is. */
5022 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5023 continue;
5024 }
5025 else if (h->root.type != bfd_link_hash_undefined)
5026 {
5027 if (h->root.type != bfd_link_hash_undefweak)
5028 /* Symbol must be defined. Don't check it again. */
5029 included[i] = TRUE;
5030 continue;
5031 }
5032
5033 /* We need to include this archive member. */
5034 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5035 if (element == NULL)
5036 goto error_return;
5037
5038 if (! bfd_check_format (element, bfd_object))
5039 goto error_return;
5040
5041 undefs_tail = info->hash->undefs_tail;
5042
5043 if (!(*info->callbacks
5044 ->add_archive_element) (info, element, symdef->name, &element))
5045 goto error_return;
5046 if (!bfd_link_add_symbols (element, info))
5047 goto error_return;
5048
5049 /* If there are any new undefined symbols, we need to make
5050 another pass through the archive in order to see whether
5051 they can be defined. FIXME: This isn't perfect, because
5052 common symbols wind up on undefs_tail and because an
5053 undefined symbol which is defined later on in this pass
5054 does not require another pass. This isn't a bug, but it
5055 does make the code less efficient than it could be. */
5056 if (undefs_tail != info->hash->undefs_tail)
5057 loop = TRUE;
5058
5059 /* Look backward to mark all symbols from this object file
5060 which we have already seen in this pass. */
5061 mark = i;
5062 do
5063 {
5064 included[mark] = TRUE;
5065 if (mark == 0)
5066 break;
5067 --mark;
5068 }
5069 while (symdefs[mark].file_offset == symdef->file_offset);
5070
5071 /* We mark subsequent symbols from this object file as we go
5072 on through the loop. */
5073 last = symdef->file_offset;
5074 }
5075 }
5076 while (loop);
5077
5078 free (included);
5079
5080 return TRUE;
5081
5082 error_return:
5083 if (included != NULL)
5084 free (included);
5085 return FALSE;
5086 }
5087
5088 /* Given an ELF BFD, add symbols to the global hash table as
5089 appropriate. */
5090
5091 bfd_boolean
5092 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5093 {
5094 switch (bfd_get_format (abfd))
5095 {
5096 case bfd_object:
5097 return elf_link_add_object_symbols (abfd, info);
5098 case bfd_archive:
5099 return elf_link_add_archive_symbols (abfd, info);
5100 default:
5101 bfd_set_error (bfd_error_wrong_format);
5102 return FALSE;
5103 }
5104 }
5105 \f
5106 struct hash_codes_info
5107 {
5108 unsigned long *hashcodes;
5109 bfd_boolean error;
5110 };
5111
5112 /* This function will be called though elf_link_hash_traverse to store
5113 all hash value of the exported symbols in an array. */
5114
5115 static bfd_boolean
5116 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5117 {
5118 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5119 const char *name;
5120 char *p;
5121 unsigned long ha;
5122 char *alc = NULL;
5123
5124 /* Ignore indirect symbols. These are added by the versioning code. */
5125 if (h->dynindx == -1)
5126 return TRUE;
5127
5128 name = h->root.root.string;
5129 p = strchr (name, ELF_VER_CHR);
5130 if (p != NULL)
5131 {
5132 alc = (char *) bfd_malloc (p - name + 1);
5133 if (alc == NULL)
5134 {
5135 inf->error = TRUE;
5136 return FALSE;
5137 }
5138 memcpy (alc, name, p - name);
5139 alc[p - name] = '\0';
5140 name = alc;
5141 }
5142
5143 /* Compute the hash value. */
5144 ha = bfd_elf_hash (name);
5145
5146 /* Store the found hash value in the array given as the argument. */
5147 *(inf->hashcodes)++ = ha;
5148
5149 /* And store it in the struct so that we can put it in the hash table
5150 later. */
5151 h->u.elf_hash_value = ha;
5152
5153 if (alc != NULL)
5154 free (alc);
5155
5156 return TRUE;
5157 }
5158
5159 struct collect_gnu_hash_codes
5160 {
5161 bfd *output_bfd;
5162 const struct elf_backend_data *bed;
5163 unsigned long int nsyms;
5164 unsigned long int maskbits;
5165 unsigned long int *hashcodes;
5166 unsigned long int *hashval;
5167 unsigned long int *indx;
5168 unsigned long int *counts;
5169 bfd_vma *bitmask;
5170 bfd_byte *contents;
5171 long int min_dynindx;
5172 unsigned long int bucketcount;
5173 unsigned long int symindx;
5174 long int local_indx;
5175 long int shift1, shift2;
5176 unsigned long int mask;
5177 bfd_boolean error;
5178 };
5179
5180 /* This function will be called though elf_link_hash_traverse to store
5181 all hash value of the exported symbols in an array. */
5182
5183 static bfd_boolean
5184 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5185 {
5186 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5187 const char *name;
5188 char *p;
5189 unsigned long ha;
5190 char *alc = NULL;
5191
5192 /* Ignore indirect symbols. These are added by the versioning code. */
5193 if (h->dynindx == -1)
5194 return TRUE;
5195
5196 /* Ignore also local symbols and undefined symbols. */
5197 if (! (*s->bed->elf_hash_symbol) (h))
5198 return TRUE;
5199
5200 name = h->root.root.string;
5201 p = strchr (name, ELF_VER_CHR);
5202 if (p != NULL)
5203 {
5204 alc = (char *) bfd_malloc (p - name + 1);
5205 if (alc == NULL)
5206 {
5207 s->error = TRUE;
5208 return FALSE;
5209 }
5210 memcpy (alc, name, p - name);
5211 alc[p - name] = '\0';
5212 name = alc;
5213 }
5214
5215 /* Compute the hash value. */
5216 ha = bfd_elf_gnu_hash (name);
5217
5218 /* Store the found hash value in the array for compute_bucket_count,
5219 and also for .dynsym reordering purposes. */
5220 s->hashcodes[s->nsyms] = ha;
5221 s->hashval[h->dynindx] = ha;
5222 ++s->nsyms;
5223 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5224 s->min_dynindx = h->dynindx;
5225
5226 if (alc != NULL)
5227 free (alc);
5228
5229 return TRUE;
5230 }
5231
5232 /* This function will be called though elf_link_hash_traverse to do
5233 final dynaminc symbol renumbering. */
5234
5235 static bfd_boolean
5236 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5237 {
5238 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5239 unsigned long int bucket;
5240 unsigned long int val;
5241
5242 /* Ignore indirect symbols. */
5243 if (h->dynindx == -1)
5244 return TRUE;
5245
5246 /* Ignore also local symbols and undefined symbols. */
5247 if (! (*s->bed->elf_hash_symbol) (h))
5248 {
5249 if (h->dynindx >= s->min_dynindx)
5250 h->dynindx = s->local_indx++;
5251 return TRUE;
5252 }
5253
5254 bucket = s->hashval[h->dynindx] % s->bucketcount;
5255 val = (s->hashval[h->dynindx] >> s->shift1)
5256 & ((s->maskbits >> s->shift1) - 1);
5257 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5258 s->bitmask[val]
5259 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5260 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5261 if (s->counts[bucket] == 1)
5262 /* Last element terminates the chain. */
5263 val |= 1;
5264 bfd_put_32 (s->output_bfd, val,
5265 s->contents + (s->indx[bucket] - s->symindx) * 4);
5266 --s->counts[bucket];
5267 h->dynindx = s->indx[bucket]++;
5268 return TRUE;
5269 }
5270
5271 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5272
5273 bfd_boolean
5274 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5275 {
5276 return !(h->forced_local
5277 || h->root.type == bfd_link_hash_undefined
5278 || h->root.type == bfd_link_hash_undefweak
5279 || ((h->root.type == bfd_link_hash_defined
5280 || h->root.type == bfd_link_hash_defweak)
5281 && h->root.u.def.section->output_section == NULL));
5282 }
5283
5284 /* Array used to determine the number of hash table buckets to use
5285 based on the number of symbols there are. If there are fewer than
5286 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5287 fewer than 37 we use 17 buckets, and so forth. We never use more
5288 than 32771 buckets. */
5289
5290 static const size_t elf_buckets[] =
5291 {
5292 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5293 16411, 32771, 0
5294 };
5295
5296 /* Compute bucket count for hashing table. We do not use a static set
5297 of possible tables sizes anymore. Instead we determine for all
5298 possible reasonable sizes of the table the outcome (i.e., the
5299 number of collisions etc) and choose the best solution. The
5300 weighting functions are not too simple to allow the table to grow
5301 without bounds. Instead one of the weighting factors is the size.
5302 Therefore the result is always a good payoff between few collisions
5303 (= short chain lengths) and table size. */
5304 static size_t
5305 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5306 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5307 unsigned long int nsyms,
5308 int gnu_hash)
5309 {
5310 size_t best_size = 0;
5311 unsigned long int i;
5312
5313 /* We have a problem here. The following code to optimize the table
5314 size requires an integer type with more the 32 bits. If
5315 BFD_HOST_U_64_BIT is set we know about such a type. */
5316 #ifdef BFD_HOST_U_64_BIT
5317 if (info->optimize)
5318 {
5319 size_t minsize;
5320 size_t maxsize;
5321 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5322 bfd *dynobj = elf_hash_table (info)->dynobj;
5323 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5324 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5325 unsigned long int *counts;
5326 bfd_size_type amt;
5327 unsigned int no_improvement_count = 0;
5328
5329 /* Possible optimization parameters: if we have NSYMS symbols we say
5330 that the hashing table must at least have NSYMS/4 and at most
5331 2*NSYMS buckets. */
5332 minsize = nsyms / 4;
5333 if (minsize == 0)
5334 minsize = 1;
5335 best_size = maxsize = nsyms * 2;
5336 if (gnu_hash)
5337 {
5338 if (minsize < 2)
5339 minsize = 2;
5340 if ((best_size & 31) == 0)
5341 ++best_size;
5342 }
5343
5344 /* Create array where we count the collisions in. We must use bfd_malloc
5345 since the size could be large. */
5346 amt = maxsize;
5347 amt *= sizeof (unsigned long int);
5348 counts = (unsigned long int *) bfd_malloc (amt);
5349 if (counts == NULL)
5350 return 0;
5351
5352 /* Compute the "optimal" size for the hash table. The criteria is a
5353 minimal chain length. The minor criteria is (of course) the size
5354 of the table. */
5355 for (i = minsize; i < maxsize; ++i)
5356 {
5357 /* Walk through the array of hashcodes and count the collisions. */
5358 BFD_HOST_U_64_BIT max;
5359 unsigned long int j;
5360 unsigned long int fact;
5361
5362 if (gnu_hash && (i & 31) == 0)
5363 continue;
5364
5365 memset (counts, '\0', i * sizeof (unsigned long int));
5366
5367 /* Determine how often each hash bucket is used. */
5368 for (j = 0; j < nsyms; ++j)
5369 ++counts[hashcodes[j] % i];
5370
5371 /* For the weight function we need some information about the
5372 pagesize on the target. This is information need not be 100%
5373 accurate. Since this information is not available (so far) we
5374 define it here to a reasonable default value. If it is crucial
5375 to have a better value some day simply define this value. */
5376 # ifndef BFD_TARGET_PAGESIZE
5377 # define BFD_TARGET_PAGESIZE (4096)
5378 # endif
5379
5380 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5381 and the chains. */
5382 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5383
5384 # if 1
5385 /* Variant 1: optimize for short chains. We add the squares
5386 of all the chain lengths (which favors many small chain
5387 over a few long chains). */
5388 for (j = 0; j < i; ++j)
5389 max += counts[j] * counts[j];
5390
5391 /* This adds penalties for the overall size of the table. */
5392 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5393 max *= fact * fact;
5394 # else
5395 /* Variant 2: Optimize a lot more for small table. Here we
5396 also add squares of the size but we also add penalties for
5397 empty slots (the +1 term). */
5398 for (j = 0; j < i; ++j)
5399 max += (1 + counts[j]) * (1 + counts[j]);
5400
5401 /* The overall size of the table is considered, but not as
5402 strong as in variant 1, where it is squared. */
5403 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5404 max *= fact;
5405 # endif
5406
5407 /* Compare with current best results. */
5408 if (max < best_chlen)
5409 {
5410 best_chlen = max;
5411 best_size = i;
5412 no_improvement_count = 0;
5413 }
5414 /* PR 11843: Avoid futile long searches for the best bucket size
5415 when there are a large number of symbols. */
5416 else if (++no_improvement_count == 100)
5417 break;
5418 }
5419
5420 free (counts);
5421 }
5422 else
5423 #endif /* defined (BFD_HOST_U_64_BIT) */
5424 {
5425 /* This is the fallback solution if no 64bit type is available or if we
5426 are not supposed to spend much time on optimizations. We select the
5427 bucket count using a fixed set of numbers. */
5428 for (i = 0; elf_buckets[i] != 0; i++)
5429 {
5430 best_size = elf_buckets[i];
5431 if (nsyms < elf_buckets[i + 1])
5432 break;
5433 }
5434 if (gnu_hash && best_size < 2)
5435 best_size = 2;
5436 }
5437
5438 return best_size;
5439 }
5440
5441 /* Size any SHT_GROUP section for ld -r. */
5442
5443 bfd_boolean
5444 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5445 {
5446 bfd *ibfd;
5447
5448 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5449 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5450 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5451 return FALSE;
5452 return TRUE;
5453 }
5454
5455 /* Set a default stack segment size. The value in INFO wins. If it
5456 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5457 undefined it is initialized. */
5458
5459 bfd_boolean
5460 bfd_elf_stack_segment_size (bfd *output_bfd,
5461 struct bfd_link_info *info,
5462 const char *legacy_symbol,
5463 bfd_vma default_size)
5464 {
5465 struct elf_link_hash_entry *h = NULL;
5466
5467 /* Look for legacy symbol. */
5468 if (legacy_symbol)
5469 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5470 FALSE, FALSE, FALSE);
5471 if (h && (h->root.type == bfd_link_hash_defined
5472 || h->root.type == bfd_link_hash_defweak)
5473 && h->def_regular
5474 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5475 {
5476 /* The symbol has no type if specified on the command line. */
5477 h->type = STT_OBJECT;
5478 if (info->stacksize)
5479 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5480 output_bfd, legacy_symbol);
5481 else if (h->root.u.def.section != bfd_abs_section_ptr)
5482 (*_bfd_error_handler) (_("%B: %s not absolute"),
5483 output_bfd, legacy_symbol);
5484 else
5485 info->stacksize = h->root.u.def.value;
5486 }
5487
5488 if (!info->stacksize)
5489 /* If the user didn't set a size, or explicitly inhibit the
5490 size, set it now. */
5491 info->stacksize = default_size;
5492
5493 /* Provide the legacy symbol, if it is referenced. */
5494 if (h && (h->root.type == bfd_link_hash_undefined
5495 || h->root.type == bfd_link_hash_undefweak))
5496 {
5497 struct bfd_link_hash_entry *bh = NULL;
5498
5499 if (!(_bfd_generic_link_add_one_symbol
5500 (info, output_bfd, legacy_symbol,
5501 BSF_GLOBAL, bfd_abs_section_ptr,
5502 info->stacksize >= 0 ? info->stacksize : 0,
5503 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5504 return FALSE;
5505
5506 h = (struct elf_link_hash_entry *) bh;
5507 h->def_regular = 1;
5508 h->type = STT_OBJECT;
5509 }
5510
5511 return TRUE;
5512 }
5513
5514 /* Set up the sizes and contents of the ELF dynamic sections. This is
5515 called by the ELF linker emulation before_allocation routine. We
5516 must set the sizes of the sections before the linker sets the
5517 addresses of the various sections. */
5518
5519 bfd_boolean
5520 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5521 const char *soname,
5522 const char *rpath,
5523 const char *filter_shlib,
5524 const char *audit,
5525 const char *depaudit,
5526 const char * const *auxiliary_filters,
5527 struct bfd_link_info *info,
5528 asection **sinterpptr)
5529 {
5530 bfd_size_type soname_indx;
5531 bfd *dynobj;
5532 const struct elf_backend_data *bed;
5533 struct elf_info_failed asvinfo;
5534
5535 *sinterpptr = NULL;
5536
5537 soname_indx = (bfd_size_type) -1;
5538
5539 if (!is_elf_hash_table (info->hash))
5540 return TRUE;
5541
5542 bed = get_elf_backend_data (output_bfd);
5543
5544 /* Any syms created from now on start with -1 in
5545 got.refcount/offset and plt.refcount/offset. */
5546 elf_hash_table (info)->init_got_refcount
5547 = elf_hash_table (info)->init_got_offset;
5548 elf_hash_table (info)->init_plt_refcount
5549 = elf_hash_table (info)->init_plt_offset;
5550
5551 if (info->relocatable
5552 && !_bfd_elf_size_group_sections (info))
5553 return FALSE;
5554
5555 /* The backend may have to create some sections regardless of whether
5556 we're dynamic or not. */
5557 if (bed->elf_backend_always_size_sections
5558 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5559 return FALSE;
5560
5561 /* Determine any GNU_STACK segment requirements, after the backend
5562 has had a chance to set a default segment size. */
5563 if (info->execstack)
5564 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5565 else if (info->noexecstack)
5566 elf_stack_flags (output_bfd) = PF_R | PF_W;
5567 else
5568 {
5569 bfd *inputobj;
5570 asection *notesec = NULL;
5571 int exec = 0;
5572
5573 for (inputobj = info->input_bfds;
5574 inputobj;
5575 inputobj = inputobj->link.next)
5576 {
5577 asection *s;
5578
5579 if (inputobj->flags
5580 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5581 continue;
5582 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5583 if (s)
5584 {
5585 if (s->flags & SEC_CODE)
5586 exec = PF_X;
5587 notesec = s;
5588 }
5589 else if (bed->default_execstack)
5590 exec = PF_X;
5591 }
5592 if (notesec || info->stacksize > 0)
5593 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5594 if (notesec && exec && info->relocatable
5595 && notesec->output_section != bfd_abs_section_ptr)
5596 notesec->output_section->flags |= SEC_CODE;
5597 }
5598
5599 dynobj = elf_hash_table (info)->dynobj;
5600
5601 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5602 {
5603 struct elf_info_failed eif;
5604 struct elf_link_hash_entry *h;
5605 asection *dynstr;
5606 struct bfd_elf_version_tree *t;
5607 struct bfd_elf_version_expr *d;
5608 asection *s;
5609 bfd_boolean all_defined;
5610
5611 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5612 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5613
5614 if (soname != NULL)
5615 {
5616 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5617 soname, TRUE);
5618 if (soname_indx == (bfd_size_type) -1
5619 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5620 return FALSE;
5621 }
5622
5623 if (info->symbolic)
5624 {
5625 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5626 return FALSE;
5627 info->flags |= DF_SYMBOLIC;
5628 }
5629
5630 if (rpath != NULL)
5631 {
5632 bfd_size_type indx;
5633 bfd_vma tag;
5634
5635 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5636 TRUE);
5637 if (indx == (bfd_size_type) -1)
5638 return FALSE;
5639
5640 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5641 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5642 return FALSE;
5643 }
5644
5645 if (filter_shlib != NULL)
5646 {
5647 bfd_size_type indx;
5648
5649 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5650 filter_shlib, TRUE);
5651 if (indx == (bfd_size_type) -1
5652 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5653 return FALSE;
5654 }
5655
5656 if (auxiliary_filters != NULL)
5657 {
5658 const char * const *p;
5659
5660 for (p = auxiliary_filters; *p != NULL; p++)
5661 {
5662 bfd_size_type indx;
5663
5664 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5665 *p, TRUE);
5666 if (indx == (bfd_size_type) -1
5667 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5668 return FALSE;
5669 }
5670 }
5671
5672 if (audit != NULL)
5673 {
5674 bfd_size_type indx;
5675
5676 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5677 TRUE);
5678 if (indx == (bfd_size_type) -1
5679 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5680 return FALSE;
5681 }
5682
5683 if (depaudit != NULL)
5684 {
5685 bfd_size_type indx;
5686
5687 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5688 TRUE);
5689 if (indx == (bfd_size_type) -1
5690 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5691 return FALSE;
5692 }
5693
5694 eif.info = info;
5695 eif.failed = FALSE;
5696
5697 /* If we are supposed to export all symbols into the dynamic symbol
5698 table (this is not the normal case), then do so. */
5699 if (info->export_dynamic
5700 || (info->executable && info->dynamic))
5701 {
5702 elf_link_hash_traverse (elf_hash_table (info),
5703 _bfd_elf_export_symbol,
5704 &eif);
5705 if (eif.failed)
5706 return FALSE;
5707 }
5708
5709 /* Make all global versions with definition. */
5710 for (t = info->version_info; t != NULL; t = t->next)
5711 for (d = t->globals.list; d != NULL; d = d->next)
5712 if (!d->symver && d->literal)
5713 {
5714 const char *verstr, *name;
5715 size_t namelen, verlen, newlen;
5716 char *newname, *p, leading_char;
5717 struct elf_link_hash_entry *newh;
5718
5719 leading_char = bfd_get_symbol_leading_char (output_bfd);
5720 name = d->pattern;
5721 namelen = strlen (name) + (leading_char != '\0');
5722 verstr = t->name;
5723 verlen = strlen (verstr);
5724 newlen = namelen + verlen + 3;
5725
5726 newname = (char *) bfd_malloc (newlen);
5727 if (newname == NULL)
5728 return FALSE;
5729 newname[0] = leading_char;
5730 memcpy (newname + (leading_char != '\0'), name, namelen);
5731
5732 /* Check the hidden versioned definition. */
5733 p = newname + namelen;
5734 *p++ = ELF_VER_CHR;
5735 memcpy (p, verstr, verlen + 1);
5736 newh = elf_link_hash_lookup (elf_hash_table (info),
5737 newname, FALSE, FALSE,
5738 FALSE);
5739 if (newh == NULL
5740 || (newh->root.type != bfd_link_hash_defined
5741 && newh->root.type != bfd_link_hash_defweak))
5742 {
5743 /* Check the default versioned definition. */
5744 *p++ = ELF_VER_CHR;
5745 memcpy (p, verstr, verlen + 1);
5746 newh = elf_link_hash_lookup (elf_hash_table (info),
5747 newname, FALSE, FALSE,
5748 FALSE);
5749 }
5750 free (newname);
5751
5752 /* Mark this version if there is a definition and it is
5753 not defined in a shared object. */
5754 if (newh != NULL
5755 && !newh->def_dynamic
5756 && (newh->root.type == bfd_link_hash_defined
5757 || newh->root.type == bfd_link_hash_defweak))
5758 d->symver = 1;
5759 }
5760
5761 /* Attach all the symbols to their version information. */
5762 asvinfo.info = info;
5763 asvinfo.failed = FALSE;
5764
5765 elf_link_hash_traverse (elf_hash_table (info),
5766 _bfd_elf_link_assign_sym_version,
5767 &asvinfo);
5768 if (asvinfo.failed)
5769 return FALSE;
5770
5771 if (!info->allow_undefined_version)
5772 {
5773 /* Check if all global versions have a definition. */
5774 all_defined = TRUE;
5775 for (t = info->version_info; t != NULL; t = t->next)
5776 for (d = t->globals.list; d != NULL; d = d->next)
5777 if (d->literal && !d->symver && !d->script)
5778 {
5779 (*_bfd_error_handler)
5780 (_("%s: undefined version: %s"),
5781 d->pattern, t->name);
5782 all_defined = FALSE;
5783 }
5784
5785 if (!all_defined)
5786 {
5787 bfd_set_error (bfd_error_bad_value);
5788 return FALSE;
5789 }
5790 }
5791
5792 /* Find all symbols which were defined in a dynamic object and make
5793 the backend pick a reasonable value for them. */
5794 elf_link_hash_traverse (elf_hash_table (info),
5795 _bfd_elf_adjust_dynamic_symbol,
5796 &eif);
5797 if (eif.failed)
5798 return FALSE;
5799
5800 /* Add some entries to the .dynamic section. We fill in some of the
5801 values later, in bfd_elf_final_link, but we must add the entries
5802 now so that we know the final size of the .dynamic section. */
5803
5804 /* If there are initialization and/or finalization functions to
5805 call then add the corresponding DT_INIT/DT_FINI entries. */
5806 h = (info->init_function
5807 ? elf_link_hash_lookup (elf_hash_table (info),
5808 info->init_function, FALSE,
5809 FALSE, FALSE)
5810 : NULL);
5811 if (h != NULL
5812 && (h->ref_regular
5813 || h->def_regular))
5814 {
5815 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5816 return FALSE;
5817 }
5818 h = (info->fini_function
5819 ? elf_link_hash_lookup (elf_hash_table (info),
5820 info->fini_function, FALSE,
5821 FALSE, FALSE)
5822 : NULL);
5823 if (h != NULL
5824 && (h->ref_regular
5825 || h->def_regular))
5826 {
5827 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5828 return FALSE;
5829 }
5830
5831 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5832 if (s != NULL && s->linker_has_input)
5833 {
5834 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5835 if (! info->executable)
5836 {
5837 bfd *sub;
5838 asection *o;
5839
5840 for (sub = info->input_bfds; sub != NULL;
5841 sub = sub->link.next)
5842 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5843 for (o = sub->sections; o != NULL; o = o->next)
5844 if (elf_section_data (o)->this_hdr.sh_type
5845 == SHT_PREINIT_ARRAY)
5846 {
5847 (*_bfd_error_handler)
5848 (_("%B: .preinit_array section is not allowed in DSO"),
5849 sub);
5850 break;
5851 }
5852
5853 bfd_set_error (bfd_error_nonrepresentable_section);
5854 return FALSE;
5855 }
5856
5857 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5858 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5859 return FALSE;
5860 }
5861 s = bfd_get_section_by_name (output_bfd, ".init_array");
5862 if (s != NULL && s->linker_has_input)
5863 {
5864 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5865 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5866 return FALSE;
5867 }
5868 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5869 if (s != NULL && s->linker_has_input)
5870 {
5871 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5872 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5873 return FALSE;
5874 }
5875
5876 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5877 /* If .dynstr is excluded from the link, we don't want any of
5878 these tags. Strictly, we should be checking each section
5879 individually; This quick check covers for the case where
5880 someone does a /DISCARD/ : { *(*) }. */
5881 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5882 {
5883 bfd_size_type strsize;
5884
5885 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5886 if ((info->emit_hash
5887 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5888 || (info->emit_gnu_hash
5889 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5890 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5893 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5894 bed->s->sizeof_sym))
5895 return FALSE;
5896 }
5897 }
5898
5899 /* The backend must work out the sizes of all the other dynamic
5900 sections. */
5901 if (dynobj != NULL
5902 && bed->elf_backend_size_dynamic_sections != NULL
5903 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5904 return FALSE;
5905
5906 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5907 return FALSE;
5908
5909 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5910 {
5911 unsigned long section_sym_count;
5912 struct bfd_elf_version_tree *verdefs;
5913 asection *s;
5914
5915 /* Set up the version definition section. */
5916 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5917 BFD_ASSERT (s != NULL);
5918
5919 /* We may have created additional version definitions if we are
5920 just linking a regular application. */
5921 verdefs = info->version_info;
5922
5923 /* Skip anonymous version tag. */
5924 if (verdefs != NULL && verdefs->vernum == 0)
5925 verdefs = verdefs->next;
5926
5927 if (verdefs == NULL && !info->create_default_symver)
5928 s->flags |= SEC_EXCLUDE;
5929 else
5930 {
5931 unsigned int cdefs;
5932 bfd_size_type size;
5933 struct bfd_elf_version_tree *t;
5934 bfd_byte *p;
5935 Elf_Internal_Verdef def;
5936 Elf_Internal_Verdaux defaux;
5937 struct bfd_link_hash_entry *bh;
5938 struct elf_link_hash_entry *h;
5939 const char *name;
5940
5941 cdefs = 0;
5942 size = 0;
5943
5944 /* Make space for the base version. */
5945 size += sizeof (Elf_External_Verdef);
5946 size += sizeof (Elf_External_Verdaux);
5947 ++cdefs;
5948
5949 /* Make space for the default version. */
5950 if (info->create_default_symver)
5951 {
5952 size += sizeof (Elf_External_Verdef);
5953 ++cdefs;
5954 }
5955
5956 for (t = verdefs; t != NULL; t = t->next)
5957 {
5958 struct bfd_elf_version_deps *n;
5959
5960 /* Don't emit base version twice. */
5961 if (t->vernum == 0)
5962 continue;
5963
5964 size += sizeof (Elf_External_Verdef);
5965 size += sizeof (Elf_External_Verdaux);
5966 ++cdefs;
5967
5968 for (n = t->deps; n != NULL; n = n->next)
5969 size += sizeof (Elf_External_Verdaux);
5970 }
5971
5972 s->size = size;
5973 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5974 if (s->contents == NULL && s->size != 0)
5975 return FALSE;
5976
5977 /* Fill in the version definition section. */
5978
5979 p = s->contents;
5980
5981 def.vd_version = VER_DEF_CURRENT;
5982 def.vd_flags = VER_FLG_BASE;
5983 def.vd_ndx = 1;
5984 def.vd_cnt = 1;
5985 if (info->create_default_symver)
5986 {
5987 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5988 def.vd_next = sizeof (Elf_External_Verdef);
5989 }
5990 else
5991 {
5992 def.vd_aux = sizeof (Elf_External_Verdef);
5993 def.vd_next = (sizeof (Elf_External_Verdef)
5994 + sizeof (Elf_External_Verdaux));
5995 }
5996
5997 if (soname_indx != (bfd_size_type) -1)
5998 {
5999 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6000 soname_indx);
6001 def.vd_hash = bfd_elf_hash (soname);
6002 defaux.vda_name = soname_indx;
6003 name = soname;
6004 }
6005 else
6006 {
6007 bfd_size_type indx;
6008
6009 name = lbasename (output_bfd->filename);
6010 def.vd_hash = bfd_elf_hash (name);
6011 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6012 name, FALSE);
6013 if (indx == (bfd_size_type) -1)
6014 return FALSE;
6015 defaux.vda_name = indx;
6016 }
6017 defaux.vda_next = 0;
6018
6019 _bfd_elf_swap_verdef_out (output_bfd, &def,
6020 (Elf_External_Verdef *) p);
6021 p += sizeof (Elf_External_Verdef);
6022 if (info->create_default_symver)
6023 {
6024 /* Add a symbol representing this version. */
6025 bh = NULL;
6026 if (! (_bfd_generic_link_add_one_symbol
6027 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6028 0, NULL, FALSE,
6029 get_elf_backend_data (dynobj)->collect, &bh)))
6030 return FALSE;
6031 h = (struct elf_link_hash_entry *) bh;
6032 h->non_elf = 0;
6033 h->def_regular = 1;
6034 h->type = STT_OBJECT;
6035 h->verinfo.vertree = NULL;
6036
6037 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6038 return FALSE;
6039
6040 /* Create a duplicate of the base version with the same
6041 aux block, but different flags. */
6042 def.vd_flags = 0;
6043 def.vd_ndx = 2;
6044 def.vd_aux = sizeof (Elf_External_Verdef);
6045 if (verdefs)
6046 def.vd_next = (sizeof (Elf_External_Verdef)
6047 + sizeof (Elf_External_Verdaux));
6048 else
6049 def.vd_next = 0;
6050 _bfd_elf_swap_verdef_out (output_bfd, &def,
6051 (Elf_External_Verdef *) p);
6052 p += sizeof (Elf_External_Verdef);
6053 }
6054 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6055 (Elf_External_Verdaux *) p);
6056 p += sizeof (Elf_External_Verdaux);
6057
6058 for (t = verdefs; t != NULL; t = t->next)
6059 {
6060 unsigned int cdeps;
6061 struct bfd_elf_version_deps *n;
6062
6063 /* Don't emit the base version twice. */
6064 if (t->vernum == 0)
6065 continue;
6066
6067 cdeps = 0;
6068 for (n = t->deps; n != NULL; n = n->next)
6069 ++cdeps;
6070
6071 /* Add a symbol representing this version. */
6072 bh = NULL;
6073 if (! (_bfd_generic_link_add_one_symbol
6074 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6075 0, NULL, FALSE,
6076 get_elf_backend_data (dynobj)->collect, &bh)))
6077 return FALSE;
6078 h = (struct elf_link_hash_entry *) bh;
6079 h->non_elf = 0;
6080 h->def_regular = 1;
6081 h->type = STT_OBJECT;
6082 h->verinfo.vertree = t;
6083
6084 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6085 return FALSE;
6086
6087 def.vd_version = VER_DEF_CURRENT;
6088 def.vd_flags = 0;
6089 if (t->globals.list == NULL
6090 && t->locals.list == NULL
6091 && ! t->used)
6092 def.vd_flags |= VER_FLG_WEAK;
6093 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6094 def.vd_cnt = cdeps + 1;
6095 def.vd_hash = bfd_elf_hash (t->name);
6096 def.vd_aux = sizeof (Elf_External_Verdef);
6097 def.vd_next = 0;
6098
6099 /* If a basever node is next, it *must* be the last node in
6100 the chain, otherwise Verdef construction breaks. */
6101 if (t->next != NULL && t->next->vernum == 0)
6102 BFD_ASSERT (t->next->next == NULL);
6103
6104 if (t->next != NULL && t->next->vernum != 0)
6105 def.vd_next = (sizeof (Elf_External_Verdef)
6106 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6107
6108 _bfd_elf_swap_verdef_out (output_bfd, &def,
6109 (Elf_External_Verdef *) p);
6110 p += sizeof (Elf_External_Verdef);
6111
6112 defaux.vda_name = h->dynstr_index;
6113 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6114 h->dynstr_index);
6115 defaux.vda_next = 0;
6116 if (t->deps != NULL)
6117 defaux.vda_next = sizeof (Elf_External_Verdaux);
6118 t->name_indx = defaux.vda_name;
6119
6120 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6121 (Elf_External_Verdaux *) p);
6122 p += sizeof (Elf_External_Verdaux);
6123
6124 for (n = t->deps; n != NULL; n = n->next)
6125 {
6126 if (n->version_needed == NULL)
6127 {
6128 /* This can happen if there was an error in the
6129 version script. */
6130 defaux.vda_name = 0;
6131 }
6132 else
6133 {
6134 defaux.vda_name = n->version_needed->name_indx;
6135 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6136 defaux.vda_name);
6137 }
6138 if (n->next == NULL)
6139 defaux.vda_next = 0;
6140 else
6141 defaux.vda_next = sizeof (Elf_External_Verdaux);
6142
6143 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6144 (Elf_External_Verdaux *) p);
6145 p += sizeof (Elf_External_Verdaux);
6146 }
6147 }
6148
6149 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6150 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6151 return FALSE;
6152
6153 elf_tdata (output_bfd)->cverdefs = cdefs;
6154 }
6155
6156 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6157 {
6158 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6159 return FALSE;
6160 }
6161 else if (info->flags & DF_BIND_NOW)
6162 {
6163 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6164 return FALSE;
6165 }
6166
6167 if (info->flags_1)
6168 {
6169 if (info->executable)
6170 info->flags_1 &= ~ (DF_1_INITFIRST
6171 | DF_1_NODELETE
6172 | DF_1_NOOPEN);
6173 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6174 return FALSE;
6175 }
6176
6177 /* Work out the size of the version reference section. */
6178
6179 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6180 BFD_ASSERT (s != NULL);
6181 {
6182 struct elf_find_verdep_info sinfo;
6183
6184 sinfo.info = info;
6185 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6186 if (sinfo.vers == 0)
6187 sinfo.vers = 1;
6188 sinfo.failed = FALSE;
6189
6190 elf_link_hash_traverse (elf_hash_table (info),
6191 _bfd_elf_link_find_version_dependencies,
6192 &sinfo);
6193 if (sinfo.failed)
6194 return FALSE;
6195
6196 if (elf_tdata (output_bfd)->verref == NULL)
6197 s->flags |= SEC_EXCLUDE;
6198 else
6199 {
6200 Elf_Internal_Verneed *t;
6201 unsigned int size;
6202 unsigned int crefs;
6203 bfd_byte *p;
6204
6205 /* Build the version dependency section. */
6206 size = 0;
6207 crefs = 0;
6208 for (t = elf_tdata (output_bfd)->verref;
6209 t != NULL;
6210 t = t->vn_nextref)
6211 {
6212 Elf_Internal_Vernaux *a;
6213
6214 size += sizeof (Elf_External_Verneed);
6215 ++crefs;
6216 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6217 size += sizeof (Elf_External_Vernaux);
6218 }
6219
6220 s->size = size;
6221 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6222 if (s->contents == NULL)
6223 return FALSE;
6224
6225 p = s->contents;
6226 for (t = elf_tdata (output_bfd)->verref;
6227 t != NULL;
6228 t = t->vn_nextref)
6229 {
6230 unsigned int caux;
6231 Elf_Internal_Vernaux *a;
6232 bfd_size_type indx;
6233
6234 caux = 0;
6235 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6236 ++caux;
6237
6238 t->vn_version = VER_NEED_CURRENT;
6239 t->vn_cnt = caux;
6240 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6241 elf_dt_name (t->vn_bfd) != NULL
6242 ? elf_dt_name (t->vn_bfd)
6243 : lbasename (t->vn_bfd->filename),
6244 FALSE);
6245 if (indx == (bfd_size_type) -1)
6246 return FALSE;
6247 t->vn_file = indx;
6248 t->vn_aux = sizeof (Elf_External_Verneed);
6249 if (t->vn_nextref == NULL)
6250 t->vn_next = 0;
6251 else
6252 t->vn_next = (sizeof (Elf_External_Verneed)
6253 + caux * sizeof (Elf_External_Vernaux));
6254
6255 _bfd_elf_swap_verneed_out (output_bfd, t,
6256 (Elf_External_Verneed *) p);
6257 p += sizeof (Elf_External_Verneed);
6258
6259 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6260 {
6261 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6262 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6263 a->vna_nodename, FALSE);
6264 if (indx == (bfd_size_type) -1)
6265 return FALSE;
6266 a->vna_name = indx;
6267 if (a->vna_nextptr == NULL)
6268 a->vna_next = 0;
6269 else
6270 a->vna_next = sizeof (Elf_External_Vernaux);
6271
6272 _bfd_elf_swap_vernaux_out (output_bfd, a,
6273 (Elf_External_Vernaux *) p);
6274 p += sizeof (Elf_External_Vernaux);
6275 }
6276 }
6277
6278 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6279 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6280 return FALSE;
6281
6282 elf_tdata (output_bfd)->cverrefs = crefs;
6283 }
6284 }
6285
6286 if ((elf_tdata (output_bfd)->cverrefs == 0
6287 && elf_tdata (output_bfd)->cverdefs == 0)
6288 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6289 &section_sym_count) == 0)
6290 {
6291 s = bfd_get_linker_section (dynobj, ".gnu.version");
6292 s->flags |= SEC_EXCLUDE;
6293 }
6294 }
6295 return TRUE;
6296 }
6297
6298 /* Find the first non-excluded output section. We'll use its
6299 section symbol for some emitted relocs. */
6300 void
6301 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6302 {
6303 asection *s;
6304
6305 for (s = output_bfd->sections; s != NULL; s = s->next)
6306 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6307 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6308 {
6309 elf_hash_table (info)->text_index_section = s;
6310 break;
6311 }
6312 }
6313
6314 /* Find two non-excluded output sections, one for code, one for data.
6315 We'll use their section symbols for some emitted relocs. */
6316 void
6317 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6318 {
6319 asection *s;
6320
6321 /* Data first, since setting text_index_section changes
6322 _bfd_elf_link_omit_section_dynsym. */
6323 for (s = output_bfd->sections; s != NULL; s = s->next)
6324 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6325 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6326 {
6327 elf_hash_table (info)->data_index_section = s;
6328 break;
6329 }
6330
6331 for (s = output_bfd->sections; s != NULL; s = s->next)
6332 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6333 == (SEC_ALLOC | SEC_READONLY))
6334 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6335 {
6336 elf_hash_table (info)->text_index_section = s;
6337 break;
6338 }
6339
6340 if (elf_hash_table (info)->text_index_section == NULL)
6341 elf_hash_table (info)->text_index_section
6342 = elf_hash_table (info)->data_index_section;
6343 }
6344
6345 bfd_boolean
6346 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6347 {
6348 const struct elf_backend_data *bed;
6349
6350 if (!is_elf_hash_table (info->hash))
6351 return TRUE;
6352
6353 bed = get_elf_backend_data (output_bfd);
6354 (*bed->elf_backend_init_index_section) (output_bfd, info);
6355
6356 if (elf_hash_table (info)->dynamic_sections_created)
6357 {
6358 bfd *dynobj;
6359 asection *s;
6360 bfd_size_type dynsymcount;
6361 unsigned long section_sym_count;
6362 unsigned int dtagcount;
6363
6364 dynobj = elf_hash_table (info)->dynobj;
6365
6366 /* Assign dynsym indicies. In a shared library we generate a
6367 section symbol for each output section, which come first.
6368 Next come all of the back-end allocated local dynamic syms,
6369 followed by the rest of the global symbols. */
6370
6371 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6372 &section_sym_count);
6373
6374 /* Work out the size of the symbol version section. */
6375 s = bfd_get_linker_section (dynobj, ".gnu.version");
6376 BFD_ASSERT (s != NULL);
6377 if (dynsymcount != 0
6378 && (s->flags & SEC_EXCLUDE) == 0)
6379 {
6380 s->size = dynsymcount * sizeof (Elf_External_Versym);
6381 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6382 if (s->contents == NULL)
6383 return FALSE;
6384
6385 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6386 return FALSE;
6387 }
6388
6389 /* Set the size of the .dynsym and .hash sections. We counted
6390 the number of dynamic symbols in elf_link_add_object_symbols.
6391 We will build the contents of .dynsym and .hash when we build
6392 the final symbol table, because until then we do not know the
6393 correct value to give the symbols. We built the .dynstr
6394 section as we went along in elf_link_add_object_symbols. */
6395 s = bfd_get_linker_section (dynobj, ".dynsym");
6396 BFD_ASSERT (s != NULL);
6397 s->size = dynsymcount * bed->s->sizeof_sym;
6398
6399 if (dynsymcount != 0)
6400 {
6401 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6402 if (s->contents == NULL)
6403 return FALSE;
6404
6405 /* The first entry in .dynsym is a dummy symbol.
6406 Clear all the section syms, in case we don't output them all. */
6407 ++section_sym_count;
6408 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6409 }
6410
6411 elf_hash_table (info)->bucketcount = 0;
6412
6413 /* Compute the size of the hashing table. As a side effect this
6414 computes the hash values for all the names we export. */
6415 if (info->emit_hash)
6416 {
6417 unsigned long int *hashcodes;
6418 struct hash_codes_info hashinf;
6419 bfd_size_type amt;
6420 unsigned long int nsyms;
6421 size_t bucketcount;
6422 size_t hash_entry_size;
6423
6424 /* Compute the hash values for all exported symbols. At the same
6425 time store the values in an array so that we could use them for
6426 optimizations. */
6427 amt = dynsymcount * sizeof (unsigned long int);
6428 hashcodes = (unsigned long int *) bfd_malloc (amt);
6429 if (hashcodes == NULL)
6430 return FALSE;
6431 hashinf.hashcodes = hashcodes;
6432 hashinf.error = FALSE;
6433
6434 /* Put all hash values in HASHCODES. */
6435 elf_link_hash_traverse (elf_hash_table (info),
6436 elf_collect_hash_codes, &hashinf);
6437 if (hashinf.error)
6438 {
6439 free (hashcodes);
6440 return FALSE;
6441 }
6442
6443 nsyms = hashinf.hashcodes - hashcodes;
6444 bucketcount
6445 = compute_bucket_count (info, hashcodes, nsyms, 0);
6446 free (hashcodes);
6447
6448 if (bucketcount == 0)
6449 return FALSE;
6450
6451 elf_hash_table (info)->bucketcount = bucketcount;
6452
6453 s = bfd_get_linker_section (dynobj, ".hash");
6454 BFD_ASSERT (s != NULL);
6455 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6456 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6457 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6458 if (s->contents == NULL)
6459 return FALSE;
6460
6461 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6462 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6463 s->contents + hash_entry_size);
6464 }
6465
6466 if (info->emit_gnu_hash)
6467 {
6468 size_t i, cnt;
6469 unsigned char *contents;
6470 struct collect_gnu_hash_codes cinfo;
6471 bfd_size_type amt;
6472 size_t bucketcount;
6473
6474 memset (&cinfo, 0, sizeof (cinfo));
6475
6476 /* Compute the hash values for all exported symbols. At the same
6477 time store the values in an array so that we could use them for
6478 optimizations. */
6479 amt = dynsymcount * 2 * sizeof (unsigned long int);
6480 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6481 if (cinfo.hashcodes == NULL)
6482 return FALSE;
6483
6484 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6485 cinfo.min_dynindx = -1;
6486 cinfo.output_bfd = output_bfd;
6487 cinfo.bed = bed;
6488
6489 /* Put all hash values in HASHCODES. */
6490 elf_link_hash_traverse (elf_hash_table (info),
6491 elf_collect_gnu_hash_codes, &cinfo);
6492 if (cinfo.error)
6493 {
6494 free (cinfo.hashcodes);
6495 return FALSE;
6496 }
6497
6498 bucketcount
6499 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6500
6501 if (bucketcount == 0)
6502 {
6503 free (cinfo.hashcodes);
6504 return FALSE;
6505 }
6506
6507 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6508 BFD_ASSERT (s != NULL);
6509
6510 if (cinfo.nsyms == 0)
6511 {
6512 /* Empty .gnu.hash section is special. */
6513 BFD_ASSERT (cinfo.min_dynindx == -1);
6514 free (cinfo.hashcodes);
6515 s->size = 5 * 4 + bed->s->arch_size / 8;
6516 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6517 if (contents == NULL)
6518 return FALSE;
6519 s->contents = contents;
6520 /* 1 empty bucket. */
6521 bfd_put_32 (output_bfd, 1, contents);
6522 /* SYMIDX above the special symbol 0. */
6523 bfd_put_32 (output_bfd, 1, contents + 4);
6524 /* Just one word for bitmask. */
6525 bfd_put_32 (output_bfd, 1, contents + 8);
6526 /* Only hash fn bloom filter. */
6527 bfd_put_32 (output_bfd, 0, contents + 12);
6528 /* No hashes are valid - empty bitmask. */
6529 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6530 /* No hashes in the only bucket. */
6531 bfd_put_32 (output_bfd, 0,
6532 contents + 16 + bed->s->arch_size / 8);
6533 }
6534 else
6535 {
6536 unsigned long int maskwords, maskbitslog2, x;
6537 BFD_ASSERT (cinfo.min_dynindx != -1);
6538
6539 x = cinfo.nsyms;
6540 maskbitslog2 = 1;
6541 while ((x >>= 1) != 0)
6542 ++maskbitslog2;
6543 if (maskbitslog2 < 3)
6544 maskbitslog2 = 5;
6545 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6546 maskbitslog2 = maskbitslog2 + 3;
6547 else
6548 maskbitslog2 = maskbitslog2 + 2;
6549 if (bed->s->arch_size == 64)
6550 {
6551 if (maskbitslog2 == 5)
6552 maskbitslog2 = 6;
6553 cinfo.shift1 = 6;
6554 }
6555 else
6556 cinfo.shift1 = 5;
6557 cinfo.mask = (1 << cinfo.shift1) - 1;
6558 cinfo.shift2 = maskbitslog2;
6559 cinfo.maskbits = 1 << maskbitslog2;
6560 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6561 amt = bucketcount * sizeof (unsigned long int) * 2;
6562 amt += maskwords * sizeof (bfd_vma);
6563 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6564 if (cinfo.bitmask == NULL)
6565 {
6566 free (cinfo.hashcodes);
6567 return FALSE;
6568 }
6569
6570 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6571 cinfo.indx = cinfo.counts + bucketcount;
6572 cinfo.symindx = dynsymcount - cinfo.nsyms;
6573 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6574
6575 /* Determine how often each hash bucket is used. */
6576 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6577 for (i = 0; i < cinfo.nsyms; ++i)
6578 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6579
6580 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6581 if (cinfo.counts[i] != 0)
6582 {
6583 cinfo.indx[i] = cnt;
6584 cnt += cinfo.counts[i];
6585 }
6586 BFD_ASSERT (cnt == dynsymcount);
6587 cinfo.bucketcount = bucketcount;
6588 cinfo.local_indx = cinfo.min_dynindx;
6589
6590 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6591 s->size += cinfo.maskbits / 8;
6592 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6593 if (contents == NULL)
6594 {
6595 free (cinfo.bitmask);
6596 free (cinfo.hashcodes);
6597 return FALSE;
6598 }
6599
6600 s->contents = contents;
6601 bfd_put_32 (output_bfd, bucketcount, contents);
6602 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6603 bfd_put_32 (output_bfd, maskwords, contents + 8);
6604 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6605 contents += 16 + cinfo.maskbits / 8;
6606
6607 for (i = 0; i < bucketcount; ++i)
6608 {
6609 if (cinfo.counts[i] == 0)
6610 bfd_put_32 (output_bfd, 0, contents);
6611 else
6612 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6613 contents += 4;
6614 }
6615
6616 cinfo.contents = contents;
6617
6618 /* Renumber dynamic symbols, populate .gnu.hash section. */
6619 elf_link_hash_traverse (elf_hash_table (info),
6620 elf_renumber_gnu_hash_syms, &cinfo);
6621
6622 contents = s->contents + 16;
6623 for (i = 0; i < maskwords; ++i)
6624 {
6625 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6626 contents);
6627 contents += bed->s->arch_size / 8;
6628 }
6629
6630 free (cinfo.bitmask);
6631 free (cinfo.hashcodes);
6632 }
6633 }
6634
6635 s = bfd_get_linker_section (dynobj, ".dynstr");
6636 BFD_ASSERT (s != NULL);
6637
6638 elf_finalize_dynstr (output_bfd, info);
6639
6640 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6641
6642 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6643 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6644 return FALSE;
6645 }
6646
6647 return TRUE;
6648 }
6649 \f
6650 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6651
6652 static void
6653 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6654 asection *sec)
6655 {
6656 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6657 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6658 }
6659
6660 /* Finish SHF_MERGE section merging. */
6661
6662 bfd_boolean
6663 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6664 {
6665 bfd *ibfd;
6666 asection *sec;
6667
6668 if (!is_elf_hash_table (info->hash))
6669 return FALSE;
6670
6671 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6672 if ((ibfd->flags & DYNAMIC) == 0)
6673 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6674 if ((sec->flags & SEC_MERGE) != 0
6675 && !bfd_is_abs_section (sec->output_section))
6676 {
6677 struct bfd_elf_section_data *secdata;
6678
6679 secdata = elf_section_data (sec);
6680 if (! _bfd_add_merge_section (abfd,
6681 &elf_hash_table (info)->merge_info,
6682 sec, &secdata->sec_info))
6683 return FALSE;
6684 else if (secdata->sec_info)
6685 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6686 }
6687
6688 if (elf_hash_table (info)->merge_info != NULL)
6689 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6690 merge_sections_remove_hook);
6691 return TRUE;
6692 }
6693
6694 /* Create an entry in an ELF linker hash table. */
6695
6696 struct bfd_hash_entry *
6697 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6698 struct bfd_hash_table *table,
6699 const char *string)
6700 {
6701 /* Allocate the structure if it has not already been allocated by a
6702 subclass. */
6703 if (entry == NULL)
6704 {
6705 entry = (struct bfd_hash_entry *)
6706 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6707 if (entry == NULL)
6708 return entry;
6709 }
6710
6711 /* Call the allocation method of the superclass. */
6712 entry = _bfd_link_hash_newfunc (entry, table, string);
6713 if (entry != NULL)
6714 {
6715 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6716 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6717
6718 /* Set local fields. */
6719 ret->indx = -1;
6720 ret->dynindx = -1;
6721 ret->got = htab->init_got_refcount;
6722 ret->plt = htab->init_plt_refcount;
6723 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6724 - offsetof (struct elf_link_hash_entry, size)));
6725 /* Assume that we have been called by a non-ELF symbol reader.
6726 This flag is then reset by the code which reads an ELF input
6727 file. This ensures that a symbol created by a non-ELF symbol
6728 reader will have the flag set correctly. */
6729 ret->non_elf = 1;
6730 }
6731
6732 return entry;
6733 }
6734
6735 /* Copy data from an indirect symbol to its direct symbol, hiding the
6736 old indirect symbol. Also used for copying flags to a weakdef. */
6737
6738 void
6739 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6740 struct elf_link_hash_entry *dir,
6741 struct elf_link_hash_entry *ind)
6742 {
6743 struct elf_link_hash_table *htab;
6744
6745 /* Copy down any references that we may have already seen to the
6746 symbol which just became indirect. */
6747
6748 dir->ref_dynamic |= ind->ref_dynamic;
6749 dir->ref_regular |= ind->ref_regular;
6750 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6751 dir->non_got_ref |= ind->non_got_ref;
6752 dir->needs_plt |= ind->needs_plt;
6753 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6754
6755 if (ind->root.type != bfd_link_hash_indirect)
6756 return;
6757
6758 /* Copy over the global and procedure linkage table refcount entries.
6759 These may have been already set up by a check_relocs routine. */
6760 htab = elf_hash_table (info);
6761 if (ind->got.refcount > htab->init_got_refcount.refcount)
6762 {
6763 if (dir->got.refcount < 0)
6764 dir->got.refcount = 0;
6765 dir->got.refcount += ind->got.refcount;
6766 ind->got.refcount = htab->init_got_refcount.refcount;
6767 }
6768
6769 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6770 {
6771 if (dir->plt.refcount < 0)
6772 dir->plt.refcount = 0;
6773 dir->plt.refcount += ind->plt.refcount;
6774 ind->plt.refcount = htab->init_plt_refcount.refcount;
6775 }
6776
6777 if (ind->dynindx != -1)
6778 {
6779 if (dir->dynindx != -1)
6780 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6781 dir->dynindx = ind->dynindx;
6782 dir->dynstr_index = ind->dynstr_index;
6783 ind->dynindx = -1;
6784 ind->dynstr_index = 0;
6785 }
6786 }
6787
6788 void
6789 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6790 struct elf_link_hash_entry *h,
6791 bfd_boolean force_local)
6792 {
6793 /* STT_GNU_IFUNC symbol must go through PLT. */
6794 if (h->type != STT_GNU_IFUNC)
6795 {
6796 h->plt = elf_hash_table (info)->init_plt_offset;
6797 h->needs_plt = 0;
6798 }
6799 if (force_local)
6800 {
6801 h->forced_local = 1;
6802 if (h->dynindx != -1)
6803 {
6804 h->dynindx = -1;
6805 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6806 h->dynstr_index);
6807 }
6808 }
6809 }
6810
6811 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6812 caller. */
6813
6814 bfd_boolean
6815 _bfd_elf_link_hash_table_init
6816 (struct elf_link_hash_table *table,
6817 bfd *abfd,
6818 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6819 struct bfd_hash_table *,
6820 const char *),
6821 unsigned int entsize,
6822 enum elf_target_id target_id)
6823 {
6824 bfd_boolean ret;
6825 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6826
6827 table->init_got_refcount.refcount = can_refcount - 1;
6828 table->init_plt_refcount.refcount = can_refcount - 1;
6829 table->init_got_offset.offset = -(bfd_vma) 1;
6830 table->init_plt_offset.offset = -(bfd_vma) 1;
6831 /* The first dynamic symbol is a dummy. */
6832 table->dynsymcount = 1;
6833
6834 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6835
6836 table->root.type = bfd_link_elf_hash_table;
6837 table->hash_table_id = target_id;
6838
6839 return ret;
6840 }
6841
6842 /* Create an ELF linker hash table. */
6843
6844 struct bfd_link_hash_table *
6845 _bfd_elf_link_hash_table_create (bfd *abfd)
6846 {
6847 struct elf_link_hash_table *ret;
6848 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6849
6850 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6851 if (ret == NULL)
6852 return NULL;
6853
6854 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6855 sizeof (struct elf_link_hash_entry),
6856 GENERIC_ELF_DATA))
6857 {
6858 free (ret);
6859 return NULL;
6860 }
6861 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6862
6863 return &ret->root;
6864 }
6865
6866 /* Destroy an ELF linker hash table. */
6867
6868 void
6869 _bfd_elf_link_hash_table_free (bfd *obfd)
6870 {
6871 struct elf_link_hash_table *htab;
6872
6873 htab = (struct elf_link_hash_table *) obfd->link.hash;
6874 if (htab->dynstr != NULL)
6875 _bfd_elf_strtab_free (htab->dynstr);
6876 _bfd_merge_sections_free (htab->merge_info);
6877 _bfd_generic_link_hash_table_free (obfd);
6878 }
6879
6880 /* This is a hook for the ELF emulation code in the generic linker to
6881 tell the backend linker what file name to use for the DT_NEEDED
6882 entry for a dynamic object. */
6883
6884 void
6885 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6886 {
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 elf_dt_name (abfd) = name;
6890 }
6891
6892 int
6893 bfd_elf_get_dyn_lib_class (bfd *abfd)
6894 {
6895 int lib_class;
6896 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6897 && bfd_get_format (abfd) == bfd_object)
6898 lib_class = elf_dyn_lib_class (abfd);
6899 else
6900 lib_class = 0;
6901 return lib_class;
6902 }
6903
6904 void
6905 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6906 {
6907 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6908 && bfd_get_format (abfd) == bfd_object)
6909 elf_dyn_lib_class (abfd) = lib_class;
6910 }
6911
6912 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6913 the linker ELF emulation code. */
6914
6915 struct bfd_link_needed_list *
6916 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6917 struct bfd_link_info *info)
6918 {
6919 if (! is_elf_hash_table (info->hash))
6920 return NULL;
6921 return elf_hash_table (info)->needed;
6922 }
6923
6924 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6925 hook for the linker ELF emulation code. */
6926
6927 struct bfd_link_needed_list *
6928 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6929 struct bfd_link_info *info)
6930 {
6931 if (! is_elf_hash_table (info->hash))
6932 return NULL;
6933 return elf_hash_table (info)->runpath;
6934 }
6935
6936 /* Get the name actually used for a dynamic object for a link. This
6937 is the SONAME entry if there is one. Otherwise, it is the string
6938 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6939
6940 const char *
6941 bfd_elf_get_dt_soname (bfd *abfd)
6942 {
6943 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6944 && bfd_get_format (abfd) == bfd_object)
6945 return elf_dt_name (abfd);
6946 return NULL;
6947 }
6948
6949 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6950 the ELF linker emulation code. */
6951
6952 bfd_boolean
6953 bfd_elf_get_bfd_needed_list (bfd *abfd,
6954 struct bfd_link_needed_list **pneeded)
6955 {
6956 asection *s;
6957 bfd_byte *dynbuf = NULL;
6958 unsigned int elfsec;
6959 unsigned long shlink;
6960 bfd_byte *extdyn, *extdynend;
6961 size_t extdynsize;
6962 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6963
6964 *pneeded = NULL;
6965
6966 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6967 || bfd_get_format (abfd) != bfd_object)
6968 return TRUE;
6969
6970 s = bfd_get_section_by_name (abfd, ".dynamic");
6971 if (s == NULL || s->size == 0)
6972 return TRUE;
6973
6974 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6975 goto error_return;
6976
6977 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6978 if (elfsec == SHN_BAD)
6979 goto error_return;
6980
6981 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6982
6983 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6984 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6985
6986 extdyn = dynbuf;
6987 extdynend = extdyn + s->size;
6988 for (; extdyn < extdynend; extdyn += extdynsize)
6989 {
6990 Elf_Internal_Dyn dyn;
6991
6992 (*swap_dyn_in) (abfd, extdyn, &dyn);
6993
6994 if (dyn.d_tag == DT_NULL)
6995 break;
6996
6997 if (dyn.d_tag == DT_NEEDED)
6998 {
6999 const char *string;
7000 struct bfd_link_needed_list *l;
7001 unsigned int tagv = dyn.d_un.d_val;
7002 bfd_size_type amt;
7003
7004 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7005 if (string == NULL)
7006 goto error_return;
7007
7008 amt = sizeof *l;
7009 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7010 if (l == NULL)
7011 goto error_return;
7012
7013 l->by = abfd;
7014 l->name = string;
7015 l->next = *pneeded;
7016 *pneeded = l;
7017 }
7018 }
7019
7020 free (dynbuf);
7021
7022 return TRUE;
7023
7024 error_return:
7025 if (dynbuf != NULL)
7026 free (dynbuf);
7027 return FALSE;
7028 }
7029
7030 struct elf_symbuf_symbol
7031 {
7032 unsigned long st_name; /* Symbol name, index in string tbl */
7033 unsigned char st_info; /* Type and binding attributes */
7034 unsigned char st_other; /* Visibilty, and target specific */
7035 };
7036
7037 struct elf_symbuf_head
7038 {
7039 struct elf_symbuf_symbol *ssym;
7040 bfd_size_type count;
7041 unsigned int st_shndx;
7042 };
7043
7044 struct elf_symbol
7045 {
7046 union
7047 {
7048 Elf_Internal_Sym *isym;
7049 struct elf_symbuf_symbol *ssym;
7050 } u;
7051 const char *name;
7052 };
7053
7054 /* Sort references to symbols by ascending section number. */
7055
7056 static int
7057 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7058 {
7059 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7060 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7061
7062 return s1->st_shndx - s2->st_shndx;
7063 }
7064
7065 static int
7066 elf_sym_name_compare (const void *arg1, const void *arg2)
7067 {
7068 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7069 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7070 return strcmp (s1->name, s2->name);
7071 }
7072
7073 static struct elf_symbuf_head *
7074 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7075 {
7076 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7077 struct elf_symbuf_symbol *ssym;
7078 struct elf_symbuf_head *ssymbuf, *ssymhead;
7079 bfd_size_type i, shndx_count, total_size;
7080
7081 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7082 if (indbuf == NULL)
7083 return NULL;
7084
7085 for (ind = indbuf, i = 0; i < symcount; i++)
7086 if (isymbuf[i].st_shndx != SHN_UNDEF)
7087 *ind++ = &isymbuf[i];
7088 indbufend = ind;
7089
7090 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7091 elf_sort_elf_symbol);
7092
7093 shndx_count = 0;
7094 if (indbufend > indbuf)
7095 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7096 if (ind[0]->st_shndx != ind[1]->st_shndx)
7097 shndx_count++;
7098
7099 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7100 + (indbufend - indbuf) * sizeof (*ssym));
7101 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7102 if (ssymbuf == NULL)
7103 {
7104 free (indbuf);
7105 return NULL;
7106 }
7107
7108 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7109 ssymbuf->ssym = NULL;
7110 ssymbuf->count = shndx_count;
7111 ssymbuf->st_shndx = 0;
7112 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7113 {
7114 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7115 {
7116 ssymhead++;
7117 ssymhead->ssym = ssym;
7118 ssymhead->count = 0;
7119 ssymhead->st_shndx = (*ind)->st_shndx;
7120 }
7121 ssym->st_name = (*ind)->st_name;
7122 ssym->st_info = (*ind)->st_info;
7123 ssym->st_other = (*ind)->st_other;
7124 ssymhead->count++;
7125 }
7126 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7127 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7128 == total_size));
7129
7130 free (indbuf);
7131 return ssymbuf;
7132 }
7133
7134 /* Check if 2 sections define the same set of local and global
7135 symbols. */
7136
7137 static bfd_boolean
7138 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7139 struct bfd_link_info *info)
7140 {
7141 bfd *bfd1, *bfd2;
7142 const struct elf_backend_data *bed1, *bed2;
7143 Elf_Internal_Shdr *hdr1, *hdr2;
7144 bfd_size_type symcount1, symcount2;
7145 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7146 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7147 Elf_Internal_Sym *isym, *isymend;
7148 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7149 bfd_size_type count1, count2, i;
7150 unsigned int shndx1, shndx2;
7151 bfd_boolean result;
7152
7153 bfd1 = sec1->owner;
7154 bfd2 = sec2->owner;
7155
7156 /* Both sections have to be in ELF. */
7157 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7158 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7159 return FALSE;
7160
7161 if (elf_section_type (sec1) != elf_section_type (sec2))
7162 return FALSE;
7163
7164 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7165 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7166 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7167 return FALSE;
7168
7169 bed1 = get_elf_backend_data (bfd1);
7170 bed2 = get_elf_backend_data (bfd2);
7171 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7172 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7173 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7174 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7175
7176 if (symcount1 == 0 || symcount2 == 0)
7177 return FALSE;
7178
7179 result = FALSE;
7180 isymbuf1 = NULL;
7181 isymbuf2 = NULL;
7182 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7183 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7184
7185 if (ssymbuf1 == NULL)
7186 {
7187 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7188 NULL, NULL, NULL);
7189 if (isymbuf1 == NULL)
7190 goto done;
7191
7192 if (!info->reduce_memory_overheads)
7193 elf_tdata (bfd1)->symbuf = ssymbuf1
7194 = elf_create_symbuf (symcount1, isymbuf1);
7195 }
7196
7197 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7198 {
7199 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7200 NULL, NULL, NULL);
7201 if (isymbuf2 == NULL)
7202 goto done;
7203
7204 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7205 elf_tdata (bfd2)->symbuf = ssymbuf2
7206 = elf_create_symbuf (symcount2, isymbuf2);
7207 }
7208
7209 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7210 {
7211 /* Optimized faster version. */
7212 bfd_size_type lo, hi, mid;
7213 struct elf_symbol *symp;
7214 struct elf_symbuf_symbol *ssym, *ssymend;
7215
7216 lo = 0;
7217 hi = ssymbuf1->count;
7218 ssymbuf1++;
7219 count1 = 0;
7220 while (lo < hi)
7221 {
7222 mid = (lo + hi) / 2;
7223 if (shndx1 < ssymbuf1[mid].st_shndx)
7224 hi = mid;
7225 else if (shndx1 > ssymbuf1[mid].st_shndx)
7226 lo = mid + 1;
7227 else
7228 {
7229 count1 = ssymbuf1[mid].count;
7230 ssymbuf1 += mid;
7231 break;
7232 }
7233 }
7234
7235 lo = 0;
7236 hi = ssymbuf2->count;
7237 ssymbuf2++;
7238 count2 = 0;
7239 while (lo < hi)
7240 {
7241 mid = (lo + hi) / 2;
7242 if (shndx2 < ssymbuf2[mid].st_shndx)
7243 hi = mid;
7244 else if (shndx2 > ssymbuf2[mid].st_shndx)
7245 lo = mid + 1;
7246 else
7247 {
7248 count2 = ssymbuf2[mid].count;
7249 ssymbuf2 += mid;
7250 break;
7251 }
7252 }
7253
7254 if (count1 == 0 || count2 == 0 || count1 != count2)
7255 goto done;
7256
7257 symtable1 = (struct elf_symbol *)
7258 bfd_malloc (count1 * sizeof (struct elf_symbol));
7259 symtable2 = (struct elf_symbol *)
7260 bfd_malloc (count2 * sizeof (struct elf_symbol));
7261 if (symtable1 == NULL || symtable2 == NULL)
7262 goto done;
7263
7264 symp = symtable1;
7265 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7266 ssym < ssymend; ssym++, symp++)
7267 {
7268 symp->u.ssym = ssym;
7269 symp->name = bfd_elf_string_from_elf_section (bfd1,
7270 hdr1->sh_link,
7271 ssym->st_name);
7272 }
7273
7274 symp = symtable2;
7275 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7276 ssym < ssymend; ssym++, symp++)
7277 {
7278 symp->u.ssym = ssym;
7279 symp->name = bfd_elf_string_from_elf_section (bfd2,
7280 hdr2->sh_link,
7281 ssym->st_name);
7282 }
7283
7284 /* Sort symbol by name. */
7285 qsort (symtable1, count1, sizeof (struct elf_symbol),
7286 elf_sym_name_compare);
7287 qsort (symtable2, count1, sizeof (struct elf_symbol),
7288 elf_sym_name_compare);
7289
7290 for (i = 0; i < count1; i++)
7291 /* Two symbols must have the same binding, type and name. */
7292 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7293 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7294 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7295 goto done;
7296
7297 result = TRUE;
7298 goto done;
7299 }
7300
7301 symtable1 = (struct elf_symbol *)
7302 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7303 symtable2 = (struct elf_symbol *)
7304 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7305 if (symtable1 == NULL || symtable2 == NULL)
7306 goto done;
7307
7308 /* Count definitions in the section. */
7309 count1 = 0;
7310 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7311 if (isym->st_shndx == shndx1)
7312 symtable1[count1++].u.isym = isym;
7313
7314 count2 = 0;
7315 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7316 if (isym->st_shndx == shndx2)
7317 symtable2[count2++].u.isym = isym;
7318
7319 if (count1 == 0 || count2 == 0 || count1 != count2)
7320 goto done;
7321
7322 for (i = 0; i < count1; i++)
7323 symtable1[i].name
7324 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7325 symtable1[i].u.isym->st_name);
7326
7327 for (i = 0; i < count2; i++)
7328 symtable2[i].name
7329 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7330 symtable2[i].u.isym->st_name);
7331
7332 /* Sort symbol by name. */
7333 qsort (symtable1, count1, sizeof (struct elf_symbol),
7334 elf_sym_name_compare);
7335 qsort (symtable2, count1, sizeof (struct elf_symbol),
7336 elf_sym_name_compare);
7337
7338 for (i = 0; i < count1; i++)
7339 /* Two symbols must have the same binding, type and name. */
7340 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7341 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7342 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7343 goto done;
7344
7345 result = TRUE;
7346
7347 done:
7348 if (symtable1)
7349 free (symtable1);
7350 if (symtable2)
7351 free (symtable2);
7352 if (isymbuf1)
7353 free (isymbuf1);
7354 if (isymbuf2)
7355 free (isymbuf2);
7356
7357 return result;
7358 }
7359
7360 /* Return TRUE if 2 section types are compatible. */
7361
7362 bfd_boolean
7363 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7364 bfd *bbfd, const asection *bsec)
7365 {
7366 if (asec == NULL
7367 || bsec == NULL
7368 || abfd->xvec->flavour != bfd_target_elf_flavour
7369 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7370 return TRUE;
7371
7372 return elf_section_type (asec) == elf_section_type (bsec);
7373 }
7374 \f
7375 /* Final phase of ELF linker. */
7376
7377 /* A structure we use to avoid passing large numbers of arguments. */
7378
7379 struct elf_final_link_info
7380 {
7381 /* General link information. */
7382 struct bfd_link_info *info;
7383 /* Output BFD. */
7384 bfd *output_bfd;
7385 /* Symbol string table. */
7386 struct bfd_strtab_hash *symstrtab;
7387 /* .dynsym section. */
7388 asection *dynsym_sec;
7389 /* .hash section. */
7390 asection *hash_sec;
7391 /* symbol version section (.gnu.version). */
7392 asection *symver_sec;
7393 /* Buffer large enough to hold contents of any section. */
7394 bfd_byte *contents;
7395 /* Buffer large enough to hold external relocs of any section. */
7396 void *external_relocs;
7397 /* Buffer large enough to hold internal relocs of any section. */
7398 Elf_Internal_Rela *internal_relocs;
7399 /* Buffer large enough to hold external local symbols of any input
7400 BFD. */
7401 bfd_byte *external_syms;
7402 /* And a buffer for symbol section indices. */
7403 Elf_External_Sym_Shndx *locsym_shndx;
7404 /* Buffer large enough to hold internal local symbols of any input
7405 BFD. */
7406 Elf_Internal_Sym *internal_syms;
7407 /* Array large enough to hold a symbol index for each local symbol
7408 of any input BFD. */
7409 long *indices;
7410 /* Array large enough to hold a section pointer for each local
7411 symbol of any input BFD. */
7412 asection **sections;
7413 /* Buffer to hold swapped out symbols. */
7414 bfd_byte *symbuf;
7415 /* And one for symbol section indices. */
7416 Elf_External_Sym_Shndx *symshndxbuf;
7417 /* Number of swapped out symbols in buffer. */
7418 size_t symbuf_count;
7419 /* Number of symbols which fit in symbuf. */
7420 size_t symbuf_size;
7421 /* And same for symshndxbuf. */
7422 size_t shndxbuf_size;
7423 /* Number of STT_FILE syms seen. */
7424 size_t filesym_count;
7425 };
7426
7427 /* This struct is used to pass information to elf_link_output_extsym. */
7428
7429 struct elf_outext_info
7430 {
7431 bfd_boolean failed;
7432 bfd_boolean localsyms;
7433 bfd_boolean need_second_pass;
7434 bfd_boolean second_pass;
7435 bfd_boolean file_sym_done;
7436 struct elf_final_link_info *flinfo;
7437 };
7438
7439
7440 /* Support for evaluating a complex relocation.
7441
7442 Complex relocations are generalized, self-describing relocations. The
7443 implementation of them consists of two parts: complex symbols, and the
7444 relocations themselves.
7445
7446 The relocations are use a reserved elf-wide relocation type code (R_RELC
7447 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7448 information (start bit, end bit, word width, etc) into the addend. This
7449 information is extracted from CGEN-generated operand tables within gas.
7450
7451 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7452 internal) representing prefix-notation expressions, including but not
7453 limited to those sorts of expressions normally encoded as addends in the
7454 addend field. The symbol mangling format is:
7455
7456 <node> := <literal>
7457 | <unary-operator> ':' <node>
7458 | <binary-operator> ':' <node> ':' <node>
7459 ;
7460
7461 <literal> := 's' <digits=N> ':' <N character symbol name>
7462 | 'S' <digits=N> ':' <N character section name>
7463 | '#' <hexdigits>
7464 ;
7465
7466 <binary-operator> := as in C
7467 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7468
7469 static void
7470 set_symbol_value (bfd *bfd_with_globals,
7471 Elf_Internal_Sym *isymbuf,
7472 size_t locsymcount,
7473 size_t symidx,
7474 bfd_vma val)
7475 {
7476 struct elf_link_hash_entry **sym_hashes;
7477 struct elf_link_hash_entry *h;
7478 size_t extsymoff = locsymcount;
7479
7480 if (symidx < locsymcount)
7481 {
7482 Elf_Internal_Sym *sym;
7483
7484 sym = isymbuf + symidx;
7485 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7486 {
7487 /* It is a local symbol: move it to the
7488 "absolute" section and give it a value. */
7489 sym->st_shndx = SHN_ABS;
7490 sym->st_value = val;
7491 return;
7492 }
7493 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7494 extsymoff = 0;
7495 }
7496
7497 /* It is a global symbol: set its link type
7498 to "defined" and give it a value. */
7499
7500 sym_hashes = elf_sym_hashes (bfd_with_globals);
7501 h = sym_hashes [symidx - extsymoff];
7502 while (h->root.type == bfd_link_hash_indirect
7503 || h->root.type == bfd_link_hash_warning)
7504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7505 h->root.type = bfd_link_hash_defined;
7506 h->root.u.def.value = val;
7507 h->root.u.def.section = bfd_abs_section_ptr;
7508 }
7509
7510 static bfd_boolean
7511 resolve_symbol (const char *name,
7512 bfd *input_bfd,
7513 struct elf_final_link_info *flinfo,
7514 bfd_vma *result,
7515 Elf_Internal_Sym *isymbuf,
7516 size_t locsymcount)
7517 {
7518 Elf_Internal_Sym *sym;
7519 struct bfd_link_hash_entry *global_entry;
7520 const char *candidate = NULL;
7521 Elf_Internal_Shdr *symtab_hdr;
7522 size_t i;
7523
7524 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7525
7526 for (i = 0; i < locsymcount; ++ i)
7527 {
7528 sym = isymbuf + i;
7529
7530 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7531 continue;
7532
7533 candidate = bfd_elf_string_from_elf_section (input_bfd,
7534 symtab_hdr->sh_link,
7535 sym->st_name);
7536 #ifdef DEBUG
7537 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7538 name, candidate, (unsigned long) sym->st_value);
7539 #endif
7540 if (candidate && strcmp (candidate, name) == 0)
7541 {
7542 asection *sec = flinfo->sections [i];
7543
7544 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7545 *result += sec->output_offset + sec->output_section->vma;
7546 #ifdef DEBUG
7547 printf ("Found symbol with value %8.8lx\n",
7548 (unsigned long) *result);
7549 #endif
7550 return TRUE;
7551 }
7552 }
7553
7554 /* Hmm, haven't found it yet. perhaps it is a global. */
7555 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7556 FALSE, FALSE, TRUE);
7557 if (!global_entry)
7558 return FALSE;
7559
7560 if (global_entry->type == bfd_link_hash_defined
7561 || global_entry->type == bfd_link_hash_defweak)
7562 {
7563 *result = (global_entry->u.def.value
7564 + global_entry->u.def.section->output_section->vma
7565 + global_entry->u.def.section->output_offset);
7566 #ifdef DEBUG
7567 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7568 global_entry->root.string, (unsigned long) *result);
7569 #endif
7570 return TRUE;
7571 }
7572
7573 return FALSE;
7574 }
7575
7576 static bfd_boolean
7577 resolve_section (const char *name,
7578 asection *sections,
7579 bfd_vma *result)
7580 {
7581 asection *curr;
7582 unsigned int len;
7583
7584 for (curr = sections; curr; curr = curr->next)
7585 if (strcmp (curr->name, name) == 0)
7586 {
7587 *result = curr->vma;
7588 return TRUE;
7589 }
7590
7591 /* Hmm. still haven't found it. try pseudo-section names. */
7592 for (curr = sections; curr; curr = curr->next)
7593 {
7594 len = strlen (curr->name);
7595 if (len > strlen (name))
7596 continue;
7597
7598 if (strncmp (curr->name, name, len) == 0)
7599 {
7600 if (strncmp (".end", name + len, 4) == 0)
7601 {
7602 *result = curr->vma + curr->size;
7603 return TRUE;
7604 }
7605
7606 /* Insert more pseudo-section names here, if you like. */
7607 }
7608 }
7609
7610 return FALSE;
7611 }
7612
7613 static void
7614 undefined_reference (const char *reftype, const char *name)
7615 {
7616 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7617 reftype, name);
7618 }
7619
7620 static bfd_boolean
7621 eval_symbol (bfd_vma *result,
7622 const char **symp,
7623 bfd *input_bfd,
7624 struct elf_final_link_info *flinfo,
7625 bfd_vma dot,
7626 Elf_Internal_Sym *isymbuf,
7627 size_t locsymcount,
7628 int signed_p)
7629 {
7630 size_t len;
7631 size_t symlen;
7632 bfd_vma a;
7633 bfd_vma b;
7634 char symbuf[4096];
7635 const char *sym = *symp;
7636 const char *symend;
7637 bfd_boolean symbol_is_section = FALSE;
7638
7639 len = strlen (sym);
7640 symend = sym + len;
7641
7642 if (len < 1 || len > sizeof (symbuf))
7643 {
7644 bfd_set_error (bfd_error_invalid_operation);
7645 return FALSE;
7646 }
7647
7648 switch (* sym)
7649 {
7650 case '.':
7651 *result = dot;
7652 *symp = sym + 1;
7653 return TRUE;
7654
7655 case '#':
7656 ++sym;
7657 *result = strtoul (sym, (char **) symp, 16);
7658 return TRUE;
7659
7660 case 'S':
7661 symbol_is_section = TRUE;
7662 case 's':
7663 ++sym;
7664 symlen = strtol (sym, (char **) symp, 10);
7665 sym = *symp + 1; /* Skip the trailing ':'. */
7666
7667 if (symend < sym || symlen + 1 > sizeof (symbuf))
7668 {
7669 bfd_set_error (bfd_error_invalid_operation);
7670 return FALSE;
7671 }
7672
7673 memcpy (symbuf, sym, symlen);
7674 symbuf[symlen] = '\0';
7675 *symp = sym + symlen;
7676
7677 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7678 the symbol as a section, or vice-versa. so we're pretty liberal in our
7679 interpretation here; section means "try section first", not "must be a
7680 section", and likewise with symbol. */
7681
7682 if (symbol_is_section)
7683 {
7684 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7685 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7686 isymbuf, locsymcount))
7687 {
7688 undefined_reference ("section", symbuf);
7689 return FALSE;
7690 }
7691 }
7692 else
7693 {
7694 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7695 isymbuf, locsymcount)
7696 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7697 result))
7698 {
7699 undefined_reference ("symbol", symbuf);
7700 return FALSE;
7701 }
7702 }
7703
7704 return TRUE;
7705
7706 /* All that remains are operators. */
7707
7708 #define UNARY_OP(op) \
7709 if (strncmp (sym, #op, strlen (#op)) == 0) \
7710 { \
7711 sym += strlen (#op); \
7712 if (*sym == ':') \
7713 ++sym; \
7714 *symp = sym; \
7715 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7716 isymbuf, locsymcount, signed_p)) \
7717 return FALSE; \
7718 if (signed_p) \
7719 *result = op ((bfd_signed_vma) a); \
7720 else \
7721 *result = op a; \
7722 return TRUE; \
7723 }
7724
7725 #define BINARY_OP(op) \
7726 if (strncmp (sym, #op, strlen (#op)) == 0) \
7727 { \
7728 sym += strlen (#op); \
7729 if (*sym == ':') \
7730 ++sym; \
7731 *symp = sym; \
7732 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7733 isymbuf, locsymcount, signed_p)) \
7734 return FALSE; \
7735 ++*symp; \
7736 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7737 isymbuf, locsymcount, signed_p)) \
7738 return FALSE; \
7739 if (signed_p) \
7740 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7741 else \
7742 *result = a op b; \
7743 return TRUE; \
7744 }
7745
7746 default:
7747 UNARY_OP (0-);
7748 BINARY_OP (<<);
7749 BINARY_OP (>>);
7750 BINARY_OP (==);
7751 BINARY_OP (!=);
7752 BINARY_OP (<=);
7753 BINARY_OP (>=);
7754 BINARY_OP (&&);
7755 BINARY_OP (||);
7756 UNARY_OP (~);
7757 UNARY_OP (!);
7758 BINARY_OP (*);
7759 BINARY_OP (/);
7760 BINARY_OP (%);
7761 BINARY_OP (^);
7762 BINARY_OP (|);
7763 BINARY_OP (&);
7764 BINARY_OP (+);
7765 BINARY_OP (-);
7766 BINARY_OP (<);
7767 BINARY_OP (>);
7768 #undef UNARY_OP
7769 #undef BINARY_OP
7770 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7771 bfd_set_error (bfd_error_invalid_operation);
7772 return FALSE;
7773 }
7774 }
7775
7776 static void
7777 put_value (bfd_vma size,
7778 unsigned long chunksz,
7779 bfd *input_bfd,
7780 bfd_vma x,
7781 bfd_byte *location)
7782 {
7783 location += (size - chunksz);
7784
7785 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7786 {
7787 switch (chunksz)
7788 {
7789 default:
7790 case 0:
7791 abort ();
7792 case 1:
7793 bfd_put_8 (input_bfd, x, location);
7794 break;
7795 case 2:
7796 bfd_put_16 (input_bfd, x, location);
7797 break;
7798 case 4:
7799 bfd_put_32 (input_bfd, x, location);
7800 break;
7801 case 8:
7802 #ifdef BFD64
7803 bfd_put_64 (input_bfd, x, location);
7804 #else
7805 abort ();
7806 #endif
7807 break;
7808 }
7809 }
7810 }
7811
7812 static bfd_vma
7813 get_value (bfd_vma size,
7814 unsigned long chunksz,
7815 bfd *input_bfd,
7816 bfd_byte *location)
7817 {
7818 int shift;
7819 bfd_vma x = 0;
7820
7821 /* Sanity checks. */
7822 BFD_ASSERT (chunksz <= sizeof (x)
7823 && size >= chunksz
7824 && chunksz != 0
7825 && (size % chunksz) == 0
7826 && input_bfd != NULL
7827 && location != NULL);
7828
7829 if (chunksz == sizeof (x))
7830 {
7831 BFD_ASSERT (size == chunksz);
7832
7833 /* Make sure that we do not perform an undefined shift operation.
7834 We know that size == chunksz so there will only be one iteration
7835 of the loop below. */
7836 shift = 0;
7837 }
7838 else
7839 shift = 8 * chunksz;
7840
7841 for (; size; size -= chunksz, location += chunksz)
7842 {
7843 switch (chunksz)
7844 {
7845 case 1:
7846 x = (x << shift) | bfd_get_8 (input_bfd, location);
7847 break;
7848 case 2:
7849 x = (x << shift) | bfd_get_16 (input_bfd, location);
7850 break;
7851 case 4:
7852 x = (x << shift) | bfd_get_32 (input_bfd, location);
7853 break;
7854 #ifdef BFD64
7855 case 8:
7856 x = (x << shift) | bfd_get_64 (input_bfd, location);
7857 break;
7858 #endif
7859 default:
7860 abort ();
7861 }
7862 }
7863 return x;
7864 }
7865
7866 static void
7867 decode_complex_addend (unsigned long *start, /* in bits */
7868 unsigned long *oplen, /* in bits */
7869 unsigned long *len, /* in bits */
7870 unsigned long *wordsz, /* in bytes */
7871 unsigned long *chunksz, /* in bytes */
7872 unsigned long *lsb0_p,
7873 unsigned long *signed_p,
7874 unsigned long *trunc_p,
7875 unsigned long encoded)
7876 {
7877 * start = encoded & 0x3F;
7878 * len = (encoded >> 6) & 0x3F;
7879 * oplen = (encoded >> 12) & 0x3F;
7880 * wordsz = (encoded >> 18) & 0xF;
7881 * chunksz = (encoded >> 22) & 0xF;
7882 * lsb0_p = (encoded >> 27) & 1;
7883 * signed_p = (encoded >> 28) & 1;
7884 * trunc_p = (encoded >> 29) & 1;
7885 }
7886
7887 bfd_reloc_status_type
7888 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7889 asection *input_section ATTRIBUTE_UNUSED,
7890 bfd_byte *contents,
7891 Elf_Internal_Rela *rel,
7892 bfd_vma relocation)
7893 {
7894 bfd_vma shift, x, mask;
7895 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7896 bfd_reloc_status_type r;
7897
7898 /* Perform this reloc, since it is complex.
7899 (this is not to say that it necessarily refers to a complex
7900 symbol; merely that it is a self-describing CGEN based reloc.
7901 i.e. the addend has the complete reloc information (bit start, end,
7902 word size, etc) encoded within it.). */
7903
7904 decode_complex_addend (&start, &oplen, &len, &wordsz,
7905 &chunksz, &lsb0_p, &signed_p,
7906 &trunc_p, rel->r_addend);
7907
7908 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7909
7910 if (lsb0_p)
7911 shift = (start + 1) - len;
7912 else
7913 shift = (8 * wordsz) - (start + len);
7914
7915 /* FIXME: octets_per_byte. */
7916 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7917
7918 #ifdef DEBUG
7919 printf ("Doing complex reloc: "
7920 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7921 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7922 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7923 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7924 oplen, (unsigned long) x, (unsigned long) mask,
7925 (unsigned long) relocation);
7926 #endif
7927
7928 r = bfd_reloc_ok;
7929 if (! trunc_p)
7930 /* Now do an overflow check. */
7931 r = bfd_check_overflow ((signed_p
7932 ? complain_overflow_signed
7933 : complain_overflow_unsigned),
7934 len, 0, (8 * wordsz),
7935 relocation);
7936
7937 /* Do the deed. */
7938 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7939
7940 #ifdef DEBUG
7941 printf (" relocation: %8.8lx\n"
7942 " shifted mask: %8.8lx\n"
7943 " shifted/masked reloc: %8.8lx\n"
7944 " result: %8.8lx\n",
7945 (unsigned long) relocation, (unsigned long) (mask << shift),
7946 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7947 #endif
7948 /* FIXME: octets_per_byte. */
7949 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7950 return r;
7951 }
7952
7953 /* When performing a relocatable link, the input relocations are
7954 preserved. But, if they reference global symbols, the indices
7955 referenced must be updated. Update all the relocations found in
7956 RELDATA. */
7957
7958 static void
7959 elf_link_adjust_relocs (bfd *abfd,
7960 struct bfd_elf_section_reloc_data *reldata)
7961 {
7962 unsigned int i;
7963 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7964 bfd_byte *erela;
7965 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7966 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7967 bfd_vma r_type_mask;
7968 int r_sym_shift;
7969 unsigned int count = reldata->count;
7970 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7971
7972 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7973 {
7974 swap_in = bed->s->swap_reloc_in;
7975 swap_out = bed->s->swap_reloc_out;
7976 }
7977 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7978 {
7979 swap_in = bed->s->swap_reloca_in;
7980 swap_out = bed->s->swap_reloca_out;
7981 }
7982 else
7983 abort ();
7984
7985 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7986 abort ();
7987
7988 if (bed->s->arch_size == 32)
7989 {
7990 r_type_mask = 0xff;
7991 r_sym_shift = 8;
7992 }
7993 else
7994 {
7995 r_type_mask = 0xffffffff;
7996 r_sym_shift = 32;
7997 }
7998
7999 erela = reldata->hdr->contents;
8000 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8001 {
8002 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8003 unsigned int j;
8004
8005 if (*rel_hash == NULL)
8006 continue;
8007
8008 BFD_ASSERT ((*rel_hash)->indx >= 0);
8009
8010 (*swap_in) (abfd, erela, irela);
8011 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8012 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8013 | (irela[j].r_info & r_type_mask));
8014 (*swap_out) (abfd, irela, erela);
8015 }
8016 }
8017
8018 struct elf_link_sort_rela
8019 {
8020 union {
8021 bfd_vma offset;
8022 bfd_vma sym_mask;
8023 } u;
8024 enum elf_reloc_type_class type;
8025 /* We use this as an array of size int_rels_per_ext_rel. */
8026 Elf_Internal_Rela rela[1];
8027 };
8028
8029 static int
8030 elf_link_sort_cmp1 (const void *A, const void *B)
8031 {
8032 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8033 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8034 int relativea, relativeb;
8035
8036 relativea = a->type == reloc_class_relative;
8037 relativeb = b->type == reloc_class_relative;
8038
8039 if (relativea < relativeb)
8040 return 1;
8041 if (relativea > relativeb)
8042 return -1;
8043 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8044 return -1;
8045 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8046 return 1;
8047 if (a->rela->r_offset < b->rela->r_offset)
8048 return -1;
8049 if (a->rela->r_offset > b->rela->r_offset)
8050 return 1;
8051 return 0;
8052 }
8053
8054 static int
8055 elf_link_sort_cmp2 (const void *A, const void *B)
8056 {
8057 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8058 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8059
8060 if (a->type < b->type)
8061 return -1;
8062 if (a->type > b->type)
8063 return 1;
8064 if (a->u.offset < b->u.offset)
8065 return -1;
8066 if (a->u.offset > b->u.offset)
8067 return 1;
8068 if (a->rela->r_offset < b->rela->r_offset)
8069 return -1;
8070 if (a->rela->r_offset > b->rela->r_offset)
8071 return 1;
8072 return 0;
8073 }
8074
8075 static size_t
8076 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8077 {
8078 asection *dynamic_relocs;
8079 asection *rela_dyn;
8080 asection *rel_dyn;
8081 bfd_size_type count, size;
8082 size_t i, ret, sort_elt, ext_size;
8083 bfd_byte *sort, *s_non_relative, *p;
8084 struct elf_link_sort_rela *sq;
8085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 int i2e = bed->s->int_rels_per_ext_rel;
8087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8088 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8089 struct bfd_link_order *lo;
8090 bfd_vma r_sym_mask;
8091 bfd_boolean use_rela;
8092
8093 /* Find a dynamic reloc section. */
8094 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8095 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8096 if (rela_dyn != NULL && rela_dyn->size > 0
8097 && rel_dyn != NULL && rel_dyn->size > 0)
8098 {
8099 bfd_boolean use_rela_initialised = FALSE;
8100
8101 /* This is just here to stop gcc from complaining.
8102 It's initialization checking code is not perfect. */
8103 use_rela = TRUE;
8104
8105 /* Both sections are present. Examine the sizes
8106 of the indirect sections to help us choose. */
8107 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8108 if (lo->type == bfd_indirect_link_order)
8109 {
8110 asection *o = lo->u.indirect.section;
8111
8112 if ((o->size % bed->s->sizeof_rela) == 0)
8113 {
8114 if ((o->size % bed->s->sizeof_rel) == 0)
8115 /* Section size is divisible by both rel and rela sizes.
8116 It is of no help to us. */
8117 ;
8118 else
8119 {
8120 /* Section size is only divisible by rela. */
8121 if (use_rela_initialised && (use_rela == FALSE))
8122 {
8123 _bfd_error_handler
8124 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8125 bfd_set_error (bfd_error_invalid_operation);
8126 return 0;
8127 }
8128 else
8129 {
8130 use_rela = TRUE;
8131 use_rela_initialised = TRUE;
8132 }
8133 }
8134 }
8135 else if ((o->size % bed->s->sizeof_rel) == 0)
8136 {
8137 /* Section size is only divisible by rel. */
8138 if (use_rela_initialised && (use_rela == TRUE))
8139 {
8140 _bfd_error_handler
8141 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8142 bfd_set_error (bfd_error_invalid_operation);
8143 return 0;
8144 }
8145 else
8146 {
8147 use_rela = FALSE;
8148 use_rela_initialised = TRUE;
8149 }
8150 }
8151 else
8152 {
8153 /* The section size is not divisible by either - something is wrong. */
8154 _bfd_error_handler
8155 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8156 bfd_set_error (bfd_error_invalid_operation);
8157 return 0;
8158 }
8159 }
8160
8161 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8162 if (lo->type == bfd_indirect_link_order)
8163 {
8164 asection *o = lo->u.indirect.section;
8165
8166 if ((o->size % bed->s->sizeof_rela) == 0)
8167 {
8168 if ((o->size % bed->s->sizeof_rel) == 0)
8169 /* Section size is divisible by both rel and rela sizes.
8170 It is of no help to us. */
8171 ;
8172 else
8173 {
8174 /* Section size is only divisible by rela. */
8175 if (use_rela_initialised && (use_rela == FALSE))
8176 {
8177 _bfd_error_handler
8178 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8179 bfd_set_error (bfd_error_invalid_operation);
8180 return 0;
8181 }
8182 else
8183 {
8184 use_rela = TRUE;
8185 use_rela_initialised = TRUE;
8186 }
8187 }
8188 }
8189 else if ((o->size % bed->s->sizeof_rel) == 0)
8190 {
8191 /* Section size is only divisible by rel. */
8192 if (use_rela_initialised && (use_rela == TRUE))
8193 {
8194 _bfd_error_handler
8195 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8196 bfd_set_error (bfd_error_invalid_operation);
8197 return 0;
8198 }
8199 else
8200 {
8201 use_rela = FALSE;
8202 use_rela_initialised = TRUE;
8203 }
8204 }
8205 else
8206 {
8207 /* The section size is not divisible by either - something is wrong. */
8208 _bfd_error_handler
8209 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8210 bfd_set_error (bfd_error_invalid_operation);
8211 return 0;
8212 }
8213 }
8214
8215 if (! use_rela_initialised)
8216 /* Make a guess. */
8217 use_rela = TRUE;
8218 }
8219 else if (rela_dyn != NULL && rela_dyn->size > 0)
8220 use_rela = TRUE;
8221 else if (rel_dyn != NULL && rel_dyn->size > 0)
8222 use_rela = FALSE;
8223 else
8224 return 0;
8225
8226 if (use_rela)
8227 {
8228 dynamic_relocs = rela_dyn;
8229 ext_size = bed->s->sizeof_rela;
8230 swap_in = bed->s->swap_reloca_in;
8231 swap_out = bed->s->swap_reloca_out;
8232 }
8233 else
8234 {
8235 dynamic_relocs = rel_dyn;
8236 ext_size = bed->s->sizeof_rel;
8237 swap_in = bed->s->swap_reloc_in;
8238 swap_out = bed->s->swap_reloc_out;
8239 }
8240
8241 size = 0;
8242 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8243 if (lo->type == bfd_indirect_link_order)
8244 size += lo->u.indirect.section->size;
8245
8246 if (size != dynamic_relocs->size)
8247 return 0;
8248
8249 sort_elt = (sizeof (struct elf_link_sort_rela)
8250 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8251
8252 count = dynamic_relocs->size / ext_size;
8253 if (count == 0)
8254 return 0;
8255 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8256
8257 if (sort == NULL)
8258 {
8259 (*info->callbacks->warning)
8260 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8261 return 0;
8262 }
8263
8264 if (bed->s->arch_size == 32)
8265 r_sym_mask = ~(bfd_vma) 0xff;
8266 else
8267 r_sym_mask = ~(bfd_vma) 0xffffffff;
8268
8269 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8270 if (lo->type == bfd_indirect_link_order)
8271 {
8272 bfd_byte *erel, *erelend;
8273 asection *o = lo->u.indirect.section;
8274
8275 if (o->contents == NULL && o->size != 0)
8276 {
8277 /* This is a reloc section that is being handled as a normal
8278 section. See bfd_section_from_shdr. We can't combine
8279 relocs in this case. */
8280 free (sort);
8281 return 0;
8282 }
8283 erel = o->contents;
8284 erelend = o->contents + o->size;
8285 /* FIXME: octets_per_byte. */
8286 p = sort + o->output_offset / ext_size * sort_elt;
8287
8288 while (erel < erelend)
8289 {
8290 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8291
8292 (*swap_in) (abfd, erel, s->rela);
8293 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8294 s->u.sym_mask = r_sym_mask;
8295 p += sort_elt;
8296 erel += ext_size;
8297 }
8298 }
8299
8300 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8301
8302 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8303 {
8304 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8305 if (s->type != reloc_class_relative)
8306 break;
8307 }
8308 ret = i;
8309 s_non_relative = p;
8310
8311 sq = (struct elf_link_sort_rela *) s_non_relative;
8312 for (; i < count; i++, p += sort_elt)
8313 {
8314 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8315 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8316 sq = sp;
8317 sp->u.offset = sq->rela->r_offset;
8318 }
8319
8320 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8321
8322 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8323 if (lo->type == bfd_indirect_link_order)
8324 {
8325 bfd_byte *erel, *erelend;
8326 asection *o = lo->u.indirect.section;
8327
8328 erel = o->contents;
8329 erelend = o->contents + o->size;
8330 /* FIXME: octets_per_byte. */
8331 p = sort + o->output_offset / ext_size * sort_elt;
8332 while (erel < erelend)
8333 {
8334 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8335 (*swap_out) (abfd, s->rela, erel);
8336 p += sort_elt;
8337 erel += ext_size;
8338 }
8339 }
8340
8341 free (sort);
8342 *psec = dynamic_relocs;
8343 return ret;
8344 }
8345
8346 /* Flush the output symbols to the file. */
8347
8348 static bfd_boolean
8349 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8350 const struct elf_backend_data *bed)
8351 {
8352 if (flinfo->symbuf_count > 0)
8353 {
8354 Elf_Internal_Shdr *hdr;
8355 file_ptr pos;
8356 bfd_size_type amt;
8357
8358 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8359 pos = hdr->sh_offset + hdr->sh_size;
8360 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8361 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8362 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8363 return FALSE;
8364
8365 hdr->sh_size += amt;
8366 flinfo->symbuf_count = 0;
8367 }
8368
8369 return TRUE;
8370 }
8371
8372 /* Add a symbol to the output symbol table. */
8373
8374 static int
8375 elf_link_output_sym (struct elf_final_link_info *flinfo,
8376 const char *name,
8377 Elf_Internal_Sym *elfsym,
8378 asection *input_sec,
8379 struct elf_link_hash_entry *h)
8380 {
8381 bfd_byte *dest;
8382 Elf_External_Sym_Shndx *destshndx;
8383 int (*output_symbol_hook)
8384 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8385 struct elf_link_hash_entry *);
8386 const struct elf_backend_data *bed;
8387
8388 bed = get_elf_backend_data (flinfo->output_bfd);
8389 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8390 if (output_symbol_hook != NULL)
8391 {
8392 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8393 if (ret != 1)
8394 return ret;
8395 }
8396
8397 if (name == NULL || *name == '\0')
8398 elfsym->st_name = 0;
8399 else if (input_sec->flags & SEC_EXCLUDE)
8400 elfsym->st_name = 0;
8401 else
8402 {
8403 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8404 name, TRUE, FALSE);
8405 if (elfsym->st_name == (unsigned long) -1)
8406 return 0;
8407 }
8408
8409 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8410 {
8411 if (! elf_link_flush_output_syms (flinfo, bed))
8412 return 0;
8413 }
8414
8415 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8416 destshndx = flinfo->symshndxbuf;
8417 if (destshndx != NULL)
8418 {
8419 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8420 {
8421 bfd_size_type amt;
8422
8423 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8424 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8425 amt * 2);
8426 if (destshndx == NULL)
8427 return 0;
8428 flinfo->symshndxbuf = destshndx;
8429 memset ((char *) destshndx + amt, 0, amt);
8430 flinfo->shndxbuf_size *= 2;
8431 }
8432 destshndx += bfd_get_symcount (flinfo->output_bfd);
8433 }
8434
8435 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8436 flinfo->symbuf_count += 1;
8437 bfd_get_symcount (flinfo->output_bfd) += 1;
8438
8439 return 1;
8440 }
8441
8442 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8443
8444 static bfd_boolean
8445 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8446 {
8447 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8448 && sym->st_shndx < SHN_LORESERVE)
8449 {
8450 /* The gABI doesn't support dynamic symbols in output sections
8451 beyond 64k. */
8452 (*_bfd_error_handler)
8453 (_("%B: Too many sections: %d (>= %d)"),
8454 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8455 bfd_set_error (bfd_error_nonrepresentable_section);
8456 return FALSE;
8457 }
8458 return TRUE;
8459 }
8460
8461 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8462 allowing an unsatisfied unversioned symbol in the DSO to match a
8463 versioned symbol that would normally require an explicit version.
8464 We also handle the case that a DSO references a hidden symbol
8465 which may be satisfied by a versioned symbol in another DSO. */
8466
8467 static bfd_boolean
8468 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8469 const struct elf_backend_data *bed,
8470 struct elf_link_hash_entry *h)
8471 {
8472 bfd *abfd;
8473 struct elf_link_loaded_list *loaded;
8474
8475 if (!is_elf_hash_table (info->hash))
8476 return FALSE;
8477
8478 /* Check indirect symbol. */
8479 while (h->root.type == bfd_link_hash_indirect)
8480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8481
8482 switch (h->root.type)
8483 {
8484 default:
8485 abfd = NULL;
8486 break;
8487
8488 case bfd_link_hash_undefined:
8489 case bfd_link_hash_undefweak:
8490 abfd = h->root.u.undef.abfd;
8491 if ((abfd->flags & DYNAMIC) == 0
8492 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8493 return FALSE;
8494 break;
8495
8496 case bfd_link_hash_defined:
8497 case bfd_link_hash_defweak:
8498 abfd = h->root.u.def.section->owner;
8499 break;
8500
8501 case bfd_link_hash_common:
8502 abfd = h->root.u.c.p->section->owner;
8503 break;
8504 }
8505 BFD_ASSERT (abfd != NULL);
8506
8507 for (loaded = elf_hash_table (info)->loaded;
8508 loaded != NULL;
8509 loaded = loaded->next)
8510 {
8511 bfd *input;
8512 Elf_Internal_Shdr *hdr;
8513 bfd_size_type symcount;
8514 bfd_size_type extsymcount;
8515 bfd_size_type extsymoff;
8516 Elf_Internal_Shdr *versymhdr;
8517 Elf_Internal_Sym *isym;
8518 Elf_Internal_Sym *isymend;
8519 Elf_Internal_Sym *isymbuf;
8520 Elf_External_Versym *ever;
8521 Elf_External_Versym *extversym;
8522
8523 input = loaded->abfd;
8524
8525 /* We check each DSO for a possible hidden versioned definition. */
8526 if (input == abfd
8527 || (input->flags & DYNAMIC) == 0
8528 || elf_dynversym (input) == 0)
8529 continue;
8530
8531 hdr = &elf_tdata (input)->dynsymtab_hdr;
8532
8533 symcount = hdr->sh_size / bed->s->sizeof_sym;
8534 if (elf_bad_symtab (input))
8535 {
8536 extsymcount = symcount;
8537 extsymoff = 0;
8538 }
8539 else
8540 {
8541 extsymcount = symcount - hdr->sh_info;
8542 extsymoff = hdr->sh_info;
8543 }
8544
8545 if (extsymcount == 0)
8546 continue;
8547
8548 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8549 NULL, NULL, NULL);
8550 if (isymbuf == NULL)
8551 return FALSE;
8552
8553 /* Read in any version definitions. */
8554 versymhdr = &elf_tdata (input)->dynversym_hdr;
8555 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8556 if (extversym == NULL)
8557 goto error_ret;
8558
8559 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8560 || (bfd_bread (extversym, versymhdr->sh_size, input)
8561 != versymhdr->sh_size))
8562 {
8563 free (extversym);
8564 error_ret:
8565 free (isymbuf);
8566 return FALSE;
8567 }
8568
8569 ever = extversym + extsymoff;
8570 isymend = isymbuf + extsymcount;
8571 for (isym = isymbuf; isym < isymend; isym++, ever++)
8572 {
8573 const char *name;
8574 Elf_Internal_Versym iver;
8575 unsigned short version_index;
8576
8577 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8578 || isym->st_shndx == SHN_UNDEF)
8579 continue;
8580
8581 name = bfd_elf_string_from_elf_section (input,
8582 hdr->sh_link,
8583 isym->st_name);
8584 if (strcmp (name, h->root.root.string) != 0)
8585 continue;
8586
8587 _bfd_elf_swap_versym_in (input, ever, &iver);
8588
8589 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8590 && !(h->def_regular
8591 && h->forced_local))
8592 {
8593 /* If we have a non-hidden versioned sym, then it should
8594 have provided a definition for the undefined sym unless
8595 it is defined in a non-shared object and forced local.
8596 */
8597 abort ();
8598 }
8599
8600 version_index = iver.vs_vers & VERSYM_VERSION;
8601 if (version_index == 1 || version_index == 2)
8602 {
8603 /* This is the base or first version. We can use it. */
8604 free (extversym);
8605 free (isymbuf);
8606 return TRUE;
8607 }
8608 }
8609
8610 free (extversym);
8611 free (isymbuf);
8612 }
8613
8614 return FALSE;
8615 }
8616
8617 /* Add an external symbol to the symbol table. This is called from
8618 the hash table traversal routine. When generating a shared object,
8619 we go through the symbol table twice. The first time we output
8620 anything that might have been forced to local scope in a version
8621 script. The second time we output the symbols that are still
8622 global symbols. */
8623
8624 static bfd_boolean
8625 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8626 {
8627 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8628 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8629 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8630 bfd_boolean strip;
8631 Elf_Internal_Sym sym;
8632 asection *input_sec;
8633 const struct elf_backend_data *bed;
8634 long indx;
8635 int ret;
8636
8637 if (h->root.type == bfd_link_hash_warning)
8638 {
8639 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8640 if (h->root.type == bfd_link_hash_new)
8641 return TRUE;
8642 }
8643
8644 /* Decide whether to output this symbol in this pass. */
8645 if (eoinfo->localsyms)
8646 {
8647 if (!h->forced_local)
8648 return TRUE;
8649 if (eoinfo->second_pass
8650 && !((h->root.type == bfd_link_hash_defined
8651 || h->root.type == bfd_link_hash_defweak)
8652 && h->root.u.def.section->output_section != NULL))
8653 return TRUE;
8654
8655 if (!eoinfo->file_sym_done
8656 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8657 : eoinfo->flinfo->filesym_count > 1))
8658 {
8659 /* Output a FILE symbol so that following locals are not associated
8660 with the wrong input file. */
8661 memset (&sym, 0, sizeof (sym));
8662 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8663 sym.st_shndx = SHN_ABS;
8664 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8665 bfd_und_section_ptr, NULL))
8666 return FALSE;
8667
8668 eoinfo->file_sym_done = TRUE;
8669 }
8670 }
8671 else
8672 {
8673 if (h->forced_local)
8674 return TRUE;
8675 }
8676
8677 bed = get_elf_backend_data (flinfo->output_bfd);
8678
8679 if (h->root.type == bfd_link_hash_undefined)
8680 {
8681 /* If we have an undefined symbol reference here then it must have
8682 come from a shared library that is being linked in. (Undefined
8683 references in regular files have already been handled unless
8684 they are in unreferenced sections which are removed by garbage
8685 collection). */
8686 bfd_boolean ignore_undef = FALSE;
8687
8688 /* Some symbols may be special in that the fact that they're
8689 undefined can be safely ignored - let backend determine that. */
8690 if (bed->elf_backend_ignore_undef_symbol)
8691 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8692
8693 /* If we are reporting errors for this situation then do so now. */
8694 if (!ignore_undef
8695 && h->ref_dynamic
8696 && (!h->ref_regular || flinfo->info->gc_sections)
8697 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8698 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8699 {
8700 if (!(flinfo->info->callbacks->undefined_symbol
8701 (flinfo->info, h->root.root.string,
8702 h->ref_regular ? NULL : h->root.u.undef.abfd,
8703 NULL, 0,
8704 (flinfo->info->unresolved_syms_in_shared_libs
8705 == RM_GENERATE_ERROR))))
8706 {
8707 bfd_set_error (bfd_error_bad_value);
8708 eoinfo->failed = TRUE;
8709 return FALSE;
8710 }
8711 }
8712 }
8713
8714 /* We should also warn if a forced local symbol is referenced from
8715 shared libraries. */
8716 if (!flinfo->info->relocatable
8717 && flinfo->info->executable
8718 && h->forced_local
8719 && h->ref_dynamic
8720 && h->def_regular
8721 && !h->dynamic_def
8722 && h->ref_dynamic_nonweak
8723 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8724 {
8725 bfd *def_bfd;
8726 const char *msg;
8727 struct elf_link_hash_entry *hi = h;
8728
8729 /* Check indirect symbol. */
8730 while (hi->root.type == bfd_link_hash_indirect)
8731 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8732
8733 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8734 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8735 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8736 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8737 else
8738 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8739 def_bfd = flinfo->output_bfd;
8740 if (hi->root.u.def.section != bfd_abs_section_ptr)
8741 def_bfd = hi->root.u.def.section->owner;
8742 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8743 h->root.root.string);
8744 bfd_set_error (bfd_error_bad_value);
8745 eoinfo->failed = TRUE;
8746 return FALSE;
8747 }
8748
8749 /* We don't want to output symbols that have never been mentioned by
8750 a regular file, or that we have been told to strip. However, if
8751 h->indx is set to -2, the symbol is used by a reloc and we must
8752 output it. */
8753 if (h->indx == -2)
8754 strip = FALSE;
8755 else if ((h->def_dynamic
8756 || h->ref_dynamic
8757 || h->root.type == bfd_link_hash_new)
8758 && !h->def_regular
8759 && !h->ref_regular)
8760 strip = TRUE;
8761 else if (flinfo->info->strip == strip_all)
8762 strip = TRUE;
8763 else if (flinfo->info->strip == strip_some
8764 && bfd_hash_lookup (flinfo->info->keep_hash,
8765 h->root.root.string, FALSE, FALSE) == NULL)
8766 strip = TRUE;
8767 else if ((h->root.type == bfd_link_hash_defined
8768 || h->root.type == bfd_link_hash_defweak)
8769 && ((flinfo->info->strip_discarded
8770 && discarded_section (h->root.u.def.section))
8771 || (h->root.u.def.section->owner != NULL
8772 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8773 strip = TRUE;
8774 else if ((h->root.type == bfd_link_hash_undefined
8775 || h->root.type == bfd_link_hash_undefweak)
8776 && h->root.u.undef.abfd != NULL
8777 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8778 strip = TRUE;
8779 else
8780 strip = FALSE;
8781
8782 /* If we're stripping it, and it's not a dynamic symbol, there's
8783 nothing else to do unless it is a forced local symbol or a
8784 STT_GNU_IFUNC symbol. */
8785 if (strip
8786 && h->dynindx == -1
8787 && h->type != STT_GNU_IFUNC
8788 && !h->forced_local)
8789 return TRUE;
8790
8791 sym.st_value = 0;
8792 sym.st_size = h->size;
8793 sym.st_other = h->other;
8794 if (h->forced_local)
8795 {
8796 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8797 /* Turn off visibility on local symbol. */
8798 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8799 }
8800 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8801 else if (h->unique_global && h->def_regular)
8802 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8803 else if (h->root.type == bfd_link_hash_undefweak
8804 || h->root.type == bfd_link_hash_defweak)
8805 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8806 else
8807 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8808 sym.st_target_internal = h->target_internal;
8809
8810 switch (h->root.type)
8811 {
8812 default:
8813 case bfd_link_hash_new:
8814 case bfd_link_hash_warning:
8815 abort ();
8816 return FALSE;
8817
8818 case bfd_link_hash_undefined:
8819 case bfd_link_hash_undefweak:
8820 input_sec = bfd_und_section_ptr;
8821 sym.st_shndx = SHN_UNDEF;
8822 break;
8823
8824 case bfd_link_hash_defined:
8825 case bfd_link_hash_defweak:
8826 {
8827 input_sec = h->root.u.def.section;
8828 if (input_sec->output_section != NULL)
8829 {
8830 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8831 {
8832 bfd_boolean second_pass_sym
8833 = (input_sec->owner == flinfo->output_bfd
8834 || input_sec->owner == NULL
8835 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8836 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8837
8838 eoinfo->need_second_pass |= second_pass_sym;
8839 if (eoinfo->second_pass != second_pass_sym)
8840 return TRUE;
8841 }
8842
8843 sym.st_shndx =
8844 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8845 input_sec->output_section);
8846 if (sym.st_shndx == SHN_BAD)
8847 {
8848 (*_bfd_error_handler)
8849 (_("%B: could not find output section %A for input section %A"),
8850 flinfo->output_bfd, input_sec->output_section, input_sec);
8851 bfd_set_error (bfd_error_nonrepresentable_section);
8852 eoinfo->failed = TRUE;
8853 return FALSE;
8854 }
8855
8856 /* ELF symbols in relocatable files are section relative,
8857 but in nonrelocatable files they are virtual
8858 addresses. */
8859 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8860 if (!flinfo->info->relocatable)
8861 {
8862 sym.st_value += input_sec->output_section->vma;
8863 if (h->type == STT_TLS)
8864 {
8865 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8866 if (tls_sec != NULL)
8867 sym.st_value -= tls_sec->vma;
8868 else
8869 {
8870 /* The TLS section may have been garbage collected. */
8871 BFD_ASSERT (flinfo->info->gc_sections
8872 && !input_sec->gc_mark);
8873 }
8874 }
8875 }
8876 }
8877 else
8878 {
8879 BFD_ASSERT (input_sec->owner == NULL
8880 || (input_sec->owner->flags & DYNAMIC) != 0);
8881 sym.st_shndx = SHN_UNDEF;
8882 input_sec = bfd_und_section_ptr;
8883 }
8884 }
8885 break;
8886
8887 case bfd_link_hash_common:
8888 input_sec = h->root.u.c.p->section;
8889 sym.st_shndx = bed->common_section_index (input_sec);
8890 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8891 break;
8892
8893 case bfd_link_hash_indirect:
8894 /* These symbols are created by symbol versioning. They point
8895 to the decorated version of the name. For example, if the
8896 symbol foo@@GNU_1.2 is the default, which should be used when
8897 foo is used with no version, then we add an indirect symbol
8898 foo which points to foo@@GNU_1.2. We ignore these symbols,
8899 since the indirected symbol is already in the hash table. */
8900 return TRUE;
8901 }
8902
8903 /* Give the processor backend a chance to tweak the symbol value,
8904 and also to finish up anything that needs to be done for this
8905 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8906 forced local syms when non-shared is due to a historical quirk.
8907 STT_GNU_IFUNC symbol must go through PLT. */
8908 if ((h->type == STT_GNU_IFUNC
8909 && h->def_regular
8910 && !flinfo->info->relocatable)
8911 || ((h->dynindx != -1
8912 || h->forced_local)
8913 && ((flinfo->info->shared
8914 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8915 || h->root.type != bfd_link_hash_undefweak))
8916 || !h->forced_local)
8917 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8918 {
8919 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8920 (flinfo->output_bfd, flinfo->info, h, &sym)))
8921 {
8922 eoinfo->failed = TRUE;
8923 return FALSE;
8924 }
8925 }
8926
8927 /* If we are marking the symbol as undefined, and there are no
8928 non-weak references to this symbol from a regular object, then
8929 mark the symbol as weak undefined; if there are non-weak
8930 references, mark the symbol as strong. We can't do this earlier,
8931 because it might not be marked as undefined until the
8932 finish_dynamic_symbol routine gets through with it. */
8933 if (sym.st_shndx == SHN_UNDEF
8934 && h->ref_regular
8935 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8936 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8937 {
8938 int bindtype;
8939 unsigned int type = ELF_ST_TYPE (sym.st_info);
8940
8941 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8942 if (type == STT_GNU_IFUNC)
8943 type = STT_FUNC;
8944
8945 if (h->ref_regular_nonweak)
8946 bindtype = STB_GLOBAL;
8947 else
8948 bindtype = STB_WEAK;
8949 sym.st_info = ELF_ST_INFO (bindtype, type);
8950 }
8951
8952 /* If this is a symbol defined in a dynamic library, don't use the
8953 symbol size from the dynamic library. Relinking an executable
8954 against a new library may introduce gratuitous changes in the
8955 executable's symbols if we keep the size. */
8956 if (sym.st_shndx == SHN_UNDEF
8957 && !h->def_regular
8958 && h->def_dynamic)
8959 sym.st_size = 0;
8960
8961 /* If a non-weak symbol with non-default visibility is not defined
8962 locally, it is a fatal error. */
8963 if (!flinfo->info->relocatable
8964 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8965 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8966 && h->root.type == bfd_link_hash_undefined
8967 && !h->def_regular)
8968 {
8969 const char *msg;
8970
8971 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8972 msg = _("%B: protected symbol `%s' isn't defined");
8973 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8974 msg = _("%B: internal symbol `%s' isn't defined");
8975 else
8976 msg = _("%B: hidden symbol `%s' isn't defined");
8977 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8978 bfd_set_error (bfd_error_bad_value);
8979 eoinfo->failed = TRUE;
8980 return FALSE;
8981 }
8982
8983 /* If this symbol should be put in the .dynsym section, then put it
8984 there now. We already know the symbol index. We also fill in
8985 the entry in the .hash section. */
8986 if (flinfo->dynsym_sec != NULL
8987 && h->dynindx != -1
8988 && elf_hash_table (flinfo->info)->dynamic_sections_created)
8989 {
8990 bfd_byte *esym;
8991
8992 /* Since there is no version information in the dynamic string,
8993 if there is no version info in symbol version section, we will
8994 have a run-time problem. */
8995 if (h->verinfo.verdef == NULL)
8996 {
8997 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
8998
8999 if (p && p [1] != '\0')
9000 {
9001 (*_bfd_error_handler)
9002 (_("%B: No symbol version section for versioned symbol `%s'"),
9003 flinfo->output_bfd, h->root.root.string);
9004 eoinfo->failed = TRUE;
9005 return FALSE;
9006 }
9007 }
9008
9009 sym.st_name = h->dynstr_index;
9010 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9011 if (!check_dynsym (flinfo->output_bfd, &sym))
9012 {
9013 eoinfo->failed = TRUE;
9014 return FALSE;
9015 }
9016 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9017
9018 if (flinfo->hash_sec != NULL)
9019 {
9020 size_t hash_entry_size;
9021 bfd_byte *bucketpos;
9022 bfd_vma chain;
9023 size_t bucketcount;
9024 size_t bucket;
9025
9026 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9027 bucket = h->u.elf_hash_value % bucketcount;
9028
9029 hash_entry_size
9030 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9031 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9032 + (bucket + 2) * hash_entry_size);
9033 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9034 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9035 bucketpos);
9036 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9037 ((bfd_byte *) flinfo->hash_sec->contents
9038 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9039 }
9040
9041 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9042 {
9043 Elf_Internal_Versym iversym;
9044 Elf_External_Versym *eversym;
9045
9046 if (!h->def_regular)
9047 {
9048 if (h->verinfo.verdef == NULL)
9049 iversym.vs_vers = 0;
9050 else
9051 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9052 }
9053 else
9054 {
9055 if (h->verinfo.vertree == NULL)
9056 iversym.vs_vers = 1;
9057 else
9058 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9059 if (flinfo->info->create_default_symver)
9060 iversym.vs_vers++;
9061 }
9062
9063 if (h->hidden)
9064 iversym.vs_vers |= VERSYM_HIDDEN;
9065
9066 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9067 eversym += h->dynindx;
9068 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9069 }
9070 }
9071
9072 /* If we're stripping it, then it was just a dynamic symbol, and
9073 there's nothing else to do. */
9074 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9075 return TRUE;
9076
9077 indx = bfd_get_symcount (flinfo->output_bfd);
9078 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9079 if (ret == 0)
9080 {
9081 eoinfo->failed = TRUE;
9082 return FALSE;
9083 }
9084 else if (ret == 1)
9085 h->indx = indx;
9086 else if (h->indx == -2)
9087 abort();
9088
9089 return TRUE;
9090 }
9091
9092 /* Return TRUE if special handling is done for relocs in SEC against
9093 symbols defined in discarded sections. */
9094
9095 static bfd_boolean
9096 elf_section_ignore_discarded_relocs (asection *sec)
9097 {
9098 const struct elf_backend_data *bed;
9099
9100 switch (sec->sec_info_type)
9101 {
9102 case SEC_INFO_TYPE_STABS:
9103 case SEC_INFO_TYPE_EH_FRAME:
9104 return TRUE;
9105 default:
9106 break;
9107 }
9108
9109 bed = get_elf_backend_data (sec->owner);
9110 if (bed->elf_backend_ignore_discarded_relocs != NULL
9111 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9112 return TRUE;
9113
9114 return FALSE;
9115 }
9116
9117 /* Return a mask saying how ld should treat relocations in SEC against
9118 symbols defined in discarded sections. If this function returns
9119 COMPLAIN set, ld will issue a warning message. If this function
9120 returns PRETEND set, and the discarded section was link-once and the
9121 same size as the kept link-once section, ld will pretend that the
9122 symbol was actually defined in the kept section. Otherwise ld will
9123 zero the reloc (at least that is the intent, but some cooperation by
9124 the target dependent code is needed, particularly for REL targets). */
9125
9126 unsigned int
9127 _bfd_elf_default_action_discarded (asection *sec)
9128 {
9129 if (sec->flags & SEC_DEBUGGING)
9130 return PRETEND;
9131
9132 if (strcmp (".eh_frame", sec->name) == 0)
9133 return 0;
9134
9135 if (strcmp (".gcc_except_table", sec->name) == 0)
9136 return 0;
9137
9138 return COMPLAIN | PRETEND;
9139 }
9140
9141 /* Find a match between a section and a member of a section group. */
9142
9143 static asection *
9144 match_group_member (asection *sec, asection *group,
9145 struct bfd_link_info *info)
9146 {
9147 asection *first = elf_next_in_group (group);
9148 asection *s = first;
9149
9150 while (s != NULL)
9151 {
9152 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9153 return s;
9154
9155 s = elf_next_in_group (s);
9156 if (s == first)
9157 break;
9158 }
9159
9160 return NULL;
9161 }
9162
9163 /* Check if the kept section of a discarded section SEC can be used
9164 to replace it. Return the replacement if it is OK. Otherwise return
9165 NULL. */
9166
9167 asection *
9168 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9169 {
9170 asection *kept;
9171
9172 kept = sec->kept_section;
9173 if (kept != NULL)
9174 {
9175 if ((kept->flags & SEC_GROUP) != 0)
9176 kept = match_group_member (sec, kept, info);
9177 if (kept != NULL
9178 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9179 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9180 kept = NULL;
9181 sec->kept_section = kept;
9182 }
9183 return kept;
9184 }
9185
9186 /* Link an input file into the linker output file. This function
9187 handles all the sections and relocations of the input file at once.
9188 This is so that we only have to read the local symbols once, and
9189 don't have to keep them in memory. */
9190
9191 static bfd_boolean
9192 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9193 {
9194 int (*relocate_section)
9195 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9196 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9197 bfd *output_bfd;
9198 Elf_Internal_Shdr *symtab_hdr;
9199 size_t locsymcount;
9200 size_t extsymoff;
9201 Elf_Internal_Sym *isymbuf;
9202 Elf_Internal_Sym *isym;
9203 Elf_Internal_Sym *isymend;
9204 long *pindex;
9205 asection **ppsection;
9206 asection *o;
9207 const struct elf_backend_data *bed;
9208 struct elf_link_hash_entry **sym_hashes;
9209 bfd_size_type address_size;
9210 bfd_vma r_type_mask;
9211 int r_sym_shift;
9212 bfd_boolean have_file_sym = FALSE;
9213
9214 output_bfd = flinfo->output_bfd;
9215 bed = get_elf_backend_data (output_bfd);
9216 relocate_section = bed->elf_backend_relocate_section;
9217
9218 /* If this is a dynamic object, we don't want to do anything here:
9219 we don't want the local symbols, and we don't want the section
9220 contents. */
9221 if ((input_bfd->flags & DYNAMIC) != 0)
9222 return TRUE;
9223
9224 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9225 if (elf_bad_symtab (input_bfd))
9226 {
9227 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9228 extsymoff = 0;
9229 }
9230 else
9231 {
9232 locsymcount = symtab_hdr->sh_info;
9233 extsymoff = symtab_hdr->sh_info;
9234 }
9235
9236 /* Read the local symbols. */
9237 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9238 if (isymbuf == NULL && locsymcount != 0)
9239 {
9240 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9241 flinfo->internal_syms,
9242 flinfo->external_syms,
9243 flinfo->locsym_shndx);
9244 if (isymbuf == NULL)
9245 return FALSE;
9246 }
9247
9248 /* Find local symbol sections and adjust values of symbols in
9249 SEC_MERGE sections. Write out those local symbols we know are
9250 going into the output file. */
9251 isymend = isymbuf + locsymcount;
9252 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9253 isym < isymend;
9254 isym++, pindex++, ppsection++)
9255 {
9256 asection *isec;
9257 const char *name;
9258 Elf_Internal_Sym osym;
9259 long indx;
9260 int ret;
9261
9262 *pindex = -1;
9263
9264 if (elf_bad_symtab (input_bfd))
9265 {
9266 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9267 {
9268 *ppsection = NULL;
9269 continue;
9270 }
9271 }
9272
9273 if (isym->st_shndx == SHN_UNDEF)
9274 isec = bfd_und_section_ptr;
9275 else if (isym->st_shndx == SHN_ABS)
9276 isec = bfd_abs_section_ptr;
9277 else if (isym->st_shndx == SHN_COMMON)
9278 isec = bfd_com_section_ptr;
9279 else
9280 {
9281 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9282 if (isec == NULL)
9283 {
9284 /* Don't attempt to output symbols with st_shnx in the
9285 reserved range other than SHN_ABS and SHN_COMMON. */
9286 *ppsection = NULL;
9287 continue;
9288 }
9289 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9290 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9291 isym->st_value =
9292 _bfd_merged_section_offset (output_bfd, &isec,
9293 elf_section_data (isec)->sec_info,
9294 isym->st_value);
9295 }
9296
9297 *ppsection = isec;
9298
9299 /* Don't output the first, undefined, symbol. */
9300 if (ppsection == flinfo->sections)
9301 continue;
9302
9303 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9304 {
9305 /* We never output section symbols. Instead, we use the
9306 section symbol of the corresponding section in the output
9307 file. */
9308 continue;
9309 }
9310
9311 /* If we are stripping all symbols, we don't want to output this
9312 one. */
9313 if (flinfo->info->strip == strip_all)
9314 continue;
9315
9316 /* If we are discarding all local symbols, we don't want to
9317 output this one. If we are generating a relocatable output
9318 file, then some of the local symbols may be required by
9319 relocs; we output them below as we discover that they are
9320 needed. */
9321 if (flinfo->info->discard == discard_all)
9322 continue;
9323
9324 /* If this symbol is defined in a section which we are
9325 discarding, we don't need to keep it. */
9326 if (isym->st_shndx != SHN_UNDEF
9327 && isym->st_shndx < SHN_LORESERVE
9328 && bfd_section_removed_from_list (output_bfd,
9329 isec->output_section))
9330 continue;
9331
9332 /* Get the name of the symbol. */
9333 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9334 isym->st_name);
9335 if (name == NULL)
9336 return FALSE;
9337
9338 /* See if we are discarding symbols with this name. */
9339 if ((flinfo->info->strip == strip_some
9340 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9341 == NULL))
9342 || (((flinfo->info->discard == discard_sec_merge
9343 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9344 || flinfo->info->discard == discard_l)
9345 && bfd_is_local_label_name (input_bfd, name)))
9346 continue;
9347
9348 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9349 {
9350 have_file_sym = TRUE;
9351 flinfo->filesym_count += 1;
9352 }
9353 if (!have_file_sym)
9354 {
9355 /* In the absence of debug info, bfd_find_nearest_line uses
9356 FILE symbols to determine the source file for local
9357 function symbols. Provide a FILE symbol here if input
9358 files lack such, so that their symbols won't be
9359 associated with a previous input file. It's not the
9360 source file, but the best we can do. */
9361 have_file_sym = TRUE;
9362 flinfo->filesym_count += 1;
9363 memset (&osym, 0, sizeof (osym));
9364 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9365 osym.st_shndx = SHN_ABS;
9366 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9367 bfd_abs_section_ptr, NULL))
9368 return FALSE;
9369 }
9370
9371 osym = *isym;
9372
9373 /* Adjust the section index for the output file. */
9374 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9375 isec->output_section);
9376 if (osym.st_shndx == SHN_BAD)
9377 return FALSE;
9378
9379 /* ELF symbols in relocatable files are section relative, but
9380 in executable files they are virtual addresses. Note that
9381 this code assumes that all ELF sections have an associated
9382 BFD section with a reasonable value for output_offset; below
9383 we assume that they also have a reasonable value for
9384 output_section. Any special sections must be set up to meet
9385 these requirements. */
9386 osym.st_value += isec->output_offset;
9387 if (!flinfo->info->relocatable)
9388 {
9389 osym.st_value += isec->output_section->vma;
9390 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9391 {
9392 /* STT_TLS symbols are relative to PT_TLS segment base. */
9393 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9394 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9395 }
9396 }
9397
9398 indx = bfd_get_symcount (output_bfd);
9399 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9400 if (ret == 0)
9401 return FALSE;
9402 else if (ret == 1)
9403 *pindex = indx;
9404 }
9405
9406 if (bed->s->arch_size == 32)
9407 {
9408 r_type_mask = 0xff;
9409 r_sym_shift = 8;
9410 address_size = 4;
9411 }
9412 else
9413 {
9414 r_type_mask = 0xffffffff;
9415 r_sym_shift = 32;
9416 address_size = 8;
9417 }
9418
9419 /* Relocate the contents of each section. */
9420 sym_hashes = elf_sym_hashes (input_bfd);
9421 for (o = input_bfd->sections; o != NULL; o = o->next)
9422 {
9423 bfd_byte *contents;
9424
9425 if (! o->linker_mark)
9426 {
9427 /* This section was omitted from the link. */
9428 continue;
9429 }
9430
9431 if (flinfo->info->relocatable
9432 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9433 {
9434 /* Deal with the group signature symbol. */
9435 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9436 unsigned long symndx = sec_data->this_hdr.sh_info;
9437 asection *osec = o->output_section;
9438
9439 if (symndx >= locsymcount
9440 || (elf_bad_symtab (input_bfd)
9441 && flinfo->sections[symndx] == NULL))
9442 {
9443 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9444 while (h->root.type == bfd_link_hash_indirect
9445 || h->root.type == bfd_link_hash_warning)
9446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9447 /* Arrange for symbol to be output. */
9448 h->indx = -2;
9449 elf_section_data (osec)->this_hdr.sh_info = -2;
9450 }
9451 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9452 {
9453 /* We'll use the output section target_index. */
9454 asection *sec = flinfo->sections[symndx]->output_section;
9455 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9456 }
9457 else
9458 {
9459 if (flinfo->indices[symndx] == -1)
9460 {
9461 /* Otherwise output the local symbol now. */
9462 Elf_Internal_Sym sym = isymbuf[symndx];
9463 asection *sec = flinfo->sections[symndx]->output_section;
9464 const char *name;
9465 long indx;
9466 int ret;
9467
9468 name = bfd_elf_string_from_elf_section (input_bfd,
9469 symtab_hdr->sh_link,
9470 sym.st_name);
9471 if (name == NULL)
9472 return FALSE;
9473
9474 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9475 sec);
9476 if (sym.st_shndx == SHN_BAD)
9477 return FALSE;
9478
9479 sym.st_value += o->output_offset;
9480
9481 indx = bfd_get_symcount (output_bfd);
9482 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9483 if (ret == 0)
9484 return FALSE;
9485 else if (ret == 1)
9486 flinfo->indices[symndx] = indx;
9487 else
9488 abort ();
9489 }
9490 elf_section_data (osec)->this_hdr.sh_info
9491 = flinfo->indices[symndx];
9492 }
9493 }
9494
9495 if ((o->flags & SEC_HAS_CONTENTS) == 0
9496 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9497 continue;
9498
9499 if ((o->flags & SEC_LINKER_CREATED) != 0)
9500 {
9501 /* Section was created by _bfd_elf_link_create_dynamic_sections
9502 or somesuch. */
9503 continue;
9504 }
9505
9506 /* Get the contents of the section. They have been cached by a
9507 relaxation routine. Note that o is a section in an input
9508 file, so the contents field will not have been set by any of
9509 the routines which work on output files. */
9510 if (elf_section_data (o)->this_hdr.contents != NULL)
9511 {
9512 contents = elf_section_data (o)->this_hdr.contents;
9513 if (bed->caches_rawsize
9514 && o->rawsize != 0
9515 && o->rawsize < o->size)
9516 {
9517 memcpy (flinfo->contents, contents, o->rawsize);
9518 contents = flinfo->contents;
9519 }
9520 }
9521 else
9522 {
9523 contents = flinfo->contents;
9524 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9525 return FALSE;
9526 }
9527
9528 if ((o->flags & SEC_RELOC) != 0)
9529 {
9530 Elf_Internal_Rela *internal_relocs;
9531 Elf_Internal_Rela *rel, *relend;
9532 int action_discarded;
9533 int ret;
9534
9535 /* Get the swapped relocs. */
9536 internal_relocs
9537 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9538 flinfo->internal_relocs, FALSE);
9539 if (internal_relocs == NULL
9540 && o->reloc_count > 0)
9541 return FALSE;
9542
9543 /* We need to reverse-copy input .ctors/.dtors sections if
9544 they are placed in .init_array/.finit_array for output. */
9545 if (o->size > address_size
9546 && ((strncmp (o->name, ".ctors", 6) == 0
9547 && strcmp (o->output_section->name,
9548 ".init_array") == 0)
9549 || (strncmp (o->name, ".dtors", 6) == 0
9550 && strcmp (o->output_section->name,
9551 ".fini_array") == 0))
9552 && (o->name[6] == 0 || o->name[6] == '.'))
9553 {
9554 if (o->size != o->reloc_count * address_size)
9555 {
9556 (*_bfd_error_handler)
9557 (_("error: %B: size of section %A is not "
9558 "multiple of address size"),
9559 input_bfd, o);
9560 bfd_set_error (bfd_error_on_input);
9561 return FALSE;
9562 }
9563 o->flags |= SEC_ELF_REVERSE_COPY;
9564 }
9565
9566 action_discarded = -1;
9567 if (!elf_section_ignore_discarded_relocs (o))
9568 action_discarded = (*bed->action_discarded) (o);
9569
9570 /* Run through the relocs evaluating complex reloc symbols and
9571 looking for relocs against symbols from discarded sections
9572 or section symbols from removed link-once sections.
9573 Complain about relocs against discarded sections. Zero
9574 relocs against removed link-once sections. */
9575
9576 rel = internal_relocs;
9577 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9578 for ( ; rel < relend; rel++)
9579 {
9580 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9581 unsigned int s_type;
9582 asection **ps, *sec;
9583 struct elf_link_hash_entry *h = NULL;
9584 const char *sym_name;
9585
9586 if (r_symndx == STN_UNDEF)
9587 continue;
9588
9589 if (r_symndx >= locsymcount
9590 || (elf_bad_symtab (input_bfd)
9591 && flinfo->sections[r_symndx] == NULL))
9592 {
9593 h = sym_hashes[r_symndx - extsymoff];
9594
9595 /* Badly formatted input files can contain relocs that
9596 reference non-existant symbols. Check here so that
9597 we do not seg fault. */
9598 if (h == NULL)
9599 {
9600 char buffer [32];
9601
9602 sprintf_vma (buffer, rel->r_info);
9603 (*_bfd_error_handler)
9604 (_("error: %B contains a reloc (0x%s) for section %A "
9605 "that references a non-existent global symbol"),
9606 input_bfd, o, buffer);
9607 bfd_set_error (bfd_error_bad_value);
9608 return FALSE;
9609 }
9610
9611 while (h->root.type == bfd_link_hash_indirect
9612 || h->root.type == bfd_link_hash_warning)
9613 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9614
9615 s_type = h->type;
9616
9617 ps = NULL;
9618 if (h->root.type == bfd_link_hash_defined
9619 || h->root.type == bfd_link_hash_defweak)
9620 ps = &h->root.u.def.section;
9621
9622 sym_name = h->root.root.string;
9623 }
9624 else
9625 {
9626 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9627
9628 s_type = ELF_ST_TYPE (sym->st_info);
9629 ps = &flinfo->sections[r_symndx];
9630 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9631 sym, *ps);
9632 }
9633
9634 if ((s_type == STT_RELC || s_type == STT_SRELC)
9635 && !flinfo->info->relocatable)
9636 {
9637 bfd_vma val;
9638 bfd_vma dot = (rel->r_offset
9639 + o->output_offset + o->output_section->vma);
9640 #ifdef DEBUG
9641 printf ("Encountered a complex symbol!");
9642 printf (" (input_bfd %s, section %s, reloc %ld\n",
9643 input_bfd->filename, o->name,
9644 (long) (rel - internal_relocs));
9645 printf (" symbol: idx %8.8lx, name %s\n",
9646 r_symndx, sym_name);
9647 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9648 (unsigned long) rel->r_info,
9649 (unsigned long) rel->r_offset);
9650 #endif
9651 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9652 isymbuf, locsymcount, s_type == STT_SRELC))
9653 return FALSE;
9654
9655 /* Symbol evaluated OK. Update to absolute value. */
9656 set_symbol_value (input_bfd, isymbuf, locsymcount,
9657 r_symndx, val);
9658 continue;
9659 }
9660
9661 if (action_discarded != -1 && ps != NULL)
9662 {
9663 /* Complain if the definition comes from a
9664 discarded section. */
9665 if ((sec = *ps) != NULL && discarded_section (sec))
9666 {
9667 BFD_ASSERT (r_symndx != STN_UNDEF);
9668 if (action_discarded & COMPLAIN)
9669 (*flinfo->info->callbacks->einfo)
9670 (_("%X`%s' referenced in section `%A' of %B: "
9671 "defined in discarded section `%A' of %B\n"),
9672 sym_name, o, input_bfd, sec, sec->owner);
9673
9674 /* Try to do the best we can to support buggy old
9675 versions of gcc. Pretend that the symbol is
9676 really defined in the kept linkonce section.
9677 FIXME: This is quite broken. Modifying the
9678 symbol here means we will be changing all later
9679 uses of the symbol, not just in this section. */
9680 if (action_discarded & PRETEND)
9681 {
9682 asection *kept;
9683
9684 kept = _bfd_elf_check_kept_section (sec,
9685 flinfo->info);
9686 if (kept != NULL)
9687 {
9688 *ps = kept;
9689 continue;
9690 }
9691 }
9692 }
9693 }
9694 }
9695
9696 /* Relocate the section by invoking a back end routine.
9697
9698 The back end routine is responsible for adjusting the
9699 section contents as necessary, and (if using Rela relocs
9700 and generating a relocatable output file) adjusting the
9701 reloc addend as necessary.
9702
9703 The back end routine does not have to worry about setting
9704 the reloc address or the reloc symbol index.
9705
9706 The back end routine is given a pointer to the swapped in
9707 internal symbols, and can access the hash table entries
9708 for the external symbols via elf_sym_hashes (input_bfd).
9709
9710 When generating relocatable output, the back end routine
9711 must handle STB_LOCAL/STT_SECTION symbols specially. The
9712 output symbol is going to be a section symbol
9713 corresponding to the output section, which will require
9714 the addend to be adjusted. */
9715
9716 ret = (*relocate_section) (output_bfd, flinfo->info,
9717 input_bfd, o, contents,
9718 internal_relocs,
9719 isymbuf,
9720 flinfo->sections);
9721 if (!ret)
9722 return FALSE;
9723
9724 if (ret == 2
9725 || flinfo->info->relocatable
9726 || flinfo->info->emitrelocations)
9727 {
9728 Elf_Internal_Rela *irela;
9729 Elf_Internal_Rela *irelaend, *irelamid;
9730 bfd_vma last_offset;
9731 struct elf_link_hash_entry **rel_hash;
9732 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9733 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9734 unsigned int next_erel;
9735 bfd_boolean rela_normal;
9736 struct bfd_elf_section_data *esdi, *esdo;
9737
9738 esdi = elf_section_data (o);
9739 esdo = elf_section_data (o->output_section);
9740 rela_normal = FALSE;
9741
9742 /* Adjust the reloc addresses and symbol indices. */
9743
9744 irela = internal_relocs;
9745 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9746 rel_hash = esdo->rel.hashes + esdo->rel.count;
9747 /* We start processing the REL relocs, if any. When we reach
9748 IRELAMID in the loop, we switch to the RELA relocs. */
9749 irelamid = irela;
9750 if (esdi->rel.hdr != NULL)
9751 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9752 * bed->s->int_rels_per_ext_rel);
9753 rel_hash_list = rel_hash;
9754 rela_hash_list = NULL;
9755 last_offset = o->output_offset;
9756 if (!flinfo->info->relocatable)
9757 last_offset += o->output_section->vma;
9758 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9759 {
9760 unsigned long r_symndx;
9761 asection *sec;
9762 Elf_Internal_Sym sym;
9763
9764 if (next_erel == bed->s->int_rels_per_ext_rel)
9765 {
9766 rel_hash++;
9767 next_erel = 0;
9768 }
9769
9770 if (irela == irelamid)
9771 {
9772 rel_hash = esdo->rela.hashes + esdo->rela.count;
9773 rela_hash_list = rel_hash;
9774 rela_normal = bed->rela_normal;
9775 }
9776
9777 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9778 flinfo->info, o,
9779 irela->r_offset);
9780 if (irela->r_offset >= (bfd_vma) -2)
9781 {
9782 /* This is a reloc for a deleted entry or somesuch.
9783 Turn it into an R_*_NONE reloc, at the same
9784 offset as the last reloc. elf_eh_frame.c and
9785 bfd_elf_discard_info rely on reloc offsets
9786 being ordered. */
9787 irela->r_offset = last_offset;
9788 irela->r_info = 0;
9789 irela->r_addend = 0;
9790 continue;
9791 }
9792
9793 irela->r_offset += o->output_offset;
9794
9795 /* Relocs in an executable have to be virtual addresses. */
9796 if (!flinfo->info->relocatable)
9797 irela->r_offset += o->output_section->vma;
9798
9799 last_offset = irela->r_offset;
9800
9801 r_symndx = irela->r_info >> r_sym_shift;
9802 if (r_symndx == STN_UNDEF)
9803 continue;
9804
9805 if (r_symndx >= locsymcount
9806 || (elf_bad_symtab (input_bfd)
9807 && flinfo->sections[r_symndx] == NULL))
9808 {
9809 struct elf_link_hash_entry *rh;
9810 unsigned long indx;
9811
9812 /* This is a reloc against a global symbol. We
9813 have not yet output all the local symbols, so
9814 we do not know the symbol index of any global
9815 symbol. We set the rel_hash entry for this
9816 reloc to point to the global hash table entry
9817 for this symbol. The symbol index is then
9818 set at the end of bfd_elf_final_link. */
9819 indx = r_symndx - extsymoff;
9820 rh = elf_sym_hashes (input_bfd)[indx];
9821 while (rh->root.type == bfd_link_hash_indirect
9822 || rh->root.type == bfd_link_hash_warning)
9823 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9824
9825 /* Setting the index to -2 tells
9826 elf_link_output_extsym that this symbol is
9827 used by a reloc. */
9828 BFD_ASSERT (rh->indx < 0);
9829 rh->indx = -2;
9830
9831 *rel_hash = rh;
9832
9833 continue;
9834 }
9835
9836 /* This is a reloc against a local symbol. */
9837
9838 *rel_hash = NULL;
9839 sym = isymbuf[r_symndx];
9840 sec = flinfo->sections[r_symndx];
9841 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9842 {
9843 /* I suppose the backend ought to fill in the
9844 section of any STT_SECTION symbol against a
9845 processor specific section. */
9846 r_symndx = STN_UNDEF;
9847 if (bfd_is_abs_section (sec))
9848 ;
9849 else if (sec == NULL || sec->owner == NULL)
9850 {
9851 bfd_set_error (bfd_error_bad_value);
9852 return FALSE;
9853 }
9854 else
9855 {
9856 asection *osec = sec->output_section;
9857
9858 /* If we have discarded a section, the output
9859 section will be the absolute section. In
9860 case of discarded SEC_MERGE sections, use
9861 the kept section. relocate_section should
9862 have already handled discarded linkonce
9863 sections. */
9864 if (bfd_is_abs_section (osec)
9865 && sec->kept_section != NULL
9866 && sec->kept_section->output_section != NULL)
9867 {
9868 osec = sec->kept_section->output_section;
9869 irela->r_addend -= osec->vma;
9870 }
9871
9872 if (!bfd_is_abs_section (osec))
9873 {
9874 r_symndx = osec->target_index;
9875 if (r_symndx == STN_UNDEF)
9876 {
9877 irela->r_addend += osec->vma;
9878 osec = _bfd_nearby_section (output_bfd, osec,
9879 osec->vma);
9880 irela->r_addend -= osec->vma;
9881 r_symndx = osec->target_index;
9882 }
9883 }
9884 }
9885
9886 /* Adjust the addend according to where the
9887 section winds up in the output section. */
9888 if (rela_normal)
9889 irela->r_addend += sec->output_offset;
9890 }
9891 else
9892 {
9893 if (flinfo->indices[r_symndx] == -1)
9894 {
9895 unsigned long shlink;
9896 const char *name;
9897 asection *osec;
9898 long indx;
9899
9900 if (flinfo->info->strip == strip_all)
9901 {
9902 /* You can't do ld -r -s. */
9903 bfd_set_error (bfd_error_invalid_operation);
9904 return FALSE;
9905 }
9906
9907 /* This symbol was skipped earlier, but
9908 since it is needed by a reloc, we
9909 must output it now. */
9910 shlink = symtab_hdr->sh_link;
9911 name = (bfd_elf_string_from_elf_section
9912 (input_bfd, shlink, sym.st_name));
9913 if (name == NULL)
9914 return FALSE;
9915
9916 osec = sec->output_section;
9917 sym.st_shndx =
9918 _bfd_elf_section_from_bfd_section (output_bfd,
9919 osec);
9920 if (sym.st_shndx == SHN_BAD)
9921 return FALSE;
9922
9923 sym.st_value += sec->output_offset;
9924 if (!flinfo->info->relocatable)
9925 {
9926 sym.st_value += osec->vma;
9927 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9928 {
9929 /* STT_TLS symbols are relative to PT_TLS
9930 segment base. */
9931 BFD_ASSERT (elf_hash_table (flinfo->info)
9932 ->tls_sec != NULL);
9933 sym.st_value -= (elf_hash_table (flinfo->info)
9934 ->tls_sec->vma);
9935 }
9936 }
9937
9938 indx = bfd_get_symcount (output_bfd);
9939 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9940 NULL);
9941 if (ret == 0)
9942 return FALSE;
9943 else if (ret == 1)
9944 flinfo->indices[r_symndx] = indx;
9945 else
9946 abort ();
9947 }
9948
9949 r_symndx = flinfo->indices[r_symndx];
9950 }
9951
9952 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9953 | (irela->r_info & r_type_mask));
9954 }
9955
9956 /* Swap out the relocs. */
9957 input_rel_hdr = esdi->rel.hdr;
9958 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9959 {
9960 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9961 input_rel_hdr,
9962 internal_relocs,
9963 rel_hash_list))
9964 return FALSE;
9965 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9966 * bed->s->int_rels_per_ext_rel);
9967 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9968 }
9969
9970 input_rela_hdr = esdi->rela.hdr;
9971 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9972 {
9973 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9974 input_rela_hdr,
9975 internal_relocs,
9976 rela_hash_list))
9977 return FALSE;
9978 }
9979 }
9980 }
9981
9982 /* Write out the modified section contents. */
9983 if (bed->elf_backend_write_section
9984 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9985 contents))
9986 {
9987 /* Section written out. */
9988 }
9989 else switch (o->sec_info_type)
9990 {
9991 case SEC_INFO_TYPE_STABS:
9992 if (! (_bfd_write_section_stabs
9993 (output_bfd,
9994 &elf_hash_table (flinfo->info)->stab_info,
9995 o, &elf_section_data (o)->sec_info, contents)))
9996 return FALSE;
9997 break;
9998 case SEC_INFO_TYPE_MERGE:
9999 if (! _bfd_write_merged_section (output_bfd, o,
10000 elf_section_data (o)->sec_info))
10001 return FALSE;
10002 break;
10003 case SEC_INFO_TYPE_EH_FRAME:
10004 {
10005 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10006 o, contents))
10007 return FALSE;
10008 }
10009 break;
10010 default:
10011 {
10012 /* FIXME: octets_per_byte. */
10013 if (! (o->flags & SEC_EXCLUDE))
10014 {
10015 file_ptr offset = (file_ptr) o->output_offset;
10016 bfd_size_type todo = o->size;
10017 if ((o->flags & SEC_ELF_REVERSE_COPY))
10018 {
10019 /* Reverse-copy input section to output. */
10020 do
10021 {
10022 todo -= address_size;
10023 if (! bfd_set_section_contents (output_bfd,
10024 o->output_section,
10025 contents + todo,
10026 offset,
10027 address_size))
10028 return FALSE;
10029 if (todo == 0)
10030 break;
10031 offset += address_size;
10032 }
10033 while (1);
10034 }
10035 else if (! bfd_set_section_contents (output_bfd,
10036 o->output_section,
10037 contents,
10038 offset, todo))
10039 return FALSE;
10040 }
10041 }
10042 break;
10043 }
10044 }
10045
10046 return TRUE;
10047 }
10048
10049 /* Generate a reloc when linking an ELF file. This is a reloc
10050 requested by the linker, and does not come from any input file. This
10051 is used to build constructor and destructor tables when linking
10052 with -Ur. */
10053
10054 static bfd_boolean
10055 elf_reloc_link_order (bfd *output_bfd,
10056 struct bfd_link_info *info,
10057 asection *output_section,
10058 struct bfd_link_order *link_order)
10059 {
10060 reloc_howto_type *howto;
10061 long indx;
10062 bfd_vma offset;
10063 bfd_vma addend;
10064 struct bfd_elf_section_reloc_data *reldata;
10065 struct elf_link_hash_entry **rel_hash_ptr;
10066 Elf_Internal_Shdr *rel_hdr;
10067 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10068 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10069 bfd_byte *erel;
10070 unsigned int i;
10071 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10072
10073 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10074 if (howto == NULL)
10075 {
10076 bfd_set_error (bfd_error_bad_value);
10077 return FALSE;
10078 }
10079
10080 addend = link_order->u.reloc.p->addend;
10081
10082 if (esdo->rel.hdr)
10083 reldata = &esdo->rel;
10084 else if (esdo->rela.hdr)
10085 reldata = &esdo->rela;
10086 else
10087 {
10088 reldata = NULL;
10089 BFD_ASSERT (0);
10090 }
10091
10092 /* Figure out the symbol index. */
10093 rel_hash_ptr = reldata->hashes + reldata->count;
10094 if (link_order->type == bfd_section_reloc_link_order)
10095 {
10096 indx = link_order->u.reloc.p->u.section->target_index;
10097 BFD_ASSERT (indx != 0);
10098 *rel_hash_ptr = NULL;
10099 }
10100 else
10101 {
10102 struct elf_link_hash_entry *h;
10103
10104 /* Treat a reloc against a defined symbol as though it were
10105 actually against the section. */
10106 h = ((struct elf_link_hash_entry *)
10107 bfd_wrapped_link_hash_lookup (output_bfd, info,
10108 link_order->u.reloc.p->u.name,
10109 FALSE, FALSE, TRUE));
10110 if (h != NULL
10111 && (h->root.type == bfd_link_hash_defined
10112 || h->root.type == bfd_link_hash_defweak))
10113 {
10114 asection *section;
10115
10116 section = h->root.u.def.section;
10117 indx = section->output_section->target_index;
10118 *rel_hash_ptr = NULL;
10119 /* It seems that we ought to add the symbol value to the
10120 addend here, but in practice it has already been added
10121 because it was passed to constructor_callback. */
10122 addend += section->output_section->vma + section->output_offset;
10123 }
10124 else if (h != NULL)
10125 {
10126 /* Setting the index to -2 tells elf_link_output_extsym that
10127 this symbol is used by a reloc. */
10128 h->indx = -2;
10129 *rel_hash_ptr = h;
10130 indx = 0;
10131 }
10132 else
10133 {
10134 if (! ((*info->callbacks->unattached_reloc)
10135 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10136 return FALSE;
10137 indx = 0;
10138 }
10139 }
10140
10141 /* If this is an inplace reloc, we must write the addend into the
10142 object file. */
10143 if (howto->partial_inplace && addend != 0)
10144 {
10145 bfd_size_type size;
10146 bfd_reloc_status_type rstat;
10147 bfd_byte *buf;
10148 bfd_boolean ok;
10149 const char *sym_name;
10150
10151 size = (bfd_size_type) bfd_get_reloc_size (howto);
10152 buf = (bfd_byte *) bfd_zmalloc (size);
10153 if (buf == NULL)
10154 return FALSE;
10155 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10156 switch (rstat)
10157 {
10158 case bfd_reloc_ok:
10159 break;
10160
10161 default:
10162 case bfd_reloc_outofrange:
10163 abort ();
10164
10165 case bfd_reloc_overflow:
10166 if (link_order->type == bfd_section_reloc_link_order)
10167 sym_name = bfd_section_name (output_bfd,
10168 link_order->u.reloc.p->u.section);
10169 else
10170 sym_name = link_order->u.reloc.p->u.name;
10171 if (! ((*info->callbacks->reloc_overflow)
10172 (info, NULL, sym_name, howto->name, addend, NULL,
10173 NULL, (bfd_vma) 0)))
10174 {
10175 free (buf);
10176 return FALSE;
10177 }
10178 break;
10179 }
10180 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10181 link_order->offset, size);
10182 free (buf);
10183 if (! ok)
10184 return FALSE;
10185 }
10186
10187 /* The address of a reloc is relative to the section in a
10188 relocatable file, and is a virtual address in an executable
10189 file. */
10190 offset = link_order->offset;
10191 if (! info->relocatable)
10192 offset += output_section->vma;
10193
10194 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10195 {
10196 irel[i].r_offset = offset;
10197 irel[i].r_info = 0;
10198 irel[i].r_addend = 0;
10199 }
10200 if (bed->s->arch_size == 32)
10201 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10202 else
10203 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10204
10205 rel_hdr = reldata->hdr;
10206 erel = rel_hdr->contents;
10207 if (rel_hdr->sh_type == SHT_REL)
10208 {
10209 erel += reldata->count * bed->s->sizeof_rel;
10210 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10211 }
10212 else
10213 {
10214 irel[0].r_addend = addend;
10215 erel += reldata->count * bed->s->sizeof_rela;
10216 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10217 }
10218
10219 ++reldata->count;
10220
10221 return TRUE;
10222 }
10223
10224
10225 /* Get the output vma of the section pointed to by the sh_link field. */
10226
10227 static bfd_vma
10228 elf_get_linked_section_vma (struct bfd_link_order *p)
10229 {
10230 Elf_Internal_Shdr **elf_shdrp;
10231 asection *s;
10232 int elfsec;
10233
10234 s = p->u.indirect.section;
10235 elf_shdrp = elf_elfsections (s->owner);
10236 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10237 elfsec = elf_shdrp[elfsec]->sh_link;
10238 /* PR 290:
10239 The Intel C compiler generates SHT_IA_64_UNWIND with
10240 SHF_LINK_ORDER. But it doesn't set the sh_link or
10241 sh_info fields. Hence we could get the situation
10242 where elfsec is 0. */
10243 if (elfsec == 0)
10244 {
10245 const struct elf_backend_data *bed
10246 = get_elf_backend_data (s->owner);
10247 if (bed->link_order_error_handler)
10248 bed->link_order_error_handler
10249 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10250 return 0;
10251 }
10252 else
10253 {
10254 s = elf_shdrp[elfsec]->bfd_section;
10255 return s->output_section->vma + s->output_offset;
10256 }
10257 }
10258
10259
10260 /* Compare two sections based on the locations of the sections they are
10261 linked to. Used by elf_fixup_link_order. */
10262
10263 static int
10264 compare_link_order (const void * a, const void * b)
10265 {
10266 bfd_vma apos;
10267 bfd_vma bpos;
10268
10269 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10270 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10271 if (apos < bpos)
10272 return -1;
10273 return apos > bpos;
10274 }
10275
10276
10277 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10278 order as their linked sections. Returns false if this could not be done
10279 because an output section includes both ordered and unordered
10280 sections. Ideally we'd do this in the linker proper. */
10281
10282 static bfd_boolean
10283 elf_fixup_link_order (bfd *abfd, asection *o)
10284 {
10285 int seen_linkorder;
10286 int seen_other;
10287 int n;
10288 struct bfd_link_order *p;
10289 bfd *sub;
10290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10291 unsigned elfsec;
10292 struct bfd_link_order **sections;
10293 asection *s, *other_sec, *linkorder_sec;
10294 bfd_vma offset;
10295
10296 other_sec = NULL;
10297 linkorder_sec = NULL;
10298 seen_other = 0;
10299 seen_linkorder = 0;
10300 for (p = o->map_head.link_order; p != NULL; p = p->next)
10301 {
10302 if (p->type == bfd_indirect_link_order)
10303 {
10304 s = p->u.indirect.section;
10305 sub = s->owner;
10306 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10307 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10308 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10309 && elfsec < elf_numsections (sub)
10310 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10311 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10312 {
10313 seen_linkorder++;
10314 linkorder_sec = s;
10315 }
10316 else
10317 {
10318 seen_other++;
10319 other_sec = s;
10320 }
10321 }
10322 else
10323 seen_other++;
10324
10325 if (seen_other && seen_linkorder)
10326 {
10327 if (other_sec && linkorder_sec)
10328 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10329 o, linkorder_sec,
10330 linkorder_sec->owner, other_sec,
10331 other_sec->owner);
10332 else
10333 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10334 o);
10335 bfd_set_error (bfd_error_bad_value);
10336 return FALSE;
10337 }
10338 }
10339
10340 if (!seen_linkorder)
10341 return TRUE;
10342
10343 sections = (struct bfd_link_order **)
10344 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10345 if (sections == NULL)
10346 return FALSE;
10347 seen_linkorder = 0;
10348
10349 for (p = o->map_head.link_order; p != NULL; p = p->next)
10350 {
10351 sections[seen_linkorder++] = p;
10352 }
10353 /* Sort the input sections in the order of their linked section. */
10354 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10355 compare_link_order);
10356
10357 /* Change the offsets of the sections. */
10358 offset = 0;
10359 for (n = 0; n < seen_linkorder; n++)
10360 {
10361 s = sections[n]->u.indirect.section;
10362 offset &= ~(bfd_vma) 0 << s->alignment_power;
10363 s->output_offset = offset;
10364 sections[n]->offset = offset;
10365 /* FIXME: octets_per_byte. */
10366 offset += sections[n]->size;
10367 }
10368
10369 free (sections);
10370 return TRUE;
10371 }
10372
10373 static void
10374 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10375 {
10376 asection *o;
10377
10378 if (flinfo->symstrtab != NULL)
10379 _bfd_stringtab_free (flinfo->symstrtab);
10380 if (flinfo->contents != NULL)
10381 free (flinfo->contents);
10382 if (flinfo->external_relocs != NULL)
10383 free (flinfo->external_relocs);
10384 if (flinfo->internal_relocs != NULL)
10385 free (flinfo->internal_relocs);
10386 if (flinfo->external_syms != NULL)
10387 free (flinfo->external_syms);
10388 if (flinfo->locsym_shndx != NULL)
10389 free (flinfo->locsym_shndx);
10390 if (flinfo->internal_syms != NULL)
10391 free (flinfo->internal_syms);
10392 if (flinfo->indices != NULL)
10393 free (flinfo->indices);
10394 if (flinfo->sections != NULL)
10395 free (flinfo->sections);
10396 if (flinfo->symbuf != NULL)
10397 free (flinfo->symbuf);
10398 if (flinfo->symshndxbuf != NULL)
10399 free (flinfo->symshndxbuf);
10400 for (o = obfd->sections; o != NULL; o = o->next)
10401 {
10402 struct bfd_elf_section_data *esdo = elf_section_data (o);
10403 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10404 free (esdo->rel.hashes);
10405 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10406 free (esdo->rela.hashes);
10407 }
10408 }
10409
10410 /* Do the final step of an ELF link. */
10411
10412 bfd_boolean
10413 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10414 {
10415 bfd_boolean dynamic;
10416 bfd_boolean emit_relocs;
10417 bfd *dynobj;
10418 struct elf_final_link_info flinfo;
10419 asection *o;
10420 struct bfd_link_order *p;
10421 bfd *sub;
10422 bfd_size_type max_contents_size;
10423 bfd_size_type max_external_reloc_size;
10424 bfd_size_type max_internal_reloc_count;
10425 bfd_size_type max_sym_count;
10426 bfd_size_type max_sym_shndx_count;
10427 file_ptr off;
10428 Elf_Internal_Sym elfsym;
10429 unsigned int i;
10430 Elf_Internal_Shdr *symtab_hdr;
10431 Elf_Internal_Shdr *symtab_shndx_hdr;
10432 Elf_Internal_Shdr *symstrtab_hdr;
10433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10434 struct elf_outext_info eoinfo;
10435 bfd_boolean merged;
10436 size_t relativecount = 0;
10437 asection *reldyn = 0;
10438 bfd_size_type amt;
10439 asection *attr_section = NULL;
10440 bfd_vma attr_size = 0;
10441 const char *std_attrs_section;
10442
10443 if (! is_elf_hash_table (info->hash))
10444 return FALSE;
10445
10446 if (info->shared)
10447 abfd->flags |= DYNAMIC;
10448
10449 dynamic = elf_hash_table (info)->dynamic_sections_created;
10450 dynobj = elf_hash_table (info)->dynobj;
10451
10452 emit_relocs = (info->relocatable
10453 || info->emitrelocations);
10454
10455 flinfo.info = info;
10456 flinfo.output_bfd = abfd;
10457 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10458 if (flinfo.symstrtab == NULL)
10459 return FALSE;
10460
10461 if (! dynamic)
10462 {
10463 flinfo.dynsym_sec = NULL;
10464 flinfo.hash_sec = NULL;
10465 flinfo.symver_sec = NULL;
10466 }
10467 else
10468 {
10469 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10470 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10471 /* Note that dynsym_sec can be NULL (on VMS). */
10472 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10473 /* Note that it is OK if symver_sec is NULL. */
10474 }
10475
10476 flinfo.contents = NULL;
10477 flinfo.external_relocs = NULL;
10478 flinfo.internal_relocs = NULL;
10479 flinfo.external_syms = NULL;
10480 flinfo.locsym_shndx = NULL;
10481 flinfo.internal_syms = NULL;
10482 flinfo.indices = NULL;
10483 flinfo.sections = NULL;
10484 flinfo.symbuf = NULL;
10485 flinfo.symshndxbuf = NULL;
10486 flinfo.symbuf_count = 0;
10487 flinfo.shndxbuf_size = 0;
10488 flinfo.filesym_count = 0;
10489
10490 /* The object attributes have been merged. Remove the input
10491 sections from the link, and set the contents of the output
10492 secton. */
10493 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10494 for (o = abfd->sections; o != NULL; o = o->next)
10495 {
10496 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10497 || strcmp (o->name, ".gnu.attributes") == 0)
10498 {
10499 for (p = o->map_head.link_order; p != NULL; p = p->next)
10500 {
10501 asection *input_section;
10502
10503 if (p->type != bfd_indirect_link_order)
10504 continue;
10505 input_section = p->u.indirect.section;
10506 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10507 elf_link_input_bfd ignores this section. */
10508 input_section->flags &= ~SEC_HAS_CONTENTS;
10509 }
10510
10511 attr_size = bfd_elf_obj_attr_size (abfd);
10512 if (attr_size)
10513 {
10514 bfd_set_section_size (abfd, o, attr_size);
10515 attr_section = o;
10516 /* Skip this section later on. */
10517 o->map_head.link_order = NULL;
10518 }
10519 else
10520 o->flags |= SEC_EXCLUDE;
10521 }
10522 }
10523
10524 /* Count up the number of relocations we will output for each output
10525 section, so that we know the sizes of the reloc sections. We
10526 also figure out some maximum sizes. */
10527 max_contents_size = 0;
10528 max_external_reloc_size = 0;
10529 max_internal_reloc_count = 0;
10530 max_sym_count = 0;
10531 max_sym_shndx_count = 0;
10532 merged = FALSE;
10533 for (o = abfd->sections; o != NULL; o = o->next)
10534 {
10535 struct bfd_elf_section_data *esdo = elf_section_data (o);
10536 o->reloc_count = 0;
10537
10538 for (p = o->map_head.link_order; p != NULL; p = p->next)
10539 {
10540 unsigned int reloc_count = 0;
10541 struct bfd_elf_section_data *esdi = NULL;
10542
10543 if (p->type == bfd_section_reloc_link_order
10544 || p->type == bfd_symbol_reloc_link_order)
10545 reloc_count = 1;
10546 else if (p->type == bfd_indirect_link_order)
10547 {
10548 asection *sec;
10549
10550 sec = p->u.indirect.section;
10551 esdi = elf_section_data (sec);
10552
10553 /* Mark all sections which are to be included in the
10554 link. This will normally be every section. We need
10555 to do this so that we can identify any sections which
10556 the linker has decided to not include. */
10557 sec->linker_mark = TRUE;
10558
10559 if (sec->flags & SEC_MERGE)
10560 merged = TRUE;
10561
10562 if (esdo->this_hdr.sh_type == SHT_REL
10563 || esdo->this_hdr.sh_type == SHT_RELA)
10564 /* Some backends use reloc_count in relocation sections
10565 to count particular types of relocs. Of course,
10566 reloc sections themselves can't have relocations. */
10567 reloc_count = 0;
10568 else if (info->relocatable || info->emitrelocations)
10569 reloc_count = sec->reloc_count;
10570 else if (bed->elf_backend_count_relocs)
10571 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10572
10573 if (sec->rawsize > max_contents_size)
10574 max_contents_size = sec->rawsize;
10575 if (sec->size > max_contents_size)
10576 max_contents_size = sec->size;
10577
10578 /* We are interested in just local symbols, not all
10579 symbols. */
10580 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10581 && (sec->owner->flags & DYNAMIC) == 0)
10582 {
10583 size_t sym_count;
10584
10585 if (elf_bad_symtab (sec->owner))
10586 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10587 / bed->s->sizeof_sym);
10588 else
10589 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10590
10591 if (sym_count > max_sym_count)
10592 max_sym_count = sym_count;
10593
10594 if (sym_count > max_sym_shndx_count
10595 && elf_symtab_shndx (sec->owner) != 0)
10596 max_sym_shndx_count = sym_count;
10597
10598 if ((sec->flags & SEC_RELOC) != 0)
10599 {
10600 size_t ext_size = 0;
10601
10602 if (esdi->rel.hdr != NULL)
10603 ext_size = esdi->rel.hdr->sh_size;
10604 if (esdi->rela.hdr != NULL)
10605 ext_size += esdi->rela.hdr->sh_size;
10606
10607 if (ext_size > max_external_reloc_size)
10608 max_external_reloc_size = ext_size;
10609 if (sec->reloc_count > max_internal_reloc_count)
10610 max_internal_reloc_count = sec->reloc_count;
10611 }
10612 }
10613 }
10614
10615 if (reloc_count == 0)
10616 continue;
10617
10618 o->reloc_count += reloc_count;
10619
10620 if (p->type == bfd_indirect_link_order
10621 && (info->relocatable || info->emitrelocations))
10622 {
10623 if (esdi->rel.hdr)
10624 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10625 if (esdi->rela.hdr)
10626 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10627 }
10628 else
10629 {
10630 if (o->use_rela_p)
10631 esdo->rela.count += reloc_count;
10632 else
10633 esdo->rel.count += reloc_count;
10634 }
10635 }
10636
10637 if (o->reloc_count > 0)
10638 o->flags |= SEC_RELOC;
10639 else
10640 {
10641 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10642 set it (this is probably a bug) and if it is set
10643 assign_section_numbers will create a reloc section. */
10644 o->flags &=~ SEC_RELOC;
10645 }
10646
10647 /* If the SEC_ALLOC flag is not set, force the section VMA to
10648 zero. This is done in elf_fake_sections as well, but forcing
10649 the VMA to 0 here will ensure that relocs against these
10650 sections are handled correctly. */
10651 if ((o->flags & SEC_ALLOC) == 0
10652 && ! o->user_set_vma)
10653 o->vma = 0;
10654 }
10655
10656 if (! info->relocatable && merged)
10657 elf_link_hash_traverse (elf_hash_table (info),
10658 _bfd_elf_link_sec_merge_syms, abfd);
10659
10660 /* Figure out the file positions for everything but the symbol table
10661 and the relocs. We set symcount to force assign_section_numbers
10662 to create a symbol table. */
10663 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10664 BFD_ASSERT (! abfd->output_has_begun);
10665 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10666 goto error_return;
10667
10668 /* Set sizes, and assign file positions for reloc sections. */
10669 for (o = abfd->sections; o != NULL; o = o->next)
10670 {
10671 struct bfd_elf_section_data *esdo = elf_section_data (o);
10672 if ((o->flags & SEC_RELOC) != 0)
10673 {
10674 if (esdo->rel.hdr
10675 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10676 goto error_return;
10677
10678 if (esdo->rela.hdr
10679 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10680 goto error_return;
10681 }
10682
10683 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10684 to count upwards while actually outputting the relocations. */
10685 esdo->rel.count = 0;
10686 esdo->rela.count = 0;
10687 }
10688
10689 _bfd_elf_assign_file_positions_for_relocs (abfd);
10690
10691 /* We have now assigned file positions for all the sections except
10692 .symtab and .strtab. We start the .symtab section at the current
10693 file position, and write directly to it. We build the .strtab
10694 section in memory. */
10695 bfd_get_symcount (abfd) = 0;
10696 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10697 /* sh_name is set in prep_headers. */
10698 symtab_hdr->sh_type = SHT_SYMTAB;
10699 /* sh_flags, sh_addr and sh_size all start off zero. */
10700 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10701 /* sh_link is set in assign_section_numbers. */
10702 /* sh_info is set below. */
10703 /* sh_offset is set just below. */
10704 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10705
10706 off = elf_next_file_pos (abfd);
10707 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10708
10709 /* Note that at this point elf_next_file_pos (abfd) is
10710 incorrect. We do not yet know the size of the .symtab section.
10711 We correct next_file_pos below, after we do know the size. */
10712
10713 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10714 continuously seeking to the right position in the file. */
10715 if (! info->keep_memory || max_sym_count < 20)
10716 flinfo.symbuf_size = 20;
10717 else
10718 flinfo.symbuf_size = max_sym_count;
10719 amt = flinfo.symbuf_size;
10720 amt *= bed->s->sizeof_sym;
10721 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10722 if (flinfo.symbuf == NULL)
10723 goto error_return;
10724 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10725 {
10726 /* Wild guess at number of output symbols. realloc'd as needed. */
10727 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10728 flinfo.shndxbuf_size = amt;
10729 amt *= sizeof (Elf_External_Sym_Shndx);
10730 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10731 if (flinfo.symshndxbuf == NULL)
10732 goto error_return;
10733 }
10734
10735 /* Start writing out the symbol table. The first symbol is always a
10736 dummy symbol. */
10737 if (info->strip != strip_all
10738 || emit_relocs)
10739 {
10740 elfsym.st_value = 0;
10741 elfsym.st_size = 0;
10742 elfsym.st_info = 0;
10743 elfsym.st_other = 0;
10744 elfsym.st_shndx = SHN_UNDEF;
10745 elfsym.st_target_internal = 0;
10746 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10747 NULL) != 1)
10748 goto error_return;
10749 }
10750
10751 /* Output a symbol for each section. We output these even if we are
10752 discarding local symbols, since they are used for relocs. These
10753 symbols have no names. We store the index of each one in the
10754 index field of the section, so that we can find it again when
10755 outputting relocs. */
10756 if (info->strip != strip_all
10757 || emit_relocs)
10758 {
10759 elfsym.st_size = 0;
10760 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10761 elfsym.st_other = 0;
10762 elfsym.st_value = 0;
10763 elfsym.st_target_internal = 0;
10764 for (i = 1; i < elf_numsections (abfd); i++)
10765 {
10766 o = bfd_section_from_elf_index (abfd, i);
10767 if (o != NULL)
10768 {
10769 o->target_index = bfd_get_symcount (abfd);
10770 elfsym.st_shndx = i;
10771 if (!info->relocatable)
10772 elfsym.st_value = o->vma;
10773 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10774 goto error_return;
10775 }
10776 }
10777 }
10778
10779 /* Allocate some memory to hold information read in from the input
10780 files. */
10781 if (max_contents_size != 0)
10782 {
10783 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10784 if (flinfo.contents == NULL)
10785 goto error_return;
10786 }
10787
10788 if (max_external_reloc_size != 0)
10789 {
10790 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10791 if (flinfo.external_relocs == NULL)
10792 goto error_return;
10793 }
10794
10795 if (max_internal_reloc_count != 0)
10796 {
10797 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10798 amt *= sizeof (Elf_Internal_Rela);
10799 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10800 if (flinfo.internal_relocs == NULL)
10801 goto error_return;
10802 }
10803
10804 if (max_sym_count != 0)
10805 {
10806 amt = max_sym_count * bed->s->sizeof_sym;
10807 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10808 if (flinfo.external_syms == NULL)
10809 goto error_return;
10810
10811 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10812 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10813 if (flinfo.internal_syms == NULL)
10814 goto error_return;
10815
10816 amt = max_sym_count * sizeof (long);
10817 flinfo.indices = (long int *) bfd_malloc (amt);
10818 if (flinfo.indices == NULL)
10819 goto error_return;
10820
10821 amt = max_sym_count * sizeof (asection *);
10822 flinfo.sections = (asection **) bfd_malloc (amt);
10823 if (flinfo.sections == NULL)
10824 goto error_return;
10825 }
10826
10827 if (max_sym_shndx_count != 0)
10828 {
10829 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10830 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10831 if (flinfo.locsym_shndx == NULL)
10832 goto error_return;
10833 }
10834
10835 if (elf_hash_table (info)->tls_sec)
10836 {
10837 bfd_vma base, end = 0;
10838 asection *sec;
10839
10840 for (sec = elf_hash_table (info)->tls_sec;
10841 sec && (sec->flags & SEC_THREAD_LOCAL);
10842 sec = sec->next)
10843 {
10844 bfd_size_type size = sec->size;
10845
10846 if (size == 0
10847 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10848 {
10849 struct bfd_link_order *ord = sec->map_tail.link_order;
10850
10851 if (ord != NULL)
10852 size = ord->offset + ord->size;
10853 }
10854 end = sec->vma + size;
10855 }
10856 base = elf_hash_table (info)->tls_sec->vma;
10857 /* Only align end of TLS section if static TLS doesn't have special
10858 alignment requirements. */
10859 if (bed->static_tls_alignment == 1)
10860 end = align_power (end,
10861 elf_hash_table (info)->tls_sec->alignment_power);
10862 elf_hash_table (info)->tls_size = end - base;
10863 }
10864
10865 /* Reorder SHF_LINK_ORDER sections. */
10866 for (o = abfd->sections; o != NULL; o = o->next)
10867 {
10868 if (!elf_fixup_link_order (abfd, o))
10869 return FALSE;
10870 }
10871
10872 /* Since ELF permits relocations to be against local symbols, we
10873 must have the local symbols available when we do the relocations.
10874 Since we would rather only read the local symbols once, and we
10875 would rather not keep them in memory, we handle all the
10876 relocations for a single input file at the same time.
10877
10878 Unfortunately, there is no way to know the total number of local
10879 symbols until we have seen all of them, and the local symbol
10880 indices precede the global symbol indices. This means that when
10881 we are generating relocatable output, and we see a reloc against
10882 a global symbol, we can not know the symbol index until we have
10883 finished examining all the local symbols to see which ones we are
10884 going to output. To deal with this, we keep the relocations in
10885 memory, and don't output them until the end of the link. This is
10886 an unfortunate waste of memory, but I don't see a good way around
10887 it. Fortunately, it only happens when performing a relocatable
10888 link, which is not the common case. FIXME: If keep_memory is set
10889 we could write the relocs out and then read them again; I don't
10890 know how bad the memory loss will be. */
10891
10892 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10893 sub->output_has_begun = FALSE;
10894 for (o = abfd->sections; o != NULL; o = o->next)
10895 {
10896 for (p = o->map_head.link_order; p != NULL; p = p->next)
10897 {
10898 if (p->type == bfd_indirect_link_order
10899 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10900 == bfd_target_elf_flavour)
10901 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10902 {
10903 if (! sub->output_has_begun)
10904 {
10905 if (! elf_link_input_bfd (&flinfo, sub))
10906 goto error_return;
10907 sub->output_has_begun = TRUE;
10908 }
10909 }
10910 else if (p->type == bfd_section_reloc_link_order
10911 || p->type == bfd_symbol_reloc_link_order)
10912 {
10913 if (! elf_reloc_link_order (abfd, info, o, p))
10914 goto error_return;
10915 }
10916 else
10917 {
10918 if (! _bfd_default_link_order (abfd, info, o, p))
10919 {
10920 if (p->type == bfd_indirect_link_order
10921 && (bfd_get_flavour (sub)
10922 == bfd_target_elf_flavour)
10923 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10924 != bed->s->elfclass))
10925 {
10926 const char *iclass, *oclass;
10927
10928 if (bed->s->elfclass == ELFCLASS64)
10929 {
10930 iclass = "ELFCLASS32";
10931 oclass = "ELFCLASS64";
10932 }
10933 else
10934 {
10935 iclass = "ELFCLASS64";
10936 oclass = "ELFCLASS32";
10937 }
10938
10939 bfd_set_error (bfd_error_wrong_format);
10940 (*_bfd_error_handler)
10941 (_("%B: file class %s incompatible with %s"),
10942 sub, iclass, oclass);
10943 }
10944
10945 goto error_return;
10946 }
10947 }
10948 }
10949 }
10950
10951 /* Free symbol buffer if needed. */
10952 if (!info->reduce_memory_overheads)
10953 {
10954 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10955 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10956 && elf_tdata (sub)->symbuf)
10957 {
10958 free (elf_tdata (sub)->symbuf);
10959 elf_tdata (sub)->symbuf = NULL;
10960 }
10961 }
10962
10963 /* Output any global symbols that got converted to local in a
10964 version script or due to symbol visibility. We do this in a
10965 separate step since ELF requires all local symbols to appear
10966 prior to any global symbols. FIXME: We should only do this if
10967 some global symbols were, in fact, converted to become local.
10968 FIXME: Will this work correctly with the Irix 5 linker? */
10969 eoinfo.failed = FALSE;
10970 eoinfo.flinfo = &flinfo;
10971 eoinfo.localsyms = TRUE;
10972 eoinfo.need_second_pass = FALSE;
10973 eoinfo.second_pass = FALSE;
10974 eoinfo.file_sym_done = FALSE;
10975 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10976 if (eoinfo.failed)
10977 return FALSE;
10978
10979 if (eoinfo.need_second_pass)
10980 {
10981 eoinfo.second_pass = TRUE;
10982 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10983 if (eoinfo.failed)
10984 return FALSE;
10985 }
10986
10987 /* If backend needs to output some local symbols not present in the hash
10988 table, do it now. */
10989 if (bed->elf_backend_output_arch_local_syms)
10990 {
10991 typedef int (*out_sym_func)
10992 (void *, const char *, Elf_Internal_Sym *, asection *,
10993 struct elf_link_hash_entry *);
10994
10995 if (! ((*bed->elf_backend_output_arch_local_syms)
10996 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
10997 return FALSE;
10998 }
10999
11000 /* That wrote out all the local symbols. Finish up the symbol table
11001 with the global symbols. Even if we want to strip everything we
11002 can, we still need to deal with those global symbols that got
11003 converted to local in a version script. */
11004
11005 /* The sh_info field records the index of the first non local symbol. */
11006 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11007
11008 if (dynamic
11009 && flinfo.dynsym_sec != NULL
11010 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11011 {
11012 Elf_Internal_Sym sym;
11013 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11014 long last_local = 0;
11015
11016 /* Write out the section symbols for the output sections. */
11017 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11018 {
11019 asection *s;
11020
11021 sym.st_size = 0;
11022 sym.st_name = 0;
11023 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11024 sym.st_other = 0;
11025 sym.st_target_internal = 0;
11026
11027 for (s = abfd->sections; s != NULL; s = s->next)
11028 {
11029 int indx;
11030 bfd_byte *dest;
11031 long dynindx;
11032
11033 dynindx = elf_section_data (s)->dynindx;
11034 if (dynindx <= 0)
11035 continue;
11036 indx = elf_section_data (s)->this_idx;
11037 BFD_ASSERT (indx > 0);
11038 sym.st_shndx = indx;
11039 if (! check_dynsym (abfd, &sym))
11040 return FALSE;
11041 sym.st_value = s->vma;
11042 dest = dynsym + dynindx * bed->s->sizeof_sym;
11043 if (last_local < dynindx)
11044 last_local = dynindx;
11045 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11046 }
11047 }
11048
11049 /* Write out the local dynsyms. */
11050 if (elf_hash_table (info)->dynlocal)
11051 {
11052 struct elf_link_local_dynamic_entry *e;
11053 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11054 {
11055 asection *s;
11056 bfd_byte *dest;
11057
11058 /* Copy the internal symbol and turn off visibility.
11059 Note that we saved a word of storage and overwrote
11060 the original st_name with the dynstr_index. */
11061 sym = e->isym;
11062 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11063
11064 s = bfd_section_from_elf_index (e->input_bfd,
11065 e->isym.st_shndx);
11066 if (s != NULL)
11067 {
11068 sym.st_shndx =
11069 elf_section_data (s->output_section)->this_idx;
11070 if (! check_dynsym (abfd, &sym))
11071 return FALSE;
11072 sym.st_value = (s->output_section->vma
11073 + s->output_offset
11074 + e->isym.st_value);
11075 }
11076
11077 if (last_local < e->dynindx)
11078 last_local = e->dynindx;
11079
11080 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11081 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11082 }
11083 }
11084
11085 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11086 last_local + 1;
11087 }
11088
11089 /* We get the global symbols from the hash table. */
11090 eoinfo.failed = FALSE;
11091 eoinfo.localsyms = FALSE;
11092 eoinfo.flinfo = &flinfo;
11093 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11094 if (eoinfo.failed)
11095 return FALSE;
11096
11097 /* If backend needs to output some symbols not present in the hash
11098 table, do it now. */
11099 if (bed->elf_backend_output_arch_syms)
11100 {
11101 typedef int (*out_sym_func)
11102 (void *, const char *, Elf_Internal_Sym *, asection *,
11103 struct elf_link_hash_entry *);
11104
11105 if (! ((*bed->elf_backend_output_arch_syms)
11106 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11107 return FALSE;
11108 }
11109
11110 /* Flush all symbols to the file. */
11111 if (! elf_link_flush_output_syms (&flinfo, bed))
11112 return FALSE;
11113
11114 /* Now we know the size of the symtab section. */
11115 off += symtab_hdr->sh_size;
11116
11117 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11118 if (symtab_shndx_hdr->sh_name != 0)
11119 {
11120 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11121 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11122 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11123 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11124 symtab_shndx_hdr->sh_size = amt;
11125
11126 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11127 off, TRUE);
11128
11129 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11130 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11131 return FALSE;
11132 }
11133
11134
11135 /* Finish up and write out the symbol string table (.strtab)
11136 section. */
11137 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11138 /* sh_name was set in prep_headers. */
11139 symstrtab_hdr->sh_type = SHT_STRTAB;
11140 symstrtab_hdr->sh_flags = 0;
11141 symstrtab_hdr->sh_addr = 0;
11142 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11143 symstrtab_hdr->sh_entsize = 0;
11144 symstrtab_hdr->sh_link = 0;
11145 symstrtab_hdr->sh_info = 0;
11146 /* sh_offset is set just below. */
11147 symstrtab_hdr->sh_addralign = 1;
11148
11149 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11150 elf_next_file_pos (abfd) = off;
11151
11152 if (bfd_get_symcount (abfd) > 0)
11153 {
11154 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11155 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11156 return FALSE;
11157 }
11158
11159 /* Adjust the relocs to have the correct symbol indices. */
11160 for (o = abfd->sections; o != NULL; o = o->next)
11161 {
11162 struct bfd_elf_section_data *esdo = elf_section_data (o);
11163 if ((o->flags & SEC_RELOC) == 0)
11164 continue;
11165
11166 if (esdo->rel.hdr != NULL)
11167 elf_link_adjust_relocs (abfd, &esdo->rel);
11168 if (esdo->rela.hdr != NULL)
11169 elf_link_adjust_relocs (abfd, &esdo->rela);
11170
11171 /* Set the reloc_count field to 0 to prevent write_relocs from
11172 trying to swap the relocs out itself. */
11173 o->reloc_count = 0;
11174 }
11175
11176 if (dynamic && info->combreloc && dynobj != NULL)
11177 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11178
11179 /* If we are linking against a dynamic object, or generating a
11180 shared library, finish up the dynamic linking information. */
11181 if (dynamic)
11182 {
11183 bfd_byte *dyncon, *dynconend;
11184
11185 /* Fix up .dynamic entries. */
11186 o = bfd_get_linker_section (dynobj, ".dynamic");
11187 BFD_ASSERT (o != NULL);
11188
11189 dyncon = o->contents;
11190 dynconend = o->contents + o->size;
11191 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11192 {
11193 Elf_Internal_Dyn dyn;
11194 const char *name;
11195 unsigned int type;
11196
11197 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11198
11199 switch (dyn.d_tag)
11200 {
11201 default:
11202 continue;
11203 case DT_NULL:
11204 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11205 {
11206 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11207 {
11208 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11209 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11210 default: continue;
11211 }
11212 dyn.d_un.d_val = relativecount;
11213 relativecount = 0;
11214 break;
11215 }
11216 continue;
11217
11218 case DT_INIT:
11219 name = info->init_function;
11220 goto get_sym;
11221 case DT_FINI:
11222 name = info->fini_function;
11223 get_sym:
11224 {
11225 struct elf_link_hash_entry *h;
11226
11227 h = elf_link_hash_lookup (elf_hash_table (info), name,
11228 FALSE, FALSE, TRUE);
11229 if (h != NULL
11230 && (h->root.type == bfd_link_hash_defined
11231 || h->root.type == bfd_link_hash_defweak))
11232 {
11233 dyn.d_un.d_ptr = h->root.u.def.value;
11234 o = h->root.u.def.section;
11235 if (o->output_section != NULL)
11236 dyn.d_un.d_ptr += (o->output_section->vma
11237 + o->output_offset);
11238 else
11239 {
11240 /* The symbol is imported from another shared
11241 library and does not apply to this one. */
11242 dyn.d_un.d_ptr = 0;
11243 }
11244 break;
11245 }
11246 }
11247 continue;
11248
11249 case DT_PREINIT_ARRAYSZ:
11250 name = ".preinit_array";
11251 goto get_size;
11252 case DT_INIT_ARRAYSZ:
11253 name = ".init_array";
11254 goto get_size;
11255 case DT_FINI_ARRAYSZ:
11256 name = ".fini_array";
11257 get_size:
11258 o = bfd_get_section_by_name (abfd, name);
11259 if (o == NULL)
11260 {
11261 (*_bfd_error_handler)
11262 (_("%B: could not find output section %s"), abfd, name);
11263 goto error_return;
11264 }
11265 if (o->size == 0)
11266 (*_bfd_error_handler)
11267 (_("warning: %s section has zero size"), name);
11268 dyn.d_un.d_val = o->size;
11269 break;
11270
11271 case DT_PREINIT_ARRAY:
11272 name = ".preinit_array";
11273 goto get_vma;
11274 case DT_INIT_ARRAY:
11275 name = ".init_array";
11276 goto get_vma;
11277 case DT_FINI_ARRAY:
11278 name = ".fini_array";
11279 goto get_vma;
11280
11281 case DT_HASH:
11282 name = ".hash";
11283 goto get_vma;
11284 case DT_GNU_HASH:
11285 name = ".gnu.hash";
11286 goto get_vma;
11287 case DT_STRTAB:
11288 name = ".dynstr";
11289 goto get_vma;
11290 case DT_SYMTAB:
11291 name = ".dynsym";
11292 goto get_vma;
11293 case DT_VERDEF:
11294 name = ".gnu.version_d";
11295 goto get_vma;
11296 case DT_VERNEED:
11297 name = ".gnu.version_r";
11298 goto get_vma;
11299 case DT_VERSYM:
11300 name = ".gnu.version";
11301 get_vma:
11302 o = bfd_get_section_by_name (abfd, name);
11303 if (o == NULL)
11304 {
11305 (*_bfd_error_handler)
11306 (_("%B: could not find output section %s"), abfd, name);
11307 goto error_return;
11308 }
11309 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11310 {
11311 (*_bfd_error_handler)
11312 (_("warning: section '%s' is being made into a note"), name);
11313 bfd_set_error (bfd_error_nonrepresentable_section);
11314 goto error_return;
11315 }
11316 dyn.d_un.d_ptr = o->vma;
11317 break;
11318
11319 case DT_REL:
11320 case DT_RELA:
11321 case DT_RELSZ:
11322 case DT_RELASZ:
11323 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11324 type = SHT_REL;
11325 else
11326 type = SHT_RELA;
11327 dyn.d_un.d_val = 0;
11328 dyn.d_un.d_ptr = 0;
11329 for (i = 1; i < elf_numsections (abfd); i++)
11330 {
11331 Elf_Internal_Shdr *hdr;
11332
11333 hdr = elf_elfsections (abfd)[i];
11334 if (hdr->sh_type == type
11335 && (hdr->sh_flags & SHF_ALLOC) != 0)
11336 {
11337 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11338 dyn.d_un.d_val += hdr->sh_size;
11339 else
11340 {
11341 if (dyn.d_un.d_ptr == 0
11342 || hdr->sh_addr < dyn.d_un.d_ptr)
11343 dyn.d_un.d_ptr = hdr->sh_addr;
11344 }
11345 }
11346 }
11347 break;
11348 }
11349 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11350 }
11351 }
11352
11353 /* If we have created any dynamic sections, then output them. */
11354 if (dynobj != NULL)
11355 {
11356 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11357 goto error_return;
11358
11359 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11360 if (((info->warn_shared_textrel && info->shared)
11361 || info->error_textrel)
11362 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11363 {
11364 bfd_byte *dyncon, *dynconend;
11365
11366 dyncon = o->contents;
11367 dynconend = o->contents + o->size;
11368 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11369 {
11370 Elf_Internal_Dyn dyn;
11371
11372 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11373
11374 if (dyn.d_tag == DT_TEXTREL)
11375 {
11376 if (info->error_textrel)
11377 info->callbacks->einfo
11378 (_("%P%X: read-only segment has dynamic relocations.\n"));
11379 else
11380 info->callbacks->einfo
11381 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11382 break;
11383 }
11384 }
11385 }
11386
11387 for (o = dynobj->sections; o != NULL; o = o->next)
11388 {
11389 if ((o->flags & SEC_HAS_CONTENTS) == 0
11390 || o->size == 0
11391 || o->output_section == bfd_abs_section_ptr)
11392 continue;
11393 if ((o->flags & SEC_LINKER_CREATED) == 0)
11394 {
11395 /* At this point, we are only interested in sections
11396 created by _bfd_elf_link_create_dynamic_sections. */
11397 continue;
11398 }
11399 if (elf_hash_table (info)->stab_info.stabstr == o)
11400 continue;
11401 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11402 continue;
11403 if (strcmp (o->name, ".dynstr") != 0)
11404 {
11405 /* FIXME: octets_per_byte. */
11406 if (! bfd_set_section_contents (abfd, o->output_section,
11407 o->contents,
11408 (file_ptr) o->output_offset,
11409 o->size))
11410 goto error_return;
11411 }
11412 else
11413 {
11414 /* The contents of the .dynstr section are actually in a
11415 stringtab. */
11416 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11417 if (bfd_seek (abfd, off, SEEK_SET) != 0
11418 || ! _bfd_elf_strtab_emit (abfd,
11419 elf_hash_table (info)->dynstr))
11420 goto error_return;
11421 }
11422 }
11423 }
11424
11425 if (info->relocatable)
11426 {
11427 bfd_boolean failed = FALSE;
11428
11429 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11430 if (failed)
11431 goto error_return;
11432 }
11433
11434 /* If we have optimized stabs strings, output them. */
11435 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11436 {
11437 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11438 goto error_return;
11439 }
11440
11441 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11442 goto error_return;
11443
11444 elf_final_link_free (abfd, &flinfo);
11445
11446 elf_linker (abfd) = TRUE;
11447
11448 if (attr_section)
11449 {
11450 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11451 if (contents == NULL)
11452 return FALSE; /* Bail out and fail. */
11453 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11454 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11455 free (contents);
11456 }
11457
11458 return TRUE;
11459
11460 error_return:
11461 elf_final_link_free (abfd, &flinfo);
11462 return FALSE;
11463 }
11464 \f
11465 /* Initialize COOKIE for input bfd ABFD. */
11466
11467 static bfd_boolean
11468 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11469 struct bfd_link_info *info, bfd *abfd)
11470 {
11471 Elf_Internal_Shdr *symtab_hdr;
11472 const struct elf_backend_data *bed;
11473
11474 bed = get_elf_backend_data (abfd);
11475 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11476
11477 cookie->abfd = abfd;
11478 cookie->sym_hashes = elf_sym_hashes (abfd);
11479 cookie->bad_symtab = elf_bad_symtab (abfd);
11480 if (cookie->bad_symtab)
11481 {
11482 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11483 cookie->extsymoff = 0;
11484 }
11485 else
11486 {
11487 cookie->locsymcount = symtab_hdr->sh_info;
11488 cookie->extsymoff = symtab_hdr->sh_info;
11489 }
11490
11491 if (bed->s->arch_size == 32)
11492 cookie->r_sym_shift = 8;
11493 else
11494 cookie->r_sym_shift = 32;
11495
11496 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11497 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11498 {
11499 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11500 cookie->locsymcount, 0,
11501 NULL, NULL, NULL);
11502 if (cookie->locsyms == NULL)
11503 {
11504 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11505 return FALSE;
11506 }
11507 if (info->keep_memory)
11508 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11509 }
11510 return TRUE;
11511 }
11512
11513 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11514
11515 static void
11516 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11517 {
11518 Elf_Internal_Shdr *symtab_hdr;
11519
11520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11521 if (cookie->locsyms != NULL
11522 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11523 free (cookie->locsyms);
11524 }
11525
11526 /* Initialize the relocation information in COOKIE for input section SEC
11527 of input bfd ABFD. */
11528
11529 static bfd_boolean
11530 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11531 struct bfd_link_info *info, bfd *abfd,
11532 asection *sec)
11533 {
11534 const struct elf_backend_data *bed;
11535
11536 if (sec->reloc_count == 0)
11537 {
11538 cookie->rels = NULL;
11539 cookie->relend = NULL;
11540 }
11541 else
11542 {
11543 bed = get_elf_backend_data (abfd);
11544
11545 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11546 info->keep_memory);
11547 if (cookie->rels == NULL)
11548 return FALSE;
11549 cookie->rel = cookie->rels;
11550 cookie->relend = (cookie->rels
11551 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11552 }
11553 cookie->rel = cookie->rels;
11554 return TRUE;
11555 }
11556
11557 /* Free the memory allocated by init_reloc_cookie_rels,
11558 if appropriate. */
11559
11560 static void
11561 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11562 asection *sec)
11563 {
11564 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11565 free (cookie->rels);
11566 }
11567
11568 /* Initialize the whole of COOKIE for input section SEC. */
11569
11570 static bfd_boolean
11571 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11572 struct bfd_link_info *info,
11573 asection *sec)
11574 {
11575 if (!init_reloc_cookie (cookie, info, sec->owner))
11576 goto error1;
11577 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11578 goto error2;
11579 return TRUE;
11580
11581 error2:
11582 fini_reloc_cookie (cookie, sec->owner);
11583 error1:
11584 return FALSE;
11585 }
11586
11587 /* Free the memory allocated by init_reloc_cookie_for_section,
11588 if appropriate. */
11589
11590 static void
11591 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11592 asection *sec)
11593 {
11594 fini_reloc_cookie_rels (cookie, sec);
11595 fini_reloc_cookie (cookie, sec->owner);
11596 }
11597 \f
11598 /* Garbage collect unused sections. */
11599
11600 /* Default gc_mark_hook. */
11601
11602 asection *
11603 _bfd_elf_gc_mark_hook (asection *sec,
11604 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11605 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11606 struct elf_link_hash_entry *h,
11607 Elf_Internal_Sym *sym)
11608 {
11609 const char *sec_name;
11610
11611 if (h != NULL)
11612 {
11613 switch (h->root.type)
11614 {
11615 case bfd_link_hash_defined:
11616 case bfd_link_hash_defweak:
11617 return h->root.u.def.section;
11618
11619 case bfd_link_hash_common:
11620 return h->root.u.c.p->section;
11621
11622 case bfd_link_hash_undefined:
11623 case bfd_link_hash_undefweak:
11624 /* To work around a glibc bug, keep all XXX input sections
11625 when there is an as yet undefined reference to __start_XXX
11626 or __stop_XXX symbols. The linker will later define such
11627 symbols for orphan input sections that have a name
11628 representable as a C identifier. */
11629 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11630 sec_name = h->root.root.string + 8;
11631 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11632 sec_name = h->root.root.string + 7;
11633 else
11634 sec_name = NULL;
11635
11636 if (sec_name && *sec_name != '\0')
11637 {
11638 bfd *i;
11639
11640 for (i = info->input_bfds; i; i = i->link.next)
11641 {
11642 sec = bfd_get_section_by_name (i, sec_name);
11643 if (sec)
11644 sec->flags |= SEC_KEEP;
11645 }
11646 }
11647 break;
11648
11649 default:
11650 break;
11651 }
11652 }
11653 else
11654 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11655
11656 return NULL;
11657 }
11658
11659 /* COOKIE->rel describes a relocation against section SEC, which is
11660 a section we've decided to keep. Return the section that contains
11661 the relocation symbol, or NULL if no section contains it. */
11662
11663 asection *
11664 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11665 elf_gc_mark_hook_fn gc_mark_hook,
11666 struct elf_reloc_cookie *cookie)
11667 {
11668 unsigned long r_symndx;
11669 struct elf_link_hash_entry *h;
11670
11671 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11672 if (r_symndx == STN_UNDEF)
11673 return NULL;
11674
11675 if (r_symndx >= cookie->locsymcount
11676 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11677 {
11678 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11679 while (h->root.type == bfd_link_hash_indirect
11680 || h->root.type == bfd_link_hash_warning)
11681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11682 h->mark = 1;
11683 /* If this symbol is weak and there is a non-weak definition, we
11684 keep the non-weak definition because many backends put
11685 dynamic reloc info on the non-weak definition for code
11686 handling copy relocs. */
11687 if (h->u.weakdef != NULL)
11688 h->u.weakdef->mark = 1;
11689 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11690 }
11691
11692 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11693 &cookie->locsyms[r_symndx]);
11694 }
11695
11696 /* COOKIE->rel describes a relocation against section SEC, which is
11697 a section we've decided to keep. Mark the section that contains
11698 the relocation symbol. */
11699
11700 bfd_boolean
11701 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11702 asection *sec,
11703 elf_gc_mark_hook_fn gc_mark_hook,
11704 struct elf_reloc_cookie *cookie)
11705 {
11706 asection *rsec;
11707
11708 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11709 if (rsec && !rsec->gc_mark)
11710 {
11711 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11712 || (rsec->owner->flags & DYNAMIC) != 0)
11713 rsec->gc_mark = 1;
11714 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11715 return FALSE;
11716 }
11717 return TRUE;
11718 }
11719
11720 /* The mark phase of garbage collection. For a given section, mark
11721 it and any sections in this section's group, and all the sections
11722 which define symbols to which it refers. */
11723
11724 bfd_boolean
11725 _bfd_elf_gc_mark (struct bfd_link_info *info,
11726 asection *sec,
11727 elf_gc_mark_hook_fn gc_mark_hook)
11728 {
11729 bfd_boolean ret;
11730 asection *group_sec, *eh_frame;
11731
11732 sec->gc_mark = 1;
11733
11734 /* Mark all the sections in the group. */
11735 group_sec = elf_section_data (sec)->next_in_group;
11736 if (group_sec && !group_sec->gc_mark)
11737 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11738 return FALSE;
11739
11740 /* Look through the section relocs. */
11741 ret = TRUE;
11742 eh_frame = elf_eh_frame_section (sec->owner);
11743 if ((sec->flags & SEC_RELOC) != 0
11744 && sec->reloc_count > 0
11745 && sec != eh_frame)
11746 {
11747 struct elf_reloc_cookie cookie;
11748
11749 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11750 ret = FALSE;
11751 else
11752 {
11753 for (; cookie.rel < cookie.relend; cookie.rel++)
11754 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11755 {
11756 ret = FALSE;
11757 break;
11758 }
11759 fini_reloc_cookie_for_section (&cookie, sec);
11760 }
11761 }
11762
11763 if (ret && eh_frame && elf_fde_list (sec))
11764 {
11765 struct elf_reloc_cookie cookie;
11766
11767 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11768 ret = FALSE;
11769 else
11770 {
11771 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11772 gc_mark_hook, &cookie))
11773 ret = FALSE;
11774 fini_reloc_cookie_for_section (&cookie, eh_frame);
11775 }
11776 }
11777
11778 return ret;
11779 }
11780
11781 /* Keep debug and special sections. */
11782
11783 bfd_boolean
11784 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11785 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11786 {
11787 bfd *ibfd;
11788
11789 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11790 {
11791 asection *isec;
11792 bfd_boolean some_kept;
11793 bfd_boolean debug_frag_seen;
11794
11795 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11796 continue;
11797
11798 /* Ensure all linker created sections are kept,
11799 see if any other section is already marked,
11800 and note if we have any fragmented debug sections. */
11801 debug_frag_seen = some_kept = FALSE;
11802 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11803 {
11804 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11805 isec->gc_mark = 1;
11806 else if (isec->gc_mark)
11807 some_kept = TRUE;
11808
11809 if (debug_frag_seen == FALSE
11810 && (isec->flags & SEC_DEBUGGING)
11811 && CONST_STRNEQ (isec->name, ".debug_line."))
11812 debug_frag_seen = TRUE;
11813 }
11814
11815 /* If no section in this file will be kept, then we can
11816 toss out the debug and special sections. */
11817 if (!some_kept)
11818 continue;
11819
11820 /* Keep debug and special sections like .comment when they are
11821 not part of a group, or when we have single-member groups. */
11822 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11823 if ((elf_next_in_group (isec) == NULL
11824 || elf_next_in_group (isec) == isec)
11825 && ((isec->flags & SEC_DEBUGGING) != 0
11826 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11827 isec->gc_mark = 1;
11828
11829 if (! debug_frag_seen)
11830 continue;
11831
11832 /* Look for CODE sections which are going to be discarded,
11833 and find and discard any fragmented debug sections which
11834 are associated with that code section. */
11835 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11836 if ((isec->flags & SEC_CODE) != 0
11837 && isec->gc_mark == 0)
11838 {
11839 unsigned int ilen;
11840 asection *dsec;
11841
11842 ilen = strlen (isec->name);
11843
11844 /* Association is determined by the name of the debug section
11845 containing the name of the code section as a suffix. For
11846 example .debug_line.text.foo is a debug section associated
11847 with .text.foo. */
11848 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11849 {
11850 unsigned int dlen;
11851
11852 if (dsec->gc_mark == 0
11853 || (dsec->flags & SEC_DEBUGGING) == 0)
11854 continue;
11855
11856 dlen = strlen (dsec->name);
11857
11858 if (dlen > ilen
11859 && strncmp (dsec->name + (dlen - ilen),
11860 isec->name, ilen) == 0)
11861 {
11862 dsec->gc_mark = 0;
11863 break;
11864 }
11865 }
11866 }
11867 }
11868 return TRUE;
11869 }
11870
11871 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11872
11873 struct elf_gc_sweep_symbol_info
11874 {
11875 struct bfd_link_info *info;
11876 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11877 bfd_boolean);
11878 };
11879
11880 static bfd_boolean
11881 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11882 {
11883 if (!h->mark
11884 && (((h->root.type == bfd_link_hash_defined
11885 || h->root.type == bfd_link_hash_defweak)
11886 && !(h->def_regular
11887 && h->root.u.def.section->gc_mark))
11888 || h->root.type == bfd_link_hash_undefined
11889 || h->root.type == bfd_link_hash_undefweak))
11890 {
11891 struct elf_gc_sweep_symbol_info *inf;
11892
11893 inf = (struct elf_gc_sweep_symbol_info *) data;
11894 (*inf->hide_symbol) (inf->info, h, TRUE);
11895 h->def_regular = 0;
11896 h->ref_regular = 0;
11897 h->ref_regular_nonweak = 0;
11898 }
11899
11900 return TRUE;
11901 }
11902
11903 /* The sweep phase of garbage collection. Remove all garbage sections. */
11904
11905 typedef bfd_boolean (*gc_sweep_hook_fn)
11906 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11907
11908 static bfd_boolean
11909 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11910 {
11911 bfd *sub;
11912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11913 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11914 unsigned long section_sym_count;
11915 struct elf_gc_sweep_symbol_info sweep_info;
11916
11917 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11918 {
11919 asection *o;
11920
11921 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11922 continue;
11923
11924 for (o = sub->sections; o != NULL; o = o->next)
11925 {
11926 /* When any section in a section group is kept, we keep all
11927 sections in the section group. If the first member of
11928 the section group is excluded, we will also exclude the
11929 group section. */
11930 if (o->flags & SEC_GROUP)
11931 {
11932 asection *first = elf_next_in_group (o);
11933 o->gc_mark = first->gc_mark;
11934 }
11935
11936 if (o->gc_mark)
11937 continue;
11938
11939 /* Skip sweeping sections already excluded. */
11940 if (o->flags & SEC_EXCLUDE)
11941 continue;
11942
11943 /* Since this is early in the link process, it is simple
11944 to remove a section from the output. */
11945 o->flags |= SEC_EXCLUDE;
11946
11947 if (info->print_gc_sections && o->size != 0)
11948 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11949
11950 /* But we also have to update some of the relocation
11951 info we collected before. */
11952 if (gc_sweep_hook
11953 && (o->flags & SEC_RELOC) != 0
11954 && o->reloc_count != 0
11955 && !((info->strip == strip_all || info->strip == strip_debugger)
11956 && (o->flags & SEC_DEBUGGING) != 0)
11957 && !bfd_is_abs_section (o->output_section))
11958 {
11959 Elf_Internal_Rela *internal_relocs;
11960 bfd_boolean r;
11961
11962 internal_relocs
11963 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11964 info->keep_memory);
11965 if (internal_relocs == NULL)
11966 return FALSE;
11967
11968 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11969
11970 if (elf_section_data (o)->relocs != internal_relocs)
11971 free (internal_relocs);
11972
11973 if (!r)
11974 return FALSE;
11975 }
11976 }
11977 }
11978
11979 /* Remove the symbols that were in the swept sections from the dynamic
11980 symbol table. GCFIXME: Anyone know how to get them out of the
11981 static symbol table as well? */
11982 sweep_info.info = info;
11983 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11984 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11985 &sweep_info);
11986
11987 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11988 return TRUE;
11989 }
11990
11991 /* Propagate collected vtable information. This is called through
11992 elf_link_hash_traverse. */
11993
11994 static bfd_boolean
11995 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11996 {
11997 /* Those that are not vtables. */
11998 if (h->vtable == NULL || h->vtable->parent == NULL)
11999 return TRUE;
12000
12001 /* Those vtables that do not have parents, we cannot merge. */
12002 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12003 return TRUE;
12004
12005 /* If we've already been done, exit. */
12006 if (h->vtable->used && h->vtable->used[-1])
12007 return TRUE;
12008
12009 /* Make sure the parent's table is up to date. */
12010 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12011
12012 if (h->vtable->used == NULL)
12013 {
12014 /* None of this table's entries were referenced. Re-use the
12015 parent's table. */
12016 h->vtable->used = h->vtable->parent->vtable->used;
12017 h->vtable->size = h->vtable->parent->vtable->size;
12018 }
12019 else
12020 {
12021 size_t n;
12022 bfd_boolean *cu, *pu;
12023
12024 /* Or the parent's entries into ours. */
12025 cu = h->vtable->used;
12026 cu[-1] = TRUE;
12027 pu = h->vtable->parent->vtable->used;
12028 if (pu != NULL)
12029 {
12030 const struct elf_backend_data *bed;
12031 unsigned int log_file_align;
12032
12033 bed = get_elf_backend_data (h->root.u.def.section->owner);
12034 log_file_align = bed->s->log_file_align;
12035 n = h->vtable->parent->vtable->size >> log_file_align;
12036 while (n--)
12037 {
12038 if (*pu)
12039 *cu = TRUE;
12040 pu++;
12041 cu++;
12042 }
12043 }
12044 }
12045
12046 return TRUE;
12047 }
12048
12049 static bfd_boolean
12050 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12051 {
12052 asection *sec;
12053 bfd_vma hstart, hend;
12054 Elf_Internal_Rela *relstart, *relend, *rel;
12055 const struct elf_backend_data *bed;
12056 unsigned int log_file_align;
12057
12058 /* Take care of both those symbols that do not describe vtables as
12059 well as those that are not loaded. */
12060 if (h->vtable == NULL || h->vtable->parent == NULL)
12061 return TRUE;
12062
12063 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12064 || h->root.type == bfd_link_hash_defweak);
12065
12066 sec = h->root.u.def.section;
12067 hstart = h->root.u.def.value;
12068 hend = hstart + h->size;
12069
12070 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12071 if (!relstart)
12072 return *(bfd_boolean *) okp = FALSE;
12073 bed = get_elf_backend_data (sec->owner);
12074 log_file_align = bed->s->log_file_align;
12075
12076 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12077
12078 for (rel = relstart; rel < relend; ++rel)
12079 if (rel->r_offset >= hstart && rel->r_offset < hend)
12080 {
12081 /* If the entry is in use, do nothing. */
12082 if (h->vtable->used
12083 && (rel->r_offset - hstart) < h->vtable->size)
12084 {
12085 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12086 if (h->vtable->used[entry])
12087 continue;
12088 }
12089 /* Otherwise, kill it. */
12090 rel->r_offset = rel->r_info = rel->r_addend = 0;
12091 }
12092
12093 return TRUE;
12094 }
12095
12096 /* Mark sections containing dynamically referenced symbols. When
12097 building shared libraries, we must assume that any visible symbol is
12098 referenced. */
12099
12100 bfd_boolean
12101 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12102 {
12103 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12104 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12105
12106 if ((h->root.type == bfd_link_hash_defined
12107 || h->root.type == bfd_link_hash_defweak)
12108 && (h->ref_dynamic
12109 || (h->def_regular
12110 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12111 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12112 && (!info->executable
12113 || info->export_dynamic
12114 || (h->dynamic
12115 && d != NULL
12116 && (*d->match) (&d->head, NULL, h->root.root.string)))
12117 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12118 || !bfd_hide_sym_by_version (info->version_info,
12119 h->root.root.string)))))
12120 h->root.u.def.section->flags |= SEC_KEEP;
12121
12122 return TRUE;
12123 }
12124
12125 /* Keep all sections containing symbols undefined on the command-line,
12126 and the section containing the entry symbol. */
12127
12128 void
12129 _bfd_elf_gc_keep (struct bfd_link_info *info)
12130 {
12131 struct bfd_sym_chain *sym;
12132
12133 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12134 {
12135 struct elf_link_hash_entry *h;
12136
12137 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12138 FALSE, FALSE, FALSE);
12139
12140 if (h != NULL
12141 && (h->root.type == bfd_link_hash_defined
12142 || h->root.type == bfd_link_hash_defweak)
12143 && !bfd_is_abs_section (h->root.u.def.section))
12144 h->root.u.def.section->flags |= SEC_KEEP;
12145 }
12146 }
12147
12148 /* Do mark and sweep of unused sections. */
12149
12150 bfd_boolean
12151 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12152 {
12153 bfd_boolean ok = TRUE;
12154 bfd *sub;
12155 elf_gc_mark_hook_fn gc_mark_hook;
12156 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12157 struct elf_link_hash_table *htab;
12158
12159 if (!bed->can_gc_sections
12160 || !is_elf_hash_table (info->hash))
12161 {
12162 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12163 return TRUE;
12164 }
12165
12166 bed->gc_keep (info);
12167 htab = elf_hash_table (info);
12168
12169 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12170 at the .eh_frame section if we can mark the FDEs individually. */
12171 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12172 {
12173 asection *sec;
12174 struct elf_reloc_cookie cookie;
12175
12176 sec = bfd_get_section_by_name (sub, ".eh_frame");
12177 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12178 {
12179 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12180 if (elf_section_data (sec)->sec_info
12181 && (sec->flags & SEC_LINKER_CREATED) == 0)
12182 elf_eh_frame_section (sub) = sec;
12183 fini_reloc_cookie_for_section (&cookie, sec);
12184 sec = bfd_get_next_section_by_name (sec);
12185 }
12186 }
12187
12188 /* Apply transitive closure to the vtable entry usage info. */
12189 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12190 if (!ok)
12191 return FALSE;
12192
12193 /* Kill the vtable relocations that were not used. */
12194 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12195 if (!ok)
12196 return FALSE;
12197
12198 /* Mark dynamically referenced symbols. */
12199 if (htab->dynamic_sections_created)
12200 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12201
12202 /* Grovel through relocs to find out who stays ... */
12203 gc_mark_hook = bed->gc_mark_hook;
12204 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12205 {
12206 asection *o;
12207
12208 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12209 continue;
12210
12211 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12212 Also treat note sections as a root, if the section is not part
12213 of a group. */
12214 for (o = sub->sections; o != NULL; o = o->next)
12215 if (!o->gc_mark
12216 && (o->flags & SEC_EXCLUDE) == 0
12217 && ((o->flags & SEC_KEEP) != 0
12218 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12219 && elf_next_in_group (o) == NULL )))
12220 {
12221 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12222 return FALSE;
12223 }
12224 }
12225
12226 /* Allow the backend to mark additional target specific sections. */
12227 bed->gc_mark_extra_sections (info, gc_mark_hook);
12228
12229 /* ... and mark SEC_EXCLUDE for those that go. */
12230 return elf_gc_sweep (abfd, info);
12231 }
12232 \f
12233 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12234
12235 bfd_boolean
12236 bfd_elf_gc_record_vtinherit (bfd *abfd,
12237 asection *sec,
12238 struct elf_link_hash_entry *h,
12239 bfd_vma offset)
12240 {
12241 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12242 struct elf_link_hash_entry **search, *child;
12243 bfd_size_type extsymcount;
12244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12245
12246 /* The sh_info field of the symtab header tells us where the
12247 external symbols start. We don't care about the local symbols at
12248 this point. */
12249 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12250 if (!elf_bad_symtab (abfd))
12251 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12252
12253 sym_hashes = elf_sym_hashes (abfd);
12254 sym_hashes_end = sym_hashes + extsymcount;
12255
12256 /* Hunt down the child symbol, which is in this section at the same
12257 offset as the relocation. */
12258 for (search = sym_hashes; search != sym_hashes_end; ++search)
12259 {
12260 if ((child = *search) != NULL
12261 && (child->root.type == bfd_link_hash_defined
12262 || child->root.type == bfd_link_hash_defweak)
12263 && child->root.u.def.section == sec
12264 && child->root.u.def.value == offset)
12265 goto win;
12266 }
12267
12268 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12269 abfd, sec, (unsigned long) offset);
12270 bfd_set_error (bfd_error_invalid_operation);
12271 return FALSE;
12272
12273 win:
12274 if (!child->vtable)
12275 {
12276 child->vtable = (struct elf_link_virtual_table_entry *)
12277 bfd_zalloc (abfd, sizeof (*child->vtable));
12278 if (!child->vtable)
12279 return FALSE;
12280 }
12281 if (!h)
12282 {
12283 /* This *should* only be the absolute section. It could potentially
12284 be that someone has defined a non-global vtable though, which
12285 would be bad. It isn't worth paging in the local symbols to be
12286 sure though; that case should simply be handled by the assembler. */
12287
12288 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12289 }
12290 else
12291 child->vtable->parent = h;
12292
12293 return TRUE;
12294 }
12295
12296 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12297
12298 bfd_boolean
12299 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12300 asection *sec ATTRIBUTE_UNUSED,
12301 struct elf_link_hash_entry *h,
12302 bfd_vma addend)
12303 {
12304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12305 unsigned int log_file_align = bed->s->log_file_align;
12306
12307 if (!h->vtable)
12308 {
12309 h->vtable = (struct elf_link_virtual_table_entry *)
12310 bfd_zalloc (abfd, sizeof (*h->vtable));
12311 if (!h->vtable)
12312 return FALSE;
12313 }
12314
12315 if (addend >= h->vtable->size)
12316 {
12317 size_t size, bytes, file_align;
12318 bfd_boolean *ptr = h->vtable->used;
12319
12320 /* While the symbol is undefined, we have to be prepared to handle
12321 a zero size. */
12322 file_align = 1 << log_file_align;
12323 if (h->root.type == bfd_link_hash_undefined)
12324 size = addend + file_align;
12325 else
12326 {
12327 size = h->size;
12328 if (addend >= size)
12329 {
12330 /* Oops! We've got a reference past the defined end of
12331 the table. This is probably a bug -- shall we warn? */
12332 size = addend + file_align;
12333 }
12334 }
12335 size = (size + file_align - 1) & -file_align;
12336
12337 /* Allocate one extra entry for use as a "done" flag for the
12338 consolidation pass. */
12339 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12340
12341 if (ptr)
12342 {
12343 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12344
12345 if (ptr != NULL)
12346 {
12347 size_t oldbytes;
12348
12349 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12350 * sizeof (bfd_boolean));
12351 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12352 }
12353 }
12354 else
12355 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12356
12357 if (ptr == NULL)
12358 return FALSE;
12359
12360 /* And arrange for that done flag to be at index -1. */
12361 h->vtable->used = ptr + 1;
12362 h->vtable->size = size;
12363 }
12364
12365 h->vtable->used[addend >> log_file_align] = TRUE;
12366
12367 return TRUE;
12368 }
12369
12370 /* Map an ELF section header flag to its corresponding string. */
12371 typedef struct
12372 {
12373 char *flag_name;
12374 flagword flag_value;
12375 } elf_flags_to_name_table;
12376
12377 static elf_flags_to_name_table elf_flags_to_names [] =
12378 {
12379 { "SHF_WRITE", SHF_WRITE },
12380 { "SHF_ALLOC", SHF_ALLOC },
12381 { "SHF_EXECINSTR", SHF_EXECINSTR },
12382 { "SHF_MERGE", SHF_MERGE },
12383 { "SHF_STRINGS", SHF_STRINGS },
12384 { "SHF_INFO_LINK", SHF_INFO_LINK},
12385 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12386 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12387 { "SHF_GROUP", SHF_GROUP },
12388 { "SHF_TLS", SHF_TLS },
12389 { "SHF_MASKOS", SHF_MASKOS },
12390 { "SHF_EXCLUDE", SHF_EXCLUDE },
12391 };
12392
12393 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12394 bfd_boolean
12395 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12396 struct flag_info *flaginfo,
12397 asection *section)
12398 {
12399 const bfd_vma sh_flags = elf_section_flags (section);
12400
12401 if (!flaginfo->flags_initialized)
12402 {
12403 bfd *obfd = info->output_bfd;
12404 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12405 struct flag_info_list *tf = flaginfo->flag_list;
12406 int with_hex = 0;
12407 int without_hex = 0;
12408
12409 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12410 {
12411 unsigned i;
12412 flagword (*lookup) (char *);
12413
12414 lookup = bed->elf_backend_lookup_section_flags_hook;
12415 if (lookup != NULL)
12416 {
12417 flagword hexval = (*lookup) ((char *) tf->name);
12418
12419 if (hexval != 0)
12420 {
12421 if (tf->with == with_flags)
12422 with_hex |= hexval;
12423 else if (tf->with == without_flags)
12424 without_hex |= hexval;
12425 tf->valid = TRUE;
12426 continue;
12427 }
12428 }
12429 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12430 {
12431 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12432 {
12433 if (tf->with == with_flags)
12434 with_hex |= elf_flags_to_names[i].flag_value;
12435 else if (tf->with == without_flags)
12436 without_hex |= elf_flags_to_names[i].flag_value;
12437 tf->valid = TRUE;
12438 break;
12439 }
12440 }
12441 if (!tf->valid)
12442 {
12443 info->callbacks->einfo
12444 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12445 return FALSE;
12446 }
12447 }
12448 flaginfo->flags_initialized = TRUE;
12449 flaginfo->only_with_flags |= with_hex;
12450 flaginfo->not_with_flags |= without_hex;
12451 }
12452
12453 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12454 return FALSE;
12455
12456 if ((flaginfo->not_with_flags & sh_flags) != 0)
12457 return FALSE;
12458
12459 return TRUE;
12460 }
12461
12462 struct alloc_got_off_arg {
12463 bfd_vma gotoff;
12464 struct bfd_link_info *info;
12465 };
12466
12467 /* We need a special top-level link routine to convert got reference counts
12468 to real got offsets. */
12469
12470 static bfd_boolean
12471 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12472 {
12473 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12474 bfd *obfd = gofarg->info->output_bfd;
12475 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12476
12477 if (h->got.refcount > 0)
12478 {
12479 h->got.offset = gofarg->gotoff;
12480 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12481 }
12482 else
12483 h->got.offset = (bfd_vma) -1;
12484
12485 return TRUE;
12486 }
12487
12488 /* And an accompanying bit to work out final got entry offsets once
12489 we're done. Should be called from final_link. */
12490
12491 bfd_boolean
12492 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12493 struct bfd_link_info *info)
12494 {
12495 bfd *i;
12496 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12497 bfd_vma gotoff;
12498 struct alloc_got_off_arg gofarg;
12499
12500 BFD_ASSERT (abfd == info->output_bfd);
12501
12502 if (! is_elf_hash_table (info->hash))
12503 return FALSE;
12504
12505 /* The GOT offset is relative to the .got section, but the GOT header is
12506 put into the .got.plt section, if the backend uses it. */
12507 if (bed->want_got_plt)
12508 gotoff = 0;
12509 else
12510 gotoff = bed->got_header_size;
12511
12512 /* Do the local .got entries first. */
12513 for (i = info->input_bfds; i; i = i->link.next)
12514 {
12515 bfd_signed_vma *local_got;
12516 bfd_size_type j, locsymcount;
12517 Elf_Internal_Shdr *symtab_hdr;
12518
12519 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12520 continue;
12521
12522 local_got = elf_local_got_refcounts (i);
12523 if (!local_got)
12524 continue;
12525
12526 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12527 if (elf_bad_symtab (i))
12528 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12529 else
12530 locsymcount = symtab_hdr->sh_info;
12531
12532 for (j = 0; j < locsymcount; ++j)
12533 {
12534 if (local_got[j] > 0)
12535 {
12536 local_got[j] = gotoff;
12537 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12538 }
12539 else
12540 local_got[j] = (bfd_vma) -1;
12541 }
12542 }
12543
12544 /* Then the global .got entries. .plt refcounts are handled by
12545 adjust_dynamic_symbol */
12546 gofarg.gotoff = gotoff;
12547 gofarg.info = info;
12548 elf_link_hash_traverse (elf_hash_table (info),
12549 elf_gc_allocate_got_offsets,
12550 &gofarg);
12551 return TRUE;
12552 }
12553
12554 /* Many folk need no more in the way of final link than this, once
12555 got entry reference counting is enabled. */
12556
12557 bfd_boolean
12558 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12559 {
12560 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12561 return FALSE;
12562
12563 /* Invoke the regular ELF backend linker to do all the work. */
12564 return bfd_elf_final_link (abfd, info);
12565 }
12566
12567 bfd_boolean
12568 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12569 {
12570 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12571
12572 if (rcookie->bad_symtab)
12573 rcookie->rel = rcookie->rels;
12574
12575 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12576 {
12577 unsigned long r_symndx;
12578
12579 if (! rcookie->bad_symtab)
12580 if (rcookie->rel->r_offset > offset)
12581 return FALSE;
12582 if (rcookie->rel->r_offset != offset)
12583 continue;
12584
12585 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12586 if (r_symndx == STN_UNDEF)
12587 return TRUE;
12588
12589 if (r_symndx >= rcookie->locsymcount
12590 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12591 {
12592 struct elf_link_hash_entry *h;
12593
12594 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12595
12596 while (h->root.type == bfd_link_hash_indirect
12597 || h->root.type == bfd_link_hash_warning)
12598 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12599
12600 if ((h->root.type == bfd_link_hash_defined
12601 || h->root.type == bfd_link_hash_defweak)
12602 && discarded_section (h->root.u.def.section))
12603 return TRUE;
12604 else
12605 return FALSE;
12606 }
12607 else
12608 {
12609 /* It's not a relocation against a global symbol,
12610 but it could be a relocation against a local
12611 symbol for a discarded section. */
12612 asection *isec;
12613 Elf_Internal_Sym *isym;
12614
12615 /* Need to: get the symbol; get the section. */
12616 isym = &rcookie->locsyms[r_symndx];
12617 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12618 if (isec != NULL && discarded_section (isec))
12619 return TRUE;
12620 }
12621 return FALSE;
12622 }
12623 return FALSE;
12624 }
12625
12626 /* Discard unneeded references to discarded sections.
12627 Returns -1 on error, 1 if any section's size was changed, 0 if
12628 nothing changed. This function assumes that the relocations are in
12629 sorted order, which is true for all known assemblers. */
12630
12631 int
12632 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12633 {
12634 struct elf_reloc_cookie cookie;
12635 asection *o;
12636 bfd *abfd;
12637 int changed = 0;
12638
12639 if (info->traditional_format
12640 || !is_elf_hash_table (info->hash))
12641 return 0;
12642
12643 o = bfd_get_section_by_name (output_bfd, ".stab");
12644 if (o != NULL)
12645 {
12646 asection *i;
12647
12648 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12649 {
12650 if (i->size == 0
12651 || i->reloc_count == 0
12652 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12653 continue;
12654
12655 abfd = i->owner;
12656 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12657 continue;
12658
12659 if (!init_reloc_cookie_for_section (&cookie, info, i))
12660 return -1;
12661
12662 if (_bfd_discard_section_stabs (abfd, i,
12663 elf_section_data (i)->sec_info,
12664 bfd_elf_reloc_symbol_deleted_p,
12665 &cookie))
12666 changed = 1;
12667
12668 fini_reloc_cookie_for_section (&cookie, i);
12669 }
12670 }
12671
12672 o = NULL;
12673 if (!info->relocatable)
12674 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12675 if (o != NULL)
12676 {
12677 asection *i;
12678
12679 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12680 {
12681 if (i->size == 0)
12682 continue;
12683
12684 abfd = i->owner;
12685 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12686 continue;
12687
12688 if (!init_reloc_cookie_for_section (&cookie, info, i))
12689 return -1;
12690
12691 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12692 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12693 bfd_elf_reloc_symbol_deleted_p,
12694 &cookie))
12695 changed = 1;
12696
12697 fini_reloc_cookie_for_section (&cookie, i);
12698 }
12699 }
12700
12701 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12702 {
12703 const struct elf_backend_data *bed;
12704
12705 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12706 continue;
12707
12708 bed = get_elf_backend_data (abfd);
12709
12710 if (bed->elf_backend_discard_info != NULL)
12711 {
12712 if (!init_reloc_cookie (&cookie, info, abfd))
12713 return -1;
12714
12715 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12716 changed = 1;
12717
12718 fini_reloc_cookie (&cookie, abfd);
12719 }
12720 }
12721
12722 if (info->eh_frame_hdr
12723 && !info->relocatable
12724 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12725 changed = 1;
12726
12727 return changed;
12728 }
12729
12730 bfd_boolean
12731 _bfd_elf_section_already_linked (bfd *abfd,
12732 asection *sec,
12733 struct bfd_link_info *info)
12734 {
12735 flagword flags;
12736 const char *name, *key;
12737 struct bfd_section_already_linked *l;
12738 struct bfd_section_already_linked_hash_entry *already_linked_list;
12739
12740 if (sec->output_section == bfd_abs_section_ptr)
12741 return FALSE;
12742
12743 flags = sec->flags;
12744
12745 /* Return if it isn't a linkonce section. A comdat group section
12746 also has SEC_LINK_ONCE set. */
12747 if ((flags & SEC_LINK_ONCE) == 0)
12748 return FALSE;
12749
12750 /* Don't put group member sections on our list of already linked
12751 sections. They are handled as a group via their group section. */
12752 if (elf_sec_group (sec) != NULL)
12753 return FALSE;
12754
12755 /* For a SHT_GROUP section, use the group signature as the key. */
12756 name = sec->name;
12757 if ((flags & SEC_GROUP) != 0
12758 && elf_next_in_group (sec) != NULL
12759 && elf_group_name (elf_next_in_group (sec)) != NULL)
12760 key = elf_group_name (elf_next_in_group (sec));
12761 else
12762 {
12763 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12764 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12765 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12766 key++;
12767 else
12768 /* Must be a user linkonce section that doesn't follow gcc's
12769 naming convention. In this case we won't be matching
12770 single member groups. */
12771 key = name;
12772 }
12773
12774 already_linked_list = bfd_section_already_linked_table_lookup (key);
12775
12776 for (l = already_linked_list->entry; l != NULL; l = l->next)
12777 {
12778 /* We may have 2 different types of sections on the list: group
12779 sections with a signature of <key> (<key> is some string),
12780 and linkonce sections named .gnu.linkonce.<type>.<key>.
12781 Match like sections. LTO plugin sections are an exception.
12782 They are always named .gnu.linkonce.t.<key> and match either
12783 type of section. */
12784 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12785 && ((flags & SEC_GROUP) != 0
12786 || strcmp (name, l->sec->name) == 0))
12787 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12788 {
12789 /* The section has already been linked. See if we should
12790 issue a warning. */
12791 if (!_bfd_handle_already_linked (sec, l, info))
12792 return FALSE;
12793
12794 if (flags & SEC_GROUP)
12795 {
12796 asection *first = elf_next_in_group (sec);
12797 asection *s = first;
12798
12799 while (s != NULL)
12800 {
12801 s->output_section = bfd_abs_section_ptr;
12802 /* Record which group discards it. */
12803 s->kept_section = l->sec;
12804 s = elf_next_in_group (s);
12805 /* These lists are circular. */
12806 if (s == first)
12807 break;
12808 }
12809 }
12810
12811 return TRUE;
12812 }
12813 }
12814
12815 /* A single member comdat group section may be discarded by a
12816 linkonce section and vice versa. */
12817 if ((flags & SEC_GROUP) != 0)
12818 {
12819 asection *first = elf_next_in_group (sec);
12820
12821 if (first != NULL && elf_next_in_group (first) == first)
12822 /* Check this single member group against linkonce sections. */
12823 for (l = already_linked_list->entry; l != NULL; l = l->next)
12824 if ((l->sec->flags & SEC_GROUP) == 0
12825 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12826 {
12827 first->output_section = bfd_abs_section_ptr;
12828 first->kept_section = l->sec;
12829 sec->output_section = bfd_abs_section_ptr;
12830 break;
12831 }
12832 }
12833 else
12834 /* Check this linkonce section against single member groups. */
12835 for (l = already_linked_list->entry; l != NULL; l = l->next)
12836 if (l->sec->flags & SEC_GROUP)
12837 {
12838 asection *first = elf_next_in_group (l->sec);
12839
12840 if (first != NULL
12841 && elf_next_in_group (first) == first
12842 && bfd_elf_match_symbols_in_sections (first, sec, info))
12843 {
12844 sec->output_section = bfd_abs_section_ptr;
12845 sec->kept_section = first;
12846 break;
12847 }
12848 }
12849
12850 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12851 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12852 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12853 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12854 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12855 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12856 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12857 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12858 The reverse order cannot happen as there is never a bfd with only the
12859 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12860 matter as here were are looking only for cross-bfd sections. */
12861
12862 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12863 for (l = already_linked_list->entry; l != NULL; l = l->next)
12864 if ((l->sec->flags & SEC_GROUP) == 0
12865 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12866 {
12867 if (abfd != l->sec->owner)
12868 sec->output_section = bfd_abs_section_ptr;
12869 break;
12870 }
12871
12872 /* This is the first section with this name. Record it. */
12873 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12874 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12875 return sec->output_section == bfd_abs_section_ptr;
12876 }
12877
12878 bfd_boolean
12879 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12880 {
12881 return sym->st_shndx == SHN_COMMON;
12882 }
12883
12884 unsigned int
12885 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12886 {
12887 return SHN_COMMON;
12888 }
12889
12890 asection *
12891 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12892 {
12893 return bfd_com_section_ptr;
12894 }
12895
12896 bfd_vma
12897 _bfd_elf_default_got_elt_size (bfd *abfd,
12898 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12899 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12900 bfd *ibfd ATTRIBUTE_UNUSED,
12901 unsigned long symndx ATTRIBUTE_UNUSED)
12902 {
12903 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12904 return bed->s->arch_size / 8;
12905 }
12906
12907 /* Routines to support the creation of dynamic relocs. */
12908
12909 /* Returns the name of the dynamic reloc section associated with SEC. */
12910
12911 static const char *
12912 get_dynamic_reloc_section_name (bfd * abfd,
12913 asection * sec,
12914 bfd_boolean is_rela)
12915 {
12916 char *name;
12917 const char *old_name = bfd_get_section_name (NULL, sec);
12918 const char *prefix = is_rela ? ".rela" : ".rel";
12919
12920 if (old_name == NULL)
12921 return NULL;
12922
12923 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12924 sprintf (name, "%s%s", prefix, old_name);
12925
12926 return name;
12927 }
12928
12929 /* Returns the dynamic reloc section associated with SEC.
12930 If necessary compute the name of the dynamic reloc section based
12931 on SEC's name (looked up in ABFD's string table) and the setting
12932 of IS_RELA. */
12933
12934 asection *
12935 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12936 asection * sec,
12937 bfd_boolean is_rela)
12938 {
12939 asection * reloc_sec = elf_section_data (sec)->sreloc;
12940
12941 if (reloc_sec == NULL)
12942 {
12943 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12944
12945 if (name != NULL)
12946 {
12947 reloc_sec = bfd_get_linker_section (abfd, name);
12948
12949 if (reloc_sec != NULL)
12950 elf_section_data (sec)->sreloc = reloc_sec;
12951 }
12952 }
12953
12954 return reloc_sec;
12955 }
12956
12957 /* Returns the dynamic reloc section associated with SEC. If the
12958 section does not exist it is created and attached to the DYNOBJ
12959 bfd and stored in the SRELOC field of SEC's elf_section_data
12960 structure.
12961
12962 ALIGNMENT is the alignment for the newly created section and
12963 IS_RELA defines whether the name should be .rela.<SEC's name>
12964 or .rel.<SEC's name>. The section name is looked up in the
12965 string table associated with ABFD. */
12966
12967 asection *
12968 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12969 bfd * dynobj,
12970 unsigned int alignment,
12971 bfd * abfd,
12972 bfd_boolean is_rela)
12973 {
12974 asection * reloc_sec = elf_section_data (sec)->sreloc;
12975
12976 if (reloc_sec == NULL)
12977 {
12978 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12979
12980 if (name == NULL)
12981 return NULL;
12982
12983 reloc_sec = bfd_get_linker_section (dynobj, name);
12984
12985 if (reloc_sec == NULL)
12986 {
12987 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12988 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12989 if ((sec->flags & SEC_ALLOC) != 0)
12990 flags |= SEC_ALLOC | SEC_LOAD;
12991
12992 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12993 if (reloc_sec != NULL)
12994 {
12995 /* _bfd_elf_get_sec_type_attr chooses a section type by
12996 name. Override as it may be wrong, eg. for a user
12997 section named "auto" we'll get ".relauto" which is
12998 seen to be a .rela section. */
12999 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13000 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13001 reloc_sec = NULL;
13002 }
13003 }
13004
13005 elf_section_data (sec)->sreloc = reloc_sec;
13006 }
13007
13008 return reloc_sec;
13009 }
13010
13011 /* Copy the ELF symbol type and other attributes for a linker script
13012 assignment from HSRC to HDEST. Generally this should be treated as
13013 if we found a strong non-dynamic definition for HDEST (except that
13014 ld ignores multiple definition errors). */
13015 void
13016 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13017 struct bfd_link_hash_entry *hdest,
13018 struct bfd_link_hash_entry *hsrc)
13019 {
13020 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13021 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13022 Elf_Internal_Sym isym;
13023
13024 ehdest->type = ehsrc->type;
13025 ehdest->target_internal = ehsrc->target_internal;
13026
13027 isym.st_other = ehsrc->other;
13028 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13029 }
13030
13031 /* Append a RELA relocation REL to section S in BFD. */
13032
13033 void
13034 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13035 {
13036 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13037 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13038 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13039 bed->s->swap_reloca_out (abfd, rel, loc);
13040 }
13041
13042 /* Append a REL relocation REL to section S in BFD. */
13043
13044 void
13045 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13046 {
13047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13048 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13049 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13050 bed->s->swap_reloc_out (abfd, rel, loc);
13051 }
This page took 0.364842 seconds and 4 git commands to generate.