Disable warning message about a program header with no associated sections when that...
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 }
123
124 bh = &h->root;
125 bed = get_elf_backend_data (abfd);
126 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127 sec, 0, NULL, FALSE, bed->collect,
128 &bh))
129 return NULL;
130 h = (struct elf_link_hash_entry *) bh;
131 h->def_regular = 1;
132 h->non_elf = 0;
133 h->root.linker_def = 1;
134 h->type = STT_OBJECT;
135 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139 return h;
140 }
141
142 bfd_boolean
143 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144 {
145 flagword flags;
146 asection *s;
147 struct elf_link_hash_entry *h;
148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149 struct elf_link_hash_table *htab = elf_hash_table (info);
150
151 /* This function may be called more than once. */
152 if (htab->sgot != NULL)
153 return TRUE;
154
155 flags = bed->dynamic_sec_flags;
156
157 s = bfd_make_section_anyway_with_flags (abfd,
158 (bed->rela_plts_and_copies_p
159 ? ".rela.got" : ".rel.got"),
160 (bed->dynamic_sec_flags
161 | SEC_READONLY));
162 if (s == NULL
163 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
164 return FALSE;
165 htab->srelgot = s;
166
167 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
168 if (s == NULL
169 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 return FALSE;
171 htab->sgot = s;
172
173 if (bed->want_got_plt)
174 {
175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
176 if (s == NULL
177 || !bfd_set_section_alignment (abfd, s,
178 bed->s->log_file_align))
179 return FALSE;
180 htab->sgotplt = s;
181 }
182
183 /* The first bit of the global offset table is the header. */
184 s->size += bed->got_header_size;
185
186 if (bed->want_got_sym)
187 {
188 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
189 (or .got.plt) section. We don't do this in the linker script
190 because we don't want to define the symbol if we are not creating
191 a global offset table. */
192 h = _bfd_elf_define_linkage_sym (abfd, info, s,
193 "_GLOBAL_OFFSET_TABLE_");
194 elf_hash_table (info)->hgot = h;
195 if (h == NULL)
196 return FALSE;
197 }
198
199 return TRUE;
200 }
201 \f
202 /* Create a strtab to hold the dynamic symbol names. */
203 static bfd_boolean
204 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
205 {
206 struct elf_link_hash_table *hash_table;
207
208 hash_table = elf_hash_table (info);
209 if (hash_table->dynobj == NULL)
210 {
211 /* We may not set dynobj, an input file holding linker created
212 dynamic sections to abfd, which may be a dynamic object with
213 its own dynamic sections. We need to find a normal input file
214 to hold linker created sections if possible. */
215 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
216 {
217 bfd *ibfd;
218 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
219 if ((ibfd->flags
220 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
221 {
222 abfd = ibfd;
223 break;
224 }
225 }
226 hash_table->dynobj = abfd;
227 }
228
229 if (hash_table->dynstr == NULL)
230 {
231 hash_table->dynstr = _bfd_elf_strtab_init ();
232 if (hash_table->dynstr == NULL)
233 return FALSE;
234 }
235 return TRUE;
236 }
237
238 /* Create some sections which will be filled in with dynamic linking
239 information. ABFD is an input file which requires dynamic sections
240 to be created. The dynamic sections take up virtual memory space
241 when the final executable is run, so we need to create them before
242 addresses are assigned to the output sections. We work out the
243 actual contents and size of these sections later. */
244
245 bfd_boolean
246 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
247 {
248 flagword flags;
249 asection *s;
250 const struct elf_backend_data *bed;
251 struct elf_link_hash_entry *h;
252
253 if (! is_elf_hash_table (info->hash))
254 return FALSE;
255
256 if (elf_hash_table (info)->dynamic_sections_created)
257 return TRUE;
258
259 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
260 return FALSE;
261
262 abfd = elf_hash_table (info)->dynobj;
263 bed = get_elf_backend_data (abfd);
264
265 flags = bed->dynamic_sec_flags;
266
267 /* A dynamically linked executable has a .interp section, but a
268 shared library does not. */
269 if (bfd_link_executable (info) && !info->nointerp)
270 {
271 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
272 flags | SEC_READONLY);
273 if (s == NULL)
274 return FALSE;
275 }
276
277 /* Create sections to hold version informations. These are removed
278 if they are not needed. */
279 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
280 flags | SEC_READONLY);
281 if (s == NULL
282 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
283 return FALSE;
284
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || ! bfd_set_section_alignment (abfd, s, 1))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
301 return FALSE;
302 elf_hash_table (info)->dynsym = s;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
305 flags | SEC_READONLY);
306 if (s == NULL)
307 return FALSE;
308
309 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
310 if (s == NULL
311 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
312 return FALSE;
313
314 /* The special symbol _DYNAMIC is always set to the start of the
315 .dynamic section. We could set _DYNAMIC in a linker script, but we
316 only want to define it if we are, in fact, creating a .dynamic
317 section. We don't want to define it if there is no .dynamic
318 section, since on some ELF platforms the start up code examines it
319 to decide how to initialize the process. */
320 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
321 elf_hash_table (info)->hdynamic = h;
322 if (h == NULL)
323 return FALSE;
324
325 if (info->emit_hash)
326 {
327 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
328 flags | SEC_READONLY);
329 if (s == NULL
330 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
331 return FALSE;
332 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
333 }
334
335 if (info->emit_gnu_hash)
336 {
337 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
338 flags | SEC_READONLY);
339 if (s == NULL
340 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
341 return FALSE;
342 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
343 4 32-bit words followed by variable count of 64-bit words, then
344 variable count of 32-bit words. */
345 if (bed->s->arch_size == 64)
346 elf_section_data (s)->this_hdr.sh_entsize = 0;
347 else
348 elf_section_data (s)->this_hdr.sh_entsize = 4;
349 }
350
351 /* Let the backend create the rest of the sections. This lets the
352 backend set the right flags. The backend will normally create
353 the .got and .plt sections. */
354 if (bed->elf_backend_create_dynamic_sections == NULL
355 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
356 return FALSE;
357
358 elf_hash_table (info)->dynamic_sections_created = TRUE;
359
360 return TRUE;
361 }
362
363 /* Create dynamic sections when linking against a dynamic object. */
364
365 bfd_boolean
366 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
367 {
368 flagword flags, pltflags;
369 struct elf_link_hash_entry *h;
370 asection *s;
371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
372 struct elf_link_hash_table *htab = elf_hash_table (info);
373
374 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
375 .rel[a].bss sections. */
376 flags = bed->dynamic_sec_flags;
377
378 pltflags = flags;
379 if (bed->plt_not_loaded)
380 /* We do not clear SEC_ALLOC here because we still want the OS to
381 allocate space for the section; it's just that there's nothing
382 to read in from the object file. */
383 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
384 else
385 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
386 if (bed->plt_readonly)
387 pltflags |= SEC_READONLY;
388
389 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
390 if (s == NULL
391 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
392 return FALSE;
393 htab->splt = s;
394
395 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
396 .plt section. */
397 if (bed->want_plt_sym)
398 {
399 h = _bfd_elf_define_linkage_sym (abfd, info, s,
400 "_PROCEDURE_LINKAGE_TABLE_");
401 elf_hash_table (info)->hplt = h;
402 if (h == NULL)
403 return FALSE;
404 }
405
406 s = bfd_make_section_anyway_with_flags (abfd,
407 (bed->rela_plts_and_copies_p
408 ? ".rela.plt" : ".rel.plt"),
409 flags | SEC_READONLY);
410 if (s == NULL
411 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
412 return FALSE;
413 htab->srelplt = s;
414
415 if (! _bfd_elf_create_got_section (abfd, info))
416 return FALSE;
417
418 if (bed->want_dynbss)
419 {
420 /* The .dynbss section is a place to put symbols which are defined
421 by dynamic objects, are referenced by regular objects, and are
422 not functions. We must allocate space for them in the process
423 image and use a R_*_COPY reloc to tell the dynamic linker to
424 initialize them at run time. The linker script puts the .dynbss
425 section into the .bss section of the final image. */
426 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
427 SEC_ALLOC | SEC_LINKER_CREATED);
428 if (s == NULL)
429 return FALSE;
430 htab->sdynbss = s;
431
432 if (bed->want_dynrelro)
433 {
434 /* Similarly, but for symbols that were originally in read-only
435 sections. This section doesn't really need to have contents,
436 but make it like other .data.rel.ro sections. */
437 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
438 flags);
439 if (s == NULL)
440 return FALSE;
441 htab->sdynrelro = s;
442 }
443
444 /* The .rel[a].bss section holds copy relocs. This section is not
445 normally needed. We need to create it here, though, so that the
446 linker will map it to an output section. We can't just create it
447 only if we need it, because we will not know whether we need it
448 until we have seen all the input files, and the first time the
449 main linker code calls BFD after examining all the input files
450 (size_dynamic_sections) the input sections have already been
451 mapped to the output sections. If the section turns out not to
452 be needed, we can discard it later. We will never need this
453 section when generating a shared object, since they do not use
454 copy relocs. */
455 if (bfd_link_executable (info))
456 {
457 s = bfd_make_section_anyway_with_flags (abfd,
458 (bed->rela_plts_and_copies_p
459 ? ".rela.bss" : ".rel.bss"),
460 flags | SEC_READONLY);
461 if (s == NULL
462 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
463 return FALSE;
464 htab->srelbss = s;
465
466 if (bed->want_dynrelro)
467 {
468 s = (bfd_make_section_anyway_with_flags
469 (abfd, (bed->rela_plts_and_copies_p
470 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
471 flags | SEC_READONLY));
472 if (s == NULL
473 || ! bfd_set_section_alignment (abfd, s,
474 bed->s->log_file_align))
475 return FALSE;
476 htab->sreldynrelro = s;
477 }
478 }
479 }
480
481 return TRUE;
482 }
483 \f
484 /* Record a new dynamic symbol. We record the dynamic symbols as we
485 read the input files, since we need to have a list of all of them
486 before we can determine the final sizes of the output sections.
487 Note that we may actually call this function even though we are not
488 going to output any dynamic symbols; in some cases we know that a
489 symbol should be in the dynamic symbol table, but only if there is
490 one. */
491
492 bfd_boolean
493 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
494 struct elf_link_hash_entry *h)
495 {
496 if (h->dynindx == -1)
497 {
498 struct elf_strtab_hash *dynstr;
499 char *p;
500 const char *name;
501 size_t indx;
502
503 /* XXX: The ABI draft says the linker must turn hidden and
504 internal symbols into STB_LOCAL symbols when producing the
505 DSO. However, if ld.so honors st_other in the dynamic table,
506 this would not be necessary. */
507 switch (ELF_ST_VISIBILITY (h->other))
508 {
509 case STV_INTERNAL:
510 case STV_HIDDEN:
511 if (h->root.type != bfd_link_hash_undefined
512 && h->root.type != bfd_link_hash_undefweak)
513 {
514 h->forced_local = 1;
515 if (!elf_hash_table (info)->is_relocatable_executable)
516 return TRUE;
517 }
518
519 default:
520 break;
521 }
522
523 h->dynindx = elf_hash_table (info)->dynsymcount;
524 ++elf_hash_table (info)->dynsymcount;
525
526 dynstr = elf_hash_table (info)->dynstr;
527 if (dynstr == NULL)
528 {
529 /* Create a strtab to hold the dynamic symbol names. */
530 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
531 if (dynstr == NULL)
532 return FALSE;
533 }
534
535 /* We don't put any version information in the dynamic string
536 table. */
537 name = h->root.root.string;
538 p = strchr (name, ELF_VER_CHR);
539 if (p != NULL)
540 /* We know that the p points into writable memory. In fact,
541 there are only a few symbols that have read-only names, being
542 those like _GLOBAL_OFFSET_TABLE_ that are created specially
543 by the backends. Most symbols will have names pointing into
544 an ELF string table read from a file, or to objalloc memory. */
545 *p = 0;
546
547 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
548
549 if (p != NULL)
550 *p = ELF_VER_CHR;
551
552 if (indx == (size_t) -1)
553 return FALSE;
554 h->dynstr_index = indx;
555 }
556
557 return TRUE;
558 }
559 \f
560 /* Mark a symbol dynamic. */
561
562 static void
563 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
564 struct elf_link_hash_entry *h,
565 Elf_Internal_Sym *sym)
566 {
567 struct bfd_elf_dynamic_list *d = info->dynamic_list;
568
569 /* It may be called more than once on the same H. */
570 if(h->dynamic || bfd_link_relocatable (info))
571 return;
572
573 if ((info->dynamic_data
574 && (h->type == STT_OBJECT
575 || h->type == STT_COMMON
576 || (sym != NULL
577 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
578 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
579 || (d != NULL
580 && h->root.type == bfd_link_hash_new
581 && (*d->match) (&d->head, NULL, h->root.root.string)))
582 h->dynamic = 1;
583 }
584
585 /* Record an assignment to a symbol made by a linker script. We need
586 this in case some dynamic object refers to this symbol. */
587
588 bfd_boolean
589 bfd_elf_record_link_assignment (bfd *output_bfd,
590 struct bfd_link_info *info,
591 const char *name,
592 bfd_boolean provide,
593 bfd_boolean hidden)
594 {
595 struct elf_link_hash_entry *h, *hv;
596 struct elf_link_hash_table *htab;
597 const struct elf_backend_data *bed;
598
599 if (!is_elf_hash_table (info->hash))
600 return TRUE;
601
602 htab = elf_hash_table (info);
603 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
604 if (h == NULL)
605 return provide;
606
607 if (h->root.type == bfd_link_hash_warning)
608 h = (struct elf_link_hash_entry *) h->root.u.i.link;
609
610 if (h->versioned == unknown)
611 {
612 /* Set versioned if symbol version is unknown. */
613 char *version = strrchr (name, ELF_VER_CHR);
614 if (version)
615 {
616 if (version > name && version[-1] != ELF_VER_CHR)
617 h->versioned = versioned_hidden;
618 else
619 h->versioned = versioned;
620 }
621 }
622
623 switch (h->root.type)
624 {
625 case bfd_link_hash_defined:
626 case bfd_link_hash_defweak:
627 case bfd_link_hash_common:
628 break;
629 case bfd_link_hash_undefweak:
630 case bfd_link_hash_undefined:
631 /* Since we're defining the symbol, don't let it seem to have not
632 been defined. record_dynamic_symbol and size_dynamic_sections
633 may depend on this. */
634 h->root.type = bfd_link_hash_new;
635 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
636 bfd_link_repair_undef_list (&htab->root);
637 break;
638 case bfd_link_hash_new:
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 break;
642 case bfd_link_hash_indirect:
643 /* We had a versioned symbol in a dynamic library. We make the
644 the versioned symbol point to this one. */
645 bed = get_elf_backend_data (output_bfd);
646 hv = h;
647 while (hv->root.type == bfd_link_hash_indirect
648 || hv->root.type == bfd_link_hash_warning)
649 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
650 /* We don't need to update h->root.u since linker will set them
651 later. */
652 h->root.type = bfd_link_hash_undefined;
653 hv->root.type = bfd_link_hash_indirect;
654 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
655 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
656 break;
657 default:
658 BFD_FAIL ();
659 return FALSE;
660 }
661
662 /* If this symbol is being provided by the linker script, and it is
663 currently defined by a dynamic object, but not by a regular
664 object, then mark it as undefined so that the generic linker will
665 force the correct value. */
666 if (provide
667 && h->def_dynamic
668 && !h->def_regular)
669 h->root.type = bfd_link_hash_undefined;
670
671 /* If this symbol is not being provided by the linker script, and it is
672 currently defined by a dynamic object, but not by a regular object,
673 then clear out any version information because the symbol will not be
674 associated with the dynamic object any more. */
675 if (!provide
676 && h->def_dynamic
677 && !h->def_regular)
678 h->verinfo.verdef = NULL;
679
680 /* Make sure this symbol is not garbage collected. */
681 h->mark = 1;
682
683 h->def_regular = 1;
684
685 if (hidden)
686 {
687 bed = get_elf_backend_data (output_bfd);
688 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
689 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
690 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
691 }
692
693 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
694 and executables. */
695 if (!bfd_link_relocatable (info)
696 && h->dynindx != -1
697 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
698 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
699 h->forced_local = 1;
700
701 if ((h->def_dynamic
702 || h->ref_dynamic
703 || bfd_link_dll (info)
704 || elf_hash_table (info)->is_relocatable_executable)
705 && h->dynindx == -1)
706 {
707 if (! bfd_elf_link_record_dynamic_symbol (info, h))
708 return FALSE;
709
710 /* If this is a weak defined symbol, and we know a corresponding
711 real symbol from the same dynamic object, make sure the real
712 symbol is also made into a dynamic symbol. */
713 if (h->u.weakdef != NULL
714 && h->u.weakdef->dynindx == -1)
715 {
716 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
717 return FALSE;
718 }
719 }
720
721 return TRUE;
722 }
723
724 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
725 success, and 2 on a failure caused by attempting to record a symbol
726 in a discarded section, eg. a discarded link-once section symbol. */
727
728 int
729 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
730 bfd *input_bfd,
731 long input_indx)
732 {
733 bfd_size_type amt;
734 struct elf_link_local_dynamic_entry *entry;
735 struct elf_link_hash_table *eht;
736 struct elf_strtab_hash *dynstr;
737 size_t dynstr_index;
738 char *name;
739 Elf_External_Sym_Shndx eshndx;
740 char esym[sizeof (Elf64_External_Sym)];
741
742 if (! is_elf_hash_table (info->hash))
743 return 0;
744
745 /* See if the entry exists already. */
746 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
747 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
748 return 1;
749
750 amt = sizeof (*entry);
751 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
752 if (entry == NULL)
753 return 0;
754
755 /* Go find the symbol, so that we can find it's name. */
756 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
757 1, input_indx, &entry->isym, esym, &eshndx))
758 {
759 bfd_release (input_bfd, entry);
760 return 0;
761 }
762
763 if (entry->isym.st_shndx != SHN_UNDEF
764 && entry->isym.st_shndx < SHN_LORESERVE)
765 {
766 asection *s;
767
768 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
769 if (s == NULL || bfd_is_abs_section (s->output_section))
770 {
771 /* We can still bfd_release here as nothing has done another
772 bfd_alloc. We can't do this later in this function. */
773 bfd_release (input_bfd, entry);
774 return 2;
775 }
776 }
777
778 name = (bfd_elf_string_from_elf_section
779 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
780 entry->isym.st_name));
781
782 dynstr = elf_hash_table (info)->dynstr;
783 if (dynstr == NULL)
784 {
785 /* Create a strtab to hold the dynamic symbol names. */
786 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
787 if (dynstr == NULL)
788 return 0;
789 }
790
791 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
792 if (dynstr_index == (size_t) -1)
793 return 0;
794 entry->isym.st_name = dynstr_index;
795
796 eht = elf_hash_table (info);
797
798 entry->next = eht->dynlocal;
799 eht->dynlocal = entry;
800 entry->input_bfd = input_bfd;
801 entry->input_indx = input_indx;
802 eht->dynsymcount++;
803
804 /* Whatever binding the symbol had before, it's now local. */
805 entry->isym.st_info
806 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
807
808 /* The dynindx will be set at the end of size_dynamic_sections. */
809
810 return 1;
811 }
812
813 /* Return the dynindex of a local dynamic symbol. */
814
815 long
816 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
817 bfd *input_bfd,
818 long input_indx)
819 {
820 struct elf_link_local_dynamic_entry *e;
821
822 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
823 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
824 return e->dynindx;
825 return -1;
826 }
827
828 /* This function is used to renumber the dynamic symbols, if some of
829 them are removed because they are marked as local. This is called
830 via elf_link_hash_traverse. */
831
832 static bfd_boolean
833 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
834 void *data)
835 {
836 size_t *count = (size_t *) data;
837
838 if (h->forced_local)
839 return TRUE;
840
841 if (h->dynindx != -1)
842 h->dynindx = ++(*count);
843
844 return TRUE;
845 }
846
847
848 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
849 STB_LOCAL binding. */
850
851 static bfd_boolean
852 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (!h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866 /* Return true if the dynamic symbol for a given section should be
867 omitted when creating a shared library. */
868 bfd_boolean
869 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
870 struct bfd_link_info *info,
871 asection *p)
872 {
873 struct elf_link_hash_table *htab;
874 asection *ip;
875
876 switch (elf_section_data (p)->this_hdr.sh_type)
877 {
878 case SHT_PROGBITS:
879 case SHT_NOBITS:
880 /* If sh_type is yet undecided, assume it could be
881 SHT_PROGBITS/SHT_NOBITS. */
882 case SHT_NULL:
883 htab = elf_hash_table (info);
884 if (p == htab->tls_sec)
885 return FALSE;
886
887 if (htab->text_index_section != NULL)
888 return p != htab->text_index_section && p != htab->data_index_section;
889
890 return (htab->dynobj != NULL
891 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
892 && ip->output_section == p);
893
894 /* There shouldn't be section relative relocations
895 against any other section. */
896 default:
897 return TRUE;
898 }
899 }
900
901 /* Assign dynsym indices. In a shared library we generate a section
902 symbol for each output section, which come first. Next come symbols
903 which have been forced to local binding. Then all of the back-end
904 allocated local dynamic syms, followed by the rest of the global
905 symbols. */
906
907 static unsigned long
908 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
909 struct bfd_link_info *info,
910 unsigned long *section_sym_count)
911 {
912 unsigned long dynsymcount = 0;
913
914 if (bfd_link_pic (info)
915 || elf_hash_table (info)->is_relocatable_executable)
916 {
917 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
918 asection *p;
919 for (p = output_bfd->sections; p ; p = p->next)
920 if ((p->flags & SEC_EXCLUDE) == 0
921 && (p->flags & SEC_ALLOC) != 0
922 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
923 elf_section_data (p)->dynindx = ++dynsymcount;
924 else
925 elf_section_data (p)->dynindx = 0;
926 }
927 *section_sym_count = dynsymcount;
928
929 elf_link_hash_traverse (elf_hash_table (info),
930 elf_link_renumber_local_hash_table_dynsyms,
931 &dynsymcount);
932
933 if (elf_hash_table (info)->dynlocal)
934 {
935 struct elf_link_local_dynamic_entry *p;
936 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
937 p->dynindx = ++dynsymcount;
938 }
939 elf_hash_table (info)->local_dynsymcount = dynsymcount;
940
941 elf_link_hash_traverse (elf_hash_table (info),
942 elf_link_renumber_hash_table_dynsyms,
943 &dynsymcount);
944
945 /* There is an unused NULL entry at the head of the table which we
946 must account for in our count even if the table is empty since it
947 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
948 .dynamic section. */
949 dynsymcount++;
950
951 elf_hash_table (info)->dynsymcount = dynsymcount;
952 return dynsymcount;
953 }
954
955 /* Merge st_other field. */
956
957 static void
958 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
959 const Elf_Internal_Sym *isym, asection *sec,
960 bfd_boolean definition, bfd_boolean dynamic)
961 {
962 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
963
964 /* If st_other has a processor-specific meaning, specific
965 code might be needed here. */
966 if (bed->elf_backend_merge_symbol_attribute)
967 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
968 dynamic);
969
970 if (!dynamic)
971 {
972 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
973 unsigned hvis = ELF_ST_VISIBILITY (h->other);
974
975 /* Keep the most constraining visibility. Leave the remainder
976 of the st_other field to elf_backend_merge_symbol_attribute. */
977 if (symvis - 1 < hvis - 1)
978 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
979 }
980 else if (definition
981 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
982 && (sec->flags & SEC_READONLY) == 0)
983 h->protected_def = 1;
984 }
985
986 /* This function is called when we want to merge a new symbol with an
987 existing symbol. It handles the various cases which arise when we
988 find a definition in a dynamic object, or when there is already a
989 definition in a dynamic object. The new symbol is described by
990 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
991 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
992 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
993 of an old common symbol. We set OVERRIDE if the old symbol is
994 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
995 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
996 to change. By OK to change, we mean that we shouldn't warn if the
997 type or size does change. */
998
999 static bfd_boolean
1000 _bfd_elf_merge_symbol (bfd *abfd,
1001 struct bfd_link_info *info,
1002 const char *name,
1003 Elf_Internal_Sym *sym,
1004 asection **psec,
1005 bfd_vma *pvalue,
1006 struct elf_link_hash_entry **sym_hash,
1007 bfd **poldbfd,
1008 bfd_boolean *pold_weak,
1009 unsigned int *pold_alignment,
1010 bfd_boolean *skip,
1011 bfd_boolean *override,
1012 bfd_boolean *type_change_ok,
1013 bfd_boolean *size_change_ok,
1014 bfd_boolean *matched)
1015 {
1016 asection *sec, *oldsec;
1017 struct elf_link_hash_entry *h;
1018 struct elf_link_hash_entry *hi;
1019 struct elf_link_hash_entry *flip;
1020 int bind;
1021 bfd *oldbfd;
1022 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1023 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1024 const struct elf_backend_data *bed;
1025 char *new_version;
1026
1027 *skip = FALSE;
1028 *override = FALSE;
1029
1030 sec = *psec;
1031 bind = ELF_ST_BIND (sym->st_info);
1032
1033 if (! bfd_is_und_section (sec))
1034 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1035 else
1036 h = ((struct elf_link_hash_entry *)
1037 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1038 if (h == NULL)
1039 return FALSE;
1040 *sym_hash = h;
1041
1042 bed = get_elf_backend_data (abfd);
1043
1044 /* NEW_VERSION is the symbol version of the new symbol. */
1045 if (h->versioned != unversioned)
1046 {
1047 /* Symbol version is unknown or versioned. */
1048 new_version = strrchr (name, ELF_VER_CHR);
1049 if (new_version)
1050 {
1051 if (h->versioned == unknown)
1052 {
1053 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1054 h->versioned = versioned_hidden;
1055 else
1056 h->versioned = versioned;
1057 }
1058 new_version += 1;
1059 if (new_version[0] == '\0')
1060 new_version = NULL;
1061 }
1062 else
1063 h->versioned = unversioned;
1064 }
1065 else
1066 new_version = NULL;
1067
1068 /* For merging, we only care about real symbols. But we need to make
1069 sure that indirect symbol dynamic flags are updated. */
1070 hi = h;
1071 while (h->root.type == bfd_link_hash_indirect
1072 || h->root.type == bfd_link_hash_warning)
1073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1074
1075 if (!*matched)
1076 {
1077 if (hi == h || h->root.type == bfd_link_hash_new)
1078 *matched = TRUE;
1079 else
1080 {
1081 /* OLD_HIDDEN is true if the existing symbol is only visible
1082 to the symbol with the same symbol version. NEW_HIDDEN is
1083 true if the new symbol is only visible to the symbol with
1084 the same symbol version. */
1085 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1086 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1087 if (!old_hidden && !new_hidden)
1088 /* The new symbol matches the existing symbol if both
1089 aren't hidden. */
1090 *matched = TRUE;
1091 else
1092 {
1093 /* OLD_VERSION is the symbol version of the existing
1094 symbol. */
1095 char *old_version;
1096
1097 if (h->versioned >= versioned)
1098 old_version = strrchr (h->root.root.string,
1099 ELF_VER_CHR) + 1;
1100 else
1101 old_version = NULL;
1102
1103 /* The new symbol matches the existing symbol if they
1104 have the same symbol version. */
1105 *matched = (old_version == new_version
1106 || (old_version != NULL
1107 && new_version != NULL
1108 && strcmp (old_version, new_version) == 0));
1109 }
1110 }
1111 }
1112
1113 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1114 existing symbol. */
1115
1116 oldbfd = NULL;
1117 oldsec = NULL;
1118 switch (h->root.type)
1119 {
1120 default:
1121 break;
1122
1123 case bfd_link_hash_undefined:
1124 case bfd_link_hash_undefweak:
1125 oldbfd = h->root.u.undef.abfd;
1126 break;
1127
1128 case bfd_link_hash_defined:
1129 case bfd_link_hash_defweak:
1130 oldbfd = h->root.u.def.section->owner;
1131 oldsec = h->root.u.def.section;
1132 break;
1133
1134 case bfd_link_hash_common:
1135 oldbfd = h->root.u.c.p->section->owner;
1136 oldsec = h->root.u.c.p->section;
1137 if (pold_alignment)
1138 *pold_alignment = h->root.u.c.p->alignment_power;
1139 break;
1140 }
1141 if (poldbfd && *poldbfd == NULL)
1142 *poldbfd = oldbfd;
1143
1144 /* Differentiate strong and weak symbols. */
1145 newweak = bind == STB_WEAK;
1146 oldweak = (h->root.type == bfd_link_hash_defweak
1147 || h->root.type == bfd_link_hash_undefweak);
1148 if (pold_weak)
1149 *pold_weak = oldweak;
1150
1151 /* This code is for coping with dynamic objects, and is only useful
1152 if we are doing an ELF link. */
1153 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1154 return TRUE;
1155
1156 /* We have to check it for every instance since the first few may be
1157 references and not all compilers emit symbol type for undefined
1158 symbols. */
1159 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1160
1161 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1162 respectively, is from a dynamic object. */
1163
1164 newdyn = (abfd->flags & DYNAMIC) != 0;
1165
1166 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1167 syms and defined syms in dynamic libraries respectively.
1168 ref_dynamic on the other hand can be set for a symbol defined in
1169 a dynamic library, and def_dynamic may not be set; When the
1170 definition in a dynamic lib is overridden by a definition in the
1171 executable use of the symbol in the dynamic lib becomes a
1172 reference to the executable symbol. */
1173 if (newdyn)
1174 {
1175 if (bfd_is_und_section (sec))
1176 {
1177 if (bind != STB_WEAK)
1178 {
1179 h->ref_dynamic_nonweak = 1;
1180 hi->ref_dynamic_nonweak = 1;
1181 }
1182 }
1183 else
1184 {
1185 /* Update the existing symbol only if they match. */
1186 if (*matched)
1187 h->dynamic_def = 1;
1188 hi->dynamic_def = 1;
1189 }
1190 }
1191
1192 /* If we just created the symbol, mark it as being an ELF symbol.
1193 Other than that, there is nothing to do--there is no merge issue
1194 with a newly defined symbol--so we just return. */
1195
1196 if (h->root.type == bfd_link_hash_new)
1197 {
1198 h->non_elf = 0;
1199 return TRUE;
1200 }
1201
1202 /* In cases involving weak versioned symbols, we may wind up trying
1203 to merge a symbol with itself. Catch that here, to avoid the
1204 confusion that results if we try to override a symbol with
1205 itself. The additional tests catch cases like
1206 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1207 dynamic object, which we do want to handle here. */
1208 if (abfd == oldbfd
1209 && (newweak || oldweak)
1210 && ((abfd->flags & DYNAMIC) == 0
1211 || !h->def_regular))
1212 return TRUE;
1213
1214 olddyn = FALSE;
1215 if (oldbfd != NULL)
1216 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1217 else if (oldsec != NULL)
1218 {
1219 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1220 indices used by MIPS ELF. */
1221 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1222 }
1223
1224 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1225 respectively, appear to be a definition rather than reference. */
1226
1227 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1228
1229 olddef = (h->root.type != bfd_link_hash_undefined
1230 && h->root.type != bfd_link_hash_undefweak
1231 && h->root.type != bfd_link_hash_common);
1232
1233 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1234 respectively, appear to be a function. */
1235
1236 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1237 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1238
1239 oldfunc = (h->type != STT_NOTYPE
1240 && bed->is_function_type (h->type));
1241
1242 /* If creating a default indirect symbol ("foo" or "foo@") from a
1243 dynamic versioned definition ("foo@@") skip doing so if there is
1244 an existing regular definition with a different type. We don't
1245 want, for example, a "time" variable in the executable overriding
1246 a "time" function in a shared library. */
1247 if (pold_alignment == NULL
1248 && newdyn
1249 && newdef
1250 && !olddyn
1251 && (olddef || h->root.type == bfd_link_hash_common)
1252 && ELF_ST_TYPE (sym->st_info) != h->type
1253 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1254 && h->type != STT_NOTYPE
1255 && !(newfunc && oldfunc))
1256 {
1257 *skip = TRUE;
1258 return TRUE;
1259 }
1260
1261 /* Check TLS symbols. We don't check undefined symbols introduced
1262 by "ld -u" which have no type (and oldbfd NULL), and we don't
1263 check symbols from plugins because they also have no type. */
1264 if (oldbfd != NULL
1265 && (oldbfd->flags & BFD_PLUGIN) == 0
1266 && (abfd->flags & BFD_PLUGIN) == 0
1267 && ELF_ST_TYPE (sym->st_info) != h->type
1268 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1269 {
1270 bfd *ntbfd, *tbfd;
1271 bfd_boolean ntdef, tdef;
1272 asection *ntsec, *tsec;
1273
1274 if (h->type == STT_TLS)
1275 {
1276 ntbfd = abfd;
1277 ntsec = sec;
1278 ntdef = newdef;
1279 tbfd = oldbfd;
1280 tsec = oldsec;
1281 tdef = olddef;
1282 }
1283 else
1284 {
1285 ntbfd = oldbfd;
1286 ntsec = oldsec;
1287 ntdef = olddef;
1288 tbfd = abfd;
1289 tsec = sec;
1290 tdef = newdef;
1291 }
1292
1293 if (tdef && ntdef)
1294 _bfd_error_handler
1295 /* xgettext:c-format */
1296 (_("%s: TLS definition in %B section %A "
1297 "mismatches non-TLS definition in %B section %A"),
1298 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1299 else if (!tdef && !ntdef)
1300 _bfd_error_handler
1301 /* xgettext:c-format */
1302 (_("%s: TLS reference in %B "
1303 "mismatches non-TLS reference in %B"),
1304 tbfd, ntbfd, h->root.root.string);
1305 else if (tdef)
1306 _bfd_error_handler
1307 /* xgettext:c-format */
1308 (_("%s: TLS definition in %B section %A "
1309 "mismatches non-TLS reference in %B"),
1310 tbfd, tsec, ntbfd, h->root.root.string);
1311 else
1312 _bfd_error_handler
1313 /* xgettext:c-format */
1314 (_("%s: TLS reference in %B "
1315 "mismatches non-TLS definition in %B section %A"),
1316 tbfd, ntbfd, ntsec, h->root.root.string);
1317
1318 bfd_set_error (bfd_error_bad_value);
1319 return FALSE;
1320 }
1321
1322 /* If the old symbol has non-default visibility, we ignore the new
1323 definition from a dynamic object. */
1324 if (newdyn
1325 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1326 && !bfd_is_und_section (sec))
1327 {
1328 *skip = TRUE;
1329 /* Make sure this symbol is dynamic. */
1330 h->ref_dynamic = 1;
1331 hi->ref_dynamic = 1;
1332 /* A protected symbol has external availability. Make sure it is
1333 recorded as dynamic.
1334
1335 FIXME: Should we check type and size for protected symbol? */
1336 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1337 return bfd_elf_link_record_dynamic_symbol (info, h);
1338 else
1339 return TRUE;
1340 }
1341 else if (!newdyn
1342 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1343 && h->def_dynamic)
1344 {
1345 /* If the new symbol with non-default visibility comes from a
1346 relocatable file and the old definition comes from a dynamic
1347 object, we remove the old definition. */
1348 if (hi->root.type == bfd_link_hash_indirect)
1349 {
1350 /* Handle the case where the old dynamic definition is
1351 default versioned. We need to copy the symbol info from
1352 the symbol with default version to the normal one if it
1353 was referenced before. */
1354 if (h->ref_regular)
1355 {
1356 hi->root.type = h->root.type;
1357 h->root.type = bfd_link_hash_indirect;
1358 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1359
1360 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1361 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1362 {
1363 /* If the new symbol is hidden or internal, completely undo
1364 any dynamic link state. */
1365 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1366 h->forced_local = 0;
1367 h->ref_dynamic = 0;
1368 }
1369 else
1370 h->ref_dynamic = 1;
1371
1372 h->def_dynamic = 0;
1373 /* FIXME: Should we check type and size for protected symbol? */
1374 h->size = 0;
1375 h->type = 0;
1376
1377 h = hi;
1378 }
1379 else
1380 h = hi;
1381 }
1382
1383 /* If the old symbol was undefined before, then it will still be
1384 on the undefs list. If the new symbol is undefined or
1385 common, we can't make it bfd_link_hash_new here, because new
1386 undefined or common symbols will be added to the undefs list
1387 by _bfd_generic_link_add_one_symbol. Symbols may not be
1388 added twice to the undefs list. Also, if the new symbol is
1389 undefweak then we don't want to lose the strong undef. */
1390 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1391 {
1392 h->root.type = bfd_link_hash_undefined;
1393 h->root.u.undef.abfd = abfd;
1394 }
1395 else
1396 {
1397 h->root.type = bfd_link_hash_new;
1398 h->root.u.undef.abfd = NULL;
1399 }
1400
1401 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1402 {
1403 /* If the new symbol is hidden or internal, completely undo
1404 any dynamic link state. */
1405 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1406 h->forced_local = 0;
1407 h->ref_dynamic = 0;
1408 }
1409 else
1410 h->ref_dynamic = 1;
1411 h->def_dynamic = 0;
1412 /* FIXME: Should we check type and size for protected symbol? */
1413 h->size = 0;
1414 h->type = 0;
1415 return TRUE;
1416 }
1417
1418 /* If a new weak symbol definition comes from a regular file and the
1419 old symbol comes from a dynamic library, we treat the new one as
1420 strong. Similarly, an old weak symbol definition from a regular
1421 file is treated as strong when the new symbol comes from a dynamic
1422 library. Further, an old weak symbol from a dynamic library is
1423 treated as strong if the new symbol is from a dynamic library.
1424 This reflects the way glibc's ld.so works.
1425
1426 Do this before setting *type_change_ok or *size_change_ok so that
1427 we warn properly when dynamic library symbols are overridden. */
1428
1429 if (newdef && !newdyn && olddyn)
1430 newweak = FALSE;
1431 if (olddef && newdyn)
1432 oldweak = FALSE;
1433
1434 /* Allow changes between different types of function symbol. */
1435 if (newfunc && oldfunc)
1436 *type_change_ok = TRUE;
1437
1438 /* It's OK to change the type if either the existing symbol or the
1439 new symbol is weak. A type change is also OK if the old symbol
1440 is undefined and the new symbol is defined. */
1441
1442 if (oldweak
1443 || newweak
1444 || (newdef
1445 && h->root.type == bfd_link_hash_undefined))
1446 *type_change_ok = TRUE;
1447
1448 /* It's OK to change the size if either the existing symbol or the
1449 new symbol is weak, or if the old symbol is undefined. */
1450
1451 if (*type_change_ok
1452 || h->root.type == bfd_link_hash_undefined)
1453 *size_change_ok = TRUE;
1454
1455 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1456 symbol, respectively, appears to be a common symbol in a dynamic
1457 object. If a symbol appears in an uninitialized section, and is
1458 not weak, and is not a function, then it may be a common symbol
1459 which was resolved when the dynamic object was created. We want
1460 to treat such symbols specially, because they raise special
1461 considerations when setting the symbol size: if the symbol
1462 appears as a common symbol in a regular object, and the size in
1463 the regular object is larger, we must make sure that we use the
1464 larger size. This problematic case can always be avoided in C,
1465 but it must be handled correctly when using Fortran shared
1466 libraries.
1467
1468 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1469 likewise for OLDDYNCOMMON and OLDDEF.
1470
1471 Note that this test is just a heuristic, and that it is quite
1472 possible to have an uninitialized symbol in a shared object which
1473 is really a definition, rather than a common symbol. This could
1474 lead to some minor confusion when the symbol really is a common
1475 symbol in some regular object. However, I think it will be
1476 harmless. */
1477
1478 if (newdyn
1479 && newdef
1480 && !newweak
1481 && (sec->flags & SEC_ALLOC) != 0
1482 && (sec->flags & SEC_LOAD) == 0
1483 && sym->st_size > 0
1484 && !newfunc)
1485 newdyncommon = TRUE;
1486 else
1487 newdyncommon = FALSE;
1488
1489 if (olddyn
1490 && olddef
1491 && h->root.type == bfd_link_hash_defined
1492 && h->def_dynamic
1493 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1494 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1495 && h->size > 0
1496 && !oldfunc)
1497 olddyncommon = TRUE;
1498 else
1499 olddyncommon = FALSE;
1500
1501 /* We now know everything about the old and new symbols. We ask the
1502 backend to check if we can merge them. */
1503 if (bed->merge_symbol != NULL)
1504 {
1505 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1506 return FALSE;
1507 sec = *psec;
1508 }
1509
1510 /* If both the old and the new symbols look like common symbols in a
1511 dynamic object, set the size of the symbol to the larger of the
1512 two. */
1513
1514 if (olddyncommon
1515 && newdyncommon
1516 && sym->st_size != h->size)
1517 {
1518 /* Since we think we have two common symbols, issue a multiple
1519 common warning if desired. Note that we only warn if the
1520 size is different. If the size is the same, we simply let
1521 the old symbol override the new one as normally happens with
1522 symbols defined in dynamic objects. */
1523
1524 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1525 bfd_link_hash_common, sym->st_size);
1526 if (sym->st_size > h->size)
1527 h->size = sym->st_size;
1528
1529 *size_change_ok = TRUE;
1530 }
1531
1532 /* If we are looking at a dynamic object, and we have found a
1533 definition, we need to see if the symbol was already defined by
1534 some other object. If so, we want to use the existing
1535 definition, and we do not want to report a multiple symbol
1536 definition error; we do this by clobbering *PSEC to be
1537 bfd_und_section_ptr.
1538
1539 We treat a common symbol as a definition if the symbol in the
1540 shared library is a function, since common symbols always
1541 represent variables; this can cause confusion in principle, but
1542 any such confusion would seem to indicate an erroneous program or
1543 shared library. We also permit a common symbol in a regular
1544 object to override a weak symbol in a shared object. A common
1545 symbol in executable also overrides a symbol in a shared object. */
1546
1547 if (newdyn
1548 && newdef
1549 && (olddef
1550 || (h->root.type == bfd_link_hash_common
1551 && (newweak
1552 || newfunc
1553 || (!olddyn && bfd_link_executable (info))))))
1554 {
1555 *override = TRUE;
1556 newdef = FALSE;
1557 newdyncommon = FALSE;
1558
1559 *psec = sec = bfd_und_section_ptr;
1560 *size_change_ok = TRUE;
1561
1562 /* If we get here when the old symbol is a common symbol, then
1563 we are explicitly letting it override a weak symbol or
1564 function in a dynamic object, and we don't want to warn about
1565 a type change. If the old symbol is a defined symbol, a type
1566 change warning may still be appropriate. */
1567
1568 if (h->root.type == bfd_link_hash_common)
1569 *type_change_ok = TRUE;
1570 }
1571
1572 /* Handle the special case of an old common symbol merging with a
1573 new symbol which looks like a common symbol in a shared object.
1574 We change *PSEC and *PVALUE to make the new symbol look like a
1575 common symbol, and let _bfd_generic_link_add_one_symbol do the
1576 right thing. */
1577
1578 if (newdyncommon
1579 && h->root.type == bfd_link_hash_common)
1580 {
1581 *override = TRUE;
1582 newdef = FALSE;
1583 newdyncommon = FALSE;
1584 *pvalue = sym->st_size;
1585 *psec = sec = bed->common_section (oldsec);
1586 *size_change_ok = TRUE;
1587 }
1588
1589 /* Skip weak definitions of symbols that are already defined. */
1590 if (newdef && olddef && newweak)
1591 {
1592 /* Don't skip new non-IR weak syms. */
1593 if (!(oldbfd != NULL
1594 && (oldbfd->flags & BFD_PLUGIN) != 0
1595 && (abfd->flags & BFD_PLUGIN) == 0))
1596 {
1597 newdef = FALSE;
1598 *skip = TRUE;
1599 }
1600
1601 /* Merge st_other. If the symbol already has a dynamic index,
1602 but visibility says it should not be visible, turn it into a
1603 local symbol. */
1604 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1605 if (h->dynindx != -1)
1606 switch (ELF_ST_VISIBILITY (h->other))
1607 {
1608 case STV_INTERNAL:
1609 case STV_HIDDEN:
1610 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1611 break;
1612 }
1613 }
1614
1615 /* If the old symbol is from a dynamic object, and the new symbol is
1616 a definition which is not from a dynamic object, then the new
1617 symbol overrides the old symbol. Symbols from regular files
1618 always take precedence over symbols from dynamic objects, even if
1619 they are defined after the dynamic object in the link.
1620
1621 As above, we again permit a common symbol in a regular object to
1622 override a definition in a shared object if the shared object
1623 symbol is a function or is weak. */
1624
1625 flip = NULL;
1626 if (!newdyn
1627 && (newdef
1628 || (bfd_is_com_section (sec)
1629 && (oldweak || oldfunc)))
1630 && olddyn
1631 && olddef
1632 && h->def_dynamic)
1633 {
1634 /* Change the hash table entry to undefined, and let
1635 _bfd_generic_link_add_one_symbol do the right thing with the
1636 new definition. */
1637
1638 h->root.type = bfd_link_hash_undefined;
1639 h->root.u.undef.abfd = h->root.u.def.section->owner;
1640 *size_change_ok = TRUE;
1641
1642 olddef = FALSE;
1643 olddyncommon = FALSE;
1644
1645 /* We again permit a type change when a common symbol may be
1646 overriding a function. */
1647
1648 if (bfd_is_com_section (sec))
1649 {
1650 if (oldfunc)
1651 {
1652 /* If a common symbol overrides a function, make sure
1653 that it isn't defined dynamically nor has type
1654 function. */
1655 h->def_dynamic = 0;
1656 h->type = STT_NOTYPE;
1657 }
1658 *type_change_ok = TRUE;
1659 }
1660
1661 if (hi->root.type == bfd_link_hash_indirect)
1662 flip = hi;
1663 else
1664 /* This union may have been set to be non-NULL when this symbol
1665 was seen in a dynamic object. We must force the union to be
1666 NULL, so that it is correct for a regular symbol. */
1667 h->verinfo.vertree = NULL;
1668 }
1669
1670 /* Handle the special case of a new common symbol merging with an
1671 old symbol that looks like it might be a common symbol defined in
1672 a shared object. Note that we have already handled the case in
1673 which a new common symbol should simply override the definition
1674 in the shared library. */
1675
1676 if (! newdyn
1677 && bfd_is_com_section (sec)
1678 && olddyncommon)
1679 {
1680 /* It would be best if we could set the hash table entry to a
1681 common symbol, but we don't know what to use for the section
1682 or the alignment. */
1683 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1684 bfd_link_hash_common, sym->st_size);
1685
1686 /* If the presumed common symbol in the dynamic object is
1687 larger, pretend that the new symbol has its size. */
1688
1689 if (h->size > *pvalue)
1690 *pvalue = h->size;
1691
1692 /* We need to remember the alignment required by the symbol
1693 in the dynamic object. */
1694 BFD_ASSERT (pold_alignment);
1695 *pold_alignment = h->root.u.def.section->alignment_power;
1696
1697 olddef = FALSE;
1698 olddyncommon = FALSE;
1699
1700 h->root.type = bfd_link_hash_undefined;
1701 h->root.u.undef.abfd = h->root.u.def.section->owner;
1702
1703 *size_change_ok = TRUE;
1704 *type_change_ok = TRUE;
1705
1706 if (hi->root.type == bfd_link_hash_indirect)
1707 flip = hi;
1708 else
1709 h->verinfo.vertree = NULL;
1710 }
1711
1712 if (flip != NULL)
1713 {
1714 /* Handle the case where we had a versioned symbol in a dynamic
1715 library and now find a definition in a normal object. In this
1716 case, we make the versioned symbol point to the normal one. */
1717 flip->root.type = h->root.type;
1718 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1719 h->root.type = bfd_link_hash_indirect;
1720 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1721 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1722 if (h->def_dynamic)
1723 {
1724 h->def_dynamic = 0;
1725 flip->ref_dynamic = 1;
1726 }
1727 }
1728
1729 return TRUE;
1730 }
1731
1732 /* This function is called to create an indirect symbol from the
1733 default for the symbol with the default version if needed. The
1734 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1735 set DYNSYM if the new indirect symbol is dynamic. */
1736
1737 static bfd_boolean
1738 _bfd_elf_add_default_symbol (bfd *abfd,
1739 struct bfd_link_info *info,
1740 struct elf_link_hash_entry *h,
1741 const char *name,
1742 Elf_Internal_Sym *sym,
1743 asection *sec,
1744 bfd_vma value,
1745 bfd **poldbfd,
1746 bfd_boolean *dynsym)
1747 {
1748 bfd_boolean type_change_ok;
1749 bfd_boolean size_change_ok;
1750 bfd_boolean skip;
1751 char *shortname;
1752 struct elf_link_hash_entry *hi;
1753 struct bfd_link_hash_entry *bh;
1754 const struct elf_backend_data *bed;
1755 bfd_boolean collect;
1756 bfd_boolean dynamic;
1757 bfd_boolean override;
1758 char *p;
1759 size_t len, shortlen;
1760 asection *tmp_sec;
1761 bfd_boolean matched;
1762
1763 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1764 return TRUE;
1765
1766 /* If this symbol has a version, and it is the default version, we
1767 create an indirect symbol from the default name to the fully
1768 decorated name. This will cause external references which do not
1769 specify a version to be bound to this version of the symbol. */
1770 p = strchr (name, ELF_VER_CHR);
1771 if (h->versioned == unknown)
1772 {
1773 if (p == NULL)
1774 {
1775 h->versioned = unversioned;
1776 return TRUE;
1777 }
1778 else
1779 {
1780 if (p[1] != ELF_VER_CHR)
1781 {
1782 h->versioned = versioned_hidden;
1783 return TRUE;
1784 }
1785 else
1786 h->versioned = versioned;
1787 }
1788 }
1789 else
1790 {
1791 /* PR ld/19073: We may see an unversioned definition after the
1792 default version. */
1793 if (p == NULL)
1794 return TRUE;
1795 }
1796
1797 bed = get_elf_backend_data (abfd);
1798 collect = bed->collect;
1799 dynamic = (abfd->flags & DYNAMIC) != 0;
1800
1801 shortlen = p - name;
1802 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1803 if (shortname == NULL)
1804 return FALSE;
1805 memcpy (shortname, name, shortlen);
1806 shortname[shortlen] = '\0';
1807
1808 /* We are going to create a new symbol. Merge it with any existing
1809 symbol with this name. For the purposes of the merge, act as
1810 though we were defining the symbol we just defined, although we
1811 actually going to define an indirect symbol. */
1812 type_change_ok = FALSE;
1813 size_change_ok = FALSE;
1814 matched = TRUE;
1815 tmp_sec = sec;
1816 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1817 &hi, poldbfd, NULL, NULL, &skip, &override,
1818 &type_change_ok, &size_change_ok, &matched))
1819 return FALSE;
1820
1821 if (skip)
1822 goto nondefault;
1823
1824 if (hi->def_regular)
1825 {
1826 /* If the undecorated symbol will have a version added by a
1827 script different to H, then don't indirect to/from the
1828 undecorated symbol. This isn't ideal because we may not yet
1829 have seen symbol versions, if given by a script on the
1830 command line rather than via --version-script. */
1831 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1832 {
1833 bfd_boolean hide;
1834
1835 hi->verinfo.vertree
1836 = bfd_find_version_for_sym (info->version_info,
1837 hi->root.root.string, &hide);
1838 if (hi->verinfo.vertree != NULL && hide)
1839 {
1840 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1841 goto nondefault;
1842 }
1843 }
1844 if (hi->verinfo.vertree != NULL
1845 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1846 goto nondefault;
1847 }
1848
1849 if (! override)
1850 {
1851 /* Add the default symbol if not performing a relocatable link. */
1852 if (! bfd_link_relocatable (info))
1853 {
1854 bh = &hi->root;
1855 if (! (_bfd_generic_link_add_one_symbol
1856 (info, abfd, shortname, BSF_INDIRECT,
1857 bfd_ind_section_ptr,
1858 0, name, FALSE, collect, &bh)))
1859 return FALSE;
1860 hi = (struct elf_link_hash_entry *) bh;
1861 }
1862 }
1863 else
1864 {
1865 /* In this case the symbol named SHORTNAME is overriding the
1866 indirect symbol we want to add. We were planning on making
1867 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1868 is the name without a version. NAME is the fully versioned
1869 name, and it is the default version.
1870
1871 Overriding means that we already saw a definition for the
1872 symbol SHORTNAME in a regular object, and it is overriding
1873 the symbol defined in the dynamic object.
1874
1875 When this happens, we actually want to change NAME, the
1876 symbol we just added, to refer to SHORTNAME. This will cause
1877 references to NAME in the shared object to become references
1878 to SHORTNAME in the regular object. This is what we expect
1879 when we override a function in a shared object: that the
1880 references in the shared object will be mapped to the
1881 definition in the regular object. */
1882
1883 while (hi->root.type == bfd_link_hash_indirect
1884 || hi->root.type == bfd_link_hash_warning)
1885 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1886
1887 h->root.type = bfd_link_hash_indirect;
1888 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1889 if (h->def_dynamic)
1890 {
1891 h->def_dynamic = 0;
1892 hi->ref_dynamic = 1;
1893 if (hi->ref_regular
1894 || hi->def_regular)
1895 {
1896 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1897 return FALSE;
1898 }
1899 }
1900
1901 /* Now set HI to H, so that the following code will set the
1902 other fields correctly. */
1903 hi = h;
1904 }
1905
1906 /* Check if HI is a warning symbol. */
1907 if (hi->root.type == bfd_link_hash_warning)
1908 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1909
1910 /* If there is a duplicate definition somewhere, then HI may not
1911 point to an indirect symbol. We will have reported an error to
1912 the user in that case. */
1913
1914 if (hi->root.type == bfd_link_hash_indirect)
1915 {
1916 struct elf_link_hash_entry *ht;
1917
1918 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1919 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1920
1921 /* A reference to the SHORTNAME symbol from a dynamic library
1922 will be satisfied by the versioned symbol at runtime. In
1923 effect, we have a reference to the versioned symbol. */
1924 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1925 hi->dynamic_def |= ht->dynamic_def;
1926
1927 /* See if the new flags lead us to realize that the symbol must
1928 be dynamic. */
1929 if (! *dynsym)
1930 {
1931 if (! dynamic)
1932 {
1933 if (! bfd_link_executable (info)
1934 || hi->def_dynamic
1935 || hi->ref_dynamic)
1936 *dynsym = TRUE;
1937 }
1938 else
1939 {
1940 if (hi->ref_regular)
1941 *dynsym = TRUE;
1942 }
1943 }
1944 }
1945
1946 /* We also need to define an indirection from the nondefault version
1947 of the symbol. */
1948
1949 nondefault:
1950 len = strlen (name);
1951 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1952 if (shortname == NULL)
1953 return FALSE;
1954 memcpy (shortname, name, shortlen);
1955 memcpy (shortname + shortlen, p + 1, len - shortlen);
1956
1957 /* Once again, merge with any existing symbol. */
1958 type_change_ok = FALSE;
1959 size_change_ok = FALSE;
1960 tmp_sec = sec;
1961 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1962 &hi, poldbfd, NULL, NULL, &skip, &override,
1963 &type_change_ok, &size_change_ok, &matched))
1964 return FALSE;
1965
1966 if (skip)
1967 return TRUE;
1968
1969 if (override)
1970 {
1971 /* Here SHORTNAME is a versioned name, so we don't expect to see
1972 the type of override we do in the case above unless it is
1973 overridden by a versioned definition. */
1974 if (hi->root.type != bfd_link_hash_defined
1975 && hi->root.type != bfd_link_hash_defweak)
1976 _bfd_error_handler
1977 /* xgettext:c-format */
1978 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1979 abfd, shortname);
1980 }
1981 else
1982 {
1983 bh = &hi->root;
1984 if (! (_bfd_generic_link_add_one_symbol
1985 (info, abfd, shortname, BSF_INDIRECT,
1986 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1987 return FALSE;
1988 hi = (struct elf_link_hash_entry *) bh;
1989
1990 /* If there is a duplicate definition somewhere, then HI may not
1991 point to an indirect symbol. We will have reported an error
1992 to the user in that case. */
1993
1994 if (hi->root.type == bfd_link_hash_indirect)
1995 {
1996 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1997 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1998 hi->dynamic_def |= h->dynamic_def;
1999
2000 /* See if the new flags lead us to realize that the symbol
2001 must be dynamic. */
2002 if (! *dynsym)
2003 {
2004 if (! dynamic)
2005 {
2006 if (! bfd_link_executable (info)
2007 || hi->ref_dynamic)
2008 *dynsym = TRUE;
2009 }
2010 else
2011 {
2012 if (hi->ref_regular)
2013 *dynsym = TRUE;
2014 }
2015 }
2016 }
2017 }
2018
2019 return TRUE;
2020 }
2021 \f
2022 /* This routine is used to export all defined symbols into the dynamic
2023 symbol table. It is called via elf_link_hash_traverse. */
2024
2025 static bfd_boolean
2026 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2027 {
2028 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2029
2030 /* Ignore indirect symbols. These are added by the versioning code. */
2031 if (h->root.type == bfd_link_hash_indirect)
2032 return TRUE;
2033
2034 /* Ignore this if we won't export it. */
2035 if (!eif->info->export_dynamic && !h->dynamic)
2036 return TRUE;
2037
2038 if (h->dynindx == -1
2039 && (h->def_regular || h->ref_regular)
2040 && ! bfd_hide_sym_by_version (eif->info->version_info,
2041 h->root.root.string))
2042 {
2043 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2044 {
2045 eif->failed = TRUE;
2046 return FALSE;
2047 }
2048 }
2049
2050 return TRUE;
2051 }
2052 \f
2053 /* Look through the symbols which are defined in other shared
2054 libraries and referenced here. Update the list of version
2055 dependencies. This will be put into the .gnu.version_r section.
2056 This function is called via elf_link_hash_traverse. */
2057
2058 static bfd_boolean
2059 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2060 void *data)
2061 {
2062 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2063 Elf_Internal_Verneed *t;
2064 Elf_Internal_Vernaux *a;
2065 bfd_size_type amt;
2066
2067 /* We only care about symbols defined in shared objects with version
2068 information. */
2069 if (!h->def_dynamic
2070 || h->def_regular
2071 || h->dynindx == -1
2072 || h->verinfo.verdef == NULL
2073 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2074 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2075 return TRUE;
2076
2077 /* See if we already know about this version. */
2078 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2079 t != NULL;
2080 t = t->vn_nextref)
2081 {
2082 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2083 continue;
2084
2085 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2086 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2087 return TRUE;
2088
2089 break;
2090 }
2091
2092 /* This is a new version. Add it to tree we are building. */
2093
2094 if (t == NULL)
2095 {
2096 amt = sizeof *t;
2097 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2098 if (t == NULL)
2099 {
2100 rinfo->failed = TRUE;
2101 return FALSE;
2102 }
2103
2104 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2105 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2106 elf_tdata (rinfo->info->output_bfd)->verref = t;
2107 }
2108
2109 amt = sizeof *a;
2110 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2111 if (a == NULL)
2112 {
2113 rinfo->failed = TRUE;
2114 return FALSE;
2115 }
2116
2117 /* Note that we are copying a string pointer here, and testing it
2118 above. If bfd_elf_string_from_elf_section is ever changed to
2119 discard the string data when low in memory, this will have to be
2120 fixed. */
2121 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2122
2123 a->vna_flags = h->verinfo.verdef->vd_flags;
2124 a->vna_nextptr = t->vn_auxptr;
2125
2126 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2127 ++rinfo->vers;
2128
2129 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2130
2131 t->vn_auxptr = a;
2132
2133 return TRUE;
2134 }
2135
2136 /* Figure out appropriate versions for all the symbols. We may not
2137 have the version number script until we have read all of the input
2138 files, so until that point we don't know which symbols should be
2139 local. This function is called via elf_link_hash_traverse. */
2140
2141 static bfd_boolean
2142 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2143 {
2144 struct elf_info_failed *sinfo;
2145 struct bfd_link_info *info;
2146 const struct elf_backend_data *bed;
2147 struct elf_info_failed eif;
2148 char *p;
2149
2150 sinfo = (struct elf_info_failed *) data;
2151 info = sinfo->info;
2152
2153 /* Fix the symbol flags. */
2154 eif.failed = FALSE;
2155 eif.info = info;
2156 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2157 {
2158 if (eif.failed)
2159 sinfo->failed = TRUE;
2160 return FALSE;
2161 }
2162
2163 /* We only need version numbers for symbols defined in regular
2164 objects. */
2165 if (!h->def_regular)
2166 return TRUE;
2167
2168 bed = get_elf_backend_data (info->output_bfd);
2169 p = strchr (h->root.root.string, ELF_VER_CHR);
2170 if (p != NULL && h->verinfo.vertree == NULL)
2171 {
2172 struct bfd_elf_version_tree *t;
2173
2174 ++p;
2175 if (*p == ELF_VER_CHR)
2176 ++p;
2177
2178 /* If there is no version string, we can just return out. */
2179 if (*p == '\0')
2180 return TRUE;
2181
2182 /* Look for the version. If we find it, it is no longer weak. */
2183 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2184 {
2185 if (strcmp (t->name, p) == 0)
2186 {
2187 size_t len;
2188 char *alc;
2189 struct bfd_elf_version_expr *d;
2190
2191 len = p - h->root.root.string;
2192 alc = (char *) bfd_malloc (len);
2193 if (alc == NULL)
2194 {
2195 sinfo->failed = TRUE;
2196 return FALSE;
2197 }
2198 memcpy (alc, h->root.root.string, len - 1);
2199 alc[len - 1] = '\0';
2200 if (alc[len - 2] == ELF_VER_CHR)
2201 alc[len - 2] = '\0';
2202
2203 h->verinfo.vertree = t;
2204 t->used = TRUE;
2205 d = NULL;
2206
2207 if (t->globals.list != NULL)
2208 d = (*t->match) (&t->globals, NULL, alc);
2209
2210 /* See if there is anything to force this symbol to
2211 local scope. */
2212 if (d == NULL && t->locals.list != NULL)
2213 {
2214 d = (*t->match) (&t->locals, NULL, alc);
2215 if (d != NULL
2216 && h->dynindx != -1
2217 && ! info->export_dynamic)
2218 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2219 }
2220
2221 free (alc);
2222 break;
2223 }
2224 }
2225
2226 /* If we are building an application, we need to create a
2227 version node for this version. */
2228 if (t == NULL && bfd_link_executable (info))
2229 {
2230 struct bfd_elf_version_tree **pp;
2231 int version_index;
2232
2233 /* If we aren't going to export this symbol, we don't need
2234 to worry about it. */
2235 if (h->dynindx == -1)
2236 return TRUE;
2237
2238 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2239 sizeof *t);
2240 if (t == NULL)
2241 {
2242 sinfo->failed = TRUE;
2243 return FALSE;
2244 }
2245
2246 t->name = p;
2247 t->name_indx = (unsigned int) -1;
2248 t->used = TRUE;
2249
2250 version_index = 1;
2251 /* Don't count anonymous version tag. */
2252 if (sinfo->info->version_info != NULL
2253 && sinfo->info->version_info->vernum == 0)
2254 version_index = 0;
2255 for (pp = &sinfo->info->version_info;
2256 *pp != NULL;
2257 pp = &(*pp)->next)
2258 ++version_index;
2259 t->vernum = version_index;
2260
2261 *pp = t;
2262
2263 h->verinfo.vertree = t;
2264 }
2265 else if (t == NULL)
2266 {
2267 /* We could not find the version for a symbol when
2268 generating a shared archive. Return an error. */
2269 _bfd_error_handler
2270 /* xgettext:c-format */
2271 (_("%B: version node not found for symbol %s"),
2272 info->output_bfd, h->root.root.string);
2273 bfd_set_error (bfd_error_bad_value);
2274 sinfo->failed = TRUE;
2275 return FALSE;
2276 }
2277 }
2278
2279 /* If we don't have a version for this symbol, see if we can find
2280 something. */
2281 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2282 {
2283 bfd_boolean hide;
2284
2285 h->verinfo.vertree
2286 = bfd_find_version_for_sym (sinfo->info->version_info,
2287 h->root.root.string, &hide);
2288 if (h->verinfo.vertree != NULL && hide)
2289 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2290 }
2291
2292 return TRUE;
2293 }
2294 \f
2295 /* Read and swap the relocs from the section indicated by SHDR. This
2296 may be either a REL or a RELA section. The relocations are
2297 translated into RELA relocations and stored in INTERNAL_RELOCS,
2298 which should have already been allocated to contain enough space.
2299 The EXTERNAL_RELOCS are a buffer where the external form of the
2300 relocations should be stored.
2301
2302 Returns FALSE if something goes wrong. */
2303
2304 static bfd_boolean
2305 elf_link_read_relocs_from_section (bfd *abfd,
2306 asection *sec,
2307 Elf_Internal_Shdr *shdr,
2308 void *external_relocs,
2309 Elf_Internal_Rela *internal_relocs)
2310 {
2311 const struct elf_backend_data *bed;
2312 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2313 const bfd_byte *erela;
2314 const bfd_byte *erelaend;
2315 Elf_Internal_Rela *irela;
2316 Elf_Internal_Shdr *symtab_hdr;
2317 size_t nsyms;
2318
2319 /* Position ourselves at the start of the section. */
2320 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2321 return FALSE;
2322
2323 /* Read the relocations. */
2324 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2325 return FALSE;
2326
2327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2328 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2329
2330 bed = get_elf_backend_data (abfd);
2331
2332 /* Convert the external relocations to the internal format. */
2333 if (shdr->sh_entsize == bed->s->sizeof_rel)
2334 swap_in = bed->s->swap_reloc_in;
2335 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2336 swap_in = bed->s->swap_reloca_in;
2337 else
2338 {
2339 bfd_set_error (bfd_error_wrong_format);
2340 return FALSE;
2341 }
2342
2343 erela = (const bfd_byte *) external_relocs;
2344 erelaend = erela + shdr->sh_size;
2345 irela = internal_relocs;
2346 while (erela < erelaend)
2347 {
2348 bfd_vma r_symndx;
2349
2350 (*swap_in) (abfd, erela, irela);
2351 r_symndx = ELF32_R_SYM (irela->r_info);
2352 if (bed->s->arch_size == 64)
2353 r_symndx >>= 24;
2354 if (nsyms > 0)
2355 {
2356 if ((size_t) r_symndx >= nsyms)
2357 {
2358 _bfd_error_handler
2359 /* xgettext:c-format */
2360 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2361 " for offset 0x%lx in section `%A'"),
2362 abfd, sec,
2363 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2364 bfd_set_error (bfd_error_bad_value);
2365 return FALSE;
2366 }
2367 }
2368 else if (r_symndx != STN_UNDEF)
2369 {
2370 _bfd_error_handler
2371 /* xgettext:c-format */
2372 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2373 " when the object file has no symbol table"),
2374 abfd, sec,
2375 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2376 bfd_set_error (bfd_error_bad_value);
2377 return FALSE;
2378 }
2379 irela += bed->s->int_rels_per_ext_rel;
2380 erela += shdr->sh_entsize;
2381 }
2382
2383 return TRUE;
2384 }
2385
2386 /* Read and swap the relocs for a section O. They may have been
2387 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2388 not NULL, they are used as buffers to read into. They are known to
2389 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2390 the return value is allocated using either malloc or bfd_alloc,
2391 according to the KEEP_MEMORY argument. If O has two relocation
2392 sections (both REL and RELA relocations), then the REL_HDR
2393 relocations will appear first in INTERNAL_RELOCS, followed by the
2394 RELA_HDR relocations. */
2395
2396 Elf_Internal_Rela *
2397 _bfd_elf_link_read_relocs (bfd *abfd,
2398 asection *o,
2399 void *external_relocs,
2400 Elf_Internal_Rela *internal_relocs,
2401 bfd_boolean keep_memory)
2402 {
2403 void *alloc1 = NULL;
2404 Elf_Internal_Rela *alloc2 = NULL;
2405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2406 struct bfd_elf_section_data *esdo = elf_section_data (o);
2407 Elf_Internal_Rela *internal_rela_relocs;
2408
2409 if (esdo->relocs != NULL)
2410 return esdo->relocs;
2411
2412 if (o->reloc_count == 0)
2413 return NULL;
2414
2415 if (internal_relocs == NULL)
2416 {
2417 bfd_size_type size;
2418
2419 size = o->reloc_count;
2420 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2421 if (keep_memory)
2422 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2423 else
2424 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2425 if (internal_relocs == NULL)
2426 goto error_return;
2427 }
2428
2429 if (external_relocs == NULL)
2430 {
2431 bfd_size_type size = 0;
2432
2433 if (esdo->rel.hdr)
2434 size += esdo->rel.hdr->sh_size;
2435 if (esdo->rela.hdr)
2436 size += esdo->rela.hdr->sh_size;
2437
2438 alloc1 = bfd_malloc (size);
2439 if (alloc1 == NULL)
2440 goto error_return;
2441 external_relocs = alloc1;
2442 }
2443
2444 internal_rela_relocs = internal_relocs;
2445 if (esdo->rel.hdr)
2446 {
2447 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2448 external_relocs,
2449 internal_relocs))
2450 goto error_return;
2451 external_relocs = (((bfd_byte *) external_relocs)
2452 + esdo->rel.hdr->sh_size);
2453 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2454 * bed->s->int_rels_per_ext_rel);
2455 }
2456
2457 if (esdo->rela.hdr
2458 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2459 external_relocs,
2460 internal_rela_relocs)))
2461 goto error_return;
2462
2463 /* Cache the results for next time, if we can. */
2464 if (keep_memory)
2465 esdo->relocs = internal_relocs;
2466
2467 if (alloc1 != NULL)
2468 free (alloc1);
2469
2470 /* Don't free alloc2, since if it was allocated we are passing it
2471 back (under the name of internal_relocs). */
2472
2473 return internal_relocs;
2474
2475 error_return:
2476 if (alloc1 != NULL)
2477 free (alloc1);
2478 if (alloc2 != NULL)
2479 {
2480 if (keep_memory)
2481 bfd_release (abfd, alloc2);
2482 else
2483 free (alloc2);
2484 }
2485 return NULL;
2486 }
2487
2488 /* Compute the size of, and allocate space for, REL_HDR which is the
2489 section header for a section containing relocations for O. */
2490
2491 static bfd_boolean
2492 _bfd_elf_link_size_reloc_section (bfd *abfd,
2493 struct bfd_elf_section_reloc_data *reldata)
2494 {
2495 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2496
2497 /* That allows us to calculate the size of the section. */
2498 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2499
2500 /* The contents field must last into write_object_contents, so we
2501 allocate it with bfd_alloc rather than malloc. Also since we
2502 cannot be sure that the contents will actually be filled in,
2503 we zero the allocated space. */
2504 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2505 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2506 return FALSE;
2507
2508 if (reldata->hashes == NULL && reldata->count)
2509 {
2510 struct elf_link_hash_entry **p;
2511
2512 p = ((struct elf_link_hash_entry **)
2513 bfd_zmalloc (reldata->count * sizeof (*p)));
2514 if (p == NULL)
2515 return FALSE;
2516
2517 reldata->hashes = p;
2518 }
2519
2520 return TRUE;
2521 }
2522
2523 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2524 originated from the section given by INPUT_REL_HDR) to the
2525 OUTPUT_BFD. */
2526
2527 bfd_boolean
2528 _bfd_elf_link_output_relocs (bfd *output_bfd,
2529 asection *input_section,
2530 Elf_Internal_Shdr *input_rel_hdr,
2531 Elf_Internal_Rela *internal_relocs,
2532 struct elf_link_hash_entry **rel_hash
2533 ATTRIBUTE_UNUSED)
2534 {
2535 Elf_Internal_Rela *irela;
2536 Elf_Internal_Rela *irelaend;
2537 bfd_byte *erel;
2538 struct bfd_elf_section_reloc_data *output_reldata;
2539 asection *output_section;
2540 const struct elf_backend_data *bed;
2541 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2542 struct bfd_elf_section_data *esdo;
2543
2544 output_section = input_section->output_section;
2545
2546 bed = get_elf_backend_data (output_bfd);
2547 esdo = elf_section_data (output_section);
2548 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2549 {
2550 output_reldata = &esdo->rel;
2551 swap_out = bed->s->swap_reloc_out;
2552 }
2553 else if (esdo->rela.hdr
2554 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2555 {
2556 output_reldata = &esdo->rela;
2557 swap_out = bed->s->swap_reloca_out;
2558 }
2559 else
2560 {
2561 _bfd_error_handler
2562 /* xgettext:c-format */
2563 (_("%B: relocation size mismatch in %B section %A"),
2564 output_bfd, input_section->owner, input_section);
2565 bfd_set_error (bfd_error_wrong_format);
2566 return FALSE;
2567 }
2568
2569 erel = output_reldata->hdr->contents;
2570 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2571 irela = internal_relocs;
2572 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2573 * bed->s->int_rels_per_ext_rel);
2574 while (irela < irelaend)
2575 {
2576 (*swap_out) (output_bfd, irela, erel);
2577 irela += bed->s->int_rels_per_ext_rel;
2578 erel += input_rel_hdr->sh_entsize;
2579 }
2580
2581 /* Bump the counter, so that we know where to add the next set of
2582 relocations. */
2583 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2584
2585 return TRUE;
2586 }
2587 \f
2588 /* Make weak undefined symbols in PIE dynamic. */
2589
2590 bfd_boolean
2591 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2592 struct elf_link_hash_entry *h)
2593 {
2594 if (bfd_link_pie (info)
2595 && h->dynindx == -1
2596 && h->root.type == bfd_link_hash_undefweak)
2597 return bfd_elf_link_record_dynamic_symbol (info, h);
2598
2599 return TRUE;
2600 }
2601
2602 /* Fix up the flags for a symbol. This handles various cases which
2603 can only be fixed after all the input files are seen. This is
2604 currently called by both adjust_dynamic_symbol and
2605 assign_sym_version, which is unnecessary but perhaps more robust in
2606 the face of future changes. */
2607
2608 static bfd_boolean
2609 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2610 struct elf_info_failed *eif)
2611 {
2612 const struct elf_backend_data *bed;
2613
2614 /* If this symbol was mentioned in a non-ELF file, try to set
2615 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2616 permit a non-ELF file to correctly refer to a symbol defined in
2617 an ELF dynamic object. */
2618 if (h->non_elf)
2619 {
2620 while (h->root.type == bfd_link_hash_indirect)
2621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2622
2623 if (h->root.type != bfd_link_hash_defined
2624 && h->root.type != bfd_link_hash_defweak)
2625 {
2626 h->ref_regular = 1;
2627 h->ref_regular_nonweak = 1;
2628 }
2629 else
2630 {
2631 if (h->root.u.def.section->owner != NULL
2632 && (bfd_get_flavour (h->root.u.def.section->owner)
2633 == bfd_target_elf_flavour))
2634 {
2635 h->ref_regular = 1;
2636 h->ref_regular_nonweak = 1;
2637 }
2638 else
2639 h->def_regular = 1;
2640 }
2641
2642 if (h->dynindx == -1
2643 && (h->def_dynamic
2644 || h->ref_dynamic))
2645 {
2646 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2647 {
2648 eif->failed = TRUE;
2649 return FALSE;
2650 }
2651 }
2652 }
2653 else
2654 {
2655 /* Unfortunately, NON_ELF is only correct if the symbol
2656 was first seen in a non-ELF file. Fortunately, if the symbol
2657 was first seen in an ELF file, we're probably OK unless the
2658 symbol was defined in a non-ELF file. Catch that case here.
2659 FIXME: We're still in trouble if the symbol was first seen in
2660 a dynamic object, and then later in a non-ELF regular object. */
2661 if ((h->root.type == bfd_link_hash_defined
2662 || h->root.type == bfd_link_hash_defweak)
2663 && !h->def_regular
2664 && (h->root.u.def.section->owner != NULL
2665 ? (bfd_get_flavour (h->root.u.def.section->owner)
2666 != bfd_target_elf_flavour)
2667 : (bfd_is_abs_section (h->root.u.def.section)
2668 && !h->def_dynamic)))
2669 h->def_regular = 1;
2670 }
2671
2672 /* Backend specific symbol fixup. */
2673 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2674 if (bed->elf_backend_fixup_symbol
2675 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2676 return FALSE;
2677
2678 /* If this is a final link, and the symbol was defined as a common
2679 symbol in a regular object file, and there was no definition in
2680 any dynamic object, then the linker will have allocated space for
2681 the symbol in a common section but the DEF_REGULAR
2682 flag will not have been set. */
2683 if (h->root.type == bfd_link_hash_defined
2684 && !h->def_regular
2685 && h->ref_regular
2686 && !h->def_dynamic
2687 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2688 h->def_regular = 1;
2689
2690 /* If a weak undefined symbol has non-default visibility, we also
2691 hide it from the dynamic linker. */
2692 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2693 && h->root.type == bfd_link_hash_undefweak)
2694 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2695
2696 /* A hidden versioned symbol in executable should be forced local if
2697 it is is locally defined, not referenced by shared library and not
2698 exported. */
2699 else if (bfd_link_executable (eif->info)
2700 && h->versioned == versioned_hidden
2701 && !eif->info->export_dynamic
2702 && !h->dynamic
2703 && !h->ref_dynamic
2704 && h->def_regular)
2705 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2706
2707 /* If -Bsymbolic was used (which means to bind references to global
2708 symbols to the definition within the shared object), and this
2709 symbol was defined in a regular object, then it actually doesn't
2710 need a PLT entry. Likewise, if the symbol has non-default
2711 visibility. If the symbol has hidden or internal visibility, we
2712 will force it local. */
2713 else if (h->needs_plt
2714 && bfd_link_pic (eif->info)
2715 && is_elf_hash_table (eif->info->hash)
2716 && (SYMBOLIC_BIND (eif->info, h)
2717 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2718 && h->def_regular)
2719 {
2720 bfd_boolean force_local;
2721
2722 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2723 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2724 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2725 }
2726
2727 /* If this is a weak defined symbol in a dynamic object, and we know
2728 the real definition in the dynamic object, copy interesting flags
2729 over to the real definition. */
2730 if (h->u.weakdef != NULL)
2731 {
2732 /* If the real definition is defined by a regular object file,
2733 don't do anything special. See the longer description in
2734 _bfd_elf_adjust_dynamic_symbol, below. */
2735 if (h->u.weakdef->def_regular)
2736 h->u.weakdef = NULL;
2737 else
2738 {
2739 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2740
2741 while (h->root.type == bfd_link_hash_indirect)
2742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2743
2744 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2745 || h->root.type == bfd_link_hash_defweak);
2746 BFD_ASSERT (weakdef->def_dynamic);
2747 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2748 || weakdef->root.type == bfd_link_hash_defweak);
2749 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2750 }
2751 }
2752
2753 return TRUE;
2754 }
2755
2756 /* Make the backend pick a good value for a dynamic symbol. This is
2757 called via elf_link_hash_traverse, and also calls itself
2758 recursively. */
2759
2760 static bfd_boolean
2761 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2762 {
2763 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2764 bfd *dynobj;
2765 const struct elf_backend_data *bed;
2766
2767 if (! is_elf_hash_table (eif->info->hash))
2768 return FALSE;
2769
2770 /* Ignore indirect symbols. These are added by the versioning code. */
2771 if (h->root.type == bfd_link_hash_indirect)
2772 return TRUE;
2773
2774 /* Fix the symbol flags. */
2775 if (! _bfd_elf_fix_symbol_flags (h, eif))
2776 return FALSE;
2777
2778 /* If this symbol does not require a PLT entry, and it is not
2779 defined by a dynamic object, or is not referenced by a regular
2780 object, ignore it. We do have to handle a weak defined symbol,
2781 even if no regular object refers to it, if we decided to add it
2782 to the dynamic symbol table. FIXME: Do we normally need to worry
2783 about symbols which are defined by one dynamic object and
2784 referenced by another one? */
2785 if (!h->needs_plt
2786 && h->type != STT_GNU_IFUNC
2787 && (h->def_regular
2788 || !h->def_dynamic
2789 || (!h->ref_regular
2790 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2791 {
2792 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2793 return TRUE;
2794 }
2795
2796 /* If we've already adjusted this symbol, don't do it again. This
2797 can happen via a recursive call. */
2798 if (h->dynamic_adjusted)
2799 return TRUE;
2800
2801 /* Don't look at this symbol again. Note that we must set this
2802 after checking the above conditions, because we may look at a
2803 symbol once, decide not to do anything, and then get called
2804 recursively later after REF_REGULAR is set below. */
2805 h->dynamic_adjusted = 1;
2806
2807 /* If this is a weak definition, and we know a real definition, and
2808 the real symbol is not itself defined by a regular object file,
2809 then get a good value for the real definition. We handle the
2810 real symbol first, for the convenience of the backend routine.
2811
2812 Note that there is a confusing case here. If the real definition
2813 is defined by a regular object file, we don't get the real symbol
2814 from the dynamic object, but we do get the weak symbol. If the
2815 processor backend uses a COPY reloc, then if some routine in the
2816 dynamic object changes the real symbol, we will not see that
2817 change in the corresponding weak symbol. This is the way other
2818 ELF linkers work as well, and seems to be a result of the shared
2819 library model.
2820
2821 I will clarify this issue. Most SVR4 shared libraries define the
2822 variable _timezone and define timezone as a weak synonym. The
2823 tzset call changes _timezone. If you write
2824 extern int timezone;
2825 int _timezone = 5;
2826 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2827 you might expect that, since timezone is a synonym for _timezone,
2828 the same number will print both times. However, if the processor
2829 backend uses a COPY reloc, then actually timezone will be copied
2830 into your process image, and, since you define _timezone
2831 yourself, _timezone will not. Thus timezone and _timezone will
2832 wind up at different memory locations. The tzset call will set
2833 _timezone, leaving timezone unchanged. */
2834
2835 if (h->u.weakdef != NULL)
2836 {
2837 /* If we get to this point, there is an implicit reference to
2838 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2839 h->u.weakdef->ref_regular = 1;
2840
2841 /* Ensure that the backend adjust_dynamic_symbol function sees
2842 H->U.WEAKDEF before H by recursively calling ourselves. */
2843 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2844 return FALSE;
2845 }
2846
2847 /* If a symbol has no type and no size and does not require a PLT
2848 entry, then we are probably about to do the wrong thing here: we
2849 are probably going to create a COPY reloc for an empty object.
2850 This case can arise when a shared object is built with assembly
2851 code, and the assembly code fails to set the symbol type. */
2852 if (h->size == 0
2853 && h->type == STT_NOTYPE
2854 && !h->needs_plt)
2855 _bfd_error_handler
2856 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2857 h->root.root.string);
2858
2859 dynobj = elf_hash_table (eif->info)->dynobj;
2860 bed = get_elf_backend_data (dynobj);
2861
2862 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2863 {
2864 eif->failed = TRUE;
2865 return FALSE;
2866 }
2867
2868 return TRUE;
2869 }
2870
2871 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2872 DYNBSS. */
2873
2874 bfd_boolean
2875 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2876 struct elf_link_hash_entry *h,
2877 asection *dynbss)
2878 {
2879 unsigned int power_of_two;
2880 bfd_vma mask;
2881 asection *sec = h->root.u.def.section;
2882
2883 /* The section aligment of definition is the maximum alignment
2884 requirement of symbols defined in the section. Since we don't
2885 know the symbol alignment requirement, we start with the
2886 maximum alignment and check low bits of the symbol address
2887 for the minimum alignment. */
2888 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2889 mask = ((bfd_vma) 1 << power_of_two) - 1;
2890 while ((h->root.u.def.value & mask) != 0)
2891 {
2892 mask >>= 1;
2893 --power_of_two;
2894 }
2895
2896 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2897 dynbss))
2898 {
2899 /* Adjust the section alignment if needed. */
2900 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2901 power_of_two))
2902 return FALSE;
2903 }
2904
2905 /* We make sure that the symbol will be aligned properly. */
2906 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2907
2908 /* Define the symbol as being at this point in DYNBSS. */
2909 h->root.u.def.section = dynbss;
2910 h->root.u.def.value = dynbss->size;
2911
2912 /* Increment the size of DYNBSS to make room for the symbol. */
2913 dynbss->size += h->size;
2914
2915 /* No error if extern_protected_data is true. */
2916 if (h->protected_def
2917 && (!info->extern_protected_data
2918 || (info->extern_protected_data < 0
2919 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2920 info->callbacks->einfo
2921 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2922 h->root.root.string);
2923
2924 return TRUE;
2925 }
2926
2927 /* Adjust all external symbols pointing into SEC_MERGE sections
2928 to reflect the object merging within the sections. */
2929
2930 static bfd_boolean
2931 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2932 {
2933 asection *sec;
2934
2935 if ((h->root.type == bfd_link_hash_defined
2936 || h->root.type == bfd_link_hash_defweak)
2937 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2938 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2939 {
2940 bfd *output_bfd = (bfd *) data;
2941
2942 h->root.u.def.value =
2943 _bfd_merged_section_offset (output_bfd,
2944 &h->root.u.def.section,
2945 elf_section_data (sec)->sec_info,
2946 h->root.u.def.value);
2947 }
2948
2949 return TRUE;
2950 }
2951
2952 /* Returns false if the symbol referred to by H should be considered
2953 to resolve local to the current module, and true if it should be
2954 considered to bind dynamically. */
2955
2956 bfd_boolean
2957 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2958 struct bfd_link_info *info,
2959 bfd_boolean not_local_protected)
2960 {
2961 bfd_boolean binding_stays_local_p;
2962 const struct elf_backend_data *bed;
2963 struct elf_link_hash_table *hash_table;
2964
2965 if (h == NULL)
2966 return FALSE;
2967
2968 while (h->root.type == bfd_link_hash_indirect
2969 || h->root.type == bfd_link_hash_warning)
2970 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2971
2972 /* If it was forced local, then clearly it's not dynamic. */
2973 if (h->dynindx == -1)
2974 return FALSE;
2975 if (h->forced_local)
2976 return FALSE;
2977
2978 /* Identify the cases where name binding rules say that a
2979 visible symbol resolves locally. */
2980 binding_stays_local_p = (bfd_link_executable (info)
2981 || SYMBOLIC_BIND (info, h));
2982
2983 switch (ELF_ST_VISIBILITY (h->other))
2984 {
2985 case STV_INTERNAL:
2986 case STV_HIDDEN:
2987 return FALSE;
2988
2989 case STV_PROTECTED:
2990 hash_table = elf_hash_table (info);
2991 if (!is_elf_hash_table (hash_table))
2992 return FALSE;
2993
2994 bed = get_elf_backend_data (hash_table->dynobj);
2995
2996 /* Proper resolution for function pointer equality may require
2997 that these symbols perhaps be resolved dynamically, even though
2998 we should be resolving them to the current module. */
2999 if (!not_local_protected || !bed->is_function_type (h->type))
3000 binding_stays_local_p = TRUE;
3001 break;
3002
3003 default:
3004 break;
3005 }
3006
3007 /* If it isn't defined locally, then clearly it's dynamic. */
3008 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3009 return TRUE;
3010
3011 /* Otherwise, the symbol is dynamic if binding rules don't tell
3012 us that it remains local. */
3013 return !binding_stays_local_p;
3014 }
3015
3016 /* Return true if the symbol referred to by H should be considered
3017 to resolve local to the current module, and false otherwise. Differs
3018 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3019 undefined symbols. The two functions are virtually identical except
3020 for the place where forced_local and dynindx == -1 are tested. If
3021 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3022 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3023 the symbol is local only for defined symbols.
3024 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3025 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3026 treatment of undefined weak symbols. For those that do not make
3027 undefined weak symbols dynamic, both functions may return false. */
3028
3029 bfd_boolean
3030 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3031 struct bfd_link_info *info,
3032 bfd_boolean local_protected)
3033 {
3034 const struct elf_backend_data *bed;
3035 struct elf_link_hash_table *hash_table;
3036
3037 /* If it's a local sym, of course we resolve locally. */
3038 if (h == NULL)
3039 return TRUE;
3040
3041 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3042 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3043 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3044 return TRUE;
3045
3046 /* Common symbols that become definitions don't get the DEF_REGULAR
3047 flag set, so test it first, and don't bail out. */
3048 if (ELF_COMMON_DEF_P (h))
3049 /* Do nothing. */;
3050 /* If we don't have a definition in a regular file, then we can't
3051 resolve locally. The sym is either undefined or dynamic. */
3052 else if (!h->def_regular)
3053 return FALSE;
3054
3055 /* Forced local symbols resolve locally. */
3056 if (h->forced_local)
3057 return TRUE;
3058
3059 /* As do non-dynamic symbols. */
3060 if (h->dynindx == -1)
3061 return TRUE;
3062
3063 /* At this point, we know the symbol is defined and dynamic. In an
3064 executable it must resolve locally, likewise when building symbolic
3065 shared libraries. */
3066 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3067 return TRUE;
3068
3069 /* Now deal with defined dynamic symbols in shared libraries. Ones
3070 with default visibility might not resolve locally. */
3071 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3072 return FALSE;
3073
3074 hash_table = elf_hash_table (info);
3075 if (!is_elf_hash_table (hash_table))
3076 return TRUE;
3077
3078 bed = get_elf_backend_data (hash_table->dynobj);
3079
3080 /* If extern_protected_data is false, STV_PROTECTED non-function
3081 symbols are local. */
3082 if ((!info->extern_protected_data
3083 || (info->extern_protected_data < 0
3084 && !bed->extern_protected_data))
3085 && !bed->is_function_type (h->type))
3086 return TRUE;
3087
3088 /* Function pointer equality tests may require that STV_PROTECTED
3089 symbols be treated as dynamic symbols. If the address of a
3090 function not defined in an executable is set to that function's
3091 plt entry in the executable, then the address of the function in
3092 a shared library must also be the plt entry in the executable. */
3093 return local_protected;
3094 }
3095
3096 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3097 aligned. Returns the first TLS output section. */
3098
3099 struct bfd_section *
3100 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3101 {
3102 struct bfd_section *sec, *tls;
3103 unsigned int align = 0;
3104
3105 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3106 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3107 break;
3108 tls = sec;
3109
3110 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3111 if (sec->alignment_power > align)
3112 align = sec->alignment_power;
3113
3114 elf_hash_table (info)->tls_sec = tls;
3115
3116 /* Ensure the alignment of the first section is the largest alignment,
3117 so that the tls segment starts aligned. */
3118 if (tls != NULL)
3119 tls->alignment_power = align;
3120
3121 return tls;
3122 }
3123
3124 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3125 static bfd_boolean
3126 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3127 Elf_Internal_Sym *sym)
3128 {
3129 const struct elf_backend_data *bed;
3130
3131 /* Local symbols do not count, but target specific ones might. */
3132 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3133 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3134 return FALSE;
3135
3136 bed = get_elf_backend_data (abfd);
3137 /* Function symbols do not count. */
3138 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3139 return FALSE;
3140
3141 /* If the section is undefined, then so is the symbol. */
3142 if (sym->st_shndx == SHN_UNDEF)
3143 return FALSE;
3144
3145 /* If the symbol is defined in the common section, then
3146 it is a common definition and so does not count. */
3147 if (bed->common_definition (sym))
3148 return FALSE;
3149
3150 /* If the symbol is in a target specific section then we
3151 must rely upon the backend to tell us what it is. */
3152 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3153 /* FIXME - this function is not coded yet:
3154
3155 return _bfd_is_global_symbol_definition (abfd, sym);
3156
3157 Instead for now assume that the definition is not global,
3158 Even if this is wrong, at least the linker will behave
3159 in the same way that it used to do. */
3160 return FALSE;
3161
3162 return TRUE;
3163 }
3164
3165 /* Search the symbol table of the archive element of the archive ABFD
3166 whose archive map contains a mention of SYMDEF, and determine if
3167 the symbol is defined in this element. */
3168 static bfd_boolean
3169 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3170 {
3171 Elf_Internal_Shdr * hdr;
3172 size_t symcount;
3173 size_t extsymcount;
3174 size_t extsymoff;
3175 Elf_Internal_Sym *isymbuf;
3176 Elf_Internal_Sym *isym;
3177 Elf_Internal_Sym *isymend;
3178 bfd_boolean result;
3179
3180 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3181 if (abfd == NULL)
3182 return FALSE;
3183
3184 if (! bfd_check_format (abfd, bfd_object))
3185 return FALSE;
3186
3187 /* Select the appropriate symbol table. If we don't know if the
3188 object file is an IR object, give linker LTO plugin a chance to
3189 get the correct symbol table. */
3190 if (abfd->plugin_format == bfd_plugin_yes
3191 #if BFD_SUPPORTS_PLUGINS
3192 || (abfd->plugin_format == bfd_plugin_unknown
3193 && bfd_link_plugin_object_p (abfd))
3194 #endif
3195 )
3196 {
3197 /* Use the IR symbol table if the object has been claimed by
3198 plugin. */
3199 abfd = abfd->plugin_dummy_bfd;
3200 hdr = &elf_tdata (abfd)->symtab_hdr;
3201 }
3202 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3203 hdr = &elf_tdata (abfd)->symtab_hdr;
3204 else
3205 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3206
3207 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3208
3209 /* The sh_info field of the symtab header tells us where the
3210 external symbols start. We don't care about the local symbols. */
3211 if (elf_bad_symtab (abfd))
3212 {
3213 extsymcount = symcount;
3214 extsymoff = 0;
3215 }
3216 else
3217 {
3218 extsymcount = symcount - hdr->sh_info;
3219 extsymoff = hdr->sh_info;
3220 }
3221
3222 if (extsymcount == 0)
3223 return FALSE;
3224
3225 /* Read in the symbol table. */
3226 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3227 NULL, NULL, NULL);
3228 if (isymbuf == NULL)
3229 return FALSE;
3230
3231 /* Scan the symbol table looking for SYMDEF. */
3232 result = FALSE;
3233 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3234 {
3235 const char *name;
3236
3237 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3238 isym->st_name);
3239 if (name == NULL)
3240 break;
3241
3242 if (strcmp (name, symdef->name) == 0)
3243 {
3244 result = is_global_data_symbol_definition (abfd, isym);
3245 break;
3246 }
3247 }
3248
3249 free (isymbuf);
3250
3251 return result;
3252 }
3253 \f
3254 /* Add an entry to the .dynamic table. */
3255
3256 bfd_boolean
3257 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3258 bfd_vma tag,
3259 bfd_vma val)
3260 {
3261 struct elf_link_hash_table *hash_table;
3262 const struct elf_backend_data *bed;
3263 asection *s;
3264 bfd_size_type newsize;
3265 bfd_byte *newcontents;
3266 Elf_Internal_Dyn dyn;
3267
3268 hash_table = elf_hash_table (info);
3269 if (! is_elf_hash_table (hash_table))
3270 return FALSE;
3271
3272 bed = get_elf_backend_data (hash_table->dynobj);
3273 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3274 BFD_ASSERT (s != NULL);
3275
3276 newsize = s->size + bed->s->sizeof_dyn;
3277 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3278 if (newcontents == NULL)
3279 return FALSE;
3280
3281 dyn.d_tag = tag;
3282 dyn.d_un.d_val = val;
3283 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3284
3285 s->size = newsize;
3286 s->contents = newcontents;
3287
3288 return TRUE;
3289 }
3290
3291 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3292 otherwise just check whether one already exists. Returns -1 on error,
3293 1 if a DT_NEEDED tag already exists, and 0 on success. */
3294
3295 static int
3296 elf_add_dt_needed_tag (bfd *abfd,
3297 struct bfd_link_info *info,
3298 const char *soname,
3299 bfd_boolean do_it)
3300 {
3301 struct elf_link_hash_table *hash_table;
3302 size_t strindex;
3303
3304 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3305 return -1;
3306
3307 hash_table = elf_hash_table (info);
3308 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3309 if (strindex == (size_t) -1)
3310 return -1;
3311
3312 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3313 {
3314 asection *sdyn;
3315 const struct elf_backend_data *bed;
3316 bfd_byte *extdyn;
3317
3318 bed = get_elf_backend_data (hash_table->dynobj);
3319 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3320 if (sdyn != NULL)
3321 for (extdyn = sdyn->contents;
3322 extdyn < sdyn->contents + sdyn->size;
3323 extdyn += bed->s->sizeof_dyn)
3324 {
3325 Elf_Internal_Dyn dyn;
3326
3327 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3328 if (dyn.d_tag == DT_NEEDED
3329 && dyn.d_un.d_val == strindex)
3330 {
3331 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3332 return 1;
3333 }
3334 }
3335 }
3336
3337 if (do_it)
3338 {
3339 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3340 return -1;
3341
3342 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3343 return -1;
3344 }
3345 else
3346 /* We were just checking for existence of the tag. */
3347 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3348
3349 return 0;
3350 }
3351
3352 /* Return true if SONAME is on the needed list between NEEDED and STOP
3353 (or the end of list if STOP is NULL), and needed by a library that
3354 will be loaded. */
3355
3356 static bfd_boolean
3357 on_needed_list (const char *soname,
3358 struct bfd_link_needed_list *needed,
3359 struct bfd_link_needed_list *stop)
3360 {
3361 struct bfd_link_needed_list *look;
3362 for (look = needed; look != stop; look = look->next)
3363 if (strcmp (soname, look->name) == 0
3364 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3365 /* If needed by a library that itself is not directly
3366 needed, recursively check whether that library is
3367 indirectly needed. Since we add DT_NEEDED entries to
3368 the end of the list, library dependencies appear after
3369 the library. Therefore search prior to the current
3370 LOOK, preventing possible infinite recursion. */
3371 || on_needed_list (elf_dt_name (look->by), needed, look)))
3372 return TRUE;
3373
3374 return FALSE;
3375 }
3376
3377 /* Sort symbol by value, section, and size. */
3378 static int
3379 elf_sort_symbol (const void *arg1, const void *arg2)
3380 {
3381 const struct elf_link_hash_entry *h1;
3382 const struct elf_link_hash_entry *h2;
3383 bfd_signed_vma vdiff;
3384
3385 h1 = *(const struct elf_link_hash_entry **) arg1;
3386 h2 = *(const struct elf_link_hash_entry **) arg2;
3387 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3388 if (vdiff != 0)
3389 return vdiff > 0 ? 1 : -1;
3390 else
3391 {
3392 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3393 if (sdiff != 0)
3394 return sdiff > 0 ? 1 : -1;
3395 }
3396 vdiff = h1->size - h2->size;
3397 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3398 }
3399
3400 /* This function is used to adjust offsets into .dynstr for
3401 dynamic symbols. This is called via elf_link_hash_traverse. */
3402
3403 static bfd_boolean
3404 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3405 {
3406 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3407
3408 if (h->dynindx != -1)
3409 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3410 return TRUE;
3411 }
3412
3413 /* Assign string offsets in .dynstr, update all structures referencing
3414 them. */
3415
3416 static bfd_boolean
3417 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3418 {
3419 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3420 struct elf_link_local_dynamic_entry *entry;
3421 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3422 bfd *dynobj = hash_table->dynobj;
3423 asection *sdyn;
3424 bfd_size_type size;
3425 const struct elf_backend_data *bed;
3426 bfd_byte *extdyn;
3427
3428 _bfd_elf_strtab_finalize (dynstr);
3429 size = _bfd_elf_strtab_size (dynstr);
3430
3431 bed = get_elf_backend_data (dynobj);
3432 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3433 BFD_ASSERT (sdyn != NULL);
3434
3435 /* Update all .dynamic entries referencing .dynstr strings. */
3436 for (extdyn = sdyn->contents;
3437 extdyn < sdyn->contents + sdyn->size;
3438 extdyn += bed->s->sizeof_dyn)
3439 {
3440 Elf_Internal_Dyn dyn;
3441
3442 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3443 switch (dyn.d_tag)
3444 {
3445 case DT_STRSZ:
3446 dyn.d_un.d_val = size;
3447 break;
3448 case DT_NEEDED:
3449 case DT_SONAME:
3450 case DT_RPATH:
3451 case DT_RUNPATH:
3452 case DT_FILTER:
3453 case DT_AUXILIARY:
3454 case DT_AUDIT:
3455 case DT_DEPAUDIT:
3456 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3457 break;
3458 default:
3459 continue;
3460 }
3461 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3462 }
3463
3464 /* Now update local dynamic symbols. */
3465 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3466 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3467 entry->isym.st_name);
3468
3469 /* And the rest of dynamic symbols. */
3470 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3471
3472 /* Adjust version definitions. */
3473 if (elf_tdata (output_bfd)->cverdefs)
3474 {
3475 asection *s;
3476 bfd_byte *p;
3477 size_t i;
3478 Elf_Internal_Verdef def;
3479 Elf_Internal_Verdaux defaux;
3480
3481 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3482 p = s->contents;
3483 do
3484 {
3485 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3486 &def);
3487 p += sizeof (Elf_External_Verdef);
3488 if (def.vd_aux != sizeof (Elf_External_Verdef))
3489 continue;
3490 for (i = 0; i < def.vd_cnt; ++i)
3491 {
3492 _bfd_elf_swap_verdaux_in (output_bfd,
3493 (Elf_External_Verdaux *) p, &defaux);
3494 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3495 defaux.vda_name);
3496 _bfd_elf_swap_verdaux_out (output_bfd,
3497 &defaux, (Elf_External_Verdaux *) p);
3498 p += sizeof (Elf_External_Verdaux);
3499 }
3500 }
3501 while (def.vd_next);
3502 }
3503
3504 /* Adjust version references. */
3505 if (elf_tdata (output_bfd)->verref)
3506 {
3507 asection *s;
3508 bfd_byte *p;
3509 size_t i;
3510 Elf_Internal_Verneed need;
3511 Elf_Internal_Vernaux needaux;
3512
3513 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3514 p = s->contents;
3515 do
3516 {
3517 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3518 &need);
3519 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3520 _bfd_elf_swap_verneed_out (output_bfd, &need,
3521 (Elf_External_Verneed *) p);
3522 p += sizeof (Elf_External_Verneed);
3523 for (i = 0; i < need.vn_cnt; ++i)
3524 {
3525 _bfd_elf_swap_vernaux_in (output_bfd,
3526 (Elf_External_Vernaux *) p, &needaux);
3527 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3528 needaux.vna_name);
3529 _bfd_elf_swap_vernaux_out (output_bfd,
3530 &needaux,
3531 (Elf_External_Vernaux *) p);
3532 p += sizeof (Elf_External_Vernaux);
3533 }
3534 }
3535 while (need.vn_next);
3536 }
3537
3538 return TRUE;
3539 }
3540 \f
3541 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3542 The default is to only match when the INPUT and OUTPUT are exactly
3543 the same target. */
3544
3545 bfd_boolean
3546 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3547 const bfd_target *output)
3548 {
3549 return input == output;
3550 }
3551
3552 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3553 This version is used when different targets for the same architecture
3554 are virtually identical. */
3555
3556 bfd_boolean
3557 _bfd_elf_relocs_compatible (const bfd_target *input,
3558 const bfd_target *output)
3559 {
3560 const struct elf_backend_data *obed, *ibed;
3561
3562 if (input == output)
3563 return TRUE;
3564
3565 ibed = xvec_get_elf_backend_data (input);
3566 obed = xvec_get_elf_backend_data (output);
3567
3568 if (ibed->arch != obed->arch)
3569 return FALSE;
3570
3571 /* If both backends are using this function, deem them compatible. */
3572 return ibed->relocs_compatible == obed->relocs_compatible;
3573 }
3574
3575 /* Make a special call to the linker "notice" function to tell it that
3576 we are about to handle an as-needed lib, or have finished
3577 processing the lib. */
3578
3579 bfd_boolean
3580 _bfd_elf_notice_as_needed (bfd *ibfd,
3581 struct bfd_link_info *info,
3582 enum notice_asneeded_action act)
3583 {
3584 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3585 }
3586
3587 /* Check relocations an ELF object file. */
3588
3589 bfd_boolean
3590 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3591 {
3592 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3593 struct elf_link_hash_table *htab = elf_hash_table (info);
3594
3595 /* If this object is the same format as the output object, and it is
3596 not a shared library, then let the backend look through the
3597 relocs.
3598
3599 This is required to build global offset table entries and to
3600 arrange for dynamic relocs. It is not required for the
3601 particular common case of linking non PIC code, even when linking
3602 against shared libraries, but unfortunately there is no way of
3603 knowing whether an object file has been compiled PIC or not.
3604 Looking through the relocs is not particularly time consuming.
3605 The problem is that we must either (1) keep the relocs in memory,
3606 which causes the linker to require additional runtime memory or
3607 (2) read the relocs twice from the input file, which wastes time.
3608 This would be a good case for using mmap.
3609
3610 I have no idea how to handle linking PIC code into a file of a
3611 different format. It probably can't be done. */
3612 if ((abfd->flags & DYNAMIC) == 0
3613 && is_elf_hash_table (htab)
3614 && bed->check_relocs != NULL
3615 && elf_object_id (abfd) == elf_hash_table_id (htab)
3616 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3617 {
3618 asection *o;
3619
3620 for (o = abfd->sections; o != NULL; o = o->next)
3621 {
3622 Elf_Internal_Rela *internal_relocs;
3623 bfd_boolean ok;
3624
3625 /* Don't check relocations in excluded sections. */
3626 if ((o->flags & SEC_RELOC) == 0
3627 || (o->flags & SEC_EXCLUDE) != 0
3628 || o->reloc_count == 0
3629 || ((info->strip == strip_all || info->strip == strip_debugger)
3630 && (o->flags & SEC_DEBUGGING) != 0)
3631 || bfd_is_abs_section (o->output_section))
3632 continue;
3633
3634 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3635 info->keep_memory);
3636 if (internal_relocs == NULL)
3637 return FALSE;
3638
3639 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3640
3641 if (elf_section_data (o)->relocs != internal_relocs)
3642 free (internal_relocs);
3643
3644 if (! ok)
3645 return FALSE;
3646 }
3647 }
3648
3649 return TRUE;
3650 }
3651
3652 /* Add symbols from an ELF object file to the linker hash table. */
3653
3654 static bfd_boolean
3655 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3656 {
3657 Elf_Internal_Ehdr *ehdr;
3658 Elf_Internal_Shdr *hdr;
3659 size_t symcount;
3660 size_t extsymcount;
3661 size_t extsymoff;
3662 struct elf_link_hash_entry **sym_hash;
3663 bfd_boolean dynamic;
3664 Elf_External_Versym *extversym = NULL;
3665 Elf_External_Versym *ever;
3666 struct elf_link_hash_entry *weaks;
3667 struct elf_link_hash_entry **nondeflt_vers = NULL;
3668 size_t nondeflt_vers_cnt = 0;
3669 Elf_Internal_Sym *isymbuf = NULL;
3670 Elf_Internal_Sym *isym;
3671 Elf_Internal_Sym *isymend;
3672 const struct elf_backend_data *bed;
3673 bfd_boolean add_needed;
3674 struct elf_link_hash_table *htab;
3675 bfd_size_type amt;
3676 void *alloc_mark = NULL;
3677 struct bfd_hash_entry **old_table = NULL;
3678 unsigned int old_size = 0;
3679 unsigned int old_count = 0;
3680 void *old_tab = NULL;
3681 void *old_ent;
3682 struct bfd_link_hash_entry *old_undefs = NULL;
3683 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3684 void *old_strtab = NULL;
3685 size_t tabsize = 0;
3686 asection *s;
3687 bfd_boolean just_syms;
3688
3689 htab = elf_hash_table (info);
3690 bed = get_elf_backend_data (abfd);
3691
3692 if ((abfd->flags & DYNAMIC) == 0)
3693 dynamic = FALSE;
3694 else
3695 {
3696 dynamic = TRUE;
3697
3698 /* You can't use -r against a dynamic object. Also, there's no
3699 hope of using a dynamic object which does not exactly match
3700 the format of the output file. */
3701 if (bfd_link_relocatable (info)
3702 || !is_elf_hash_table (htab)
3703 || info->output_bfd->xvec != abfd->xvec)
3704 {
3705 if (bfd_link_relocatable (info))
3706 bfd_set_error (bfd_error_invalid_operation);
3707 else
3708 bfd_set_error (bfd_error_wrong_format);
3709 goto error_return;
3710 }
3711 }
3712
3713 ehdr = elf_elfheader (abfd);
3714 if (info->warn_alternate_em
3715 && bed->elf_machine_code != ehdr->e_machine
3716 && ((bed->elf_machine_alt1 != 0
3717 && ehdr->e_machine == bed->elf_machine_alt1)
3718 || (bed->elf_machine_alt2 != 0
3719 && ehdr->e_machine == bed->elf_machine_alt2)))
3720 info->callbacks->einfo
3721 /* xgettext:c-format */
3722 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3723 ehdr->e_machine, abfd, bed->elf_machine_code);
3724
3725 /* As a GNU extension, any input sections which are named
3726 .gnu.warning.SYMBOL are treated as warning symbols for the given
3727 symbol. This differs from .gnu.warning sections, which generate
3728 warnings when they are included in an output file. */
3729 /* PR 12761: Also generate this warning when building shared libraries. */
3730 for (s = abfd->sections; s != NULL; s = s->next)
3731 {
3732 const char *name;
3733
3734 name = bfd_get_section_name (abfd, s);
3735 if (CONST_STRNEQ (name, ".gnu.warning."))
3736 {
3737 char *msg;
3738 bfd_size_type sz;
3739
3740 name += sizeof ".gnu.warning." - 1;
3741
3742 /* If this is a shared object, then look up the symbol
3743 in the hash table. If it is there, and it is already
3744 been defined, then we will not be using the entry
3745 from this shared object, so we don't need to warn.
3746 FIXME: If we see the definition in a regular object
3747 later on, we will warn, but we shouldn't. The only
3748 fix is to keep track of what warnings we are supposed
3749 to emit, and then handle them all at the end of the
3750 link. */
3751 if (dynamic)
3752 {
3753 struct elf_link_hash_entry *h;
3754
3755 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3756
3757 /* FIXME: What about bfd_link_hash_common? */
3758 if (h != NULL
3759 && (h->root.type == bfd_link_hash_defined
3760 || h->root.type == bfd_link_hash_defweak))
3761 continue;
3762 }
3763
3764 sz = s->size;
3765 msg = (char *) bfd_alloc (abfd, sz + 1);
3766 if (msg == NULL)
3767 goto error_return;
3768
3769 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3770 goto error_return;
3771
3772 msg[sz] = '\0';
3773
3774 if (! (_bfd_generic_link_add_one_symbol
3775 (info, abfd, name, BSF_WARNING, s, 0, msg,
3776 FALSE, bed->collect, NULL)))
3777 goto error_return;
3778
3779 if (bfd_link_executable (info))
3780 {
3781 /* Clobber the section size so that the warning does
3782 not get copied into the output file. */
3783 s->size = 0;
3784
3785 /* Also set SEC_EXCLUDE, so that symbols defined in
3786 the warning section don't get copied to the output. */
3787 s->flags |= SEC_EXCLUDE;
3788 }
3789 }
3790 }
3791
3792 just_syms = ((s = abfd->sections) != NULL
3793 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3794
3795 add_needed = TRUE;
3796 if (! dynamic)
3797 {
3798 /* If we are creating a shared library, create all the dynamic
3799 sections immediately. We need to attach them to something,
3800 so we attach them to this BFD, provided it is the right
3801 format and is not from ld --just-symbols. Always create the
3802 dynamic sections for -E/--dynamic-list. FIXME: If there
3803 are no input BFD's of the same format as the output, we can't
3804 make a shared library. */
3805 if (!just_syms
3806 && (bfd_link_pic (info)
3807 || (!bfd_link_relocatable (info)
3808 && (info->export_dynamic || info->dynamic)))
3809 && is_elf_hash_table (htab)
3810 && info->output_bfd->xvec == abfd->xvec
3811 && !htab->dynamic_sections_created)
3812 {
3813 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3814 goto error_return;
3815 }
3816 }
3817 else if (!is_elf_hash_table (htab))
3818 goto error_return;
3819 else
3820 {
3821 const char *soname = NULL;
3822 char *audit = NULL;
3823 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3824 const Elf_Internal_Phdr *phdr;
3825 int ret;
3826
3827 /* ld --just-symbols and dynamic objects don't mix very well.
3828 ld shouldn't allow it. */
3829 if (just_syms)
3830 abort ();
3831
3832 /* If this dynamic lib was specified on the command line with
3833 --as-needed in effect, then we don't want to add a DT_NEEDED
3834 tag unless the lib is actually used. Similary for libs brought
3835 in by another lib's DT_NEEDED. When --no-add-needed is used
3836 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3837 any dynamic library in DT_NEEDED tags in the dynamic lib at
3838 all. */
3839 add_needed = (elf_dyn_lib_class (abfd)
3840 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3841 | DYN_NO_NEEDED)) == 0;
3842
3843 s = bfd_get_section_by_name (abfd, ".dynamic");
3844 if (s != NULL)
3845 {
3846 bfd_byte *dynbuf;
3847 bfd_byte *extdyn;
3848 unsigned int elfsec;
3849 unsigned long shlink;
3850
3851 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3852 {
3853 error_free_dyn:
3854 free (dynbuf);
3855 goto error_return;
3856 }
3857
3858 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3859 if (elfsec == SHN_BAD)
3860 goto error_free_dyn;
3861 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3862
3863 for (extdyn = dynbuf;
3864 extdyn < dynbuf + s->size;
3865 extdyn += bed->s->sizeof_dyn)
3866 {
3867 Elf_Internal_Dyn dyn;
3868
3869 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3870 if (dyn.d_tag == DT_SONAME)
3871 {
3872 unsigned int tagv = dyn.d_un.d_val;
3873 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3874 if (soname == NULL)
3875 goto error_free_dyn;
3876 }
3877 if (dyn.d_tag == DT_NEEDED)
3878 {
3879 struct bfd_link_needed_list *n, **pn;
3880 char *fnm, *anm;
3881 unsigned int tagv = dyn.d_un.d_val;
3882
3883 amt = sizeof (struct bfd_link_needed_list);
3884 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3885 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3886 if (n == NULL || fnm == NULL)
3887 goto error_free_dyn;
3888 amt = strlen (fnm) + 1;
3889 anm = (char *) bfd_alloc (abfd, amt);
3890 if (anm == NULL)
3891 goto error_free_dyn;
3892 memcpy (anm, fnm, amt);
3893 n->name = anm;
3894 n->by = abfd;
3895 n->next = NULL;
3896 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3897 ;
3898 *pn = n;
3899 }
3900 if (dyn.d_tag == DT_RUNPATH)
3901 {
3902 struct bfd_link_needed_list *n, **pn;
3903 char *fnm, *anm;
3904 unsigned int tagv = dyn.d_un.d_val;
3905
3906 amt = sizeof (struct bfd_link_needed_list);
3907 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3908 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3909 if (n == NULL || fnm == NULL)
3910 goto error_free_dyn;
3911 amt = strlen (fnm) + 1;
3912 anm = (char *) bfd_alloc (abfd, amt);
3913 if (anm == NULL)
3914 goto error_free_dyn;
3915 memcpy (anm, fnm, amt);
3916 n->name = anm;
3917 n->by = abfd;
3918 n->next = NULL;
3919 for (pn = & runpath;
3920 *pn != NULL;
3921 pn = &(*pn)->next)
3922 ;
3923 *pn = n;
3924 }
3925 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3926 if (!runpath && dyn.d_tag == DT_RPATH)
3927 {
3928 struct bfd_link_needed_list *n, **pn;
3929 char *fnm, *anm;
3930 unsigned int tagv = dyn.d_un.d_val;
3931
3932 amt = sizeof (struct bfd_link_needed_list);
3933 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3934 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3935 if (n == NULL || fnm == NULL)
3936 goto error_free_dyn;
3937 amt = strlen (fnm) + 1;
3938 anm = (char *) bfd_alloc (abfd, amt);
3939 if (anm == NULL)
3940 goto error_free_dyn;
3941 memcpy (anm, fnm, amt);
3942 n->name = anm;
3943 n->by = abfd;
3944 n->next = NULL;
3945 for (pn = & rpath;
3946 *pn != NULL;
3947 pn = &(*pn)->next)
3948 ;
3949 *pn = n;
3950 }
3951 if (dyn.d_tag == DT_AUDIT)
3952 {
3953 unsigned int tagv = dyn.d_un.d_val;
3954 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3955 }
3956 }
3957
3958 free (dynbuf);
3959 }
3960
3961 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3962 frees all more recently bfd_alloc'd blocks as well. */
3963 if (runpath)
3964 rpath = runpath;
3965
3966 if (rpath)
3967 {
3968 struct bfd_link_needed_list **pn;
3969 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3970 ;
3971 *pn = rpath;
3972 }
3973
3974 /* If we have a PT_GNU_RELRO program header, mark as read-only
3975 all sections contained fully therein. This makes relro
3976 shared library sections appear as they will at run-time. */
3977 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
3978 while (--phdr >= elf_tdata (abfd)->phdr)
3979 if (phdr->p_type == PT_GNU_RELRO)
3980 {
3981 for (s = abfd->sections; s != NULL; s = s->next)
3982 if ((s->flags & SEC_ALLOC) != 0
3983 && s->vma >= phdr->p_vaddr
3984 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
3985 s->flags |= SEC_READONLY;
3986 break;
3987 }
3988
3989 /* We do not want to include any of the sections in a dynamic
3990 object in the output file. We hack by simply clobbering the
3991 list of sections in the BFD. This could be handled more
3992 cleanly by, say, a new section flag; the existing
3993 SEC_NEVER_LOAD flag is not the one we want, because that one
3994 still implies that the section takes up space in the output
3995 file. */
3996 bfd_section_list_clear (abfd);
3997
3998 /* Find the name to use in a DT_NEEDED entry that refers to this
3999 object. If the object has a DT_SONAME entry, we use it.
4000 Otherwise, if the generic linker stuck something in
4001 elf_dt_name, we use that. Otherwise, we just use the file
4002 name. */
4003 if (soname == NULL || *soname == '\0')
4004 {
4005 soname = elf_dt_name (abfd);
4006 if (soname == NULL || *soname == '\0')
4007 soname = bfd_get_filename (abfd);
4008 }
4009
4010 /* Save the SONAME because sometimes the linker emulation code
4011 will need to know it. */
4012 elf_dt_name (abfd) = soname;
4013
4014 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4015 if (ret < 0)
4016 goto error_return;
4017
4018 /* If we have already included this dynamic object in the
4019 link, just ignore it. There is no reason to include a
4020 particular dynamic object more than once. */
4021 if (ret > 0)
4022 return TRUE;
4023
4024 /* Save the DT_AUDIT entry for the linker emulation code. */
4025 elf_dt_audit (abfd) = audit;
4026 }
4027
4028 /* If this is a dynamic object, we always link against the .dynsym
4029 symbol table, not the .symtab symbol table. The dynamic linker
4030 will only see the .dynsym symbol table, so there is no reason to
4031 look at .symtab for a dynamic object. */
4032
4033 if (! dynamic || elf_dynsymtab (abfd) == 0)
4034 hdr = &elf_tdata (abfd)->symtab_hdr;
4035 else
4036 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4037
4038 symcount = hdr->sh_size / bed->s->sizeof_sym;
4039
4040 /* The sh_info field of the symtab header tells us where the
4041 external symbols start. We don't care about the local symbols at
4042 this point. */
4043 if (elf_bad_symtab (abfd))
4044 {
4045 extsymcount = symcount;
4046 extsymoff = 0;
4047 }
4048 else
4049 {
4050 extsymcount = symcount - hdr->sh_info;
4051 extsymoff = hdr->sh_info;
4052 }
4053
4054 sym_hash = elf_sym_hashes (abfd);
4055 if (extsymcount != 0)
4056 {
4057 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4058 NULL, NULL, NULL);
4059 if (isymbuf == NULL)
4060 goto error_return;
4061
4062 if (sym_hash == NULL)
4063 {
4064 /* We store a pointer to the hash table entry for each
4065 external symbol. */
4066 amt = extsymcount;
4067 amt *= sizeof (struct elf_link_hash_entry *);
4068 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4069 if (sym_hash == NULL)
4070 goto error_free_sym;
4071 elf_sym_hashes (abfd) = sym_hash;
4072 }
4073 }
4074
4075 if (dynamic)
4076 {
4077 /* Read in any version definitions. */
4078 if (!_bfd_elf_slurp_version_tables (abfd,
4079 info->default_imported_symver))
4080 goto error_free_sym;
4081
4082 /* Read in the symbol versions, but don't bother to convert them
4083 to internal format. */
4084 if (elf_dynversym (abfd) != 0)
4085 {
4086 Elf_Internal_Shdr *versymhdr;
4087
4088 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4089 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4090 if (extversym == NULL)
4091 goto error_free_sym;
4092 amt = versymhdr->sh_size;
4093 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4094 || bfd_bread (extversym, amt, abfd) != amt)
4095 goto error_free_vers;
4096 }
4097 }
4098
4099 /* If we are loading an as-needed shared lib, save the symbol table
4100 state before we start adding symbols. If the lib turns out
4101 to be unneeded, restore the state. */
4102 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4103 {
4104 unsigned int i;
4105 size_t entsize;
4106
4107 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4108 {
4109 struct bfd_hash_entry *p;
4110 struct elf_link_hash_entry *h;
4111
4112 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4113 {
4114 h = (struct elf_link_hash_entry *) p;
4115 entsize += htab->root.table.entsize;
4116 if (h->root.type == bfd_link_hash_warning)
4117 entsize += htab->root.table.entsize;
4118 }
4119 }
4120
4121 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4122 old_tab = bfd_malloc (tabsize + entsize);
4123 if (old_tab == NULL)
4124 goto error_free_vers;
4125
4126 /* Remember the current objalloc pointer, so that all mem for
4127 symbols added can later be reclaimed. */
4128 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4129 if (alloc_mark == NULL)
4130 goto error_free_vers;
4131
4132 /* Make a special call to the linker "notice" function to
4133 tell it that we are about to handle an as-needed lib. */
4134 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4135 goto error_free_vers;
4136
4137 /* Clone the symbol table. Remember some pointers into the
4138 symbol table, and dynamic symbol count. */
4139 old_ent = (char *) old_tab + tabsize;
4140 memcpy (old_tab, htab->root.table.table, tabsize);
4141 old_undefs = htab->root.undefs;
4142 old_undefs_tail = htab->root.undefs_tail;
4143 old_table = htab->root.table.table;
4144 old_size = htab->root.table.size;
4145 old_count = htab->root.table.count;
4146 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4147 if (old_strtab == NULL)
4148 goto error_free_vers;
4149
4150 for (i = 0; i < htab->root.table.size; i++)
4151 {
4152 struct bfd_hash_entry *p;
4153 struct elf_link_hash_entry *h;
4154
4155 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4156 {
4157 memcpy (old_ent, p, htab->root.table.entsize);
4158 old_ent = (char *) old_ent + htab->root.table.entsize;
4159 h = (struct elf_link_hash_entry *) p;
4160 if (h->root.type == bfd_link_hash_warning)
4161 {
4162 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4163 old_ent = (char *) old_ent + htab->root.table.entsize;
4164 }
4165 }
4166 }
4167 }
4168
4169 weaks = NULL;
4170 ever = extversym != NULL ? extversym + extsymoff : NULL;
4171 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4172 isym < isymend;
4173 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4174 {
4175 int bind;
4176 bfd_vma value;
4177 asection *sec, *new_sec;
4178 flagword flags;
4179 const char *name;
4180 struct elf_link_hash_entry *h;
4181 struct elf_link_hash_entry *hi;
4182 bfd_boolean definition;
4183 bfd_boolean size_change_ok;
4184 bfd_boolean type_change_ok;
4185 bfd_boolean new_weakdef;
4186 bfd_boolean new_weak;
4187 bfd_boolean old_weak;
4188 bfd_boolean override;
4189 bfd_boolean common;
4190 bfd_boolean discarded;
4191 unsigned int old_alignment;
4192 bfd *old_bfd;
4193 bfd_boolean matched;
4194
4195 override = FALSE;
4196
4197 flags = BSF_NO_FLAGS;
4198 sec = NULL;
4199 value = isym->st_value;
4200 common = bed->common_definition (isym);
4201 discarded = FALSE;
4202
4203 bind = ELF_ST_BIND (isym->st_info);
4204 switch (bind)
4205 {
4206 case STB_LOCAL:
4207 /* This should be impossible, since ELF requires that all
4208 global symbols follow all local symbols, and that sh_info
4209 point to the first global symbol. Unfortunately, Irix 5
4210 screws this up. */
4211 continue;
4212
4213 case STB_GLOBAL:
4214 if (isym->st_shndx != SHN_UNDEF && !common)
4215 flags = BSF_GLOBAL;
4216 break;
4217
4218 case STB_WEAK:
4219 flags = BSF_WEAK;
4220 break;
4221
4222 case STB_GNU_UNIQUE:
4223 flags = BSF_GNU_UNIQUE;
4224 break;
4225
4226 default:
4227 /* Leave it up to the processor backend. */
4228 break;
4229 }
4230
4231 if (isym->st_shndx == SHN_UNDEF)
4232 sec = bfd_und_section_ptr;
4233 else if (isym->st_shndx == SHN_ABS)
4234 sec = bfd_abs_section_ptr;
4235 else if (isym->st_shndx == SHN_COMMON)
4236 {
4237 sec = bfd_com_section_ptr;
4238 /* What ELF calls the size we call the value. What ELF
4239 calls the value we call the alignment. */
4240 value = isym->st_size;
4241 }
4242 else
4243 {
4244 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4245 if (sec == NULL)
4246 sec = bfd_abs_section_ptr;
4247 else if (discarded_section (sec))
4248 {
4249 /* Symbols from discarded section are undefined. We keep
4250 its visibility. */
4251 sec = bfd_und_section_ptr;
4252 discarded = TRUE;
4253 isym->st_shndx = SHN_UNDEF;
4254 }
4255 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4256 value -= sec->vma;
4257 }
4258
4259 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4260 isym->st_name);
4261 if (name == NULL)
4262 goto error_free_vers;
4263
4264 if (isym->st_shndx == SHN_COMMON
4265 && (abfd->flags & BFD_PLUGIN) != 0)
4266 {
4267 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4268
4269 if (xc == NULL)
4270 {
4271 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4272 | SEC_EXCLUDE);
4273 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4274 if (xc == NULL)
4275 goto error_free_vers;
4276 }
4277 sec = xc;
4278 }
4279 else if (isym->st_shndx == SHN_COMMON
4280 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4281 && !bfd_link_relocatable (info))
4282 {
4283 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4284
4285 if (tcomm == NULL)
4286 {
4287 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4288 | SEC_LINKER_CREATED);
4289 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4290 if (tcomm == NULL)
4291 goto error_free_vers;
4292 }
4293 sec = tcomm;
4294 }
4295 else if (bed->elf_add_symbol_hook)
4296 {
4297 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4298 &sec, &value))
4299 goto error_free_vers;
4300
4301 /* The hook function sets the name to NULL if this symbol
4302 should be skipped for some reason. */
4303 if (name == NULL)
4304 continue;
4305 }
4306
4307 /* Sanity check that all possibilities were handled. */
4308 if (sec == NULL)
4309 {
4310 bfd_set_error (bfd_error_bad_value);
4311 goto error_free_vers;
4312 }
4313
4314 /* Silently discard TLS symbols from --just-syms. There's
4315 no way to combine a static TLS block with a new TLS block
4316 for this executable. */
4317 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4318 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4319 continue;
4320
4321 if (bfd_is_und_section (sec)
4322 || bfd_is_com_section (sec))
4323 definition = FALSE;
4324 else
4325 definition = TRUE;
4326
4327 size_change_ok = FALSE;
4328 type_change_ok = bed->type_change_ok;
4329 old_weak = FALSE;
4330 matched = FALSE;
4331 old_alignment = 0;
4332 old_bfd = NULL;
4333 new_sec = sec;
4334
4335 if (is_elf_hash_table (htab))
4336 {
4337 Elf_Internal_Versym iver;
4338 unsigned int vernum = 0;
4339 bfd_boolean skip;
4340
4341 if (ever == NULL)
4342 {
4343 if (info->default_imported_symver)
4344 /* Use the default symbol version created earlier. */
4345 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4346 else
4347 iver.vs_vers = 0;
4348 }
4349 else
4350 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4351
4352 vernum = iver.vs_vers & VERSYM_VERSION;
4353
4354 /* If this is a hidden symbol, or if it is not version
4355 1, we append the version name to the symbol name.
4356 However, we do not modify a non-hidden absolute symbol
4357 if it is not a function, because it might be the version
4358 symbol itself. FIXME: What if it isn't? */
4359 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4360 || (vernum > 1
4361 && (!bfd_is_abs_section (sec)
4362 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4363 {
4364 const char *verstr;
4365 size_t namelen, verlen, newlen;
4366 char *newname, *p;
4367
4368 if (isym->st_shndx != SHN_UNDEF)
4369 {
4370 if (vernum > elf_tdata (abfd)->cverdefs)
4371 verstr = NULL;
4372 else if (vernum > 1)
4373 verstr =
4374 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4375 else
4376 verstr = "";
4377
4378 if (verstr == NULL)
4379 {
4380 _bfd_error_handler
4381 /* xgettext:c-format */
4382 (_("%B: %s: invalid version %u (max %d)"),
4383 abfd, name, vernum,
4384 elf_tdata (abfd)->cverdefs);
4385 bfd_set_error (bfd_error_bad_value);
4386 goto error_free_vers;
4387 }
4388 }
4389 else
4390 {
4391 /* We cannot simply test for the number of
4392 entries in the VERNEED section since the
4393 numbers for the needed versions do not start
4394 at 0. */
4395 Elf_Internal_Verneed *t;
4396
4397 verstr = NULL;
4398 for (t = elf_tdata (abfd)->verref;
4399 t != NULL;
4400 t = t->vn_nextref)
4401 {
4402 Elf_Internal_Vernaux *a;
4403
4404 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4405 {
4406 if (a->vna_other == vernum)
4407 {
4408 verstr = a->vna_nodename;
4409 break;
4410 }
4411 }
4412 if (a != NULL)
4413 break;
4414 }
4415 if (verstr == NULL)
4416 {
4417 _bfd_error_handler
4418 /* xgettext:c-format */
4419 (_("%B: %s: invalid needed version %d"),
4420 abfd, name, vernum);
4421 bfd_set_error (bfd_error_bad_value);
4422 goto error_free_vers;
4423 }
4424 }
4425
4426 namelen = strlen (name);
4427 verlen = strlen (verstr);
4428 newlen = namelen + verlen + 2;
4429 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4430 && isym->st_shndx != SHN_UNDEF)
4431 ++newlen;
4432
4433 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4434 if (newname == NULL)
4435 goto error_free_vers;
4436 memcpy (newname, name, namelen);
4437 p = newname + namelen;
4438 *p++ = ELF_VER_CHR;
4439 /* If this is a defined non-hidden version symbol,
4440 we add another @ to the name. This indicates the
4441 default version of the symbol. */
4442 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4443 && isym->st_shndx != SHN_UNDEF)
4444 *p++ = ELF_VER_CHR;
4445 memcpy (p, verstr, verlen + 1);
4446
4447 name = newname;
4448 }
4449
4450 /* If this symbol has default visibility and the user has
4451 requested we not re-export it, then mark it as hidden. */
4452 if (!bfd_is_und_section (sec)
4453 && !dynamic
4454 && abfd->no_export
4455 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4456 isym->st_other = (STV_HIDDEN
4457 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4458
4459 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4460 sym_hash, &old_bfd, &old_weak,
4461 &old_alignment, &skip, &override,
4462 &type_change_ok, &size_change_ok,
4463 &matched))
4464 goto error_free_vers;
4465
4466 if (skip)
4467 continue;
4468
4469 /* Override a definition only if the new symbol matches the
4470 existing one. */
4471 if (override && matched)
4472 definition = FALSE;
4473
4474 h = *sym_hash;
4475 while (h->root.type == bfd_link_hash_indirect
4476 || h->root.type == bfd_link_hash_warning)
4477 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4478
4479 if (elf_tdata (abfd)->verdef != NULL
4480 && vernum > 1
4481 && definition)
4482 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4483 }
4484
4485 if (! (_bfd_generic_link_add_one_symbol
4486 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4487 (struct bfd_link_hash_entry **) sym_hash)))
4488 goto error_free_vers;
4489
4490 if ((flags & BSF_GNU_UNIQUE)
4491 && (abfd->flags & DYNAMIC) == 0
4492 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4493 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4494
4495 h = *sym_hash;
4496 /* We need to make sure that indirect symbol dynamic flags are
4497 updated. */
4498 hi = h;
4499 while (h->root.type == bfd_link_hash_indirect
4500 || h->root.type == bfd_link_hash_warning)
4501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4502
4503 /* Setting the index to -3 tells elf_link_output_extsym that
4504 this symbol is defined in a discarded section. */
4505 if (discarded)
4506 h->indx = -3;
4507
4508 *sym_hash = h;
4509
4510 new_weak = (flags & BSF_WEAK) != 0;
4511 new_weakdef = FALSE;
4512 if (dynamic
4513 && definition
4514 && new_weak
4515 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4516 && is_elf_hash_table (htab)
4517 && h->u.weakdef == NULL)
4518 {
4519 /* Keep a list of all weak defined non function symbols from
4520 a dynamic object, using the weakdef field. Later in this
4521 function we will set the weakdef field to the correct
4522 value. We only put non-function symbols from dynamic
4523 objects on this list, because that happens to be the only
4524 time we need to know the normal symbol corresponding to a
4525 weak symbol, and the information is time consuming to
4526 figure out. If the weakdef field is not already NULL,
4527 then this symbol was already defined by some previous
4528 dynamic object, and we will be using that previous
4529 definition anyhow. */
4530
4531 h->u.weakdef = weaks;
4532 weaks = h;
4533 new_weakdef = TRUE;
4534 }
4535
4536 /* Set the alignment of a common symbol. */
4537 if ((common || bfd_is_com_section (sec))
4538 && h->root.type == bfd_link_hash_common)
4539 {
4540 unsigned int align;
4541
4542 if (common)
4543 align = bfd_log2 (isym->st_value);
4544 else
4545 {
4546 /* The new symbol is a common symbol in a shared object.
4547 We need to get the alignment from the section. */
4548 align = new_sec->alignment_power;
4549 }
4550 if (align > old_alignment)
4551 h->root.u.c.p->alignment_power = align;
4552 else
4553 h->root.u.c.p->alignment_power = old_alignment;
4554 }
4555
4556 if (is_elf_hash_table (htab))
4557 {
4558 /* Set a flag in the hash table entry indicating the type of
4559 reference or definition we just found. A dynamic symbol
4560 is one which is referenced or defined by both a regular
4561 object and a shared object. */
4562 bfd_boolean dynsym = FALSE;
4563
4564 /* Plugin symbols aren't normal. Don't set def_regular or
4565 ref_regular for them, or make them dynamic. */
4566 if ((abfd->flags & BFD_PLUGIN) != 0)
4567 ;
4568 else if (! dynamic)
4569 {
4570 if (! definition)
4571 {
4572 h->ref_regular = 1;
4573 if (bind != STB_WEAK)
4574 h->ref_regular_nonweak = 1;
4575 }
4576 else
4577 {
4578 h->def_regular = 1;
4579 if (h->def_dynamic)
4580 {
4581 h->def_dynamic = 0;
4582 h->ref_dynamic = 1;
4583 }
4584 }
4585
4586 /* If the indirect symbol has been forced local, don't
4587 make the real symbol dynamic. */
4588 if ((h == hi || !hi->forced_local)
4589 && (bfd_link_dll (info)
4590 || h->def_dynamic
4591 || h->ref_dynamic))
4592 dynsym = TRUE;
4593 }
4594 else
4595 {
4596 if (! definition)
4597 {
4598 h->ref_dynamic = 1;
4599 hi->ref_dynamic = 1;
4600 }
4601 else
4602 {
4603 h->def_dynamic = 1;
4604 hi->def_dynamic = 1;
4605 }
4606
4607 /* If the indirect symbol has been forced local, don't
4608 make the real symbol dynamic. */
4609 if ((h == hi || !hi->forced_local)
4610 && (h->def_regular
4611 || h->ref_regular
4612 || (h->u.weakdef != NULL
4613 && ! new_weakdef
4614 && h->u.weakdef->dynindx != -1)))
4615 dynsym = TRUE;
4616 }
4617
4618 /* Check to see if we need to add an indirect symbol for
4619 the default name. */
4620 if (definition
4621 || (!override && h->root.type == bfd_link_hash_common))
4622 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4623 sec, value, &old_bfd, &dynsym))
4624 goto error_free_vers;
4625
4626 /* Check the alignment when a common symbol is involved. This
4627 can change when a common symbol is overridden by a normal
4628 definition or a common symbol is ignored due to the old
4629 normal definition. We need to make sure the maximum
4630 alignment is maintained. */
4631 if ((old_alignment || common)
4632 && h->root.type != bfd_link_hash_common)
4633 {
4634 unsigned int common_align;
4635 unsigned int normal_align;
4636 unsigned int symbol_align;
4637 bfd *normal_bfd;
4638 bfd *common_bfd;
4639
4640 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4641 || h->root.type == bfd_link_hash_defweak);
4642
4643 symbol_align = ffs (h->root.u.def.value) - 1;
4644 if (h->root.u.def.section->owner != NULL
4645 && (h->root.u.def.section->owner->flags
4646 & (DYNAMIC | BFD_PLUGIN)) == 0)
4647 {
4648 normal_align = h->root.u.def.section->alignment_power;
4649 if (normal_align > symbol_align)
4650 normal_align = symbol_align;
4651 }
4652 else
4653 normal_align = symbol_align;
4654
4655 if (old_alignment)
4656 {
4657 common_align = old_alignment;
4658 common_bfd = old_bfd;
4659 normal_bfd = abfd;
4660 }
4661 else
4662 {
4663 common_align = bfd_log2 (isym->st_value);
4664 common_bfd = abfd;
4665 normal_bfd = old_bfd;
4666 }
4667
4668 if (normal_align < common_align)
4669 {
4670 /* PR binutils/2735 */
4671 if (normal_bfd == NULL)
4672 _bfd_error_handler
4673 /* xgettext:c-format */
4674 (_("Warning: alignment %u of common symbol `%s' in %B is"
4675 " greater than the alignment (%u) of its section %A"),
4676 common_bfd, h->root.u.def.section,
4677 1 << common_align, name, 1 << normal_align);
4678 else
4679 _bfd_error_handler
4680 /* xgettext:c-format */
4681 (_("Warning: alignment %u of symbol `%s' in %B"
4682 " is smaller than %u in %B"),
4683 normal_bfd, common_bfd,
4684 1 << normal_align, name, 1 << common_align);
4685 }
4686 }
4687
4688 /* Remember the symbol size if it isn't undefined. */
4689 if (isym->st_size != 0
4690 && isym->st_shndx != SHN_UNDEF
4691 && (definition || h->size == 0))
4692 {
4693 if (h->size != 0
4694 && h->size != isym->st_size
4695 && ! size_change_ok)
4696 _bfd_error_handler
4697 /* xgettext:c-format */
4698 (_("Warning: size of symbol `%s' changed"
4699 " from %lu in %B to %lu in %B"),
4700 old_bfd, abfd,
4701 name, (unsigned long) h->size,
4702 (unsigned long) isym->st_size);
4703
4704 h->size = isym->st_size;
4705 }
4706
4707 /* If this is a common symbol, then we always want H->SIZE
4708 to be the size of the common symbol. The code just above
4709 won't fix the size if a common symbol becomes larger. We
4710 don't warn about a size change here, because that is
4711 covered by --warn-common. Allow changes between different
4712 function types. */
4713 if (h->root.type == bfd_link_hash_common)
4714 h->size = h->root.u.c.size;
4715
4716 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4717 && ((definition && !new_weak)
4718 || (old_weak && h->root.type == bfd_link_hash_common)
4719 || h->type == STT_NOTYPE))
4720 {
4721 unsigned int type = ELF_ST_TYPE (isym->st_info);
4722
4723 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4724 symbol. */
4725 if (type == STT_GNU_IFUNC
4726 && (abfd->flags & DYNAMIC) != 0)
4727 type = STT_FUNC;
4728
4729 if (h->type != type)
4730 {
4731 if (h->type != STT_NOTYPE && ! type_change_ok)
4732 /* xgettext:c-format */
4733 _bfd_error_handler
4734 (_("Warning: type of symbol `%s' changed"
4735 " from %d to %d in %B"),
4736 abfd, name, h->type, type);
4737
4738 h->type = type;
4739 }
4740 }
4741
4742 /* Merge st_other field. */
4743 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4744
4745 /* We don't want to make debug symbol dynamic. */
4746 if (definition
4747 && (sec->flags & SEC_DEBUGGING)
4748 && !bfd_link_relocatable (info))
4749 dynsym = FALSE;
4750
4751 /* Nor should we make plugin symbols dynamic. */
4752 if ((abfd->flags & BFD_PLUGIN) != 0)
4753 dynsym = FALSE;
4754
4755 if (definition)
4756 {
4757 h->target_internal = isym->st_target_internal;
4758 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4759 }
4760
4761 if (definition && !dynamic)
4762 {
4763 char *p = strchr (name, ELF_VER_CHR);
4764 if (p != NULL && p[1] != ELF_VER_CHR)
4765 {
4766 /* Queue non-default versions so that .symver x, x@FOO
4767 aliases can be checked. */
4768 if (!nondeflt_vers)
4769 {
4770 amt = ((isymend - isym + 1)
4771 * sizeof (struct elf_link_hash_entry *));
4772 nondeflt_vers
4773 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4774 if (!nondeflt_vers)
4775 goto error_free_vers;
4776 }
4777 nondeflt_vers[nondeflt_vers_cnt++] = h;
4778 }
4779 }
4780
4781 if (dynsym && h->dynindx == -1)
4782 {
4783 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4784 goto error_free_vers;
4785 if (h->u.weakdef != NULL
4786 && ! new_weakdef
4787 && h->u.weakdef->dynindx == -1)
4788 {
4789 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4790 goto error_free_vers;
4791 }
4792 }
4793 else if (h->dynindx != -1)
4794 /* If the symbol already has a dynamic index, but
4795 visibility says it should not be visible, turn it into
4796 a local symbol. */
4797 switch (ELF_ST_VISIBILITY (h->other))
4798 {
4799 case STV_INTERNAL:
4800 case STV_HIDDEN:
4801 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4802 dynsym = FALSE;
4803 break;
4804 }
4805
4806 /* Don't add DT_NEEDED for references from the dummy bfd nor
4807 for unmatched symbol. */
4808 if (!add_needed
4809 && matched
4810 && definition
4811 && ((dynsym
4812 && h->ref_regular_nonweak
4813 && (old_bfd == NULL
4814 || (old_bfd->flags & BFD_PLUGIN) == 0))
4815 || (h->ref_dynamic_nonweak
4816 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4817 && !on_needed_list (elf_dt_name (abfd),
4818 htab->needed, NULL))))
4819 {
4820 int ret;
4821 const char *soname = elf_dt_name (abfd);
4822
4823 info->callbacks->minfo ("%!", soname, old_bfd,
4824 h->root.root.string);
4825
4826 /* A symbol from a library loaded via DT_NEEDED of some
4827 other library is referenced by a regular object.
4828 Add a DT_NEEDED entry for it. Issue an error if
4829 --no-add-needed is used and the reference was not
4830 a weak one. */
4831 if (old_bfd != NULL
4832 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4833 {
4834 _bfd_error_handler
4835 /* xgettext:c-format */
4836 (_("%B: undefined reference to symbol '%s'"),
4837 old_bfd, name);
4838 bfd_set_error (bfd_error_missing_dso);
4839 goto error_free_vers;
4840 }
4841
4842 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4843 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4844
4845 add_needed = TRUE;
4846 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4847 if (ret < 0)
4848 goto error_free_vers;
4849
4850 BFD_ASSERT (ret == 0);
4851 }
4852 }
4853 }
4854
4855 if (extversym != NULL)
4856 {
4857 free (extversym);
4858 extversym = NULL;
4859 }
4860
4861 if (isymbuf != NULL)
4862 {
4863 free (isymbuf);
4864 isymbuf = NULL;
4865 }
4866
4867 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4868 {
4869 unsigned int i;
4870
4871 /* Restore the symbol table. */
4872 old_ent = (char *) old_tab + tabsize;
4873 memset (elf_sym_hashes (abfd), 0,
4874 extsymcount * sizeof (struct elf_link_hash_entry *));
4875 htab->root.table.table = old_table;
4876 htab->root.table.size = old_size;
4877 htab->root.table.count = old_count;
4878 memcpy (htab->root.table.table, old_tab, tabsize);
4879 htab->root.undefs = old_undefs;
4880 htab->root.undefs_tail = old_undefs_tail;
4881 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4882 free (old_strtab);
4883 old_strtab = NULL;
4884 for (i = 0; i < htab->root.table.size; i++)
4885 {
4886 struct bfd_hash_entry *p;
4887 struct elf_link_hash_entry *h;
4888 bfd_size_type size;
4889 unsigned int alignment_power;
4890
4891 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4892 {
4893 h = (struct elf_link_hash_entry *) p;
4894 if (h->root.type == bfd_link_hash_warning)
4895 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4896
4897 /* Preserve the maximum alignment and size for common
4898 symbols even if this dynamic lib isn't on DT_NEEDED
4899 since it can still be loaded at run time by another
4900 dynamic lib. */
4901 if (h->root.type == bfd_link_hash_common)
4902 {
4903 size = h->root.u.c.size;
4904 alignment_power = h->root.u.c.p->alignment_power;
4905 }
4906 else
4907 {
4908 size = 0;
4909 alignment_power = 0;
4910 }
4911 memcpy (p, old_ent, htab->root.table.entsize);
4912 old_ent = (char *) old_ent + htab->root.table.entsize;
4913 h = (struct elf_link_hash_entry *) p;
4914 if (h->root.type == bfd_link_hash_warning)
4915 {
4916 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4917 old_ent = (char *) old_ent + htab->root.table.entsize;
4918 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4919 }
4920 if (h->root.type == bfd_link_hash_common)
4921 {
4922 if (size > h->root.u.c.size)
4923 h->root.u.c.size = size;
4924 if (alignment_power > h->root.u.c.p->alignment_power)
4925 h->root.u.c.p->alignment_power = alignment_power;
4926 }
4927 }
4928 }
4929
4930 /* Make a special call to the linker "notice" function to
4931 tell it that symbols added for crefs may need to be removed. */
4932 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4933 goto error_free_vers;
4934
4935 free (old_tab);
4936 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4937 alloc_mark);
4938 if (nondeflt_vers != NULL)
4939 free (nondeflt_vers);
4940 return TRUE;
4941 }
4942
4943 if (old_tab != NULL)
4944 {
4945 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4946 goto error_free_vers;
4947 free (old_tab);
4948 old_tab = NULL;
4949 }
4950
4951 /* Now that all the symbols from this input file are created, if
4952 not performing a relocatable link, handle .symver foo, foo@BAR
4953 such that any relocs against foo become foo@BAR. */
4954 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4955 {
4956 size_t cnt, symidx;
4957
4958 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4959 {
4960 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4961 char *shortname, *p;
4962
4963 p = strchr (h->root.root.string, ELF_VER_CHR);
4964 if (p == NULL
4965 || (h->root.type != bfd_link_hash_defined
4966 && h->root.type != bfd_link_hash_defweak))
4967 continue;
4968
4969 amt = p - h->root.root.string;
4970 shortname = (char *) bfd_malloc (amt + 1);
4971 if (!shortname)
4972 goto error_free_vers;
4973 memcpy (shortname, h->root.root.string, amt);
4974 shortname[amt] = '\0';
4975
4976 hi = (struct elf_link_hash_entry *)
4977 bfd_link_hash_lookup (&htab->root, shortname,
4978 FALSE, FALSE, FALSE);
4979 if (hi != NULL
4980 && hi->root.type == h->root.type
4981 && hi->root.u.def.value == h->root.u.def.value
4982 && hi->root.u.def.section == h->root.u.def.section)
4983 {
4984 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4985 hi->root.type = bfd_link_hash_indirect;
4986 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4987 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4988 sym_hash = elf_sym_hashes (abfd);
4989 if (sym_hash)
4990 for (symidx = 0; symidx < extsymcount; ++symidx)
4991 if (sym_hash[symidx] == hi)
4992 {
4993 sym_hash[symidx] = h;
4994 break;
4995 }
4996 }
4997 free (shortname);
4998 }
4999 free (nondeflt_vers);
5000 nondeflt_vers = NULL;
5001 }
5002
5003 /* Now set the weakdefs field correctly for all the weak defined
5004 symbols we found. The only way to do this is to search all the
5005 symbols. Since we only need the information for non functions in
5006 dynamic objects, that's the only time we actually put anything on
5007 the list WEAKS. We need this information so that if a regular
5008 object refers to a symbol defined weakly in a dynamic object, the
5009 real symbol in the dynamic object is also put in the dynamic
5010 symbols; we also must arrange for both symbols to point to the
5011 same memory location. We could handle the general case of symbol
5012 aliasing, but a general symbol alias can only be generated in
5013 assembler code, handling it correctly would be very time
5014 consuming, and other ELF linkers don't handle general aliasing
5015 either. */
5016 if (weaks != NULL)
5017 {
5018 struct elf_link_hash_entry **hpp;
5019 struct elf_link_hash_entry **hppend;
5020 struct elf_link_hash_entry **sorted_sym_hash;
5021 struct elf_link_hash_entry *h;
5022 size_t sym_count;
5023
5024 /* Since we have to search the whole symbol list for each weak
5025 defined symbol, search time for N weak defined symbols will be
5026 O(N^2). Binary search will cut it down to O(NlogN). */
5027 amt = extsymcount;
5028 amt *= sizeof (struct elf_link_hash_entry *);
5029 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5030 if (sorted_sym_hash == NULL)
5031 goto error_return;
5032 sym_hash = sorted_sym_hash;
5033 hpp = elf_sym_hashes (abfd);
5034 hppend = hpp + extsymcount;
5035 sym_count = 0;
5036 for (; hpp < hppend; hpp++)
5037 {
5038 h = *hpp;
5039 if (h != NULL
5040 && h->root.type == bfd_link_hash_defined
5041 && !bed->is_function_type (h->type))
5042 {
5043 *sym_hash = h;
5044 sym_hash++;
5045 sym_count++;
5046 }
5047 }
5048
5049 qsort (sorted_sym_hash, sym_count,
5050 sizeof (struct elf_link_hash_entry *),
5051 elf_sort_symbol);
5052
5053 while (weaks != NULL)
5054 {
5055 struct elf_link_hash_entry *hlook;
5056 asection *slook;
5057 bfd_vma vlook;
5058 size_t i, j, idx = 0;
5059
5060 hlook = weaks;
5061 weaks = hlook->u.weakdef;
5062 hlook->u.weakdef = NULL;
5063
5064 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5065 || hlook->root.type == bfd_link_hash_defweak
5066 || hlook->root.type == bfd_link_hash_common
5067 || hlook->root.type == bfd_link_hash_indirect);
5068 slook = hlook->root.u.def.section;
5069 vlook = hlook->root.u.def.value;
5070
5071 i = 0;
5072 j = sym_count;
5073 while (i != j)
5074 {
5075 bfd_signed_vma vdiff;
5076 idx = (i + j) / 2;
5077 h = sorted_sym_hash[idx];
5078 vdiff = vlook - h->root.u.def.value;
5079 if (vdiff < 0)
5080 j = idx;
5081 else if (vdiff > 0)
5082 i = idx + 1;
5083 else
5084 {
5085 int sdiff = slook->id - h->root.u.def.section->id;
5086 if (sdiff < 0)
5087 j = idx;
5088 else if (sdiff > 0)
5089 i = idx + 1;
5090 else
5091 break;
5092 }
5093 }
5094
5095 /* We didn't find a value/section match. */
5096 if (i == j)
5097 continue;
5098
5099 /* With multiple aliases, or when the weak symbol is already
5100 strongly defined, we have multiple matching symbols and
5101 the binary search above may land on any of them. Step
5102 one past the matching symbol(s). */
5103 while (++idx != j)
5104 {
5105 h = sorted_sym_hash[idx];
5106 if (h->root.u.def.section != slook
5107 || h->root.u.def.value != vlook)
5108 break;
5109 }
5110
5111 /* Now look back over the aliases. Since we sorted by size
5112 as well as value and section, we'll choose the one with
5113 the largest size. */
5114 while (idx-- != i)
5115 {
5116 h = sorted_sym_hash[idx];
5117
5118 /* Stop if value or section doesn't match. */
5119 if (h->root.u.def.section != slook
5120 || h->root.u.def.value != vlook)
5121 break;
5122 else if (h != hlook)
5123 {
5124 hlook->u.weakdef = h;
5125
5126 /* If the weak definition is in the list of dynamic
5127 symbols, make sure the real definition is put
5128 there as well. */
5129 if (hlook->dynindx != -1 && h->dynindx == -1)
5130 {
5131 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5132 {
5133 err_free_sym_hash:
5134 free (sorted_sym_hash);
5135 goto error_return;
5136 }
5137 }
5138
5139 /* If the real definition is in the list of dynamic
5140 symbols, make sure the weak definition is put
5141 there as well. If we don't do this, then the
5142 dynamic loader might not merge the entries for the
5143 real definition and the weak definition. */
5144 if (h->dynindx != -1 && hlook->dynindx == -1)
5145 {
5146 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5147 goto err_free_sym_hash;
5148 }
5149 break;
5150 }
5151 }
5152 }
5153
5154 free (sorted_sym_hash);
5155 }
5156
5157 if (bed->check_directives
5158 && !(*bed->check_directives) (abfd, info))
5159 return FALSE;
5160
5161 if (!info->check_relocs_after_open_input
5162 && !_bfd_elf_link_check_relocs (abfd, info))
5163 return FALSE;
5164
5165 /* If this is a non-traditional link, try to optimize the handling
5166 of the .stab/.stabstr sections. */
5167 if (! dynamic
5168 && ! info->traditional_format
5169 && is_elf_hash_table (htab)
5170 && (info->strip != strip_all && info->strip != strip_debugger))
5171 {
5172 asection *stabstr;
5173
5174 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5175 if (stabstr != NULL)
5176 {
5177 bfd_size_type string_offset = 0;
5178 asection *stab;
5179
5180 for (stab = abfd->sections; stab; stab = stab->next)
5181 if (CONST_STRNEQ (stab->name, ".stab")
5182 && (!stab->name[5] ||
5183 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5184 && (stab->flags & SEC_MERGE) == 0
5185 && !bfd_is_abs_section (stab->output_section))
5186 {
5187 struct bfd_elf_section_data *secdata;
5188
5189 secdata = elf_section_data (stab);
5190 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5191 stabstr, &secdata->sec_info,
5192 &string_offset))
5193 goto error_return;
5194 if (secdata->sec_info)
5195 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5196 }
5197 }
5198 }
5199
5200 if (is_elf_hash_table (htab) && add_needed)
5201 {
5202 /* Add this bfd to the loaded list. */
5203 struct elf_link_loaded_list *n;
5204
5205 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5206 if (n == NULL)
5207 goto error_return;
5208 n->abfd = abfd;
5209 n->next = htab->loaded;
5210 htab->loaded = n;
5211 }
5212
5213 return TRUE;
5214
5215 error_free_vers:
5216 if (old_tab != NULL)
5217 free (old_tab);
5218 if (old_strtab != NULL)
5219 free (old_strtab);
5220 if (nondeflt_vers != NULL)
5221 free (nondeflt_vers);
5222 if (extversym != NULL)
5223 free (extversym);
5224 error_free_sym:
5225 if (isymbuf != NULL)
5226 free (isymbuf);
5227 error_return:
5228 return FALSE;
5229 }
5230
5231 /* Return the linker hash table entry of a symbol that might be
5232 satisfied by an archive symbol. Return -1 on error. */
5233
5234 struct elf_link_hash_entry *
5235 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5236 struct bfd_link_info *info,
5237 const char *name)
5238 {
5239 struct elf_link_hash_entry *h;
5240 char *p, *copy;
5241 size_t len, first;
5242
5243 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5244 if (h != NULL)
5245 return h;
5246
5247 /* If this is a default version (the name contains @@), look up the
5248 symbol again with only one `@' as well as without the version.
5249 The effect is that references to the symbol with and without the
5250 version will be matched by the default symbol in the archive. */
5251
5252 p = strchr (name, ELF_VER_CHR);
5253 if (p == NULL || p[1] != ELF_VER_CHR)
5254 return h;
5255
5256 /* First check with only one `@'. */
5257 len = strlen (name);
5258 copy = (char *) bfd_alloc (abfd, len);
5259 if (copy == NULL)
5260 return (struct elf_link_hash_entry *) 0 - 1;
5261
5262 first = p - name + 1;
5263 memcpy (copy, name, first);
5264 memcpy (copy + first, name + first + 1, len - first);
5265
5266 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5267 if (h == NULL)
5268 {
5269 /* We also need to check references to the symbol without the
5270 version. */
5271 copy[first - 1] = '\0';
5272 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5273 FALSE, FALSE, TRUE);
5274 }
5275
5276 bfd_release (abfd, copy);
5277 return h;
5278 }
5279
5280 /* Add symbols from an ELF archive file to the linker hash table. We
5281 don't use _bfd_generic_link_add_archive_symbols because we need to
5282 handle versioned symbols.
5283
5284 Fortunately, ELF archive handling is simpler than that done by
5285 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5286 oddities. In ELF, if we find a symbol in the archive map, and the
5287 symbol is currently undefined, we know that we must pull in that
5288 object file.
5289
5290 Unfortunately, we do have to make multiple passes over the symbol
5291 table until nothing further is resolved. */
5292
5293 static bfd_boolean
5294 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5295 {
5296 symindex c;
5297 unsigned char *included = NULL;
5298 carsym *symdefs;
5299 bfd_boolean loop;
5300 bfd_size_type amt;
5301 const struct elf_backend_data *bed;
5302 struct elf_link_hash_entry * (*archive_symbol_lookup)
5303 (bfd *, struct bfd_link_info *, const char *);
5304
5305 if (! bfd_has_map (abfd))
5306 {
5307 /* An empty archive is a special case. */
5308 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5309 return TRUE;
5310 bfd_set_error (bfd_error_no_armap);
5311 return FALSE;
5312 }
5313
5314 /* Keep track of all symbols we know to be already defined, and all
5315 files we know to be already included. This is to speed up the
5316 second and subsequent passes. */
5317 c = bfd_ardata (abfd)->symdef_count;
5318 if (c == 0)
5319 return TRUE;
5320 amt = c;
5321 amt *= sizeof (*included);
5322 included = (unsigned char *) bfd_zmalloc (amt);
5323 if (included == NULL)
5324 return FALSE;
5325
5326 symdefs = bfd_ardata (abfd)->symdefs;
5327 bed = get_elf_backend_data (abfd);
5328 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5329
5330 do
5331 {
5332 file_ptr last;
5333 symindex i;
5334 carsym *symdef;
5335 carsym *symdefend;
5336
5337 loop = FALSE;
5338 last = -1;
5339
5340 symdef = symdefs;
5341 symdefend = symdef + c;
5342 for (i = 0; symdef < symdefend; symdef++, i++)
5343 {
5344 struct elf_link_hash_entry *h;
5345 bfd *element;
5346 struct bfd_link_hash_entry *undefs_tail;
5347 symindex mark;
5348
5349 if (included[i])
5350 continue;
5351 if (symdef->file_offset == last)
5352 {
5353 included[i] = TRUE;
5354 continue;
5355 }
5356
5357 h = archive_symbol_lookup (abfd, info, symdef->name);
5358 if (h == (struct elf_link_hash_entry *) 0 - 1)
5359 goto error_return;
5360
5361 if (h == NULL)
5362 continue;
5363
5364 if (h->root.type == bfd_link_hash_common)
5365 {
5366 /* We currently have a common symbol. The archive map contains
5367 a reference to this symbol, so we may want to include it. We
5368 only want to include it however, if this archive element
5369 contains a definition of the symbol, not just another common
5370 declaration of it.
5371
5372 Unfortunately some archivers (including GNU ar) will put
5373 declarations of common symbols into their archive maps, as
5374 well as real definitions, so we cannot just go by the archive
5375 map alone. Instead we must read in the element's symbol
5376 table and check that to see what kind of symbol definition
5377 this is. */
5378 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5379 continue;
5380 }
5381 else if (h->root.type != bfd_link_hash_undefined)
5382 {
5383 if (h->root.type != bfd_link_hash_undefweak)
5384 /* Symbol must be defined. Don't check it again. */
5385 included[i] = TRUE;
5386 continue;
5387 }
5388
5389 /* We need to include this archive member. */
5390 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5391 if (element == NULL)
5392 goto error_return;
5393
5394 if (! bfd_check_format (element, bfd_object))
5395 goto error_return;
5396
5397 undefs_tail = info->hash->undefs_tail;
5398
5399 if (!(*info->callbacks
5400 ->add_archive_element) (info, element, symdef->name, &element))
5401 continue;
5402 if (!bfd_link_add_symbols (element, info))
5403 goto error_return;
5404
5405 /* If there are any new undefined symbols, we need to make
5406 another pass through the archive in order to see whether
5407 they can be defined. FIXME: This isn't perfect, because
5408 common symbols wind up on undefs_tail and because an
5409 undefined symbol which is defined later on in this pass
5410 does not require another pass. This isn't a bug, but it
5411 does make the code less efficient than it could be. */
5412 if (undefs_tail != info->hash->undefs_tail)
5413 loop = TRUE;
5414
5415 /* Look backward to mark all symbols from this object file
5416 which we have already seen in this pass. */
5417 mark = i;
5418 do
5419 {
5420 included[mark] = TRUE;
5421 if (mark == 0)
5422 break;
5423 --mark;
5424 }
5425 while (symdefs[mark].file_offset == symdef->file_offset);
5426
5427 /* We mark subsequent symbols from this object file as we go
5428 on through the loop. */
5429 last = symdef->file_offset;
5430 }
5431 }
5432 while (loop);
5433
5434 free (included);
5435
5436 return TRUE;
5437
5438 error_return:
5439 if (included != NULL)
5440 free (included);
5441 return FALSE;
5442 }
5443
5444 /* Given an ELF BFD, add symbols to the global hash table as
5445 appropriate. */
5446
5447 bfd_boolean
5448 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5449 {
5450 switch (bfd_get_format (abfd))
5451 {
5452 case bfd_object:
5453 return elf_link_add_object_symbols (abfd, info);
5454 case bfd_archive:
5455 return elf_link_add_archive_symbols (abfd, info);
5456 default:
5457 bfd_set_error (bfd_error_wrong_format);
5458 return FALSE;
5459 }
5460 }
5461 \f
5462 struct hash_codes_info
5463 {
5464 unsigned long *hashcodes;
5465 bfd_boolean error;
5466 };
5467
5468 /* This function will be called though elf_link_hash_traverse to store
5469 all hash value of the exported symbols in an array. */
5470
5471 static bfd_boolean
5472 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5473 {
5474 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5475 const char *name;
5476 unsigned long ha;
5477 char *alc = NULL;
5478
5479 /* Ignore indirect symbols. These are added by the versioning code. */
5480 if (h->dynindx == -1)
5481 return TRUE;
5482
5483 name = h->root.root.string;
5484 if (h->versioned >= versioned)
5485 {
5486 char *p = strchr (name, ELF_VER_CHR);
5487 if (p != NULL)
5488 {
5489 alc = (char *) bfd_malloc (p - name + 1);
5490 if (alc == NULL)
5491 {
5492 inf->error = TRUE;
5493 return FALSE;
5494 }
5495 memcpy (alc, name, p - name);
5496 alc[p - name] = '\0';
5497 name = alc;
5498 }
5499 }
5500
5501 /* Compute the hash value. */
5502 ha = bfd_elf_hash (name);
5503
5504 /* Store the found hash value in the array given as the argument. */
5505 *(inf->hashcodes)++ = ha;
5506
5507 /* And store it in the struct so that we can put it in the hash table
5508 later. */
5509 h->u.elf_hash_value = ha;
5510
5511 if (alc != NULL)
5512 free (alc);
5513
5514 return TRUE;
5515 }
5516
5517 struct collect_gnu_hash_codes
5518 {
5519 bfd *output_bfd;
5520 const struct elf_backend_data *bed;
5521 unsigned long int nsyms;
5522 unsigned long int maskbits;
5523 unsigned long int *hashcodes;
5524 unsigned long int *hashval;
5525 unsigned long int *indx;
5526 unsigned long int *counts;
5527 bfd_vma *bitmask;
5528 bfd_byte *contents;
5529 long int min_dynindx;
5530 unsigned long int bucketcount;
5531 unsigned long int symindx;
5532 long int local_indx;
5533 long int shift1, shift2;
5534 unsigned long int mask;
5535 bfd_boolean error;
5536 };
5537
5538 /* This function will be called though elf_link_hash_traverse to store
5539 all hash value of the exported symbols in an array. */
5540
5541 static bfd_boolean
5542 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5543 {
5544 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5545 const char *name;
5546 unsigned long ha;
5547 char *alc = NULL;
5548
5549 /* Ignore indirect symbols. These are added by the versioning code. */
5550 if (h->dynindx == -1)
5551 return TRUE;
5552
5553 /* Ignore also local symbols and undefined symbols. */
5554 if (! (*s->bed->elf_hash_symbol) (h))
5555 return TRUE;
5556
5557 name = h->root.root.string;
5558 if (h->versioned >= versioned)
5559 {
5560 char *p = strchr (name, ELF_VER_CHR);
5561 if (p != NULL)
5562 {
5563 alc = (char *) bfd_malloc (p - name + 1);
5564 if (alc == NULL)
5565 {
5566 s->error = TRUE;
5567 return FALSE;
5568 }
5569 memcpy (alc, name, p - name);
5570 alc[p - name] = '\0';
5571 name = alc;
5572 }
5573 }
5574
5575 /* Compute the hash value. */
5576 ha = bfd_elf_gnu_hash (name);
5577
5578 /* Store the found hash value in the array for compute_bucket_count,
5579 and also for .dynsym reordering purposes. */
5580 s->hashcodes[s->nsyms] = ha;
5581 s->hashval[h->dynindx] = ha;
5582 ++s->nsyms;
5583 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5584 s->min_dynindx = h->dynindx;
5585
5586 if (alc != NULL)
5587 free (alc);
5588
5589 return TRUE;
5590 }
5591
5592 /* This function will be called though elf_link_hash_traverse to do
5593 final dynaminc symbol renumbering. */
5594
5595 static bfd_boolean
5596 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5597 {
5598 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5599 unsigned long int bucket;
5600 unsigned long int val;
5601
5602 /* Ignore indirect symbols. */
5603 if (h->dynindx == -1)
5604 return TRUE;
5605
5606 /* Ignore also local symbols and undefined symbols. */
5607 if (! (*s->bed->elf_hash_symbol) (h))
5608 {
5609 if (h->dynindx >= s->min_dynindx)
5610 h->dynindx = s->local_indx++;
5611 return TRUE;
5612 }
5613
5614 bucket = s->hashval[h->dynindx] % s->bucketcount;
5615 val = (s->hashval[h->dynindx] >> s->shift1)
5616 & ((s->maskbits >> s->shift1) - 1);
5617 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5618 s->bitmask[val]
5619 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5620 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5621 if (s->counts[bucket] == 1)
5622 /* Last element terminates the chain. */
5623 val |= 1;
5624 bfd_put_32 (s->output_bfd, val,
5625 s->contents + (s->indx[bucket] - s->symindx) * 4);
5626 --s->counts[bucket];
5627 h->dynindx = s->indx[bucket]++;
5628 return TRUE;
5629 }
5630
5631 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5632
5633 bfd_boolean
5634 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5635 {
5636 return !(h->forced_local
5637 || h->root.type == bfd_link_hash_undefined
5638 || h->root.type == bfd_link_hash_undefweak
5639 || ((h->root.type == bfd_link_hash_defined
5640 || h->root.type == bfd_link_hash_defweak)
5641 && h->root.u.def.section->output_section == NULL));
5642 }
5643
5644 /* Array used to determine the number of hash table buckets to use
5645 based on the number of symbols there are. If there are fewer than
5646 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5647 fewer than 37 we use 17 buckets, and so forth. We never use more
5648 than 32771 buckets. */
5649
5650 static const size_t elf_buckets[] =
5651 {
5652 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5653 16411, 32771, 0
5654 };
5655
5656 /* Compute bucket count for hashing table. We do not use a static set
5657 of possible tables sizes anymore. Instead we determine for all
5658 possible reasonable sizes of the table the outcome (i.e., the
5659 number of collisions etc) and choose the best solution. The
5660 weighting functions are not too simple to allow the table to grow
5661 without bounds. Instead one of the weighting factors is the size.
5662 Therefore the result is always a good payoff between few collisions
5663 (= short chain lengths) and table size. */
5664 static size_t
5665 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5666 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5667 unsigned long int nsyms,
5668 int gnu_hash)
5669 {
5670 size_t best_size = 0;
5671 unsigned long int i;
5672
5673 /* We have a problem here. The following code to optimize the table
5674 size requires an integer type with more the 32 bits. If
5675 BFD_HOST_U_64_BIT is set we know about such a type. */
5676 #ifdef BFD_HOST_U_64_BIT
5677 if (info->optimize)
5678 {
5679 size_t minsize;
5680 size_t maxsize;
5681 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5682 bfd *dynobj = elf_hash_table (info)->dynobj;
5683 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5684 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5685 unsigned long int *counts;
5686 bfd_size_type amt;
5687 unsigned int no_improvement_count = 0;
5688
5689 /* Possible optimization parameters: if we have NSYMS symbols we say
5690 that the hashing table must at least have NSYMS/4 and at most
5691 2*NSYMS buckets. */
5692 minsize = nsyms / 4;
5693 if (minsize == 0)
5694 minsize = 1;
5695 best_size = maxsize = nsyms * 2;
5696 if (gnu_hash)
5697 {
5698 if (minsize < 2)
5699 minsize = 2;
5700 if ((best_size & 31) == 0)
5701 ++best_size;
5702 }
5703
5704 /* Create array where we count the collisions in. We must use bfd_malloc
5705 since the size could be large. */
5706 amt = maxsize;
5707 amt *= sizeof (unsigned long int);
5708 counts = (unsigned long int *) bfd_malloc (amt);
5709 if (counts == NULL)
5710 return 0;
5711
5712 /* Compute the "optimal" size for the hash table. The criteria is a
5713 minimal chain length. The minor criteria is (of course) the size
5714 of the table. */
5715 for (i = minsize; i < maxsize; ++i)
5716 {
5717 /* Walk through the array of hashcodes and count the collisions. */
5718 BFD_HOST_U_64_BIT max;
5719 unsigned long int j;
5720 unsigned long int fact;
5721
5722 if (gnu_hash && (i & 31) == 0)
5723 continue;
5724
5725 memset (counts, '\0', i * sizeof (unsigned long int));
5726
5727 /* Determine how often each hash bucket is used. */
5728 for (j = 0; j < nsyms; ++j)
5729 ++counts[hashcodes[j] % i];
5730
5731 /* For the weight function we need some information about the
5732 pagesize on the target. This is information need not be 100%
5733 accurate. Since this information is not available (so far) we
5734 define it here to a reasonable default value. If it is crucial
5735 to have a better value some day simply define this value. */
5736 # ifndef BFD_TARGET_PAGESIZE
5737 # define BFD_TARGET_PAGESIZE (4096)
5738 # endif
5739
5740 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5741 and the chains. */
5742 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5743
5744 # if 1
5745 /* Variant 1: optimize for short chains. We add the squares
5746 of all the chain lengths (which favors many small chain
5747 over a few long chains). */
5748 for (j = 0; j < i; ++j)
5749 max += counts[j] * counts[j];
5750
5751 /* This adds penalties for the overall size of the table. */
5752 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5753 max *= fact * fact;
5754 # else
5755 /* Variant 2: Optimize a lot more for small table. Here we
5756 also add squares of the size but we also add penalties for
5757 empty slots (the +1 term). */
5758 for (j = 0; j < i; ++j)
5759 max += (1 + counts[j]) * (1 + counts[j]);
5760
5761 /* The overall size of the table is considered, but not as
5762 strong as in variant 1, where it is squared. */
5763 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5764 max *= fact;
5765 # endif
5766
5767 /* Compare with current best results. */
5768 if (max < best_chlen)
5769 {
5770 best_chlen = max;
5771 best_size = i;
5772 no_improvement_count = 0;
5773 }
5774 /* PR 11843: Avoid futile long searches for the best bucket size
5775 when there are a large number of symbols. */
5776 else if (++no_improvement_count == 100)
5777 break;
5778 }
5779
5780 free (counts);
5781 }
5782 else
5783 #endif /* defined (BFD_HOST_U_64_BIT) */
5784 {
5785 /* This is the fallback solution if no 64bit type is available or if we
5786 are not supposed to spend much time on optimizations. We select the
5787 bucket count using a fixed set of numbers. */
5788 for (i = 0; elf_buckets[i] != 0; i++)
5789 {
5790 best_size = elf_buckets[i];
5791 if (nsyms < elf_buckets[i + 1])
5792 break;
5793 }
5794 if (gnu_hash && best_size < 2)
5795 best_size = 2;
5796 }
5797
5798 return best_size;
5799 }
5800
5801 /* Size any SHT_GROUP section for ld -r. */
5802
5803 bfd_boolean
5804 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5805 {
5806 bfd *ibfd;
5807
5808 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5809 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5810 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5811 return FALSE;
5812 return TRUE;
5813 }
5814
5815 /* Set a default stack segment size. The value in INFO wins. If it
5816 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5817 undefined it is initialized. */
5818
5819 bfd_boolean
5820 bfd_elf_stack_segment_size (bfd *output_bfd,
5821 struct bfd_link_info *info,
5822 const char *legacy_symbol,
5823 bfd_vma default_size)
5824 {
5825 struct elf_link_hash_entry *h = NULL;
5826
5827 /* Look for legacy symbol. */
5828 if (legacy_symbol)
5829 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5830 FALSE, FALSE, FALSE);
5831 if (h && (h->root.type == bfd_link_hash_defined
5832 || h->root.type == bfd_link_hash_defweak)
5833 && h->def_regular
5834 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5835 {
5836 /* The symbol has no type if specified on the command line. */
5837 h->type = STT_OBJECT;
5838 if (info->stacksize)
5839 /* xgettext:c-format */
5840 _bfd_error_handler (_("%B: stack size specified and %s set"),
5841 output_bfd, legacy_symbol);
5842 else if (h->root.u.def.section != bfd_abs_section_ptr)
5843 /* xgettext:c-format */
5844 _bfd_error_handler (_("%B: %s not absolute"),
5845 output_bfd, legacy_symbol);
5846 else
5847 info->stacksize = h->root.u.def.value;
5848 }
5849
5850 if (!info->stacksize)
5851 /* If the user didn't set a size, or explicitly inhibit the
5852 size, set it now. */
5853 info->stacksize = default_size;
5854
5855 /* Provide the legacy symbol, if it is referenced. */
5856 if (h && (h->root.type == bfd_link_hash_undefined
5857 || h->root.type == bfd_link_hash_undefweak))
5858 {
5859 struct bfd_link_hash_entry *bh = NULL;
5860
5861 if (!(_bfd_generic_link_add_one_symbol
5862 (info, output_bfd, legacy_symbol,
5863 BSF_GLOBAL, bfd_abs_section_ptr,
5864 info->stacksize >= 0 ? info->stacksize : 0,
5865 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5866 return FALSE;
5867
5868 h = (struct elf_link_hash_entry *) bh;
5869 h->def_regular = 1;
5870 h->type = STT_OBJECT;
5871 }
5872
5873 return TRUE;
5874 }
5875
5876 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5877
5878 struct elf_gc_sweep_symbol_info
5879 {
5880 struct bfd_link_info *info;
5881 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5882 bfd_boolean);
5883 };
5884
5885 static bfd_boolean
5886 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5887 {
5888 if (!h->mark
5889 && (((h->root.type == bfd_link_hash_defined
5890 || h->root.type == bfd_link_hash_defweak)
5891 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5892 && h->root.u.def.section->gc_mark))
5893 || h->root.type == bfd_link_hash_undefined
5894 || h->root.type == bfd_link_hash_undefweak))
5895 {
5896 struct elf_gc_sweep_symbol_info *inf;
5897
5898 inf = (struct elf_gc_sweep_symbol_info *) data;
5899 (*inf->hide_symbol) (inf->info, h, TRUE);
5900 h->def_regular = 0;
5901 h->ref_regular = 0;
5902 h->ref_regular_nonweak = 0;
5903 }
5904
5905 return TRUE;
5906 }
5907
5908 /* Set up the sizes and contents of the ELF dynamic sections. This is
5909 called by the ELF linker emulation before_allocation routine. We
5910 must set the sizes of the sections before the linker sets the
5911 addresses of the various sections. */
5912
5913 bfd_boolean
5914 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5915 const char *soname,
5916 const char *rpath,
5917 const char *filter_shlib,
5918 const char *audit,
5919 const char *depaudit,
5920 const char * const *auxiliary_filters,
5921 struct bfd_link_info *info,
5922 asection **sinterpptr)
5923 {
5924 size_t soname_indx;
5925 bfd *dynobj;
5926 const struct elf_backend_data *bed;
5927
5928 *sinterpptr = NULL;
5929
5930 soname_indx = (size_t) -1;
5931
5932 if (!is_elf_hash_table (info->hash))
5933 return TRUE;
5934
5935 dynobj = elf_hash_table (info)->dynobj;
5936
5937 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5938 {
5939 struct bfd_elf_version_tree *verdefs;
5940 struct elf_info_failed asvinfo;
5941 struct bfd_elf_version_tree *t;
5942 struct bfd_elf_version_expr *d;
5943 struct elf_info_failed eif;
5944 bfd_boolean all_defined;
5945 asection *s;
5946
5947 eif.info = info;
5948 eif.failed = FALSE;
5949
5950 /* If we are supposed to export all symbols into the dynamic symbol
5951 table (this is not the normal case), then do so. */
5952 if (info->export_dynamic
5953 || (bfd_link_executable (info) && info->dynamic))
5954 {
5955 elf_link_hash_traverse (elf_hash_table (info),
5956 _bfd_elf_export_symbol,
5957 &eif);
5958 if (eif.failed)
5959 return FALSE;
5960 }
5961
5962 /* Make all global versions with definition. */
5963 for (t = info->version_info; t != NULL; t = t->next)
5964 for (d = t->globals.list; d != NULL; d = d->next)
5965 if (!d->symver && d->literal)
5966 {
5967 const char *verstr, *name;
5968 size_t namelen, verlen, newlen;
5969 char *newname, *p, leading_char;
5970 struct elf_link_hash_entry *newh;
5971
5972 leading_char = bfd_get_symbol_leading_char (output_bfd);
5973 name = d->pattern;
5974 namelen = strlen (name) + (leading_char != '\0');
5975 verstr = t->name;
5976 verlen = strlen (verstr);
5977 newlen = namelen + verlen + 3;
5978
5979 newname = (char *) bfd_malloc (newlen);
5980 if (newname == NULL)
5981 return FALSE;
5982 newname[0] = leading_char;
5983 memcpy (newname + (leading_char != '\0'), name, namelen);
5984
5985 /* Check the hidden versioned definition. */
5986 p = newname + namelen;
5987 *p++ = ELF_VER_CHR;
5988 memcpy (p, verstr, verlen + 1);
5989 newh = elf_link_hash_lookup (elf_hash_table (info),
5990 newname, FALSE, FALSE,
5991 FALSE);
5992 if (newh == NULL
5993 || (newh->root.type != bfd_link_hash_defined
5994 && newh->root.type != bfd_link_hash_defweak))
5995 {
5996 /* Check the default versioned definition. */
5997 *p++ = ELF_VER_CHR;
5998 memcpy (p, verstr, verlen + 1);
5999 newh = elf_link_hash_lookup (elf_hash_table (info),
6000 newname, FALSE, FALSE,
6001 FALSE);
6002 }
6003 free (newname);
6004
6005 /* Mark this version if there is a definition and it is
6006 not defined in a shared object. */
6007 if (newh != NULL
6008 && !newh->def_dynamic
6009 && (newh->root.type == bfd_link_hash_defined
6010 || newh->root.type == bfd_link_hash_defweak))
6011 d->symver = 1;
6012 }
6013
6014 /* Attach all the symbols to their version information. */
6015 asvinfo.info = info;
6016 asvinfo.failed = FALSE;
6017
6018 elf_link_hash_traverse (elf_hash_table (info),
6019 _bfd_elf_link_assign_sym_version,
6020 &asvinfo);
6021 if (asvinfo.failed)
6022 return FALSE;
6023
6024 if (!info->allow_undefined_version)
6025 {
6026 /* Check if all global versions have a definition. */
6027 all_defined = TRUE;
6028 for (t = info->version_info; t != NULL; t = t->next)
6029 for (d = t->globals.list; d != NULL; d = d->next)
6030 if (d->literal && !d->symver && !d->script)
6031 {
6032 _bfd_error_handler
6033 (_("%s: undefined version: %s"),
6034 d->pattern, t->name);
6035 all_defined = FALSE;
6036 }
6037
6038 if (!all_defined)
6039 {
6040 bfd_set_error (bfd_error_bad_value);
6041 return FALSE;
6042 }
6043 }
6044
6045 /* Set up the version definition section. */
6046 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6047 BFD_ASSERT (s != NULL);
6048
6049 /* We may have created additional version definitions if we are
6050 just linking a regular application. */
6051 verdefs = info->version_info;
6052
6053 /* Skip anonymous version tag. */
6054 if (verdefs != NULL && verdefs->vernum == 0)
6055 verdefs = verdefs->next;
6056
6057 if (verdefs == NULL && !info->create_default_symver)
6058 s->flags |= SEC_EXCLUDE;
6059 else
6060 {
6061 unsigned int cdefs;
6062 bfd_size_type size;
6063 bfd_byte *p;
6064 Elf_Internal_Verdef def;
6065 Elf_Internal_Verdaux defaux;
6066 struct bfd_link_hash_entry *bh;
6067 struct elf_link_hash_entry *h;
6068 const char *name;
6069
6070 cdefs = 0;
6071 size = 0;
6072
6073 /* Make space for the base version. */
6074 size += sizeof (Elf_External_Verdef);
6075 size += sizeof (Elf_External_Verdaux);
6076 ++cdefs;
6077
6078 /* Make space for the default version. */
6079 if (info->create_default_symver)
6080 {
6081 size += sizeof (Elf_External_Verdef);
6082 ++cdefs;
6083 }
6084
6085 for (t = verdefs; t != NULL; t = t->next)
6086 {
6087 struct bfd_elf_version_deps *n;
6088
6089 /* Don't emit base version twice. */
6090 if (t->vernum == 0)
6091 continue;
6092
6093 size += sizeof (Elf_External_Verdef);
6094 size += sizeof (Elf_External_Verdaux);
6095 ++cdefs;
6096
6097 for (n = t->deps; n != NULL; n = n->next)
6098 size += sizeof (Elf_External_Verdaux);
6099 }
6100
6101 s->size = size;
6102 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6103 if (s->contents == NULL && s->size != 0)
6104 return FALSE;
6105
6106 /* Fill in the version definition section. */
6107
6108 p = s->contents;
6109
6110 def.vd_version = VER_DEF_CURRENT;
6111 def.vd_flags = VER_FLG_BASE;
6112 def.vd_ndx = 1;
6113 def.vd_cnt = 1;
6114 if (info->create_default_symver)
6115 {
6116 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6117 def.vd_next = sizeof (Elf_External_Verdef);
6118 }
6119 else
6120 {
6121 def.vd_aux = sizeof (Elf_External_Verdef);
6122 def.vd_next = (sizeof (Elf_External_Verdef)
6123 + sizeof (Elf_External_Verdaux));
6124 }
6125
6126 if (soname_indx != (size_t) -1)
6127 {
6128 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6129 soname_indx);
6130 def.vd_hash = bfd_elf_hash (soname);
6131 defaux.vda_name = soname_indx;
6132 name = soname;
6133 }
6134 else
6135 {
6136 size_t indx;
6137
6138 name = lbasename (output_bfd->filename);
6139 def.vd_hash = bfd_elf_hash (name);
6140 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6141 name, FALSE);
6142 if (indx == (size_t) -1)
6143 return FALSE;
6144 defaux.vda_name = indx;
6145 }
6146 defaux.vda_next = 0;
6147
6148 _bfd_elf_swap_verdef_out (output_bfd, &def,
6149 (Elf_External_Verdef *) p);
6150 p += sizeof (Elf_External_Verdef);
6151 if (info->create_default_symver)
6152 {
6153 /* Add a symbol representing this version. */
6154 bh = NULL;
6155 if (! (_bfd_generic_link_add_one_symbol
6156 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6157 0, NULL, FALSE,
6158 get_elf_backend_data (dynobj)->collect, &bh)))
6159 return FALSE;
6160 h = (struct elf_link_hash_entry *) bh;
6161 h->non_elf = 0;
6162 h->def_regular = 1;
6163 h->type = STT_OBJECT;
6164 h->verinfo.vertree = NULL;
6165
6166 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6167 return FALSE;
6168
6169 /* Create a duplicate of the base version with the same
6170 aux block, but different flags. */
6171 def.vd_flags = 0;
6172 def.vd_ndx = 2;
6173 def.vd_aux = sizeof (Elf_External_Verdef);
6174 if (verdefs)
6175 def.vd_next = (sizeof (Elf_External_Verdef)
6176 + sizeof (Elf_External_Verdaux));
6177 else
6178 def.vd_next = 0;
6179 _bfd_elf_swap_verdef_out (output_bfd, &def,
6180 (Elf_External_Verdef *) p);
6181 p += sizeof (Elf_External_Verdef);
6182 }
6183 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6184 (Elf_External_Verdaux *) p);
6185 p += sizeof (Elf_External_Verdaux);
6186
6187 for (t = verdefs; t != NULL; t = t->next)
6188 {
6189 unsigned int cdeps;
6190 struct bfd_elf_version_deps *n;
6191
6192 /* Don't emit the base version twice. */
6193 if (t->vernum == 0)
6194 continue;
6195
6196 cdeps = 0;
6197 for (n = t->deps; n != NULL; n = n->next)
6198 ++cdeps;
6199
6200 /* Add a symbol representing this version. */
6201 bh = NULL;
6202 if (! (_bfd_generic_link_add_one_symbol
6203 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6204 0, NULL, FALSE,
6205 get_elf_backend_data (dynobj)->collect, &bh)))
6206 return FALSE;
6207 h = (struct elf_link_hash_entry *) bh;
6208 h->non_elf = 0;
6209 h->def_regular = 1;
6210 h->type = STT_OBJECT;
6211 h->verinfo.vertree = t;
6212
6213 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6214 return FALSE;
6215
6216 def.vd_version = VER_DEF_CURRENT;
6217 def.vd_flags = 0;
6218 if (t->globals.list == NULL
6219 && t->locals.list == NULL
6220 && ! t->used)
6221 def.vd_flags |= VER_FLG_WEAK;
6222 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6223 def.vd_cnt = cdeps + 1;
6224 def.vd_hash = bfd_elf_hash (t->name);
6225 def.vd_aux = sizeof (Elf_External_Verdef);
6226 def.vd_next = 0;
6227
6228 /* If a basever node is next, it *must* be the last node in
6229 the chain, otherwise Verdef construction breaks. */
6230 if (t->next != NULL && t->next->vernum == 0)
6231 BFD_ASSERT (t->next->next == NULL);
6232
6233 if (t->next != NULL && t->next->vernum != 0)
6234 def.vd_next = (sizeof (Elf_External_Verdef)
6235 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6236
6237 _bfd_elf_swap_verdef_out (output_bfd, &def,
6238 (Elf_External_Verdef *) p);
6239 p += sizeof (Elf_External_Verdef);
6240
6241 defaux.vda_name = h->dynstr_index;
6242 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6243 h->dynstr_index);
6244 defaux.vda_next = 0;
6245 if (t->deps != NULL)
6246 defaux.vda_next = sizeof (Elf_External_Verdaux);
6247 t->name_indx = defaux.vda_name;
6248
6249 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6250 (Elf_External_Verdaux *) p);
6251 p += sizeof (Elf_External_Verdaux);
6252
6253 for (n = t->deps; n != NULL; n = n->next)
6254 {
6255 if (n->version_needed == NULL)
6256 {
6257 /* This can happen if there was an error in the
6258 version script. */
6259 defaux.vda_name = 0;
6260 }
6261 else
6262 {
6263 defaux.vda_name = n->version_needed->name_indx;
6264 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6265 defaux.vda_name);
6266 }
6267 if (n->next == NULL)
6268 defaux.vda_next = 0;
6269 else
6270 defaux.vda_next = sizeof (Elf_External_Verdaux);
6271
6272 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6273 (Elf_External_Verdaux *) p);
6274 p += sizeof (Elf_External_Verdaux);
6275 }
6276 }
6277
6278 elf_tdata (output_bfd)->cverdefs = cdefs;
6279 }
6280
6281 /* Work out the size of the version reference section. */
6282
6283 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6284 BFD_ASSERT (s != NULL);
6285 {
6286 struct elf_find_verdep_info sinfo;
6287
6288 sinfo.info = info;
6289 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6290 if (sinfo.vers == 0)
6291 sinfo.vers = 1;
6292 sinfo.failed = FALSE;
6293
6294 elf_link_hash_traverse (elf_hash_table (info),
6295 _bfd_elf_link_find_version_dependencies,
6296 &sinfo);
6297 if (sinfo.failed)
6298 return FALSE;
6299
6300 if (elf_tdata (output_bfd)->verref == NULL)
6301 s->flags |= SEC_EXCLUDE;
6302 else
6303 {
6304 Elf_Internal_Verneed *vn;
6305 unsigned int size;
6306 unsigned int crefs;
6307 bfd_byte *p;
6308
6309 /* Build the version dependency section. */
6310 size = 0;
6311 crefs = 0;
6312 for (vn = elf_tdata (output_bfd)->verref;
6313 vn != NULL;
6314 vn = vn->vn_nextref)
6315 {
6316 Elf_Internal_Vernaux *a;
6317
6318 size += sizeof (Elf_External_Verneed);
6319 ++crefs;
6320 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6321 size += sizeof (Elf_External_Vernaux);
6322 }
6323
6324 s->size = size;
6325 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6326 if (s->contents == NULL)
6327 return FALSE;
6328
6329 p = s->contents;
6330 for (vn = elf_tdata (output_bfd)->verref;
6331 vn != NULL;
6332 vn = vn->vn_nextref)
6333 {
6334 unsigned int caux;
6335 Elf_Internal_Vernaux *a;
6336 size_t indx;
6337
6338 caux = 0;
6339 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6340 ++caux;
6341
6342 vn->vn_version = VER_NEED_CURRENT;
6343 vn->vn_cnt = caux;
6344 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6345 elf_dt_name (vn->vn_bfd) != NULL
6346 ? elf_dt_name (vn->vn_bfd)
6347 : lbasename (vn->vn_bfd->filename),
6348 FALSE);
6349 if (indx == (size_t) -1)
6350 return FALSE;
6351 vn->vn_file = indx;
6352 vn->vn_aux = sizeof (Elf_External_Verneed);
6353 if (vn->vn_nextref == NULL)
6354 vn->vn_next = 0;
6355 else
6356 vn->vn_next = (sizeof (Elf_External_Verneed)
6357 + caux * sizeof (Elf_External_Vernaux));
6358
6359 _bfd_elf_swap_verneed_out (output_bfd, vn,
6360 (Elf_External_Verneed *) p);
6361 p += sizeof (Elf_External_Verneed);
6362
6363 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6364 {
6365 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6366 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6367 a->vna_nodename, FALSE);
6368 if (indx == (size_t) -1)
6369 return FALSE;
6370 a->vna_name = indx;
6371 if (a->vna_nextptr == NULL)
6372 a->vna_next = 0;
6373 else
6374 a->vna_next = sizeof (Elf_External_Vernaux);
6375
6376 _bfd_elf_swap_vernaux_out (output_bfd, a,
6377 (Elf_External_Vernaux *) p);
6378 p += sizeof (Elf_External_Vernaux);
6379 }
6380 }
6381
6382 elf_tdata (output_bfd)->cverrefs = crefs;
6383 }
6384 }
6385 }
6386
6387 bed = get_elf_backend_data (output_bfd);
6388
6389 if (info->gc_sections && bed->can_gc_sections)
6390 {
6391 struct elf_gc_sweep_symbol_info sweep_info;
6392 unsigned long section_sym_count;
6393
6394 /* Remove the symbols that were in the swept sections from the
6395 dynamic symbol table. GCFIXME: Anyone know how to get them
6396 out of the static symbol table as well? */
6397 sweep_info.info = info;
6398 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6399 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6400 &sweep_info);
6401
6402 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6403 }
6404
6405 /* Any syms created from now on start with -1 in
6406 got.refcount/offset and plt.refcount/offset. */
6407 elf_hash_table (info)->init_got_refcount
6408 = elf_hash_table (info)->init_got_offset;
6409 elf_hash_table (info)->init_plt_refcount
6410 = elf_hash_table (info)->init_plt_offset;
6411
6412 if (bfd_link_relocatable (info)
6413 && !_bfd_elf_size_group_sections (info))
6414 return FALSE;
6415
6416 /* The backend may have to create some sections regardless of whether
6417 we're dynamic or not. */
6418 if (bed->elf_backend_always_size_sections
6419 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6420 return FALSE;
6421
6422 /* Determine any GNU_STACK segment requirements, after the backend
6423 has had a chance to set a default segment size. */
6424 if (info->execstack)
6425 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6426 else if (info->noexecstack)
6427 elf_stack_flags (output_bfd) = PF_R | PF_W;
6428 else
6429 {
6430 bfd *inputobj;
6431 asection *notesec = NULL;
6432 int exec = 0;
6433
6434 for (inputobj = info->input_bfds;
6435 inputobj;
6436 inputobj = inputobj->link.next)
6437 {
6438 asection *s;
6439
6440 if (inputobj->flags
6441 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6442 continue;
6443 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6444 if (s)
6445 {
6446 if (s->flags & SEC_CODE)
6447 exec = PF_X;
6448 notesec = s;
6449 }
6450 else if (bed->default_execstack)
6451 exec = PF_X;
6452 }
6453 if (notesec || info->stacksize > 0)
6454 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6455 if (notesec && exec && bfd_link_relocatable (info)
6456 && notesec->output_section != bfd_abs_section_ptr)
6457 notesec->output_section->flags |= SEC_CODE;
6458 }
6459
6460 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6461 {
6462 struct elf_info_failed eif;
6463 struct elf_link_hash_entry *h;
6464 asection *dynstr;
6465 asection *s;
6466
6467 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6468 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6469
6470 if (soname != NULL)
6471 {
6472 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6473 soname, TRUE);
6474 if (soname_indx == (size_t) -1
6475 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6476 return FALSE;
6477 }
6478
6479 if (info->symbolic)
6480 {
6481 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6482 return FALSE;
6483 info->flags |= DF_SYMBOLIC;
6484 }
6485
6486 if (rpath != NULL)
6487 {
6488 size_t indx;
6489 bfd_vma tag;
6490
6491 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6492 TRUE);
6493 if (indx == (size_t) -1)
6494 return FALSE;
6495
6496 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6497 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6498 return FALSE;
6499 }
6500
6501 if (filter_shlib != NULL)
6502 {
6503 size_t indx;
6504
6505 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6506 filter_shlib, TRUE);
6507 if (indx == (size_t) -1
6508 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6509 return FALSE;
6510 }
6511
6512 if (auxiliary_filters != NULL)
6513 {
6514 const char * const *p;
6515
6516 for (p = auxiliary_filters; *p != NULL; p++)
6517 {
6518 size_t indx;
6519
6520 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6521 *p, TRUE);
6522 if (indx == (size_t) -1
6523 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6524 return FALSE;
6525 }
6526 }
6527
6528 if (audit != NULL)
6529 {
6530 size_t indx;
6531
6532 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6533 TRUE);
6534 if (indx == (size_t) -1
6535 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6536 return FALSE;
6537 }
6538
6539 if (depaudit != NULL)
6540 {
6541 size_t indx;
6542
6543 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6544 TRUE);
6545 if (indx == (size_t) -1
6546 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6547 return FALSE;
6548 }
6549
6550 eif.info = info;
6551 eif.failed = FALSE;
6552
6553 /* Find all symbols which were defined in a dynamic object and make
6554 the backend pick a reasonable value for them. */
6555 elf_link_hash_traverse (elf_hash_table (info),
6556 _bfd_elf_adjust_dynamic_symbol,
6557 &eif);
6558 if (eif.failed)
6559 return FALSE;
6560
6561 /* Add some entries to the .dynamic section. We fill in some of the
6562 values later, in bfd_elf_final_link, but we must add the entries
6563 now so that we know the final size of the .dynamic section. */
6564
6565 /* If there are initialization and/or finalization functions to
6566 call then add the corresponding DT_INIT/DT_FINI entries. */
6567 h = (info->init_function
6568 ? elf_link_hash_lookup (elf_hash_table (info),
6569 info->init_function, FALSE,
6570 FALSE, FALSE)
6571 : NULL);
6572 if (h != NULL
6573 && (h->ref_regular
6574 || h->def_regular))
6575 {
6576 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6577 return FALSE;
6578 }
6579 h = (info->fini_function
6580 ? elf_link_hash_lookup (elf_hash_table (info),
6581 info->fini_function, FALSE,
6582 FALSE, FALSE)
6583 : NULL);
6584 if (h != NULL
6585 && (h->ref_regular
6586 || h->def_regular))
6587 {
6588 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6589 return FALSE;
6590 }
6591
6592 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6593 if (s != NULL && s->linker_has_input)
6594 {
6595 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6596 if (! bfd_link_executable (info))
6597 {
6598 bfd *sub;
6599 asection *o;
6600
6601 for (sub = info->input_bfds; sub != NULL;
6602 sub = sub->link.next)
6603 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6604 for (o = sub->sections; o != NULL; o = o->next)
6605 if (elf_section_data (o)->this_hdr.sh_type
6606 == SHT_PREINIT_ARRAY)
6607 {
6608 _bfd_error_handler
6609 (_("%B: .preinit_array section is not allowed in DSO"),
6610 sub);
6611 break;
6612 }
6613
6614 bfd_set_error (bfd_error_nonrepresentable_section);
6615 return FALSE;
6616 }
6617
6618 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6619 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6620 return FALSE;
6621 }
6622 s = bfd_get_section_by_name (output_bfd, ".init_array");
6623 if (s != NULL && s->linker_has_input)
6624 {
6625 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6626 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6627 return FALSE;
6628 }
6629 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6630 if (s != NULL && s->linker_has_input)
6631 {
6632 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6633 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6634 return FALSE;
6635 }
6636
6637 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6638 /* If .dynstr is excluded from the link, we don't want any of
6639 these tags. Strictly, we should be checking each section
6640 individually; This quick check covers for the case where
6641 someone does a /DISCARD/ : { *(*) }. */
6642 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6643 {
6644 bfd_size_type strsize;
6645
6646 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6647 if ((info->emit_hash
6648 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6649 || (info->emit_gnu_hash
6650 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6651 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6652 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6653 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6654 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6655 bed->s->sizeof_sym))
6656 return FALSE;
6657 }
6658 }
6659
6660 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6661 return FALSE;
6662
6663 /* The backend must work out the sizes of all the other dynamic
6664 sections. */
6665 if (dynobj != NULL
6666 && bed->elf_backend_size_dynamic_sections != NULL
6667 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6668 return FALSE;
6669
6670 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6671 {
6672 unsigned long section_sym_count;
6673
6674 if (elf_tdata (output_bfd)->cverdefs)
6675 {
6676 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6677
6678 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6679 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6680 return FALSE;
6681 }
6682
6683 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6684 {
6685 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6686 return FALSE;
6687 }
6688 else if (info->flags & DF_BIND_NOW)
6689 {
6690 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6691 return FALSE;
6692 }
6693
6694 if (info->flags_1)
6695 {
6696 if (bfd_link_executable (info))
6697 info->flags_1 &= ~ (DF_1_INITFIRST
6698 | DF_1_NODELETE
6699 | DF_1_NOOPEN);
6700 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6701 return FALSE;
6702 }
6703
6704 if (elf_tdata (output_bfd)->cverrefs)
6705 {
6706 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6707
6708 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6709 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6710 return FALSE;
6711 }
6712
6713 if ((elf_tdata (output_bfd)->cverrefs == 0
6714 && elf_tdata (output_bfd)->cverdefs == 0)
6715 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6716 &section_sym_count) == 0)
6717 {
6718 asection *s;
6719
6720 s = bfd_get_linker_section (dynobj, ".gnu.version");
6721 s->flags |= SEC_EXCLUDE;
6722 }
6723 }
6724 return TRUE;
6725 }
6726
6727 /* Find the first non-excluded output section. We'll use its
6728 section symbol for some emitted relocs. */
6729 void
6730 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6731 {
6732 asection *s;
6733
6734 for (s = output_bfd->sections; s != NULL; s = s->next)
6735 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6736 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6737 {
6738 elf_hash_table (info)->text_index_section = s;
6739 break;
6740 }
6741 }
6742
6743 /* Find two non-excluded output sections, one for code, one for data.
6744 We'll use their section symbols for some emitted relocs. */
6745 void
6746 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6747 {
6748 asection *s;
6749
6750 /* Data first, since setting text_index_section changes
6751 _bfd_elf_link_omit_section_dynsym. */
6752 for (s = output_bfd->sections; s != NULL; s = s->next)
6753 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6754 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6755 {
6756 elf_hash_table (info)->data_index_section = s;
6757 break;
6758 }
6759
6760 for (s = output_bfd->sections; s != NULL; s = s->next)
6761 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6762 == (SEC_ALLOC | SEC_READONLY))
6763 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6764 {
6765 elf_hash_table (info)->text_index_section = s;
6766 break;
6767 }
6768
6769 if (elf_hash_table (info)->text_index_section == NULL)
6770 elf_hash_table (info)->text_index_section
6771 = elf_hash_table (info)->data_index_section;
6772 }
6773
6774 bfd_boolean
6775 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6776 {
6777 const struct elf_backend_data *bed;
6778
6779 if (!is_elf_hash_table (info->hash))
6780 return TRUE;
6781
6782 bed = get_elf_backend_data (output_bfd);
6783 (*bed->elf_backend_init_index_section) (output_bfd, info);
6784
6785 if (elf_hash_table (info)->dynamic_sections_created)
6786 {
6787 bfd *dynobj;
6788 asection *s;
6789 bfd_size_type dynsymcount;
6790 unsigned long section_sym_count;
6791 unsigned int dtagcount;
6792
6793 dynobj = elf_hash_table (info)->dynobj;
6794
6795 /* Assign dynsym indicies. In a shared library we generate a
6796 section symbol for each output section, which come first.
6797 Next come all of the back-end allocated local dynamic syms,
6798 followed by the rest of the global symbols. */
6799
6800 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6801 &section_sym_count);
6802
6803 /* Work out the size of the symbol version section. */
6804 s = bfd_get_linker_section (dynobj, ".gnu.version");
6805 BFD_ASSERT (s != NULL);
6806 if ((s->flags & SEC_EXCLUDE) == 0)
6807 {
6808 s->size = dynsymcount * sizeof (Elf_External_Versym);
6809 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6810 if (s->contents == NULL)
6811 return FALSE;
6812
6813 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6814 return FALSE;
6815 }
6816
6817 /* Set the size of the .dynsym and .hash sections. We counted
6818 the number of dynamic symbols in elf_link_add_object_symbols.
6819 We will build the contents of .dynsym and .hash when we build
6820 the final symbol table, because until then we do not know the
6821 correct value to give the symbols. We built the .dynstr
6822 section as we went along in elf_link_add_object_symbols. */
6823 s = elf_hash_table (info)->dynsym;
6824 BFD_ASSERT (s != NULL);
6825 s->size = dynsymcount * bed->s->sizeof_sym;
6826
6827 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6828 if (s->contents == NULL)
6829 return FALSE;
6830
6831 /* The first entry in .dynsym is a dummy symbol. Clear all the
6832 section syms, in case we don't output them all. */
6833 ++section_sym_count;
6834 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6835
6836 elf_hash_table (info)->bucketcount = 0;
6837
6838 /* Compute the size of the hashing table. As a side effect this
6839 computes the hash values for all the names we export. */
6840 if (info->emit_hash)
6841 {
6842 unsigned long int *hashcodes;
6843 struct hash_codes_info hashinf;
6844 bfd_size_type amt;
6845 unsigned long int nsyms;
6846 size_t bucketcount;
6847 size_t hash_entry_size;
6848
6849 /* Compute the hash values for all exported symbols. At the same
6850 time store the values in an array so that we could use them for
6851 optimizations. */
6852 amt = dynsymcount * sizeof (unsigned long int);
6853 hashcodes = (unsigned long int *) bfd_malloc (amt);
6854 if (hashcodes == NULL)
6855 return FALSE;
6856 hashinf.hashcodes = hashcodes;
6857 hashinf.error = FALSE;
6858
6859 /* Put all hash values in HASHCODES. */
6860 elf_link_hash_traverse (elf_hash_table (info),
6861 elf_collect_hash_codes, &hashinf);
6862 if (hashinf.error)
6863 {
6864 free (hashcodes);
6865 return FALSE;
6866 }
6867
6868 nsyms = hashinf.hashcodes - hashcodes;
6869 bucketcount
6870 = compute_bucket_count (info, hashcodes, nsyms, 0);
6871 free (hashcodes);
6872
6873 if (bucketcount == 0)
6874 return FALSE;
6875
6876 elf_hash_table (info)->bucketcount = bucketcount;
6877
6878 s = bfd_get_linker_section (dynobj, ".hash");
6879 BFD_ASSERT (s != NULL);
6880 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6881 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6882 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6883 if (s->contents == NULL)
6884 return FALSE;
6885
6886 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6887 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6888 s->contents + hash_entry_size);
6889 }
6890
6891 if (info->emit_gnu_hash)
6892 {
6893 size_t i, cnt;
6894 unsigned char *contents;
6895 struct collect_gnu_hash_codes cinfo;
6896 bfd_size_type amt;
6897 size_t bucketcount;
6898
6899 memset (&cinfo, 0, sizeof (cinfo));
6900
6901 /* Compute the hash values for all exported symbols. At the same
6902 time store the values in an array so that we could use them for
6903 optimizations. */
6904 amt = dynsymcount * 2 * sizeof (unsigned long int);
6905 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6906 if (cinfo.hashcodes == NULL)
6907 return FALSE;
6908
6909 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6910 cinfo.min_dynindx = -1;
6911 cinfo.output_bfd = output_bfd;
6912 cinfo.bed = bed;
6913
6914 /* Put all hash values in HASHCODES. */
6915 elf_link_hash_traverse (elf_hash_table (info),
6916 elf_collect_gnu_hash_codes, &cinfo);
6917 if (cinfo.error)
6918 {
6919 free (cinfo.hashcodes);
6920 return FALSE;
6921 }
6922
6923 bucketcount
6924 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6925
6926 if (bucketcount == 0)
6927 {
6928 free (cinfo.hashcodes);
6929 return FALSE;
6930 }
6931
6932 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6933 BFD_ASSERT (s != NULL);
6934
6935 if (cinfo.nsyms == 0)
6936 {
6937 /* Empty .gnu.hash section is special. */
6938 BFD_ASSERT (cinfo.min_dynindx == -1);
6939 free (cinfo.hashcodes);
6940 s->size = 5 * 4 + bed->s->arch_size / 8;
6941 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6942 if (contents == NULL)
6943 return FALSE;
6944 s->contents = contents;
6945 /* 1 empty bucket. */
6946 bfd_put_32 (output_bfd, 1, contents);
6947 /* SYMIDX above the special symbol 0. */
6948 bfd_put_32 (output_bfd, 1, contents + 4);
6949 /* Just one word for bitmask. */
6950 bfd_put_32 (output_bfd, 1, contents + 8);
6951 /* Only hash fn bloom filter. */
6952 bfd_put_32 (output_bfd, 0, contents + 12);
6953 /* No hashes are valid - empty bitmask. */
6954 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6955 /* No hashes in the only bucket. */
6956 bfd_put_32 (output_bfd, 0,
6957 contents + 16 + bed->s->arch_size / 8);
6958 }
6959 else
6960 {
6961 unsigned long int maskwords, maskbitslog2, x;
6962 BFD_ASSERT (cinfo.min_dynindx != -1);
6963
6964 x = cinfo.nsyms;
6965 maskbitslog2 = 1;
6966 while ((x >>= 1) != 0)
6967 ++maskbitslog2;
6968 if (maskbitslog2 < 3)
6969 maskbitslog2 = 5;
6970 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6971 maskbitslog2 = maskbitslog2 + 3;
6972 else
6973 maskbitslog2 = maskbitslog2 + 2;
6974 if (bed->s->arch_size == 64)
6975 {
6976 if (maskbitslog2 == 5)
6977 maskbitslog2 = 6;
6978 cinfo.shift1 = 6;
6979 }
6980 else
6981 cinfo.shift1 = 5;
6982 cinfo.mask = (1 << cinfo.shift1) - 1;
6983 cinfo.shift2 = maskbitslog2;
6984 cinfo.maskbits = 1 << maskbitslog2;
6985 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6986 amt = bucketcount * sizeof (unsigned long int) * 2;
6987 amt += maskwords * sizeof (bfd_vma);
6988 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6989 if (cinfo.bitmask == NULL)
6990 {
6991 free (cinfo.hashcodes);
6992 return FALSE;
6993 }
6994
6995 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6996 cinfo.indx = cinfo.counts + bucketcount;
6997 cinfo.symindx = dynsymcount - cinfo.nsyms;
6998 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6999
7000 /* Determine how often each hash bucket is used. */
7001 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7002 for (i = 0; i < cinfo.nsyms; ++i)
7003 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7004
7005 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7006 if (cinfo.counts[i] != 0)
7007 {
7008 cinfo.indx[i] = cnt;
7009 cnt += cinfo.counts[i];
7010 }
7011 BFD_ASSERT (cnt == dynsymcount);
7012 cinfo.bucketcount = bucketcount;
7013 cinfo.local_indx = cinfo.min_dynindx;
7014
7015 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7016 s->size += cinfo.maskbits / 8;
7017 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7018 if (contents == NULL)
7019 {
7020 free (cinfo.bitmask);
7021 free (cinfo.hashcodes);
7022 return FALSE;
7023 }
7024
7025 s->contents = contents;
7026 bfd_put_32 (output_bfd, bucketcount, contents);
7027 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7028 bfd_put_32 (output_bfd, maskwords, contents + 8);
7029 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7030 contents += 16 + cinfo.maskbits / 8;
7031
7032 for (i = 0; i < bucketcount; ++i)
7033 {
7034 if (cinfo.counts[i] == 0)
7035 bfd_put_32 (output_bfd, 0, contents);
7036 else
7037 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7038 contents += 4;
7039 }
7040
7041 cinfo.contents = contents;
7042
7043 /* Renumber dynamic symbols, populate .gnu.hash section. */
7044 elf_link_hash_traverse (elf_hash_table (info),
7045 elf_renumber_gnu_hash_syms, &cinfo);
7046
7047 contents = s->contents + 16;
7048 for (i = 0; i < maskwords; ++i)
7049 {
7050 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7051 contents);
7052 contents += bed->s->arch_size / 8;
7053 }
7054
7055 free (cinfo.bitmask);
7056 free (cinfo.hashcodes);
7057 }
7058 }
7059
7060 s = bfd_get_linker_section (dynobj, ".dynstr");
7061 BFD_ASSERT (s != NULL);
7062
7063 elf_finalize_dynstr (output_bfd, info);
7064
7065 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7066
7067 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7068 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7069 return FALSE;
7070 }
7071
7072 return TRUE;
7073 }
7074 \f
7075 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7076
7077 static void
7078 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7079 asection *sec)
7080 {
7081 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7082 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7083 }
7084
7085 /* Finish SHF_MERGE section merging. */
7086
7087 bfd_boolean
7088 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7089 {
7090 bfd *ibfd;
7091 asection *sec;
7092
7093 if (!is_elf_hash_table (info->hash))
7094 return FALSE;
7095
7096 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7097 if ((ibfd->flags & DYNAMIC) == 0
7098 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7099 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7100 == get_elf_backend_data (obfd)->s->elfclass))
7101 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7102 if ((sec->flags & SEC_MERGE) != 0
7103 && !bfd_is_abs_section (sec->output_section))
7104 {
7105 struct bfd_elf_section_data *secdata;
7106
7107 secdata = elf_section_data (sec);
7108 if (! _bfd_add_merge_section (obfd,
7109 &elf_hash_table (info)->merge_info,
7110 sec, &secdata->sec_info))
7111 return FALSE;
7112 else if (secdata->sec_info)
7113 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7114 }
7115
7116 if (elf_hash_table (info)->merge_info != NULL)
7117 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7118 merge_sections_remove_hook);
7119 return TRUE;
7120 }
7121
7122 /* Create an entry in an ELF linker hash table. */
7123
7124 struct bfd_hash_entry *
7125 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7126 struct bfd_hash_table *table,
7127 const char *string)
7128 {
7129 /* Allocate the structure if it has not already been allocated by a
7130 subclass. */
7131 if (entry == NULL)
7132 {
7133 entry = (struct bfd_hash_entry *)
7134 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7135 if (entry == NULL)
7136 return entry;
7137 }
7138
7139 /* Call the allocation method of the superclass. */
7140 entry = _bfd_link_hash_newfunc (entry, table, string);
7141 if (entry != NULL)
7142 {
7143 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7144 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7145
7146 /* Set local fields. */
7147 ret->indx = -1;
7148 ret->dynindx = -1;
7149 ret->got = htab->init_got_refcount;
7150 ret->plt = htab->init_plt_refcount;
7151 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7152 - offsetof (struct elf_link_hash_entry, size)));
7153 /* Assume that we have been called by a non-ELF symbol reader.
7154 This flag is then reset by the code which reads an ELF input
7155 file. This ensures that a symbol created by a non-ELF symbol
7156 reader will have the flag set correctly. */
7157 ret->non_elf = 1;
7158 }
7159
7160 return entry;
7161 }
7162
7163 /* Copy data from an indirect symbol to its direct symbol, hiding the
7164 old indirect symbol. Also used for copying flags to a weakdef. */
7165
7166 void
7167 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7168 struct elf_link_hash_entry *dir,
7169 struct elf_link_hash_entry *ind)
7170 {
7171 struct elf_link_hash_table *htab;
7172
7173 /* Copy down any references that we may have already seen to the
7174 symbol which just became indirect. */
7175
7176 if (dir->versioned != versioned_hidden)
7177 dir->ref_dynamic |= ind->ref_dynamic;
7178 dir->ref_regular |= ind->ref_regular;
7179 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7180 dir->non_got_ref |= ind->non_got_ref;
7181 dir->needs_plt |= ind->needs_plt;
7182 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7183
7184 if (ind->root.type != bfd_link_hash_indirect)
7185 return;
7186
7187 /* Copy over the global and procedure linkage table refcount entries.
7188 These may have been already set up by a check_relocs routine. */
7189 htab = elf_hash_table (info);
7190 if (ind->got.refcount > htab->init_got_refcount.refcount)
7191 {
7192 if (dir->got.refcount < 0)
7193 dir->got.refcount = 0;
7194 dir->got.refcount += ind->got.refcount;
7195 ind->got.refcount = htab->init_got_refcount.refcount;
7196 }
7197
7198 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7199 {
7200 if (dir->plt.refcount < 0)
7201 dir->plt.refcount = 0;
7202 dir->plt.refcount += ind->plt.refcount;
7203 ind->plt.refcount = htab->init_plt_refcount.refcount;
7204 }
7205
7206 if (ind->dynindx != -1)
7207 {
7208 if (dir->dynindx != -1)
7209 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7210 dir->dynindx = ind->dynindx;
7211 dir->dynstr_index = ind->dynstr_index;
7212 ind->dynindx = -1;
7213 ind->dynstr_index = 0;
7214 }
7215 }
7216
7217 void
7218 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7219 struct elf_link_hash_entry *h,
7220 bfd_boolean force_local)
7221 {
7222 /* STT_GNU_IFUNC symbol must go through PLT. */
7223 if (h->type != STT_GNU_IFUNC)
7224 {
7225 h->plt = elf_hash_table (info)->init_plt_offset;
7226 h->needs_plt = 0;
7227 }
7228 if (force_local)
7229 {
7230 h->forced_local = 1;
7231 if (h->dynindx != -1)
7232 {
7233 h->dynindx = -1;
7234 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7235 h->dynstr_index);
7236 }
7237 }
7238 }
7239
7240 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7241 caller. */
7242
7243 bfd_boolean
7244 _bfd_elf_link_hash_table_init
7245 (struct elf_link_hash_table *table,
7246 bfd *abfd,
7247 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7248 struct bfd_hash_table *,
7249 const char *),
7250 unsigned int entsize,
7251 enum elf_target_id target_id)
7252 {
7253 bfd_boolean ret;
7254 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7255
7256 table->init_got_refcount.refcount = can_refcount - 1;
7257 table->init_plt_refcount.refcount = can_refcount - 1;
7258 table->init_got_offset.offset = -(bfd_vma) 1;
7259 table->init_plt_offset.offset = -(bfd_vma) 1;
7260 /* The first dynamic symbol is a dummy. */
7261 table->dynsymcount = 1;
7262
7263 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7264
7265 table->root.type = bfd_link_elf_hash_table;
7266 table->hash_table_id = target_id;
7267
7268 return ret;
7269 }
7270
7271 /* Create an ELF linker hash table. */
7272
7273 struct bfd_link_hash_table *
7274 _bfd_elf_link_hash_table_create (bfd *abfd)
7275 {
7276 struct elf_link_hash_table *ret;
7277 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7278
7279 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7280 if (ret == NULL)
7281 return NULL;
7282
7283 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7284 sizeof (struct elf_link_hash_entry),
7285 GENERIC_ELF_DATA))
7286 {
7287 free (ret);
7288 return NULL;
7289 }
7290 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7291
7292 return &ret->root;
7293 }
7294
7295 /* Destroy an ELF linker hash table. */
7296
7297 void
7298 _bfd_elf_link_hash_table_free (bfd *obfd)
7299 {
7300 struct elf_link_hash_table *htab;
7301
7302 htab = (struct elf_link_hash_table *) obfd->link.hash;
7303 if (htab->dynstr != NULL)
7304 _bfd_elf_strtab_free (htab->dynstr);
7305 _bfd_merge_sections_free (htab->merge_info);
7306 _bfd_generic_link_hash_table_free (obfd);
7307 }
7308
7309 /* This is a hook for the ELF emulation code in the generic linker to
7310 tell the backend linker what file name to use for the DT_NEEDED
7311 entry for a dynamic object. */
7312
7313 void
7314 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7315 {
7316 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7317 && bfd_get_format (abfd) == bfd_object)
7318 elf_dt_name (abfd) = name;
7319 }
7320
7321 int
7322 bfd_elf_get_dyn_lib_class (bfd *abfd)
7323 {
7324 int lib_class;
7325 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7326 && bfd_get_format (abfd) == bfd_object)
7327 lib_class = elf_dyn_lib_class (abfd);
7328 else
7329 lib_class = 0;
7330 return lib_class;
7331 }
7332
7333 void
7334 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7335 {
7336 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7337 && bfd_get_format (abfd) == bfd_object)
7338 elf_dyn_lib_class (abfd) = lib_class;
7339 }
7340
7341 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7342 the linker ELF emulation code. */
7343
7344 struct bfd_link_needed_list *
7345 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7346 struct bfd_link_info *info)
7347 {
7348 if (! is_elf_hash_table (info->hash))
7349 return NULL;
7350 return elf_hash_table (info)->needed;
7351 }
7352
7353 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7354 hook for the linker ELF emulation code. */
7355
7356 struct bfd_link_needed_list *
7357 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7358 struct bfd_link_info *info)
7359 {
7360 if (! is_elf_hash_table (info->hash))
7361 return NULL;
7362 return elf_hash_table (info)->runpath;
7363 }
7364
7365 /* Get the name actually used for a dynamic object for a link. This
7366 is the SONAME entry if there is one. Otherwise, it is the string
7367 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7368
7369 const char *
7370 bfd_elf_get_dt_soname (bfd *abfd)
7371 {
7372 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7373 && bfd_get_format (abfd) == bfd_object)
7374 return elf_dt_name (abfd);
7375 return NULL;
7376 }
7377
7378 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7379 the ELF linker emulation code. */
7380
7381 bfd_boolean
7382 bfd_elf_get_bfd_needed_list (bfd *abfd,
7383 struct bfd_link_needed_list **pneeded)
7384 {
7385 asection *s;
7386 bfd_byte *dynbuf = NULL;
7387 unsigned int elfsec;
7388 unsigned long shlink;
7389 bfd_byte *extdyn, *extdynend;
7390 size_t extdynsize;
7391 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7392
7393 *pneeded = NULL;
7394
7395 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7396 || bfd_get_format (abfd) != bfd_object)
7397 return TRUE;
7398
7399 s = bfd_get_section_by_name (abfd, ".dynamic");
7400 if (s == NULL || s->size == 0)
7401 return TRUE;
7402
7403 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7404 goto error_return;
7405
7406 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7407 if (elfsec == SHN_BAD)
7408 goto error_return;
7409
7410 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7411
7412 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7413 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7414
7415 extdyn = dynbuf;
7416 extdynend = extdyn + s->size;
7417 for (; extdyn < extdynend; extdyn += extdynsize)
7418 {
7419 Elf_Internal_Dyn dyn;
7420
7421 (*swap_dyn_in) (abfd, extdyn, &dyn);
7422
7423 if (dyn.d_tag == DT_NULL)
7424 break;
7425
7426 if (dyn.d_tag == DT_NEEDED)
7427 {
7428 const char *string;
7429 struct bfd_link_needed_list *l;
7430 unsigned int tagv = dyn.d_un.d_val;
7431 bfd_size_type amt;
7432
7433 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7434 if (string == NULL)
7435 goto error_return;
7436
7437 amt = sizeof *l;
7438 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7439 if (l == NULL)
7440 goto error_return;
7441
7442 l->by = abfd;
7443 l->name = string;
7444 l->next = *pneeded;
7445 *pneeded = l;
7446 }
7447 }
7448
7449 free (dynbuf);
7450
7451 return TRUE;
7452
7453 error_return:
7454 if (dynbuf != NULL)
7455 free (dynbuf);
7456 return FALSE;
7457 }
7458
7459 struct elf_symbuf_symbol
7460 {
7461 unsigned long st_name; /* Symbol name, index in string tbl */
7462 unsigned char st_info; /* Type and binding attributes */
7463 unsigned char st_other; /* Visibilty, and target specific */
7464 };
7465
7466 struct elf_symbuf_head
7467 {
7468 struct elf_symbuf_symbol *ssym;
7469 size_t count;
7470 unsigned int st_shndx;
7471 };
7472
7473 struct elf_symbol
7474 {
7475 union
7476 {
7477 Elf_Internal_Sym *isym;
7478 struct elf_symbuf_symbol *ssym;
7479 } u;
7480 const char *name;
7481 };
7482
7483 /* Sort references to symbols by ascending section number. */
7484
7485 static int
7486 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7487 {
7488 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7489 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7490
7491 return s1->st_shndx - s2->st_shndx;
7492 }
7493
7494 static int
7495 elf_sym_name_compare (const void *arg1, const void *arg2)
7496 {
7497 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7498 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7499 return strcmp (s1->name, s2->name);
7500 }
7501
7502 static struct elf_symbuf_head *
7503 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7504 {
7505 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7506 struct elf_symbuf_symbol *ssym;
7507 struct elf_symbuf_head *ssymbuf, *ssymhead;
7508 size_t i, shndx_count, total_size;
7509
7510 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7511 if (indbuf == NULL)
7512 return NULL;
7513
7514 for (ind = indbuf, i = 0; i < symcount; i++)
7515 if (isymbuf[i].st_shndx != SHN_UNDEF)
7516 *ind++ = &isymbuf[i];
7517 indbufend = ind;
7518
7519 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7520 elf_sort_elf_symbol);
7521
7522 shndx_count = 0;
7523 if (indbufend > indbuf)
7524 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7525 if (ind[0]->st_shndx != ind[1]->st_shndx)
7526 shndx_count++;
7527
7528 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7529 + (indbufend - indbuf) * sizeof (*ssym));
7530 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7531 if (ssymbuf == NULL)
7532 {
7533 free (indbuf);
7534 return NULL;
7535 }
7536
7537 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7538 ssymbuf->ssym = NULL;
7539 ssymbuf->count = shndx_count;
7540 ssymbuf->st_shndx = 0;
7541 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7542 {
7543 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7544 {
7545 ssymhead++;
7546 ssymhead->ssym = ssym;
7547 ssymhead->count = 0;
7548 ssymhead->st_shndx = (*ind)->st_shndx;
7549 }
7550 ssym->st_name = (*ind)->st_name;
7551 ssym->st_info = (*ind)->st_info;
7552 ssym->st_other = (*ind)->st_other;
7553 ssymhead->count++;
7554 }
7555 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7556 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7557 == total_size));
7558
7559 free (indbuf);
7560 return ssymbuf;
7561 }
7562
7563 /* Check if 2 sections define the same set of local and global
7564 symbols. */
7565
7566 static bfd_boolean
7567 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7568 struct bfd_link_info *info)
7569 {
7570 bfd *bfd1, *bfd2;
7571 const struct elf_backend_data *bed1, *bed2;
7572 Elf_Internal_Shdr *hdr1, *hdr2;
7573 size_t symcount1, symcount2;
7574 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7575 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7576 Elf_Internal_Sym *isym, *isymend;
7577 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7578 size_t count1, count2, i;
7579 unsigned int shndx1, shndx2;
7580 bfd_boolean result;
7581
7582 bfd1 = sec1->owner;
7583 bfd2 = sec2->owner;
7584
7585 /* Both sections have to be in ELF. */
7586 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7587 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7588 return FALSE;
7589
7590 if (elf_section_type (sec1) != elf_section_type (sec2))
7591 return FALSE;
7592
7593 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7594 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7595 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7596 return FALSE;
7597
7598 bed1 = get_elf_backend_data (bfd1);
7599 bed2 = get_elf_backend_data (bfd2);
7600 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7601 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7602 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7603 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7604
7605 if (symcount1 == 0 || symcount2 == 0)
7606 return FALSE;
7607
7608 result = FALSE;
7609 isymbuf1 = NULL;
7610 isymbuf2 = NULL;
7611 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7612 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7613
7614 if (ssymbuf1 == NULL)
7615 {
7616 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7617 NULL, NULL, NULL);
7618 if (isymbuf1 == NULL)
7619 goto done;
7620
7621 if (!info->reduce_memory_overheads)
7622 elf_tdata (bfd1)->symbuf = ssymbuf1
7623 = elf_create_symbuf (symcount1, isymbuf1);
7624 }
7625
7626 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7627 {
7628 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7629 NULL, NULL, NULL);
7630 if (isymbuf2 == NULL)
7631 goto done;
7632
7633 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7634 elf_tdata (bfd2)->symbuf = ssymbuf2
7635 = elf_create_symbuf (symcount2, isymbuf2);
7636 }
7637
7638 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7639 {
7640 /* Optimized faster version. */
7641 size_t lo, hi, mid;
7642 struct elf_symbol *symp;
7643 struct elf_symbuf_symbol *ssym, *ssymend;
7644
7645 lo = 0;
7646 hi = ssymbuf1->count;
7647 ssymbuf1++;
7648 count1 = 0;
7649 while (lo < hi)
7650 {
7651 mid = (lo + hi) / 2;
7652 if (shndx1 < ssymbuf1[mid].st_shndx)
7653 hi = mid;
7654 else if (shndx1 > ssymbuf1[mid].st_shndx)
7655 lo = mid + 1;
7656 else
7657 {
7658 count1 = ssymbuf1[mid].count;
7659 ssymbuf1 += mid;
7660 break;
7661 }
7662 }
7663
7664 lo = 0;
7665 hi = ssymbuf2->count;
7666 ssymbuf2++;
7667 count2 = 0;
7668 while (lo < hi)
7669 {
7670 mid = (lo + hi) / 2;
7671 if (shndx2 < ssymbuf2[mid].st_shndx)
7672 hi = mid;
7673 else if (shndx2 > ssymbuf2[mid].st_shndx)
7674 lo = mid + 1;
7675 else
7676 {
7677 count2 = ssymbuf2[mid].count;
7678 ssymbuf2 += mid;
7679 break;
7680 }
7681 }
7682
7683 if (count1 == 0 || count2 == 0 || count1 != count2)
7684 goto done;
7685
7686 symtable1
7687 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7688 symtable2
7689 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7690 if (symtable1 == NULL || symtable2 == NULL)
7691 goto done;
7692
7693 symp = symtable1;
7694 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7695 ssym < ssymend; ssym++, symp++)
7696 {
7697 symp->u.ssym = ssym;
7698 symp->name = bfd_elf_string_from_elf_section (bfd1,
7699 hdr1->sh_link,
7700 ssym->st_name);
7701 }
7702
7703 symp = symtable2;
7704 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7705 ssym < ssymend; ssym++, symp++)
7706 {
7707 symp->u.ssym = ssym;
7708 symp->name = bfd_elf_string_from_elf_section (bfd2,
7709 hdr2->sh_link,
7710 ssym->st_name);
7711 }
7712
7713 /* Sort symbol by name. */
7714 qsort (symtable1, count1, sizeof (struct elf_symbol),
7715 elf_sym_name_compare);
7716 qsort (symtable2, count1, sizeof (struct elf_symbol),
7717 elf_sym_name_compare);
7718
7719 for (i = 0; i < count1; i++)
7720 /* Two symbols must have the same binding, type and name. */
7721 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7722 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7723 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7724 goto done;
7725
7726 result = TRUE;
7727 goto done;
7728 }
7729
7730 symtable1 = (struct elf_symbol *)
7731 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7732 symtable2 = (struct elf_symbol *)
7733 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7734 if (symtable1 == NULL || symtable2 == NULL)
7735 goto done;
7736
7737 /* Count definitions in the section. */
7738 count1 = 0;
7739 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7740 if (isym->st_shndx == shndx1)
7741 symtable1[count1++].u.isym = isym;
7742
7743 count2 = 0;
7744 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7745 if (isym->st_shndx == shndx2)
7746 symtable2[count2++].u.isym = isym;
7747
7748 if (count1 == 0 || count2 == 0 || count1 != count2)
7749 goto done;
7750
7751 for (i = 0; i < count1; i++)
7752 symtable1[i].name
7753 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7754 symtable1[i].u.isym->st_name);
7755
7756 for (i = 0; i < count2; i++)
7757 symtable2[i].name
7758 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7759 symtable2[i].u.isym->st_name);
7760
7761 /* Sort symbol by name. */
7762 qsort (symtable1, count1, sizeof (struct elf_symbol),
7763 elf_sym_name_compare);
7764 qsort (symtable2, count1, sizeof (struct elf_symbol),
7765 elf_sym_name_compare);
7766
7767 for (i = 0; i < count1; i++)
7768 /* Two symbols must have the same binding, type and name. */
7769 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7770 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7771 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7772 goto done;
7773
7774 result = TRUE;
7775
7776 done:
7777 if (symtable1)
7778 free (symtable1);
7779 if (symtable2)
7780 free (symtable2);
7781 if (isymbuf1)
7782 free (isymbuf1);
7783 if (isymbuf2)
7784 free (isymbuf2);
7785
7786 return result;
7787 }
7788
7789 /* Return TRUE if 2 section types are compatible. */
7790
7791 bfd_boolean
7792 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7793 bfd *bbfd, const asection *bsec)
7794 {
7795 if (asec == NULL
7796 || bsec == NULL
7797 || abfd->xvec->flavour != bfd_target_elf_flavour
7798 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7799 return TRUE;
7800
7801 return elf_section_type (asec) == elf_section_type (bsec);
7802 }
7803 \f
7804 /* Final phase of ELF linker. */
7805
7806 /* A structure we use to avoid passing large numbers of arguments. */
7807
7808 struct elf_final_link_info
7809 {
7810 /* General link information. */
7811 struct bfd_link_info *info;
7812 /* Output BFD. */
7813 bfd *output_bfd;
7814 /* Symbol string table. */
7815 struct elf_strtab_hash *symstrtab;
7816 /* .hash section. */
7817 asection *hash_sec;
7818 /* symbol version section (.gnu.version). */
7819 asection *symver_sec;
7820 /* Buffer large enough to hold contents of any section. */
7821 bfd_byte *contents;
7822 /* Buffer large enough to hold external relocs of any section. */
7823 void *external_relocs;
7824 /* Buffer large enough to hold internal relocs of any section. */
7825 Elf_Internal_Rela *internal_relocs;
7826 /* Buffer large enough to hold external local symbols of any input
7827 BFD. */
7828 bfd_byte *external_syms;
7829 /* And a buffer for symbol section indices. */
7830 Elf_External_Sym_Shndx *locsym_shndx;
7831 /* Buffer large enough to hold internal local symbols of any input
7832 BFD. */
7833 Elf_Internal_Sym *internal_syms;
7834 /* Array large enough to hold a symbol index for each local symbol
7835 of any input BFD. */
7836 long *indices;
7837 /* Array large enough to hold a section pointer for each local
7838 symbol of any input BFD. */
7839 asection **sections;
7840 /* Buffer for SHT_SYMTAB_SHNDX section. */
7841 Elf_External_Sym_Shndx *symshndxbuf;
7842 /* Number of STT_FILE syms seen. */
7843 size_t filesym_count;
7844 };
7845
7846 /* This struct is used to pass information to elf_link_output_extsym. */
7847
7848 struct elf_outext_info
7849 {
7850 bfd_boolean failed;
7851 bfd_boolean localsyms;
7852 bfd_boolean file_sym_done;
7853 struct elf_final_link_info *flinfo;
7854 };
7855
7856
7857 /* Support for evaluating a complex relocation.
7858
7859 Complex relocations are generalized, self-describing relocations. The
7860 implementation of them consists of two parts: complex symbols, and the
7861 relocations themselves.
7862
7863 The relocations are use a reserved elf-wide relocation type code (R_RELC
7864 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7865 information (start bit, end bit, word width, etc) into the addend. This
7866 information is extracted from CGEN-generated operand tables within gas.
7867
7868 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7869 internal) representing prefix-notation expressions, including but not
7870 limited to those sorts of expressions normally encoded as addends in the
7871 addend field. The symbol mangling format is:
7872
7873 <node> := <literal>
7874 | <unary-operator> ':' <node>
7875 | <binary-operator> ':' <node> ':' <node>
7876 ;
7877
7878 <literal> := 's' <digits=N> ':' <N character symbol name>
7879 | 'S' <digits=N> ':' <N character section name>
7880 | '#' <hexdigits>
7881 ;
7882
7883 <binary-operator> := as in C
7884 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7885
7886 static void
7887 set_symbol_value (bfd *bfd_with_globals,
7888 Elf_Internal_Sym *isymbuf,
7889 size_t locsymcount,
7890 size_t symidx,
7891 bfd_vma val)
7892 {
7893 struct elf_link_hash_entry **sym_hashes;
7894 struct elf_link_hash_entry *h;
7895 size_t extsymoff = locsymcount;
7896
7897 if (symidx < locsymcount)
7898 {
7899 Elf_Internal_Sym *sym;
7900
7901 sym = isymbuf + symidx;
7902 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7903 {
7904 /* It is a local symbol: move it to the
7905 "absolute" section and give it a value. */
7906 sym->st_shndx = SHN_ABS;
7907 sym->st_value = val;
7908 return;
7909 }
7910 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7911 extsymoff = 0;
7912 }
7913
7914 /* It is a global symbol: set its link type
7915 to "defined" and give it a value. */
7916
7917 sym_hashes = elf_sym_hashes (bfd_with_globals);
7918 h = sym_hashes [symidx - extsymoff];
7919 while (h->root.type == bfd_link_hash_indirect
7920 || h->root.type == bfd_link_hash_warning)
7921 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7922 h->root.type = bfd_link_hash_defined;
7923 h->root.u.def.value = val;
7924 h->root.u.def.section = bfd_abs_section_ptr;
7925 }
7926
7927 static bfd_boolean
7928 resolve_symbol (const char *name,
7929 bfd *input_bfd,
7930 struct elf_final_link_info *flinfo,
7931 bfd_vma *result,
7932 Elf_Internal_Sym *isymbuf,
7933 size_t locsymcount)
7934 {
7935 Elf_Internal_Sym *sym;
7936 struct bfd_link_hash_entry *global_entry;
7937 const char *candidate = NULL;
7938 Elf_Internal_Shdr *symtab_hdr;
7939 size_t i;
7940
7941 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7942
7943 for (i = 0; i < locsymcount; ++ i)
7944 {
7945 sym = isymbuf + i;
7946
7947 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7948 continue;
7949
7950 candidate = bfd_elf_string_from_elf_section (input_bfd,
7951 symtab_hdr->sh_link,
7952 sym->st_name);
7953 #ifdef DEBUG
7954 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7955 name, candidate, (unsigned long) sym->st_value);
7956 #endif
7957 if (candidate && strcmp (candidate, name) == 0)
7958 {
7959 asection *sec = flinfo->sections [i];
7960
7961 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7962 *result += sec->output_offset + sec->output_section->vma;
7963 #ifdef DEBUG
7964 printf ("Found symbol with value %8.8lx\n",
7965 (unsigned long) *result);
7966 #endif
7967 return TRUE;
7968 }
7969 }
7970
7971 /* Hmm, haven't found it yet. perhaps it is a global. */
7972 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7973 FALSE, FALSE, TRUE);
7974 if (!global_entry)
7975 return FALSE;
7976
7977 if (global_entry->type == bfd_link_hash_defined
7978 || global_entry->type == bfd_link_hash_defweak)
7979 {
7980 *result = (global_entry->u.def.value
7981 + global_entry->u.def.section->output_section->vma
7982 + global_entry->u.def.section->output_offset);
7983 #ifdef DEBUG
7984 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7985 global_entry->root.string, (unsigned long) *result);
7986 #endif
7987 return TRUE;
7988 }
7989
7990 return FALSE;
7991 }
7992
7993 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7994 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7995 names like "foo.end" which is the end address of section "foo". */
7996
7997 static bfd_boolean
7998 resolve_section (const char *name,
7999 asection *sections,
8000 bfd_vma *result,
8001 bfd * abfd)
8002 {
8003 asection *curr;
8004 unsigned int len;
8005
8006 for (curr = sections; curr; curr = curr->next)
8007 if (strcmp (curr->name, name) == 0)
8008 {
8009 *result = curr->vma;
8010 return TRUE;
8011 }
8012
8013 /* Hmm. still haven't found it. try pseudo-section names. */
8014 /* FIXME: This could be coded more efficiently... */
8015 for (curr = sections; curr; curr = curr->next)
8016 {
8017 len = strlen (curr->name);
8018 if (len > strlen (name))
8019 continue;
8020
8021 if (strncmp (curr->name, name, len) == 0)
8022 {
8023 if (strncmp (".end", name + len, 4) == 0)
8024 {
8025 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8026 return TRUE;
8027 }
8028
8029 /* Insert more pseudo-section names here, if you like. */
8030 }
8031 }
8032
8033 return FALSE;
8034 }
8035
8036 static void
8037 undefined_reference (const char *reftype, const char *name)
8038 {
8039 /* xgettext:c-format */
8040 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8041 reftype, name);
8042 }
8043
8044 static bfd_boolean
8045 eval_symbol (bfd_vma *result,
8046 const char **symp,
8047 bfd *input_bfd,
8048 struct elf_final_link_info *flinfo,
8049 bfd_vma dot,
8050 Elf_Internal_Sym *isymbuf,
8051 size_t locsymcount,
8052 int signed_p)
8053 {
8054 size_t len;
8055 size_t symlen;
8056 bfd_vma a;
8057 bfd_vma b;
8058 char symbuf[4096];
8059 const char *sym = *symp;
8060 const char *symend;
8061 bfd_boolean symbol_is_section = FALSE;
8062
8063 len = strlen (sym);
8064 symend = sym + len;
8065
8066 if (len < 1 || len > sizeof (symbuf))
8067 {
8068 bfd_set_error (bfd_error_invalid_operation);
8069 return FALSE;
8070 }
8071
8072 switch (* sym)
8073 {
8074 case '.':
8075 *result = dot;
8076 *symp = sym + 1;
8077 return TRUE;
8078
8079 case '#':
8080 ++sym;
8081 *result = strtoul (sym, (char **) symp, 16);
8082 return TRUE;
8083
8084 case 'S':
8085 symbol_is_section = TRUE;
8086 /* Fall through. */
8087 case 's':
8088 ++sym;
8089 symlen = strtol (sym, (char **) symp, 10);
8090 sym = *symp + 1; /* Skip the trailing ':'. */
8091
8092 if (symend < sym || symlen + 1 > sizeof (symbuf))
8093 {
8094 bfd_set_error (bfd_error_invalid_operation);
8095 return FALSE;
8096 }
8097
8098 memcpy (symbuf, sym, symlen);
8099 symbuf[symlen] = '\0';
8100 *symp = sym + symlen;
8101
8102 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8103 the symbol as a section, or vice-versa. so we're pretty liberal in our
8104 interpretation here; section means "try section first", not "must be a
8105 section", and likewise with symbol. */
8106
8107 if (symbol_is_section)
8108 {
8109 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8110 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8111 isymbuf, locsymcount))
8112 {
8113 undefined_reference ("section", symbuf);
8114 return FALSE;
8115 }
8116 }
8117 else
8118 {
8119 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8120 isymbuf, locsymcount)
8121 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8122 result, input_bfd))
8123 {
8124 undefined_reference ("symbol", symbuf);
8125 return FALSE;
8126 }
8127 }
8128
8129 return TRUE;
8130
8131 /* All that remains are operators. */
8132
8133 #define UNARY_OP(op) \
8134 if (strncmp (sym, #op, strlen (#op)) == 0) \
8135 { \
8136 sym += strlen (#op); \
8137 if (*sym == ':') \
8138 ++sym; \
8139 *symp = sym; \
8140 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8141 isymbuf, locsymcount, signed_p)) \
8142 return FALSE; \
8143 if (signed_p) \
8144 *result = op ((bfd_signed_vma) a); \
8145 else \
8146 *result = op a; \
8147 return TRUE; \
8148 }
8149
8150 #define BINARY_OP(op) \
8151 if (strncmp (sym, #op, strlen (#op)) == 0) \
8152 { \
8153 sym += strlen (#op); \
8154 if (*sym == ':') \
8155 ++sym; \
8156 *symp = sym; \
8157 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8158 isymbuf, locsymcount, signed_p)) \
8159 return FALSE; \
8160 ++*symp; \
8161 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8162 isymbuf, locsymcount, signed_p)) \
8163 return FALSE; \
8164 if (signed_p) \
8165 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8166 else \
8167 *result = a op b; \
8168 return TRUE; \
8169 }
8170
8171 default:
8172 UNARY_OP (0-);
8173 BINARY_OP (<<);
8174 BINARY_OP (>>);
8175 BINARY_OP (==);
8176 BINARY_OP (!=);
8177 BINARY_OP (<=);
8178 BINARY_OP (>=);
8179 BINARY_OP (&&);
8180 BINARY_OP (||);
8181 UNARY_OP (~);
8182 UNARY_OP (!);
8183 BINARY_OP (*);
8184 BINARY_OP (/);
8185 BINARY_OP (%);
8186 BINARY_OP (^);
8187 BINARY_OP (|);
8188 BINARY_OP (&);
8189 BINARY_OP (+);
8190 BINARY_OP (-);
8191 BINARY_OP (<);
8192 BINARY_OP (>);
8193 #undef UNARY_OP
8194 #undef BINARY_OP
8195 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8196 bfd_set_error (bfd_error_invalid_operation);
8197 return FALSE;
8198 }
8199 }
8200
8201 static void
8202 put_value (bfd_vma size,
8203 unsigned long chunksz,
8204 bfd *input_bfd,
8205 bfd_vma x,
8206 bfd_byte *location)
8207 {
8208 location += (size - chunksz);
8209
8210 for (; size; size -= chunksz, location -= chunksz)
8211 {
8212 switch (chunksz)
8213 {
8214 case 1:
8215 bfd_put_8 (input_bfd, x, location);
8216 x >>= 8;
8217 break;
8218 case 2:
8219 bfd_put_16 (input_bfd, x, location);
8220 x >>= 16;
8221 break;
8222 case 4:
8223 bfd_put_32 (input_bfd, x, location);
8224 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8225 x >>= 16;
8226 x >>= 16;
8227 break;
8228 #ifdef BFD64
8229 case 8:
8230 bfd_put_64 (input_bfd, x, location);
8231 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8232 x >>= 32;
8233 x >>= 32;
8234 break;
8235 #endif
8236 default:
8237 abort ();
8238 break;
8239 }
8240 }
8241 }
8242
8243 static bfd_vma
8244 get_value (bfd_vma size,
8245 unsigned long chunksz,
8246 bfd *input_bfd,
8247 bfd_byte *location)
8248 {
8249 int shift;
8250 bfd_vma x = 0;
8251
8252 /* Sanity checks. */
8253 BFD_ASSERT (chunksz <= sizeof (x)
8254 && size >= chunksz
8255 && chunksz != 0
8256 && (size % chunksz) == 0
8257 && input_bfd != NULL
8258 && location != NULL);
8259
8260 if (chunksz == sizeof (x))
8261 {
8262 BFD_ASSERT (size == chunksz);
8263
8264 /* Make sure that we do not perform an undefined shift operation.
8265 We know that size == chunksz so there will only be one iteration
8266 of the loop below. */
8267 shift = 0;
8268 }
8269 else
8270 shift = 8 * chunksz;
8271
8272 for (; size; size -= chunksz, location += chunksz)
8273 {
8274 switch (chunksz)
8275 {
8276 case 1:
8277 x = (x << shift) | bfd_get_8 (input_bfd, location);
8278 break;
8279 case 2:
8280 x = (x << shift) | bfd_get_16 (input_bfd, location);
8281 break;
8282 case 4:
8283 x = (x << shift) | bfd_get_32 (input_bfd, location);
8284 break;
8285 #ifdef BFD64
8286 case 8:
8287 x = (x << shift) | bfd_get_64 (input_bfd, location);
8288 break;
8289 #endif
8290 default:
8291 abort ();
8292 }
8293 }
8294 return x;
8295 }
8296
8297 static void
8298 decode_complex_addend (unsigned long *start, /* in bits */
8299 unsigned long *oplen, /* in bits */
8300 unsigned long *len, /* in bits */
8301 unsigned long *wordsz, /* in bytes */
8302 unsigned long *chunksz, /* in bytes */
8303 unsigned long *lsb0_p,
8304 unsigned long *signed_p,
8305 unsigned long *trunc_p,
8306 unsigned long encoded)
8307 {
8308 * start = encoded & 0x3F;
8309 * len = (encoded >> 6) & 0x3F;
8310 * oplen = (encoded >> 12) & 0x3F;
8311 * wordsz = (encoded >> 18) & 0xF;
8312 * chunksz = (encoded >> 22) & 0xF;
8313 * lsb0_p = (encoded >> 27) & 1;
8314 * signed_p = (encoded >> 28) & 1;
8315 * trunc_p = (encoded >> 29) & 1;
8316 }
8317
8318 bfd_reloc_status_type
8319 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8320 asection *input_section ATTRIBUTE_UNUSED,
8321 bfd_byte *contents,
8322 Elf_Internal_Rela *rel,
8323 bfd_vma relocation)
8324 {
8325 bfd_vma shift, x, mask;
8326 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8327 bfd_reloc_status_type r;
8328
8329 /* Perform this reloc, since it is complex.
8330 (this is not to say that it necessarily refers to a complex
8331 symbol; merely that it is a self-describing CGEN based reloc.
8332 i.e. the addend has the complete reloc information (bit start, end,
8333 word size, etc) encoded within it.). */
8334
8335 decode_complex_addend (&start, &oplen, &len, &wordsz,
8336 &chunksz, &lsb0_p, &signed_p,
8337 &trunc_p, rel->r_addend);
8338
8339 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8340
8341 if (lsb0_p)
8342 shift = (start + 1) - len;
8343 else
8344 shift = (8 * wordsz) - (start + len);
8345
8346 x = get_value (wordsz, chunksz, input_bfd,
8347 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8348
8349 #ifdef DEBUG
8350 printf ("Doing complex reloc: "
8351 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8352 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8353 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8354 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8355 oplen, (unsigned long) x, (unsigned long) mask,
8356 (unsigned long) relocation);
8357 #endif
8358
8359 r = bfd_reloc_ok;
8360 if (! trunc_p)
8361 /* Now do an overflow check. */
8362 r = bfd_check_overflow ((signed_p
8363 ? complain_overflow_signed
8364 : complain_overflow_unsigned),
8365 len, 0, (8 * wordsz),
8366 relocation);
8367
8368 /* Do the deed. */
8369 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8370
8371 #ifdef DEBUG
8372 printf (" relocation: %8.8lx\n"
8373 " shifted mask: %8.8lx\n"
8374 " shifted/masked reloc: %8.8lx\n"
8375 " result: %8.8lx\n",
8376 (unsigned long) relocation, (unsigned long) (mask << shift),
8377 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8378 #endif
8379 put_value (wordsz, chunksz, input_bfd, x,
8380 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8381 return r;
8382 }
8383
8384 /* Functions to read r_offset from external (target order) reloc
8385 entry. Faster than bfd_getl32 et al, because we let the compiler
8386 know the value is aligned. */
8387
8388 static bfd_vma
8389 ext32l_r_offset (const void *p)
8390 {
8391 union aligned32
8392 {
8393 uint32_t v;
8394 unsigned char c[4];
8395 };
8396 const union aligned32 *a
8397 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8398
8399 uint32_t aval = ( (uint32_t) a->c[0]
8400 | (uint32_t) a->c[1] << 8
8401 | (uint32_t) a->c[2] << 16
8402 | (uint32_t) a->c[3] << 24);
8403 return aval;
8404 }
8405
8406 static bfd_vma
8407 ext32b_r_offset (const void *p)
8408 {
8409 union aligned32
8410 {
8411 uint32_t v;
8412 unsigned char c[4];
8413 };
8414 const union aligned32 *a
8415 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8416
8417 uint32_t aval = ( (uint32_t) a->c[0] << 24
8418 | (uint32_t) a->c[1] << 16
8419 | (uint32_t) a->c[2] << 8
8420 | (uint32_t) a->c[3]);
8421 return aval;
8422 }
8423
8424 #ifdef BFD_HOST_64_BIT
8425 static bfd_vma
8426 ext64l_r_offset (const void *p)
8427 {
8428 union aligned64
8429 {
8430 uint64_t v;
8431 unsigned char c[8];
8432 };
8433 const union aligned64 *a
8434 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8435
8436 uint64_t aval = ( (uint64_t) a->c[0]
8437 | (uint64_t) a->c[1] << 8
8438 | (uint64_t) a->c[2] << 16
8439 | (uint64_t) a->c[3] << 24
8440 | (uint64_t) a->c[4] << 32
8441 | (uint64_t) a->c[5] << 40
8442 | (uint64_t) a->c[6] << 48
8443 | (uint64_t) a->c[7] << 56);
8444 return aval;
8445 }
8446
8447 static bfd_vma
8448 ext64b_r_offset (const void *p)
8449 {
8450 union aligned64
8451 {
8452 uint64_t v;
8453 unsigned char c[8];
8454 };
8455 const union aligned64 *a
8456 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8457
8458 uint64_t aval = ( (uint64_t) a->c[0] << 56
8459 | (uint64_t) a->c[1] << 48
8460 | (uint64_t) a->c[2] << 40
8461 | (uint64_t) a->c[3] << 32
8462 | (uint64_t) a->c[4] << 24
8463 | (uint64_t) a->c[5] << 16
8464 | (uint64_t) a->c[6] << 8
8465 | (uint64_t) a->c[7]);
8466 return aval;
8467 }
8468 #endif
8469
8470 /* When performing a relocatable link, the input relocations are
8471 preserved. But, if they reference global symbols, the indices
8472 referenced must be updated. Update all the relocations found in
8473 RELDATA. */
8474
8475 static bfd_boolean
8476 elf_link_adjust_relocs (bfd *abfd,
8477 asection *sec,
8478 struct bfd_elf_section_reloc_data *reldata,
8479 bfd_boolean sort)
8480 {
8481 unsigned int i;
8482 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8483 bfd_byte *erela;
8484 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8485 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8486 bfd_vma r_type_mask;
8487 int r_sym_shift;
8488 unsigned int count = reldata->count;
8489 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8490
8491 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8492 {
8493 swap_in = bed->s->swap_reloc_in;
8494 swap_out = bed->s->swap_reloc_out;
8495 }
8496 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8497 {
8498 swap_in = bed->s->swap_reloca_in;
8499 swap_out = bed->s->swap_reloca_out;
8500 }
8501 else
8502 abort ();
8503
8504 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8505 abort ();
8506
8507 if (bed->s->arch_size == 32)
8508 {
8509 r_type_mask = 0xff;
8510 r_sym_shift = 8;
8511 }
8512 else
8513 {
8514 r_type_mask = 0xffffffff;
8515 r_sym_shift = 32;
8516 }
8517
8518 erela = reldata->hdr->contents;
8519 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8520 {
8521 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8522 unsigned int j;
8523
8524 if (*rel_hash == NULL)
8525 continue;
8526
8527 BFD_ASSERT ((*rel_hash)->indx >= 0);
8528
8529 (*swap_in) (abfd, erela, irela);
8530 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8531 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8532 | (irela[j].r_info & r_type_mask));
8533 (*swap_out) (abfd, irela, erela);
8534 }
8535
8536 if (bed->elf_backend_update_relocs)
8537 (*bed->elf_backend_update_relocs) (sec, reldata);
8538
8539 if (sort && count != 0)
8540 {
8541 bfd_vma (*ext_r_off) (const void *);
8542 bfd_vma r_off;
8543 size_t elt_size;
8544 bfd_byte *base, *end, *p, *loc;
8545 bfd_byte *buf = NULL;
8546
8547 if (bed->s->arch_size == 32)
8548 {
8549 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8550 ext_r_off = ext32l_r_offset;
8551 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8552 ext_r_off = ext32b_r_offset;
8553 else
8554 abort ();
8555 }
8556 else
8557 {
8558 #ifdef BFD_HOST_64_BIT
8559 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8560 ext_r_off = ext64l_r_offset;
8561 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8562 ext_r_off = ext64b_r_offset;
8563 else
8564 #endif
8565 abort ();
8566 }
8567
8568 /* Must use a stable sort here. A modified insertion sort,
8569 since the relocs are mostly sorted already. */
8570 elt_size = reldata->hdr->sh_entsize;
8571 base = reldata->hdr->contents;
8572 end = base + count * elt_size;
8573 if (elt_size > sizeof (Elf64_External_Rela))
8574 abort ();
8575
8576 /* Ensure the first element is lowest. This acts as a sentinel,
8577 speeding the main loop below. */
8578 r_off = (*ext_r_off) (base);
8579 for (p = loc = base; (p += elt_size) < end; )
8580 {
8581 bfd_vma r_off2 = (*ext_r_off) (p);
8582 if (r_off > r_off2)
8583 {
8584 r_off = r_off2;
8585 loc = p;
8586 }
8587 }
8588 if (loc != base)
8589 {
8590 /* Don't just swap *base and *loc as that changes the order
8591 of the original base[0] and base[1] if they happen to
8592 have the same r_offset. */
8593 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8594 memcpy (onebuf, loc, elt_size);
8595 memmove (base + elt_size, base, loc - base);
8596 memcpy (base, onebuf, elt_size);
8597 }
8598
8599 for (p = base + elt_size; (p += elt_size) < end; )
8600 {
8601 /* base to p is sorted, *p is next to insert. */
8602 r_off = (*ext_r_off) (p);
8603 /* Search the sorted region for location to insert. */
8604 loc = p - elt_size;
8605 while (r_off < (*ext_r_off) (loc))
8606 loc -= elt_size;
8607 loc += elt_size;
8608 if (loc != p)
8609 {
8610 /* Chances are there is a run of relocs to insert here,
8611 from one of more input files. Files are not always
8612 linked in order due to the way elf_link_input_bfd is
8613 called. See pr17666. */
8614 size_t sortlen = p - loc;
8615 bfd_vma r_off2 = (*ext_r_off) (loc);
8616 size_t runlen = elt_size;
8617 size_t buf_size = 96 * 1024;
8618 while (p + runlen < end
8619 && (sortlen <= buf_size
8620 || runlen + elt_size <= buf_size)
8621 && r_off2 > (*ext_r_off) (p + runlen))
8622 runlen += elt_size;
8623 if (buf == NULL)
8624 {
8625 buf = bfd_malloc (buf_size);
8626 if (buf == NULL)
8627 return FALSE;
8628 }
8629 if (runlen < sortlen)
8630 {
8631 memcpy (buf, p, runlen);
8632 memmove (loc + runlen, loc, sortlen);
8633 memcpy (loc, buf, runlen);
8634 }
8635 else
8636 {
8637 memcpy (buf, loc, sortlen);
8638 memmove (loc, p, runlen);
8639 memcpy (loc + runlen, buf, sortlen);
8640 }
8641 p += runlen - elt_size;
8642 }
8643 }
8644 /* Hashes are no longer valid. */
8645 free (reldata->hashes);
8646 reldata->hashes = NULL;
8647 free (buf);
8648 }
8649 return TRUE;
8650 }
8651
8652 struct elf_link_sort_rela
8653 {
8654 union {
8655 bfd_vma offset;
8656 bfd_vma sym_mask;
8657 } u;
8658 enum elf_reloc_type_class type;
8659 /* We use this as an array of size int_rels_per_ext_rel. */
8660 Elf_Internal_Rela rela[1];
8661 };
8662
8663 static int
8664 elf_link_sort_cmp1 (const void *A, const void *B)
8665 {
8666 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8667 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8668 int relativea, relativeb;
8669
8670 relativea = a->type == reloc_class_relative;
8671 relativeb = b->type == reloc_class_relative;
8672
8673 if (relativea < relativeb)
8674 return 1;
8675 if (relativea > relativeb)
8676 return -1;
8677 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8678 return -1;
8679 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8680 return 1;
8681 if (a->rela->r_offset < b->rela->r_offset)
8682 return -1;
8683 if (a->rela->r_offset > b->rela->r_offset)
8684 return 1;
8685 return 0;
8686 }
8687
8688 static int
8689 elf_link_sort_cmp2 (const void *A, const void *B)
8690 {
8691 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8692 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8693
8694 if (a->type < b->type)
8695 return -1;
8696 if (a->type > b->type)
8697 return 1;
8698 if (a->u.offset < b->u.offset)
8699 return -1;
8700 if (a->u.offset > b->u.offset)
8701 return 1;
8702 if (a->rela->r_offset < b->rela->r_offset)
8703 return -1;
8704 if (a->rela->r_offset > b->rela->r_offset)
8705 return 1;
8706 return 0;
8707 }
8708
8709 static size_t
8710 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8711 {
8712 asection *dynamic_relocs;
8713 asection *rela_dyn;
8714 asection *rel_dyn;
8715 bfd_size_type count, size;
8716 size_t i, ret, sort_elt, ext_size;
8717 bfd_byte *sort, *s_non_relative, *p;
8718 struct elf_link_sort_rela *sq;
8719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8720 int i2e = bed->s->int_rels_per_ext_rel;
8721 unsigned int opb = bfd_octets_per_byte (abfd);
8722 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8723 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8724 struct bfd_link_order *lo;
8725 bfd_vma r_sym_mask;
8726 bfd_boolean use_rela;
8727
8728 /* Find a dynamic reloc section. */
8729 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8730 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8731 if (rela_dyn != NULL && rela_dyn->size > 0
8732 && rel_dyn != NULL && rel_dyn->size > 0)
8733 {
8734 bfd_boolean use_rela_initialised = FALSE;
8735
8736 /* This is just here to stop gcc from complaining.
8737 Its initialization checking code is not perfect. */
8738 use_rela = TRUE;
8739
8740 /* Both sections are present. Examine the sizes
8741 of the indirect sections to help us choose. */
8742 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8743 if (lo->type == bfd_indirect_link_order)
8744 {
8745 asection *o = lo->u.indirect.section;
8746
8747 if ((o->size % bed->s->sizeof_rela) == 0)
8748 {
8749 if ((o->size % bed->s->sizeof_rel) == 0)
8750 /* Section size is divisible by both rel and rela sizes.
8751 It is of no help to us. */
8752 ;
8753 else
8754 {
8755 /* Section size is only divisible by rela. */
8756 if (use_rela_initialised && (use_rela == FALSE))
8757 {
8758 _bfd_error_handler (_("%B: Unable to sort relocs - "
8759 "they are in more than one size"),
8760 abfd);
8761 bfd_set_error (bfd_error_invalid_operation);
8762 return 0;
8763 }
8764 else
8765 {
8766 use_rela = TRUE;
8767 use_rela_initialised = TRUE;
8768 }
8769 }
8770 }
8771 else if ((o->size % bed->s->sizeof_rel) == 0)
8772 {
8773 /* Section size is only divisible by rel. */
8774 if (use_rela_initialised && (use_rela == TRUE))
8775 {
8776 _bfd_error_handler (_("%B: Unable to sort relocs - "
8777 "they are in more than one size"),
8778 abfd);
8779 bfd_set_error (bfd_error_invalid_operation);
8780 return 0;
8781 }
8782 else
8783 {
8784 use_rela = FALSE;
8785 use_rela_initialised = TRUE;
8786 }
8787 }
8788 else
8789 {
8790 /* The section size is not divisible by either -
8791 something is wrong. */
8792 _bfd_error_handler (_("%B: Unable to sort relocs - "
8793 "they are of an unknown size"), abfd);
8794 bfd_set_error (bfd_error_invalid_operation);
8795 return 0;
8796 }
8797 }
8798
8799 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8800 if (lo->type == bfd_indirect_link_order)
8801 {
8802 asection *o = lo->u.indirect.section;
8803
8804 if ((o->size % bed->s->sizeof_rela) == 0)
8805 {
8806 if ((o->size % bed->s->sizeof_rel) == 0)
8807 /* Section size is divisible by both rel and rela sizes.
8808 It is of no help to us. */
8809 ;
8810 else
8811 {
8812 /* Section size is only divisible by rela. */
8813 if (use_rela_initialised && (use_rela == FALSE))
8814 {
8815 _bfd_error_handler (_("%B: Unable to sort relocs - "
8816 "they are in more than one size"),
8817 abfd);
8818 bfd_set_error (bfd_error_invalid_operation);
8819 return 0;
8820 }
8821 else
8822 {
8823 use_rela = TRUE;
8824 use_rela_initialised = TRUE;
8825 }
8826 }
8827 }
8828 else if ((o->size % bed->s->sizeof_rel) == 0)
8829 {
8830 /* Section size is only divisible by rel. */
8831 if (use_rela_initialised && (use_rela == TRUE))
8832 {
8833 _bfd_error_handler (_("%B: Unable to sort relocs - "
8834 "they are in more than one size"),
8835 abfd);
8836 bfd_set_error (bfd_error_invalid_operation);
8837 return 0;
8838 }
8839 else
8840 {
8841 use_rela = FALSE;
8842 use_rela_initialised = TRUE;
8843 }
8844 }
8845 else
8846 {
8847 /* The section size is not divisible by either -
8848 something is wrong. */
8849 _bfd_error_handler (_("%B: Unable to sort relocs - "
8850 "they are of an unknown size"), abfd);
8851 bfd_set_error (bfd_error_invalid_operation);
8852 return 0;
8853 }
8854 }
8855
8856 if (! use_rela_initialised)
8857 /* Make a guess. */
8858 use_rela = TRUE;
8859 }
8860 else if (rela_dyn != NULL && rela_dyn->size > 0)
8861 use_rela = TRUE;
8862 else if (rel_dyn != NULL && rel_dyn->size > 0)
8863 use_rela = FALSE;
8864 else
8865 return 0;
8866
8867 if (use_rela)
8868 {
8869 dynamic_relocs = rela_dyn;
8870 ext_size = bed->s->sizeof_rela;
8871 swap_in = bed->s->swap_reloca_in;
8872 swap_out = bed->s->swap_reloca_out;
8873 }
8874 else
8875 {
8876 dynamic_relocs = rel_dyn;
8877 ext_size = bed->s->sizeof_rel;
8878 swap_in = bed->s->swap_reloc_in;
8879 swap_out = bed->s->swap_reloc_out;
8880 }
8881
8882 size = 0;
8883 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8884 if (lo->type == bfd_indirect_link_order)
8885 size += lo->u.indirect.section->size;
8886
8887 if (size != dynamic_relocs->size)
8888 return 0;
8889
8890 sort_elt = (sizeof (struct elf_link_sort_rela)
8891 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8892
8893 count = dynamic_relocs->size / ext_size;
8894 if (count == 0)
8895 return 0;
8896 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8897
8898 if (sort == NULL)
8899 {
8900 (*info->callbacks->warning)
8901 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8902 return 0;
8903 }
8904
8905 if (bed->s->arch_size == 32)
8906 r_sym_mask = ~(bfd_vma) 0xff;
8907 else
8908 r_sym_mask = ~(bfd_vma) 0xffffffff;
8909
8910 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8911 if (lo->type == bfd_indirect_link_order)
8912 {
8913 bfd_byte *erel, *erelend;
8914 asection *o = lo->u.indirect.section;
8915
8916 if (o->contents == NULL && o->size != 0)
8917 {
8918 /* This is a reloc section that is being handled as a normal
8919 section. See bfd_section_from_shdr. We can't combine
8920 relocs in this case. */
8921 free (sort);
8922 return 0;
8923 }
8924 erel = o->contents;
8925 erelend = o->contents + o->size;
8926 p = sort + o->output_offset * opb / ext_size * sort_elt;
8927
8928 while (erel < erelend)
8929 {
8930 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8931
8932 (*swap_in) (abfd, erel, s->rela);
8933 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8934 s->u.sym_mask = r_sym_mask;
8935 p += sort_elt;
8936 erel += ext_size;
8937 }
8938 }
8939
8940 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8941
8942 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8943 {
8944 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8945 if (s->type != reloc_class_relative)
8946 break;
8947 }
8948 ret = i;
8949 s_non_relative = p;
8950
8951 sq = (struct elf_link_sort_rela *) s_non_relative;
8952 for (; i < count; i++, p += sort_elt)
8953 {
8954 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8955 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8956 sq = sp;
8957 sp->u.offset = sq->rela->r_offset;
8958 }
8959
8960 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8961
8962 struct elf_link_hash_table *htab = elf_hash_table (info);
8963 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8964 {
8965 /* We have plt relocs in .rela.dyn. */
8966 sq = (struct elf_link_sort_rela *) sort;
8967 for (i = 0; i < count; i++)
8968 if (sq[count - i - 1].type != reloc_class_plt)
8969 break;
8970 if (i != 0 && htab->srelplt->size == i * ext_size)
8971 {
8972 struct bfd_link_order **plo;
8973 /* Put srelplt link_order last. This is so the output_offset
8974 set in the next loop is correct for DT_JMPREL. */
8975 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8976 if ((*plo)->type == bfd_indirect_link_order
8977 && (*plo)->u.indirect.section == htab->srelplt)
8978 {
8979 lo = *plo;
8980 *plo = lo->next;
8981 }
8982 else
8983 plo = &(*plo)->next;
8984 *plo = lo;
8985 lo->next = NULL;
8986 dynamic_relocs->map_tail.link_order = lo;
8987 }
8988 }
8989
8990 p = sort;
8991 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8992 if (lo->type == bfd_indirect_link_order)
8993 {
8994 bfd_byte *erel, *erelend;
8995 asection *o = lo->u.indirect.section;
8996
8997 erel = o->contents;
8998 erelend = o->contents + o->size;
8999 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9000 while (erel < erelend)
9001 {
9002 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9003 (*swap_out) (abfd, s->rela, erel);
9004 p += sort_elt;
9005 erel += ext_size;
9006 }
9007 }
9008
9009 free (sort);
9010 *psec = dynamic_relocs;
9011 return ret;
9012 }
9013
9014 /* Add a symbol to the output symbol string table. */
9015
9016 static int
9017 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9018 const char *name,
9019 Elf_Internal_Sym *elfsym,
9020 asection *input_sec,
9021 struct elf_link_hash_entry *h)
9022 {
9023 int (*output_symbol_hook)
9024 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9025 struct elf_link_hash_entry *);
9026 struct elf_link_hash_table *hash_table;
9027 const struct elf_backend_data *bed;
9028 bfd_size_type strtabsize;
9029
9030 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9031
9032 bed = get_elf_backend_data (flinfo->output_bfd);
9033 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9034 if (output_symbol_hook != NULL)
9035 {
9036 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9037 if (ret != 1)
9038 return ret;
9039 }
9040
9041 if (name == NULL
9042 || *name == '\0'
9043 || (input_sec->flags & SEC_EXCLUDE))
9044 elfsym->st_name = (unsigned long) -1;
9045 else
9046 {
9047 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9048 to get the final offset for st_name. */
9049 elfsym->st_name
9050 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9051 name, FALSE);
9052 if (elfsym->st_name == (unsigned long) -1)
9053 return 0;
9054 }
9055
9056 hash_table = elf_hash_table (flinfo->info);
9057 strtabsize = hash_table->strtabsize;
9058 if (strtabsize <= hash_table->strtabcount)
9059 {
9060 strtabsize += strtabsize;
9061 hash_table->strtabsize = strtabsize;
9062 strtabsize *= sizeof (*hash_table->strtab);
9063 hash_table->strtab
9064 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9065 strtabsize);
9066 if (hash_table->strtab == NULL)
9067 return 0;
9068 }
9069 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9070 hash_table->strtab[hash_table->strtabcount].dest_index
9071 = hash_table->strtabcount;
9072 hash_table->strtab[hash_table->strtabcount].destshndx_index
9073 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9074
9075 bfd_get_symcount (flinfo->output_bfd) += 1;
9076 hash_table->strtabcount += 1;
9077
9078 return 1;
9079 }
9080
9081 /* Swap symbols out to the symbol table and flush the output symbols to
9082 the file. */
9083
9084 static bfd_boolean
9085 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9086 {
9087 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9088 bfd_size_type amt;
9089 size_t i;
9090 const struct elf_backend_data *bed;
9091 bfd_byte *symbuf;
9092 Elf_Internal_Shdr *hdr;
9093 file_ptr pos;
9094 bfd_boolean ret;
9095
9096 if (!hash_table->strtabcount)
9097 return TRUE;
9098
9099 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9100
9101 bed = get_elf_backend_data (flinfo->output_bfd);
9102
9103 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9104 symbuf = (bfd_byte *) bfd_malloc (amt);
9105 if (symbuf == NULL)
9106 return FALSE;
9107
9108 if (flinfo->symshndxbuf)
9109 {
9110 amt = sizeof (Elf_External_Sym_Shndx);
9111 amt *= bfd_get_symcount (flinfo->output_bfd);
9112 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9113 if (flinfo->symshndxbuf == NULL)
9114 {
9115 free (symbuf);
9116 return FALSE;
9117 }
9118 }
9119
9120 for (i = 0; i < hash_table->strtabcount; i++)
9121 {
9122 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9123 if (elfsym->sym.st_name == (unsigned long) -1)
9124 elfsym->sym.st_name = 0;
9125 else
9126 elfsym->sym.st_name
9127 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9128 elfsym->sym.st_name);
9129 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9130 ((bfd_byte *) symbuf
9131 + (elfsym->dest_index
9132 * bed->s->sizeof_sym)),
9133 (flinfo->symshndxbuf
9134 + elfsym->destshndx_index));
9135 }
9136
9137 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9138 pos = hdr->sh_offset + hdr->sh_size;
9139 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9140 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9141 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9142 {
9143 hdr->sh_size += amt;
9144 ret = TRUE;
9145 }
9146 else
9147 ret = FALSE;
9148
9149 free (symbuf);
9150
9151 free (hash_table->strtab);
9152 hash_table->strtab = NULL;
9153
9154 return ret;
9155 }
9156
9157 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9158
9159 static bfd_boolean
9160 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9161 {
9162 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9163 && sym->st_shndx < SHN_LORESERVE)
9164 {
9165 /* The gABI doesn't support dynamic symbols in output sections
9166 beyond 64k. */
9167 _bfd_error_handler
9168 /* xgettext:c-format */
9169 (_("%B: Too many sections: %d (>= %d)"),
9170 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9171 bfd_set_error (bfd_error_nonrepresentable_section);
9172 return FALSE;
9173 }
9174 return TRUE;
9175 }
9176
9177 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9178 allowing an unsatisfied unversioned symbol in the DSO to match a
9179 versioned symbol that would normally require an explicit version.
9180 We also handle the case that a DSO references a hidden symbol
9181 which may be satisfied by a versioned symbol in another DSO. */
9182
9183 static bfd_boolean
9184 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9185 const struct elf_backend_data *bed,
9186 struct elf_link_hash_entry *h)
9187 {
9188 bfd *abfd;
9189 struct elf_link_loaded_list *loaded;
9190
9191 if (!is_elf_hash_table (info->hash))
9192 return FALSE;
9193
9194 /* Check indirect symbol. */
9195 while (h->root.type == bfd_link_hash_indirect)
9196 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9197
9198 switch (h->root.type)
9199 {
9200 default:
9201 abfd = NULL;
9202 break;
9203
9204 case bfd_link_hash_undefined:
9205 case bfd_link_hash_undefweak:
9206 abfd = h->root.u.undef.abfd;
9207 if (abfd == NULL
9208 || (abfd->flags & DYNAMIC) == 0
9209 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9210 return FALSE;
9211 break;
9212
9213 case bfd_link_hash_defined:
9214 case bfd_link_hash_defweak:
9215 abfd = h->root.u.def.section->owner;
9216 break;
9217
9218 case bfd_link_hash_common:
9219 abfd = h->root.u.c.p->section->owner;
9220 break;
9221 }
9222 BFD_ASSERT (abfd != NULL);
9223
9224 for (loaded = elf_hash_table (info)->loaded;
9225 loaded != NULL;
9226 loaded = loaded->next)
9227 {
9228 bfd *input;
9229 Elf_Internal_Shdr *hdr;
9230 size_t symcount;
9231 size_t extsymcount;
9232 size_t extsymoff;
9233 Elf_Internal_Shdr *versymhdr;
9234 Elf_Internal_Sym *isym;
9235 Elf_Internal_Sym *isymend;
9236 Elf_Internal_Sym *isymbuf;
9237 Elf_External_Versym *ever;
9238 Elf_External_Versym *extversym;
9239
9240 input = loaded->abfd;
9241
9242 /* We check each DSO for a possible hidden versioned definition. */
9243 if (input == abfd
9244 || (input->flags & DYNAMIC) == 0
9245 || elf_dynversym (input) == 0)
9246 continue;
9247
9248 hdr = &elf_tdata (input)->dynsymtab_hdr;
9249
9250 symcount = hdr->sh_size / bed->s->sizeof_sym;
9251 if (elf_bad_symtab (input))
9252 {
9253 extsymcount = symcount;
9254 extsymoff = 0;
9255 }
9256 else
9257 {
9258 extsymcount = symcount - hdr->sh_info;
9259 extsymoff = hdr->sh_info;
9260 }
9261
9262 if (extsymcount == 0)
9263 continue;
9264
9265 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9266 NULL, NULL, NULL);
9267 if (isymbuf == NULL)
9268 return FALSE;
9269
9270 /* Read in any version definitions. */
9271 versymhdr = &elf_tdata (input)->dynversym_hdr;
9272 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9273 if (extversym == NULL)
9274 goto error_ret;
9275
9276 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9277 || (bfd_bread (extversym, versymhdr->sh_size, input)
9278 != versymhdr->sh_size))
9279 {
9280 free (extversym);
9281 error_ret:
9282 free (isymbuf);
9283 return FALSE;
9284 }
9285
9286 ever = extversym + extsymoff;
9287 isymend = isymbuf + extsymcount;
9288 for (isym = isymbuf; isym < isymend; isym++, ever++)
9289 {
9290 const char *name;
9291 Elf_Internal_Versym iver;
9292 unsigned short version_index;
9293
9294 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9295 || isym->st_shndx == SHN_UNDEF)
9296 continue;
9297
9298 name = bfd_elf_string_from_elf_section (input,
9299 hdr->sh_link,
9300 isym->st_name);
9301 if (strcmp (name, h->root.root.string) != 0)
9302 continue;
9303
9304 _bfd_elf_swap_versym_in (input, ever, &iver);
9305
9306 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9307 && !(h->def_regular
9308 && h->forced_local))
9309 {
9310 /* If we have a non-hidden versioned sym, then it should
9311 have provided a definition for the undefined sym unless
9312 it is defined in a non-shared object and forced local.
9313 */
9314 abort ();
9315 }
9316
9317 version_index = iver.vs_vers & VERSYM_VERSION;
9318 if (version_index == 1 || version_index == 2)
9319 {
9320 /* This is the base or first version. We can use it. */
9321 free (extversym);
9322 free (isymbuf);
9323 return TRUE;
9324 }
9325 }
9326
9327 free (extversym);
9328 free (isymbuf);
9329 }
9330
9331 return FALSE;
9332 }
9333
9334 /* Convert ELF common symbol TYPE. */
9335
9336 static int
9337 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9338 {
9339 /* Commom symbol can only appear in relocatable link. */
9340 if (!bfd_link_relocatable (info))
9341 abort ();
9342 switch (info->elf_stt_common)
9343 {
9344 case unchanged:
9345 break;
9346 case elf_stt_common:
9347 type = STT_COMMON;
9348 break;
9349 case no_elf_stt_common:
9350 type = STT_OBJECT;
9351 break;
9352 }
9353 return type;
9354 }
9355
9356 /* Add an external symbol to the symbol table. This is called from
9357 the hash table traversal routine. When generating a shared object,
9358 we go through the symbol table twice. The first time we output
9359 anything that might have been forced to local scope in a version
9360 script. The second time we output the symbols that are still
9361 global symbols. */
9362
9363 static bfd_boolean
9364 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9365 {
9366 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9367 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9368 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9369 bfd_boolean strip;
9370 Elf_Internal_Sym sym;
9371 asection *input_sec;
9372 const struct elf_backend_data *bed;
9373 long indx;
9374 int ret;
9375 unsigned int type;
9376
9377 if (h->root.type == bfd_link_hash_warning)
9378 {
9379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9380 if (h->root.type == bfd_link_hash_new)
9381 return TRUE;
9382 }
9383
9384 /* Decide whether to output this symbol in this pass. */
9385 if (eoinfo->localsyms)
9386 {
9387 if (!h->forced_local)
9388 return TRUE;
9389 }
9390 else
9391 {
9392 if (h->forced_local)
9393 return TRUE;
9394 }
9395
9396 bed = get_elf_backend_data (flinfo->output_bfd);
9397
9398 if (h->root.type == bfd_link_hash_undefined)
9399 {
9400 /* If we have an undefined symbol reference here then it must have
9401 come from a shared library that is being linked in. (Undefined
9402 references in regular files have already been handled unless
9403 they are in unreferenced sections which are removed by garbage
9404 collection). */
9405 bfd_boolean ignore_undef = FALSE;
9406
9407 /* Some symbols may be special in that the fact that they're
9408 undefined can be safely ignored - let backend determine that. */
9409 if (bed->elf_backend_ignore_undef_symbol)
9410 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9411
9412 /* If we are reporting errors for this situation then do so now. */
9413 if (!ignore_undef
9414 && h->ref_dynamic
9415 && (!h->ref_regular || flinfo->info->gc_sections)
9416 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9417 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9418 (*flinfo->info->callbacks->undefined_symbol)
9419 (flinfo->info, h->root.root.string,
9420 h->ref_regular ? NULL : h->root.u.undef.abfd,
9421 NULL, 0,
9422 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9423
9424 /* Strip a global symbol defined in a discarded section. */
9425 if (h->indx == -3)
9426 return TRUE;
9427 }
9428
9429 /* We should also warn if a forced local symbol is referenced from
9430 shared libraries. */
9431 if (bfd_link_executable (flinfo->info)
9432 && h->forced_local
9433 && h->ref_dynamic
9434 && h->def_regular
9435 && !h->dynamic_def
9436 && h->ref_dynamic_nonweak
9437 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9438 {
9439 bfd *def_bfd;
9440 const char *msg;
9441 struct elf_link_hash_entry *hi = h;
9442
9443 /* Check indirect symbol. */
9444 while (hi->root.type == bfd_link_hash_indirect)
9445 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9446
9447 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9448 /* xgettext:c-format */
9449 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9450 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9451 /* xgettext:c-format */
9452 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9453 else
9454 /* xgettext:c-format */
9455 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9456 def_bfd = flinfo->output_bfd;
9457 if (hi->root.u.def.section != bfd_abs_section_ptr)
9458 def_bfd = hi->root.u.def.section->owner;
9459 _bfd_error_handler (msg, flinfo->output_bfd, def_bfd,
9460 h->root.root.string);
9461 bfd_set_error (bfd_error_bad_value);
9462 eoinfo->failed = TRUE;
9463 return FALSE;
9464 }
9465
9466 /* We don't want to output symbols that have never been mentioned by
9467 a regular file, or that we have been told to strip. However, if
9468 h->indx is set to -2, the symbol is used by a reloc and we must
9469 output it. */
9470 strip = FALSE;
9471 if (h->indx == -2)
9472 ;
9473 else if ((h->def_dynamic
9474 || h->ref_dynamic
9475 || h->root.type == bfd_link_hash_new)
9476 && !h->def_regular
9477 && !h->ref_regular)
9478 strip = TRUE;
9479 else if (flinfo->info->strip == strip_all)
9480 strip = TRUE;
9481 else if (flinfo->info->strip == strip_some
9482 && bfd_hash_lookup (flinfo->info->keep_hash,
9483 h->root.root.string, FALSE, FALSE) == NULL)
9484 strip = TRUE;
9485 else if ((h->root.type == bfd_link_hash_defined
9486 || h->root.type == bfd_link_hash_defweak)
9487 && ((flinfo->info->strip_discarded
9488 && discarded_section (h->root.u.def.section))
9489 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9490 && h->root.u.def.section->owner != NULL
9491 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9492 strip = TRUE;
9493 else if ((h->root.type == bfd_link_hash_undefined
9494 || h->root.type == bfd_link_hash_undefweak)
9495 && h->root.u.undef.abfd != NULL
9496 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9497 strip = TRUE;
9498
9499 type = h->type;
9500
9501 /* If we're stripping it, and it's not a dynamic symbol, there's
9502 nothing else to do. However, if it is a forced local symbol or
9503 an ifunc symbol we need to give the backend finish_dynamic_symbol
9504 function a chance to make it dynamic. */
9505 if (strip
9506 && h->dynindx == -1
9507 && type != STT_GNU_IFUNC
9508 && !h->forced_local)
9509 return TRUE;
9510
9511 sym.st_value = 0;
9512 sym.st_size = h->size;
9513 sym.st_other = h->other;
9514 switch (h->root.type)
9515 {
9516 default:
9517 case bfd_link_hash_new:
9518 case bfd_link_hash_warning:
9519 abort ();
9520 return FALSE;
9521
9522 case bfd_link_hash_undefined:
9523 case bfd_link_hash_undefweak:
9524 input_sec = bfd_und_section_ptr;
9525 sym.st_shndx = SHN_UNDEF;
9526 break;
9527
9528 case bfd_link_hash_defined:
9529 case bfd_link_hash_defweak:
9530 {
9531 input_sec = h->root.u.def.section;
9532 if (input_sec->output_section != NULL)
9533 {
9534 sym.st_shndx =
9535 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9536 input_sec->output_section);
9537 if (sym.st_shndx == SHN_BAD)
9538 {
9539 _bfd_error_handler
9540 /* xgettext:c-format */
9541 (_("%B: could not find output section %A for input section %A"),
9542 flinfo->output_bfd, input_sec->output_section, input_sec);
9543 bfd_set_error (bfd_error_nonrepresentable_section);
9544 eoinfo->failed = TRUE;
9545 return FALSE;
9546 }
9547
9548 /* ELF symbols in relocatable files are section relative,
9549 but in nonrelocatable files they are virtual
9550 addresses. */
9551 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9552 if (!bfd_link_relocatable (flinfo->info))
9553 {
9554 sym.st_value += input_sec->output_section->vma;
9555 if (h->type == STT_TLS)
9556 {
9557 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9558 if (tls_sec != NULL)
9559 sym.st_value -= tls_sec->vma;
9560 }
9561 }
9562 }
9563 else
9564 {
9565 BFD_ASSERT (input_sec->owner == NULL
9566 || (input_sec->owner->flags & DYNAMIC) != 0);
9567 sym.st_shndx = SHN_UNDEF;
9568 input_sec = bfd_und_section_ptr;
9569 }
9570 }
9571 break;
9572
9573 case bfd_link_hash_common:
9574 input_sec = h->root.u.c.p->section;
9575 sym.st_shndx = bed->common_section_index (input_sec);
9576 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9577 break;
9578
9579 case bfd_link_hash_indirect:
9580 /* These symbols are created by symbol versioning. They point
9581 to the decorated version of the name. For example, if the
9582 symbol foo@@GNU_1.2 is the default, which should be used when
9583 foo is used with no version, then we add an indirect symbol
9584 foo which points to foo@@GNU_1.2. We ignore these symbols,
9585 since the indirected symbol is already in the hash table. */
9586 return TRUE;
9587 }
9588
9589 if (type == STT_COMMON || type == STT_OBJECT)
9590 switch (h->root.type)
9591 {
9592 case bfd_link_hash_common:
9593 type = elf_link_convert_common_type (flinfo->info, type);
9594 break;
9595 case bfd_link_hash_defined:
9596 case bfd_link_hash_defweak:
9597 if (bed->common_definition (&sym))
9598 type = elf_link_convert_common_type (flinfo->info, type);
9599 else
9600 type = STT_OBJECT;
9601 break;
9602 case bfd_link_hash_undefined:
9603 case bfd_link_hash_undefweak:
9604 break;
9605 default:
9606 abort ();
9607 }
9608
9609 if (h->forced_local)
9610 {
9611 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9612 /* Turn off visibility on local symbol. */
9613 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9614 }
9615 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9616 else if (h->unique_global && h->def_regular)
9617 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9618 else if (h->root.type == bfd_link_hash_undefweak
9619 || h->root.type == bfd_link_hash_defweak)
9620 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9621 else
9622 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9623 sym.st_target_internal = h->target_internal;
9624
9625 /* Give the processor backend a chance to tweak the symbol value,
9626 and also to finish up anything that needs to be done for this
9627 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9628 forced local syms when non-shared is due to a historical quirk.
9629 STT_GNU_IFUNC symbol must go through PLT. */
9630 if ((h->type == STT_GNU_IFUNC
9631 && h->def_regular
9632 && !bfd_link_relocatable (flinfo->info))
9633 || ((h->dynindx != -1
9634 || h->forced_local)
9635 && ((bfd_link_pic (flinfo->info)
9636 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9637 || h->root.type != bfd_link_hash_undefweak))
9638 || !h->forced_local)
9639 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9640 {
9641 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9642 (flinfo->output_bfd, flinfo->info, h, &sym)))
9643 {
9644 eoinfo->failed = TRUE;
9645 return FALSE;
9646 }
9647 }
9648
9649 /* If we are marking the symbol as undefined, and there are no
9650 non-weak references to this symbol from a regular object, then
9651 mark the symbol as weak undefined; if there are non-weak
9652 references, mark the symbol as strong. We can't do this earlier,
9653 because it might not be marked as undefined until the
9654 finish_dynamic_symbol routine gets through with it. */
9655 if (sym.st_shndx == SHN_UNDEF
9656 && h->ref_regular
9657 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9658 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9659 {
9660 int bindtype;
9661 type = ELF_ST_TYPE (sym.st_info);
9662
9663 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9664 if (type == STT_GNU_IFUNC)
9665 type = STT_FUNC;
9666
9667 if (h->ref_regular_nonweak)
9668 bindtype = STB_GLOBAL;
9669 else
9670 bindtype = STB_WEAK;
9671 sym.st_info = ELF_ST_INFO (bindtype, type);
9672 }
9673
9674 /* If this is a symbol defined in a dynamic library, don't use the
9675 symbol size from the dynamic library. Relinking an executable
9676 against a new library may introduce gratuitous changes in the
9677 executable's symbols if we keep the size. */
9678 if (sym.st_shndx == SHN_UNDEF
9679 && !h->def_regular
9680 && h->def_dynamic)
9681 sym.st_size = 0;
9682
9683 /* If a non-weak symbol with non-default visibility is not defined
9684 locally, it is a fatal error. */
9685 if (!bfd_link_relocatable (flinfo->info)
9686 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9687 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9688 && h->root.type == bfd_link_hash_undefined
9689 && !h->def_regular)
9690 {
9691 const char *msg;
9692
9693 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9694 /* xgettext:c-format */
9695 msg = _("%B: protected symbol `%s' isn't defined");
9696 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9697 /* xgettext:c-format */
9698 msg = _("%B: internal symbol `%s' isn't defined");
9699 else
9700 /* xgettext:c-format */
9701 msg = _("%B: hidden symbol `%s' isn't defined");
9702 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9703 bfd_set_error (bfd_error_bad_value);
9704 eoinfo->failed = TRUE;
9705 return FALSE;
9706 }
9707
9708 /* If this symbol should be put in the .dynsym section, then put it
9709 there now. We already know the symbol index. We also fill in
9710 the entry in the .hash section. */
9711 if (elf_hash_table (flinfo->info)->dynsym != NULL
9712 && h->dynindx != -1
9713 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9714 {
9715 bfd_byte *esym;
9716
9717 /* Since there is no version information in the dynamic string,
9718 if there is no version info in symbol version section, we will
9719 have a run-time problem if not linking executable, referenced
9720 by shared library, or not bound locally. */
9721 if (h->verinfo.verdef == NULL
9722 && (!bfd_link_executable (flinfo->info)
9723 || h->ref_dynamic
9724 || !h->def_regular))
9725 {
9726 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9727
9728 if (p && p [1] != '\0')
9729 {
9730 _bfd_error_handler
9731 /* xgettext:c-format */
9732 (_("%B: No symbol version section for versioned symbol `%s'"),
9733 flinfo->output_bfd, h->root.root.string);
9734 eoinfo->failed = TRUE;
9735 return FALSE;
9736 }
9737 }
9738
9739 sym.st_name = h->dynstr_index;
9740 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9741 + h->dynindx * bed->s->sizeof_sym);
9742 if (!check_dynsym (flinfo->output_bfd, &sym))
9743 {
9744 eoinfo->failed = TRUE;
9745 return FALSE;
9746 }
9747 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9748
9749 if (flinfo->hash_sec != NULL)
9750 {
9751 size_t hash_entry_size;
9752 bfd_byte *bucketpos;
9753 bfd_vma chain;
9754 size_t bucketcount;
9755 size_t bucket;
9756
9757 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9758 bucket = h->u.elf_hash_value % bucketcount;
9759
9760 hash_entry_size
9761 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9762 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9763 + (bucket + 2) * hash_entry_size);
9764 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9765 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9766 bucketpos);
9767 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9768 ((bfd_byte *) flinfo->hash_sec->contents
9769 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9770 }
9771
9772 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9773 {
9774 Elf_Internal_Versym iversym;
9775 Elf_External_Versym *eversym;
9776
9777 if (!h->def_regular)
9778 {
9779 if (h->verinfo.verdef == NULL
9780 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9781 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9782 iversym.vs_vers = 0;
9783 else
9784 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9785 }
9786 else
9787 {
9788 if (h->verinfo.vertree == NULL)
9789 iversym.vs_vers = 1;
9790 else
9791 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9792 if (flinfo->info->create_default_symver)
9793 iversym.vs_vers++;
9794 }
9795
9796 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9797 defined locally. */
9798 if (h->versioned == versioned_hidden && h->def_regular)
9799 iversym.vs_vers |= VERSYM_HIDDEN;
9800
9801 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9802 eversym += h->dynindx;
9803 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9804 }
9805 }
9806
9807 /* If the symbol is undefined, and we didn't output it to .dynsym,
9808 strip it from .symtab too. Obviously we can't do this for
9809 relocatable output or when needed for --emit-relocs. */
9810 else if (input_sec == bfd_und_section_ptr
9811 && h->indx != -2
9812 && !bfd_link_relocatable (flinfo->info))
9813 return TRUE;
9814 /* Also strip others that we couldn't earlier due to dynamic symbol
9815 processing. */
9816 if (strip)
9817 return TRUE;
9818 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9819 return TRUE;
9820
9821 /* Output a FILE symbol so that following locals are not associated
9822 with the wrong input file. We need one for forced local symbols
9823 if we've seen more than one FILE symbol or when we have exactly
9824 one FILE symbol but global symbols are present in a file other
9825 than the one with the FILE symbol. We also need one if linker
9826 defined symbols are present. In practice these conditions are
9827 always met, so just emit the FILE symbol unconditionally. */
9828 if (eoinfo->localsyms
9829 && !eoinfo->file_sym_done
9830 && eoinfo->flinfo->filesym_count != 0)
9831 {
9832 Elf_Internal_Sym fsym;
9833
9834 memset (&fsym, 0, sizeof (fsym));
9835 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9836 fsym.st_shndx = SHN_ABS;
9837 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9838 bfd_und_section_ptr, NULL))
9839 return FALSE;
9840
9841 eoinfo->file_sym_done = TRUE;
9842 }
9843
9844 indx = bfd_get_symcount (flinfo->output_bfd);
9845 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9846 input_sec, h);
9847 if (ret == 0)
9848 {
9849 eoinfo->failed = TRUE;
9850 return FALSE;
9851 }
9852 else if (ret == 1)
9853 h->indx = indx;
9854 else if (h->indx == -2)
9855 abort();
9856
9857 return TRUE;
9858 }
9859
9860 /* Return TRUE if special handling is done for relocs in SEC against
9861 symbols defined in discarded sections. */
9862
9863 static bfd_boolean
9864 elf_section_ignore_discarded_relocs (asection *sec)
9865 {
9866 const struct elf_backend_data *bed;
9867
9868 switch (sec->sec_info_type)
9869 {
9870 case SEC_INFO_TYPE_STABS:
9871 case SEC_INFO_TYPE_EH_FRAME:
9872 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9873 return TRUE;
9874 default:
9875 break;
9876 }
9877
9878 bed = get_elf_backend_data (sec->owner);
9879 if (bed->elf_backend_ignore_discarded_relocs != NULL
9880 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9881 return TRUE;
9882
9883 return FALSE;
9884 }
9885
9886 /* Return a mask saying how ld should treat relocations in SEC against
9887 symbols defined in discarded sections. If this function returns
9888 COMPLAIN set, ld will issue a warning message. If this function
9889 returns PRETEND set, and the discarded section was link-once and the
9890 same size as the kept link-once section, ld will pretend that the
9891 symbol was actually defined in the kept section. Otherwise ld will
9892 zero the reloc (at least that is the intent, but some cooperation by
9893 the target dependent code is needed, particularly for REL targets). */
9894
9895 unsigned int
9896 _bfd_elf_default_action_discarded (asection *sec)
9897 {
9898 if (sec->flags & SEC_DEBUGGING)
9899 return PRETEND;
9900
9901 if (strcmp (".eh_frame", sec->name) == 0)
9902 return 0;
9903
9904 if (strcmp (".gcc_except_table", sec->name) == 0)
9905 return 0;
9906
9907 return COMPLAIN | PRETEND;
9908 }
9909
9910 /* Find a match between a section and a member of a section group. */
9911
9912 static asection *
9913 match_group_member (asection *sec, asection *group,
9914 struct bfd_link_info *info)
9915 {
9916 asection *first = elf_next_in_group (group);
9917 asection *s = first;
9918
9919 while (s != NULL)
9920 {
9921 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9922 return s;
9923
9924 s = elf_next_in_group (s);
9925 if (s == first)
9926 break;
9927 }
9928
9929 return NULL;
9930 }
9931
9932 /* Check if the kept section of a discarded section SEC can be used
9933 to replace it. Return the replacement if it is OK. Otherwise return
9934 NULL. */
9935
9936 asection *
9937 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9938 {
9939 asection *kept;
9940
9941 kept = sec->kept_section;
9942 if (kept != NULL)
9943 {
9944 if ((kept->flags & SEC_GROUP) != 0)
9945 kept = match_group_member (sec, kept, info);
9946 if (kept != NULL
9947 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9948 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9949 kept = NULL;
9950 sec->kept_section = kept;
9951 }
9952 return kept;
9953 }
9954
9955 /* Link an input file into the linker output file. This function
9956 handles all the sections and relocations of the input file at once.
9957 This is so that we only have to read the local symbols once, and
9958 don't have to keep them in memory. */
9959
9960 static bfd_boolean
9961 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9962 {
9963 int (*relocate_section)
9964 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9965 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9966 bfd *output_bfd;
9967 Elf_Internal_Shdr *symtab_hdr;
9968 size_t locsymcount;
9969 size_t extsymoff;
9970 Elf_Internal_Sym *isymbuf;
9971 Elf_Internal_Sym *isym;
9972 Elf_Internal_Sym *isymend;
9973 long *pindex;
9974 asection **ppsection;
9975 asection *o;
9976 const struct elf_backend_data *bed;
9977 struct elf_link_hash_entry **sym_hashes;
9978 bfd_size_type address_size;
9979 bfd_vma r_type_mask;
9980 int r_sym_shift;
9981 bfd_boolean have_file_sym = FALSE;
9982
9983 output_bfd = flinfo->output_bfd;
9984 bed = get_elf_backend_data (output_bfd);
9985 relocate_section = bed->elf_backend_relocate_section;
9986
9987 /* If this is a dynamic object, we don't want to do anything here:
9988 we don't want the local symbols, and we don't want the section
9989 contents. */
9990 if ((input_bfd->flags & DYNAMIC) != 0)
9991 return TRUE;
9992
9993 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9994 if (elf_bad_symtab (input_bfd))
9995 {
9996 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9997 extsymoff = 0;
9998 }
9999 else
10000 {
10001 locsymcount = symtab_hdr->sh_info;
10002 extsymoff = symtab_hdr->sh_info;
10003 }
10004
10005 /* Read the local symbols. */
10006 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10007 if (isymbuf == NULL && locsymcount != 0)
10008 {
10009 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10010 flinfo->internal_syms,
10011 flinfo->external_syms,
10012 flinfo->locsym_shndx);
10013 if (isymbuf == NULL)
10014 return FALSE;
10015 }
10016
10017 /* Find local symbol sections and adjust values of symbols in
10018 SEC_MERGE sections. Write out those local symbols we know are
10019 going into the output file. */
10020 isymend = isymbuf + locsymcount;
10021 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10022 isym < isymend;
10023 isym++, pindex++, ppsection++)
10024 {
10025 asection *isec;
10026 const char *name;
10027 Elf_Internal_Sym osym;
10028 long indx;
10029 int ret;
10030
10031 *pindex = -1;
10032
10033 if (elf_bad_symtab (input_bfd))
10034 {
10035 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10036 {
10037 *ppsection = NULL;
10038 continue;
10039 }
10040 }
10041
10042 if (isym->st_shndx == SHN_UNDEF)
10043 isec = bfd_und_section_ptr;
10044 else if (isym->st_shndx == SHN_ABS)
10045 isec = bfd_abs_section_ptr;
10046 else if (isym->st_shndx == SHN_COMMON)
10047 isec = bfd_com_section_ptr;
10048 else
10049 {
10050 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10051 if (isec == NULL)
10052 {
10053 /* Don't attempt to output symbols with st_shnx in the
10054 reserved range other than SHN_ABS and SHN_COMMON. */
10055 *ppsection = NULL;
10056 continue;
10057 }
10058 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10059 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10060 isym->st_value =
10061 _bfd_merged_section_offset (output_bfd, &isec,
10062 elf_section_data (isec)->sec_info,
10063 isym->st_value);
10064 }
10065
10066 *ppsection = isec;
10067
10068 /* Don't output the first, undefined, symbol. In fact, don't
10069 output any undefined local symbol. */
10070 if (isec == bfd_und_section_ptr)
10071 continue;
10072
10073 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10074 {
10075 /* We never output section symbols. Instead, we use the
10076 section symbol of the corresponding section in the output
10077 file. */
10078 continue;
10079 }
10080
10081 /* If we are stripping all symbols, we don't want to output this
10082 one. */
10083 if (flinfo->info->strip == strip_all)
10084 continue;
10085
10086 /* If we are discarding all local symbols, we don't want to
10087 output this one. If we are generating a relocatable output
10088 file, then some of the local symbols may be required by
10089 relocs; we output them below as we discover that they are
10090 needed. */
10091 if (flinfo->info->discard == discard_all)
10092 continue;
10093
10094 /* If this symbol is defined in a section which we are
10095 discarding, we don't need to keep it. */
10096 if (isym->st_shndx != SHN_UNDEF
10097 && isym->st_shndx < SHN_LORESERVE
10098 && bfd_section_removed_from_list (output_bfd,
10099 isec->output_section))
10100 continue;
10101
10102 /* Get the name of the symbol. */
10103 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10104 isym->st_name);
10105 if (name == NULL)
10106 return FALSE;
10107
10108 /* See if we are discarding symbols with this name. */
10109 if ((flinfo->info->strip == strip_some
10110 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10111 == NULL))
10112 || (((flinfo->info->discard == discard_sec_merge
10113 && (isec->flags & SEC_MERGE)
10114 && !bfd_link_relocatable (flinfo->info))
10115 || flinfo->info->discard == discard_l)
10116 && bfd_is_local_label_name (input_bfd, name)))
10117 continue;
10118
10119 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10120 {
10121 if (input_bfd->lto_output)
10122 /* -flto puts a temp file name here. This means builds
10123 are not reproducible. Discard the symbol. */
10124 continue;
10125 have_file_sym = TRUE;
10126 flinfo->filesym_count += 1;
10127 }
10128 if (!have_file_sym)
10129 {
10130 /* In the absence of debug info, bfd_find_nearest_line uses
10131 FILE symbols to determine the source file for local
10132 function symbols. Provide a FILE symbol here if input
10133 files lack such, so that their symbols won't be
10134 associated with a previous input file. It's not the
10135 source file, but the best we can do. */
10136 have_file_sym = TRUE;
10137 flinfo->filesym_count += 1;
10138 memset (&osym, 0, sizeof (osym));
10139 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10140 osym.st_shndx = SHN_ABS;
10141 if (!elf_link_output_symstrtab (flinfo,
10142 (input_bfd->lto_output ? NULL
10143 : input_bfd->filename),
10144 &osym, bfd_abs_section_ptr,
10145 NULL))
10146 return FALSE;
10147 }
10148
10149 osym = *isym;
10150
10151 /* Adjust the section index for the output file. */
10152 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10153 isec->output_section);
10154 if (osym.st_shndx == SHN_BAD)
10155 return FALSE;
10156
10157 /* ELF symbols in relocatable files are section relative, but
10158 in executable files they are virtual addresses. Note that
10159 this code assumes that all ELF sections have an associated
10160 BFD section with a reasonable value for output_offset; below
10161 we assume that they also have a reasonable value for
10162 output_section. Any special sections must be set up to meet
10163 these requirements. */
10164 osym.st_value += isec->output_offset;
10165 if (!bfd_link_relocatable (flinfo->info))
10166 {
10167 osym.st_value += isec->output_section->vma;
10168 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10169 {
10170 /* STT_TLS symbols are relative to PT_TLS segment base. */
10171 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10172 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10173 }
10174 }
10175
10176 indx = bfd_get_symcount (output_bfd);
10177 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10178 if (ret == 0)
10179 return FALSE;
10180 else if (ret == 1)
10181 *pindex = indx;
10182 }
10183
10184 if (bed->s->arch_size == 32)
10185 {
10186 r_type_mask = 0xff;
10187 r_sym_shift = 8;
10188 address_size = 4;
10189 }
10190 else
10191 {
10192 r_type_mask = 0xffffffff;
10193 r_sym_shift = 32;
10194 address_size = 8;
10195 }
10196
10197 /* Relocate the contents of each section. */
10198 sym_hashes = elf_sym_hashes (input_bfd);
10199 for (o = input_bfd->sections; o != NULL; o = o->next)
10200 {
10201 bfd_byte *contents;
10202
10203 if (! o->linker_mark)
10204 {
10205 /* This section was omitted from the link. */
10206 continue;
10207 }
10208
10209 if (bfd_link_relocatable (flinfo->info)
10210 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10211 {
10212 /* Deal with the group signature symbol. */
10213 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10214 unsigned long symndx = sec_data->this_hdr.sh_info;
10215 asection *osec = o->output_section;
10216
10217 if (symndx >= locsymcount
10218 || (elf_bad_symtab (input_bfd)
10219 && flinfo->sections[symndx] == NULL))
10220 {
10221 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10222 while (h->root.type == bfd_link_hash_indirect
10223 || h->root.type == bfd_link_hash_warning)
10224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10225 /* Arrange for symbol to be output. */
10226 h->indx = -2;
10227 elf_section_data (osec)->this_hdr.sh_info = -2;
10228 }
10229 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10230 {
10231 /* We'll use the output section target_index. */
10232 asection *sec = flinfo->sections[symndx]->output_section;
10233 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10234 }
10235 else
10236 {
10237 if (flinfo->indices[symndx] == -1)
10238 {
10239 /* Otherwise output the local symbol now. */
10240 Elf_Internal_Sym sym = isymbuf[symndx];
10241 asection *sec = flinfo->sections[symndx]->output_section;
10242 const char *name;
10243 long indx;
10244 int ret;
10245
10246 name = bfd_elf_string_from_elf_section (input_bfd,
10247 symtab_hdr->sh_link,
10248 sym.st_name);
10249 if (name == NULL)
10250 return FALSE;
10251
10252 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10253 sec);
10254 if (sym.st_shndx == SHN_BAD)
10255 return FALSE;
10256
10257 sym.st_value += o->output_offset;
10258
10259 indx = bfd_get_symcount (output_bfd);
10260 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10261 NULL);
10262 if (ret == 0)
10263 return FALSE;
10264 else if (ret == 1)
10265 flinfo->indices[symndx] = indx;
10266 else
10267 abort ();
10268 }
10269 elf_section_data (osec)->this_hdr.sh_info
10270 = flinfo->indices[symndx];
10271 }
10272 }
10273
10274 if ((o->flags & SEC_HAS_CONTENTS) == 0
10275 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10276 continue;
10277
10278 if ((o->flags & SEC_LINKER_CREATED) != 0)
10279 {
10280 /* Section was created by _bfd_elf_link_create_dynamic_sections
10281 or somesuch. */
10282 continue;
10283 }
10284
10285 /* Get the contents of the section. They have been cached by a
10286 relaxation routine. Note that o is a section in an input
10287 file, so the contents field will not have been set by any of
10288 the routines which work on output files. */
10289 if (elf_section_data (o)->this_hdr.contents != NULL)
10290 {
10291 contents = elf_section_data (o)->this_hdr.contents;
10292 if (bed->caches_rawsize
10293 && o->rawsize != 0
10294 && o->rawsize < o->size)
10295 {
10296 memcpy (flinfo->contents, contents, o->rawsize);
10297 contents = flinfo->contents;
10298 }
10299 }
10300 else
10301 {
10302 contents = flinfo->contents;
10303 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10304 return FALSE;
10305 }
10306
10307 if ((o->flags & SEC_RELOC) != 0)
10308 {
10309 Elf_Internal_Rela *internal_relocs;
10310 Elf_Internal_Rela *rel, *relend;
10311 int action_discarded;
10312 int ret;
10313
10314 /* Get the swapped relocs. */
10315 internal_relocs
10316 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10317 flinfo->internal_relocs, FALSE);
10318 if (internal_relocs == NULL
10319 && o->reloc_count > 0)
10320 return FALSE;
10321
10322 /* We need to reverse-copy input .ctors/.dtors sections if
10323 they are placed in .init_array/.finit_array for output. */
10324 if (o->size > address_size
10325 && ((strncmp (o->name, ".ctors", 6) == 0
10326 && strcmp (o->output_section->name,
10327 ".init_array") == 0)
10328 || (strncmp (o->name, ".dtors", 6) == 0
10329 && strcmp (o->output_section->name,
10330 ".fini_array") == 0))
10331 && (o->name[6] == 0 || o->name[6] == '.'))
10332 {
10333 if (o->size != o->reloc_count * address_size)
10334 {
10335 _bfd_error_handler
10336 /* xgettext:c-format */
10337 (_("error: %B: size of section %A is not "
10338 "multiple of address size"),
10339 input_bfd, o);
10340 bfd_set_error (bfd_error_on_input);
10341 return FALSE;
10342 }
10343 o->flags |= SEC_ELF_REVERSE_COPY;
10344 }
10345
10346 action_discarded = -1;
10347 if (!elf_section_ignore_discarded_relocs (o))
10348 action_discarded = (*bed->action_discarded) (o);
10349
10350 /* Run through the relocs evaluating complex reloc symbols and
10351 looking for relocs against symbols from discarded sections
10352 or section symbols from removed link-once sections.
10353 Complain about relocs against discarded sections. Zero
10354 relocs against removed link-once sections. */
10355
10356 rel = internal_relocs;
10357 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10358 for ( ; rel < relend; rel++)
10359 {
10360 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10361 unsigned int s_type;
10362 asection **ps, *sec;
10363 struct elf_link_hash_entry *h = NULL;
10364 const char *sym_name;
10365
10366 if (r_symndx == STN_UNDEF)
10367 continue;
10368
10369 if (r_symndx >= locsymcount
10370 || (elf_bad_symtab (input_bfd)
10371 && flinfo->sections[r_symndx] == NULL))
10372 {
10373 h = sym_hashes[r_symndx - extsymoff];
10374
10375 /* Badly formatted input files can contain relocs that
10376 reference non-existant symbols. Check here so that
10377 we do not seg fault. */
10378 if (h == NULL)
10379 {
10380 char buffer [32];
10381
10382 sprintf_vma (buffer, rel->r_info);
10383 _bfd_error_handler
10384 /* xgettext:c-format */
10385 (_("error: %B contains a reloc (0x%s) for section %A "
10386 "that references a non-existent global symbol"),
10387 input_bfd, o, buffer);
10388 bfd_set_error (bfd_error_bad_value);
10389 return FALSE;
10390 }
10391
10392 while (h->root.type == bfd_link_hash_indirect
10393 || h->root.type == bfd_link_hash_warning)
10394 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10395
10396 s_type = h->type;
10397
10398 /* If a plugin symbol is referenced from a non-IR file,
10399 mark the symbol as undefined. Note that the
10400 linker may attach linker created dynamic sections
10401 to the plugin bfd. Symbols defined in linker
10402 created sections are not plugin symbols. */
10403 if (h->root.non_ir_ref
10404 && (h->root.type == bfd_link_hash_defined
10405 || h->root.type == bfd_link_hash_defweak)
10406 && (h->root.u.def.section->flags
10407 & SEC_LINKER_CREATED) == 0
10408 && h->root.u.def.section->owner != NULL
10409 && (h->root.u.def.section->owner->flags
10410 & BFD_PLUGIN) != 0)
10411 {
10412 h->root.type = bfd_link_hash_undefined;
10413 h->root.u.undef.abfd = h->root.u.def.section->owner;
10414 }
10415
10416 ps = NULL;
10417 if (h->root.type == bfd_link_hash_defined
10418 || h->root.type == bfd_link_hash_defweak)
10419 ps = &h->root.u.def.section;
10420
10421 sym_name = h->root.root.string;
10422 }
10423 else
10424 {
10425 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10426
10427 s_type = ELF_ST_TYPE (sym->st_info);
10428 ps = &flinfo->sections[r_symndx];
10429 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10430 sym, *ps);
10431 }
10432
10433 if ((s_type == STT_RELC || s_type == STT_SRELC)
10434 && !bfd_link_relocatable (flinfo->info))
10435 {
10436 bfd_vma val;
10437 bfd_vma dot = (rel->r_offset
10438 + o->output_offset + o->output_section->vma);
10439 #ifdef DEBUG
10440 printf ("Encountered a complex symbol!");
10441 printf (" (input_bfd %s, section %s, reloc %ld\n",
10442 input_bfd->filename, o->name,
10443 (long) (rel - internal_relocs));
10444 printf (" symbol: idx %8.8lx, name %s\n",
10445 r_symndx, sym_name);
10446 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10447 (unsigned long) rel->r_info,
10448 (unsigned long) rel->r_offset);
10449 #endif
10450 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10451 isymbuf, locsymcount, s_type == STT_SRELC))
10452 return FALSE;
10453
10454 /* Symbol evaluated OK. Update to absolute value. */
10455 set_symbol_value (input_bfd, isymbuf, locsymcount,
10456 r_symndx, val);
10457 continue;
10458 }
10459
10460 if (action_discarded != -1 && ps != NULL)
10461 {
10462 /* Complain if the definition comes from a
10463 discarded section. */
10464 if ((sec = *ps) != NULL && discarded_section (sec))
10465 {
10466 BFD_ASSERT (r_symndx != STN_UNDEF);
10467 if (action_discarded & COMPLAIN)
10468 (*flinfo->info->callbacks->einfo)
10469 /* xgettext:c-format */
10470 (_("%X`%s' referenced in section `%A' of %B: "
10471 "defined in discarded section `%A' of %B\n"),
10472 sym_name, o, input_bfd, sec, sec->owner);
10473
10474 /* Try to do the best we can to support buggy old
10475 versions of gcc. Pretend that the symbol is
10476 really defined in the kept linkonce section.
10477 FIXME: This is quite broken. Modifying the
10478 symbol here means we will be changing all later
10479 uses of the symbol, not just in this section. */
10480 if (action_discarded & PRETEND)
10481 {
10482 asection *kept;
10483
10484 kept = _bfd_elf_check_kept_section (sec,
10485 flinfo->info);
10486 if (kept != NULL)
10487 {
10488 *ps = kept;
10489 continue;
10490 }
10491 }
10492 }
10493 }
10494 }
10495
10496 /* Relocate the section by invoking a back end routine.
10497
10498 The back end routine is responsible for adjusting the
10499 section contents as necessary, and (if using Rela relocs
10500 and generating a relocatable output file) adjusting the
10501 reloc addend as necessary.
10502
10503 The back end routine does not have to worry about setting
10504 the reloc address or the reloc symbol index.
10505
10506 The back end routine is given a pointer to the swapped in
10507 internal symbols, and can access the hash table entries
10508 for the external symbols via elf_sym_hashes (input_bfd).
10509
10510 When generating relocatable output, the back end routine
10511 must handle STB_LOCAL/STT_SECTION symbols specially. The
10512 output symbol is going to be a section symbol
10513 corresponding to the output section, which will require
10514 the addend to be adjusted. */
10515
10516 ret = (*relocate_section) (output_bfd, flinfo->info,
10517 input_bfd, o, contents,
10518 internal_relocs,
10519 isymbuf,
10520 flinfo->sections);
10521 if (!ret)
10522 return FALSE;
10523
10524 if (ret == 2
10525 || bfd_link_relocatable (flinfo->info)
10526 || flinfo->info->emitrelocations)
10527 {
10528 Elf_Internal_Rela *irela;
10529 Elf_Internal_Rela *irelaend, *irelamid;
10530 bfd_vma last_offset;
10531 struct elf_link_hash_entry **rel_hash;
10532 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10533 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10534 unsigned int next_erel;
10535 bfd_boolean rela_normal;
10536 struct bfd_elf_section_data *esdi, *esdo;
10537
10538 esdi = elf_section_data (o);
10539 esdo = elf_section_data (o->output_section);
10540 rela_normal = FALSE;
10541
10542 /* Adjust the reloc addresses and symbol indices. */
10543
10544 irela = internal_relocs;
10545 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10546 rel_hash = esdo->rel.hashes + esdo->rel.count;
10547 /* We start processing the REL relocs, if any. When we reach
10548 IRELAMID in the loop, we switch to the RELA relocs. */
10549 irelamid = irela;
10550 if (esdi->rel.hdr != NULL)
10551 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10552 * bed->s->int_rels_per_ext_rel);
10553 rel_hash_list = rel_hash;
10554 rela_hash_list = NULL;
10555 last_offset = o->output_offset;
10556 if (!bfd_link_relocatable (flinfo->info))
10557 last_offset += o->output_section->vma;
10558 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10559 {
10560 unsigned long r_symndx;
10561 asection *sec;
10562 Elf_Internal_Sym sym;
10563
10564 if (next_erel == bed->s->int_rels_per_ext_rel)
10565 {
10566 rel_hash++;
10567 next_erel = 0;
10568 }
10569
10570 if (irela == irelamid)
10571 {
10572 rel_hash = esdo->rela.hashes + esdo->rela.count;
10573 rela_hash_list = rel_hash;
10574 rela_normal = bed->rela_normal;
10575 }
10576
10577 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10578 flinfo->info, o,
10579 irela->r_offset);
10580 if (irela->r_offset >= (bfd_vma) -2)
10581 {
10582 /* This is a reloc for a deleted entry or somesuch.
10583 Turn it into an R_*_NONE reloc, at the same
10584 offset as the last reloc. elf_eh_frame.c and
10585 bfd_elf_discard_info rely on reloc offsets
10586 being ordered. */
10587 irela->r_offset = last_offset;
10588 irela->r_info = 0;
10589 irela->r_addend = 0;
10590 continue;
10591 }
10592
10593 irela->r_offset += o->output_offset;
10594
10595 /* Relocs in an executable have to be virtual addresses. */
10596 if (!bfd_link_relocatable (flinfo->info))
10597 irela->r_offset += o->output_section->vma;
10598
10599 last_offset = irela->r_offset;
10600
10601 r_symndx = irela->r_info >> r_sym_shift;
10602 if (r_symndx == STN_UNDEF)
10603 continue;
10604
10605 if (r_symndx >= locsymcount
10606 || (elf_bad_symtab (input_bfd)
10607 && flinfo->sections[r_symndx] == NULL))
10608 {
10609 struct elf_link_hash_entry *rh;
10610 unsigned long indx;
10611
10612 /* This is a reloc against a global symbol. We
10613 have not yet output all the local symbols, so
10614 we do not know the symbol index of any global
10615 symbol. We set the rel_hash entry for this
10616 reloc to point to the global hash table entry
10617 for this symbol. The symbol index is then
10618 set at the end of bfd_elf_final_link. */
10619 indx = r_symndx - extsymoff;
10620 rh = elf_sym_hashes (input_bfd)[indx];
10621 while (rh->root.type == bfd_link_hash_indirect
10622 || rh->root.type == bfd_link_hash_warning)
10623 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10624
10625 /* Setting the index to -2 tells
10626 elf_link_output_extsym that this symbol is
10627 used by a reloc. */
10628 BFD_ASSERT (rh->indx < 0);
10629 rh->indx = -2;
10630
10631 *rel_hash = rh;
10632
10633 continue;
10634 }
10635
10636 /* This is a reloc against a local symbol. */
10637
10638 *rel_hash = NULL;
10639 sym = isymbuf[r_symndx];
10640 sec = flinfo->sections[r_symndx];
10641 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10642 {
10643 /* I suppose the backend ought to fill in the
10644 section of any STT_SECTION symbol against a
10645 processor specific section. */
10646 r_symndx = STN_UNDEF;
10647 if (bfd_is_abs_section (sec))
10648 ;
10649 else if (sec == NULL || sec->owner == NULL)
10650 {
10651 bfd_set_error (bfd_error_bad_value);
10652 return FALSE;
10653 }
10654 else
10655 {
10656 asection *osec = sec->output_section;
10657
10658 /* If we have discarded a section, the output
10659 section will be the absolute section. In
10660 case of discarded SEC_MERGE sections, use
10661 the kept section. relocate_section should
10662 have already handled discarded linkonce
10663 sections. */
10664 if (bfd_is_abs_section (osec)
10665 && sec->kept_section != NULL
10666 && sec->kept_section->output_section != NULL)
10667 {
10668 osec = sec->kept_section->output_section;
10669 irela->r_addend -= osec->vma;
10670 }
10671
10672 if (!bfd_is_abs_section (osec))
10673 {
10674 r_symndx = osec->target_index;
10675 if (r_symndx == STN_UNDEF)
10676 {
10677 irela->r_addend += osec->vma;
10678 osec = _bfd_nearby_section (output_bfd, osec,
10679 osec->vma);
10680 irela->r_addend -= osec->vma;
10681 r_symndx = osec->target_index;
10682 }
10683 }
10684 }
10685
10686 /* Adjust the addend according to where the
10687 section winds up in the output section. */
10688 if (rela_normal)
10689 irela->r_addend += sec->output_offset;
10690 }
10691 else
10692 {
10693 if (flinfo->indices[r_symndx] == -1)
10694 {
10695 unsigned long shlink;
10696 const char *name;
10697 asection *osec;
10698 long indx;
10699
10700 if (flinfo->info->strip == strip_all)
10701 {
10702 /* You can't do ld -r -s. */
10703 bfd_set_error (bfd_error_invalid_operation);
10704 return FALSE;
10705 }
10706
10707 /* This symbol was skipped earlier, but
10708 since it is needed by a reloc, we
10709 must output it now. */
10710 shlink = symtab_hdr->sh_link;
10711 name = (bfd_elf_string_from_elf_section
10712 (input_bfd, shlink, sym.st_name));
10713 if (name == NULL)
10714 return FALSE;
10715
10716 osec = sec->output_section;
10717 sym.st_shndx =
10718 _bfd_elf_section_from_bfd_section (output_bfd,
10719 osec);
10720 if (sym.st_shndx == SHN_BAD)
10721 return FALSE;
10722
10723 sym.st_value += sec->output_offset;
10724 if (!bfd_link_relocatable (flinfo->info))
10725 {
10726 sym.st_value += osec->vma;
10727 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10728 {
10729 /* STT_TLS symbols are relative to PT_TLS
10730 segment base. */
10731 BFD_ASSERT (elf_hash_table (flinfo->info)
10732 ->tls_sec != NULL);
10733 sym.st_value -= (elf_hash_table (flinfo->info)
10734 ->tls_sec->vma);
10735 }
10736 }
10737
10738 indx = bfd_get_symcount (output_bfd);
10739 ret = elf_link_output_symstrtab (flinfo, name,
10740 &sym, sec,
10741 NULL);
10742 if (ret == 0)
10743 return FALSE;
10744 else if (ret == 1)
10745 flinfo->indices[r_symndx] = indx;
10746 else
10747 abort ();
10748 }
10749
10750 r_symndx = flinfo->indices[r_symndx];
10751 }
10752
10753 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10754 | (irela->r_info & r_type_mask));
10755 }
10756
10757 /* Swap out the relocs. */
10758 input_rel_hdr = esdi->rel.hdr;
10759 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10760 {
10761 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10762 input_rel_hdr,
10763 internal_relocs,
10764 rel_hash_list))
10765 return FALSE;
10766 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10767 * bed->s->int_rels_per_ext_rel);
10768 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10769 }
10770
10771 input_rela_hdr = esdi->rela.hdr;
10772 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10773 {
10774 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10775 input_rela_hdr,
10776 internal_relocs,
10777 rela_hash_list))
10778 return FALSE;
10779 }
10780 }
10781 }
10782
10783 /* Write out the modified section contents. */
10784 if (bed->elf_backend_write_section
10785 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10786 contents))
10787 {
10788 /* Section written out. */
10789 }
10790 else switch (o->sec_info_type)
10791 {
10792 case SEC_INFO_TYPE_STABS:
10793 if (! (_bfd_write_section_stabs
10794 (output_bfd,
10795 &elf_hash_table (flinfo->info)->stab_info,
10796 o, &elf_section_data (o)->sec_info, contents)))
10797 return FALSE;
10798 break;
10799 case SEC_INFO_TYPE_MERGE:
10800 if (! _bfd_write_merged_section (output_bfd, o,
10801 elf_section_data (o)->sec_info))
10802 return FALSE;
10803 break;
10804 case SEC_INFO_TYPE_EH_FRAME:
10805 {
10806 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10807 o, contents))
10808 return FALSE;
10809 }
10810 break;
10811 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10812 {
10813 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10814 flinfo->info,
10815 o, contents))
10816 return FALSE;
10817 }
10818 break;
10819 default:
10820 {
10821 if (! (o->flags & SEC_EXCLUDE))
10822 {
10823 file_ptr offset = (file_ptr) o->output_offset;
10824 bfd_size_type todo = o->size;
10825
10826 offset *= bfd_octets_per_byte (output_bfd);
10827
10828 if ((o->flags & SEC_ELF_REVERSE_COPY))
10829 {
10830 /* Reverse-copy input section to output. */
10831 do
10832 {
10833 todo -= address_size;
10834 if (! bfd_set_section_contents (output_bfd,
10835 o->output_section,
10836 contents + todo,
10837 offset,
10838 address_size))
10839 return FALSE;
10840 if (todo == 0)
10841 break;
10842 offset += address_size;
10843 }
10844 while (1);
10845 }
10846 else if (! bfd_set_section_contents (output_bfd,
10847 o->output_section,
10848 contents,
10849 offset, todo))
10850 return FALSE;
10851 }
10852 }
10853 break;
10854 }
10855 }
10856
10857 return TRUE;
10858 }
10859
10860 /* Generate a reloc when linking an ELF file. This is a reloc
10861 requested by the linker, and does not come from any input file. This
10862 is used to build constructor and destructor tables when linking
10863 with -Ur. */
10864
10865 static bfd_boolean
10866 elf_reloc_link_order (bfd *output_bfd,
10867 struct bfd_link_info *info,
10868 asection *output_section,
10869 struct bfd_link_order *link_order)
10870 {
10871 reloc_howto_type *howto;
10872 long indx;
10873 bfd_vma offset;
10874 bfd_vma addend;
10875 struct bfd_elf_section_reloc_data *reldata;
10876 struct elf_link_hash_entry **rel_hash_ptr;
10877 Elf_Internal_Shdr *rel_hdr;
10878 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10879 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10880 bfd_byte *erel;
10881 unsigned int i;
10882 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10883
10884 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10885 if (howto == NULL)
10886 {
10887 bfd_set_error (bfd_error_bad_value);
10888 return FALSE;
10889 }
10890
10891 addend = link_order->u.reloc.p->addend;
10892
10893 if (esdo->rel.hdr)
10894 reldata = &esdo->rel;
10895 else if (esdo->rela.hdr)
10896 reldata = &esdo->rela;
10897 else
10898 {
10899 reldata = NULL;
10900 BFD_ASSERT (0);
10901 }
10902
10903 /* Figure out the symbol index. */
10904 rel_hash_ptr = reldata->hashes + reldata->count;
10905 if (link_order->type == bfd_section_reloc_link_order)
10906 {
10907 indx = link_order->u.reloc.p->u.section->target_index;
10908 BFD_ASSERT (indx != 0);
10909 *rel_hash_ptr = NULL;
10910 }
10911 else
10912 {
10913 struct elf_link_hash_entry *h;
10914
10915 /* Treat a reloc against a defined symbol as though it were
10916 actually against the section. */
10917 h = ((struct elf_link_hash_entry *)
10918 bfd_wrapped_link_hash_lookup (output_bfd, info,
10919 link_order->u.reloc.p->u.name,
10920 FALSE, FALSE, TRUE));
10921 if (h != NULL
10922 && (h->root.type == bfd_link_hash_defined
10923 || h->root.type == bfd_link_hash_defweak))
10924 {
10925 asection *section;
10926
10927 section = h->root.u.def.section;
10928 indx = section->output_section->target_index;
10929 *rel_hash_ptr = NULL;
10930 /* It seems that we ought to add the symbol value to the
10931 addend here, but in practice it has already been added
10932 because it was passed to constructor_callback. */
10933 addend += section->output_section->vma + section->output_offset;
10934 }
10935 else if (h != NULL)
10936 {
10937 /* Setting the index to -2 tells elf_link_output_extsym that
10938 this symbol is used by a reloc. */
10939 h->indx = -2;
10940 *rel_hash_ptr = h;
10941 indx = 0;
10942 }
10943 else
10944 {
10945 (*info->callbacks->unattached_reloc)
10946 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10947 indx = 0;
10948 }
10949 }
10950
10951 /* If this is an inplace reloc, we must write the addend into the
10952 object file. */
10953 if (howto->partial_inplace && addend != 0)
10954 {
10955 bfd_size_type size;
10956 bfd_reloc_status_type rstat;
10957 bfd_byte *buf;
10958 bfd_boolean ok;
10959 const char *sym_name;
10960
10961 size = (bfd_size_type) bfd_get_reloc_size (howto);
10962 buf = (bfd_byte *) bfd_zmalloc (size);
10963 if (buf == NULL && size != 0)
10964 return FALSE;
10965 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10966 switch (rstat)
10967 {
10968 case bfd_reloc_ok:
10969 break;
10970
10971 default:
10972 case bfd_reloc_outofrange:
10973 abort ();
10974
10975 case bfd_reloc_overflow:
10976 if (link_order->type == bfd_section_reloc_link_order)
10977 sym_name = bfd_section_name (output_bfd,
10978 link_order->u.reloc.p->u.section);
10979 else
10980 sym_name = link_order->u.reloc.p->u.name;
10981 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10982 howto->name, addend, NULL, NULL,
10983 (bfd_vma) 0);
10984 break;
10985 }
10986
10987 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10988 link_order->offset
10989 * bfd_octets_per_byte (output_bfd),
10990 size);
10991 free (buf);
10992 if (! ok)
10993 return FALSE;
10994 }
10995
10996 /* The address of a reloc is relative to the section in a
10997 relocatable file, and is a virtual address in an executable
10998 file. */
10999 offset = link_order->offset;
11000 if (! bfd_link_relocatable (info))
11001 offset += output_section->vma;
11002
11003 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11004 {
11005 irel[i].r_offset = offset;
11006 irel[i].r_info = 0;
11007 irel[i].r_addend = 0;
11008 }
11009 if (bed->s->arch_size == 32)
11010 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11011 else
11012 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11013
11014 rel_hdr = reldata->hdr;
11015 erel = rel_hdr->contents;
11016 if (rel_hdr->sh_type == SHT_REL)
11017 {
11018 erel += reldata->count * bed->s->sizeof_rel;
11019 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11020 }
11021 else
11022 {
11023 irel[0].r_addend = addend;
11024 erel += reldata->count * bed->s->sizeof_rela;
11025 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11026 }
11027
11028 ++reldata->count;
11029
11030 return TRUE;
11031 }
11032
11033
11034 /* Get the output vma of the section pointed to by the sh_link field. */
11035
11036 static bfd_vma
11037 elf_get_linked_section_vma (struct bfd_link_order *p)
11038 {
11039 Elf_Internal_Shdr **elf_shdrp;
11040 asection *s;
11041 int elfsec;
11042
11043 s = p->u.indirect.section;
11044 elf_shdrp = elf_elfsections (s->owner);
11045 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11046 elfsec = elf_shdrp[elfsec]->sh_link;
11047 /* PR 290:
11048 The Intel C compiler generates SHT_IA_64_UNWIND with
11049 SHF_LINK_ORDER. But it doesn't set the sh_link or
11050 sh_info fields. Hence we could get the situation
11051 where elfsec is 0. */
11052 if (elfsec == 0)
11053 {
11054 const struct elf_backend_data *bed
11055 = get_elf_backend_data (s->owner);
11056 if (bed->link_order_error_handler)
11057 bed->link_order_error_handler
11058 /* xgettext:c-format */
11059 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11060 return 0;
11061 }
11062 else
11063 {
11064 s = elf_shdrp[elfsec]->bfd_section;
11065 return s->output_section->vma + s->output_offset;
11066 }
11067 }
11068
11069
11070 /* Compare two sections based on the locations of the sections they are
11071 linked to. Used by elf_fixup_link_order. */
11072
11073 static int
11074 compare_link_order (const void * a, const void * b)
11075 {
11076 bfd_vma apos;
11077 bfd_vma bpos;
11078
11079 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11080 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11081 if (apos < bpos)
11082 return -1;
11083 return apos > bpos;
11084 }
11085
11086
11087 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11088 order as their linked sections. Returns false if this could not be done
11089 because an output section includes both ordered and unordered
11090 sections. Ideally we'd do this in the linker proper. */
11091
11092 static bfd_boolean
11093 elf_fixup_link_order (bfd *abfd, asection *o)
11094 {
11095 int seen_linkorder;
11096 int seen_other;
11097 int n;
11098 struct bfd_link_order *p;
11099 bfd *sub;
11100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11101 unsigned elfsec;
11102 struct bfd_link_order **sections;
11103 asection *s, *other_sec, *linkorder_sec;
11104 bfd_vma offset;
11105
11106 other_sec = NULL;
11107 linkorder_sec = NULL;
11108 seen_other = 0;
11109 seen_linkorder = 0;
11110 for (p = o->map_head.link_order; p != NULL; p = p->next)
11111 {
11112 if (p->type == bfd_indirect_link_order)
11113 {
11114 s = p->u.indirect.section;
11115 sub = s->owner;
11116 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11117 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11118 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11119 && elfsec < elf_numsections (sub)
11120 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11121 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11122 {
11123 seen_linkorder++;
11124 linkorder_sec = s;
11125 }
11126 else
11127 {
11128 seen_other++;
11129 other_sec = s;
11130 }
11131 }
11132 else
11133 seen_other++;
11134
11135 if (seen_other && seen_linkorder)
11136 {
11137 if (other_sec && linkorder_sec)
11138 _bfd_error_handler
11139 /* xgettext:c-format */
11140 (_("%A has both ordered [`%A' in %B] "
11141 "and unordered [`%A' in %B] sections"),
11142 o, linkorder_sec,
11143 linkorder_sec->owner, other_sec,
11144 other_sec->owner);
11145 else
11146 _bfd_error_handler
11147 (_("%A has both ordered and unordered sections"), o);
11148 bfd_set_error (bfd_error_bad_value);
11149 return FALSE;
11150 }
11151 }
11152
11153 if (!seen_linkorder)
11154 return TRUE;
11155
11156 sections = (struct bfd_link_order **)
11157 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11158 if (sections == NULL)
11159 return FALSE;
11160 seen_linkorder = 0;
11161
11162 for (p = o->map_head.link_order; p != NULL; p = p->next)
11163 {
11164 sections[seen_linkorder++] = p;
11165 }
11166 /* Sort the input sections in the order of their linked section. */
11167 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11168 compare_link_order);
11169
11170 /* Change the offsets of the sections. */
11171 offset = 0;
11172 for (n = 0; n < seen_linkorder; n++)
11173 {
11174 s = sections[n]->u.indirect.section;
11175 offset &= ~(bfd_vma) 0 << s->alignment_power;
11176 s->output_offset = offset / bfd_octets_per_byte (abfd);
11177 sections[n]->offset = offset;
11178 offset += sections[n]->size;
11179 }
11180
11181 free (sections);
11182 return TRUE;
11183 }
11184
11185 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11186 Returns TRUE upon success, FALSE otherwise. */
11187
11188 static bfd_boolean
11189 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11190 {
11191 bfd_boolean ret = FALSE;
11192 bfd *implib_bfd;
11193 const struct elf_backend_data *bed;
11194 flagword flags;
11195 enum bfd_architecture arch;
11196 unsigned int mach;
11197 asymbol **sympp = NULL;
11198 long symsize;
11199 long symcount;
11200 long src_count;
11201 elf_symbol_type *osymbuf;
11202
11203 implib_bfd = info->out_implib_bfd;
11204 bed = get_elf_backend_data (abfd);
11205
11206 if (!bfd_set_format (implib_bfd, bfd_object))
11207 return FALSE;
11208
11209 flags = bfd_get_file_flags (abfd);
11210 flags &= ~HAS_RELOC;
11211 if (!bfd_set_start_address (implib_bfd, 0)
11212 || !bfd_set_file_flags (implib_bfd, flags))
11213 return FALSE;
11214
11215 /* Copy architecture of output file to import library file. */
11216 arch = bfd_get_arch (abfd);
11217 mach = bfd_get_mach (abfd);
11218 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11219 && (abfd->target_defaulted
11220 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11221 return FALSE;
11222
11223 /* Get symbol table size. */
11224 symsize = bfd_get_symtab_upper_bound (abfd);
11225 if (symsize < 0)
11226 return FALSE;
11227
11228 /* Read in the symbol table. */
11229 sympp = (asymbol **) xmalloc (symsize);
11230 symcount = bfd_canonicalize_symtab (abfd, sympp);
11231 if (symcount < 0)
11232 goto free_sym_buf;
11233
11234 /* Allow the BFD backend to copy any private header data it
11235 understands from the output BFD to the import library BFD. */
11236 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11237 goto free_sym_buf;
11238
11239 /* Filter symbols to appear in the import library. */
11240 if (bed->elf_backend_filter_implib_symbols)
11241 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11242 symcount);
11243 else
11244 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11245 if (symcount == 0)
11246 {
11247 bfd_set_error (bfd_error_no_symbols);
11248 _bfd_error_handler (_("%B: no symbol found for import library"),
11249 implib_bfd);
11250 goto free_sym_buf;
11251 }
11252
11253
11254 /* Make symbols absolute. */
11255 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11256 sizeof (*osymbuf));
11257 for (src_count = 0; src_count < symcount; src_count++)
11258 {
11259 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11260 sizeof (*osymbuf));
11261 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11262 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11263 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11264 osymbuf[src_count].internal_elf_sym.st_value =
11265 osymbuf[src_count].symbol.value;
11266 sympp[src_count] = &osymbuf[src_count].symbol;
11267 }
11268
11269 bfd_set_symtab (implib_bfd, sympp, symcount);
11270
11271 /* Allow the BFD backend to copy any private data it understands
11272 from the output BFD to the import library BFD. This is done last
11273 to permit the routine to look at the filtered symbol table. */
11274 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11275 goto free_sym_buf;
11276
11277 if (!bfd_close (implib_bfd))
11278 goto free_sym_buf;
11279
11280 ret = TRUE;
11281
11282 free_sym_buf:
11283 free (sympp);
11284 return ret;
11285 }
11286
11287 static void
11288 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11289 {
11290 asection *o;
11291
11292 if (flinfo->symstrtab != NULL)
11293 _bfd_elf_strtab_free (flinfo->symstrtab);
11294 if (flinfo->contents != NULL)
11295 free (flinfo->contents);
11296 if (flinfo->external_relocs != NULL)
11297 free (flinfo->external_relocs);
11298 if (flinfo->internal_relocs != NULL)
11299 free (flinfo->internal_relocs);
11300 if (flinfo->external_syms != NULL)
11301 free (flinfo->external_syms);
11302 if (flinfo->locsym_shndx != NULL)
11303 free (flinfo->locsym_shndx);
11304 if (flinfo->internal_syms != NULL)
11305 free (flinfo->internal_syms);
11306 if (flinfo->indices != NULL)
11307 free (flinfo->indices);
11308 if (flinfo->sections != NULL)
11309 free (flinfo->sections);
11310 if (flinfo->symshndxbuf != NULL)
11311 free (flinfo->symshndxbuf);
11312 for (o = obfd->sections; o != NULL; o = o->next)
11313 {
11314 struct bfd_elf_section_data *esdo = elf_section_data (o);
11315 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11316 free (esdo->rel.hashes);
11317 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11318 free (esdo->rela.hashes);
11319 }
11320 }
11321
11322 /* Do the final step of an ELF link. */
11323
11324 bfd_boolean
11325 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11326 {
11327 bfd_boolean dynamic;
11328 bfd_boolean emit_relocs;
11329 bfd *dynobj;
11330 struct elf_final_link_info flinfo;
11331 asection *o;
11332 struct bfd_link_order *p;
11333 bfd *sub;
11334 bfd_size_type max_contents_size;
11335 bfd_size_type max_external_reloc_size;
11336 bfd_size_type max_internal_reloc_count;
11337 bfd_size_type max_sym_count;
11338 bfd_size_type max_sym_shndx_count;
11339 Elf_Internal_Sym elfsym;
11340 unsigned int i;
11341 Elf_Internal_Shdr *symtab_hdr;
11342 Elf_Internal_Shdr *symtab_shndx_hdr;
11343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11344 struct elf_outext_info eoinfo;
11345 bfd_boolean merged;
11346 size_t relativecount = 0;
11347 asection *reldyn = 0;
11348 bfd_size_type amt;
11349 asection *attr_section = NULL;
11350 bfd_vma attr_size = 0;
11351 const char *std_attrs_section;
11352 struct elf_link_hash_table *htab = elf_hash_table (info);
11353
11354 if (!is_elf_hash_table (htab))
11355 return FALSE;
11356
11357 if (bfd_link_pic (info))
11358 abfd->flags |= DYNAMIC;
11359
11360 dynamic = htab->dynamic_sections_created;
11361 dynobj = htab->dynobj;
11362
11363 emit_relocs = (bfd_link_relocatable (info)
11364 || info->emitrelocations);
11365
11366 flinfo.info = info;
11367 flinfo.output_bfd = abfd;
11368 flinfo.symstrtab = _bfd_elf_strtab_init ();
11369 if (flinfo.symstrtab == NULL)
11370 return FALSE;
11371
11372 if (! dynamic)
11373 {
11374 flinfo.hash_sec = NULL;
11375 flinfo.symver_sec = NULL;
11376 }
11377 else
11378 {
11379 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11380 /* Note that dynsym_sec can be NULL (on VMS). */
11381 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11382 /* Note that it is OK if symver_sec is NULL. */
11383 }
11384
11385 flinfo.contents = NULL;
11386 flinfo.external_relocs = NULL;
11387 flinfo.internal_relocs = NULL;
11388 flinfo.external_syms = NULL;
11389 flinfo.locsym_shndx = NULL;
11390 flinfo.internal_syms = NULL;
11391 flinfo.indices = NULL;
11392 flinfo.sections = NULL;
11393 flinfo.symshndxbuf = NULL;
11394 flinfo.filesym_count = 0;
11395
11396 /* The object attributes have been merged. Remove the input
11397 sections from the link, and set the contents of the output
11398 secton. */
11399 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11400 for (o = abfd->sections; o != NULL; o = o->next)
11401 {
11402 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11403 || strcmp (o->name, ".gnu.attributes") == 0)
11404 {
11405 for (p = o->map_head.link_order; p != NULL; p = p->next)
11406 {
11407 asection *input_section;
11408
11409 if (p->type != bfd_indirect_link_order)
11410 continue;
11411 input_section = p->u.indirect.section;
11412 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11413 elf_link_input_bfd ignores this section. */
11414 input_section->flags &= ~SEC_HAS_CONTENTS;
11415 }
11416
11417 attr_size = bfd_elf_obj_attr_size (abfd);
11418 if (attr_size)
11419 {
11420 bfd_set_section_size (abfd, o, attr_size);
11421 attr_section = o;
11422 /* Skip this section later on. */
11423 o->map_head.link_order = NULL;
11424 }
11425 else
11426 o->flags |= SEC_EXCLUDE;
11427 }
11428 }
11429
11430 /* Count up the number of relocations we will output for each output
11431 section, so that we know the sizes of the reloc sections. We
11432 also figure out some maximum sizes. */
11433 max_contents_size = 0;
11434 max_external_reloc_size = 0;
11435 max_internal_reloc_count = 0;
11436 max_sym_count = 0;
11437 max_sym_shndx_count = 0;
11438 merged = FALSE;
11439 for (o = abfd->sections; o != NULL; o = o->next)
11440 {
11441 struct bfd_elf_section_data *esdo = elf_section_data (o);
11442 o->reloc_count = 0;
11443
11444 for (p = o->map_head.link_order; p != NULL; p = p->next)
11445 {
11446 unsigned int reloc_count = 0;
11447 unsigned int additional_reloc_count = 0;
11448 struct bfd_elf_section_data *esdi = NULL;
11449
11450 if (p->type == bfd_section_reloc_link_order
11451 || p->type == bfd_symbol_reloc_link_order)
11452 reloc_count = 1;
11453 else if (p->type == bfd_indirect_link_order)
11454 {
11455 asection *sec;
11456
11457 sec = p->u.indirect.section;
11458
11459 /* Mark all sections which are to be included in the
11460 link. This will normally be every section. We need
11461 to do this so that we can identify any sections which
11462 the linker has decided to not include. */
11463 sec->linker_mark = TRUE;
11464
11465 if (sec->flags & SEC_MERGE)
11466 merged = TRUE;
11467
11468 if (sec->rawsize > max_contents_size)
11469 max_contents_size = sec->rawsize;
11470 if (sec->size > max_contents_size)
11471 max_contents_size = sec->size;
11472
11473 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11474 && (sec->owner->flags & DYNAMIC) == 0)
11475 {
11476 size_t sym_count;
11477
11478 /* We are interested in just local symbols, not all
11479 symbols. */
11480 if (elf_bad_symtab (sec->owner))
11481 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11482 / bed->s->sizeof_sym);
11483 else
11484 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11485
11486 if (sym_count > max_sym_count)
11487 max_sym_count = sym_count;
11488
11489 if (sym_count > max_sym_shndx_count
11490 && elf_symtab_shndx_list (sec->owner) != NULL)
11491 max_sym_shndx_count = sym_count;
11492
11493 if (esdo->this_hdr.sh_type == SHT_REL
11494 || esdo->this_hdr.sh_type == SHT_RELA)
11495 /* Some backends use reloc_count in relocation sections
11496 to count particular types of relocs. Of course,
11497 reloc sections themselves can't have relocations. */
11498 ;
11499 else if (emit_relocs)
11500 {
11501 reloc_count = sec->reloc_count;
11502 if (bed->elf_backend_count_additional_relocs)
11503 {
11504 int c;
11505 c = (*bed->elf_backend_count_additional_relocs) (sec);
11506 additional_reloc_count += c;
11507 }
11508 }
11509 else if (bed->elf_backend_count_relocs)
11510 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11511
11512 esdi = elf_section_data (sec);
11513
11514 if ((sec->flags & SEC_RELOC) != 0)
11515 {
11516 size_t ext_size = 0;
11517
11518 if (esdi->rel.hdr != NULL)
11519 ext_size = esdi->rel.hdr->sh_size;
11520 if (esdi->rela.hdr != NULL)
11521 ext_size += esdi->rela.hdr->sh_size;
11522
11523 if (ext_size > max_external_reloc_size)
11524 max_external_reloc_size = ext_size;
11525 if (sec->reloc_count > max_internal_reloc_count)
11526 max_internal_reloc_count = sec->reloc_count;
11527 }
11528 }
11529 }
11530
11531 if (reloc_count == 0)
11532 continue;
11533
11534 reloc_count += additional_reloc_count;
11535 o->reloc_count += reloc_count;
11536
11537 if (p->type == bfd_indirect_link_order && emit_relocs)
11538 {
11539 if (esdi->rel.hdr)
11540 {
11541 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11542 esdo->rel.count += additional_reloc_count;
11543 }
11544 if (esdi->rela.hdr)
11545 {
11546 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11547 esdo->rela.count += additional_reloc_count;
11548 }
11549 }
11550 else
11551 {
11552 if (o->use_rela_p)
11553 esdo->rela.count += reloc_count;
11554 else
11555 esdo->rel.count += reloc_count;
11556 }
11557 }
11558
11559 if (o->reloc_count > 0)
11560 o->flags |= SEC_RELOC;
11561 else
11562 {
11563 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11564 set it (this is probably a bug) and if it is set
11565 assign_section_numbers will create a reloc section. */
11566 o->flags &=~ SEC_RELOC;
11567 }
11568
11569 /* If the SEC_ALLOC flag is not set, force the section VMA to
11570 zero. This is done in elf_fake_sections as well, but forcing
11571 the VMA to 0 here will ensure that relocs against these
11572 sections are handled correctly. */
11573 if ((o->flags & SEC_ALLOC) == 0
11574 && ! o->user_set_vma)
11575 o->vma = 0;
11576 }
11577
11578 if (! bfd_link_relocatable (info) && merged)
11579 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11580
11581 /* Figure out the file positions for everything but the symbol table
11582 and the relocs. We set symcount to force assign_section_numbers
11583 to create a symbol table. */
11584 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11585 BFD_ASSERT (! abfd->output_has_begun);
11586 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11587 goto error_return;
11588
11589 /* Set sizes, and assign file positions for reloc sections. */
11590 for (o = abfd->sections; o != NULL; o = o->next)
11591 {
11592 struct bfd_elf_section_data *esdo = elf_section_data (o);
11593 if ((o->flags & SEC_RELOC) != 0)
11594 {
11595 if (esdo->rel.hdr
11596 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11597 goto error_return;
11598
11599 if (esdo->rela.hdr
11600 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11601 goto error_return;
11602 }
11603
11604 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11605 to count upwards while actually outputting the relocations. */
11606 esdo->rel.count = 0;
11607 esdo->rela.count = 0;
11608
11609 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11610 {
11611 /* Cache the section contents so that they can be compressed
11612 later. Use bfd_malloc since it will be freed by
11613 bfd_compress_section_contents. */
11614 unsigned char *contents = esdo->this_hdr.contents;
11615 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11616 abort ();
11617 contents
11618 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11619 if (contents == NULL)
11620 goto error_return;
11621 esdo->this_hdr.contents = contents;
11622 }
11623 }
11624
11625 /* We have now assigned file positions for all the sections except
11626 .symtab, .strtab, and non-loaded reloc sections. We start the
11627 .symtab section at the current file position, and write directly
11628 to it. We build the .strtab section in memory. */
11629 bfd_get_symcount (abfd) = 0;
11630 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11631 /* sh_name is set in prep_headers. */
11632 symtab_hdr->sh_type = SHT_SYMTAB;
11633 /* sh_flags, sh_addr and sh_size all start off zero. */
11634 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11635 /* sh_link is set in assign_section_numbers. */
11636 /* sh_info is set below. */
11637 /* sh_offset is set just below. */
11638 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11639
11640 if (max_sym_count < 20)
11641 max_sym_count = 20;
11642 htab->strtabsize = max_sym_count;
11643 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11644 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11645 if (htab->strtab == NULL)
11646 goto error_return;
11647 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11648 flinfo.symshndxbuf
11649 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11650 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11651
11652 if (info->strip != strip_all || emit_relocs)
11653 {
11654 file_ptr off = elf_next_file_pos (abfd);
11655
11656 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11657
11658 /* Note that at this point elf_next_file_pos (abfd) is
11659 incorrect. We do not yet know the size of the .symtab section.
11660 We correct next_file_pos below, after we do know the size. */
11661
11662 /* Start writing out the symbol table. The first symbol is always a
11663 dummy symbol. */
11664 elfsym.st_value = 0;
11665 elfsym.st_size = 0;
11666 elfsym.st_info = 0;
11667 elfsym.st_other = 0;
11668 elfsym.st_shndx = SHN_UNDEF;
11669 elfsym.st_target_internal = 0;
11670 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11671 bfd_und_section_ptr, NULL) != 1)
11672 goto error_return;
11673
11674 /* Output a symbol for each section. We output these even if we are
11675 discarding local symbols, since they are used for relocs. These
11676 symbols have no names. We store the index of each one in the
11677 index field of the section, so that we can find it again when
11678 outputting relocs. */
11679
11680 elfsym.st_size = 0;
11681 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11682 elfsym.st_other = 0;
11683 elfsym.st_value = 0;
11684 elfsym.st_target_internal = 0;
11685 for (i = 1; i < elf_numsections (abfd); i++)
11686 {
11687 o = bfd_section_from_elf_index (abfd, i);
11688 if (o != NULL)
11689 {
11690 o->target_index = bfd_get_symcount (abfd);
11691 elfsym.st_shndx = i;
11692 if (!bfd_link_relocatable (info))
11693 elfsym.st_value = o->vma;
11694 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11695 NULL) != 1)
11696 goto error_return;
11697 }
11698 }
11699 }
11700
11701 /* Allocate some memory to hold information read in from the input
11702 files. */
11703 if (max_contents_size != 0)
11704 {
11705 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11706 if (flinfo.contents == NULL)
11707 goto error_return;
11708 }
11709
11710 if (max_external_reloc_size != 0)
11711 {
11712 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11713 if (flinfo.external_relocs == NULL)
11714 goto error_return;
11715 }
11716
11717 if (max_internal_reloc_count != 0)
11718 {
11719 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11720 amt *= sizeof (Elf_Internal_Rela);
11721 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11722 if (flinfo.internal_relocs == NULL)
11723 goto error_return;
11724 }
11725
11726 if (max_sym_count != 0)
11727 {
11728 amt = max_sym_count * bed->s->sizeof_sym;
11729 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11730 if (flinfo.external_syms == NULL)
11731 goto error_return;
11732
11733 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11734 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11735 if (flinfo.internal_syms == NULL)
11736 goto error_return;
11737
11738 amt = max_sym_count * sizeof (long);
11739 flinfo.indices = (long int *) bfd_malloc (amt);
11740 if (flinfo.indices == NULL)
11741 goto error_return;
11742
11743 amt = max_sym_count * sizeof (asection *);
11744 flinfo.sections = (asection **) bfd_malloc (amt);
11745 if (flinfo.sections == NULL)
11746 goto error_return;
11747 }
11748
11749 if (max_sym_shndx_count != 0)
11750 {
11751 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11752 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11753 if (flinfo.locsym_shndx == NULL)
11754 goto error_return;
11755 }
11756
11757 if (htab->tls_sec)
11758 {
11759 bfd_vma base, end = 0;
11760 asection *sec;
11761
11762 for (sec = htab->tls_sec;
11763 sec && (sec->flags & SEC_THREAD_LOCAL);
11764 sec = sec->next)
11765 {
11766 bfd_size_type size = sec->size;
11767
11768 if (size == 0
11769 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11770 {
11771 struct bfd_link_order *ord = sec->map_tail.link_order;
11772
11773 if (ord != NULL)
11774 size = ord->offset + ord->size;
11775 }
11776 end = sec->vma + size;
11777 }
11778 base = htab->tls_sec->vma;
11779 /* Only align end of TLS section if static TLS doesn't have special
11780 alignment requirements. */
11781 if (bed->static_tls_alignment == 1)
11782 end = align_power (end, htab->tls_sec->alignment_power);
11783 htab->tls_size = end - base;
11784 }
11785
11786 /* Reorder SHF_LINK_ORDER sections. */
11787 for (o = abfd->sections; o != NULL; o = o->next)
11788 {
11789 if (!elf_fixup_link_order (abfd, o))
11790 return FALSE;
11791 }
11792
11793 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11794 return FALSE;
11795
11796 /* Since ELF permits relocations to be against local symbols, we
11797 must have the local symbols available when we do the relocations.
11798 Since we would rather only read the local symbols once, and we
11799 would rather not keep them in memory, we handle all the
11800 relocations for a single input file at the same time.
11801
11802 Unfortunately, there is no way to know the total number of local
11803 symbols until we have seen all of them, and the local symbol
11804 indices precede the global symbol indices. This means that when
11805 we are generating relocatable output, and we see a reloc against
11806 a global symbol, we can not know the symbol index until we have
11807 finished examining all the local symbols to see which ones we are
11808 going to output. To deal with this, we keep the relocations in
11809 memory, and don't output them until the end of the link. This is
11810 an unfortunate waste of memory, but I don't see a good way around
11811 it. Fortunately, it only happens when performing a relocatable
11812 link, which is not the common case. FIXME: If keep_memory is set
11813 we could write the relocs out and then read them again; I don't
11814 know how bad the memory loss will be. */
11815
11816 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11817 sub->output_has_begun = FALSE;
11818 for (o = abfd->sections; o != NULL; o = o->next)
11819 {
11820 for (p = o->map_head.link_order; p != NULL; p = p->next)
11821 {
11822 if (p->type == bfd_indirect_link_order
11823 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11824 == bfd_target_elf_flavour)
11825 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11826 {
11827 if (! sub->output_has_begun)
11828 {
11829 if (! elf_link_input_bfd (&flinfo, sub))
11830 goto error_return;
11831 sub->output_has_begun = TRUE;
11832 }
11833 }
11834 else if (p->type == bfd_section_reloc_link_order
11835 || p->type == bfd_symbol_reloc_link_order)
11836 {
11837 if (! elf_reloc_link_order (abfd, info, o, p))
11838 goto error_return;
11839 }
11840 else
11841 {
11842 if (! _bfd_default_link_order (abfd, info, o, p))
11843 {
11844 if (p->type == bfd_indirect_link_order
11845 && (bfd_get_flavour (sub)
11846 == bfd_target_elf_flavour)
11847 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11848 != bed->s->elfclass))
11849 {
11850 const char *iclass, *oclass;
11851
11852 switch (bed->s->elfclass)
11853 {
11854 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11855 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11856 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11857 default: abort ();
11858 }
11859
11860 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11861 {
11862 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11863 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11864 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11865 default: abort ();
11866 }
11867
11868 bfd_set_error (bfd_error_wrong_format);
11869 _bfd_error_handler
11870 /* xgettext:c-format */
11871 (_("%B: file class %s incompatible with %s"),
11872 sub, iclass, oclass);
11873 }
11874
11875 goto error_return;
11876 }
11877 }
11878 }
11879 }
11880
11881 /* Free symbol buffer if needed. */
11882 if (!info->reduce_memory_overheads)
11883 {
11884 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11885 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11886 && elf_tdata (sub)->symbuf)
11887 {
11888 free (elf_tdata (sub)->symbuf);
11889 elf_tdata (sub)->symbuf = NULL;
11890 }
11891 }
11892
11893 /* Output any global symbols that got converted to local in a
11894 version script or due to symbol visibility. We do this in a
11895 separate step since ELF requires all local symbols to appear
11896 prior to any global symbols. FIXME: We should only do this if
11897 some global symbols were, in fact, converted to become local.
11898 FIXME: Will this work correctly with the Irix 5 linker? */
11899 eoinfo.failed = FALSE;
11900 eoinfo.flinfo = &flinfo;
11901 eoinfo.localsyms = TRUE;
11902 eoinfo.file_sym_done = FALSE;
11903 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11904 if (eoinfo.failed)
11905 return FALSE;
11906
11907 /* If backend needs to output some local symbols not present in the hash
11908 table, do it now. */
11909 if (bed->elf_backend_output_arch_local_syms
11910 && (info->strip != strip_all || emit_relocs))
11911 {
11912 typedef int (*out_sym_func)
11913 (void *, const char *, Elf_Internal_Sym *, asection *,
11914 struct elf_link_hash_entry *);
11915
11916 if (! ((*bed->elf_backend_output_arch_local_syms)
11917 (abfd, info, &flinfo,
11918 (out_sym_func) elf_link_output_symstrtab)))
11919 return FALSE;
11920 }
11921
11922 /* That wrote out all the local symbols. Finish up the symbol table
11923 with the global symbols. Even if we want to strip everything we
11924 can, we still need to deal with those global symbols that got
11925 converted to local in a version script. */
11926
11927 /* The sh_info field records the index of the first non local symbol. */
11928 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11929
11930 if (dynamic
11931 && htab->dynsym != NULL
11932 && htab->dynsym->output_section != bfd_abs_section_ptr)
11933 {
11934 Elf_Internal_Sym sym;
11935 bfd_byte *dynsym = htab->dynsym->contents;
11936
11937 o = htab->dynsym->output_section;
11938 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11939
11940 /* Write out the section symbols for the output sections. */
11941 if (bfd_link_pic (info)
11942 || htab->is_relocatable_executable)
11943 {
11944 asection *s;
11945
11946 sym.st_size = 0;
11947 sym.st_name = 0;
11948 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11949 sym.st_other = 0;
11950 sym.st_target_internal = 0;
11951
11952 for (s = abfd->sections; s != NULL; s = s->next)
11953 {
11954 int indx;
11955 bfd_byte *dest;
11956 long dynindx;
11957
11958 dynindx = elf_section_data (s)->dynindx;
11959 if (dynindx <= 0)
11960 continue;
11961 indx = elf_section_data (s)->this_idx;
11962 BFD_ASSERT (indx > 0);
11963 sym.st_shndx = indx;
11964 if (! check_dynsym (abfd, &sym))
11965 return FALSE;
11966 sym.st_value = s->vma;
11967 dest = dynsym + dynindx * bed->s->sizeof_sym;
11968 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11969 }
11970 }
11971
11972 /* Write out the local dynsyms. */
11973 if (htab->dynlocal)
11974 {
11975 struct elf_link_local_dynamic_entry *e;
11976 for (e = htab->dynlocal; e ; e = e->next)
11977 {
11978 asection *s;
11979 bfd_byte *dest;
11980
11981 /* Copy the internal symbol and turn off visibility.
11982 Note that we saved a word of storage and overwrote
11983 the original st_name with the dynstr_index. */
11984 sym = e->isym;
11985 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11986
11987 s = bfd_section_from_elf_index (e->input_bfd,
11988 e->isym.st_shndx);
11989 if (s != NULL)
11990 {
11991 sym.st_shndx =
11992 elf_section_data (s->output_section)->this_idx;
11993 if (! check_dynsym (abfd, &sym))
11994 return FALSE;
11995 sym.st_value = (s->output_section->vma
11996 + s->output_offset
11997 + e->isym.st_value);
11998 }
11999
12000 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12001 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12002 }
12003 }
12004 }
12005
12006 /* We get the global symbols from the hash table. */
12007 eoinfo.failed = FALSE;
12008 eoinfo.localsyms = FALSE;
12009 eoinfo.flinfo = &flinfo;
12010 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12011 if (eoinfo.failed)
12012 return FALSE;
12013
12014 /* If backend needs to output some symbols not present in the hash
12015 table, do it now. */
12016 if (bed->elf_backend_output_arch_syms
12017 && (info->strip != strip_all || emit_relocs))
12018 {
12019 typedef int (*out_sym_func)
12020 (void *, const char *, Elf_Internal_Sym *, asection *,
12021 struct elf_link_hash_entry *);
12022
12023 if (! ((*bed->elf_backend_output_arch_syms)
12024 (abfd, info, &flinfo,
12025 (out_sym_func) elf_link_output_symstrtab)))
12026 return FALSE;
12027 }
12028
12029 /* Finalize the .strtab section. */
12030 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12031
12032 /* Swap out the .strtab section. */
12033 if (!elf_link_swap_symbols_out (&flinfo))
12034 return FALSE;
12035
12036 /* Now we know the size of the symtab section. */
12037 if (bfd_get_symcount (abfd) > 0)
12038 {
12039 /* Finish up and write out the symbol string table (.strtab)
12040 section. */
12041 Elf_Internal_Shdr *symstrtab_hdr;
12042 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12043
12044 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12045 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12046 {
12047 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12048 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12049 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12050 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12051 symtab_shndx_hdr->sh_size = amt;
12052
12053 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12054 off, TRUE);
12055
12056 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12057 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12058 return FALSE;
12059 }
12060
12061 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12062 /* sh_name was set in prep_headers. */
12063 symstrtab_hdr->sh_type = SHT_STRTAB;
12064 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12065 symstrtab_hdr->sh_addr = 0;
12066 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12067 symstrtab_hdr->sh_entsize = 0;
12068 symstrtab_hdr->sh_link = 0;
12069 symstrtab_hdr->sh_info = 0;
12070 /* sh_offset is set just below. */
12071 symstrtab_hdr->sh_addralign = 1;
12072
12073 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12074 off, TRUE);
12075 elf_next_file_pos (abfd) = off;
12076
12077 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12078 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12079 return FALSE;
12080 }
12081
12082 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12083 {
12084 _bfd_error_handler (_("%B: failed to generate import library"),
12085 info->out_implib_bfd);
12086 return FALSE;
12087 }
12088
12089 /* Adjust the relocs to have the correct symbol indices. */
12090 for (o = abfd->sections; o != NULL; o = o->next)
12091 {
12092 struct bfd_elf_section_data *esdo = elf_section_data (o);
12093 bfd_boolean sort;
12094 if ((o->flags & SEC_RELOC) == 0)
12095 continue;
12096
12097 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12098 if (esdo->rel.hdr != NULL
12099 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12100 return FALSE;
12101 if (esdo->rela.hdr != NULL
12102 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12103 return FALSE;
12104
12105 /* Set the reloc_count field to 0 to prevent write_relocs from
12106 trying to swap the relocs out itself. */
12107 o->reloc_count = 0;
12108 }
12109
12110 if (dynamic && info->combreloc && dynobj != NULL)
12111 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12112
12113 /* If we are linking against a dynamic object, or generating a
12114 shared library, finish up the dynamic linking information. */
12115 if (dynamic)
12116 {
12117 bfd_byte *dyncon, *dynconend;
12118
12119 /* Fix up .dynamic entries. */
12120 o = bfd_get_linker_section (dynobj, ".dynamic");
12121 BFD_ASSERT (o != NULL);
12122
12123 dyncon = o->contents;
12124 dynconend = o->contents + o->size;
12125 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12126 {
12127 Elf_Internal_Dyn dyn;
12128 const char *name;
12129 unsigned int type;
12130 bfd_size_type sh_size;
12131 bfd_vma sh_addr;
12132
12133 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12134
12135 switch (dyn.d_tag)
12136 {
12137 default:
12138 continue;
12139 case DT_NULL:
12140 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12141 {
12142 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12143 {
12144 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12145 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12146 default: continue;
12147 }
12148 dyn.d_un.d_val = relativecount;
12149 relativecount = 0;
12150 break;
12151 }
12152 continue;
12153
12154 case DT_INIT:
12155 name = info->init_function;
12156 goto get_sym;
12157 case DT_FINI:
12158 name = info->fini_function;
12159 get_sym:
12160 {
12161 struct elf_link_hash_entry *h;
12162
12163 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12164 if (h != NULL
12165 && (h->root.type == bfd_link_hash_defined
12166 || h->root.type == bfd_link_hash_defweak))
12167 {
12168 dyn.d_un.d_ptr = h->root.u.def.value;
12169 o = h->root.u.def.section;
12170 if (o->output_section != NULL)
12171 dyn.d_un.d_ptr += (o->output_section->vma
12172 + o->output_offset);
12173 else
12174 {
12175 /* The symbol is imported from another shared
12176 library and does not apply to this one. */
12177 dyn.d_un.d_ptr = 0;
12178 }
12179 break;
12180 }
12181 }
12182 continue;
12183
12184 case DT_PREINIT_ARRAYSZ:
12185 name = ".preinit_array";
12186 goto get_out_size;
12187 case DT_INIT_ARRAYSZ:
12188 name = ".init_array";
12189 goto get_out_size;
12190 case DT_FINI_ARRAYSZ:
12191 name = ".fini_array";
12192 get_out_size:
12193 o = bfd_get_section_by_name (abfd, name);
12194 if (o == NULL)
12195 {
12196 _bfd_error_handler
12197 (_("could not find section %s"), name);
12198 goto error_return;
12199 }
12200 if (o->size == 0)
12201 _bfd_error_handler
12202 (_("warning: %s section has zero size"), name);
12203 dyn.d_un.d_val = o->size;
12204 break;
12205
12206 case DT_PREINIT_ARRAY:
12207 name = ".preinit_array";
12208 goto get_out_vma;
12209 case DT_INIT_ARRAY:
12210 name = ".init_array";
12211 goto get_out_vma;
12212 case DT_FINI_ARRAY:
12213 name = ".fini_array";
12214 get_out_vma:
12215 o = bfd_get_section_by_name (abfd, name);
12216 goto do_vma;
12217
12218 case DT_HASH:
12219 name = ".hash";
12220 goto get_vma;
12221 case DT_GNU_HASH:
12222 name = ".gnu.hash";
12223 goto get_vma;
12224 case DT_STRTAB:
12225 name = ".dynstr";
12226 goto get_vma;
12227 case DT_SYMTAB:
12228 name = ".dynsym";
12229 goto get_vma;
12230 case DT_VERDEF:
12231 name = ".gnu.version_d";
12232 goto get_vma;
12233 case DT_VERNEED:
12234 name = ".gnu.version_r";
12235 goto get_vma;
12236 case DT_VERSYM:
12237 name = ".gnu.version";
12238 get_vma:
12239 o = bfd_get_linker_section (dynobj, name);
12240 do_vma:
12241 if (o == NULL)
12242 {
12243 _bfd_error_handler
12244 (_("could not find section %s"), name);
12245 goto error_return;
12246 }
12247 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12248 {
12249 _bfd_error_handler
12250 (_("warning: section '%s' is being made into a note"), name);
12251 bfd_set_error (bfd_error_nonrepresentable_section);
12252 goto error_return;
12253 }
12254 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12255 break;
12256
12257 case DT_REL:
12258 case DT_RELA:
12259 case DT_RELSZ:
12260 case DT_RELASZ:
12261 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12262 type = SHT_REL;
12263 else
12264 type = SHT_RELA;
12265 sh_size = 0;
12266 sh_addr = 0;
12267 for (i = 1; i < elf_numsections (abfd); i++)
12268 {
12269 Elf_Internal_Shdr *hdr;
12270
12271 hdr = elf_elfsections (abfd)[i];
12272 if (hdr->sh_type == type
12273 && (hdr->sh_flags & SHF_ALLOC) != 0)
12274 {
12275 sh_size += hdr->sh_size;
12276 if (sh_addr == 0
12277 || sh_addr > hdr->sh_addr)
12278 sh_addr = hdr->sh_addr;
12279 }
12280 }
12281
12282 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12283 {
12284 /* Don't count procedure linkage table relocs in the
12285 overall reloc count. */
12286 sh_size -= htab->srelplt->size;
12287 if (sh_size == 0)
12288 /* If the size is zero, make the address zero too.
12289 This is to avoid a glibc bug. If the backend
12290 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12291 zero, then we'll put DT_RELA at the end of
12292 DT_JMPREL. glibc will interpret the end of
12293 DT_RELA matching the end of DT_JMPREL as the
12294 case where DT_RELA includes DT_JMPREL, and for
12295 LD_BIND_NOW will decide that processing DT_RELA
12296 will process the PLT relocs too. Net result:
12297 No PLT relocs applied. */
12298 sh_addr = 0;
12299
12300 /* If .rela.plt is the first .rela section, exclude
12301 it from DT_RELA. */
12302 else if (sh_addr == (htab->srelplt->output_section->vma
12303 + htab->srelplt->output_offset))
12304 sh_addr += htab->srelplt->size;
12305 }
12306
12307 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12308 dyn.d_un.d_val = sh_size;
12309 else
12310 dyn.d_un.d_ptr = sh_addr;
12311 break;
12312 }
12313 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12314 }
12315 }
12316
12317 /* If we have created any dynamic sections, then output them. */
12318 if (dynobj != NULL)
12319 {
12320 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12321 goto error_return;
12322
12323 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12324 if (((info->warn_shared_textrel && bfd_link_pic (info))
12325 || info->error_textrel)
12326 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12327 {
12328 bfd_byte *dyncon, *dynconend;
12329
12330 dyncon = o->contents;
12331 dynconend = o->contents + o->size;
12332 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12333 {
12334 Elf_Internal_Dyn dyn;
12335
12336 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12337
12338 if (dyn.d_tag == DT_TEXTREL)
12339 {
12340 if (info->error_textrel)
12341 info->callbacks->einfo
12342 (_("%P%X: read-only segment has dynamic relocations.\n"));
12343 else
12344 info->callbacks->einfo
12345 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12346 break;
12347 }
12348 }
12349 }
12350
12351 for (o = dynobj->sections; o != NULL; o = o->next)
12352 {
12353 if ((o->flags & SEC_HAS_CONTENTS) == 0
12354 || o->size == 0
12355 || o->output_section == bfd_abs_section_ptr)
12356 continue;
12357 if ((o->flags & SEC_LINKER_CREATED) == 0)
12358 {
12359 /* At this point, we are only interested in sections
12360 created by _bfd_elf_link_create_dynamic_sections. */
12361 continue;
12362 }
12363 if (htab->stab_info.stabstr == o)
12364 continue;
12365 if (htab->eh_info.hdr_sec == o)
12366 continue;
12367 if (strcmp (o->name, ".dynstr") != 0)
12368 {
12369 if (! bfd_set_section_contents (abfd, o->output_section,
12370 o->contents,
12371 (file_ptr) o->output_offset
12372 * bfd_octets_per_byte (abfd),
12373 o->size))
12374 goto error_return;
12375 }
12376 else
12377 {
12378 /* The contents of the .dynstr section are actually in a
12379 stringtab. */
12380 file_ptr off;
12381
12382 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12383 if (bfd_seek (abfd, off, SEEK_SET) != 0
12384 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12385 goto error_return;
12386 }
12387 }
12388 }
12389
12390 if (bfd_link_relocatable (info))
12391 {
12392 bfd_boolean failed = FALSE;
12393
12394 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12395 if (failed)
12396 goto error_return;
12397 }
12398
12399 /* If we have optimized stabs strings, output them. */
12400 if (htab->stab_info.stabstr != NULL)
12401 {
12402 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12403 goto error_return;
12404 }
12405
12406 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12407 goto error_return;
12408
12409 elf_final_link_free (abfd, &flinfo);
12410
12411 elf_linker (abfd) = TRUE;
12412
12413 if (attr_section)
12414 {
12415 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12416 if (contents == NULL)
12417 return FALSE; /* Bail out and fail. */
12418 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12419 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12420 free (contents);
12421 }
12422
12423 return TRUE;
12424
12425 error_return:
12426 elf_final_link_free (abfd, &flinfo);
12427 return FALSE;
12428 }
12429 \f
12430 /* Initialize COOKIE for input bfd ABFD. */
12431
12432 static bfd_boolean
12433 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12434 struct bfd_link_info *info, bfd *abfd)
12435 {
12436 Elf_Internal_Shdr *symtab_hdr;
12437 const struct elf_backend_data *bed;
12438
12439 bed = get_elf_backend_data (abfd);
12440 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12441
12442 cookie->abfd = abfd;
12443 cookie->sym_hashes = elf_sym_hashes (abfd);
12444 cookie->bad_symtab = elf_bad_symtab (abfd);
12445 if (cookie->bad_symtab)
12446 {
12447 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12448 cookie->extsymoff = 0;
12449 }
12450 else
12451 {
12452 cookie->locsymcount = symtab_hdr->sh_info;
12453 cookie->extsymoff = symtab_hdr->sh_info;
12454 }
12455
12456 if (bed->s->arch_size == 32)
12457 cookie->r_sym_shift = 8;
12458 else
12459 cookie->r_sym_shift = 32;
12460
12461 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12462 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12463 {
12464 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12465 cookie->locsymcount, 0,
12466 NULL, NULL, NULL);
12467 if (cookie->locsyms == NULL)
12468 {
12469 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12470 return FALSE;
12471 }
12472 if (info->keep_memory)
12473 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12474 }
12475 return TRUE;
12476 }
12477
12478 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12479
12480 static void
12481 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12482 {
12483 Elf_Internal_Shdr *symtab_hdr;
12484
12485 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12486 if (cookie->locsyms != NULL
12487 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12488 free (cookie->locsyms);
12489 }
12490
12491 /* Initialize the relocation information in COOKIE for input section SEC
12492 of input bfd ABFD. */
12493
12494 static bfd_boolean
12495 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12496 struct bfd_link_info *info, bfd *abfd,
12497 asection *sec)
12498 {
12499 const struct elf_backend_data *bed;
12500
12501 if (sec->reloc_count == 0)
12502 {
12503 cookie->rels = NULL;
12504 cookie->relend = NULL;
12505 }
12506 else
12507 {
12508 bed = get_elf_backend_data (abfd);
12509
12510 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12511 info->keep_memory);
12512 if (cookie->rels == NULL)
12513 return FALSE;
12514 cookie->rel = cookie->rels;
12515 cookie->relend = (cookie->rels
12516 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12517 }
12518 cookie->rel = cookie->rels;
12519 return TRUE;
12520 }
12521
12522 /* Free the memory allocated by init_reloc_cookie_rels,
12523 if appropriate. */
12524
12525 static void
12526 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12527 asection *sec)
12528 {
12529 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12530 free (cookie->rels);
12531 }
12532
12533 /* Initialize the whole of COOKIE for input section SEC. */
12534
12535 static bfd_boolean
12536 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12537 struct bfd_link_info *info,
12538 asection *sec)
12539 {
12540 if (!init_reloc_cookie (cookie, info, sec->owner))
12541 goto error1;
12542 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12543 goto error2;
12544 return TRUE;
12545
12546 error2:
12547 fini_reloc_cookie (cookie, sec->owner);
12548 error1:
12549 return FALSE;
12550 }
12551
12552 /* Free the memory allocated by init_reloc_cookie_for_section,
12553 if appropriate. */
12554
12555 static void
12556 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12557 asection *sec)
12558 {
12559 fini_reloc_cookie_rels (cookie, sec);
12560 fini_reloc_cookie (cookie, sec->owner);
12561 }
12562 \f
12563 /* Garbage collect unused sections. */
12564
12565 /* Default gc_mark_hook. */
12566
12567 asection *
12568 _bfd_elf_gc_mark_hook (asection *sec,
12569 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12570 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12571 struct elf_link_hash_entry *h,
12572 Elf_Internal_Sym *sym)
12573 {
12574 if (h != NULL)
12575 {
12576 switch (h->root.type)
12577 {
12578 case bfd_link_hash_defined:
12579 case bfd_link_hash_defweak:
12580 return h->root.u.def.section;
12581
12582 case bfd_link_hash_common:
12583 return h->root.u.c.p->section;
12584
12585 default:
12586 break;
12587 }
12588 }
12589 else
12590 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12591
12592 return NULL;
12593 }
12594
12595 /* For undefined __start_<name> and __stop_<name> symbols, return the
12596 first input section matching <name>. Return NULL otherwise. */
12597
12598 asection *
12599 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12600 struct elf_link_hash_entry *h)
12601 {
12602 asection *s;
12603 const char *sec_name;
12604
12605 if (h->root.type != bfd_link_hash_undefined
12606 && h->root.type != bfd_link_hash_undefweak)
12607 return NULL;
12608
12609 s = h->root.u.undef.section;
12610 if (s != NULL)
12611 {
12612 if (s == (asection *) 0 - 1)
12613 return NULL;
12614 return s;
12615 }
12616
12617 sec_name = NULL;
12618 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12619 sec_name = h->root.root.string + 8;
12620 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12621 sec_name = h->root.root.string + 7;
12622
12623 if (sec_name != NULL && *sec_name != '\0')
12624 {
12625 bfd *i;
12626
12627 for (i = info->input_bfds; i != NULL; i = i->link.next)
12628 {
12629 s = bfd_get_section_by_name (i, sec_name);
12630 if (s != NULL)
12631 {
12632 h->root.u.undef.section = s;
12633 break;
12634 }
12635 }
12636 }
12637
12638 if (s == NULL)
12639 h->root.u.undef.section = (asection *) 0 - 1;
12640
12641 return s;
12642 }
12643
12644 /* COOKIE->rel describes a relocation against section SEC, which is
12645 a section we've decided to keep. Return the section that contains
12646 the relocation symbol, or NULL if no section contains it. */
12647
12648 asection *
12649 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12650 elf_gc_mark_hook_fn gc_mark_hook,
12651 struct elf_reloc_cookie *cookie,
12652 bfd_boolean *start_stop)
12653 {
12654 unsigned long r_symndx;
12655 struct elf_link_hash_entry *h;
12656
12657 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12658 if (r_symndx == STN_UNDEF)
12659 return NULL;
12660
12661 if (r_symndx >= cookie->locsymcount
12662 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12663 {
12664 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12665 if (h == NULL)
12666 {
12667 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12668 sec->owner);
12669 return NULL;
12670 }
12671 while (h->root.type == bfd_link_hash_indirect
12672 || h->root.type == bfd_link_hash_warning)
12673 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12674 h->mark = 1;
12675 /* If this symbol is weak and there is a non-weak definition, we
12676 keep the non-weak definition because many backends put
12677 dynamic reloc info on the non-weak definition for code
12678 handling copy relocs. */
12679 if (h->u.weakdef != NULL)
12680 h->u.weakdef->mark = 1;
12681
12682 if (start_stop != NULL)
12683 {
12684 /* To work around a glibc bug, mark all XXX input sections
12685 when there is an as yet undefined reference to __start_XXX
12686 or __stop_XXX symbols. The linker will later define such
12687 symbols for orphan input sections that have a name
12688 representable as a C identifier. */
12689 asection *s = _bfd_elf_is_start_stop (info, h);
12690
12691 if (s != NULL)
12692 {
12693 *start_stop = !s->gc_mark;
12694 return s;
12695 }
12696 }
12697
12698 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12699 }
12700
12701 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12702 &cookie->locsyms[r_symndx]);
12703 }
12704
12705 /* COOKIE->rel describes a relocation against section SEC, which is
12706 a section we've decided to keep. Mark the section that contains
12707 the relocation symbol. */
12708
12709 bfd_boolean
12710 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12711 asection *sec,
12712 elf_gc_mark_hook_fn gc_mark_hook,
12713 struct elf_reloc_cookie *cookie)
12714 {
12715 asection *rsec;
12716 bfd_boolean start_stop = FALSE;
12717
12718 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12719 while (rsec != NULL)
12720 {
12721 if (!rsec->gc_mark)
12722 {
12723 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12724 || (rsec->owner->flags & DYNAMIC) != 0)
12725 rsec->gc_mark = 1;
12726 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12727 return FALSE;
12728 }
12729 if (!start_stop)
12730 break;
12731 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12732 }
12733 return TRUE;
12734 }
12735
12736 /* The mark phase of garbage collection. For a given section, mark
12737 it and any sections in this section's group, and all the sections
12738 which define symbols to which it refers. */
12739
12740 bfd_boolean
12741 _bfd_elf_gc_mark (struct bfd_link_info *info,
12742 asection *sec,
12743 elf_gc_mark_hook_fn gc_mark_hook)
12744 {
12745 bfd_boolean ret;
12746 asection *group_sec, *eh_frame;
12747
12748 sec->gc_mark = 1;
12749
12750 /* Mark all the sections in the group. */
12751 group_sec = elf_section_data (sec)->next_in_group;
12752 if (group_sec && !group_sec->gc_mark)
12753 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12754 return FALSE;
12755
12756 /* Look through the section relocs. */
12757 ret = TRUE;
12758 eh_frame = elf_eh_frame_section (sec->owner);
12759 if ((sec->flags & SEC_RELOC) != 0
12760 && sec->reloc_count > 0
12761 && sec != eh_frame)
12762 {
12763 struct elf_reloc_cookie cookie;
12764
12765 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12766 ret = FALSE;
12767 else
12768 {
12769 for (; cookie.rel < cookie.relend; cookie.rel++)
12770 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12771 {
12772 ret = FALSE;
12773 break;
12774 }
12775 fini_reloc_cookie_for_section (&cookie, sec);
12776 }
12777 }
12778
12779 if (ret && eh_frame && elf_fde_list (sec))
12780 {
12781 struct elf_reloc_cookie cookie;
12782
12783 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12784 ret = FALSE;
12785 else
12786 {
12787 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12788 gc_mark_hook, &cookie))
12789 ret = FALSE;
12790 fini_reloc_cookie_for_section (&cookie, eh_frame);
12791 }
12792 }
12793
12794 eh_frame = elf_section_eh_frame_entry (sec);
12795 if (ret && eh_frame && !eh_frame->gc_mark)
12796 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12797 ret = FALSE;
12798
12799 return ret;
12800 }
12801
12802 /* Scan and mark sections in a special or debug section group. */
12803
12804 static void
12805 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12806 {
12807 /* Point to first section of section group. */
12808 asection *ssec;
12809 /* Used to iterate the section group. */
12810 asection *msec;
12811
12812 bfd_boolean is_special_grp = TRUE;
12813 bfd_boolean is_debug_grp = TRUE;
12814
12815 /* First scan to see if group contains any section other than debug
12816 and special section. */
12817 ssec = msec = elf_next_in_group (grp);
12818 do
12819 {
12820 if ((msec->flags & SEC_DEBUGGING) == 0)
12821 is_debug_grp = FALSE;
12822
12823 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12824 is_special_grp = FALSE;
12825
12826 msec = elf_next_in_group (msec);
12827 }
12828 while (msec != ssec);
12829
12830 /* If this is a pure debug section group or pure special section group,
12831 keep all sections in this group. */
12832 if (is_debug_grp || is_special_grp)
12833 {
12834 do
12835 {
12836 msec->gc_mark = 1;
12837 msec = elf_next_in_group (msec);
12838 }
12839 while (msec != ssec);
12840 }
12841 }
12842
12843 /* Keep debug and special sections. */
12844
12845 bfd_boolean
12846 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12847 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12848 {
12849 bfd *ibfd;
12850
12851 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12852 {
12853 asection *isec;
12854 bfd_boolean some_kept;
12855 bfd_boolean debug_frag_seen;
12856
12857 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12858 continue;
12859
12860 /* Ensure all linker created sections are kept,
12861 see if any other section is already marked,
12862 and note if we have any fragmented debug sections. */
12863 debug_frag_seen = some_kept = FALSE;
12864 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12865 {
12866 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12867 isec->gc_mark = 1;
12868 else if (isec->gc_mark)
12869 some_kept = TRUE;
12870
12871 if (debug_frag_seen == FALSE
12872 && (isec->flags & SEC_DEBUGGING)
12873 && CONST_STRNEQ (isec->name, ".debug_line."))
12874 debug_frag_seen = TRUE;
12875 }
12876
12877 /* If no section in this file will be kept, then we can
12878 toss out the debug and special sections. */
12879 if (!some_kept)
12880 continue;
12881
12882 /* Keep debug and special sections like .comment when they are
12883 not part of a group. Also keep section groups that contain
12884 just debug sections or special sections. */
12885 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12886 {
12887 if ((isec->flags & SEC_GROUP) != 0)
12888 _bfd_elf_gc_mark_debug_special_section_group (isec);
12889 else if (((isec->flags & SEC_DEBUGGING) != 0
12890 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12891 && elf_next_in_group (isec) == NULL)
12892 isec->gc_mark = 1;
12893 }
12894
12895 if (! debug_frag_seen)
12896 continue;
12897
12898 /* Look for CODE sections which are going to be discarded,
12899 and find and discard any fragmented debug sections which
12900 are associated with that code section. */
12901 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12902 if ((isec->flags & SEC_CODE) != 0
12903 && isec->gc_mark == 0)
12904 {
12905 unsigned int ilen;
12906 asection *dsec;
12907
12908 ilen = strlen (isec->name);
12909
12910 /* Association is determined by the name of the debug section
12911 containing the name of the code section as a suffix. For
12912 example .debug_line.text.foo is a debug section associated
12913 with .text.foo. */
12914 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12915 {
12916 unsigned int dlen;
12917
12918 if (dsec->gc_mark == 0
12919 || (dsec->flags & SEC_DEBUGGING) == 0)
12920 continue;
12921
12922 dlen = strlen (dsec->name);
12923
12924 if (dlen > ilen
12925 && strncmp (dsec->name + (dlen - ilen),
12926 isec->name, ilen) == 0)
12927 {
12928 dsec->gc_mark = 0;
12929 }
12930 }
12931 }
12932 }
12933 return TRUE;
12934 }
12935
12936 /* The sweep phase of garbage collection. Remove all garbage sections. */
12937
12938 typedef bfd_boolean (*gc_sweep_hook_fn)
12939 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12940
12941 static bfd_boolean
12942 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12943 {
12944 bfd *sub;
12945 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12946 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12947
12948 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12949 {
12950 asection *o;
12951
12952 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12953 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12954 continue;
12955
12956 for (o = sub->sections; o != NULL; o = o->next)
12957 {
12958 /* When any section in a section group is kept, we keep all
12959 sections in the section group. If the first member of
12960 the section group is excluded, we will also exclude the
12961 group section. */
12962 if (o->flags & SEC_GROUP)
12963 {
12964 asection *first = elf_next_in_group (o);
12965 o->gc_mark = first->gc_mark;
12966 }
12967
12968 if (o->gc_mark)
12969 continue;
12970
12971 /* Skip sweeping sections already excluded. */
12972 if (o->flags & SEC_EXCLUDE)
12973 continue;
12974
12975 /* Since this is early in the link process, it is simple
12976 to remove a section from the output. */
12977 o->flags |= SEC_EXCLUDE;
12978
12979 if (info->print_gc_sections && o->size != 0)
12980 /* xgettext:c-format */
12981 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"),
12982 sub, o->name);
12983
12984 /* But we also have to update some of the relocation
12985 info we collected before. */
12986 if (gc_sweep_hook
12987 && (o->flags & SEC_RELOC) != 0
12988 && o->reloc_count != 0
12989 && !((info->strip == strip_all || info->strip == strip_debugger)
12990 && (o->flags & SEC_DEBUGGING) != 0)
12991 && !bfd_is_abs_section (o->output_section))
12992 {
12993 Elf_Internal_Rela *internal_relocs;
12994 bfd_boolean r;
12995
12996 internal_relocs
12997 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12998 info->keep_memory);
12999 if (internal_relocs == NULL)
13000 return FALSE;
13001
13002 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13003
13004 if (elf_section_data (o)->relocs != internal_relocs)
13005 free (internal_relocs);
13006
13007 if (!r)
13008 return FALSE;
13009 }
13010 }
13011 }
13012
13013 return TRUE;
13014 }
13015
13016 /* Propagate collected vtable information. This is called through
13017 elf_link_hash_traverse. */
13018
13019 static bfd_boolean
13020 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13021 {
13022 /* Those that are not vtables. */
13023 if (h->vtable == NULL || h->vtable->parent == NULL)
13024 return TRUE;
13025
13026 /* Those vtables that do not have parents, we cannot merge. */
13027 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13028 return TRUE;
13029
13030 /* If we've already been done, exit. */
13031 if (h->vtable->used && h->vtable->used[-1])
13032 return TRUE;
13033
13034 /* Make sure the parent's table is up to date. */
13035 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13036
13037 if (h->vtable->used == NULL)
13038 {
13039 /* None of this table's entries were referenced. Re-use the
13040 parent's table. */
13041 h->vtable->used = h->vtable->parent->vtable->used;
13042 h->vtable->size = h->vtable->parent->vtable->size;
13043 }
13044 else
13045 {
13046 size_t n;
13047 bfd_boolean *cu, *pu;
13048
13049 /* Or the parent's entries into ours. */
13050 cu = h->vtable->used;
13051 cu[-1] = TRUE;
13052 pu = h->vtable->parent->vtable->used;
13053 if (pu != NULL)
13054 {
13055 const struct elf_backend_data *bed;
13056 unsigned int log_file_align;
13057
13058 bed = get_elf_backend_data (h->root.u.def.section->owner);
13059 log_file_align = bed->s->log_file_align;
13060 n = h->vtable->parent->vtable->size >> log_file_align;
13061 while (n--)
13062 {
13063 if (*pu)
13064 *cu = TRUE;
13065 pu++;
13066 cu++;
13067 }
13068 }
13069 }
13070
13071 return TRUE;
13072 }
13073
13074 static bfd_boolean
13075 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13076 {
13077 asection *sec;
13078 bfd_vma hstart, hend;
13079 Elf_Internal_Rela *relstart, *relend, *rel;
13080 const struct elf_backend_data *bed;
13081 unsigned int log_file_align;
13082
13083 /* Take care of both those symbols that do not describe vtables as
13084 well as those that are not loaded. */
13085 if (h->vtable == NULL || h->vtable->parent == NULL)
13086 return TRUE;
13087
13088 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13089 || h->root.type == bfd_link_hash_defweak);
13090
13091 sec = h->root.u.def.section;
13092 hstart = h->root.u.def.value;
13093 hend = hstart + h->size;
13094
13095 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13096 if (!relstart)
13097 return *(bfd_boolean *) okp = FALSE;
13098 bed = get_elf_backend_data (sec->owner);
13099 log_file_align = bed->s->log_file_align;
13100
13101 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13102
13103 for (rel = relstart; rel < relend; ++rel)
13104 if (rel->r_offset >= hstart && rel->r_offset < hend)
13105 {
13106 /* If the entry is in use, do nothing. */
13107 if (h->vtable->used
13108 && (rel->r_offset - hstart) < h->vtable->size)
13109 {
13110 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13111 if (h->vtable->used[entry])
13112 continue;
13113 }
13114 /* Otherwise, kill it. */
13115 rel->r_offset = rel->r_info = rel->r_addend = 0;
13116 }
13117
13118 return TRUE;
13119 }
13120
13121 /* Mark sections containing dynamically referenced symbols. When
13122 building shared libraries, we must assume that any visible symbol is
13123 referenced. */
13124
13125 bfd_boolean
13126 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13127 {
13128 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13129 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13130
13131 if ((h->root.type == bfd_link_hash_defined
13132 || h->root.type == bfd_link_hash_defweak)
13133 && (h->ref_dynamic
13134 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13135 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13136 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13137 && (!bfd_link_executable (info)
13138 || info->gc_keep_exported
13139 || info->export_dynamic
13140 || (h->dynamic
13141 && d != NULL
13142 && (*d->match) (&d->head, NULL, h->root.root.string)))
13143 && (h->versioned >= versioned
13144 || !bfd_hide_sym_by_version (info->version_info,
13145 h->root.root.string)))))
13146 h->root.u.def.section->flags |= SEC_KEEP;
13147
13148 return TRUE;
13149 }
13150
13151 /* Keep all sections containing symbols undefined on the command-line,
13152 and the section containing the entry symbol. */
13153
13154 void
13155 _bfd_elf_gc_keep (struct bfd_link_info *info)
13156 {
13157 struct bfd_sym_chain *sym;
13158
13159 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13160 {
13161 struct elf_link_hash_entry *h;
13162
13163 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13164 FALSE, FALSE, FALSE);
13165
13166 if (h != NULL
13167 && (h->root.type == bfd_link_hash_defined
13168 || h->root.type == bfd_link_hash_defweak)
13169 && !bfd_is_abs_section (h->root.u.def.section)
13170 && !bfd_is_und_section (h->root.u.def.section))
13171 h->root.u.def.section->flags |= SEC_KEEP;
13172 }
13173 }
13174
13175 bfd_boolean
13176 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13177 struct bfd_link_info *info)
13178 {
13179 bfd *ibfd = info->input_bfds;
13180
13181 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13182 {
13183 asection *sec;
13184 struct elf_reloc_cookie cookie;
13185
13186 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13187 continue;
13188
13189 if (!init_reloc_cookie (&cookie, info, ibfd))
13190 return FALSE;
13191
13192 for (sec = ibfd->sections; sec; sec = sec->next)
13193 {
13194 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13195 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13196 {
13197 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13198 fini_reloc_cookie_rels (&cookie, sec);
13199 }
13200 }
13201 }
13202 return TRUE;
13203 }
13204
13205 /* Do mark and sweep of unused sections. */
13206
13207 bfd_boolean
13208 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13209 {
13210 bfd_boolean ok = TRUE;
13211 bfd *sub;
13212 elf_gc_mark_hook_fn gc_mark_hook;
13213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13214 struct elf_link_hash_table *htab;
13215
13216 if (!bed->can_gc_sections
13217 || !is_elf_hash_table (info->hash))
13218 {
13219 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13220 return TRUE;
13221 }
13222
13223 bed->gc_keep (info);
13224 htab = elf_hash_table (info);
13225
13226 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13227 at the .eh_frame section if we can mark the FDEs individually. */
13228 for (sub = info->input_bfds;
13229 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13230 sub = sub->link.next)
13231 {
13232 asection *sec;
13233 struct elf_reloc_cookie cookie;
13234
13235 sec = bfd_get_section_by_name (sub, ".eh_frame");
13236 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13237 {
13238 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13239 if (elf_section_data (sec)->sec_info
13240 && (sec->flags & SEC_LINKER_CREATED) == 0)
13241 elf_eh_frame_section (sub) = sec;
13242 fini_reloc_cookie_for_section (&cookie, sec);
13243 sec = bfd_get_next_section_by_name (NULL, sec);
13244 }
13245 }
13246
13247 /* Apply transitive closure to the vtable entry usage info. */
13248 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13249 if (!ok)
13250 return FALSE;
13251
13252 /* Kill the vtable relocations that were not used. */
13253 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13254 if (!ok)
13255 return FALSE;
13256
13257 /* Mark dynamically referenced symbols. */
13258 if (htab->dynamic_sections_created || info->gc_keep_exported)
13259 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13260
13261 /* Grovel through relocs to find out who stays ... */
13262 gc_mark_hook = bed->gc_mark_hook;
13263 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13264 {
13265 asection *o;
13266
13267 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13268 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13269 continue;
13270
13271 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13272 Also treat note sections as a root, if the section is not part
13273 of a group. */
13274 for (o = sub->sections; o != NULL; o = o->next)
13275 if (!o->gc_mark
13276 && (o->flags & SEC_EXCLUDE) == 0
13277 && ((o->flags & SEC_KEEP) != 0
13278 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13279 && elf_next_in_group (o) == NULL )))
13280 {
13281 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13282 return FALSE;
13283 }
13284 }
13285
13286 /* Allow the backend to mark additional target specific sections. */
13287 bed->gc_mark_extra_sections (info, gc_mark_hook);
13288
13289 /* ... and mark SEC_EXCLUDE for those that go. */
13290 return elf_gc_sweep (abfd, info);
13291 }
13292 \f
13293 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13294
13295 bfd_boolean
13296 bfd_elf_gc_record_vtinherit (bfd *abfd,
13297 asection *sec,
13298 struct elf_link_hash_entry *h,
13299 bfd_vma offset)
13300 {
13301 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13302 struct elf_link_hash_entry **search, *child;
13303 size_t extsymcount;
13304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13305
13306 /* The sh_info field of the symtab header tells us where the
13307 external symbols start. We don't care about the local symbols at
13308 this point. */
13309 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13310 if (!elf_bad_symtab (abfd))
13311 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13312
13313 sym_hashes = elf_sym_hashes (abfd);
13314 sym_hashes_end = sym_hashes + extsymcount;
13315
13316 /* Hunt down the child symbol, which is in this section at the same
13317 offset as the relocation. */
13318 for (search = sym_hashes; search != sym_hashes_end; ++search)
13319 {
13320 if ((child = *search) != NULL
13321 && (child->root.type == bfd_link_hash_defined
13322 || child->root.type == bfd_link_hash_defweak)
13323 && child->root.u.def.section == sec
13324 && child->root.u.def.value == offset)
13325 goto win;
13326 }
13327
13328 /* xgettext:c-format */
13329 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13330 abfd, sec, (unsigned long) offset);
13331 bfd_set_error (bfd_error_invalid_operation);
13332 return FALSE;
13333
13334 win:
13335 if (!child->vtable)
13336 {
13337 child->vtable = ((struct elf_link_virtual_table_entry *)
13338 bfd_zalloc (abfd, sizeof (*child->vtable)));
13339 if (!child->vtable)
13340 return FALSE;
13341 }
13342 if (!h)
13343 {
13344 /* This *should* only be the absolute section. It could potentially
13345 be that someone has defined a non-global vtable though, which
13346 would be bad. It isn't worth paging in the local symbols to be
13347 sure though; that case should simply be handled by the assembler. */
13348
13349 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13350 }
13351 else
13352 child->vtable->parent = h;
13353
13354 return TRUE;
13355 }
13356
13357 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13358
13359 bfd_boolean
13360 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13361 asection *sec ATTRIBUTE_UNUSED,
13362 struct elf_link_hash_entry *h,
13363 bfd_vma addend)
13364 {
13365 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13366 unsigned int log_file_align = bed->s->log_file_align;
13367
13368 if (!h->vtable)
13369 {
13370 h->vtable = ((struct elf_link_virtual_table_entry *)
13371 bfd_zalloc (abfd, sizeof (*h->vtable)));
13372 if (!h->vtable)
13373 return FALSE;
13374 }
13375
13376 if (addend >= h->vtable->size)
13377 {
13378 size_t size, bytes, file_align;
13379 bfd_boolean *ptr = h->vtable->used;
13380
13381 /* While the symbol is undefined, we have to be prepared to handle
13382 a zero size. */
13383 file_align = 1 << log_file_align;
13384 if (h->root.type == bfd_link_hash_undefined)
13385 size = addend + file_align;
13386 else
13387 {
13388 size = h->size;
13389 if (addend >= size)
13390 {
13391 /* Oops! We've got a reference past the defined end of
13392 the table. This is probably a bug -- shall we warn? */
13393 size = addend + file_align;
13394 }
13395 }
13396 size = (size + file_align - 1) & -file_align;
13397
13398 /* Allocate one extra entry for use as a "done" flag for the
13399 consolidation pass. */
13400 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13401
13402 if (ptr)
13403 {
13404 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13405
13406 if (ptr != NULL)
13407 {
13408 size_t oldbytes;
13409
13410 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13411 * sizeof (bfd_boolean));
13412 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13413 }
13414 }
13415 else
13416 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13417
13418 if (ptr == NULL)
13419 return FALSE;
13420
13421 /* And arrange for that done flag to be at index -1. */
13422 h->vtable->used = ptr + 1;
13423 h->vtable->size = size;
13424 }
13425
13426 h->vtable->used[addend >> log_file_align] = TRUE;
13427
13428 return TRUE;
13429 }
13430
13431 /* Map an ELF section header flag to its corresponding string. */
13432 typedef struct
13433 {
13434 char *flag_name;
13435 flagword flag_value;
13436 } elf_flags_to_name_table;
13437
13438 static elf_flags_to_name_table elf_flags_to_names [] =
13439 {
13440 { "SHF_WRITE", SHF_WRITE },
13441 { "SHF_ALLOC", SHF_ALLOC },
13442 { "SHF_EXECINSTR", SHF_EXECINSTR },
13443 { "SHF_MERGE", SHF_MERGE },
13444 { "SHF_STRINGS", SHF_STRINGS },
13445 { "SHF_INFO_LINK", SHF_INFO_LINK},
13446 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13447 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13448 { "SHF_GROUP", SHF_GROUP },
13449 { "SHF_TLS", SHF_TLS },
13450 { "SHF_MASKOS", SHF_MASKOS },
13451 { "SHF_EXCLUDE", SHF_EXCLUDE },
13452 };
13453
13454 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13455 bfd_boolean
13456 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13457 struct flag_info *flaginfo,
13458 asection *section)
13459 {
13460 const bfd_vma sh_flags = elf_section_flags (section);
13461
13462 if (!flaginfo->flags_initialized)
13463 {
13464 bfd *obfd = info->output_bfd;
13465 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13466 struct flag_info_list *tf = flaginfo->flag_list;
13467 int with_hex = 0;
13468 int without_hex = 0;
13469
13470 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13471 {
13472 unsigned i;
13473 flagword (*lookup) (char *);
13474
13475 lookup = bed->elf_backend_lookup_section_flags_hook;
13476 if (lookup != NULL)
13477 {
13478 flagword hexval = (*lookup) ((char *) tf->name);
13479
13480 if (hexval != 0)
13481 {
13482 if (tf->with == with_flags)
13483 with_hex |= hexval;
13484 else if (tf->with == without_flags)
13485 without_hex |= hexval;
13486 tf->valid = TRUE;
13487 continue;
13488 }
13489 }
13490 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13491 {
13492 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13493 {
13494 if (tf->with == with_flags)
13495 with_hex |= elf_flags_to_names[i].flag_value;
13496 else if (tf->with == without_flags)
13497 without_hex |= elf_flags_to_names[i].flag_value;
13498 tf->valid = TRUE;
13499 break;
13500 }
13501 }
13502 if (!tf->valid)
13503 {
13504 info->callbacks->einfo
13505 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13506 return FALSE;
13507 }
13508 }
13509 flaginfo->flags_initialized = TRUE;
13510 flaginfo->only_with_flags |= with_hex;
13511 flaginfo->not_with_flags |= without_hex;
13512 }
13513
13514 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13515 return FALSE;
13516
13517 if ((flaginfo->not_with_flags & sh_flags) != 0)
13518 return FALSE;
13519
13520 return TRUE;
13521 }
13522
13523 struct alloc_got_off_arg {
13524 bfd_vma gotoff;
13525 struct bfd_link_info *info;
13526 };
13527
13528 /* We need a special top-level link routine to convert got reference counts
13529 to real got offsets. */
13530
13531 static bfd_boolean
13532 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13533 {
13534 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13535 bfd *obfd = gofarg->info->output_bfd;
13536 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13537
13538 if (h->got.refcount > 0)
13539 {
13540 h->got.offset = gofarg->gotoff;
13541 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13542 }
13543 else
13544 h->got.offset = (bfd_vma) -1;
13545
13546 return TRUE;
13547 }
13548
13549 /* And an accompanying bit to work out final got entry offsets once
13550 we're done. Should be called from final_link. */
13551
13552 bfd_boolean
13553 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13554 struct bfd_link_info *info)
13555 {
13556 bfd *i;
13557 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13558 bfd_vma gotoff;
13559 struct alloc_got_off_arg gofarg;
13560
13561 BFD_ASSERT (abfd == info->output_bfd);
13562
13563 if (! is_elf_hash_table (info->hash))
13564 return FALSE;
13565
13566 /* The GOT offset is relative to the .got section, but the GOT header is
13567 put into the .got.plt section, if the backend uses it. */
13568 if (bed->want_got_plt)
13569 gotoff = 0;
13570 else
13571 gotoff = bed->got_header_size;
13572
13573 /* Do the local .got entries first. */
13574 for (i = info->input_bfds; i; i = i->link.next)
13575 {
13576 bfd_signed_vma *local_got;
13577 size_t j, locsymcount;
13578 Elf_Internal_Shdr *symtab_hdr;
13579
13580 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13581 continue;
13582
13583 local_got = elf_local_got_refcounts (i);
13584 if (!local_got)
13585 continue;
13586
13587 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13588 if (elf_bad_symtab (i))
13589 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13590 else
13591 locsymcount = symtab_hdr->sh_info;
13592
13593 for (j = 0; j < locsymcount; ++j)
13594 {
13595 if (local_got[j] > 0)
13596 {
13597 local_got[j] = gotoff;
13598 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13599 }
13600 else
13601 local_got[j] = (bfd_vma) -1;
13602 }
13603 }
13604
13605 /* Then the global .got entries. .plt refcounts are handled by
13606 adjust_dynamic_symbol */
13607 gofarg.gotoff = gotoff;
13608 gofarg.info = info;
13609 elf_link_hash_traverse (elf_hash_table (info),
13610 elf_gc_allocate_got_offsets,
13611 &gofarg);
13612 return TRUE;
13613 }
13614
13615 /* Many folk need no more in the way of final link than this, once
13616 got entry reference counting is enabled. */
13617
13618 bfd_boolean
13619 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13620 {
13621 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13622 return FALSE;
13623
13624 /* Invoke the regular ELF backend linker to do all the work. */
13625 return bfd_elf_final_link (abfd, info);
13626 }
13627
13628 bfd_boolean
13629 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13630 {
13631 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13632
13633 if (rcookie->bad_symtab)
13634 rcookie->rel = rcookie->rels;
13635
13636 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13637 {
13638 unsigned long r_symndx;
13639
13640 if (! rcookie->bad_symtab)
13641 if (rcookie->rel->r_offset > offset)
13642 return FALSE;
13643 if (rcookie->rel->r_offset != offset)
13644 continue;
13645
13646 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13647 if (r_symndx == STN_UNDEF)
13648 return TRUE;
13649
13650 if (r_symndx >= rcookie->locsymcount
13651 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13652 {
13653 struct elf_link_hash_entry *h;
13654
13655 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13656
13657 while (h->root.type == bfd_link_hash_indirect
13658 || h->root.type == bfd_link_hash_warning)
13659 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13660
13661 if ((h->root.type == bfd_link_hash_defined
13662 || h->root.type == bfd_link_hash_defweak)
13663 && (h->root.u.def.section->owner != rcookie->abfd
13664 || h->root.u.def.section->kept_section != NULL
13665 || discarded_section (h->root.u.def.section)))
13666 return TRUE;
13667 }
13668 else
13669 {
13670 /* It's not a relocation against a global symbol,
13671 but it could be a relocation against a local
13672 symbol for a discarded section. */
13673 asection *isec;
13674 Elf_Internal_Sym *isym;
13675
13676 /* Need to: get the symbol; get the section. */
13677 isym = &rcookie->locsyms[r_symndx];
13678 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13679 if (isec != NULL
13680 && (isec->kept_section != NULL
13681 || discarded_section (isec)))
13682 return TRUE;
13683 }
13684 return FALSE;
13685 }
13686 return FALSE;
13687 }
13688
13689 /* Discard unneeded references to discarded sections.
13690 Returns -1 on error, 1 if any section's size was changed, 0 if
13691 nothing changed. This function assumes that the relocations are in
13692 sorted order, which is true for all known assemblers. */
13693
13694 int
13695 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13696 {
13697 struct elf_reloc_cookie cookie;
13698 asection *o;
13699 bfd *abfd;
13700 int changed = 0;
13701
13702 if (info->traditional_format
13703 || !is_elf_hash_table (info->hash))
13704 return 0;
13705
13706 o = bfd_get_section_by_name (output_bfd, ".stab");
13707 if (o != NULL)
13708 {
13709 asection *i;
13710
13711 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13712 {
13713 if (i->size == 0
13714 || i->reloc_count == 0
13715 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13716 continue;
13717
13718 abfd = i->owner;
13719 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13720 continue;
13721
13722 if (!init_reloc_cookie_for_section (&cookie, info, i))
13723 return -1;
13724
13725 if (_bfd_discard_section_stabs (abfd, i,
13726 elf_section_data (i)->sec_info,
13727 bfd_elf_reloc_symbol_deleted_p,
13728 &cookie))
13729 changed = 1;
13730
13731 fini_reloc_cookie_for_section (&cookie, i);
13732 }
13733 }
13734
13735 o = NULL;
13736 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13737 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13738 if (o != NULL)
13739 {
13740 asection *i;
13741
13742 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13743 {
13744 if (i->size == 0)
13745 continue;
13746
13747 abfd = i->owner;
13748 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13749 continue;
13750
13751 if (!init_reloc_cookie_for_section (&cookie, info, i))
13752 return -1;
13753
13754 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13755 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13756 bfd_elf_reloc_symbol_deleted_p,
13757 &cookie))
13758 changed = 1;
13759
13760 fini_reloc_cookie_for_section (&cookie, i);
13761 }
13762 }
13763
13764 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13765 {
13766 const struct elf_backend_data *bed;
13767
13768 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13769 continue;
13770
13771 bed = get_elf_backend_data (abfd);
13772
13773 if (bed->elf_backend_discard_info != NULL)
13774 {
13775 if (!init_reloc_cookie (&cookie, info, abfd))
13776 return -1;
13777
13778 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13779 changed = 1;
13780
13781 fini_reloc_cookie (&cookie, abfd);
13782 }
13783 }
13784
13785 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13786 _bfd_elf_end_eh_frame_parsing (info);
13787
13788 if (info->eh_frame_hdr_type
13789 && !bfd_link_relocatable (info)
13790 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13791 changed = 1;
13792
13793 return changed;
13794 }
13795
13796 bfd_boolean
13797 _bfd_elf_section_already_linked (bfd *abfd,
13798 asection *sec,
13799 struct bfd_link_info *info)
13800 {
13801 flagword flags;
13802 const char *name, *key;
13803 struct bfd_section_already_linked *l;
13804 struct bfd_section_already_linked_hash_entry *already_linked_list;
13805
13806 if (sec->output_section == bfd_abs_section_ptr)
13807 return FALSE;
13808
13809 flags = sec->flags;
13810
13811 /* Return if it isn't a linkonce section. A comdat group section
13812 also has SEC_LINK_ONCE set. */
13813 if ((flags & SEC_LINK_ONCE) == 0)
13814 return FALSE;
13815
13816 /* Don't put group member sections on our list of already linked
13817 sections. They are handled as a group via their group section. */
13818 if (elf_sec_group (sec) != NULL)
13819 return FALSE;
13820
13821 /* For a SHT_GROUP section, use the group signature as the key. */
13822 name = sec->name;
13823 if ((flags & SEC_GROUP) != 0
13824 && elf_next_in_group (sec) != NULL
13825 && elf_group_name (elf_next_in_group (sec)) != NULL)
13826 key = elf_group_name (elf_next_in_group (sec));
13827 else
13828 {
13829 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13830 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13831 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13832 key++;
13833 else
13834 /* Must be a user linkonce section that doesn't follow gcc's
13835 naming convention. In this case we won't be matching
13836 single member groups. */
13837 key = name;
13838 }
13839
13840 already_linked_list = bfd_section_already_linked_table_lookup (key);
13841
13842 for (l = already_linked_list->entry; l != NULL; l = l->next)
13843 {
13844 /* We may have 2 different types of sections on the list: group
13845 sections with a signature of <key> (<key> is some string),
13846 and linkonce sections named .gnu.linkonce.<type>.<key>.
13847 Match like sections. LTO plugin sections are an exception.
13848 They are always named .gnu.linkonce.t.<key> and match either
13849 type of section. */
13850 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13851 && ((flags & SEC_GROUP) != 0
13852 || strcmp (name, l->sec->name) == 0))
13853 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13854 {
13855 /* The section has already been linked. See if we should
13856 issue a warning. */
13857 if (!_bfd_handle_already_linked (sec, l, info))
13858 return FALSE;
13859
13860 if (flags & SEC_GROUP)
13861 {
13862 asection *first = elf_next_in_group (sec);
13863 asection *s = first;
13864
13865 while (s != NULL)
13866 {
13867 s->output_section = bfd_abs_section_ptr;
13868 /* Record which group discards it. */
13869 s->kept_section = l->sec;
13870 s = elf_next_in_group (s);
13871 /* These lists are circular. */
13872 if (s == first)
13873 break;
13874 }
13875 }
13876
13877 return TRUE;
13878 }
13879 }
13880
13881 /* A single member comdat group section may be discarded by a
13882 linkonce section and vice versa. */
13883 if ((flags & SEC_GROUP) != 0)
13884 {
13885 asection *first = elf_next_in_group (sec);
13886
13887 if (first != NULL && elf_next_in_group (first) == first)
13888 /* Check this single member group against linkonce sections. */
13889 for (l = already_linked_list->entry; l != NULL; l = l->next)
13890 if ((l->sec->flags & SEC_GROUP) == 0
13891 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13892 {
13893 first->output_section = bfd_abs_section_ptr;
13894 first->kept_section = l->sec;
13895 sec->output_section = bfd_abs_section_ptr;
13896 break;
13897 }
13898 }
13899 else
13900 /* Check this linkonce section against single member groups. */
13901 for (l = already_linked_list->entry; l != NULL; l = l->next)
13902 if (l->sec->flags & SEC_GROUP)
13903 {
13904 asection *first = elf_next_in_group (l->sec);
13905
13906 if (first != NULL
13907 && elf_next_in_group (first) == first
13908 && bfd_elf_match_symbols_in_sections (first, sec, info))
13909 {
13910 sec->output_section = bfd_abs_section_ptr;
13911 sec->kept_section = first;
13912 break;
13913 }
13914 }
13915
13916 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13917 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13918 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13919 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13920 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13921 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13922 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13923 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13924 The reverse order cannot happen as there is never a bfd with only the
13925 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13926 matter as here were are looking only for cross-bfd sections. */
13927
13928 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13929 for (l = already_linked_list->entry; l != NULL; l = l->next)
13930 if ((l->sec->flags & SEC_GROUP) == 0
13931 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13932 {
13933 if (abfd != l->sec->owner)
13934 sec->output_section = bfd_abs_section_ptr;
13935 break;
13936 }
13937
13938 /* This is the first section with this name. Record it. */
13939 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13940 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13941 return sec->output_section == bfd_abs_section_ptr;
13942 }
13943
13944 bfd_boolean
13945 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13946 {
13947 return sym->st_shndx == SHN_COMMON;
13948 }
13949
13950 unsigned int
13951 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13952 {
13953 return SHN_COMMON;
13954 }
13955
13956 asection *
13957 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13958 {
13959 return bfd_com_section_ptr;
13960 }
13961
13962 bfd_vma
13963 _bfd_elf_default_got_elt_size (bfd *abfd,
13964 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13965 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13966 bfd *ibfd ATTRIBUTE_UNUSED,
13967 unsigned long symndx ATTRIBUTE_UNUSED)
13968 {
13969 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13970 return bed->s->arch_size / 8;
13971 }
13972
13973 /* Routines to support the creation of dynamic relocs. */
13974
13975 /* Returns the name of the dynamic reloc section associated with SEC. */
13976
13977 static const char *
13978 get_dynamic_reloc_section_name (bfd * abfd,
13979 asection * sec,
13980 bfd_boolean is_rela)
13981 {
13982 char *name;
13983 const char *old_name = bfd_get_section_name (NULL, sec);
13984 const char *prefix = is_rela ? ".rela" : ".rel";
13985
13986 if (old_name == NULL)
13987 return NULL;
13988
13989 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13990 sprintf (name, "%s%s", prefix, old_name);
13991
13992 return name;
13993 }
13994
13995 /* Returns the dynamic reloc section associated with SEC.
13996 If necessary compute the name of the dynamic reloc section based
13997 on SEC's name (looked up in ABFD's string table) and the setting
13998 of IS_RELA. */
13999
14000 asection *
14001 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14002 asection * sec,
14003 bfd_boolean is_rela)
14004 {
14005 asection * reloc_sec = elf_section_data (sec)->sreloc;
14006
14007 if (reloc_sec == NULL)
14008 {
14009 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14010
14011 if (name != NULL)
14012 {
14013 reloc_sec = bfd_get_linker_section (abfd, name);
14014
14015 if (reloc_sec != NULL)
14016 elf_section_data (sec)->sreloc = reloc_sec;
14017 }
14018 }
14019
14020 return reloc_sec;
14021 }
14022
14023 /* Returns the dynamic reloc section associated with SEC. If the
14024 section does not exist it is created and attached to the DYNOBJ
14025 bfd and stored in the SRELOC field of SEC's elf_section_data
14026 structure.
14027
14028 ALIGNMENT is the alignment for the newly created section and
14029 IS_RELA defines whether the name should be .rela.<SEC's name>
14030 or .rel.<SEC's name>. The section name is looked up in the
14031 string table associated with ABFD. */
14032
14033 asection *
14034 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14035 bfd *dynobj,
14036 unsigned int alignment,
14037 bfd *abfd,
14038 bfd_boolean is_rela)
14039 {
14040 asection * reloc_sec = elf_section_data (sec)->sreloc;
14041
14042 if (reloc_sec == NULL)
14043 {
14044 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14045
14046 if (name == NULL)
14047 return NULL;
14048
14049 reloc_sec = bfd_get_linker_section (dynobj, name);
14050
14051 if (reloc_sec == NULL)
14052 {
14053 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14054 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14055 if ((sec->flags & SEC_ALLOC) != 0)
14056 flags |= SEC_ALLOC | SEC_LOAD;
14057
14058 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14059 if (reloc_sec != NULL)
14060 {
14061 /* _bfd_elf_get_sec_type_attr chooses a section type by
14062 name. Override as it may be wrong, eg. for a user
14063 section named "auto" we'll get ".relauto" which is
14064 seen to be a .rela section. */
14065 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14066 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14067 reloc_sec = NULL;
14068 }
14069 }
14070
14071 elf_section_data (sec)->sreloc = reloc_sec;
14072 }
14073
14074 return reloc_sec;
14075 }
14076
14077 /* Copy the ELF symbol type and other attributes for a linker script
14078 assignment from HSRC to HDEST. Generally this should be treated as
14079 if we found a strong non-dynamic definition for HDEST (except that
14080 ld ignores multiple definition errors). */
14081 void
14082 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14083 struct bfd_link_hash_entry *hdest,
14084 struct bfd_link_hash_entry *hsrc)
14085 {
14086 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14087 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14088 Elf_Internal_Sym isym;
14089
14090 ehdest->type = ehsrc->type;
14091 ehdest->target_internal = ehsrc->target_internal;
14092
14093 isym.st_other = ehsrc->other;
14094 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14095 }
14096
14097 /* Append a RELA relocation REL to section S in BFD. */
14098
14099 void
14100 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14101 {
14102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14103 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14104 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14105 bed->s->swap_reloca_out (abfd, rel, loc);
14106 }
14107
14108 /* Append a REL relocation REL to section S in BFD. */
14109
14110 void
14111 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14112 {
14113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14114 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14115 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14116 bed->s->swap_reloc_out (abfd, rel, loc);
14117 }
This page took 0.488851 seconds and 4 git commands to generate.