78d8c543412125ecc36117bf6441c8a2fa16d621
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (p == htab->tls_sec)
904 return FALSE;
905
906 if (htab->text_index_section != NULL)
907 return p != htab->text_index_section && p != htab->data_index_section;
908
909 return (htab->dynobj != NULL
910 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
911 && ip->output_section == p);
912
913 /* There shouldn't be section relative relocations
914 against any other section. */
915 default:
916 return TRUE;
917 }
918 }
919
920 bfd_boolean
921 _bfd_elf_omit_section_dynsym_all
922 (bfd *output_bfd ATTRIBUTE_UNUSED,
923 struct bfd_link_info *info ATTRIBUTE_UNUSED,
924 asection *p ATTRIBUTE_UNUSED)
925 {
926 return TRUE;
927 }
928
929 /* Assign dynsym indices. In a shared library we generate a section
930 symbol for each output section, which come first. Next come symbols
931 which have been forced to local binding. Then all of the back-end
932 allocated local dynamic syms, followed by the rest of the global
933 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
934 (This prevents the early call before elf_backend_init_index_section
935 and strip_excluded_output_sections setting dynindx for sections
936 that are stripped.) */
937
938 static unsigned long
939 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
940 struct bfd_link_info *info,
941 unsigned long *section_sym_count)
942 {
943 unsigned long dynsymcount = 0;
944 bfd_boolean do_sec = section_sym_count != NULL;
945
946 if (bfd_link_pic (info)
947 || elf_hash_table (info)->is_relocatable_executable)
948 {
949 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
950 asection *p;
951 for (p = output_bfd->sections; p ; p = p->next)
952 if ((p->flags & SEC_EXCLUDE) == 0
953 && (p->flags & SEC_ALLOC) != 0
954 && elf_hash_table (info)->dynamic_relocs
955 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
956 {
957 ++dynsymcount;
958 if (do_sec)
959 elf_section_data (p)->dynindx = dynsymcount;
960 }
961 else if (do_sec)
962 elf_section_data (p)->dynindx = 0;
963 }
964 if (do_sec)
965 *section_sym_count = dynsymcount;
966
967 elf_link_hash_traverse (elf_hash_table (info),
968 elf_link_renumber_local_hash_table_dynsyms,
969 &dynsymcount);
970
971 if (elf_hash_table (info)->dynlocal)
972 {
973 struct elf_link_local_dynamic_entry *p;
974 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
975 p->dynindx = ++dynsymcount;
976 }
977 elf_hash_table (info)->local_dynsymcount = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_hash_table_dynsyms,
981 &dynsymcount);
982
983 /* There is an unused NULL entry at the head of the table which we
984 must account for in our count even if the table is empty since it
985 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
986 .dynamic section. */
987 dynsymcount++;
988
989 elf_hash_table (info)->dynsymcount = dynsymcount;
990 return dynsymcount;
991 }
992
993 /* Merge st_other field. */
994
995 static void
996 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
997 const Elf_Internal_Sym *isym, asection *sec,
998 bfd_boolean definition, bfd_boolean dynamic)
999 {
1000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1001
1002 /* If st_other has a processor-specific meaning, specific
1003 code might be needed here. */
1004 if (bed->elf_backend_merge_symbol_attribute)
1005 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1006 dynamic);
1007
1008 if (!dynamic)
1009 {
1010 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1011 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1012
1013 /* Keep the most constraining visibility. Leave the remainder
1014 of the st_other field to elf_backend_merge_symbol_attribute. */
1015 if (symvis - 1 < hvis - 1)
1016 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1017 }
1018 else if (definition
1019 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1020 && (sec->flags & SEC_READONLY) == 0)
1021 h->protected_def = 1;
1022 }
1023
1024 /* This function is called when we want to merge a new symbol with an
1025 existing symbol. It handles the various cases which arise when we
1026 find a definition in a dynamic object, or when there is already a
1027 definition in a dynamic object. The new symbol is described by
1028 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1029 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1030 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1031 of an old common symbol. We set OVERRIDE if the old symbol is
1032 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1033 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1034 to change. By OK to change, we mean that we shouldn't warn if the
1035 type or size does change. */
1036
1037 static bfd_boolean
1038 _bfd_elf_merge_symbol (bfd *abfd,
1039 struct bfd_link_info *info,
1040 const char *name,
1041 Elf_Internal_Sym *sym,
1042 asection **psec,
1043 bfd_vma *pvalue,
1044 struct elf_link_hash_entry **sym_hash,
1045 bfd **poldbfd,
1046 bfd_boolean *pold_weak,
1047 unsigned int *pold_alignment,
1048 bfd_boolean *skip,
1049 bfd_boolean *override,
1050 bfd_boolean *type_change_ok,
1051 bfd_boolean *size_change_ok,
1052 bfd_boolean *matched)
1053 {
1054 asection *sec, *oldsec;
1055 struct elf_link_hash_entry *h;
1056 struct elf_link_hash_entry *hi;
1057 struct elf_link_hash_entry *flip;
1058 int bind;
1059 bfd *oldbfd;
1060 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1061 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1062 const struct elf_backend_data *bed;
1063 char *new_version;
1064 bfd_boolean default_sym = *matched;
1065
1066 *skip = FALSE;
1067 *override = FALSE;
1068
1069 sec = *psec;
1070 bind = ELF_ST_BIND (sym->st_info);
1071
1072 if (! bfd_is_und_section (sec))
1073 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1074 else
1075 h = ((struct elf_link_hash_entry *)
1076 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1077 if (h == NULL)
1078 return FALSE;
1079 *sym_hash = h;
1080
1081 bed = get_elf_backend_data (abfd);
1082
1083 /* NEW_VERSION is the symbol version of the new symbol. */
1084 if (h->versioned != unversioned)
1085 {
1086 /* Symbol version is unknown or versioned. */
1087 new_version = strrchr (name, ELF_VER_CHR);
1088 if (new_version)
1089 {
1090 if (h->versioned == unknown)
1091 {
1092 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1093 h->versioned = versioned_hidden;
1094 else
1095 h->versioned = versioned;
1096 }
1097 new_version += 1;
1098 if (new_version[0] == '\0')
1099 new_version = NULL;
1100 }
1101 else
1102 h->versioned = unversioned;
1103 }
1104 else
1105 new_version = NULL;
1106
1107 /* For merging, we only care about real symbols. But we need to make
1108 sure that indirect symbol dynamic flags are updated. */
1109 hi = h;
1110 while (h->root.type == bfd_link_hash_indirect
1111 || h->root.type == bfd_link_hash_warning)
1112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1113
1114 if (!*matched)
1115 {
1116 if (hi == h || h->root.type == bfd_link_hash_new)
1117 *matched = TRUE;
1118 else
1119 {
1120 /* OLD_HIDDEN is true if the existing symbol is only visible
1121 to the symbol with the same symbol version. NEW_HIDDEN is
1122 true if the new symbol is only visible to the symbol with
1123 the same symbol version. */
1124 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1125 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1126 if (!old_hidden && !new_hidden)
1127 /* The new symbol matches the existing symbol if both
1128 aren't hidden. */
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_VERSION is the symbol version of the existing
1133 symbol. */
1134 char *old_version;
1135
1136 if (h->versioned >= versioned)
1137 old_version = strrchr (h->root.root.string,
1138 ELF_VER_CHR) + 1;
1139 else
1140 old_version = NULL;
1141
1142 /* The new symbol matches the existing symbol if they
1143 have the same symbol version. */
1144 *matched = (old_version == new_version
1145 || (old_version != NULL
1146 && new_version != NULL
1147 && strcmp (old_version, new_version) == 0));
1148 }
1149 }
1150 }
1151
1152 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1153 existing symbol. */
1154
1155 oldbfd = NULL;
1156 oldsec = NULL;
1157 switch (h->root.type)
1158 {
1159 default:
1160 break;
1161
1162 case bfd_link_hash_undefined:
1163 case bfd_link_hash_undefweak:
1164 oldbfd = h->root.u.undef.abfd;
1165 break;
1166
1167 case bfd_link_hash_defined:
1168 case bfd_link_hash_defweak:
1169 oldbfd = h->root.u.def.section->owner;
1170 oldsec = h->root.u.def.section;
1171 break;
1172
1173 case bfd_link_hash_common:
1174 oldbfd = h->root.u.c.p->section->owner;
1175 oldsec = h->root.u.c.p->section;
1176 if (pold_alignment)
1177 *pold_alignment = h->root.u.c.p->alignment_power;
1178 break;
1179 }
1180 if (poldbfd && *poldbfd == NULL)
1181 *poldbfd = oldbfd;
1182
1183 /* Differentiate strong and weak symbols. */
1184 newweak = bind == STB_WEAK;
1185 oldweak = (h->root.type == bfd_link_hash_defweak
1186 || h->root.type == bfd_link_hash_undefweak);
1187 if (pold_weak)
1188 *pold_weak = oldweak;
1189
1190 /* We have to check it for every instance since the first few may be
1191 references and not all compilers emit symbol type for undefined
1192 symbols. */
1193 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1194
1195 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1196 respectively, is from a dynamic object. */
1197
1198 newdyn = (abfd->flags & DYNAMIC) != 0;
1199
1200 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1201 syms and defined syms in dynamic libraries respectively.
1202 ref_dynamic on the other hand can be set for a symbol defined in
1203 a dynamic library, and def_dynamic may not be set; When the
1204 definition in a dynamic lib is overridden by a definition in the
1205 executable use of the symbol in the dynamic lib becomes a
1206 reference to the executable symbol. */
1207 if (newdyn)
1208 {
1209 if (bfd_is_und_section (sec))
1210 {
1211 if (bind != STB_WEAK)
1212 {
1213 h->ref_dynamic_nonweak = 1;
1214 hi->ref_dynamic_nonweak = 1;
1215 }
1216 }
1217 else
1218 {
1219 /* Update the existing symbol only if they match. */
1220 if (*matched)
1221 h->dynamic_def = 1;
1222 hi->dynamic_def = 1;
1223 }
1224 }
1225
1226 /* If we just created the symbol, mark it as being an ELF symbol.
1227 Other than that, there is nothing to do--there is no merge issue
1228 with a newly defined symbol--so we just return. */
1229
1230 if (h->root.type == bfd_link_hash_new)
1231 {
1232 h->non_elf = 0;
1233 return TRUE;
1234 }
1235
1236 /* In cases involving weak versioned symbols, we may wind up trying
1237 to merge a symbol with itself. Catch that here, to avoid the
1238 confusion that results if we try to override a symbol with
1239 itself. The additional tests catch cases like
1240 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1241 dynamic object, which we do want to handle here. */
1242 if (abfd == oldbfd
1243 && (newweak || oldweak)
1244 && ((abfd->flags & DYNAMIC) == 0
1245 || !h->def_regular))
1246 return TRUE;
1247
1248 olddyn = FALSE;
1249 if (oldbfd != NULL)
1250 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1251 else if (oldsec != NULL)
1252 {
1253 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1254 indices used by MIPS ELF. */
1255 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1256 }
1257
1258 /* Handle a case where plugin_notice won't be called and thus won't
1259 set the non_ir_ref flags on the first pass over symbols. */
1260 if (oldbfd != NULL
1261 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1262 && newdyn != olddyn)
1263 {
1264 h->root.non_ir_ref_dynamic = TRUE;
1265 hi->root.non_ir_ref_dynamic = TRUE;
1266 }
1267
1268 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1269 respectively, appear to be a definition rather than reference. */
1270
1271 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1272
1273 olddef = (h->root.type != bfd_link_hash_undefined
1274 && h->root.type != bfd_link_hash_undefweak
1275 && h->root.type != bfd_link_hash_common);
1276
1277 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1278 respectively, appear to be a function. */
1279
1280 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1281 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1282
1283 oldfunc = (h->type != STT_NOTYPE
1284 && bed->is_function_type (h->type));
1285
1286 if (!(newfunc && oldfunc)
1287 && ELF_ST_TYPE (sym->st_info) != h->type
1288 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1289 && h->type != STT_NOTYPE
1290 && (newdef || bfd_is_com_section (sec))
1291 && (olddef || h->root.type == bfd_link_hash_common))
1292 {
1293 /* If creating a default indirect symbol ("foo" or "foo@") from
1294 a dynamic versioned definition ("foo@@") skip doing so if
1295 there is an existing regular definition with a different
1296 type. We don't want, for example, a "time" variable in the
1297 executable overriding a "time" function in a shared library. */
1298 if (newdyn
1299 && !olddyn)
1300 {
1301 *skip = TRUE;
1302 return TRUE;
1303 }
1304
1305 /* When adding a symbol from a regular object file after we have
1306 created indirect symbols, undo the indirection and any
1307 dynamic state. */
1308 if (hi != h
1309 && !newdyn
1310 && olddyn)
1311 {
1312 h = hi;
1313 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1314 h->forced_local = 0;
1315 h->ref_dynamic = 0;
1316 h->def_dynamic = 0;
1317 h->dynamic_def = 0;
1318 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1319 {
1320 h->root.type = bfd_link_hash_undefined;
1321 h->root.u.undef.abfd = abfd;
1322 }
1323 else
1324 {
1325 h->root.type = bfd_link_hash_new;
1326 h->root.u.undef.abfd = NULL;
1327 }
1328 return TRUE;
1329 }
1330 }
1331
1332 /* Check TLS symbols. We don't check undefined symbols introduced
1333 by "ld -u" which have no type (and oldbfd NULL), and we don't
1334 check symbols from plugins because they also have no type. */
1335 if (oldbfd != NULL
1336 && (oldbfd->flags & BFD_PLUGIN) == 0
1337 && (abfd->flags & BFD_PLUGIN) == 0
1338 && ELF_ST_TYPE (sym->st_info) != h->type
1339 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1340 {
1341 bfd *ntbfd, *tbfd;
1342 bfd_boolean ntdef, tdef;
1343 asection *ntsec, *tsec;
1344
1345 if (h->type == STT_TLS)
1346 {
1347 ntbfd = abfd;
1348 ntsec = sec;
1349 ntdef = newdef;
1350 tbfd = oldbfd;
1351 tsec = oldsec;
1352 tdef = olddef;
1353 }
1354 else
1355 {
1356 ntbfd = oldbfd;
1357 ntsec = oldsec;
1358 ntdef = olddef;
1359 tbfd = abfd;
1360 tsec = sec;
1361 tdef = newdef;
1362 }
1363
1364 if (tdef && ntdef)
1365 _bfd_error_handler
1366 /* xgettext:c-format */
1367 (_("%s: TLS definition in %pB section %pA "
1368 "mismatches non-TLS definition in %pB section %pA"),
1369 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1370 else if (!tdef && !ntdef)
1371 _bfd_error_handler
1372 /* xgettext:c-format */
1373 (_("%s: TLS reference in %pB "
1374 "mismatches non-TLS reference in %pB"),
1375 h->root.root.string, tbfd, ntbfd);
1376 else if (tdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS reference in %pB"),
1381 h->root.root.string, tbfd, tsec, ntbfd);
1382 else
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS definition in %pB section %pA"),
1387 h->root.root.string, tbfd, ntbfd, ntsec);
1388
1389 bfd_set_error (bfd_error_bad_value);
1390 return FALSE;
1391 }
1392
1393 /* If the old symbol has non-default visibility, we ignore the new
1394 definition from a dynamic object. */
1395 if (newdyn
1396 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1397 && !bfd_is_und_section (sec))
1398 {
1399 *skip = TRUE;
1400 /* Make sure this symbol is dynamic. */
1401 h->ref_dynamic = 1;
1402 hi->ref_dynamic = 1;
1403 /* A protected symbol has external availability. Make sure it is
1404 recorded as dynamic.
1405
1406 FIXME: Should we check type and size for protected symbol? */
1407 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1408 return bfd_elf_link_record_dynamic_symbol (info, h);
1409 else
1410 return TRUE;
1411 }
1412 else if (!newdyn
1413 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1414 && h->def_dynamic)
1415 {
1416 /* If the new symbol with non-default visibility comes from a
1417 relocatable file and the old definition comes from a dynamic
1418 object, we remove the old definition. */
1419 if (hi->root.type == bfd_link_hash_indirect)
1420 {
1421 /* Handle the case where the old dynamic definition is
1422 default versioned. We need to copy the symbol info from
1423 the symbol with default version to the normal one if it
1424 was referenced before. */
1425 if (h->ref_regular)
1426 {
1427 hi->root.type = h->root.type;
1428 h->root.type = bfd_link_hash_indirect;
1429 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1430
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1433 {
1434 /* If the new symbol is hidden or internal, completely undo
1435 any dynamic link state. */
1436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1437 h->forced_local = 0;
1438 h->ref_dynamic = 0;
1439 }
1440 else
1441 h->ref_dynamic = 1;
1442
1443 h->def_dynamic = 0;
1444 /* FIXME: Should we check type and size for protected symbol? */
1445 h->size = 0;
1446 h->type = 0;
1447
1448 h = hi;
1449 }
1450 else
1451 h = hi;
1452 }
1453
1454 /* If the old symbol was undefined before, then it will still be
1455 on the undefs list. If the new symbol is undefined or
1456 common, we can't make it bfd_link_hash_new here, because new
1457 undefined or common symbols will be added to the undefs list
1458 by _bfd_generic_link_add_one_symbol. Symbols may not be
1459 added twice to the undefs list. Also, if the new symbol is
1460 undefweak then we don't want to lose the strong undef. */
1461 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1462 {
1463 h->root.type = bfd_link_hash_undefined;
1464 h->root.u.undef.abfd = abfd;
1465 }
1466 else
1467 {
1468 h->root.type = bfd_link_hash_new;
1469 h->root.u.undef.abfd = NULL;
1470 }
1471
1472 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1473 {
1474 /* If the new symbol is hidden or internal, completely undo
1475 any dynamic link state. */
1476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1477 h->forced_local = 0;
1478 h->ref_dynamic = 0;
1479 }
1480 else
1481 h->ref_dynamic = 1;
1482 h->def_dynamic = 0;
1483 /* FIXME: Should we check type and size for protected symbol? */
1484 h->size = 0;
1485 h->type = 0;
1486 return TRUE;
1487 }
1488
1489 /* If a new weak symbol definition comes from a regular file and the
1490 old symbol comes from a dynamic library, we treat the new one as
1491 strong. Similarly, an old weak symbol definition from a regular
1492 file is treated as strong when the new symbol comes from a dynamic
1493 library. Further, an old weak symbol from a dynamic library is
1494 treated as strong if the new symbol is from a dynamic library.
1495 This reflects the way glibc's ld.so works.
1496
1497 Also allow a weak symbol to override a linker script symbol
1498 defined by an early pass over the script. This is done so the
1499 linker knows the symbol is defined in an object file, for the
1500 DEFINED script function.
1501
1502 Do this before setting *type_change_ok or *size_change_ok so that
1503 we warn properly when dynamic library symbols are overridden. */
1504
1505 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1506 newweak = FALSE;
1507 if (olddef && newdyn)
1508 oldweak = FALSE;
1509
1510 /* Allow changes between different types of function symbol. */
1511 if (newfunc && oldfunc)
1512 *type_change_ok = TRUE;
1513
1514 /* It's OK to change the type if either the existing symbol or the
1515 new symbol is weak. A type change is also OK if the old symbol
1516 is undefined and the new symbol is defined. */
1517
1518 if (oldweak
1519 || newweak
1520 || (newdef
1521 && h->root.type == bfd_link_hash_undefined))
1522 *type_change_ok = TRUE;
1523
1524 /* It's OK to change the size if either the existing symbol or the
1525 new symbol is weak, or if the old symbol is undefined. */
1526
1527 if (*type_change_ok
1528 || h->root.type == bfd_link_hash_undefined)
1529 *size_change_ok = TRUE;
1530
1531 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1532 symbol, respectively, appears to be a common symbol in a dynamic
1533 object. If a symbol appears in an uninitialized section, and is
1534 not weak, and is not a function, then it may be a common symbol
1535 which was resolved when the dynamic object was created. We want
1536 to treat such symbols specially, because they raise special
1537 considerations when setting the symbol size: if the symbol
1538 appears as a common symbol in a regular object, and the size in
1539 the regular object is larger, we must make sure that we use the
1540 larger size. This problematic case can always be avoided in C,
1541 but it must be handled correctly when using Fortran shared
1542 libraries.
1543
1544 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1545 likewise for OLDDYNCOMMON and OLDDEF.
1546
1547 Note that this test is just a heuristic, and that it is quite
1548 possible to have an uninitialized symbol in a shared object which
1549 is really a definition, rather than a common symbol. This could
1550 lead to some minor confusion when the symbol really is a common
1551 symbol in some regular object. However, I think it will be
1552 harmless. */
1553
1554 if (newdyn
1555 && newdef
1556 && !newweak
1557 && (sec->flags & SEC_ALLOC) != 0
1558 && (sec->flags & SEC_LOAD) == 0
1559 && sym->st_size > 0
1560 && !newfunc)
1561 newdyncommon = TRUE;
1562 else
1563 newdyncommon = FALSE;
1564
1565 if (olddyn
1566 && olddef
1567 && h->root.type == bfd_link_hash_defined
1568 && h->def_dynamic
1569 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1570 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1571 && h->size > 0
1572 && !oldfunc)
1573 olddyncommon = TRUE;
1574 else
1575 olddyncommon = FALSE;
1576
1577 /* We now know everything about the old and new symbols. We ask the
1578 backend to check if we can merge them. */
1579 if (bed->merge_symbol != NULL)
1580 {
1581 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1582 return FALSE;
1583 sec = *psec;
1584 }
1585
1586 /* There are multiple definitions of a normal symbol. Skip the
1587 default symbol as well as definition from an IR object. */
1588 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1589 && !default_sym && h->def_regular
1590 && !(oldbfd != NULL
1591 && (oldbfd->flags & BFD_PLUGIN) != 0
1592 && (abfd->flags & BFD_PLUGIN) == 0))
1593 {
1594 /* Handle a multiple definition. */
1595 (*info->callbacks->multiple_definition) (info, &h->root,
1596 abfd, sec, *pvalue);
1597 *skip = TRUE;
1598 return TRUE;
1599 }
1600
1601 /* If both the old and the new symbols look like common symbols in a
1602 dynamic object, set the size of the symbol to the larger of the
1603 two. */
1604
1605 if (olddyncommon
1606 && newdyncommon
1607 && sym->st_size != h->size)
1608 {
1609 /* Since we think we have two common symbols, issue a multiple
1610 common warning if desired. Note that we only warn if the
1611 size is different. If the size is the same, we simply let
1612 the old symbol override the new one as normally happens with
1613 symbols defined in dynamic objects. */
1614
1615 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1616 bfd_link_hash_common, sym->st_size);
1617 if (sym->st_size > h->size)
1618 h->size = sym->st_size;
1619
1620 *size_change_ok = TRUE;
1621 }
1622
1623 /* If we are looking at a dynamic object, and we have found a
1624 definition, we need to see if the symbol was already defined by
1625 some other object. If so, we want to use the existing
1626 definition, and we do not want to report a multiple symbol
1627 definition error; we do this by clobbering *PSEC to be
1628 bfd_und_section_ptr.
1629
1630 We treat a common symbol as a definition if the symbol in the
1631 shared library is a function, since common symbols always
1632 represent variables; this can cause confusion in principle, but
1633 any such confusion would seem to indicate an erroneous program or
1634 shared library. We also permit a common symbol in a regular
1635 object to override a weak symbol in a shared object. */
1636
1637 if (newdyn
1638 && newdef
1639 && (olddef
1640 || (h->root.type == bfd_link_hash_common
1641 && (newweak || newfunc))))
1642 {
1643 *override = TRUE;
1644 newdef = FALSE;
1645 newdyncommon = FALSE;
1646
1647 *psec = sec = bfd_und_section_ptr;
1648 *size_change_ok = TRUE;
1649
1650 /* If we get here when the old symbol is a common symbol, then
1651 we are explicitly letting it override a weak symbol or
1652 function in a dynamic object, and we don't want to warn about
1653 a type change. If the old symbol is a defined symbol, a type
1654 change warning may still be appropriate. */
1655
1656 if (h->root.type == bfd_link_hash_common)
1657 *type_change_ok = TRUE;
1658 }
1659
1660 /* Handle the special case of an old common symbol merging with a
1661 new symbol which looks like a common symbol in a shared object.
1662 We change *PSEC and *PVALUE to make the new symbol look like a
1663 common symbol, and let _bfd_generic_link_add_one_symbol do the
1664 right thing. */
1665
1666 if (newdyncommon
1667 && h->root.type == bfd_link_hash_common)
1668 {
1669 *override = TRUE;
1670 newdef = FALSE;
1671 newdyncommon = FALSE;
1672 *pvalue = sym->st_size;
1673 *psec = sec = bed->common_section (oldsec);
1674 *size_change_ok = TRUE;
1675 }
1676
1677 /* Skip weak definitions of symbols that are already defined. */
1678 if (newdef && olddef && newweak)
1679 {
1680 /* Don't skip new non-IR weak syms. */
1681 if (!(oldbfd != NULL
1682 && (oldbfd->flags & BFD_PLUGIN) != 0
1683 && (abfd->flags & BFD_PLUGIN) == 0))
1684 {
1685 newdef = FALSE;
1686 *skip = TRUE;
1687 }
1688
1689 /* Merge st_other. If the symbol already has a dynamic index,
1690 but visibility says it should not be visible, turn it into a
1691 local symbol. */
1692 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1693 if (h->dynindx != -1)
1694 switch (ELF_ST_VISIBILITY (h->other))
1695 {
1696 case STV_INTERNAL:
1697 case STV_HIDDEN:
1698 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1699 break;
1700 }
1701 }
1702
1703 /* If the old symbol is from a dynamic object, and the new symbol is
1704 a definition which is not from a dynamic object, then the new
1705 symbol overrides the old symbol. Symbols from regular files
1706 always take precedence over symbols from dynamic objects, even if
1707 they are defined after the dynamic object in the link.
1708
1709 As above, we again permit a common symbol in a regular object to
1710 override a definition in a shared object if the shared object
1711 symbol is a function or is weak. */
1712
1713 flip = NULL;
1714 if (!newdyn
1715 && (newdef
1716 || (bfd_is_com_section (sec)
1717 && (oldweak || oldfunc)))
1718 && olddyn
1719 && olddef
1720 && h->def_dynamic)
1721 {
1722 /* Change the hash table entry to undefined, and let
1723 _bfd_generic_link_add_one_symbol do the right thing with the
1724 new definition. */
1725
1726 h->root.type = bfd_link_hash_undefined;
1727 h->root.u.undef.abfd = h->root.u.def.section->owner;
1728 *size_change_ok = TRUE;
1729
1730 olddef = FALSE;
1731 olddyncommon = FALSE;
1732
1733 /* We again permit a type change when a common symbol may be
1734 overriding a function. */
1735
1736 if (bfd_is_com_section (sec))
1737 {
1738 if (oldfunc)
1739 {
1740 /* If a common symbol overrides a function, make sure
1741 that it isn't defined dynamically nor has type
1742 function. */
1743 h->def_dynamic = 0;
1744 h->type = STT_NOTYPE;
1745 }
1746 *type_change_ok = TRUE;
1747 }
1748
1749 if (hi->root.type == bfd_link_hash_indirect)
1750 flip = hi;
1751 else
1752 /* This union may have been set to be non-NULL when this symbol
1753 was seen in a dynamic object. We must force the union to be
1754 NULL, so that it is correct for a regular symbol. */
1755 h->verinfo.vertree = NULL;
1756 }
1757
1758 /* Handle the special case of a new common symbol merging with an
1759 old symbol that looks like it might be a common symbol defined in
1760 a shared object. Note that we have already handled the case in
1761 which a new common symbol should simply override the definition
1762 in the shared library. */
1763
1764 if (! newdyn
1765 && bfd_is_com_section (sec)
1766 && olddyncommon)
1767 {
1768 /* It would be best if we could set the hash table entry to a
1769 common symbol, but we don't know what to use for the section
1770 or the alignment. */
1771 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1772 bfd_link_hash_common, sym->st_size);
1773
1774 /* If the presumed common symbol in the dynamic object is
1775 larger, pretend that the new symbol has its size. */
1776
1777 if (h->size > *pvalue)
1778 *pvalue = h->size;
1779
1780 /* We need to remember the alignment required by the symbol
1781 in the dynamic object. */
1782 BFD_ASSERT (pold_alignment);
1783 *pold_alignment = h->root.u.def.section->alignment_power;
1784
1785 olddef = FALSE;
1786 olddyncommon = FALSE;
1787
1788 h->root.type = bfd_link_hash_undefined;
1789 h->root.u.undef.abfd = h->root.u.def.section->owner;
1790
1791 *size_change_ok = TRUE;
1792 *type_change_ok = TRUE;
1793
1794 if (hi->root.type == bfd_link_hash_indirect)
1795 flip = hi;
1796 else
1797 h->verinfo.vertree = NULL;
1798 }
1799
1800 if (flip != NULL)
1801 {
1802 /* Handle the case where we had a versioned symbol in a dynamic
1803 library and now find a definition in a normal object. In this
1804 case, we make the versioned symbol point to the normal one. */
1805 flip->root.type = h->root.type;
1806 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1807 h->root.type = bfd_link_hash_indirect;
1808 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1809 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1810 if (h->def_dynamic)
1811 {
1812 h->def_dynamic = 0;
1813 flip->ref_dynamic = 1;
1814 }
1815 }
1816
1817 return TRUE;
1818 }
1819
1820 /* This function is called to create an indirect symbol from the
1821 default for the symbol with the default version if needed. The
1822 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1823 set DYNSYM if the new indirect symbol is dynamic. */
1824
1825 static bfd_boolean
1826 _bfd_elf_add_default_symbol (bfd *abfd,
1827 struct bfd_link_info *info,
1828 struct elf_link_hash_entry *h,
1829 const char *name,
1830 Elf_Internal_Sym *sym,
1831 asection *sec,
1832 bfd_vma value,
1833 bfd **poldbfd,
1834 bfd_boolean *dynsym)
1835 {
1836 bfd_boolean type_change_ok;
1837 bfd_boolean size_change_ok;
1838 bfd_boolean skip;
1839 char *shortname;
1840 struct elf_link_hash_entry *hi;
1841 struct bfd_link_hash_entry *bh;
1842 const struct elf_backend_data *bed;
1843 bfd_boolean collect;
1844 bfd_boolean dynamic;
1845 bfd_boolean override;
1846 char *p;
1847 size_t len, shortlen;
1848 asection *tmp_sec;
1849 bfd_boolean matched;
1850
1851 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1852 return TRUE;
1853
1854 /* If this symbol has a version, and it is the default version, we
1855 create an indirect symbol from the default name to the fully
1856 decorated name. This will cause external references which do not
1857 specify a version to be bound to this version of the symbol. */
1858 p = strchr (name, ELF_VER_CHR);
1859 if (h->versioned == unknown)
1860 {
1861 if (p == NULL)
1862 {
1863 h->versioned = unversioned;
1864 return TRUE;
1865 }
1866 else
1867 {
1868 if (p[1] != ELF_VER_CHR)
1869 {
1870 h->versioned = versioned_hidden;
1871 return TRUE;
1872 }
1873 else
1874 h->versioned = versioned;
1875 }
1876 }
1877 else
1878 {
1879 /* PR ld/19073: We may see an unversioned definition after the
1880 default version. */
1881 if (p == NULL)
1882 return TRUE;
1883 }
1884
1885 bed = get_elf_backend_data (abfd);
1886 collect = bed->collect;
1887 dynamic = (abfd->flags & DYNAMIC) != 0;
1888
1889 shortlen = p - name;
1890 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1891 if (shortname == NULL)
1892 return FALSE;
1893 memcpy (shortname, name, shortlen);
1894 shortname[shortlen] = '\0';
1895
1896 /* We are going to create a new symbol. Merge it with any existing
1897 symbol with this name. For the purposes of the merge, act as
1898 though we were defining the symbol we just defined, although we
1899 actually going to define an indirect symbol. */
1900 type_change_ok = FALSE;
1901 size_change_ok = FALSE;
1902 matched = TRUE;
1903 tmp_sec = sec;
1904 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1905 &hi, poldbfd, NULL, NULL, &skip, &override,
1906 &type_change_ok, &size_change_ok, &matched))
1907 return FALSE;
1908
1909 if (skip)
1910 goto nondefault;
1911
1912 if (hi->def_regular)
1913 {
1914 /* If the undecorated symbol will have a version added by a
1915 script different to H, then don't indirect to/from the
1916 undecorated symbol. This isn't ideal because we may not yet
1917 have seen symbol versions, if given by a script on the
1918 command line rather than via --version-script. */
1919 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1920 {
1921 bfd_boolean hide;
1922
1923 hi->verinfo.vertree
1924 = bfd_find_version_for_sym (info->version_info,
1925 hi->root.root.string, &hide);
1926 if (hi->verinfo.vertree != NULL && hide)
1927 {
1928 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1929 goto nondefault;
1930 }
1931 }
1932 if (hi->verinfo.vertree != NULL
1933 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1934 goto nondefault;
1935 }
1936
1937 if (! override)
1938 {
1939 /* Add the default symbol if not performing a relocatable link. */
1940 if (! bfd_link_relocatable (info))
1941 {
1942 bh = &hi->root;
1943 if (! (_bfd_generic_link_add_one_symbol
1944 (info, abfd, shortname, BSF_INDIRECT,
1945 bfd_ind_section_ptr,
1946 0, name, FALSE, collect, &bh)))
1947 return FALSE;
1948 hi = (struct elf_link_hash_entry *) bh;
1949 }
1950 }
1951 else
1952 {
1953 /* In this case the symbol named SHORTNAME is overriding the
1954 indirect symbol we want to add. We were planning on making
1955 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1956 is the name without a version. NAME is the fully versioned
1957 name, and it is the default version.
1958
1959 Overriding means that we already saw a definition for the
1960 symbol SHORTNAME in a regular object, and it is overriding
1961 the symbol defined in the dynamic object.
1962
1963 When this happens, we actually want to change NAME, the
1964 symbol we just added, to refer to SHORTNAME. This will cause
1965 references to NAME in the shared object to become references
1966 to SHORTNAME in the regular object. This is what we expect
1967 when we override a function in a shared object: that the
1968 references in the shared object will be mapped to the
1969 definition in the regular object. */
1970
1971 while (hi->root.type == bfd_link_hash_indirect
1972 || hi->root.type == bfd_link_hash_warning)
1973 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1974
1975 h->root.type = bfd_link_hash_indirect;
1976 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1977 if (h->def_dynamic)
1978 {
1979 h->def_dynamic = 0;
1980 hi->ref_dynamic = 1;
1981 if (hi->ref_regular
1982 || hi->def_regular)
1983 {
1984 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1985 return FALSE;
1986 }
1987 }
1988
1989 /* Now set HI to H, so that the following code will set the
1990 other fields correctly. */
1991 hi = h;
1992 }
1993
1994 /* Check if HI is a warning symbol. */
1995 if (hi->root.type == bfd_link_hash_warning)
1996 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1997
1998 /* If there is a duplicate definition somewhere, then HI may not
1999 point to an indirect symbol. We will have reported an error to
2000 the user in that case. */
2001
2002 if (hi->root.type == bfd_link_hash_indirect)
2003 {
2004 struct elf_link_hash_entry *ht;
2005
2006 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2007 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2008
2009 /* A reference to the SHORTNAME symbol from a dynamic library
2010 will be satisfied by the versioned symbol at runtime. In
2011 effect, we have a reference to the versioned symbol. */
2012 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2013 hi->dynamic_def |= ht->dynamic_def;
2014
2015 /* See if the new flags lead us to realize that the symbol must
2016 be dynamic. */
2017 if (! *dynsym)
2018 {
2019 if (! dynamic)
2020 {
2021 if (! bfd_link_executable (info)
2022 || hi->def_dynamic
2023 || hi->ref_dynamic)
2024 *dynsym = TRUE;
2025 }
2026 else
2027 {
2028 if (hi->ref_regular)
2029 *dynsym = TRUE;
2030 }
2031 }
2032 }
2033
2034 /* We also need to define an indirection from the nondefault version
2035 of the symbol. */
2036
2037 nondefault:
2038 len = strlen (name);
2039 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2040 if (shortname == NULL)
2041 return FALSE;
2042 memcpy (shortname, name, shortlen);
2043 memcpy (shortname + shortlen, p + 1, len - shortlen);
2044
2045 /* Once again, merge with any existing symbol. */
2046 type_change_ok = FALSE;
2047 size_change_ok = FALSE;
2048 tmp_sec = sec;
2049 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2050 &hi, poldbfd, NULL, NULL, &skip, &override,
2051 &type_change_ok, &size_change_ok, &matched))
2052 return FALSE;
2053
2054 if (skip)
2055 return TRUE;
2056
2057 if (override)
2058 {
2059 /* Here SHORTNAME is a versioned name, so we don't expect to see
2060 the type of override we do in the case above unless it is
2061 overridden by a versioned definition. */
2062 if (hi->root.type != bfd_link_hash_defined
2063 && hi->root.type != bfd_link_hash_defweak)
2064 _bfd_error_handler
2065 /* xgettext:c-format */
2066 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2067 abfd, shortname);
2068 }
2069 else
2070 {
2071 bh = &hi->root;
2072 if (! (_bfd_generic_link_add_one_symbol
2073 (info, abfd, shortname, BSF_INDIRECT,
2074 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2075 return FALSE;
2076 hi = (struct elf_link_hash_entry *) bh;
2077
2078 /* If there is a duplicate definition somewhere, then HI may not
2079 point to an indirect symbol. We will have reported an error
2080 to the user in that case. */
2081
2082 if (hi->root.type == bfd_link_hash_indirect)
2083 {
2084 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2085 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2086 hi->dynamic_def |= h->dynamic_def;
2087
2088 /* See if the new flags lead us to realize that the symbol
2089 must be dynamic. */
2090 if (! *dynsym)
2091 {
2092 if (! dynamic)
2093 {
2094 if (! bfd_link_executable (info)
2095 || hi->ref_dynamic)
2096 *dynsym = TRUE;
2097 }
2098 else
2099 {
2100 if (hi->ref_regular)
2101 *dynsym = TRUE;
2102 }
2103 }
2104 }
2105 }
2106
2107 return TRUE;
2108 }
2109 \f
2110 /* This routine is used to export all defined symbols into the dynamic
2111 symbol table. It is called via elf_link_hash_traverse. */
2112
2113 static bfd_boolean
2114 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2115 {
2116 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2117
2118 /* Ignore indirect symbols. These are added by the versioning code. */
2119 if (h->root.type == bfd_link_hash_indirect)
2120 return TRUE;
2121
2122 /* Ignore this if we won't export it. */
2123 if (!eif->info->export_dynamic && !h->dynamic)
2124 return TRUE;
2125
2126 if (h->dynindx == -1
2127 && (h->def_regular || h->ref_regular)
2128 && ! bfd_hide_sym_by_version (eif->info->version_info,
2129 h->root.root.string))
2130 {
2131 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2132 {
2133 eif->failed = TRUE;
2134 return FALSE;
2135 }
2136 }
2137
2138 return TRUE;
2139 }
2140 \f
2141 /* Look through the symbols which are defined in other shared
2142 libraries and referenced here. Update the list of version
2143 dependencies. This will be put into the .gnu.version_r section.
2144 This function is called via elf_link_hash_traverse. */
2145
2146 static bfd_boolean
2147 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2148 void *data)
2149 {
2150 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2151 Elf_Internal_Verneed *t;
2152 Elf_Internal_Vernaux *a;
2153 bfd_size_type amt;
2154
2155 /* We only care about symbols defined in shared objects with version
2156 information. */
2157 if (!h->def_dynamic
2158 || h->def_regular
2159 || h->dynindx == -1
2160 || h->verinfo.verdef == NULL
2161 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2162 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2163 return TRUE;
2164
2165 /* See if we already know about this version. */
2166 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2167 t != NULL;
2168 t = t->vn_nextref)
2169 {
2170 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2171 continue;
2172
2173 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2174 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2175 return TRUE;
2176
2177 break;
2178 }
2179
2180 /* This is a new version. Add it to tree we are building. */
2181
2182 if (t == NULL)
2183 {
2184 amt = sizeof *t;
2185 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2186 if (t == NULL)
2187 {
2188 rinfo->failed = TRUE;
2189 return FALSE;
2190 }
2191
2192 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2193 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2194 elf_tdata (rinfo->info->output_bfd)->verref = t;
2195 }
2196
2197 amt = sizeof *a;
2198 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2199 if (a == NULL)
2200 {
2201 rinfo->failed = TRUE;
2202 return FALSE;
2203 }
2204
2205 /* Note that we are copying a string pointer here, and testing it
2206 above. If bfd_elf_string_from_elf_section is ever changed to
2207 discard the string data when low in memory, this will have to be
2208 fixed. */
2209 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2210
2211 a->vna_flags = h->verinfo.verdef->vd_flags;
2212 a->vna_nextptr = t->vn_auxptr;
2213
2214 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2215 ++rinfo->vers;
2216
2217 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2218
2219 t->vn_auxptr = a;
2220
2221 return TRUE;
2222 }
2223
2224 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2225 hidden. Set *T_P to NULL if there is no match. */
2226
2227 static bfd_boolean
2228 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2229 struct elf_link_hash_entry *h,
2230 const char *version_p,
2231 struct bfd_elf_version_tree **t_p,
2232 bfd_boolean *hide)
2233 {
2234 struct bfd_elf_version_tree *t;
2235
2236 /* Look for the version. If we find it, it is no longer weak. */
2237 for (t = info->version_info; t != NULL; t = t->next)
2238 {
2239 if (strcmp (t->name, version_p) == 0)
2240 {
2241 size_t len;
2242 char *alc;
2243 struct bfd_elf_version_expr *d;
2244
2245 len = version_p - h->root.root.string;
2246 alc = (char *) bfd_malloc (len);
2247 if (alc == NULL)
2248 return FALSE;
2249 memcpy (alc, h->root.root.string, len - 1);
2250 alc[len - 1] = '\0';
2251 if (alc[len - 2] == ELF_VER_CHR)
2252 alc[len - 2] = '\0';
2253
2254 h->verinfo.vertree = t;
2255 t->used = TRUE;
2256 d = NULL;
2257
2258 if (t->globals.list != NULL)
2259 d = (*t->match) (&t->globals, NULL, alc);
2260
2261 /* See if there is anything to force this symbol to
2262 local scope. */
2263 if (d == NULL && t->locals.list != NULL)
2264 {
2265 d = (*t->match) (&t->locals, NULL, alc);
2266 if (d != NULL
2267 && h->dynindx != -1
2268 && ! info->export_dynamic)
2269 *hide = TRUE;
2270 }
2271
2272 free (alc);
2273 break;
2274 }
2275 }
2276
2277 *t_p = t;
2278
2279 return TRUE;
2280 }
2281
2282 /* Return TRUE if the symbol H is hidden by version script. */
2283
2284 bfd_boolean
2285 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2286 struct elf_link_hash_entry *h)
2287 {
2288 const char *p;
2289 bfd_boolean hide = FALSE;
2290 const struct elf_backend_data *bed
2291 = get_elf_backend_data (info->output_bfd);
2292
2293 /* Version script only hides symbols defined in regular objects. */
2294 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2295 return TRUE;
2296
2297 p = strchr (h->root.root.string, ELF_VER_CHR);
2298 if (p != NULL && h->verinfo.vertree == NULL)
2299 {
2300 struct bfd_elf_version_tree *t;
2301
2302 ++p;
2303 if (*p == ELF_VER_CHR)
2304 ++p;
2305
2306 if (*p != '\0'
2307 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2308 && hide)
2309 {
2310 if (hide)
2311 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2312 return TRUE;
2313 }
2314 }
2315
2316 /* If we don't have a version for this symbol, see if we can find
2317 something. */
2318 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2319 {
2320 h->verinfo.vertree
2321 = bfd_find_version_for_sym (info->version_info,
2322 h->root.root.string, &hide);
2323 if (h->verinfo.vertree != NULL && hide)
2324 {
2325 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2326 return TRUE;
2327 }
2328 }
2329
2330 return FALSE;
2331 }
2332
2333 /* Figure out appropriate versions for all the symbols. We may not
2334 have the version number script until we have read all of the input
2335 files, so until that point we don't know which symbols should be
2336 local. This function is called via elf_link_hash_traverse. */
2337
2338 static bfd_boolean
2339 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2340 {
2341 struct elf_info_failed *sinfo;
2342 struct bfd_link_info *info;
2343 const struct elf_backend_data *bed;
2344 struct elf_info_failed eif;
2345 char *p;
2346 bfd_boolean hide;
2347
2348 sinfo = (struct elf_info_failed *) data;
2349 info = sinfo->info;
2350
2351 /* Fix the symbol flags. */
2352 eif.failed = FALSE;
2353 eif.info = info;
2354 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2355 {
2356 if (eif.failed)
2357 sinfo->failed = TRUE;
2358 return FALSE;
2359 }
2360
2361 /* We only need version numbers for symbols defined in regular
2362 objects. */
2363 if (!h->def_regular)
2364 return TRUE;
2365
2366 hide = FALSE;
2367 bed = get_elf_backend_data (info->output_bfd);
2368 p = strchr (h->root.root.string, ELF_VER_CHR);
2369 if (p != NULL && h->verinfo.vertree == NULL)
2370 {
2371 struct bfd_elf_version_tree *t;
2372
2373 ++p;
2374 if (*p == ELF_VER_CHR)
2375 ++p;
2376
2377 /* If there is no version string, we can just return out. */
2378 if (*p == '\0')
2379 return TRUE;
2380
2381 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2382 {
2383 sinfo->failed = TRUE;
2384 return FALSE;
2385 }
2386
2387 if (hide)
2388 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2389
2390 /* If we are building an application, we need to create a
2391 version node for this version. */
2392 if (t == NULL && bfd_link_executable (info))
2393 {
2394 struct bfd_elf_version_tree **pp;
2395 int version_index;
2396
2397 /* If we aren't going to export this symbol, we don't need
2398 to worry about it. */
2399 if (h->dynindx == -1)
2400 return TRUE;
2401
2402 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2403 sizeof *t);
2404 if (t == NULL)
2405 {
2406 sinfo->failed = TRUE;
2407 return FALSE;
2408 }
2409
2410 t->name = p;
2411 t->name_indx = (unsigned int) -1;
2412 t->used = TRUE;
2413
2414 version_index = 1;
2415 /* Don't count anonymous version tag. */
2416 if (sinfo->info->version_info != NULL
2417 && sinfo->info->version_info->vernum == 0)
2418 version_index = 0;
2419 for (pp = &sinfo->info->version_info;
2420 *pp != NULL;
2421 pp = &(*pp)->next)
2422 ++version_index;
2423 t->vernum = version_index;
2424
2425 *pp = t;
2426
2427 h->verinfo.vertree = t;
2428 }
2429 else if (t == NULL)
2430 {
2431 /* We could not find the version for a symbol when
2432 generating a shared archive. Return an error. */
2433 _bfd_error_handler
2434 /* xgettext:c-format */
2435 (_("%pB: version node not found for symbol %s"),
2436 info->output_bfd, h->root.root.string);
2437 bfd_set_error (bfd_error_bad_value);
2438 sinfo->failed = TRUE;
2439 return FALSE;
2440 }
2441 }
2442
2443 /* If we don't have a version for this symbol, see if we can find
2444 something. */
2445 if (!hide
2446 && h->verinfo.vertree == NULL
2447 && sinfo->info->version_info != NULL)
2448 {
2449 h->verinfo.vertree
2450 = bfd_find_version_for_sym (sinfo->info->version_info,
2451 h->root.root.string, &hide);
2452 if (h->verinfo.vertree != NULL && hide)
2453 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2454 }
2455
2456 return TRUE;
2457 }
2458 \f
2459 /* Read and swap the relocs from the section indicated by SHDR. This
2460 may be either a REL or a RELA section. The relocations are
2461 translated into RELA relocations and stored in INTERNAL_RELOCS,
2462 which should have already been allocated to contain enough space.
2463 The EXTERNAL_RELOCS are a buffer where the external form of the
2464 relocations should be stored.
2465
2466 Returns FALSE if something goes wrong. */
2467
2468 static bfd_boolean
2469 elf_link_read_relocs_from_section (bfd *abfd,
2470 asection *sec,
2471 Elf_Internal_Shdr *shdr,
2472 void *external_relocs,
2473 Elf_Internal_Rela *internal_relocs)
2474 {
2475 const struct elf_backend_data *bed;
2476 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2477 const bfd_byte *erela;
2478 const bfd_byte *erelaend;
2479 Elf_Internal_Rela *irela;
2480 Elf_Internal_Shdr *symtab_hdr;
2481 size_t nsyms;
2482
2483 /* Position ourselves at the start of the section. */
2484 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2485 return FALSE;
2486
2487 /* Read the relocations. */
2488 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2489 return FALSE;
2490
2491 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2492 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2493
2494 bed = get_elf_backend_data (abfd);
2495
2496 /* Convert the external relocations to the internal format. */
2497 if (shdr->sh_entsize == bed->s->sizeof_rel)
2498 swap_in = bed->s->swap_reloc_in;
2499 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2500 swap_in = bed->s->swap_reloca_in;
2501 else
2502 {
2503 bfd_set_error (bfd_error_wrong_format);
2504 return FALSE;
2505 }
2506
2507 erela = (const bfd_byte *) external_relocs;
2508 erelaend = erela + shdr->sh_size;
2509 irela = internal_relocs;
2510 while (erela < erelaend)
2511 {
2512 bfd_vma r_symndx;
2513
2514 (*swap_in) (abfd, erela, irela);
2515 r_symndx = ELF32_R_SYM (irela->r_info);
2516 if (bed->s->arch_size == 64)
2517 r_symndx >>= 24;
2518 if (nsyms > 0)
2519 {
2520 if ((size_t) r_symndx >= nsyms)
2521 {
2522 _bfd_error_handler
2523 /* xgettext:c-format */
2524 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2525 " for offset %#" PRIx64 " in section `%pA'"),
2526 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2527 (uint64_t) irela->r_offset, sec);
2528 bfd_set_error (bfd_error_bad_value);
2529 return FALSE;
2530 }
2531 }
2532 else if (r_symndx != STN_UNDEF)
2533 {
2534 _bfd_error_handler
2535 /* xgettext:c-format */
2536 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2537 " for offset %#" PRIx64 " in section `%pA'"
2538 " when the object file has no symbol table"),
2539 abfd, (uint64_t) r_symndx,
2540 (uint64_t) irela->r_offset, sec);
2541 bfd_set_error (bfd_error_bad_value);
2542 return FALSE;
2543 }
2544 irela += bed->s->int_rels_per_ext_rel;
2545 erela += shdr->sh_entsize;
2546 }
2547
2548 return TRUE;
2549 }
2550
2551 /* Read and swap the relocs for a section O. They may have been
2552 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2553 not NULL, they are used as buffers to read into. They are known to
2554 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2555 the return value is allocated using either malloc or bfd_alloc,
2556 according to the KEEP_MEMORY argument. If O has two relocation
2557 sections (both REL and RELA relocations), then the REL_HDR
2558 relocations will appear first in INTERNAL_RELOCS, followed by the
2559 RELA_HDR relocations. */
2560
2561 Elf_Internal_Rela *
2562 _bfd_elf_link_read_relocs (bfd *abfd,
2563 asection *o,
2564 void *external_relocs,
2565 Elf_Internal_Rela *internal_relocs,
2566 bfd_boolean keep_memory)
2567 {
2568 void *alloc1 = NULL;
2569 Elf_Internal_Rela *alloc2 = NULL;
2570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2571 struct bfd_elf_section_data *esdo = elf_section_data (o);
2572 Elf_Internal_Rela *internal_rela_relocs;
2573
2574 if (esdo->relocs != NULL)
2575 return esdo->relocs;
2576
2577 if (o->reloc_count == 0)
2578 return NULL;
2579
2580 if (internal_relocs == NULL)
2581 {
2582 bfd_size_type size;
2583
2584 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2585 if (keep_memory)
2586 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2587 else
2588 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2589 if (internal_relocs == NULL)
2590 goto error_return;
2591 }
2592
2593 if (external_relocs == NULL)
2594 {
2595 bfd_size_type size = 0;
2596
2597 if (esdo->rel.hdr)
2598 size += esdo->rel.hdr->sh_size;
2599 if (esdo->rela.hdr)
2600 size += esdo->rela.hdr->sh_size;
2601
2602 alloc1 = bfd_malloc (size);
2603 if (alloc1 == NULL)
2604 goto error_return;
2605 external_relocs = alloc1;
2606 }
2607
2608 internal_rela_relocs = internal_relocs;
2609 if (esdo->rel.hdr)
2610 {
2611 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2612 external_relocs,
2613 internal_relocs))
2614 goto error_return;
2615 external_relocs = (((bfd_byte *) external_relocs)
2616 + esdo->rel.hdr->sh_size);
2617 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2618 * bed->s->int_rels_per_ext_rel);
2619 }
2620
2621 if (esdo->rela.hdr
2622 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2623 external_relocs,
2624 internal_rela_relocs)))
2625 goto error_return;
2626
2627 /* Cache the results for next time, if we can. */
2628 if (keep_memory)
2629 esdo->relocs = internal_relocs;
2630
2631 if (alloc1 != NULL)
2632 free (alloc1);
2633
2634 /* Don't free alloc2, since if it was allocated we are passing it
2635 back (under the name of internal_relocs). */
2636
2637 return internal_relocs;
2638
2639 error_return:
2640 if (alloc1 != NULL)
2641 free (alloc1);
2642 if (alloc2 != NULL)
2643 {
2644 if (keep_memory)
2645 bfd_release (abfd, alloc2);
2646 else
2647 free (alloc2);
2648 }
2649 return NULL;
2650 }
2651
2652 /* Compute the size of, and allocate space for, REL_HDR which is the
2653 section header for a section containing relocations for O. */
2654
2655 static bfd_boolean
2656 _bfd_elf_link_size_reloc_section (bfd *abfd,
2657 struct bfd_elf_section_reloc_data *reldata)
2658 {
2659 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2660
2661 /* That allows us to calculate the size of the section. */
2662 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2663
2664 /* The contents field must last into write_object_contents, so we
2665 allocate it with bfd_alloc rather than malloc. Also since we
2666 cannot be sure that the contents will actually be filled in,
2667 we zero the allocated space. */
2668 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2669 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2670 return FALSE;
2671
2672 if (reldata->hashes == NULL && reldata->count)
2673 {
2674 struct elf_link_hash_entry **p;
2675
2676 p = ((struct elf_link_hash_entry **)
2677 bfd_zmalloc (reldata->count * sizeof (*p)));
2678 if (p == NULL)
2679 return FALSE;
2680
2681 reldata->hashes = p;
2682 }
2683
2684 return TRUE;
2685 }
2686
2687 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2688 originated from the section given by INPUT_REL_HDR) to the
2689 OUTPUT_BFD. */
2690
2691 bfd_boolean
2692 _bfd_elf_link_output_relocs (bfd *output_bfd,
2693 asection *input_section,
2694 Elf_Internal_Shdr *input_rel_hdr,
2695 Elf_Internal_Rela *internal_relocs,
2696 struct elf_link_hash_entry **rel_hash
2697 ATTRIBUTE_UNUSED)
2698 {
2699 Elf_Internal_Rela *irela;
2700 Elf_Internal_Rela *irelaend;
2701 bfd_byte *erel;
2702 struct bfd_elf_section_reloc_data *output_reldata;
2703 asection *output_section;
2704 const struct elf_backend_data *bed;
2705 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2706 struct bfd_elf_section_data *esdo;
2707
2708 output_section = input_section->output_section;
2709
2710 bed = get_elf_backend_data (output_bfd);
2711 esdo = elf_section_data (output_section);
2712 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2713 {
2714 output_reldata = &esdo->rel;
2715 swap_out = bed->s->swap_reloc_out;
2716 }
2717 else if (esdo->rela.hdr
2718 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2719 {
2720 output_reldata = &esdo->rela;
2721 swap_out = bed->s->swap_reloca_out;
2722 }
2723 else
2724 {
2725 _bfd_error_handler
2726 /* xgettext:c-format */
2727 (_("%pB: relocation size mismatch in %pB section %pA"),
2728 output_bfd, input_section->owner, input_section);
2729 bfd_set_error (bfd_error_wrong_format);
2730 return FALSE;
2731 }
2732
2733 erel = output_reldata->hdr->contents;
2734 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2735 irela = internal_relocs;
2736 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2737 * bed->s->int_rels_per_ext_rel);
2738 while (irela < irelaend)
2739 {
2740 (*swap_out) (output_bfd, irela, erel);
2741 irela += bed->s->int_rels_per_ext_rel;
2742 erel += input_rel_hdr->sh_entsize;
2743 }
2744
2745 /* Bump the counter, so that we know where to add the next set of
2746 relocations. */
2747 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2748
2749 return TRUE;
2750 }
2751 \f
2752 /* Make weak undefined symbols in PIE dynamic. */
2753
2754 bfd_boolean
2755 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2756 struct elf_link_hash_entry *h)
2757 {
2758 if (bfd_link_pie (info)
2759 && h->dynindx == -1
2760 && h->root.type == bfd_link_hash_undefweak)
2761 return bfd_elf_link_record_dynamic_symbol (info, h);
2762
2763 return TRUE;
2764 }
2765
2766 /* Fix up the flags for a symbol. This handles various cases which
2767 can only be fixed after all the input files are seen. This is
2768 currently called by both adjust_dynamic_symbol and
2769 assign_sym_version, which is unnecessary but perhaps more robust in
2770 the face of future changes. */
2771
2772 static bfd_boolean
2773 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2774 struct elf_info_failed *eif)
2775 {
2776 const struct elf_backend_data *bed;
2777
2778 /* If this symbol was mentioned in a non-ELF file, try to set
2779 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2780 permit a non-ELF file to correctly refer to a symbol defined in
2781 an ELF dynamic object. */
2782 if (h->non_elf)
2783 {
2784 while (h->root.type == bfd_link_hash_indirect)
2785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2786
2787 if (h->root.type != bfd_link_hash_defined
2788 && h->root.type != bfd_link_hash_defweak)
2789 {
2790 h->ref_regular = 1;
2791 h->ref_regular_nonweak = 1;
2792 }
2793 else
2794 {
2795 if (h->root.u.def.section->owner != NULL
2796 && (bfd_get_flavour (h->root.u.def.section->owner)
2797 == bfd_target_elf_flavour))
2798 {
2799 h->ref_regular = 1;
2800 h->ref_regular_nonweak = 1;
2801 }
2802 else
2803 h->def_regular = 1;
2804 }
2805
2806 if (h->dynindx == -1
2807 && (h->def_dynamic
2808 || h->ref_dynamic))
2809 {
2810 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2811 {
2812 eif->failed = TRUE;
2813 return FALSE;
2814 }
2815 }
2816 }
2817 else
2818 {
2819 /* Unfortunately, NON_ELF is only correct if the symbol
2820 was first seen in a non-ELF file. Fortunately, if the symbol
2821 was first seen in an ELF file, we're probably OK unless the
2822 symbol was defined in a non-ELF file. Catch that case here.
2823 FIXME: We're still in trouble if the symbol was first seen in
2824 a dynamic object, and then later in a non-ELF regular object. */
2825 if ((h->root.type == bfd_link_hash_defined
2826 || h->root.type == bfd_link_hash_defweak)
2827 && !h->def_regular
2828 && (h->root.u.def.section->owner != NULL
2829 ? (bfd_get_flavour (h->root.u.def.section->owner)
2830 != bfd_target_elf_flavour)
2831 : (bfd_is_abs_section (h->root.u.def.section)
2832 && !h->def_dynamic)))
2833 h->def_regular = 1;
2834 }
2835
2836 /* Backend specific symbol fixup. */
2837 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2838 if (bed->elf_backend_fixup_symbol
2839 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2840 return FALSE;
2841
2842 /* If this is a final link, and the symbol was defined as a common
2843 symbol in a regular object file, and there was no definition in
2844 any dynamic object, then the linker will have allocated space for
2845 the symbol in a common section but the DEF_REGULAR
2846 flag will not have been set. */
2847 if (h->root.type == bfd_link_hash_defined
2848 && !h->def_regular
2849 && h->ref_regular
2850 && !h->def_dynamic
2851 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2852 h->def_regular = 1;
2853
2854 /* Symbols defined in discarded sections shouldn't be dynamic. */
2855 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2856 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2857
2858 /* If a weak undefined symbol has non-default visibility, we also
2859 hide it from the dynamic linker. */
2860 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2861 && h->root.type == bfd_link_hash_undefweak)
2862 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2863
2864 /* A hidden versioned symbol in executable should be forced local if
2865 it is is locally defined, not referenced by shared library and not
2866 exported. */
2867 else if (bfd_link_executable (eif->info)
2868 && h->versioned == versioned_hidden
2869 && !eif->info->export_dynamic
2870 && !h->dynamic
2871 && !h->ref_dynamic
2872 && h->def_regular)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2874
2875 /* If -Bsymbolic was used (which means to bind references to global
2876 symbols to the definition within the shared object), and this
2877 symbol was defined in a regular object, then it actually doesn't
2878 need a PLT entry. Likewise, if the symbol has non-default
2879 visibility. If the symbol has hidden or internal visibility, we
2880 will force it local. */
2881 else if (h->needs_plt
2882 && bfd_link_pic (eif->info)
2883 && is_elf_hash_table (eif->info->hash)
2884 && (SYMBOLIC_BIND (eif->info, h)
2885 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2886 && h->def_regular)
2887 {
2888 bfd_boolean force_local;
2889
2890 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2891 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2892 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2893 }
2894
2895 /* If this is a weak defined symbol in a dynamic object, and we know
2896 the real definition in the dynamic object, copy interesting flags
2897 over to the real definition. */
2898 if (h->is_weakalias)
2899 {
2900 struct elf_link_hash_entry *def = weakdef (h);
2901
2902 /* If the real definition is defined by a regular object file,
2903 don't do anything special. See the longer description in
2904 _bfd_elf_adjust_dynamic_symbol, below. */
2905 if (def->def_regular)
2906 {
2907 h = def;
2908 while ((h = h->u.alias) != def)
2909 h->is_weakalias = 0;
2910 }
2911 else
2912 {
2913 while (h->root.type == bfd_link_hash_indirect)
2914 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2915 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2916 || h->root.type == bfd_link_hash_defweak);
2917 BFD_ASSERT (def->def_dynamic);
2918 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2919 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2920 }
2921 }
2922
2923 return TRUE;
2924 }
2925
2926 /* Make the backend pick a good value for a dynamic symbol. This is
2927 called via elf_link_hash_traverse, and also calls itself
2928 recursively. */
2929
2930 static bfd_boolean
2931 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2932 {
2933 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2934 struct elf_link_hash_table *htab;
2935 const struct elf_backend_data *bed;
2936
2937 if (! is_elf_hash_table (eif->info->hash))
2938 return FALSE;
2939
2940 /* Ignore indirect symbols. These are added by the versioning code. */
2941 if (h->root.type == bfd_link_hash_indirect)
2942 return TRUE;
2943
2944 /* Fix the symbol flags. */
2945 if (! _bfd_elf_fix_symbol_flags (h, eif))
2946 return FALSE;
2947
2948 htab = elf_hash_table (eif->info);
2949 bed = get_elf_backend_data (htab->dynobj);
2950
2951 if (h->root.type == bfd_link_hash_undefweak)
2952 {
2953 if (eif->info->dynamic_undefined_weak == 0)
2954 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2955 else if (eif->info->dynamic_undefined_weak > 0
2956 && h->ref_regular
2957 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2958 && !bfd_hide_sym_by_version (eif->info->version_info,
2959 h->root.root.string))
2960 {
2961 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2962 {
2963 eif->failed = TRUE;
2964 return FALSE;
2965 }
2966 }
2967 }
2968
2969 /* If this symbol does not require a PLT entry, and it is not
2970 defined by a dynamic object, or is not referenced by a regular
2971 object, ignore it. We do have to handle a weak defined symbol,
2972 even if no regular object refers to it, if we decided to add it
2973 to the dynamic symbol table. FIXME: Do we normally need to worry
2974 about symbols which are defined by one dynamic object and
2975 referenced by another one? */
2976 if (!h->needs_plt
2977 && h->type != STT_GNU_IFUNC
2978 && (h->def_regular
2979 || !h->def_dynamic
2980 || (!h->ref_regular
2981 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
2982 {
2983 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2984 return TRUE;
2985 }
2986
2987 /* If we've already adjusted this symbol, don't do it again. This
2988 can happen via a recursive call. */
2989 if (h->dynamic_adjusted)
2990 return TRUE;
2991
2992 /* Don't look at this symbol again. Note that we must set this
2993 after checking the above conditions, because we may look at a
2994 symbol once, decide not to do anything, and then get called
2995 recursively later after REF_REGULAR is set below. */
2996 h->dynamic_adjusted = 1;
2997
2998 /* If this is a weak definition, and we know a real definition, and
2999 the real symbol is not itself defined by a regular object file,
3000 then get a good value for the real definition. We handle the
3001 real symbol first, for the convenience of the backend routine.
3002
3003 Note that there is a confusing case here. If the real definition
3004 is defined by a regular object file, we don't get the real symbol
3005 from the dynamic object, but we do get the weak symbol. If the
3006 processor backend uses a COPY reloc, then if some routine in the
3007 dynamic object changes the real symbol, we will not see that
3008 change in the corresponding weak symbol. This is the way other
3009 ELF linkers work as well, and seems to be a result of the shared
3010 library model.
3011
3012 I will clarify this issue. Most SVR4 shared libraries define the
3013 variable _timezone and define timezone as a weak synonym. The
3014 tzset call changes _timezone. If you write
3015 extern int timezone;
3016 int _timezone = 5;
3017 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3018 you might expect that, since timezone is a synonym for _timezone,
3019 the same number will print both times. However, if the processor
3020 backend uses a COPY reloc, then actually timezone will be copied
3021 into your process image, and, since you define _timezone
3022 yourself, _timezone will not. Thus timezone and _timezone will
3023 wind up at different memory locations. The tzset call will set
3024 _timezone, leaving timezone unchanged. */
3025
3026 if (h->is_weakalias)
3027 {
3028 struct elf_link_hash_entry *def = weakdef (h);
3029
3030 /* If we get to this point, there is an implicit reference to
3031 the alias by a regular object file via the weak symbol H. */
3032 def->ref_regular = 1;
3033
3034 /* Ensure that the backend adjust_dynamic_symbol function sees
3035 the strong alias before H by recursively calling ourselves. */
3036 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3037 return FALSE;
3038 }
3039
3040 /* If a symbol has no type and no size and does not require a PLT
3041 entry, then we are probably about to do the wrong thing here: we
3042 are probably going to create a COPY reloc for an empty object.
3043 This case can arise when a shared object is built with assembly
3044 code, and the assembly code fails to set the symbol type. */
3045 if (h->size == 0
3046 && h->type == STT_NOTYPE
3047 && !h->needs_plt)
3048 _bfd_error_handler
3049 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3050 h->root.root.string);
3051
3052 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3053 {
3054 eif->failed = TRUE;
3055 return FALSE;
3056 }
3057
3058 return TRUE;
3059 }
3060
3061 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3062 DYNBSS. */
3063
3064 bfd_boolean
3065 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3066 struct elf_link_hash_entry *h,
3067 asection *dynbss)
3068 {
3069 unsigned int power_of_two;
3070 bfd_vma mask;
3071 asection *sec = h->root.u.def.section;
3072
3073 /* The section alignment of the definition is the maximum alignment
3074 requirement of symbols defined in the section. Since we don't
3075 know the symbol alignment requirement, we start with the
3076 maximum alignment and check low bits of the symbol address
3077 for the minimum alignment. */
3078 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3079 mask = ((bfd_vma) 1 << power_of_two) - 1;
3080 while ((h->root.u.def.value & mask) != 0)
3081 {
3082 mask >>= 1;
3083 --power_of_two;
3084 }
3085
3086 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3087 dynbss))
3088 {
3089 /* Adjust the section alignment if needed. */
3090 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3091 power_of_two))
3092 return FALSE;
3093 }
3094
3095 /* We make sure that the symbol will be aligned properly. */
3096 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3097
3098 /* Define the symbol as being at this point in DYNBSS. */
3099 h->root.u.def.section = dynbss;
3100 h->root.u.def.value = dynbss->size;
3101
3102 /* Increment the size of DYNBSS to make room for the symbol. */
3103 dynbss->size += h->size;
3104
3105 /* No error if extern_protected_data is true. */
3106 if (h->protected_def
3107 && (!info->extern_protected_data
3108 || (info->extern_protected_data < 0
3109 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3110 info->callbacks->einfo
3111 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3112 h->root.root.string);
3113
3114 return TRUE;
3115 }
3116
3117 /* Adjust all external symbols pointing into SEC_MERGE sections
3118 to reflect the object merging within the sections. */
3119
3120 static bfd_boolean
3121 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3122 {
3123 asection *sec;
3124
3125 if ((h->root.type == bfd_link_hash_defined
3126 || h->root.type == bfd_link_hash_defweak)
3127 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3128 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3129 {
3130 bfd *output_bfd = (bfd *) data;
3131
3132 h->root.u.def.value =
3133 _bfd_merged_section_offset (output_bfd,
3134 &h->root.u.def.section,
3135 elf_section_data (sec)->sec_info,
3136 h->root.u.def.value);
3137 }
3138
3139 return TRUE;
3140 }
3141
3142 /* Returns false if the symbol referred to by H should be considered
3143 to resolve local to the current module, and true if it should be
3144 considered to bind dynamically. */
3145
3146 bfd_boolean
3147 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3148 struct bfd_link_info *info,
3149 bfd_boolean not_local_protected)
3150 {
3151 bfd_boolean binding_stays_local_p;
3152 const struct elf_backend_data *bed;
3153 struct elf_link_hash_table *hash_table;
3154
3155 if (h == NULL)
3156 return FALSE;
3157
3158 while (h->root.type == bfd_link_hash_indirect
3159 || h->root.type == bfd_link_hash_warning)
3160 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3161
3162 /* If it was forced local, then clearly it's not dynamic. */
3163 if (h->dynindx == -1)
3164 return FALSE;
3165 if (h->forced_local)
3166 return FALSE;
3167
3168 /* Identify the cases where name binding rules say that a
3169 visible symbol resolves locally. */
3170 binding_stays_local_p = (bfd_link_executable (info)
3171 || SYMBOLIC_BIND (info, h));
3172
3173 switch (ELF_ST_VISIBILITY (h->other))
3174 {
3175 case STV_INTERNAL:
3176 case STV_HIDDEN:
3177 return FALSE;
3178
3179 case STV_PROTECTED:
3180 hash_table = elf_hash_table (info);
3181 if (!is_elf_hash_table (hash_table))
3182 return FALSE;
3183
3184 bed = get_elf_backend_data (hash_table->dynobj);
3185
3186 /* Proper resolution for function pointer equality may require
3187 that these symbols perhaps be resolved dynamically, even though
3188 we should be resolving them to the current module. */
3189 if (!not_local_protected || !bed->is_function_type (h->type))
3190 binding_stays_local_p = TRUE;
3191 break;
3192
3193 default:
3194 break;
3195 }
3196
3197 /* If it isn't defined locally, then clearly it's dynamic. */
3198 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3199 return TRUE;
3200
3201 /* Otherwise, the symbol is dynamic if binding rules don't tell
3202 us that it remains local. */
3203 return !binding_stays_local_p;
3204 }
3205
3206 /* Return true if the symbol referred to by H should be considered
3207 to resolve local to the current module, and false otherwise. Differs
3208 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3209 undefined symbols. The two functions are virtually identical except
3210 for the place where dynindx == -1 is tested. If that test is true,
3211 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3212 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3213 defined symbols.
3214 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3215 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3216 treatment of undefined weak symbols. For those that do not make
3217 undefined weak symbols dynamic, both functions may return false. */
3218
3219 bfd_boolean
3220 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3221 struct bfd_link_info *info,
3222 bfd_boolean local_protected)
3223 {
3224 const struct elf_backend_data *bed;
3225 struct elf_link_hash_table *hash_table;
3226
3227 /* If it's a local sym, of course we resolve locally. */
3228 if (h == NULL)
3229 return TRUE;
3230
3231 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3232 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3233 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3234 return TRUE;
3235
3236 /* Forced local symbols resolve locally. */
3237 if (h->forced_local)
3238 return TRUE;
3239
3240 /* Common symbols that become definitions don't get the DEF_REGULAR
3241 flag set, so test it first, and don't bail out. */
3242 if (ELF_COMMON_DEF_P (h))
3243 /* Do nothing. */;
3244 /* If we don't have a definition in a regular file, then we can't
3245 resolve locally. The sym is either undefined or dynamic. */
3246 else if (!h->def_regular)
3247 return FALSE;
3248
3249 /* Non-dynamic symbols resolve locally. */
3250 if (h->dynindx == -1)
3251 return TRUE;
3252
3253 /* At this point, we know the symbol is defined and dynamic. In an
3254 executable it must resolve locally, likewise when building symbolic
3255 shared libraries. */
3256 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3257 return TRUE;
3258
3259 /* Now deal with defined dynamic symbols in shared libraries. Ones
3260 with default visibility might not resolve locally. */
3261 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3262 return FALSE;
3263
3264 hash_table = elf_hash_table (info);
3265 if (!is_elf_hash_table (hash_table))
3266 return TRUE;
3267
3268 bed = get_elf_backend_data (hash_table->dynobj);
3269
3270 /* If extern_protected_data is false, STV_PROTECTED non-function
3271 symbols are local. */
3272 if ((!info->extern_protected_data
3273 || (info->extern_protected_data < 0
3274 && !bed->extern_protected_data))
3275 && !bed->is_function_type (h->type))
3276 return TRUE;
3277
3278 /* Function pointer equality tests may require that STV_PROTECTED
3279 symbols be treated as dynamic symbols. If the address of a
3280 function not defined in an executable is set to that function's
3281 plt entry in the executable, then the address of the function in
3282 a shared library must also be the plt entry in the executable. */
3283 return local_protected;
3284 }
3285
3286 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3287 aligned. Returns the first TLS output section. */
3288
3289 struct bfd_section *
3290 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3291 {
3292 struct bfd_section *sec, *tls;
3293 unsigned int align = 0;
3294
3295 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3296 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3297 break;
3298 tls = sec;
3299
3300 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3301 if (sec->alignment_power > align)
3302 align = sec->alignment_power;
3303
3304 elf_hash_table (info)->tls_sec = tls;
3305
3306 /* Ensure the alignment of the first section is the largest alignment,
3307 so that the tls segment starts aligned. */
3308 if (tls != NULL)
3309 tls->alignment_power = align;
3310
3311 return tls;
3312 }
3313
3314 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3315 static bfd_boolean
3316 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3317 Elf_Internal_Sym *sym)
3318 {
3319 const struct elf_backend_data *bed;
3320
3321 /* Local symbols do not count, but target specific ones might. */
3322 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3323 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3324 return FALSE;
3325
3326 bed = get_elf_backend_data (abfd);
3327 /* Function symbols do not count. */
3328 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3329 return FALSE;
3330
3331 /* If the section is undefined, then so is the symbol. */
3332 if (sym->st_shndx == SHN_UNDEF)
3333 return FALSE;
3334
3335 /* If the symbol is defined in the common section, then
3336 it is a common definition and so does not count. */
3337 if (bed->common_definition (sym))
3338 return FALSE;
3339
3340 /* If the symbol is in a target specific section then we
3341 must rely upon the backend to tell us what it is. */
3342 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3343 /* FIXME - this function is not coded yet:
3344
3345 return _bfd_is_global_symbol_definition (abfd, sym);
3346
3347 Instead for now assume that the definition is not global,
3348 Even if this is wrong, at least the linker will behave
3349 in the same way that it used to do. */
3350 return FALSE;
3351
3352 return TRUE;
3353 }
3354
3355 /* Search the symbol table of the archive element of the archive ABFD
3356 whose archive map contains a mention of SYMDEF, and determine if
3357 the symbol is defined in this element. */
3358 static bfd_boolean
3359 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3360 {
3361 Elf_Internal_Shdr * hdr;
3362 size_t symcount;
3363 size_t extsymcount;
3364 size_t extsymoff;
3365 Elf_Internal_Sym *isymbuf;
3366 Elf_Internal_Sym *isym;
3367 Elf_Internal_Sym *isymend;
3368 bfd_boolean result;
3369
3370 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3371 if (abfd == NULL)
3372 return FALSE;
3373
3374 if (! bfd_check_format (abfd, bfd_object))
3375 return FALSE;
3376
3377 /* Select the appropriate symbol table. If we don't know if the
3378 object file is an IR object, give linker LTO plugin a chance to
3379 get the correct symbol table. */
3380 if (abfd->plugin_format == bfd_plugin_yes
3381 #if BFD_SUPPORTS_PLUGINS
3382 || (abfd->plugin_format == bfd_plugin_unknown
3383 && bfd_link_plugin_object_p (abfd))
3384 #endif
3385 )
3386 {
3387 /* Use the IR symbol table if the object has been claimed by
3388 plugin. */
3389 abfd = abfd->plugin_dummy_bfd;
3390 hdr = &elf_tdata (abfd)->symtab_hdr;
3391 }
3392 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3393 hdr = &elf_tdata (abfd)->symtab_hdr;
3394 else
3395 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3396
3397 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3398
3399 /* The sh_info field of the symtab header tells us where the
3400 external symbols start. We don't care about the local symbols. */
3401 if (elf_bad_symtab (abfd))
3402 {
3403 extsymcount = symcount;
3404 extsymoff = 0;
3405 }
3406 else
3407 {
3408 extsymcount = symcount - hdr->sh_info;
3409 extsymoff = hdr->sh_info;
3410 }
3411
3412 if (extsymcount == 0)
3413 return FALSE;
3414
3415 /* Read in the symbol table. */
3416 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3417 NULL, NULL, NULL);
3418 if (isymbuf == NULL)
3419 return FALSE;
3420
3421 /* Scan the symbol table looking for SYMDEF. */
3422 result = FALSE;
3423 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3424 {
3425 const char *name;
3426
3427 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3428 isym->st_name);
3429 if (name == NULL)
3430 break;
3431
3432 if (strcmp (name, symdef->name) == 0)
3433 {
3434 result = is_global_data_symbol_definition (abfd, isym);
3435 break;
3436 }
3437 }
3438
3439 free (isymbuf);
3440
3441 return result;
3442 }
3443 \f
3444 /* Add an entry to the .dynamic table. */
3445
3446 bfd_boolean
3447 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3448 bfd_vma tag,
3449 bfd_vma val)
3450 {
3451 struct elf_link_hash_table *hash_table;
3452 const struct elf_backend_data *bed;
3453 asection *s;
3454 bfd_size_type newsize;
3455 bfd_byte *newcontents;
3456 Elf_Internal_Dyn dyn;
3457
3458 hash_table = elf_hash_table (info);
3459 if (! is_elf_hash_table (hash_table))
3460 return FALSE;
3461
3462 if (tag == DT_RELA || tag == DT_REL)
3463 hash_table->dynamic_relocs = TRUE;
3464
3465 bed = get_elf_backend_data (hash_table->dynobj);
3466 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3467 BFD_ASSERT (s != NULL);
3468
3469 newsize = s->size + bed->s->sizeof_dyn;
3470 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3471 if (newcontents == NULL)
3472 return FALSE;
3473
3474 dyn.d_tag = tag;
3475 dyn.d_un.d_val = val;
3476 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3477
3478 s->size = newsize;
3479 s->contents = newcontents;
3480
3481 return TRUE;
3482 }
3483
3484 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3485 otherwise just check whether one already exists. Returns -1 on error,
3486 1 if a DT_NEEDED tag already exists, and 0 on success. */
3487
3488 static int
3489 elf_add_dt_needed_tag (bfd *abfd,
3490 struct bfd_link_info *info,
3491 const char *soname,
3492 bfd_boolean do_it)
3493 {
3494 struct elf_link_hash_table *hash_table;
3495 size_t strindex;
3496
3497 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3498 return -1;
3499
3500 hash_table = elf_hash_table (info);
3501 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3502 if (strindex == (size_t) -1)
3503 return -1;
3504
3505 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3506 {
3507 asection *sdyn;
3508 const struct elf_backend_data *bed;
3509 bfd_byte *extdyn;
3510
3511 bed = get_elf_backend_data (hash_table->dynobj);
3512 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3513 if (sdyn != NULL)
3514 for (extdyn = sdyn->contents;
3515 extdyn < sdyn->contents + sdyn->size;
3516 extdyn += bed->s->sizeof_dyn)
3517 {
3518 Elf_Internal_Dyn dyn;
3519
3520 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3521 if (dyn.d_tag == DT_NEEDED
3522 && dyn.d_un.d_val == strindex)
3523 {
3524 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3525 return 1;
3526 }
3527 }
3528 }
3529
3530 if (do_it)
3531 {
3532 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3533 return -1;
3534
3535 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3536 return -1;
3537 }
3538 else
3539 /* We were just checking for existence of the tag. */
3540 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3541
3542 return 0;
3543 }
3544
3545 /* Return true if SONAME is on the needed list between NEEDED and STOP
3546 (or the end of list if STOP is NULL), and needed by a library that
3547 will be loaded. */
3548
3549 static bfd_boolean
3550 on_needed_list (const char *soname,
3551 struct bfd_link_needed_list *needed,
3552 struct bfd_link_needed_list *stop)
3553 {
3554 struct bfd_link_needed_list *look;
3555 for (look = needed; look != stop; look = look->next)
3556 if (strcmp (soname, look->name) == 0
3557 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3558 /* If needed by a library that itself is not directly
3559 needed, recursively check whether that library is
3560 indirectly needed. Since we add DT_NEEDED entries to
3561 the end of the list, library dependencies appear after
3562 the library. Therefore search prior to the current
3563 LOOK, preventing possible infinite recursion. */
3564 || on_needed_list (elf_dt_name (look->by), needed, look)))
3565 return TRUE;
3566
3567 return FALSE;
3568 }
3569
3570 /* Sort symbol by value, section, and size. */
3571 static int
3572 elf_sort_symbol (const void *arg1, const void *arg2)
3573 {
3574 const struct elf_link_hash_entry *h1;
3575 const struct elf_link_hash_entry *h2;
3576 bfd_signed_vma vdiff;
3577
3578 h1 = *(const struct elf_link_hash_entry **) arg1;
3579 h2 = *(const struct elf_link_hash_entry **) arg2;
3580 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3581 if (vdiff != 0)
3582 return vdiff > 0 ? 1 : -1;
3583 else
3584 {
3585 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3586 if (sdiff != 0)
3587 return sdiff > 0 ? 1 : -1;
3588 }
3589 vdiff = h1->size - h2->size;
3590 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3591 }
3592
3593 /* This function is used to adjust offsets into .dynstr for
3594 dynamic symbols. This is called via elf_link_hash_traverse. */
3595
3596 static bfd_boolean
3597 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3598 {
3599 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3600
3601 if (h->dynindx != -1)
3602 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3603 return TRUE;
3604 }
3605
3606 /* Assign string offsets in .dynstr, update all structures referencing
3607 them. */
3608
3609 static bfd_boolean
3610 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3611 {
3612 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3613 struct elf_link_local_dynamic_entry *entry;
3614 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3615 bfd *dynobj = hash_table->dynobj;
3616 asection *sdyn;
3617 bfd_size_type size;
3618 const struct elf_backend_data *bed;
3619 bfd_byte *extdyn;
3620
3621 _bfd_elf_strtab_finalize (dynstr);
3622 size = _bfd_elf_strtab_size (dynstr);
3623
3624 bed = get_elf_backend_data (dynobj);
3625 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3626 BFD_ASSERT (sdyn != NULL);
3627
3628 /* Update all .dynamic entries referencing .dynstr strings. */
3629 for (extdyn = sdyn->contents;
3630 extdyn < sdyn->contents + sdyn->size;
3631 extdyn += bed->s->sizeof_dyn)
3632 {
3633 Elf_Internal_Dyn dyn;
3634
3635 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3636 switch (dyn.d_tag)
3637 {
3638 case DT_STRSZ:
3639 dyn.d_un.d_val = size;
3640 break;
3641 case DT_NEEDED:
3642 case DT_SONAME:
3643 case DT_RPATH:
3644 case DT_RUNPATH:
3645 case DT_FILTER:
3646 case DT_AUXILIARY:
3647 case DT_AUDIT:
3648 case DT_DEPAUDIT:
3649 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3650 break;
3651 default:
3652 continue;
3653 }
3654 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3655 }
3656
3657 /* Now update local dynamic symbols. */
3658 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3659 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3660 entry->isym.st_name);
3661
3662 /* And the rest of dynamic symbols. */
3663 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3664
3665 /* Adjust version definitions. */
3666 if (elf_tdata (output_bfd)->cverdefs)
3667 {
3668 asection *s;
3669 bfd_byte *p;
3670 size_t i;
3671 Elf_Internal_Verdef def;
3672 Elf_Internal_Verdaux defaux;
3673
3674 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3675 p = s->contents;
3676 do
3677 {
3678 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3679 &def);
3680 p += sizeof (Elf_External_Verdef);
3681 if (def.vd_aux != sizeof (Elf_External_Verdef))
3682 continue;
3683 for (i = 0; i < def.vd_cnt; ++i)
3684 {
3685 _bfd_elf_swap_verdaux_in (output_bfd,
3686 (Elf_External_Verdaux *) p, &defaux);
3687 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3688 defaux.vda_name);
3689 _bfd_elf_swap_verdaux_out (output_bfd,
3690 &defaux, (Elf_External_Verdaux *) p);
3691 p += sizeof (Elf_External_Verdaux);
3692 }
3693 }
3694 while (def.vd_next);
3695 }
3696
3697 /* Adjust version references. */
3698 if (elf_tdata (output_bfd)->verref)
3699 {
3700 asection *s;
3701 bfd_byte *p;
3702 size_t i;
3703 Elf_Internal_Verneed need;
3704 Elf_Internal_Vernaux needaux;
3705
3706 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3707 p = s->contents;
3708 do
3709 {
3710 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3711 &need);
3712 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3713 _bfd_elf_swap_verneed_out (output_bfd, &need,
3714 (Elf_External_Verneed *) p);
3715 p += sizeof (Elf_External_Verneed);
3716 for (i = 0; i < need.vn_cnt; ++i)
3717 {
3718 _bfd_elf_swap_vernaux_in (output_bfd,
3719 (Elf_External_Vernaux *) p, &needaux);
3720 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3721 needaux.vna_name);
3722 _bfd_elf_swap_vernaux_out (output_bfd,
3723 &needaux,
3724 (Elf_External_Vernaux *) p);
3725 p += sizeof (Elf_External_Vernaux);
3726 }
3727 }
3728 while (need.vn_next);
3729 }
3730
3731 return TRUE;
3732 }
3733 \f
3734 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3735 The default is to only match when the INPUT and OUTPUT are exactly
3736 the same target. */
3737
3738 bfd_boolean
3739 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3740 const bfd_target *output)
3741 {
3742 return input == output;
3743 }
3744
3745 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3746 This version is used when different targets for the same architecture
3747 are virtually identical. */
3748
3749 bfd_boolean
3750 _bfd_elf_relocs_compatible (const bfd_target *input,
3751 const bfd_target *output)
3752 {
3753 const struct elf_backend_data *obed, *ibed;
3754
3755 if (input == output)
3756 return TRUE;
3757
3758 ibed = xvec_get_elf_backend_data (input);
3759 obed = xvec_get_elf_backend_data (output);
3760
3761 if (ibed->arch != obed->arch)
3762 return FALSE;
3763
3764 /* If both backends are using this function, deem them compatible. */
3765 return ibed->relocs_compatible == obed->relocs_compatible;
3766 }
3767
3768 /* Make a special call to the linker "notice" function to tell it that
3769 we are about to handle an as-needed lib, or have finished
3770 processing the lib. */
3771
3772 bfd_boolean
3773 _bfd_elf_notice_as_needed (bfd *ibfd,
3774 struct bfd_link_info *info,
3775 enum notice_asneeded_action act)
3776 {
3777 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3778 }
3779
3780 /* Check relocations an ELF object file. */
3781
3782 bfd_boolean
3783 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3784 {
3785 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3786 struct elf_link_hash_table *htab = elf_hash_table (info);
3787
3788 /* If this object is the same format as the output object, and it is
3789 not a shared library, then let the backend look through the
3790 relocs.
3791
3792 This is required to build global offset table entries and to
3793 arrange for dynamic relocs. It is not required for the
3794 particular common case of linking non PIC code, even when linking
3795 against shared libraries, but unfortunately there is no way of
3796 knowing whether an object file has been compiled PIC or not.
3797 Looking through the relocs is not particularly time consuming.
3798 The problem is that we must either (1) keep the relocs in memory,
3799 which causes the linker to require additional runtime memory or
3800 (2) read the relocs twice from the input file, which wastes time.
3801 This would be a good case for using mmap.
3802
3803 I have no idea how to handle linking PIC code into a file of a
3804 different format. It probably can't be done. */
3805 if ((abfd->flags & DYNAMIC) == 0
3806 && is_elf_hash_table (htab)
3807 && bed->check_relocs != NULL
3808 && elf_object_id (abfd) == elf_hash_table_id (htab)
3809 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3810 {
3811 asection *o;
3812
3813 for (o = abfd->sections; o != NULL; o = o->next)
3814 {
3815 Elf_Internal_Rela *internal_relocs;
3816 bfd_boolean ok;
3817
3818 /* Don't check relocations in excluded sections. */
3819 if ((o->flags & SEC_RELOC) == 0
3820 || (o->flags & SEC_EXCLUDE) != 0
3821 || o->reloc_count == 0
3822 || ((info->strip == strip_all || info->strip == strip_debugger)
3823 && (o->flags & SEC_DEBUGGING) != 0)
3824 || bfd_is_abs_section (o->output_section))
3825 continue;
3826
3827 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3828 info->keep_memory);
3829 if (internal_relocs == NULL)
3830 return FALSE;
3831
3832 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3833
3834 if (elf_section_data (o)->relocs != internal_relocs)
3835 free (internal_relocs);
3836
3837 if (! ok)
3838 return FALSE;
3839 }
3840 }
3841
3842 return TRUE;
3843 }
3844
3845 /* Add symbols from an ELF object file to the linker hash table. */
3846
3847 static bfd_boolean
3848 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3849 {
3850 Elf_Internal_Ehdr *ehdr;
3851 Elf_Internal_Shdr *hdr;
3852 size_t symcount;
3853 size_t extsymcount;
3854 size_t extsymoff;
3855 struct elf_link_hash_entry **sym_hash;
3856 bfd_boolean dynamic;
3857 Elf_External_Versym *extversym = NULL;
3858 Elf_External_Versym *ever;
3859 struct elf_link_hash_entry *weaks;
3860 struct elf_link_hash_entry **nondeflt_vers = NULL;
3861 size_t nondeflt_vers_cnt = 0;
3862 Elf_Internal_Sym *isymbuf = NULL;
3863 Elf_Internal_Sym *isym;
3864 Elf_Internal_Sym *isymend;
3865 const struct elf_backend_data *bed;
3866 bfd_boolean add_needed;
3867 struct elf_link_hash_table *htab;
3868 bfd_size_type amt;
3869 void *alloc_mark = NULL;
3870 struct bfd_hash_entry **old_table = NULL;
3871 unsigned int old_size = 0;
3872 unsigned int old_count = 0;
3873 void *old_tab = NULL;
3874 void *old_ent;
3875 struct bfd_link_hash_entry *old_undefs = NULL;
3876 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3877 void *old_strtab = NULL;
3878 size_t tabsize = 0;
3879 asection *s;
3880 bfd_boolean just_syms;
3881
3882 htab = elf_hash_table (info);
3883 bed = get_elf_backend_data (abfd);
3884
3885 if ((abfd->flags & DYNAMIC) == 0)
3886 dynamic = FALSE;
3887 else
3888 {
3889 dynamic = TRUE;
3890
3891 /* You can't use -r against a dynamic object. Also, there's no
3892 hope of using a dynamic object which does not exactly match
3893 the format of the output file. */
3894 if (bfd_link_relocatable (info)
3895 || !is_elf_hash_table (htab)
3896 || info->output_bfd->xvec != abfd->xvec)
3897 {
3898 if (bfd_link_relocatable (info))
3899 bfd_set_error (bfd_error_invalid_operation);
3900 else
3901 bfd_set_error (bfd_error_wrong_format);
3902 goto error_return;
3903 }
3904 }
3905
3906 ehdr = elf_elfheader (abfd);
3907 if (info->warn_alternate_em
3908 && bed->elf_machine_code != ehdr->e_machine
3909 && ((bed->elf_machine_alt1 != 0
3910 && ehdr->e_machine == bed->elf_machine_alt1)
3911 || (bed->elf_machine_alt2 != 0
3912 && ehdr->e_machine == bed->elf_machine_alt2)))
3913 _bfd_error_handler
3914 /* xgettext:c-format */
3915 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3916 ehdr->e_machine, abfd, bed->elf_machine_code);
3917
3918 /* As a GNU extension, any input sections which are named
3919 .gnu.warning.SYMBOL are treated as warning symbols for the given
3920 symbol. This differs from .gnu.warning sections, which generate
3921 warnings when they are included in an output file. */
3922 /* PR 12761: Also generate this warning when building shared libraries. */
3923 for (s = abfd->sections; s != NULL; s = s->next)
3924 {
3925 const char *name;
3926
3927 name = bfd_get_section_name (abfd, s);
3928 if (CONST_STRNEQ (name, ".gnu.warning."))
3929 {
3930 char *msg;
3931 bfd_size_type sz;
3932
3933 name += sizeof ".gnu.warning." - 1;
3934
3935 /* If this is a shared object, then look up the symbol
3936 in the hash table. If it is there, and it is already
3937 been defined, then we will not be using the entry
3938 from this shared object, so we don't need to warn.
3939 FIXME: If we see the definition in a regular object
3940 later on, we will warn, but we shouldn't. The only
3941 fix is to keep track of what warnings we are supposed
3942 to emit, and then handle them all at the end of the
3943 link. */
3944 if (dynamic)
3945 {
3946 struct elf_link_hash_entry *h;
3947
3948 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3949
3950 /* FIXME: What about bfd_link_hash_common? */
3951 if (h != NULL
3952 && (h->root.type == bfd_link_hash_defined
3953 || h->root.type == bfd_link_hash_defweak))
3954 continue;
3955 }
3956
3957 sz = s->size;
3958 msg = (char *) bfd_alloc (abfd, sz + 1);
3959 if (msg == NULL)
3960 goto error_return;
3961
3962 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3963 goto error_return;
3964
3965 msg[sz] = '\0';
3966
3967 if (! (_bfd_generic_link_add_one_symbol
3968 (info, abfd, name, BSF_WARNING, s, 0, msg,
3969 FALSE, bed->collect, NULL)))
3970 goto error_return;
3971
3972 if (bfd_link_executable (info))
3973 {
3974 /* Clobber the section size so that the warning does
3975 not get copied into the output file. */
3976 s->size = 0;
3977
3978 /* Also set SEC_EXCLUDE, so that symbols defined in
3979 the warning section don't get copied to the output. */
3980 s->flags |= SEC_EXCLUDE;
3981 }
3982 }
3983 }
3984
3985 just_syms = ((s = abfd->sections) != NULL
3986 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3987
3988 add_needed = TRUE;
3989 if (! dynamic)
3990 {
3991 /* If we are creating a shared library, create all the dynamic
3992 sections immediately. We need to attach them to something,
3993 so we attach them to this BFD, provided it is the right
3994 format and is not from ld --just-symbols. Always create the
3995 dynamic sections for -E/--dynamic-list. FIXME: If there
3996 are no input BFD's of the same format as the output, we can't
3997 make a shared library. */
3998 if (!just_syms
3999 && (bfd_link_pic (info)
4000 || (!bfd_link_relocatable (info)
4001 && info->nointerp
4002 && (info->export_dynamic || info->dynamic)))
4003 && is_elf_hash_table (htab)
4004 && info->output_bfd->xvec == abfd->xvec
4005 && !htab->dynamic_sections_created)
4006 {
4007 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4008 goto error_return;
4009 }
4010 }
4011 else if (!is_elf_hash_table (htab))
4012 goto error_return;
4013 else
4014 {
4015 const char *soname = NULL;
4016 char *audit = NULL;
4017 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4018 const Elf_Internal_Phdr *phdr;
4019 int ret;
4020
4021 /* ld --just-symbols and dynamic objects don't mix very well.
4022 ld shouldn't allow it. */
4023 if (just_syms)
4024 abort ();
4025
4026 /* If this dynamic lib was specified on the command line with
4027 --as-needed in effect, then we don't want to add a DT_NEEDED
4028 tag unless the lib is actually used. Similary for libs brought
4029 in by another lib's DT_NEEDED. When --no-add-needed is used
4030 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4031 any dynamic library in DT_NEEDED tags in the dynamic lib at
4032 all. */
4033 add_needed = (elf_dyn_lib_class (abfd)
4034 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4035 | DYN_NO_NEEDED)) == 0;
4036
4037 s = bfd_get_section_by_name (abfd, ".dynamic");
4038 if (s != NULL)
4039 {
4040 bfd_byte *dynbuf;
4041 bfd_byte *extdyn;
4042 unsigned int elfsec;
4043 unsigned long shlink;
4044
4045 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4046 {
4047 error_free_dyn:
4048 free (dynbuf);
4049 goto error_return;
4050 }
4051
4052 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4053 if (elfsec == SHN_BAD)
4054 goto error_free_dyn;
4055 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4056
4057 for (extdyn = dynbuf;
4058 extdyn < dynbuf + s->size;
4059 extdyn += bed->s->sizeof_dyn)
4060 {
4061 Elf_Internal_Dyn dyn;
4062
4063 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4064 if (dyn.d_tag == DT_SONAME)
4065 {
4066 unsigned int tagv = dyn.d_un.d_val;
4067 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4068 if (soname == NULL)
4069 goto error_free_dyn;
4070 }
4071 if (dyn.d_tag == DT_NEEDED)
4072 {
4073 struct bfd_link_needed_list *n, **pn;
4074 char *fnm, *anm;
4075 unsigned int tagv = dyn.d_un.d_val;
4076
4077 amt = sizeof (struct bfd_link_needed_list);
4078 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4079 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4080 if (n == NULL || fnm == NULL)
4081 goto error_free_dyn;
4082 amt = strlen (fnm) + 1;
4083 anm = (char *) bfd_alloc (abfd, amt);
4084 if (anm == NULL)
4085 goto error_free_dyn;
4086 memcpy (anm, fnm, amt);
4087 n->name = anm;
4088 n->by = abfd;
4089 n->next = NULL;
4090 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4091 ;
4092 *pn = n;
4093 }
4094 if (dyn.d_tag == DT_RUNPATH)
4095 {
4096 struct bfd_link_needed_list *n, **pn;
4097 char *fnm, *anm;
4098 unsigned int tagv = dyn.d_un.d_val;
4099
4100 amt = sizeof (struct bfd_link_needed_list);
4101 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4102 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4103 if (n == NULL || fnm == NULL)
4104 goto error_free_dyn;
4105 amt = strlen (fnm) + 1;
4106 anm = (char *) bfd_alloc (abfd, amt);
4107 if (anm == NULL)
4108 goto error_free_dyn;
4109 memcpy (anm, fnm, amt);
4110 n->name = anm;
4111 n->by = abfd;
4112 n->next = NULL;
4113 for (pn = & runpath;
4114 *pn != NULL;
4115 pn = &(*pn)->next)
4116 ;
4117 *pn = n;
4118 }
4119 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4120 if (!runpath && dyn.d_tag == DT_RPATH)
4121 {
4122 struct bfd_link_needed_list *n, **pn;
4123 char *fnm, *anm;
4124 unsigned int tagv = dyn.d_un.d_val;
4125
4126 amt = sizeof (struct bfd_link_needed_list);
4127 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4128 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4129 if (n == NULL || fnm == NULL)
4130 goto error_free_dyn;
4131 amt = strlen (fnm) + 1;
4132 anm = (char *) bfd_alloc (abfd, amt);
4133 if (anm == NULL)
4134 goto error_free_dyn;
4135 memcpy (anm, fnm, amt);
4136 n->name = anm;
4137 n->by = abfd;
4138 n->next = NULL;
4139 for (pn = & rpath;
4140 *pn != NULL;
4141 pn = &(*pn)->next)
4142 ;
4143 *pn = n;
4144 }
4145 if (dyn.d_tag == DT_AUDIT)
4146 {
4147 unsigned int tagv = dyn.d_un.d_val;
4148 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4149 }
4150 }
4151
4152 free (dynbuf);
4153 }
4154
4155 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4156 frees all more recently bfd_alloc'd blocks as well. */
4157 if (runpath)
4158 rpath = runpath;
4159
4160 if (rpath)
4161 {
4162 struct bfd_link_needed_list **pn;
4163 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4164 ;
4165 *pn = rpath;
4166 }
4167
4168 /* If we have a PT_GNU_RELRO program header, mark as read-only
4169 all sections contained fully therein. This makes relro
4170 shared library sections appear as they will at run-time. */
4171 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4172 while (--phdr >= elf_tdata (abfd)->phdr)
4173 if (phdr->p_type == PT_GNU_RELRO)
4174 {
4175 for (s = abfd->sections; s != NULL; s = s->next)
4176 if ((s->flags & SEC_ALLOC) != 0
4177 && s->vma >= phdr->p_vaddr
4178 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4179 s->flags |= SEC_READONLY;
4180 break;
4181 }
4182
4183 /* We do not want to include any of the sections in a dynamic
4184 object in the output file. We hack by simply clobbering the
4185 list of sections in the BFD. This could be handled more
4186 cleanly by, say, a new section flag; the existing
4187 SEC_NEVER_LOAD flag is not the one we want, because that one
4188 still implies that the section takes up space in the output
4189 file. */
4190 bfd_section_list_clear (abfd);
4191
4192 /* Find the name to use in a DT_NEEDED entry that refers to this
4193 object. If the object has a DT_SONAME entry, we use it.
4194 Otherwise, if the generic linker stuck something in
4195 elf_dt_name, we use that. Otherwise, we just use the file
4196 name. */
4197 if (soname == NULL || *soname == '\0')
4198 {
4199 soname = elf_dt_name (abfd);
4200 if (soname == NULL || *soname == '\0')
4201 soname = bfd_get_filename (abfd);
4202 }
4203
4204 /* Save the SONAME because sometimes the linker emulation code
4205 will need to know it. */
4206 elf_dt_name (abfd) = soname;
4207
4208 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4209 if (ret < 0)
4210 goto error_return;
4211
4212 /* If we have already included this dynamic object in the
4213 link, just ignore it. There is no reason to include a
4214 particular dynamic object more than once. */
4215 if (ret > 0)
4216 return TRUE;
4217
4218 /* Save the DT_AUDIT entry for the linker emulation code. */
4219 elf_dt_audit (abfd) = audit;
4220 }
4221
4222 /* If this is a dynamic object, we always link against the .dynsym
4223 symbol table, not the .symtab symbol table. The dynamic linker
4224 will only see the .dynsym symbol table, so there is no reason to
4225 look at .symtab for a dynamic object. */
4226
4227 if (! dynamic || elf_dynsymtab (abfd) == 0)
4228 hdr = &elf_tdata (abfd)->symtab_hdr;
4229 else
4230 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4231
4232 symcount = hdr->sh_size / bed->s->sizeof_sym;
4233
4234 /* The sh_info field of the symtab header tells us where the
4235 external symbols start. We don't care about the local symbols at
4236 this point. */
4237 if (elf_bad_symtab (abfd))
4238 {
4239 extsymcount = symcount;
4240 extsymoff = 0;
4241 }
4242 else
4243 {
4244 extsymcount = symcount - hdr->sh_info;
4245 extsymoff = hdr->sh_info;
4246 }
4247
4248 sym_hash = elf_sym_hashes (abfd);
4249 if (extsymcount != 0)
4250 {
4251 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4252 NULL, NULL, NULL);
4253 if (isymbuf == NULL)
4254 goto error_return;
4255
4256 if (sym_hash == NULL)
4257 {
4258 /* We store a pointer to the hash table entry for each
4259 external symbol. */
4260 amt = extsymcount;
4261 amt *= sizeof (struct elf_link_hash_entry *);
4262 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4263 if (sym_hash == NULL)
4264 goto error_free_sym;
4265 elf_sym_hashes (abfd) = sym_hash;
4266 }
4267 }
4268
4269 if (dynamic)
4270 {
4271 /* Read in any version definitions. */
4272 if (!_bfd_elf_slurp_version_tables (abfd,
4273 info->default_imported_symver))
4274 goto error_free_sym;
4275
4276 /* Read in the symbol versions, but don't bother to convert them
4277 to internal format. */
4278 if (elf_dynversym (abfd) != 0)
4279 {
4280 Elf_Internal_Shdr *versymhdr;
4281
4282 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4283 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4284 if (extversym == NULL)
4285 goto error_free_sym;
4286 amt = versymhdr->sh_size;
4287 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4288 || bfd_bread (extversym, amt, abfd) != amt)
4289 goto error_free_vers;
4290 }
4291 }
4292
4293 /* If we are loading an as-needed shared lib, save the symbol table
4294 state before we start adding symbols. If the lib turns out
4295 to be unneeded, restore the state. */
4296 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4297 {
4298 unsigned int i;
4299 size_t entsize;
4300
4301 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4302 {
4303 struct bfd_hash_entry *p;
4304 struct elf_link_hash_entry *h;
4305
4306 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4307 {
4308 h = (struct elf_link_hash_entry *) p;
4309 entsize += htab->root.table.entsize;
4310 if (h->root.type == bfd_link_hash_warning)
4311 entsize += htab->root.table.entsize;
4312 }
4313 }
4314
4315 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4316 old_tab = bfd_malloc (tabsize + entsize);
4317 if (old_tab == NULL)
4318 goto error_free_vers;
4319
4320 /* Remember the current objalloc pointer, so that all mem for
4321 symbols added can later be reclaimed. */
4322 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4323 if (alloc_mark == NULL)
4324 goto error_free_vers;
4325
4326 /* Make a special call to the linker "notice" function to
4327 tell it that we are about to handle an as-needed lib. */
4328 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4329 goto error_free_vers;
4330
4331 /* Clone the symbol table. Remember some pointers into the
4332 symbol table, and dynamic symbol count. */
4333 old_ent = (char *) old_tab + tabsize;
4334 memcpy (old_tab, htab->root.table.table, tabsize);
4335 old_undefs = htab->root.undefs;
4336 old_undefs_tail = htab->root.undefs_tail;
4337 old_table = htab->root.table.table;
4338 old_size = htab->root.table.size;
4339 old_count = htab->root.table.count;
4340 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4341 if (old_strtab == NULL)
4342 goto error_free_vers;
4343
4344 for (i = 0; i < htab->root.table.size; i++)
4345 {
4346 struct bfd_hash_entry *p;
4347 struct elf_link_hash_entry *h;
4348
4349 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4350 {
4351 memcpy (old_ent, p, htab->root.table.entsize);
4352 old_ent = (char *) old_ent + htab->root.table.entsize;
4353 h = (struct elf_link_hash_entry *) p;
4354 if (h->root.type == bfd_link_hash_warning)
4355 {
4356 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4357 old_ent = (char *) old_ent + htab->root.table.entsize;
4358 }
4359 }
4360 }
4361 }
4362
4363 weaks = NULL;
4364 ever = extversym != NULL ? extversym + extsymoff : NULL;
4365 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4366 isym < isymend;
4367 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4368 {
4369 int bind;
4370 bfd_vma value;
4371 asection *sec, *new_sec;
4372 flagword flags;
4373 const char *name;
4374 struct elf_link_hash_entry *h;
4375 struct elf_link_hash_entry *hi;
4376 bfd_boolean definition;
4377 bfd_boolean size_change_ok;
4378 bfd_boolean type_change_ok;
4379 bfd_boolean new_weak;
4380 bfd_boolean old_weak;
4381 bfd_boolean override;
4382 bfd_boolean common;
4383 bfd_boolean discarded;
4384 unsigned int old_alignment;
4385 bfd *old_bfd;
4386 bfd_boolean matched;
4387
4388 override = FALSE;
4389
4390 flags = BSF_NO_FLAGS;
4391 sec = NULL;
4392 value = isym->st_value;
4393 common = bed->common_definition (isym);
4394 if (common && info->inhibit_common_definition)
4395 {
4396 /* Treat common symbol as undefined for --no-define-common. */
4397 isym->st_shndx = SHN_UNDEF;
4398 common = FALSE;
4399 }
4400 discarded = FALSE;
4401
4402 bind = ELF_ST_BIND (isym->st_info);
4403 switch (bind)
4404 {
4405 case STB_LOCAL:
4406 /* This should be impossible, since ELF requires that all
4407 global symbols follow all local symbols, and that sh_info
4408 point to the first global symbol. Unfortunately, Irix 5
4409 screws this up. */
4410 continue;
4411
4412 case STB_GLOBAL:
4413 if (isym->st_shndx != SHN_UNDEF && !common)
4414 flags = BSF_GLOBAL;
4415 break;
4416
4417 case STB_WEAK:
4418 flags = BSF_WEAK;
4419 break;
4420
4421 case STB_GNU_UNIQUE:
4422 flags = BSF_GNU_UNIQUE;
4423 break;
4424
4425 default:
4426 /* Leave it up to the processor backend. */
4427 break;
4428 }
4429
4430 if (isym->st_shndx == SHN_UNDEF)
4431 sec = bfd_und_section_ptr;
4432 else if (isym->st_shndx == SHN_ABS)
4433 sec = bfd_abs_section_ptr;
4434 else if (isym->st_shndx == SHN_COMMON)
4435 {
4436 sec = bfd_com_section_ptr;
4437 /* What ELF calls the size we call the value. What ELF
4438 calls the value we call the alignment. */
4439 value = isym->st_size;
4440 }
4441 else
4442 {
4443 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4444 if (sec == NULL)
4445 sec = bfd_abs_section_ptr;
4446 else if (discarded_section (sec))
4447 {
4448 /* Symbols from discarded section are undefined. We keep
4449 its visibility. */
4450 sec = bfd_und_section_ptr;
4451 discarded = TRUE;
4452 isym->st_shndx = SHN_UNDEF;
4453 }
4454 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4455 value -= sec->vma;
4456 }
4457
4458 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4459 isym->st_name);
4460 if (name == NULL)
4461 goto error_free_vers;
4462
4463 if (isym->st_shndx == SHN_COMMON
4464 && (abfd->flags & BFD_PLUGIN) != 0)
4465 {
4466 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4467
4468 if (xc == NULL)
4469 {
4470 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4471 | SEC_EXCLUDE);
4472 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4473 if (xc == NULL)
4474 goto error_free_vers;
4475 }
4476 sec = xc;
4477 }
4478 else if (isym->st_shndx == SHN_COMMON
4479 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4480 && !bfd_link_relocatable (info))
4481 {
4482 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4483
4484 if (tcomm == NULL)
4485 {
4486 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4487 | SEC_LINKER_CREATED);
4488 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4489 if (tcomm == NULL)
4490 goto error_free_vers;
4491 }
4492 sec = tcomm;
4493 }
4494 else if (bed->elf_add_symbol_hook)
4495 {
4496 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4497 &sec, &value))
4498 goto error_free_vers;
4499
4500 /* The hook function sets the name to NULL if this symbol
4501 should be skipped for some reason. */
4502 if (name == NULL)
4503 continue;
4504 }
4505
4506 /* Sanity check that all possibilities were handled. */
4507 if (sec == NULL)
4508 {
4509 bfd_set_error (bfd_error_bad_value);
4510 goto error_free_vers;
4511 }
4512
4513 /* Silently discard TLS symbols from --just-syms. There's
4514 no way to combine a static TLS block with a new TLS block
4515 for this executable. */
4516 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4517 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4518 continue;
4519
4520 if (bfd_is_und_section (sec)
4521 || bfd_is_com_section (sec))
4522 definition = FALSE;
4523 else
4524 definition = TRUE;
4525
4526 size_change_ok = FALSE;
4527 type_change_ok = bed->type_change_ok;
4528 old_weak = FALSE;
4529 matched = FALSE;
4530 old_alignment = 0;
4531 old_bfd = NULL;
4532 new_sec = sec;
4533
4534 if (is_elf_hash_table (htab))
4535 {
4536 Elf_Internal_Versym iver;
4537 unsigned int vernum = 0;
4538 bfd_boolean skip;
4539
4540 if (ever == NULL)
4541 {
4542 if (info->default_imported_symver)
4543 /* Use the default symbol version created earlier. */
4544 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4545 else
4546 iver.vs_vers = 0;
4547 }
4548 else
4549 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4550
4551 vernum = iver.vs_vers & VERSYM_VERSION;
4552
4553 /* If this is a hidden symbol, or if it is not version
4554 1, we append the version name to the symbol name.
4555 However, we do not modify a non-hidden absolute symbol
4556 if it is not a function, because it might be the version
4557 symbol itself. FIXME: What if it isn't? */
4558 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4559 || (vernum > 1
4560 && (!bfd_is_abs_section (sec)
4561 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4562 {
4563 const char *verstr;
4564 size_t namelen, verlen, newlen;
4565 char *newname, *p;
4566
4567 if (isym->st_shndx != SHN_UNDEF)
4568 {
4569 if (vernum > elf_tdata (abfd)->cverdefs)
4570 verstr = NULL;
4571 else if (vernum > 1)
4572 verstr =
4573 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4574 else
4575 verstr = "";
4576
4577 if (verstr == NULL)
4578 {
4579 _bfd_error_handler
4580 /* xgettext:c-format */
4581 (_("%pB: %s: invalid version %u (max %d)"),
4582 abfd, name, vernum,
4583 elf_tdata (abfd)->cverdefs);
4584 bfd_set_error (bfd_error_bad_value);
4585 goto error_free_vers;
4586 }
4587 }
4588 else
4589 {
4590 /* We cannot simply test for the number of
4591 entries in the VERNEED section since the
4592 numbers for the needed versions do not start
4593 at 0. */
4594 Elf_Internal_Verneed *t;
4595
4596 verstr = NULL;
4597 for (t = elf_tdata (abfd)->verref;
4598 t != NULL;
4599 t = t->vn_nextref)
4600 {
4601 Elf_Internal_Vernaux *a;
4602
4603 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4604 {
4605 if (a->vna_other == vernum)
4606 {
4607 verstr = a->vna_nodename;
4608 break;
4609 }
4610 }
4611 if (a != NULL)
4612 break;
4613 }
4614 if (verstr == NULL)
4615 {
4616 _bfd_error_handler
4617 /* xgettext:c-format */
4618 (_("%pB: %s: invalid needed version %d"),
4619 abfd, name, vernum);
4620 bfd_set_error (bfd_error_bad_value);
4621 goto error_free_vers;
4622 }
4623 }
4624
4625 namelen = strlen (name);
4626 verlen = strlen (verstr);
4627 newlen = namelen + verlen + 2;
4628 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4629 && isym->st_shndx != SHN_UNDEF)
4630 ++newlen;
4631
4632 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4633 if (newname == NULL)
4634 goto error_free_vers;
4635 memcpy (newname, name, namelen);
4636 p = newname + namelen;
4637 *p++ = ELF_VER_CHR;
4638 /* If this is a defined non-hidden version symbol,
4639 we add another @ to the name. This indicates the
4640 default version of the symbol. */
4641 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4642 && isym->st_shndx != SHN_UNDEF)
4643 *p++ = ELF_VER_CHR;
4644 memcpy (p, verstr, verlen + 1);
4645
4646 name = newname;
4647 }
4648
4649 /* If this symbol has default visibility and the user has
4650 requested we not re-export it, then mark it as hidden. */
4651 if (!bfd_is_und_section (sec)
4652 && !dynamic
4653 && abfd->no_export
4654 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4655 isym->st_other = (STV_HIDDEN
4656 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4657
4658 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4659 sym_hash, &old_bfd, &old_weak,
4660 &old_alignment, &skip, &override,
4661 &type_change_ok, &size_change_ok,
4662 &matched))
4663 goto error_free_vers;
4664
4665 if (skip)
4666 continue;
4667
4668 /* Override a definition only if the new symbol matches the
4669 existing one. */
4670 if (override && matched)
4671 definition = FALSE;
4672
4673 h = *sym_hash;
4674 while (h->root.type == bfd_link_hash_indirect
4675 || h->root.type == bfd_link_hash_warning)
4676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4677
4678 if (elf_tdata (abfd)->verdef != NULL
4679 && vernum > 1
4680 && definition)
4681 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4682 }
4683
4684 if (! (_bfd_generic_link_add_one_symbol
4685 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4686 (struct bfd_link_hash_entry **) sym_hash)))
4687 goto error_free_vers;
4688
4689 if ((abfd->flags & DYNAMIC) == 0
4690 && (bfd_get_flavour (info->output_bfd)
4691 == bfd_target_elf_flavour))
4692 {
4693 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4694 elf_tdata (info->output_bfd)->has_gnu_symbols
4695 |= elf_gnu_symbol_ifunc;
4696 if ((flags & BSF_GNU_UNIQUE))
4697 elf_tdata (info->output_bfd)->has_gnu_symbols
4698 |= elf_gnu_symbol_unique;
4699 }
4700
4701 h = *sym_hash;
4702 /* We need to make sure that indirect symbol dynamic flags are
4703 updated. */
4704 hi = h;
4705 while (h->root.type == bfd_link_hash_indirect
4706 || h->root.type == bfd_link_hash_warning)
4707 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4708
4709 /* Setting the index to -3 tells elf_link_output_extsym that
4710 this symbol is defined in a discarded section. */
4711 if (discarded)
4712 h->indx = -3;
4713
4714 *sym_hash = h;
4715
4716 new_weak = (flags & BSF_WEAK) != 0;
4717 if (dynamic
4718 && definition
4719 && new_weak
4720 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4721 && is_elf_hash_table (htab)
4722 && h->u.alias == NULL)
4723 {
4724 /* Keep a list of all weak defined non function symbols from
4725 a dynamic object, using the alias field. Later in this
4726 function we will set the alias field to the correct
4727 value. We only put non-function symbols from dynamic
4728 objects on this list, because that happens to be the only
4729 time we need to know the normal symbol corresponding to a
4730 weak symbol, and the information is time consuming to
4731 figure out. If the alias field is not already NULL,
4732 then this symbol was already defined by some previous
4733 dynamic object, and we will be using that previous
4734 definition anyhow. */
4735
4736 h->u.alias = weaks;
4737 weaks = h;
4738 }
4739
4740 /* Set the alignment of a common symbol. */
4741 if ((common || bfd_is_com_section (sec))
4742 && h->root.type == bfd_link_hash_common)
4743 {
4744 unsigned int align;
4745
4746 if (common)
4747 align = bfd_log2 (isym->st_value);
4748 else
4749 {
4750 /* The new symbol is a common symbol in a shared object.
4751 We need to get the alignment from the section. */
4752 align = new_sec->alignment_power;
4753 }
4754 if (align > old_alignment)
4755 h->root.u.c.p->alignment_power = align;
4756 else
4757 h->root.u.c.p->alignment_power = old_alignment;
4758 }
4759
4760 if (is_elf_hash_table (htab))
4761 {
4762 /* Set a flag in the hash table entry indicating the type of
4763 reference or definition we just found. A dynamic symbol
4764 is one which is referenced or defined by both a regular
4765 object and a shared object. */
4766 bfd_boolean dynsym = FALSE;
4767
4768 /* Plugin symbols aren't normal. Don't set def_regular or
4769 ref_regular for them, or make them dynamic. */
4770 if ((abfd->flags & BFD_PLUGIN) != 0)
4771 ;
4772 else if (! dynamic)
4773 {
4774 if (! definition)
4775 {
4776 h->ref_regular = 1;
4777 if (bind != STB_WEAK)
4778 h->ref_regular_nonweak = 1;
4779 }
4780 else
4781 {
4782 h->def_regular = 1;
4783 if (h->def_dynamic)
4784 {
4785 h->def_dynamic = 0;
4786 h->ref_dynamic = 1;
4787 }
4788 }
4789
4790 /* If the indirect symbol has been forced local, don't
4791 make the real symbol dynamic. */
4792 if ((h == hi || !hi->forced_local)
4793 && (bfd_link_dll (info)
4794 || h->def_dynamic
4795 || h->ref_dynamic))
4796 dynsym = TRUE;
4797 }
4798 else
4799 {
4800 if (! definition)
4801 {
4802 h->ref_dynamic = 1;
4803 hi->ref_dynamic = 1;
4804 }
4805 else
4806 {
4807 h->def_dynamic = 1;
4808 hi->def_dynamic = 1;
4809 }
4810
4811 /* If the indirect symbol has been forced local, don't
4812 make the real symbol dynamic. */
4813 if ((h == hi || !hi->forced_local)
4814 && (h->def_regular
4815 || h->ref_regular
4816 || (h->is_weakalias
4817 && weakdef (h)->dynindx != -1)))
4818 dynsym = TRUE;
4819 }
4820
4821 /* Check to see if we need to add an indirect symbol for
4822 the default name. */
4823 if (definition
4824 || (!override && h->root.type == bfd_link_hash_common))
4825 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4826 sec, value, &old_bfd, &dynsym))
4827 goto error_free_vers;
4828
4829 /* Check the alignment when a common symbol is involved. This
4830 can change when a common symbol is overridden by a normal
4831 definition or a common symbol is ignored due to the old
4832 normal definition. We need to make sure the maximum
4833 alignment is maintained. */
4834 if ((old_alignment || common)
4835 && h->root.type != bfd_link_hash_common)
4836 {
4837 unsigned int common_align;
4838 unsigned int normal_align;
4839 unsigned int symbol_align;
4840 bfd *normal_bfd;
4841 bfd *common_bfd;
4842
4843 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4844 || h->root.type == bfd_link_hash_defweak);
4845
4846 symbol_align = ffs (h->root.u.def.value) - 1;
4847 if (h->root.u.def.section->owner != NULL
4848 && (h->root.u.def.section->owner->flags
4849 & (DYNAMIC | BFD_PLUGIN)) == 0)
4850 {
4851 normal_align = h->root.u.def.section->alignment_power;
4852 if (normal_align > symbol_align)
4853 normal_align = symbol_align;
4854 }
4855 else
4856 normal_align = symbol_align;
4857
4858 if (old_alignment)
4859 {
4860 common_align = old_alignment;
4861 common_bfd = old_bfd;
4862 normal_bfd = abfd;
4863 }
4864 else
4865 {
4866 common_align = bfd_log2 (isym->st_value);
4867 common_bfd = abfd;
4868 normal_bfd = old_bfd;
4869 }
4870
4871 if (normal_align < common_align)
4872 {
4873 /* PR binutils/2735 */
4874 if (normal_bfd == NULL)
4875 _bfd_error_handler
4876 /* xgettext:c-format */
4877 (_("warning: alignment %u of common symbol `%s' in %pB is"
4878 " greater than the alignment (%u) of its section %pA"),
4879 1 << common_align, name, common_bfd,
4880 1 << normal_align, h->root.u.def.section);
4881 else
4882 _bfd_error_handler
4883 /* xgettext:c-format */
4884 (_("warning: alignment %u of symbol `%s' in %pB"
4885 " is smaller than %u in %pB"),
4886 1 << normal_align, name, normal_bfd,
4887 1 << common_align, common_bfd);
4888 }
4889 }
4890
4891 /* Remember the symbol size if it isn't undefined. */
4892 if (isym->st_size != 0
4893 && isym->st_shndx != SHN_UNDEF
4894 && (definition || h->size == 0))
4895 {
4896 if (h->size != 0
4897 && h->size != isym->st_size
4898 && ! size_change_ok)
4899 _bfd_error_handler
4900 /* xgettext:c-format */
4901 (_("warning: size of symbol `%s' changed"
4902 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4903 name, (uint64_t) h->size, old_bfd,
4904 (uint64_t) isym->st_size, abfd);
4905
4906 h->size = isym->st_size;
4907 }
4908
4909 /* If this is a common symbol, then we always want H->SIZE
4910 to be the size of the common symbol. The code just above
4911 won't fix the size if a common symbol becomes larger. We
4912 don't warn about a size change here, because that is
4913 covered by --warn-common. Allow changes between different
4914 function types. */
4915 if (h->root.type == bfd_link_hash_common)
4916 h->size = h->root.u.c.size;
4917
4918 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4919 && ((definition && !new_weak)
4920 || (old_weak && h->root.type == bfd_link_hash_common)
4921 || h->type == STT_NOTYPE))
4922 {
4923 unsigned int type = ELF_ST_TYPE (isym->st_info);
4924
4925 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4926 symbol. */
4927 if (type == STT_GNU_IFUNC
4928 && (abfd->flags & DYNAMIC) != 0)
4929 type = STT_FUNC;
4930
4931 if (h->type != type)
4932 {
4933 if (h->type != STT_NOTYPE && ! type_change_ok)
4934 /* xgettext:c-format */
4935 _bfd_error_handler
4936 (_("warning: type of symbol `%s' changed"
4937 " from %d to %d in %pB"),
4938 name, h->type, type, abfd);
4939
4940 h->type = type;
4941 }
4942 }
4943
4944 /* Merge st_other field. */
4945 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4946
4947 /* We don't want to make debug symbol dynamic. */
4948 if (definition
4949 && (sec->flags & SEC_DEBUGGING)
4950 && !bfd_link_relocatable (info))
4951 dynsym = FALSE;
4952
4953 /* Nor should we make plugin symbols dynamic. */
4954 if ((abfd->flags & BFD_PLUGIN) != 0)
4955 dynsym = FALSE;
4956
4957 if (definition)
4958 {
4959 h->target_internal = isym->st_target_internal;
4960 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4961 }
4962
4963 if (definition && !dynamic)
4964 {
4965 char *p = strchr (name, ELF_VER_CHR);
4966 if (p != NULL && p[1] != ELF_VER_CHR)
4967 {
4968 /* Queue non-default versions so that .symver x, x@FOO
4969 aliases can be checked. */
4970 if (!nondeflt_vers)
4971 {
4972 amt = ((isymend - isym + 1)
4973 * sizeof (struct elf_link_hash_entry *));
4974 nondeflt_vers
4975 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4976 if (!nondeflt_vers)
4977 goto error_free_vers;
4978 }
4979 nondeflt_vers[nondeflt_vers_cnt++] = h;
4980 }
4981 }
4982
4983 if (dynsym && h->dynindx == -1)
4984 {
4985 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4986 goto error_free_vers;
4987 if (h->is_weakalias
4988 && weakdef (h)->dynindx == -1)
4989 {
4990 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
4991 goto error_free_vers;
4992 }
4993 }
4994 else if (h->dynindx != -1)
4995 /* If the symbol already has a dynamic index, but
4996 visibility says it should not be visible, turn it into
4997 a local symbol. */
4998 switch (ELF_ST_VISIBILITY (h->other))
4999 {
5000 case STV_INTERNAL:
5001 case STV_HIDDEN:
5002 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5003 dynsym = FALSE;
5004 break;
5005 }
5006
5007 /* Don't add DT_NEEDED for references from the dummy bfd nor
5008 for unmatched symbol. */
5009 if (!add_needed
5010 && matched
5011 && definition
5012 && ((dynsym
5013 && h->ref_regular_nonweak
5014 && (old_bfd == NULL
5015 || (old_bfd->flags & BFD_PLUGIN) == 0))
5016 || (h->ref_dynamic_nonweak
5017 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5018 && !on_needed_list (elf_dt_name (abfd),
5019 htab->needed, NULL))))
5020 {
5021 int ret;
5022 const char *soname = elf_dt_name (abfd);
5023
5024 info->callbacks->minfo ("%!", soname, old_bfd,
5025 h->root.root.string);
5026
5027 /* A symbol from a library loaded via DT_NEEDED of some
5028 other library is referenced by a regular object.
5029 Add a DT_NEEDED entry for it. Issue an error if
5030 --no-add-needed is used and the reference was not
5031 a weak one. */
5032 if (old_bfd != NULL
5033 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5034 {
5035 _bfd_error_handler
5036 /* xgettext:c-format */
5037 (_("%pB: undefined reference to symbol '%s'"),
5038 old_bfd, name);
5039 bfd_set_error (bfd_error_missing_dso);
5040 goto error_free_vers;
5041 }
5042
5043 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5044 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5045
5046 add_needed = TRUE;
5047 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5048 if (ret < 0)
5049 goto error_free_vers;
5050
5051 BFD_ASSERT (ret == 0);
5052 }
5053 }
5054 }
5055
5056 if (info->lto_plugin_active
5057 && !bfd_link_relocatable (info)
5058 && (abfd->flags & BFD_PLUGIN) == 0
5059 && !just_syms
5060 && extsymcount)
5061 {
5062 int r_sym_shift;
5063
5064 if (bed->s->arch_size == 32)
5065 r_sym_shift = 8;
5066 else
5067 r_sym_shift = 32;
5068
5069 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5070 referenced in regular objects so that linker plugin will get
5071 the correct symbol resolution. */
5072
5073 sym_hash = elf_sym_hashes (abfd);
5074 for (s = abfd->sections; s != NULL; s = s->next)
5075 {
5076 Elf_Internal_Rela *internal_relocs;
5077 Elf_Internal_Rela *rel, *relend;
5078
5079 /* Don't check relocations in excluded sections. */
5080 if ((s->flags & SEC_RELOC) == 0
5081 || s->reloc_count == 0
5082 || (s->flags & SEC_EXCLUDE) != 0
5083 || ((info->strip == strip_all
5084 || info->strip == strip_debugger)
5085 && (s->flags & SEC_DEBUGGING) != 0))
5086 continue;
5087
5088 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5089 NULL,
5090 info->keep_memory);
5091 if (internal_relocs == NULL)
5092 goto error_free_vers;
5093
5094 rel = internal_relocs;
5095 relend = rel + s->reloc_count;
5096 for ( ; rel < relend; rel++)
5097 {
5098 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5099 struct elf_link_hash_entry *h;
5100
5101 /* Skip local symbols. */
5102 if (r_symndx < extsymoff)
5103 continue;
5104
5105 h = sym_hash[r_symndx - extsymoff];
5106 if (h != NULL)
5107 h->root.non_ir_ref_regular = 1;
5108 }
5109
5110 if (elf_section_data (s)->relocs != internal_relocs)
5111 free (internal_relocs);
5112 }
5113 }
5114
5115 if (extversym != NULL)
5116 {
5117 free (extversym);
5118 extversym = NULL;
5119 }
5120
5121 if (isymbuf != NULL)
5122 {
5123 free (isymbuf);
5124 isymbuf = NULL;
5125 }
5126
5127 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5128 {
5129 unsigned int i;
5130
5131 /* Restore the symbol table. */
5132 old_ent = (char *) old_tab + tabsize;
5133 memset (elf_sym_hashes (abfd), 0,
5134 extsymcount * sizeof (struct elf_link_hash_entry *));
5135 htab->root.table.table = old_table;
5136 htab->root.table.size = old_size;
5137 htab->root.table.count = old_count;
5138 memcpy (htab->root.table.table, old_tab, tabsize);
5139 htab->root.undefs = old_undefs;
5140 htab->root.undefs_tail = old_undefs_tail;
5141 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5142 free (old_strtab);
5143 old_strtab = NULL;
5144 for (i = 0; i < htab->root.table.size; i++)
5145 {
5146 struct bfd_hash_entry *p;
5147 struct elf_link_hash_entry *h;
5148 bfd_size_type size;
5149 unsigned int alignment_power;
5150 unsigned int non_ir_ref_dynamic;
5151
5152 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5153 {
5154 h = (struct elf_link_hash_entry *) p;
5155 if (h->root.type == bfd_link_hash_warning)
5156 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5157
5158 /* Preserve the maximum alignment and size for common
5159 symbols even if this dynamic lib isn't on DT_NEEDED
5160 since it can still be loaded at run time by another
5161 dynamic lib. */
5162 if (h->root.type == bfd_link_hash_common)
5163 {
5164 size = h->root.u.c.size;
5165 alignment_power = h->root.u.c.p->alignment_power;
5166 }
5167 else
5168 {
5169 size = 0;
5170 alignment_power = 0;
5171 }
5172 /* Preserve non_ir_ref_dynamic so that this symbol
5173 will be exported when the dynamic lib becomes needed
5174 in the second pass. */
5175 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5176 memcpy (p, old_ent, htab->root.table.entsize);
5177 old_ent = (char *) old_ent + htab->root.table.entsize;
5178 h = (struct elf_link_hash_entry *) p;
5179 if (h->root.type == bfd_link_hash_warning)
5180 {
5181 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5182 old_ent = (char *) old_ent + htab->root.table.entsize;
5183 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5184 }
5185 if (h->root.type == bfd_link_hash_common)
5186 {
5187 if (size > h->root.u.c.size)
5188 h->root.u.c.size = size;
5189 if (alignment_power > h->root.u.c.p->alignment_power)
5190 h->root.u.c.p->alignment_power = alignment_power;
5191 }
5192 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5193 }
5194 }
5195
5196 /* Make a special call to the linker "notice" function to
5197 tell it that symbols added for crefs may need to be removed. */
5198 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5199 goto error_free_vers;
5200
5201 free (old_tab);
5202 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5203 alloc_mark);
5204 if (nondeflt_vers != NULL)
5205 free (nondeflt_vers);
5206 return TRUE;
5207 }
5208
5209 if (old_tab != NULL)
5210 {
5211 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5212 goto error_free_vers;
5213 free (old_tab);
5214 old_tab = NULL;
5215 }
5216
5217 /* Now that all the symbols from this input file are created, if
5218 not performing a relocatable link, handle .symver foo, foo@BAR
5219 such that any relocs against foo become foo@BAR. */
5220 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5221 {
5222 size_t cnt, symidx;
5223
5224 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5225 {
5226 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5227 char *shortname, *p;
5228
5229 p = strchr (h->root.root.string, ELF_VER_CHR);
5230 if (p == NULL
5231 || (h->root.type != bfd_link_hash_defined
5232 && h->root.type != bfd_link_hash_defweak))
5233 continue;
5234
5235 amt = p - h->root.root.string;
5236 shortname = (char *) bfd_malloc (amt + 1);
5237 if (!shortname)
5238 goto error_free_vers;
5239 memcpy (shortname, h->root.root.string, amt);
5240 shortname[amt] = '\0';
5241
5242 hi = (struct elf_link_hash_entry *)
5243 bfd_link_hash_lookup (&htab->root, shortname,
5244 FALSE, FALSE, FALSE);
5245 if (hi != NULL
5246 && hi->root.type == h->root.type
5247 && hi->root.u.def.value == h->root.u.def.value
5248 && hi->root.u.def.section == h->root.u.def.section)
5249 {
5250 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5251 hi->root.type = bfd_link_hash_indirect;
5252 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5253 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5254 sym_hash = elf_sym_hashes (abfd);
5255 if (sym_hash)
5256 for (symidx = 0; symidx < extsymcount; ++symidx)
5257 if (sym_hash[symidx] == hi)
5258 {
5259 sym_hash[symidx] = h;
5260 break;
5261 }
5262 }
5263 free (shortname);
5264 }
5265 free (nondeflt_vers);
5266 nondeflt_vers = NULL;
5267 }
5268
5269 /* Now set the alias field correctly for all the weak defined
5270 symbols we found. The only way to do this is to search all the
5271 symbols. Since we only need the information for non functions in
5272 dynamic objects, that's the only time we actually put anything on
5273 the list WEAKS. We need this information so that if a regular
5274 object refers to a symbol defined weakly in a dynamic object, the
5275 real symbol in the dynamic object is also put in the dynamic
5276 symbols; we also must arrange for both symbols to point to the
5277 same memory location. We could handle the general case of symbol
5278 aliasing, but a general symbol alias can only be generated in
5279 assembler code, handling it correctly would be very time
5280 consuming, and other ELF linkers don't handle general aliasing
5281 either. */
5282 if (weaks != NULL)
5283 {
5284 struct elf_link_hash_entry **hpp;
5285 struct elf_link_hash_entry **hppend;
5286 struct elf_link_hash_entry **sorted_sym_hash;
5287 struct elf_link_hash_entry *h;
5288 size_t sym_count;
5289
5290 /* Since we have to search the whole symbol list for each weak
5291 defined symbol, search time for N weak defined symbols will be
5292 O(N^2). Binary search will cut it down to O(NlogN). */
5293 amt = extsymcount;
5294 amt *= sizeof (struct elf_link_hash_entry *);
5295 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5296 if (sorted_sym_hash == NULL)
5297 goto error_return;
5298 sym_hash = sorted_sym_hash;
5299 hpp = elf_sym_hashes (abfd);
5300 hppend = hpp + extsymcount;
5301 sym_count = 0;
5302 for (; hpp < hppend; hpp++)
5303 {
5304 h = *hpp;
5305 if (h != NULL
5306 && h->root.type == bfd_link_hash_defined
5307 && !bed->is_function_type (h->type))
5308 {
5309 *sym_hash = h;
5310 sym_hash++;
5311 sym_count++;
5312 }
5313 }
5314
5315 qsort (sorted_sym_hash, sym_count,
5316 sizeof (struct elf_link_hash_entry *),
5317 elf_sort_symbol);
5318
5319 while (weaks != NULL)
5320 {
5321 struct elf_link_hash_entry *hlook;
5322 asection *slook;
5323 bfd_vma vlook;
5324 size_t i, j, idx = 0;
5325
5326 hlook = weaks;
5327 weaks = hlook->u.alias;
5328 hlook->u.alias = NULL;
5329
5330 if (hlook->root.type != bfd_link_hash_defined
5331 && hlook->root.type != bfd_link_hash_defweak)
5332 continue;
5333
5334 slook = hlook->root.u.def.section;
5335 vlook = hlook->root.u.def.value;
5336
5337 i = 0;
5338 j = sym_count;
5339 while (i != j)
5340 {
5341 bfd_signed_vma vdiff;
5342 idx = (i + j) / 2;
5343 h = sorted_sym_hash[idx];
5344 vdiff = vlook - h->root.u.def.value;
5345 if (vdiff < 0)
5346 j = idx;
5347 else if (vdiff > 0)
5348 i = idx + 1;
5349 else
5350 {
5351 int sdiff = slook->id - h->root.u.def.section->id;
5352 if (sdiff < 0)
5353 j = idx;
5354 else if (sdiff > 0)
5355 i = idx + 1;
5356 else
5357 break;
5358 }
5359 }
5360
5361 /* We didn't find a value/section match. */
5362 if (i == j)
5363 continue;
5364
5365 /* With multiple aliases, or when the weak symbol is already
5366 strongly defined, we have multiple matching symbols and
5367 the binary search above may land on any of them. Step
5368 one past the matching symbol(s). */
5369 while (++idx != j)
5370 {
5371 h = sorted_sym_hash[idx];
5372 if (h->root.u.def.section != slook
5373 || h->root.u.def.value != vlook)
5374 break;
5375 }
5376
5377 /* Now look back over the aliases. Since we sorted by size
5378 as well as value and section, we'll choose the one with
5379 the largest size. */
5380 while (idx-- != i)
5381 {
5382 h = sorted_sym_hash[idx];
5383
5384 /* Stop if value or section doesn't match. */
5385 if (h->root.u.def.section != slook
5386 || h->root.u.def.value != vlook)
5387 break;
5388 else if (h != hlook)
5389 {
5390 struct elf_link_hash_entry *t;
5391
5392 hlook->u.alias = h;
5393 hlook->is_weakalias = 1;
5394 t = h;
5395 if (t->u.alias != NULL)
5396 while (t->u.alias != h)
5397 t = t->u.alias;
5398 t->u.alias = hlook;
5399
5400 /* If the weak definition is in the list of dynamic
5401 symbols, make sure the real definition is put
5402 there as well. */
5403 if (hlook->dynindx != -1 && h->dynindx == -1)
5404 {
5405 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5406 {
5407 err_free_sym_hash:
5408 free (sorted_sym_hash);
5409 goto error_return;
5410 }
5411 }
5412
5413 /* If the real definition is in the list of dynamic
5414 symbols, make sure the weak definition is put
5415 there as well. If we don't do this, then the
5416 dynamic loader might not merge the entries for the
5417 real definition and the weak definition. */
5418 if (h->dynindx != -1 && hlook->dynindx == -1)
5419 {
5420 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5421 goto err_free_sym_hash;
5422 }
5423 break;
5424 }
5425 }
5426 }
5427
5428 free (sorted_sym_hash);
5429 }
5430
5431 if (bed->check_directives
5432 && !(*bed->check_directives) (abfd, info))
5433 return FALSE;
5434
5435 /* If this is a non-traditional link, try to optimize the handling
5436 of the .stab/.stabstr sections. */
5437 if (! dynamic
5438 && ! info->traditional_format
5439 && is_elf_hash_table (htab)
5440 && (info->strip != strip_all && info->strip != strip_debugger))
5441 {
5442 asection *stabstr;
5443
5444 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5445 if (stabstr != NULL)
5446 {
5447 bfd_size_type string_offset = 0;
5448 asection *stab;
5449
5450 for (stab = abfd->sections; stab; stab = stab->next)
5451 if (CONST_STRNEQ (stab->name, ".stab")
5452 && (!stab->name[5] ||
5453 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5454 && (stab->flags & SEC_MERGE) == 0
5455 && !bfd_is_abs_section (stab->output_section))
5456 {
5457 struct bfd_elf_section_data *secdata;
5458
5459 secdata = elf_section_data (stab);
5460 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5461 stabstr, &secdata->sec_info,
5462 &string_offset))
5463 goto error_return;
5464 if (secdata->sec_info)
5465 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5466 }
5467 }
5468 }
5469
5470 if (is_elf_hash_table (htab) && add_needed)
5471 {
5472 /* Add this bfd to the loaded list. */
5473 struct elf_link_loaded_list *n;
5474
5475 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5476 if (n == NULL)
5477 goto error_return;
5478 n->abfd = abfd;
5479 n->next = htab->loaded;
5480 htab->loaded = n;
5481 }
5482
5483 return TRUE;
5484
5485 error_free_vers:
5486 if (old_tab != NULL)
5487 free (old_tab);
5488 if (old_strtab != NULL)
5489 free (old_strtab);
5490 if (nondeflt_vers != NULL)
5491 free (nondeflt_vers);
5492 if (extversym != NULL)
5493 free (extversym);
5494 error_free_sym:
5495 if (isymbuf != NULL)
5496 free (isymbuf);
5497 error_return:
5498 return FALSE;
5499 }
5500
5501 /* Return the linker hash table entry of a symbol that might be
5502 satisfied by an archive symbol. Return -1 on error. */
5503
5504 struct elf_link_hash_entry *
5505 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5506 struct bfd_link_info *info,
5507 const char *name)
5508 {
5509 struct elf_link_hash_entry *h;
5510 char *p, *copy;
5511 size_t len, first;
5512
5513 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5514 if (h != NULL)
5515 return h;
5516
5517 /* If this is a default version (the name contains @@), look up the
5518 symbol again with only one `@' as well as without the version.
5519 The effect is that references to the symbol with and without the
5520 version will be matched by the default symbol in the archive. */
5521
5522 p = strchr (name, ELF_VER_CHR);
5523 if (p == NULL || p[1] != ELF_VER_CHR)
5524 return h;
5525
5526 /* First check with only one `@'. */
5527 len = strlen (name);
5528 copy = (char *) bfd_alloc (abfd, len);
5529 if (copy == NULL)
5530 return (struct elf_link_hash_entry *) -1;
5531
5532 first = p - name + 1;
5533 memcpy (copy, name, first);
5534 memcpy (copy + first, name + first + 1, len - first);
5535
5536 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5537 if (h == NULL)
5538 {
5539 /* We also need to check references to the symbol without the
5540 version. */
5541 copy[first - 1] = '\0';
5542 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5543 FALSE, FALSE, TRUE);
5544 }
5545
5546 bfd_release (abfd, copy);
5547 return h;
5548 }
5549
5550 /* Add symbols from an ELF archive file to the linker hash table. We
5551 don't use _bfd_generic_link_add_archive_symbols because we need to
5552 handle versioned symbols.
5553
5554 Fortunately, ELF archive handling is simpler than that done by
5555 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5556 oddities. In ELF, if we find a symbol in the archive map, and the
5557 symbol is currently undefined, we know that we must pull in that
5558 object file.
5559
5560 Unfortunately, we do have to make multiple passes over the symbol
5561 table until nothing further is resolved. */
5562
5563 static bfd_boolean
5564 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5565 {
5566 symindex c;
5567 unsigned char *included = NULL;
5568 carsym *symdefs;
5569 bfd_boolean loop;
5570 bfd_size_type amt;
5571 const struct elf_backend_data *bed;
5572 struct elf_link_hash_entry * (*archive_symbol_lookup)
5573 (bfd *, struct bfd_link_info *, const char *);
5574
5575 if (! bfd_has_map (abfd))
5576 {
5577 /* An empty archive is a special case. */
5578 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5579 return TRUE;
5580 bfd_set_error (bfd_error_no_armap);
5581 return FALSE;
5582 }
5583
5584 /* Keep track of all symbols we know to be already defined, and all
5585 files we know to be already included. This is to speed up the
5586 second and subsequent passes. */
5587 c = bfd_ardata (abfd)->symdef_count;
5588 if (c == 0)
5589 return TRUE;
5590 amt = c;
5591 amt *= sizeof (*included);
5592 included = (unsigned char *) bfd_zmalloc (amt);
5593 if (included == NULL)
5594 return FALSE;
5595
5596 symdefs = bfd_ardata (abfd)->symdefs;
5597 bed = get_elf_backend_data (abfd);
5598 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5599
5600 do
5601 {
5602 file_ptr last;
5603 symindex i;
5604 carsym *symdef;
5605 carsym *symdefend;
5606
5607 loop = FALSE;
5608 last = -1;
5609
5610 symdef = symdefs;
5611 symdefend = symdef + c;
5612 for (i = 0; symdef < symdefend; symdef++, i++)
5613 {
5614 struct elf_link_hash_entry *h;
5615 bfd *element;
5616 struct bfd_link_hash_entry *undefs_tail;
5617 symindex mark;
5618
5619 if (included[i])
5620 continue;
5621 if (symdef->file_offset == last)
5622 {
5623 included[i] = TRUE;
5624 continue;
5625 }
5626
5627 h = archive_symbol_lookup (abfd, info, symdef->name);
5628 if (h == (struct elf_link_hash_entry *) -1)
5629 goto error_return;
5630
5631 if (h == NULL)
5632 continue;
5633
5634 if (h->root.type == bfd_link_hash_common)
5635 {
5636 /* We currently have a common symbol. The archive map contains
5637 a reference to this symbol, so we may want to include it. We
5638 only want to include it however, if this archive element
5639 contains a definition of the symbol, not just another common
5640 declaration of it.
5641
5642 Unfortunately some archivers (including GNU ar) will put
5643 declarations of common symbols into their archive maps, as
5644 well as real definitions, so we cannot just go by the archive
5645 map alone. Instead we must read in the element's symbol
5646 table and check that to see what kind of symbol definition
5647 this is. */
5648 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5649 continue;
5650 }
5651 else if (h->root.type != bfd_link_hash_undefined)
5652 {
5653 if (h->root.type != bfd_link_hash_undefweak)
5654 /* Symbol must be defined. Don't check it again. */
5655 included[i] = TRUE;
5656 continue;
5657 }
5658
5659 /* We need to include this archive member. */
5660 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5661 if (element == NULL)
5662 goto error_return;
5663
5664 if (! bfd_check_format (element, bfd_object))
5665 goto error_return;
5666
5667 undefs_tail = info->hash->undefs_tail;
5668
5669 if (!(*info->callbacks
5670 ->add_archive_element) (info, element, symdef->name, &element))
5671 continue;
5672 if (!bfd_link_add_symbols (element, info))
5673 goto error_return;
5674
5675 /* If there are any new undefined symbols, we need to make
5676 another pass through the archive in order to see whether
5677 they can be defined. FIXME: This isn't perfect, because
5678 common symbols wind up on undefs_tail and because an
5679 undefined symbol which is defined later on in this pass
5680 does not require another pass. This isn't a bug, but it
5681 does make the code less efficient than it could be. */
5682 if (undefs_tail != info->hash->undefs_tail)
5683 loop = TRUE;
5684
5685 /* Look backward to mark all symbols from this object file
5686 which we have already seen in this pass. */
5687 mark = i;
5688 do
5689 {
5690 included[mark] = TRUE;
5691 if (mark == 0)
5692 break;
5693 --mark;
5694 }
5695 while (symdefs[mark].file_offset == symdef->file_offset);
5696
5697 /* We mark subsequent symbols from this object file as we go
5698 on through the loop. */
5699 last = symdef->file_offset;
5700 }
5701 }
5702 while (loop);
5703
5704 free (included);
5705
5706 return TRUE;
5707
5708 error_return:
5709 if (included != NULL)
5710 free (included);
5711 return FALSE;
5712 }
5713
5714 /* Given an ELF BFD, add symbols to the global hash table as
5715 appropriate. */
5716
5717 bfd_boolean
5718 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5719 {
5720 switch (bfd_get_format (abfd))
5721 {
5722 case bfd_object:
5723 return elf_link_add_object_symbols (abfd, info);
5724 case bfd_archive:
5725 return elf_link_add_archive_symbols (abfd, info);
5726 default:
5727 bfd_set_error (bfd_error_wrong_format);
5728 return FALSE;
5729 }
5730 }
5731 \f
5732 struct hash_codes_info
5733 {
5734 unsigned long *hashcodes;
5735 bfd_boolean error;
5736 };
5737
5738 /* This function will be called though elf_link_hash_traverse to store
5739 all hash value of the exported symbols in an array. */
5740
5741 static bfd_boolean
5742 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5743 {
5744 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5745 const char *name;
5746 unsigned long ha;
5747 char *alc = NULL;
5748
5749 /* Ignore indirect symbols. These are added by the versioning code. */
5750 if (h->dynindx == -1)
5751 return TRUE;
5752
5753 name = h->root.root.string;
5754 if (h->versioned >= versioned)
5755 {
5756 char *p = strchr (name, ELF_VER_CHR);
5757 if (p != NULL)
5758 {
5759 alc = (char *) bfd_malloc (p - name + 1);
5760 if (alc == NULL)
5761 {
5762 inf->error = TRUE;
5763 return FALSE;
5764 }
5765 memcpy (alc, name, p - name);
5766 alc[p - name] = '\0';
5767 name = alc;
5768 }
5769 }
5770
5771 /* Compute the hash value. */
5772 ha = bfd_elf_hash (name);
5773
5774 /* Store the found hash value in the array given as the argument. */
5775 *(inf->hashcodes)++ = ha;
5776
5777 /* And store it in the struct so that we can put it in the hash table
5778 later. */
5779 h->u.elf_hash_value = ha;
5780
5781 if (alc != NULL)
5782 free (alc);
5783
5784 return TRUE;
5785 }
5786
5787 struct collect_gnu_hash_codes
5788 {
5789 bfd *output_bfd;
5790 const struct elf_backend_data *bed;
5791 unsigned long int nsyms;
5792 unsigned long int maskbits;
5793 unsigned long int *hashcodes;
5794 unsigned long int *hashval;
5795 unsigned long int *indx;
5796 unsigned long int *counts;
5797 bfd_vma *bitmask;
5798 bfd_byte *contents;
5799 long int min_dynindx;
5800 unsigned long int bucketcount;
5801 unsigned long int symindx;
5802 long int local_indx;
5803 long int shift1, shift2;
5804 unsigned long int mask;
5805 bfd_boolean error;
5806 };
5807
5808 /* This function will be called though elf_link_hash_traverse to store
5809 all hash value of the exported symbols in an array. */
5810
5811 static bfd_boolean
5812 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5813 {
5814 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5815 const char *name;
5816 unsigned long ha;
5817 char *alc = NULL;
5818
5819 /* Ignore indirect symbols. These are added by the versioning code. */
5820 if (h->dynindx == -1)
5821 return TRUE;
5822
5823 /* Ignore also local symbols and undefined symbols. */
5824 if (! (*s->bed->elf_hash_symbol) (h))
5825 return TRUE;
5826
5827 name = h->root.root.string;
5828 if (h->versioned >= versioned)
5829 {
5830 char *p = strchr (name, ELF_VER_CHR);
5831 if (p != NULL)
5832 {
5833 alc = (char *) bfd_malloc (p - name + 1);
5834 if (alc == NULL)
5835 {
5836 s->error = TRUE;
5837 return FALSE;
5838 }
5839 memcpy (alc, name, p - name);
5840 alc[p - name] = '\0';
5841 name = alc;
5842 }
5843 }
5844
5845 /* Compute the hash value. */
5846 ha = bfd_elf_gnu_hash (name);
5847
5848 /* Store the found hash value in the array for compute_bucket_count,
5849 and also for .dynsym reordering purposes. */
5850 s->hashcodes[s->nsyms] = ha;
5851 s->hashval[h->dynindx] = ha;
5852 ++s->nsyms;
5853 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5854 s->min_dynindx = h->dynindx;
5855
5856 if (alc != NULL)
5857 free (alc);
5858
5859 return TRUE;
5860 }
5861
5862 /* This function will be called though elf_link_hash_traverse to do
5863 final dynaminc symbol renumbering. */
5864
5865 static bfd_boolean
5866 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5867 {
5868 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5869 unsigned long int bucket;
5870 unsigned long int val;
5871
5872 /* Ignore indirect symbols. */
5873 if (h->dynindx == -1)
5874 return TRUE;
5875
5876 /* Ignore also local symbols and undefined symbols. */
5877 if (! (*s->bed->elf_hash_symbol) (h))
5878 {
5879 if (h->dynindx >= s->min_dynindx)
5880 h->dynindx = s->local_indx++;
5881 return TRUE;
5882 }
5883
5884 bucket = s->hashval[h->dynindx] % s->bucketcount;
5885 val = (s->hashval[h->dynindx] >> s->shift1)
5886 & ((s->maskbits >> s->shift1) - 1);
5887 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5888 s->bitmask[val]
5889 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5890 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5891 if (s->counts[bucket] == 1)
5892 /* Last element terminates the chain. */
5893 val |= 1;
5894 bfd_put_32 (s->output_bfd, val,
5895 s->contents + (s->indx[bucket] - s->symindx) * 4);
5896 --s->counts[bucket];
5897 h->dynindx = s->indx[bucket]++;
5898 return TRUE;
5899 }
5900
5901 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5902
5903 bfd_boolean
5904 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5905 {
5906 return !(h->forced_local
5907 || h->root.type == bfd_link_hash_undefined
5908 || h->root.type == bfd_link_hash_undefweak
5909 || ((h->root.type == bfd_link_hash_defined
5910 || h->root.type == bfd_link_hash_defweak)
5911 && h->root.u.def.section->output_section == NULL));
5912 }
5913
5914 /* Array used to determine the number of hash table buckets to use
5915 based on the number of symbols there are. If there are fewer than
5916 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5917 fewer than 37 we use 17 buckets, and so forth. We never use more
5918 than 32771 buckets. */
5919
5920 static const size_t elf_buckets[] =
5921 {
5922 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5923 16411, 32771, 0
5924 };
5925
5926 /* Compute bucket count for hashing table. We do not use a static set
5927 of possible tables sizes anymore. Instead we determine for all
5928 possible reasonable sizes of the table the outcome (i.e., the
5929 number of collisions etc) and choose the best solution. The
5930 weighting functions are not too simple to allow the table to grow
5931 without bounds. Instead one of the weighting factors is the size.
5932 Therefore the result is always a good payoff between few collisions
5933 (= short chain lengths) and table size. */
5934 static size_t
5935 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5936 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5937 unsigned long int nsyms,
5938 int gnu_hash)
5939 {
5940 size_t best_size = 0;
5941 unsigned long int i;
5942
5943 /* We have a problem here. The following code to optimize the table
5944 size requires an integer type with more the 32 bits. If
5945 BFD_HOST_U_64_BIT is set we know about such a type. */
5946 #ifdef BFD_HOST_U_64_BIT
5947 if (info->optimize)
5948 {
5949 size_t minsize;
5950 size_t maxsize;
5951 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5952 bfd *dynobj = elf_hash_table (info)->dynobj;
5953 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5954 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5955 unsigned long int *counts;
5956 bfd_size_type amt;
5957 unsigned int no_improvement_count = 0;
5958
5959 /* Possible optimization parameters: if we have NSYMS symbols we say
5960 that the hashing table must at least have NSYMS/4 and at most
5961 2*NSYMS buckets. */
5962 minsize = nsyms / 4;
5963 if (minsize == 0)
5964 minsize = 1;
5965 best_size = maxsize = nsyms * 2;
5966 if (gnu_hash)
5967 {
5968 if (minsize < 2)
5969 minsize = 2;
5970 if ((best_size & 31) == 0)
5971 ++best_size;
5972 }
5973
5974 /* Create array where we count the collisions in. We must use bfd_malloc
5975 since the size could be large. */
5976 amt = maxsize;
5977 amt *= sizeof (unsigned long int);
5978 counts = (unsigned long int *) bfd_malloc (amt);
5979 if (counts == NULL)
5980 return 0;
5981
5982 /* Compute the "optimal" size for the hash table. The criteria is a
5983 minimal chain length. The minor criteria is (of course) the size
5984 of the table. */
5985 for (i = minsize; i < maxsize; ++i)
5986 {
5987 /* Walk through the array of hashcodes and count the collisions. */
5988 BFD_HOST_U_64_BIT max;
5989 unsigned long int j;
5990 unsigned long int fact;
5991
5992 if (gnu_hash && (i & 31) == 0)
5993 continue;
5994
5995 memset (counts, '\0', i * sizeof (unsigned long int));
5996
5997 /* Determine how often each hash bucket is used. */
5998 for (j = 0; j < nsyms; ++j)
5999 ++counts[hashcodes[j] % i];
6000
6001 /* For the weight function we need some information about the
6002 pagesize on the target. This is information need not be 100%
6003 accurate. Since this information is not available (so far) we
6004 define it here to a reasonable default value. If it is crucial
6005 to have a better value some day simply define this value. */
6006 # ifndef BFD_TARGET_PAGESIZE
6007 # define BFD_TARGET_PAGESIZE (4096)
6008 # endif
6009
6010 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6011 and the chains. */
6012 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6013
6014 # if 1
6015 /* Variant 1: optimize for short chains. We add the squares
6016 of all the chain lengths (which favors many small chain
6017 over a few long chains). */
6018 for (j = 0; j < i; ++j)
6019 max += counts[j] * counts[j];
6020
6021 /* This adds penalties for the overall size of the table. */
6022 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6023 max *= fact * fact;
6024 # else
6025 /* Variant 2: Optimize a lot more for small table. Here we
6026 also add squares of the size but we also add penalties for
6027 empty slots (the +1 term). */
6028 for (j = 0; j < i; ++j)
6029 max += (1 + counts[j]) * (1 + counts[j]);
6030
6031 /* The overall size of the table is considered, but not as
6032 strong as in variant 1, where it is squared. */
6033 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6034 max *= fact;
6035 # endif
6036
6037 /* Compare with current best results. */
6038 if (max < best_chlen)
6039 {
6040 best_chlen = max;
6041 best_size = i;
6042 no_improvement_count = 0;
6043 }
6044 /* PR 11843: Avoid futile long searches for the best bucket size
6045 when there are a large number of symbols. */
6046 else if (++no_improvement_count == 100)
6047 break;
6048 }
6049
6050 free (counts);
6051 }
6052 else
6053 #endif /* defined (BFD_HOST_U_64_BIT) */
6054 {
6055 /* This is the fallback solution if no 64bit type is available or if we
6056 are not supposed to spend much time on optimizations. We select the
6057 bucket count using a fixed set of numbers. */
6058 for (i = 0; elf_buckets[i] != 0; i++)
6059 {
6060 best_size = elf_buckets[i];
6061 if (nsyms < elf_buckets[i + 1])
6062 break;
6063 }
6064 if (gnu_hash && best_size < 2)
6065 best_size = 2;
6066 }
6067
6068 return best_size;
6069 }
6070
6071 /* Size any SHT_GROUP section for ld -r. */
6072
6073 bfd_boolean
6074 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6075 {
6076 bfd *ibfd;
6077 asection *s;
6078
6079 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6080 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6081 && (s = ibfd->sections) != NULL
6082 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6083 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6084 return FALSE;
6085 return TRUE;
6086 }
6087
6088 /* Set a default stack segment size. The value in INFO wins. If it
6089 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6090 undefined it is initialized. */
6091
6092 bfd_boolean
6093 bfd_elf_stack_segment_size (bfd *output_bfd,
6094 struct bfd_link_info *info,
6095 const char *legacy_symbol,
6096 bfd_vma default_size)
6097 {
6098 struct elf_link_hash_entry *h = NULL;
6099
6100 /* Look for legacy symbol. */
6101 if (legacy_symbol)
6102 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6103 FALSE, FALSE, FALSE);
6104 if (h && (h->root.type == bfd_link_hash_defined
6105 || h->root.type == bfd_link_hash_defweak)
6106 && h->def_regular
6107 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6108 {
6109 /* The symbol has no type if specified on the command line. */
6110 h->type = STT_OBJECT;
6111 if (info->stacksize)
6112 /* xgettext:c-format */
6113 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6114 output_bfd, legacy_symbol);
6115 else if (h->root.u.def.section != bfd_abs_section_ptr)
6116 /* xgettext:c-format */
6117 _bfd_error_handler (_("%pB: %s not absolute"),
6118 output_bfd, legacy_symbol);
6119 else
6120 info->stacksize = h->root.u.def.value;
6121 }
6122
6123 if (!info->stacksize)
6124 /* If the user didn't set a size, or explicitly inhibit the
6125 size, set it now. */
6126 info->stacksize = default_size;
6127
6128 /* Provide the legacy symbol, if it is referenced. */
6129 if (h && (h->root.type == bfd_link_hash_undefined
6130 || h->root.type == bfd_link_hash_undefweak))
6131 {
6132 struct bfd_link_hash_entry *bh = NULL;
6133
6134 if (!(_bfd_generic_link_add_one_symbol
6135 (info, output_bfd, legacy_symbol,
6136 BSF_GLOBAL, bfd_abs_section_ptr,
6137 info->stacksize >= 0 ? info->stacksize : 0,
6138 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6139 return FALSE;
6140
6141 h = (struct elf_link_hash_entry *) bh;
6142 h->def_regular = 1;
6143 h->type = STT_OBJECT;
6144 }
6145
6146 return TRUE;
6147 }
6148
6149 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6150
6151 struct elf_gc_sweep_symbol_info
6152 {
6153 struct bfd_link_info *info;
6154 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6155 bfd_boolean);
6156 };
6157
6158 static bfd_boolean
6159 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6160 {
6161 if (!h->mark
6162 && (((h->root.type == bfd_link_hash_defined
6163 || h->root.type == bfd_link_hash_defweak)
6164 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6165 && h->root.u.def.section->gc_mark))
6166 || h->root.type == bfd_link_hash_undefined
6167 || h->root.type == bfd_link_hash_undefweak))
6168 {
6169 struct elf_gc_sweep_symbol_info *inf;
6170
6171 inf = (struct elf_gc_sweep_symbol_info *) data;
6172 (*inf->hide_symbol) (inf->info, h, TRUE);
6173 h->def_regular = 0;
6174 h->ref_regular = 0;
6175 h->ref_regular_nonweak = 0;
6176 }
6177
6178 return TRUE;
6179 }
6180
6181 /* Set up the sizes and contents of the ELF dynamic sections. This is
6182 called by the ELF linker emulation before_allocation routine. We
6183 must set the sizes of the sections before the linker sets the
6184 addresses of the various sections. */
6185
6186 bfd_boolean
6187 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6188 const char *soname,
6189 const char *rpath,
6190 const char *filter_shlib,
6191 const char *audit,
6192 const char *depaudit,
6193 const char * const *auxiliary_filters,
6194 struct bfd_link_info *info,
6195 asection **sinterpptr)
6196 {
6197 bfd *dynobj;
6198 const struct elf_backend_data *bed;
6199
6200 *sinterpptr = NULL;
6201
6202 if (!is_elf_hash_table (info->hash))
6203 return TRUE;
6204
6205 dynobj = elf_hash_table (info)->dynobj;
6206
6207 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6208 {
6209 struct bfd_elf_version_tree *verdefs;
6210 struct elf_info_failed asvinfo;
6211 struct bfd_elf_version_tree *t;
6212 struct bfd_elf_version_expr *d;
6213 asection *s;
6214 size_t soname_indx;
6215
6216 /* If we are supposed to export all symbols into the dynamic symbol
6217 table (this is not the normal case), then do so. */
6218 if (info->export_dynamic
6219 || (bfd_link_executable (info) && info->dynamic))
6220 {
6221 struct elf_info_failed eif;
6222
6223 eif.info = info;
6224 eif.failed = FALSE;
6225 elf_link_hash_traverse (elf_hash_table (info),
6226 _bfd_elf_export_symbol,
6227 &eif);
6228 if (eif.failed)
6229 return FALSE;
6230 }
6231
6232 if (soname != NULL)
6233 {
6234 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6235 soname, TRUE);
6236 if (soname_indx == (size_t) -1
6237 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6238 return FALSE;
6239 }
6240 else
6241 soname_indx = (size_t) -1;
6242
6243 /* Make all global versions with definition. */
6244 for (t = info->version_info; t != NULL; t = t->next)
6245 for (d = t->globals.list; d != NULL; d = d->next)
6246 if (!d->symver && d->literal)
6247 {
6248 const char *verstr, *name;
6249 size_t namelen, verlen, newlen;
6250 char *newname, *p, leading_char;
6251 struct elf_link_hash_entry *newh;
6252
6253 leading_char = bfd_get_symbol_leading_char (output_bfd);
6254 name = d->pattern;
6255 namelen = strlen (name) + (leading_char != '\0');
6256 verstr = t->name;
6257 verlen = strlen (verstr);
6258 newlen = namelen + verlen + 3;
6259
6260 newname = (char *) bfd_malloc (newlen);
6261 if (newname == NULL)
6262 return FALSE;
6263 newname[0] = leading_char;
6264 memcpy (newname + (leading_char != '\0'), name, namelen);
6265
6266 /* Check the hidden versioned definition. */
6267 p = newname + namelen;
6268 *p++ = ELF_VER_CHR;
6269 memcpy (p, verstr, verlen + 1);
6270 newh = elf_link_hash_lookup (elf_hash_table (info),
6271 newname, FALSE, FALSE,
6272 FALSE);
6273 if (newh == NULL
6274 || (newh->root.type != bfd_link_hash_defined
6275 && newh->root.type != bfd_link_hash_defweak))
6276 {
6277 /* Check the default versioned definition. */
6278 *p++ = ELF_VER_CHR;
6279 memcpy (p, verstr, verlen + 1);
6280 newh = elf_link_hash_lookup (elf_hash_table (info),
6281 newname, FALSE, FALSE,
6282 FALSE);
6283 }
6284 free (newname);
6285
6286 /* Mark this version if there is a definition and it is
6287 not defined in a shared object. */
6288 if (newh != NULL
6289 && !newh->def_dynamic
6290 && (newh->root.type == bfd_link_hash_defined
6291 || newh->root.type == bfd_link_hash_defweak))
6292 d->symver = 1;
6293 }
6294
6295 /* Attach all the symbols to their version information. */
6296 asvinfo.info = info;
6297 asvinfo.failed = FALSE;
6298
6299 elf_link_hash_traverse (elf_hash_table (info),
6300 _bfd_elf_link_assign_sym_version,
6301 &asvinfo);
6302 if (asvinfo.failed)
6303 return FALSE;
6304
6305 if (!info->allow_undefined_version)
6306 {
6307 /* Check if all global versions have a definition. */
6308 bfd_boolean all_defined = TRUE;
6309 for (t = info->version_info; t != NULL; t = t->next)
6310 for (d = t->globals.list; d != NULL; d = d->next)
6311 if (d->literal && !d->symver && !d->script)
6312 {
6313 _bfd_error_handler
6314 (_("%s: undefined version: %s"),
6315 d->pattern, t->name);
6316 all_defined = FALSE;
6317 }
6318
6319 if (!all_defined)
6320 {
6321 bfd_set_error (bfd_error_bad_value);
6322 return FALSE;
6323 }
6324 }
6325
6326 /* Set up the version definition section. */
6327 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6328 BFD_ASSERT (s != NULL);
6329
6330 /* We may have created additional version definitions if we are
6331 just linking a regular application. */
6332 verdefs = info->version_info;
6333
6334 /* Skip anonymous version tag. */
6335 if (verdefs != NULL && verdefs->vernum == 0)
6336 verdefs = verdefs->next;
6337
6338 if (verdefs == NULL && !info->create_default_symver)
6339 s->flags |= SEC_EXCLUDE;
6340 else
6341 {
6342 unsigned int cdefs;
6343 bfd_size_type size;
6344 bfd_byte *p;
6345 Elf_Internal_Verdef def;
6346 Elf_Internal_Verdaux defaux;
6347 struct bfd_link_hash_entry *bh;
6348 struct elf_link_hash_entry *h;
6349 const char *name;
6350
6351 cdefs = 0;
6352 size = 0;
6353
6354 /* Make space for the base version. */
6355 size += sizeof (Elf_External_Verdef);
6356 size += sizeof (Elf_External_Verdaux);
6357 ++cdefs;
6358
6359 /* Make space for the default version. */
6360 if (info->create_default_symver)
6361 {
6362 size += sizeof (Elf_External_Verdef);
6363 ++cdefs;
6364 }
6365
6366 for (t = verdefs; t != NULL; t = t->next)
6367 {
6368 struct bfd_elf_version_deps *n;
6369
6370 /* Don't emit base version twice. */
6371 if (t->vernum == 0)
6372 continue;
6373
6374 size += sizeof (Elf_External_Verdef);
6375 size += sizeof (Elf_External_Verdaux);
6376 ++cdefs;
6377
6378 for (n = t->deps; n != NULL; n = n->next)
6379 size += sizeof (Elf_External_Verdaux);
6380 }
6381
6382 s->size = size;
6383 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6384 if (s->contents == NULL && s->size != 0)
6385 return FALSE;
6386
6387 /* Fill in the version definition section. */
6388
6389 p = s->contents;
6390
6391 def.vd_version = VER_DEF_CURRENT;
6392 def.vd_flags = VER_FLG_BASE;
6393 def.vd_ndx = 1;
6394 def.vd_cnt = 1;
6395 if (info->create_default_symver)
6396 {
6397 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6398 def.vd_next = sizeof (Elf_External_Verdef);
6399 }
6400 else
6401 {
6402 def.vd_aux = sizeof (Elf_External_Verdef);
6403 def.vd_next = (sizeof (Elf_External_Verdef)
6404 + sizeof (Elf_External_Verdaux));
6405 }
6406
6407 if (soname_indx != (size_t) -1)
6408 {
6409 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6410 soname_indx);
6411 def.vd_hash = bfd_elf_hash (soname);
6412 defaux.vda_name = soname_indx;
6413 name = soname;
6414 }
6415 else
6416 {
6417 size_t indx;
6418
6419 name = lbasename (output_bfd->filename);
6420 def.vd_hash = bfd_elf_hash (name);
6421 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6422 name, FALSE);
6423 if (indx == (size_t) -1)
6424 return FALSE;
6425 defaux.vda_name = indx;
6426 }
6427 defaux.vda_next = 0;
6428
6429 _bfd_elf_swap_verdef_out (output_bfd, &def,
6430 (Elf_External_Verdef *) p);
6431 p += sizeof (Elf_External_Verdef);
6432 if (info->create_default_symver)
6433 {
6434 /* Add a symbol representing this version. */
6435 bh = NULL;
6436 if (! (_bfd_generic_link_add_one_symbol
6437 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6438 0, NULL, FALSE,
6439 get_elf_backend_data (dynobj)->collect, &bh)))
6440 return FALSE;
6441 h = (struct elf_link_hash_entry *) bh;
6442 h->non_elf = 0;
6443 h->def_regular = 1;
6444 h->type = STT_OBJECT;
6445 h->verinfo.vertree = NULL;
6446
6447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6448 return FALSE;
6449
6450 /* Create a duplicate of the base version with the same
6451 aux block, but different flags. */
6452 def.vd_flags = 0;
6453 def.vd_ndx = 2;
6454 def.vd_aux = sizeof (Elf_External_Verdef);
6455 if (verdefs)
6456 def.vd_next = (sizeof (Elf_External_Verdef)
6457 + sizeof (Elf_External_Verdaux));
6458 else
6459 def.vd_next = 0;
6460 _bfd_elf_swap_verdef_out (output_bfd, &def,
6461 (Elf_External_Verdef *) p);
6462 p += sizeof (Elf_External_Verdef);
6463 }
6464 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6465 (Elf_External_Verdaux *) p);
6466 p += sizeof (Elf_External_Verdaux);
6467
6468 for (t = verdefs; t != NULL; t = t->next)
6469 {
6470 unsigned int cdeps;
6471 struct bfd_elf_version_deps *n;
6472
6473 /* Don't emit the base version twice. */
6474 if (t->vernum == 0)
6475 continue;
6476
6477 cdeps = 0;
6478 for (n = t->deps; n != NULL; n = n->next)
6479 ++cdeps;
6480
6481 /* Add a symbol representing this version. */
6482 bh = NULL;
6483 if (! (_bfd_generic_link_add_one_symbol
6484 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6485 0, NULL, FALSE,
6486 get_elf_backend_data (dynobj)->collect, &bh)))
6487 return FALSE;
6488 h = (struct elf_link_hash_entry *) bh;
6489 h->non_elf = 0;
6490 h->def_regular = 1;
6491 h->type = STT_OBJECT;
6492 h->verinfo.vertree = t;
6493
6494 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6495 return FALSE;
6496
6497 def.vd_version = VER_DEF_CURRENT;
6498 def.vd_flags = 0;
6499 if (t->globals.list == NULL
6500 && t->locals.list == NULL
6501 && ! t->used)
6502 def.vd_flags |= VER_FLG_WEAK;
6503 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6504 def.vd_cnt = cdeps + 1;
6505 def.vd_hash = bfd_elf_hash (t->name);
6506 def.vd_aux = sizeof (Elf_External_Verdef);
6507 def.vd_next = 0;
6508
6509 /* If a basever node is next, it *must* be the last node in
6510 the chain, otherwise Verdef construction breaks. */
6511 if (t->next != NULL && t->next->vernum == 0)
6512 BFD_ASSERT (t->next->next == NULL);
6513
6514 if (t->next != NULL && t->next->vernum != 0)
6515 def.vd_next = (sizeof (Elf_External_Verdef)
6516 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6517
6518 _bfd_elf_swap_verdef_out (output_bfd, &def,
6519 (Elf_External_Verdef *) p);
6520 p += sizeof (Elf_External_Verdef);
6521
6522 defaux.vda_name = h->dynstr_index;
6523 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6524 h->dynstr_index);
6525 defaux.vda_next = 0;
6526 if (t->deps != NULL)
6527 defaux.vda_next = sizeof (Elf_External_Verdaux);
6528 t->name_indx = defaux.vda_name;
6529
6530 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6531 (Elf_External_Verdaux *) p);
6532 p += sizeof (Elf_External_Verdaux);
6533
6534 for (n = t->deps; n != NULL; n = n->next)
6535 {
6536 if (n->version_needed == NULL)
6537 {
6538 /* This can happen if there was an error in the
6539 version script. */
6540 defaux.vda_name = 0;
6541 }
6542 else
6543 {
6544 defaux.vda_name = n->version_needed->name_indx;
6545 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6546 defaux.vda_name);
6547 }
6548 if (n->next == NULL)
6549 defaux.vda_next = 0;
6550 else
6551 defaux.vda_next = sizeof (Elf_External_Verdaux);
6552
6553 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6554 (Elf_External_Verdaux *) p);
6555 p += sizeof (Elf_External_Verdaux);
6556 }
6557 }
6558
6559 elf_tdata (output_bfd)->cverdefs = cdefs;
6560 }
6561 }
6562
6563 bed = get_elf_backend_data (output_bfd);
6564
6565 if (info->gc_sections && bed->can_gc_sections)
6566 {
6567 struct elf_gc_sweep_symbol_info sweep_info;
6568
6569 /* Remove the symbols that were in the swept sections from the
6570 dynamic symbol table. */
6571 sweep_info.info = info;
6572 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6573 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6574 &sweep_info);
6575 }
6576
6577 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6578 {
6579 asection *s;
6580 struct elf_find_verdep_info sinfo;
6581
6582 /* Work out the size of the version reference section. */
6583
6584 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6585 BFD_ASSERT (s != NULL);
6586
6587 sinfo.info = info;
6588 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6589 if (sinfo.vers == 0)
6590 sinfo.vers = 1;
6591 sinfo.failed = FALSE;
6592
6593 elf_link_hash_traverse (elf_hash_table (info),
6594 _bfd_elf_link_find_version_dependencies,
6595 &sinfo);
6596 if (sinfo.failed)
6597 return FALSE;
6598
6599 if (elf_tdata (output_bfd)->verref == NULL)
6600 s->flags |= SEC_EXCLUDE;
6601 else
6602 {
6603 Elf_Internal_Verneed *vn;
6604 unsigned int size;
6605 unsigned int crefs;
6606 bfd_byte *p;
6607
6608 /* Build the version dependency section. */
6609 size = 0;
6610 crefs = 0;
6611 for (vn = elf_tdata (output_bfd)->verref;
6612 vn != NULL;
6613 vn = vn->vn_nextref)
6614 {
6615 Elf_Internal_Vernaux *a;
6616
6617 size += sizeof (Elf_External_Verneed);
6618 ++crefs;
6619 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6620 size += sizeof (Elf_External_Vernaux);
6621 }
6622
6623 s->size = size;
6624 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6625 if (s->contents == NULL)
6626 return FALSE;
6627
6628 p = s->contents;
6629 for (vn = elf_tdata (output_bfd)->verref;
6630 vn != NULL;
6631 vn = vn->vn_nextref)
6632 {
6633 unsigned int caux;
6634 Elf_Internal_Vernaux *a;
6635 size_t indx;
6636
6637 caux = 0;
6638 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6639 ++caux;
6640
6641 vn->vn_version = VER_NEED_CURRENT;
6642 vn->vn_cnt = caux;
6643 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6644 elf_dt_name (vn->vn_bfd) != NULL
6645 ? elf_dt_name (vn->vn_bfd)
6646 : lbasename (vn->vn_bfd->filename),
6647 FALSE);
6648 if (indx == (size_t) -1)
6649 return FALSE;
6650 vn->vn_file = indx;
6651 vn->vn_aux = sizeof (Elf_External_Verneed);
6652 if (vn->vn_nextref == NULL)
6653 vn->vn_next = 0;
6654 else
6655 vn->vn_next = (sizeof (Elf_External_Verneed)
6656 + caux * sizeof (Elf_External_Vernaux));
6657
6658 _bfd_elf_swap_verneed_out (output_bfd, vn,
6659 (Elf_External_Verneed *) p);
6660 p += sizeof (Elf_External_Verneed);
6661
6662 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6663 {
6664 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6665 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6666 a->vna_nodename, FALSE);
6667 if (indx == (size_t) -1)
6668 return FALSE;
6669 a->vna_name = indx;
6670 if (a->vna_nextptr == NULL)
6671 a->vna_next = 0;
6672 else
6673 a->vna_next = sizeof (Elf_External_Vernaux);
6674
6675 _bfd_elf_swap_vernaux_out (output_bfd, a,
6676 (Elf_External_Vernaux *) p);
6677 p += sizeof (Elf_External_Vernaux);
6678 }
6679 }
6680
6681 elf_tdata (output_bfd)->cverrefs = crefs;
6682 }
6683 }
6684
6685 /* Any syms created from now on start with -1 in
6686 got.refcount/offset and plt.refcount/offset. */
6687 elf_hash_table (info)->init_got_refcount
6688 = elf_hash_table (info)->init_got_offset;
6689 elf_hash_table (info)->init_plt_refcount
6690 = elf_hash_table (info)->init_plt_offset;
6691
6692 if (bfd_link_relocatable (info)
6693 && !_bfd_elf_size_group_sections (info))
6694 return FALSE;
6695
6696 /* The backend may have to create some sections regardless of whether
6697 we're dynamic or not. */
6698 if (bed->elf_backend_always_size_sections
6699 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6700 return FALSE;
6701
6702 /* Determine any GNU_STACK segment requirements, after the backend
6703 has had a chance to set a default segment size. */
6704 if (info->execstack)
6705 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6706 else if (info->noexecstack)
6707 elf_stack_flags (output_bfd) = PF_R | PF_W;
6708 else
6709 {
6710 bfd *inputobj;
6711 asection *notesec = NULL;
6712 int exec = 0;
6713
6714 for (inputobj = info->input_bfds;
6715 inputobj;
6716 inputobj = inputobj->link.next)
6717 {
6718 asection *s;
6719
6720 if (inputobj->flags
6721 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6722 continue;
6723 s = inputobj->sections;
6724 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6725 continue;
6726
6727 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6728 if (s)
6729 {
6730 if (s->flags & SEC_CODE)
6731 exec = PF_X;
6732 notesec = s;
6733 }
6734 else if (bed->default_execstack)
6735 exec = PF_X;
6736 }
6737 if (notesec || info->stacksize > 0)
6738 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6739 if (notesec && exec && bfd_link_relocatable (info)
6740 && notesec->output_section != bfd_abs_section_ptr)
6741 notesec->output_section->flags |= SEC_CODE;
6742 }
6743
6744 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6745 {
6746 struct elf_info_failed eif;
6747 struct elf_link_hash_entry *h;
6748 asection *dynstr;
6749 asection *s;
6750
6751 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6752 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6753
6754 if (info->symbolic)
6755 {
6756 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6757 return FALSE;
6758 info->flags |= DF_SYMBOLIC;
6759 }
6760
6761 if (rpath != NULL)
6762 {
6763 size_t indx;
6764 bfd_vma tag;
6765
6766 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6767 TRUE);
6768 if (indx == (size_t) -1)
6769 return FALSE;
6770
6771 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6772 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6773 return FALSE;
6774 }
6775
6776 if (filter_shlib != NULL)
6777 {
6778 size_t indx;
6779
6780 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6781 filter_shlib, TRUE);
6782 if (indx == (size_t) -1
6783 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6784 return FALSE;
6785 }
6786
6787 if (auxiliary_filters != NULL)
6788 {
6789 const char * const *p;
6790
6791 for (p = auxiliary_filters; *p != NULL; p++)
6792 {
6793 size_t indx;
6794
6795 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6796 *p, TRUE);
6797 if (indx == (size_t) -1
6798 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6799 return FALSE;
6800 }
6801 }
6802
6803 if (audit != NULL)
6804 {
6805 size_t indx;
6806
6807 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6808 TRUE);
6809 if (indx == (size_t) -1
6810 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6811 return FALSE;
6812 }
6813
6814 if (depaudit != NULL)
6815 {
6816 size_t indx;
6817
6818 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6819 TRUE);
6820 if (indx == (size_t) -1
6821 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6822 return FALSE;
6823 }
6824
6825 eif.info = info;
6826 eif.failed = FALSE;
6827
6828 /* Find all symbols which were defined in a dynamic object and make
6829 the backend pick a reasonable value for them. */
6830 elf_link_hash_traverse (elf_hash_table (info),
6831 _bfd_elf_adjust_dynamic_symbol,
6832 &eif);
6833 if (eif.failed)
6834 return FALSE;
6835
6836 /* Add some entries to the .dynamic section. We fill in some of the
6837 values later, in bfd_elf_final_link, but we must add the entries
6838 now so that we know the final size of the .dynamic section. */
6839
6840 /* If there are initialization and/or finalization functions to
6841 call then add the corresponding DT_INIT/DT_FINI entries. */
6842 h = (info->init_function
6843 ? elf_link_hash_lookup (elf_hash_table (info),
6844 info->init_function, FALSE,
6845 FALSE, FALSE)
6846 : NULL);
6847 if (h != NULL
6848 && (h->ref_regular
6849 || h->def_regular))
6850 {
6851 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6852 return FALSE;
6853 }
6854 h = (info->fini_function
6855 ? elf_link_hash_lookup (elf_hash_table (info),
6856 info->fini_function, FALSE,
6857 FALSE, FALSE)
6858 : NULL);
6859 if (h != NULL
6860 && (h->ref_regular
6861 || h->def_regular))
6862 {
6863 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6864 return FALSE;
6865 }
6866
6867 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6868 if (s != NULL && s->linker_has_input)
6869 {
6870 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6871 if (! bfd_link_executable (info))
6872 {
6873 bfd *sub;
6874 asection *o;
6875
6876 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6877 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6878 && (o = sub->sections) != NULL
6879 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6880 for (o = sub->sections; o != NULL; o = o->next)
6881 if (elf_section_data (o)->this_hdr.sh_type
6882 == SHT_PREINIT_ARRAY)
6883 {
6884 _bfd_error_handler
6885 (_("%pB: .preinit_array section is not allowed in DSO"),
6886 sub);
6887 break;
6888 }
6889
6890 bfd_set_error (bfd_error_nonrepresentable_section);
6891 return FALSE;
6892 }
6893
6894 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6895 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6896 return FALSE;
6897 }
6898 s = bfd_get_section_by_name (output_bfd, ".init_array");
6899 if (s != NULL && s->linker_has_input)
6900 {
6901 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6902 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6903 return FALSE;
6904 }
6905 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6906 if (s != NULL && s->linker_has_input)
6907 {
6908 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6909 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6910 return FALSE;
6911 }
6912
6913 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6914 /* If .dynstr is excluded from the link, we don't want any of
6915 these tags. Strictly, we should be checking each section
6916 individually; This quick check covers for the case where
6917 someone does a /DISCARD/ : { *(*) }. */
6918 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6919 {
6920 bfd_size_type strsize;
6921
6922 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6923 if ((info->emit_hash
6924 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6925 || (info->emit_gnu_hash
6926 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6927 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6928 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6929 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6930 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6931 bed->s->sizeof_sym))
6932 return FALSE;
6933 }
6934 }
6935
6936 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6937 return FALSE;
6938
6939 /* The backend must work out the sizes of all the other dynamic
6940 sections. */
6941 if (dynobj != NULL
6942 && bed->elf_backend_size_dynamic_sections != NULL
6943 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6944 return FALSE;
6945
6946 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6947 {
6948 if (elf_tdata (output_bfd)->cverdefs)
6949 {
6950 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6951
6952 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6953 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6954 return FALSE;
6955 }
6956
6957 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6958 {
6959 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6960 return FALSE;
6961 }
6962 else if (info->flags & DF_BIND_NOW)
6963 {
6964 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6965 return FALSE;
6966 }
6967
6968 if (info->flags_1)
6969 {
6970 if (bfd_link_executable (info))
6971 info->flags_1 &= ~ (DF_1_INITFIRST
6972 | DF_1_NODELETE
6973 | DF_1_NOOPEN);
6974 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6975 return FALSE;
6976 }
6977
6978 if (elf_tdata (output_bfd)->cverrefs)
6979 {
6980 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6981
6982 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6983 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6984 return FALSE;
6985 }
6986
6987 if ((elf_tdata (output_bfd)->cverrefs == 0
6988 && elf_tdata (output_bfd)->cverdefs == 0)
6989 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
6990 {
6991 asection *s;
6992
6993 s = bfd_get_linker_section (dynobj, ".gnu.version");
6994 s->flags |= SEC_EXCLUDE;
6995 }
6996 }
6997 return TRUE;
6998 }
6999
7000 /* Find the first non-excluded output section. We'll use its
7001 section symbol for some emitted relocs. */
7002 void
7003 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7004 {
7005 asection *s;
7006
7007 for (s = output_bfd->sections; s != NULL; s = s->next)
7008 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7009 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7010 {
7011 elf_hash_table (info)->text_index_section = s;
7012 break;
7013 }
7014 }
7015
7016 /* Find two non-excluded output sections, one for code, one for data.
7017 We'll use their section symbols for some emitted relocs. */
7018 void
7019 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7020 {
7021 asection *s;
7022
7023 /* Data first, since setting text_index_section changes
7024 _bfd_elf_omit_section_dynsym_default. */
7025 for (s = output_bfd->sections; s != NULL; s = s->next)
7026 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
7027 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7028 {
7029 elf_hash_table (info)->data_index_section = s;
7030 break;
7031 }
7032
7033 for (s = output_bfd->sections; s != NULL; s = s->next)
7034 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
7035 == (SEC_ALLOC | SEC_READONLY))
7036 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7037 {
7038 elf_hash_table (info)->text_index_section = s;
7039 break;
7040 }
7041
7042 if (elf_hash_table (info)->text_index_section == NULL)
7043 elf_hash_table (info)->text_index_section
7044 = elf_hash_table (info)->data_index_section;
7045 }
7046
7047 bfd_boolean
7048 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7049 {
7050 const struct elf_backend_data *bed;
7051 unsigned long section_sym_count;
7052 bfd_size_type dynsymcount = 0;
7053
7054 if (!is_elf_hash_table (info->hash))
7055 return TRUE;
7056
7057 bed = get_elf_backend_data (output_bfd);
7058 (*bed->elf_backend_init_index_section) (output_bfd, info);
7059
7060 /* Assign dynsym indices. In a shared library we generate a section
7061 symbol for each output section, which come first. Next come all
7062 of the back-end allocated local dynamic syms, followed by the rest
7063 of the global symbols.
7064
7065 This is usually not needed for static binaries, however backends
7066 can request to always do it, e.g. the MIPS backend uses dynamic
7067 symbol counts to lay out GOT, which will be produced in the
7068 presence of GOT relocations even in static binaries (holding fixed
7069 data in that case, to satisfy those relocations). */
7070
7071 if (elf_hash_table (info)->dynamic_sections_created
7072 || bed->always_renumber_dynsyms)
7073 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7074 &section_sym_count);
7075
7076 if (elf_hash_table (info)->dynamic_sections_created)
7077 {
7078 bfd *dynobj;
7079 asection *s;
7080 unsigned int dtagcount;
7081
7082 dynobj = elf_hash_table (info)->dynobj;
7083
7084 /* Work out the size of the symbol version section. */
7085 s = bfd_get_linker_section (dynobj, ".gnu.version");
7086 BFD_ASSERT (s != NULL);
7087 if ((s->flags & SEC_EXCLUDE) == 0)
7088 {
7089 s->size = dynsymcount * sizeof (Elf_External_Versym);
7090 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7091 if (s->contents == NULL)
7092 return FALSE;
7093
7094 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7095 return FALSE;
7096 }
7097
7098 /* Set the size of the .dynsym and .hash sections. We counted
7099 the number of dynamic symbols in elf_link_add_object_symbols.
7100 We will build the contents of .dynsym and .hash when we build
7101 the final symbol table, because until then we do not know the
7102 correct value to give the symbols. We built the .dynstr
7103 section as we went along in elf_link_add_object_symbols. */
7104 s = elf_hash_table (info)->dynsym;
7105 BFD_ASSERT (s != NULL);
7106 s->size = dynsymcount * bed->s->sizeof_sym;
7107
7108 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7109 if (s->contents == NULL)
7110 return FALSE;
7111
7112 /* The first entry in .dynsym is a dummy symbol. Clear all the
7113 section syms, in case we don't output them all. */
7114 ++section_sym_count;
7115 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7116
7117 elf_hash_table (info)->bucketcount = 0;
7118
7119 /* Compute the size of the hashing table. As a side effect this
7120 computes the hash values for all the names we export. */
7121 if (info->emit_hash)
7122 {
7123 unsigned long int *hashcodes;
7124 struct hash_codes_info hashinf;
7125 bfd_size_type amt;
7126 unsigned long int nsyms;
7127 size_t bucketcount;
7128 size_t hash_entry_size;
7129
7130 /* Compute the hash values for all exported symbols. At the same
7131 time store the values in an array so that we could use them for
7132 optimizations. */
7133 amt = dynsymcount * sizeof (unsigned long int);
7134 hashcodes = (unsigned long int *) bfd_malloc (amt);
7135 if (hashcodes == NULL)
7136 return FALSE;
7137 hashinf.hashcodes = hashcodes;
7138 hashinf.error = FALSE;
7139
7140 /* Put all hash values in HASHCODES. */
7141 elf_link_hash_traverse (elf_hash_table (info),
7142 elf_collect_hash_codes, &hashinf);
7143 if (hashinf.error)
7144 {
7145 free (hashcodes);
7146 return FALSE;
7147 }
7148
7149 nsyms = hashinf.hashcodes - hashcodes;
7150 bucketcount
7151 = compute_bucket_count (info, hashcodes, nsyms, 0);
7152 free (hashcodes);
7153
7154 if (bucketcount == 0 && nsyms > 0)
7155 return FALSE;
7156
7157 elf_hash_table (info)->bucketcount = bucketcount;
7158
7159 s = bfd_get_linker_section (dynobj, ".hash");
7160 BFD_ASSERT (s != NULL);
7161 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7162 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7163 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7164 if (s->contents == NULL)
7165 return FALSE;
7166
7167 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7168 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7169 s->contents + hash_entry_size);
7170 }
7171
7172 if (info->emit_gnu_hash)
7173 {
7174 size_t i, cnt;
7175 unsigned char *contents;
7176 struct collect_gnu_hash_codes cinfo;
7177 bfd_size_type amt;
7178 size_t bucketcount;
7179
7180 memset (&cinfo, 0, sizeof (cinfo));
7181
7182 /* Compute the hash values for all exported symbols. At the same
7183 time store the values in an array so that we could use them for
7184 optimizations. */
7185 amt = dynsymcount * 2 * sizeof (unsigned long int);
7186 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7187 if (cinfo.hashcodes == NULL)
7188 return FALSE;
7189
7190 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7191 cinfo.min_dynindx = -1;
7192 cinfo.output_bfd = output_bfd;
7193 cinfo.bed = bed;
7194
7195 /* Put all hash values in HASHCODES. */
7196 elf_link_hash_traverse (elf_hash_table (info),
7197 elf_collect_gnu_hash_codes, &cinfo);
7198 if (cinfo.error)
7199 {
7200 free (cinfo.hashcodes);
7201 return FALSE;
7202 }
7203
7204 bucketcount
7205 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7206
7207 if (bucketcount == 0)
7208 {
7209 free (cinfo.hashcodes);
7210 return FALSE;
7211 }
7212
7213 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7214 BFD_ASSERT (s != NULL);
7215
7216 if (cinfo.nsyms == 0)
7217 {
7218 /* Empty .gnu.hash section is special. */
7219 BFD_ASSERT (cinfo.min_dynindx == -1);
7220 free (cinfo.hashcodes);
7221 s->size = 5 * 4 + bed->s->arch_size / 8;
7222 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7223 if (contents == NULL)
7224 return FALSE;
7225 s->contents = contents;
7226 /* 1 empty bucket. */
7227 bfd_put_32 (output_bfd, 1, contents);
7228 /* SYMIDX above the special symbol 0. */
7229 bfd_put_32 (output_bfd, 1, contents + 4);
7230 /* Just one word for bitmask. */
7231 bfd_put_32 (output_bfd, 1, contents + 8);
7232 /* Only hash fn bloom filter. */
7233 bfd_put_32 (output_bfd, 0, contents + 12);
7234 /* No hashes are valid - empty bitmask. */
7235 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7236 /* No hashes in the only bucket. */
7237 bfd_put_32 (output_bfd, 0,
7238 contents + 16 + bed->s->arch_size / 8);
7239 }
7240 else
7241 {
7242 unsigned long int maskwords, maskbitslog2, x;
7243 BFD_ASSERT (cinfo.min_dynindx != -1);
7244
7245 x = cinfo.nsyms;
7246 maskbitslog2 = 1;
7247 while ((x >>= 1) != 0)
7248 ++maskbitslog2;
7249 if (maskbitslog2 < 3)
7250 maskbitslog2 = 5;
7251 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7252 maskbitslog2 = maskbitslog2 + 3;
7253 else
7254 maskbitslog2 = maskbitslog2 + 2;
7255 if (bed->s->arch_size == 64)
7256 {
7257 if (maskbitslog2 == 5)
7258 maskbitslog2 = 6;
7259 cinfo.shift1 = 6;
7260 }
7261 else
7262 cinfo.shift1 = 5;
7263 cinfo.mask = (1 << cinfo.shift1) - 1;
7264 cinfo.shift2 = maskbitslog2;
7265 cinfo.maskbits = 1 << maskbitslog2;
7266 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7267 amt = bucketcount * sizeof (unsigned long int) * 2;
7268 amt += maskwords * sizeof (bfd_vma);
7269 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7270 if (cinfo.bitmask == NULL)
7271 {
7272 free (cinfo.hashcodes);
7273 return FALSE;
7274 }
7275
7276 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7277 cinfo.indx = cinfo.counts + bucketcount;
7278 cinfo.symindx = dynsymcount - cinfo.nsyms;
7279 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7280
7281 /* Determine how often each hash bucket is used. */
7282 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7283 for (i = 0; i < cinfo.nsyms; ++i)
7284 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7285
7286 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7287 if (cinfo.counts[i] != 0)
7288 {
7289 cinfo.indx[i] = cnt;
7290 cnt += cinfo.counts[i];
7291 }
7292 BFD_ASSERT (cnt == dynsymcount);
7293 cinfo.bucketcount = bucketcount;
7294 cinfo.local_indx = cinfo.min_dynindx;
7295
7296 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7297 s->size += cinfo.maskbits / 8;
7298 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7299 if (contents == NULL)
7300 {
7301 free (cinfo.bitmask);
7302 free (cinfo.hashcodes);
7303 return FALSE;
7304 }
7305
7306 s->contents = contents;
7307 bfd_put_32 (output_bfd, bucketcount, contents);
7308 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7309 bfd_put_32 (output_bfd, maskwords, contents + 8);
7310 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7311 contents += 16 + cinfo.maskbits / 8;
7312
7313 for (i = 0; i < bucketcount; ++i)
7314 {
7315 if (cinfo.counts[i] == 0)
7316 bfd_put_32 (output_bfd, 0, contents);
7317 else
7318 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7319 contents += 4;
7320 }
7321
7322 cinfo.contents = contents;
7323
7324 /* Renumber dynamic symbols, populate .gnu.hash section. */
7325 elf_link_hash_traverse (elf_hash_table (info),
7326 elf_renumber_gnu_hash_syms, &cinfo);
7327
7328 contents = s->contents + 16;
7329 for (i = 0; i < maskwords; ++i)
7330 {
7331 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7332 contents);
7333 contents += bed->s->arch_size / 8;
7334 }
7335
7336 free (cinfo.bitmask);
7337 free (cinfo.hashcodes);
7338 }
7339 }
7340
7341 s = bfd_get_linker_section (dynobj, ".dynstr");
7342 BFD_ASSERT (s != NULL);
7343
7344 elf_finalize_dynstr (output_bfd, info);
7345
7346 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7347
7348 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7349 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7350 return FALSE;
7351 }
7352
7353 return TRUE;
7354 }
7355 \f
7356 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7357
7358 static void
7359 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7360 asection *sec)
7361 {
7362 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7363 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7364 }
7365
7366 /* Finish SHF_MERGE section merging. */
7367
7368 bfd_boolean
7369 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7370 {
7371 bfd *ibfd;
7372 asection *sec;
7373
7374 if (!is_elf_hash_table (info->hash))
7375 return FALSE;
7376
7377 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7378 if ((ibfd->flags & DYNAMIC) == 0
7379 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7380 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7381 == get_elf_backend_data (obfd)->s->elfclass))
7382 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7383 if ((sec->flags & SEC_MERGE) != 0
7384 && !bfd_is_abs_section (sec->output_section))
7385 {
7386 struct bfd_elf_section_data *secdata;
7387
7388 secdata = elf_section_data (sec);
7389 if (! _bfd_add_merge_section (obfd,
7390 &elf_hash_table (info)->merge_info,
7391 sec, &secdata->sec_info))
7392 return FALSE;
7393 else if (secdata->sec_info)
7394 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7395 }
7396
7397 if (elf_hash_table (info)->merge_info != NULL)
7398 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7399 merge_sections_remove_hook);
7400 return TRUE;
7401 }
7402
7403 /* Create an entry in an ELF linker hash table. */
7404
7405 struct bfd_hash_entry *
7406 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7407 struct bfd_hash_table *table,
7408 const char *string)
7409 {
7410 /* Allocate the structure if it has not already been allocated by a
7411 subclass. */
7412 if (entry == NULL)
7413 {
7414 entry = (struct bfd_hash_entry *)
7415 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7416 if (entry == NULL)
7417 return entry;
7418 }
7419
7420 /* Call the allocation method of the superclass. */
7421 entry = _bfd_link_hash_newfunc (entry, table, string);
7422 if (entry != NULL)
7423 {
7424 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7425 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7426
7427 /* Set local fields. */
7428 ret->indx = -1;
7429 ret->dynindx = -1;
7430 ret->got = htab->init_got_refcount;
7431 ret->plt = htab->init_plt_refcount;
7432 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7433 - offsetof (struct elf_link_hash_entry, size)));
7434 /* Assume that we have been called by a non-ELF symbol reader.
7435 This flag is then reset by the code which reads an ELF input
7436 file. This ensures that a symbol created by a non-ELF symbol
7437 reader will have the flag set correctly. */
7438 ret->non_elf = 1;
7439 }
7440
7441 return entry;
7442 }
7443
7444 /* Copy data from an indirect symbol to its direct symbol, hiding the
7445 old indirect symbol. Also used for copying flags to a weakdef. */
7446
7447 void
7448 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7449 struct elf_link_hash_entry *dir,
7450 struct elf_link_hash_entry *ind)
7451 {
7452 struct elf_link_hash_table *htab;
7453
7454 /* Copy down any references that we may have already seen to the
7455 symbol which just became indirect. */
7456
7457 if (dir->versioned != versioned_hidden)
7458 dir->ref_dynamic |= ind->ref_dynamic;
7459 dir->ref_regular |= ind->ref_regular;
7460 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7461 dir->non_got_ref |= ind->non_got_ref;
7462 dir->needs_plt |= ind->needs_plt;
7463 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7464
7465 if (ind->root.type != bfd_link_hash_indirect)
7466 return;
7467
7468 /* Copy over the global and procedure linkage table refcount entries.
7469 These may have been already set up by a check_relocs routine. */
7470 htab = elf_hash_table (info);
7471 if (ind->got.refcount > htab->init_got_refcount.refcount)
7472 {
7473 if (dir->got.refcount < 0)
7474 dir->got.refcount = 0;
7475 dir->got.refcount += ind->got.refcount;
7476 ind->got.refcount = htab->init_got_refcount.refcount;
7477 }
7478
7479 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7480 {
7481 if (dir->plt.refcount < 0)
7482 dir->plt.refcount = 0;
7483 dir->plt.refcount += ind->plt.refcount;
7484 ind->plt.refcount = htab->init_plt_refcount.refcount;
7485 }
7486
7487 if (ind->dynindx != -1)
7488 {
7489 if (dir->dynindx != -1)
7490 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7491 dir->dynindx = ind->dynindx;
7492 dir->dynstr_index = ind->dynstr_index;
7493 ind->dynindx = -1;
7494 ind->dynstr_index = 0;
7495 }
7496 }
7497
7498 void
7499 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7500 struct elf_link_hash_entry *h,
7501 bfd_boolean force_local)
7502 {
7503 /* STT_GNU_IFUNC symbol must go through PLT. */
7504 if (h->type != STT_GNU_IFUNC)
7505 {
7506 h->plt = elf_hash_table (info)->init_plt_offset;
7507 h->needs_plt = 0;
7508 }
7509 if (force_local)
7510 {
7511 h->forced_local = 1;
7512 if (h->dynindx != -1)
7513 {
7514 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7515 h->dynstr_index);
7516 h->dynindx = -1;
7517 h->dynstr_index = 0;
7518 }
7519 }
7520 }
7521
7522 /* Hide a symbol. */
7523
7524 void
7525 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7526 struct bfd_link_info *info,
7527 struct bfd_link_hash_entry *h)
7528 {
7529 if (is_elf_hash_table (info->hash))
7530 {
7531 const struct elf_backend_data *bed
7532 = get_elf_backend_data (output_bfd);
7533 struct elf_link_hash_entry *eh
7534 = (struct elf_link_hash_entry *) h;
7535 bed->elf_backend_hide_symbol (info, eh, TRUE);
7536 eh->def_dynamic = 0;
7537 eh->ref_dynamic = 0;
7538 eh->dynamic_def = 0;
7539 }
7540 }
7541
7542 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7543 caller. */
7544
7545 bfd_boolean
7546 _bfd_elf_link_hash_table_init
7547 (struct elf_link_hash_table *table,
7548 bfd *abfd,
7549 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7550 struct bfd_hash_table *,
7551 const char *),
7552 unsigned int entsize,
7553 enum elf_target_id target_id)
7554 {
7555 bfd_boolean ret;
7556 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7557
7558 table->init_got_refcount.refcount = can_refcount - 1;
7559 table->init_plt_refcount.refcount = can_refcount - 1;
7560 table->init_got_offset.offset = -(bfd_vma) 1;
7561 table->init_plt_offset.offset = -(bfd_vma) 1;
7562 /* The first dynamic symbol is a dummy. */
7563 table->dynsymcount = 1;
7564
7565 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7566
7567 table->root.type = bfd_link_elf_hash_table;
7568 table->hash_table_id = target_id;
7569
7570 return ret;
7571 }
7572
7573 /* Create an ELF linker hash table. */
7574
7575 struct bfd_link_hash_table *
7576 _bfd_elf_link_hash_table_create (bfd *abfd)
7577 {
7578 struct elf_link_hash_table *ret;
7579 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7580
7581 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7582 if (ret == NULL)
7583 return NULL;
7584
7585 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7586 sizeof (struct elf_link_hash_entry),
7587 GENERIC_ELF_DATA))
7588 {
7589 free (ret);
7590 return NULL;
7591 }
7592 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7593
7594 return &ret->root;
7595 }
7596
7597 /* Destroy an ELF linker hash table. */
7598
7599 void
7600 _bfd_elf_link_hash_table_free (bfd *obfd)
7601 {
7602 struct elf_link_hash_table *htab;
7603
7604 htab = (struct elf_link_hash_table *) obfd->link.hash;
7605 if (htab->dynstr != NULL)
7606 _bfd_elf_strtab_free (htab->dynstr);
7607 _bfd_merge_sections_free (htab->merge_info);
7608 _bfd_generic_link_hash_table_free (obfd);
7609 }
7610
7611 /* This is a hook for the ELF emulation code in the generic linker to
7612 tell the backend linker what file name to use for the DT_NEEDED
7613 entry for a dynamic object. */
7614
7615 void
7616 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7617 {
7618 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7619 && bfd_get_format (abfd) == bfd_object)
7620 elf_dt_name (abfd) = name;
7621 }
7622
7623 int
7624 bfd_elf_get_dyn_lib_class (bfd *abfd)
7625 {
7626 int lib_class;
7627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7628 && bfd_get_format (abfd) == bfd_object)
7629 lib_class = elf_dyn_lib_class (abfd);
7630 else
7631 lib_class = 0;
7632 return lib_class;
7633 }
7634
7635 void
7636 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7637 {
7638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7639 && bfd_get_format (abfd) == bfd_object)
7640 elf_dyn_lib_class (abfd) = lib_class;
7641 }
7642
7643 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7644 the linker ELF emulation code. */
7645
7646 struct bfd_link_needed_list *
7647 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7648 struct bfd_link_info *info)
7649 {
7650 if (! is_elf_hash_table (info->hash))
7651 return NULL;
7652 return elf_hash_table (info)->needed;
7653 }
7654
7655 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7656 hook for the linker ELF emulation code. */
7657
7658 struct bfd_link_needed_list *
7659 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7660 struct bfd_link_info *info)
7661 {
7662 if (! is_elf_hash_table (info->hash))
7663 return NULL;
7664 return elf_hash_table (info)->runpath;
7665 }
7666
7667 /* Get the name actually used for a dynamic object for a link. This
7668 is the SONAME entry if there is one. Otherwise, it is the string
7669 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7670
7671 const char *
7672 bfd_elf_get_dt_soname (bfd *abfd)
7673 {
7674 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7675 && bfd_get_format (abfd) == bfd_object)
7676 return elf_dt_name (abfd);
7677 return NULL;
7678 }
7679
7680 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7681 the ELF linker emulation code. */
7682
7683 bfd_boolean
7684 bfd_elf_get_bfd_needed_list (bfd *abfd,
7685 struct bfd_link_needed_list **pneeded)
7686 {
7687 asection *s;
7688 bfd_byte *dynbuf = NULL;
7689 unsigned int elfsec;
7690 unsigned long shlink;
7691 bfd_byte *extdyn, *extdynend;
7692 size_t extdynsize;
7693 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7694
7695 *pneeded = NULL;
7696
7697 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7698 || bfd_get_format (abfd) != bfd_object)
7699 return TRUE;
7700
7701 s = bfd_get_section_by_name (abfd, ".dynamic");
7702 if (s == NULL || s->size == 0)
7703 return TRUE;
7704
7705 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7706 goto error_return;
7707
7708 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7709 if (elfsec == SHN_BAD)
7710 goto error_return;
7711
7712 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7713
7714 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7715 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7716
7717 extdyn = dynbuf;
7718 extdynend = extdyn + s->size;
7719 for (; extdyn < extdynend; extdyn += extdynsize)
7720 {
7721 Elf_Internal_Dyn dyn;
7722
7723 (*swap_dyn_in) (abfd, extdyn, &dyn);
7724
7725 if (dyn.d_tag == DT_NULL)
7726 break;
7727
7728 if (dyn.d_tag == DT_NEEDED)
7729 {
7730 const char *string;
7731 struct bfd_link_needed_list *l;
7732 unsigned int tagv = dyn.d_un.d_val;
7733 bfd_size_type amt;
7734
7735 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7736 if (string == NULL)
7737 goto error_return;
7738
7739 amt = sizeof *l;
7740 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7741 if (l == NULL)
7742 goto error_return;
7743
7744 l->by = abfd;
7745 l->name = string;
7746 l->next = *pneeded;
7747 *pneeded = l;
7748 }
7749 }
7750
7751 free (dynbuf);
7752
7753 return TRUE;
7754
7755 error_return:
7756 if (dynbuf != NULL)
7757 free (dynbuf);
7758 return FALSE;
7759 }
7760
7761 struct elf_symbuf_symbol
7762 {
7763 unsigned long st_name; /* Symbol name, index in string tbl */
7764 unsigned char st_info; /* Type and binding attributes */
7765 unsigned char st_other; /* Visibilty, and target specific */
7766 };
7767
7768 struct elf_symbuf_head
7769 {
7770 struct elf_symbuf_symbol *ssym;
7771 size_t count;
7772 unsigned int st_shndx;
7773 };
7774
7775 struct elf_symbol
7776 {
7777 union
7778 {
7779 Elf_Internal_Sym *isym;
7780 struct elf_symbuf_symbol *ssym;
7781 } u;
7782 const char *name;
7783 };
7784
7785 /* Sort references to symbols by ascending section number. */
7786
7787 static int
7788 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7789 {
7790 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7791 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7792
7793 return s1->st_shndx - s2->st_shndx;
7794 }
7795
7796 static int
7797 elf_sym_name_compare (const void *arg1, const void *arg2)
7798 {
7799 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7800 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7801 return strcmp (s1->name, s2->name);
7802 }
7803
7804 static struct elf_symbuf_head *
7805 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7806 {
7807 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7808 struct elf_symbuf_symbol *ssym;
7809 struct elf_symbuf_head *ssymbuf, *ssymhead;
7810 size_t i, shndx_count, total_size;
7811
7812 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7813 if (indbuf == NULL)
7814 return NULL;
7815
7816 for (ind = indbuf, i = 0; i < symcount; i++)
7817 if (isymbuf[i].st_shndx != SHN_UNDEF)
7818 *ind++ = &isymbuf[i];
7819 indbufend = ind;
7820
7821 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7822 elf_sort_elf_symbol);
7823
7824 shndx_count = 0;
7825 if (indbufend > indbuf)
7826 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7827 if (ind[0]->st_shndx != ind[1]->st_shndx)
7828 shndx_count++;
7829
7830 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7831 + (indbufend - indbuf) * sizeof (*ssym));
7832 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7833 if (ssymbuf == NULL)
7834 {
7835 free (indbuf);
7836 return NULL;
7837 }
7838
7839 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7840 ssymbuf->ssym = NULL;
7841 ssymbuf->count = shndx_count;
7842 ssymbuf->st_shndx = 0;
7843 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7844 {
7845 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7846 {
7847 ssymhead++;
7848 ssymhead->ssym = ssym;
7849 ssymhead->count = 0;
7850 ssymhead->st_shndx = (*ind)->st_shndx;
7851 }
7852 ssym->st_name = (*ind)->st_name;
7853 ssym->st_info = (*ind)->st_info;
7854 ssym->st_other = (*ind)->st_other;
7855 ssymhead->count++;
7856 }
7857 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7858 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7859 == total_size));
7860
7861 free (indbuf);
7862 return ssymbuf;
7863 }
7864
7865 /* Check if 2 sections define the same set of local and global
7866 symbols. */
7867
7868 static bfd_boolean
7869 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7870 struct bfd_link_info *info)
7871 {
7872 bfd *bfd1, *bfd2;
7873 const struct elf_backend_data *bed1, *bed2;
7874 Elf_Internal_Shdr *hdr1, *hdr2;
7875 size_t symcount1, symcount2;
7876 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7877 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7878 Elf_Internal_Sym *isym, *isymend;
7879 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7880 size_t count1, count2, i;
7881 unsigned int shndx1, shndx2;
7882 bfd_boolean result;
7883
7884 bfd1 = sec1->owner;
7885 bfd2 = sec2->owner;
7886
7887 /* Both sections have to be in ELF. */
7888 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7889 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7890 return FALSE;
7891
7892 if (elf_section_type (sec1) != elf_section_type (sec2))
7893 return FALSE;
7894
7895 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7896 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7897 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7898 return FALSE;
7899
7900 bed1 = get_elf_backend_data (bfd1);
7901 bed2 = get_elf_backend_data (bfd2);
7902 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7903 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7904 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7905 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7906
7907 if (symcount1 == 0 || symcount2 == 0)
7908 return FALSE;
7909
7910 result = FALSE;
7911 isymbuf1 = NULL;
7912 isymbuf2 = NULL;
7913 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7914 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7915
7916 if (ssymbuf1 == NULL)
7917 {
7918 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7919 NULL, NULL, NULL);
7920 if (isymbuf1 == NULL)
7921 goto done;
7922
7923 if (!info->reduce_memory_overheads)
7924 elf_tdata (bfd1)->symbuf = ssymbuf1
7925 = elf_create_symbuf (symcount1, isymbuf1);
7926 }
7927
7928 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7929 {
7930 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7931 NULL, NULL, NULL);
7932 if (isymbuf2 == NULL)
7933 goto done;
7934
7935 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7936 elf_tdata (bfd2)->symbuf = ssymbuf2
7937 = elf_create_symbuf (symcount2, isymbuf2);
7938 }
7939
7940 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7941 {
7942 /* Optimized faster version. */
7943 size_t lo, hi, mid;
7944 struct elf_symbol *symp;
7945 struct elf_symbuf_symbol *ssym, *ssymend;
7946
7947 lo = 0;
7948 hi = ssymbuf1->count;
7949 ssymbuf1++;
7950 count1 = 0;
7951 while (lo < hi)
7952 {
7953 mid = (lo + hi) / 2;
7954 if (shndx1 < ssymbuf1[mid].st_shndx)
7955 hi = mid;
7956 else if (shndx1 > ssymbuf1[mid].st_shndx)
7957 lo = mid + 1;
7958 else
7959 {
7960 count1 = ssymbuf1[mid].count;
7961 ssymbuf1 += mid;
7962 break;
7963 }
7964 }
7965
7966 lo = 0;
7967 hi = ssymbuf2->count;
7968 ssymbuf2++;
7969 count2 = 0;
7970 while (lo < hi)
7971 {
7972 mid = (lo + hi) / 2;
7973 if (shndx2 < ssymbuf2[mid].st_shndx)
7974 hi = mid;
7975 else if (shndx2 > ssymbuf2[mid].st_shndx)
7976 lo = mid + 1;
7977 else
7978 {
7979 count2 = ssymbuf2[mid].count;
7980 ssymbuf2 += mid;
7981 break;
7982 }
7983 }
7984
7985 if (count1 == 0 || count2 == 0 || count1 != count2)
7986 goto done;
7987
7988 symtable1
7989 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7990 symtable2
7991 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7992 if (symtable1 == NULL || symtable2 == NULL)
7993 goto done;
7994
7995 symp = symtable1;
7996 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7997 ssym < ssymend; ssym++, symp++)
7998 {
7999 symp->u.ssym = ssym;
8000 symp->name = bfd_elf_string_from_elf_section (bfd1,
8001 hdr1->sh_link,
8002 ssym->st_name);
8003 }
8004
8005 symp = symtable2;
8006 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8007 ssym < ssymend; ssym++, symp++)
8008 {
8009 symp->u.ssym = ssym;
8010 symp->name = bfd_elf_string_from_elf_section (bfd2,
8011 hdr2->sh_link,
8012 ssym->st_name);
8013 }
8014
8015 /* Sort symbol by name. */
8016 qsort (symtable1, count1, sizeof (struct elf_symbol),
8017 elf_sym_name_compare);
8018 qsort (symtable2, count1, sizeof (struct elf_symbol),
8019 elf_sym_name_compare);
8020
8021 for (i = 0; i < count1; i++)
8022 /* Two symbols must have the same binding, type and name. */
8023 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8024 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8025 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8026 goto done;
8027
8028 result = TRUE;
8029 goto done;
8030 }
8031
8032 symtable1 = (struct elf_symbol *)
8033 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8034 symtable2 = (struct elf_symbol *)
8035 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8036 if (symtable1 == NULL || symtable2 == NULL)
8037 goto done;
8038
8039 /* Count definitions in the section. */
8040 count1 = 0;
8041 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8042 if (isym->st_shndx == shndx1)
8043 symtable1[count1++].u.isym = isym;
8044
8045 count2 = 0;
8046 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8047 if (isym->st_shndx == shndx2)
8048 symtable2[count2++].u.isym = isym;
8049
8050 if (count1 == 0 || count2 == 0 || count1 != count2)
8051 goto done;
8052
8053 for (i = 0; i < count1; i++)
8054 symtable1[i].name
8055 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8056 symtable1[i].u.isym->st_name);
8057
8058 for (i = 0; i < count2; i++)
8059 symtable2[i].name
8060 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8061 symtable2[i].u.isym->st_name);
8062
8063 /* Sort symbol by name. */
8064 qsort (symtable1, count1, sizeof (struct elf_symbol),
8065 elf_sym_name_compare);
8066 qsort (symtable2, count1, sizeof (struct elf_symbol),
8067 elf_sym_name_compare);
8068
8069 for (i = 0; i < count1; i++)
8070 /* Two symbols must have the same binding, type and name. */
8071 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8072 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8073 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8074 goto done;
8075
8076 result = TRUE;
8077
8078 done:
8079 if (symtable1)
8080 free (symtable1);
8081 if (symtable2)
8082 free (symtable2);
8083 if (isymbuf1)
8084 free (isymbuf1);
8085 if (isymbuf2)
8086 free (isymbuf2);
8087
8088 return result;
8089 }
8090
8091 /* Return TRUE if 2 section types are compatible. */
8092
8093 bfd_boolean
8094 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8095 bfd *bbfd, const asection *bsec)
8096 {
8097 if (asec == NULL
8098 || bsec == NULL
8099 || abfd->xvec->flavour != bfd_target_elf_flavour
8100 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8101 return TRUE;
8102
8103 return elf_section_type (asec) == elf_section_type (bsec);
8104 }
8105 \f
8106 /* Final phase of ELF linker. */
8107
8108 /* A structure we use to avoid passing large numbers of arguments. */
8109
8110 struct elf_final_link_info
8111 {
8112 /* General link information. */
8113 struct bfd_link_info *info;
8114 /* Output BFD. */
8115 bfd *output_bfd;
8116 /* Symbol string table. */
8117 struct elf_strtab_hash *symstrtab;
8118 /* .hash section. */
8119 asection *hash_sec;
8120 /* symbol version section (.gnu.version). */
8121 asection *symver_sec;
8122 /* Buffer large enough to hold contents of any section. */
8123 bfd_byte *contents;
8124 /* Buffer large enough to hold external relocs of any section. */
8125 void *external_relocs;
8126 /* Buffer large enough to hold internal relocs of any section. */
8127 Elf_Internal_Rela *internal_relocs;
8128 /* Buffer large enough to hold external local symbols of any input
8129 BFD. */
8130 bfd_byte *external_syms;
8131 /* And a buffer for symbol section indices. */
8132 Elf_External_Sym_Shndx *locsym_shndx;
8133 /* Buffer large enough to hold internal local symbols of any input
8134 BFD. */
8135 Elf_Internal_Sym *internal_syms;
8136 /* Array large enough to hold a symbol index for each local symbol
8137 of any input BFD. */
8138 long *indices;
8139 /* Array large enough to hold a section pointer for each local
8140 symbol of any input BFD. */
8141 asection **sections;
8142 /* Buffer for SHT_SYMTAB_SHNDX section. */
8143 Elf_External_Sym_Shndx *symshndxbuf;
8144 /* Number of STT_FILE syms seen. */
8145 size_t filesym_count;
8146 };
8147
8148 /* This struct is used to pass information to elf_link_output_extsym. */
8149
8150 struct elf_outext_info
8151 {
8152 bfd_boolean failed;
8153 bfd_boolean localsyms;
8154 bfd_boolean file_sym_done;
8155 struct elf_final_link_info *flinfo;
8156 };
8157
8158
8159 /* Support for evaluating a complex relocation.
8160
8161 Complex relocations are generalized, self-describing relocations. The
8162 implementation of them consists of two parts: complex symbols, and the
8163 relocations themselves.
8164
8165 The relocations are use a reserved elf-wide relocation type code (R_RELC
8166 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8167 information (start bit, end bit, word width, etc) into the addend. This
8168 information is extracted from CGEN-generated operand tables within gas.
8169
8170 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8171 internal) representing prefix-notation expressions, including but not
8172 limited to those sorts of expressions normally encoded as addends in the
8173 addend field. The symbol mangling format is:
8174
8175 <node> := <literal>
8176 | <unary-operator> ':' <node>
8177 | <binary-operator> ':' <node> ':' <node>
8178 ;
8179
8180 <literal> := 's' <digits=N> ':' <N character symbol name>
8181 | 'S' <digits=N> ':' <N character section name>
8182 | '#' <hexdigits>
8183 ;
8184
8185 <binary-operator> := as in C
8186 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8187
8188 static void
8189 set_symbol_value (bfd *bfd_with_globals,
8190 Elf_Internal_Sym *isymbuf,
8191 size_t locsymcount,
8192 size_t symidx,
8193 bfd_vma val)
8194 {
8195 struct elf_link_hash_entry **sym_hashes;
8196 struct elf_link_hash_entry *h;
8197 size_t extsymoff = locsymcount;
8198
8199 if (symidx < locsymcount)
8200 {
8201 Elf_Internal_Sym *sym;
8202
8203 sym = isymbuf + symidx;
8204 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8205 {
8206 /* It is a local symbol: move it to the
8207 "absolute" section and give it a value. */
8208 sym->st_shndx = SHN_ABS;
8209 sym->st_value = val;
8210 return;
8211 }
8212 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8213 extsymoff = 0;
8214 }
8215
8216 /* It is a global symbol: set its link type
8217 to "defined" and give it a value. */
8218
8219 sym_hashes = elf_sym_hashes (bfd_with_globals);
8220 h = sym_hashes [symidx - extsymoff];
8221 while (h->root.type == bfd_link_hash_indirect
8222 || h->root.type == bfd_link_hash_warning)
8223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8224 h->root.type = bfd_link_hash_defined;
8225 h->root.u.def.value = val;
8226 h->root.u.def.section = bfd_abs_section_ptr;
8227 }
8228
8229 static bfd_boolean
8230 resolve_symbol (const char *name,
8231 bfd *input_bfd,
8232 struct elf_final_link_info *flinfo,
8233 bfd_vma *result,
8234 Elf_Internal_Sym *isymbuf,
8235 size_t locsymcount)
8236 {
8237 Elf_Internal_Sym *sym;
8238 struct bfd_link_hash_entry *global_entry;
8239 const char *candidate = NULL;
8240 Elf_Internal_Shdr *symtab_hdr;
8241 size_t i;
8242
8243 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8244
8245 for (i = 0; i < locsymcount; ++ i)
8246 {
8247 sym = isymbuf + i;
8248
8249 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8250 continue;
8251
8252 candidate = bfd_elf_string_from_elf_section (input_bfd,
8253 symtab_hdr->sh_link,
8254 sym->st_name);
8255 #ifdef DEBUG
8256 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8257 name, candidate, (unsigned long) sym->st_value);
8258 #endif
8259 if (candidate && strcmp (candidate, name) == 0)
8260 {
8261 asection *sec = flinfo->sections [i];
8262
8263 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8264 *result += sec->output_offset + sec->output_section->vma;
8265 #ifdef DEBUG
8266 printf ("Found symbol with value %8.8lx\n",
8267 (unsigned long) *result);
8268 #endif
8269 return TRUE;
8270 }
8271 }
8272
8273 /* Hmm, haven't found it yet. perhaps it is a global. */
8274 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8275 FALSE, FALSE, TRUE);
8276 if (!global_entry)
8277 return FALSE;
8278
8279 if (global_entry->type == bfd_link_hash_defined
8280 || global_entry->type == bfd_link_hash_defweak)
8281 {
8282 *result = (global_entry->u.def.value
8283 + global_entry->u.def.section->output_section->vma
8284 + global_entry->u.def.section->output_offset);
8285 #ifdef DEBUG
8286 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8287 global_entry->root.string, (unsigned long) *result);
8288 #endif
8289 return TRUE;
8290 }
8291
8292 return FALSE;
8293 }
8294
8295 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8296 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8297 names like "foo.end" which is the end address of section "foo". */
8298
8299 static bfd_boolean
8300 resolve_section (const char *name,
8301 asection *sections,
8302 bfd_vma *result,
8303 bfd * abfd)
8304 {
8305 asection *curr;
8306 unsigned int len;
8307
8308 for (curr = sections; curr; curr = curr->next)
8309 if (strcmp (curr->name, name) == 0)
8310 {
8311 *result = curr->vma;
8312 return TRUE;
8313 }
8314
8315 /* Hmm. still haven't found it. try pseudo-section names. */
8316 /* FIXME: This could be coded more efficiently... */
8317 for (curr = sections; curr; curr = curr->next)
8318 {
8319 len = strlen (curr->name);
8320 if (len > strlen (name))
8321 continue;
8322
8323 if (strncmp (curr->name, name, len) == 0)
8324 {
8325 if (strncmp (".end", name + len, 4) == 0)
8326 {
8327 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8328 return TRUE;
8329 }
8330
8331 /* Insert more pseudo-section names here, if you like. */
8332 }
8333 }
8334
8335 return FALSE;
8336 }
8337
8338 static void
8339 undefined_reference (const char *reftype, const char *name)
8340 {
8341 /* xgettext:c-format */
8342 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8343 reftype, name);
8344 }
8345
8346 static bfd_boolean
8347 eval_symbol (bfd_vma *result,
8348 const char **symp,
8349 bfd *input_bfd,
8350 struct elf_final_link_info *flinfo,
8351 bfd_vma dot,
8352 Elf_Internal_Sym *isymbuf,
8353 size_t locsymcount,
8354 int signed_p)
8355 {
8356 size_t len;
8357 size_t symlen;
8358 bfd_vma a;
8359 bfd_vma b;
8360 char symbuf[4096];
8361 const char *sym = *symp;
8362 const char *symend;
8363 bfd_boolean symbol_is_section = FALSE;
8364
8365 len = strlen (sym);
8366 symend = sym + len;
8367
8368 if (len < 1 || len > sizeof (symbuf))
8369 {
8370 bfd_set_error (bfd_error_invalid_operation);
8371 return FALSE;
8372 }
8373
8374 switch (* sym)
8375 {
8376 case '.':
8377 *result = dot;
8378 *symp = sym + 1;
8379 return TRUE;
8380
8381 case '#':
8382 ++sym;
8383 *result = strtoul (sym, (char **) symp, 16);
8384 return TRUE;
8385
8386 case 'S':
8387 symbol_is_section = TRUE;
8388 /* Fall through. */
8389 case 's':
8390 ++sym;
8391 symlen = strtol (sym, (char **) symp, 10);
8392 sym = *symp + 1; /* Skip the trailing ':'. */
8393
8394 if (symend < sym || symlen + 1 > sizeof (symbuf))
8395 {
8396 bfd_set_error (bfd_error_invalid_operation);
8397 return FALSE;
8398 }
8399
8400 memcpy (symbuf, sym, symlen);
8401 symbuf[symlen] = '\0';
8402 *symp = sym + symlen;
8403
8404 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8405 the symbol as a section, or vice-versa. so we're pretty liberal in our
8406 interpretation here; section means "try section first", not "must be a
8407 section", and likewise with symbol. */
8408
8409 if (symbol_is_section)
8410 {
8411 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8412 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8413 isymbuf, locsymcount))
8414 {
8415 undefined_reference ("section", symbuf);
8416 return FALSE;
8417 }
8418 }
8419 else
8420 {
8421 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8422 isymbuf, locsymcount)
8423 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8424 result, input_bfd))
8425 {
8426 undefined_reference ("symbol", symbuf);
8427 return FALSE;
8428 }
8429 }
8430
8431 return TRUE;
8432
8433 /* All that remains are operators. */
8434
8435 #define UNARY_OP(op) \
8436 if (strncmp (sym, #op, strlen (#op)) == 0) \
8437 { \
8438 sym += strlen (#op); \
8439 if (*sym == ':') \
8440 ++sym; \
8441 *symp = sym; \
8442 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8443 isymbuf, locsymcount, signed_p)) \
8444 return FALSE; \
8445 if (signed_p) \
8446 *result = op ((bfd_signed_vma) a); \
8447 else \
8448 *result = op a; \
8449 return TRUE; \
8450 }
8451
8452 #define BINARY_OP(op) \
8453 if (strncmp (sym, #op, strlen (#op)) == 0) \
8454 { \
8455 sym += strlen (#op); \
8456 if (*sym == ':') \
8457 ++sym; \
8458 *symp = sym; \
8459 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8460 isymbuf, locsymcount, signed_p)) \
8461 return FALSE; \
8462 ++*symp; \
8463 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8464 isymbuf, locsymcount, signed_p)) \
8465 return FALSE; \
8466 if (signed_p) \
8467 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8468 else \
8469 *result = a op b; \
8470 return TRUE; \
8471 }
8472
8473 default:
8474 UNARY_OP (0-);
8475 BINARY_OP (<<);
8476 BINARY_OP (>>);
8477 BINARY_OP (==);
8478 BINARY_OP (!=);
8479 BINARY_OP (<=);
8480 BINARY_OP (>=);
8481 BINARY_OP (&&);
8482 BINARY_OP (||);
8483 UNARY_OP (~);
8484 UNARY_OP (!);
8485 BINARY_OP (*);
8486 BINARY_OP (/);
8487 BINARY_OP (%);
8488 BINARY_OP (^);
8489 BINARY_OP (|);
8490 BINARY_OP (&);
8491 BINARY_OP (+);
8492 BINARY_OP (-);
8493 BINARY_OP (<);
8494 BINARY_OP (>);
8495 #undef UNARY_OP
8496 #undef BINARY_OP
8497 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8498 bfd_set_error (bfd_error_invalid_operation);
8499 return FALSE;
8500 }
8501 }
8502
8503 static void
8504 put_value (bfd_vma size,
8505 unsigned long chunksz,
8506 bfd *input_bfd,
8507 bfd_vma x,
8508 bfd_byte *location)
8509 {
8510 location += (size - chunksz);
8511
8512 for (; size; size -= chunksz, location -= chunksz)
8513 {
8514 switch (chunksz)
8515 {
8516 case 1:
8517 bfd_put_8 (input_bfd, x, location);
8518 x >>= 8;
8519 break;
8520 case 2:
8521 bfd_put_16 (input_bfd, x, location);
8522 x >>= 16;
8523 break;
8524 case 4:
8525 bfd_put_32 (input_bfd, x, location);
8526 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8527 x >>= 16;
8528 x >>= 16;
8529 break;
8530 #ifdef BFD64
8531 case 8:
8532 bfd_put_64 (input_bfd, x, location);
8533 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8534 x >>= 32;
8535 x >>= 32;
8536 break;
8537 #endif
8538 default:
8539 abort ();
8540 break;
8541 }
8542 }
8543 }
8544
8545 static bfd_vma
8546 get_value (bfd_vma size,
8547 unsigned long chunksz,
8548 bfd *input_bfd,
8549 bfd_byte *location)
8550 {
8551 int shift;
8552 bfd_vma x = 0;
8553
8554 /* Sanity checks. */
8555 BFD_ASSERT (chunksz <= sizeof (x)
8556 && size >= chunksz
8557 && chunksz != 0
8558 && (size % chunksz) == 0
8559 && input_bfd != NULL
8560 && location != NULL);
8561
8562 if (chunksz == sizeof (x))
8563 {
8564 BFD_ASSERT (size == chunksz);
8565
8566 /* Make sure that we do not perform an undefined shift operation.
8567 We know that size == chunksz so there will only be one iteration
8568 of the loop below. */
8569 shift = 0;
8570 }
8571 else
8572 shift = 8 * chunksz;
8573
8574 for (; size; size -= chunksz, location += chunksz)
8575 {
8576 switch (chunksz)
8577 {
8578 case 1:
8579 x = (x << shift) | bfd_get_8 (input_bfd, location);
8580 break;
8581 case 2:
8582 x = (x << shift) | bfd_get_16 (input_bfd, location);
8583 break;
8584 case 4:
8585 x = (x << shift) | bfd_get_32 (input_bfd, location);
8586 break;
8587 #ifdef BFD64
8588 case 8:
8589 x = (x << shift) | bfd_get_64 (input_bfd, location);
8590 break;
8591 #endif
8592 default:
8593 abort ();
8594 }
8595 }
8596 return x;
8597 }
8598
8599 static void
8600 decode_complex_addend (unsigned long *start, /* in bits */
8601 unsigned long *oplen, /* in bits */
8602 unsigned long *len, /* in bits */
8603 unsigned long *wordsz, /* in bytes */
8604 unsigned long *chunksz, /* in bytes */
8605 unsigned long *lsb0_p,
8606 unsigned long *signed_p,
8607 unsigned long *trunc_p,
8608 unsigned long encoded)
8609 {
8610 * start = encoded & 0x3F;
8611 * len = (encoded >> 6) & 0x3F;
8612 * oplen = (encoded >> 12) & 0x3F;
8613 * wordsz = (encoded >> 18) & 0xF;
8614 * chunksz = (encoded >> 22) & 0xF;
8615 * lsb0_p = (encoded >> 27) & 1;
8616 * signed_p = (encoded >> 28) & 1;
8617 * trunc_p = (encoded >> 29) & 1;
8618 }
8619
8620 bfd_reloc_status_type
8621 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8622 asection *input_section ATTRIBUTE_UNUSED,
8623 bfd_byte *contents,
8624 Elf_Internal_Rela *rel,
8625 bfd_vma relocation)
8626 {
8627 bfd_vma shift, x, mask;
8628 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8629 bfd_reloc_status_type r;
8630
8631 /* Perform this reloc, since it is complex.
8632 (this is not to say that it necessarily refers to a complex
8633 symbol; merely that it is a self-describing CGEN based reloc.
8634 i.e. the addend has the complete reloc information (bit start, end,
8635 word size, etc) encoded within it.). */
8636
8637 decode_complex_addend (&start, &oplen, &len, &wordsz,
8638 &chunksz, &lsb0_p, &signed_p,
8639 &trunc_p, rel->r_addend);
8640
8641 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8642
8643 if (lsb0_p)
8644 shift = (start + 1) - len;
8645 else
8646 shift = (8 * wordsz) - (start + len);
8647
8648 x = get_value (wordsz, chunksz, input_bfd,
8649 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8650
8651 #ifdef DEBUG
8652 printf ("Doing complex reloc: "
8653 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8654 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8655 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8656 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8657 oplen, (unsigned long) x, (unsigned long) mask,
8658 (unsigned long) relocation);
8659 #endif
8660
8661 r = bfd_reloc_ok;
8662 if (! trunc_p)
8663 /* Now do an overflow check. */
8664 r = bfd_check_overflow ((signed_p
8665 ? complain_overflow_signed
8666 : complain_overflow_unsigned),
8667 len, 0, (8 * wordsz),
8668 relocation);
8669
8670 /* Do the deed. */
8671 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8672
8673 #ifdef DEBUG
8674 printf (" relocation: %8.8lx\n"
8675 " shifted mask: %8.8lx\n"
8676 " shifted/masked reloc: %8.8lx\n"
8677 " result: %8.8lx\n",
8678 (unsigned long) relocation, (unsigned long) (mask << shift),
8679 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8680 #endif
8681 put_value (wordsz, chunksz, input_bfd, x,
8682 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8683 return r;
8684 }
8685
8686 /* Functions to read r_offset from external (target order) reloc
8687 entry. Faster than bfd_getl32 et al, because we let the compiler
8688 know the value is aligned. */
8689
8690 static bfd_vma
8691 ext32l_r_offset (const void *p)
8692 {
8693 union aligned32
8694 {
8695 uint32_t v;
8696 unsigned char c[4];
8697 };
8698 const union aligned32 *a
8699 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8700
8701 uint32_t aval = ( (uint32_t) a->c[0]
8702 | (uint32_t) a->c[1] << 8
8703 | (uint32_t) a->c[2] << 16
8704 | (uint32_t) a->c[3] << 24);
8705 return aval;
8706 }
8707
8708 static bfd_vma
8709 ext32b_r_offset (const void *p)
8710 {
8711 union aligned32
8712 {
8713 uint32_t v;
8714 unsigned char c[4];
8715 };
8716 const union aligned32 *a
8717 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8718
8719 uint32_t aval = ( (uint32_t) a->c[0] << 24
8720 | (uint32_t) a->c[1] << 16
8721 | (uint32_t) a->c[2] << 8
8722 | (uint32_t) a->c[3]);
8723 return aval;
8724 }
8725
8726 #ifdef BFD_HOST_64_BIT
8727 static bfd_vma
8728 ext64l_r_offset (const void *p)
8729 {
8730 union aligned64
8731 {
8732 uint64_t v;
8733 unsigned char c[8];
8734 };
8735 const union aligned64 *a
8736 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8737
8738 uint64_t aval = ( (uint64_t) a->c[0]
8739 | (uint64_t) a->c[1] << 8
8740 | (uint64_t) a->c[2] << 16
8741 | (uint64_t) a->c[3] << 24
8742 | (uint64_t) a->c[4] << 32
8743 | (uint64_t) a->c[5] << 40
8744 | (uint64_t) a->c[6] << 48
8745 | (uint64_t) a->c[7] << 56);
8746 return aval;
8747 }
8748
8749 static bfd_vma
8750 ext64b_r_offset (const void *p)
8751 {
8752 union aligned64
8753 {
8754 uint64_t v;
8755 unsigned char c[8];
8756 };
8757 const union aligned64 *a
8758 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8759
8760 uint64_t aval = ( (uint64_t) a->c[0] << 56
8761 | (uint64_t) a->c[1] << 48
8762 | (uint64_t) a->c[2] << 40
8763 | (uint64_t) a->c[3] << 32
8764 | (uint64_t) a->c[4] << 24
8765 | (uint64_t) a->c[5] << 16
8766 | (uint64_t) a->c[6] << 8
8767 | (uint64_t) a->c[7]);
8768 return aval;
8769 }
8770 #endif
8771
8772 /* When performing a relocatable link, the input relocations are
8773 preserved. But, if they reference global symbols, the indices
8774 referenced must be updated. Update all the relocations found in
8775 RELDATA. */
8776
8777 static bfd_boolean
8778 elf_link_adjust_relocs (bfd *abfd,
8779 asection *sec,
8780 struct bfd_elf_section_reloc_data *reldata,
8781 bfd_boolean sort,
8782 struct bfd_link_info *info)
8783 {
8784 unsigned int i;
8785 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8786 bfd_byte *erela;
8787 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8788 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8789 bfd_vma r_type_mask;
8790 int r_sym_shift;
8791 unsigned int count = reldata->count;
8792 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8793
8794 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8795 {
8796 swap_in = bed->s->swap_reloc_in;
8797 swap_out = bed->s->swap_reloc_out;
8798 }
8799 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8800 {
8801 swap_in = bed->s->swap_reloca_in;
8802 swap_out = bed->s->swap_reloca_out;
8803 }
8804 else
8805 abort ();
8806
8807 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8808 abort ();
8809
8810 if (bed->s->arch_size == 32)
8811 {
8812 r_type_mask = 0xff;
8813 r_sym_shift = 8;
8814 }
8815 else
8816 {
8817 r_type_mask = 0xffffffff;
8818 r_sym_shift = 32;
8819 }
8820
8821 erela = reldata->hdr->contents;
8822 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8823 {
8824 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8825 unsigned int j;
8826
8827 if (*rel_hash == NULL)
8828 continue;
8829
8830 if ((*rel_hash)->indx == -2
8831 && info->gc_sections
8832 && ! info->gc_keep_exported)
8833 {
8834 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8835 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8836 abfd, sec,
8837 (*rel_hash)->root.root.string);
8838 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8839 abfd, sec);
8840 bfd_set_error (bfd_error_invalid_operation);
8841 return FALSE;
8842 }
8843 BFD_ASSERT ((*rel_hash)->indx >= 0);
8844
8845 (*swap_in) (abfd, erela, irela);
8846 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8847 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8848 | (irela[j].r_info & r_type_mask));
8849 (*swap_out) (abfd, irela, erela);
8850 }
8851
8852 if (bed->elf_backend_update_relocs)
8853 (*bed->elf_backend_update_relocs) (sec, reldata);
8854
8855 if (sort && count != 0)
8856 {
8857 bfd_vma (*ext_r_off) (const void *);
8858 bfd_vma r_off;
8859 size_t elt_size;
8860 bfd_byte *base, *end, *p, *loc;
8861 bfd_byte *buf = NULL;
8862
8863 if (bed->s->arch_size == 32)
8864 {
8865 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8866 ext_r_off = ext32l_r_offset;
8867 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8868 ext_r_off = ext32b_r_offset;
8869 else
8870 abort ();
8871 }
8872 else
8873 {
8874 #ifdef BFD_HOST_64_BIT
8875 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8876 ext_r_off = ext64l_r_offset;
8877 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8878 ext_r_off = ext64b_r_offset;
8879 else
8880 #endif
8881 abort ();
8882 }
8883
8884 /* Must use a stable sort here. A modified insertion sort,
8885 since the relocs are mostly sorted already. */
8886 elt_size = reldata->hdr->sh_entsize;
8887 base = reldata->hdr->contents;
8888 end = base + count * elt_size;
8889 if (elt_size > sizeof (Elf64_External_Rela))
8890 abort ();
8891
8892 /* Ensure the first element is lowest. This acts as a sentinel,
8893 speeding the main loop below. */
8894 r_off = (*ext_r_off) (base);
8895 for (p = loc = base; (p += elt_size) < end; )
8896 {
8897 bfd_vma r_off2 = (*ext_r_off) (p);
8898 if (r_off > r_off2)
8899 {
8900 r_off = r_off2;
8901 loc = p;
8902 }
8903 }
8904 if (loc != base)
8905 {
8906 /* Don't just swap *base and *loc as that changes the order
8907 of the original base[0] and base[1] if they happen to
8908 have the same r_offset. */
8909 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8910 memcpy (onebuf, loc, elt_size);
8911 memmove (base + elt_size, base, loc - base);
8912 memcpy (base, onebuf, elt_size);
8913 }
8914
8915 for (p = base + elt_size; (p += elt_size) < end; )
8916 {
8917 /* base to p is sorted, *p is next to insert. */
8918 r_off = (*ext_r_off) (p);
8919 /* Search the sorted region for location to insert. */
8920 loc = p - elt_size;
8921 while (r_off < (*ext_r_off) (loc))
8922 loc -= elt_size;
8923 loc += elt_size;
8924 if (loc != p)
8925 {
8926 /* Chances are there is a run of relocs to insert here,
8927 from one of more input files. Files are not always
8928 linked in order due to the way elf_link_input_bfd is
8929 called. See pr17666. */
8930 size_t sortlen = p - loc;
8931 bfd_vma r_off2 = (*ext_r_off) (loc);
8932 size_t runlen = elt_size;
8933 size_t buf_size = 96 * 1024;
8934 while (p + runlen < end
8935 && (sortlen <= buf_size
8936 || runlen + elt_size <= buf_size)
8937 && r_off2 > (*ext_r_off) (p + runlen))
8938 runlen += elt_size;
8939 if (buf == NULL)
8940 {
8941 buf = bfd_malloc (buf_size);
8942 if (buf == NULL)
8943 return FALSE;
8944 }
8945 if (runlen < sortlen)
8946 {
8947 memcpy (buf, p, runlen);
8948 memmove (loc + runlen, loc, sortlen);
8949 memcpy (loc, buf, runlen);
8950 }
8951 else
8952 {
8953 memcpy (buf, loc, sortlen);
8954 memmove (loc, p, runlen);
8955 memcpy (loc + runlen, buf, sortlen);
8956 }
8957 p += runlen - elt_size;
8958 }
8959 }
8960 /* Hashes are no longer valid. */
8961 free (reldata->hashes);
8962 reldata->hashes = NULL;
8963 free (buf);
8964 }
8965 return TRUE;
8966 }
8967
8968 struct elf_link_sort_rela
8969 {
8970 union {
8971 bfd_vma offset;
8972 bfd_vma sym_mask;
8973 } u;
8974 enum elf_reloc_type_class type;
8975 /* We use this as an array of size int_rels_per_ext_rel. */
8976 Elf_Internal_Rela rela[1];
8977 };
8978
8979 static int
8980 elf_link_sort_cmp1 (const void *A, const void *B)
8981 {
8982 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8983 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8984 int relativea, relativeb;
8985
8986 relativea = a->type == reloc_class_relative;
8987 relativeb = b->type == reloc_class_relative;
8988
8989 if (relativea < relativeb)
8990 return 1;
8991 if (relativea > relativeb)
8992 return -1;
8993 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8994 return -1;
8995 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8996 return 1;
8997 if (a->rela->r_offset < b->rela->r_offset)
8998 return -1;
8999 if (a->rela->r_offset > b->rela->r_offset)
9000 return 1;
9001 return 0;
9002 }
9003
9004 static int
9005 elf_link_sort_cmp2 (const void *A, const void *B)
9006 {
9007 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9008 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9009
9010 if (a->type < b->type)
9011 return -1;
9012 if (a->type > b->type)
9013 return 1;
9014 if (a->u.offset < b->u.offset)
9015 return -1;
9016 if (a->u.offset > b->u.offset)
9017 return 1;
9018 if (a->rela->r_offset < b->rela->r_offset)
9019 return -1;
9020 if (a->rela->r_offset > b->rela->r_offset)
9021 return 1;
9022 return 0;
9023 }
9024
9025 static size_t
9026 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9027 {
9028 asection *dynamic_relocs;
9029 asection *rela_dyn;
9030 asection *rel_dyn;
9031 bfd_size_type count, size;
9032 size_t i, ret, sort_elt, ext_size;
9033 bfd_byte *sort, *s_non_relative, *p;
9034 struct elf_link_sort_rela *sq;
9035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9036 int i2e = bed->s->int_rels_per_ext_rel;
9037 unsigned int opb = bfd_octets_per_byte (abfd);
9038 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9039 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9040 struct bfd_link_order *lo;
9041 bfd_vma r_sym_mask;
9042 bfd_boolean use_rela;
9043
9044 /* Find a dynamic reloc section. */
9045 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9046 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9047 if (rela_dyn != NULL && rela_dyn->size > 0
9048 && rel_dyn != NULL && rel_dyn->size > 0)
9049 {
9050 bfd_boolean use_rela_initialised = FALSE;
9051
9052 /* This is just here to stop gcc from complaining.
9053 Its initialization checking code is not perfect. */
9054 use_rela = TRUE;
9055
9056 /* Both sections are present. Examine the sizes
9057 of the indirect sections to help us choose. */
9058 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9059 if (lo->type == bfd_indirect_link_order)
9060 {
9061 asection *o = lo->u.indirect.section;
9062
9063 if ((o->size % bed->s->sizeof_rela) == 0)
9064 {
9065 if ((o->size % bed->s->sizeof_rel) == 0)
9066 /* Section size is divisible by both rel and rela sizes.
9067 It is of no help to us. */
9068 ;
9069 else
9070 {
9071 /* Section size is only divisible by rela. */
9072 if (use_rela_initialised && !use_rela)
9073 {
9074 _bfd_error_handler (_("%pB: unable to sort relocs - "
9075 "they are in more than one size"),
9076 abfd);
9077 bfd_set_error (bfd_error_invalid_operation);
9078 return 0;
9079 }
9080 else
9081 {
9082 use_rela = TRUE;
9083 use_rela_initialised = TRUE;
9084 }
9085 }
9086 }
9087 else if ((o->size % bed->s->sizeof_rel) == 0)
9088 {
9089 /* Section size is only divisible by rel. */
9090 if (use_rela_initialised && use_rela)
9091 {
9092 _bfd_error_handler (_("%pB: unable to sort relocs - "
9093 "they are in more than one size"),
9094 abfd);
9095 bfd_set_error (bfd_error_invalid_operation);
9096 return 0;
9097 }
9098 else
9099 {
9100 use_rela = FALSE;
9101 use_rela_initialised = TRUE;
9102 }
9103 }
9104 else
9105 {
9106 /* The section size is not divisible by either -
9107 something is wrong. */
9108 _bfd_error_handler (_("%pB: unable to sort relocs - "
9109 "they are of an unknown size"), abfd);
9110 bfd_set_error (bfd_error_invalid_operation);
9111 return 0;
9112 }
9113 }
9114
9115 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9116 if (lo->type == bfd_indirect_link_order)
9117 {
9118 asection *o = lo->u.indirect.section;
9119
9120 if ((o->size % bed->s->sizeof_rela) == 0)
9121 {
9122 if ((o->size % bed->s->sizeof_rel) == 0)
9123 /* Section size is divisible by both rel and rela sizes.
9124 It is of no help to us. */
9125 ;
9126 else
9127 {
9128 /* Section size is only divisible by rela. */
9129 if (use_rela_initialised && !use_rela)
9130 {
9131 _bfd_error_handler (_("%pB: unable to sort relocs - "
9132 "they are in more than one size"),
9133 abfd);
9134 bfd_set_error (bfd_error_invalid_operation);
9135 return 0;
9136 }
9137 else
9138 {
9139 use_rela = TRUE;
9140 use_rela_initialised = TRUE;
9141 }
9142 }
9143 }
9144 else if ((o->size % bed->s->sizeof_rel) == 0)
9145 {
9146 /* Section size is only divisible by rel. */
9147 if (use_rela_initialised && use_rela)
9148 {
9149 _bfd_error_handler (_("%pB: unable to sort relocs - "
9150 "they are in more than one size"),
9151 abfd);
9152 bfd_set_error (bfd_error_invalid_operation);
9153 return 0;
9154 }
9155 else
9156 {
9157 use_rela = FALSE;
9158 use_rela_initialised = TRUE;
9159 }
9160 }
9161 else
9162 {
9163 /* The section size is not divisible by either -
9164 something is wrong. */
9165 _bfd_error_handler (_("%pB: unable to sort relocs - "
9166 "they are of an unknown size"), abfd);
9167 bfd_set_error (bfd_error_invalid_operation);
9168 return 0;
9169 }
9170 }
9171
9172 if (! use_rela_initialised)
9173 /* Make a guess. */
9174 use_rela = TRUE;
9175 }
9176 else if (rela_dyn != NULL && rela_dyn->size > 0)
9177 use_rela = TRUE;
9178 else if (rel_dyn != NULL && rel_dyn->size > 0)
9179 use_rela = FALSE;
9180 else
9181 return 0;
9182
9183 if (use_rela)
9184 {
9185 dynamic_relocs = rela_dyn;
9186 ext_size = bed->s->sizeof_rela;
9187 swap_in = bed->s->swap_reloca_in;
9188 swap_out = bed->s->swap_reloca_out;
9189 }
9190 else
9191 {
9192 dynamic_relocs = rel_dyn;
9193 ext_size = bed->s->sizeof_rel;
9194 swap_in = bed->s->swap_reloc_in;
9195 swap_out = bed->s->swap_reloc_out;
9196 }
9197
9198 size = 0;
9199 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9200 if (lo->type == bfd_indirect_link_order)
9201 size += lo->u.indirect.section->size;
9202
9203 if (size != dynamic_relocs->size)
9204 return 0;
9205
9206 sort_elt = (sizeof (struct elf_link_sort_rela)
9207 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9208
9209 count = dynamic_relocs->size / ext_size;
9210 if (count == 0)
9211 return 0;
9212 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9213
9214 if (sort == NULL)
9215 {
9216 (*info->callbacks->warning)
9217 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9218 return 0;
9219 }
9220
9221 if (bed->s->arch_size == 32)
9222 r_sym_mask = ~(bfd_vma) 0xff;
9223 else
9224 r_sym_mask = ~(bfd_vma) 0xffffffff;
9225
9226 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9227 if (lo->type == bfd_indirect_link_order)
9228 {
9229 bfd_byte *erel, *erelend;
9230 asection *o = lo->u.indirect.section;
9231
9232 if (o->contents == NULL && o->size != 0)
9233 {
9234 /* This is a reloc section that is being handled as a normal
9235 section. See bfd_section_from_shdr. We can't combine
9236 relocs in this case. */
9237 free (sort);
9238 return 0;
9239 }
9240 erel = o->contents;
9241 erelend = o->contents + o->size;
9242 p = sort + o->output_offset * opb / ext_size * sort_elt;
9243
9244 while (erel < erelend)
9245 {
9246 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9247
9248 (*swap_in) (abfd, erel, s->rela);
9249 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9250 s->u.sym_mask = r_sym_mask;
9251 p += sort_elt;
9252 erel += ext_size;
9253 }
9254 }
9255
9256 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9257
9258 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9259 {
9260 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9261 if (s->type != reloc_class_relative)
9262 break;
9263 }
9264 ret = i;
9265 s_non_relative = p;
9266
9267 sq = (struct elf_link_sort_rela *) s_non_relative;
9268 for (; i < count; i++, p += sort_elt)
9269 {
9270 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9271 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9272 sq = sp;
9273 sp->u.offset = sq->rela->r_offset;
9274 }
9275
9276 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9277
9278 struct elf_link_hash_table *htab = elf_hash_table (info);
9279 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9280 {
9281 /* We have plt relocs in .rela.dyn. */
9282 sq = (struct elf_link_sort_rela *) sort;
9283 for (i = 0; i < count; i++)
9284 if (sq[count - i - 1].type != reloc_class_plt)
9285 break;
9286 if (i != 0 && htab->srelplt->size == i * ext_size)
9287 {
9288 struct bfd_link_order **plo;
9289 /* Put srelplt link_order last. This is so the output_offset
9290 set in the next loop is correct for DT_JMPREL. */
9291 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9292 if ((*plo)->type == bfd_indirect_link_order
9293 && (*plo)->u.indirect.section == htab->srelplt)
9294 {
9295 lo = *plo;
9296 *plo = lo->next;
9297 }
9298 else
9299 plo = &(*plo)->next;
9300 *plo = lo;
9301 lo->next = NULL;
9302 dynamic_relocs->map_tail.link_order = lo;
9303 }
9304 }
9305
9306 p = sort;
9307 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9308 if (lo->type == bfd_indirect_link_order)
9309 {
9310 bfd_byte *erel, *erelend;
9311 asection *o = lo->u.indirect.section;
9312
9313 erel = o->contents;
9314 erelend = o->contents + o->size;
9315 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9316 while (erel < erelend)
9317 {
9318 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9319 (*swap_out) (abfd, s->rela, erel);
9320 p += sort_elt;
9321 erel += ext_size;
9322 }
9323 }
9324
9325 free (sort);
9326 *psec = dynamic_relocs;
9327 return ret;
9328 }
9329
9330 /* Add a symbol to the output symbol string table. */
9331
9332 static int
9333 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9334 const char *name,
9335 Elf_Internal_Sym *elfsym,
9336 asection *input_sec,
9337 struct elf_link_hash_entry *h)
9338 {
9339 int (*output_symbol_hook)
9340 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9341 struct elf_link_hash_entry *);
9342 struct elf_link_hash_table *hash_table;
9343 const struct elf_backend_data *bed;
9344 bfd_size_type strtabsize;
9345
9346 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9347
9348 bed = get_elf_backend_data (flinfo->output_bfd);
9349 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9350 if (output_symbol_hook != NULL)
9351 {
9352 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9353 if (ret != 1)
9354 return ret;
9355 }
9356
9357 if (name == NULL
9358 || *name == '\0'
9359 || (input_sec->flags & SEC_EXCLUDE))
9360 elfsym->st_name = (unsigned long) -1;
9361 else
9362 {
9363 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9364 to get the final offset for st_name. */
9365 elfsym->st_name
9366 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9367 name, FALSE);
9368 if (elfsym->st_name == (unsigned long) -1)
9369 return 0;
9370 }
9371
9372 hash_table = elf_hash_table (flinfo->info);
9373 strtabsize = hash_table->strtabsize;
9374 if (strtabsize <= hash_table->strtabcount)
9375 {
9376 strtabsize += strtabsize;
9377 hash_table->strtabsize = strtabsize;
9378 strtabsize *= sizeof (*hash_table->strtab);
9379 hash_table->strtab
9380 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9381 strtabsize);
9382 if (hash_table->strtab == NULL)
9383 return 0;
9384 }
9385 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9386 hash_table->strtab[hash_table->strtabcount].dest_index
9387 = hash_table->strtabcount;
9388 hash_table->strtab[hash_table->strtabcount].destshndx_index
9389 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9390
9391 bfd_get_symcount (flinfo->output_bfd) += 1;
9392 hash_table->strtabcount += 1;
9393
9394 return 1;
9395 }
9396
9397 /* Swap symbols out to the symbol table and flush the output symbols to
9398 the file. */
9399
9400 static bfd_boolean
9401 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9402 {
9403 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9404 bfd_size_type amt;
9405 size_t i;
9406 const struct elf_backend_data *bed;
9407 bfd_byte *symbuf;
9408 Elf_Internal_Shdr *hdr;
9409 file_ptr pos;
9410 bfd_boolean ret;
9411
9412 if (!hash_table->strtabcount)
9413 return TRUE;
9414
9415 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9416
9417 bed = get_elf_backend_data (flinfo->output_bfd);
9418
9419 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9420 symbuf = (bfd_byte *) bfd_malloc (amt);
9421 if (symbuf == NULL)
9422 return FALSE;
9423
9424 if (flinfo->symshndxbuf)
9425 {
9426 amt = sizeof (Elf_External_Sym_Shndx);
9427 amt *= bfd_get_symcount (flinfo->output_bfd);
9428 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9429 if (flinfo->symshndxbuf == NULL)
9430 {
9431 free (symbuf);
9432 return FALSE;
9433 }
9434 }
9435
9436 for (i = 0; i < hash_table->strtabcount; i++)
9437 {
9438 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9439 if (elfsym->sym.st_name == (unsigned long) -1)
9440 elfsym->sym.st_name = 0;
9441 else
9442 elfsym->sym.st_name
9443 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9444 elfsym->sym.st_name);
9445 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9446 ((bfd_byte *) symbuf
9447 + (elfsym->dest_index
9448 * bed->s->sizeof_sym)),
9449 (flinfo->symshndxbuf
9450 + elfsym->destshndx_index));
9451 }
9452
9453 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9454 pos = hdr->sh_offset + hdr->sh_size;
9455 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9456 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9457 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9458 {
9459 hdr->sh_size += amt;
9460 ret = TRUE;
9461 }
9462 else
9463 ret = FALSE;
9464
9465 free (symbuf);
9466
9467 free (hash_table->strtab);
9468 hash_table->strtab = NULL;
9469
9470 return ret;
9471 }
9472
9473 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9474
9475 static bfd_boolean
9476 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9477 {
9478 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9479 && sym->st_shndx < SHN_LORESERVE)
9480 {
9481 /* The gABI doesn't support dynamic symbols in output sections
9482 beyond 64k. */
9483 _bfd_error_handler
9484 /* xgettext:c-format */
9485 (_("%pB: too many sections: %d (>= %d)"),
9486 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9487 bfd_set_error (bfd_error_nonrepresentable_section);
9488 return FALSE;
9489 }
9490 return TRUE;
9491 }
9492
9493 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9494 allowing an unsatisfied unversioned symbol in the DSO to match a
9495 versioned symbol that would normally require an explicit version.
9496 We also handle the case that a DSO references a hidden symbol
9497 which may be satisfied by a versioned symbol in another DSO. */
9498
9499 static bfd_boolean
9500 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9501 const struct elf_backend_data *bed,
9502 struct elf_link_hash_entry *h)
9503 {
9504 bfd *abfd;
9505 struct elf_link_loaded_list *loaded;
9506
9507 if (!is_elf_hash_table (info->hash))
9508 return FALSE;
9509
9510 /* Check indirect symbol. */
9511 while (h->root.type == bfd_link_hash_indirect)
9512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9513
9514 switch (h->root.type)
9515 {
9516 default:
9517 abfd = NULL;
9518 break;
9519
9520 case bfd_link_hash_undefined:
9521 case bfd_link_hash_undefweak:
9522 abfd = h->root.u.undef.abfd;
9523 if (abfd == NULL
9524 || (abfd->flags & DYNAMIC) == 0
9525 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9526 return FALSE;
9527 break;
9528
9529 case bfd_link_hash_defined:
9530 case bfd_link_hash_defweak:
9531 abfd = h->root.u.def.section->owner;
9532 break;
9533
9534 case bfd_link_hash_common:
9535 abfd = h->root.u.c.p->section->owner;
9536 break;
9537 }
9538 BFD_ASSERT (abfd != NULL);
9539
9540 for (loaded = elf_hash_table (info)->loaded;
9541 loaded != NULL;
9542 loaded = loaded->next)
9543 {
9544 bfd *input;
9545 Elf_Internal_Shdr *hdr;
9546 size_t symcount;
9547 size_t extsymcount;
9548 size_t extsymoff;
9549 Elf_Internal_Shdr *versymhdr;
9550 Elf_Internal_Sym *isym;
9551 Elf_Internal_Sym *isymend;
9552 Elf_Internal_Sym *isymbuf;
9553 Elf_External_Versym *ever;
9554 Elf_External_Versym *extversym;
9555
9556 input = loaded->abfd;
9557
9558 /* We check each DSO for a possible hidden versioned definition. */
9559 if (input == abfd
9560 || (input->flags & DYNAMIC) == 0
9561 || elf_dynversym (input) == 0)
9562 continue;
9563
9564 hdr = &elf_tdata (input)->dynsymtab_hdr;
9565
9566 symcount = hdr->sh_size / bed->s->sizeof_sym;
9567 if (elf_bad_symtab (input))
9568 {
9569 extsymcount = symcount;
9570 extsymoff = 0;
9571 }
9572 else
9573 {
9574 extsymcount = symcount - hdr->sh_info;
9575 extsymoff = hdr->sh_info;
9576 }
9577
9578 if (extsymcount == 0)
9579 continue;
9580
9581 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9582 NULL, NULL, NULL);
9583 if (isymbuf == NULL)
9584 return FALSE;
9585
9586 /* Read in any version definitions. */
9587 versymhdr = &elf_tdata (input)->dynversym_hdr;
9588 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9589 if (extversym == NULL)
9590 goto error_ret;
9591
9592 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9593 || (bfd_bread (extversym, versymhdr->sh_size, input)
9594 != versymhdr->sh_size))
9595 {
9596 free (extversym);
9597 error_ret:
9598 free (isymbuf);
9599 return FALSE;
9600 }
9601
9602 ever = extversym + extsymoff;
9603 isymend = isymbuf + extsymcount;
9604 for (isym = isymbuf; isym < isymend; isym++, ever++)
9605 {
9606 const char *name;
9607 Elf_Internal_Versym iver;
9608 unsigned short version_index;
9609
9610 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9611 || isym->st_shndx == SHN_UNDEF)
9612 continue;
9613
9614 name = bfd_elf_string_from_elf_section (input,
9615 hdr->sh_link,
9616 isym->st_name);
9617 if (strcmp (name, h->root.root.string) != 0)
9618 continue;
9619
9620 _bfd_elf_swap_versym_in (input, ever, &iver);
9621
9622 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9623 && !(h->def_regular
9624 && h->forced_local))
9625 {
9626 /* If we have a non-hidden versioned sym, then it should
9627 have provided a definition for the undefined sym unless
9628 it is defined in a non-shared object and forced local.
9629 */
9630 abort ();
9631 }
9632
9633 version_index = iver.vs_vers & VERSYM_VERSION;
9634 if (version_index == 1 || version_index == 2)
9635 {
9636 /* This is the base or first version. We can use it. */
9637 free (extversym);
9638 free (isymbuf);
9639 return TRUE;
9640 }
9641 }
9642
9643 free (extversym);
9644 free (isymbuf);
9645 }
9646
9647 return FALSE;
9648 }
9649
9650 /* Convert ELF common symbol TYPE. */
9651
9652 static int
9653 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9654 {
9655 /* Commom symbol can only appear in relocatable link. */
9656 if (!bfd_link_relocatable (info))
9657 abort ();
9658 switch (info->elf_stt_common)
9659 {
9660 case unchanged:
9661 break;
9662 case elf_stt_common:
9663 type = STT_COMMON;
9664 break;
9665 case no_elf_stt_common:
9666 type = STT_OBJECT;
9667 break;
9668 }
9669 return type;
9670 }
9671
9672 /* Add an external symbol to the symbol table. This is called from
9673 the hash table traversal routine. When generating a shared object,
9674 we go through the symbol table twice. The first time we output
9675 anything that might have been forced to local scope in a version
9676 script. The second time we output the symbols that are still
9677 global symbols. */
9678
9679 static bfd_boolean
9680 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9681 {
9682 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9683 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9684 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9685 bfd_boolean strip;
9686 Elf_Internal_Sym sym;
9687 asection *input_sec;
9688 const struct elf_backend_data *bed;
9689 long indx;
9690 int ret;
9691 unsigned int type;
9692
9693 if (h->root.type == bfd_link_hash_warning)
9694 {
9695 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9696 if (h->root.type == bfd_link_hash_new)
9697 return TRUE;
9698 }
9699
9700 /* Decide whether to output this symbol in this pass. */
9701 if (eoinfo->localsyms)
9702 {
9703 if (!h->forced_local)
9704 return TRUE;
9705 }
9706 else
9707 {
9708 if (h->forced_local)
9709 return TRUE;
9710 }
9711
9712 bed = get_elf_backend_data (flinfo->output_bfd);
9713
9714 if (h->root.type == bfd_link_hash_undefined)
9715 {
9716 /* If we have an undefined symbol reference here then it must have
9717 come from a shared library that is being linked in. (Undefined
9718 references in regular files have already been handled unless
9719 they are in unreferenced sections which are removed by garbage
9720 collection). */
9721 bfd_boolean ignore_undef = FALSE;
9722
9723 /* Some symbols may be special in that the fact that they're
9724 undefined can be safely ignored - let backend determine that. */
9725 if (bed->elf_backend_ignore_undef_symbol)
9726 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9727
9728 /* If we are reporting errors for this situation then do so now. */
9729 if (!ignore_undef
9730 && h->ref_dynamic
9731 && (!h->ref_regular || flinfo->info->gc_sections)
9732 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9733 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9734 (*flinfo->info->callbacks->undefined_symbol)
9735 (flinfo->info, h->root.root.string,
9736 h->ref_regular ? NULL : h->root.u.undef.abfd,
9737 NULL, 0,
9738 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9739
9740 /* Strip a global symbol defined in a discarded section. */
9741 if (h->indx == -3)
9742 return TRUE;
9743 }
9744
9745 /* We should also warn if a forced local symbol is referenced from
9746 shared libraries. */
9747 if (bfd_link_executable (flinfo->info)
9748 && h->forced_local
9749 && h->ref_dynamic
9750 && h->def_regular
9751 && !h->dynamic_def
9752 && h->ref_dynamic_nonweak
9753 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9754 {
9755 bfd *def_bfd;
9756 const char *msg;
9757 struct elf_link_hash_entry *hi = h;
9758
9759 /* Check indirect symbol. */
9760 while (hi->root.type == bfd_link_hash_indirect)
9761 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9762
9763 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9764 /* xgettext:c-format */
9765 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9766 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9767 /* xgettext:c-format */
9768 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9769 else
9770 /* xgettext:c-format */
9771 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9772 def_bfd = flinfo->output_bfd;
9773 if (hi->root.u.def.section != bfd_abs_section_ptr)
9774 def_bfd = hi->root.u.def.section->owner;
9775 _bfd_error_handler (msg, flinfo->output_bfd,
9776 h->root.root.string, def_bfd);
9777 bfd_set_error (bfd_error_bad_value);
9778 eoinfo->failed = TRUE;
9779 return FALSE;
9780 }
9781
9782 /* We don't want to output symbols that have never been mentioned by
9783 a regular file, or that we have been told to strip. However, if
9784 h->indx is set to -2, the symbol is used by a reloc and we must
9785 output it. */
9786 strip = FALSE;
9787 if (h->indx == -2)
9788 ;
9789 else if ((h->def_dynamic
9790 || h->ref_dynamic
9791 || h->root.type == bfd_link_hash_new)
9792 && !h->def_regular
9793 && !h->ref_regular)
9794 strip = TRUE;
9795 else if (flinfo->info->strip == strip_all)
9796 strip = TRUE;
9797 else if (flinfo->info->strip == strip_some
9798 && bfd_hash_lookup (flinfo->info->keep_hash,
9799 h->root.root.string, FALSE, FALSE) == NULL)
9800 strip = TRUE;
9801 else if ((h->root.type == bfd_link_hash_defined
9802 || h->root.type == bfd_link_hash_defweak)
9803 && ((flinfo->info->strip_discarded
9804 && discarded_section (h->root.u.def.section))
9805 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9806 && h->root.u.def.section->owner != NULL
9807 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9808 strip = TRUE;
9809 else if ((h->root.type == bfd_link_hash_undefined
9810 || h->root.type == bfd_link_hash_undefweak)
9811 && h->root.u.undef.abfd != NULL
9812 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9813 strip = TRUE;
9814
9815 type = h->type;
9816
9817 /* If we're stripping it, and it's not a dynamic symbol, there's
9818 nothing else to do. However, if it is a forced local symbol or
9819 an ifunc symbol we need to give the backend finish_dynamic_symbol
9820 function a chance to make it dynamic. */
9821 if (strip
9822 && h->dynindx == -1
9823 && type != STT_GNU_IFUNC
9824 && !h->forced_local)
9825 return TRUE;
9826
9827 sym.st_value = 0;
9828 sym.st_size = h->size;
9829 sym.st_other = h->other;
9830 switch (h->root.type)
9831 {
9832 default:
9833 case bfd_link_hash_new:
9834 case bfd_link_hash_warning:
9835 abort ();
9836 return FALSE;
9837
9838 case bfd_link_hash_undefined:
9839 case bfd_link_hash_undefweak:
9840 input_sec = bfd_und_section_ptr;
9841 sym.st_shndx = SHN_UNDEF;
9842 break;
9843
9844 case bfd_link_hash_defined:
9845 case bfd_link_hash_defweak:
9846 {
9847 input_sec = h->root.u.def.section;
9848 if (input_sec->output_section != NULL)
9849 {
9850 sym.st_shndx =
9851 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9852 input_sec->output_section);
9853 if (sym.st_shndx == SHN_BAD)
9854 {
9855 _bfd_error_handler
9856 /* xgettext:c-format */
9857 (_("%pB: could not find output section %pA for input section %pA"),
9858 flinfo->output_bfd, input_sec->output_section, input_sec);
9859 bfd_set_error (bfd_error_nonrepresentable_section);
9860 eoinfo->failed = TRUE;
9861 return FALSE;
9862 }
9863
9864 /* ELF symbols in relocatable files are section relative,
9865 but in nonrelocatable files they are virtual
9866 addresses. */
9867 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9868 if (!bfd_link_relocatable (flinfo->info))
9869 {
9870 sym.st_value += input_sec->output_section->vma;
9871 if (h->type == STT_TLS)
9872 {
9873 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9874 if (tls_sec != NULL)
9875 sym.st_value -= tls_sec->vma;
9876 }
9877 }
9878 }
9879 else
9880 {
9881 BFD_ASSERT (input_sec->owner == NULL
9882 || (input_sec->owner->flags & DYNAMIC) != 0);
9883 sym.st_shndx = SHN_UNDEF;
9884 input_sec = bfd_und_section_ptr;
9885 }
9886 }
9887 break;
9888
9889 case bfd_link_hash_common:
9890 input_sec = h->root.u.c.p->section;
9891 sym.st_shndx = bed->common_section_index (input_sec);
9892 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9893 break;
9894
9895 case bfd_link_hash_indirect:
9896 /* These symbols are created by symbol versioning. They point
9897 to the decorated version of the name. For example, if the
9898 symbol foo@@GNU_1.2 is the default, which should be used when
9899 foo is used with no version, then we add an indirect symbol
9900 foo which points to foo@@GNU_1.2. We ignore these symbols,
9901 since the indirected symbol is already in the hash table. */
9902 return TRUE;
9903 }
9904
9905 if (type == STT_COMMON || type == STT_OBJECT)
9906 switch (h->root.type)
9907 {
9908 case bfd_link_hash_common:
9909 type = elf_link_convert_common_type (flinfo->info, type);
9910 break;
9911 case bfd_link_hash_defined:
9912 case bfd_link_hash_defweak:
9913 if (bed->common_definition (&sym))
9914 type = elf_link_convert_common_type (flinfo->info, type);
9915 else
9916 type = STT_OBJECT;
9917 break;
9918 case bfd_link_hash_undefined:
9919 case bfd_link_hash_undefweak:
9920 break;
9921 default:
9922 abort ();
9923 }
9924
9925 if (h->forced_local)
9926 {
9927 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9928 /* Turn off visibility on local symbol. */
9929 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9930 }
9931 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9932 else if (h->unique_global && h->def_regular)
9933 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9934 else if (h->root.type == bfd_link_hash_undefweak
9935 || h->root.type == bfd_link_hash_defweak)
9936 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9937 else
9938 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9939 sym.st_target_internal = h->target_internal;
9940
9941 /* Give the processor backend a chance to tweak the symbol value,
9942 and also to finish up anything that needs to be done for this
9943 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9944 forced local syms when non-shared is due to a historical quirk.
9945 STT_GNU_IFUNC symbol must go through PLT. */
9946 if ((h->type == STT_GNU_IFUNC
9947 && h->def_regular
9948 && !bfd_link_relocatable (flinfo->info))
9949 || ((h->dynindx != -1
9950 || h->forced_local)
9951 && ((bfd_link_pic (flinfo->info)
9952 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9953 || h->root.type != bfd_link_hash_undefweak))
9954 || !h->forced_local)
9955 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9956 {
9957 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9958 (flinfo->output_bfd, flinfo->info, h, &sym)))
9959 {
9960 eoinfo->failed = TRUE;
9961 return FALSE;
9962 }
9963 }
9964
9965 /* If we are marking the symbol as undefined, and there are no
9966 non-weak references to this symbol from a regular object, then
9967 mark the symbol as weak undefined; if there are non-weak
9968 references, mark the symbol as strong. We can't do this earlier,
9969 because it might not be marked as undefined until the
9970 finish_dynamic_symbol routine gets through with it. */
9971 if (sym.st_shndx == SHN_UNDEF
9972 && h->ref_regular
9973 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9974 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9975 {
9976 int bindtype;
9977 type = ELF_ST_TYPE (sym.st_info);
9978
9979 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9980 if (type == STT_GNU_IFUNC)
9981 type = STT_FUNC;
9982
9983 if (h->ref_regular_nonweak)
9984 bindtype = STB_GLOBAL;
9985 else
9986 bindtype = STB_WEAK;
9987 sym.st_info = ELF_ST_INFO (bindtype, type);
9988 }
9989
9990 /* If this is a symbol defined in a dynamic library, don't use the
9991 symbol size from the dynamic library. Relinking an executable
9992 against a new library may introduce gratuitous changes in the
9993 executable's symbols if we keep the size. */
9994 if (sym.st_shndx == SHN_UNDEF
9995 && !h->def_regular
9996 && h->def_dynamic)
9997 sym.st_size = 0;
9998
9999 /* If a non-weak symbol with non-default visibility is not defined
10000 locally, it is a fatal error. */
10001 if (!bfd_link_relocatable (flinfo->info)
10002 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10003 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10004 && h->root.type == bfd_link_hash_undefined
10005 && !h->def_regular)
10006 {
10007 const char *msg;
10008
10009 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10010 /* xgettext:c-format */
10011 msg = _("%pB: protected symbol `%s' isn't defined");
10012 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10013 /* xgettext:c-format */
10014 msg = _("%pB: internal symbol `%s' isn't defined");
10015 else
10016 /* xgettext:c-format */
10017 msg = _("%pB: hidden symbol `%s' isn't defined");
10018 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10019 bfd_set_error (bfd_error_bad_value);
10020 eoinfo->failed = TRUE;
10021 return FALSE;
10022 }
10023
10024 /* If this symbol should be put in the .dynsym section, then put it
10025 there now. We already know the symbol index. We also fill in
10026 the entry in the .hash section. */
10027 if (h->dynindx != -1
10028 && elf_hash_table (flinfo->info)->dynamic_sections_created
10029 && elf_hash_table (flinfo->info)->dynsym != NULL
10030 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10031 {
10032 bfd_byte *esym;
10033
10034 /* Since there is no version information in the dynamic string,
10035 if there is no version info in symbol version section, we will
10036 have a run-time problem if not linking executable, referenced
10037 by shared library, or not bound locally. */
10038 if (h->verinfo.verdef == NULL
10039 && (!bfd_link_executable (flinfo->info)
10040 || h->ref_dynamic
10041 || !h->def_regular))
10042 {
10043 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10044
10045 if (p && p [1] != '\0')
10046 {
10047 _bfd_error_handler
10048 /* xgettext:c-format */
10049 (_("%pB: no symbol version section for versioned symbol `%s'"),
10050 flinfo->output_bfd, h->root.root.string);
10051 eoinfo->failed = TRUE;
10052 return FALSE;
10053 }
10054 }
10055
10056 sym.st_name = h->dynstr_index;
10057 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10058 + h->dynindx * bed->s->sizeof_sym);
10059 if (!check_dynsym (flinfo->output_bfd, &sym))
10060 {
10061 eoinfo->failed = TRUE;
10062 return FALSE;
10063 }
10064 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10065
10066 if (flinfo->hash_sec != NULL)
10067 {
10068 size_t hash_entry_size;
10069 bfd_byte *bucketpos;
10070 bfd_vma chain;
10071 size_t bucketcount;
10072 size_t bucket;
10073
10074 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10075 bucket = h->u.elf_hash_value % bucketcount;
10076
10077 hash_entry_size
10078 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10079 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10080 + (bucket + 2) * hash_entry_size);
10081 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10082 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10083 bucketpos);
10084 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10085 ((bfd_byte *) flinfo->hash_sec->contents
10086 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10087 }
10088
10089 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10090 {
10091 Elf_Internal_Versym iversym;
10092 Elf_External_Versym *eversym;
10093
10094 if (!h->def_regular)
10095 {
10096 if (h->verinfo.verdef == NULL
10097 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10098 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10099 iversym.vs_vers = 0;
10100 else
10101 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10102 }
10103 else
10104 {
10105 if (h->verinfo.vertree == NULL)
10106 iversym.vs_vers = 1;
10107 else
10108 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10109 if (flinfo->info->create_default_symver)
10110 iversym.vs_vers++;
10111 }
10112
10113 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10114 defined locally. */
10115 if (h->versioned == versioned_hidden && h->def_regular)
10116 iversym.vs_vers |= VERSYM_HIDDEN;
10117
10118 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10119 eversym += h->dynindx;
10120 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10121 }
10122 }
10123
10124 /* If the symbol is undefined, and we didn't output it to .dynsym,
10125 strip it from .symtab too. Obviously we can't do this for
10126 relocatable output or when needed for --emit-relocs. */
10127 else if (input_sec == bfd_und_section_ptr
10128 && h->indx != -2
10129 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10130 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10131 && !bfd_link_relocatable (flinfo->info))
10132 return TRUE;
10133
10134 /* Also strip others that we couldn't earlier due to dynamic symbol
10135 processing. */
10136 if (strip)
10137 return TRUE;
10138 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10139 return TRUE;
10140
10141 /* Output a FILE symbol so that following locals are not associated
10142 with the wrong input file. We need one for forced local symbols
10143 if we've seen more than one FILE symbol or when we have exactly
10144 one FILE symbol but global symbols are present in a file other
10145 than the one with the FILE symbol. We also need one if linker
10146 defined symbols are present. In practice these conditions are
10147 always met, so just emit the FILE symbol unconditionally. */
10148 if (eoinfo->localsyms
10149 && !eoinfo->file_sym_done
10150 && eoinfo->flinfo->filesym_count != 0)
10151 {
10152 Elf_Internal_Sym fsym;
10153
10154 memset (&fsym, 0, sizeof (fsym));
10155 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10156 fsym.st_shndx = SHN_ABS;
10157 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10158 bfd_und_section_ptr, NULL))
10159 return FALSE;
10160
10161 eoinfo->file_sym_done = TRUE;
10162 }
10163
10164 indx = bfd_get_symcount (flinfo->output_bfd);
10165 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10166 input_sec, h);
10167 if (ret == 0)
10168 {
10169 eoinfo->failed = TRUE;
10170 return FALSE;
10171 }
10172 else if (ret == 1)
10173 h->indx = indx;
10174 else if (h->indx == -2)
10175 abort();
10176
10177 return TRUE;
10178 }
10179
10180 /* Return TRUE if special handling is done for relocs in SEC against
10181 symbols defined in discarded sections. */
10182
10183 static bfd_boolean
10184 elf_section_ignore_discarded_relocs (asection *sec)
10185 {
10186 const struct elf_backend_data *bed;
10187
10188 switch (sec->sec_info_type)
10189 {
10190 case SEC_INFO_TYPE_STABS:
10191 case SEC_INFO_TYPE_EH_FRAME:
10192 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10193 return TRUE;
10194 default:
10195 break;
10196 }
10197
10198 bed = get_elf_backend_data (sec->owner);
10199 if (bed->elf_backend_ignore_discarded_relocs != NULL
10200 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10201 return TRUE;
10202
10203 return FALSE;
10204 }
10205
10206 /* Return a mask saying how ld should treat relocations in SEC against
10207 symbols defined in discarded sections. If this function returns
10208 COMPLAIN set, ld will issue a warning message. If this function
10209 returns PRETEND set, and the discarded section was link-once and the
10210 same size as the kept link-once section, ld will pretend that the
10211 symbol was actually defined in the kept section. Otherwise ld will
10212 zero the reloc (at least that is the intent, but some cooperation by
10213 the target dependent code is needed, particularly for REL targets). */
10214
10215 unsigned int
10216 _bfd_elf_default_action_discarded (asection *sec)
10217 {
10218 if (sec->flags & SEC_DEBUGGING)
10219 return PRETEND;
10220
10221 if (strcmp (".eh_frame", sec->name) == 0)
10222 return 0;
10223
10224 if (strcmp (".gcc_except_table", sec->name) == 0)
10225 return 0;
10226
10227 return COMPLAIN | PRETEND;
10228 }
10229
10230 /* Find a match between a section and a member of a section group. */
10231
10232 static asection *
10233 match_group_member (asection *sec, asection *group,
10234 struct bfd_link_info *info)
10235 {
10236 asection *first = elf_next_in_group (group);
10237 asection *s = first;
10238
10239 while (s != NULL)
10240 {
10241 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10242 return s;
10243
10244 s = elf_next_in_group (s);
10245 if (s == first)
10246 break;
10247 }
10248
10249 return NULL;
10250 }
10251
10252 /* Check if the kept section of a discarded section SEC can be used
10253 to replace it. Return the replacement if it is OK. Otherwise return
10254 NULL. */
10255
10256 asection *
10257 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10258 {
10259 asection *kept;
10260
10261 kept = sec->kept_section;
10262 if (kept != NULL)
10263 {
10264 if ((kept->flags & SEC_GROUP) != 0)
10265 kept = match_group_member (sec, kept, info);
10266 if (kept != NULL
10267 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10268 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10269 kept = NULL;
10270 sec->kept_section = kept;
10271 }
10272 return kept;
10273 }
10274
10275 /* Link an input file into the linker output file. This function
10276 handles all the sections and relocations of the input file at once.
10277 This is so that we only have to read the local symbols once, and
10278 don't have to keep them in memory. */
10279
10280 static bfd_boolean
10281 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10282 {
10283 int (*relocate_section)
10284 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10285 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10286 bfd *output_bfd;
10287 Elf_Internal_Shdr *symtab_hdr;
10288 size_t locsymcount;
10289 size_t extsymoff;
10290 Elf_Internal_Sym *isymbuf;
10291 Elf_Internal_Sym *isym;
10292 Elf_Internal_Sym *isymend;
10293 long *pindex;
10294 asection **ppsection;
10295 asection *o;
10296 const struct elf_backend_data *bed;
10297 struct elf_link_hash_entry **sym_hashes;
10298 bfd_size_type address_size;
10299 bfd_vma r_type_mask;
10300 int r_sym_shift;
10301 bfd_boolean have_file_sym = FALSE;
10302
10303 output_bfd = flinfo->output_bfd;
10304 bed = get_elf_backend_data (output_bfd);
10305 relocate_section = bed->elf_backend_relocate_section;
10306
10307 /* If this is a dynamic object, we don't want to do anything here:
10308 we don't want the local symbols, and we don't want the section
10309 contents. */
10310 if ((input_bfd->flags & DYNAMIC) != 0)
10311 return TRUE;
10312
10313 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10314 if (elf_bad_symtab (input_bfd))
10315 {
10316 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10317 extsymoff = 0;
10318 }
10319 else
10320 {
10321 locsymcount = symtab_hdr->sh_info;
10322 extsymoff = symtab_hdr->sh_info;
10323 }
10324
10325 /* Read the local symbols. */
10326 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10327 if (isymbuf == NULL && locsymcount != 0)
10328 {
10329 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10330 flinfo->internal_syms,
10331 flinfo->external_syms,
10332 flinfo->locsym_shndx);
10333 if (isymbuf == NULL)
10334 return FALSE;
10335 }
10336
10337 /* Find local symbol sections and adjust values of symbols in
10338 SEC_MERGE sections. Write out those local symbols we know are
10339 going into the output file. */
10340 isymend = isymbuf + locsymcount;
10341 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10342 isym < isymend;
10343 isym++, pindex++, ppsection++)
10344 {
10345 asection *isec;
10346 const char *name;
10347 Elf_Internal_Sym osym;
10348 long indx;
10349 int ret;
10350
10351 *pindex = -1;
10352
10353 if (elf_bad_symtab (input_bfd))
10354 {
10355 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10356 {
10357 *ppsection = NULL;
10358 continue;
10359 }
10360 }
10361
10362 if (isym->st_shndx == SHN_UNDEF)
10363 isec = bfd_und_section_ptr;
10364 else if (isym->st_shndx == SHN_ABS)
10365 isec = bfd_abs_section_ptr;
10366 else if (isym->st_shndx == SHN_COMMON)
10367 isec = bfd_com_section_ptr;
10368 else
10369 {
10370 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10371 if (isec == NULL)
10372 {
10373 /* Don't attempt to output symbols with st_shnx in the
10374 reserved range other than SHN_ABS and SHN_COMMON. */
10375 *ppsection = NULL;
10376 continue;
10377 }
10378 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10379 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10380 isym->st_value =
10381 _bfd_merged_section_offset (output_bfd, &isec,
10382 elf_section_data (isec)->sec_info,
10383 isym->st_value);
10384 }
10385
10386 *ppsection = isec;
10387
10388 /* Don't output the first, undefined, symbol. In fact, don't
10389 output any undefined local symbol. */
10390 if (isec == bfd_und_section_ptr)
10391 continue;
10392
10393 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10394 {
10395 /* We never output section symbols. Instead, we use the
10396 section symbol of the corresponding section in the output
10397 file. */
10398 continue;
10399 }
10400
10401 /* If we are stripping all symbols, we don't want to output this
10402 one. */
10403 if (flinfo->info->strip == strip_all)
10404 continue;
10405
10406 /* If we are discarding all local symbols, we don't want to
10407 output this one. If we are generating a relocatable output
10408 file, then some of the local symbols may be required by
10409 relocs; we output them below as we discover that they are
10410 needed. */
10411 if (flinfo->info->discard == discard_all)
10412 continue;
10413
10414 /* If this symbol is defined in a section which we are
10415 discarding, we don't need to keep it. */
10416 if (isym->st_shndx != SHN_UNDEF
10417 && isym->st_shndx < SHN_LORESERVE
10418 && bfd_section_removed_from_list (output_bfd,
10419 isec->output_section))
10420 continue;
10421
10422 /* Get the name of the symbol. */
10423 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10424 isym->st_name);
10425 if (name == NULL)
10426 return FALSE;
10427
10428 /* See if we are discarding symbols with this name. */
10429 if ((flinfo->info->strip == strip_some
10430 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10431 == NULL))
10432 || (((flinfo->info->discard == discard_sec_merge
10433 && (isec->flags & SEC_MERGE)
10434 && !bfd_link_relocatable (flinfo->info))
10435 || flinfo->info->discard == discard_l)
10436 && bfd_is_local_label_name (input_bfd, name)))
10437 continue;
10438
10439 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10440 {
10441 if (input_bfd->lto_output)
10442 /* -flto puts a temp file name here. This means builds
10443 are not reproducible. Discard the symbol. */
10444 continue;
10445 have_file_sym = TRUE;
10446 flinfo->filesym_count += 1;
10447 }
10448 if (!have_file_sym)
10449 {
10450 /* In the absence of debug info, bfd_find_nearest_line uses
10451 FILE symbols to determine the source file for local
10452 function symbols. Provide a FILE symbol here if input
10453 files lack such, so that their symbols won't be
10454 associated with a previous input file. It's not the
10455 source file, but the best we can do. */
10456 have_file_sym = TRUE;
10457 flinfo->filesym_count += 1;
10458 memset (&osym, 0, sizeof (osym));
10459 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10460 osym.st_shndx = SHN_ABS;
10461 if (!elf_link_output_symstrtab (flinfo,
10462 (input_bfd->lto_output ? NULL
10463 : input_bfd->filename),
10464 &osym, bfd_abs_section_ptr,
10465 NULL))
10466 return FALSE;
10467 }
10468
10469 osym = *isym;
10470
10471 /* Adjust the section index for the output file. */
10472 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10473 isec->output_section);
10474 if (osym.st_shndx == SHN_BAD)
10475 return FALSE;
10476
10477 /* ELF symbols in relocatable files are section relative, but
10478 in executable files they are virtual addresses. Note that
10479 this code assumes that all ELF sections have an associated
10480 BFD section with a reasonable value for output_offset; below
10481 we assume that they also have a reasonable value for
10482 output_section. Any special sections must be set up to meet
10483 these requirements. */
10484 osym.st_value += isec->output_offset;
10485 if (!bfd_link_relocatable (flinfo->info))
10486 {
10487 osym.st_value += isec->output_section->vma;
10488 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10489 {
10490 /* STT_TLS symbols are relative to PT_TLS segment base. */
10491 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10492 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10493 }
10494 }
10495
10496 indx = bfd_get_symcount (output_bfd);
10497 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10498 if (ret == 0)
10499 return FALSE;
10500 else if (ret == 1)
10501 *pindex = indx;
10502 }
10503
10504 if (bed->s->arch_size == 32)
10505 {
10506 r_type_mask = 0xff;
10507 r_sym_shift = 8;
10508 address_size = 4;
10509 }
10510 else
10511 {
10512 r_type_mask = 0xffffffff;
10513 r_sym_shift = 32;
10514 address_size = 8;
10515 }
10516
10517 /* Relocate the contents of each section. */
10518 sym_hashes = elf_sym_hashes (input_bfd);
10519 for (o = input_bfd->sections; o != NULL; o = o->next)
10520 {
10521 bfd_byte *contents;
10522
10523 if (! o->linker_mark)
10524 {
10525 /* This section was omitted from the link. */
10526 continue;
10527 }
10528
10529 if (!flinfo->info->resolve_section_groups
10530 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10531 {
10532 /* Deal with the group signature symbol. */
10533 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10534 unsigned long symndx = sec_data->this_hdr.sh_info;
10535 asection *osec = o->output_section;
10536
10537 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10538 if (symndx >= locsymcount
10539 || (elf_bad_symtab (input_bfd)
10540 && flinfo->sections[symndx] == NULL))
10541 {
10542 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10543 while (h->root.type == bfd_link_hash_indirect
10544 || h->root.type == bfd_link_hash_warning)
10545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10546 /* Arrange for symbol to be output. */
10547 h->indx = -2;
10548 elf_section_data (osec)->this_hdr.sh_info = -2;
10549 }
10550 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10551 {
10552 /* We'll use the output section target_index. */
10553 asection *sec = flinfo->sections[symndx]->output_section;
10554 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10555 }
10556 else
10557 {
10558 if (flinfo->indices[symndx] == -1)
10559 {
10560 /* Otherwise output the local symbol now. */
10561 Elf_Internal_Sym sym = isymbuf[symndx];
10562 asection *sec = flinfo->sections[symndx]->output_section;
10563 const char *name;
10564 long indx;
10565 int ret;
10566
10567 name = bfd_elf_string_from_elf_section (input_bfd,
10568 symtab_hdr->sh_link,
10569 sym.st_name);
10570 if (name == NULL)
10571 return FALSE;
10572
10573 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10574 sec);
10575 if (sym.st_shndx == SHN_BAD)
10576 return FALSE;
10577
10578 sym.st_value += o->output_offset;
10579
10580 indx = bfd_get_symcount (output_bfd);
10581 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10582 NULL);
10583 if (ret == 0)
10584 return FALSE;
10585 else if (ret == 1)
10586 flinfo->indices[symndx] = indx;
10587 else
10588 abort ();
10589 }
10590 elf_section_data (osec)->this_hdr.sh_info
10591 = flinfo->indices[symndx];
10592 }
10593 }
10594
10595 if ((o->flags & SEC_HAS_CONTENTS) == 0
10596 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10597 continue;
10598
10599 if ((o->flags & SEC_LINKER_CREATED) != 0)
10600 {
10601 /* Section was created by _bfd_elf_link_create_dynamic_sections
10602 or somesuch. */
10603 continue;
10604 }
10605
10606 /* Get the contents of the section. They have been cached by a
10607 relaxation routine. Note that o is a section in an input
10608 file, so the contents field will not have been set by any of
10609 the routines which work on output files. */
10610 if (elf_section_data (o)->this_hdr.contents != NULL)
10611 {
10612 contents = elf_section_data (o)->this_hdr.contents;
10613 if (bed->caches_rawsize
10614 && o->rawsize != 0
10615 && o->rawsize < o->size)
10616 {
10617 memcpy (flinfo->contents, contents, o->rawsize);
10618 contents = flinfo->contents;
10619 }
10620 }
10621 else
10622 {
10623 contents = flinfo->contents;
10624 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10625 return FALSE;
10626 }
10627
10628 if ((o->flags & SEC_RELOC) != 0)
10629 {
10630 Elf_Internal_Rela *internal_relocs;
10631 Elf_Internal_Rela *rel, *relend;
10632 int action_discarded;
10633 int ret;
10634
10635 /* Get the swapped relocs. */
10636 internal_relocs
10637 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10638 flinfo->internal_relocs, FALSE);
10639 if (internal_relocs == NULL
10640 && o->reloc_count > 0)
10641 return FALSE;
10642
10643 /* We need to reverse-copy input .ctors/.dtors sections if
10644 they are placed in .init_array/.finit_array for output. */
10645 if (o->size > address_size
10646 && ((strncmp (o->name, ".ctors", 6) == 0
10647 && strcmp (o->output_section->name,
10648 ".init_array") == 0)
10649 || (strncmp (o->name, ".dtors", 6) == 0
10650 && strcmp (o->output_section->name,
10651 ".fini_array") == 0))
10652 && (o->name[6] == 0 || o->name[6] == '.'))
10653 {
10654 if (o->size * bed->s->int_rels_per_ext_rel
10655 != o->reloc_count * address_size)
10656 {
10657 _bfd_error_handler
10658 /* xgettext:c-format */
10659 (_("error: %pB: size of section %pA is not "
10660 "multiple of address size"),
10661 input_bfd, o);
10662 bfd_set_error (bfd_error_bad_value);
10663 return FALSE;
10664 }
10665 o->flags |= SEC_ELF_REVERSE_COPY;
10666 }
10667
10668 action_discarded = -1;
10669 if (!elf_section_ignore_discarded_relocs (o))
10670 action_discarded = (*bed->action_discarded) (o);
10671
10672 /* Run through the relocs evaluating complex reloc symbols and
10673 looking for relocs against symbols from discarded sections
10674 or section symbols from removed link-once sections.
10675 Complain about relocs against discarded sections. Zero
10676 relocs against removed link-once sections. */
10677
10678 rel = internal_relocs;
10679 relend = rel + o->reloc_count;
10680 for ( ; rel < relend; rel++)
10681 {
10682 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10683 unsigned int s_type;
10684 asection **ps, *sec;
10685 struct elf_link_hash_entry *h = NULL;
10686 const char *sym_name;
10687
10688 if (r_symndx == STN_UNDEF)
10689 continue;
10690
10691 if (r_symndx >= locsymcount
10692 || (elf_bad_symtab (input_bfd)
10693 && flinfo->sections[r_symndx] == NULL))
10694 {
10695 h = sym_hashes[r_symndx - extsymoff];
10696
10697 /* Badly formatted input files can contain relocs that
10698 reference non-existant symbols. Check here so that
10699 we do not seg fault. */
10700 if (h == NULL)
10701 {
10702 _bfd_error_handler
10703 /* xgettext:c-format */
10704 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10705 "that references a non-existent global symbol"),
10706 input_bfd, (uint64_t) rel->r_info, o);
10707 bfd_set_error (bfd_error_bad_value);
10708 return FALSE;
10709 }
10710
10711 while (h->root.type == bfd_link_hash_indirect
10712 || h->root.type == bfd_link_hash_warning)
10713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10714
10715 s_type = h->type;
10716
10717 /* If a plugin symbol is referenced from a non-IR file,
10718 mark the symbol as undefined. Note that the
10719 linker may attach linker created dynamic sections
10720 to the plugin bfd. Symbols defined in linker
10721 created sections are not plugin symbols. */
10722 if ((h->root.non_ir_ref_regular
10723 || h->root.non_ir_ref_dynamic)
10724 && (h->root.type == bfd_link_hash_defined
10725 || h->root.type == bfd_link_hash_defweak)
10726 && (h->root.u.def.section->flags
10727 & SEC_LINKER_CREATED) == 0
10728 && h->root.u.def.section->owner != NULL
10729 && (h->root.u.def.section->owner->flags
10730 & BFD_PLUGIN) != 0)
10731 {
10732 h->root.type = bfd_link_hash_undefined;
10733 h->root.u.undef.abfd = h->root.u.def.section->owner;
10734 }
10735
10736 ps = NULL;
10737 if (h->root.type == bfd_link_hash_defined
10738 || h->root.type == bfd_link_hash_defweak)
10739 ps = &h->root.u.def.section;
10740
10741 sym_name = h->root.root.string;
10742 }
10743 else
10744 {
10745 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10746
10747 s_type = ELF_ST_TYPE (sym->st_info);
10748 ps = &flinfo->sections[r_symndx];
10749 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10750 sym, *ps);
10751 }
10752
10753 if ((s_type == STT_RELC || s_type == STT_SRELC)
10754 && !bfd_link_relocatable (flinfo->info))
10755 {
10756 bfd_vma val;
10757 bfd_vma dot = (rel->r_offset
10758 + o->output_offset + o->output_section->vma);
10759 #ifdef DEBUG
10760 printf ("Encountered a complex symbol!");
10761 printf (" (input_bfd %s, section %s, reloc %ld\n",
10762 input_bfd->filename, o->name,
10763 (long) (rel - internal_relocs));
10764 printf (" symbol: idx %8.8lx, name %s\n",
10765 r_symndx, sym_name);
10766 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10767 (unsigned long) rel->r_info,
10768 (unsigned long) rel->r_offset);
10769 #endif
10770 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10771 isymbuf, locsymcount, s_type == STT_SRELC))
10772 return FALSE;
10773
10774 /* Symbol evaluated OK. Update to absolute value. */
10775 set_symbol_value (input_bfd, isymbuf, locsymcount,
10776 r_symndx, val);
10777 continue;
10778 }
10779
10780 if (action_discarded != -1 && ps != NULL)
10781 {
10782 /* Complain if the definition comes from a
10783 discarded section. */
10784 if ((sec = *ps) != NULL && discarded_section (sec))
10785 {
10786 BFD_ASSERT (r_symndx != STN_UNDEF);
10787 if (action_discarded & COMPLAIN)
10788 (*flinfo->info->callbacks->einfo)
10789 /* xgettext:c-format */
10790 (_("%X`%s' referenced in section `%pA' of %pB: "
10791 "defined in discarded section `%pA' of %pB\n"),
10792 sym_name, o, input_bfd, sec, sec->owner);
10793
10794 /* Try to do the best we can to support buggy old
10795 versions of gcc. Pretend that the symbol is
10796 really defined in the kept linkonce section.
10797 FIXME: This is quite broken. Modifying the
10798 symbol here means we will be changing all later
10799 uses of the symbol, not just in this section. */
10800 if (action_discarded & PRETEND)
10801 {
10802 asection *kept;
10803
10804 kept = _bfd_elf_check_kept_section (sec,
10805 flinfo->info);
10806 if (kept != NULL)
10807 {
10808 *ps = kept;
10809 continue;
10810 }
10811 }
10812 }
10813 }
10814 }
10815
10816 /* Relocate the section by invoking a back end routine.
10817
10818 The back end routine is responsible for adjusting the
10819 section contents as necessary, and (if using Rela relocs
10820 and generating a relocatable output file) adjusting the
10821 reloc addend as necessary.
10822
10823 The back end routine does not have to worry about setting
10824 the reloc address or the reloc symbol index.
10825
10826 The back end routine is given a pointer to the swapped in
10827 internal symbols, and can access the hash table entries
10828 for the external symbols via elf_sym_hashes (input_bfd).
10829
10830 When generating relocatable output, the back end routine
10831 must handle STB_LOCAL/STT_SECTION symbols specially. The
10832 output symbol is going to be a section symbol
10833 corresponding to the output section, which will require
10834 the addend to be adjusted. */
10835
10836 ret = (*relocate_section) (output_bfd, flinfo->info,
10837 input_bfd, o, contents,
10838 internal_relocs,
10839 isymbuf,
10840 flinfo->sections);
10841 if (!ret)
10842 return FALSE;
10843
10844 if (ret == 2
10845 || bfd_link_relocatable (flinfo->info)
10846 || flinfo->info->emitrelocations)
10847 {
10848 Elf_Internal_Rela *irela;
10849 Elf_Internal_Rela *irelaend, *irelamid;
10850 bfd_vma last_offset;
10851 struct elf_link_hash_entry **rel_hash;
10852 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10853 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10854 unsigned int next_erel;
10855 bfd_boolean rela_normal;
10856 struct bfd_elf_section_data *esdi, *esdo;
10857
10858 esdi = elf_section_data (o);
10859 esdo = elf_section_data (o->output_section);
10860 rela_normal = FALSE;
10861
10862 /* Adjust the reloc addresses and symbol indices. */
10863
10864 irela = internal_relocs;
10865 irelaend = irela + o->reloc_count;
10866 rel_hash = esdo->rel.hashes + esdo->rel.count;
10867 /* We start processing the REL relocs, if any. When we reach
10868 IRELAMID in the loop, we switch to the RELA relocs. */
10869 irelamid = irela;
10870 if (esdi->rel.hdr != NULL)
10871 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10872 * bed->s->int_rels_per_ext_rel);
10873 rel_hash_list = rel_hash;
10874 rela_hash_list = NULL;
10875 last_offset = o->output_offset;
10876 if (!bfd_link_relocatable (flinfo->info))
10877 last_offset += o->output_section->vma;
10878 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10879 {
10880 unsigned long r_symndx;
10881 asection *sec;
10882 Elf_Internal_Sym sym;
10883
10884 if (next_erel == bed->s->int_rels_per_ext_rel)
10885 {
10886 rel_hash++;
10887 next_erel = 0;
10888 }
10889
10890 if (irela == irelamid)
10891 {
10892 rel_hash = esdo->rela.hashes + esdo->rela.count;
10893 rela_hash_list = rel_hash;
10894 rela_normal = bed->rela_normal;
10895 }
10896
10897 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10898 flinfo->info, o,
10899 irela->r_offset);
10900 if (irela->r_offset >= (bfd_vma) -2)
10901 {
10902 /* This is a reloc for a deleted entry or somesuch.
10903 Turn it into an R_*_NONE reloc, at the same
10904 offset as the last reloc. elf_eh_frame.c and
10905 bfd_elf_discard_info rely on reloc offsets
10906 being ordered. */
10907 irela->r_offset = last_offset;
10908 irela->r_info = 0;
10909 irela->r_addend = 0;
10910 continue;
10911 }
10912
10913 irela->r_offset += o->output_offset;
10914
10915 /* Relocs in an executable have to be virtual addresses. */
10916 if (!bfd_link_relocatable (flinfo->info))
10917 irela->r_offset += o->output_section->vma;
10918
10919 last_offset = irela->r_offset;
10920
10921 r_symndx = irela->r_info >> r_sym_shift;
10922 if (r_symndx == STN_UNDEF)
10923 continue;
10924
10925 if (r_symndx >= locsymcount
10926 || (elf_bad_symtab (input_bfd)
10927 && flinfo->sections[r_symndx] == NULL))
10928 {
10929 struct elf_link_hash_entry *rh;
10930 unsigned long indx;
10931
10932 /* This is a reloc against a global symbol. We
10933 have not yet output all the local symbols, so
10934 we do not know the symbol index of any global
10935 symbol. We set the rel_hash entry for this
10936 reloc to point to the global hash table entry
10937 for this symbol. The symbol index is then
10938 set at the end of bfd_elf_final_link. */
10939 indx = r_symndx - extsymoff;
10940 rh = elf_sym_hashes (input_bfd)[indx];
10941 while (rh->root.type == bfd_link_hash_indirect
10942 || rh->root.type == bfd_link_hash_warning)
10943 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10944
10945 /* Setting the index to -2 tells
10946 elf_link_output_extsym that this symbol is
10947 used by a reloc. */
10948 BFD_ASSERT (rh->indx < 0);
10949 rh->indx = -2;
10950 *rel_hash = rh;
10951
10952 continue;
10953 }
10954
10955 /* This is a reloc against a local symbol. */
10956
10957 *rel_hash = NULL;
10958 sym = isymbuf[r_symndx];
10959 sec = flinfo->sections[r_symndx];
10960 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10961 {
10962 /* I suppose the backend ought to fill in the
10963 section of any STT_SECTION symbol against a
10964 processor specific section. */
10965 r_symndx = STN_UNDEF;
10966 if (bfd_is_abs_section (sec))
10967 ;
10968 else if (sec == NULL || sec->owner == NULL)
10969 {
10970 bfd_set_error (bfd_error_bad_value);
10971 return FALSE;
10972 }
10973 else
10974 {
10975 asection *osec = sec->output_section;
10976
10977 /* If we have discarded a section, the output
10978 section will be the absolute section. In
10979 case of discarded SEC_MERGE sections, use
10980 the kept section. relocate_section should
10981 have already handled discarded linkonce
10982 sections. */
10983 if (bfd_is_abs_section (osec)
10984 && sec->kept_section != NULL
10985 && sec->kept_section->output_section != NULL)
10986 {
10987 osec = sec->kept_section->output_section;
10988 irela->r_addend -= osec->vma;
10989 }
10990
10991 if (!bfd_is_abs_section (osec))
10992 {
10993 r_symndx = osec->target_index;
10994 if (r_symndx == STN_UNDEF)
10995 {
10996 irela->r_addend += osec->vma;
10997 osec = _bfd_nearby_section (output_bfd, osec,
10998 osec->vma);
10999 irela->r_addend -= osec->vma;
11000 r_symndx = osec->target_index;
11001 }
11002 }
11003 }
11004
11005 /* Adjust the addend according to where the
11006 section winds up in the output section. */
11007 if (rela_normal)
11008 irela->r_addend += sec->output_offset;
11009 }
11010 else
11011 {
11012 if (flinfo->indices[r_symndx] == -1)
11013 {
11014 unsigned long shlink;
11015 const char *name;
11016 asection *osec;
11017 long indx;
11018
11019 if (flinfo->info->strip == strip_all)
11020 {
11021 /* You can't do ld -r -s. */
11022 bfd_set_error (bfd_error_invalid_operation);
11023 return FALSE;
11024 }
11025
11026 /* This symbol was skipped earlier, but
11027 since it is needed by a reloc, we
11028 must output it now. */
11029 shlink = symtab_hdr->sh_link;
11030 name = (bfd_elf_string_from_elf_section
11031 (input_bfd, shlink, sym.st_name));
11032 if (name == NULL)
11033 return FALSE;
11034
11035 osec = sec->output_section;
11036 sym.st_shndx =
11037 _bfd_elf_section_from_bfd_section (output_bfd,
11038 osec);
11039 if (sym.st_shndx == SHN_BAD)
11040 return FALSE;
11041
11042 sym.st_value += sec->output_offset;
11043 if (!bfd_link_relocatable (flinfo->info))
11044 {
11045 sym.st_value += osec->vma;
11046 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11047 {
11048 /* STT_TLS symbols are relative to PT_TLS
11049 segment base. */
11050 BFD_ASSERT (elf_hash_table (flinfo->info)
11051 ->tls_sec != NULL);
11052 sym.st_value -= (elf_hash_table (flinfo->info)
11053 ->tls_sec->vma);
11054 }
11055 }
11056
11057 indx = bfd_get_symcount (output_bfd);
11058 ret = elf_link_output_symstrtab (flinfo, name,
11059 &sym, sec,
11060 NULL);
11061 if (ret == 0)
11062 return FALSE;
11063 else if (ret == 1)
11064 flinfo->indices[r_symndx] = indx;
11065 else
11066 abort ();
11067 }
11068
11069 r_symndx = flinfo->indices[r_symndx];
11070 }
11071
11072 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11073 | (irela->r_info & r_type_mask));
11074 }
11075
11076 /* Swap out the relocs. */
11077 input_rel_hdr = esdi->rel.hdr;
11078 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11079 {
11080 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11081 input_rel_hdr,
11082 internal_relocs,
11083 rel_hash_list))
11084 return FALSE;
11085 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11086 * bed->s->int_rels_per_ext_rel);
11087 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11088 }
11089
11090 input_rela_hdr = esdi->rela.hdr;
11091 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11092 {
11093 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11094 input_rela_hdr,
11095 internal_relocs,
11096 rela_hash_list))
11097 return FALSE;
11098 }
11099 }
11100 }
11101
11102 /* Write out the modified section contents. */
11103 if (bed->elf_backend_write_section
11104 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11105 contents))
11106 {
11107 /* Section written out. */
11108 }
11109 else switch (o->sec_info_type)
11110 {
11111 case SEC_INFO_TYPE_STABS:
11112 if (! (_bfd_write_section_stabs
11113 (output_bfd,
11114 &elf_hash_table (flinfo->info)->stab_info,
11115 o, &elf_section_data (o)->sec_info, contents)))
11116 return FALSE;
11117 break;
11118 case SEC_INFO_TYPE_MERGE:
11119 if (! _bfd_write_merged_section (output_bfd, o,
11120 elf_section_data (o)->sec_info))
11121 return FALSE;
11122 break;
11123 case SEC_INFO_TYPE_EH_FRAME:
11124 {
11125 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11126 o, contents))
11127 return FALSE;
11128 }
11129 break;
11130 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11131 {
11132 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11133 flinfo->info,
11134 o, contents))
11135 return FALSE;
11136 }
11137 break;
11138 default:
11139 {
11140 if (! (o->flags & SEC_EXCLUDE))
11141 {
11142 file_ptr offset = (file_ptr) o->output_offset;
11143 bfd_size_type todo = o->size;
11144
11145 offset *= bfd_octets_per_byte (output_bfd);
11146
11147 if ((o->flags & SEC_ELF_REVERSE_COPY))
11148 {
11149 /* Reverse-copy input section to output. */
11150 do
11151 {
11152 todo -= address_size;
11153 if (! bfd_set_section_contents (output_bfd,
11154 o->output_section,
11155 contents + todo,
11156 offset,
11157 address_size))
11158 return FALSE;
11159 if (todo == 0)
11160 break;
11161 offset += address_size;
11162 }
11163 while (1);
11164 }
11165 else if (! bfd_set_section_contents (output_bfd,
11166 o->output_section,
11167 contents,
11168 offset, todo))
11169 return FALSE;
11170 }
11171 }
11172 break;
11173 }
11174 }
11175
11176 return TRUE;
11177 }
11178
11179 /* Generate a reloc when linking an ELF file. This is a reloc
11180 requested by the linker, and does not come from any input file. This
11181 is used to build constructor and destructor tables when linking
11182 with -Ur. */
11183
11184 static bfd_boolean
11185 elf_reloc_link_order (bfd *output_bfd,
11186 struct bfd_link_info *info,
11187 asection *output_section,
11188 struct bfd_link_order *link_order)
11189 {
11190 reloc_howto_type *howto;
11191 long indx;
11192 bfd_vma offset;
11193 bfd_vma addend;
11194 struct bfd_elf_section_reloc_data *reldata;
11195 struct elf_link_hash_entry **rel_hash_ptr;
11196 Elf_Internal_Shdr *rel_hdr;
11197 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11198 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11199 bfd_byte *erel;
11200 unsigned int i;
11201 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11202
11203 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11204 if (howto == NULL)
11205 {
11206 bfd_set_error (bfd_error_bad_value);
11207 return FALSE;
11208 }
11209
11210 addend = link_order->u.reloc.p->addend;
11211
11212 if (esdo->rel.hdr)
11213 reldata = &esdo->rel;
11214 else if (esdo->rela.hdr)
11215 reldata = &esdo->rela;
11216 else
11217 {
11218 reldata = NULL;
11219 BFD_ASSERT (0);
11220 }
11221
11222 /* Figure out the symbol index. */
11223 rel_hash_ptr = reldata->hashes + reldata->count;
11224 if (link_order->type == bfd_section_reloc_link_order)
11225 {
11226 indx = link_order->u.reloc.p->u.section->target_index;
11227 BFD_ASSERT (indx != 0);
11228 *rel_hash_ptr = NULL;
11229 }
11230 else
11231 {
11232 struct elf_link_hash_entry *h;
11233
11234 /* Treat a reloc against a defined symbol as though it were
11235 actually against the section. */
11236 h = ((struct elf_link_hash_entry *)
11237 bfd_wrapped_link_hash_lookup (output_bfd, info,
11238 link_order->u.reloc.p->u.name,
11239 FALSE, FALSE, TRUE));
11240 if (h != NULL
11241 && (h->root.type == bfd_link_hash_defined
11242 || h->root.type == bfd_link_hash_defweak))
11243 {
11244 asection *section;
11245
11246 section = h->root.u.def.section;
11247 indx = section->output_section->target_index;
11248 *rel_hash_ptr = NULL;
11249 /* It seems that we ought to add the symbol value to the
11250 addend here, but in practice it has already been added
11251 because it was passed to constructor_callback. */
11252 addend += section->output_section->vma + section->output_offset;
11253 }
11254 else if (h != NULL)
11255 {
11256 /* Setting the index to -2 tells elf_link_output_extsym that
11257 this symbol is used by a reloc. */
11258 h->indx = -2;
11259 *rel_hash_ptr = h;
11260 indx = 0;
11261 }
11262 else
11263 {
11264 (*info->callbacks->unattached_reloc)
11265 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11266 indx = 0;
11267 }
11268 }
11269
11270 /* If this is an inplace reloc, we must write the addend into the
11271 object file. */
11272 if (howto->partial_inplace && addend != 0)
11273 {
11274 bfd_size_type size;
11275 bfd_reloc_status_type rstat;
11276 bfd_byte *buf;
11277 bfd_boolean ok;
11278 const char *sym_name;
11279
11280 size = (bfd_size_type) bfd_get_reloc_size (howto);
11281 buf = (bfd_byte *) bfd_zmalloc (size);
11282 if (buf == NULL && size != 0)
11283 return FALSE;
11284 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11285 switch (rstat)
11286 {
11287 case bfd_reloc_ok:
11288 break;
11289
11290 default:
11291 case bfd_reloc_outofrange:
11292 abort ();
11293
11294 case bfd_reloc_overflow:
11295 if (link_order->type == bfd_section_reloc_link_order)
11296 sym_name = bfd_section_name (output_bfd,
11297 link_order->u.reloc.p->u.section);
11298 else
11299 sym_name = link_order->u.reloc.p->u.name;
11300 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11301 howto->name, addend, NULL, NULL,
11302 (bfd_vma) 0);
11303 break;
11304 }
11305
11306 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11307 link_order->offset
11308 * bfd_octets_per_byte (output_bfd),
11309 size);
11310 free (buf);
11311 if (! ok)
11312 return FALSE;
11313 }
11314
11315 /* The address of a reloc is relative to the section in a
11316 relocatable file, and is a virtual address in an executable
11317 file. */
11318 offset = link_order->offset;
11319 if (! bfd_link_relocatable (info))
11320 offset += output_section->vma;
11321
11322 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11323 {
11324 irel[i].r_offset = offset;
11325 irel[i].r_info = 0;
11326 irel[i].r_addend = 0;
11327 }
11328 if (bed->s->arch_size == 32)
11329 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11330 else
11331 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11332
11333 rel_hdr = reldata->hdr;
11334 erel = rel_hdr->contents;
11335 if (rel_hdr->sh_type == SHT_REL)
11336 {
11337 erel += reldata->count * bed->s->sizeof_rel;
11338 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11339 }
11340 else
11341 {
11342 irel[0].r_addend = addend;
11343 erel += reldata->count * bed->s->sizeof_rela;
11344 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11345 }
11346
11347 ++reldata->count;
11348
11349 return TRUE;
11350 }
11351
11352
11353 /* Get the output vma of the section pointed to by the sh_link field. */
11354
11355 static bfd_vma
11356 elf_get_linked_section_vma (struct bfd_link_order *p)
11357 {
11358 Elf_Internal_Shdr **elf_shdrp;
11359 asection *s;
11360 int elfsec;
11361
11362 s = p->u.indirect.section;
11363 elf_shdrp = elf_elfsections (s->owner);
11364 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11365 elfsec = elf_shdrp[elfsec]->sh_link;
11366 /* PR 290:
11367 The Intel C compiler generates SHT_IA_64_UNWIND with
11368 SHF_LINK_ORDER. But it doesn't set the sh_link or
11369 sh_info fields. Hence we could get the situation
11370 where elfsec is 0. */
11371 if (elfsec == 0)
11372 {
11373 const struct elf_backend_data *bed
11374 = get_elf_backend_data (s->owner);
11375 if (bed->link_order_error_handler)
11376 bed->link_order_error_handler
11377 /* xgettext:c-format */
11378 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11379 return 0;
11380 }
11381 else
11382 {
11383 s = elf_shdrp[elfsec]->bfd_section;
11384 return s->output_section->vma + s->output_offset;
11385 }
11386 }
11387
11388
11389 /* Compare two sections based on the locations of the sections they are
11390 linked to. Used by elf_fixup_link_order. */
11391
11392 static int
11393 compare_link_order (const void * a, const void * b)
11394 {
11395 bfd_vma apos;
11396 bfd_vma bpos;
11397
11398 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11399 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11400 if (apos < bpos)
11401 return -1;
11402 return apos > bpos;
11403 }
11404
11405
11406 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11407 order as their linked sections. Returns false if this could not be done
11408 because an output section includes both ordered and unordered
11409 sections. Ideally we'd do this in the linker proper. */
11410
11411 static bfd_boolean
11412 elf_fixup_link_order (bfd *abfd, asection *o)
11413 {
11414 int seen_linkorder;
11415 int seen_other;
11416 int n;
11417 struct bfd_link_order *p;
11418 bfd *sub;
11419 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11420 unsigned elfsec;
11421 struct bfd_link_order **sections;
11422 asection *s, *other_sec, *linkorder_sec;
11423 bfd_vma offset;
11424
11425 other_sec = NULL;
11426 linkorder_sec = NULL;
11427 seen_other = 0;
11428 seen_linkorder = 0;
11429 for (p = o->map_head.link_order; p != NULL; p = p->next)
11430 {
11431 if (p->type == bfd_indirect_link_order)
11432 {
11433 s = p->u.indirect.section;
11434 sub = s->owner;
11435 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11436 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11437 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11438 && elfsec < elf_numsections (sub)
11439 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11440 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11441 {
11442 seen_linkorder++;
11443 linkorder_sec = s;
11444 }
11445 else
11446 {
11447 seen_other++;
11448 other_sec = s;
11449 }
11450 }
11451 else
11452 seen_other++;
11453
11454 if (seen_other && seen_linkorder)
11455 {
11456 if (other_sec && linkorder_sec)
11457 _bfd_error_handler
11458 /* xgettext:c-format */
11459 (_("%pA has both ordered [`%pA' in %pB] "
11460 "and unordered [`%pA' in %pB] sections"),
11461 o, linkorder_sec, linkorder_sec->owner,
11462 other_sec, other_sec->owner);
11463 else
11464 _bfd_error_handler
11465 (_("%pA has both ordered and unordered sections"), o);
11466 bfd_set_error (bfd_error_bad_value);
11467 return FALSE;
11468 }
11469 }
11470
11471 if (!seen_linkorder)
11472 return TRUE;
11473
11474 sections = (struct bfd_link_order **)
11475 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11476 if (sections == NULL)
11477 return FALSE;
11478 seen_linkorder = 0;
11479
11480 for (p = o->map_head.link_order; p != NULL; p = p->next)
11481 {
11482 sections[seen_linkorder++] = p;
11483 }
11484 /* Sort the input sections in the order of their linked section. */
11485 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11486 compare_link_order);
11487
11488 /* Change the offsets of the sections. */
11489 offset = 0;
11490 for (n = 0; n < seen_linkorder; n++)
11491 {
11492 s = sections[n]->u.indirect.section;
11493 offset &= ~(bfd_vma) 0 << s->alignment_power;
11494 s->output_offset = offset / bfd_octets_per_byte (abfd);
11495 sections[n]->offset = offset;
11496 offset += sections[n]->size;
11497 }
11498
11499 free (sections);
11500 return TRUE;
11501 }
11502
11503 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11504 Returns TRUE upon success, FALSE otherwise. */
11505
11506 static bfd_boolean
11507 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11508 {
11509 bfd_boolean ret = FALSE;
11510 bfd *implib_bfd;
11511 const struct elf_backend_data *bed;
11512 flagword flags;
11513 enum bfd_architecture arch;
11514 unsigned int mach;
11515 asymbol **sympp = NULL;
11516 long symsize;
11517 long symcount;
11518 long src_count;
11519 elf_symbol_type *osymbuf;
11520
11521 implib_bfd = info->out_implib_bfd;
11522 bed = get_elf_backend_data (abfd);
11523
11524 if (!bfd_set_format (implib_bfd, bfd_object))
11525 return FALSE;
11526
11527 /* Use flag from executable but make it a relocatable object. */
11528 flags = bfd_get_file_flags (abfd);
11529 flags &= ~HAS_RELOC;
11530 if (!bfd_set_start_address (implib_bfd, 0)
11531 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11532 return FALSE;
11533
11534 /* Copy architecture of output file to import library file. */
11535 arch = bfd_get_arch (abfd);
11536 mach = bfd_get_mach (abfd);
11537 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11538 && (abfd->target_defaulted
11539 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11540 return FALSE;
11541
11542 /* Get symbol table size. */
11543 symsize = bfd_get_symtab_upper_bound (abfd);
11544 if (symsize < 0)
11545 return FALSE;
11546
11547 /* Read in the symbol table. */
11548 sympp = (asymbol **) xmalloc (symsize);
11549 symcount = bfd_canonicalize_symtab (abfd, sympp);
11550 if (symcount < 0)
11551 goto free_sym_buf;
11552
11553 /* Allow the BFD backend to copy any private header data it
11554 understands from the output BFD to the import library BFD. */
11555 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11556 goto free_sym_buf;
11557
11558 /* Filter symbols to appear in the import library. */
11559 if (bed->elf_backend_filter_implib_symbols)
11560 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11561 symcount);
11562 else
11563 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11564 if (symcount == 0)
11565 {
11566 bfd_set_error (bfd_error_no_symbols);
11567 _bfd_error_handler (_("%pB: no symbol found for import library"),
11568 implib_bfd);
11569 goto free_sym_buf;
11570 }
11571
11572
11573 /* Make symbols absolute. */
11574 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11575 sizeof (*osymbuf));
11576 for (src_count = 0; src_count < symcount; src_count++)
11577 {
11578 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11579 sizeof (*osymbuf));
11580 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11581 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11582 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11583 osymbuf[src_count].internal_elf_sym.st_value =
11584 osymbuf[src_count].symbol.value;
11585 sympp[src_count] = &osymbuf[src_count].symbol;
11586 }
11587
11588 bfd_set_symtab (implib_bfd, sympp, symcount);
11589
11590 /* Allow the BFD backend to copy any private data it understands
11591 from the output BFD to the import library BFD. This is done last
11592 to permit the routine to look at the filtered symbol table. */
11593 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11594 goto free_sym_buf;
11595
11596 if (!bfd_close (implib_bfd))
11597 goto free_sym_buf;
11598
11599 ret = TRUE;
11600
11601 free_sym_buf:
11602 free (sympp);
11603 return ret;
11604 }
11605
11606 static void
11607 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11608 {
11609 asection *o;
11610
11611 if (flinfo->symstrtab != NULL)
11612 _bfd_elf_strtab_free (flinfo->symstrtab);
11613 if (flinfo->contents != NULL)
11614 free (flinfo->contents);
11615 if (flinfo->external_relocs != NULL)
11616 free (flinfo->external_relocs);
11617 if (flinfo->internal_relocs != NULL)
11618 free (flinfo->internal_relocs);
11619 if (flinfo->external_syms != NULL)
11620 free (flinfo->external_syms);
11621 if (flinfo->locsym_shndx != NULL)
11622 free (flinfo->locsym_shndx);
11623 if (flinfo->internal_syms != NULL)
11624 free (flinfo->internal_syms);
11625 if (flinfo->indices != NULL)
11626 free (flinfo->indices);
11627 if (flinfo->sections != NULL)
11628 free (flinfo->sections);
11629 if (flinfo->symshndxbuf != NULL)
11630 free (flinfo->symshndxbuf);
11631 for (o = obfd->sections; o != NULL; o = o->next)
11632 {
11633 struct bfd_elf_section_data *esdo = elf_section_data (o);
11634 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11635 free (esdo->rel.hashes);
11636 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11637 free (esdo->rela.hashes);
11638 }
11639 }
11640
11641 /* Do the final step of an ELF link. */
11642
11643 bfd_boolean
11644 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11645 {
11646 bfd_boolean dynamic;
11647 bfd_boolean emit_relocs;
11648 bfd *dynobj;
11649 struct elf_final_link_info flinfo;
11650 asection *o;
11651 struct bfd_link_order *p;
11652 bfd *sub;
11653 bfd_size_type max_contents_size;
11654 bfd_size_type max_external_reloc_size;
11655 bfd_size_type max_internal_reloc_count;
11656 bfd_size_type max_sym_count;
11657 bfd_size_type max_sym_shndx_count;
11658 Elf_Internal_Sym elfsym;
11659 unsigned int i;
11660 Elf_Internal_Shdr *symtab_hdr;
11661 Elf_Internal_Shdr *symtab_shndx_hdr;
11662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11663 struct elf_outext_info eoinfo;
11664 bfd_boolean merged;
11665 size_t relativecount = 0;
11666 asection *reldyn = 0;
11667 bfd_size_type amt;
11668 asection *attr_section = NULL;
11669 bfd_vma attr_size = 0;
11670 const char *std_attrs_section;
11671 struct elf_link_hash_table *htab = elf_hash_table (info);
11672
11673 if (!is_elf_hash_table (htab))
11674 return FALSE;
11675
11676 if (bfd_link_pic (info))
11677 abfd->flags |= DYNAMIC;
11678
11679 dynamic = htab->dynamic_sections_created;
11680 dynobj = htab->dynobj;
11681
11682 emit_relocs = (bfd_link_relocatable (info)
11683 || info->emitrelocations);
11684
11685 flinfo.info = info;
11686 flinfo.output_bfd = abfd;
11687 flinfo.symstrtab = _bfd_elf_strtab_init ();
11688 if (flinfo.symstrtab == NULL)
11689 return FALSE;
11690
11691 if (! dynamic)
11692 {
11693 flinfo.hash_sec = NULL;
11694 flinfo.symver_sec = NULL;
11695 }
11696 else
11697 {
11698 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11699 /* Note that dynsym_sec can be NULL (on VMS). */
11700 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11701 /* Note that it is OK if symver_sec is NULL. */
11702 }
11703
11704 flinfo.contents = NULL;
11705 flinfo.external_relocs = NULL;
11706 flinfo.internal_relocs = NULL;
11707 flinfo.external_syms = NULL;
11708 flinfo.locsym_shndx = NULL;
11709 flinfo.internal_syms = NULL;
11710 flinfo.indices = NULL;
11711 flinfo.sections = NULL;
11712 flinfo.symshndxbuf = NULL;
11713 flinfo.filesym_count = 0;
11714
11715 /* The object attributes have been merged. Remove the input
11716 sections from the link, and set the contents of the output
11717 secton. */
11718 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11719 for (o = abfd->sections; o != NULL; o = o->next)
11720 {
11721 bfd_boolean remove_section = FALSE;
11722
11723 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11724 || strcmp (o->name, ".gnu.attributes") == 0)
11725 {
11726 for (p = o->map_head.link_order; p != NULL; p = p->next)
11727 {
11728 asection *input_section;
11729
11730 if (p->type != bfd_indirect_link_order)
11731 continue;
11732 input_section = p->u.indirect.section;
11733 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11734 elf_link_input_bfd ignores this section. */
11735 input_section->flags &= ~SEC_HAS_CONTENTS;
11736 }
11737
11738 attr_size = bfd_elf_obj_attr_size (abfd);
11739 bfd_set_section_size (abfd, o, attr_size);
11740 /* Skip this section later on. */
11741 o->map_head.link_order = NULL;
11742 if (attr_size)
11743 attr_section = o;
11744 else
11745 remove_section = TRUE;
11746 }
11747 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11748 {
11749 /* Remove empty group section from linker output. */
11750 remove_section = TRUE;
11751 }
11752 if (remove_section)
11753 {
11754 o->flags |= SEC_EXCLUDE;
11755 bfd_section_list_remove (abfd, o);
11756 abfd->section_count--;
11757 }
11758 }
11759
11760 /* Count up the number of relocations we will output for each output
11761 section, so that we know the sizes of the reloc sections. We
11762 also figure out some maximum sizes. */
11763 max_contents_size = 0;
11764 max_external_reloc_size = 0;
11765 max_internal_reloc_count = 0;
11766 max_sym_count = 0;
11767 max_sym_shndx_count = 0;
11768 merged = FALSE;
11769 for (o = abfd->sections; o != NULL; o = o->next)
11770 {
11771 struct bfd_elf_section_data *esdo = elf_section_data (o);
11772 o->reloc_count = 0;
11773
11774 for (p = o->map_head.link_order; p != NULL; p = p->next)
11775 {
11776 unsigned int reloc_count = 0;
11777 unsigned int additional_reloc_count = 0;
11778 struct bfd_elf_section_data *esdi = NULL;
11779
11780 if (p->type == bfd_section_reloc_link_order
11781 || p->type == bfd_symbol_reloc_link_order)
11782 reloc_count = 1;
11783 else if (p->type == bfd_indirect_link_order)
11784 {
11785 asection *sec;
11786
11787 sec = p->u.indirect.section;
11788
11789 /* Mark all sections which are to be included in the
11790 link. This will normally be every section. We need
11791 to do this so that we can identify any sections which
11792 the linker has decided to not include. */
11793 sec->linker_mark = TRUE;
11794
11795 if (sec->flags & SEC_MERGE)
11796 merged = TRUE;
11797
11798 if (sec->rawsize > max_contents_size)
11799 max_contents_size = sec->rawsize;
11800 if (sec->size > max_contents_size)
11801 max_contents_size = sec->size;
11802
11803 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11804 && (sec->owner->flags & DYNAMIC) == 0)
11805 {
11806 size_t sym_count;
11807
11808 /* We are interested in just local symbols, not all
11809 symbols. */
11810 if (elf_bad_symtab (sec->owner))
11811 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11812 / bed->s->sizeof_sym);
11813 else
11814 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11815
11816 if (sym_count > max_sym_count)
11817 max_sym_count = sym_count;
11818
11819 if (sym_count > max_sym_shndx_count
11820 && elf_symtab_shndx_list (sec->owner) != NULL)
11821 max_sym_shndx_count = sym_count;
11822
11823 if (esdo->this_hdr.sh_type == SHT_REL
11824 || esdo->this_hdr.sh_type == SHT_RELA)
11825 /* Some backends use reloc_count in relocation sections
11826 to count particular types of relocs. Of course,
11827 reloc sections themselves can't have relocations. */
11828 ;
11829 else if (emit_relocs)
11830 {
11831 reloc_count = sec->reloc_count;
11832 if (bed->elf_backend_count_additional_relocs)
11833 {
11834 int c;
11835 c = (*bed->elf_backend_count_additional_relocs) (sec);
11836 additional_reloc_count += c;
11837 }
11838 }
11839 else if (bed->elf_backend_count_relocs)
11840 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11841
11842 esdi = elf_section_data (sec);
11843
11844 if ((sec->flags & SEC_RELOC) != 0)
11845 {
11846 size_t ext_size = 0;
11847
11848 if (esdi->rel.hdr != NULL)
11849 ext_size = esdi->rel.hdr->sh_size;
11850 if (esdi->rela.hdr != NULL)
11851 ext_size += esdi->rela.hdr->sh_size;
11852
11853 if (ext_size > max_external_reloc_size)
11854 max_external_reloc_size = ext_size;
11855 if (sec->reloc_count > max_internal_reloc_count)
11856 max_internal_reloc_count = sec->reloc_count;
11857 }
11858 }
11859 }
11860
11861 if (reloc_count == 0)
11862 continue;
11863
11864 reloc_count += additional_reloc_count;
11865 o->reloc_count += reloc_count;
11866
11867 if (p->type == bfd_indirect_link_order && emit_relocs)
11868 {
11869 if (esdi->rel.hdr)
11870 {
11871 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11872 esdo->rel.count += additional_reloc_count;
11873 }
11874 if (esdi->rela.hdr)
11875 {
11876 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11877 esdo->rela.count += additional_reloc_count;
11878 }
11879 }
11880 else
11881 {
11882 if (o->use_rela_p)
11883 esdo->rela.count += reloc_count;
11884 else
11885 esdo->rel.count += reloc_count;
11886 }
11887 }
11888
11889 if (o->reloc_count > 0)
11890 o->flags |= SEC_RELOC;
11891 else
11892 {
11893 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11894 set it (this is probably a bug) and if it is set
11895 assign_section_numbers will create a reloc section. */
11896 o->flags &=~ SEC_RELOC;
11897 }
11898
11899 /* If the SEC_ALLOC flag is not set, force the section VMA to
11900 zero. This is done in elf_fake_sections as well, but forcing
11901 the VMA to 0 here will ensure that relocs against these
11902 sections are handled correctly. */
11903 if ((o->flags & SEC_ALLOC) == 0
11904 && ! o->user_set_vma)
11905 o->vma = 0;
11906 }
11907
11908 if (! bfd_link_relocatable (info) && merged)
11909 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11910
11911 /* Figure out the file positions for everything but the symbol table
11912 and the relocs. We set symcount to force assign_section_numbers
11913 to create a symbol table. */
11914 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11915 BFD_ASSERT (! abfd->output_has_begun);
11916 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11917 goto error_return;
11918
11919 /* Set sizes, and assign file positions for reloc sections. */
11920 for (o = abfd->sections; o != NULL; o = o->next)
11921 {
11922 struct bfd_elf_section_data *esdo = elf_section_data (o);
11923 if ((o->flags & SEC_RELOC) != 0)
11924 {
11925 if (esdo->rel.hdr
11926 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11927 goto error_return;
11928
11929 if (esdo->rela.hdr
11930 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11931 goto error_return;
11932 }
11933
11934 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11935 to count upwards while actually outputting the relocations. */
11936 esdo->rel.count = 0;
11937 esdo->rela.count = 0;
11938
11939 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11940 {
11941 /* Cache the section contents so that they can be compressed
11942 later. Use bfd_malloc since it will be freed by
11943 bfd_compress_section_contents. */
11944 unsigned char *contents = esdo->this_hdr.contents;
11945 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11946 abort ();
11947 contents
11948 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11949 if (contents == NULL)
11950 goto error_return;
11951 esdo->this_hdr.contents = contents;
11952 }
11953 }
11954
11955 /* We have now assigned file positions for all the sections except
11956 .symtab, .strtab, and non-loaded reloc sections. We start the
11957 .symtab section at the current file position, and write directly
11958 to it. We build the .strtab section in memory. */
11959 bfd_get_symcount (abfd) = 0;
11960 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11961 /* sh_name is set in prep_headers. */
11962 symtab_hdr->sh_type = SHT_SYMTAB;
11963 /* sh_flags, sh_addr and sh_size all start off zero. */
11964 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11965 /* sh_link is set in assign_section_numbers. */
11966 /* sh_info is set below. */
11967 /* sh_offset is set just below. */
11968 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11969
11970 if (max_sym_count < 20)
11971 max_sym_count = 20;
11972 htab->strtabsize = max_sym_count;
11973 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11974 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11975 if (htab->strtab == NULL)
11976 goto error_return;
11977 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11978 flinfo.symshndxbuf
11979 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11980 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11981
11982 if (info->strip != strip_all || emit_relocs)
11983 {
11984 file_ptr off = elf_next_file_pos (abfd);
11985
11986 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11987
11988 /* Note that at this point elf_next_file_pos (abfd) is
11989 incorrect. We do not yet know the size of the .symtab section.
11990 We correct next_file_pos below, after we do know the size. */
11991
11992 /* Start writing out the symbol table. The first symbol is always a
11993 dummy symbol. */
11994 elfsym.st_value = 0;
11995 elfsym.st_size = 0;
11996 elfsym.st_info = 0;
11997 elfsym.st_other = 0;
11998 elfsym.st_shndx = SHN_UNDEF;
11999 elfsym.st_target_internal = 0;
12000 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12001 bfd_und_section_ptr, NULL) != 1)
12002 goto error_return;
12003
12004 /* Output a symbol for each section. We output these even if we are
12005 discarding local symbols, since they are used for relocs. These
12006 symbols have no names. We store the index of each one in the
12007 index field of the section, so that we can find it again when
12008 outputting relocs. */
12009
12010 elfsym.st_size = 0;
12011 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12012 elfsym.st_other = 0;
12013 elfsym.st_value = 0;
12014 elfsym.st_target_internal = 0;
12015 for (i = 1; i < elf_numsections (abfd); i++)
12016 {
12017 o = bfd_section_from_elf_index (abfd, i);
12018 if (o != NULL)
12019 {
12020 o->target_index = bfd_get_symcount (abfd);
12021 elfsym.st_shndx = i;
12022 if (!bfd_link_relocatable (info))
12023 elfsym.st_value = o->vma;
12024 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12025 NULL) != 1)
12026 goto error_return;
12027 }
12028 }
12029 }
12030
12031 /* Allocate some memory to hold information read in from the input
12032 files. */
12033 if (max_contents_size != 0)
12034 {
12035 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12036 if (flinfo.contents == NULL)
12037 goto error_return;
12038 }
12039
12040 if (max_external_reloc_size != 0)
12041 {
12042 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12043 if (flinfo.external_relocs == NULL)
12044 goto error_return;
12045 }
12046
12047 if (max_internal_reloc_count != 0)
12048 {
12049 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12050 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12051 if (flinfo.internal_relocs == NULL)
12052 goto error_return;
12053 }
12054
12055 if (max_sym_count != 0)
12056 {
12057 amt = max_sym_count * bed->s->sizeof_sym;
12058 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12059 if (flinfo.external_syms == NULL)
12060 goto error_return;
12061
12062 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12063 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12064 if (flinfo.internal_syms == NULL)
12065 goto error_return;
12066
12067 amt = max_sym_count * sizeof (long);
12068 flinfo.indices = (long int *) bfd_malloc (amt);
12069 if (flinfo.indices == NULL)
12070 goto error_return;
12071
12072 amt = max_sym_count * sizeof (asection *);
12073 flinfo.sections = (asection **) bfd_malloc (amt);
12074 if (flinfo.sections == NULL)
12075 goto error_return;
12076 }
12077
12078 if (max_sym_shndx_count != 0)
12079 {
12080 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12081 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12082 if (flinfo.locsym_shndx == NULL)
12083 goto error_return;
12084 }
12085
12086 if (htab->tls_sec)
12087 {
12088 bfd_vma base, end = 0;
12089 asection *sec;
12090
12091 for (sec = htab->tls_sec;
12092 sec && (sec->flags & SEC_THREAD_LOCAL);
12093 sec = sec->next)
12094 {
12095 bfd_size_type size = sec->size;
12096
12097 if (size == 0
12098 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12099 {
12100 struct bfd_link_order *ord = sec->map_tail.link_order;
12101
12102 if (ord != NULL)
12103 size = ord->offset + ord->size;
12104 }
12105 end = sec->vma + size;
12106 }
12107 base = htab->tls_sec->vma;
12108 /* Only align end of TLS section if static TLS doesn't have special
12109 alignment requirements. */
12110 if (bed->static_tls_alignment == 1)
12111 end = align_power (end, htab->tls_sec->alignment_power);
12112 htab->tls_size = end - base;
12113 }
12114
12115 /* Reorder SHF_LINK_ORDER sections. */
12116 for (o = abfd->sections; o != NULL; o = o->next)
12117 {
12118 if (!elf_fixup_link_order (abfd, o))
12119 return FALSE;
12120 }
12121
12122 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12123 return FALSE;
12124
12125 /* Since ELF permits relocations to be against local symbols, we
12126 must have the local symbols available when we do the relocations.
12127 Since we would rather only read the local symbols once, and we
12128 would rather not keep them in memory, we handle all the
12129 relocations for a single input file at the same time.
12130
12131 Unfortunately, there is no way to know the total number of local
12132 symbols until we have seen all of them, and the local symbol
12133 indices precede the global symbol indices. This means that when
12134 we are generating relocatable output, and we see a reloc against
12135 a global symbol, we can not know the symbol index until we have
12136 finished examining all the local symbols to see which ones we are
12137 going to output. To deal with this, we keep the relocations in
12138 memory, and don't output them until the end of the link. This is
12139 an unfortunate waste of memory, but I don't see a good way around
12140 it. Fortunately, it only happens when performing a relocatable
12141 link, which is not the common case. FIXME: If keep_memory is set
12142 we could write the relocs out and then read them again; I don't
12143 know how bad the memory loss will be. */
12144
12145 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12146 sub->output_has_begun = FALSE;
12147 for (o = abfd->sections; o != NULL; o = o->next)
12148 {
12149 for (p = o->map_head.link_order; p != NULL; p = p->next)
12150 {
12151 if (p->type == bfd_indirect_link_order
12152 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12153 == bfd_target_elf_flavour)
12154 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12155 {
12156 if (! sub->output_has_begun)
12157 {
12158 if (! elf_link_input_bfd (&flinfo, sub))
12159 goto error_return;
12160 sub->output_has_begun = TRUE;
12161 }
12162 }
12163 else if (p->type == bfd_section_reloc_link_order
12164 || p->type == bfd_symbol_reloc_link_order)
12165 {
12166 if (! elf_reloc_link_order (abfd, info, o, p))
12167 goto error_return;
12168 }
12169 else
12170 {
12171 if (! _bfd_default_link_order (abfd, info, o, p))
12172 {
12173 if (p->type == bfd_indirect_link_order
12174 && (bfd_get_flavour (sub)
12175 == bfd_target_elf_flavour)
12176 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12177 != bed->s->elfclass))
12178 {
12179 const char *iclass, *oclass;
12180
12181 switch (bed->s->elfclass)
12182 {
12183 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12184 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12185 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12186 default: abort ();
12187 }
12188
12189 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12190 {
12191 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12192 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12193 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12194 default: abort ();
12195 }
12196
12197 bfd_set_error (bfd_error_wrong_format);
12198 _bfd_error_handler
12199 /* xgettext:c-format */
12200 (_("%pB: file class %s incompatible with %s"),
12201 sub, iclass, oclass);
12202 }
12203
12204 goto error_return;
12205 }
12206 }
12207 }
12208 }
12209
12210 /* Free symbol buffer if needed. */
12211 if (!info->reduce_memory_overheads)
12212 {
12213 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12214 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12215 && elf_tdata (sub)->symbuf)
12216 {
12217 free (elf_tdata (sub)->symbuf);
12218 elf_tdata (sub)->symbuf = NULL;
12219 }
12220 }
12221
12222 /* Output any global symbols that got converted to local in a
12223 version script or due to symbol visibility. We do this in a
12224 separate step since ELF requires all local symbols to appear
12225 prior to any global symbols. FIXME: We should only do this if
12226 some global symbols were, in fact, converted to become local.
12227 FIXME: Will this work correctly with the Irix 5 linker? */
12228 eoinfo.failed = FALSE;
12229 eoinfo.flinfo = &flinfo;
12230 eoinfo.localsyms = TRUE;
12231 eoinfo.file_sym_done = FALSE;
12232 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12233 if (eoinfo.failed)
12234 return FALSE;
12235
12236 /* If backend needs to output some local symbols not present in the hash
12237 table, do it now. */
12238 if (bed->elf_backend_output_arch_local_syms
12239 && (info->strip != strip_all || emit_relocs))
12240 {
12241 typedef int (*out_sym_func)
12242 (void *, const char *, Elf_Internal_Sym *, asection *,
12243 struct elf_link_hash_entry *);
12244
12245 if (! ((*bed->elf_backend_output_arch_local_syms)
12246 (abfd, info, &flinfo,
12247 (out_sym_func) elf_link_output_symstrtab)))
12248 return FALSE;
12249 }
12250
12251 /* That wrote out all the local symbols. Finish up the symbol table
12252 with the global symbols. Even if we want to strip everything we
12253 can, we still need to deal with those global symbols that got
12254 converted to local in a version script. */
12255
12256 /* The sh_info field records the index of the first non local symbol. */
12257 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12258
12259 if (dynamic
12260 && htab->dynsym != NULL
12261 && htab->dynsym->output_section != bfd_abs_section_ptr)
12262 {
12263 Elf_Internal_Sym sym;
12264 bfd_byte *dynsym = htab->dynsym->contents;
12265
12266 o = htab->dynsym->output_section;
12267 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12268
12269 /* Write out the section symbols for the output sections. */
12270 if (bfd_link_pic (info)
12271 || htab->is_relocatable_executable)
12272 {
12273 asection *s;
12274
12275 sym.st_size = 0;
12276 sym.st_name = 0;
12277 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12278 sym.st_other = 0;
12279 sym.st_target_internal = 0;
12280
12281 for (s = abfd->sections; s != NULL; s = s->next)
12282 {
12283 int indx;
12284 bfd_byte *dest;
12285 long dynindx;
12286
12287 dynindx = elf_section_data (s)->dynindx;
12288 if (dynindx <= 0)
12289 continue;
12290 indx = elf_section_data (s)->this_idx;
12291 BFD_ASSERT (indx > 0);
12292 sym.st_shndx = indx;
12293 if (! check_dynsym (abfd, &sym))
12294 return FALSE;
12295 sym.st_value = s->vma;
12296 dest = dynsym + dynindx * bed->s->sizeof_sym;
12297 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12298 }
12299 }
12300
12301 /* Write out the local dynsyms. */
12302 if (htab->dynlocal)
12303 {
12304 struct elf_link_local_dynamic_entry *e;
12305 for (e = htab->dynlocal; e ; e = e->next)
12306 {
12307 asection *s;
12308 bfd_byte *dest;
12309
12310 /* Copy the internal symbol and turn off visibility.
12311 Note that we saved a word of storage and overwrote
12312 the original st_name with the dynstr_index. */
12313 sym = e->isym;
12314 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12315
12316 s = bfd_section_from_elf_index (e->input_bfd,
12317 e->isym.st_shndx);
12318 if (s != NULL)
12319 {
12320 sym.st_shndx =
12321 elf_section_data (s->output_section)->this_idx;
12322 if (! check_dynsym (abfd, &sym))
12323 return FALSE;
12324 sym.st_value = (s->output_section->vma
12325 + s->output_offset
12326 + e->isym.st_value);
12327 }
12328
12329 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12330 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12331 }
12332 }
12333 }
12334
12335 /* We get the global symbols from the hash table. */
12336 eoinfo.failed = FALSE;
12337 eoinfo.localsyms = FALSE;
12338 eoinfo.flinfo = &flinfo;
12339 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12340 if (eoinfo.failed)
12341 return FALSE;
12342
12343 /* If backend needs to output some symbols not present in the hash
12344 table, do it now. */
12345 if (bed->elf_backend_output_arch_syms
12346 && (info->strip != strip_all || emit_relocs))
12347 {
12348 typedef int (*out_sym_func)
12349 (void *, const char *, Elf_Internal_Sym *, asection *,
12350 struct elf_link_hash_entry *);
12351
12352 if (! ((*bed->elf_backend_output_arch_syms)
12353 (abfd, info, &flinfo,
12354 (out_sym_func) elf_link_output_symstrtab)))
12355 return FALSE;
12356 }
12357
12358 /* Finalize the .strtab section. */
12359 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12360
12361 /* Swap out the .strtab section. */
12362 if (!elf_link_swap_symbols_out (&flinfo))
12363 return FALSE;
12364
12365 /* Now we know the size of the symtab section. */
12366 if (bfd_get_symcount (abfd) > 0)
12367 {
12368 /* Finish up and write out the symbol string table (.strtab)
12369 section. */
12370 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12371 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12372
12373 if (elf_symtab_shndx_list (abfd))
12374 {
12375 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12376
12377 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12378 {
12379 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12380 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12381 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12382 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12383 symtab_shndx_hdr->sh_size = amt;
12384
12385 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12386 off, TRUE);
12387
12388 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12389 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12390 return FALSE;
12391 }
12392 }
12393
12394 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12395 /* sh_name was set in prep_headers. */
12396 symstrtab_hdr->sh_type = SHT_STRTAB;
12397 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12398 symstrtab_hdr->sh_addr = 0;
12399 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12400 symstrtab_hdr->sh_entsize = 0;
12401 symstrtab_hdr->sh_link = 0;
12402 symstrtab_hdr->sh_info = 0;
12403 /* sh_offset is set just below. */
12404 symstrtab_hdr->sh_addralign = 1;
12405
12406 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12407 off, TRUE);
12408 elf_next_file_pos (abfd) = off;
12409
12410 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12411 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12412 return FALSE;
12413 }
12414
12415 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12416 {
12417 _bfd_error_handler (_("%pB: failed to generate import library"),
12418 info->out_implib_bfd);
12419 return FALSE;
12420 }
12421
12422 /* Adjust the relocs to have the correct symbol indices. */
12423 for (o = abfd->sections; o != NULL; o = o->next)
12424 {
12425 struct bfd_elf_section_data *esdo = elf_section_data (o);
12426 bfd_boolean sort;
12427
12428 if ((o->flags & SEC_RELOC) == 0)
12429 continue;
12430
12431 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12432 if (esdo->rel.hdr != NULL
12433 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12434 return FALSE;
12435 if (esdo->rela.hdr != NULL
12436 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12437 return FALSE;
12438
12439 /* Set the reloc_count field to 0 to prevent write_relocs from
12440 trying to swap the relocs out itself. */
12441 o->reloc_count = 0;
12442 }
12443
12444 if (dynamic && info->combreloc && dynobj != NULL)
12445 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12446
12447 /* If we are linking against a dynamic object, or generating a
12448 shared library, finish up the dynamic linking information. */
12449 if (dynamic)
12450 {
12451 bfd_byte *dyncon, *dynconend;
12452
12453 /* Fix up .dynamic entries. */
12454 o = bfd_get_linker_section (dynobj, ".dynamic");
12455 BFD_ASSERT (o != NULL);
12456
12457 dyncon = o->contents;
12458 dynconend = o->contents + o->size;
12459 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12460 {
12461 Elf_Internal_Dyn dyn;
12462 const char *name;
12463 unsigned int type;
12464 bfd_size_type sh_size;
12465 bfd_vma sh_addr;
12466
12467 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12468
12469 switch (dyn.d_tag)
12470 {
12471 default:
12472 continue;
12473 case DT_NULL:
12474 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12475 {
12476 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12477 {
12478 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12479 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12480 default: continue;
12481 }
12482 dyn.d_un.d_val = relativecount;
12483 relativecount = 0;
12484 break;
12485 }
12486 continue;
12487
12488 case DT_INIT:
12489 name = info->init_function;
12490 goto get_sym;
12491 case DT_FINI:
12492 name = info->fini_function;
12493 get_sym:
12494 {
12495 struct elf_link_hash_entry *h;
12496
12497 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12498 if (h != NULL
12499 && (h->root.type == bfd_link_hash_defined
12500 || h->root.type == bfd_link_hash_defweak))
12501 {
12502 dyn.d_un.d_ptr = h->root.u.def.value;
12503 o = h->root.u.def.section;
12504 if (o->output_section != NULL)
12505 dyn.d_un.d_ptr += (o->output_section->vma
12506 + o->output_offset);
12507 else
12508 {
12509 /* The symbol is imported from another shared
12510 library and does not apply to this one. */
12511 dyn.d_un.d_ptr = 0;
12512 }
12513 break;
12514 }
12515 }
12516 continue;
12517
12518 case DT_PREINIT_ARRAYSZ:
12519 name = ".preinit_array";
12520 goto get_out_size;
12521 case DT_INIT_ARRAYSZ:
12522 name = ".init_array";
12523 goto get_out_size;
12524 case DT_FINI_ARRAYSZ:
12525 name = ".fini_array";
12526 get_out_size:
12527 o = bfd_get_section_by_name (abfd, name);
12528 if (o == NULL)
12529 {
12530 _bfd_error_handler
12531 (_("could not find section %s"), name);
12532 goto error_return;
12533 }
12534 if (o->size == 0)
12535 _bfd_error_handler
12536 (_("warning: %s section has zero size"), name);
12537 dyn.d_un.d_val = o->size;
12538 break;
12539
12540 case DT_PREINIT_ARRAY:
12541 name = ".preinit_array";
12542 goto get_out_vma;
12543 case DT_INIT_ARRAY:
12544 name = ".init_array";
12545 goto get_out_vma;
12546 case DT_FINI_ARRAY:
12547 name = ".fini_array";
12548 get_out_vma:
12549 o = bfd_get_section_by_name (abfd, name);
12550 goto do_vma;
12551
12552 case DT_HASH:
12553 name = ".hash";
12554 goto get_vma;
12555 case DT_GNU_HASH:
12556 name = ".gnu.hash";
12557 goto get_vma;
12558 case DT_STRTAB:
12559 name = ".dynstr";
12560 goto get_vma;
12561 case DT_SYMTAB:
12562 name = ".dynsym";
12563 goto get_vma;
12564 case DT_VERDEF:
12565 name = ".gnu.version_d";
12566 goto get_vma;
12567 case DT_VERNEED:
12568 name = ".gnu.version_r";
12569 goto get_vma;
12570 case DT_VERSYM:
12571 name = ".gnu.version";
12572 get_vma:
12573 o = bfd_get_linker_section (dynobj, name);
12574 do_vma:
12575 if (o == NULL || bfd_is_abs_section (o->output_section))
12576 {
12577 _bfd_error_handler
12578 (_("could not find section %s"), name);
12579 goto error_return;
12580 }
12581 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12582 {
12583 _bfd_error_handler
12584 (_("warning: section '%s' is being made into a note"), name);
12585 bfd_set_error (bfd_error_nonrepresentable_section);
12586 goto error_return;
12587 }
12588 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12589 break;
12590
12591 case DT_REL:
12592 case DT_RELA:
12593 case DT_RELSZ:
12594 case DT_RELASZ:
12595 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12596 type = SHT_REL;
12597 else
12598 type = SHT_RELA;
12599 sh_size = 0;
12600 sh_addr = 0;
12601 for (i = 1; i < elf_numsections (abfd); i++)
12602 {
12603 Elf_Internal_Shdr *hdr;
12604
12605 hdr = elf_elfsections (abfd)[i];
12606 if (hdr->sh_type == type
12607 && (hdr->sh_flags & SHF_ALLOC) != 0)
12608 {
12609 sh_size += hdr->sh_size;
12610 if (sh_addr == 0
12611 || sh_addr > hdr->sh_addr)
12612 sh_addr = hdr->sh_addr;
12613 }
12614 }
12615
12616 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12617 {
12618 /* Don't count procedure linkage table relocs in the
12619 overall reloc count. */
12620 sh_size -= htab->srelplt->size;
12621 if (sh_size == 0)
12622 /* If the size is zero, make the address zero too.
12623 This is to avoid a glibc bug. If the backend
12624 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12625 zero, then we'll put DT_RELA at the end of
12626 DT_JMPREL. glibc will interpret the end of
12627 DT_RELA matching the end of DT_JMPREL as the
12628 case where DT_RELA includes DT_JMPREL, and for
12629 LD_BIND_NOW will decide that processing DT_RELA
12630 will process the PLT relocs too. Net result:
12631 No PLT relocs applied. */
12632 sh_addr = 0;
12633
12634 /* If .rela.plt is the first .rela section, exclude
12635 it from DT_RELA. */
12636 else if (sh_addr == (htab->srelplt->output_section->vma
12637 + htab->srelplt->output_offset))
12638 sh_addr += htab->srelplt->size;
12639 }
12640
12641 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12642 dyn.d_un.d_val = sh_size;
12643 else
12644 dyn.d_un.d_ptr = sh_addr;
12645 break;
12646 }
12647 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12648 }
12649 }
12650
12651 /* If we have created any dynamic sections, then output them. */
12652 if (dynobj != NULL)
12653 {
12654 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12655 goto error_return;
12656
12657 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12658 if (((info->warn_shared_textrel && bfd_link_pic (info))
12659 || info->error_textrel)
12660 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12661 {
12662 bfd_byte *dyncon, *dynconend;
12663
12664 dyncon = o->contents;
12665 dynconend = o->contents + o->size;
12666 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12667 {
12668 Elf_Internal_Dyn dyn;
12669
12670 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12671
12672 if (dyn.d_tag == DT_TEXTREL)
12673 {
12674 if (info->error_textrel)
12675 info->callbacks->einfo
12676 (_("%P%X: read-only segment has dynamic relocations\n"));
12677 else
12678 info->callbacks->einfo
12679 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12680 break;
12681 }
12682 }
12683 }
12684
12685 for (o = dynobj->sections; o != NULL; o = o->next)
12686 {
12687 if ((o->flags & SEC_HAS_CONTENTS) == 0
12688 || o->size == 0
12689 || o->output_section == bfd_abs_section_ptr)
12690 continue;
12691 if ((o->flags & SEC_LINKER_CREATED) == 0)
12692 {
12693 /* At this point, we are only interested in sections
12694 created by _bfd_elf_link_create_dynamic_sections. */
12695 continue;
12696 }
12697 if (htab->stab_info.stabstr == o)
12698 continue;
12699 if (htab->eh_info.hdr_sec == o)
12700 continue;
12701 if (strcmp (o->name, ".dynstr") != 0)
12702 {
12703 if (! bfd_set_section_contents (abfd, o->output_section,
12704 o->contents,
12705 (file_ptr) o->output_offset
12706 * bfd_octets_per_byte (abfd),
12707 o->size))
12708 goto error_return;
12709 }
12710 else
12711 {
12712 /* The contents of the .dynstr section are actually in a
12713 stringtab. */
12714 file_ptr off;
12715
12716 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12717 if (bfd_seek (abfd, off, SEEK_SET) != 0
12718 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12719 goto error_return;
12720 }
12721 }
12722 }
12723
12724 if (!info->resolve_section_groups)
12725 {
12726 bfd_boolean failed = FALSE;
12727
12728 BFD_ASSERT (bfd_link_relocatable (info));
12729 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12730 if (failed)
12731 goto error_return;
12732 }
12733
12734 /* If we have optimized stabs strings, output them. */
12735 if (htab->stab_info.stabstr != NULL)
12736 {
12737 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12738 goto error_return;
12739 }
12740
12741 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12742 goto error_return;
12743
12744 elf_final_link_free (abfd, &flinfo);
12745
12746 elf_linker (abfd) = TRUE;
12747
12748 if (attr_section)
12749 {
12750 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12751 if (contents == NULL)
12752 return FALSE; /* Bail out and fail. */
12753 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12754 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12755 free (contents);
12756 }
12757
12758 return TRUE;
12759
12760 error_return:
12761 elf_final_link_free (abfd, &flinfo);
12762 return FALSE;
12763 }
12764 \f
12765 /* Initialize COOKIE for input bfd ABFD. */
12766
12767 static bfd_boolean
12768 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12769 struct bfd_link_info *info, bfd *abfd)
12770 {
12771 Elf_Internal_Shdr *symtab_hdr;
12772 const struct elf_backend_data *bed;
12773
12774 bed = get_elf_backend_data (abfd);
12775 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12776
12777 cookie->abfd = abfd;
12778 cookie->sym_hashes = elf_sym_hashes (abfd);
12779 cookie->bad_symtab = elf_bad_symtab (abfd);
12780 if (cookie->bad_symtab)
12781 {
12782 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12783 cookie->extsymoff = 0;
12784 }
12785 else
12786 {
12787 cookie->locsymcount = symtab_hdr->sh_info;
12788 cookie->extsymoff = symtab_hdr->sh_info;
12789 }
12790
12791 if (bed->s->arch_size == 32)
12792 cookie->r_sym_shift = 8;
12793 else
12794 cookie->r_sym_shift = 32;
12795
12796 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12797 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12798 {
12799 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12800 cookie->locsymcount, 0,
12801 NULL, NULL, NULL);
12802 if (cookie->locsyms == NULL)
12803 {
12804 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12805 return FALSE;
12806 }
12807 if (info->keep_memory)
12808 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12809 }
12810 return TRUE;
12811 }
12812
12813 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12814
12815 static void
12816 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12817 {
12818 Elf_Internal_Shdr *symtab_hdr;
12819
12820 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12821 if (cookie->locsyms != NULL
12822 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12823 free (cookie->locsyms);
12824 }
12825
12826 /* Initialize the relocation information in COOKIE for input section SEC
12827 of input bfd ABFD. */
12828
12829 static bfd_boolean
12830 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12831 struct bfd_link_info *info, bfd *abfd,
12832 asection *sec)
12833 {
12834 if (sec->reloc_count == 0)
12835 {
12836 cookie->rels = NULL;
12837 cookie->relend = NULL;
12838 }
12839 else
12840 {
12841 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12842 info->keep_memory);
12843 if (cookie->rels == NULL)
12844 return FALSE;
12845 cookie->rel = cookie->rels;
12846 cookie->relend = cookie->rels + sec->reloc_count;
12847 }
12848 cookie->rel = cookie->rels;
12849 return TRUE;
12850 }
12851
12852 /* Free the memory allocated by init_reloc_cookie_rels,
12853 if appropriate. */
12854
12855 static void
12856 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12857 asection *sec)
12858 {
12859 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12860 free (cookie->rels);
12861 }
12862
12863 /* Initialize the whole of COOKIE for input section SEC. */
12864
12865 static bfd_boolean
12866 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12867 struct bfd_link_info *info,
12868 asection *sec)
12869 {
12870 if (!init_reloc_cookie (cookie, info, sec->owner))
12871 goto error1;
12872 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12873 goto error2;
12874 return TRUE;
12875
12876 error2:
12877 fini_reloc_cookie (cookie, sec->owner);
12878 error1:
12879 return FALSE;
12880 }
12881
12882 /* Free the memory allocated by init_reloc_cookie_for_section,
12883 if appropriate. */
12884
12885 static void
12886 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12887 asection *sec)
12888 {
12889 fini_reloc_cookie_rels (cookie, sec);
12890 fini_reloc_cookie (cookie, sec->owner);
12891 }
12892 \f
12893 /* Garbage collect unused sections. */
12894
12895 /* Default gc_mark_hook. */
12896
12897 asection *
12898 _bfd_elf_gc_mark_hook (asection *sec,
12899 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12900 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12901 struct elf_link_hash_entry *h,
12902 Elf_Internal_Sym *sym)
12903 {
12904 if (h != NULL)
12905 {
12906 switch (h->root.type)
12907 {
12908 case bfd_link_hash_defined:
12909 case bfd_link_hash_defweak:
12910 return h->root.u.def.section;
12911
12912 case bfd_link_hash_common:
12913 return h->root.u.c.p->section;
12914
12915 default:
12916 break;
12917 }
12918 }
12919 else
12920 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12921
12922 return NULL;
12923 }
12924
12925 /* Return the debug definition section. */
12926
12927 static asection *
12928 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12929 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12930 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12931 struct elf_link_hash_entry *h,
12932 Elf_Internal_Sym *sym)
12933 {
12934 if (h != NULL)
12935 {
12936 /* Return the global debug definition section. */
12937 if ((h->root.type == bfd_link_hash_defined
12938 || h->root.type == bfd_link_hash_defweak)
12939 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12940 return h->root.u.def.section;
12941 }
12942 else
12943 {
12944 /* Return the local debug definition section. */
12945 asection *isec = bfd_section_from_elf_index (sec->owner,
12946 sym->st_shndx);
12947 if ((isec->flags & SEC_DEBUGGING) != 0)
12948 return isec;
12949 }
12950
12951 return NULL;
12952 }
12953
12954 /* COOKIE->rel describes a relocation against section SEC, which is
12955 a section we've decided to keep. Return the section that contains
12956 the relocation symbol, or NULL if no section contains it. */
12957
12958 asection *
12959 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12960 elf_gc_mark_hook_fn gc_mark_hook,
12961 struct elf_reloc_cookie *cookie,
12962 bfd_boolean *start_stop)
12963 {
12964 unsigned long r_symndx;
12965 struct elf_link_hash_entry *h;
12966
12967 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12968 if (r_symndx == STN_UNDEF)
12969 return NULL;
12970
12971 if (r_symndx >= cookie->locsymcount
12972 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12973 {
12974 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12975 if (h == NULL)
12976 {
12977 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
12978 sec->owner);
12979 return NULL;
12980 }
12981 while (h->root.type == bfd_link_hash_indirect
12982 || h->root.type == bfd_link_hash_warning)
12983 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12984 h->mark = 1;
12985 /* If this symbol is weak and there is a non-weak definition, we
12986 keep the non-weak definition because many backends put
12987 dynamic reloc info on the non-weak definition for code
12988 handling copy relocs. */
12989 if (h->is_weakalias)
12990 weakdef (h)->mark = 1;
12991
12992 if (start_stop != NULL)
12993 {
12994 /* To work around a glibc bug, mark XXX input sections
12995 when there is a reference to __start_XXX or __stop_XXX
12996 symbols. */
12997 if (h->start_stop)
12998 {
12999 asection *s = h->u2.start_stop_section;
13000 *start_stop = !s->gc_mark;
13001 return s;
13002 }
13003 }
13004
13005 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13006 }
13007
13008 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13009 &cookie->locsyms[r_symndx]);
13010 }
13011
13012 /* COOKIE->rel describes a relocation against section SEC, which is
13013 a section we've decided to keep. Mark the section that contains
13014 the relocation symbol. */
13015
13016 bfd_boolean
13017 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13018 asection *sec,
13019 elf_gc_mark_hook_fn gc_mark_hook,
13020 struct elf_reloc_cookie *cookie)
13021 {
13022 asection *rsec;
13023 bfd_boolean start_stop = FALSE;
13024
13025 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13026 while (rsec != NULL)
13027 {
13028 if (!rsec->gc_mark)
13029 {
13030 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13031 || (rsec->owner->flags & DYNAMIC) != 0)
13032 rsec->gc_mark = 1;
13033 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13034 return FALSE;
13035 }
13036 if (!start_stop)
13037 break;
13038 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13039 }
13040 return TRUE;
13041 }
13042
13043 /* The mark phase of garbage collection. For a given section, mark
13044 it and any sections in this section's group, and all the sections
13045 which define symbols to which it refers. */
13046
13047 bfd_boolean
13048 _bfd_elf_gc_mark (struct bfd_link_info *info,
13049 asection *sec,
13050 elf_gc_mark_hook_fn gc_mark_hook)
13051 {
13052 bfd_boolean ret;
13053 asection *group_sec, *eh_frame;
13054
13055 sec->gc_mark = 1;
13056
13057 /* Mark all the sections in the group. */
13058 group_sec = elf_section_data (sec)->next_in_group;
13059 if (group_sec && !group_sec->gc_mark)
13060 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13061 return FALSE;
13062
13063 /* Look through the section relocs. */
13064 ret = TRUE;
13065 eh_frame = elf_eh_frame_section (sec->owner);
13066 if ((sec->flags & SEC_RELOC) != 0
13067 && sec->reloc_count > 0
13068 && sec != eh_frame)
13069 {
13070 struct elf_reloc_cookie cookie;
13071
13072 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13073 ret = FALSE;
13074 else
13075 {
13076 for (; cookie.rel < cookie.relend; cookie.rel++)
13077 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13078 {
13079 ret = FALSE;
13080 break;
13081 }
13082 fini_reloc_cookie_for_section (&cookie, sec);
13083 }
13084 }
13085
13086 if (ret && eh_frame && elf_fde_list (sec))
13087 {
13088 struct elf_reloc_cookie cookie;
13089
13090 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13091 ret = FALSE;
13092 else
13093 {
13094 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13095 gc_mark_hook, &cookie))
13096 ret = FALSE;
13097 fini_reloc_cookie_for_section (&cookie, eh_frame);
13098 }
13099 }
13100
13101 eh_frame = elf_section_eh_frame_entry (sec);
13102 if (ret && eh_frame && !eh_frame->gc_mark)
13103 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13104 ret = FALSE;
13105
13106 return ret;
13107 }
13108
13109 /* Scan and mark sections in a special or debug section group. */
13110
13111 static void
13112 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13113 {
13114 /* Point to first section of section group. */
13115 asection *ssec;
13116 /* Used to iterate the section group. */
13117 asection *msec;
13118
13119 bfd_boolean is_special_grp = TRUE;
13120 bfd_boolean is_debug_grp = TRUE;
13121
13122 /* First scan to see if group contains any section other than debug
13123 and special section. */
13124 ssec = msec = elf_next_in_group (grp);
13125 do
13126 {
13127 if ((msec->flags & SEC_DEBUGGING) == 0)
13128 is_debug_grp = FALSE;
13129
13130 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13131 is_special_grp = FALSE;
13132
13133 msec = elf_next_in_group (msec);
13134 }
13135 while (msec != ssec);
13136
13137 /* If this is a pure debug section group or pure special section group,
13138 keep all sections in this group. */
13139 if (is_debug_grp || is_special_grp)
13140 {
13141 do
13142 {
13143 msec->gc_mark = 1;
13144 msec = elf_next_in_group (msec);
13145 }
13146 while (msec != ssec);
13147 }
13148 }
13149
13150 /* Keep debug and special sections. */
13151
13152 bfd_boolean
13153 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13154 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13155 {
13156 bfd *ibfd;
13157
13158 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13159 {
13160 asection *isec;
13161 bfd_boolean some_kept;
13162 bfd_boolean debug_frag_seen;
13163 bfd_boolean has_kept_debug_info;
13164
13165 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13166 continue;
13167 isec = ibfd->sections;
13168 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13169 continue;
13170
13171 /* Ensure all linker created sections are kept,
13172 see if any other section is already marked,
13173 and note if we have any fragmented debug sections. */
13174 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13175 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13176 {
13177 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13178 isec->gc_mark = 1;
13179 else if (isec->gc_mark
13180 && (isec->flags & SEC_ALLOC) != 0
13181 && elf_section_type (isec) != SHT_NOTE)
13182 some_kept = TRUE;
13183
13184 if (!debug_frag_seen
13185 && (isec->flags & SEC_DEBUGGING)
13186 && CONST_STRNEQ (isec->name, ".debug_line."))
13187 debug_frag_seen = TRUE;
13188 }
13189
13190 /* If no non-note alloc section in this file will be kept, then
13191 we can toss out the debug and special sections. */
13192 if (!some_kept)
13193 continue;
13194
13195 /* Keep debug and special sections like .comment when they are
13196 not part of a group. Also keep section groups that contain
13197 just debug sections or special sections. */
13198 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13199 {
13200 if ((isec->flags & SEC_GROUP) != 0)
13201 _bfd_elf_gc_mark_debug_special_section_group (isec);
13202 else if (((isec->flags & SEC_DEBUGGING) != 0
13203 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13204 && elf_next_in_group (isec) == NULL)
13205 isec->gc_mark = 1;
13206 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13207 has_kept_debug_info = TRUE;
13208 }
13209
13210 /* Look for CODE sections which are going to be discarded,
13211 and find and discard any fragmented debug sections which
13212 are associated with that code section. */
13213 if (debug_frag_seen)
13214 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13215 if ((isec->flags & SEC_CODE) != 0
13216 && isec->gc_mark == 0)
13217 {
13218 unsigned int ilen;
13219 asection *dsec;
13220
13221 ilen = strlen (isec->name);
13222
13223 /* Association is determined by the name of the debug
13224 section containing the name of the code section as
13225 a suffix. For example .debug_line.text.foo is a
13226 debug section associated with .text.foo. */
13227 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13228 {
13229 unsigned int dlen;
13230
13231 if (dsec->gc_mark == 0
13232 || (dsec->flags & SEC_DEBUGGING) == 0)
13233 continue;
13234
13235 dlen = strlen (dsec->name);
13236
13237 if (dlen > ilen
13238 && strncmp (dsec->name + (dlen - ilen),
13239 isec->name, ilen) == 0)
13240 dsec->gc_mark = 0;
13241 }
13242 }
13243
13244 /* Mark debug sections referenced by kept debug sections. */
13245 if (has_kept_debug_info)
13246 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13247 if (isec->gc_mark
13248 && (isec->flags & SEC_DEBUGGING) != 0)
13249 if (!_bfd_elf_gc_mark (info, isec,
13250 elf_gc_mark_debug_section))
13251 return FALSE;
13252 }
13253 return TRUE;
13254 }
13255
13256 static bfd_boolean
13257 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13258 {
13259 bfd *sub;
13260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13261
13262 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13263 {
13264 asection *o;
13265
13266 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13267 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13268 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13269 continue;
13270 o = sub->sections;
13271 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13272 continue;
13273
13274 for (o = sub->sections; o != NULL; o = o->next)
13275 {
13276 /* When any section in a section group is kept, we keep all
13277 sections in the section group. If the first member of
13278 the section group is excluded, we will also exclude the
13279 group section. */
13280 if (o->flags & SEC_GROUP)
13281 {
13282 asection *first = elf_next_in_group (o);
13283 o->gc_mark = first->gc_mark;
13284 }
13285
13286 if (o->gc_mark)
13287 continue;
13288
13289 /* Skip sweeping sections already excluded. */
13290 if (o->flags & SEC_EXCLUDE)
13291 continue;
13292
13293 /* Since this is early in the link process, it is simple
13294 to remove a section from the output. */
13295 o->flags |= SEC_EXCLUDE;
13296
13297 if (info->print_gc_sections && o->size != 0)
13298 /* xgettext:c-format */
13299 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13300 o, sub);
13301 }
13302 }
13303
13304 return TRUE;
13305 }
13306
13307 /* Propagate collected vtable information. This is called through
13308 elf_link_hash_traverse. */
13309
13310 static bfd_boolean
13311 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13312 {
13313 /* Those that are not vtables. */
13314 if (h->start_stop
13315 || h->u2.vtable == NULL
13316 || h->u2.vtable->parent == NULL)
13317 return TRUE;
13318
13319 /* Those vtables that do not have parents, we cannot merge. */
13320 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13321 return TRUE;
13322
13323 /* If we've already been done, exit. */
13324 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13325 return TRUE;
13326
13327 /* Make sure the parent's table is up to date. */
13328 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13329
13330 if (h->u2.vtable->used == NULL)
13331 {
13332 /* None of this table's entries were referenced. Re-use the
13333 parent's table. */
13334 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13335 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13336 }
13337 else
13338 {
13339 size_t n;
13340 bfd_boolean *cu, *pu;
13341
13342 /* Or the parent's entries into ours. */
13343 cu = h->u2.vtable->used;
13344 cu[-1] = TRUE;
13345 pu = h->u2.vtable->parent->u2.vtable->used;
13346 if (pu != NULL)
13347 {
13348 const struct elf_backend_data *bed;
13349 unsigned int log_file_align;
13350
13351 bed = get_elf_backend_data (h->root.u.def.section->owner);
13352 log_file_align = bed->s->log_file_align;
13353 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13354 while (n--)
13355 {
13356 if (*pu)
13357 *cu = TRUE;
13358 pu++;
13359 cu++;
13360 }
13361 }
13362 }
13363
13364 return TRUE;
13365 }
13366
13367 static bfd_boolean
13368 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13369 {
13370 asection *sec;
13371 bfd_vma hstart, hend;
13372 Elf_Internal_Rela *relstart, *relend, *rel;
13373 const struct elf_backend_data *bed;
13374 unsigned int log_file_align;
13375
13376 /* Take care of both those symbols that do not describe vtables as
13377 well as those that are not loaded. */
13378 if (h->start_stop
13379 || h->u2.vtable == NULL
13380 || h->u2.vtable->parent == NULL)
13381 return TRUE;
13382
13383 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13384 || h->root.type == bfd_link_hash_defweak);
13385
13386 sec = h->root.u.def.section;
13387 hstart = h->root.u.def.value;
13388 hend = hstart + h->size;
13389
13390 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13391 if (!relstart)
13392 return *(bfd_boolean *) okp = FALSE;
13393 bed = get_elf_backend_data (sec->owner);
13394 log_file_align = bed->s->log_file_align;
13395
13396 relend = relstart + sec->reloc_count;
13397
13398 for (rel = relstart; rel < relend; ++rel)
13399 if (rel->r_offset >= hstart && rel->r_offset < hend)
13400 {
13401 /* If the entry is in use, do nothing. */
13402 if (h->u2.vtable->used
13403 && (rel->r_offset - hstart) < h->u2.vtable->size)
13404 {
13405 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13406 if (h->u2.vtable->used[entry])
13407 continue;
13408 }
13409 /* Otherwise, kill it. */
13410 rel->r_offset = rel->r_info = rel->r_addend = 0;
13411 }
13412
13413 return TRUE;
13414 }
13415
13416 /* Mark sections containing dynamically referenced symbols. When
13417 building shared libraries, we must assume that any visible symbol is
13418 referenced. */
13419
13420 bfd_boolean
13421 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13422 {
13423 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13424 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13425
13426 if ((h->root.type == bfd_link_hash_defined
13427 || h->root.type == bfd_link_hash_defweak)
13428 && ((h->ref_dynamic && !h->forced_local)
13429 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13430 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13431 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13432 && (!bfd_link_executable (info)
13433 || info->gc_keep_exported
13434 || info->export_dynamic
13435 || (h->dynamic
13436 && d != NULL
13437 && (*d->match) (&d->head, NULL, h->root.root.string)))
13438 && (h->versioned >= versioned
13439 || !bfd_hide_sym_by_version (info->version_info,
13440 h->root.root.string)))))
13441 h->root.u.def.section->flags |= SEC_KEEP;
13442
13443 return TRUE;
13444 }
13445
13446 /* Keep all sections containing symbols undefined on the command-line,
13447 and the section containing the entry symbol. */
13448
13449 void
13450 _bfd_elf_gc_keep (struct bfd_link_info *info)
13451 {
13452 struct bfd_sym_chain *sym;
13453
13454 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13455 {
13456 struct elf_link_hash_entry *h;
13457
13458 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13459 FALSE, FALSE, FALSE);
13460
13461 if (h != NULL
13462 && (h->root.type == bfd_link_hash_defined
13463 || h->root.type == bfd_link_hash_defweak)
13464 && !bfd_is_abs_section (h->root.u.def.section)
13465 && !bfd_is_und_section (h->root.u.def.section))
13466 h->root.u.def.section->flags |= SEC_KEEP;
13467 }
13468 }
13469
13470 bfd_boolean
13471 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13472 struct bfd_link_info *info)
13473 {
13474 bfd *ibfd = info->input_bfds;
13475
13476 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13477 {
13478 asection *sec;
13479 struct elf_reloc_cookie cookie;
13480
13481 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13482 continue;
13483 sec = ibfd->sections;
13484 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13485 continue;
13486
13487 if (!init_reloc_cookie (&cookie, info, ibfd))
13488 return FALSE;
13489
13490 for (sec = ibfd->sections; sec; sec = sec->next)
13491 {
13492 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13493 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13494 {
13495 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13496 fini_reloc_cookie_rels (&cookie, sec);
13497 }
13498 }
13499 }
13500 return TRUE;
13501 }
13502
13503 /* Do mark and sweep of unused sections. */
13504
13505 bfd_boolean
13506 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13507 {
13508 bfd_boolean ok = TRUE;
13509 bfd *sub;
13510 elf_gc_mark_hook_fn gc_mark_hook;
13511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13512 struct elf_link_hash_table *htab;
13513
13514 if (!bed->can_gc_sections
13515 || !is_elf_hash_table (info->hash))
13516 {
13517 _bfd_error_handler(_("warning: gc-sections option ignored"));
13518 return TRUE;
13519 }
13520
13521 bed->gc_keep (info);
13522 htab = elf_hash_table (info);
13523
13524 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13525 at the .eh_frame section if we can mark the FDEs individually. */
13526 for (sub = info->input_bfds;
13527 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13528 sub = sub->link.next)
13529 {
13530 asection *sec;
13531 struct elf_reloc_cookie cookie;
13532
13533 sec = sub->sections;
13534 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13535 continue;
13536 sec = bfd_get_section_by_name (sub, ".eh_frame");
13537 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13538 {
13539 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13540 if (elf_section_data (sec)->sec_info
13541 && (sec->flags & SEC_LINKER_CREATED) == 0)
13542 elf_eh_frame_section (sub) = sec;
13543 fini_reloc_cookie_for_section (&cookie, sec);
13544 sec = bfd_get_next_section_by_name (NULL, sec);
13545 }
13546 }
13547
13548 /* Apply transitive closure to the vtable entry usage info. */
13549 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13550 if (!ok)
13551 return FALSE;
13552
13553 /* Kill the vtable relocations that were not used. */
13554 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13555 if (!ok)
13556 return FALSE;
13557
13558 /* Mark dynamically referenced symbols. */
13559 if (htab->dynamic_sections_created || info->gc_keep_exported)
13560 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13561
13562 /* Grovel through relocs to find out who stays ... */
13563 gc_mark_hook = bed->gc_mark_hook;
13564 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13565 {
13566 asection *o;
13567
13568 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13569 || elf_object_id (sub) != elf_hash_table_id (htab)
13570 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13571 continue;
13572
13573 o = sub->sections;
13574 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13575 continue;
13576
13577 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13578 Also treat note sections as a root, if the section is not part
13579 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13580 well as FINI_ARRAY sections for ld -r. */
13581 for (o = sub->sections; o != NULL; o = o->next)
13582 if (!o->gc_mark
13583 && (o->flags & SEC_EXCLUDE) == 0
13584 && ((o->flags & SEC_KEEP) != 0
13585 || (bfd_link_relocatable (info)
13586 && ((elf_section_data (o)->this_hdr.sh_type
13587 == SHT_PREINIT_ARRAY)
13588 || (elf_section_data (o)->this_hdr.sh_type
13589 == SHT_INIT_ARRAY)
13590 || (elf_section_data (o)->this_hdr.sh_type
13591 == SHT_FINI_ARRAY)))
13592 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13593 && elf_next_in_group (o) == NULL )))
13594 {
13595 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13596 return FALSE;
13597 }
13598 }
13599
13600 /* Allow the backend to mark additional target specific sections. */
13601 bed->gc_mark_extra_sections (info, gc_mark_hook);
13602
13603 /* ... and mark SEC_EXCLUDE for those that go. */
13604 return elf_gc_sweep (abfd, info);
13605 }
13606 \f
13607 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13608
13609 bfd_boolean
13610 bfd_elf_gc_record_vtinherit (bfd *abfd,
13611 asection *sec,
13612 struct elf_link_hash_entry *h,
13613 bfd_vma offset)
13614 {
13615 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13616 struct elf_link_hash_entry **search, *child;
13617 size_t extsymcount;
13618 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13619
13620 /* The sh_info field of the symtab header tells us where the
13621 external symbols start. We don't care about the local symbols at
13622 this point. */
13623 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13624 if (!elf_bad_symtab (abfd))
13625 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13626
13627 sym_hashes = elf_sym_hashes (abfd);
13628 sym_hashes_end = sym_hashes + extsymcount;
13629
13630 /* Hunt down the child symbol, which is in this section at the same
13631 offset as the relocation. */
13632 for (search = sym_hashes; search != sym_hashes_end; ++search)
13633 {
13634 if ((child = *search) != NULL
13635 && (child->root.type == bfd_link_hash_defined
13636 || child->root.type == bfd_link_hash_defweak)
13637 && child->root.u.def.section == sec
13638 && child->root.u.def.value == offset)
13639 goto win;
13640 }
13641
13642 /* xgettext:c-format */
13643 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13644 abfd, sec, (uint64_t) offset);
13645 bfd_set_error (bfd_error_invalid_operation);
13646 return FALSE;
13647
13648 win:
13649 if (!child->u2.vtable)
13650 {
13651 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13652 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13653 if (!child->u2.vtable)
13654 return FALSE;
13655 }
13656 if (!h)
13657 {
13658 /* This *should* only be the absolute section. It could potentially
13659 be that someone has defined a non-global vtable though, which
13660 would be bad. It isn't worth paging in the local symbols to be
13661 sure though; that case should simply be handled by the assembler. */
13662
13663 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13664 }
13665 else
13666 child->u2.vtable->parent = h;
13667
13668 return TRUE;
13669 }
13670
13671 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13672
13673 bfd_boolean
13674 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13675 asection *sec ATTRIBUTE_UNUSED,
13676 struct elf_link_hash_entry *h,
13677 bfd_vma addend)
13678 {
13679 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13680 unsigned int log_file_align = bed->s->log_file_align;
13681
13682 if (!h->u2.vtable)
13683 {
13684 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13685 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13686 if (!h->u2.vtable)
13687 return FALSE;
13688 }
13689
13690 if (addend >= h->u2.vtable->size)
13691 {
13692 size_t size, bytes, file_align;
13693 bfd_boolean *ptr = h->u2.vtable->used;
13694
13695 /* While the symbol is undefined, we have to be prepared to handle
13696 a zero size. */
13697 file_align = 1 << log_file_align;
13698 if (h->root.type == bfd_link_hash_undefined)
13699 size = addend + file_align;
13700 else
13701 {
13702 size = h->size;
13703 if (addend >= size)
13704 {
13705 /* Oops! We've got a reference past the defined end of
13706 the table. This is probably a bug -- shall we warn? */
13707 size = addend + file_align;
13708 }
13709 }
13710 size = (size + file_align - 1) & -file_align;
13711
13712 /* Allocate one extra entry for use as a "done" flag for the
13713 consolidation pass. */
13714 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13715
13716 if (ptr)
13717 {
13718 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13719
13720 if (ptr != NULL)
13721 {
13722 size_t oldbytes;
13723
13724 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13725 * sizeof (bfd_boolean));
13726 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13727 }
13728 }
13729 else
13730 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13731
13732 if (ptr == NULL)
13733 return FALSE;
13734
13735 /* And arrange for that done flag to be at index -1. */
13736 h->u2.vtable->used = ptr + 1;
13737 h->u2.vtable->size = size;
13738 }
13739
13740 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13741
13742 return TRUE;
13743 }
13744
13745 /* Map an ELF section header flag to its corresponding string. */
13746 typedef struct
13747 {
13748 char *flag_name;
13749 flagword flag_value;
13750 } elf_flags_to_name_table;
13751
13752 static elf_flags_to_name_table elf_flags_to_names [] =
13753 {
13754 { "SHF_WRITE", SHF_WRITE },
13755 { "SHF_ALLOC", SHF_ALLOC },
13756 { "SHF_EXECINSTR", SHF_EXECINSTR },
13757 { "SHF_MERGE", SHF_MERGE },
13758 { "SHF_STRINGS", SHF_STRINGS },
13759 { "SHF_INFO_LINK", SHF_INFO_LINK},
13760 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13761 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13762 { "SHF_GROUP", SHF_GROUP },
13763 { "SHF_TLS", SHF_TLS },
13764 { "SHF_MASKOS", SHF_MASKOS },
13765 { "SHF_EXCLUDE", SHF_EXCLUDE },
13766 };
13767
13768 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13769 bfd_boolean
13770 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13771 struct flag_info *flaginfo,
13772 asection *section)
13773 {
13774 const bfd_vma sh_flags = elf_section_flags (section);
13775
13776 if (!flaginfo->flags_initialized)
13777 {
13778 bfd *obfd = info->output_bfd;
13779 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13780 struct flag_info_list *tf = flaginfo->flag_list;
13781 int with_hex = 0;
13782 int without_hex = 0;
13783
13784 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13785 {
13786 unsigned i;
13787 flagword (*lookup) (char *);
13788
13789 lookup = bed->elf_backend_lookup_section_flags_hook;
13790 if (lookup != NULL)
13791 {
13792 flagword hexval = (*lookup) ((char *) tf->name);
13793
13794 if (hexval != 0)
13795 {
13796 if (tf->with == with_flags)
13797 with_hex |= hexval;
13798 else if (tf->with == without_flags)
13799 without_hex |= hexval;
13800 tf->valid = TRUE;
13801 continue;
13802 }
13803 }
13804 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13805 {
13806 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13807 {
13808 if (tf->with == with_flags)
13809 with_hex |= elf_flags_to_names[i].flag_value;
13810 else if (tf->with == without_flags)
13811 without_hex |= elf_flags_to_names[i].flag_value;
13812 tf->valid = TRUE;
13813 break;
13814 }
13815 }
13816 if (!tf->valid)
13817 {
13818 info->callbacks->einfo
13819 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13820 return FALSE;
13821 }
13822 }
13823 flaginfo->flags_initialized = TRUE;
13824 flaginfo->only_with_flags |= with_hex;
13825 flaginfo->not_with_flags |= without_hex;
13826 }
13827
13828 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13829 return FALSE;
13830
13831 if ((flaginfo->not_with_flags & sh_flags) != 0)
13832 return FALSE;
13833
13834 return TRUE;
13835 }
13836
13837 struct alloc_got_off_arg {
13838 bfd_vma gotoff;
13839 struct bfd_link_info *info;
13840 };
13841
13842 /* We need a special top-level link routine to convert got reference counts
13843 to real got offsets. */
13844
13845 static bfd_boolean
13846 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13847 {
13848 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13849 bfd *obfd = gofarg->info->output_bfd;
13850 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13851
13852 if (h->got.refcount > 0)
13853 {
13854 h->got.offset = gofarg->gotoff;
13855 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13856 }
13857 else
13858 h->got.offset = (bfd_vma) -1;
13859
13860 return TRUE;
13861 }
13862
13863 /* And an accompanying bit to work out final got entry offsets once
13864 we're done. Should be called from final_link. */
13865
13866 bfd_boolean
13867 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13868 struct bfd_link_info *info)
13869 {
13870 bfd *i;
13871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13872 bfd_vma gotoff;
13873 struct alloc_got_off_arg gofarg;
13874
13875 BFD_ASSERT (abfd == info->output_bfd);
13876
13877 if (! is_elf_hash_table (info->hash))
13878 return FALSE;
13879
13880 /* The GOT offset is relative to the .got section, but the GOT header is
13881 put into the .got.plt section, if the backend uses it. */
13882 if (bed->want_got_plt)
13883 gotoff = 0;
13884 else
13885 gotoff = bed->got_header_size;
13886
13887 /* Do the local .got entries first. */
13888 for (i = info->input_bfds; i; i = i->link.next)
13889 {
13890 bfd_signed_vma *local_got;
13891 size_t j, locsymcount;
13892 Elf_Internal_Shdr *symtab_hdr;
13893
13894 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13895 continue;
13896
13897 local_got = elf_local_got_refcounts (i);
13898 if (!local_got)
13899 continue;
13900
13901 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13902 if (elf_bad_symtab (i))
13903 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13904 else
13905 locsymcount = symtab_hdr->sh_info;
13906
13907 for (j = 0; j < locsymcount; ++j)
13908 {
13909 if (local_got[j] > 0)
13910 {
13911 local_got[j] = gotoff;
13912 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13913 }
13914 else
13915 local_got[j] = (bfd_vma) -1;
13916 }
13917 }
13918
13919 /* Then the global .got entries. .plt refcounts are handled by
13920 adjust_dynamic_symbol */
13921 gofarg.gotoff = gotoff;
13922 gofarg.info = info;
13923 elf_link_hash_traverse (elf_hash_table (info),
13924 elf_gc_allocate_got_offsets,
13925 &gofarg);
13926 return TRUE;
13927 }
13928
13929 /* Many folk need no more in the way of final link than this, once
13930 got entry reference counting is enabled. */
13931
13932 bfd_boolean
13933 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13934 {
13935 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13936 return FALSE;
13937
13938 /* Invoke the regular ELF backend linker to do all the work. */
13939 return bfd_elf_final_link (abfd, info);
13940 }
13941
13942 bfd_boolean
13943 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13944 {
13945 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13946
13947 if (rcookie->bad_symtab)
13948 rcookie->rel = rcookie->rels;
13949
13950 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13951 {
13952 unsigned long r_symndx;
13953
13954 if (! rcookie->bad_symtab)
13955 if (rcookie->rel->r_offset > offset)
13956 return FALSE;
13957 if (rcookie->rel->r_offset != offset)
13958 continue;
13959
13960 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13961 if (r_symndx == STN_UNDEF)
13962 return TRUE;
13963
13964 if (r_symndx >= rcookie->locsymcount
13965 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13966 {
13967 struct elf_link_hash_entry *h;
13968
13969 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13970
13971 while (h->root.type == bfd_link_hash_indirect
13972 || h->root.type == bfd_link_hash_warning)
13973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13974
13975 if ((h->root.type == bfd_link_hash_defined
13976 || h->root.type == bfd_link_hash_defweak)
13977 && (h->root.u.def.section->owner != rcookie->abfd
13978 || h->root.u.def.section->kept_section != NULL
13979 || discarded_section (h->root.u.def.section)))
13980 return TRUE;
13981 }
13982 else
13983 {
13984 /* It's not a relocation against a global symbol,
13985 but it could be a relocation against a local
13986 symbol for a discarded section. */
13987 asection *isec;
13988 Elf_Internal_Sym *isym;
13989
13990 /* Need to: get the symbol; get the section. */
13991 isym = &rcookie->locsyms[r_symndx];
13992 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13993 if (isec != NULL
13994 && (isec->kept_section != NULL
13995 || discarded_section (isec)))
13996 return TRUE;
13997 }
13998 return FALSE;
13999 }
14000 return FALSE;
14001 }
14002
14003 /* Discard unneeded references to discarded sections.
14004 Returns -1 on error, 1 if any section's size was changed, 0 if
14005 nothing changed. This function assumes that the relocations are in
14006 sorted order, which is true for all known assemblers. */
14007
14008 int
14009 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14010 {
14011 struct elf_reloc_cookie cookie;
14012 asection *o;
14013 bfd *abfd;
14014 int changed = 0;
14015
14016 if (info->traditional_format
14017 || !is_elf_hash_table (info->hash))
14018 return 0;
14019
14020 o = bfd_get_section_by_name (output_bfd, ".stab");
14021 if (o != NULL)
14022 {
14023 asection *i;
14024
14025 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14026 {
14027 if (i->size == 0
14028 || i->reloc_count == 0
14029 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14030 continue;
14031
14032 abfd = i->owner;
14033 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14034 continue;
14035
14036 if (!init_reloc_cookie_for_section (&cookie, info, i))
14037 return -1;
14038
14039 if (_bfd_discard_section_stabs (abfd, i,
14040 elf_section_data (i)->sec_info,
14041 bfd_elf_reloc_symbol_deleted_p,
14042 &cookie))
14043 changed = 1;
14044
14045 fini_reloc_cookie_for_section (&cookie, i);
14046 }
14047 }
14048
14049 o = NULL;
14050 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14051 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14052 if (o != NULL)
14053 {
14054 asection *i;
14055 int eh_changed = 0;
14056 unsigned int eh_alignment;
14057
14058 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14059 {
14060 if (i->size == 0)
14061 continue;
14062
14063 abfd = i->owner;
14064 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14065 continue;
14066
14067 if (!init_reloc_cookie_for_section (&cookie, info, i))
14068 return -1;
14069
14070 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14071 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14072 bfd_elf_reloc_symbol_deleted_p,
14073 &cookie))
14074 {
14075 eh_changed = 1;
14076 if (i->size != i->rawsize)
14077 changed = 1;
14078 }
14079
14080 fini_reloc_cookie_for_section (&cookie, i);
14081 }
14082
14083 eh_alignment = 1 << o->alignment_power;
14084 /* Skip over zero terminator, and prevent empty sections from
14085 adding alignment padding at the end. */
14086 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14087 if (i->size == 0)
14088 i->flags |= SEC_EXCLUDE;
14089 else if (i->size > 4)
14090 break;
14091 /* The last non-empty eh_frame section doesn't need padding. */
14092 if (i != NULL)
14093 i = i->map_tail.s;
14094 /* Any prior sections must pad the last FDE out to the output
14095 section alignment. Otherwise we might have zero padding
14096 between sections, which would be seen as a terminator. */
14097 for (; i != NULL; i = i->map_tail.s)
14098 if (i->size == 4)
14099 /* All but the last zero terminator should have been removed. */
14100 BFD_FAIL ();
14101 else
14102 {
14103 bfd_size_type size
14104 = (i->size + eh_alignment - 1) & -eh_alignment;
14105 if (i->size != size)
14106 {
14107 i->size = size;
14108 changed = 1;
14109 eh_changed = 1;
14110 }
14111 }
14112 if (eh_changed)
14113 elf_link_hash_traverse (elf_hash_table (info),
14114 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14115 }
14116
14117 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14118 {
14119 const struct elf_backend_data *bed;
14120 asection *s;
14121
14122 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14123 continue;
14124 s = abfd->sections;
14125 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14126 continue;
14127
14128 bed = get_elf_backend_data (abfd);
14129
14130 if (bed->elf_backend_discard_info != NULL)
14131 {
14132 if (!init_reloc_cookie (&cookie, info, abfd))
14133 return -1;
14134
14135 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14136 changed = 1;
14137
14138 fini_reloc_cookie (&cookie, abfd);
14139 }
14140 }
14141
14142 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14143 _bfd_elf_end_eh_frame_parsing (info);
14144
14145 if (info->eh_frame_hdr_type
14146 && !bfd_link_relocatable (info)
14147 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14148 changed = 1;
14149
14150 return changed;
14151 }
14152
14153 bfd_boolean
14154 _bfd_elf_section_already_linked (bfd *abfd,
14155 asection *sec,
14156 struct bfd_link_info *info)
14157 {
14158 flagword flags;
14159 const char *name, *key;
14160 struct bfd_section_already_linked *l;
14161 struct bfd_section_already_linked_hash_entry *already_linked_list;
14162
14163 if (sec->output_section == bfd_abs_section_ptr)
14164 return FALSE;
14165
14166 flags = sec->flags;
14167
14168 /* Return if it isn't a linkonce section. A comdat group section
14169 also has SEC_LINK_ONCE set. */
14170 if ((flags & SEC_LINK_ONCE) == 0)
14171 return FALSE;
14172
14173 /* Don't put group member sections on our list of already linked
14174 sections. They are handled as a group via their group section. */
14175 if (elf_sec_group (sec) != NULL)
14176 return FALSE;
14177
14178 /* For a SHT_GROUP section, use the group signature as the key. */
14179 name = sec->name;
14180 if ((flags & SEC_GROUP) != 0
14181 && elf_next_in_group (sec) != NULL
14182 && elf_group_name (elf_next_in_group (sec)) != NULL)
14183 key = elf_group_name (elf_next_in_group (sec));
14184 else
14185 {
14186 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14187 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14188 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14189 key++;
14190 else
14191 /* Must be a user linkonce section that doesn't follow gcc's
14192 naming convention. In this case we won't be matching
14193 single member groups. */
14194 key = name;
14195 }
14196
14197 already_linked_list = bfd_section_already_linked_table_lookup (key);
14198
14199 for (l = already_linked_list->entry; l != NULL; l = l->next)
14200 {
14201 /* We may have 2 different types of sections on the list: group
14202 sections with a signature of <key> (<key> is some string),
14203 and linkonce sections named .gnu.linkonce.<type>.<key>.
14204 Match like sections. LTO plugin sections are an exception.
14205 They are always named .gnu.linkonce.t.<key> and match either
14206 type of section. */
14207 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14208 && ((flags & SEC_GROUP) != 0
14209 || strcmp (name, l->sec->name) == 0))
14210 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14211 {
14212 /* The section has already been linked. See if we should
14213 issue a warning. */
14214 if (!_bfd_handle_already_linked (sec, l, info))
14215 return FALSE;
14216
14217 if (flags & SEC_GROUP)
14218 {
14219 asection *first = elf_next_in_group (sec);
14220 asection *s = first;
14221
14222 while (s != NULL)
14223 {
14224 s->output_section = bfd_abs_section_ptr;
14225 /* Record which group discards it. */
14226 s->kept_section = l->sec;
14227 s = elf_next_in_group (s);
14228 /* These lists are circular. */
14229 if (s == first)
14230 break;
14231 }
14232 }
14233
14234 return TRUE;
14235 }
14236 }
14237
14238 /* A single member comdat group section may be discarded by a
14239 linkonce section and vice versa. */
14240 if ((flags & SEC_GROUP) != 0)
14241 {
14242 asection *first = elf_next_in_group (sec);
14243
14244 if (first != NULL && elf_next_in_group (first) == first)
14245 /* Check this single member group against linkonce sections. */
14246 for (l = already_linked_list->entry; l != NULL; l = l->next)
14247 if ((l->sec->flags & SEC_GROUP) == 0
14248 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14249 {
14250 first->output_section = bfd_abs_section_ptr;
14251 first->kept_section = l->sec;
14252 sec->output_section = bfd_abs_section_ptr;
14253 break;
14254 }
14255 }
14256 else
14257 /* Check this linkonce section against single member groups. */
14258 for (l = already_linked_list->entry; l != NULL; l = l->next)
14259 if (l->sec->flags & SEC_GROUP)
14260 {
14261 asection *first = elf_next_in_group (l->sec);
14262
14263 if (first != NULL
14264 && elf_next_in_group (first) == first
14265 && bfd_elf_match_symbols_in_sections (first, sec, info))
14266 {
14267 sec->output_section = bfd_abs_section_ptr;
14268 sec->kept_section = first;
14269 break;
14270 }
14271 }
14272
14273 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14274 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14275 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14276 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14277 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14278 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14279 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14280 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14281 The reverse order cannot happen as there is never a bfd with only the
14282 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14283 matter as here were are looking only for cross-bfd sections. */
14284
14285 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14286 for (l = already_linked_list->entry; l != NULL; l = l->next)
14287 if ((l->sec->flags & SEC_GROUP) == 0
14288 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14289 {
14290 if (abfd != l->sec->owner)
14291 sec->output_section = bfd_abs_section_ptr;
14292 break;
14293 }
14294
14295 /* This is the first section with this name. Record it. */
14296 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14297 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14298 return sec->output_section == bfd_abs_section_ptr;
14299 }
14300
14301 bfd_boolean
14302 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14303 {
14304 return sym->st_shndx == SHN_COMMON;
14305 }
14306
14307 unsigned int
14308 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14309 {
14310 return SHN_COMMON;
14311 }
14312
14313 asection *
14314 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14315 {
14316 return bfd_com_section_ptr;
14317 }
14318
14319 bfd_vma
14320 _bfd_elf_default_got_elt_size (bfd *abfd,
14321 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14322 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14323 bfd *ibfd ATTRIBUTE_UNUSED,
14324 unsigned long symndx ATTRIBUTE_UNUSED)
14325 {
14326 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14327 return bed->s->arch_size / 8;
14328 }
14329
14330 /* Routines to support the creation of dynamic relocs. */
14331
14332 /* Returns the name of the dynamic reloc section associated with SEC. */
14333
14334 static const char *
14335 get_dynamic_reloc_section_name (bfd * abfd,
14336 asection * sec,
14337 bfd_boolean is_rela)
14338 {
14339 char *name;
14340 const char *old_name = bfd_get_section_name (NULL, sec);
14341 const char *prefix = is_rela ? ".rela" : ".rel";
14342
14343 if (old_name == NULL)
14344 return NULL;
14345
14346 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14347 sprintf (name, "%s%s", prefix, old_name);
14348
14349 return name;
14350 }
14351
14352 /* Returns the dynamic reloc section associated with SEC.
14353 If necessary compute the name of the dynamic reloc section based
14354 on SEC's name (looked up in ABFD's string table) and the setting
14355 of IS_RELA. */
14356
14357 asection *
14358 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14359 asection * sec,
14360 bfd_boolean is_rela)
14361 {
14362 asection * reloc_sec = elf_section_data (sec)->sreloc;
14363
14364 if (reloc_sec == NULL)
14365 {
14366 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14367
14368 if (name != NULL)
14369 {
14370 reloc_sec = bfd_get_linker_section (abfd, name);
14371
14372 if (reloc_sec != NULL)
14373 elf_section_data (sec)->sreloc = reloc_sec;
14374 }
14375 }
14376
14377 return reloc_sec;
14378 }
14379
14380 /* Returns the dynamic reloc section associated with SEC. If the
14381 section does not exist it is created and attached to the DYNOBJ
14382 bfd and stored in the SRELOC field of SEC's elf_section_data
14383 structure.
14384
14385 ALIGNMENT is the alignment for the newly created section and
14386 IS_RELA defines whether the name should be .rela.<SEC's name>
14387 or .rel.<SEC's name>. The section name is looked up in the
14388 string table associated with ABFD. */
14389
14390 asection *
14391 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14392 bfd *dynobj,
14393 unsigned int alignment,
14394 bfd *abfd,
14395 bfd_boolean is_rela)
14396 {
14397 asection * reloc_sec = elf_section_data (sec)->sreloc;
14398
14399 if (reloc_sec == NULL)
14400 {
14401 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14402
14403 if (name == NULL)
14404 return NULL;
14405
14406 reloc_sec = bfd_get_linker_section (dynobj, name);
14407
14408 if (reloc_sec == NULL)
14409 {
14410 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14411 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14412 if ((sec->flags & SEC_ALLOC) != 0)
14413 flags |= SEC_ALLOC | SEC_LOAD;
14414
14415 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14416 if (reloc_sec != NULL)
14417 {
14418 /* _bfd_elf_get_sec_type_attr chooses a section type by
14419 name. Override as it may be wrong, eg. for a user
14420 section named "auto" we'll get ".relauto" which is
14421 seen to be a .rela section. */
14422 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14423 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14424 reloc_sec = NULL;
14425 }
14426 }
14427
14428 elf_section_data (sec)->sreloc = reloc_sec;
14429 }
14430
14431 return reloc_sec;
14432 }
14433
14434 /* Copy the ELF symbol type and other attributes for a linker script
14435 assignment from HSRC to HDEST. Generally this should be treated as
14436 if we found a strong non-dynamic definition for HDEST (except that
14437 ld ignores multiple definition errors). */
14438 void
14439 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14440 struct bfd_link_hash_entry *hdest,
14441 struct bfd_link_hash_entry *hsrc)
14442 {
14443 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14444 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14445 Elf_Internal_Sym isym;
14446
14447 ehdest->type = ehsrc->type;
14448 ehdest->target_internal = ehsrc->target_internal;
14449
14450 isym.st_other = ehsrc->other;
14451 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14452 }
14453
14454 /* Append a RELA relocation REL to section S in BFD. */
14455
14456 void
14457 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14458 {
14459 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14460 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14461 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14462 bed->s->swap_reloca_out (abfd, rel, loc);
14463 }
14464
14465 /* Append a REL relocation REL to section S in BFD. */
14466
14467 void
14468 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14469 {
14470 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14471 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14472 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14473 bed->s->swap_reloc_out (abfd, rel, loc);
14474 }
14475
14476 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14477
14478 struct bfd_link_hash_entry *
14479 bfd_elf_define_start_stop (struct bfd_link_info *info,
14480 const char *symbol, asection *sec)
14481 {
14482 struct elf_link_hash_entry *h;
14483
14484 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14485 FALSE, FALSE, TRUE);
14486 if (h != NULL
14487 && (h->root.type == bfd_link_hash_undefined
14488 || h->root.type == bfd_link_hash_undefweak
14489 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14490 {
14491 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14492 h->root.type = bfd_link_hash_defined;
14493 h->root.u.def.section = sec;
14494 h->root.u.def.value = 0;
14495 h->def_regular = 1;
14496 h->def_dynamic = 0;
14497 h->start_stop = 1;
14498 h->u2.start_stop_section = sec;
14499 if (symbol[0] == '.')
14500 {
14501 /* .startof. and .sizeof. symbols are local. */
14502 const struct elf_backend_data *bed;
14503 bed = get_elf_backend_data (info->output_bfd);
14504 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14505 }
14506 else
14507 {
14508 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14509 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14510 if (was_dynamic)
14511 bfd_elf_link_record_dynamic_symbol (info, h);
14512 }
14513 return &h->root;
14514 }
14515 return NULL;
14516 }
This page took 0.339713 seconds and 4 git commands to generate.