Don't check shared/export_dynamic/ref_dynamic for type mismatch
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
33
34 struct elf_info_failed
35 {
36 struct bfd_link_info *info;
37 bfd_boolean failed;
38 };
39
40 /* This structure is used to pass information to
41 _bfd_elf_link_find_version_dependencies. */
42
43 struct elf_find_verdep_info
44 {
45 /* General link information. */
46 struct bfd_link_info *info;
47 /* The number of dependencies. */
48 unsigned int vers;
49 /* Whether we had a failure. */
50 bfd_boolean failed;
51 };
52
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54 (struct elf_link_hash_entry *, struct elf_info_failed *);
55
56 /* Define a symbol in a dynamic linkage section. */
57
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 struct bfd_link_info *info,
61 asection *sec,
62 const char *name)
63 {
64 struct elf_link_hash_entry *h;
65 struct bfd_link_hash_entry *bh;
66 const struct elf_backend_data *bed;
67
68 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69 if (h != NULL)
70 {
71 /* Zap symbol defined in an as-needed lib that wasn't linked.
72 This is a symptom of a larger problem: Absolute symbols
73 defined in shared libraries can't be overridden, because we
74 lose the link to the bfd which is via the symbol section. */
75 h->root.type = bfd_link_hash_new;
76 }
77
78 bh = &h->root;
79 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 sec, 0, NULL, FALSE,
81 get_elf_backend_data (abfd)->collect,
82 &bh))
83 return NULL;
84 h = (struct elf_link_hash_entry *) bh;
85 h->def_regular = 1;
86 h->non_elf = 0;
87 h->type = STT_OBJECT;
88 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90
91 bed = get_elf_backend_data (abfd);
92 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93 return h;
94 }
95
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99 flagword flags;
100 asection *s;
101 struct elf_link_hash_entry *h;
102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103 struct elf_link_hash_table *htab = elf_hash_table (info);
104
105 /* This function may be called more than once. */
106 s = bfd_get_linker_section (abfd, ".got");
107 if (s != NULL)
108 return TRUE;
109
110 flags = bed->dynamic_sec_flags;
111
112 s = bfd_make_section_anyway_with_flags (abfd,
113 (bed->rela_plts_and_copies_p
114 ? ".rela.got" : ".rel.got"),
115 (bed->dynamic_sec_flags
116 | SEC_READONLY));
117 if (s == NULL
118 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119 return FALSE;
120 htab->srelgot = s;
121
122 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123 if (s == NULL
124 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125 return FALSE;
126 htab->sgot = s;
127
128 if (bed->want_got_plt)
129 {
130 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131 if (s == NULL
132 || !bfd_set_section_alignment (abfd, s,
133 bed->s->log_file_align))
134 return FALSE;
135 htab->sgotplt = s;
136 }
137
138 /* The first bit of the global offset table is the header. */
139 s->size += bed->got_header_size;
140
141 if (bed->want_got_sym)
142 {
143 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 (or .got.plt) section. We don't do this in the linker script
145 because we don't want to define the symbol if we are not creating
146 a global offset table. */
147 h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 "_GLOBAL_OFFSET_TABLE_");
149 elf_hash_table (info)->hgot = h;
150 if (h == NULL)
151 return FALSE;
152 }
153
154 return TRUE;
155 }
156 \f
157 /* Create a strtab to hold the dynamic symbol names. */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161 struct elf_link_hash_table *hash_table;
162
163 hash_table = elf_hash_table (info);
164 if (hash_table->dynobj == NULL)
165 hash_table->dynobj = abfd;
166
167 if (hash_table->dynstr == NULL)
168 {
169 hash_table->dynstr = _bfd_elf_strtab_init ();
170 if (hash_table->dynstr == NULL)
171 return FALSE;
172 }
173 return TRUE;
174 }
175
176 /* Create some sections which will be filled in with dynamic linking
177 information. ABFD is an input file which requires dynamic sections
178 to be created. The dynamic sections take up virtual memory space
179 when the final executable is run, so we need to create them before
180 addresses are assigned to the output sections. We work out the
181 actual contents and size of these sections later. */
182
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186 flagword flags;
187 asection *s;
188 const struct elf_backend_data *bed;
189 struct elf_link_hash_entry *h;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258 elf_hash_table (info)->hdynamic = h;
259 if (h == NULL)
260 return FALSE;
261
262 if (info->emit_hash)
263 {
264 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 flags | SEC_READONLY);
266 if (s == NULL
267 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 return FALSE;
269 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 }
271
272 if (info->emit_gnu_hash)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 flags | SEC_READONLY);
276 if (s == NULL
277 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 return FALSE;
279 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 4 32-bit words followed by variable count of 64-bit words, then
281 variable count of 32-bit words. */
282 if (bed->s->arch_size == 64)
283 elf_section_data (s)->this_hdr.sh_entsize = 0;
284 else
285 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 }
287
288 /* Let the backend create the rest of the sections. This lets the
289 backend set the right flags. The backend will normally create
290 the .got and .plt sections. */
291 if (bed->elf_backend_create_dynamic_sections == NULL
292 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 return FALSE;
294
295 elf_hash_table (info)->dynamic_sections_created = TRUE;
296
297 return TRUE;
298 }
299
300 /* Create dynamic sections when linking against a dynamic object. */
301
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305 flagword flags, pltflags;
306 struct elf_link_hash_entry *h;
307 asection *s;
308 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309 struct elf_link_hash_table *htab = elf_hash_table (info);
310
311 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312 .rel[a].bss sections. */
313 flags = bed->dynamic_sec_flags;
314
315 pltflags = flags;
316 if (bed->plt_not_loaded)
317 /* We do not clear SEC_ALLOC here because we still want the OS to
318 allocate space for the section; it's just that there's nothing
319 to read in from the object file. */
320 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321 else
322 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323 if (bed->plt_readonly)
324 pltflags |= SEC_READONLY;
325
326 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327 if (s == NULL
328 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 return FALSE;
330 htab->splt = s;
331
332 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333 .plt section. */
334 if (bed->want_plt_sym)
335 {
336 h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 "_PROCEDURE_LINKAGE_TABLE_");
338 elf_hash_table (info)->hplt = h;
339 if (h == NULL)
340 return FALSE;
341 }
342
343 s = bfd_make_section_anyway_with_flags (abfd,
344 (bed->rela_plts_and_copies_p
345 ? ".rela.plt" : ".rel.plt"),
346 flags | SEC_READONLY);
347 if (s == NULL
348 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 return FALSE;
350 htab->srelplt = s;
351
352 if (! _bfd_elf_create_got_section (abfd, info))
353 return FALSE;
354
355 if (bed->want_dynbss)
356 {
357 /* The .dynbss section is a place to put symbols which are defined
358 by dynamic objects, are referenced by regular objects, and are
359 not functions. We must allocate space for them in the process
360 image and use a R_*_COPY reloc to tell the dynamic linker to
361 initialize them at run time. The linker script puts the .dynbss
362 section into the .bss section of the final image. */
363 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 (SEC_ALLOC | SEC_LINKER_CREATED));
365 if (s == NULL)
366 return FALSE;
367
368 /* The .rel[a].bss section holds copy relocs. This section is not
369 normally needed. We need to create it here, though, so that the
370 linker will map it to an output section. We can't just create it
371 only if we need it, because we will not know whether we need it
372 until we have seen all the input files, and the first time the
373 main linker code calls BFD after examining all the input files
374 (size_dynamic_sections) the input sections have already been
375 mapped to the output sections. If the section turns out not to
376 be needed, we can discard it later. We will never need this
377 section when generating a shared object, since they do not use
378 copy relocs. */
379 if (! info->shared)
380 {
381 s = bfd_make_section_anyway_with_flags (abfd,
382 (bed->rela_plts_and_copies_p
383 ? ".rela.bss" : ".rel.bss"),
384 flags | SEC_READONLY);
385 if (s == NULL
386 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 return FALSE;
388 }
389 }
390
391 return TRUE;
392 }
393 \f
394 /* Record a new dynamic symbol. We record the dynamic symbols as we
395 read the input files, since we need to have a list of all of them
396 before we can determine the final sizes of the output sections.
397 Note that we may actually call this function even though we are not
398 going to output any dynamic symbols; in some cases we know that a
399 symbol should be in the dynamic symbol table, but only if there is
400 one. */
401
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 struct elf_link_hash_entry *h)
405 {
406 if (h->dynindx == -1)
407 {
408 struct elf_strtab_hash *dynstr;
409 char *p;
410 const char *name;
411 bfd_size_type indx;
412
413 /* XXX: The ABI draft says the linker must turn hidden and
414 internal symbols into STB_LOCAL symbols when producing the
415 DSO. However, if ld.so honors st_other in the dynamic table,
416 this would not be necessary. */
417 switch (ELF_ST_VISIBILITY (h->other))
418 {
419 case STV_INTERNAL:
420 case STV_HIDDEN:
421 if (h->root.type != bfd_link_hash_undefined
422 && h->root.type != bfd_link_hash_undefweak)
423 {
424 h->forced_local = 1;
425 if (!elf_hash_table (info)->is_relocatable_executable)
426 return TRUE;
427 }
428
429 default:
430 break;
431 }
432
433 h->dynindx = elf_hash_table (info)->dynsymcount;
434 ++elf_hash_table (info)->dynsymcount;
435
436 dynstr = elf_hash_table (info)->dynstr;
437 if (dynstr == NULL)
438 {
439 /* Create a strtab to hold the dynamic symbol names. */
440 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 if (dynstr == NULL)
442 return FALSE;
443 }
444
445 /* We don't put any version information in the dynamic string
446 table. */
447 name = h->root.root.string;
448 p = strchr (name, ELF_VER_CHR);
449 if (p != NULL)
450 /* We know that the p points into writable memory. In fact,
451 there are only a few symbols that have read-only names, being
452 those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 by the backends. Most symbols will have names pointing into
454 an ELF string table read from a file, or to objalloc memory. */
455 *p = 0;
456
457 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458
459 if (p != NULL)
460 *p = ELF_VER_CHR;
461
462 if (indx == (bfd_size_type) -1)
463 return FALSE;
464 h->dynstr_index = indx;
465 }
466
467 return TRUE;
468 }
469 \f
470 /* Mark a symbol dynamic. */
471
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 struct elf_link_hash_entry *h,
475 Elf_Internal_Sym *sym)
476 {
477 struct bfd_elf_dynamic_list *d = info->dynamic_list;
478
479 /* It may be called more than once on the same H. */
480 if(h->dynamic || info->relocatable)
481 return;
482
483 if ((info->dynamic_data
484 && (h->type == STT_OBJECT
485 || (sym != NULL
486 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487 || (d != NULL
488 && h->root.type == bfd_link_hash_new
489 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 h->dynamic = 1;
491 }
492
493 /* Record an assignment to a symbol made by a linker script. We need
494 this in case some dynamic object refers to this symbol. */
495
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 struct bfd_link_info *info,
499 const char *name,
500 bfd_boolean provide,
501 bfd_boolean hidden)
502 {
503 struct elf_link_hash_entry *h, *hv;
504 struct elf_link_hash_table *htab;
505 const struct elf_backend_data *bed;
506
507 if (!is_elf_hash_table (info->hash))
508 return TRUE;
509
510 htab = elf_hash_table (info);
511 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 if (h == NULL)
513 return provide;
514
515 switch (h->root.type)
516 {
517 case bfd_link_hash_defined:
518 case bfd_link_hash_defweak:
519 case bfd_link_hash_common:
520 break;
521 case bfd_link_hash_undefweak:
522 case bfd_link_hash_undefined:
523 /* Since we're defining the symbol, don't let it seem to have not
524 been defined. record_dynamic_symbol and size_dynamic_sections
525 may depend on this. */
526 h->root.type = bfd_link_hash_new;
527 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 bfd_link_repair_undef_list (&htab->root);
529 break;
530 case bfd_link_hash_new:
531 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 h->non_elf = 0;
533 break;
534 case bfd_link_hash_indirect:
535 /* We had a versioned symbol in a dynamic library. We make the
536 the versioned symbol point to this one. */
537 bed = get_elf_backend_data (output_bfd);
538 hv = h;
539 while (hv->root.type == bfd_link_hash_indirect
540 || hv->root.type == bfd_link_hash_warning)
541 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542 /* We don't need to update h->root.u since linker will set them
543 later. */
544 h->root.type = bfd_link_hash_undefined;
545 hv->root.type = bfd_link_hash_indirect;
546 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548 break;
549 case bfd_link_hash_warning:
550 abort ();
551 break;
552 }
553
554 /* If this symbol is being provided by the linker script, and it is
555 currently defined by a dynamic object, but not by a regular
556 object, then mark it as undefined so that the generic linker will
557 force the correct value. */
558 if (provide
559 && h->def_dynamic
560 && !h->def_regular)
561 h->root.type = bfd_link_hash_undefined;
562
563 /* If this symbol is not being provided by the linker script, and it is
564 currently defined by a dynamic object, but not by a regular object,
565 then clear out any version information because the symbol will not be
566 associated with the dynamic object any more. */
567 if (!provide
568 && h->def_dynamic
569 && !h->def_regular)
570 h->verinfo.verdef = NULL;
571
572 h->def_regular = 1;
573
574 if (hidden)
575 {
576 bed = get_elf_backend_data (output_bfd);
577 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580 }
581
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583 and executables. */
584 if (!info->relocatable
585 && h->dynindx != -1
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588 h->forced_local = 1;
589
590 if ((h->def_dynamic
591 || h->ref_dynamic
592 || info->shared
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594 && h->dynindx == -1)
595 {
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 return FALSE;
598
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
604 {
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 return FALSE;
607 }
608 }
609
610 return TRUE;
611 }
612
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
616
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 bfd *input_bfd,
620 long input_indx)
621 {
622 bfd_size_type amt;
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
627 char *name;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
630
631 if (! is_elf_hash_table (info->hash))
632 return 0;
633
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637 return 1;
638
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 if (entry == NULL)
642 return 0;
643
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
647 {
648 bfd_release (input_bfd, entry);
649 return 0;
650 }
651
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
654 {
655 asection *s;
656
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
659 {
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
663 return 2;
664 }
665 }
666
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
670
671 dynstr = elf_hash_table (info)->dynstr;
672 if (dynstr == NULL)
673 {
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676 if (dynstr == NULL)
677 return 0;
678 }
679
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
682 return 0;
683 entry->isym.st_name = dynstr_index;
684
685 eht = elf_hash_table (info);
686
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
691 eht->dynsymcount++;
692
693 /* Whatever binding the symbol had before, it's now local. */
694 entry->isym.st_info
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696
697 /* The dynindx will be set at the end of size_dynamic_sections. */
698
699 return 1;
700 }
701
702 /* Return the dynindex of a local dynamic symbol. */
703
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 bfd *input_bfd,
707 long input_indx)
708 {
709 struct elf_link_local_dynamic_entry *e;
710
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713 return e->dynindx;
714 return -1;
715 }
716
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
720
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 void *data)
724 {
725 size_t *count = (size_t *) data;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (!h->forced_local)
747 return TRUE;
748
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
751
752 return TRUE;
753 }
754
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
760 asection *p)
761 {
762 struct elf_link_hash_table *htab;
763
764 switch (elf_section_data (p)->this_hdr.sh_type)
765 {
766 case SHT_PROGBITS:
767 case SHT_NOBITS:
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
770 case SHT_NULL:
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
773 return FALSE;
774
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
777
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
781 {
782 asection *ip;
783
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
787 return TRUE;
788 }
789 return FALSE;
790
791 /* There shouldn't be section relative relocations
792 against any other section. */
793 default:
794 return TRUE;
795 }
796 }
797
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
802 symbols. */
803
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
808 {
809 unsigned long dynsymcount = 0;
810
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812 {
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814 asection *p;
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
820 else
821 elf_section_data (p)->dynindx = 0;
822 }
823 *section_sym_count = dynsymcount;
824
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
827 &dynsymcount);
828
829 if (elf_hash_table (info)->dynlocal)
830 {
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
834 }
835
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
838 &dynsymcount);
839
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
844 ++dynsymcount;
845
846 elf_hash_table (info)->dynsymcount = dynsymcount;
847 return dynsymcount;
848 }
849
850 /* Merge st_other field. */
851
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
855 bfd_boolean dynamic)
856 {
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 dynamic);
865
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
868 if (definition
869 && !dynamic
870 && (abfd->no_export
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877 {
878 unsigned char hvis, symvis, other, nvis;
879
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
883
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
887 if (! hvis)
888 nvis = symvis;
889 else if (! symvis)
890 nvis = hvis;
891 else
892 nvis = hvis < symvis ? hvis : symvis;
893
894 h->other = other | nvis;
895 }
896 }
897
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
910
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
914 const char *name,
915 Elf_Internal_Sym *sym,
916 asection **psec,
917 bfd_vma *pvalue,
918 struct elf_link_hash_entry **sym_hash,
919 bfd **poldbfd,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
922 bfd_boolean *skip,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
926 {
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945 else
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948 if (h == NULL)
949 return FALSE;
950 *sym_hash = h;
951
952 bed = get_elf_backend_data (abfd);
953
954 /* For merging, we only care about real symbols. But we need to make
955 sure that indirect symbol dynamic flags are updated. */
956 hi = h;
957 while (h->root.type == bfd_link_hash_indirect
958 || h->root.type == bfd_link_hash_warning)
959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
960
961 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962 existing symbol. */
963
964 oldbfd = NULL;
965 oldsec = NULL;
966 switch (h->root.type)
967 {
968 default:
969 break;
970
971 case bfd_link_hash_undefined:
972 case bfd_link_hash_undefweak:
973 oldbfd = h->root.u.undef.abfd;
974 break;
975
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 oldbfd = h->root.u.def.section->owner;
979 oldsec = h->root.u.def.section;
980 break;
981
982 case bfd_link_hash_common:
983 oldbfd = h->root.u.c.p->section->owner;
984 oldsec = h->root.u.c.p->section;
985 if (pold_alignment)
986 *pold_alignment = h->root.u.c.p->alignment_power;
987 break;
988 }
989 if (poldbfd && *poldbfd == NULL)
990 *poldbfd = oldbfd;
991
992 /* Differentiate strong and weak symbols. */
993 newweak = bind == STB_WEAK;
994 oldweak = (h->root.type == bfd_link_hash_defweak
995 || h->root.type == bfd_link_hash_undefweak);
996 if (pold_weak)
997 *pold_weak = oldweak;
998
999 /* This code is for coping with dynamic objects, and is only useful
1000 if we are doing an ELF link. */
1001 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002 return TRUE;
1003
1004 /* We have to check it for every instance since the first few may be
1005 references and not all compilers emit symbol type for undefined
1006 symbols. */
1007 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008
1009 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010 respectively, is from a dynamic object. */
1011
1012 newdyn = (abfd->flags & DYNAMIC) != 0;
1013
1014 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015 syms and defined syms in dynamic libraries respectively.
1016 ref_dynamic on the other hand can be set for a symbol defined in
1017 a dynamic library, and def_dynamic may not be set; When the
1018 definition in a dynamic lib is overridden by a definition in the
1019 executable use of the symbol in the dynamic lib becomes a
1020 reference to the executable symbol. */
1021 if (newdyn)
1022 {
1023 if (bfd_is_und_section (sec))
1024 {
1025 if (bind != STB_WEAK)
1026 {
1027 h->ref_dynamic_nonweak = 1;
1028 hi->ref_dynamic_nonweak = 1;
1029 }
1030 }
1031 else
1032 {
1033 h->dynamic_def = 1;
1034 hi->dynamic_def = 1;
1035 }
1036 }
1037
1038 /* If we just created the symbol, mark it as being an ELF symbol.
1039 Other than that, there is nothing to do--there is no merge issue
1040 with a newly defined symbol--so we just return. */
1041
1042 if (h->root.type == bfd_link_hash_new)
1043 {
1044 h->non_elf = 0;
1045 return TRUE;
1046 }
1047
1048 /* In cases involving weak versioned symbols, we may wind up trying
1049 to merge a symbol with itself. Catch that here, to avoid the
1050 confusion that results if we try to override a symbol with
1051 itself. The additional tests catch cases like
1052 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053 dynamic object, which we do want to handle here. */
1054 if (abfd == oldbfd
1055 && (newweak || oldweak)
1056 && ((abfd->flags & DYNAMIC) == 0
1057 || !h->def_regular))
1058 return TRUE;
1059
1060 olddyn = FALSE;
1061 if (oldbfd != NULL)
1062 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063 else if (oldsec != NULL)
1064 {
1065 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 indices used by MIPS ELF. */
1067 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068 }
1069
1070 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071 respectively, appear to be a definition rather than reference. */
1072
1073 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074
1075 olddef = (h->root.type != bfd_link_hash_undefined
1076 && h->root.type != bfd_link_hash_undefweak
1077 && h->root.type != bfd_link_hash_common);
1078
1079 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080 respectively, appear to be a function. */
1081
1082 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084
1085 oldfunc = (h->type != STT_NOTYPE
1086 && bed->is_function_type (h->type));
1087
1088 /* When we try to create a default indirect symbol from the dynamic
1089 definition with the default version, we skip it if its type and
1090 the type of existing regular definition mismatch. We only do it
1091 if the existing regular definition won't be dynamic. */
1092 if (pold_alignment == NULL
1093 && newdyn
1094 && newdef
1095 && !olddyn
1096 && (olddef || h->root.type == bfd_link_hash_common)
1097 && ELF_ST_TYPE (sym->st_info) != h->type
1098 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1099 && h->type != STT_NOTYPE
1100 && !(newfunc && oldfunc))
1101 {
1102 *skip = TRUE;
1103 return TRUE;
1104 }
1105
1106 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1107 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1108 *type_change_ok = TRUE;
1109
1110 /* Check TLS symbol. We don't check undefined symbol introduced by
1111 "ld -u". */
1112 else if (oldbfd != NULL
1113 && ELF_ST_TYPE (sym->st_info) != h->type
1114 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1115 {
1116 bfd *ntbfd, *tbfd;
1117 bfd_boolean ntdef, tdef;
1118 asection *ntsec, *tsec;
1119
1120 if (h->type == STT_TLS)
1121 {
1122 ntbfd = abfd;
1123 ntsec = sec;
1124 ntdef = newdef;
1125 tbfd = oldbfd;
1126 tsec = oldsec;
1127 tdef = olddef;
1128 }
1129 else
1130 {
1131 ntbfd = oldbfd;
1132 ntsec = oldsec;
1133 ntdef = olddef;
1134 tbfd = abfd;
1135 tsec = sec;
1136 tdef = newdef;
1137 }
1138
1139 if (tdef && ntdef)
1140 (*_bfd_error_handler)
1141 (_("%s: TLS definition in %B section %A "
1142 "mismatches non-TLS definition in %B section %A"),
1143 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1144 else if (!tdef && !ntdef)
1145 (*_bfd_error_handler)
1146 (_("%s: TLS reference in %B "
1147 "mismatches non-TLS reference in %B"),
1148 tbfd, ntbfd, h->root.root.string);
1149 else if (tdef)
1150 (*_bfd_error_handler)
1151 (_("%s: TLS definition in %B section %A "
1152 "mismatches non-TLS reference in %B"),
1153 tbfd, tsec, ntbfd, h->root.root.string);
1154 else
1155 (*_bfd_error_handler)
1156 (_("%s: TLS reference in %B "
1157 "mismatches non-TLS definition in %B section %A"),
1158 tbfd, ntbfd, ntsec, h->root.root.string);
1159
1160 bfd_set_error (bfd_error_bad_value);
1161 return FALSE;
1162 }
1163
1164 /* If the old symbol has non-default visibility, we ignore the new
1165 definition from a dynamic object. */
1166 if (newdyn
1167 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1168 && !bfd_is_und_section (sec))
1169 {
1170 *skip = TRUE;
1171 /* Make sure this symbol is dynamic. */
1172 h->ref_dynamic = 1;
1173 hi->ref_dynamic = 1;
1174 /* A protected symbol has external availability. Make sure it is
1175 recorded as dynamic.
1176
1177 FIXME: Should we check type and size for protected symbol? */
1178 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1179 return bfd_elf_link_record_dynamic_symbol (info, h);
1180 else
1181 return TRUE;
1182 }
1183 else if (!newdyn
1184 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1185 && h->def_dynamic)
1186 {
1187 /* If the new symbol with non-default visibility comes from a
1188 relocatable file and the old definition comes from a dynamic
1189 object, we remove the old definition. */
1190 if (hi->root.type == bfd_link_hash_indirect)
1191 {
1192 /* Handle the case where the old dynamic definition is
1193 default versioned. We need to copy the symbol info from
1194 the symbol with default version to the normal one if it
1195 was referenced before. */
1196 if (h->ref_regular)
1197 {
1198 hi->root.type = h->root.type;
1199 h->root.type = bfd_link_hash_indirect;
1200 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1201
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1203 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1204 {
1205 /* If the new symbol is hidden or internal, completely undo
1206 any dynamic link state. */
1207 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1208 h->forced_local = 0;
1209 h->ref_dynamic = 0;
1210 }
1211 else
1212 h->ref_dynamic = 1;
1213
1214 h->def_dynamic = 0;
1215 /* FIXME: Should we check type and size for protected symbol? */
1216 h->size = 0;
1217 h->type = 0;
1218
1219 h = hi;
1220 }
1221 else
1222 h = hi;
1223 }
1224
1225 /* If the old symbol was undefined before, then it will still be
1226 on the undefs list. If the new symbol is undefined or
1227 common, we can't make it bfd_link_hash_new here, because new
1228 undefined or common symbols will be added to the undefs list
1229 by _bfd_generic_link_add_one_symbol. Symbols may not be
1230 added twice to the undefs list. Also, if the new symbol is
1231 undefweak then we don't want to lose the strong undef. */
1232 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1233 {
1234 h->root.type = bfd_link_hash_undefined;
1235 h->root.u.undef.abfd = abfd;
1236 }
1237 else
1238 {
1239 h->root.type = bfd_link_hash_new;
1240 h->root.u.undef.abfd = NULL;
1241 }
1242
1243 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1244 {
1245 /* If the new symbol is hidden or internal, completely undo
1246 any dynamic link state. */
1247 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1248 h->forced_local = 0;
1249 h->ref_dynamic = 0;
1250 }
1251 else
1252 h->ref_dynamic = 1;
1253 h->def_dynamic = 0;
1254 /* FIXME: Should we check type and size for protected symbol? */
1255 h->size = 0;
1256 h->type = 0;
1257 return TRUE;
1258 }
1259
1260 /* If a new weak symbol definition comes from a regular file and the
1261 old symbol comes from a dynamic library, we treat the new one as
1262 strong. Similarly, an old weak symbol definition from a regular
1263 file is treated as strong when the new symbol comes from a dynamic
1264 library. Further, an old weak symbol from a dynamic library is
1265 treated as strong if the new symbol is from a dynamic library.
1266 This reflects the way glibc's ld.so works.
1267
1268 Do this before setting *type_change_ok or *size_change_ok so that
1269 we warn properly when dynamic library symbols are overridden. */
1270
1271 if (newdef && !newdyn && olddyn)
1272 newweak = FALSE;
1273 if (olddef && newdyn)
1274 oldweak = FALSE;
1275
1276 /* Allow changes between different types of function symbol. */
1277 if (newfunc && oldfunc)
1278 *type_change_ok = TRUE;
1279
1280 /* It's OK to change the type if either the existing symbol or the
1281 new symbol is weak. A type change is also OK if the old symbol
1282 is undefined and the new symbol is defined. */
1283
1284 if (oldweak
1285 || newweak
1286 || (newdef
1287 && h->root.type == bfd_link_hash_undefined))
1288 *type_change_ok = TRUE;
1289
1290 /* It's OK to change the size if either the existing symbol or the
1291 new symbol is weak, or if the old symbol is undefined. */
1292
1293 if (*type_change_ok
1294 || h->root.type == bfd_link_hash_undefined)
1295 *size_change_ok = TRUE;
1296
1297 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1298 symbol, respectively, appears to be a common symbol in a dynamic
1299 object. If a symbol appears in an uninitialized section, and is
1300 not weak, and is not a function, then it may be a common symbol
1301 which was resolved when the dynamic object was created. We want
1302 to treat such symbols specially, because they raise special
1303 considerations when setting the symbol size: if the symbol
1304 appears as a common symbol in a regular object, and the size in
1305 the regular object is larger, we must make sure that we use the
1306 larger size. This problematic case can always be avoided in C,
1307 but it must be handled correctly when using Fortran shared
1308 libraries.
1309
1310 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1311 likewise for OLDDYNCOMMON and OLDDEF.
1312
1313 Note that this test is just a heuristic, and that it is quite
1314 possible to have an uninitialized symbol in a shared object which
1315 is really a definition, rather than a common symbol. This could
1316 lead to some minor confusion when the symbol really is a common
1317 symbol in some regular object. However, I think it will be
1318 harmless. */
1319
1320 if (newdyn
1321 && newdef
1322 && !newweak
1323 && (sec->flags & SEC_ALLOC) != 0
1324 && (sec->flags & SEC_LOAD) == 0
1325 && sym->st_size > 0
1326 && !newfunc)
1327 newdyncommon = TRUE;
1328 else
1329 newdyncommon = FALSE;
1330
1331 if (olddyn
1332 && olddef
1333 && h->root.type == bfd_link_hash_defined
1334 && h->def_dynamic
1335 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1336 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1337 && h->size > 0
1338 && !oldfunc)
1339 olddyncommon = TRUE;
1340 else
1341 olddyncommon = FALSE;
1342
1343 /* We now know everything about the old and new symbols. We ask the
1344 backend to check if we can merge them. */
1345 if (bed->merge_symbol != NULL)
1346 {
1347 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1348 return FALSE;
1349 sec = *psec;
1350 }
1351
1352 /* If both the old and the new symbols look like common symbols in a
1353 dynamic object, set the size of the symbol to the larger of the
1354 two. */
1355
1356 if (olddyncommon
1357 && newdyncommon
1358 && sym->st_size != h->size)
1359 {
1360 /* Since we think we have two common symbols, issue a multiple
1361 common warning if desired. Note that we only warn if the
1362 size is different. If the size is the same, we simply let
1363 the old symbol override the new one as normally happens with
1364 symbols defined in dynamic objects. */
1365
1366 if (! ((*info->callbacks->multiple_common)
1367 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1368 return FALSE;
1369
1370 if (sym->st_size > h->size)
1371 h->size = sym->st_size;
1372
1373 *size_change_ok = TRUE;
1374 }
1375
1376 /* If we are looking at a dynamic object, and we have found a
1377 definition, we need to see if the symbol was already defined by
1378 some other object. If so, we want to use the existing
1379 definition, and we do not want to report a multiple symbol
1380 definition error; we do this by clobbering *PSEC to be
1381 bfd_und_section_ptr.
1382
1383 We treat a common symbol as a definition if the symbol in the
1384 shared library is a function, since common symbols always
1385 represent variables; this can cause confusion in principle, but
1386 any such confusion would seem to indicate an erroneous program or
1387 shared library. We also permit a common symbol in a regular
1388 object to override a weak symbol in a shared object. */
1389
1390 if (newdyn
1391 && newdef
1392 && (olddef
1393 || (h->root.type == bfd_link_hash_common
1394 && (newweak || newfunc))))
1395 {
1396 *override = TRUE;
1397 newdef = FALSE;
1398 newdyncommon = FALSE;
1399
1400 *psec = sec = bfd_und_section_ptr;
1401 *size_change_ok = TRUE;
1402
1403 /* If we get here when the old symbol is a common symbol, then
1404 we are explicitly letting it override a weak symbol or
1405 function in a dynamic object, and we don't want to warn about
1406 a type change. If the old symbol is a defined symbol, a type
1407 change warning may still be appropriate. */
1408
1409 if (h->root.type == bfd_link_hash_common)
1410 *type_change_ok = TRUE;
1411 }
1412
1413 /* Handle the special case of an old common symbol merging with a
1414 new symbol which looks like a common symbol in a shared object.
1415 We change *PSEC and *PVALUE to make the new symbol look like a
1416 common symbol, and let _bfd_generic_link_add_one_symbol do the
1417 right thing. */
1418
1419 if (newdyncommon
1420 && h->root.type == bfd_link_hash_common)
1421 {
1422 *override = TRUE;
1423 newdef = FALSE;
1424 newdyncommon = FALSE;
1425 *pvalue = sym->st_size;
1426 *psec = sec = bed->common_section (oldsec);
1427 *size_change_ok = TRUE;
1428 }
1429
1430 /* Skip weak definitions of symbols that are already defined. */
1431 if (newdef && olddef && newweak)
1432 {
1433 /* Don't skip new non-IR weak syms. */
1434 if (!(oldbfd != NULL
1435 && (oldbfd->flags & BFD_PLUGIN) != 0
1436 && (abfd->flags & BFD_PLUGIN) == 0))
1437 {
1438 newdef = FALSE;
1439 *skip = TRUE;
1440 }
1441
1442 /* Merge st_other. If the symbol already has a dynamic index,
1443 but visibility says it should not be visible, turn it into a
1444 local symbol. */
1445 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1446 if (h->dynindx != -1)
1447 switch (ELF_ST_VISIBILITY (h->other))
1448 {
1449 case STV_INTERNAL:
1450 case STV_HIDDEN:
1451 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1452 break;
1453 }
1454 }
1455
1456 /* If the old symbol is from a dynamic object, and the new symbol is
1457 a definition which is not from a dynamic object, then the new
1458 symbol overrides the old symbol. Symbols from regular files
1459 always take precedence over symbols from dynamic objects, even if
1460 they are defined after the dynamic object in the link.
1461
1462 As above, we again permit a common symbol in a regular object to
1463 override a definition in a shared object if the shared object
1464 symbol is a function or is weak. */
1465
1466 flip = NULL;
1467 if (!newdyn
1468 && (newdef
1469 || (bfd_is_com_section (sec)
1470 && (oldweak || oldfunc)))
1471 && olddyn
1472 && olddef
1473 && h->def_dynamic)
1474 {
1475 /* Change the hash table entry to undefined, and let
1476 _bfd_generic_link_add_one_symbol do the right thing with the
1477 new definition. */
1478
1479 h->root.type = bfd_link_hash_undefined;
1480 h->root.u.undef.abfd = h->root.u.def.section->owner;
1481 *size_change_ok = TRUE;
1482
1483 olddef = FALSE;
1484 olddyncommon = FALSE;
1485
1486 /* We again permit a type change when a common symbol may be
1487 overriding a function. */
1488
1489 if (bfd_is_com_section (sec))
1490 {
1491 if (oldfunc)
1492 {
1493 /* If a common symbol overrides a function, make sure
1494 that it isn't defined dynamically nor has type
1495 function. */
1496 h->def_dynamic = 0;
1497 h->type = STT_NOTYPE;
1498 }
1499 *type_change_ok = TRUE;
1500 }
1501
1502 if (hi->root.type == bfd_link_hash_indirect)
1503 flip = hi;
1504 else
1505 /* This union may have been set to be non-NULL when this symbol
1506 was seen in a dynamic object. We must force the union to be
1507 NULL, so that it is correct for a regular symbol. */
1508 h->verinfo.vertree = NULL;
1509 }
1510
1511 /* Handle the special case of a new common symbol merging with an
1512 old symbol that looks like it might be a common symbol defined in
1513 a shared object. Note that we have already handled the case in
1514 which a new common symbol should simply override the definition
1515 in the shared library. */
1516
1517 if (! newdyn
1518 && bfd_is_com_section (sec)
1519 && olddyncommon)
1520 {
1521 /* It would be best if we could set the hash table entry to a
1522 common symbol, but we don't know what to use for the section
1523 or the alignment. */
1524 if (! ((*info->callbacks->multiple_common)
1525 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1526 return FALSE;
1527
1528 /* If the presumed common symbol in the dynamic object is
1529 larger, pretend that the new symbol has its size. */
1530
1531 if (h->size > *pvalue)
1532 *pvalue = h->size;
1533
1534 /* We need to remember the alignment required by the symbol
1535 in the dynamic object. */
1536 BFD_ASSERT (pold_alignment);
1537 *pold_alignment = h->root.u.def.section->alignment_power;
1538
1539 olddef = FALSE;
1540 olddyncommon = FALSE;
1541
1542 h->root.type = bfd_link_hash_undefined;
1543 h->root.u.undef.abfd = h->root.u.def.section->owner;
1544
1545 *size_change_ok = TRUE;
1546 *type_change_ok = TRUE;
1547
1548 if (hi->root.type == bfd_link_hash_indirect)
1549 flip = hi;
1550 else
1551 h->verinfo.vertree = NULL;
1552 }
1553
1554 if (flip != NULL)
1555 {
1556 /* Handle the case where we had a versioned symbol in a dynamic
1557 library and now find a definition in a normal object. In this
1558 case, we make the versioned symbol point to the normal one. */
1559 flip->root.type = h->root.type;
1560 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1561 h->root.type = bfd_link_hash_indirect;
1562 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1563 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 if (h->def_dynamic)
1565 {
1566 h->def_dynamic = 0;
1567 flip->ref_dynamic = 1;
1568 }
1569 }
1570
1571 return TRUE;
1572 }
1573
1574 /* This function is called to create an indirect symbol from the
1575 default for the symbol with the default version if needed. The
1576 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1577 set DYNSYM if the new indirect symbol is dynamic. */
1578
1579 static bfd_boolean
1580 _bfd_elf_add_default_symbol (bfd *abfd,
1581 struct bfd_link_info *info,
1582 struct elf_link_hash_entry *h,
1583 const char *name,
1584 Elf_Internal_Sym *sym,
1585 asection *sec,
1586 bfd_vma value,
1587 bfd **poldbfd,
1588 bfd_boolean *dynsym)
1589 {
1590 bfd_boolean type_change_ok;
1591 bfd_boolean size_change_ok;
1592 bfd_boolean skip;
1593 char *shortname;
1594 struct elf_link_hash_entry *hi;
1595 struct bfd_link_hash_entry *bh;
1596 const struct elf_backend_data *bed;
1597 bfd_boolean collect;
1598 bfd_boolean dynamic;
1599 bfd_boolean override;
1600 char *p;
1601 size_t len, shortlen;
1602 asection *tmp_sec;
1603
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1610 return TRUE;
1611
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1615
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1619 return FALSE;
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1622
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 tmp_sec = sec;
1630 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1631 &hi, poldbfd, NULL, NULL, &skip, &override,
1632 &type_change_ok, &size_change_ok))
1633 return FALSE;
1634
1635 if (skip)
1636 goto nondefault;
1637
1638 if (! override)
1639 {
1640 bh = &hi->root;
1641 if (! (_bfd_generic_link_add_one_symbol
1642 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1643 0, name, FALSE, collect, &bh)))
1644 return FALSE;
1645 hi = (struct elf_link_hash_entry *) bh;
1646 }
1647 else
1648 {
1649 /* In this case the symbol named SHORTNAME is overriding the
1650 indirect symbol we want to add. We were planning on making
1651 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1652 is the name without a version. NAME is the fully versioned
1653 name, and it is the default version.
1654
1655 Overriding means that we already saw a definition for the
1656 symbol SHORTNAME in a regular object, and it is overriding
1657 the symbol defined in the dynamic object.
1658
1659 When this happens, we actually want to change NAME, the
1660 symbol we just added, to refer to SHORTNAME. This will cause
1661 references to NAME in the shared object to become references
1662 to SHORTNAME in the regular object. This is what we expect
1663 when we override a function in a shared object: that the
1664 references in the shared object will be mapped to the
1665 definition in the regular object. */
1666
1667 while (hi->root.type == bfd_link_hash_indirect
1668 || hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670
1671 h->root.type = bfd_link_hash_indirect;
1672 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1673 if (h->def_dynamic)
1674 {
1675 h->def_dynamic = 0;
1676 hi->ref_dynamic = 1;
1677 if (hi->ref_regular
1678 || hi->def_regular)
1679 {
1680 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1681 return FALSE;
1682 }
1683 }
1684
1685 /* Now set HI to H, so that the following code will set the
1686 other fields correctly. */
1687 hi = h;
1688 }
1689
1690 /* Check if HI is a warning symbol. */
1691 if (hi->root.type == bfd_link_hash_warning)
1692 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1693
1694 /* If there is a duplicate definition somewhere, then HI may not
1695 point to an indirect symbol. We will have reported an error to
1696 the user in that case. */
1697
1698 if (hi->root.type == bfd_link_hash_indirect)
1699 {
1700 struct elf_link_hash_entry *ht;
1701
1702 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1704
1705 /* A reference to the SHORTNAME symbol from a dynamic library
1706 will be satisfied by the versioned symbol at runtime. In
1707 effect, we have a reference to the versioned symbol. */
1708 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1709 hi->dynamic_def |= ht->dynamic_def;
1710
1711 /* See if the new flags lead us to realize that the symbol must
1712 be dynamic. */
1713 if (! *dynsym)
1714 {
1715 if (! dynamic)
1716 {
1717 if (! info->executable
1718 || hi->def_dynamic
1719 || hi->ref_dynamic)
1720 *dynsym = TRUE;
1721 }
1722 else
1723 {
1724 if (hi->ref_regular)
1725 *dynsym = TRUE;
1726 }
1727 }
1728 }
1729
1730 /* We also need to define an indirection from the nondefault version
1731 of the symbol. */
1732
1733 nondefault:
1734 len = strlen (name);
1735 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1737 return FALSE;
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1740
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1744 tmp_sec = sec;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1746 &hi, NULL, NULL, NULL, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1748 return FALSE;
1749
1750 if (skip)
1751 return TRUE;
1752
1753 if (override)
1754 {
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1762 abfd, shortname);
1763 }
1764 else
1765 {
1766 bh = &hi->root;
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1770 return FALSE;
1771 hi = (struct elf_link_hash_entry *) bh;
1772
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1776
1777 if (hi->root.type == bfd_link_hash_indirect)
1778 {
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1780 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1781 hi->dynamic_def |= h->dynamic_def;
1782
1783 /* See if the new flags lead us to realize that the symbol
1784 must be dynamic. */
1785 if (! *dynsym)
1786 {
1787 if (! dynamic)
1788 {
1789 if (! info->executable
1790 || hi->ref_dynamic)
1791 *dynsym = TRUE;
1792 }
1793 else
1794 {
1795 if (hi->ref_regular)
1796 *dynsym = TRUE;
1797 }
1798 }
1799 }
1800 }
1801
1802 return TRUE;
1803 }
1804 \f
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1807
1808 static bfd_boolean
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 {
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812
1813 /* Ignore indirect symbols. These are added by the versioning code. */
1814 if (h->root.type == bfd_link_hash_indirect)
1815 return TRUE;
1816
1817 /* Ignore this if we won't export it. */
1818 if (!eif->info->export_dynamic && !h->dynamic)
1819 return TRUE;
1820
1821 if (h->dynindx == -1
1822 && (h->def_regular || h->ref_regular)
1823 && ! bfd_hide_sym_by_version (eif->info->version_info,
1824 h->root.root.string))
1825 {
1826 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1827 {
1828 eif->failed = TRUE;
1829 return FALSE;
1830 }
1831 }
1832
1833 return TRUE;
1834 }
1835 \f
1836 /* Look through the symbols which are defined in other shared
1837 libraries and referenced here. Update the list of version
1838 dependencies. This will be put into the .gnu.version_r section.
1839 This function is called via elf_link_hash_traverse. */
1840
1841 static bfd_boolean
1842 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1843 void *data)
1844 {
1845 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1846 Elf_Internal_Verneed *t;
1847 Elf_Internal_Vernaux *a;
1848 bfd_size_type amt;
1849
1850 /* We only care about symbols defined in shared objects with version
1851 information. */
1852 if (!h->def_dynamic
1853 || h->def_regular
1854 || h->dynindx == -1
1855 || h->verinfo.verdef == NULL)
1856 return TRUE;
1857
1858 /* See if we already know about this version. */
1859 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1860 t != NULL;
1861 t = t->vn_nextref)
1862 {
1863 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1864 continue;
1865
1866 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1867 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1868 return TRUE;
1869
1870 break;
1871 }
1872
1873 /* This is a new version. Add it to tree we are building. */
1874
1875 if (t == NULL)
1876 {
1877 amt = sizeof *t;
1878 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1879 if (t == NULL)
1880 {
1881 rinfo->failed = TRUE;
1882 return FALSE;
1883 }
1884
1885 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1886 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1887 elf_tdata (rinfo->info->output_bfd)->verref = t;
1888 }
1889
1890 amt = sizeof *a;
1891 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (a == NULL)
1893 {
1894 rinfo->failed = TRUE;
1895 return FALSE;
1896 }
1897
1898 /* Note that we are copying a string pointer here, and testing it
1899 above. If bfd_elf_string_from_elf_section is ever changed to
1900 discard the string data when low in memory, this will have to be
1901 fixed. */
1902 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1903
1904 a->vna_flags = h->verinfo.verdef->vd_flags;
1905 a->vna_nextptr = t->vn_auxptr;
1906
1907 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1908 ++rinfo->vers;
1909
1910 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1911
1912 t->vn_auxptr = a;
1913
1914 return TRUE;
1915 }
1916
1917 /* Figure out appropriate versions for all the symbols. We may not
1918 have the version number script until we have read all of the input
1919 files, so until that point we don't know which symbols should be
1920 local. This function is called via elf_link_hash_traverse. */
1921
1922 static bfd_boolean
1923 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1924 {
1925 struct elf_info_failed *sinfo;
1926 struct bfd_link_info *info;
1927 const struct elf_backend_data *bed;
1928 struct elf_info_failed eif;
1929 char *p;
1930 bfd_size_type amt;
1931
1932 sinfo = (struct elf_info_failed *) data;
1933 info = sinfo->info;
1934
1935 /* Fix the symbol flags. */
1936 eif.failed = FALSE;
1937 eif.info = info;
1938 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1939 {
1940 if (eif.failed)
1941 sinfo->failed = TRUE;
1942 return FALSE;
1943 }
1944
1945 /* We only need version numbers for symbols defined in regular
1946 objects. */
1947 if (!h->def_regular)
1948 return TRUE;
1949
1950 bed = get_elf_backend_data (info->output_bfd);
1951 p = strchr (h->root.root.string, ELF_VER_CHR);
1952 if (p != NULL && h->verinfo.vertree == NULL)
1953 {
1954 struct bfd_elf_version_tree *t;
1955 bfd_boolean hidden;
1956
1957 hidden = TRUE;
1958
1959 /* There are two consecutive ELF_VER_CHR characters if this is
1960 not a hidden symbol. */
1961 ++p;
1962 if (*p == ELF_VER_CHR)
1963 {
1964 hidden = FALSE;
1965 ++p;
1966 }
1967
1968 /* If there is no version string, we can just return out. */
1969 if (*p == '\0')
1970 {
1971 if (hidden)
1972 h->hidden = 1;
1973 return TRUE;
1974 }
1975
1976 /* Look for the version. If we find it, it is no longer weak. */
1977 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1978 {
1979 if (strcmp (t->name, p) == 0)
1980 {
1981 size_t len;
1982 char *alc;
1983 struct bfd_elf_version_expr *d;
1984
1985 len = p - h->root.root.string;
1986 alc = (char *) bfd_malloc (len);
1987 if (alc == NULL)
1988 {
1989 sinfo->failed = TRUE;
1990 return FALSE;
1991 }
1992 memcpy (alc, h->root.root.string, len - 1);
1993 alc[len - 1] = '\0';
1994 if (alc[len - 2] == ELF_VER_CHR)
1995 alc[len - 2] = '\0';
1996
1997 h->verinfo.vertree = t;
1998 t->used = TRUE;
1999 d = NULL;
2000
2001 if (t->globals.list != NULL)
2002 d = (*t->match) (&t->globals, NULL, alc);
2003
2004 /* See if there is anything to force this symbol to
2005 local scope. */
2006 if (d == NULL && t->locals.list != NULL)
2007 {
2008 d = (*t->match) (&t->locals, NULL, alc);
2009 if (d != NULL
2010 && h->dynindx != -1
2011 && ! info->export_dynamic)
2012 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2013 }
2014
2015 free (alc);
2016 break;
2017 }
2018 }
2019
2020 /* If we are building an application, we need to create a
2021 version node for this version. */
2022 if (t == NULL && info->executable)
2023 {
2024 struct bfd_elf_version_tree **pp;
2025 int version_index;
2026
2027 /* If we aren't going to export this symbol, we don't need
2028 to worry about it. */
2029 if (h->dynindx == -1)
2030 return TRUE;
2031
2032 amt = sizeof *t;
2033 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2034 if (t == NULL)
2035 {
2036 sinfo->failed = TRUE;
2037 return FALSE;
2038 }
2039
2040 t->name = p;
2041 t->name_indx = (unsigned int) -1;
2042 t->used = TRUE;
2043
2044 version_index = 1;
2045 /* Don't count anonymous version tag. */
2046 if (sinfo->info->version_info != NULL
2047 && sinfo->info->version_info->vernum == 0)
2048 version_index = 0;
2049 for (pp = &sinfo->info->version_info;
2050 *pp != NULL;
2051 pp = &(*pp)->next)
2052 ++version_index;
2053 t->vernum = version_index;
2054
2055 *pp = t;
2056
2057 h->verinfo.vertree = t;
2058 }
2059 else if (t == NULL)
2060 {
2061 /* We could not find the version for a symbol when
2062 generating a shared archive. Return an error. */
2063 (*_bfd_error_handler)
2064 (_("%B: version node not found for symbol %s"),
2065 info->output_bfd, h->root.root.string);
2066 bfd_set_error (bfd_error_bad_value);
2067 sinfo->failed = TRUE;
2068 return FALSE;
2069 }
2070
2071 if (hidden)
2072 h->hidden = 1;
2073 }
2074
2075 /* If we don't have a version for this symbol, see if we can find
2076 something. */
2077 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2078 {
2079 bfd_boolean hide;
2080
2081 h->verinfo.vertree
2082 = bfd_find_version_for_sym (sinfo->info->version_info,
2083 h->root.root.string, &hide);
2084 if (h->verinfo.vertree != NULL && hide)
2085 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2086 }
2087
2088 return TRUE;
2089 }
2090 \f
2091 /* Read and swap the relocs from the section indicated by SHDR. This
2092 may be either a REL or a RELA section. The relocations are
2093 translated into RELA relocations and stored in INTERNAL_RELOCS,
2094 which should have already been allocated to contain enough space.
2095 The EXTERNAL_RELOCS are a buffer where the external form of the
2096 relocations should be stored.
2097
2098 Returns FALSE if something goes wrong. */
2099
2100 static bfd_boolean
2101 elf_link_read_relocs_from_section (bfd *abfd,
2102 asection *sec,
2103 Elf_Internal_Shdr *shdr,
2104 void *external_relocs,
2105 Elf_Internal_Rela *internal_relocs)
2106 {
2107 const struct elf_backend_data *bed;
2108 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2109 const bfd_byte *erela;
2110 const bfd_byte *erelaend;
2111 Elf_Internal_Rela *irela;
2112 Elf_Internal_Shdr *symtab_hdr;
2113 size_t nsyms;
2114
2115 /* Position ourselves at the start of the section. */
2116 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2117 return FALSE;
2118
2119 /* Read the relocations. */
2120 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2121 return FALSE;
2122
2123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2124 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2125
2126 bed = get_elf_backend_data (abfd);
2127
2128 /* Convert the external relocations to the internal format. */
2129 if (shdr->sh_entsize == bed->s->sizeof_rel)
2130 swap_in = bed->s->swap_reloc_in;
2131 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2132 swap_in = bed->s->swap_reloca_in;
2133 else
2134 {
2135 bfd_set_error (bfd_error_wrong_format);
2136 return FALSE;
2137 }
2138
2139 erela = (const bfd_byte *) external_relocs;
2140 erelaend = erela + shdr->sh_size;
2141 irela = internal_relocs;
2142 while (erela < erelaend)
2143 {
2144 bfd_vma r_symndx;
2145
2146 (*swap_in) (abfd, erela, irela);
2147 r_symndx = ELF32_R_SYM (irela->r_info);
2148 if (bed->s->arch_size == 64)
2149 r_symndx >>= 24;
2150 if (nsyms > 0)
2151 {
2152 if ((size_t) r_symndx >= nsyms)
2153 {
2154 (*_bfd_error_handler)
2155 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2156 " for offset 0x%lx in section `%A'"),
2157 abfd, sec,
2158 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2159 bfd_set_error (bfd_error_bad_value);
2160 return FALSE;
2161 }
2162 }
2163 else if (r_symndx != STN_UNDEF)
2164 {
2165 (*_bfd_error_handler)
2166 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2167 " when the object file has no symbol table"),
2168 abfd, sec,
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2171 return FALSE;
2172 }
2173 irela += bed->s->int_rels_per_ext_rel;
2174 erela += shdr->sh_entsize;
2175 }
2176
2177 return TRUE;
2178 }
2179
2180 /* Read and swap the relocs for a section O. They may have been
2181 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2182 not NULL, they are used as buffers to read into. They are known to
2183 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2184 the return value is allocated using either malloc or bfd_alloc,
2185 according to the KEEP_MEMORY argument. If O has two relocation
2186 sections (both REL and RELA relocations), then the REL_HDR
2187 relocations will appear first in INTERNAL_RELOCS, followed by the
2188 RELA_HDR relocations. */
2189
2190 Elf_Internal_Rela *
2191 _bfd_elf_link_read_relocs (bfd *abfd,
2192 asection *o,
2193 void *external_relocs,
2194 Elf_Internal_Rela *internal_relocs,
2195 bfd_boolean keep_memory)
2196 {
2197 void *alloc1 = NULL;
2198 Elf_Internal_Rela *alloc2 = NULL;
2199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2200 struct bfd_elf_section_data *esdo = elf_section_data (o);
2201 Elf_Internal_Rela *internal_rela_relocs;
2202
2203 if (esdo->relocs != NULL)
2204 return esdo->relocs;
2205
2206 if (o->reloc_count == 0)
2207 return NULL;
2208
2209 if (internal_relocs == NULL)
2210 {
2211 bfd_size_type size;
2212
2213 size = o->reloc_count;
2214 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2215 if (keep_memory)
2216 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2217 else
2218 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2219 if (internal_relocs == NULL)
2220 goto error_return;
2221 }
2222
2223 if (external_relocs == NULL)
2224 {
2225 bfd_size_type size = 0;
2226
2227 if (esdo->rel.hdr)
2228 size += esdo->rel.hdr->sh_size;
2229 if (esdo->rela.hdr)
2230 size += esdo->rela.hdr->sh_size;
2231
2232 alloc1 = bfd_malloc (size);
2233 if (alloc1 == NULL)
2234 goto error_return;
2235 external_relocs = alloc1;
2236 }
2237
2238 internal_rela_relocs = internal_relocs;
2239 if (esdo->rel.hdr)
2240 {
2241 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2242 external_relocs,
2243 internal_relocs))
2244 goto error_return;
2245 external_relocs = (((bfd_byte *) external_relocs)
2246 + esdo->rel.hdr->sh_size);
2247 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2248 * bed->s->int_rels_per_ext_rel);
2249 }
2250
2251 if (esdo->rela.hdr
2252 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2253 external_relocs,
2254 internal_rela_relocs)))
2255 goto error_return;
2256
2257 /* Cache the results for next time, if we can. */
2258 if (keep_memory)
2259 esdo->relocs = internal_relocs;
2260
2261 if (alloc1 != NULL)
2262 free (alloc1);
2263
2264 /* Don't free alloc2, since if it was allocated we are passing it
2265 back (under the name of internal_relocs). */
2266
2267 return internal_relocs;
2268
2269 error_return:
2270 if (alloc1 != NULL)
2271 free (alloc1);
2272 if (alloc2 != NULL)
2273 {
2274 if (keep_memory)
2275 bfd_release (abfd, alloc2);
2276 else
2277 free (alloc2);
2278 }
2279 return NULL;
2280 }
2281
2282 /* Compute the size of, and allocate space for, REL_HDR which is the
2283 section header for a section containing relocations for O. */
2284
2285 static bfd_boolean
2286 _bfd_elf_link_size_reloc_section (bfd *abfd,
2287 struct bfd_elf_section_reloc_data *reldata)
2288 {
2289 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2290
2291 /* That allows us to calculate the size of the section. */
2292 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2293
2294 /* The contents field must last into write_object_contents, so we
2295 allocate it with bfd_alloc rather than malloc. Also since we
2296 cannot be sure that the contents will actually be filled in,
2297 we zero the allocated space. */
2298 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2299 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2300 return FALSE;
2301
2302 if (reldata->hashes == NULL && reldata->count)
2303 {
2304 struct elf_link_hash_entry **p;
2305
2306 p = (struct elf_link_hash_entry **)
2307 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2308 if (p == NULL)
2309 return FALSE;
2310
2311 reldata->hashes = p;
2312 }
2313
2314 return TRUE;
2315 }
2316
2317 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2318 originated from the section given by INPUT_REL_HDR) to the
2319 OUTPUT_BFD. */
2320
2321 bfd_boolean
2322 _bfd_elf_link_output_relocs (bfd *output_bfd,
2323 asection *input_section,
2324 Elf_Internal_Shdr *input_rel_hdr,
2325 Elf_Internal_Rela *internal_relocs,
2326 struct elf_link_hash_entry **rel_hash
2327 ATTRIBUTE_UNUSED)
2328 {
2329 Elf_Internal_Rela *irela;
2330 Elf_Internal_Rela *irelaend;
2331 bfd_byte *erel;
2332 struct bfd_elf_section_reloc_data *output_reldata;
2333 asection *output_section;
2334 const struct elf_backend_data *bed;
2335 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2336 struct bfd_elf_section_data *esdo;
2337
2338 output_section = input_section->output_section;
2339
2340 bed = get_elf_backend_data (output_bfd);
2341 esdo = elf_section_data (output_section);
2342 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2343 {
2344 output_reldata = &esdo->rel;
2345 swap_out = bed->s->swap_reloc_out;
2346 }
2347 else if (esdo->rela.hdr
2348 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2349 {
2350 output_reldata = &esdo->rela;
2351 swap_out = bed->s->swap_reloca_out;
2352 }
2353 else
2354 {
2355 (*_bfd_error_handler)
2356 (_("%B: relocation size mismatch in %B section %A"),
2357 output_bfd, input_section->owner, input_section);
2358 bfd_set_error (bfd_error_wrong_format);
2359 return FALSE;
2360 }
2361
2362 erel = output_reldata->hdr->contents;
2363 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2364 irela = internal_relocs;
2365 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2366 * bed->s->int_rels_per_ext_rel);
2367 while (irela < irelaend)
2368 {
2369 (*swap_out) (output_bfd, irela, erel);
2370 irela += bed->s->int_rels_per_ext_rel;
2371 erel += input_rel_hdr->sh_entsize;
2372 }
2373
2374 /* Bump the counter, so that we know where to add the next set of
2375 relocations. */
2376 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2377
2378 return TRUE;
2379 }
2380 \f
2381 /* Make weak undefined symbols in PIE dynamic. */
2382
2383 bfd_boolean
2384 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2385 struct elf_link_hash_entry *h)
2386 {
2387 if (info->pie
2388 && h->dynindx == -1
2389 && h->root.type == bfd_link_hash_undefweak)
2390 return bfd_elf_link_record_dynamic_symbol (info, h);
2391
2392 return TRUE;
2393 }
2394
2395 /* Fix up the flags for a symbol. This handles various cases which
2396 can only be fixed after all the input files are seen. This is
2397 currently called by both adjust_dynamic_symbol and
2398 assign_sym_version, which is unnecessary but perhaps more robust in
2399 the face of future changes. */
2400
2401 static bfd_boolean
2402 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2403 struct elf_info_failed *eif)
2404 {
2405 const struct elf_backend_data *bed;
2406
2407 /* If this symbol was mentioned in a non-ELF file, try to set
2408 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2409 permit a non-ELF file to correctly refer to a symbol defined in
2410 an ELF dynamic object. */
2411 if (h->non_elf)
2412 {
2413 while (h->root.type == bfd_link_hash_indirect)
2414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2415
2416 if (h->root.type != bfd_link_hash_defined
2417 && h->root.type != bfd_link_hash_defweak)
2418 {
2419 h->ref_regular = 1;
2420 h->ref_regular_nonweak = 1;
2421 }
2422 else
2423 {
2424 if (h->root.u.def.section->owner != NULL
2425 && (bfd_get_flavour (h->root.u.def.section->owner)
2426 == bfd_target_elf_flavour))
2427 {
2428 h->ref_regular = 1;
2429 h->ref_regular_nonweak = 1;
2430 }
2431 else
2432 h->def_regular = 1;
2433 }
2434
2435 if (h->dynindx == -1
2436 && (h->def_dynamic
2437 || h->ref_dynamic))
2438 {
2439 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2440 {
2441 eif->failed = TRUE;
2442 return FALSE;
2443 }
2444 }
2445 }
2446 else
2447 {
2448 /* Unfortunately, NON_ELF is only correct if the symbol
2449 was first seen in a non-ELF file. Fortunately, if the symbol
2450 was first seen in an ELF file, we're probably OK unless the
2451 symbol was defined in a non-ELF file. Catch that case here.
2452 FIXME: We're still in trouble if the symbol was first seen in
2453 a dynamic object, and then later in a non-ELF regular object. */
2454 if ((h->root.type == bfd_link_hash_defined
2455 || h->root.type == bfd_link_hash_defweak)
2456 && !h->def_regular
2457 && (h->root.u.def.section->owner != NULL
2458 ? (bfd_get_flavour (h->root.u.def.section->owner)
2459 != bfd_target_elf_flavour)
2460 : (bfd_is_abs_section (h->root.u.def.section)
2461 && !h->def_dynamic)))
2462 h->def_regular = 1;
2463 }
2464
2465 /* Backend specific symbol fixup. */
2466 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2467 if (bed->elf_backend_fixup_symbol
2468 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2469 return FALSE;
2470
2471 /* If this is a final link, and the symbol was defined as a common
2472 symbol in a regular object file, and there was no definition in
2473 any dynamic object, then the linker will have allocated space for
2474 the symbol in a common section but the DEF_REGULAR
2475 flag will not have been set. */
2476 if (h->root.type == bfd_link_hash_defined
2477 && !h->def_regular
2478 && h->ref_regular
2479 && !h->def_dynamic
2480 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2481 h->def_regular = 1;
2482
2483 /* If -Bsymbolic was used (which means to bind references to global
2484 symbols to the definition within the shared object), and this
2485 symbol was defined in a regular object, then it actually doesn't
2486 need a PLT entry. Likewise, if the symbol has non-default
2487 visibility. If the symbol has hidden or internal visibility, we
2488 will force it local. */
2489 if (h->needs_plt
2490 && eif->info->shared
2491 && is_elf_hash_table (eif->info->hash)
2492 && (SYMBOLIC_BIND (eif->info, h)
2493 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2494 && h->def_regular)
2495 {
2496 bfd_boolean force_local;
2497
2498 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2499 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2501 }
2502
2503 /* If a weak undefined symbol has non-default visibility, we also
2504 hide it from the dynamic linker. */
2505 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2506 && h->root.type == bfd_link_hash_undefweak)
2507 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2508
2509 /* If this is a weak defined symbol in a dynamic object, and we know
2510 the real definition in the dynamic object, copy interesting flags
2511 over to the real definition. */
2512 if (h->u.weakdef != NULL)
2513 {
2514 /* If the real definition is defined by a regular object file,
2515 don't do anything special. See the longer description in
2516 _bfd_elf_adjust_dynamic_symbol, below. */
2517 if (h->u.weakdef->def_regular)
2518 h->u.weakdef = NULL;
2519 else
2520 {
2521 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2522
2523 while (h->root.type == bfd_link_hash_indirect)
2524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2525
2526 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2527 || h->root.type == bfd_link_hash_defweak);
2528 BFD_ASSERT (weakdef->def_dynamic);
2529 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2530 || weakdef->root.type == bfd_link_hash_defweak);
2531 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2532 }
2533 }
2534
2535 return TRUE;
2536 }
2537
2538 /* Make the backend pick a good value for a dynamic symbol. This is
2539 called via elf_link_hash_traverse, and also calls itself
2540 recursively. */
2541
2542 static bfd_boolean
2543 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2544 {
2545 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2546 bfd *dynobj;
2547 const struct elf_backend_data *bed;
2548
2549 if (! is_elf_hash_table (eif->info->hash))
2550 return FALSE;
2551
2552 /* Ignore indirect symbols. These are added by the versioning code. */
2553 if (h->root.type == bfd_link_hash_indirect)
2554 return TRUE;
2555
2556 /* Fix the symbol flags. */
2557 if (! _bfd_elf_fix_symbol_flags (h, eif))
2558 return FALSE;
2559
2560 /* If this symbol does not require a PLT entry, and it is not
2561 defined by a dynamic object, or is not referenced by a regular
2562 object, ignore it. We do have to handle a weak defined symbol,
2563 even if no regular object refers to it, if we decided to add it
2564 to the dynamic symbol table. FIXME: Do we normally need to worry
2565 about symbols which are defined by one dynamic object and
2566 referenced by another one? */
2567 if (!h->needs_plt
2568 && h->type != STT_GNU_IFUNC
2569 && (h->def_regular
2570 || !h->def_dynamic
2571 || (!h->ref_regular
2572 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2573 {
2574 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2575 return TRUE;
2576 }
2577
2578 /* If we've already adjusted this symbol, don't do it again. This
2579 can happen via a recursive call. */
2580 if (h->dynamic_adjusted)
2581 return TRUE;
2582
2583 /* Don't look at this symbol again. Note that we must set this
2584 after checking the above conditions, because we may look at a
2585 symbol once, decide not to do anything, and then get called
2586 recursively later after REF_REGULAR is set below. */
2587 h->dynamic_adjusted = 1;
2588
2589 /* If this is a weak definition, and we know a real definition, and
2590 the real symbol is not itself defined by a regular object file,
2591 then get a good value for the real definition. We handle the
2592 real symbol first, for the convenience of the backend routine.
2593
2594 Note that there is a confusing case here. If the real definition
2595 is defined by a regular object file, we don't get the real symbol
2596 from the dynamic object, but we do get the weak symbol. If the
2597 processor backend uses a COPY reloc, then if some routine in the
2598 dynamic object changes the real symbol, we will not see that
2599 change in the corresponding weak symbol. This is the way other
2600 ELF linkers work as well, and seems to be a result of the shared
2601 library model.
2602
2603 I will clarify this issue. Most SVR4 shared libraries define the
2604 variable _timezone and define timezone as a weak synonym. The
2605 tzset call changes _timezone. If you write
2606 extern int timezone;
2607 int _timezone = 5;
2608 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2609 you might expect that, since timezone is a synonym for _timezone,
2610 the same number will print both times. However, if the processor
2611 backend uses a COPY reloc, then actually timezone will be copied
2612 into your process image, and, since you define _timezone
2613 yourself, _timezone will not. Thus timezone and _timezone will
2614 wind up at different memory locations. The tzset call will set
2615 _timezone, leaving timezone unchanged. */
2616
2617 if (h->u.weakdef != NULL)
2618 {
2619 /* If we get to this point, there is an implicit reference to
2620 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2621 h->u.weakdef->ref_regular = 1;
2622
2623 /* Ensure that the backend adjust_dynamic_symbol function sees
2624 H->U.WEAKDEF before H by recursively calling ourselves. */
2625 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2626 return FALSE;
2627 }
2628
2629 /* If a symbol has no type and no size and does not require a PLT
2630 entry, then we are probably about to do the wrong thing here: we
2631 are probably going to create a COPY reloc for an empty object.
2632 This case can arise when a shared object is built with assembly
2633 code, and the assembly code fails to set the symbol type. */
2634 if (h->size == 0
2635 && h->type == STT_NOTYPE
2636 && !h->needs_plt)
2637 (*_bfd_error_handler)
2638 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2639 h->root.root.string);
2640
2641 dynobj = elf_hash_table (eif->info)->dynobj;
2642 bed = get_elf_backend_data (dynobj);
2643
2644 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2645 {
2646 eif->failed = TRUE;
2647 return FALSE;
2648 }
2649
2650 return TRUE;
2651 }
2652
2653 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2654 DYNBSS. */
2655
2656 bfd_boolean
2657 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2658 asection *dynbss)
2659 {
2660 unsigned int power_of_two;
2661 bfd_vma mask;
2662 asection *sec = h->root.u.def.section;
2663
2664 /* The section aligment of definition is the maximum alignment
2665 requirement of symbols defined in the section. Since we don't
2666 know the symbol alignment requirement, we start with the
2667 maximum alignment and check low bits of the symbol address
2668 for the minimum alignment. */
2669 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2670 mask = ((bfd_vma) 1 << power_of_two) - 1;
2671 while ((h->root.u.def.value & mask) != 0)
2672 {
2673 mask >>= 1;
2674 --power_of_two;
2675 }
2676
2677 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2678 dynbss))
2679 {
2680 /* Adjust the section alignment if needed. */
2681 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2682 power_of_two))
2683 return FALSE;
2684 }
2685
2686 /* We make sure that the symbol will be aligned properly. */
2687 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2688
2689 /* Define the symbol as being at this point in DYNBSS. */
2690 h->root.u.def.section = dynbss;
2691 h->root.u.def.value = dynbss->size;
2692
2693 /* Increment the size of DYNBSS to make room for the symbol. */
2694 dynbss->size += h->size;
2695
2696 return TRUE;
2697 }
2698
2699 /* Adjust all external symbols pointing into SEC_MERGE sections
2700 to reflect the object merging within the sections. */
2701
2702 static bfd_boolean
2703 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2704 {
2705 asection *sec;
2706
2707 if ((h->root.type == bfd_link_hash_defined
2708 || h->root.type == bfd_link_hash_defweak)
2709 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2710 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2711 {
2712 bfd *output_bfd = (bfd *) data;
2713
2714 h->root.u.def.value =
2715 _bfd_merged_section_offset (output_bfd,
2716 &h->root.u.def.section,
2717 elf_section_data (sec)->sec_info,
2718 h->root.u.def.value);
2719 }
2720
2721 return TRUE;
2722 }
2723
2724 /* Returns false if the symbol referred to by H should be considered
2725 to resolve local to the current module, and true if it should be
2726 considered to bind dynamically. */
2727
2728 bfd_boolean
2729 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2730 struct bfd_link_info *info,
2731 bfd_boolean not_local_protected)
2732 {
2733 bfd_boolean binding_stays_local_p;
2734 const struct elf_backend_data *bed;
2735 struct elf_link_hash_table *hash_table;
2736
2737 if (h == NULL)
2738 return FALSE;
2739
2740 while (h->root.type == bfd_link_hash_indirect
2741 || h->root.type == bfd_link_hash_warning)
2742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2743
2744 /* If it was forced local, then clearly it's not dynamic. */
2745 if (h->dynindx == -1)
2746 return FALSE;
2747 if (h->forced_local)
2748 return FALSE;
2749
2750 /* Identify the cases where name binding rules say that a
2751 visible symbol resolves locally. */
2752 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2753
2754 switch (ELF_ST_VISIBILITY (h->other))
2755 {
2756 case STV_INTERNAL:
2757 case STV_HIDDEN:
2758 return FALSE;
2759
2760 case STV_PROTECTED:
2761 hash_table = elf_hash_table (info);
2762 if (!is_elf_hash_table (hash_table))
2763 return FALSE;
2764
2765 bed = get_elf_backend_data (hash_table->dynobj);
2766
2767 /* Proper resolution for function pointer equality may require
2768 that these symbols perhaps be resolved dynamically, even though
2769 we should be resolving them to the current module. */
2770 if (!not_local_protected || !bed->is_function_type (h->type))
2771 binding_stays_local_p = TRUE;
2772 break;
2773
2774 default:
2775 break;
2776 }
2777
2778 /* If it isn't defined locally, then clearly it's dynamic. */
2779 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2780 return TRUE;
2781
2782 /* Otherwise, the symbol is dynamic if binding rules don't tell
2783 us that it remains local. */
2784 return !binding_stays_local_p;
2785 }
2786
2787 /* Return true if the symbol referred to by H should be considered
2788 to resolve local to the current module, and false otherwise. Differs
2789 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2790 undefined symbols. The two functions are virtually identical except
2791 for the place where forced_local and dynindx == -1 are tested. If
2792 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2793 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2794 the symbol is local only for defined symbols.
2795 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2796 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2797 treatment of undefined weak symbols. For those that do not make
2798 undefined weak symbols dynamic, both functions may return false. */
2799
2800 bfd_boolean
2801 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2802 struct bfd_link_info *info,
2803 bfd_boolean local_protected)
2804 {
2805 const struct elf_backend_data *bed;
2806 struct elf_link_hash_table *hash_table;
2807
2808 /* If it's a local sym, of course we resolve locally. */
2809 if (h == NULL)
2810 return TRUE;
2811
2812 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2813 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2814 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2815 return TRUE;
2816
2817 /* Common symbols that become definitions don't get the DEF_REGULAR
2818 flag set, so test it first, and don't bail out. */
2819 if (ELF_COMMON_DEF_P (h))
2820 /* Do nothing. */;
2821 /* If we don't have a definition in a regular file, then we can't
2822 resolve locally. The sym is either undefined or dynamic. */
2823 else if (!h->def_regular)
2824 return FALSE;
2825
2826 /* Forced local symbols resolve locally. */
2827 if (h->forced_local)
2828 return TRUE;
2829
2830 /* As do non-dynamic symbols. */
2831 if (h->dynindx == -1)
2832 return TRUE;
2833
2834 /* At this point, we know the symbol is defined and dynamic. In an
2835 executable it must resolve locally, likewise when building symbolic
2836 shared libraries. */
2837 if (info->executable || SYMBOLIC_BIND (info, h))
2838 return TRUE;
2839
2840 /* Now deal with defined dynamic symbols in shared libraries. Ones
2841 with default visibility might not resolve locally. */
2842 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2843 return FALSE;
2844
2845 hash_table = elf_hash_table (info);
2846 if (!is_elf_hash_table (hash_table))
2847 return TRUE;
2848
2849 bed = get_elf_backend_data (hash_table->dynobj);
2850
2851 /* STV_PROTECTED non-function symbols are local. */
2852 if (!bed->is_function_type (h->type))
2853 return TRUE;
2854
2855 /* Function pointer equality tests may require that STV_PROTECTED
2856 symbols be treated as dynamic symbols. If the address of a
2857 function not defined in an executable is set to that function's
2858 plt entry in the executable, then the address of the function in
2859 a shared library must also be the plt entry in the executable. */
2860 return local_protected;
2861 }
2862
2863 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2864 aligned. Returns the first TLS output section. */
2865
2866 struct bfd_section *
2867 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2868 {
2869 struct bfd_section *sec, *tls;
2870 unsigned int align = 0;
2871
2872 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2873 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2874 break;
2875 tls = sec;
2876
2877 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2878 if (sec->alignment_power > align)
2879 align = sec->alignment_power;
2880
2881 elf_hash_table (info)->tls_sec = tls;
2882
2883 /* Ensure the alignment of the first section is the largest alignment,
2884 so that the tls segment starts aligned. */
2885 if (tls != NULL)
2886 tls->alignment_power = align;
2887
2888 return tls;
2889 }
2890
2891 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2892 static bfd_boolean
2893 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2894 Elf_Internal_Sym *sym)
2895 {
2896 const struct elf_backend_data *bed;
2897
2898 /* Local symbols do not count, but target specific ones might. */
2899 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2900 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2901 return FALSE;
2902
2903 bed = get_elf_backend_data (abfd);
2904 /* Function symbols do not count. */
2905 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2906 return FALSE;
2907
2908 /* If the section is undefined, then so is the symbol. */
2909 if (sym->st_shndx == SHN_UNDEF)
2910 return FALSE;
2911
2912 /* If the symbol is defined in the common section, then
2913 it is a common definition and so does not count. */
2914 if (bed->common_definition (sym))
2915 return FALSE;
2916
2917 /* If the symbol is in a target specific section then we
2918 must rely upon the backend to tell us what it is. */
2919 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2920 /* FIXME - this function is not coded yet:
2921
2922 return _bfd_is_global_symbol_definition (abfd, sym);
2923
2924 Instead for now assume that the definition is not global,
2925 Even if this is wrong, at least the linker will behave
2926 in the same way that it used to do. */
2927 return FALSE;
2928
2929 return TRUE;
2930 }
2931
2932 /* Search the symbol table of the archive element of the archive ABFD
2933 whose archive map contains a mention of SYMDEF, and determine if
2934 the symbol is defined in this element. */
2935 static bfd_boolean
2936 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2937 {
2938 Elf_Internal_Shdr * hdr;
2939 bfd_size_type symcount;
2940 bfd_size_type extsymcount;
2941 bfd_size_type extsymoff;
2942 Elf_Internal_Sym *isymbuf;
2943 Elf_Internal_Sym *isym;
2944 Elf_Internal_Sym *isymend;
2945 bfd_boolean result;
2946
2947 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2948 if (abfd == NULL)
2949 return FALSE;
2950
2951 if (! bfd_check_format (abfd, bfd_object))
2952 return FALSE;
2953
2954 /* If we have already included the element containing this symbol in the
2955 link then we do not need to include it again. Just claim that any symbol
2956 it contains is not a definition, so that our caller will not decide to
2957 (re)include this element. */
2958 if (abfd->archive_pass)
2959 return FALSE;
2960
2961 /* Select the appropriate symbol table. */
2962 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2963 hdr = &elf_tdata (abfd)->symtab_hdr;
2964 else
2965 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2966
2967 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2968
2969 /* The sh_info field of the symtab header tells us where the
2970 external symbols start. We don't care about the local symbols. */
2971 if (elf_bad_symtab (abfd))
2972 {
2973 extsymcount = symcount;
2974 extsymoff = 0;
2975 }
2976 else
2977 {
2978 extsymcount = symcount - hdr->sh_info;
2979 extsymoff = hdr->sh_info;
2980 }
2981
2982 if (extsymcount == 0)
2983 return FALSE;
2984
2985 /* Read in the symbol table. */
2986 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2987 NULL, NULL, NULL);
2988 if (isymbuf == NULL)
2989 return FALSE;
2990
2991 /* Scan the symbol table looking for SYMDEF. */
2992 result = FALSE;
2993 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2994 {
2995 const char *name;
2996
2997 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2998 isym->st_name);
2999 if (name == NULL)
3000 break;
3001
3002 if (strcmp (name, symdef->name) == 0)
3003 {
3004 result = is_global_data_symbol_definition (abfd, isym);
3005 break;
3006 }
3007 }
3008
3009 free (isymbuf);
3010
3011 return result;
3012 }
3013 \f
3014 /* Add an entry to the .dynamic table. */
3015
3016 bfd_boolean
3017 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3018 bfd_vma tag,
3019 bfd_vma val)
3020 {
3021 struct elf_link_hash_table *hash_table;
3022 const struct elf_backend_data *bed;
3023 asection *s;
3024 bfd_size_type newsize;
3025 bfd_byte *newcontents;
3026 Elf_Internal_Dyn dyn;
3027
3028 hash_table = elf_hash_table (info);
3029 if (! is_elf_hash_table (hash_table))
3030 return FALSE;
3031
3032 bed = get_elf_backend_data (hash_table->dynobj);
3033 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3034 BFD_ASSERT (s != NULL);
3035
3036 newsize = s->size + bed->s->sizeof_dyn;
3037 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3038 if (newcontents == NULL)
3039 return FALSE;
3040
3041 dyn.d_tag = tag;
3042 dyn.d_un.d_val = val;
3043 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3044
3045 s->size = newsize;
3046 s->contents = newcontents;
3047
3048 return TRUE;
3049 }
3050
3051 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3052 otherwise just check whether one already exists. Returns -1 on error,
3053 1 if a DT_NEEDED tag already exists, and 0 on success. */
3054
3055 static int
3056 elf_add_dt_needed_tag (bfd *abfd,
3057 struct bfd_link_info *info,
3058 const char *soname,
3059 bfd_boolean do_it)
3060 {
3061 struct elf_link_hash_table *hash_table;
3062 bfd_size_type strindex;
3063
3064 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3065 return -1;
3066
3067 hash_table = elf_hash_table (info);
3068 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3069 if (strindex == (bfd_size_type) -1)
3070 return -1;
3071
3072 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3073 {
3074 asection *sdyn;
3075 const struct elf_backend_data *bed;
3076 bfd_byte *extdyn;
3077
3078 bed = get_elf_backend_data (hash_table->dynobj);
3079 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3080 if (sdyn != NULL)
3081 for (extdyn = sdyn->contents;
3082 extdyn < sdyn->contents + sdyn->size;
3083 extdyn += bed->s->sizeof_dyn)
3084 {
3085 Elf_Internal_Dyn dyn;
3086
3087 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3088 if (dyn.d_tag == DT_NEEDED
3089 && dyn.d_un.d_val == strindex)
3090 {
3091 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3092 return 1;
3093 }
3094 }
3095 }
3096
3097 if (do_it)
3098 {
3099 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3100 return -1;
3101
3102 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3103 return -1;
3104 }
3105 else
3106 /* We were just checking for existence of the tag. */
3107 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3108
3109 return 0;
3110 }
3111
3112 static bfd_boolean
3113 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3114 {
3115 for (; needed != NULL; needed = needed->next)
3116 if (strcmp (soname, needed->name) == 0)
3117 return TRUE;
3118
3119 return FALSE;
3120 }
3121
3122 /* Sort symbol by value, section, and size. */
3123 static int
3124 elf_sort_symbol (const void *arg1, const void *arg2)
3125 {
3126 const struct elf_link_hash_entry *h1;
3127 const struct elf_link_hash_entry *h2;
3128 bfd_signed_vma vdiff;
3129
3130 h1 = *(const struct elf_link_hash_entry **) arg1;
3131 h2 = *(const struct elf_link_hash_entry **) arg2;
3132 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3133 if (vdiff != 0)
3134 return vdiff > 0 ? 1 : -1;
3135 else
3136 {
3137 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3138 if (sdiff != 0)
3139 return sdiff > 0 ? 1 : -1;
3140 }
3141 vdiff = h1->size - h2->size;
3142 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3143 }
3144
3145 /* This function is used to adjust offsets into .dynstr for
3146 dynamic symbols. This is called via elf_link_hash_traverse. */
3147
3148 static bfd_boolean
3149 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3150 {
3151 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3152
3153 if (h->dynindx != -1)
3154 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3155 return TRUE;
3156 }
3157
3158 /* Assign string offsets in .dynstr, update all structures referencing
3159 them. */
3160
3161 static bfd_boolean
3162 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3163 {
3164 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3165 struct elf_link_local_dynamic_entry *entry;
3166 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3167 bfd *dynobj = hash_table->dynobj;
3168 asection *sdyn;
3169 bfd_size_type size;
3170 const struct elf_backend_data *bed;
3171 bfd_byte *extdyn;
3172
3173 _bfd_elf_strtab_finalize (dynstr);
3174 size = _bfd_elf_strtab_size (dynstr);
3175
3176 bed = get_elf_backend_data (dynobj);
3177 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3178 BFD_ASSERT (sdyn != NULL);
3179
3180 /* Update all .dynamic entries referencing .dynstr strings. */
3181 for (extdyn = sdyn->contents;
3182 extdyn < sdyn->contents + sdyn->size;
3183 extdyn += bed->s->sizeof_dyn)
3184 {
3185 Elf_Internal_Dyn dyn;
3186
3187 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3188 switch (dyn.d_tag)
3189 {
3190 case DT_STRSZ:
3191 dyn.d_un.d_val = size;
3192 break;
3193 case DT_NEEDED:
3194 case DT_SONAME:
3195 case DT_RPATH:
3196 case DT_RUNPATH:
3197 case DT_FILTER:
3198 case DT_AUXILIARY:
3199 case DT_AUDIT:
3200 case DT_DEPAUDIT:
3201 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3202 break;
3203 default:
3204 continue;
3205 }
3206 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3207 }
3208
3209 /* Now update local dynamic symbols. */
3210 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3211 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3212 entry->isym.st_name);
3213
3214 /* And the rest of dynamic symbols. */
3215 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3216
3217 /* Adjust version definitions. */
3218 if (elf_tdata (output_bfd)->cverdefs)
3219 {
3220 asection *s;
3221 bfd_byte *p;
3222 bfd_size_type i;
3223 Elf_Internal_Verdef def;
3224 Elf_Internal_Verdaux defaux;
3225
3226 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3227 p = s->contents;
3228 do
3229 {
3230 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3231 &def);
3232 p += sizeof (Elf_External_Verdef);
3233 if (def.vd_aux != sizeof (Elf_External_Verdef))
3234 continue;
3235 for (i = 0; i < def.vd_cnt; ++i)
3236 {
3237 _bfd_elf_swap_verdaux_in (output_bfd,
3238 (Elf_External_Verdaux *) p, &defaux);
3239 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3240 defaux.vda_name);
3241 _bfd_elf_swap_verdaux_out (output_bfd,
3242 &defaux, (Elf_External_Verdaux *) p);
3243 p += sizeof (Elf_External_Verdaux);
3244 }
3245 }
3246 while (def.vd_next);
3247 }
3248
3249 /* Adjust version references. */
3250 if (elf_tdata (output_bfd)->verref)
3251 {
3252 asection *s;
3253 bfd_byte *p;
3254 bfd_size_type i;
3255 Elf_Internal_Verneed need;
3256 Elf_Internal_Vernaux needaux;
3257
3258 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3259 p = s->contents;
3260 do
3261 {
3262 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3263 &need);
3264 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3265 _bfd_elf_swap_verneed_out (output_bfd, &need,
3266 (Elf_External_Verneed *) p);
3267 p += sizeof (Elf_External_Verneed);
3268 for (i = 0; i < need.vn_cnt; ++i)
3269 {
3270 _bfd_elf_swap_vernaux_in (output_bfd,
3271 (Elf_External_Vernaux *) p, &needaux);
3272 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3273 needaux.vna_name);
3274 _bfd_elf_swap_vernaux_out (output_bfd,
3275 &needaux,
3276 (Elf_External_Vernaux *) p);
3277 p += sizeof (Elf_External_Vernaux);
3278 }
3279 }
3280 while (need.vn_next);
3281 }
3282
3283 return TRUE;
3284 }
3285 \f
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 The default is to only match when the INPUT and OUTPUT are exactly
3288 the same target. */
3289
3290 bfd_boolean
3291 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3293 {
3294 return input == output;
3295 }
3296
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 This version is used when different targets for the same architecture
3299 are virtually identical. */
3300
3301 bfd_boolean
3302 _bfd_elf_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3304 {
3305 const struct elf_backend_data *obed, *ibed;
3306
3307 if (input == output)
3308 return TRUE;
3309
3310 ibed = xvec_get_elf_backend_data (input);
3311 obed = xvec_get_elf_backend_data (output);
3312
3313 if (ibed->arch != obed->arch)
3314 return FALSE;
3315
3316 /* If both backends are using this function, deem them compatible. */
3317 return ibed->relocs_compatible == obed->relocs_compatible;
3318 }
3319
3320 /* Make a special call to the linker "notice" function to tell it that
3321 we are about to handle an as-needed lib, or have finished
3322 processing the lib. */
3323
3324 bfd_boolean
3325 _bfd_elf_notice_as_needed (bfd *ibfd,
3326 struct bfd_link_info *info,
3327 enum notice_asneeded_action act)
3328 {
3329 return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3330 }
3331
3332 /* Add symbols from an ELF object file to the linker hash table. */
3333
3334 static bfd_boolean
3335 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3336 {
3337 Elf_Internal_Ehdr *ehdr;
3338 Elf_Internal_Shdr *hdr;
3339 bfd_size_type symcount;
3340 bfd_size_type extsymcount;
3341 bfd_size_type extsymoff;
3342 struct elf_link_hash_entry **sym_hash;
3343 bfd_boolean dynamic;
3344 Elf_External_Versym *extversym = NULL;
3345 Elf_External_Versym *ever;
3346 struct elf_link_hash_entry *weaks;
3347 struct elf_link_hash_entry **nondeflt_vers = NULL;
3348 bfd_size_type nondeflt_vers_cnt = 0;
3349 Elf_Internal_Sym *isymbuf = NULL;
3350 Elf_Internal_Sym *isym;
3351 Elf_Internal_Sym *isymend;
3352 const struct elf_backend_data *bed;
3353 bfd_boolean add_needed;
3354 struct elf_link_hash_table *htab;
3355 bfd_size_type amt;
3356 void *alloc_mark = NULL;
3357 struct bfd_hash_entry **old_table = NULL;
3358 unsigned int old_size = 0;
3359 unsigned int old_count = 0;
3360 void *old_tab = NULL;
3361 void *old_ent;
3362 struct bfd_link_hash_entry *old_undefs = NULL;
3363 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3364 long old_dynsymcount = 0;
3365 bfd_size_type old_dynstr_size = 0;
3366 size_t tabsize = 0;
3367 asection *s;
3368
3369 htab = elf_hash_table (info);
3370 bed = get_elf_backend_data (abfd);
3371
3372 if ((abfd->flags & DYNAMIC) == 0)
3373 dynamic = FALSE;
3374 else
3375 {
3376 dynamic = TRUE;
3377
3378 /* You can't use -r against a dynamic object. Also, there's no
3379 hope of using a dynamic object which does not exactly match
3380 the format of the output file. */
3381 if (info->relocatable
3382 || !is_elf_hash_table (htab)
3383 || info->output_bfd->xvec != abfd->xvec)
3384 {
3385 if (info->relocatable)
3386 bfd_set_error (bfd_error_invalid_operation);
3387 else
3388 bfd_set_error (bfd_error_wrong_format);
3389 goto error_return;
3390 }
3391 }
3392
3393 ehdr = elf_elfheader (abfd);
3394 if (info->warn_alternate_em
3395 && bed->elf_machine_code != ehdr->e_machine
3396 && ((bed->elf_machine_alt1 != 0
3397 && ehdr->e_machine == bed->elf_machine_alt1)
3398 || (bed->elf_machine_alt2 != 0
3399 && ehdr->e_machine == bed->elf_machine_alt2)))
3400 info->callbacks->einfo
3401 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3402 ehdr->e_machine, abfd, bed->elf_machine_code);
3403
3404 /* As a GNU extension, any input sections which are named
3405 .gnu.warning.SYMBOL are treated as warning symbols for the given
3406 symbol. This differs from .gnu.warning sections, which generate
3407 warnings when they are included in an output file. */
3408 /* PR 12761: Also generate this warning when building shared libraries. */
3409 for (s = abfd->sections; s != NULL; s = s->next)
3410 {
3411 const char *name;
3412
3413 name = bfd_get_section_name (abfd, s);
3414 if (CONST_STRNEQ (name, ".gnu.warning."))
3415 {
3416 char *msg;
3417 bfd_size_type sz;
3418
3419 name += sizeof ".gnu.warning." - 1;
3420
3421 /* If this is a shared object, then look up the symbol
3422 in the hash table. If it is there, and it is already
3423 been defined, then we will not be using the entry
3424 from this shared object, so we don't need to warn.
3425 FIXME: If we see the definition in a regular object
3426 later on, we will warn, but we shouldn't. The only
3427 fix is to keep track of what warnings we are supposed
3428 to emit, and then handle them all at the end of the
3429 link. */
3430 if (dynamic)
3431 {
3432 struct elf_link_hash_entry *h;
3433
3434 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3435
3436 /* FIXME: What about bfd_link_hash_common? */
3437 if (h != NULL
3438 && (h->root.type == bfd_link_hash_defined
3439 || h->root.type == bfd_link_hash_defweak))
3440 continue;
3441 }
3442
3443 sz = s->size;
3444 msg = (char *) bfd_alloc (abfd, sz + 1);
3445 if (msg == NULL)
3446 goto error_return;
3447
3448 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3449 goto error_return;
3450
3451 msg[sz] = '\0';
3452
3453 if (! (_bfd_generic_link_add_one_symbol
3454 (info, abfd, name, BSF_WARNING, s, 0, msg,
3455 FALSE, bed->collect, NULL)))
3456 goto error_return;
3457
3458 if (!info->relocatable && info->executable)
3459 {
3460 /* Clobber the section size so that the warning does
3461 not get copied into the output file. */
3462 s->size = 0;
3463
3464 /* Also set SEC_EXCLUDE, so that symbols defined in
3465 the warning section don't get copied to the output. */
3466 s->flags |= SEC_EXCLUDE;
3467 }
3468 }
3469 }
3470
3471 add_needed = TRUE;
3472 if (! dynamic)
3473 {
3474 /* If we are creating a shared library, create all the dynamic
3475 sections immediately. We need to attach them to something,
3476 so we attach them to this BFD, provided it is the right
3477 format. FIXME: If there are no input BFD's of the same
3478 format as the output, we can't make a shared library. */
3479 if (info->shared
3480 && is_elf_hash_table (htab)
3481 && info->output_bfd->xvec == abfd->xvec
3482 && !htab->dynamic_sections_created)
3483 {
3484 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3485 goto error_return;
3486 }
3487 }
3488 else if (!is_elf_hash_table (htab))
3489 goto error_return;
3490 else
3491 {
3492 const char *soname = NULL;
3493 char *audit = NULL;
3494 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3495 int ret;
3496
3497 /* ld --just-symbols and dynamic objects don't mix very well.
3498 ld shouldn't allow it. */
3499 if ((s = abfd->sections) != NULL
3500 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3501 abort ();
3502
3503 /* If this dynamic lib was specified on the command line with
3504 --as-needed in effect, then we don't want to add a DT_NEEDED
3505 tag unless the lib is actually used. Similary for libs brought
3506 in by another lib's DT_NEEDED. When --no-add-needed is used
3507 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3508 any dynamic library in DT_NEEDED tags in the dynamic lib at
3509 all. */
3510 add_needed = (elf_dyn_lib_class (abfd)
3511 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3512 | DYN_NO_NEEDED)) == 0;
3513
3514 s = bfd_get_section_by_name (abfd, ".dynamic");
3515 if (s != NULL)
3516 {
3517 bfd_byte *dynbuf;
3518 bfd_byte *extdyn;
3519 unsigned int elfsec;
3520 unsigned long shlink;
3521
3522 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3523 {
3524 error_free_dyn:
3525 free (dynbuf);
3526 goto error_return;
3527 }
3528
3529 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3530 if (elfsec == SHN_BAD)
3531 goto error_free_dyn;
3532 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3533
3534 for (extdyn = dynbuf;
3535 extdyn < dynbuf + s->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3541 if (dyn.d_tag == DT_SONAME)
3542 {
3543 unsigned int tagv = dyn.d_un.d_val;
3544 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3545 if (soname == NULL)
3546 goto error_free_dyn;
3547 }
3548 if (dyn.d_tag == DT_NEEDED)
3549 {
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3553
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = (char *) bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3562 goto error_free_dyn;
3563 memcpy (anm, fnm, amt);
3564 n->name = anm;
3565 n->by = abfd;
3566 n->next = NULL;
3567 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3568 ;
3569 *pn = n;
3570 }
3571 if (dyn.d_tag == DT_RUNPATH)
3572 {
3573 struct bfd_link_needed_list *n, **pn;
3574 char *fnm, *anm;
3575 unsigned int tagv = dyn.d_un.d_val;
3576
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3584 if (anm == NULL)
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3587 n->name = anm;
3588 n->by = abfd;
3589 n->next = NULL;
3590 for (pn = & runpath;
3591 *pn != NULL;
3592 pn = &(*pn)->next)
3593 ;
3594 *pn = n;
3595 }
3596 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3597 if (!runpath && dyn.d_tag == DT_RPATH)
3598 {
3599 struct bfd_link_needed_list *n, **pn;
3600 char *fnm, *anm;
3601 unsigned int tagv = dyn.d_un.d_val;
3602
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3610 if (anm == NULL)
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3613 n->name = anm;
3614 n->by = abfd;
3615 n->next = NULL;
3616 for (pn = & rpath;
3617 *pn != NULL;
3618 pn = &(*pn)->next)
3619 ;
3620 *pn = n;
3621 }
3622 if (dyn.d_tag == DT_AUDIT)
3623 {
3624 unsigned int tagv = dyn.d_un.d_val;
3625 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3626 }
3627 }
3628
3629 free (dynbuf);
3630 }
3631
3632 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3633 frees all more recently bfd_alloc'd blocks as well. */
3634 if (runpath)
3635 rpath = runpath;
3636
3637 if (rpath)
3638 {
3639 struct bfd_link_needed_list **pn;
3640 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3641 ;
3642 *pn = rpath;
3643 }
3644
3645 /* We do not want to include any of the sections in a dynamic
3646 object in the output file. We hack by simply clobbering the
3647 list of sections in the BFD. This could be handled more
3648 cleanly by, say, a new section flag; the existing
3649 SEC_NEVER_LOAD flag is not the one we want, because that one
3650 still implies that the section takes up space in the output
3651 file. */
3652 bfd_section_list_clear (abfd);
3653
3654 /* Find the name to use in a DT_NEEDED entry that refers to this
3655 object. If the object has a DT_SONAME entry, we use it.
3656 Otherwise, if the generic linker stuck something in
3657 elf_dt_name, we use that. Otherwise, we just use the file
3658 name. */
3659 if (soname == NULL || *soname == '\0')
3660 {
3661 soname = elf_dt_name (abfd);
3662 if (soname == NULL || *soname == '\0')
3663 soname = bfd_get_filename (abfd);
3664 }
3665
3666 /* Save the SONAME because sometimes the linker emulation code
3667 will need to know it. */
3668 elf_dt_name (abfd) = soname;
3669
3670 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3671 if (ret < 0)
3672 goto error_return;
3673
3674 /* If we have already included this dynamic object in the
3675 link, just ignore it. There is no reason to include a
3676 particular dynamic object more than once. */
3677 if (ret > 0)
3678 return TRUE;
3679
3680 /* Save the DT_AUDIT entry for the linker emulation code. */
3681 elf_dt_audit (abfd) = audit;
3682 }
3683
3684 /* If this is a dynamic object, we always link against the .dynsym
3685 symbol table, not the .symtab symbol table. The dynamic linker
3686 will only see the .dynsym symbol table, so there is no reason to
3687 look at .symtab for a dynamic object. */
3688
3689 if (! dynamic || elf_dynsymtab (abfd) == 0)
3690 hdr = &elf_tdata (abfd)->symtab_hdr;
3691 else
3692 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3693
3694 symcount = hdr->sh_size / bed->s->sizeof_sym;
3695
3696 /* The sh_info field of the symtab header tells us where the
3697 external symbols start. We don't care about the local symbols at
3698 this point. */
3699 if (elf_bad_symtab (abfd))
3700 {
3701 extsymcount = symcount;
3702 extsymoff = 0;
3703 }
3704 else
3705 {
3706 extsymcount = symcount - hdr->sh_info;
3707 extsymoff = hdr->sh_info;
3708 }
3709
3710 sym_hash = elf_sym_hashes (abfd);
3711 if (extsymcount != 0)
3712 {
3713 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3714 NULL, NULL, NULL);
3715 if (isymbuf == NULL)
3716 goto error_return;
3717
3718 if (sym_hash == NULL)
3719 {
3720 /* We store a pointer to the hash table entry for each
3721 external symbol. */
3722 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3723 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3724 if (sym_hash == NULL)
3725 goto error_free_sym;
3726 elf_sym_hashes (abfd) = sym_hash;
3727 }
3728 }
3729
3730 if (dynamic)
3731 {
3732 /* Read in any version definitions. */
3733 if (!_bfd_elf_slurp_version_tables (abfd,
3734 info->default_imported_symver))
3735 goto error_free_sym;
3736
3737 /* Read in the symbol versions, but don't bother to convert them
3738 to internal format. */
3739 if (elf_dynversym (abfd) != 0)
3740 {
3741 Elf_Internal_Shdr *versymhdr;
3742
3743 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3744 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3745 if (extversym == NULL)
3746 goto error_free_sym;
3747 amt = versymhdr->sh_size;
3748 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3749 || bfd_bread (extversym, amt, abfd) != amt)
3750 goto error_free_vers;
3751 }
3752 }
3753
3754 /* If we are loading an as-needed shared lib, save the symbol table
3755 state before we start adding symbols. If the lib turns out
3756 to be unneeded, restore the state. */
3757 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3758 {
3759 unsigned int i;
3760 size_t entsize;
3761
3762 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3763 {
3764 struct bfd_hash_entry *p;
3765 struct elf_link_hash_entry *h;
3766
3767 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3768 {
3769 h = (struct elf_link_hash_entry *) p;
3770 entsize += htab->root.table.entsize;
3771 if (h->root.type == bfd_link_hash_warning)
3772 entsize += htab->root.table.entsize;
3773 }
3774 }
3775
3776 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3777 old_tab = bfd_malloc (tabsize + entsize);
3778 if (old_tab == NULL)
3779 goto error_free_vers;
3780
3781 /* Remember the current objalloc pointer, so that all mem for
3782 symbols added can later be reclaimed. */
3783 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3784 if (alloc_mark == NULL)
3785 goto error_free_vers;
3786
3787 /* Make a special call to the linker "notice" function to
3788 tell it that we are about to handle an as-needed lib. */
3789 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3790 goto error_free_vers;
3791
3792 /* Clone the symbol table. Remember some pointers into the
3793 symbol table, and dynamic symbol count. */
3794 old_ent = (char *) old_tab + tabsize;
3795 memcpy (old_tab, htab->root.table.table, tabsize);
3796 old_undefs = htab->root.undefs;
3797 old_undefs_tail = htab->root.undefs_tail;
3798 old_table = htab->root.table.table;
3799 old_size = htab->root.table.size;
3800 old_count = htab->root.table.count;
3801 old_dynsymcount = htab->dynsymcount;
3802 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3803
3804 for (i = 0; i < htab->root.table.size; i++)
3805 {
3806 struct bfd_hash_entry *p;
3807 struct elf_link_hash_entry *h;
3808
3809 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3810 {
3811 memcpy (old_ent, p, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 h = (struct elf_link_hash_entry *) p;
3814 if (h->root.type == bfd_link_hash_warning)
3815 {
3816 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3817 old_ent = (char *) old_ent + htab->root.table.entsize;
3818 }
3819 }
3820 }
3821 }
3822
3823 weaks = NULL;
3824 ever = extversym != NULL ? extversym + extsymoff : NULL;
3825 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3826 isym < isymend;
3827 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3828 {
3829 int bind;
3830 bfd_vma value;
3831 asection *sec, *new_sec;
3832 flagword flags;
3833 const char *name;
3834 struct elf_link_hash_entry *h;
3835 struct elf_link_hash_entry *hi;
3836 bfd_boolean definition;
3837 bfd_boolean size_change_ok;
3838 bfd_boolean type_change_ok;
3839 bfd_boolean new_weakdef;
3840 bfd_boolean new_weak;
3841 bfd_boolean old_weak;
3842 bfd_boolean override;
3843 bfd_boolean common;
3844 unsigned int old_alignment;
3845 bfd *old_bfd;
3846
3847 override = FALSE;
3848
3849 flags = BSF_NO_FLAGS;
3850 sec = NULL;
3851 value = isym->st_value;
3852 common = bed->common_definition (isym);
3853
3854 bind = ELF_ST_BIND (isym->st_info);
3855 switch (bind)
3856 {
3857 case STB_LOCAL:
3858 /* This should be impossible, since ELF requires that all
3859 global symbols follow all local symbols, and that sh_info
3860 point to the first global symbol. Unfortunately, Irix 5
3861 screws this up. */
3862 continue;
3863
3864 case STB_GLOBAL:
3865 if (isym->st_shndx != SHN_UNDEF && !common)
3866 flags = BSF_GLOBAL;
3867 break;
3868
3869 case STB_WEAK:
3870 flags = BSF_WEAK;
3871 break;
3872
3873 case STB_GNU_UNIQUE:
3874 flags = BSF_GNU_UNIQUE;
3875 break;
3876
3877 default:
3878 /* Leave it up to the processor backend. */
3879 break;
3880 }
3881
3882 if (isym->st_shndx == SHN_UNDEF)
3883 sec = bfd_und_section_ptr;
3884 else if (isym->st_shndx == SHN_ABS)
3885 sec = bfd_abs_section_ptr;
3886 else if (isym->st_shndx == SHN_COMMON)
3887 {
3888 sec = bfd_com_section_ptr;
3889 /* What ELF calls the size we call the value. What ELF
3890 calls the value we call the alignment. */
3891 value = isym->st_size;
3892 }
3893 else
3894 {
3895 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3896 if (sec == NULL)
3897 sec = bfd_abs_section_ptr;
3898 else if (discarded_section (sec))
3899 {
3900 /* Symbols from discarded section are undefined. We keep
3901 its visibility. */
3902 sec = bfd_und_section_ptr;
3903 isym->st_shndx = SHN_UNDEF;
3904 }
3905 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3906 value -= sec->vma;
3907 }
3908
3909 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3910 isym->st_name);
3911 if (name == NULL)
3912 goto error_free_vers;
3913
3914 if (isym->st_shndx == SHN_COMMON
3915 && (abfd->flags & BFD_PLUGIN) != 0)
3916 {
3917 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3918
3919 if (xc == NULL)
3920 {
3921 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3922 | SEC_EXCLUDE);
3923 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3924 if (xc == NULL)
3925 goto error_free_vers;
3926 }
3927 sec = xc;
3928 }
3929 else if (isym->st_shndx == SHN_COMMON
3930 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3931 && !info->relocatable)
3932 {
3933 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3934
3935 if (tcomm == NULL)
3936 {
3937 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3938 | SEC_LINKER_CREATED);
3939 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3940 if (tcomm == NULL)
3941 goto error_free_vers;
3942 }
3943 sec = tcomm;
3944 }
3945 else if (bed->elf_add_symbol_hook)
3946 {
3947 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3948 &sec, &value))
3949 goto error_free_vers;
3950
3951 /* The hook function sets the name to NULL if this symbol
3952 should be skipped for some reason. */
3953 if (name == NULL)
3954 continue;
3955 }
3956
3957 /* Sanity check that all possibilities were handled. */
3958 if (sec == NULL)
3959 {
3960 bfd_set_error (bfd_error_bad_value);
3961 goto error_free_vers;
3962 }
3963
3964 /* Silently discard TLS symbols from --just-syms. There's
3965 no way to combine a static TLS block with a new TLS block
3966 for this executable. */
3967 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3968 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3969 continue;
3970
3971 if (bfd_is_und_section (sec)
3972 || bfd_is_com_section (sec))
3973 definition = FALSE;
3974 else
3975 definition = TRUE;
3976
3977 size_change_ok = FALSE;
3978 type_change_ok = bed->type_change_ok;
3979 old_weak = FALSE;
3980 old_alignment = 0;
3981 old_bfd = NULL;
3982 new_sec = sec;
3983
3984 if (is_elf_hash_table (htab))
3985 {
3986 Elf_Internal_Versym iver;
3987 unsigned int vernum = 0;
3988 bfd_boolean skip;
3989
3990 if (ever == NULL)
3991 {
3992 if (info->default_imported_symver)
3993 /* Use the default symbol version created earlier. */
3994 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3995 else
3996 iver.vs_vers = 0;
3997 }
3998 else
3999 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4000
4001 vernum = iver.vs_vers & VERSYM_VERSION;
4002
4003 /* If this is a hidden symbol, or if it is not version
4004 1, we append the version name to the symbol name.
4005 However, we do not modify a non-hidden absolute symbol
4006 if it is not a function, because it might be the version
4007 symbol itself. FIXME: What if it isn't? */
4008 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4009 || (vernum > 1
4010 && (!bfd_is_abs_section (sec)
4011 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4012 {
4013 const char *verstr;
4014 size_t namelen, verlen, newlen;
4015 char *newname, *p;
4016
4017 if (isym->st_shndx != SHN_UNDEF)
4018 {
4019 if (vernum > elf_tdata (abfd)->cverdefs)
4020 verstr = NULL;
4021 else if (vernum > 1)
4022 verstr =
4023 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4024 else
4025 verstr = "";
4026
4027 if (verstr == NULL)
4028 {
4029 (*_bfd_error_handler)
4030 (_("%B: %s: invalid version %u (max %d)"),
4031 abfd, name, vernum,
4032 elf_tdata (abfd)->cverdefs);
4033 bfd_set_error (bfd_error_bad_value);
4034 goto error_free_vers;
4035 }
4036 }
4037 else
4038 {
4039 /* We cannot simply test for the number of
4040 entries in the VERNEED section since the
4041 numbers for the needed versions do not start
4042 at 0. */
4043 Elf_Internal_Verneed *t;
4044
4045 verstr = NULL;
4046 for (t = elf_tdata (abfd)->verref;
4047 t != NULL;
4048 t = t->vn_nextref)
4049 {
4050 Elf_Internal_Vernaux *a;
4051
4052 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4053 {
4054 if (a->vna_other == vernum)
4055 {
4056 verstr = a->vna_nodename;
4057 break;
4058 }
4059 }
4060 if (a != NULL)
4061 break;
4062 }
4063 if (verstr == NULL)
4064 {
4065 (*_bfd_error_handler)
4066 (_("%B: %s: invalid needed version %d"),
4067 abfd, name, vernum);
4068 bfd_set_error (bfd_error_bad_value);
4069 goto error_free_vers;
4070 }
4071 }
4072
4073 namelen = strlen (name);
4074 verlen = strlen (verstr);
4075 newlen = namelen + verlen + 2;
4076 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4077 && isym->st_shndx != SHN_UNDEF)
4078 ++newlen;
4079
4080 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4081 if (newname == NULL)
4082 goto error_free_vers;
4083 memcpy (newname, name, namelen);
4084 p = newname + namelen;
4085 *p++ = ELF_VER_CHR;
4086 /* If this is a defined non-hidden version symbol,
4087 we add another @ to the name. This indicates the
4088 default version of the symbol. */
4089 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4090 && isym->st_shndx != SHN_UNDEF)
4091 *p++ = ELF_VER_CHR;
4092 memcpy (p, verstr, verlen + 1);
4093
4094 name = newname;
4095 }
4096
4097 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4098 sym_hash, &old_bfd, &old_weak,
4099 &old_alignment, &skip, &override,
4100 &type_change_ok, &size_change_ok))
4101 goto error_free_vers;
4102
4103 if (skip)
4104 continue;
4105
4106 if (override)
4107 definition = FALSE;
4108
4109 h = *sym_hash;
4110 while (h->root.type == bfd_link_hash_indirect
4111 || h->root.type == bfd_link_hash_warning)
4112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4113
4114 if (elf_tdata (abfd)->verdef != NULL
4115 && vernum > 1
4116 && definition)
4117 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4118 }
4119
4120 if (! (_bfd_generic_link_add_one_symbol
4121 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4122 (struct bfd_link_hash_entry **) sym_hash)))
4123 goto error_free_vers;
4124
4125 h = *sym_hash;
4126 /* We need to make sure that indirect symbol dynamic flags are
4127 updated. */
4128 hi = h;
4129 while (h->root.type == bfd_link_hash_indirect
4130 || h->root.type == bfd_link_hash_warning)
4131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4132
4133 *sym_hash = h;
4134
4135 new_weak = (flags & BSF_WEAK) != 0;
4136 new_weakdef = FALSE;
4137 if (dynamic
4138 && definition
4139 && new_weak
4140 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4141 && is_elf_hash_table (htab)
4142 && h->u.weakdef == NULL)
4143 {
4144 /* Keep a list of all weak defined non function symbols from
4145 a dynamic object, using the weakdef field. Later in this
4146 function we will set the weakdef field to the correct
4147 value. We only put non-function symbols from dynamic
4148 objects on this list, because that happens to be the only
4149 time we need to know the normal symbol corresponding to a
4150 weak symbol, and the information is time consuming to
4151 figure out. If the weakdef field is not already NULL,
4152 then this symbol was already defined by some previous
4153 dynamic object, and we will be using that previous
4154 definition anyhow. */
4155
4156 h->u.weakdef = weaks;
4157 weaks = h;
4158 new_weakdef = TRUE;
4159 }
4160
4161 /* Set the alignment of a common symbol. */
4162 if ((common || bfd_is_com_section (sec))
4163 && h->root.type == bfd_link_hash_common)
4164 {
4165 unsigned int align;
4166
4167 if (common)
4168 align = bfd_log2 (isym->st_value);
4169 else
4170 {
4171 /* The new symbol is a common symbol in a shared object.
4172 We need to get the alignment from the section. */
4173 align = new_sec->alignment_power;
4174 }
4175 if (align > old_alignment)
4176 h->root.u.c.p->alignment_power = align;
4177 else
4178 h->root.u.c.p->alignment_power = old_alignment;
4179 }
4180
4181 if (is_elf_hash_table (htab))
4182 {
4183 /* Set a flag in the hash table entry indicating the type of
4184 reference or definition we just found. A dynamic symbol
4185 is one which is referenced or defined by both a regular
4186 object and a shared object. */
4187 bfd_boolean dynsym = FALSE;
4188
4189 /* Plugin symbols aren't normal. Don't set def_regular or
4190 ref_regular for them, or make them dynamic. */
4191 if ((abfd->flags & BFD_PLUGIN) != 0)
4192 ;
4193 else if (! dynamic)
4194 {
4195 if (! definition)
4196 {
4197 h->ref_regular = 1;
4198 if (bind != STB_WEAK)
4199 h->ref_regular_nonweak = 1;
4200 }
4201 else
4202 {
4203 h->def_regular = 1;
4204 if (h->def_dynamic)
4205 {
4206 h->def_dynamic = 0;
4207 h->ref_dynamic = 1;
4208 }
4209 }
4210
4211 /* If the indirect symbol has been forced local, don't
4212 make the real symbol dynamic. */
4213 if ((h == hi || !hi->forced_local)
4214 && (! info->executable
4215 || h->def_dynamic
4216 || h->ref_dynamic))
4217 dynsym = TRUE;
4218 }
4219 else
4220 {
4221 if (! definition)
4222 {
4223 h->ref_dynamic = 1;
4224 hi->ref_dynamic = 1;
4225 }
4226 else
4227 {
4228 h->def_dynamic = 1;
4229 hi->def_dynamic = 1;
4230 }
4231
4232 /* If the indirect symbol has been forced local, don't
4233 make the real symbol dynamic. */
4234 if ((h == hi || !hi->forced_local)
4235 && (h->def_regular
4236 || h->ref_regular
4237 || (h->u.weakdef != NULL
4238 && ! new_weakdef
4239 && h->u.weakdef->dynindx != -1)))
4240 dynsym = TRUE;
4241 }
4242
4243 /* Check to see if we need to add an indirect symbol for
4244 the default name. */
4245 if (definition
4246 || (!override && h->root.type == bfd_link_hash_common))
4247 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4248 sec, value, &old_bfd, &dynsym))
4249 goto error_free_vers;
4250
4251 /* Check the alignment when a common symbol is involved. This
4252 can change when a common symbol is overridden by a normal
4253 definition or a common symbol is ignored due to the old
4254 normal definition. We need to make sure the maximum
4255 alignment is maintained. */
4256 if ((old_alignment || common)
4257 && h->root.type != bfd_link_hash_common)
4258 {
4259 unsigned int common_align;
4260 unsigned int normal_align;
4261 unsigned int symbol_align;
4262 bfd *normal_bfd;
4263 bfd *common_bfd;
4264
4265 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4266 || h->root.type == bfd_link_hash_defweak);
4267
4268 symbol_align = ffs (h->root.u.def.value) - 1;
4269 if (h->root.u.def.section->owner != NULL
4270 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4271 {
4272 normal_align = h->root.u.def.section->alignment_power;
4273 if (normal_align > symbol_align)
4274 normal_align = symbol_align;
4275 }
4276 else
4277 normal_align = symbol_align;
4278
4279 if (old_alignment)
4280 {
4281 common_align = old_alignment;
4282 common_bfd = old_bfd;
4283 normal_bfd = abfd;
4284 }
4285 else
4286 {
4287 common_align = bfd_log2 (isym->st_value);
4288 common_bfd = abfd;
4289 normal_bfd = old_bfd;
4290 }
4291
4292 if (normal_align < common_align)
4293 {
4294 /* PR binutils/2735 */
4295 if (normal_bfd == NULL)
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of common symbol `%s' in %B is"
4298 " greater than the alignment (%u) of its section %A"),
4299 common_bfd, h->root.u.def.section,
4300 1 << common_align, name, 1 << normal_align);
4301 else
4302 (*_bfd_error_handler)
4303 (_("Warning: alignment %u of symbol `%s' in %B"
4304 " is smaller than %u in %B"),
4305 normal_bfd, common_bfd,
4306 1 << normal_align, name, 1 << common_align);
4307 }
4308 }
4309
4310 /* Remember the symbol size if it isn't undefined. */
4311 if (isym->st_size != 0
4312 && isym->st_shndx != SHN_UNDEF
4313 && (definition || h->size == 0))
4314 {
4315 if (h->size != 0
4316 && h->size != isym->st_size
4317 && ! size_change_ok)
4318 (*_bfd_error_handler)
4319 (_("Warning: size of symbol `%s' changed"
4320 " from %lu in %B to %lu in %B"),
4321 old_bfd, abfd,
4322 name, (unsigned long) h->size,
4323 (unsigned long) isym->st_size);
4324
4325 h->size = isym->st_size;
4326 }
4327
4328 /* If this is a common symbol, then we always want H->SIZE
4329 to be the size of the common symbol. The code just above
4330 won't fix the size if a common symbol becomes larger. We
4331 don't warn about a size change here, because that is
4332 covered by --warn-common. Allow changes between different
4333 function types. */
4334 if (h->root.type == bfd_link_hash_common)
4335 h->size = h->root.u.c.size;
4336
4337 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4338 && ((definition && !new_weak)
4339 || (old_weak && h->root.type == bfd_link_hash_common)
4340 || h->type == STT_NOTYPE))
4341 {
4342 unsigned int type = ELF_ST_TYPE (isym->st_info);
4343
4344 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4345 symbol. */
4346 if (type == STT_GNU_IFUNC
4347 && (abfd->flags & DYNAMIC) != 0)
4348 type = STT_FUNC;
4349
4350 if (h->type != type)
4351 {
4352 if (h->type != STT_NOTYPE && ! type_change_ok)
4353 (*_bfd_error_handler)
4354 (_("Warning: type of symbol `%s' changed"
4355 " from %d to %d in %B"),
4356 abfd, name, h->type, type);
4357
4358 h->type = type;
4359 }
4360 }
4361
4362 /* Merge st_other field. */
4363 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4364
4365 /* We don't want to make debug symbol dynamic. */
4366 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4367 dynsym = FALSE;
4368
4369 /* Nor should we make plugin symbols dynamic. */
4370 if ((abfd->flags & BFD_PLUGIN) != 0)
4371 dynsym = FALSE;
4372
4373 if (definition)
4374 {
4375 h->target_internal = isym->st_target_internal;
4376 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4377 }
4378
4379 if (definition && !dynamic)
4380 {
4381 char *p = strchr (name, ELF_VER_CHR);
4382 if (p != NULL && p[1] != ELF_VER_CHR)
4383 {
4384 /* Queue non-default versions so that .symver x, x@FOO
4385 aliases can be checked. */
4386 if (!nondeflt_vers)
4387 {
4388 amt = ((isymend - isym + 1)
4389 * sizeof (struct elf_link_hash_entry *));
4390 nondeflt_vers =
4391 (struct elf_link_hash_entry **) bfd_malloc (amt);
4392 if (!nondeflt_vers)
4393 goto error_free_vers;
4394 }
4395 nondeflt_vers[nondeflt_vers_cnt++] = h;
4396 }
4397 }
4398
4399 if (dynsym && h->dynindx == -1)
4400 {
4401 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4402 goto error_free_vers;
4403 if (h->u.weakdef != NULL
4404 && ! new_weakdef
4405 && h->u.weakdef->dynindx == -1)
4406 {
4407 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4408 goto error_free_vers;
4409 }
4410 }
4411 else if (dynsym && h->dynindx != -1)
4412 /* If the symbol already has a dynamic index, but
4413 visibility says it should not be visible, turn it into
4414 a local symbol. */
4415 switch (ELF_ST_VISIBILITY (h->other))
4416 {
4417 case STV_INTERNAL:
4418 case STV_HIDDEN:
4419 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4420 dynsym = FALSE;
4421 break;
4422 }
4423
4424 /* Don't add DT_NEEDED for references from the dummy bfd. */
4425 if (!add_needed
4426 && definition
4427 && ((dynsym
4428 && h->ref_regular_nonweak
4429 && (old_bfd == NULL
4430 || (old_bfd->flags & BFD_PLUGIN) == 0))
4431 || (h->ref_dynamic_nonweak
4432 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4433 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4434 {
4435 int ret;
4436 const char *soname = elf_dt_name (abfd);
4437
4438 /* A symbol from a library loaded via DT_NEEDED of some
4439 other library is referenced by a regular object.
4440 Add a DT_NEEDED entry for it. Issue an error if
4441 --no-add-needed is used and the reference was not
4442 a weak one. */
4443 if (old_bfd != NULL
4444 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4445 {
4446 (*_bfd_error_handler)
4447 (_("%B: undefined reference to symbol '%s'"),
4448 old_bfd, name);
4449 bfd_set_error (bfd_error_missing_dso);
4450 goto error_free_vers;
4451 }
4452
4453 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4454 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4455
4456 add_needed = TRUE;
4457 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4458 if (ret < 0)
4459 goto error_free_vers;
4460
4461 BFD_ASSERT (ret == 0);
4462 }
4463 }
4464 }
4465
4466 if (extversym != NULL)
4467 {
4468 free (extversym);
4469 extversym = NULL;
4470 }
4471
4472 if (isymbuf != NULL)
4473 {
4474 free (isymbuf);
4475 isymbuf = NULL;
4476 }
4477
4478 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4479 {
4480 unsigned int i;
4481
4482 /* Restore the symbol table. */
4483 old_ent = (char *) old_tab + tabsize;
4484 memset (elf_sym_hashes (abfd), 0,
4485 extsymcount * sizeof (struct elf_link_hash_entry *));
4486 htab->root.table.table = old_table;
4487 htab->root.table.size = old_size;
4488 htab->root.table.count = old_count;
4489 memcpy (htab->root.table.table, old_tab, tabsize);
4490 htab->root.undefs = old_undefs;
4491 htab->root.undefs_tail = old_undefs_tail;
4492 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4493 for (i = 0; i < htab->root.table.size; i++)
4494 {
4495 struct bfd_hash_entry *p;
4496 struct elf_link_hash_entry *h;
4497 bfd_size_type size;
4498 unsigned int alignment_power;
4499
4500 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4501 {
4502 h = (struct elf_link_hash_entry *) p;
4503 if (h->root.type == bfd_link_hash_warning)
4504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4505 if (h->dynindx >= old_dynsymcount
4506 && h->dynstr_index < old_dynstr_size)
4507 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4508
4509 /* Preserve the maximum alignment and size for common
4510 symbols even if this dynamic lib isn't on DT_NEEDED
4511 since it can still be loaded at run time by another
4512 dynamic lib. */
4513 if (h->root.type == bfd_link_hash_common)
4514 {
4515 size = h->root.u.c.size;
4516 alignment_power = h->root.u.c.p->alignment_power;
4517 }
4518 else
4519 {
4520 size = 0;
4521 alignment_power = 0;
4522 }
4523 memcpy (p, old_ent, htab->root.table.entsize);
4524 old_ent = (char *) old_ent + htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) p;
4526 if (h->root.type == bfd_link_hash_warning)
4527 {
4528 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4531 }
4532 if (h->root.type == bfd_link_hash_common)
4533 {
4534 if (size > h->root.u.c.size)
4535 h->root.u.c.size = size;
4536 if (alignment_power > h->root.u.c.p->alignment_power)
4537 h->root.u.c.p->alignment_power = alignment_power;
4538 }
4539 }
4540 }
4541
4542 /* Make a special call to the linker "notice" function to
4543 tell it that symbols added for crefs may need to be removed. */
4544 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4545 goto error_free_vers;
4546
4547 free (old_tab);
4548 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4549 alloc_mark);
4550 if (nondeflt_vers != NULL)
4551 free (nondeflt_vers);
4552 return TRUE;
4553 }
4554
4555 if (old_tab != NULL)
4556 {
4557 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4558 goto error_free_vers;
4559 free (old_tab);
4560 old_tab = NULL;
4561 }
4562
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers != NULL)
4566 {
4567 bfd_size_type cnt, symidx;
4568
4569 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4570 {
4571 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4572 char *shortname, *p;
4573
4574 p = strchr (h->root.root.string, ELF_VER_CHR);
4575 if (p == NULL
4576 || (h->root.type != bfd_link_hash_defined
4577 && h->root.type != bfd_link_hash_defweak))
4578 continue;
4579
4580 amt = p - h->root.root.string;
4581 shortname = (char *) bfd_malloc (amt + 1);
4582 if (!shortname)
4583 goto error_free_vers;
4584 memcpy (shortname, h->root.root.string, amt);
4585 shortname[amt] = '\0';
4586
4587 hi = (struct elf_link_hash_entry *)
4588 bfd_link_hash_lookup (&htab->root, shortname,
4589 FALSE, FALSE, FALSE);
4590 if (hi != NULL
4591 && hi->root.type == h->root.type
4592 && hi->root.u.def.value == h->root.u.def.value
4593 && hi->root.u.def.section == h->root.u.def.section)
4594 {
4595 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4596 hi->root.type = bfd_link_hash_indirect;
4597 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4598 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4599 sym_hash = elf_sym_hashes (abfd);
4600 if (sym_hash)
4601 for (symidx = 0; symidx < extsymcount; ++symidx)
4602 if (sym_hash[symidx] == hi)
4603 {
4604 sym_hash[symidx] = h;
4605 break;
4606 }
4607 }
4608 free (shortname);
4609 }
4610 free (nondeflt_vers);
4611 nondeflt_vers = NULL;
4612 }
4613
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4626 either. */
4627 if (weaks != NULL)
4628 {
4629 struct elf_link_hash_entry **hpp;
4630 struct elf_link_hash_entry **hppend;
4631 struct elf_link_hash_entry **sorted_sym_hash;
4632 struct elf_link_hash_entry *h;
4633 size_t sym_count;
4634
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4639 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4640 if (sorted_sym_hash == NULL)
4641 goto error_return;
4642 sym_hash = sorted_sym_hash;
4643 hpp = elf_sym_hashes (abfd);
4644 hppend = hpp + extsymcount;
4645 sym_count = 0;
4646 for (; hpp < hppend; hpp++)
4647 {
4648 h = *hpp;
4649 if (h != NULL
4650 && h->root.type == bfd_link_hash_defined
4651 && !bed->is_function_type (h->type))
4652 {
4653 *sym_hash = h;
4654 sym_hash++;
4655 sym_count++;
4656 }
4657 }
4658
4659 qsort (sorted_sym_hash, sym_count,
4660 sizeof (struct elf_link_hash_entry *),
4661 elf_sort_symbol);
4662
4663 while (weaks != NULL)
4664 {
4665 struct elf_link_hash_entry *hlook;
4666 asection *slook;
4667 bfd_vma vlook;
4668 size_t i, j, idx = 0;
4669
4670 hlook = weaks;
4671 weaks = hlook->u.weakdef;
4672 hlook->u.weakdef = NULL;
4673
4674 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4675 || hlook->root.type == bfd_link_hash_defweak
4676 || hlook->root.type == bfd_link_hash_common
4677 || hlook->root.type == bfd_link_hash_indirect);
4678 slook = hlook->root.u.def.section;
4679 vlook = hlook->root.u.def.value;
4680
4681 i = 0;
4682 j = sym_count;
4683 while (i != j)
4684 {
4685 bfd_signed_vma vdiff;
4686 idx = (i + j) / 2;
4687 h = sorted_sym_hash[idx];
4688 vdiff = vlook - h->root.u.def.value;
4689 if (vdiff < 0)
4690 j = idx;
4691 else if (vdiff > 0)
4692 i = idx + 1;
4693 else
4694 {
4695 long sdiff = slook->id - h->root.u.def.section->id;
4696 if (sdiff < 0)
4697 j = idx;
4698 else if (sdiff > 0)
4699 i = idx + 1;
4700 else
4701 break;
4702 }
4703 }
4704
4705 /* We didn't find a value/section match. */
4706 if (i == j)
4707 continue;
4708
4709 /* With multiple aliases, or when the weak symbol is already
4710 strongly defined, we have multiple matching symbols and
4711 the binary search above may land on any of them. Step
4712 one past the matching symbol(s). */
4713 while (++idx != j)
4714 {
4715 h = sorted_sym_hash[idx];
4716 if (h->root.u.def.section != slook
4717 || h->root.u.def.value != vlook)
4718 break;
4719 }
4720
4721 /* Now look back over the aliases. Since we sorted by size
4722 as well as value and section, we'll choose the one with
4723 the largest size. */
4724 while (idx-- != i)
4725 {
4726 h = sorted_sym_hash[idx];
4727
4728 /* Stop if value or section doesn't match. */
4729 if (h->root.u.def.section != slook
4730 || h->root.u.def.value != vlook)
4731 break;
4732 else if (h != hlook)
4733 {
4734 hlook->u.weakdef = h;
4735
4736 /* If the weak definition is in the list of dynamic
4737 symbols, make sure the real definition is put
4738 there as well. */
4739 if (hlook->dynindx != -1 && h->dynindx == -1)
4740 {
4741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4742 {
4743 err_free_sym_hash:
4744 free (sorted_sym_hash);
4745 goto error_return;
4746 }
4747 }
4748
4749 /* If the real definition is in the list of dynamic
4750 symbols, make sure the weak definition is put
4751 there as well. If we don't do this, then the
4752 dynamic loader might not merge the entries for the
4753 real definition and the weak definition. */
4754 if (h->dynindx != -1 && hlook->dynindx == -1)
4755 {
4756 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4757 goto err_free_sym_hash;
4758 }
4759 break;
4760 }
4761 }
4762 }
4763
4764 free (sorted_sym_hash);
4765 }
4766
4767 if (bed->check_directives
4768 && !(*bed->check_directives) (abfd, info))
4769 return FALSE;
4770
4771 /* If this object is the same format as the output object, and it is
4772 not a shared library, then let the backend look through the
4773 relocs.
4774
4775 This is required to build global offset table entries and to
4776 arrange for dynamic relocs. It is not required for the
4777 particular common case of linking non PIC code, even when linking
4778 against shared libraries, but unfortunately there is no way of
4779 knowing whether an object file has been compiled PIC or not.
4780 Looking through the relocs is not particularly time consuming.
4781 The problem is that we must either (1) keep the relocs in memory,
4782 which causes the linker to require additional runtime memory or
4783 (2) read the relocs twice from the input file, which wastes time.
4784 This would be a good case for using mmap.
4785
4786 I have no idea how to handle linking PIC code into a file of a
4787 different format. It probably can't be done. */
4788 if (! dynamic
4789 && is_elf_hash_table (htab)
4790 && bed->check_relocs != NULL
4791 && elf_object_id (abfd) == elf_hash_table_id (htab)
4792 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4793 {
4794 asection *o;
4795
4796 for (o = abfd->sections; o != NULL; o = o->next)
4797 {
4798 Elf_Internal_Rela *internal_relocs;
4799 bfd_boolean ok;
4800
4801 if ((o->flags & SEC_RELOC) == 0
4802 || o->reloc_count == 0
4803 || ((info->strip == strip_all || info->strip == strip_debugger)
4804 && (o->flags & SEC_DEBUGGING) != 0)
4805 || bfd_is_abs_section (o->output_section))
4806 continue;
4807
4808 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4809 info->keep_memory);
4810 if (internal_relocs == NULL)
4811 goto error_return;
4812
4813 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4814
4815 if (elf_section_data (o)->relocs != internal_relocs)
4816 free (internal_relocs);
4817
4818 if (! ok)
4819 goto error_return;
4820 }
4821 }
4822
4823 /* If this is a non-traditional link, try to optimize the handling
4824 of the .stab/.stabstr sections. */
4825 if (! dynamic
4826 && ! info->traditional_format
4827 && is_elf_hash_table (htab)
4828 && (info->strip != strip_all && info->strip != strip_debugger))
4829 {
4830 asection *stabstr;
4831
4832 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4833 if (stabstr != NULL)
4834 {
4835 bfd_size_type string_offset = 0;
4836 asection *stab;
4837
4838 for (stab = abfd->sections; stab; stab = stab->next)
4839 if (CONST_STRNEQ (stab->name, ".stab")
4840 && (!stab->name[5] ||
4841 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4842 && (stab->flags & SEC_MERGE) == 0
4843 && !bfd_is_abs_section (stab->output_section))
4844 {
4845 struct bfd_elf_section_data *secdata;
4846
4847 secdata = elf_section_data (stab);
4848 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4849 stabstr, &secdata->sec_info,
4850 &string_offset))
4851 goto error_return;
4852 if (secdata->sec_info)
4853 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4854 }
4855 }
4856 }
4857
4858 if (is_elf_hash_table (htab) && add_needed)
4859 {
4860 /* Add this bfd to the loaded list. */
4861 struct elf_link_loaded_list *n;
4862
4863 n = (struct elf_link_loaded_list *)
4864 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4865 if (n == NULL)
4866 goto error_return;
4867 n->abfd = abfd;
4868 n->next = htab->loaded;
4869 htab->loaded = n;
4870 }
4871
4872 return TRUE;
4873
4874 error_free_vers:
4875 if (old_tab != NULL)
4876 free (old_tab);
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4880 free (extversym);
4881 error_free_sym:
4882 if (isymbuf != NULL)
4883 free (isymbuf);
4884 error_return:
4885 return FALSE;
4886 }
4887
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4890
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4894 const char *name)
4895 {
4896 struct elf_link_hash_entry *h;
4897 char *p, *copy;
4898 size_t len, first;
4899
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4901 if (h != NULL)
4902 return h;
4903
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4908
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4911 return h;
4912
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4916 if (copy == NULL)
4917 return (struct elf_link_hash_entry *) 0 - 1;
4918
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4922
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4924 if (h == NULL)
4925 {
4926 /* We also need to check references to the symbol without the
4927 version. */
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4931 }
4932
4933 bfd_release (abfd, copy);
4934 return h;
4935 }
4936
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because of a
4939 problem which arises on UnixWare. The UnixWare libc.so is an
4940 archive which includes an entry libc.so.1 which defines a bunch of
4941 symbols. The libc.so archive also includes a number of other
4942 object files, which also define symbols, some of which are the same
4943 as those defined in libc.so.1. Correct linking requires that we
4944 consider each object file in turn, and include it if it defines any
4945 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4946 this; it looks through the list of undefined symbols, and includes
4947 any object file which defines them. When this algorithm is used on
4948 UnixWare, it winds up pulling in libc.so.1 early and defining a
4949 bunch of symbols. This means that some of the other objects in the
4950 archive are not included in the link, which is incorrect since they
4951 precede libc.so.1 in the archive.
4952
4953 Fortunately, ELF archive handling is simpler than that done by
4954 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4955 oddities. In ELF, if we find a symbol in the archive map, and the
4956 symbol is currently undefined, we know that we must pull in that
4957 object file.
4958
4959 Unfortunately, we do have to make multiple passes over the symbol
4960 table until nothing further is resolved. */
4961
4962 static bfd_boolean
4963 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4964 {
4965 symindex c;
4966 bfd_boolean *defined = NULL;
4967 bfd_boolean *included = NULL;
4968 carsym *symdefs;
4969 bfd_boolean loop;
4970 bfd_size_type amt;
4971 const struct elf_backend_data *bed;
4972 struct elf_link_hash_entry * (*archive_symbol_lookup)
4973 (bfd *, struct bfd_link_info *, const char *);
4974
4975 if (! bfd_has_map (abfd))
4976 {
4977 /* An empty archive is a special case. */
4978 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4979 return TRUE;
4980 bfd_set_error (bfd_error_no_armap);
4981 return FALSE;
4982 }
4983
4984 /* Keep track of all symbols we know to be already defined, and all
4985 files we know to be already included. This is to speed up the
4986 second and subsequent passes. */
4987 c = bfd_ardata (abfd)->symdef_count;
4988 if (c == 0)
4989 return TRUE;
4990 amt = c;
4991 amt *= sizeof (bfd_boolean);
4992 defined = (bfd_boolean *) bfd_zmalloc (amt);
4993 included = (bfd_boolean *) bfd_zmalloc (amt);
4994 if (defined == NULL || included == NULL)
4995 goto error_return;
4996
4997 symdefs = bfd_ardata (abfd)->symdefs;
4998 bed = get_elf_backend_data (abfd);
4999 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5000
5001 do
5002 {
5003 file_ptr last;
5004 symindex i;
5005 carsym *symdef;
5006 carsym *symdefend;
5007
5008 loop = FALSE;
5009 last = -1;
5010
5011 symdef = symdefs;
5012 symdefend = symdef + c;
5013 for (i = 0; symdef < symdefend; symdef++, i++)
5014 {
5015 struct elf_link_hash_entry *h;
5016 bfd *element;
5017 struct bfd_link_hash_entry *undefs_tail;
5018 symindex mark;
5019
5020 if (defined[i] || included[i])
5021 continue;
5022 if (symdef->file_offset == last)
5023 {
5024 included[i] = TRUE;
5025 continue;
5026 }
5027
5028 h = archive_symbol_lookup (abfd, info, symdef->name);
5029 if (h == (struct elf_link_hash_entry *) 0 - 1)
5030 goto error_return;
5031
5032 if (h == NULL)
5033 continue;
5034
5035 if (h->root.type == bfd_link_hash_common)
5036 {
5037 /* We currently have a common symbol. The archive map contains
5038 a reference to this symbol, so we may want to include it. We
5039 only want to include it however, if this archive element
5040 contains a definition of the symbol, not just another common
5041 declaration of it.
5042
5043 Unfortunately some archivers (including GNU ar) will put
5044 declarations of common symbols into their archive maps, as
5045 well as real definitions, so we cannot just go by the archive
5046 map alone. Instead we must read in the element's symbol
5047 table and check that to see what kind of symbol definition
5048 this is. */
5049 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5050 continue;
5051 }
5052 else if (h->root.type != bfd_link_hash_undefined)
5053 {
5054 if (h->root.type != bfd_link_hash_undefweak)
5055 defined[i] = TRUE;
5056 continue;
5057 }
5058
5059 /* We need to include this archive member. */
5060 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5061 if (element == NULL)
5062 goto error_return;
5063
5064 if (! bfd_check_format (element, bfd_object))
5065 goto error_return;
5066
5067 /* Doublecheck that we have not included this object
5068 already--it should be impossible, but there may be
5069 something wrong with the archive. */
5070 if (element->archive_pass != 0)
5071 {
5072 bfd_set_error (bfd_error_bad_value);
5073 goto error_return;
5074 }
5075 element->archive_pass = 1;
5076
5077 undefs_tail = info->hash->undefs_tail;
5078
5079 if (!(*info->callbacks
5080 ->add_archive_element) (info, element, symdef->name, &element))
5081 goto error_return;
5082 if (!bfd_link_add_symbols (element, info))
5083 goto error_return;
5084
5085 /* If there are any new undefined symbols, we need to make
5086 another pass through the archive in order to see whether
5087 they can be defined. FIXME: This isn't perfect, because
5088 common symbols wind up on undefs_tail and because an
5089 undefined symbol which is defined later on in this pass
5090 does not require another pass. This isn't a bug, but it
5091 does make the code less efficient than it could be. */
5092 if (undefs_tail != info->hash->undefs_tail)
5093 loop = TRUE;
5094
5095 /* Look backward to mark all symbols from this object file
5096 which we have already seen in this pass. */
5097 mark = i;
5098 do
5099 {
5100 included[mark] = TRUE;
5101 if (mark == 0)
5102 break;
5103 --mark;
5104 }
5105 while (symdefs[mark].file_offset == symdef->file_offset);
5106
5107 /* We mark subsequent symbols from this object file as we go
5108 on through the loop. */
5109 last = symdef->file_offset;
5110 }
5111 }
5112 while (loop);
5113
5114 free (defined);
5115 free (included);
5116
5117 return TRUE;
5118
5119 error_return:
5120 if (defined != NULL)
5121 free (defined);
5122 if (included != NULL)
5123 free (included);
5124 return FALSE;
5125 }
5126
5127 /* Given an ELF BFD, add symbols to the global hash table as
5128 appropriate. */
5129
5130 bfd_boolean
5131 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5132 {
5133 switch (bfd_get_format (abfd))
5134 {
5135 case bfd_object:
5136 return elf_link_add_object_symbols (abfd, info);
5137 case bfd_archive:
5138 return elf_link_add_archive_symbols (abfd, info);
5139 default:
5140 bfd_set_error (bfd_error_wrong_format);
5141 return FALSE;
5142 }
5143 }
5144 \f
5145 struct hash_codes_info
5146 {
5147 unsigned long *hashcodes;
5148 bfd_boolean error;
5149 };
5150
5151 /* This function will be called though elf_link_hash_traverse to store
5152 all hash value of the exported symbols in an array. */
5153
5154 static bfd_boolean
5155 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5156 {
5157 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5158 const char *name;
5159 char *p;
5160 unsigned long ha;
5161 char *alc = NULL;
5162
5163 /* Ignore indirect symbols. These are added by the versioning code. */
5164 if (h->dynindx == -1)
5165 return TRUE;
5166
5167 name = h->root.root.string;
5168 p = strchr (name, ELF_VER_CHR);
5169 if (p != NULL)
5170 {
5171 alc = (char *) bfd_malloc (p - name + 1);
5172 if (alc == NULL)
5173 {
5174 inf->error = TRUE;
5175 return FALSE;
5176 }
5177 memcpy (alc, name, p - name);
5178 alc[p - name] = '\0';
5179 name = alc;
5180 }
5181
5182 /* Compute the hash value. */
5183 ha = bfd_elf_hash (name);
5184
5185 /* Store the found hash value in the array given as the argument. */
5186 *(inf->hashcodes)++ = ha;
5187
5188 /* And store it in the struct so that we can put it in the hash table
5189 later. */
5190 h->u.elf_hash_value = ha;
5191
5192 if (alc != NULL)
5193 free (alc);
5194
5195 return TRUE;
5196 }
5197
5198 struct collect_gnu_hash_codes
5199 {
5200 bfd *output_bfd;
5201 const struct elf_backend_data *bed;
5202 unsigned long int nsyms;
5203 unsigned long int maskbits;
5204 unsigned long int *hashcodes;
5205 unsigned long int *hashval;
5206 unsigned long int *indx;
5207 unsigned long int *counts;
5208 bfd_vma *bitmask;
5209 bfd_byte *contents;
5210 long int min_dynindx;
5211 unsigned long int bucketcount;
5212 unsigned long int symindx;
5213 long int local_indx;
5214 long int shift1, shift2;
5215 unsigned long int mask;
5216 bfd_boolean error;
5217 };
5218
5219 /* This function will be called though elf_link_hash_traverse to store
5220 all hash value of the exported symbols in an array. */
5221
5222 static bfd_boolean
5223 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5224 {
5225 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5226 const char *name;
5227 char *p;
5228 unsigned long ha;
5229 char *alc = NULL;
5230
5231 /* Ignore indirect symbols. These are added by the versioning code. */
5232 if (h->dynindx == -1)
5233 return TRUE;
5234
5235 /* Ignore also local symbols and undefined symbols. */
5236 if (! (*s->bed->elf_hash_symbol) (h))
5237 return TRUE;
5238
5239 name = h->root.root.string;
5240 p = strchr (name, ELF_VER_CHR);
5241 if (p != NULL)
5242 {
5243 alc = (char *) bfd_malloc (p - name + 1);
5244 if (alc == NULL)
5245 {
5246 s->error = TRUE;
5247 return FALSE;
5248 }
5249 memcpy (alc, name, p - name);
5250 alc[p - name] = '\0';
5251 name = alc;
5252 }
5253
5254 /* Compute the hash value. */
5255 ha = bfd_elf_gnu_hash (name);
5256
5257 /* Store the found hash value in the array for compute_bucket_count,
5258 and also for .dynsym reordering purposes. */
5259 s->hashcodes[s->nsyms] = ha;
5260 s->hashval[h->dynindx] = ha;
5261 ++s->nsyms;
5262 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5263 s->min_dynindx = h->dynindx;
5264
5265 if (alc != NULL)
5266 free (alc);
5267
5268 return TRUE;
5269 }
5270
5271 /* This function will be called though elf_link_hash_traverse to do
5272 final dynaminc symbol renumbering. */
5273
5274 static bfd_boolean
5275 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5276 {
5277 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5278 unsigned long int bucket;
5279 unsigned long int val;
5280
5281 /* Ignore indirect symbols. */
5282 if (h->dynindx == -1)
5283 return TRUE;
5284
5285 /* Ignore also local symbols and undefined symbols. */
5286 if (! (*s->bed->elf_hash_symbol) (h))
5287 {
5288 if (h->dynindx >= s->min_dynindx)
5289 h->dynindx = s->local_indx++;
5290 return TRUE;
5291 }
5292
5293 bucket = s->hashval[h->dynindx] % s->bucketcount;
5294 val = (s->hashval[h->dynindx] >> s->shift1)
5295 & ((s->maskbits >> s->shift1) - 1);
5296 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5297 s->bitmask[val]
5298 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5299 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5300 if (s->counts[bucket] == 1)
5301 /* Last element terminates the chain. */
5302 val |= 1;
5303 bfd_put_32 (s->output_bfd, val,
5304 s->contents + (s->indx[bucket] - s->symindx) * 4);
5305 --s->counts[bucket];
5306 h->dynindx = s->indx[bucket]++;
5307 return TRUE;
5308 }
5309
5310 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5311
5312 bfd_boolean
5313 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5314 {
5315 return !(h->forced_local
5316 || h->root.type == bfd_link_hash_undefined
5317 || h->root.type == bfd_link_hash_undefweak
5318 || ((h->root.type == bfd_link_hash_defined
5319 || h->root.type == bfd_link_hash_defweak)
5320 && h->root.u.def.section->output_section == NULL));
5321 }
5322
5323 /* Array used to determine the number of hash table buckets to use
5324 based on the number of symbols there are. If there are fewer than
5325 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5326 fewer than 37 we use 17 buckets, and so forth. We never use more
5327 than 32771 buckets. */
5328
5329 static const size_t elf_buckets[] =
5330 {
5331 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5332 16411, 32771, 0
5333 };
5334
5335 /* Compute bucket count for hashing table. We do not use a static set
5336 of possible tables sizes anymore. Instead we determine for all
5337 possible reasonable sizes of the table the outcome (i.e., the
5338 number of collisions etc) and choose the best solution. The
5339 weighting functions are not too simple to allow the table to grow
5340 without bounds. Instead one of the weighting factors is the size.
5341 Therefore the result is always a good payoff between few collisions
5342 (= short chain lengths) and table size. */
5343 static size_t
5344 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5345 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5346 unsigned long int nsyms,
5347 int gnu_hash)
5348 {
5349 size_t best_size = 0;
5350 unsigned long int i;
5351
5352 /* We have a problem here. The following code to optimize the table
5353 size requires an integer type with more the 32 bits. If
5354 BFD_HOST_U_64_BIT is set we know about such a type. */
5355 #ifdef BFD_HOST_U_64_BIT
5356 if (info->optimize)
5357 {
5358 size_t minsize;
5359 size_t maxsize;
5360 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5361 bfd *dynobj = elf_hash_table (info)->dynobj;
5362 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5363 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5364 unsigned long int *counts;
5365 bfd_size_type amt;
5366 unsigned int no_improvement_count = 0;
5367
5368 /* Possible optimization parameters: if we have NSYMS symbols we say
5369 that the hashing table must at least have NSYMS/4 and at most
5370 2*NSYMS buckets. */
5371 minsize = nsyms / 4;
5372 if (minsize == 0)
5373 minsize = 1;
5374 best_size = maxsize = nsyms * 2;
5375 if (gnu_hash)
5376 {
5377 if (minsize < 2)
5378 minsize = 2;
5379 if ((best_size & 31) == 0)
5380 ++best_size;
5381 }
5382
5383 /* Create array where we count the collisions in. We must use bfd_malloc
5384 since the size could be large. */
5385 amt = maxsize;
5386 amt *= sizeof (unsigned long int);
5387 counts = (unsigned long int *) bfd_malloc (amt);
5388 if (counts == NULL)
5389 return 0;
5390
5391 /* Compute the "optimal" size for the hash table. The criteria is a
5392 minimal chain length. The minor criteria is (of course) the size
5393 of the table. */
5394 for (i = minsize; i < maxsize; ++i)
5395 {
5396 /* Walk through the array of hashcodes and count the collisions. */
5397 BFD_HOST_U_64_BIT max;
5398 unsigned long int j;
5399 unsigned long int fact;
5400
5401 if (gnu_hash && (i & 31) == 0)
5402 continue;
5403
5404 memset (counts, '\0', i * sizeof (unsigned long int));
5405
5406 /* Determine how often each hash bucket is used. */
5407 for (j = 0; j < nsyms; ++j)
5408 ++counts[hashcodes[j] % i];
5409
5410 /* For the weight function we need some information about the
5411 pagesize on the target. This is information need not be 100%
5412 accurate. Since this information is not available (so far) we
5413 define it here to a reasonable default value. If it is crucial
5414 to have a better value some day simply define this value. */
5415 # ifndef BFD_TARGET_PAGESIZE
5416 # define BFD_TARGET_PAGESIZE (4096)
5417 # endif
5418
5419 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5420 and the chains. */
5421 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5422
5423 # if 1
5424 /* Variant 1: optimize for short chains. We add the squares
5425 of all the chain lengths (which favors many small chain
5426 over a few long chains). */
5427 for (j = 0; j < i; ++j)
5428 max += counts[j] * counts[j];
5429
5430 /* This adds penalties for the overall size of the table. */
5431 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5432 max *= fact * fact;
5433 # else
5434 /* Variant 2: Optimize a lot more for small table. Here we
5435 also add squares of the size but we also add penalties for
5436 empty slots (the +1 term). */
5437 for (j = 0; j < i; ++j)
5438 max += (1 + counts[j]) * (1 + counts[j]);
5439
5440 /* The overall size of the table is considered, but not as
5441 strong as in variant 1, where it is squared. */
5442 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5443 max *= fact;
5444 # endif
5445
5446 /* Compare with current best results. */
5447 if (max < best_chlen)
5448 {
5449 best_chlen = max;
5450 best_size = i;
5451 no_improvement_count = 0;
5452 }
5453 /* PR 11843: Avoid futile long searches for the best bucket size
5454 when there are a large number of symbols. */
5455 else if (++no_improvement_count == 100)
5456 break;
5457 }
5458
5459 free (counts);
5460 }
5461 else
5462 #endif /* defined (BFD_HOST_U_64_BIT) */
5463 {
5464 /* This is the fallback solution if no 64bit type is available or if we
5465 are not supposed to spend much time on optimizations. We select the
5466 bucket count using a fixed set of numbers. */
5467 for (i = 0; elf_buckets[i] != 0; i++)
5468 {
5469 best_size = elf_buckets[i];
5470 if (nsyms < elf_buckets[i + 1])
5471 break;
5472 }
5473 if (gnu_hash && best_size < 2)
5474 best_size = 2;
5475 }
5476
5477 return best_size;
5478 }
5479
5480 /* Size any SHT_GROUP section for ld -r. */
5481
5482 bfd_boolean
5483 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5484 {
5485 bfd *ibfd;
5486
5487 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5488 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5489 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5490 return FALSE;
5491 return TRUE;
5492 }
5493
5494 /* Set a default stack segment size. The value in INFO wins. If it
5495 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5496 undefined it is initialized. */
5497
5498 bfd_boolean
5499 bfd_elf_stack_segment_size (bfd *output_bfd,
5500 struct bfd_link_info *info,
5501 const char *legacy_symbol,
5502 bfd_vma default_size)
5503 {
5504 struct elf_link_hash_entry *h = NULL;
5505
5506 /* Look for legacy symbol. */
5507 if (legacy_symbol)
5508 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5509 FALSE, FALSE, FALSE);
5510 if (h && (h->root.type == bfd_link_hash_defined
5511 || h->root.type == bfd_link_hash_defweak)
5512 && h->def_regular
5513 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5514 {
5515 /* The symbol has no type if specified on the command line. */
5516 h->type = STT_OBJECT;
5517 if (info->stacksize)
5518 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5519 output_bfd, legacy_symbol);
5520 else if (h->root.u.def.section != bfd_abs_section_ptr)
5521 (*_bfd_error_handler) (_("%B: %s not absolute"),
5522 output_bfd, legacy_symbol);
5523 else
5524 info->stacksize = h->root.u.def.value;
5525 }
5526
5527 if (!info->stacksize)
5528 /* If the user didn't set a size, or explicitly inhibit the
5529 size, set it now. */
5530 info->stacksize = default_size;
5531
5532 /* Provide the legacy symbol, if it is referenced. */
5533 if (h && (h->root.type == bfd_link_hash_undefined
5534 || h->root.type == bfd_link_hash_undefweak))
5535 {
5536 struct bfd_link_hash_entry *bh = NULL;
5537
5538 if (!(_bfd_generic_link_add_one_symbol
5539 (info, output_bfd, legacy_symbol,
5540 BSF_GLOBAL, bfd_abs_section_ptr,
5541 info->stacksize >= 0 ? info->stacksize : 0,
5542 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5543 return FALSE;
5544
5545 h = (struct elf_link_hash_entry *) bh;
5546 h->def_regular = 1;
5547 h->type = STT_OBJECT;
5548 }
5549
5550 return TRUE;
5551 }
5552
5553 /* Set up the sizes and contents of the ELF dynamic sections. This is
5554 called by the ELF linker emulation before_allocation routine. We
5555 must set the sizes of the sections before the linker sets the
5556 addresses of the various sections. */
5557
5558 bfd_boolean
5559 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5560 const char *soname,
5561 const char *rpath,
5562 const char *filter_shlib,
5563 const char *audit,
5564 const char *depaudit,
5565 const char * const *auxiliary_filters,
5566 struct bfd_link_info *info,
5567 asection **sinterpptr)
5568 {
5569 bfd_size_type soname_indx;
5570 bfd *dynobj;
5571 const struct elf_backend_data *bed;
5572 struct elf_info_failed asvinfo;
5573
5574 *sinterpptr = NULL;
5575
5576 soname_indx = (bfd_size_type) -1;
5577
5578 if (!is_elf_hash_table (info->hash))
5579 return TRUE;
5580
5581 bed = get_elf_backend_data (output_bfd);
5582
5583 /* Any syms created from now on start with -1 in
5584 got.refcount/offset and plt.refcount/offset. */
5585 elf_hash_table (info)->init_got_refcount
5586 = elf_hash_table (info)->init_got_offset;
5587 elf_hash_table (info)->init_plt_refcount
5588 = elf_hash_table (info)->init_plt_offset;
5589
5590 if (info->relocatable
5591 && !_bfd_elf_size_group_sections (info))
5592 return FALSE;
5593
5594 /* The backend may have to create some sections regardless of whether
5595 we're dynamic or not. */
5596 if (bed->elf_backend_always_size_sections
5597 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5598 return FALSE;
5599
5600 /* Determine any GNU_STACK segment requirements, after the backend
5601 has had a chance to set a default segment size. */
5602 if (info->execstack)
5603 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5604 else if (info->noexecstack)
5605 elf_stack_flags (output_bfd) = PF_R | PF_W;
5606 else
5607 {
5608 bfd *inputobj;
5609 asection *notesec = NULL;
5610 int exec = 0;
5611
5612 for (inputobj = info->input_bfds;
5613 inputobj;
5614 inputobj = inputobj->link_next)
5615 {
5616 asection *s;
5617
5618 if (inputobj->flags
5619 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5620 continue;
5621 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5622 if (s)
5623 {
5624 if (s->flags & SEC_CODE)
5625 exec = PF_X;
5626 notesec = s;
5627 }
5628 else if (bed->default_execstack)
5629 exec = PF_X;
5630 }
5631 if (notesec || info->stacksize > 0)
5632 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5633 if (notesec && exec && info->relocatable
5634 && notesec->output_section != bfd_abs_section_ptr)
5635 notesec->output_section->flags |= SEC_CODE;
5636 }
5637
5638 dynobj = elf_hash_table (info)->dynobj;
5639
5640 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5641 {
5642 struct elf_info_failed eif;
5643 struct elf_link_hash_entry *h;
5644 asection *dynstr;
5645 struct bfd_elf_version_tree *t;
5646 struct bfd_elf_version_expr *d;
5647 asection *s;
5648 bfd_boolean all_defined;
5649
5650 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5651 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5652
5653 if (soname != NULL)
5654 {
5655 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5656 soname, TRUE);
5657 if (soname_indx == (bfd_size_type) -1
5658 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5659 return FALSE;
5660 }
5661
5662 if (info->symbolic)
5663 {
5664 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5665 return FALSE;
5666 info->flags |= DF_SYMBOLIC;
5667 }
5668
5669 if (rpath != NULL)
5670 {
5671 bfd_size_type indx;
5672 bfd_vma tag;
5673
5674 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5675 TRUE);
5676 if (indx == (bfd_size_type) -1)
5677 return FALSE;
5678
5679 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5680 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5681 return FALSE;
5682 }
5683
5684 if (filter_shlib != NULL)
5685 {
5686 bfd_size_type indx;
5687
5688 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5689 filter_shlib, TRUE);
5690 if (indx == (bfd_size_type) -1
5691 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5692 return FALSE;
5693 }
5694
5695 if (auxiliary_filters != NULL)
5696 {
5697 const char * const *p;
5698
5699 for (p = auxiliary_filters; *p != NULL; p++)
5700 {
5701 bfd_size_type indx;
5702
5703 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5704 *p, TRUE);
5705 if (indx == (bfd_size_type) -1
5706 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5707 return FALSE;
5708 }
5709 }
5710
5711 if (audit != NULL)
5712 {
5713 bfd_size_type indx;
5714
5715 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5716 TRUE);
5717 if (indx == (bfd_size_type) -1
5718 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5719 return FALSE;
5720 }
5721
5722 if (depaudit != NULL)
5723 {
5724 bfd_size_type indx;
5725
5726 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5727 TRUE);
5728 if (indx == (bfd_size_type) -1
5729 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5730 return FALSE;
5731 }
5732
5733 eif.info = info;
5734 eif.failed = FALSE;
5735
5736 /* If we are supposed to export all symbols into the dynamic symbol
5737 table (this is not the normal case), then do so. */
5738 if (info->export_dynamic
5739 || (info->executable && info->dynamic))
5740 {
5741 elf_link_hash_traverse (elf_hash_table (info),
5742 _bfd_elf_export_symbol,
5743 &eif);
5744 if (eif.failed)
5745 return FALSE;
5746 }
5747
5748 /* Make all global versions with definition. */
5749 for (t = info->version_info; t != NULL; t = t->next)
5750 for (d = t->globals.list; d != NULL; d = d->next)
5751 if (!d->symver && d->literal)
5752 {
5753 const char *verstr, *name;
5754 size_t namelen, verlen, newlen;
5755 char *newname, *p, leading_char;
5756 struct elf_link_hash_entry *newh;
5757
5758 leading_char = bfd_get_symbol_leading_char (output_bfd);
5759 name = d->pattern;
5760 namelen = strlen (name) + (leading_char != '\0');
5761 verstr = t->name;
5762 verlen = strlen (verstr);
5763 newlen = namelen + verlen + 3;
5764
5765 newname = (char *) bfd_malloc (newlen);
5766 if (newname == NULL)
5767 return FALSE;
5768 newname[0] = leading_char;
5769 memcpy (newname + (leading_char != '\0'), name, namelen);
5770
5771 /* Check the hidden versioned definition. */
5772 p = newname + namelen;
5773 *p++ = ELF_VER_CHR;
5774 memcpy (p, verstr, verlen + 1);
5775 newh = elf_link_hash_lookup (elf_hash_table (info),
5776 newname, FALSE, FALSE,
5777 FALSE);
5778 if (newh == NULL
5779 || (newh->root.type != bfd_link_hash_defined
5780 && newh->root.type != bfd_link_hash_defweak))
5781 {
5782 /* Check the default versioned definition. */
5783 *p++ = ELF_VER_CHR;
5784 memcpy (p, verstr, verlen + 1);
5785 newh = elf_link_hash_lookup (elf_hash_table (info),
5786 newname, FALSE, FALSE,
5787 FALSE);
5788 }
5789 free (newname);
5790
5791 /* Mark this version if there is a definition and it is
5792 not defined in a shared object. */
5793 if (newh != NULL
5794 && !newh->def_dynamic
5795 && (newh->root.type == bfd_link_hash_defined
5796 || newh->root.type == bfd_link_hash_defweak))
5797 d->symver = 1;
5798 }
5799
5800 /* Attach all the symbols to their version information. */
5801 asvinfo.info = info;
5802 asvinfo.failed = FALSE;
5803
5804 elf_link_hash_traverse (elf_hash_table (info),
5805 _bfd_elf_link_assign_sym_version,
5806 &asvinfo);
5807 if (asvinfo.failed)
5808 return FALSE;
5809
5810 if (!info->allow_undefined_version)
5811 {
5812 /* Check if all global versions have a definition. */
5813 all_defined = TRUE;
5814 for (t = info->version_info; t != NULL; t = t->next)
5815 for (d = t->globals.list; d != NULL; d = d->next)
5816 if (d->literal && !d->symver && !d->script)
5817 {
5818 (*_bfd_error_handler)
5819 (_("%s: undefined version: %s"),
5820 d->pattern, t->name);
5821 all_defined = FALSE;
5822 }
5823
5824 if (!all_defined)
5825 {
5826 bfd_set_error (bfd_error_bad_value);
5827 return FALSE;
5828 }
5829 }
5830
5831 /* Find all symbols which were defined in a dynamic object and make
5832 the backend pick a reasonable value for them. */
5833 elf_link_hash_traverse (elf_hash_table (info),
5834 _bfd_elf_adjust_dynamic_symbol,
5835 &eif);
5836 if (eif.failed)
5837 return FALSE;
5838
5839 /* Add some entries to the .dynamic section. We fill in some of the
5840 values later, in bfd_elf_final_link, but we must add the entries
5841 now so that we know the final size of the .dynamic section. */
5842
5843 /* If there are initialization and/or finalization functions to
5844 call then add the corresponding DT_INIT/DT_FINI entries. */
5845 h = (info->init_function
5846 ? elf_link_hash_lookup (elf_hash_table (info),
5847 info->init_function, FALSE,
5848 FALSE, FALSE)
5849 : NULL);
5850 if (h != NULL
5851 && (h->ref_regular
5852 || h->def_regular))
5853 {
5854 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5855 return FALSE;
5856 }
5857 h = (info->fini_function
5858 ? elf_link_hash_lookup (elf_hash_table (info),
5859 info->fini_function, FALSE,
5860 FALSE, FALSE)
5861 : NULL);
5862 if (h != NULL
5863 && (h->ref_regular
5864 || h->def_regular))
5865 {
5866 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5867 return FALSE;
5868 }
5869
5870 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5871 if (s != NULL && s->linker_has_input)
5872 {
5873 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5874 if (! info->executable)
5875 {
5876 bfd *sub;
5877 asection *o;
5878
5879 for (sub = info->input_bfds; sub != NULL;
5880 sub = sub->link_next)
5881 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5882 for (o = sub->sections; o != NULL; o = o->next)
5883 if (elf_section_data (o)->this_hdr.sh_type
5884 == SHT_PREINIT_ARRAY)
5885 {
5886 (*_bfd_error_handler)
5887 (_("%B: .preinit_array section is not allowed in DSO"),
5888 sub);
5889 break;
5890 }
5891
5892 bfd_set_error (bfd_error_nonrepresentable_section);
5893 return FALSE;
5894 }
5895
5896 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5897 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5898 return FALSE;
5899 }
5900 s = bfd_get_section_by_name (output_bfd, ".init_array");
5901 if (s != NULL && s->linker_has_input)
5902 {
5903 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5905 return FALSE;
5906 }
5907 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5908 if (s != NULL && s->linker_has_input)
5909 {
5910 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5911 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5912 return FALSE;
5913 }
5914
5915 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5916 /* If .dynstr is excluded from the link, we don't want any of
5917 these tags. Strictly, we should be checking each section
5918 individually; This quick check covers for the case where
5919 someone does a /DISCARD/ : { *(*) }. */
5920 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5921 {
5922 bfd_size_type strsize;
5923
5924 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5925 if ((info->emit_hash
5926 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5927 || (info->emit_gnu_hash
5928 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5929 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5930 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5931 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5932 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5933 bed->s->sizeof_sym))
5934 return FALSE;
5935 }
5936 }
5937
5938 /* The backend must work out the sizes of all the other dynamic
5939 sections. */
5940 if (dynobj != NULL
5941 && bed->elf_backend_size_dynamic_sections != NULL
5942 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5943 return FALSE;
5944
5945 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5946 return FALSE;
5947
5948 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5949 {
5950 unsigned long section_sym_count;
5951 struct bfd_elf_version_tree *verdefs;
5952 asection *s;
5953
5954 /* Set up the version definition section. */
5955 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5956 BFD_ASSERT (s != NULL);
5957
5958 /* We may have created additional version definitions if we are
5959 just linking a regular application. */
5960 verdefs = info->version_info;
5961
5962 /* Skip anonymous version tag. */
5963 if (verdefs != NULL && verdefs->vernum == 0)
5964 verdefs = verdefs->next;
5965
5966 if (verdefs == NULL && !info->create_default_symver)
5967 s->flags |= SEC_EXCLUDE;
5968 else
5969 {
5970 unsigned int cdefs;
5971 bfd_size_type size;
5972 struct bfd_elf_version_tree *t;
5973 bfd_byte *p;
5974 Elf_Internal_Verdef def;
5975 Elf_Internal_Verdaux defaux;
5976 struct bfd_link_hash_entry *bh;
5977 struct elf_link_hash_entry *h;
5978 const char *name;
5979
5980 cdefs = 0;
5981 size = 0;
5982
5983 /* Make space for the base version. */
5984 size += sizeof (Elf_External_Verdef);
5985 size += sizeof (Elf_External_Verdaux);
5986 ++cdefs;
5987
5988 /* Make space for the default version. */
5989 if (info->create_default_symver)
5990 {
5991 size += sizeof (Elf_External_Verdef);
5992 ++cdefs;
5993 }
5994
5995 for (t = verdefs; t != NULL; t = t->next)
5996 {
5997 struct bfd_elf_version_deps *n;
5998
5999 /* Don't emit base version twice. */
6000 if (t->vernum == 0)
6001 continue;
6002
6003 size += sizeof (Elf_External_Verdef);
6004 size += sizeof (Elf_External_Verdaux);
6005 ++cdefs;
6006
6007 for (n = t->deps; n != NULL; n = n->next)
6008 size += sizeof (Elf_External_Verdaux);
6009 }
6010
6011 s->size = size;
6012 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6013 if (s->contents == NULL && s->size != 0)
6014 return FALSE;
6015
6016 /* Fill in the version definition section. */
6017
6018 p = s->contents;
6019
6020 def.vd_version = VER_DEF_CURRENT;
6021 def.vd_flags = VER_FLG_BASE;
6022 def.vd_ndx = 1;
6023 def.vd_cnt = 1;
6024 if (info->create_default_symver)
6025 {
6026 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6027 def.vd_next = sizeof (Elf_External_Verdef);
6028 }
6029 else
6030 {
6031 def.vd_aux = sizeof (Elf_External_Verdef);
6032 def.vd_next = (sizeof (Elf_External_Verdef)
6033 + sizeof (Elf_External_Verdaux));
6034 }
6035
6036 if (soname_indx != (bfd_size_type) -1)
6037 {
6038 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6039 soname_indx);
6040 def.vd_hash = bfd_elf_hash (soname);
6041 defaux.vda_name = soname_indx;
6042 name = soname;
6043 }
6044 else
6045 {
6046 bfd_size_type indx;
6047
6048 name = lbasename (output_bfd->filename);
6049 def.vd_hash = bfd_elf_hash (name);
6050 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6051 name, FALSE);
6052 if (indx == (bfd_size_type) -1)
6053 return FALSE;
6054 defaux.vda_name = indx;
6055 }
6056 defaux.vda_next = 0;
6057
6058 _bfd_elf_swap_verdef_out (output_bfd, &def,
6059 (Elf_External_Verdef *) p);
6060 p += sizeof (Elf_External_Verdef);
6061 if (info->create_default_symver)
6062 {
6063 /* Add a symbol representing this version. */
6064 bh = NULL;
6065 if (! (_bfd_generic_link_add_one_symbol
6066 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6067 0, NULL, FALSE,
6068 get_elf_backend_data (dynobj)->collect, &bh)))
6069 return FALSE;
6070 h = (struct elf_link_hash_entry *) bh;
6071 h->non_elf = 0;
6072 h->def_regular = 1;
6073 h->type = STT_OBJECT;
6074 h->verinfo.vertree = NULL;
6075
6076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6077 return FALSE;
6078
6079 /* Create a duplicate of the base version with the same
6080 aux block, but different flags. */
6081 def.vd_flags = 0;
6082 def.vd_ndx = 2;
6083 def.vd_aux = sizeof (Elf_External_Verdef);
6084 if (verdefs)
6085 def.vd_next = (sizeof (Elf_External_Verdef)
6086 + sizeof (Elf_External_Verdaux));
6087 else
6088 def.vd_next = 0;
6089 _bfd_elf_swap_verdef_out (output_bfd, &def,
6090 (Elf_External_Verdef *) p);
6091 p += sizeof (Elf_External_Verdef);
6092 }
6093 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6094 (Elf_External_Verdaux *) p);
6095 p += sizeof (Elf_External_Verdaux);
6096
6097 for (t = verdefs; t != NULL; t = t->next)
6098 {
6099 unsigned int cdeps;
6100 struct bfd_elf_version_deps *n;
6101
6102 /* Don't emit the base version twice. */
6103 if (t->vernum == 0)
6104 continue;
6105
6106 cdeps = 0;
6107 for (n = t->deps; n != NULL; n = n->next)
6108 ++cdeps;
6109
6110 /* Add a symbol representing this version. */
6111 bh = NULL;
6112 if (! (_bfd_generic_link_add_one_symbol
6113 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6114 0, NULL, FALSE,
6115 get_elf_backend_data (dynobj)->collect, &bh)))
6116 return FALSE;
6117 h = (struct elf_link_hash_entry *) bh;
6118 h->non_elf = 0;
6119 h->def_regular = 1;
6120 h->type = STT_OBJECT;
6121 h->verinfo.vertree = t;
6122
6123 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6124 return FALSE;
6125
6126 def.vd_version = VER_DEF_CURRENT;
6127 def.vd_flags = 0;
6128 if (t->globals.list == NULL
6129 && t->locals.list == NULL
6130 && ! t->used)
6131 def.vd_flags |= VER_FLG_WEAK;
6132 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6133 def.vd_cnt = cdeps + 1;
6134 def.vd_hash = bfd_elf_hash (t->name);
6135 def.vd_aux = sizeof (Elf_External_Verdef);
6136 def.vd_next = 0;
6137
6138 /* If a basever node is next, it *must* be the last node in
6139 the chain, otherwise Verdef construction breaks. */
6140 if (t->next != NULL && t->next->vernum == 0)
6141 BFD_ASSERT (t->next->next == NULL);
6142
6143 if (t->next != NULL && t->next->vernum != 0)
6144 def.vd_next = (sizeof (Elf_External_Verdef)
6145 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6146
6147 _bfd_elf_swap_verdef_out (output_bfd, &def,
6148 (Elf_External_Verdef *) p);
6149 p += sizeof (Elf_External_Verdef);
6150
6151 defaux.vda_name = h->dynstr_index;
6152 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6153 h->dynstr_index);
6154 defaux.vda_next = 0;
6155 if (t->deps != NULL)
6156 defaux.vda_next = sizeof (Elf_External_Verdaux);
6157 t->name_indx = defaux.vda_name;
6158
6159 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6160 (Elf_External_Verdaux *) p);
6161 p += sizeof (Elf_External_Verdaux);
6162
6163 for (n = t->deps; n != NULL; n = n->next)
6164 {
6165 if (n->version_needed == NULL)
6166 {
6167 /* This can happen if there was an error in the
6168 version script. */
6169 defaux.vda_name = 0;
6170 }
6171 else
6172 {
6173 defaux.vda_name = n->version_needed->name_indx;
6174 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6175 defaux.vda_name);
6176 }
6177 if (n->next == NULL)
6178 defaux.vda_next = 0;
6179 else
6180 defaux.vda_next = sizeof (Elf_External_Verdaux);
6181
6182 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6183 (Elf_External_Verdaux *) p);
6184 p += sizeof (Elf_External_Verdaux);
6185 }
6186 }
6187
6188 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6189 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6190 return FALSE;
6191
6192 elf_tdata (output_bfd)->cverdefs = cdefs;
6193 }
6194
6195 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6196 {
6197 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6198 return FALSE;
6199 }
6200 else if (info->flags & DF_BIND_NOW)
6201 {
6202 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6203 return FALSE;
6204 }
6205
6206 if (info->flags_1)
6207 {
6208 if (info->executable)
6209 info->flags_1 &= ~ (DF_1_INITFIRST
6210 | DF_1_NODELETE
6211 | DF_1_NOOPEN);
6212 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6213 return FALSE;
6214 }
6215
6216 /* Work out the size of the version reference section. */
6217
6218 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6219 BFD_ASSERT (s != NULL);
6220 {
6221 struct elf_find_verdep_info sinfo;
6222
6223 sinfo.info = info;
6224 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6225 if (sinfo.vers == 0)
6226 sinfo.vers = 1;
6227 sinfo.failed = FALSE;
6228
6229 elf_link_hash_traverse (elf_hash_table (info),
6230 _bfd_elf_link_find_version_dependencies,
6231 &sinfo);
6232 if (sinfo.failed)
6233 return FALSE;
6234
6235 if (elf_tdata (output_bfd)->verref == NULL)
6236 s->flags |= SEC_EXCLUDE;
6237 else
6238 {
6239 Elf_Internal_Verneed *t;
6240 unsigned int size;
6241 unsigned int crefs;
6242 bfd_byte *p;
6243
6244 /* Build the version dependency section. */
6245 size = 0;
6246 crefs = 0;
6247 for (t = elf_tdata (output_bfd)->verref;
6248 t != NULL;
6249 t = t->vn_nextref)
6250 {
6251 Elf_Internal_Vernaux *a;
6252
6253 size += sizeof (Elf_External_Verneed);
6254 ++crefs;
6255 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 size += sizeof (Elf_External_Vernaux);
6257 }
6258
6259 s->size = size;
6260 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6261 if (s->contents == NULL)
6262 return FALSE;
6263
6264 p = s->contents;
6265 for (t = elf_tdata (output_bfd)->verref;
6266 t != NULL;
6267 t = t->vn_nextref)
6268 {
6269 unsigned int caux;
6270 Elf_Internal_Vernaux *a;
6271 bfd_size_type indx;
6272
6273 caux = 0;
6274 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6275 ++caux;
6276
6277 t->vn_version = VER_NEED_CURRENT;
6278 t->vn_cnt = caux;
6279 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6280 elf_dt_name (t->vn_bfd) != NULL
6281 ? elf_dt_name (t->vn_bfd)
6282 : lbasename (t->vn_bfd->filename),
6283 FALSE);
6284 if (indx == (bfd_size_type) -1)
6285 return FALSE;
6286 t->vn_file = indx;
6287 t->vn_aux = sizeof (Elf_External_Verneed);
6288 if (t->vn_nextref == NULL)
6289 t->vn_next = 0;
6290 else
6291 t->vn_next = (sizeof (Elf_External_Verneed)
6292 + caux * sizeof (Elf_External_Vernaux));
6293
6294 _bfd_elf_swap_verneed_out (output_bfd, t,
6295 (Elf_External_Verneed *) p);
6296 p += sizeof (Elf_External_Verneed);
6297
6298 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6299 {
6300 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6301 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6302 a->vna_nodename, FALSE);
6303 if (indx == (bfd_size_type) -1)
6304 return FALSE;
6305 a->vna_name = indx;
6306 if (a->vna_nextptr == NULL)
6307 a->vna_next = 0;
6308 else
6309 a->vna_next = sizeof (Elf_External_Vernaux);
6310
6311 _bfd_elf_swap_vernaux_out (output_bfd, a,
6312 (Elf_External_Vernaux *) p);
6313 p += sizeof (Elf_External_Vernaux);
6314 }
6315 }
6316
6317 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6318 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6319 return FALSE;
6320
6321 elf_tdata (output_bfd)->cverrefs = crefs;
6322 }
6323 }
6324
6325 if ((elf_tdata (output_bfd)->cverrefs == 0
6326 && elf_tdata (output_bfd)->cverdefs == 0)
6327 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6328 &section_sym_count) == 0)
6329 {
6330 s = bfd_get_linker_section (dynobj, ".gnu.version");
6331 s->flags |= SEC_EXCLUDE;
6332 }
6333 }
6334 return TRUE;
6335 }
6336
6337 /* Find the first non-excluded output section. We'll use its
6338 section symbol for some emitted relocs. */
6339 void
6340 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6341 {
6342 asection *s;
6343
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6346 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6347 {
6348 elf_hash_table (info)->text_index_section = s;
6349 break;
6350 }
6351 }
6352
6353 /* Find two non-excluded output sections, one for code, one for data.
6354 We'll use their section symbols for some emitted relocs. */
6355 void
6356 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6357 {
6358 asection *s;
6359
6360 /* Data first, since setting text_index_section changes
6361 _bfd_elf_link_omit_section_dynsym. */
6362 for (s = output_bfd->sections; s != NULL; s = s->next)
6363 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6364 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6365 {
6366 elf_hash_table (info)->data_index_section = s;
6367 break;
6368 }
6369
6370 for (s = output_bfd->sections; s != NULL; s = s->next)
6371 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6372 == (SEC_ALLOC | SEC_READONLY))
6373 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6374 {
6375 elf_hash_table (info)->text_index_section = s;
6376 break;
6377 }
6378
6379 if (elf_hash_table (info)->text_index_section == NULL)
6380 elf_hash_table (info)->text_index_section
6381 = elf_hash_table (info)->data_index_section;
6382 }
6383
6384 bfd_boolean
6385 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6386 {
6387 const struct elf_backend_data *bed;
6388
6389 if (!is_elf_hash_table (info->hash))
6390 return TRUE;
6391
6392 bed = get_elf_backend_data (output_bfd);
6393 (*bed->elf_backend_init_index_section) (output_bfd, info);
6394
6395 if (elf_hash_table (info)->dynamic_sections_created)
6396 {
6397 bfd *dynobj;
6398 asection *s;
6399 bfd_size_type dynsymcount;
6400 unsigned long section_sym_count;
6401 unsigned int dtagcount;
6402
6403 dynobj = elf_hash_table (info)->dynobj;
6404
6405 /* Assign dynsym indicies. In a shared library we generate a
6406 section symbol for each output section, which come first.
6407 Next come all of the back-end allocated local dynamic syms,
6408 followed by the rest of the global symbols. */
6409
6410 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6411 &section_sym_count);
6412
6413 /* Work out the size of the symbol version section. */
6414 s = bfd_get_linker_section (dynobj, ".gnu.version");
6415 BFD_ASSERT (s != NULL);
6416 if (dynsymcount != 0
6417 && (s->flags & SEC_EXCLUDE) == 0)
6418 {
6419 s->size = dynsymcount * sizeof (Elf_External_Versym);
6420 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6421 if (s->contents == NULL)
6422 return FALSE;
6423
6424 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6425 return FALSE;
6426 }
6427
6428 /* Set the size of the .dynsym and .hash sections. We counted
6429 the number of dynamic symbols in elf_link_add_object_symbols.
6430 We will build the contents of .dynsym and .hash when we build
6431 the final symbol table, because until then we do not know the
6432 correct value to give the symbols. We built the .dynstr
6433 section as we went along in elf_link_add_object_symbols. */
6434 s = bfd_get_linker_section (dynobj, ".dynsym");
6435 BFD_ASSERT (s != NULL);
6436 s->size = dynsymcount * bed->s->sizeof_sym;
6437
6438 if (dynsymcount != 0)
6439 {
6440 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6441 if (s->contents == NULL)
6442 return FALSE;
6443
6444 /* The first entry in .dynsym is a dummy symbol.
6445 Clear all the section syms, in case we don't output them all. */
6446 ++section_sym_count;
6447 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6448 }
6449
6450 elf_hash_table (info)->bucketcount = 0;
6451
6452 /* Compute the size of the hashing table. As a side effect this
6453 computes the hash values for all the names we export. */
6454 if (info->emit_hash)
6455 {
6456 unsigned long int *hashcodes;
6457 struct hash_codes_info hashinf;
6458 bfd_size_type amt;
6459 unsigned long int nsyms;
6460 size_t bucketcount;
6461 size_t hash_entry_size;
6462
6463 /* Compute the hash values for all exported symbols. At the same
6464 time store the values in an array so that we could use them for
6465 optimizations. */
6466 amt = dynsymcount * sizeof (unsigned long int);
6467 hashcodes = (unsigned long int *) bfd_malloc (amt);
6468 if (hashcodes == NULL)
6469 return FALSE;
6470 hashinf.hashcodes = hashcodes;
6471 hashinf.error = FALSE;
6472
6473 /* Put all hash values in HASHCODES. */
6474 elf_link_hash_traverse (elf_hash_table (info),
6475 elf_collect_hash_codes, &hashinf);
6476 if (hashinf.error)
6477 {
6478 free (hashcodes);
6479 return FALSE;
6480 }
6481
6482 nsyms = hashinf.hashcodes - hashcodes;
6483 bucketcount
6484 = compute_bucket_count (info, hashcodes, nsyms, 0);
6485 free (hashcodes);
6486
6487 if (bucketcount == 0)
6488 return FALSE;
6489
6490 elf_hash_table (info)->bucketcount = bucketcount;
6491
6492 s = bfd_get_linker_section (dynobj, ".hash");
6493 BFD_ASSERT (s != NULL);
6494 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6495 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6496 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6497 if (s->contents == NULL)
6498 return FALSE;
6499
6500 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6501 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6502 s->contents + hash_entry_size);
6503 }
6504
6505 if (info->emit_gnu_hash)
6506 {
6507 size_t i, cnt;
6508 unsigned char *contents;
6509 struct collect_gnu_hash_codes cinfo;
6510 bfd_size_type amt;
6511 size_t bucketcount;
6512
6513 memset (&cinfo, 0, sizeof (cinfo));
6514
6515 /* Compute the hash values for all exported symbols. At the same
6516 time store the values in an array so that we could use them for
6517 optimizations. */
6518 amt = dynsymcount * 2 * sizeof (unsigned long int);
6519 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6520 if (cinfo.hashcodes == NULL)
6521 return FALSE;
6522
6523 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6524 cinfo.min_dynindx = -1;
6525 cinfo.output_bfd = output_bfd;
6526 cinfo.bed = bed;
6527
6528 /* Put all hash values in HASHCODES. */
6529 elf_link_hash_traverse (elf_hash_table (info),
6530 elf_collect_gnu_hash_codes, &cinfo);
6531 if (cinfo.error)
6532 {
6533 free (cinfo.hashcodes);
6534 return FALSE;
6535 }
6536
6537 bucketcount
6538 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6539
6540 if (bucketcount == 0)
6541 {
6542 free (cinfo.hashcodes);
6543 return FALSE;
6544 }
6545
6546 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6547 BFD_ASSERT (s != NULL);
6548
6549 if (cinfo.nsyms == 0)
6550 {
6551 /* Empty .gnu.hash section is special. */
6552 BFD_ASSERT (cinfo.min_dynindx == -1);
6553 free (cinfo.hashcodes);
6554 s->size = 5 * 4 + bed->s->arch_size / 8;
6555 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6556 if (contents == NULL)
6557 return FALSE;
6558 s->contents = contents;
6559 /* 1 empty bucket. */
6560 bfd_put_32 (output_bfd, 1, contents);
6561 /* SYMIDX above the special symbol 0. */
6562 bfd_put_32 (output_bfd, 1, contents + 4);
6563 /* Just one word for bitmask. */
6564 bfd_put_32 (output_bfd, 1, contents + 8);
6565 /* Only hash fn bloom filter. */
6566 bfd_put_32 (output_bfd, 0, contents + 12);
6567 /* No hashes are valid - empty bitmask. */
6568 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6569 /* No hashes in the only bucket. */
6570 bfd_put_32 (output_bfd, 0,
6571 contents + 16 + bed->s->arch_size / 8);
6572 }
6573 else
6574 {
6575 unsigned long int maskwords, maskbitslog2, x;
6576 BFD_ASSERT (cinfo.min_dynindx != -1);
6577
6578 x = cinfo.nsyms;
6579 maskbitslog2 = 1;
6580 while ((x >>= 1) != 0)
6581 ++maskbitslog2;
6582 if (maskbitslog2 < 3)
6583 maskbitslog2 = 5;
6584 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6585 maskbitslog2 = maskbitslog2 + 3;
6586 else
6587 maskbitslog2 = maskbitslog2 + 2;
6588 if (bed->s->arch_size == 64)
6589 {
6590 if (maskbitslog2 == 5)
6591 maskbitslog2 = 6;
6592 cinfo.shift1 = 6;
6593 }
6594 else
6595 cinfo.shift1 = 5;
6596 cinfo.mask = (1 << cinfo.shift1) - 1;
6597 cinfo.shift2 = maskbitslog2;
6598 cinfo.maskbits = 1 << maskbitslog2;
6599 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6600 amt = bucketcount * sizeof (unsigned long int) * 2;
6601 amt += maskwords * sizeof (bfd_vma);
6602 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6603 if (cinfo.bitmask == NULL)
6604 {
6605 free (cinfo.hashcodes);
6606 return FALSE;
6607 }
6608
6609 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6610 cinfo.indx = cinfo.counts + bucketcount;
6611 cinfo.symindx = dynsymcount - cinfo.nsyms;
6612 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6613
6614 /* Determine how often each hash bucket is used. */
6615 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6616 for (i = 0; i < cinfo.nsyms; ++i)
6617 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6618
6619 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6620 if (cinfo.counts[i] != 0)
6621 {
6622 cinfo.indx[i] = cnt;
6623 cnt += cinfo.counts[i];
6624 }
6625 BFD_ASSERT (cnt == dynsymcount);
6626 cinfo.bucketcount = bucketcount;
6627 cinfo.local_indx = cinfo.min_dynindx;
6628
6629 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6630 s->size += cinfo.maskbits / 8;
6631 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6632 if (contents == NULL)
6633 {
6634 free (cinfo.bitmask);
6635 free (cinfo.hashcodes);
6636 return FALSE;
6637 }
6638
6639 s->contents = contents;
6640 bfd_put_32 (output_bfd, bucketcount, contents);
6641 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6642 bfd_put_32 (output_bfd, maskwords, contents + 8);
6643 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6644 contents += 16 + cinfo.maskbits / 8;
6645
6646 for (i = 0; i < bucketcount; ++i)
6647 {
6648 if (cinfo.counts[i] == 0)
6649 bfd_put_32 (output_bfd, 0, contents);
6650 else
6651 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6652 contents += 4;
6653 }
6654
6655 cinfo.contents = contents;
6656
6657 /* Renumber dynamic symbols, populate .gnu.hash section. */
6658 elf_link_hash_traverse (elf_hash_table (info),
6659 elf_renumber_gnu_hash_syms, &cinfo);
6660
6661 contents = s->contents + 16;
6662 for (i = 0; i < maskwords; ++i)
6663 {
6664 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6665 contents);
6666 contents += bed->s->arch_size / 8;
6667 }
6668
6669 free (cinfo.bitmask);
6670 free (cinfo.hashcodes);
6671 }
6672 }
6673
6674 s = bfd_get_linker_section (dynobj, ".dynstr");
6675 BFD_ASSERT (s != NULL);
6676
6677 elf_finalize_dynstr (output_bfd, info);
6678
6679 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6680
6681 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6682 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6683 return FALSE;
6684 }
6685
6686 return TRUE;
6687 }
6688 \f
6689 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6690
6691 static void
6692 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6693 asection *sec)
6694 {
6695 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6696 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6697 }
6698
6699 /* Finish SHF_MERGE section merging. */
6700
6701 bfd_boolean
6702 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6703 {
6704 bfd *ibfd;
6705 asection *sec;
6706
6707 if (!is_elf_hash_table (info->hash))
6708 return FALSE;
6709
6710 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6711 if ((ibfd->flags & DYNAMIC) == 0)
6712 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6713 if ((sec->flags & SEC_MERGE) != 0
6714 && !bfd_is_abs_section (sec->output_section))
6715 {
6716 struct bfd_elf_section_data *secdata;
6717
6718 secdata = elf_section_data (sec);
6719 if (! _bfd_add_merge_section (abfd,
6720 &elf_hash_table (info)->merge_info,
6721 sec, &secdata->sec_info))
6722 return FALSE;
6723 else if (secdata->sec_info)
6724 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6725 }
6726
6727 if (elf_hash_table (info)->merge_info != NULL)
6728 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6729 merge_sections_remove_hook);
6730 return TRUE;
6731 }
6732
6733 /* Create an entry in an ELF linker hash table. */
6734
6735 struct bfd_hash_entry *
6736 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6737 struct bfd_hash_table *table,
6738 const char *string)
6739 {
6740 /* Allocate the structure if it has not already been allocated by a
6741 subclass. */
6742 if (entry == NULL)
6743 {
6744 entry = (struct bfd_hash_entry *)
6745 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6746 if (entry == NULL)
6747 return entry;
6748 }
6749
6750 /* Call the allocation method of the superclass. */
6751 entry = _bfd_link_hash_newfunc (entry, table, string);
6752 if (entry != NULL)
6753 {
6754 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6755 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6756
6757 /* Set local fields. */
6758 ret->indx = -1;
6759 ret->dynindx = -1;
6760 ret->got = htab->init_got_refcount;
6761 ret->plt = htab->init_plt_refcount;
6762 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6763 - offsetof (struct elf_link_hash_entry, size)));
6764 /* Assume that we have been called by a non-ELF symbol reader.
6765 This flag is then reset by the code which reads an ELF input
6766 file. This ensures that a symbol created by a non-ELF symbol
6767 reader will have the flag set correctly. */
6768 ret->non_elf = 1;
6769 }
6770
6771 return entry;
6772 }
6773
6774 /* Copy data from an indirect symbol to its direct symbol, hiding the
6775 old indirect symbol. Also used for copying flags to a weakdef. */
6776
6777 void
6778 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6779 struct elf_link_hash_entry *dir,
6780 struct elf_link_hash_entry *ind)
6781 {
6782 struct elf_link_hash_table *htab;
6783
6784 /* Copy down any references that we may have already seen to the
6785 symbol which just became indirect. */
6786
6787 dir->ref_dynamic |= ind->ref_dynamic;
6788 dir->ref_regular |= ind->ref_regular;
6789 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6790 dir->non_got_ref |= ind->non_got_ref;
6791 dir->needs_plt |= ind->needs_plt;
6792 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6793
6794 if (ind->root.type != bfd_link_hash_indirect)
6795 return;
6796
6797 /* Copy over the global and procedure linkage table refcount entries.
6798 These may have been already set up by a check_relocs routine. */
6799 htab = elf_hash_table (info);
6800 if (ind->got.refcount > htab->init_got_refcount.refcount)
6801 {
6802 if (dir->got.refcount < 0)
6803 dir->got.refcount = 0;
6804 dir->got.refcount += ind->got.refcount;
6805 ind->got.refcount = htab->init_got_refcount.refcount;
6806 }
6807
6808 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6809 {
6810 if (dir->plt.refcount < 0)
6811 dir->plt.refcount = 0;
6812 dir->plt.refcount += ind->plt.refcount;
6813 ind->plt.refcount = htab->init_plt_refcount.refcount;
6814 }
6815
6816 if (ind->dynindx != -1)
6817 {
6818 if (dir->dynindx != -1)
6819 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6820 dir->dynindx = ind->dynindx;
6821 dir->dynstr_index = ind->dynstr_index;
6822 ind->dynindx = -1;
6823 ind->dynstr_index = 0;
6824 }
6825 }
6826
6827 void
6828 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6829 struct elf_link_hash_entry *h,
6830 bfd_boolean force_local)
6831 {
6832 /* STT_GNU_IFUNC symbol must go through PLT. */
6833 if (h->type != STT_GNU_IFUNC)
6834 {
6835 h->plt = elf_hash_table (info)->init_plt_offset;
6836 h->needs_plt = 0;
6837 }
6838 if (force_local)
6839 {
6840 h->forced_local = 1;
6841 if (h->dynindx != -1)
6842 {
6843 h->dynindx = -1;
6844 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6845 h->dynstr_index);
6846 }
6847 }
6848 }
6849
6850 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6851 caller. */
6852
6853 bfd_boolean
6854 _bfd_elf_link_hash_table_init
6855 (struct elf_link_hash_table *table,
6856 bfd *abfd,
6857 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6858 struct bfd_hash_table *,
6859 const char *),
6860 unsigned int entsize,
6861 enum elf_target_id target_id)
6862 {
6863 bfd_boolean ret;
6864 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6865
6866 table->init_got_refcount.refcount = can_refcount - 1;
6867 table->init_plt_refcount.refcount = can_refcount - 1;
6868 table->init_got_offset.offset = -(bfd_vma) 1;
6869 table->init_plt_offset.offset = -(bfd_vma) 1;
6870 /* The first dynamic symbol is a dummy. */
6871 table->dynsymcount = 1;
6872
6873 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6874
6875 table->root.type = bfd_link_elf_hash_table;
6876 table->hash_table_id = target_id;
6877
6878 return ret;
6879 }
6880
6881 /* Create an ELF linker hash table. */
6882
6883 struct bfd_link_hash_table *
6884 _bfd_elf_link_hash_table_create (bfd *abfd)
6885 {
6886 struct elf_link_hash_table *ret;
6887 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6888
6889 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6890 if (ret == NULL)
6891 return NULL;
6892
6893 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6894 sizeof (struct elf_link_hash_entry),
6895 GENERIC_ELF_DATA))
6896 {
6897 free (ret);
6898 return NULL;
6899 }
6900
6901 return &ret->root;
6902 }
6903
6904 /* Destroy an ELF linker hash table. */
6905
6906 void
6907 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6908 {
6909 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6910 if (htab->dynstr != NULL)
6911 _bfd_elf_strtab_free (htab->dynstr);
6912 _bfd_merge_sections_free (htab->merge_info);
6913 _bfd_generic_link_hash_table_free (hash);
6914 }
6915
6916 /* This is a hook for the ELF emulation code in the generic linker to
6917 tell the backend linker what file name to use for the DT_NEEDED
6918 entry for a dynamic object. */
6919
6920 void
6921 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6922 {
6923 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6924 && bfd_get_format (abfd) == bfd_object)
6925 elf_dt_name (abfd) = name;
6926 }
6927
6928 int
6929 bfd_elf_get_dyn_lib_class (bfd *abfd)
6930 {
6931 int lib_class;
6932 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6933 && bfd_get_format (abfd) == bfd_object)
6934 lib_class = elf_dyn_lib_class (abfd);
6935 else
6936 lib_class = 0;
6937 return lib_class;
6938 }
6939
6940 void
6941 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6942 {
6943 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6944 && bfd_get_format (abfd) == bfd_object)
6945 elf_dyn_lib_class (abfd) = lib_class;
6946 }
6947
6948 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6949 the linker ELF emulation code. */
6950
6951 struct bfd_link_needed_list *
6952 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6953 struct bfd_link_info *info)
6954 {
6955 if (! is_elf_hash_table (info->hash))
6956 return NULL;
6957 return elf_hash_table (info)->needed;
6958 }
6959
6960 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6961 hook for the linker ELF emulation code. */
6962
6963 struct bfd_link_needed_list *
6964 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6965 struct bfd_link_info *info)
6966 {
6967 if (! is_elf_hash_table (info->hash))
6968 return NULL;
6969 return elf_hash_table (info)->runpath;
6970 }
6971
6972 /* Get the name actually used for a dynamic object for a link. This
6973 is the SONAME entry if there is one. Otherwise, it is the string
6974 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6975
6976 const char *
6977 bfd_elf_get_dt_soname (bfd *abfd)
6978 {
6979 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6980 && bfd_get_format (abfd) == bfd_object)
6981 return elf_dt_name (abfd);
6982 return NULL;
6983 }
6984
6985 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6986 the ELF linker emulation code. */
6987
6988 bfd_boolean
6989 bfd_elf_get_bfd_needed_list (bfd *abfd,
6990 struct bfd_link_needed_list **pneeded)
6991 {
6992 asection *s;
6993 bfd_byte *dynbuf = NULL;
6994 unsigned int elfsec;
6995 unsigned long shlink;
6996 bfd_byte *extdyn, *extdynend;
6997 size_t extdynsize;
6998 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6999
7000 *pneeded = NULL;
7001
7002 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7003 || bfd_get_format (abfd) != bfd_object)
7004 return TRUE;
7005
7006 s = bfd_get_section_by_name (abfd, ".dynamic");
7007 if (s == NULL || s->size == 0)
7008 return TRUE;
7009
7010 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7011 goto error_return;
7012
7013 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7014 if (elfsec == SHN_BAD)
7015 goto error_return;
7016
7017 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7018
7019 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7020 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7021
7022 extdyn = dynbuf;
7023 extdynend = extdyn + s->size;
7024 for (; extdyn < extdynend; extdyn += extdynsize)
7025 {
7026 Elf_Internal_Dyn dyn;
7027
7028 (*swap_dyn_in) (abfd, extdyn, &dyn);
7029
7030 if (dyn.d_tag == DT_NULL)
7031 break;
7032
7033 if (dyn.d_tag == DT_NEEDED)
7034 {
7035 const char *string;
7036 struct bfd_link_needed_list *l;
7037 unsigned int tagv = dyn.d_un.d_val;
7038 bfd_size_type amt;
7039
7040 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7041 if (string == NULL)
7042 goto error_return;
7043
7044 amt = sizeof *l;
7045 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7046 if (l == NULL)
7047 goto error_return;
7048
7049 l->by = abfd;
7050 l->name = string;
7051 l->next = *pneeded;
7052 *pneeded = l;
7053 }
7054 }
7055
7056 free (dynbuf);
7057
7058 return TRUE;
7059
7060 error_return:
7061 if (dynbuf != NULL)
7062 free (dynbuf);
7063 return FALSE;
7064 }
7065
7066 struct elf_symbuf_symbol
7067 {
7068 unsigned long st_name; /* Symbol name, index in string tbl */
7069 unsigned char st_info; /* Type and binding attributes */
7070 unsigned char st_other; /* Visibilty, and target specific */
7071 };
7072
7073 struct elf_symbuf_head
7074 {
7075 struct elf_symbuf_symbol *ssym;
7076 bfd_size_type count;
7077 unsigned int st_shndx;
7078 };
7079
7080 struct elf_symbol
7081 {
7082 union
7083 {
7084 Elf_Internal_Sym *isym;
7085 struct elf_symbuf_symbol *ssym;
7086 } u;
7087 const char *name;
7088 };
7089
7090 /* Sort references to symbols by ascending section number. */
7091
7092 static int
7093 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7094 {
7095 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7096 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7097
7098 return s1->st_shndx - s2->st_shndx;
7099 }
7100
7101 static int
7102 elf_sym_name_compare (const void *arg1, const void *arg2)
7103 {
7104 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7105 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7106 return strcmp (s1->name, s2->name);
7107 }
7108
7109 static struct elf_symbuf_head *
7110 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7111 {
7112 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7113 struct elf_symbuf_symbol *ssym;
7114 struct elf_symbuf_head *ssymbuf, *ssymhead;
7115 bfd_size_type i, shndx_count, total_size;
7116
7117 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7118 if (indbuf == NULL)
7119 return NULL;
7120
7121 for (ind = indbuf, i = 0; i < symcount; i++)
7122 if (isymbuf[i].st_shndx != SHN_UNDEF)
7123 *ind++ = &isymbuf[i];
7124 indbufend = ind;
7125
7126 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7127 elf_sort_elf_symbol);
7128
7129 shndx_count = 0;
7130 if (indbufend > indbuf)
7131 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7132 if (ind[0]->st_shndx != ind[1]->st_shndx)
7133 shndx_count++;
7134
7135 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7136 + (indbufend - indbuf) * sizeof (*ssym));
7137 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7138 if (ssymbuf == NULL)
7139 {
7140 free (indbuf);
7141 return NULL;
7142 }
7143
7144 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7145 ssymbuf->ssym = NULL;
7146 ssymbuf->count = shndx_count;
7147 ssymbuf->st_shndx = 0;
7148 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7149 {
7150 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7151 {
7152 ssymhead++;
7153 ssymhead->ssym = ssym;
7154 ssymhead->count = 0;
7155 ssymhead->st_shndx = (*ind)->st_shndx;
7156 }
7157 ssym->st_name = (*ind)->st_name;
7158 ssym->st_info = (*ind)->st_info;
7159 ssym->st_other = (*ind)->st_other;
7160 ssymhead->count++;
7161 }
7162 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7163 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7164 == total_size));
7165
7166 free (indbuf);
7167 return ssymbuf;
7168 }
7169
7170 /* Check if 2 sections define the same set of local and global
7171 symbols. */
7172
7173 static bfd_boolean
7174 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7175 struct bfd_link_info *info)
7176 {
7177 bfd *bfd1, *bfd2;
7178 const struct elf_backend_data *bed1, *bed2;
7179 Elf_Internal_Shdr *hdr1, *hdr2;
7180 bfd_size_type symcount1, symcount2;
7181 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7182 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7183 Elf_Internal_Sym *isym, *isymend;
7184 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7185 bfd_size_type count1, count2, i;
7186 unsigned int shndx1, shndx2;
7187 bfd_boolean result;
7188
7189 bfd1 = sec1->owner;
7190 bfd2 = sec2->owner;
7191
7192 /* Both sections have to be in ELF. */
7193 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7194 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7195 return FALSE;
7196
7197 if (elf_section_type (sec1) != elf_section_type (sec2))
7198 return FALSE;
7199
7200 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7201 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7202 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7203 return FALSE;
7204
7205 bed1 = get_elf_backend_data (bfd1);
7206 bed2 = get_elf_backend_data (bfd2);
7207 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7208 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7209 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7210 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7211
7212 if (symcount1 == 0 || symcount2 == 0)
7213 return FALSE;
7214
7215 result = FALSE;
7216 isymbuf1 = NULL;
7217 isymbuf2 = NULL;
7218 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7219 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7220
7221 if (ssymbuf1 == NULL)
7222 {
7223 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7224 NULL, NULL, NULL);
7225 if (isymbuf1 == NULL)
7226 goto done;
7227
7228 if (!info->reduce_memory_overheads)
7229 elf_tdata (bfd1)->symbuf = ssymbuf1
7230 = elf_create_symbuf (symcount1, isymbuf1);
7231 }
7232
7233 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7234 {
7235 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7236 NULL, NULL, NULL);
7237 if (isymbuf2 == NULL)
7238 goto done;
7239
7240 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7241 elf_tdata (bfd2)->symbuf = ssymbuf2
7242 = elf_create_symbuf (symcount2, isymbuf2);
7243 }
7244
7245 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7246 {
7247 /* Optimized faster version. */
7248 bfd_size_type lo, hi, mid;
7249 struct elf_symbol *symp;
7250 struct elf_symbuf_symbol *ssym, *ssymend;
7251
7252 lo = 0;
7253 hi = ssymbuf1->count;
7254 ssymbuf1++;
7255 count1 = 0;
7256 while (lo < hi)
7257 {
7258 mid = (lo + hi) / 2;
7259 if (shndx1 < ssymbuf1[mid].st_shndx)
7260 hi = mid;
7261 else if (shndx1 > ssymbuf1[mid].st_shndx)
7262 lo = mid + 1;
7263 else
7264 {
7265 count1 = ssymbuf1[mid].count;
7266 ssymbuf1 += mid;
7267 break;
7268 }
7269 }
7270
7271 lo = 0;
7272 hi = ssymbuf2->count;
7273 ssymbuf2++;
7274 count2 = 0;
7275 while (lo < hi)
7276 {
7277 mid = (lo + hi) / 2;
7278 if (shndx2 < ssymbuf2[mid].st_shndx)
7279 hi = mid;
7280 else if (shndx2 > ssymbuf2[mid].st_shndx)
7281 lo = mid + 1;
7282 else
7283 {
7284 count2 = ssymbuf2[mid].count;
7285 ssymbuf2 += mid;
7286 break;
7287 }
7288 }
7289
7290 if (count1 == 0 || count2 == 0 || count1 != count2)
7291 goto done;
7292
7293 symtable1 = (struct elf_symbol *)
7294 bfd_malloc (count1 * sizeof (struct elf_symbol));
7295 symtable2 = (struct elf_symbol *)
7296 bfd_malloc (count2 * sizeof (struct elf_symbol));
7297 if (symtable1 == NULL || symtable2 == NULL)
7298 goto done;
7299
7300 symp = symtable1;
7301 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7302 ssym < ssymend; ssym++, symp++)
7303 {
7304 symp->u.ssym = ssym;
7305 symp->name = bfd_elf_string_from_elf_section (bfd1,
7306 hdr1->sh_link,
7307 ssym->st_name);
7308 }
7309
7310 symp = symtable2;
7311 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7312 ssym < ssymend; ssym++, symp++)
7313 {
7314 symp->u.ssym = ssym;
7315 symp->name = bfd_elf_string_from_elf_section (bfd2,
7316 hdr2->sh_link,
7317 ssym->st_name);
7318 }
7319
7320 /* Sort symbol by name. */
7321 qsort (symtable1, count1, sizeof (struct elf_symbol),
7322 elf_sym_name_compare);
7323 qsort (symtable2, count1, sizeof (struct elf_symbol),
7324 elf_sym_name_compare);
7325
7326 for (i = 0; i < count1; i++)
7327 /* Two symbols must have the same binding, type and name. */
7328 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7329 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7330 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7331 goto done;
7332
7333 result = TRUE;
7334 goto done;
7335 }
7336
7337 symtable1 = (struct elf_symbol *)
7338 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7339 symtable2 = (struct elf_symbol *)
7340 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7341 if (symtable1 == NULL || symtable2 == NULL)
7342 goto done;
7343
7344 /* Count definitions in the section. */
7345 count1 = 0;
7346 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7347 if (isym->st_shndx == shndx1)
7348 symtable1[count1++].u.isym = isym;
7349
7350 count2 = 0;
7351 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7352 if (isym->st_shndx == shndx2)
7353 symtable2[count2++].u.isym = isym;
7354
7355 if (count1 == 0 || count2 == 0 || count1 != count2)
7356 goto done;
7357
7358 for (i = 0; i < count1; i++)
7359 symtable1[i].name
7360 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7361 symtable1[i].u.isym->st_name);
7362
7363 for (i = 0; i < count2; i++)
7364 symtable2[i].name
7365 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7366 symtable2[i].u.isym->st_name);
7367
7368 /* Sort symbol by name. */
7369 qsort (symtable1, count1, sizeof (struct elf_symbol),
7370 elf_sym_name_compare);
7371 qsort (symtable2, count1, sizeof (struct elf_symbol),
7372 elf_sym_name_compare);
7373
7374 for (i = 0; i < count1; i++)
7375 /* Two symbols must have the same binding, type and name. */
7376 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7377 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7378 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7379 goto done;
7380
7381 result = TRUE;
7382
7383 done:
7384 if (symtable1)
7385 free (symtable1);
7386 if (symtable2)
7387 free (symtable2);
7388 if (isymbuf1)
7389 free (isymbuf1);
7390 if (isymbuf2)
7391 free (isymbuf2);
7392
7393 return result;
7394 }
7395
7396 /* Return TRUE if 2 section types are compatible. */
7397
7398 bfd_boolean
7399 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7400 bfd *bbfd, const asection *bsec)
7401 {
7402 if (asec == NULL
7403 || bsec == NULL
7404 || abfd->xvec->flavour != bfd_target_elf_flavour
7405 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7406 return TRUE;
7407
7408 return elf_section_type (asec) == elf_section_type (bsec);
7409 }
7410 \f
7411 /* Final phase of ELF linker. */
7412
7413 /* A structure we use to avoid passing large numbers of arguments. */
7414
7415 struct elf_final_link_info
7416 {
7417 /* General link information. */
7418 struct bfd_link_info *info;
7419 /* Output BFD. */
7420 bfd *output_bfd;
7421 /* Symbol string table. */
7422 struct bfd_strtab_hash *symstrtab;
7423 /* .dynsym section. */
7424 asection *dynsym_sec;
7425 /* .hash section. */
7426 asection *hash_sec;
7427 /* symbol version section (.gnu.version). */
7428 asection *symver_sec;
7429 /* Buffer large enough to hold contents of any section. */
7430 bfd_byte *contents;
7431 /* Buffer large enough to hold external relocs of any section. */
7432 void *external_relocs;
7433 /* Buffer large enough to hold internal relocs of any section. */
7434 Elf_Internal_Rela *internal_relocs;
7435 /* Buffer large enough to hold external local symbols of any input
7436 BFD. */
7437 bfd_byte *external_syms;
7438 /* And a buffer for symbol section indices. */
7439 Elf_External_Sym_Shndx *locsym_shndx;
7440 /* Buffer large enough to hold internal local symbols of any input
7441 BFD. */
7442 Elf_Internal_Sym *internal_syms;
7443 /* Array large enough to hold a symbol index for each local symbol
7444 of any input BFD. */
7445 long *indices;
7446 /* Array large enough to hold a section pointer for each local
7447 symbol of any input BFD. */
7448 asection **sections;
7449 /* Buffer to hold swapped out symbols. */
7450 bfd_byte *symbuf;
7451 /* And one for symbol section indices. */
7452 Elf_External_Sym_Shndx *symshndxbuf;
7453 /* Number of swapped out symbols in buffer. */
7454 size_t symbuf_count;
7455 /* Number of symbols which fit in symbuf. */
7456 size_t symbuf_size;
7457 /* And same for symshndxbuf. */
7458 size_t shndxbuf_size;
7459 /* Number of STT_FILE syms seen. */
7460 size_t filesym_count;
7461 };
7462
7463 /* This struct is used to pass information to elf_link_output_extsym. */
7464
7465 struct elf_outext_info
7466 {
7467 bfd_boolean failed;
7468 bfd_boolean localsyms;
7469 bfd_boolean need_second_pass;
7470 bfd_boolean second_pass;
7471 bfd_boolean file_sym_done;
7472 struct elf_final_link_info *flinfo;
7473 };
7474
7475
7476 /* Support for evaluating a complex relocation.
7477
7478 Complex relocations are generalized, self-describing relocations. The
7479 implementation of them consists of two parts: complex symbols, and the
7480 relocations themselves.
7481
7482 The relocations are use a reserved elf-wide relocation type code (R_RELC
7483 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7484 information (start bit, end bit, word width, etc) into the addend. This
7485 information is extracted from CGEN-generated operand tables within gas.
7486
7487 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7488 internal) representing prefix-notation expressions, including but not
7489 limited to those sorts of expressions normally encoded as addends in the
7490 addend field. The symbol mangling format is:
7491
7492 <node> := <literal>
7493 | <unary-operator> ':' <node>
7494 | <binary-operator> ':' <node> ':' <node>
7495 ;
7496
7497 <literal> := 's' <digits=N> ':' <N character symbol name>
7498 | 'S' <digits=N> ':' <N character section name>
7499 | '#' <hexdigits>
7500 ;
7501
7502 <binary-operator> := as in C
7503 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7504
7505 static void
7506 set_symbol_value (bfd *bfd_with_globals,
7507 Elf_Internal_Sym *isymbuf,
7508 size_t locsymcount,
7509 size_t symidx,
7510 bfd_vma val)
7511 {
7512 struct elf_link_hash_entry **sym_hashes;
7513 struct elf_link_hash_entry *h;
7514 size_t extsymoff = locsymcount;
7515
7516 if (symidx < locsymcount)
7517 {
7518 Elf_Internal_Sym *sym;
7519
7520 sym = isymbuf + symidx;
7521 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7522 {
7523 /* It is a local symbol: move it to the
7524 "absolute" section and give it a value. */
7525 sym->st_shndx = SHN_ABS;
7526 sym->st_value = val;
7527 return;
7528 }
7529 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7530 extsymoff = 0;
7531 }
7532
7533 /* It is a global symbol: set its link type
7534 to "defined" and give it a value. */
7535
7536 sym_hashes = elf_sym_hashes (bfd_with_globals);
7537 h = sym_hashes [symidx - extsymoff];
7538 while (h->root.type == bfd_link_hash_indirect
7539 || h->root.type == bfd_link_hash_warning)
7540 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7541 h->root.type = bfd_link_hash_defined;
7542 h->root.u.def.value = val;
7543 h->root.u.def.section = bfd_abs_section_ptr;
7544 }
7545
7546 static bfd_boolean
7547 resolve_symbol (const char *name,
7548 bfd *input_bfd,
7549 struct elf_final_link_info *flinfo,
7550 bfd_vma *result,
7551 Elf_Internal_Sym *isymbuf,
7552 size_t locsymcount)
7553 {
7554 Elf_Internal_Sym *sym;
7555 struct bfd_link_hash_entry *global_entry;
7556 const char *candidate = NULL;
7557 Elf_Internal_Shdr *symtab_hdr;
7558 size_t i;
7559
7560 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7561
7562 for (i = 0; i < locsymcount; ++ i)
7563 {
7564 sym = isymbuf + i;
7565
7566 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7567 continue;
7568
7569 candidate = bfd_elf_string_from_elf_section (input_bfd,
7570 symtab_hdr->sh_link,
7571 sym->st_name);
7572 #ifdef DEBUG
7573 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7574 name, candidate, (unsigned long) sym->st_value);
7575 #endif
7576 if (candidate && strcmp (candidate, name) == 0)
7577 {
7578 asection *sec = flinfo->sections [i];
7579
7580 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7581 *result += sec->output_offset + sec->output_section->vma;
7582 #ifdef DEBUG
7583 printf ("Found symbol with value %8.8lx\n",
7584 (unsigned long) *result);
7585 #endif
7586 return TRUE;
7587 }
7588 }
7589
7590 /* Hmm, haven't found it yet. perhaps it is a global. */
7591 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7592 FALSE, FALSE, TRUE);
7593 if (!global_entry)
7594 return FALSE;
7595
7596 if (global_entry->type == bfd_link_hash_defined
7597 || global_entry->type == bfd_link_hash_defweak)
7598 {
7599 *result = (global_entry->u.def.value
7600 + global_entry->u.def.section->output_section->vma
7601 + global_entry->u.def.section->output_offset);
7602 #ifdef DEBUG
7603 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7604 global_entry->root.string, (unsigned long) *result);
7605 #endif
7606 return TRUE;
7607 }
7608
7609 return FALSE;
7610 }
7611
7612 static bfd_boolean
7613 resolve_section (const char *name,
7614 asection *sections,
7615 bfd_vma *result)
7616 {
7617 asection *curr;
7618 unsigned int len;
7619
7620 for (curr = sections; curr; curr = curr->next)
7621 if (strcmp (curr->name, name) == 0)
7622 {
7623 *result = curr->vma;
7624 return TRUE;
7625 }
7626
7627 /* Hmm. still haven't found it. try pseudo-section names. */
7628 for (curr = sections; curr; curr = curr->next)
7629 {
7630 len = strlen (curr->name);
7631 if (len > strlen (name))
7632 continue;
7633
7634 if (strncmp (curr->name, name, len) == 0)
7635 {
7636 if (strncmp (".end", name + len, 4) == 0)
7637 {
7638 *result = curr->vma + curr->size;
7639 return TRUE;
7640 }
7641
7642 /* Insert more pseudo-section names here, if you like. */
7643 }
7644 }
7645
7646 return FALSE;
7647 }
7648
7649 static void
7650 undefined_reference (const char *reftype, const char *name)
7651 {
7652 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7653 reftype, name);
7654 }
7655
7656 static bfd_boolean
7657 eval_symbol (bfd_vma *result,
7658 const char **symp,
7659 bfd *input_bfd,
7660 struct elf_final_link_info *flinfo,
7661 bfd_vma dot,
7662 Elf_Internal_Sym *isymbuf,
7663 size_t locsymcount,
7664 int signed_p)
7665 {
7666 size_t len;
7667 size_t symlen;
7668 bfd_vma a;
7669 bfd_vma b;
7670 char symbuf[4096];
7671 const char *sym = *symp;
7672 const char *symend;
7673 bfd_boolean symbol_is_section = FALSE;
7674
7675 len = strlen (sym);
7676 symend = sym + len;
7677
7678 if (len < 1 || len > sizeof (symbuf))
7679 {
7680 bfd_set_error (bfd_error_invalid_operation);
7681 return FALSE;
7682 }
7683
7684 switch (* sym)
7685 {
7686 case '.':
7687 *result = dot;
7688 *symp = sym + 1;
7689 return TRUE;
7690
7691 case '#':
7692 ++sym;
7693 *result = strtoul (sym, (char **) symp, 16);
7694 return TRUE;
7695
7696 case 'S':
7697 symbol_is_section = TRUE;
7698 case 's':
7699 ++sym;
7700 symlen = strtol (sym, (char **) symp, 10);
7701 sym = *symp + 1; /* Skip the trailing ':'. */
7702
7703 if (symend < sym || symlen + 1 > sizeof (symbuf))
7704 {
7705 bfd_set_error (bfd_error_invalid_operation);
7706 return FALSE;
7707 }
7708
7709 memcpy (symbuf, sym, symlen);
7710 symbuf[symlen] = '\0';
7711 *symp = sym + symlen;
7712
7713 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7714 the symbol as a section, or vice-versa. so we're pretty liberal in our
7715 interpretation here; section means "try section first", not "must be a
7716 section", and likewise with symbol. */
7717
7718 if (symbol_is_section)
7719 {
7720 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7721 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7722 isymbuf, locsymcount))
7723 {
7724 undefined_reference ("section", symbuf);
7725 return FALSE;
7726 }
7727 }
7728 else
7729 {
7730 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7731 isymbuf, locsymcount)
7732 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7733 result))
7734 {
7735 undefined_reference ("symbol", symbuf);
7736 return FALSE;
7737 }
7738 }
7739
7740 return TRUE;
7741
7742 /* All that remains are operators. */
7743
7744 #define UNARY_OP(op) \
7745 if (strncmp (sym, #op, strlen (#op)) == 0) \
7746 { \
7747 sym += strlen (#op); \
7748 if (*sym == ':') \
7749 ++sym; \
7750 *symp = sym; \
7751 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7752 isymbuf, locsymcount, signed_p)) \
7753 return FALSE; \
7754 if (signed_p) \
7755 *result = op ((bfd_signed_vma) a); \
7756 else \
7757 *result = op a; \
7758 return TRUE; \
7759 }
7760
7761 #define BINARY_OP(op) \
7762 if (strncmp (sym, #op, strlen (#op)) == 0) \
7763 { \
7764 sym += strlen (#op); \
7765 if (*sym == ':') \
7766 ++sym; \
7767 *symp = sym; \
7768 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7769 isymbuf, locsymcount, signed_p)) \
7770 return FALSE; \
7771 ++*symp; \
7772 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7773 isymbuf, locsymcount, signed_p)) \
7774 return FALSE; \
7775 if (signed_p) \
7776 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7777 else \
7778 *result = a op b; \
7779 return TRUE; \
7780 }
7781
7782 default:
7783 UNARY_OP (0-);
7784 BINARY_OP (<<);
7785 BINARY_OP (>>);
7786 BINARY_OP (==);
7787 BINARY_OP (!=);
7788 BINARY_OP (<=);
7789 BINARY_OP (>=);
7790 BINARY_OP (&&);
7791 BINARY_OP (||);
7792 UNARY_OP (~);
7793 UNARY_OP (!);
7794 BINARY_OP (*);
7795 BINARY_OP (/);
7796 BINARY_OP (%);
7797 BINARY_OP (^);
7798 BINARY_OP (|);
7799 BINARY_OP (&);
7800 BINARY_OP (+);
7801 BINARY_OP (-);
7802 BINARY_OP (<);
7803 BINARY_OP (>);
7804 #undef UNARY_OP
7805 #undef BINARY_OP
7806 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7807 bfd_set_error (bfd_error_invalid_operation);
7808 return FALSE;
7809 }
7810 }
7811
7812 static void
7813 put_value (bfd_vma size,
7814 unsigned long chunksz,
7815 bfd *input_bfd,
7816 bfd_vma x,
7817 bfd_byte *location)
7818 {
7819 location += (size - chunksz);
7820
7821 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7822 {
7823 switch (chunksz)
7824 {
7825 default:
7826 case 0:
7827 abort ();
7828 case 1:
7829 bfd_put_8 (input_bfd, x, location);
7830 break;
7831 case 2:
7832 bfd_put_16 (input_bfd, x, location);
7833 break;
7834 case 4:
7835 bfd_put_32 (input_bfd, x, location);
7836 break;
7837 case 8:
7838 #ifdef BFD64
7839 bfd_put_64 (input_bfd, x, location);
7840 #else
7841 abort ();
7842 #endif
7843 break;
7844 }
7845 }
7846 }
7847
7848 static bfd_vma
7849 get_value (bfd_vma size,
7850 unsigned long chunksz,
7851 bfd *input_bfd,
7852 bfd_byte *location)
7853 {
7854 int shift;
7855 bfd_vma x = 0;
7856
7857 /* Sanity checks. */
7858 BFD_ASSERT (chunksz <= sizeof (x)
7859 && size >= chunksz
7860 && chunksz != 0
7861 && (size % chunksz) == 0
7862 && input_bfd != NULL
7863 && location != NULL);
7864
7865 if (chunksz == sizeof (x))
7866 {
7867 BFD_ASSERT (size == chunksz);
7868
7869 /* Make sure that we do not perform an undefined shift operation.
7870 We know that size == chunksz so there will only be one iteration
7871 of the loop below. */
7872 shift = 0;
7873 }
7874 else
7875 shift = 8 * chunksz;
7876
7877 for (; size; size -= chunksz, location += chunksz)
7878 {
7879 switch (chunksz)
7880 {
7881 case 1:
7882 x = (x << shift) | bfd_get_8 (input_bfd, location);
7883 break;
7884 case 2:
7885 x = (x << shift) | bfd_get_16 (input_bfd, location);
7886 break;
7887 case 4:
7888 x = (x << shift) | bfd_get_32 (input_bfd, location);
7889 break;
7890 #ifdef BFD64
7891 case 8:
7892 x = (x << shift) | bfd_get_64 (input_bfd, location);
7893 break;
7894 #endif
7895 default:
7896 abort ();
7897 }
7898 }
7899 return x;
7900 }
7901
7902 static void
7903 decode_complex_addend (unsigned long *start, /* in bits */
7904 unsigned long *oplen, /* in bits */
7905 unsigned long *len, /* in bits */
7906 unsigned long *wordsz, /* in bytes */
7907 unsigned long *chunksz, /* in bytes */
7908 unsigned long *lsb0_p,
7909 unsigned long *signed_p,
7910 unsigned long *trunc_p,
7911 unsigned long encoded)
7912 {
7913 * start = encoded & 0x3F;
7914 * len = (encoded >> 6) & 0x3F;
7915 * oplen = (encoded >> 12) & 0x3F;
7916 * wordsz = (encoded >> 18) & 0xF;
7917 * chunksz = (encoded >> 22) & 0xF;
7918 * lsb0_p = (encoded >> 27) & 1;
7919 * signed_p = (encoded >> 28) & 1;
7920 * trunc_p = (encoded >> 29) & 1;
7921 }
7922
7923 bfd_reloc_status_type
7924 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7925 asection *input_section ATTRIBUTE_UNUSED,
7926 bfd_byte *contents,
7927 Elf_Internal_Rela *rel,
7928 bfd_vma relocation)
7929 {
7930 bfd_vma shift, x, mask;
7931 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7932 bfd_reloc_status_type r;
7933
7934 /* Perform this reloc, since it is complex.
7935 (this is not to say that it necessarily refers to a complex
7936 symbol; merely that it is a self-describing CGEN based reloc.
7937 i.e. the addend has the complete reloc information (bit start, end,
7938 word size, etc) encoded within it.). */
7939
7940 decode_complex_addend (&start, &oplen, &len, &wordsz,
7941 &chunksz, &lsb0_p, &signed_p,
7942 &trunc_p, rel->r_addend);
7943
7944 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7945
7946 if (lsb0_p)
7947 shift = (start + 1) - len;
7948 else
7949 shift = (8 * wordsz) - (start + len);
7950
7951 /* FIXME: octets_per_byte. */
7952 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7953
7954 #ifdef DEBUG
7955 printf ("Doing complex reloc: "
7956 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7957 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7958 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7959 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7960 oplen, (unsigned long) x, (unsigned long) mask,
7961 (unsigned long) relocation);
7962 #endif
7963
7964 r = bfd_reloc_ok;
7965 if (! trunc_p)
7966 /* Now do an overflow check. */
7967 r = bfd_check_overflow ((signed_p
7968 ? complain_overflow_signed
7969 : complain_overflow_unsigned),
7970 len, 0, (8 * wordsz),
7971 relocation);
7972
7973 /* Do the deed. */
7974 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7975
7976 #ifdef DEBUG
7977 printf (" relocation: %8.8lx\n"
7978 " shifted mask: %8.8lx\n"
7979 " shifted/masked reloc: %8.8lx\n"
7980 " result: %8.8lx\n",
7981 (unsigned long) relocation, (unsigned long) (mask << shift),
7982 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7983 #endif
7984 /* FIXME: octets_per_byte. */
7985 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7986 return r;
7987 }
7988
7989 /* When performing a relocatable link, the input relocations are
7990 preserved. But, if they reference global symbols, the indices
7991 referenced must be updated. Update all the relocations found in
7992 RELDATA. */
7993
7994 static void
7995 elf_link_adjust_relocs (bfd *abfd,
7996 struct bfd_elf_section_reloc_data *reldata)
7997 {
7998 unsigned int i;
7999 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8000 bfd_byte *erela;
8001 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8002 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8003 bfd_vma r_type_mask;
8004 int r_sym_shift;
8005 unsigned int count = reldata->count;
8006 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8007
8008 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8009 {
8010 swap_in = bed->s->swap_reloc_in;
8011 swap_out = bed->s->swap_reloc_out;
8012 }
8013 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8014 {
8015 swap_in = bed->s->swap_reloca_in;
8016 swap_out = bed->s->swap_reloca_out;
8017 }
8018 else
8019 abort ();
8020
8021 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8022 abort ();
8023
8024 if (bed->s->arch_size == 32)
8025 {
8026 r_type_mask = 0xff;
8027 r_sym_shift = 8;
8028 }
8029 else
8030 {
8031 r_type_mask = 0xffffffff;
8032 r_sym_shift = 32;
8033 }
8034
8035 erela = reldata->hdr->contents;
8036 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8037 {
8038 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8039 unsigned int j;
8040
8041 if (*rel_hash == NULL)
8042 continue;
8043
8044 BFD_ASSERT ((*rel_hash)->indx >= 0);
8045
8046 (*swap_in) (abfd, erela, irela);
8047 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8048 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8049 | (irela[j].r_info & r_type_mask));
8050 (*swap_out) (abfd, irela, erela);
8051 }
8052 }
8053
8054 struct elf_link_sort_rela
8055 {
8056 union {
8057 bfd_vma offset;
8058 bfd_vma sym_mask;
8059 } u;
8060 enum elf_reloc_type_class type;
8061 /* We use this as an array of size int_rels_per_ext_rel. */
8062 Elf_Internal_Rela rela[1];
8063 };
8064
8065 static int
8066 elf_link_sort_cmp1 (const void *A, const void *B)
8067 {
8068 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8069 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8070 int relativea, relativeb;
8071
8072 relativea = a->type == reloc_class_relative;
8073 relativeb = b->type == reloc_class_relative;
8074
8075 if (relativea < relativeb)
8076 return 1;
8077 if (relativea > relativeb)
8078 return -1;
8079 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8080 return -1;
8081 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8082 return 1;
8083 if (a->rela->r_offset < b->rela->r_offset)
8084 return -1;
8085 if (a->rela->r_offset > b->rela->r_offset)
8086 return 1;
8087 return 0;
8088 }
8089
8090 static int
8091 elf_link_sort_cmp2 (const void *A, const void *B)
8092 {
8093 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8094 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8095
8096 if (a->type < b->type)
8097 return -1;
8098 if (a->type > b->type)
8099 return 1;
8100 if (a->u.offset < b->u.offset)
8101 return -1;
8102 if (a->u.offset > b->u.offset)
8103 return 1;
8104 if (a->rela->r_offset < b->rela->r_offset)
8105 return -1;
8106 if (a->rela->r_offset > b->rela->r_offset)
8107 return 1;
8108 return 0;
8109 }
8110
8111 static size_t
8112 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8113 {
8114 asection *dynamic_relocs;
8115 asection *rela_dyn;
8116 asection *rel_dyn;
8117 bfd_size_type count, size;
8118 size_t i, ret, sort_elt, ext_size;
8119 bfd_byte *sort, *s_non_relative, *p;
8120 struct elf_link_sort_rela *sq;
8121 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8122 int i2e = bed->s->int_rels_per_ext_rel;
8123 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8124 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8125 struct bfd_link_order *lo;
8126 bfd_vma r_sym_mask;
8127 bfd_boolean use_rela;
8128
8129 /* Find a dynamic reloc section. */
8130 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8131 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8132 if (rela_dyn != NULL && rela_dyn->size > 0
8133 && rel_dyn != NULL && rel_dyn->size > 0)
8134 {
8135 bfd_boolean use_rela_initialised = FALSE;
8136
8137 /* This is just here to stop gcc from complaining.
8138 It's initialization checking code is not perfect. */
8139 use_rela = TRUE;
8140
8141 /* Both sections are present. Examine the sizes
8142 of the indirect sections to help us choose. */
8143 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8144 if (lo->type == bfd_indirect_link_order)
8145 {
8146 asection *o = lo->u.indirect.section;
8147
8148 if ((o->size % bed->s->sizeof_rela) == 0)
8149 {
8150 if ((o->size % bed->s->sizeof_rel) == 0)
8151 /* Section size is divisible by both rel and rela sizes.
8152 It is of no help to us. */
8153 ;
8154 else
8155 {
8156 /* Section size is only divisible by rela. */
8157 if (use_rela_initialised && (use_rela == FALSE))
8158 {
8159 _bfd_error_handler
8160 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8161 bfd_set_error (bfd_error_invalid_operation);
8162 return 0;
8163 }
8164 else
8165 {
8166 use_rela = TRUE;
8167 use_rela_initialised = TRUE;
8168 }
8169 }
8170 }
8171 else if ((o->size % bed->s->sizeof_rel) == 0)
8172 {
8173 /* Section size is only divisible by rel. */
8174 if (use_rela_initialised && (use_rela == TRUE))
8175 {
8176 _bfd_error_handler
8177 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8178 bfd_set_error (bfd_error_invalid_operation);
8179 return 0;
8180 }
8181 else
8182 {
8183 use_rela = FALSE;
8184 use_rela_initialised = TRUE;
8185 }
8186 }
8187 else
8188 {
8189 /* The section size is not divisible by either - something is wrong. */
8190 _bfd_error_handler
8191 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8192 bfd_set_error (bfd_error_invalid_operation);
8193 return 0;
8194 }
8195 }
8196
8197 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8198 if (lo->type == bfd_indirect_link_order)
8199 {
8200 asection *o = lo->u.indirect.section;
8201
8202 if ((o->size % bed->s->sizeof_rela) == 0)
8203 {
8204 if ((o->size % bed->s->sizeof_rel) == 0)
8205 /* Section size is divisible by both rel and rela sizes.
8206 It is of no help to us. */
8207 ;
8208 else
8209 {
8210 /* Section size is only divisible by rela. */
8211 if (use_rela_initialised && (use_rela == FALSE))
8212 {
8213 _bfd_error_handler
8214 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8215 bfd_set_error (bfd_error_invalid_operation);
8216 return 0;
8217 }
8218 else
8219 {
8220 use_rela = TRUE;
8221 use_rela_initialised = TRUE;
8222 }
8223 }
8224 }
8225 else if ((o->size % bed->s->sizeof_rel) == 0)
8226 {
8227 /* Section size is only divisible by rel. */
8228 if (use_rela_initialised && (use_rela == TRUE))
8229 {
8230 _bfd_error_handler
8231 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8232 bfd_set_error (bfd_error_invalid_operation);
8233 return 0;
8234 }
8235 else
8236 {
8237 use_rela = FALSE;
8238 use_rela_initialised = TRUE;
8239 }
8240 }
8241 else
8242 {
8243 /* The section size is not divisible by either - something is wrong. */
8244 _bfd_error_handler
8245 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8246 bfd_set_error (bfd_error_invalid_operation);
8247 return 0;
8248 }
8249 }
8250
8251 if (! use_rela_initialised)
8252 /* Make a guess. */
8253 use_rela = TRUE;
8254 }
8255 else if (rela_dyn != NULL && rela_dyn->size > 0)
8256 use_rela = TRUE;
8257 else if (rel_dyn != NULL && rel_dyn->size > 0)
8258 use_rela = FALSE;
8259 else
8260 return 0;
8261
8262 if (use_rela)
8263 {
8264 dynamic_relocs = rela_dyn;
8265 ext_size = bed->s->sizeof_rela;
8266 swap_in = bed->s->swap_reloca_in;
8267 swap_out = bed->s->swap_reloca_out;
8268 }
8269 else
8270 {
8271 dynamic_relocs = rel_dyn;
8272 ext_size = bed->s->sizeof_rel;
8273 swap_in = bed->s->swap_reloc_in;
8274 swap_out = bed->s->swap_reloc_out;
8275 }
8276
8277 size = 0;
8278 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8279 if (lo->type == bfd_indirect_link_order)
8280 size += lo->u.indirect.section->size;
8281
8282 if (size != dynamic_relocs->size)
8283 return 0;
8284
8285 sort_elt = (sizeof (struct elf_link_sort_rela)
8286 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8287
8288 count = dynamic_relocs->size / ext_size;
8289 if (count == 0)
8290 return 0;
8291 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8292
8293 if (sort == NULL)
8294 {
8295 (*info->callbacks->warning)
8296 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8297 return 0;
8298 }
8299
8300 if (bed->s->arch_size == 32)
8301 r_sym_mask = ~(bfd_vma) 0xff;
8302 else
8303 r_sym_mask = ~(bfd_vma) 0xffffffff;
8304
8305 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8306 if (lo->type == bfd_indirect_link_order)
8307 {
8308 bfd_byte *erel, *erelend;
8309 asection *o = lo->u.indirect.section;
8310
8311 if (o->contents == NULL && o->size != 0)
8312 {
8313 /* This is a reloc section that is being handled as a normal
8314 section. See bfd_section_from_shdr. We can't combine
8315 relocs in this case. */
8316 free (sort);
8317 return 0;
8318 }
8319 erel = o->contents;
8320 erelend = o->contents + o->size;
8321 /* FIXME: octets_per_byte. */
8322 p = sort + o->output_offset / ext_size * sort_elt;
8323
8324 while (erel < erelend)
8325 {
8326 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8327
8328 (*swap_in) (abfd, erel, s->rela);
8329 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8330 s->u.sym_mask = r_sym_mask;
8331 p += sort_elt;
8332 erel += ext_size;
8333 }
8334 }
8335
8336 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8337
8338 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8339 {
8340 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8341 if (s->type != reloc_class_relative)
8342 break;
8343 }
8344 ret = i;
8345 s_non_relative = p;
8346
8347 sq = (struct elf_link_sort_rela *) s_non_relative;
8348 for (; i < count; i++, p += sort_elt)
8349 {
8350 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8351 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8352 sq = sp;
8353 sp->u.offset = sq->rela->r_offset;
8354 }
8355
8356 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8357
8358 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8359 if (lo->type == bfd_indirect_link_order)
8360 {
8361 bfd_byte *erel, *erelend;
8362 asection *o = lo->u.indirect.section;
8363
8364 erel = o->contents;
8365 erelend = o->contents + o->size;
8366 /* FIXME: octets_per_byte. */
8367 p = sort + o->output_offset / ext_size * sort_elt;
8368 while (erel < erelend)
8369 {
8370 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8371 (*swap_out) (abfd, s->rela, erel);
8372 p += sort_elt;
8373 erel += ext_size;
8374 }
8375 }
8376
8377 free (sort);
8378 *psec = dynamic_relocs;
8379 return ret;
8380 }
8381
8382 /* Flush the output symbols to the file. */
8383
8384 static bfd_boolean
8385 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8386 const struct elf_backend_data *bed)
8387 {
8388 if (flinfo->symbuf_count > 0)
8389 {
8390 Elf_Internal_Shdr *hdr;
8391 file_ptr pos;
8392 bfd_size_type amt;
8393
8394 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8395 pos = hdr->sh_offset + hdr->sh_size;
8396 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8397 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8398 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8399 return FALSE;
8400
8401 hdr->sh_size += amt;
8402 flinfo->symbuf_count = 0;
8403 }
8404
8405 return TRUE;
8406 }
8407
8408 /* Add a symbol to the output symbol table. */
8409
8410 static int
8411 elf_link_output_sym (struct elf_final_link_info *flinfo,
8412 const char *name,
8413 Elf_Internal_Sym *elfsym,
8414 asection *input_sec,
8415 struct elf_link_hash_entry *h)
8416 {
8417 bfd_byte *dest;
8418 Elf_External_Sym_Shndx *destshndx;
8419 int (*output_symbol_hook)
8420 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8421 struct elf_link_hash_entry *);
8422 const struct elf_backend_data *bed;
8423
8424 bed = get_elf_backend_data (flinfo->output_bfd);
8425 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8426 if (output_symbol_hook != NULL)
8427 {
8428 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8429 if (ret != 1)
8430 return ret;
8431 }
8432
8433 if (name == NULL || *name == '\0')
8434 elfsym->st_name = 0;
8435 else if (input_sec->flags & SEC_EXCLUDE)
8436 elfsym->st_name = 0;
8437 else
8438 {
8439 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8440 name, TRUE, FALSE);
8441 if (elfsym->st_name == (unsigned long) -1)
8442 return 0;
8443 }
8444
8445 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8446 {
8447 if (! elf_link_flush_output_syms (flinfo, bed))
8448 return 0;
8449 }
8450
8451 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8452 destshndx = flinfo->symshndxbuf;
8453 if (destshndx != NULL)
8454 {
8455 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8456 {
8457 bfd_size_type amt;
8458
8459 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8460 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8461 amt * 2);
8462 if (destshndx == NULL)
8463 return 0;
8464 flinfo->symshndxbuf = destshndx;
8465 memset ((char *) destshndx + amt, 0, amt);
8466 flinfo->shndxbuf_size *= 2;
8467 }
8468 destshndx += bfd_get_symcount (flinfo->output_bfd);
8469 }
8470
8471 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8472 flinfo->symbuf_count += 1;
8473 bfd_get_symcount (flinfo->output_bfd) += 1;
8474
8475 return 1;
8476 }
8477
8478 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8479
8480 static bfd_boolean
8481 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8482 {
8483 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8484 && sym->st_shndx < SHN_LORESERVE)
8485 {
8486 /* The gABI doesn't support dynamic symbols in output sections
8487 beyond 64k. */
8488 (*_bfd_error_handler)
8489 (_("%B: Too many sections: %d (>= %d)"),
8490 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8491 bfd_set_error (bfd_error_nonrepresentable_section);
8492 return FALSE;
8493 }
8494 return TRUE;
8495 }
8496
8497 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8498 allowing an unsatisfied unversioned symbol in the DSO to match a
8499 versioned symbol that would normally require an explicit version.
8500 We also handle the case that a DSO references a hidden symbol
8501 which may be satisfied by a versioned symbol in another DSO. */
8502
8503 static bfd_boolean
8504 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8505 const struct elf_backend_data *bed,
8506 struct elf_link_hash_entry *h)
8507 {
8508 bfd *abfd;
8509 struct elf_link_loaded_list *loaded;
8510
8511 if (!is_elf_hash_table (info->hash))
8512 return FALSE;
8513
8514 /* Check indirect symbol. */
8515 while (h->root.type == bfd_link_hash_indirect)
8516 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8517
8518 switch (h->root.type)
8519 {
8520 default:
8521 abfd = NULL;
8522 break;
8523
8524 case bfd_link_hash_undefined:
8525 case bfd_link_hash_undefweak:
8526 abfd = h->root.u.undef.abfd;
8527 if ((abfd->flags & DYNAMIC) == 0
8528 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8529 return FALSE;
8530 break;
8531
8532 case bfd_link_hash_defined:
8533 case bfd_link_hash_defweak:
8534 abfd = h->root.u.def.section->owner;
8535 break;
8536
8537 case bfd_link_hash_common:
8538 abfd = h->root.u.c.p->section->owner;
8539 break;
8540 }
8541 BFD_ASSERT (abfd != NULL);
8542
8543 for (loaded = elf_hash_table (info)->loaded;
8544 loaded != NULL;
8545 loaded = loaded->next)
8546 {
8547 bfd *input;
8548 Elf_Internal_Shdr *hdr;
8549 bfd_size_type symcount;
8550 bfd_size_type extsymcount;
8551 bfd_size_type extsymoff;
8552 Elf_Internal_Shdr *versymhdr;
8553 Elf_Internal_Sym *isym;
8554 Elf_Internal_Sym *isymend;
8555 Elf_Internal_Sym *isymbuf;
8556 Elf_External_Versym *ever;
8557 Elf_External_Versym *extversym;
8558
8559 input = loaded->abfd;
8560
8561 /* We check each DSO for a possible hidden versioned definition. */
8562 if (input == abfd
8563 || (input->flags & DYNAMIC) == 0
8564 || elf_dynversym (input) == 0)
8565 continue;
8566
8567 hdr = &elf_tdata (input)->dynsymtab_hdr;
8568
8569 symcount = hdr->sh_size / bed->s->sizeof_sym;
8570 if (elf_bad_symtab (input))
8571 {
8572 extsymcount = symcount;
8573 extsymoff = 0;
8574 }
8575 else
8576 {
8577 extsymcount = symcount - hdr->sh_info;
8578 extsymoff = hdr->sh_info;
8579 }
8580
8581 if (extsymcount == 0)
8582 continue;
8583
8584 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8585 NULL, NULL, NULL);
8586 if (isymbuf == NULL)
8587 return FALSE;
8588
8589 /* Read in any version definitions. */
8590 versymhdr = &elf_tdata (input)->dynversym_hdr;
8591 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8592 if (extversym == NULL)
8593 goto error_ret;
8594
8595 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8596 || (bfd_bread (extversym, versymhdr->sh_size, input)
8597 != versymhdr->sh_size))
8598 {
8599 free (extversym);
8600 error_ret:
8601 free (isymbuf);
8602 return FALSE;
8603 }
8604
8605 ever = extversym + extsymoff;
8606 isymend = isymbuf + extsymcount;
8607 for (isym = isymbuf; isym < isymend; isym++, ever++)
8608 {
8609 const char *name;
8610 Elf_Internal_Versym iver;
8611 unsigned short version_index;
8612
8613 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8614 || isym->st_shndx == SHN_UNDEF)
8615 continue;
8616
8617 name = bfd_elf_string_from_elf_section (input,
8618 hdr->sh_link,
8619 isym->st_name);
8620 if (strcmp (name, h->root.root.string) != 0)
8621 continue;
8622
8623 _bfd_elf_swap_versym_in (input, ever, &iver);
8624
8625 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8626 && !(h->def_regular
8627 && h->forced_local))
8628 {
8629 /* If we have a non-hidden versioned sym, then it should
8630 have provided a definition for the undefined sym unless
8631 it is defined in a non-shared object and forced local.
8632 */
8633 abort ();
8634 }
8635
8636 version_index = iver.vs_vers & VERSYM_VERSION;
8637 if (version_index == 1 || version_index == 2)
8638 {
8639 /* This is the base or first version. We can use it. */
8640 free (extversym);
8641 free (isymbuf);
8642 return TRUE;
8643 }
8644 }
8645
8646 free (extversym);
8647 free (isymbuf);
8648 }
8649
8650 return FALSE;
8651 }
8652
8653 /* Add an external symbol to the symbol table. This is called from
8654 the hash table traversal routine. When generating a shared object,
8655 we go through the symbol table twice. The first time we output
8656 anything that might have been forced to local scope in a version
8657 script. The second time we output the symbols that are still
8658 global symbols. */
8659
8660 static bfd_boolean
8661 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8662 {
8663 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8664 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8665 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8666 bfd_boolean strip;
8667 Elf_Internal_Sym sym;
8668 asection *input_sec;
8669 const struct elf_backend_data *bed;
8670 long indx;
8671 int ret;
8672
8673 if (h->root.type == bfd_link_hash_warning)
8674 {
8675 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8676 if (h->root.type == bfd_link_hash_new)
8677 return TRUE;
8678 }
8679
8680 /* Decide whether to output this symbol in this pass. */
8681 if (eoinfo->localsyms)
8682 {
8683 if (!h->forced_local)
8684 return TRUE;
8685 if (eoinfo->second_pass
8686 && !((h->root.type == bfd_link_hash_defined
8687 || h->root.type == bfd_link_hash_defweak)
8688 && h->root.u.def.section->output_section != NULL))
8689 return TRUE;
8690
8691 if (!eoinfo->file_sym_done
8692 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8693 : eoinfo->flinfo->filesym_count > 1))
8694 {
8695 /* Output a FILE symbol so that following locals are not associated
8696 with the wrong input file. */
8697 memset (&sym, 0, sizeof (sym));
8698 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8699 sym.st_shndx = SHN_ABS;
8700 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8701 bfd_und_section_ptr, NULL))
8702 return FALSE;
8703
8704 eoinfo->file_sym_done = TRUE;
8705 }
8706 }
8707 else
8708 {
8709 if (h->forced_local)
8710 return TRUE;
8711 }
8712
8713 bed = get_elf_backend_data (flinfo->output_bfd);
8714
8715 if (h->root.type == bfd_link_hash_undefined)
8716 {
8717 /* If we have an undefined symbol reference here then it must have
8718 come from a shared library that is being linked in. (Undefined
8719 references in regular files have already been handled unless
8720 they are in unreferenced sections which are removed by garbage
8721 collection). */
8722 bfd_boolean ignore_undef = FALSE;
8723
8724 /* Some symbols may be special in that the fact that they're
8725 undefined can be safely ignored - let backend determine that. */
8726 if (bed->elf_backend_ignore_undef_symbol)
8727 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8728
8729 /* If we are reporting errors for this situation then do so now. */
8730 if (!ignore_undef
8731 && h->ref_dynamic
8732 && (!h->ref_regular || flinfo->info->gc_sections)
8733 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8734 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8735 {
8736 if (!(flinfo->info->callbacks->undefined_symbol
8737 (flinfo->info, h->root.root.string,
8738 h->ref_regular ? NULL : h->root.u.undef.abfd,
8739 NULL, 0,
8740 (flinfo->info->unresolved_syms_in_shared_libs
8741 == RM_GENERATE_ERROR))))
8742 {
8743 bfd_set_error (bfd_error_bad_value);
8744 eoinfo->failed = TRUE;
8745 return FALSE;
8746 }
8747 }
8748 }
8749
8750 /* We should also warn if a forced local symbol is referenced from
8751 shared libraries. */
8752 if (!flinfo->info->relocatable
8753 && flinfo->info->executable
8754 && h->forced_local
8755 && h->ref_dynamic
8756 && h->def_regular
8757 && !h->dynamic_def
8758 && h->ref_dynamic_nonweak
8759 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8760 {
8761 bfd *def_bfd;
8762 const char *msg;
8763 struct elf_link_hash_entry *hi = h;
8764
8765 /* Check indirect symbol. */
8766 while (hi->root.type == bfd_link_hash_indirect)
8767 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8768
8769 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8770 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8771 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8772 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8773 else
8774 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8775 def_bfd = flinfo->output_bfd;
8776 if (hi->root.u.def.section != bfd_abs_section_ptr)
8777 def_bfd = hi->root.u.def.section->owner;
8778 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8779 h->root.root.string);
8780 bfd_set_error (bfd_error_bad_value);
8781 eoinfo->failed = TRUE;
8782 return FALSE;
8783 }
8784
8785 /* We don't want to output symbols that have never been mentioned by
8786 a regular file, or that we have been told to strip. However, if
8787 h->indx is set to -2, the symbol is used by a reloc and we must
8788 output it. */
8789 if (h->indx == -2)
8790 strip = FALSE;
8791 else if ((h->def_dynamic
8792 || h->ref_dynamic
8793 || h->root.type == bfd_link_hash_new)
8794 && !h->def_regular
8795 && !h->ref_regular)
8796 strip = TRUE;
8797 else if (flinfo->info->strip == strip_all)
8798 strip = TRUE;
8799 else if (flinfo->info->strip == strip_some
8800 && bfd_hash_lookup (flinfo->info->keep_hash,
8801 h->root.root.string, FALSE, FALSE) == NULL)
8802 strip = TRUE;
8803 else if ((h->root.type == bfd_link_hash_defined
8804 || h->root.type == bfd_link_hash_defweak)
8805 && ((flinfo->info->strip_discarded
8806 && discarded_section (h->root.u.def.section))
8807 || (h->root.u.def.section->owner != NULL
8808 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8809 strip = TRUE;
8810 else if ((h->root.type == bfd_link_hash_undefined
8811 || h->root.type == bfd_link_hash_undefweak)
8812 && h->root.u.undef.abfd != NULL
8813 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8814 strip = TRUE;
8815 else
8816 strip = FALSE;
8817
8818 /* If we're stripping it, and it's not a dynamic symbol, there's
8819 nothing else to do unless it is a forced local symbol or a
8820 STT_GNU_IFUNC symbol. */
8821 if (strip
8822 && h->dynindx == -1
8823 && h->type != STT_GNU_IFUNC
8824 && !h->forced_local)
8825 return TRUE;
8826
8827 sym.st_value = 0;
8828 sym.st_size = h->size;
8829 sym.st_other = h->other;
8830 if (h->forced_local)
8831 {
8832 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8833 /* Turn off visibility on local symbol. */
8834 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8835 }
8836 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8837 else if (h->unique_global && h->def_regular)
8838 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8839 else if (h->root.type == bfd_link_hash_undefweak
8840 || h->root.type == bfd_link_hash_defweak)
8841 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8842 else
8843 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8844 sym.st_target_internal = h->target_internal;
8845
8846 switch (h->root.type)
8847 {
8848 default:
8849 case bfd_link_hash_new:
8850 case bfd_link_hash_warning:
8851 abort ();
8852 return FALSE;
8853
8854 case bfd_link_hash_undefined:
8855 case bfd_link_hash_undefweak:
8856 input_sec = bfd_und_section_ptr;
8857 sym.st_shndx = SHN_UNDEF;
8858 break;
8859
8860 case bfd_link_hash_defined:
8861 case bfd_link_hash_defweak:
8862 {
8863 input_sec = h->root.u.def.section;
8864 if (input_sec->output_section != NULL)
8865 {
8866 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8867 {
8868 bfd_boolean second_pass_sym
8869 = (input_sec->owner == flinfo->output_bfd
8870 || input_sec->owner == NULL
8871 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8872 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8873
8874 eoinfo->need_second_pass |= second_pass_sym;
8875 if (eoinfo->second_pass != second_pass_sym)
8876 return TRUE;
8877 }
8878
8879 sym.st_shndx =
8880 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8881 input_sec->output_section);
8882 if (sym.st_shndx == SHN_BAD)
8883 {
8884 (*_bfd_error_handler)
8885 (_("%B: could not find output section %A for input section %A"),
8886 flinfo->output_bfd, input_sec->output_section, input_sec);
8887 bfd_set_error (bfd_error_nonrepresentable_section);
8888 eoinfo->failed = TRUE;
8889 return FALSE;
8890 }
8891
8892 /* ELF symbols in relocatable files are section relative,
8893 but in nonrelocatable files they are virtual
8894 addresses. */
8895 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8896 if (!flinfo->info->relocatable)
8897 {
8898 sym.st_value += input_sec->output_section->vma;
8899 if (h->type == STT_TLS)
8900 {
8901 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8902 if (tls_sec != NULL)
8903 sym.st_value -= tls_sec->vma;
8904 else
8905 {
8906 /* The TLS section may have been garbage collected. */
8907 BFD_ASSERT (flinfo->info->gc_sections
8908 && !input_sec->gc_mark);
8909 }
8910 }
8911 }
8912 }
8913 else
8914 {
8915 BFD_ASSERT (input_sec->owner == NULL
8916 || (input_sec->owner->flags & DYNAMIC) != 0);
8917 sym.st_shndx = SHN_UNDEF;
8918 input_sec = bfd_und_section_ptr;
8919 }
8920 }
8921 break;
8922
8923 case bfd_link_hash_common:
8924 input_sec = h->root.u.c.p->section;
8925 sym.st_shndx = bed->common_section_index (input_sec);
8926 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8927 break;
8928
8929 case bfd_link_hash_indirect:
8930 /* These symbols are created by symbol versioning. They point
8931 to the decorated version of the name. For example, if the
8932 symbol foo@@GNU_1.2 is the default, which should be used when
8933 foo is used with no version, then we add an indirect symbol
8934 foo which points to foo@@GNU_1.2. We ignore these symbols,
8935 since the indirected symbol is already in the hash table. */
8936 return TRUE;
8937 }
8938
8939 /* Give the processor backend a chance to tweak the symbol value,
8940 and also to finish up anything that needs to be done for this
8941 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8942 forced local syms when non-shared is due to a historical quirk.
8943 STT_GNU_IFUNC symbol must go through PLT. */
8944 if ((h->type == STT_GNU_IFUNC
8945 && h->def_regular
8946 && !flinfo->info->relocatable)
8947 || ((h->dynindx != -1
8948 || h->forced_local)
8949 && ((flinfo->info->shared
8950 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8951 || h->root.type != bfd_link_hash_undefweak))
8952 || !h->forced_local)
8953 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8954 {
8955 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8956 (flinfo->output_bfd, flinfo->info, h, &sym)))
8957 {
8958 eoinfo->failed = TRUE;
8959 return FALSE;
8960 }
8961 }
8962
8963 /* If we are marking the symbol as undefined, and there are no
8964 non-weak references to this symbol from a regular object, then
8965 mark the symbol as weak undefined; if there are non-weak
8966 references, mark the symbol as strong. We can't do this earlier,
8967 because it might not be marked as undefined until the
8968 finish_dynamic_symbol routine gets through with it. */
8969 if (sym.st_shndx == SHN_UNDEF
8970 && h->ref_regular
8971 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8972 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8973 {
8974 int bindtype;
8975 unsigned int type = ELF_ST_TYPE (sym.st_info);
8976
8977 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8978 if (type == STT_GNU_IFUNC)
8979 type = STT_FUNC;
8980
8981 if (h->ref_regular_nonweak)
8982 bindtype = STB_GLOBAL;
8983 else
8984 bindtype = STB_WEAK;
8985 sym.st_info = ELF_ST_INFO (bindtype, type);
8986 }
8987
8988 /* If this is a symbol defined in a dynamic library, don't use the
8989 symbol size from the dynamic library. Relinking an executable
8990 against a new library may introduce gratuitous changes in the
8991 executable's symbols if we keep the size. */
8992 if (sym.st_shndx == SHN_UNDEF
8993 && !h->def_regular
8994 && h->def_dynamic)
8995 sym.st_size = 0;
8996
8997 /* If a non-weak symbol with non-default visibility is not defined
8998 locally, it is a fatal error. */
8999 if (!flinfo->info->relocatable
9000 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9001 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9002 && h->root.type == bfd_link_hash_undefined
9003 && !h->def_regular)
9004 {
9005 const char *msg;
9006
9007 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9008 msg = _("%B: protected symbol `%s' isn't defined");
9009 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9010 msg = _("%B: internal symbol `%s' isn't defined");
9011 else
9012 msg = _("%B: hidden symbol `%s' isn't defined");
9013 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9014 bfd_set_error (bfd_error_bad_value);
9015 eoinfo->failed = TRUE;
9016 return FALSE;
9017 }
9018
9019 /* If this symbol should be put in the .dynsym section, then put it
9020 there now. We already know the symbol index. We also fill in
9021 the entry in the .hash section. */
9022 if (flinfo->dynsym_sec != NULL
9023 && h->dynindx != -1
9024 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9025 {
9026 bfd_byte *esym;
9027
9028 /* Since there is no version information in the dynamic string,
9029 if there is no version info in symbol version section, we will
9030 have a run-time problem. */
9031 if (h->verinfo.verdef == NULL)
9032 {
9033 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9034
9035 if (p && p [1] != '\0')
9036 {
9037 (*_bfd_error_handler)
9038 (_("%B: No symbol version section for versioned symbol `%s'"),
9039 flinfo->output_bfd, h->root.root.string);
9040 eoinfo->failed = TRUE;
9041 return FALSE;
9042 }
9043 }
9044
9045 sym.st_name = h->dynstr_index;
9046 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9047 if (!check_dynsym (flinfo->output_bfd, &sym))
9048 {
9049 eoinfo->failed = TRUE;
9050 return FALSE;
9051 }
9052 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9053
9054 if (flinfo->hash_sec != NULL)
9055 {
9056 size_t hash_entry_size;
9057 bfd_byte *bucketpos;
9058 bfd_vma chain;
9059 size_t bucketcount;
9060 size_t bucket;
9061
9062 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9063 bucket = h->u.elf_hash_value % bucketcount;
9064
9065 hash_entry_size
9066 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9067 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9068 + (bucket + 2) * hash_entry_size);
9069 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9070 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9071 bucketpos);
9072 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9073 ((bfd_byte *) flinfo->hash_sec->contents
9074 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9075 }
9076
9077 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9078 {
9079 Elf_Internal_Versym iversym;
9080 Elf_External_Versym *eversym;
9081
9082 if (!h->def_regular)
9083 {
9084 if (h->verinfo.verdef == NULL)
9085 iversym.vs_vers = 0;
9086 else
9087 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9088 }
9089 else
9090 {
9091 if (h->verinfo.vertree == NULL)
9092 iversym.vs_vers = 1;
9093 else
9094 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9095 if (flinfo->info->create_default_symver)
9096 iversym.vs_vers++;
9097 }
9098
9099 if (h->hidden)
9100 iversym.vs_vers |= VERSYM_HIDDEN;
9101
9102 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9103 eversym += h->dynindx;
9104 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9105 }
9106 }
9107
9108 /* If we're stripping it, then it was just a dynamic symbol, and
9109 there's nothing else to do. */
9110 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9111 return TRUE;
9112
9113 indx = bfd_get_symcount (flinfo->output_bfd);
9114 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9115 if (ret == 0)
9116 {
9117 eoinfo->failed = TRUE;
9118 return FALSE;
9119 }
9120 else if (ret == 1)
9121 h->indx = indx;
9122 else if (h->indx == -2)
9123 abort();
9124
9125 return TRUE;
9126 }
9127
9128 /* Return TRUE if special handling is done for relocs in SEC against
9129 symbols defined in discarded sections. */
9130
9131 static bfd_boolean
9132 elf_section_ignore_discarded_relocs (asection *sec)
9133 {
9134 const struct elf_backend_data *bed;
9135
9136 switch (sec->sec_info_type)
9137 {
9138 case SEC_INFO_TYPE_STABS:
9139 case SEC_INFO_TYPE_EH_FRAME:
9140 return TRUE;
9141 default:
9142 break;
9143 }
9144
9145 bed = get_elf_backend_data (sec->owner);
9146 if (bed->elf_backend_ignore_discarded_relocs != NULL
9147 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9148 return TRUE;
9149
9150 return FALSE;
9151 }
9152
9153 /* Return a mask saying how ld should treat relocations in SEC against
9154 symbols defined in discarded sections. If this function returns
9155 COMPLAIN set, ld will issue a warning message. If this function
9156 returns PRETEND set, and the discarded section was link-once and the
9157 same size as the kept link-once section, ld will pretend that the
9158 symbol was actually defined in the kept section. Otherwise ld will
9159 zero the reloc (at least that is the intent, but some cooperation by
9160 the target dependent code is needed, particularly for REL targets). */
9161
9162 unsigned int
9163 _bfd_elf_default_action_discarded (asection *sec)
9164 {
9165 if (sec->flags & SEC_DEBUGGING)
9166 return PRETEND;
9167
9168 if (strcmp (".eh_frame", sec->name) == 0)
9169 return 0;
9170
9171 if (strcmp (".gcc_except_table", sec->name) == 0)
9172 return 0;
9173
9174 return COMPLAIN | PRETEND;
9175 }
9176
9177 /* Find a match between a section and a member of a section group. */
9178
9179 static asection *
9180 match_group_member (asection *sec, asection *group,
9181 struct bfd_link_info *info)
9182 {
9183 asection *first = elf_next_in_group (group);
9184 asection *s = first;
9185
9186 while (s != NULL)
9187 {
9188 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9189 return s;
9190
9191 s = elf_next_in_group (s);
9192 if (s == first)
9193 break;
9194 }
9195
9196 return NULL;
9197 }
9198
9199 /* Check if the kept section of a discarded section SEC can be used
9200 to replace it. Return the replacement if it is OK. Otherwise return
9201 NULL. */
9202
9203 asection *
9204 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9205 {
9206 asection *kept;
9207
9208 kept = sec->kept_section;
9209 if (kept != NULL)
9210 {
9211 if ((kept->flags & SEC_GROUP) != 0)
9212 kept = match_group_member (sec, kept, info);
9213 if (kept != NULL
9214 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9215 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9216 kept = NULL;
9217 sec->kept_section = kept;
9218 }
9219 return kept;
9220 }
9221
9222 /* Link an input file into the linker output file. This function
9223 handles all the sections and relocations of the input file at once.
9224 This is so that we only have to read the local symbols once, and
9225 don't have to keep them in memory. */
9226
9227 static bfd_boolean
9228 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9229 {
9230 int (*relocate_section)
9231 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9232 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9233 bfd *output_bfd;
9234 Elf_Internal_Shdr *symtab_hdr;
9235 size_t locsymcount;
9236 size_t extsymoff;
9237 Elf_Internal_Sym *isymbuf;
9238 Elf_Internal_Sym *isym;
9239 Elf_Internal_Sym *isymend;
9240 long *pindex;
9241 asection **ppsection;
9242 asection *o;
9243 const struct elf_backend_data *bed;
9244 struct elf_link_hash_entry **sym_hashes;
9245 bfd_size_type address_size;
9246 bfd_vma r_type_mask;
9247 int r_sym_shift;
9248 bfd_boolean have_file_sym = FALSE;
9249
9250 output_bfd = flinfo->output_bfd;
9251 bed = get_elf_backend_data (output_bfd);
9252 relocate_section = bed->elf_backend_relocate_section;
9253
9254 /* If this is a dynamic object, we don't want to do anything here:
9255 we don't want the local symbols, and we don't want the section
9256 contents. */
9257 if ((input_bfd->flags & DYNAMIC) != 0)
9258 return TRUE;
9259
9260 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9261 if (elf_bad_symtab (input_bfd))
9262 {
9263 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9264 extsymoff = 0;
9265 }
9266 else
9267 {
9268 locsymcount = symtab_hdr->sh_info;
9269 extsymoff = symtab_hdr->sh_info;
9270 }
9271
9272 /* Read the local symbols. */
9273 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9274 if (isymbuf == NULL && locsymcount != 0)
9275 {
9276 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9277 flinfo->internal_syms,
9278 flinfo->external_syms,
9279 flinfo->locsym_shndx);
9280 if (isymbuf == NULL)
9281 return FALSE;
9282 }
9283
9284 /* Find local symbol sections and adjust values of symbols in
9285 SEC_MERGE sections. Write out those local symbols we know are
9286 going into the output file. */
9287 isymend = isymbuf + locsymcount;
9288 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9289 isym < isymend;
9290 isym++, pindex++, ppsection++)
9291 {
9292 asection *isec;
9293 const char *name;
9294 Elf_Internal_Sym osym;
9295 long indx;
9296 int ret;
9297
9298 *pindex = -1;
9299
9300 if (elf_bad_symtab (input_bfd))
9301 {
9302 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9303 {
9304 *ppsection = NULL;
9305 continue;
9306 }
9307 }
9308
9309 if (isym->st_shndx == SHN_UNDEF)
9310 isec = bfd_und_section_ptr;
9311 else if (isym->st_shndx == SHN_ABS)
9312 isec = bfd_abs_section_ptr;
9313 else if (isym->st_shndx == SHN_COMMON)
9314 isec = bfd_com_section_ptr;
9315 else
9316 {
9317 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9318 if (isec == NULL)
9319 {
9320 /* Don't attempt to output symbols with st_shnx in the
9321 reserved range other than SHN_ABS and SHN_COMMON. */
9322 *ppsection = NULL;
9323 continue;
9324 }
9325 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9326 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9327 isym->st_value =
9328 _bfd_merged_section_offset (output_bfd, &isec,
9329 elf_section_data (isec)->sec_info,
9330 isym->st_value);
9331 }
9332
9333 *ppsection = isec;
9334
9335 /* Don't output the first, undefined, symbol. */
9336 if (ppsection == flinfo->sections)
9337 continue;
9338
9339 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9340 {
9341 /* We never output section symbols. Instead, we use the
9342 section symbol of the corresponding section in the output
9343 file. */
9344 continue;
9345 }
9346
9347 /* If we are stripping all symbols, we don't want to output this
9348 one. */
9349 if (flinfo->info->strip == strip_all)
9350 continue;
9351
9352 /* If we are discarding all local symbols, we don't want to
9353 output this one. If we are generating a relocatable output
9354 file, then some of the local symbols may be required by
9355 relocs; we output them below as we discover that they are
9356 needed. */
9357 if (flinfo->info->discard == discard_all)
9358 continue;
9359
9360 /* If this symbol is defined in a section which we are
9361 discarding, we don't need to keep it. */
9362 if (isym->st_shndx != SHN_UNDEF
9363 && isym->st_shndx < SHN_LORESERVE
9364 && bfd_section_removed_from_list (output_bfd,
9365 isec->output_section))
9366 continue;
9367
9368 /* Get the name of the symbol. */
9369 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9370 isym->st_name);
9371 if (name == NULL)
9372 return FALSE;
9373
9374 /* See if we are discarding symbols with this name. */
9375 if ((flinfo->info->strip == strip_some
9376 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9377 == NULL))
9378 || (((flinfo->info->discard == discard_sec_merge
9379 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9380 || flinfo->info->discard == discard_l)
9381 && bfd_is_local_label_name (input_bfd, name)))
9382 continue;
9383
9384 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9385 {
9386 have_file_sym = TRUE;
9387 flinfo->filesym_count += 1;
9388 }
9389 if (!have_file_sym)
9390 {
9391 /* In the absence of debug info, bfd_find_nearest_line uses
9392 FILE symbols to determine the source file for local
9393 function symbols. Provide a FILE symbol here if input
9394 files lack such, so that their symbols won't be
9395 associated with a previous input file. It's not the
9396 source file, but the best we can do. */
9397 have_file_sym = TRUE;
9398 flinfo->filesym_count += 1;
9399 memset (&osym, 0, sizeof (osym));
9400 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9401 osym.st_shndx = SHN_ABS;
9402 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9403 bfd_abs_section_ptr, NULL))
9404 return FALSE;
9405 }
9406
9407 osym = *isym;
9408
9409 /* Adjust the section index for the output file. */
9410 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9411 isec->output_section);
9412 if (osym.st_shndx == SHN_BAD)
9413 return FALSE;
9414
9415 /* ELF symbols in relocatable files are section relative, but
9416 in executable files they are virtual addresses. Note that
9417 this code assumes that all ELF sections have an associated
9418 BFD section with a reasonable value for output_offset; below
9419 we assume that they also have a reasonable value for
9420 output_section. Any special sections must be set up to meet
9421 these requirements. */
9422 osym.st_value += isec->output_offset;
9423 if (!flinfo->info->relocatable)
9424 {
9425 osym.st_value += isec->output_section->vma;
9426 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9427 {
9428 /* STT_TLS symbols are relative to PT_TLS segment base. */
9429 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9430 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9431 }
9432 }
9433
9434 indx = bfd_get_symcount (output_bfd);
9435 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9436 if (ret == 0)
9437 return FALSE;
9438 else if (ret == 1)
9439 *pindex = indx;
9440 }
9441
9442 if (bed->s->arch_size == 32)
9443 {
9444 r_type_mask = 0xff;
9445 r_sym_shift = 8;
9446 address_size = 4;
9447 }
9448 else
9449 {
9450 r_type_mask = 0xffffffff;
9451 r_sym_shift = 32;
9452 address_size = 8;
9453 }
9454
9455 /* Relocate the contents of each section. */
9456 sym_hashes = elf_sym_hashes (input_bfd);
9457 for (o = input_bfd->sections; o != NULL; o = o->next)
9458 {
9459 bfd_byte *contents;
9460
9461 if (! o->linker_mark)
9462 {
9463 /* This section was omitted from the link. */
9464 continue;
9465 }
9466
9467 if (flinfo->info->relocatable
9468 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9469 {
9470 /* Deal with the group signature symbol. */
9471 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9472 unsigned long symndx = sec_data->this_hdr.sh_info;
9473 asection *osec = o->output_section;
9474
9475 if (symndx >= locsymcount
9476 || (elf_bad_symtab (input_bfd)
9477 && flinfo->sections[symndx] == NULL))
9478 {
9479 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9480 while (h->root.type == bfd_link_hash_indirect
9481 || h->root.type == bfd_link_hash_warning)
9482 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9483 /* Arrange for symbol to be output. */
9484 h->indx = -2;
9485 elf_section_data (osec)->this_hdr.sh_info = -2;
9486 }
9487 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9488 {
9489 /* We'll use the output section target_index. */
9490 asection *sec = flinfo->sections[symndx]->output_section;
9491 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9492 }
9493 else
9494 {
9495 if (flinfo->indices[symndx] == -1)
9496 {
9497 /* Otherwise output the local symbol now. */
9498 Elf_Internal_Sym sym = isymbuf[symndx];
9499 asection *sec = flinfo->sections[symndx]->output_section;
9500 const char *name;
9501 long indx;
9502 int ret;
9503
9504 name = bfd_elf_string_from_elf_section (input_bfd,
9505 symtab_hdr->sh_link,
9506 sym.st_name);
9507 if (name == NULL)
9508 return FALSE;
9509
9510 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9511 sec);
9512 if (sym.st_shndx == SHN_BAD)
9513 return FALSE;
9514
9515 sym.st_value += o->output_offset;
9516
9517 indx = bfd_get_symcount (output_bfd);
9518 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9519 if (ret == 0)
9520 return FALSE;
9521 else if (ret == 1)
9522 flinfo->indices[symndx] = indx;
9523 else
9524 abort ();
9525 }
9526 elf_section_data (osec)->this_hdr.sh_info
9527 = flinfo->indices[symndx];
9528 }
9529 }
9530
9531 if ((o->flags & SEC_HAS_CONTENTS) == 0
9532 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9533 continue;
9534
9535 if ((o->flags & SEC_LINKER_CREATED) != 0)
9536 {
9537 /* Section was created by _bfd_elf_link_create_dynamic_sections
9538 or somesuch. */
9539 continue;
9540 }
9541
9542 /* Get the contents of the section. They have been cached by a
9543 relaxation routine. Note that o is a section in an input
9544 file, so the contents field will not have been set by any of
9545 the routines which work on output files. */
9546 if (elf_section_data (o)->this_hdr.contents != NULL)
9547 contents = elf_section_data (o)->this_hdr.contents;
9548 else
9549 {
9550 contents = flinfo->contents;
9551 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9552 return FALSE;
9553 }
9554
9555 if ((o->flags & SEC_RELOC) != 0)
9556 {
9557 Elf_Internal_Rela *internal_relocs;
9558 Elf_Internal_Rela *rel, *relend;
9559 int action_discarded;
9560 int ret;
9561
9562 /* Get the swapped relocs. */
9563 internal_relocs
9564 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9565 flinfo->internal_relocs, FALSE);
9566 if (internal_relocs == NULL
9567 && o->reloc_count > 0)
9568 return FALSE;
9569
9570 /* We need to reverse-copy input .ctors/.dtors sections if
9571 they are placed in .init_array/.finit_array for output. */
9572 if (o->size > address_size
9573 && ((strncmp (o->name, ".ctors", 6) == 0
9574 && strcmp (o->output_section->name,
9575 ".init_array") == 0)
9576 || (strncmp (o->name, ".dtors", 6) == 0
9577 && strcmp (o->output_section->name,
9578 ".fini_array") == 0))
9579 && (o->name[6] == 0 || o->name[6] == '.'))
9580 {
9581 if (o->size != o->reloc_count * address_size)
9582 {
9583 (*_bfd_error_handler)
9584 (_("error: %B: size of section %A is not "
9585 "multiple of address size"),
9586 input_bfd, o);
9587 bfd_set_error (bfd_error_on_input);
9588 return FALSE;
9589 }
9590 o->flags |= SEC_ELF_REVERSE_COPY;
9591 }
9592
9593 action_discarded = -1;
9594 if (!elf_section_ignore_discarded_relocs (o))
9595 action_discarded = (*bed->action_discarded) (o);
9596
9597 /* Run through the relocs evaluating complex reloc symbols and
9598 looking for relocs against symbols from discarded sections
9599 or section symbols from removed link-once sections.
9600 Complain about relocs against discarded sections. Zero
9601 relocs against removed link-once sections. */
9602
9603 rel = internal_relocs;
9604 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9605 for ( ; rel < relend; rel++)
9606 {
9607 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9608 unsigned int s_type;
9609 asection **ps, *sec;
9610 struct elf_link_hash_entry *h = NULL;
9611 const char *sym_name;
9612
9613 if (r_symndx == STN_UNDEF)
9614 continue;
9615
9616 if (r_symndx >= locsymcount
9617 || (elf_bad_symtab (input_bfd)
9618 && flinfo->sections[r_symndx] == NULL))
9619 {
9620 h = sym_hashes[r_symndx - extsymoff];
9621
9622 /* Badly formatted input files can contain relocs that
9623 reference non-existant symbols. Check here so that
9624 we do not seg fault. */
9625 if (h == NULL)
9626 {
9627 char buffer [32];
9628
9629 sprintf_vma (buffer, rel->r_info);
9630 (*_bfd_error_handler)
9631 (_("error: %B contains a reloc (0x%s) for section %A "
9632 "that references a non-existent global symbol"),
9633 input_bfd, o, buffer);
9634 bfd_set_error (bfd_error_bad_value);
9635 return FALSE;
9636 }
9637
9638 while (h->root.type == bfd_link_hash_indirect
9639 || h->root.type == bfd_link_hash_warning)
9640 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9641
9642 s_type = h->type;
9643
9644 ps = NULL;
9645 if (h->root.type == bfd_link_hash_defined
9646 || h->root.type == bfd_link_hash_defweak)
9647 ps = &h->root.u.def.section;
9648
9649 sym_name = h->root.root.string;
9650 }
9651 else
9652 {
9653 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9654
9655 s_type = ELF_ST_TYPE (sym->st_info);
9656 ps = &flinfo->sections[r_symndx];
9657 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9658 sym, *ps);
9659 }
9660
9661 if ((s_type == STT_RELC || s_type == STT_SRELC)
9662 && !flinfo->info->relocatable)
9663 {
9664 bfd_vma val;
9665 bfd_vma dot = (rel->r_offset
9666 + o->output_offset + o->output_section->vma);
9667 #ifdef DEBUG
9668 printf ("Encountered a complex symbol!");
9669 printf (" (input_bfd %s, section %s, reloc %ld\n",
9670 input_bfd->filename, o->name,
9671 (long) (rel - internal_relocs));
9672 printf (" symbol: idx %8.8lx, name %s\n",
9673 r_symndx, sym_name);
9674 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9675 (unsigned long) rel->r_info,
9676 (unsigned long) rel->r_offset);
9677 #endif
9678 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9679 isymbuf, locsymcount, s_type == STT_SRELC))
9680 return FALSE;
9681
9682 /* Symbol evaluated OK. Update to absolute value. */
9683 set_symbol_value (input_bfd, isymbuf, locsymcount,
9684 r_symndx, val);
9685 continue;
9686 }
9687
9688 if (action_discarded != -1 && ps != NULL)
9689 {
9690 /* Complain if the definition comes from a
9691 discarded section. */
9692 if ((sec = *ps) != NULL && discarded_section (sec))
9693 {
9694 BFD_ASSERT (r_symndx != STN_UNDEF);
9695 if (action_discarded & COMPLAIN)
9696 (*flinfo->info->callbacks->einfo)
9697 (_("%X`%s' referenced in section `%A' of %B: "
9698 "defined in discarded section `%A' of %B\n"),
9699 sym_name, o, input_bfd, sec, sec->owner);
9700
9701 /* Try to do the best we can to support buggy old
9702 versions of gcc. Pretend that the symbol is
9703 really defined in the kept linkonce section.
9704 FIXME: This is quite broken. Modifying the
9705 symbol here means we will be changing all later
9706 uses of the symbol, not just in this section. */
9707 if (action_discarded & PRETEND)
9708 {
9709 asection *kept;
9710
9711 kept = _bfd_elf_check_kept_section (sec,
9712 flinfo->info);
9713 if (kept != NULL)
9714 {
9715 *ps = kept;
9716 continue;
9717 }
9718 }
9719 }
9720 }
9721 }
9722
9723 /* Relocate the section by invoking a back end routine.
9724
9725 The back end routine is responsible for adjusting the
9726 section contents as necessary, and (if using Rela relocs
9727 and generating a relocatable output file) adjusting the
9728 reloc addend as necessary.
9729
9730 The back end routine does not have to worry about setting
9731 the reloc address or the reloc symbol index.
9732
9733 The back end routine is given a pointer to the swapped in
9734 internal symbols, and can access the hash table entries
9735 for the external symbols via elf_sym_hashes (input_bfd).
9736
9737 When generating relocatable output, the back end routine
9738 must handle STB_LOCAL/STT_SECTION symbols specially. The
9739 output symbol is going to be a section symbol
9740 corresponding to the output section, which will require
9741 the addend to be adjusted. */
9742
9743 ret = (*relocate_section) (output_bfd, flinfo->info,
9744 input_bfd, o, contents,
9745 internal_relocs,
9746 isymbuf,
9747 flinfo->sections);
9748 if (!ret)
9749 return FALSE;
9750
9751 if (ret == 2
9752 || flinfo->info->relocatable
9753 || flinfo->info->emitrelocations)
9754 {
9755 Elf_Internal_Rela *irela;
9756 Elf_Internal_Rela *irelaend, *irelamid;
9757 bfd_vma last_offset;
9758 struct elf_link_hash_entry **rel_hash;
9759 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9760 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9761 unsigned int next_erel;
9762 bfd_boolean rela_normal;
9763 struct bfd_elf_section_data *esdi, *esdo;
9764
9765 esdi = elf_section_data (o);
9766 esdo = elf_section_data (o->output_section);
9767 rela_normal = FALSE;
9768
9769 /* Adjust the reloc addresses and symbol indices. */
9770
9771 irela = internal_relocs;
9772 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9773 rel_hash = esdo->rel.hashes + esdo->rel.count;
9774 /* We start processing the REL relocs, if any. When we reach
9775 IRELAMID in the loop, we switch to the RELA relocs. */
9776 irelamid = irela;
9777 if (esdi->rel.hdr != NULL)
9778 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9779 * bed->s->int_rels_per_ext_rel);
9780 rel_hash_list = rel_hash;
9781 rela_hash_list = NULL;
9782 last_offset = o->output_offset;
9783 if (!flinfo->info->relocatable)
9784 last_offset += o->output_section->vma;
9785 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9786 {
9787 unsigned long r_symndx;
9788 asection *sec;
9789 Elf_Internal_Sym sym;
9790
9791 if (next_erel == bed->s->int_rels_per_ext_rel)
9792 {
9793 rel_hash++;
9794 next_erel = 0;
9795 }
9796
9797 if (irela == irelamid)
9798 {
9799 rel_hash = esdo->rela.hashes + esdo->rela.count;
9800 rela_hash_list = rel_hash;
9801 rela_normal = bed->rela_normal;
9802 }
9803
9804 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9805 flinfo->info, o,
9806 irela->r_offset);
9807 if (irela->r_offset >= (bfd_vma) -2)
9808 {
9809 /* This is a reloc for a deleted entry or somesuch.
9810 Turn it into an R_*_NONE reloc, at the same
9811 offset as the last reloc. elf_eh_frame.c and
9812 bfd_elf_discard_info rely on reloc offsets
9813 being ordered. */
9814 irela->r_offset = last_offset;
9815 irela->r_info = 0;
9816 irela->r_addend = 0;
9817 continue;
9818 }
9819
9820 irela->r_offset += o->output_offset;
9821
9822 /* Relocs in an executable have to be virtual addresses. */
9823 if (!flinfo->info->relocatable)
9824 irela->r_offset += o->output_section->vma;
9825
9826 last_offset = irela->r_offset;
9827
9828 r_symndx = irela->r_info >> r_sym_shift;
9829 if (r_symndx == STN_UNDEF)
9830 continue;
9831
9832 if (r_symndx >= locsymcount
9833 || (elf_bad_symtab (input_bfd)
9834 && flinfo->sections[r_symndx] == NULL))
9835 {
9836 struct elf_link_hash_entry *rh;
9837 unsigned long indx;
9838
9839 /* This is a reloc against a global symbol. We
9840 have not yet output all the local symbols, so
9841 we do not know the symbol index of any global
9842 symbol. We set the rel_hash entry for this
9843 reloc to point to the global hash table entry
9844 for this symbol. The symbol index is then
9845 set at the end of bfd_elf_final_link. */
9846 indx = r_symndx - extsymoff;
9847 rh = elf_sym_hashes (input_bfd)[indx];
9848 while (rh->root.type == bfd_link_hash_indirect
9849 || rh->root.type == bfd_link_hash_warning)
9850 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9851
9852 /* Setting the index to -2 tells
9853 elf_link_output_extsym that this symbol is
9854 used by a reloc. */
9855 BFD_ASSERT (rh->indx < 0);
9856 rh->indx = -2;
9857
9858 *rel_hash = rh;
9859
9860 continue;
9861 }
9862
9863 /* This is a reloc against a local symbol. */
9864
9865 *rel_hash = NULL;
9866 sym = isymbuf[r_symndx];
9867 sec = flinfo->sections[r_symndx];
9868 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9869 {
9870 /* I suppose the backend ought to fill in the
9871 section of any STT_SECTION symbol against a
9872 processor specific section. */
9873 r_symndx = STN_UNDEF;
9874 if (bfd_is_abs_section (sec))
9875 ;
9876 else if (sec == NULL || sec->owner == NULL)
9877 {
9878 bfd_set_error (bfd_error_bad_value);
9879 return FALSE;
9880 }
9881 else
9882 {
9883 asection *osec = sec->output_section;
9884
9885 /* If we have discarded a section, the output
9886 section will be the absolute section. In
9887 case of discarded SEC_MERGE sections, use
9888 the kept section. relocate_section should
9889 have already handled discarded linkonce
9890 sections. */
9891 if (bfd_is_abs_section (osec)
9892 && sec->kept_section != NULL
9893 && sec->kept_section->output_section != NULL)
9894 {
9895 osec = sec->kept_section->output_section;
9896 irela->r_addend -= osec->vma;
9897 }
9898
9899 if (!bfd_is_abs_section (osec))
9900 {
9901 r_symndx = osec->target_index;
9902 if (r_symndx == STN_UNDEF)
9903 {
9904 irela->r_addend += osec->vma;
9905 osec = _bfd_nearby_section (output_bfd, osec,
9906 osec->vma);
9907 irela->r_addend -= osec->vma;
9908 r_symndx = osec->target_index;
9909 }
9910 }
9911 }
9912
9913 /* Adjust the addend according to where the
9914 section winds up in the output section. */
9915 if (rela_normal)
9916 irela->r_addend += sec->output_offset;
9917 }
9918 else
9919 {
9920 if (flinfo->indices[r_symndx] == -1)
9921 {
9922 unsigned long shlink;
9923 const char *name;
9924 asection *osec;
9925 long indx;
9926
9927 if (flinfo->info->strip == strip_all)
9928 {
9929 /* You can't do ld -r -s. */
9930 bfd_set_error (bfd_error_invalid_operation);
9931 return FALSE;
9932 }
9933
9934 /* This symbol was skipped earlier, but
9935 since it is needed by a reloc, we
9936 must output it now. */
9937 shlink = symtab_hdr->sh_link;
9938 name = (bfd_elf_string_from_elf_section
9939 (input_bfd, shlink, sym.st_name));
9940 if (name == NULL)
9941 return FALSE;
9942
9943 osec = sec->output_section;
9944 sym.st_shndx =
9945 _bfd_elf_section_from_bfd_section (output_bfd,
9946 osec);
9947 if (sym.st_shndx == SHN_BAD)
9948 return FALSE;
9949
9950 sym.st_value += sec->output_offset;
9951 if (!flinfo->info->relocatable)
9952 {
9953 sym.st_value += osec->vma;
9954 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9955 {
9956 /* STT_TLS symbols are relative to PT_TLS
9957 segment base. */
9958 BFD_ASSERT (elf_hash_table (flinfo->info)
9959 ->tls_sec != NULL);
9960 sym.st_value -= (elf_hash_table (flinfo->info)
9961 ->tls_sec->vma);
9962 }
9963 }
9964
9965 indx = bfd_get_symcount (output_bfd);
9966 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9967 NULL);
9968 if (ret == 0)
9969 return FALSE;
9970 else if (ret == 1)
9971 flinfo->indices[r_symndx] = indx;
9972 else
9973 abort ();
9974 }
9975
9976 r_symndx = flinfo->indices[r_symndx];
9977 }
9978
9979 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9980 | (irela->r_info & r_type_mask));
9981 }
9982
9983 /* Swap out the relocs. */
9984 input_rel_hdr = esdi->rel.hdr;
9985 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9986 {
9987 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9988 input_rel_hdr,
9989 internal_relocs,
9990 rel_hash_list))
9991 return FALSE;
9992 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9993 * bed->s->int_rels_per_ext_rel);
9994 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9995 }
9996
9997 input_rela_hdr = esdi->rela.hdr;
9998 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9999 {
10000 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10001 input_rela_hdr,
10002 internal_relocs,
10003 rela_hash_list))
10004 return FALSE;
10005 }
10006 }
10007 }
10008
10009 /* Write out the modified section contents. */
10010 if (bed->elf_backend_write_section
10011 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10012 contents))
10013 {
10014 /* Section written out. */
10015 }
10016 else switch (o->sec_info_type)
10017 {
10018 case SEC_INFO_TYPE_STABS:
10019 if (! (_bfd_write_section_stabs
10020 (output_bfd,
10021 &elf_hash_table (flinfo->info)->stab_info,
10022 o, &elf_section_data (o)->sec_info, contents)))
10023 return FALSE;
10024 break;
10025 case SEC_INFO_TYPE_MERGE:
10026 if (! _bfd_write_merged_section (output_bfd, o,
10027 elf_section_data (o)->sec_info))
10028 return FALSE;
10029 break;
10030 case SEC_INFO_TYPE_EH_FRAME:
10031 {
10032 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10033 o, contents))
10034 return FALSE;
10035 }
10036 break;
10037 default:
10038 {
10039 /* FIXME: octets_per_byte. */
10040 if (! (o->flags & SEC_EXCLUDE))
10041 {
10042 file_ptr offset = (file_ptr) o->output_offset;
10043 bfd_size_type todo = o->size;
10044 if ((o->flags & SEC_ELF_REVERSE_COPY))
10045 {
10046 /* Reverse-copy input section to output. */
10047 do
10048 {
10049 todo -= address_size;
10050 if (! bfd_set_section_contents (output_bfd,
10051 o->output_section,
10052 contents + todo,
10053 offset,
10054 address_size))
10055 return FALSE;
10056 if (todo == 0)
10057 break;
10058 offset += address_size;
10059 }
10060 while (1);
10061 }
10062 else if (! bfd_set_section_contents (output_bfd,
10063 o->output_section,
10064 contents,
10065 offset, todo))
10066 return FALSE;
10067 }
10068 }
10069 break;
10070 }
10071 }
10072
10073 return TRUE;
10074 }
10075
10076 /* Generate a reloc when linking an ELF file. This is a reloc
10077 requested by the linker, and does not come from any input file. This
10078 is used to build constructor and destructor tables when linking
10079 with -Ur. */
10080
10081 static bfd_boolean
10082 elf_reloc_link_order (bfd *output_bfd,
10083 struct bfd_link_info *info,
10084 asection *output_section,
10085 struct bfd_link_order *link_order)
10086 {
10087 reloc_howto_type *howto;
10088 long indx;
10089 bfd_vma offset;
10090 bfd_vma addend;
10091 struct bfd_elf_section_reloc_data *reldata;
10092 struct elf_link_hash_entry **rel_hash_ptr;
10093 Elf_Internal_Shdr *rel_hdr;
10094 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10095 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10096 bfd_byte *erel;
10097 unsigned int i;
10098 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10099
10100 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10101 if (howto == NULL)
10102 {
10103 bfd_set_error (bfd_error_bad_value);
10104 return FALSE;
10105 }
10106
10107 addend = link_order->u.reloc.p->addend;
10108
10109 if (esdo->rel.hdr)
10110 reldata = &esdo->rel;
10111 else if (esdo->rela.hdr)
10112 reldata = &esdo->rela;
10113 else
10114 {
10115 reldata = NULL;
10116 BFD_ASSERT (0);
10117 }
10118
10119 /* Figure out the symbol index. */
10120 rel_hash_ptr = reldata->hashes + reldata->count;
10121 if (link_order->type == bfd_section_reloc_link_order)
10122 {
10123 indx = link_order->u.reloc.p->u.section->target_index;
10124 BFD_ASSERT (indx != 0);
10125 *rel_hash_ptr = NULL;
10126 }
10127 else
10128 {
10129 struct elf_link_hash_entry *h;
10130
10131 /* Treat a reloc against a defined symbol as though it were
10132 actually against the section. */
10133 h = ((struct elf_link_hash_entry *)
10134 bfd_wrapped_link_hash_lookup (output_bfd, info,
10135 link_order->u.reloc.p->u.name,
10136 FALSE, FALSE, TRUE));
10137 if (h != NULL
10138 && (h->root.type == bfd_link_hash_defined
10139 || h->root.type == bfd_link_hash_defweak))
10140 {
10141 asection *section;
10142
10143 section = h->root.u.def.section;
10144 indx = section->output_section->target_index;
10145 *rel_hash_ptr = NULL;
10146 /* It seems that we ought to add the symbol value to the
10147 addend here, but in practice it has already been added
10148 because it was passed to constructor_callback. */
10149 addend += section->output_section->vma + section->output_offset;
10150 }
10151 else if (h != NULL)
10152 {
10153 /* Setting the index to -2 tells elf_link_output_extsym that
10154 this symbol is used by a reloc. */
10155 h->indx = -2;
10156 *rel_hash_ptr = h;
10157 indx = 0;
10158 }
10159 else
10160 {
10161 if (! ((*info->callbacks->unattached_reloc)
10162 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10163 return FALSE;
10164 indx = 0;
10165 }
10166 }
10167
10168 /* If this is an inplace reloc, we must write the addend into the
10169 object file. */
10170 if (howto->partial_inplace && addend != 0)
10171 {
10172 bfd_size_type size;
10173 bfd_reloc_status_type rstat;
10174 bfd_byte *buf;
10175 bfd_boolean ok;
10176 const char *sym_name;
10177
10178 size = (bfd_size_type) bfd_get_reloc_size (howto);
10179 buf = (bfd_byte *) bfd_zmalloc (size);
10180 if (buf == NULL)
10181 return FALSE;
10182 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10183 switch (rstat)
10184 {
10185 case bfd_reloc_ok:
10186 break;
10187
10188 default:
10189 case bfd_reloc_outofrange:
10190 abort ();
10191
10192 case bfd_reloc_overflow:
10193 if (link_order->type == bfd_section_reloc_link_order)
10194 sym_name = bfd_section_name (output_bfd,
10195 link_order->u.reloc.p->u.section);
10196 else
10197 sym_name = link_order->u.reloc.p->u.name;
10198 if (! ((*info->callbacks->reloc_overflow)
10199 (info, NULL, sym_name, howto->name, addend, NULL,
10200 NULL, (bfd_vma) 0)))
10201 {
10202 free (buf);
10203 return FALSE;
10204 }
10205 break;
10206 }
10207 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10208 link_order->offset, size);
10209 free (buf);
10210 if (! ok)
10211 return FALSE;
10212 }
10213
10214 /* The address of a reloc is relative to the section in a
10215 relocatable file, and is a virtual address in an executable
10216 file. */
10217 offset = link_order->offset;
10218 if (! info->relocatable)
10219 offset += output_section->vma;
10220
10221 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10222 {
10223 irel[i].r_offset = offset;
10224 irel[i].r_info = 0;
10225 irel[i].r_addend = 0;
10226 }
10227 if (bed->s->arch_size == 32)
10228 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10229 else
10230 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10231
10232 rel_hdr = reldata->hdr;
10233 erel = rel_hdr->contents;
10234 if (rel_hdr->sh_type == SHT_REL)
10235 {
10236 erel += reldata->count * bed->s->sizeof_rel;
10237 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10238 }
10239 else
10240 {
10241 irel[0].r_addend = addend;
10242 erel += reldata->count * bed->s->sizeof_rela;
10243 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10244 }
10245
10246 ++reldata->count;
10247
10248 return TRUE;
10249 }
10250
10251
10252 /* Get the output vma of the section pointed to by the sh_link field. */
10253
10254 static bfd_vma
10255 elf_get_linked_section_vma (struct bfd_link_order *p)
10256 {
10257 Elf_Internal_Shdr **elf_shdrp;
10258 asection *s;
10259 int elfsec;
10260
10261 s = p->u.indirect.section;
10262 elf_shdrp = elf_elfsections (s->owner);
10263 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10264 elfsec = elf_shdrp[elfsec]->sh_link;
10265 /* PR 290:
10266 The Intel C compiler generates SHT_IA_64_UNWIND with
10267 SHF_LINK_ORDER. But it doesn't set the sh_link or
10268 sh_info fields. Hence we could get the situation
10269 where elfsec is 0. */
10270 if (elfsec == 0)
10271 {
10272 const struct elf_backend_data *bed
10273 = get_elf_backend_data (s->owner);
10274 if (bed->link_order_error_handler)
10275 bed->link_order_error_handler
10276 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10277 return 0;
10278 }
10279 else
10280 {
10281 s = elf_shdrp[elfsec]->bfd_section;
10282 return s->output_section->vma + s->output_offset;
10283 }
10284 }
10285
10286
10287 /* Compare two sections based on the locations of the sections they are
10288 linked to. Used by elf_fixup_link_order. */
10289
10290 static int
10291 compare_link_order (const void * a, const void * b)
10292 {
10293 bfd_vma apos;
10294 bfd_vma bpos;
10295
10296 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10297 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10298 if (apos < bpos)
10299 return -1;
10300 return apos > bpos;
10301 }
10302
10303
10304 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10305 order as their linked sections. Returns false if this could not be done
10306 because an output section includes both ordered and unordered
10307 sections. Ideally we'd do this in the linker proper. */
10308
10309 static bfd_boolean
10310 elf_fixup_link_order (bfd *abfd, asection *o)
10311 {
10312 int seen_linkorder;
10313 int seen_other;
10314 int n;
10315 struct bfd_link_order *p;
10316 bfd *sub;
10317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10318 unsigned elfsec;
10319 struct bfd_link_order **sections;
10320 asection *s, *other_sec, *linkorder_sec;
10321 bfd_vma offset;
10322
10323 other_sec = NULL;
10324 linkorder_sec = NULL;
10325 seen_other = 0;
10326 seen_linkorder = 0;
10327 for (p = o->map_head.link_order; p != NULL; p = p->next)
10328 {
10329 if (p->type == bfd_indirect_link_order)
10330 {
10331 s = p->u.indirect.section;
10332 sub = s->owner;
10333 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10334 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10335 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10336 && elfsec < elf_numsections (sub)
10337 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10338 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10339 {
10340 seen_linkorder++;
10341 linkorder_sec = s;
10342 }
10343 else
10344 {
10345 seen_other++;
10346 other_sec = s;
10347 }
10348 }
10349 else
10350 seen_other++;
10351
10352 if (seen_other && seen_linkorder)
10353 {
10354 if (other_sec && linkorder_sec)
10355 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10356 o, linkorder_sec,
10357 linkorder_sec->owner, other_sec,
10358 other_sec->owner);
10359 else
10360 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10361 o);
10362 bfd_set_error (bfd_error_bad_value);
10363 return FALSE;
10364 }
10365 }
10366
10367 if (!seen_linkorder)
10368 return TRUE;
10369
10370 sections = (struct bfd_link_order **)
10371 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10372 if (sections == NULL)
10373 return FALSE;
10374 seen_linkorder = 0;
10375
10376 for (p = o->map_head.link_order; p != NULL; p = p->next)
10377 {
10378 sections[seen_linkorder++] = p;
10379 }
10380 /* Sort the input sections in the order of their linked section. */
10381 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10382 compare_link_order);
10383
10384 /* Change the offsets of the sections. */
10385 offset = 0;
10386 for (n = 0; n < seen_linkorder; n++)
10387 {
10388 s = sections[n]->u.indirect.section;
10389 offset &= ~(bfd_vma) 0 << s->alignment_power;
10390 s->output_offset = offset;
10391 sections[n]->offset = offset;
10392 /* FIXME: octets_per_byte. */
10393 offset += sections[n]->size;
10394 }
10395
10396 free (sections);
10397 return TRUE;
10398 }
10399
10400 static void
10401 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10402 {
10403 asection *o;
10404
10405 if (flinfo->symstrtab != NULL)
10406 _bfd_stringtab_free (flinfo->symstrtab);
10407 if (flinfo->contents != NULL)
10408 free (flinfo->contents);
10409 if (flinfo->external_relocs != NULL)
10410 free (flinfo->external_relocs);
10411 if (flinfo->internal_relocs != NULL)
10412 free (flinfo->internal_relocs);
10413 if (flinfo->external_syms != NULL)
10414 free (flinfo->external_syms);
10415 if (flinfo->locsym_shndx != NULL)
10416 free (flinfo->locsym_shndx);
10417 if (flinfo->internal_syms != NULL)
10418 free (flinfo->internal_syms);
10419 if (flinfo->indices != NULL)
10420 free (flinfo->indices);
10421 if (flinfo->sections != NULL)
10422 free (flinfo->sections);
10423 if (flinfo->symbuf != NULL)
10424 free (flinfo->symbuf);
10425 if (flinfo->symshndxbuf != NULL)
10426 free (flinfo->symshndxbuf);
10427 for (o = obfd->sections; o != NULL; o = o->next)
10428 {
10429 struct bfd_elf_section_data *esdo = elf_section_data (o);
10430 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10431 free (esdo->rel.hashes);
10432 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10433 free (esdo->rela.hashes);
10434 }
10435 }
10436
10437 /* Do the final step of an ELF link. */
10438
10439 bfd_boolean
10440 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10441 {
10442 bfd_boolean dynamic;
10443 bfd_boolean emit_relocs;
10444 bfd *dynobj;
10445 struct elf_final_link_info flinfo;
10446 asection *o;
10447 struct bfd_link_order *p;
10448 bfd *sub;
10449 bfd_size_type max_contents_size;
10450 bfd_size_type max_external_reloc_size;
10451 bfd_size_type max_internal_reloc_count;
10452 bfd_size_type max_sym_count;
10453 bfd_size_type max_sym_shndx_count;
10454 file_ptr off;
10455 Elf_Internal_Sym elfsym;
10456 unsigned int i;
10457 Elf_Internal_Shdr *symtab_hdr;
10458 Elf_Internal_Shdr *symtab_shndx_hdr;
10459 Elf_Internal_Shdr *symstrtab_hdr;
10460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10461 struct elf_outext_info eoinfo;
10462 bfd_boolean merged;
10463 size_t relativecount = 0;
10464 asection *reldyn = 0;
10465 bfd_size_type amt;
10466 asection *attr_section = NULL;
10467 bfd_vma attr_size = 0;
10468 const char *std_attrs_section;
10469
10470 if (! is_elf_hash_table (info->hash))
10471 return FALSE;
10472
10473 if (info->shared)
10474 abfd->flags |= DYNAMIC;
10475
10476 dynamic = elf_hash_table (info)->dynamic_sections_created;
10477 dynobj = elf_hash_table (info)->dynobj;
10478
10479 emit_relocs = (info->relocatable
10480 || info->emitrelocations);
10481
10482 flinfo.info = info;
10483 flinfo.output_bfd = abfd;
10484 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10485 if (flinfo.symstrtab == NULL)
10486 return FALSE;
10487
10488 if (! dynamic)
10489 {
10490 flinfo.dynsym_sec = NULL;
10491 flinfo.hash_sec = NULL;
10492 flinfo.symver_sec = NULL;
10493 }
10494 else
10495 {
10496 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10497 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10498 /* Note that dynsym_sec can be NULL (on VMS). */
10499 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10500 /* Note that it is OK if symver_sec is NULL. */
10501 }
10502
10503 flinfo.contents = NULL;
10504 flinfo.external_relocs = NULL;
10505 flinfo.internal_relocs = NULL;
10506 flinfo.external_syms = NULL;
10507 flinfo.locsym_shndx = NULL;
10508 flinfo.internal_syms = NULL;
10509 flinfo.indices = NULL;
10510 flinfo.sections = NULL;
10511 flinfo.symbuf = NULL;
10512 flinfo.symshndxbuf = NULL;
10513 flinfo.symbuf_count = 0;
10514 flinfo.shndxbuf_size = 0;
10515 flinfo.filesym_count = 0;
10516
10517 /* The object attributes have been merged. Remove the input
10518 sections from the link, and set the contents of the output
10519 secton. */
10520 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10521 for (o = abfd->sections; o != NULL; o = o->next)
10522 {
10523 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10524 || strcmp (o->name, ".gnu.attributes") == 0)
10525 {
10526 for (p = o->map_head.link_order; p != NULL; p = p->next)
10527 {
10528 asection *input_section;
10529
10530 if (p->type != bfd_indirect_link_order)
10531 continue;
10532 input_section = p->u.indirect.section;
10533 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10534 elf_link_input_bfd ignores this section. */
10535 input_section->flags &= ~SEC_HAS_CONTENTS;
10536 }
10537
10538 attr_size = bfd_elf_obj_attr_size (abfd);
10539 if (attr_size)
10540 {
10541 bfd_set_section_size (abfd, o, attr_size);
10542 attr_section = o;
10543 /* Skip this section later on. */
10544 o->map_head.link_order = NULL;
10545 }
10546 else
10547 o->flags |= SEC_EXCLUDE;
10548 }
10549 }
10550
10551 /* Count up the number of relocations we will output for each output
10552 section, so that we know the sizes of the reloc sections. We
10553 also figure out some maximum sizes. */
10554 max_contents_size = 0;
10555 max_external_reloc_size = 0;
10556 max_internal_reloc_count = 0;
10557 max_sym_count = 0;
10558 max_sym_shndx_count = 0;
10559 merged = FALSE;
10560 for (o = abfd->sections; o != NULL; o = o->next)
10561 {
10562 struct bfd_elf_section_data *esdo = elf_section_data (o);
10563 o->reloc_count = 0;
10564
10565 for (p = o->map_head.link_order; p != NULL; p = p->next)
10566 {
10567 unsigned int reloc_count = 0;
10568 struct bfd_elf_section_data *esdi = NULL;
10569
10570 if (p->type == bfd_section_reloc_link_order
10571 || p->type == bfd_symbol_reloc_link_order)
10572 reloc_count = 1;
10573 else if (p->type == bfd_indirect_link_order)
10574 {
10575 asection *sec;
10576
10577 sec = p->u.indirect.section;
10578 esdi = elf_section_data (sec);
10579
10580 /* Mark all sections which are to be included in the
10581 link. This will normally be every section. We need
10582 to do this so that we can identify any sections which
10583 the linker has decided to not include. */
10584 sec->linker_mark = TRUE;
10585
10586 if (sec->flags & SEC_MERGE)
10587 merged = TRUE;
10588
10589 if (esdo->this_hdr.sh_type == SHT_REL
10590 || esdo->this_hdr.sh_type == SHT_RELA)
10591 /* Some backends use reloc_count in relocation sections
10592 to count particular types of relocs. Of course,
10593 reloc sections themselves can't have relocations. */
10594 reloc_count = 0;
10595 else if (info->relocatable || info->emitrelocations)
10596 reloc_count = sec->reloc_count;
10597 else if (bed->elf_backend_count_relocs)
10598 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10599
10600 if (sec->rawsize > max_contents_size)
10601 max_contents_size = sec->rawsize;
10602 if (sec->size > max_contents_size)
10603 max_contents_size = sec->size;
10604
10605 /* We are interested in just local symbols, not all
10606 symbols. */
10607 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10608 && (sec->owner->flags & DYNAMIC) == 0)
10609 {
10610 size_t sym_count;
10611
10612 if (elf_bad_symtab (sec->owner))
10613 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10614 / bed->s->sizeof_sym);
10615 else
10616 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10617
10618 if (sym_count > max_sym_count)
10619 max_sym_count = sym_count;
10620
10621 if (sym_count > max_sym_shndx_count
10622 && elf_symtab_shndx (sec->owner) != 0)
10623 max_sym_shndx_count = sym_count;
10624
10625 if ((sec->flags & SEC_RELOC) != 0)
10626 {
10627 size_t ext_size = 0;
10628
10629 if (esdi->rel.hdr != NULL)
10630 ext_size = esdi->rel.hdr->sh_size;
10631 if (esdi->rela.hdr != NULL)
10632 ext_size += esdi->rela.hdr->sh_size;
10633
10634 if (ext_size > max_external_reloc_size)
10635 max_external_reloc_size = ext_size;
10636 if (sec->reloc_count > max_internal_reloc_count)
10637 max_internal_reloc_count = sec->reloc_count;
10638 }
10639 }
10640 }
10641
10642 if (reloc_count == 0)
10643 continue;
10644
10645 o->reloc_count += reloc_count;
10646
10647 if (p->type == bfd_indirect_link_order
10648 && (info->relocatable || info->emitrelocations))
10649 {
10650 if (esdi->rel.hdr)
10651 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10652 if (esdi->rela.hdr)
10653 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10654 }
10655 else
10656 {
10657 if (o->use_rela_p)
10658 esdo->rela.count += reloc_count;
10659 else
10660 esdo->rel.count += reloc_count;
10661 }
10662 }
10663
10664 if (o->reloc_count > 0)
10665 o->flags |= SEC_RELOC;
10666 else
10667 {
10668 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10669 set it (this is probably a bug) and if it is set
10670 assign_section_numbers will create a reloc section. */
10671 o->flags &=~ SEC_RELOC;
10672 }
10673
10674 /* If the SEC_ALLOC flag is not set, force the section VMA to
10675 zero. This is done in elf_fake_sections as well, but forcing
10676 the VMA to 0 here will ensure that relocs against these
10677 sections are handled correctly. */
10678 if ((o->flags & SEC_ALLOC) == 0
10679 && ! o->user_set_vma)
10680 o->vma = 0;
10681 }
10682
10683 if (! info->relocatable && merged)
10684 elf_link_hash_traverse (elf_hash_table (info),
10685 _bfd_elf_link_sec_merge_syms, abfd);
10686
10687 /* Figure out the file positions for everything but the symbol table
10688 and the relocs. We set symcount to force assign_section_numbers
10689 to create a symbol table. */
10690 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10691 BFD_ASSERT (! abfd->output_has_begun);
10692 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10693 goto error_return;
10694
10695 /* Set sizes, and assign file positions for reloc sections. */
10696 for (o = abfd->sections; o != NULL; o = o->next)
10697 {
10698 struct bfd_elf_section_data *esdo = elf_section_data (o);
10699 if ((o->flags & SEC_RELOC) != 0)
10700 {
10701 if (esdo->rel.hdr
10702 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10703 goto error_return;
10704
10705 if (esdo->rela.hdr
10706 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10707 goto error_return;
10708 }
10709
10710 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10711 to count upwards while actually outputting the relocations. */
10712 esdo->rel.count = 0;
10713 esdo->rela.count = 0;
10714 }
10715
10716 _bfd_elf_assign_file_positions_for_relocs (abfd);
10717
10718 /* We have now assigned file positions for all the sections except
10719 .symtab and .strtab. We start the .symtab section at the current
10720 file position, and write directly to it. We build the .strtab
10721 section in memory. */
10722 bfd_get_symcount (abfd) = 0;
10723 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10724 /* sh_name is set in prep_headers. */
10725 symtab_hdr->sh_type = SHT_SYMTAB;
10726 /* sh_flags, sh_addr and sh_size all start off zero. */
10727 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10728 /* sh_link is set in assign_section_numbers. */
10729 /* sh_info is set below. */
10730 /* sh_offset is set just below. */
10731 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10732
10733 off = elf_next_file_pos (abfd);
10734 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10735
10736 /* Note that at this point elf_next_file_pos (abfd) is
10737 incorrect. We do not yet know the size of the .symtab section.
10738 We correct next_file_pos below, after we do know the size. */
10739
10740 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10741 continuously seeking to the right position in the file. */
10742 if (! info->keep_memory || max_sym_count < 20)
10743 flinfo.symbuf_size = 20;
10744 else
10745 flinfo.symbuf_size = max_sym_count;
10746 amt = flinfo.symbuf_size;
10747 amt *= bed->s->sizeof_sym;
10748 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10749 if (flinfo.symbuf == NULL)
10750 goto error_return;
10751 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10752 {
10753 /* Wild guess at number of output symbols. realloc'd as needed. */
10754 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10755 flinfo.shndxbuf_size = amt;
10756 amt *= sizeof (Elf_External_Sym_Shndx);
10757 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10758 if (flinfo.symshndxbuf == NULL)
10759 goto error_return;
10760 }
10761
10762 /* Start writing out the symbol table. The first symbol is always a
10763 dummy symbol. */
10764 if (info->strip != strip_all
10765 || emit_relocs)
10766 {
10767 elfsym.st_value = 0;
10768 elfsym.st_size = 0;
10769 elfsym.st_info = 0;
10770 elfsym.st_other = 0;
10771 elfsym.st_shndx = SHN_UNDEF;
10772 elfsym.st_target_internal = 0;
10773 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10774 NULL) != 1)
10775 goto error_return;
10776 }
10777
10778 /* Output a symbol for each section. We output these even if we are
10779 discarding local symbols, since they are used for relocs. These
10780 symbols have no names. We store the index of each one in the
10781 index field of the section, so that we can find it again when
10782 outputting relocs. */
10783 if (info->strip != strip_all
10784 || emit_relocs)
10785 {
10786 elfsym.st_size = 0;
10787 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10788 elfsym.st_other = 0;
10789 elfsym.st_value = 0;
10790 elfsym.st_target_internal = 0;
10791 for (i = 1; i < elf_numsections (abfd); i++)
10792 {
10793 o = bfd_section_from_elf_index (abfd, i);
10794 if (o != NULL)
10795 {
10796 o->target_index = bfd_get_symcount (abfd);
10797 elfsym.st_shndx = i;
10798 if (!info->relocatable)
10799 elfsym.st_value = o->vma;
10800 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10801 goto error_return;
10802 }
10803 }
10804 }
10805
10806 /* Allocate some memory to hold information read in from the input
10807 files. */
10808 if (max_contents_size != 0)
10809 {
10810 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10811 if (flinfo.contents == NULL)
10812 goto error_return;
10813 }
10814
10815 if (max_external_reloc_size != 0)
10816 {
10817 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10818 if (flinfo.external_relocs == NULL)
10819 goto error_return;
10820 }
10821
10822 if (max_internal_reloc_count != 0)
10823 {
10824 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10825 amt *= sizeof (Elf_Internal_Rela);
10826 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10827 if (flinfo.internal_relocs == NULL)
10828 goto error_return;
10829 }
10830
10831 if (max_sym_count != 0)
10832 {
10833 amt = max_sym_count * bed->s->sizeof_sym;
10834 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10835 if (flinfo.external_syms == NULL)
10836 goto error_return;
10837
10838 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10839 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10840 if (flinfo.internal_syms == NULL)
10841 goto error_return;
10842
10843 amt = max_sym_count * sizeof (long);
10844 flinfo.indices = (long int *) bfd_malloc (amt);
10845 if (flinfo.indices == NULL)
10846 goto error_return;
10847
10848 amt = max_sym_count * sizeof (asection *);
10849 flinfo.sections = (asection **) bfd_malloc (amt);
10850 if (flinfo.sections == NULL)
10851 goto error_return;
10852 }
10853
10854 if (max_sym_shndx_count != 0)
10855 {
10856 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10857 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10858 if (flinfo.locsym_shndx == NULL)
10859 goto error_return;
10860 }
10861
10862 if (elf_hash_table (info)->tls_sec)
10863 {
10864 bfd_vma base, end = 0;
10865 asection *sec;
10866
10867 for (sec = elf_hash_table (info)->tls_sec;
10868 sec && (sec->flags & SEC_THREAD_LOCAL);
10869 sec = sec->next)
10870 {
10871 bfd_size_type size = sec->size;
10872
10873 if (size == 0
10874 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10875 {
10876 struct bfd_link_order *ord = sec->map_tail.link_order;
10877
10878 if (ord != NULL)
10879 size = ord->offset + ord->size;
10880 }
10881 end = sec->vma + size;
10882 }
10883 base = elf_hash_table (info)->tls_sec->vma;
10884 /* Only align end of TLS section if static TLS doesn't have special
10885 alignment requirements. */
10886 if (bed->static_tls_alignment == 1)
10887 end = align_power (end,
10888 elf_hash_table (info)->tls_sec->alignment_power);
10889 elf_hash_table (info)->tls_size = end - base;
10890 }
10891
10892 /* Reorder SHF_LINK_ORDER sections. */
10893 for (o = abfd->sections; o != NULL; o = o->next)
10894 {
10895 if (!elf_fixup_link_order (abfd, o))
10896 return FALSE;
10897 }
10898
10899 /* Since ELF permits relocations to be against local symbols, we
10900 must have the local symbols available when we do the relocations.
10901 Since we would rather only read the local symbols once, and we
10902 would rather not keep them in memory, we handle all the
10903 relocations for a single input file at the same time.
10904
10905 Unfortunately, there is no way to know the total number of local
10906 symbols until we have seen all of them, and the local symbol
10907 indices precede the global symbol indices. This means that when
10908 we are generating relocatable output, and we see a reloc against
10909 a global symbol, we can not know the symbol index until we have
10910 finished examining all the local symbols to see which ones we are
10911 going to output. To deal with this, we keep the relocations in
10912 memory, and don't output them until the end of the link. This is
10913 an unfortunate waste of memory, but I don't see a good way around
10914 it. Fortunately, it only happens when performing a relocatable
10915 link, which is not the common case. FIXME: If keep_memory is set
10916 we could write the relocs out and then read them again; I don't
10917 know how bad the memory loss will be. */
10918
10919 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10920 sub->output_has_begun = FALSE;
10921 for (o = abfd->sections; o != NULL; o = o->next)
10922 {
10923 for (p = o->map_head.link_order; p != NULL; p = p->next)
10924 {
10925 if (p->type == bfd_indirect_link_order
10926 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10927 == bfd_target_elf_flavour)
10928 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10929 {
10930 if (! sub->output_has_begun)
10931 {
10932 if (! elf_link_input_bfd (&flinfo, sub))
10933 goto error_return;
10934 sub->output_has_begun = TRUE;
10935 }
10936 }
10937 else if (p->type == bfd_section_reloc_link_order
10938 || p->type == bfd_symbol_reloc_link_order)
10939 {
10940 if (! elf_reloc_link_order (abfd, info, o, p))
10941 goto error_return;
10942 }
10943 else
10944 {
10945 if (! _bfd_default_link_order (abfd, info, o, p))
10946 {
10947 if (p->type == bfd_indirect_link_order
10948 && (bfd_get_flavour (sub)
10949 == bfd_target_elf_flavour)
10950 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10951 != bed->s->elfclass))
10952 {
10953 const char *iclass, *oclass;
10954
10955 if (bed->s->elfclass == ELFCLASS64)
10956 {
10957 iclass = "ELFCLASS32";
10958 oclass = "ELFCLASS64";
10959 }
10960 else
10961 {
10962 iclass = "ELFCLASS64";
10963 oclass = "ELFCLASS32";
10964 }
10965
10966 bfd_set_error (bfd_error_wrong_format);
10967 (*_bfd_error_handler)
10968 (_("%B: file class %s incompatible with %s"),
10969 sub, iclass, oclass);
10970 }
10971
10972 goto error_return;
10973 }
10974 }
10975 }
10976 }
10977
10978 /* Free symbol buffer if needed. */
10979 if (!info->reduce_memory_overheads)
10980 {
10981 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10982 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10983 && elf_tdata (sub)->symbuf)
10984 {
10985 free (elf_tdata (sub)->symbuf);
10986 elf_tdata (sub)->symbuf = NULL;
10987 }
10988 }
10989
10990 /* Output any global symbols that got converted to local in a
10991 version script or due to symbol visibility. We do this in a
10992 separate step since ELF requires all local symbols to appear
10993 prior to any global symbols. FIXME: We should only do this if
10994 some global symbols were, in fact, converted to become local.
10995 FIXME: Will this work correctly with the Irix 5 linker? */
10996 eoinfo.failed = FALSE;
10997 eoinfo.flinfo = &flinfo;
10998 eoinfo.localsyms = TRUE;
10999 eoinfo.need_second_pass = FALSE;
11000 eoinfo.second_pass = FALSE;
11001 eoinfo.file_sym_done = FALSE;
11002 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11003 if (eoinfo.failed)
11004 return FALSE;
11005
11006 if (eoinfo.need_second_pass)
11007 {
11008 eoinfo.second_pass = TRUE;
11009 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11010 if (eoinfo.failed)
11011 return FALSE;
11012 }
11013
11014 /* If backend needs to output some local symbols not present in the hash
11015 table, do it now. */
11016 if (bed->elf_backend_output_arch_local_syms)
11017 {
11018 typedef int (*out_sym_func)
11019 (void *, const char *, Elf_Internal_Sym *, asection *,
11020 struct elf_link_hash_entry *);
11021
11022 if (! ((*bed->elf_backend_output_arch_local_syms)
11023 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11024 return FALSE;
11025 }
11026
11027 /* That wrote out all the local symbols. Finish up the symbol table
11028 with the global symbols. Even if we want to strip everything we
11029 can, we still need to deal with those global symbols that got
11030 converted to local in a version script. */
11031
11032 /* The sh_info field records the index of the first non local symbol. */
11033 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11034
11035 if (dynamic
11036 && flinfo.dynsym_sec != NULL
11037 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11038 {
11039 Elf_Internal_Sym sym;
11040 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11041 long last_local = 0;
11042
11043 /* Write out the section symbols for the output sections. */
11044 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11045 {
11046 asection *s;
11047
11048 sym.st_size = 0;
11049 sym.st_name = 0;
11050 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11051 sym.st_other = 0;
11052 sym.st_target_internal = 0;
11053
11054 for (s = abfd->sections; s != NULL; s = s->next)
11055 {
11056 int indx;
11057 bfd_byte *dest;
11058 long dynindx;
11059
11060 dynindx = elf_section_data (s)->dynindx;
11061 if (dynindx <= 0)
11062 continue;
11063 indx = elf_section_data (s)->this_idx;
11064 BFD_ASSERT (indx > 0);
11065 sym.st_shndx = indx;
11066 if (! check_dynsym (abfd, &sym))
11067 return FALSE;
11068 sym.st_value = s->vma;
11069 dest = dynsym + dynindx * bed->s->sizeof_sym;
11070 if (last_local < dynindx)
11071 last_local = dynindx;
11072 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11073 }
11074 }
11075
11076 /* Write out the local dynsyms. */
11077 if (elf_hash_table (info)->dynlocal)
11078 {
11079 struct elf_link_local_dynamic_entry *e;
11080 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11081 {
11082 asection *s;
11083 bfd_byte *dest;
11084
11085 /* Copy the internal symbol and turn off visibility.
11086 Note that we saved a word of storage and overwrote
11087 the original st_name with the dynstr_index. */
11088 sym = e->isym;
11089 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11090
11091 s = bfd_section_from_elf_index (e->input_bfd,
11092 e->isym.st_shndx);
11093 if (s != NULL)
11094 {
11095 sym.st_shndx =
11096 elf_section_data (s->output_section)->this_idx;
11097 if (! check_dynsym (abfd, &sym))
11098 return FALSE;
11099 sym.st_value = (s->output_section->vma
11100 + s->output_offset
11101 + e->isym.st_value);
11102 }
11103
11104 if (last_local < e->dynindx)
11105 last_local = e->dynindx;
11106
11107 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11108 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11109 }
11110 }
11111
11112 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11113 last_local + 1;
11114 }
11115
11116 /* We get the global symbols from the hash table. */
11117 eoinfo.failed = FALSE;
11118 eoinfo.localsyms = FALSE;
11119 eoinfo.flinfo = &flinfo;
11120 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11121 if (eoinfo.failed)
11122 return FALSE;
11123
11124 /* If backend needs to output some symbols not present in the hash
11125 table, do it now. */
11126 if (bed->elf_backend_output_arch_syms)
11127 {
11128 typedef int (*out_sym_func)
11129 (void *, const char *, Elf_Internal_Sym *, asection *,
11130 struct elf_link_hash_entry *);
11131
11132 if (! ((*bed->elf_backend_output_arch_syms)
11133 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11134 return FALSE;
11135 }
11136
11137 /* Flush all symbols to the file. */
11138 if (! elf_link_flush_output_syms (&flinfo, bed))
11139 return FALSE;
11140
11141 /* Now we know the size of the symtab section. */
11142 off += symtab_hdr->sh_size;
11143
11144 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11145 if (symtab_shndx_hdr->sh_name != 0)
11146 {
11147 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11148 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11149 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11150 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11151 symtab_shndx_hdr->sh_size = amt;
11152
11153 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11154 off, TRUE);
11155
11156 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11157 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11158 return FALSE;
11159 }
11160
11161
11162 /* Finish up and write out the symbol string table (.strtab)
11163 section. */
11164 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11165 /* sh_name was set in prep_headers. */
11166 symstrtab_hdr->sh_type = SHT_STRTAB;
11167 symstrtab_hdr->sh_flags = 0;
11168 symstrtab_hdr->sh_addr = 0;
11169 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11170 symstrtab_hdr->sh_entsize = 0;
11171 symstrtab_hdr->sh_link = 0;
11172 symstrtab_hdr->sh_info = 0;
11173 /* sh_offset is set just below. */
11174 symstrtab_hdr->sh_addralign = 1;
11175
11176 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11177 elf_next_file_pos (abfd) = off;
11178
11179 if (bfd_get_symcount (abfd) > 0)
11180 {
11181 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11182 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11183 return FALSE;
11184 }
11185
11186 /* Adjust the relocs to have the correct symbol indices. */
11187 for (o = abfd->sections; o != NULL; o = o->next)
11188 {
11189 struct bfd_elf_section_data *esdo = elf_section_data (o);
11190 if ((o->flags & SEC_RELOC) == 0)
11191 continue;
11192
11193 if (esdo->rel.hdr != NULL)
11194 elf_link_adjust_relocs (abfd, &esdo->rel);
11195 if (esdo->rela.hdr != NULL)
11196 elf_link_adjust_relocs (abfd, &esdo->rela);
11197
11198 /* Set the reloc_count field to 0 to prevent write_relocs from
11199 trying to swap the relocs out itself. */
11200 o->reloc_count = 0;
11201 }
11202
11203 if (dynamic && info->combreloc && dynobj != NULL)
11204 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11205
11206 /* If we are linking against a dynamic object, or generating a
11207 shared library, finish up the dynamic linking information. */
11208 if (dynamic)
11209 {
11210 bfd_byte *dyncon, *dynconend;
11211
11212 /* Fix up .dynamic entries. */
11213 o = bfd_get_linker_section (dynobj, ".dynamic");
11214 BFD_ASSERT (o != NULL);
11215
11216 dyncon = o->contents;
11217 dynconend = o->contents + o->size;
11218 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11219 {
11220 Elf_Internal_Dyn dyn;
11221 const char *name;
11222 unsigned int type;
11223
11224 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11225
11226 switch (dyn.d_tag)
11227 {
11228 default:
11229 continue;
11230 case DT_NULL:
11231 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11232 {
11233 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11234 {
11235 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11236 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11237 default: continue;
11238 }
11239 dyn.d_un.d_val = relativecount;
11240 relativecount = 0;
11241 break;
11242 }
11243 continue;
11244
11245 case DT_INIT:
11246 name = info->init_function;
11247 goto get_sym;
11248 case DT_FINI:
11249 name = info->fini_function;
11250 get_sym:
11251 {
11252 struct elf_link_hash_entry *h;
11253
11254 h = elf_link_hash_lookup (elf_hash_table (info), name,
11255 FALSE, FALSE, TRUE);
11256 if (h != NULL
11257 && (h->root.type == bfd_link_hash_defined
11258 || h->root.type == bfd_link_hash_defweak))
11259 {
11260 dyn.d_un.d_ptr = h->root.u.def.value;
11261 o = h->root.u.def.section;
11262 if (o->output_section != NULL)
11263 dyn.d_un.d_ptr += (o->output_section->vma
11264 + o->output_offset);
11265 else
11266 {
11267 /* The symbol is imported from another shared
11268 library and does not apply to this one. */
11269 dyn.d_un.d_ptr = 0;
11270 }
11271 break;
11272 }
11273 }
11274 continue;
11275
11276 case DT_PREINIT_ARRAYSZ:
11277 name = ".preinit_array";
11278 goto get_size;
11279 case DT_INIT_ARRAYSZ:
11280 name = ".init_array";
11281 goto get_size;
11282 case DT_FINI_ARRAYSZ:
11283 name = ".fini_array";
11284 get_size:
11285 o = bfd_get_section_by_name (abfd, name);
11286 if (o == NULL)
11287 {
11288 (*_bfd_error_handler)
11289 (_("%B: could not find output section %s"), abfd, name);
11290 goto error_return;
11291 }
11292 if (o->size == 0)
11293 (*_bfd_error_handler)
11294 (_("warning: %s section has zero size"), name);
11295 dyn.d_un.d_val = o->size;
11296 break;
11297
11298 case DT_PREINIT_ARRAY:
11299 name = ".preinit_array";
11300 goto get_vma;
11301 case DT_INIT_ARRAY:
11302 name = ".init_array";
11303 goto get_vma;
11304 case DT_FINI_ARRAY:
11305 name = ".fini_array";
11306 goto get_vma;
11307
11308 case DT_HASH:
11309 name = ".hash";
11310 goto get_vma;
11311 case DT_GNU_HASH:
11312 name = ".gnu.hash";
11313 goto get_vma;
11314 case DT_STRTAB:
11315 name = ".dynstr";
11316 goto get_vma;
11317 case DT_SYMTAB:
11318 name = ".dynsym";
11319 goto get_vma;
11320 case DT_VERDEF:
11321 name = ".gnu.version_d";
11322 goto get_vma;
11323 case DT_VERNEED:
11324 name = ".gnu.version_r";
11325 goto get_vma;
11326 case DT_VERSYM:
11327 name = ".gnu.version";
11328 get_vma:
11329 o = bfd_get_section_by_name (abfd, name);
11330 if (o == NULL)
11331 {
11332 (*_bfd_error_handler)
11333 (_("%B: could not find output section %s"), abfd, name);
11334 goto error_return;
11335 }
11336 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11337 {
11338 (*_bfd_error_handler)
11339 (_("warning: section '%s' is being made into a note"), name);
11340 bfd_set_error (bfd_error_nonrepresentable_section);
11341 goto error_return;
11342 }
11343 dyn.d_un.d_ptr = o->vma;
11344 break;
11345
11346 case DT_REL:
11347 case DT_RELA:
11348 case DT_RELSZ:
11349 case DT_RELASZ:
11350 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11351 type = SHT_REL;
11352 else
11353 type = SHT_RELA;
11354 dyn.d_un.d_val = 0;
11355 dyn.d_un.d_ptr = 0;
11356 for (i = 1; i < elf_numsections (abfd); i++)
11357 {
11358 Elf_Internal_Shdr *hdr;
11359
11360 hdr = elf_elfsections (abfd)[i];
11361 if (hdr->sh_type == type
11362 && (hdr->sh_flags & SHF_ALLOC) != 0)
11363 {
11364 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11365 dyn.d_un.d_val += hdr->sh_size;
11366 else
11367 {
11368 if (dyn.d_un.d_ptr == 0
11369 || hdr->sh_addr < dyn.d_un.d_ptr)
11370 dyn.d_un.d_ptr = hdr->sh_addr;
11371 }
11372 }
11373 }
11374 break;
11375 }
11376 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11377 }
11378 }
11379
11380 /* If we have created any dynamic sections, then output them. */
11381 if (dynobj != NULL)
11382 {
11383 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11384 goto error_return;
11385
11386 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11387 if (((info->warn_shared_textrel && info->shared)
11388 || info->error_textrel)
11389 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11390 {
11391 bfd_byte *dyncon, *dynconend;
11392
11393 dyncon = o->contents;
11394 dynconend = o->contents + o->size;
11395 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11396 {
11397 Elf_Internal_Dyn dyn;
11398
11399 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11400
11401 if (dyn.d_tag == DT_TEXTREL)
11402 {
11403 if (info->error_textrel)
11404 info->callbacks->einfo
11405 (_("%P%X: read-only segment has dynamic relocations.\n"));
11406 else
11407 info->callbacks->einfo
11408 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11409 break;
11410 }
11411 }
11412 }
11413
11414 for (o = dynobj->sections; o != NULL; o = o->next)
11415 {
11416 if ((o->flags & SEC_HAS_CONTENTS) == 0
11417 || o->size == 0
11418 || o->output_section == bfd_abs_section_ptr)
11419 continue;
11420 if ((o->flags & SEC_LINKER_CREATED) == 0)
11421 {
11422 /* At this point, we are only interested in sections
11423 created by _bfd_elf_link_create_dynamic_sections. */
11424 continue;
11425 }
11426 if (elf_hash_table (info)->stab_info.stabstr == o)
11427 continue;
11428 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11429 continue;
11430 if (strcmp (o->name, ".dynstr") != 0)
11431 {
11432 /* FIXME: octets_per_byte. */
11433 if (! bfd_set_section_contents (abfd, o->output_section,
11434 o->contents,
11435 (file_ptr) o->output_offset,
11436 o->size))
11437 goto error_return;
11438 }
11439 else
11440 {
11441 /* The contents of the .dynstr section are actually in a
11442 stringtab. */
11443 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11444 if (bfd_seek (abfd, off, SEEK_SET) != 0
11445 || ! _bfd_elf_strtab_emit (abfd,
11446 elf_hash_table (info)->dynstr))
11447 goto error_return;
11448 }
11449 }
11450 }
11451
11452 if (info->relocatable)
11453 {
11454 bfd_boolean failed = FALSE;
11455
11456 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11457 if (failed)
11458 goto error_return;
11459 }
11460
11461 /* If we have optimized stabs strings, output them. */
11462 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11463 {
11464 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11465 goto error_return;
11466 }
11467
11468 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11469 goto error_return;
11470
11471 elf_final_link_free (abfd, &flinfo);
11472
11473 elf_linker (abfd) = TRUE;
11474
11475 if (attr_section)
11476 {
11477 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11478 if (contents == NULL)
11479 return FALSE; /* Bail out and fail. */
11480 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11481 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11482 free (contents);
11483 }
11484
11485 return TRUE;
11486
11487 error_return:
11488 elf_final_link_free (abfd, &flinfo);
11489 return FALSE;
11490 }
11491 \f
11492 /* Initialize COOKIE for input bfd ABFD. */
11493
11494 static bfd_boolean
11495 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11496 struct bfd_link_info *info, bfd *abfd)
11497 {
11498 Elf_Internal_Shdr *symtab_hdr;
11499 const struct elf_backend_data *bed;
11500
11501 bed = get_elf_backend_data (abfd);
11502 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11503
11504 cookie->abfd = abfd;
11505 cookie->sym_hashes = elf_sym_hashes (abfd);
11506 cookie->bad_symtab = elf_bad_symtab (abfd);
11507 if (cookie->bad_symtab)
11508 {
11509 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11510 cookie->extsymoff = 0;
11511 }
11512 else
11513 {
11514 cookie->locsymcount = symtab_hdr->sh_info;
11515 cookie->extsymoff = symtab_hdr->sh_info;
11516 }
11517
11518 if (bed->s->arch_size == 32)
11519 cookie->r_sym_shift = 8;
11520 else
11521 cookie->r_sym_shift = 32;
11522
11523 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11524 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11525 {
11526 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11527 cookie->locsymcount, 0,
11528 NULL, NULL, NULL);
11529 if (cookie->locsyms == NULL)
11530 {
11531 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11532 return FALSE;
11533 }
11534 if (info->keep_memory)
11535 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11536 }
11537 return TRUE;
11538 }
11539
11540 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11541
11542 static void
11543 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11544 {
11545 Elf_Internal_Shdr *symtab_hdr;
11546
11547 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11548 if (cookie->locsyms != NULL
11549 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11550 free (cookie->locsyms);
11551 }
11552
11553 /* Initialize the relocation information in COOKIE for input section SEC
11554 of input bfd ABFD. */
11555
11556 static bfd_boolean
11557 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11558 struct bfd_link_info *info, bfd *abfd,
11559 asection *sec)
11560 {
11561 const struct elf_backend_data *bed;
11562
11563 if (sec->reloc_count == 0)
11564 {
11565 cookie->rels = NULL;
11566 cookie->relend = NULL;
11567 }
11568 else
11569 {
11570 bed = get_elf_backend_data (abfd);
11571
11572 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11573 info->keep_memory);
11574 if (cookie->rels == NULL)
11575 return FALSE;
11576 cookie->rel = cookie->rels;
11577 cookie->relend = (cookie->rels
11578 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11579 }
11580 cookie->rel = cookie->rels;
11581 return TRUE;
11582 }
11583
11584 /* Free the memory allocated by init_reloc_cookie_rels,
11585 if appropriate. */
11586
11587 static void
11588 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11589 asection *sec)
11590 {
11591 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11592 free (cookie->rels);
11593 }
11594
11595 /* Initialize the whole of COOKIE for input section SEC. */
11596
11597 static bfd_boolean
11598 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11599 struct bfd_link_info *info,
11600 asection *sec)
11601 {
11602 if (!init_reloc_cookie (cookie, info, sec->owner))
11603 goto error1;
11604 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11605 goto error2;
11606 return TRUE;
11607
11608 error2:
11609 fini_reloc_cookie (cookie, sec->owner);
11610 error1:
11611 return FALSE;
11612 }
11613
11614 /* Free the memory allocated by init_reloc_cookie_for_section,
11615 if appropriate. */
11616
11617 static void
11618 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11619 asection *sec)
11620 {
11621 fini_reloc_cookie_rels (cookie, sec);
11622 fini_reloc_cookie (cookie, sec->owner);
11623 }
11624 \f
11625 /* Garbage collect unused sections. */
11626
11627 /* Default gc_mark_hook. */
11628
11629 asection *
11630 _bfd_elf_gc_mark_hook (asection *sec,
11631 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11632 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11633 struct elf_link_hash_entry *h,
11634 Elf_Internal_Sym *sym)
11635 {
11636 const char *sec_name;
11637
11638 if (h != NULL)
11639 {
11640 switch (h->root.type)
11641 {
11642 case bfd_link_hash_defined:
11643 case bfd_link_hash_defweak:
11644 return h->root.u.def.section;
11645
11646 case bfd_link_hash_common:
11647 return h->root.u.c.p->section;
11648
11649 case bfd_link_hash_undefined:
11650 case bfd_link_hash_undefweak:
11651 /* To work around a glibc bug, keep all XXX input sections
11652 when there is an as yet undefined reference to __start_XXX
11653 or __stop_XXX symbols. The linker will later define such
11654 symbols for orphan input sections that have a name
11655 representable as a C identifier. */
11656 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11657 sec_name = h->root.root.string + 8;
11658 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11659 sec_name = h->root.root.string + 7;
11660 else
11661 sec_name = NULL;
11662
11663 if (sec_name && *sec_name != '\0')
11664 {
11665 bfd *i;
11666
11667 for (i = info->input_bfds; i; i = i->link_next)
11668 {
11669 sec = bfd_get_section_by_name (i, sec_name);
11670 if (sec)
11671 sec->flags |= SEC_KEEP;
11672 }
11673 }
11674 break;
11675
11676 default:
11677 break;
11678 }
11679 }
11680 else
11681 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11682
11683 return NULL;
11684 }
11685
11686 /* COOKIE->rel describes a relocation against section SEC, which is
11687 a section we've decided to keep. Return the section that contains
11688 the relocation symbol, or NULL if no section contains it. */
11689
11690 asection *
11691 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11692 elf_gc_mark_hook_fn gc_mark_hook,
11693 struct elf_reloc_cookie *cookie)
11694 {
11695 unsigned long r_symndx;
11696 struct elf_link_hash_entry *h;
11697
11698 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11699 if (r_symndx == STN_UNDEF)
11700 return NULL;
11701
11702 if (r_symndx >= cookie->locsymcount
11703 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11704 {
11705 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11706 while (h->root.type == bfd_link_hash_indirect
11707 || h->root.type == bfd_link_hash_warning)
11708 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11709 h->mark = 1;
11710 /* If this symbol is weak and there is a non-weak definition, we
11711 keep the non-weak definition because many backends put
11712 dynamic reloc info on the non-weak definition for code
11713 handling copy relocs. */
11714 if (h->u.weakdef != NULL)
11715 h->u.weakdef->mark = 1;
11716 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11717 }
11718
11719 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11720 &cookie->locsyms[r_symndx]);
11721 }
11722
11723 /* COOKIE->rel describes a relocation against section SEC, which is
11724 a section we've decided to keep. Mark the section that contains
11725 the relocation symbol. */
11726
11727 bfd_boolean
11728 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11729 asection *sec,
11730 elf_gc_mark_hook_fn gc_mark_hook,
11731 struct elf_reloc_cookie *cookie)
11732 {
11733 asection *rsec;
11734
11735 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11736 if (rsec && !rsec->gc_mark)
11737 {
11738 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11739 || (rsec->owner->flags & DYNAMIC) != 0)
11740 rsec->gc_mark = 1;
11741 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11742 return FALSE;
11743 }
11744 return TRUE;
11745 }
11746
11747 /* The mark phase of garbage collection. For a given section, mark
11748 it and any sections in this section's group, and all the sections
11749 which define symbols to which it refers. */
11750
11751 bfd_boolean
11752 _bfd_elf_gc_mark (struct bfd_link_info *info,
11753 asection *sec,
11754 elf_gc_mark_hook_fn gc_mark_hook)
11755 {
11756 bfd_boolean ret;
11757 asection *group_sec, *eh_frame;
11758
11759 sec->gc_mark = 1;
11760
11761 /* Mark all the sections in the group. */
11762 group_sec = elf_section_data (sec)->next_in_group;
11763 if (group_sec && !group_sec->gc_mark)
11764 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11765 return FALSE;
11766
11767 /* Look through the section relocs. */
11768 ret = TRUE;
11769 eh_frame = elf_eh_frame_section (sec->owner);
11770 if ((sec->flags & SEC_RELOC) != 0
11771 && sec->reloc_count > 0
11772 && sec != eh_frame)
11773 {
11774 struct elf_reloc_cookie cookie;
11775
11776 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11777 ret = FALSE;
11778 else
11779 {
11780 for (; cookie.rel < cookie.relend; cookie.rel++)
11781 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11782 {
11783 ret = FALSE;
11784 break;
11785 }
11786 fini_reloc_cookie_for_section (&cookie, sec);
11787 }
11788 }
11789
11790 if (ret && eh_frame && elf_fde_list (sec))
11791 {
11792 struct elf_reloc_cookie cookie;
11793
11794 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11795 ret = FALSE;
11796 else
11797 {
11798 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11799 gc_mark_hook, &cookie))
11800 ret = FALSE;
11801 fini_reloc_cookie_for_section (&cookie, eh_frame);
11802 }
11803 }
11804
11805 return ret;
11806 }
11807
11808 /* Keep debug and special sections. */
11809
11810 bfd_boolean
11811 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11812 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11813 {
11814 bfd *ibfd;
11815
11816 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11817 {
11818 asection *isec;
11819 bfd_boolean some_kept;
11820 bfd_boolean debug_frag_seen;
11821
11822 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11823 continue;
11824
11825 /* Ensure all linker created sections are kept,
11826 see if any other section is already marked,
11827 and note if we have any fragmented debug sections. */
11828 debug_frag_seen = some_kept = FALSE;
11829 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11830 {
11831 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11832 isec->gc_mark = 1;
11833 else if (isec->gc_mark)
11834 some_kept = TRUE;
11835
11836 if (debug_frag_seen == FALSE
11837 && (isec->flags & SEC_DEBUGGING)
11838 && CONST_STRNEQ (isec->name, ".debug_line."))
11839 debug_frag_seen = TRUE;
11840 }
11841
11842 /* If no section in this file will be kept, then we can
11843 toss out the debug and special sections. */
11844 if (!some_kept)
11845 continue;
11846
11847 /* Keep debug and special sections like .comment when they are
11848 not part of a group, or when we have single-member groups. */
11849 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11850 if ((elf_next_in_group (isec) == NULL
11851 || elf_next_in_group (isec) == isec)
11852 && ((isec->flags & SEC_DEBUGGING) != 0
11853 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11854 isec->gc_mark = 1;
11855
11856 if (! debug_frag_seen)
11857 continue;
11858
11859 /* Look for CODE sections which are going to be discarded,
11860 and find and discard any fragmented debug sections which
11861 are associated with that code section. */
11862 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11863 if ((isec->flags & SEC_CODE) != 0
11864 && isec->gc_mark == 0)
11865 {
11866 unsigned int ilen;
11867 asection *dsec;
11868
11869 ilen = strlen (isec->name);
11870
11871 /* Association is determined by the name of the debug section
11872 containing the name of the code section as a suffix. For
11873 example .debug_line.text.foo is a debug section associated
11874 with .text.foo. */
11875 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11876 {
11877 unsigned int dlen;
11878
11879 if (dsec->gc_mark == 0
11880 || (dsec->flags & SEC_DEBUGGING) == 0)
11881 continue;
11882
11883 dlen = strlen (dsec->name);
11884
11885 if (dlen > ilen
11886 && strncmp (dsec->name + (dlen - ilen),
11887 isec->name, ilen) == 0)
11888 {
11889 dsec->gc_mark = 0;
11890 break;
11891 }
11892 }
11893 }
11894 }
11895 return TRUE;
11896 }
11897
11898 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11899
11900 struct elf_gc_sweep_symbol_info
11901 {
11902 struct bfd_link_info *info;
11903 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11904 bfd_boolean);
11905 };
11906
11907 static bfd_boolean
11908 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11909 {
11910 if (!h->mark
11911 && (((h->root.type == bfd_link_hash_defined
11912 || h->root.type == bfd_link_hash_defweak)
11913 && !(h->def_regular
11914 && h->root.u.def.section->gc_mark))
11915 || h->root.type == bfd_link_hash_undefined
11916 || h->root.type == bfd_link_hash_undefweak))
11917 {
11918 struct elf_gc_sweep_symbol_info *inf;
11919
11920 inf = (struct elf_gc_sweep_symbol_info *) data;
11921 (*inf->hide_symbol) (inf->info, h, TRUE);
11922 h->def_regular = 0;
11923 h->ref_regular = 0;
11924 h->ref_regular_nonweak = 0;
11925 }
11926
11927 return TRUE;
11928 }
11929
11930 /* The sweep phase of garbage collection. Remove all garbage sections. */
11931
11932 typedef bfd_boolean (*gc_sweep_hook_fn)
11933 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11934
11935 static bfd_boolean
11936 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11937 {
11938 bfd *sub;
11939 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11940 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11941 unsigned long section_sym_count;
11942 struct elf_gc_sweep_symbol_info sweep_info;
11943
11944 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11945 {
11946 asection *o;
11947
11948 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11949 continue;
11950
11951 for (o = sub->sections; o != NULL; o = o->next)
11952 {
11953 /* When any section in a section group is kept, we keep all
11954 sections in the section group. If the first member of
11955 the section group is excluded, we will also exclude the
11956 group section. */
11957 if (o->flags & SEC_GROUP)
11958 {
11959 asection *first = elf_next_in_group (o);
11960 o->gc_mark = first->gc_mark;
11961 }
11962
11963 if (o->gc_mark)
11964 continue;
11965
11966 /* Skip sweeping sections already excluded. */
11967 if (o->flags & SEC_EXCLUDE)
11968 continue;
11969
11970 /* Since this is early in the link process, it is simple
11971 to remove a section from the output. */
11972 o->flags |= SEC_EXCLUDE;
11973
11974 if (info->print_gc_sections && o->size != 0)
11975 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11976
11977 /* But we also have to update some of the relocation
11978 info we collected before. */
11979 if (gc_sweep_hook
11980 && (o->flags & SEC_RELOC) != 0
11981 && o->reloc_count > 0
11982 && !bfd_is_abs_section (o->output_section))
11983 {
11984 Elf_Internal_Rela *internal_relocs;
11985 bfd_boolean r;
11986
11987 internal_relocs
11988 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11989 info->keep_memory);
11990 if (internal_relocs == NULL)
11991 return FALSE;
11992
11993 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11994
11995 if (elf_section_data (o)->relocs != internal_relocs)
11996 free (internal_relocs);
11997
11998 if (!r)
11999 return FALSE;
12000 }
12001 }
12002 }
12003
12004 /* Remove the symbols that were in the swept sections from the dynamic
12005 symbol table. GCFIXME: Anyone know how to get them out of the
12006 static symbol table as well? */
12007 sweep_info.info = info;
12008 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12009 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12010 &sweep_info);
12011
12012 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12013 return TRUE;
12014 }
12015
12016 /* Propagate collected vtable information. This is called through
12017 elf_link_hash_traverse. */
12018
12019 static bfd_boolean
12020 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12021 {
12022 /* Those that are not vtables. */
12023 if (h->vtable == NULL || h->vtable->parent == NULL)
12024 return TRUE;
12025
12026 /* Those vtables that do not have parents, we cannot merge. */
12027 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12028 return TRUE;
12029
12030 /* If we've already been done, exit. */
12031 if (h->vtable->used && h->vtable->used[-1])
12032 return TRUE;
12033
12034 /* Make sure the parent's table is up to date. */
12035 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12036
12037 if (h->vtable->used == NULL)
12038 {
12039 /* None of this table's entries were referenced. Re-use the
12040 parent's table. */
12041 h->vtable->used = h->vtable->parent->vtable->used;
12042 h->vtable->size = h->vtable->parent->vtable->size;
12043 }
12044 else
12045 {
12046 size_t n;
12047 bfd_boolean *cu, *pu;
12048
12049 /* Or the parent's entries into ours. */
12050 cu = h->vtable->used;
12051 cu[-1] = TRUE;
12052 pu = h->vtable->parent->vtable->used;
12053 if (pu != NULL)
12054 {
12055 const struct elf_backend_data *bed;
12056 unsigned int log_file_align;
12057
12058 bed = get_elf_backend_data (h->root.u.def.section->owner);
12059 log_file_align = bed->s->log_file_align;
12060 n = h->vtable->parent->vtable->size >> log_file_align;
12061 while (n--)
12062 {
12063 if (*pu)
12064 *cu = TRUE;
12065 pu++;
12066 cu++;
12067 }
12068 }
12069 }
12070
12071 return TRUE;
12072 }
12073
12074 static bfd_boolean
12075 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12076 {
12077 asection *sec;
12078 bfd_vma hstart, hend;
12079 Elf_Internal_Rela *relstart, *relend, *rel;
12080 const struct elf_backend_data *bed;
12081 unsigned int log_file_align;
12082
12083 /* Take care of both those symbols that do not describe vtables as
12084 well as those that are not loaded. */
12085 if (h->vtable == NULL || h->vtable->parent == NULL)
12086 return TRUE;
12087
12088 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12089 || h->root.type == bfd_link_hash_defweak);
12090
12091 sec = h->root.u.def.section;
12092 hstart = h->root.u.def.value;
12093 hend = hstart + h->size;
12094
12095 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12096 if (!relstart)
12097 return *(bfd_boolean *) okp = FALSE;
12098 bed = get_elf_backend_data (sec->owner);
12099 log_file_align = bed->s->log_file_align;
12100
12101 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12102
12103 for (rel = relstart; rel < relend; ++rel)
12104 if (rel->r_offset >= hstart && rel->r_offset < hend)
12105 {
12106 /* If the entry is in use, do nothing. */
12107 if (h->vtable->used
12108 && (rel->r_offset - hstart) < h->vtable->size)
12109 {
12110 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12111 if (h->vtable->used[entry])
12112 continue;
12113 }
12114 /* Otherwise, kill it. */
12115 rel->r_offset = rel->r_info = rel->r_addend = 0;
12116 }
12117
12118 return TRUE;
12119 }
12120
12121 /* Mark sections containing dynamically referenced symbols. When
12122 building shared libraries, we must assume that any visible symbol is
12123 referenced. */
12124
12125 bfd_boolean
12126 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12127 {
12128 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12129
12130 if ((h->root.type == bfd_link_hash_defined
12131 || h->root.type == bfd_link_hash_defweak)
12132 && (h->ref_dynamic
12133 || ((!info->executable || info->export_dynamic)
12134 && h->def_regular
12135 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12136 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12137 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12138 || !bfd_hide_sym_by_version (info->version_info,
12139 h->root.root.string)))))
12140 h->root.u.def.section->flags |= SEC_KEEP;
12141
12142 return TRUE;
12143 }
12144
12145 /* Keep all sections containing symbols undefined on the command-line,
12146 and the section containing the entry symbol. */
12147
12148 void
12149 _bfd_elf_gc_keep (struct bfd_link_info *info)
12150 {
12151 struct bfd_sym_chain *sym;
12152
12153 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12154 {
12155 struct elf_link_hash_entry *h;
12156
12157 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12158 FALSE, FALSE, FALSE);
12159
12160 if (h != NULL
12161 && (h->root.type == bfd_link_hash_defined
12162 || h->root.type == bfd_link_hash_defweak)
12163 && !bfd_is_abs_section (h->root.u.def.section))
12164 h->root.u.def.section->flags |= SEC_KEEP;
12165 }
12166 }
12167
12168 /* Do mark and sweep of unused sections. */
12169
12170 bfd_boolean
12171 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12172 {
12173 bfd_boolean ok = TRUE;
12174 bfd *sub;
12175 elf_gc_mark_hook_fn gc_mark_hook;
12176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12177
12178 if (!bed->can_gc_sections
12179 || !is_elf_hash_table (info->hash))
12180 {
12181 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12182 return TRUE;
12183 }
12184
12185 bed->gc_keep (info);
12186
12187 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12188 at the .eh_frame section if we can mark the FDEs individually. */
12189 _bfd_elf_begin_eh_frame_parsing (info);
12190 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12191 {
12192 asection *sec;
12193 struct elf_reloc_cookie cookie;
12194
12195 sec = bfd_get_section_by_name (sub, ".eh_frame");
12196 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12197 {
12198 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12199 if (elf_section_data (sec)->sec_info
12200 && (sec->flags & SEC_LINKER_CREATED) == 0)
12201 elf_eh_frame_section (sub) = sec;
12202 fini_reloc_cookie_for_section (&cookie, sec);
12203 sec = bfd_get_next_section_by_name (sec);
12204 }
12205 }
12206 _bfd_elf_end_eh_frame_parsing (info);
12207
12208 /* Apply transitive closure to the vtable entry usage info. */
12209 elf_link_hash_traverse (elf_hash_table (info),
12210 elf_gc_propagate_vtable_entries_used,
12211 &ok);
12212 if (!ok)
12213 return FALSE;
12214
12215 /* Kill the vtable relocations that were not used. */
12216 elf_link_hash_traverse (elf_hash_table (info),
12217 elf_gc_smash_unused_vtentry_relocs,
12218 &ok);
12219 if (!ok)
12220 return FALSE;
12221
12222 /* Mark dynamically referenced symbols. */
12223 if (elf_hash_table (info)->dynamic_sections_created)
12224 elf_link_hash_traverse (elf_hash_table (info),
12225 bed->gc_mark_dynamic_ref,
12226 info);
12227
12228 /* Grovel through relocs to find out who stays ... */
12229 gc_mark_hook = bed->gc_mark_hook;
12230 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12231 {
12232 asection *o;
12233
12234 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12235 continue;
12236
12237 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12238 Also treat note sections as a root, if the section is not part
12239 of a group. */
12240 for (o = sub->sections; o != NULL; o = o->next)
12241 if (!o->gc_mark
12242 && (o->flags & SEC_EXCLUDE) == 0
12243 && ((o->flags & SEC_KEEP) != 0
12244 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12245 && elf_next_in_group (o) == NULL )))
12246 {
12247 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12248 return FALSE;
12249 }
12250 }
12251
12252 /* Allow the backend to mark additional target specific sections. */
12253 bed->gc_mark_extra_sections (info, gc_mark_hook);
12254
12255 /* ... and mark SEC_EXCLUDE for those that go. */
12256 return elf_gc_sweep (abfd, info);
12257 }
12258 \f
12259 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12260
12261 bfd_boolean
12262 bfd_elf_gc_record_vtinherit (bfd *abfd,
12263 asection *sec,
12264 struct elf_link_hash_entry *h,
12265 bfd_vma offset)
12266 {
12267 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12268 struct elf_link_hash_entry **search, *child;
12269 bfd_size_type extsymcount;
12270 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12271
12272 /* The sh_info field of the symtab header tells us where the
12273 external symbols start. We don't care about the local symbols at
12274 this point. */
12275 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12276 if (!elf_bad_symtab (abfd))
12277 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12278
12279 sym_hashes = elf_sym_hashes (abfd);
12280 sym_hashes_end = sym_hashes + extsymcount;
12281
12282 /* Hunt down the child symbol, which is in this section at the same
12283 offset as the relocation. */
12284 for (search = sym_hashes; search != sym_hashes_end; ++search)
12285 {
12286 if ((child = *search) != NULL
12287 && (child->root.type == bfd_link_hash_defined
12288 || child->root.type == bfd_link_hash_defweak)
12289 && child->root.u.def.section == sec
12290 && child->root.u.def.value == offset)
12291 goto win;
12292 }
12293
12294 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12295 abfd, sec, (unsigned long) offset);
12296 bfd_set_error (bfd_error_invalid_operation);
12297 return FALSE;
12298
12299 win:
12300 if (!child->vtable)
12301 {
12302 child->vtable = (struct elf_link_virtual_table_entry *)
12303 bfd_zalloc (abfd, sizeof (*child->vtable));
12304 if (!child->vtable)
12305 return FALSE;
12306 }
12307 if (!h)
12308 {
12309 /* This *should* only be the absolute section. It could potentially
12310 be that someone has defined a non-global vtable though, which
12311 would be bad. It isn't worth paging in the local symbols to be
12312 sure though; that case should simply be handled by the assembler. */
12313
12314 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12315 }
12316 else
12317 child->vtable->parent = h;
12318
12319 return TRUE;
12320 }
12321
12322 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12323
12324 bfd_boolean
12325 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12326 asection *sec ATTRIBUTE_UNUSED,
12327 struct elf_link_hash_entry *h,
12328 bfd_vma addend)
12329 {
12330 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12331 unsigned int log_file_align = bed->s->log_file_align;
12332
12333 if (!h->vtable)
12334 {
12335 h->vtable = (struct elf_link_virtual_table_entry *)
12336 bfd_zalloc (abfd, sizeof (*h->vtable));
12337 if (!h->vtable)
12338 return FALSE;
12339 }
12340
12341 if (addend >= h->vtable->size)
12342 {
12343 size_t size, bytes, file_align;
12344 bfd_boolean *ptr = h->vtable->used;
12345
12346 /* While the symbol is undefined, we have to be prepared to handle
12347 a zero size. */
12348 file_align = 1 << log_file_align;
12349 if (h->root.type == bfd_link_hash_undefined)
12350 size = addend + file_align;
12351 else
12352 {
12353 size = h->size;
12354 if (addend >= size)
12355 {
12356 /* Oops! We've got a reference past the defined end of
12357 the table. This is probably a bug -- shall we warn? */
12358 size = addend + file_align;
12359 }
12360 }
12361 size = (size + file_align - 1) & -file_align;
12362
12363 /* Allocate one extra entry for use as a "done" flag for the
12364 consolidation pass. */
12365 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12366
12367 if (ptr)
12368 {
12369 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12370
12371 if (ptr != NULL)
12372 {
12373 size_t oldbytes;
12374
12375 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12376 * sizeof (bfd_boolean));
12377 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12378 }
12379 }
12380 else
12381 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12382
12383 if (ptr == NULL)
12384 return FALSE;
12385
12386 /* And arrange for that done flag to be at index -1. */
12387 h->vtable->used = ptr + 1;
12388 h->vtable->size = size;
12389 }
12390
12391 h->vtable->used[addend >> log_file_align] = TRUE;
12392
12393 return TRUE;
12394 }
12395
12396 /* Map an ELF section header flag to its corresponding string. */
12397 typedef struct
12398 {
12399 char *flag_name;
12400 flagword flag_value;
12401 } elf_flags_to_name_table;
12402
12403 static elf_flags_to_name_table elf_flags_to_names [] =
12404 {
12405 { "SHF_WRITE", SHF_WRITE },
12406 { "SHF_ALLOC", SHF_ALLOC },
12407 { "SHF_EXECINSTR", SHF_EXECINSTR },
12408 { "SHF_MERGE", SHF_MERGE },
12409 { "SHF_STRINGS", SHF_STRINGS },
12410 { "SHF_INFO_LINK", SHF_INFO_LINK},
12411 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12412 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12413 { "SHF_GROUP", SHF_GROUP },
12414 { "SHF_TLS", SHF_TLS },
12415 { "SHF_MASKOS", SHF_MASKOS },
12416 { "SHF_EXCLUDE", SHF_EXCLUDE },
12417 };
12418
12419 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12420 bfd_boolean
12421 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12422 struct flag_info *flaginfo,
12423 asection *section)
12424 {
12425 const bfd_vma sh_flags = elf_section_flags (section);
12426
12427 if (!flaginfo->flags_initialized)
12428 {
12429 bfd *obfd = info->output_bfd;
12430 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12431 struct flag_info_list *tf = flaginfo->flag_list;
12432 int with_hex = 0;
12433 int without_hex = 0;
12434
12435 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12436 {
12437 unsigned i;
12438 flagword (*lookup) (char *);
12439
12440 lookup = bed->elf_backend_lookup_section_flags_hook;
12441 if (lookup != NULL)
12442 {
12443 flagword hexval = (*lookup) ((char *) tf->name);
12444
12445 if (hexval != 0)
12446 {
12447 if (tf->with == with_flags)
12448 with_hex |= hexval;
12449 else if (tf->with == without_flags)
12450 without_hex |= hexval;
12451 tf->valid = TRUE;
12452 continue;
12453 }
12454 }
12455 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12456 {
12457 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12458 {
12459 if (tf->with == with_flags)
12460 with_hex |= elf_flags_to_names[i].flag_value;
12461 else if (tf->with == without_flags)
12462 without_hex |= elf_flags_to_names[i].flag_value;
12463 tf->valid = TRUE;
12464 break;
12465 }
12466 }
12467 if (!tf->valid)
12468 {
12469 info->callbacks->einfo
12470 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12471 return FALSE;
12472 }
12473 }
12474 flaginfo->flags_initialized = TRUE;
12475 flaginfo->only_with_flags |= with_hex;
12476 flaginfo->not_with_flags |= without_hex;
12477 }
12478
12479 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12480 return FALSE;
12481
12482 if ((flaginfo->not_with_flags & sh_flags) != 0)
12483 return FALSE;
12484
12485 return TRUE;
12486 }
12487
12488 struct alloc_got_off_arg {
12489 bfd_vma gotoff;
12490 struct bfd_link_info *info;
12491 };
12492
12493 /* We need a special top-level link routine to convert got reference counts
12494 to real got offsets. */
12495
12496 static bfd_boolean
12497 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12498 {
12499 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12500 bfd *obfd = gofarg->info->output_bfd;
12501 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12502
12503 if (h->got.refcount > 0)
12504 {
12505 h->got.offset = gofarg->gotoff;
12506 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12507 }
12508 else
12509 h->got.offset = (bfd_vma) -1;
12510
12511 return TRUE;
12512 }
12513
12514 /* And an accompanying bit to work out final got entry offsets once
12515 we're done. Should be called from final_link. */
12516
12517 bfd_boolean
12518 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12519 struct bfd_link_info *info)
12520 {
12521 bfd *i;
12522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12523 bfd_vma gotoff;
12524 struct alloc_got_off_arg gofarg;
12525
12526 BFD_ASSERT (abfd == info->output_bfd);
12527
12528 if (! is_elf_hash_table (info->hash))
12529 return FALSE;
12530
12531 /* The GOT offset is relative to the .got section, but the GOT header is
12532 put into the .got.plt section, if the backend uses it. */
12533 if (bed->want_got_plt)
12534 gotoff = 0;
12535 else
12536 gotoff = bed->got_header_size;
12537
12538 /* Do the local .got entries first. */
12539 for (i = info->input_bfds; i; i = i->link_next)
12540 {
12541 bfd_signed_vma *local_got;
12542 bfd_size_type j, locsymcount;
12543 Elf_Internal_Shdr *symtab_hdr;
12544
12545 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12546 continue;
12547
12548 local_got = elf_local_got_refcounts (i);
12549 if (!local_got)
12550 continue;
12551
12552 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12553 if (elf_bad_symtab (i))
12554 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12555 else
12556 locsymcount = symtab_hdr->sh_info;
12557
12558 for (j = 0; j < locsymcount; ++j)
12559 {
12560 if (local_got[j] > 0)
12561 {
12562 local_got[j] = gotoff;
12563 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12564 }
12565 else
12566 local_got[j] = (bfd_vma) -1;
12567 }
12568 }
12569
12570 /* Then the global .got entries. .plt refcounts are handled by
12571 adjust_dynamic_symbol */
12572 gofarg.gotoff = gotoff;
12573 gofarg.info = info;
12574 elf_link_hash_traverse (elf_hash_table (info),
12575 elf_gc_allocate_got_offsets,
12576 &gofarg);
12577 return TRUE;
12578 }
12579
12580 /* Many folk need no more in the way of final link than this, once
12581 got entry reference counting is enabled. */
12582
12583 bfd_boolean
12584 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12585 {
12586 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12587 return FALSE;
12588
12589 /* Invoke the regular ELF backend linker to do all the work. */
12590 return bfd_elf_final_link (abfd, info);
12591 }
12592
12593 bfd_boolean
12594 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12595 {
12596 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12597
12598 if (rcookie->bad_symtab)
12599 rcookie->rel = rcookie->rels;
12600
12601 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12602 {
12603 unsigned long r_symndx;
12604
12605 if (! rcookie->bad_symtab)
12606 if (rcookie->rel->r_offset > offset)
12607 return FALSE;
12608 if (rcookie->rel->r_offset != offset)
12609 continue;
12610
12611 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12612 if (r_symndx == STN_UNDEF)
12613 return TRUE;
12614
12615 if (r_symndx >= rcookie->locsymcount
12616 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12617 {
12618 struct elf_link_hash_entry *h;
12619
12620 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12621
12622 while (h->root.type == bfd_link_hash_indirect
12623 || h->root.type == bfd_link_hash_warning)
12624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12625
12626 if ((h->root.type == bfd_link_hash_defined
12627 || h->root.type == bfd_link_hash_defweak)
12628 && discarded_section (h->root.u.def.section))
12629 return TRUE;
12630 else
12631 return FALSE;
12632 }
12633 else
12634 {
12635 /* It's not a relocation against a global symbol,
12636 but it could be a relocation against a local
12637 symbol for a discarded section. */
12638 asection *isec;
12639 Elf_Internal_Sym *isym;
12640
12641 /* Need to: get the symbol; get the section. */
12642 isym = &rcookie->locsyms[r_symndx];
12643 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12644 if (isec != NULL && discarded_section (isec))
12645 return TRUE;
12646 }
12647 return FALSE;
12648 }
12649 return FALSE;
12650 }
12651
12652 /* Discard unneeded references to discarded sections.
12653 Returns TRUE if any section's size was changed. */
12654 /* This function assumes that the relocations are in sorted order,
12655 which is true for all known assemblers. */
12656
12657 bfd_boolean
12658 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12659 {
12660 struct elf_reloc_cookie cookie;
12661 asection *stab, *eh;
12662 const struct elf_backend_data *bed;
12663 bfd *abfd;
12664 bfd_boolean ret = FALSE;
12665
12666 if (info->traditional_format
12667 || !is_elf_hash_table (info->hash))
12668 return FALSE;
12669
12670 _bfd_elf_begin_eh_frame_parsing (info);
12671 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12672 {
12673 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12674 continue;
12675
12676 bed = get_elf_backend_data (abfd);
12677
12678 eh = NULL;
12679 if (!info->relocatable)
12680 {
12681 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12682 while (eh != NULL
12683 && (eh->size == 0
12684 || bfd_is_abs_section (eh->output_section)))
12685 eh = bfd_get_next_section_by_name (eh);
12686 }
12687
12688 stab = bfd_get_section_by_name (abfd, ".stab");
12689 if (stab != NULL
12690 && (stab->size == 0
12691 || bfd_is_abs_section (stab->output_section)
12692 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12693 stab = NULL;
12694
12695 if (stab == NULL
12696 && eh == NULL
12697 && bed->elf_backend_discard_info == NULL)
12698 continue;
12699
12700 if (!init_reloc_cookie (&cookie, info, abfd))
12701 return FALSE;
12702
12703 if (stab != NULL
12704 && stab->reloc_count > 0
12705 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12706 {
12707 if (_bfd_discard_section_stabs (abfd, stab,
12708 elf_section_data (stab)->sec_info,
12709 bfd_elf_reloc_symbol_deleted_p,
12710 &cookie))
12711 ret = TRUE;
12712 fini_reloc_cookie_rels (&cookie, stab);
12713 }
12714
12715 while (eh != NULL
12716 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12717 {
12718 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12719 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12720 bfd_elf_reloc_symbol_deleted_p,
12721 &cookie))
12722 ret = TRUE;
12723 fini_reloc_cookie_rels (&cookie, eh);
12724 eh = bfd_get_next_section_by_name (eh);
12725 }
12726
12727 if (bed->elf_backend_discard_info != NULL
12728 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12729 ret = TRUE;
12730
12731 fini_reloc_cookie (&cookie, abfd);
12732 }
12733 _bfd_elf_end_eh_frame_parsing (info);
12734
12735 if (info->eh_frame_hdr
12736 && !info->relocatable
12737 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12738 ret = TRUE;
12739
12740 return ret;
12741 }
12742
12743 bfd_boolean
12744 _bfd_elf_section_already_linked (bfd *abfd,
12745 asection *sec,
12746 struct bfd_link_info *info)
12747 {
12748 flagword flags;
12749 const char *name, *key;
12750 struct bfd_section_already_linked *l;
12751 struct bfd_section_already_linked_hash_entry *already_linked_list;
12752
12753 if (sec->output_section == bfd_abs_section_ptr)
12754 return FALSE;
12755
12756 flags = sec->flags;
12757
12758 /* Return if it isn't a linkonce section. A comdat group section
12759 also has SEC_LINK_ONCE set. */
12760 if ((flags & SEC_LINK_ONCE) == 0)
12761 return FALSE;
12762
12763 /* Don't put group member sections on our list of already linked
12764 sections. They are handled as a group via their group section. */
12765 if (elf_sec_group (sec) != NULL)
12766 return FALSE;
12767
12768 /* For a SHT_GROUP section, use the group signature as the key. */
12769 name = sec->name;
12770 if ((flags & SEC_GROUP) != 0
12771 && elf_next_in_group (sec) != NULL
12772 && elf_group_name (elf_next_in_group (sec)) != NULL)
12773 key = elf_group_name (elf_next_in_group (sec));
12774 else
12775 {
12776 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12777 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12778 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12779 key++;
12780 else
12781 /* Must be a user linkonce section that doesn't follow gcc's
12782 naming convention. In this case we won't be matching
12783 single member groups. */
12784 key = name;
12785 }
12786
12787 already_linked_list = bfd_section_already_linked_table_lookup (key);
12788
12789 for (l = already_linked_list->entry; l != NULL; l = l->next)
12790 {
12791 /* We may have 2 different types of sections on the list: group
12792 sections with a signature of <key> (<key> is some string),
12793 and linkonce sections named .gnu.linkonce.<type>.<key>.
12794 Match like sections. LTO plugin sections are an exception.
12795 They are always named .gnu.linkonce.t.<key> and match either
12796 type of section. */
12797 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12798 && ((flags & SEC_GROUP) != 0
12799 || strcmp (name, l->sec->name) == 0))
12800 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12801 {
12802 /* The section has already been linked. See if we should
12803 issue a warning. */
12804 if (!_bfd_handle_already_linked (sec, l, info))
12805 return FALSE;
12806
12807 if (flags & SEC_GROUP)
12808 {
12809 asection *first = elf_next_in_group (sec);
12810 asection *s = first;
12811
12812 while (s != NULL)
12813 {
12814 s->output_section = bfd_abs_section_ptr;
12815 /* Record which group discards it. */
12816 s->kept_section = l->sec;
12817 s = elf_next_in_group (s);
12818 /* These lists are circular. */
12819 if (s == first)
12820 break;
12821 }
12822 }
12823
12824 return TRUE;
12825 }
12826 }
12827
12828 /* A single member comdat group section may be discarded by a
12829 linkonce section and vice versa. */
12830 if ((flags & SEC_GROUP) != 0)
12831 {
12832 asection *first = elf_next_in_group (sec);
12833
12834 if (first != NULL && elf_next_in_group (first) == first)
12835 /* Check this single member group against linkonce sections. */
12836 for (l = already_linked_list->entry; l != NULL; l = l->next)
12837 if ((l->sec->flags & SEC_GROUP) == 0
12838 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12839 {
12840 first->output_section = bfd_abs_section_ptr;
12841 first->kept_section = l->sec;
12842 sec->output_section = bfd_abs_section_ptr;
12843 break;
12844 }
12845 }
12846 else
12847 /* Check this linkonce section against single member groups. */
12848 for (l = already_linked_list->entry; l != NULL; l = l->next)
12849 if (l->sec->flags & SEC_GROUP)
12850 {
12851 asection *first = elf_next_in_group (l->sec);
12852
12853 if (first != NULL
12854 && elf_next_in_group (first) == first
12855 && bfd_elf_match_symbols_in_sections (first, sec, info))
12856 {
12857 sec->output_section = bfd_abs_section_ptr;
12858 sec->kept_section = first;
12859 break;
12860 }
12861 }
12862
12863 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12864 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12865 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12866 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12867 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12868 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12869 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12870 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12871 The reverse order cannot happen as there is never a bfd with only the
12872 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12873 matter as here were are looking only for cross-bfd sections. */
12874
12875 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12876 for (l = already_linked_list->entry; l != NULL; l = l->next)
12877 if ((l->sec->flags & SEC_GROUP) == 0
12878 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12879 {
12880 if (abfd != l->sec->owner)
12881 sec->output_section = bfd_abs_section_ptr;
12882 break;
12883 }
12884
12885 /* This is the first section with this name. Record it. */
12886 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12887 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12888 return sec->output_section == bfd_abs_section_ptr;
12889 }
12890
12891 bfd_boolean
12892 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12893 {
12894 return sym->st_shndx == SHN_COMMON;
12895 }
12896
12897 unsigned int
12898 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12899 {
12900 return SHN_COMMON;
12901 }
12902
12903 asection *
12904 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12905 {
12906 return bfd_com_section_ptr;
12907 }
12908
12909 bfd_vma
12910 _bfd_elf_default_got_elt_size (bfd *abfd,
12911 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12912 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12913 bfd *ibfd ATTRIBUTE_UNUSED,
12914 unsigned long symndx ATTRIBUTE_UNUSED)
12915 {
12916 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12917 return bed->s->arch_size / 8;
12918 }
12919
12920 /* Routines to support the creation of dynamic relocs. */
12921
12922 /* Returns the name of the dynamic reloc section associated with SEC. */
12923
12924 static const char *
12925 get_dynamic_reloc_section_name (bfd * abfd,
12926 asection * sec,
12927 bfd_boolean is_rela)
12928 {
12929 char *name;
12930 const char *old_name = bfd_get_section_name (NULL, sec);
12931 const char *prefix = is_rela ? ".rela" : ".rel";
12932
12933 if (old_name == NULL)
12934 return NULL;
12935
12936 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12937 sprintf (name, "%s%s", prefix, old_name);
12938
12939 return name;
12940 }
12941
12942 /* Returns the dynamic reloc section associated with SEC.
12943 If necessary compute the name of the dynamic reloc section based
12944 on SEC's name (looked up in ABFD's string table) and the setting
12945 of IS_RELA. */
12946
12947 asection *
12948 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12949 asection * sec,
12950 bfd_boolean is_rela)
12951 {
12952 asection * reloc_sec = elf_section_data (sec)->sreloc;
12953
12954 if (reloc_sec == NULL)
12955 {
12956 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12957
12958 if (name != NULL)
12959 {
12960 reloc_sec = bfd_get_linker_section (abfd, name);
12961
12962 if (reloc_sec != NULL)
12963 elf_section_data (sec)->sreloc = reloc_sec;
12964 }
12965 }
12966
12967 return reloc_sec;
12968 }
12969
12970 /* Returns the dynamic reloc section associated with SEC. If the
12971 section does not exist it is created and attached to the DYNOBJ
12972 bfd and stored in the SRELOC field of SEC's elf_section_data
12973 structure.
12974
12975 ALIGNMENT is the alignment for the newly created section and
12976 IS_RELA defines whether the name should be .rela.<SEC's name>
12977 or .rel.<SEC's name>. The section name is looked up in the
12978 string table associated with ABFD. */
12979
12980 asection *
12981 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12982 bfd * dynobj,
12983 unsigned int alignment,
12984 bfd * abfd,
12985 bfd_boolean is_rela)
12986 {
12987 asection * reloc_sec = elf_section_data (sec)->sreloc;
12988
12989 if (reloc_sec == NULL)
12990 {
12991 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12992
12993 if (name == NULL)
12994 return NULL;
12995
12996 reloc_sec = bfd_get_linker_section (dynobj, name);
12997
12998 if (reloc_sec == NULL)
12999 {
13000 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13001 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13002 if ((sec->flags & SEC_ALLOC) != 0)
13003 flags |= SEC_ALLOC | SEC_LOAD;
13004
13005 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13006 if (reloc_sec != NULL)
13007 {
13008 /* _bfd_elf_get_sec_type_attr chooses a section type by
13009 name. Override as it may be wrong, eg. for a user
13010 section named "auto" we'll get ".relauto" which is
13011 seen to be a .rela section. */
13012 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13013 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13014 reloc_sec = NULL;
13015 }
13016 }
13017
13018 elf_section_data (sec)->sreloc = reloc_sec;
13019 }
13020
13021 return reloc_sec;
13022 }
13023
13024 /* Copy the ELF symbol type associated with a linker hash entry. */
13025 void
13026 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13027 struct bfd_link_hash_entry * hdest,
13028 struct bfd_link_hash_entry * hsrc)
13029 {
13030 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13031 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13032
13033 ehdest->type = ehsrc->type;
13034 ehdest->target_internal = ehsrc->target_internal;
13035 }
13036
13037 /* Append a RELA relocation REL to section S in BFD. */
13038
13039 void
13040 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13041 {
13042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13043 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13044 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13045 bed->s->swap_reloca_out (abfd, rel, loc);
13046 }
13047
13048 /* Append a REL relocation REL to section S in BFD. */
13049
13050 void
13051 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13052 {
13053 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13054 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13055 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13056 bed->s->swap_reloc_out (abfd, rel, loc);
13057 }
This page took 0.509386 seconds and 4 git commands to generate.