Support i386 TLS code sequences without PLT
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
34
35 struct elf_info_failed
36 {
37 struct bfd_link_info *info;
38 bfd_boolean failed;
39 };
40
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
43
44 struct elf_find_verdep_info
45 {
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
49 unsigned int vers;
50 /* Whether we had a failure. */
51 bfd_boolean failed;
52 };
53
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
56
57 asection *
58 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
59 unsigned long r_symndx,
60 bfd_boolean discard)
61 {
62 if (r_symndx >= cookie->locsymcount
63 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
64 {
65 struct elf_link_hash_entry *h;
66
67 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
68
69 while (h->root.type == bfd_link_hash_indirect
70 || h->root.type == bfd_link_hash_warning)
71 h = (struct elf_link_hash_entry *) h->root.u.i.link;
72
73 if ((h->root.type == bfd_link_hash_defined
74 || h->root.type == bfd_link_hash_defweak)
75 && discarded_section (h->root.u.def.section))
76 return h->root.u.def.section;
77 else
78 return NULL;
79 }
80 else
81 {
82 /* It's not a relocation against a global symbol,
83 but it could be a relocation against a local
84 symbol for a discarded section. */
85 asection *isec;
86 Elf_Internal_Sym *isym;
87
88 /* Need to: get the symbol; get the section. */
89 isym = &cookie->locsyms[r_symndx];
90 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
91 if (isec != NULL
92 && discard ? discarded_section (isec) : 1)
93 return isec;
94 }
95 return NULL;
96 }
97
98 /* Define a symbol in a dynamic linkage section. */
99
100 struct elf_link_hash_entry *
101 _bfd_elf_define_linkage_sym (bfd *abfd,
102 struct bfd_link_info *info,
103 asection *sec,
104 const char *name)
105 {
106 struct elf_link_hash_entry *h;
107 struct bfd_link_hash_entry *bh;
108 const struct elf_backend_data *bed;
109
110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
111 if (h != NULL)
112 {
113 /* Zap symbol defined in an as-needed lib that wasn't linked.
114 This is a symptom of a larger problem: Absolute symbols
115 defined in shared libraries can't be overridden, because we
116 lose the link to the bfd which is via the symbol section. */
117 h->root.type = bfd_link_hash_new;
118 }
119
120 bh = &h->root;
121 bed = get_elf_backend_data (abfd);
122 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
123 sec, 0, NULL, FALSE, bed->collect,
124 &bh))
125 return NULL;
126 h = (struct elf_link_hash_entry *) bh;
127 h->def_regular = 1;
128 h->non_elf = 0;
129 h->root.linker_def = 1;
130 h->type = STT_OBJECT;
131 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
132 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
133
134 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
135 return h;
136 }
137
138 bfd_boolean
139 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
140 {
141 flagword flags;
142 asection *s;
143 struct elf_link_hash_entry *h;
144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
145 struct elf_link_hash_table *htab = elf_hash_table (info);
146
147 /* This function may be called more than once. */
148 s = bfd_get_linker_section (abfd, ".got");
149 if (s != NULL)
150 return TRUE;
151
152 flags = bed->dynamic_sec_flags;
153
154 s = bfd_make_section_anyway_with_flags (abfd,
155 (bed->rela_plts_and_copies_p
156 ? ".rela.got" : ".rel.got"),
157 (bed->dynamic_sec_flags
158 | SEC_READONLY));
159 if (s == NULL
160 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
161 return FALSE;
162 htab->srelgot = s;
163
164 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
165 if (s == NULL
166 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->sgot = s;
169
170 if (bed->want_got_plt)
171 {
172 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
173 if (s == NULL
174 || !bfd_set_section_alignment (abfd, s,
175 bed->s->log_file_align))
176 return FALSE;
177 htab->sgotplt = s;
178 }
179
180 /* The first bit of the global offset table is the header. */
181 s->size += bed->got_header_size;
182
183 if (bed->want_got_sym)
184 {
185 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
186 (or .got.plt) section. We don't do this in the linker script
187 because we don't want to define the symbol if we are not creating
188 a global offset table. */
189 h = _bfd_elf_define_linkage_sym (abfd, info, s,
190 "_GLOBAL_OFFSET_TABLE_");
191 elf_hash_table (info)->hgot = h;
192 if (h == NULL)
193 return FALSE;
194 }
195
196 return TRUE;
197 }
198 \f
199 /* Create a strtab to hold the dynamic symbol names. */
200 static bfd_boolean
201 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
202 {
203 struct elf_link_hash_table *hash_table;
204
205 hash_table = elf_hash_table (info);
206 if (hash_table->dynobj == NULL)
207 {
208 /* We may not set dynobj, an input file holding linker created
209 dynamic sections to abfd, which may be a dynamic object with
210 its own dynamic sections. We need to find a normal input file
211 to hold linker created sections if possible. */
212 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
213 {
214 bfd *ibfd;
215 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
216 if ((ibfd->flags
217 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
218 {
219 abfd = ibfd;
220 break;
221 }
222 }
223 hash_table->dynobj = abfd;
224 }
225
226 if (hash_table->dynstr == NULL)
227 {
228 hash_table->dynstr = _bfd_elf_strtab_init ();
229 if (hash_table->dynstr == NULL)
230 return FALSE;
231 }
232 return TRUE;
233 }
234
235 /* Create some sections which will be filled in with dynamic linking
236 information. ABFD is an input file which requires dynamic sections
237 to be created. The dynamic sections take up virtual memory space
238 when the final executable is run, so we need to create them before
239 addresses are assigned to the output sections. We work out the
240 actual contents and size of these sections later. */
241
242 bfd_boolean
243 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
244 {
245 flagword flags;
246 asection *s;
247 const struct elf_backend_data *bed;
248 struct elf_link_hash_entry *h;
249
250 if (! is_elf_hash_table (info->hash))
251 return FALSE;
252
253 if (elf_hash_table (info)->dynamic_sections_created)
254 return TRUE;
255
256 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
257 return FALSE;
258
259 abfd = elf_hash_table (info)->dynobj;
260 bed = get_elf_backend_data (abfd);
261
262 flags = bed->dynamic_sec_flags;
263
264 /* A dynamically linked executable has a .interp section, but a
265 shared library does not. */
266 if (bfd_link_executable (info) && !info->nointerp)
267 {
268 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
269 flags | SEC_READONLY);
270 if (s == NULL)
271 return FALSE;
272 }
273
274 /* Create sections to hold version informations. These are removed
275 if they are not needed. */
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
277 flags | SEC_READONLY);
278 if (s == NULL
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 return FALSE;
281
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, 1))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299 elf_hash_table (info)->dynsym = s;
300
301 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
302 flags | SEC_READONLY);
303 if (s == NULL)
304 return FALSE;
305
306 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
307 if (s == NULL
308 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 return FALSE;
310
311 /* The special symbol _DYNAMIC is always set to the start of the
312 .dynamic section. We could set _DYNAMIC in a linker script, but we
313 only want to define it if we are, in fact, creating a .dynamic
314 section. We don't want to define it if there is no .dynamic
315 section, since on some ELF platforms the start up code examines it
316 to decide how to initialize the process. */
317 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
318 elf_hash_table (info)->hdynamic = h;
319 if (h == NULL)
320 return FALSE;
321
322 if (info->emit_hash)
323 {
324 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
325 flags | SEC_READONLY);
326 if (s == NULL
327 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
328 return FALSE;
329 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
330 }
331
332 if (info->emit_gnu_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
340 4 32-bit words followed by variable count of 64-bit words, then
341 variable count of 32-bit words. */
342 if (bed->s->arch_size == 64)
343 elf_section_data (s)->this_hdr.sh_entsize = 0;
344 else
345 elf_section_data (s)->this_hdr.sh_entsize = 4;
346 }
347
348 /* Let the backend create the rest of the sections. This lets the
349 backend set the right flags. The backend will normally create
350 the .got and .plt sections. */
351 if (bed->elf_backend_create_dynamic_sections == NULL
352 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
353 return FALSE;
354
355 elf_hash_table (info)->dynamic_sections_created = TRUE;
356
357 return TRUE;
358 }
359
360 /* Create dynamic sections when linking against a dynamic object. */
361
362 bfd_boolean
363 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
364 {
365 flagword flags, pltflags;
366 struct elf_link_hash_entry *h;
367 asection *s;
368 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
369 struct elf_link_hash_table *htab = elf_hash_table (info);
370
371 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
372 .rel[a].bss sections. */
373 flags = bed->dynamic_sec_flags;
374
375 pltflags = flags;
376 if (bed->plt_not_loaded)
377 /* We do not clear SEC_ALLOC here because we still want the OS to
378 allocate space for the section; it's just that there's nothing
379 to read in from the object file. */
380 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
381 else
382 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
383 if (bed->plt_readonly)
384 pltflags |= SEC_READONLY;
385
386 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
387 if (s == NULL
388 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
389 return FALSE;
390 htab->splt = s;
391
392 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
393 .plt section. */
394 if (bed->want_plt_sym)
395 {
396 h = _bfd_elf_define_linkage_sym (abfd, info, s,
397 "_PROCEDURE_LINKAGE_TABLE_");
398 elf_hash_table (info)->hplt = h;
399 if (h == NULL)
400 return FALSE;
401 }
402
403 s = bfd_make_section_anyway_with_flags (abfd,
404 (bed->rela_plts_and_copies_p
405 ? ".rela.plt" : ".rel.plt"),
406 flags | SEC_READONLY);
407 if (s == NULL
408 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
409 return FALSE;
410 htab->srelplt = s;
411
412 if (! _bfd_elf_create_got_section (abfd, info))
413 return FALSE;
414
415 if (bed->want_dynbss)
416 {
417 /* The .dynbss section is a place to put symbols which are defined
418 by dynamic objects, are referenced by regular objects, and are
419 not functions. We must allocate space for them in the process
420 image and use a R_*_COPY reloc to tell the dynamic linker to
421 initialize them at run time. The linker script puts the .dynbss
422 section into the .bss section of the final image. */
423 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
424 (SEC_ALLOC | SEC_LINKER_CREATED));
425 if (s == NULL)
426 return FALSE;
427
428 /* The .rel[a].bss section holds copy relocs. This section is not
429 normally needed. We need to create it here, though, so that the
430 linker will map it to an output section. We can't just create it
431 only if we need it, because we will not know whether we need it
432 until we have seen all the input files, and the first time the
433 main linker code calls BFD after examining all the input files
434 (size_dynamic_sections) the input sections have already been
435 mapped to the output sections. If the section turns out not to
436 be needed, we can discard it later. We will never need this
437 section when generating a shared object, since they do not use
438 copy relocs. */
439 if (! bfd_link_pic (info))
440 {
441 s = bfd_make_section_anyway_with_flags (abfd,
442 (bed->rela_plts_and_copies_p
443 ? ".rela.bss" : ".rel.bss"),
444 flags | SEC_READONLY);
445 if (s == NULL
446 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
447 return FALSE;
448 }
449 }
450
451 return TRUE;
452 }
453 \f
454 /* Record a new dynamic symbol. We record the dynamic symbols as we
455 read the input files, since we need to have a list of all of them
456 before we can determine the final sizes of the output sections.
457 Note that we may actually call this function even though we are not
458 going to output any dynamic symbols; in some cases we know that a
459 symbol should be in the dynamic symbol table, but only if there is
460 one. */
461
462 bfd_boolean
463 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
464 struct elf_link_hash_entry *h)
465 {
466 if (h->dynindx == -1)
467 {
468 struct elf_strtab_hash *dynstr;
469 char *p;
470 const char *name;
471 bfd_size_type indx;
472
473 /* XXX: The ABI draft says the linker must turn hidden and
474 internal symbols into STB_LOCAL symbols when producing the
475 DSO. However, if ld.so honors st_other in the dynamic table,
476 this would not be necessary. */
477 switch (ELF_ST_VISIBILITY (h->other))
478 {
479 case STV_INTERNAL:
480 case STV_HIDDEN:
481 if (h->root.type != bfd_link_hash_undefined
482 && h->root.type != bfd_link_hash_undefweak)
483 {
484 h->forced_local = 1;
485 if (!elf_hash_table (info)->is_relocatable_executable)
486 return TRUE;
487 }
488
489 default:
490 break;
491 }
492
493 h->dynindx = elf_hash_table (info)->dynsymcount;
494 ++elf_hash_table (info)->dynsymcount;
495
496 dynstr = elf_hash_table (info)->dynstr;
497 if (dynstr == NULL)
498 {
499 /* Create a strtab to hold the dynamic symbol names. */
500 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
501 if (dynstr == NULL)
502 return FALSE;
503 }
504
505 /* We don't put any version information in the dynamic string
506 table. */
507 name = h->root.root.string;
508 p = strchr (name, ELF_VER_CHR);
509 if (p != NULL)
510 /* We know that the p points into writable memory. In fact,
511 there are only a few symbols that have read-only names, being
512 those like _GLOBAL_OFFSET_TABLE_ that are created specially
513 by the backends. Most symbols will have names pointing into
514 an ELF string table read from a file, or to objalloc memory. */
515 *p = 0;
516
517 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
518
519 if (p != NULL)
520 *p = ELF_VER_CHR;
521
522 if (indx == (bfd_size_type) -1)
523 return FALSE;
524 h->dynstr_index = indx;
525 }
526
527 return TRUE;
528 }
529 \f
530 /* Mark a symbol dynamic. */
531
532 static void
533 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
534 struct elf_link_hash_entry *h,
535 Elf_Internal_Sym *sym)
536 {
537 struct bfd_elf_dynamic_list *d = info->dynamic_list;
538
539 /* It may be called more than once on the same H. */
540 if(h->dynamic || bfd_link_relocatable (info))
541 return;
542
543 if ((info->dynamic_data
544 && (h->type == STT_OBJECT
545 || h->type == STT_COMMON
546 || (sym != NULL
547 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
548 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
549 || (d != NULL
550 && h->root.type == bfd_link_hash_new
551 && (*d->match) (&d->head, NULL, h->root.root.string)))
552 h->dynamic = 1;
553 }
554
555 /* Record an assignment to a symbol made by a linker script. We need
556 this in case some dynamic object refers to this symbol. */
557
558 bfd_boolean
559 bfd_elf_record_link_assignment (bfd *output_bfd,
560 struct bfd_link_info *info,
561 const char *name,
562 bfd_boolean provide,
563 bfd_boolean hidden)
564 {
565 struct elf_link_hash_entry *h, *hv;
566 struct elf_link_hash_table *htab;
567 const struct elf_backend_data *bed;
568
569 if (!is_elf_hash_table (info->hash))
570 return TRUE;
571
572 htab = elf_hash_table (info);
573 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
574 if (h == NULL)
575 return provide;
576
577 if (h->versioned == unknown)
578 {
579 /* Set versioned if symbol version is unknown. */
580 char *version = strrchr (name, ELF_VER_CHR);
581 if (version)
582 {
583 if (version > name && version[-1] != ELF_VER_CHR)
584 h->versioned = versioned_hidden;
585 else
586 h->versioned = versioned;
587 }
588 }
589
590 switch (h->root.type)
591 {
592 case bfd_link_hash_defined:
593 case bfd_link_hash_defweak:
594 case bfd_link_hash_common:
595 break;
596 case bfd_link_hash_undefweak:
597 case bfd_link_hash_undefined:
598 /* Since we're defining the symbol, don't let it seem to have not
599 been defined. record_dynamic_symbol and size_dynamic_sections
600 may depend on this. */
601 h->root.type = bfd_link_hash_new;
602 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
603 bfd_link_repair_undef_list (&htab->root);
604 break;
605 case bfd_link_hash_new:
606 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
607 h->non_elf = 0;
608 break;
609 case bfd_link_hash_indirect:
610 /* We had a versioned symbol in a dynamic library. We make the
611 the versioned symbol point to this one. */
612 bed = get_elf_backend_data (output_bfd);
613 hv = h;
614 while (hv->root.type == bfd_link_hash_indirect
615 || hv->root.type == bfd_link_hash_warning)
616 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
617 /* We don't need to update h->root.u since linker will set them
618 later. */
619 h->root.type = bfd_link_hash_undefined;
620 hv->root.type = bfd_link_hash_indirect;
621 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
622 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
623 break;
624 case bfd_link_hash_warning:
625 abort ();
626 break;
627 }
628
629 /* If this symbol is being provided by the linker script, and it is
630 currently defined by a dynamic object, but not by a regular
631 object, then mark it as undefined so that the generic linker will
632 force the correct value. */
633 if (provide
634 && h->def_dynamic
635 && !h->def_regular)
636 h->root.type = bfd_link_hash_undefined;
637
638 /* If this symbol is not being provided by the linker script, and it is
639 currently defined by a dynamic object, but not by a regular object,
640 then clear out any version information because the symbol will not be
641 associated with the dynamic object any more. */
642 if (!provide
643 && h->def_dynamic
644 && !h->def_regular)
645 h->verinfo.verdef = NULL;
646
647 h->def_regular = 1;
648
649 if (hidden)
650 {
651 bed = get_elf_backend_data (output_bfd);
652 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
653 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
654 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
655 }
656
657 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
658 and executables. */
659 if (!bfd_link_relocatable (info)
660 && h->dynindx != -1
661 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
662 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
663 h->forced_local = 1;
664
665 if ((h->def_dynamic
666 || h->ref_dynamic
667 || bfd_link_dll (info)
668 || elf_hash_table (info)->is_relocatable_executable)
669 && h->dynindx == -1)
670 {
671 if (! bfd_elf_link_record_dynamic_symbol (info, h))
672 return FALSE;
673
674 /* If this is a weak defined symbol, and we know a corresponding
675 real symbol from the same dynamic object, make sure the real
676 symbol is also made into a dynamic symbol. */
677 if (h->u.weakdef != NULL
678 && h->u.weakdef->dynindx == -1)
679 {
680 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
681 return FALSE;
682 }
683 }
684
685 return TRUE;
686 }
687
688 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
689 success, and 2 on a failure caused by attempting to record a symbol
690 in a discarded section, eg. a discarded link-once section symbol. */
691
692 int
693 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
694 bfd *input_bfd,
695 long input_indx)
696 {
697 bfd_size_type amt;
698 struct elf_link_local_dynamic_entry *entry;
699 struct elf_link_hash_table *eht;
700 struct elf_strtab_hash *dynstr;
701 unsigned long dynstr_index;
702 char *name;
703 Elf_External_Sym_Shndx eshndx;
704 char esym[sizeof (Elf64_External_Sym)];
705
706 if (! is_elf_hash_table (info->hash))
707 return 0;
708
709 /* See if the entry exists already. */
710 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
711 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
712 return 1;
713
714 amt = sizeof (*entry);
715 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
716 if (entry == NULL)
717 return 0;
718
719 /* Go find the symbol, so that we can find it's name. */
720 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
721 1, input_indx, &entry->isym, esym, &eshndx))
722 {
723 bfd_release (input_bfd, entry);
724 return 0;
725 }
726
727 if (entry->isym.st_shndx != SHN_UNDEF
728 && entry->isym.st_shndx < SHN_LORESERVE)
729 {
730 asection *s;
731
732 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
733 if (s == NULL || bfd_is_abs_section (s->output_section))
734 {
735 /* We can still bfd_release here as nothing has done another
736 bfd_alloc. We can't do this later in this function. */
737 bfd_release (input_bfd, entry);
738 return 2;
739 }
740 }
741
742 name = (bfd_elf_string_from_elf_section
743 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
744 entry->isym.st_name));
745
746 dynstr = elf_hash_table (info)->dynstr;
747 if (dynstr == NULL)
748 {
749 /* Create a strtab to hold the dynamic symbol names. */
750 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
751 if (dynstr == NULL)
752 return 0;
753 }
754
755 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
756 if (dynstr_index == (unsigned long) -1)
757 return 0;
758 entry->isym.st_name = dynstr_index;
759
760 eht = elf_hash_table (info);
761
762 entry->next = eht->dynlocal;
763 eht->dynlocal = entry;
764 entry->input_bfd = input_bfd;
765 entry->input_indx = input_indx;
766 eht->dynsymcount++;
767
768 /* Whatever binding the symbol had before, it's now local. */
769 entry->isym.st_info
770 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
771
772 /* The dynindx will be set at the end of size_dynamic_sections. */
773
774 return 1;
775 }
776
777 /* Return the dynindex of a local dynamic symbol. */
778
779 long
780 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
781 bfd *input_bfd,
782 long input_indx)
783 {
784 struct elf_link_local_dynamic_entry *e;
785
786 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
787 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
788 return e->dynindx;
789 return -1;
790 }
791
792 /* This function is used to renumber the dynamic symbols, if some of
793 them are removed because they are marked as local. This is called
794 via elf_link_hash_traverse. */
795
796 static bfd_boolean
797 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
798 void *data)
799 {
800 size_t *count = (size_t *) data;
801
802 if (h->forced_local)
803 return TRUE;
804
805 if (h->dynindx != -1)
806 h->dynindx = ++(*count);
807
808 return TRUE;
809 }
810
811
812 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
813 STB_LOCAL binding. */
814
815 static bfd_boolean
816 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
817 void *data)
818 {
819 size_t *count = (size_t *) data;
820
821 if (!h->forced_local)
822 return TRUE;
823
824 if (h->dynindx != -1)
825 h->dynindx = ++(*count);
826
827 return TRUE;
828 }
829
830 /* Return true if the dynamic symbol for a given section should be
831 omitted when creating a shared library. */
832 bfd_boolean
833 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
834 struct bfd_link_info *info,
835 asection *p)
836 {
837 struct elf_link_hash_table *htab;
838 asection *ip;
839
840 switch (elf_section_data (p)->this_hdr.sh_type)
841 {
842 case SHT_PROGBITS:
843 case SHT_NOBITS:
844 /* If sh_type is yet undecided, assume it could be
845 SHT_PROGBITS/SHT_NOBITS. */
846 case SHT_NULL:
847 htab = elf_hash_table (info);
848 if (p == htab->tls_sec)
849 return FALSE;
850
851 if (htab->text_index_section != NULL)
852 return p != htab->text_index_section && p != htab->data_index_section;
853
854 return (htab->dynobj != NULL
855 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
856 && ip->output_section == p);
857
858 /* There shouldn't be section relative relocations
859 against any other section. */
860 default:
861 return TRUE;
862 }
863 }
864
865 /* Assign dynsym indices. In a shared library we generate a section
866 symbol for each output section, which come first. Next come symbols
867 which have been forced to local binding. Then all of the back-end
868 allocated local dynamic syms, followed by the rest of the global
869 symbols. */
870
871 static unsigned long
872 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
873 struct bfd_link_info *info,
874 unsigned long *section_sym_count)
875 {
876 unsigned long dynsymcount = 0;
877
878 if (bfd_link_pic (info)
879 || elf_hash_table (info)->is_relocatable_executable)
880 {
881 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
882 asection *p;
883 for (p = output_bfd->sections; p ; p = p->next)
884 if ((p->flags & SEC_EXCLUDE) == 0
885 && (p->flags & SEC_ALLOC) != 0
886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
887 elf_section_data (p)->dynindx = ++dynsymcount;
888 else
889 elf_section_data (p)->dynindx = 0;
890 }
891 *section_sym_count = dynsymcount;
892
893 elf_link_hash_traverse (elf_hash_table (info),
894 elf_link_renumber_local_hash_table_dynsyms,
895 &dynsymcount);
896
897 if (elf_hash_table (info)->dynlocal)
898 {
899 struct elf_link_local_dynamic_entry *p;
900 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
901 p->dynindx = ++dynsymcount;
902 }
903
904 elf_link_hash_traverse (elf_hash_table (info),
905 elf_link_renumber_hash_table_dynsyms,
906 &dynsymcount);
907
908 /* There is an unused NULL entry at the head of the table which we
909 must account for in our count even if the table is empty since it
910 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
911 .dynamic section. */
912 dynsymcount++;
913
914 elf_hash_table (info)->dynsymcount = dynsymcount;
915 return dynsymcount;
916 }
917
918 /* Merge st_other field. */
919
920 static void
921 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
922 const Elf_Internal_Sym *isym, asection *sec,
923 bfd_boolean definition, bfd_boolean dynamic)
924 {
925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
926
927 /* If st_other has a processor-specific meaning, specific
928 code might be needed here. */
929 if (bed->elf_backend_merge_symbol_attribute)
930 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
931 dynamic);
932
933 if (!dynamic)
934 {
935 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
936 unsigned hvis = ELF_ST_VISIBILITY (h->other);
937
938 /* Keep the most constraining visibility. Leave the remainder
939 of the st_other field to elf_backend_merge_symbol_attribute. */
940 if (symvis - 1 < hvis - 1)
941 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
942 }
943 else if (definition
944 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
945 && (sec->flags & SEC_READONLY) == 0)
946 h->protected_def = 1;
947 }
948
949 /* This function is called when we want to merge a new symbol with an
950 existing symbol. It handles the various cases which arise when we
951 find a definition in a dynamic object, or when there is already a
952 definition in a dynamic object. The new symbol is described by
953 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
954 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
955 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
956 of an old common symbol. We set OVERRIDE if the old symbol is
957 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
958 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
959 to change. By OK to change, we mean that we shouldn't warn if the
960 type or size does change. */
961
962 static bfd_boolean
963 _bfd_elf_merge_symbol (bfd *abfd,
964 struct bfd_link_info *info,
965 const char *name,
966 Elf_Internal_Sym *sym,
967 asection **psec,
968 bfd_vma *pvalue,
969 struct elf_link_hash_entry **sym_hash,
970 bfd **poldbfd,
971 bfd_boolean *pold_weak,
972 unsigned int *pold_alignment,
973 bfd_boolean *skip,
974 bfd_boolean *override,
975 bfd_boolean *type_change_ok,
976 bfd_boolean *size_change_ok,
977 bfd_boolean *matched)
978 {
979 asection *sec, *oldsec;
980 struct elf_link_hash_entry *h;
981 struct elf_link_hash_entry *hi;
982 struct elf_link_hash_entry *flip;
983 int bind;
984 bfd *oldbfd;
985 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
986 bfd_boolean newweak, oldweak, newfunc, oldfunc;
987 const struct elf_backend_data *bed;
988 char *new_version;
989
990 *skip = FALSE;
991 *override = FALSE;
992
993 sec = *psec;
994 bind = ELF_ST_BIND (sym->st_info);
995
996 if (! bfd_is_und_section (sec))
997 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
998 else
999 h = ((struct elf_link_hash_entry *)
1000 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1001 if (h == NULL)
1002 return FALSE;
1003 *sym_hash = h;
1004
1005 bed = get_elf_backend_data (abfd);
1006
1007 /* NEW_VERSION is the symbol version of the new symbol. */
1008 if (h->versioned != unversioned)
1009 {
1010 /* Symbol version is unknown or versioned. */
1011 new_version = strrchr (name, ELF_VER_CHR);
1012 if (new_version)
1013 {
1014 if (h->versioned == unknown)
1015 {
1016 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1017 h->versioned = versioned_hidden;
1018 else
1019 h->versioned = versioned;
1020 }
1021 new_version += 1;
1022 if (new_version[0] == '\0')
1023 new_version = NULL;
1024 }
1025 else
1026 h->versioned = unversioned;
1027 }
1028 else
1029 new_version = NULL;
1030
1031 /* For merging, we only care about real symbols. But we need to make
1032 sure that indirect symbol dynamic flags are updated. */
1033 hi = h;
1034 while (h->root.type == bfd_link_hash_indirect
1035 || h->root.type == bfd_link_hash_warning)
1036 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1037
1038 if (!*matched)
1039 {
1040 if (hi == h || h->root.type == bfd_link_hash_new)
1041 *matched = TRUE;
1042 else
1043 {
1044 /* OLD_HIDDEN is true if the existing symbol is only visible
1045 to the symbol with the same symbol version. NEW_HIDDEN is
1046 true if the new symbol is only visible to the symbol with
1047 the same symbol version. */
1048 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1049 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1050 if (!old_hidden && !new_hidden)
1051 /* The new symbol matches the existing symbol if both
1052 aren't hidden. */
1053 *matched = TRUE;
1054 else
1055 {
1056 /* OLD_VERSION is the symbol version of the existing
1057 symbol. */
1058 char *old_version;
1059
1060 if (h->versioned >= versioned)
1061 old_version = strrchr (h->root.root.string,
1062 ELF_VER_CHR) + 1;
1063 else
1064 old_version = NULL;
1065
1066 /* The new symbol matches the existing symbol if they
1067 have the same symbol version. */
1068 *matched = (old_version == new_version
1069 || (old_version != NULL
1070 && new_version != NULL
1071 && strcmp (old_version, new_version) == 0));
1072 }
1073 }
1074 }
1075
1076 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1077 existing symbol. */
1078
1079 oldbfd = NULL;
1080 oldsec = NULL;
1081 switch (h->root.type)
1082 {
1083 default:
1084 break;
1085
1086 case bfd_link_hash_undefined:
1087 case bfd_link_hash_undefweak:
1088 oldbfd = h->root.u.undef.abfd;
1089 break;
1090
1091 case bfd_link_hash_defined:
1092 case bfd_link_hash_defweak:
1093 oldbfd = h->root.u.def.section->owner;
1094 oldsec = h->root.u.def.section;
1095 break;
1096
1097 case bfd_link_hash_common:
1098 oldbfd = h->root.u.c.p->section->owner;
1099 oldsec = h->root.u.c.p->section;
1100 if (pold_alignment)
1101 *pold_alignment = h->root.u.c.p->alignment_power;
1102 break;
1103 }
1104 if (poldbfd && *poldbfd == NULL)
1105 *poldbfd = oldbfd;
1106
1107 /* Differentiate strong and weak symbols. */
1108 newweak = bind == STB_WEAK;
1109 oldweak = (h->root.type == bfd_link_hash_defweak
1110 || h->root.type == bfd_link_hash_undefweak);
1111 if (pold_weak)
1112 *pold_weak = oldweak;
1113
1114 /* This code is for coping with dynamic objects, and is only useful
1115 if we are doing an ELF link. */
1116 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1117 return TRUE;
1118
1119 /* We have to check it for every instance since the first few may be
1120 references and not all compilers emit symbol type for undefined
1121 symbols. */
1122 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1123
1124 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1125 respectively, is from a dynamic object. */
1126
1127 newdyn = (abfd->flags & DYNAMIC) != 0;
1128
1129 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1130 syms and defined syms in dynamic libraries respectively.
1131 ref_dynamic on the other hand can be set for a symbol defined in
1132 a dynamic library, and def_dynamic may not be set; When the
1133 definition in a dynamic lib is overridden by a definition in the
1134 executable use of the symbol in the dynamic lib becomes a
1135 reference to the executable symbol. */
1136 if (newdyn)
1137 {
1138 if (bfd_is_und_section (sec))
1139 {
1140 if (bind != STB_WEAK)
1141 {
1142 h->ref_dynamic_nonweak = 1;
1143 hi->ref_dynamic_nonweak = 1;
1144 }
1145 }
1146 else
1147 {
1148 /* Update the existing symbol only if they match. */
1149 if (*matched)
1150 h->dynamic_def = 1;
1151 hi->dynamic_def = 1;
1152 }
1153 }
1154
1155 /* If we just created the symbol, mark it as being an ELF symbol.
1156 Other than that, there is nothing to do--there is no merge issue
1157 with a newly defined symbol--so we just return. */
1158
1159 if (h->root.type == bfd_link_hash_new)
1160 {
1161 h->non_elf = 0;
1162 return TRUE;
1163 }
1164
1165 /* In cases involving weak versioned symbols, we may wind up trying
1166 to merge a symbol with itself. Catch that here, to avoid the
1167 confusion that results if we try to override a symbol with
1168 itself. The additional tests catch cases like
1169 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1170 dynamic object, which we do want to handle here. */
1171 if (abfd == oldbfd
1172 && (newweak || oldweak)
1173 && ((abfd->flags & DYNAMIC) == 0
1174 || !h->def_regular))
1175 return TRUE;
1176
1177 olddyn = FALSE;
1178 if (oldbfd != NULL)
1179 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1180 else if (oldsec != NULL)
1181 {
1182 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1183 indices used by MIPS ELF. */
1184 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1185 }
1186
1187 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1188 respectively, appear to be a definition rather than reference. */
1189
1190 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1191
1192 olddef = (h->root.type != bfd_link_hash_undefined
1193 && h->root.type != bfd_link_hash_undefweak
1194 && h->root.type != bfd_link_hash_common);
1195
1196 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1197 respectively, appear to be a function. */
1198
1199 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1200 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1201
1202 oldfunc = (h->type != STT_NOTYPE
1203 && bed->is_function_type (h->type));
1204
1205 /* If creating a default indirect symbol ("foo" or "foo@") from a
1206 dynamic versioned definition ("foo@@") skip doing so if there is
1207 an existing regular definition with a different type. We don't
1208 want, for example, a "time" variable in the executable overriding
1209 a "time" function in a shared library. */
1210 if (pold_alignment == NULL
1211 && newdyn
1212 && newdef
1213 && !olddyn
1214 && (olddef || h->root.type == bfd_link_hash_common)
1215 && ELF_ST_TYPE (sym->st_info) != h->type
1216 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1217 && h->type != STT_NOTYPE
1218 && !(newfunc && oldfunc))
1219 {
1220 *skip = TRUE;
1221 return TRUE;
1222 }
1223
1224 /* Check TLS symbols. We don't check undefined symbols introduced
1225 by "ld -u" which have no type (and oldbfd NULL), and we don't
1226 check symbols from plugins because they also have no type. */
1227 if (oldbfd != NULL
1228 && (oldbfd->flags & BFD_PLUGIN) == 0
1229 && (abfd->flags & BFD_PLUGIN) == 0
1230 && ELF_ST_TYPE (sym->st_info) != h->type
1231 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1232 {
1233 bfd *ntbfd, *tbfd;
1234 bfd_boolean ntdef, tdef;
1235 asection *ntsec, *tsec;
1236
1237 if (h->type == STT_TLS)
1238 {
1239 ntbfd = abfd;
1240 ntsec = sec;
1241 ntdef = newdef;
1242 tbfd = oldbfd;
1243 tsec = oldsec;
1244 tdef = olddef;
1245 }
1246 else
1247 {
1248 ntbfd = oldbfd;
1249 ntsec = oldsec;
1250 ntdef = olddef;
1251 tbfd = abfd;
1252 tsec = sec;
1253 tdef = newdef;
1254 }
1255
1256 if (tdef && ntdef)
1257 (*_bfd_error_handler)
1258 (_("%s: TLS definition in %B section %A "
1259 "mismatches non-TLS definition in %B section %A"),
1260 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1261 else if (!tdef && !ntdef)
1262 (*_bfd_error_handler)
1263 (_("%s: TLS reference in %B "
1264 "mismatches non-TLS reference in %B"),
1265 tbfd, ntbfd, h->root.root.string);
1266 else if (tdef)
1267 (*_bfd_error_handler)
1268 (_("%s: TLS definition in %B section %A "
1269 "mismatches non-TLS reference in %B"),
1270 tbfd, tsec, ntbfd, h->root.root.string);
1271 else
1272 (*_bfd_error_handler)
1273 (_("%s: TLS reference in %B "
1274 "mismatches non-TLS definition in %B section %A"),
1275 tbfd, ntbfd, ntsec, h->root.root.string);
1276
1277 bfd_set_error (bfd_error_bad_value);
1278 return FALSE;
1279 }
1280
1281 /* If the old symbol has non-default visibility, we ignore the new
1282 definition from a dynamic object. */
1283 if (newdyn
1284 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1285 && !bfd_is_und_section (sec))
1286 {
1287 *skip = TRUE;
1288 /* Make sure this symbol is dynamic. */
1289 h->ref_dynamic = 1;
1290 hi->ref_dynamic = 1;
1291 /* A protected symbol has external availability. Make sure it is
1292 recorded as dynamic.
1293
1294 FIXME: Should we check type and size for protected symbol? */
1295 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1296 return bfd_elf_link_record_dynamic_symbol (info, h);
1297 else
1298 return TRUE;
1299 }
1300 else if (!newdyn
1301 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1302 && h->def_dynamic)
1303 {
1304 /* If the new symbol with non-default visibility comes from a
1305 relocatable file and the old definition comes from a dynamic
1306 object, we remove the old definition. */
1307 if (hi->root.type == bfd_link_hash_indirect)
1308 {
1309 /* Handle the case where the old dynamic definition is
1310 default versioned. We need to copy the symbol info from
1311 the symbol with default version to the normal one if it
1312 was referenced before. */
1313 if (h->ref_regular)
1314 {
1315 hi->root.type = h->root.type;
1316 h->root.type = bfd_link_hash_indirect;
1317 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1318
1319 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1320 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1321 {
1322 /* If the new symbol is hidden or internal, completely undo
1323 any dynamic link state. */
1324 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1325 h->forced_local = 0;
1326 h->ref_dynamic = 0;
1327 }
1328 else
1329 h->ref_dynamic = 1;
1330
1331 h->def_dynamic = 0;
1332 /* FIXME: Should we check type and size for protected symbol? */
1333 h->size = 0;
1334 h->type = 0;
1335
1336 h = hi;
1337 }
1338 else
1339 h = hi;
1340 }
1341
1342 /* If the old symbol was undefined before, then it will still be
1343 on the undefs list. If the new symbol is undefined or
1344 common, we can't make it bfd_link_hash_new here, because new
1345 undefined or common symbols will be added to the undefs list
1346 by _bfd_generic_link_add_one_symbol. Symbols may not be
1347 added twice to the undefs list. Also, if the new symbol is
1348 undefweak then we don't want to lose the strong undef. */
1349 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1350 {
1351 h->root.type = bfd_link_hash_undefined;
1352 h->root.u.undef.abfd = abfd;
1353 }
1354 else
1355 {
1356 h->root.type = bfd_link_hash_new;
1357 h->root.u.undef.abfd = NULL;
1358 }
1359
1360 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1361 {
1362 /* If the new symbol is hidden or internal, completely undo
1363 any dynamic link state. */
1364 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1365 h->forced_local = 0;
1366 h->ref_dynamic = 0;
1367 }
1368 else
1369 h->ref_dynamic = 1;
1370 h->def_dynamic = 0;
1371 /* FIXME: Should we check type and size for protected symbol? */
1372 h->size = 0;
1373 h->type = 0;
1374 return TRUE;
1375 }
1376
1377 /* If a new weak symbol definition comes from a regular file and the
1378 old symbol comes from a dynamic library, we treat the new one as
1379 strong. Similarly, an old weak symbol definition from a regular
1380 file is treated as strong when the new symbol comes from a dynamic
1381 library. Further, an old weak symbol from a dynamic library is
1382 treated as strong if the new symbol is from a dynamic library.
1383 This reflects the way glibc's ld.so works.
1384
1385 Do this before setting *type_change_ok or *size_change_ok so that
1386 we warn properly when dynamic library symbols are overridden. */
1387
1388 if (newdef && !newdyn && olddyn)
1389 newweak = FALSE;
1390 if (olddef && newdyn)
1391 oldweak = FALSE;
1392
1393 /* Allow changes between different types of function symbol. */
1394 if (newfunc && oldfunc)
1395 *type_change_ok = TRUE;
1396
1397 /* It's OK to change the type if either the existing symbol or the
1398 new symbol is weak. A type change is also OK if the old symbol
1399 is undefined and the new symbol is defined. */
1400
1401 if (oldweak
1402 || newweak
1403 || (newdef
1404 && h->root.type == bfd_link_hash_undefined))
1405 *type_change_ok = TRUE;
1406
1407 /* It's OK to change the size if either the existing symbol or the
1408 new symbol is weak, or if the old symbol is undefined. */
1409
1410 if (*type_change_ok
1411 || h->root.type == bfd_link_hash_undefined)
1412 *size_change_ok = TRUE;
1413
1414 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1415 symbol, respectively, appears to be a common symbol in a dynamic
1416 object. If a symbol appears in an uninitialized section, and is
1417 not weak, and is not a function, then it may be a common symbol
1418 which was resolved when the dynamic object was created. We want
1419 to treat such symbols specially, because they raise special
1420 considerations when setting the symbol size: if the symbol
1421 appears as a common symbol in a regular object, and the size in
1422 the regular object is larger, we must make sure that we use the
1423 larger size. This problematic case can always be avoided in C,
1424 but it must be handled correctly when using Fortran shared
1425 libraries.
1426
1427 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1428 likewise for OLDDYNCOMMON and OLDDEF.
1429
1430 Note that this test is just a heuristic, and that it is quite
1431 possible to have an uninitialized symbol in a shared object which
1432 is really a definition, rather than a common symbol. This could
1433 lead to some minor confusion when the symbol really is a common
1434 symbol in some regular object. However, I think it will be
1435 harmless. */
1436
1437 if (newdyn
1438 && newdef
1439 && !newweak
1440 && (sec->flags & SEC_ALLOC) != 0
1441 && (sec->flags & SEC_LOAD) == 0
1442 && sym->st_size > 0
1443 && !newfunc)
1444 newdyncommon = TRUE;
1445 else
1446 newdyncommon = FALSE;
1447
1448 if (olddyn
1449 && olddef
1450 && h->root.type == bfd_link_hash_defined
1451 && h->def_dynamic
1452 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1453 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1454 && h->size > 0
1455 && !oldfunc)
1456 olddyncommon = TRUE;
1457 else
1458 olddyncommon = FALSE;
1459
1460 /* We now know everything about the old and new symbols. We ask the
1461 backend to check if we can merge them. */
1462 if (bed->merge_symbol != NULL)
1463 {
1464 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1465 return FALSE;
1466 sec = *psec;
1467 }
1468
1469 /* If both the old and the new symbols look like common symbols in a
1470 dynamic object, set the size of the symbol to the larger of the
1471 two. */
1472
1473 if (olddyncommon
1474 && newdyncommon
1475 && sym->st_size != h->size)
1476 {
1477 /* Since we think we have two common symbols, issue a multiple
1478 common warning if desired. Note that we only warn if the
1479 size is different. If the size is the same, we simply let
1480 the old symbol override the new one as normally happens with
1481 symbols defined in dynamic objects. */
1482
1483 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1484 bfd_link_hash_common, sym->st_size);
1485 if (sym->st_size > h->size)
1486 h->size = sym->st_size;
1487
1488 *size_change_ok = TRUE;
1489 }
1490
1491 /* If we are looking at a dynamic object, and we have found a
1492 definition, we need to see if the symbol was already defined by
1493 some other object. If so, we want to use the existing
1494 definition, and we do not want to report a multiple symbol
1495 definition error; we do this by clobbering *PSEC to be
1496 bfd_und_section_ptr.
1497
1498 We treat a common symbol as a definition if the symbol in the
1499 shared library is a function, since common symbols always
1500 represent variables; this can cause confusion in principle, but
1501 any such confusion would seem to indicate an erroneous program or
1502 shared library. We also permit a common symbol in a regular
1503 object to override a weak symbol in a shared object. A common
1504 symbol in executable also overrides a symbol in a shared object. */
1505
1506 if (newdyn
1507 && newdef
1508 && (olddef
1509 || (h->root.type == bfd_link_hash_common
1510 && (newweak
1511 || newfunc
1512 || (!olddyn && bfd_link_executable (info))))))
1513 {
1514 *override = TRUE;
1515 newdef = FALSE;
1516 newdyncommon = FALSE;
1517
1518 *psec = sec = bfd_und_section_ptr;
1519 *size_change_ok = TRUE;
1520
1521 /* If we get here when the old symbol is a common symbol, then
1522 we are explicitly letting it override a weak symbol or
1523 function in a dynamic object, and we don't want to warn about
1524 a type change. If the old symbol is a defined symbol, a type
1525 change warning may still be appropriate. */
1526
1527 if (h->root.type == bfd_link_hash_common)
1528 *type_change_ok = TRUE;
1529 }
1530
1531 /* Handle the special case of an old common symbol merging with a
1532 new symbol which looks like a common symbol in a shared object.
1533 We change *PSEC and *PVALUE to make the new symbol look like a
1534 common symbol, and let _bfd_generic_link_add_one_symbol do the
1535 right thing. */
1536
1537 if (newdyncommon
1538 && h->root.type == bfd_link_hash_common)
1539 {
1540 *override = TRUE;
1541 newdef = FALSE;
1542 newdyncommon = FALSE;
1543 *pvalue = sym->st_size;
1544 *psec = sec = bed->common_section (oldsec);
1545 *size_change_ok = TRUE;
1546 }
1547
1548 /* Skip weak definitions of symbols that are already defined. */
1549 if (newdef && olddef && newweak)
1550 {
1551 /* Don't skip new non-IR weak syms. */
1552 if (!(oldbfd != NULL
1553 && (oldbfd->flags & BFD_PLUGIN) != 0
1554 && (abfd->flags & BFD_PLUGIN) == 0))
1555 {
1556 newdef = FALSE;
1557 *skip = TRUE;
1558 }
1559
1560 /* Merge st_other. If the symbol already has a dynamic index,
1561 but visibility says it should not be visible, turn it into a
1562 local symbol. */
1563 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1564 if (h->dynindx != -1)
1565 switch (ELF_ST_VISIBILITY (h->other))
1566 {
1567 case STV_INTERNAL:
1568 case STV_HIDDEN:
1569 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1570 break;
1571 }
1572 }
1573
1574 /* If the old symbol is from a dynamic object, and the new symbol is
1575 a definition which is not from a dynamic object, then the new
1576 symbol overrides the old symbol. Symbols from regular files
1577 always take precedence over symbols from dynamic objects, even if
1578 they are defined after the dynamic object in the link.
1579
1580 As above, we again permit a common symbol in a regular object to
1581 override a definition in a shared object if the shared object
1582 symbol is a function or is weak. */
1583
1584 flip = NULL;
1585 if (!newdyn
1586 && (newdef
1587 || (bfd_is_com_section (sec)
1588 && (oldweak || oldfunc)))
1589 && olddyn
1590 && olddef
1591 && h->def_dynamic)
1592 {
1593 /* Change the hash table entry to undefined, and let
1594 _bfd_generic_link_add_one_symbol do the right thing with the
1595 new definition. */
1596
1597 h->root.type = bfd_link_hash_undefined;
1598 h->root.u.undef.abfd = h->root.u.def.section->owner;
1599 *size_change_ok = TRUE;
1600
1601 olddef = FALSE;
1602 olddyncommon = FALSE;
1603
1604 /* We again permit a type change when a common symbol may be
1605 overriding a function. */
1606
1607 if (bfd_is_com_section (sec))
1608 {
1609 if (oldfunc)
1610 {
1611 /* If a common symbol overrides a function, make sure
1612 that it isn't defined dynamically nor has type
1613 function. */
1614 h->def_dynamic = 0;
1615 h->type = STT_NOTYPE;
1616 }
1617 *type_change_ok = TRUE;
1618 }
1619
1620 if (hi->root.type == bfd_link_hash_indirect)
1621 flip = hi;
1622 else
1623 /* This union may have been set to be non-NULL when this symbol
1624 was seen in a dynamic object. We must force the union to be
1625 NULL, so that it is correct for a regular symbol. */
1626 h->verinfo.vertree = NULL;
1627 }
1628
1629 /* Handle the special case of a new common symbol merging with an
1630 old symbol that looks like it might be a common symbol defined in
1631 a shared object. Note that we have already handled the case in
1632 which a new common symbol should simply override the definition
1633 in the shared library. */
1634
1635 if (! newdyn
1636 && bfd_is_com_section (sec)
1637 && olddyncommon)
1638 {
1639 /* It would be best if we could set the hash table entry to a
1640 common symbol, but we don't know what to use for the section
1641 or the alignment. */
1642 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1643 bfd_link_hash_common, sym->st_size);
1644
1645 /* If the presumed common symbol in the dynamic object is
1646 larger, pretend that the new symbol has its size. */
1647
1648 if (h->size > *pvalue)
1649 *pvalue = h->size;
1650
1651 /* We need to remember the alignment required by the symbol
1652 in the dynamic object. */
1653 BFD_ASSERT (pold_alignment);
1654 *pold_alignment = h->root.u.def.section->alignment_power;
1655
1656 olddef = FALSE;
1657 olddyncommon = FALSE;
1658
1659 h->root.type = bfd_link_hash_undefined;
1660 h->root.u.undef.abfd = h->root.u.def.section->owner;
1661
1662 *size_change_ok = TRUE;
1663 *type_change_ok = TRUE;
1664
1665 if (hi->root.type == bfd_link_hash_indirect)
1666 flip = hi;
1667 else
1668 h->verinfo.vertree = NULL;
1669 }
1670
1671 if (flip != NULL)
1672 {
1673 /* Handle the case where we had a versioned symbol in a dynamic
1674 library and now find a definition in a normal object. In this
1675 case, we make the versioned symbol point to the normal one. */
1676 flip->root.type = h->root.type;
1677 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1681 if (h->def_dynamic)
1682 {
1683 h->def_dynamic = 0;
1684 flip->ref_dynamic = 1;
1685 }
1686 }
1687
1688 return TRUE;
1689 }
1690
1691 /* This function is called to create an indirect symbol from the
1692 default for the symbol with the default version if needed. The
1693 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1694 set DYNSYM if the new indirect symbol is dynamic. */
1695
1696 static bfd_boolean
1697 _bfd_elf_add_default_symbol (bfd *abfd,
1698 struct bfd_link_info *info,
1699 struct elf_link_hash_entry *h,
1700 const char *name,
1701 Elf_Internal_Sym *sym,
1702 asection *sec,
1703 bfd_vma value,
1704 bfd **poldbfd,
1705 bfd_boolean *dynsym)
1706 {
1707 bfd_boolean type_change_ok;
1708 bfd_boolean size_change_ok;
1709 bfd_boolean skip;
1710 char *shortname;
1711 struct elf_link_hash_entry *hi;
1712 struct bfd_link_hash_entry *bh;
1713 const struct elf_backend_data *bed;
1714 bfd_boolean collect;
1715 bfd_boolean dynamic;
1716 bfd_boolean override;
1717 char *p;
1718 size_t len, shortlen;
1719 asection *tmp_sec;
1720 bfd_boolean matched;
1721
1722 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1723 return TRUE;
1724
1725 /* If this symbol has a version, and it is the default version, we
1726 create an indirect symbol from the default name to the fully
1727 decorated name. This will cause external references which do not
1728 specify a version to be bound to this version of the symbol. */
1729 p = strchr (name, ELF_VER_CHR);
1730 if (h->versioned == unknown)
1731 {
1732 if (p == NULL)
1733 {
1734 h->versioned = unversioned;
1735 return TRUE;
1736 }
1737 else
1738 {
1739 if (p[1] != ELF_VER_CHR)
1740 {
1741 h->versioned = versioned_hidden;
1742 return TRUE;
1743 }
1744 else
1745 h->versioned = versioned;
1746 }
1747 }
1748 else
1749 {
1750 /* PR ld/19073: We may see an unversioned definition after the
1751 default version. */
1752 if (p == NULL)
1753 return TRUE;
1754 }
1755
1756 bed = get_elf_backend_data (abfd);
1757 collect = bed->collect;
1758 dynamic = (abfd->flags & DYNAMIC) != 0;
1759
1760 shortlen = p - name;
1761 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1762 if (shortname == NULL)
1763 return FALSE;
1764 memcpy (shortname, name, shortlen);
1765 shortname[shortlen] = '\0';
1766
1767 /* We are going to create a new symbol. Merge it with any existing
1768 symbol with this name. For the purposes of the merge, act as
1769 though we were defining the symbol we just defined, although we
1770 actually going to define an indirect symbol. */
1771 type_change_ok = FALSE;
1772 size_change_ok = FALSE;
1773 matched = TRUE;
1774 tmp_sec = sec;
1775 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1776 &hi, poldbfd, NULL, NULL, &skip, &override,
1777 &type_change_ok, &size_change_ok, &matched))
1778 return FALSE;
1779
1780 if (skip)
1781 goto nondefault;
1782
1783 if (hi->def_regular)
1784 {
1785 /* If the undecorated symbol will have a version added by a
1786 script different to H, then don't indirect to/from the
1787 undecorated symbol. This isn't ideal because we may not yet
1788 have seen symbol versions, if given by a script on the
1789 command line rather than via --version-script. */
1790 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1791 {
1792 bfd_boolean hide;
1793
1794 hi->verinfo.vertree
1795 = bfd_find_version_for_sym (info->version_info,
1796 hi->root.root.string, &hide);
1797 if (hi->verinfo.vertree != NULL && hide)
1798 {
1799 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1800 goto nondefault;
1801 }
1802 }
1803 if (hi->verinfo.vertree != NULL
1804 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1805 goto nondefault;
1806 }
1807
1808 if (! override)
1809 {
1810 /* Add the default symbol if not performing a relocatable link. */
1811 if (! bfd_link_relocatable (info))
1812 {
1813 bh = &hi->root;
1814 if (! (_bfd_generic_link_add_one_symbol
1815 (info, abfd, shortname, BSF_INDIRECT,
1816 bfd_ind_section_ptr,
1817 0, name, FALSE, collect, &bh)))
1818 return FALSE;
1819 hi = (struct elf_link_hash_entry *) bh;
1820 }
1821 }
1822 else
1823 {
1824 /* In this case the symbol named SHORTNAME is overriding the
1825 indirect symbol we want to add. We were planning on making
1826 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1827 is the name without a version. NAME is the fully versioned
1828 name, and it is the default version.
1829
1830 Overriding means that we already saw a definition for the
1831 symbol SHORTNAME in a regular object, and it is overriding
1832 the symbol defined in the dynamic object.
1833
1834 When this happens, we actually want to change NAME, the
1835 symbol we just added, to refer to SHORTNAME. This will cause
1836 references to NAME in the shared object to become references
1837 to SHORTNAME in the regular object. This is what we expect
1838 when we override a function in a shared object: that the
1839 references in the shared object will be mapped to the
1840 definition in the regular object. */
1841
1842 while (hi->root.type == bfd_link_hash_indirect
1843 || hi->root.type == bfd_link_hash_warning)
1844 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1845
1846 h->root.type = bfd_link_hash_indirect;
1847 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1848 if (h->def_dynamic)
1849 {
1850 h->def_dynamic = 0;
1851 hi->ref_dynamic = 1;
1852 if (hi->ref_regular
1853 || hi->def_regular)
1854 {
1855 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1856 return FALSE;
1857 }
1858 }
1859
1860 /* Now set HI to H, so that the following code will set the
1861 other fields correctly. */
1862 hi = h;
1863 }
1864
1865 /* Check if HI is a warning symbol. */
1866 if (hi->root.type == bfd_link_hash_warning)
1867 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1868
1869 /* If there is a duplicate definition somewhere, then HI may not
1870 point to an indirect symbol. We will have reported an error to
1871 the user in that case. */
1872
1873 if (hi->root.type == bfd_link_hash_indirect)
1874 {
1875 struct elf_link_hash_entry *ht;
1876
1877 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1878 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1879
1880 /* A reference to the SHORTNAME symbol from a dynamic library
1881 will be satisfied by the versioned symbol at runtime. In
1882 effect, we have a reference to the versioned symbol. */
1883 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1884 hi->dynamic_def |= ht->dynamic_def;
1885
1886 /* See if the new flags lead us to realize that the symbol must
1887 be dynamic. */
1888 if (! *dynsym)
1889 {
1890 if (! dynamic)
1891 {
1892 if (! bfd_link_executable (info)
1893 || hi->def_dynamic
1894 || hi->ref_dynamic)
1895 *dynsym = TRUE;
1896 }
1897 else
1898 {
1899 if (hi->ref_regular)
1900 *dynsym = TRUE;
1901 }
1902 }
1903 }
1904
1905 /* We also need to define an indirection from the nondefault version
1906 of the symbol. */
1907
1908 nondefault:
1909 len = strlen (name);
1910 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1911 if (shortname == NULL)
1912 return FALSE;
1913 memcpy (shortname, name, shortlen);
1914 memcpy (shortname + shortlen, p + 1, len - shortlen);
1915
1916 /* Once again, merge with any existing symbol. */
1917 type_change_ok = FALSE;
1918 size_change_ok = FALSE;
1919 tmp_sec = sec;
1920 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1921 &hi, poldbfd, NULL, NULL, &skip, &override,
1922 &type_change_ok, &size_change_ok, &matched))
1923 return FALSE;
1924
1925 if (skip)
1926 return TRUE;
1927
1928 if (override)
1929 {
1930 /* Here SHORTNAME is a versioned name, so we don't expect to see
1931 the type of override we do in the case above unless it is
1932 overridden by a versioned definition. */
1933 if (hi->root.type != bfd_link_hash_defined
1934 && hi->root.type != bfd_link_hash_defweak)
1935 (*_bfd_error_handler)
1936 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1937 abfd, shortname);
1938 }
1939 else
1940 {
1941 bh = &hi->root;
1942 if (! (_bfd_generic_link_add_one_symbol
1943 (info, abfd, shortname, BSF_INDIRECT,
1944 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1945 return FALSE;
1946 hi = (struct elf_link_hash_entry *) bh;
1947
1948 /* If there is a duplicate definition somewhere, then HI may not
1949 point to an indirect symbol. We will have reported an error
1950 to the user in that case. */
1951
1952 if (hi->root.type == bfd_link_hash_indirect)
1953 {
1954 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1955 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1956 hi->dynamic_def |= h->dynamic_def;
1957
1958 /* See if the new flags lead us to realize that the symbol
1959 must be dynamic. */
1960 if (! *dynsym)
1961 {
1962 if (! dynamic)
1963 {
1964 if (! bfd_link_executable (info)
1965 || hi->ref_dynamic)
1966 *dynsym = TRUE;
1967 }
1968 else
1969 {
1970 if (hi->ref_regular)
1971 *dynsym = TRUE;
1972 }
1973 }
1974 }
1975 }
1976
1977 return TRUE;
1978 }
1979 \f
1980 /* This routine is used to export all defined symbols into the dynamic
1981 symbol table. It is called via elf_link_hash_traverse. */
1982
1983 static bfd_boolean
1984 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1985 {
1986 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1987
1988 /* Ignore indirect symbols. These are added by the versioning code. */
1989 if (h->root.type == bfd_link_hash_indirect)
1990 return TRUE;
1991
1992 /* Ignore this if we won't export it. */
1993 if (!eif->info->export_dynamic && !h->dynamic)
1994 return TRUE;
1995
1996 if (h->dynindx == -1
1997 && (h->def_regular || h->ref_regular)
1998 && ! bfd_hide_sym_by_version (eif->info->version_info,
1999 h->root.root.string))
2000 {
2001 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2002 {
2003 eif->failed = TRUE;
2004 return FALSE;
2005 }
2006 }
2007
2008 return TRUE;
2009 }
2010 \f
2011 /* Look through the symbols which are defined in other shared
2012 libraries and referenced here. Update the list of version
2013 dependencies. This will be put into the .gnu.version_r section.
2014 This function is called via elf_link_hash_traverse. */
2015
2016 static bfd_boolean
2017 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2018 void *data)
2019 {
2020 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2021 Elf_Internal_Verneed *t;
2022 Elf_Internal_Vernaux *a;
2023 bfd_size_type amt;
2024
2025 /* We only care about symbols defined in shared objects with version
2026 information. */
2027 if (!h->def_dynamic
2028 || h->def_regular
2029 || h->dynindx == -1
2030 || h->verinfo.verdef == NULL
2031 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2032 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2033 return TRUE;
2034
2035 /* See if we already know about this version. */
2036 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2037 t != NULL;
2038 t = t->vn_nextref)
2039 {
2040 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2041 continue;
2042
2043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2044 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2045 return TRUE;
2046
2047 break;
2048 }
2049
2050 /* This is a new version. Add it to tree we are building. */
2051
2052 if (t == NULL)
2053 {
2054 amt = sizeof *t;
2055 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2056 if (t == NULL)
2057 {
2058 rinfo->failed = TRUE;
2059 return FALSE;
2060 }
2061
2062 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2063 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2064 elf_tdata (rinfo->info->output_bfd)->verref = t;
2065 }
2066
2067 amt = sizeof *a;
2068 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2069 if (a == NULL)
2070 {
2071 rinfo->failed = TRUE;
2072 return FALSE;
2073 }
2074
2075 /* Note that we are copying a string pointer here, and testing it
2076 above. If bfd_elf_string_from_elf_section is ever changed to
2077 discard the string data when low in memory, this will have to be
2078 fixed. */
2079 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2080
2081 a->vna_flags = h->verinfo.verdef->vd_flags;
2082 a->vna_nextptr = t->vn_auxptr;
2083
2084 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2085 ++rinfo->vers;
2086
2087 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2088
2089 t->vn_auxptr = a;
2090
2091 return TRUE;
2092 }
2093
2094 /* Figure out appropriate versions for all the symbols. We may not
2095 have the version number script until we have read all of the input
2096 files, so until that point we don't know which symbols should be
2097 local. This function is called via elf_link_hash_traverse. */
2098
2099 static bfd_boolean
2100 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2101 {
2102 struct elf_info_failed *sinfo;
2103 struct bfd_link_info *info;
2104 const struct elf_backend_data *bed;
2105 struct elf_info_failed eif;
2106 char *p;
2107 bfd_size_type amt;
2108
2109 sinfo = (struct elf_info_failed *) data;
2110 info = sinfo->info;
2111
2112 /* Fix the symbol flags. */
2113 eif.failed = FALSE;
2114 eif.info = info;
2115 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2116 {
2117 if (eif.failed)
2118 sinfo->failed = TRUE;
2119 return FALSE;
2120 }
2121
2122 /* We only need version numbers for symbols defined in regular
2123 objects. */
2124 if (!h->def_regular)
2125 return TRUE;
2126
2127 bed = get_elf_backend_data (info->output_bfd);
2128 p = strchr (h->root.root.string, ELF_VER_CHR);
2129 if (p != NULL && h->verinfo.vertree == NULL)
2130 {
2131 struct bfd_elf_version_tree *t;
2132
2133 ++p;
2134 if (*p == ELF_VER_CHR)
2135 ++p;
2136
2137 /* If there is no version string, we can just return out. */
2138 if (*p == '\0')
2139 return TRUE;
2140
2141 /* Look for the version. If we find it, it is no longer weak. */
2142 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2143 {
2144 if (strcmp (t->name, p) == 0)
2145 {
2146 size_t len;
2147 char *alc;
2148 struct bfd_elf_version_expr *d;
2149
2150 len = p - h->root.root.string;
2151 alc = (char *) bfd_malloc (len);
2152 if (alc == NULL)
2153 {
2154 sinfo->failed = TRUE;
2155 return FALSE;
2156 }
2157 memcpy (alc, h->root.root.string, len - 1);
2158 alc[len - 1] = '\0';
2159 if (alc[len - 2] == ELF_VER_CHR)
2160 alc[len - 2] = '\0';
2161
2162 h->verinfo.vertree = t;
2163 t->used = TRUE;
2164 d = NULL;
2165
2166 if (t->globals.list != NULL)
2167 d = (*t->match) (&t->globals, NULL, alc);
2168
2169 /* See if there is anything to force this symbol to
2170 local scope. */
2171 if (d == NULL && t->locals.list != NULL)
2172 {
2173 d = (*t->match) (&t->locals, NULL, alc);
2174 if (d != NULL
2175 && h->dynindx != -1
2176 && ! info->export_dynamic)
2177 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2178 }
2179
2180 free (alc);
2181 break;
2182 }
2183 }
2184
2185 /* If we are building an application, we need to create a
2186 version node for this version. */
2187 if (t == NULL && bfd_link_executable (info))
2188 {
2189 struct bfd_elf_version_tree **pp;
2190 int version_index;
2191
2192 /* If we aren't going to export this symbol, we don't need
2193 to worry about it. */
2194 if (h->dynindx == -1)
2195 return TRUE;
2196
2197 amt = sizeof *t;
2198 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2199 if (t == NULL)
2200 {
2201 sinfo->failed = TRUE;
2202 return FALSE;
2203 }
2204
2205 t->name = p;
2206 t->name_indx = (unsigned int) -1;
2207 t->used = TRUE;
2208
2209 version_index = 1;
2210 /* Don't count anonymous version tag. */
2211 if (sinfo->info->version_info != NULL
2212 && sinfo->info->version_info->vernum == 0)
2213 version_index = 0;
2214 for (pp = &sinfo->info->version_info;
2215 *pp != NULL;
2216 pp = &(*pp)->next)
2217 ++version_index;
2218 t->vernum = version_index;
2219
2220 *pp = t;
2221
2222 h->verinfo.vertree = t;
2223 }
2224 else if (t == NULL)
2225 {
2226 /* We could not find the version for a symbol when
2227 generating a shared archive. Return an error. */
2228 (*_bfd_error_handler)
2229 (_("%B: version node not found for symbol %s"),
2230 info->output_bfd, h->root.root.string);
2231 bfd_set_error (bfd_error_bad_value);
2232 sinfo->failed = TRUE;
2233 return FALSE;
2234 }
2235 }
2236
2237 /* If we don't have a version for this symbol, see if we can find
2238 something. */
2239 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2240 {
2241 bfd_boolean hide;
2242
2243 h->verinfo.vertree
2244 = bfd_find_version_for_sym (sinfo->info->version_info,
2245 h->root.root.string, &hide);
2246 if (h->verinfo.vertree != NULL && hide)
2247 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2248 }
2249
2250 return TRUE;
2251 }
2252 \f
2253 /* Read and swap the relocs from the section indicated by SHDR. This
2254 may be either a REL or a RELA section. The relocations are
2255 translated into RELA relocations and stored in INTERNAL_RELOCS,
2256 which should have already been allocated to contain enough space.
2257 The EXTERNAL_RELOCS are a buffer where the external form of the
2258 relocations should be stored.
2259
2260 Returns FALSE if something goes wrong. */
2261
2262 static bfd_boolean
2263 elf_link_read_relocs_from_section (bfd *abfd,
2264 asection *sec,
2265 Elf_Internal_Shdr *shdr,
2266 void *external_relocs,
2267 Elf_Internal_Rela *internal_relocs)
2268 {
2269 const struct elf_backend_data *bed;
2270 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2271 const bfd_byte *erela;
2272 const bfd_byte *erelaend;
2273 Elf_Internal_Rela *irela;
2274 Elf_Internal_Shdr *symtab_hdr;
2275 size_t nsyms;
2276
2277 /* Position ourselves at the start of the section. */
2278 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2279 return FALSE;
2280
2281 /* Read the relocations. */
2282 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2283 return FALSE;
2284
2285 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2286 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2287
2288 bed = get_elf_backend_data (abfd);
2289
2290 /* Convert the external relocations to the internal format. */
2291 if (shdr->sh_entsize == bed->s->sizeof_rel)
2292 swap_in = bed->s->swap_reloc_in;
2293 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2294 swap_in = bed->s->swap_reloca_in;
2295 else
2296 {
2297 bfd_set_error (bfd_error_wrong_format);
2298 return FALSE;
2299 }
2300
2301 erela = (const bfd_byte *) external_relocs;
2302 erelaend = erela + shdr->sh_size;
2303 irela = internal_relocs;
2304 while (erela < erelaend)
2305 {
2306 bfd_vma r_symndx;
2307
2308 (*swap_in) (abfd, erela, irela);
2309 r_symndx = ELF32_R_SYM (irela->r_info);
2310 if (bed->s->arch_size == 64)
2311 r_symndx >>= 24;
2312 if (nsyms > 0)
2313 {
2314 if ((size_t) r_symndx >= nsyms)
2315 {
2316 (*_bfd_error_handler)
2317 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2318 " for offset 0x%lx in section `%A'"),
2319 abfd, sec,
2320 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2321 bfd_set_error (bfd_error_bad_value);
2322 return FALSE;
2323 }
2324 }
2325 else if (r_symndx != STN_UNDEF)
2326 {
2327 (*_bfd_error_handler)
2328 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2329 " when the object file has no symbol table"),
2330 abfd, sec,
2331 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2332 bfd_set_error (bfd_error_bad_value);
2333 return FALSE;
2334 }
2335 irela += bed->s->int_rels_per_ext_rel;
2336 erela += shdr->sh_entsize;
2337 }
2338
2339 return TRUE;
2340 }
2341
2342 /* Read and swap the relocs for a section O. They may have been
2343 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2344 not NULL, they are used as buffers to read into. They are known to
2345 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2346 the return value is allocated using either malloc or bfd_alloc,
2347 according to the KEEP_MEMORY argument. If O has two relocation
2348 sections (both REL and RELA relocations), then the REL_HDR
2349 relocations will appear first in INTERNAL_RELOCS, followed by the
2350 RELA_HDR relocations. */
2351
2352 Elf_Internal_Rela *
2353 _bfd_elf_link_read_relocs (bfd *abfd,
2354 asection *o,
2355 void *external_relocs,
2356 Elf_Internal_Rela *internal_relocs,
2357 bfd_boolean keep_memory)
2358 {
2359 void *alloc1 = NULL;
2360 Elf_Internal_Rela *alloc2 = NULL;
2361 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2362 struct bfd_elf_section_data *esdo = elf_section_data (o);
2363 Elf_Internal_Rela *internal_rela_relocs;
2364
2365 if (esdo->relocs != NULL)
2366 return esdo->relocs;
2367
2368 if (o->reloc_count == 0)
2369 return NULL;
2370
2371 if (internal_relocs == NULL)
2372 {
2373 bfd_size_type size;
2374
2375 size = o->reloc_count;
2376 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2377 if (keep_memory)
2378 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2379 else
2380 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2381 if (internal_relocs == NULL)
2382 goto error_return;
2383 }
2384
2385 if (external_relocs == NULL)
2386 {
2387 bfd_size_type size = 0;
2388
2389 if (esdo->rel.hdr)
2390 size += esdo->rel.hdr->sh_size;
2391 if (esdo->rela.hdr)
2392 size += esdo->rela.hdr->sh_size;
2393
2394 alloc1 = bfd_malloc (size);
2395 if (alloc1 == NULL)
2396 goto error_return;
2397 external_relocs = alloc1;
2398 }
2399
2400 internal_rela_relocs = internal_relocs;
2401 if (esdo->rel.hdr)
2402 {
2403 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2404 external_relocs,
2405 internal_relocs))
2406 goto error_return;
2407 external_relocs = (((bfd_byte *) external_relocs)
2408 + esdo->rel.hdr->sh_size);
2409 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2410 * bed->s->int_rels_per_ext_rel);
2411 }
2412
2413 if (esdo->rela.hdr
2414 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2415 external_relocs,
2416 internal_rela_relocs)))
2417 goto error_return;
2418
2419 /* Cache the results for next time, if we can. */
2420 if (keep_memory)
2421 esdo->relocs = internal_relocs;
2422
2423 if (alloc1 != NULL)
2424 free (alloc1);
2425
2426 /* Don't free alloc2, since if it was allocated we are passing it
2427 back (under the name of internal_relocs). */
2428
2429 return internal_relocs;
2430
2431 error_return:
2432 if (alloc1 != NULL)
2433 free (alloc1);
2434 if (alloc2 != NULL)
2435 {
2436 if (keep_memory)
2437 bfd_release (abfd, alloc2);
2438 else
2439 free (alloc2);
2440 }
2441 return NULL;
2442 }
2443
2444 /* Compute the size of, and allocate space for, REL_HDR which is the
2445 section header for a section containing relocations for O. */
2446
2447 static bfd_boolean
2448 _bfd_elf_link_size_reloc_section (bfd *abfd,
2449 struct bfd_elf_section_reloc_data *reldata)
2450 {
2451 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2452
2453 /* That allows us to calculate the size of the section. */
2454 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2455
2456 /* The contents field must last into write_object_contents, so we
2457 allocate it with bfd_alloc rather than malloc. Also since we
2458 cannot be sure that the contents will actually be filled in,
2459 we zero the allocated space. */
2460 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2461 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2462 return FALSE;
2463
2464 if (reldata->hashes == NULL && reldata->count)
2465 {
2466 struct elf_link_hash_entry **p;
2467
2468 p = ((struct elf_link_hash_entry **)
2469 bfd_zmalloc (reldata->count * sizeof (*p)));
2470 if (p == NULL)
2471 return FALSE;
2472
2473 reldata->hashes = p;
2474 }
2475
2476 return TRUE;
2477 }
2478
2479 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2480 originated from the section given by INPUT_REL_HDR) to the
2481 OUTPUT_BFD. */
2482
2483 bfd_boolean
2484 _bfd_elf_link_output_relocs (bfd *output_bfd,
2485 asection *input_section,
2486 Elf_Internal_Shdr *input_rel_hdr,
2487 Elf_Internal_Rela *internal_relocs,
2488 struct elf_link_hash_entry **rel_hash
2489 ATTRIBUTE_UNUSED)
2490 {
2491 Elf_Internal_Rela *irela;
2492 Elf_Internal_Rela *irelaend;
2493 bfd_byte *erel;
2494 struct bfd_elf_section_reloc_data *output_reldata;
2495 asection *output_section;
2496 const struct elf_backend_data *bed;
2497 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2498 struct bfd_elf_section_data *esdo;
2499
2500 output_section = input_section->output_section;
2501
2502 bed = get_elf_backend_data (output_bfd);
2503 esdo = elf_section_data (output_section);
2504 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2505 {
2506 output_reldata = &esdo->rel;
2507 swap_out = bed->s->swap_reloc_out;
2508 }
2509 else if (esdo->rela.hdr
2510 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2511 {
2512 output_reldata = &esdo->rela;
2513 swap_out = bed->s->swap_reloca_out;
2514 }
2515 else
2516 {
2517 (*_bfd_error_handler)
2518 (_("%B: relocation size mismatch in %B section %A"),
2519 output_bfd, input_section->owner, input_section);
2520 bfd_set_error (bfd_error_wrong_format);
2521 return FALSE;
2522 }
2523
2524 erel = output_reldata->hdr->contents;
2525 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2526 irela = internal_relocs;
2527 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2528 * bed->s->int_rels_per_ext_rel);
2529 while (irela < irelaend)
2530 {
2531 (*swap_out) (output_bfd, irela, erel);
2532 irela += bed->s->int_rels_per_ext_rel;
2533 erel += input_rel_hdr->sh_entsize;
2534 }
2535
2536 /* Bump the counter, so that we know where to add the next set of
2537 relocations. */
2538 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2539
2540 return TRUE;
2541 }
2542 \f
2543 /* Make weak undefined symbols in PIE dynamic. */
2544
2545 bfd_boolean
2546 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2547 struct elf_link_hash_entry *h)
2548 {
2549 if (bfd_link_pie (info)
2550 && h->dynindx == -1
2551 && h->root.type == bfd_link_hash_undefweak)
2552 return bfd_elf_link_record_dynamic_symbol (info, h);
2553
2554 return TRUE;
2555 }
2556
2557 /* Fix up the flags for a symbol. This handles various cases which
2558 can only be fixed after all the input files are seen. This is
2559 currently called by both adjust_dynamic_symbol and
2560 assign_sym_version, which is unnecessary but perhaps more robust in
2561 the face of future changes. */
2562
2563 static bfd_boolean
2564 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2565 struct elf_info_failed *eif)
2566 {
2567 const struct elf_backend_data *bed;
2568
2569 /* If this symbol was mentioned in a non-ELF file, try to set
2570 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2571 permit a non-ELF file to correctly refer to a symbol defined in
2572 an ELF dynamic object. */
2573 if (h->non_elf)
2574 {
2575 while (h->root.type == bfd_link_hash_indirect)
2576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2577
2578 if (h->root.type != bfd_link_hash_defined
2579 && h->root.type != bfd_link_hash_defweak)
2580 {
2581 h->ref_regular = 1;
2582 h->ref_regular_nonweak = 1;
2583 }
2584 else
2585 {
2586 if (h->root.u.def.section->owner != NULL
2587 && (bfd_get_flavour (h->root.u.def.section->owner)
2588 == bfd_target_elf_flavour))
2589 {
2590 h->ref_regular = 1;
2591 h->ref_regular_nonweak = 1;
2592 }
2593 else
2594 h->def_regular = 1;
2595 }
2596
2597 if (h->dynindx == -1
2598 && (h->def_dynamic
2599 || h->ref_dynamic))
2600 {
2601 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2602 {
2603 eif->failed = TRUE;
2604 return FALSE;
2605 }
2606 }
2607 }
2608 else
2609 {
2610 /* Unfortunately, NON_ELF is only correct if the symbol
2611 was first seen in a non-ELF file. Fortunately, if the symbol
2612 was first seen in an ELF file, we're probably OK unless the
2613 symbol was defined in a non-ELF file. Catch that case here.
2614 FIXME: We're still in trouble if the symbol was first seen in
2615 a dynamic object, and then later in a non-ELF regular object. */
2616 if ((h->root.type == bfd_link_hash_defined
2617 || h->root.type == bfd_link_hash_defweak)
2618 && !h->def_regular
2619 && (h->root.u.def.section->owner != NULL
2620 ? (bfd_get_flavour (h->root.u.def.section->owner)
2621 != bfd_target_elf_flavour)
2622 : (bfd_is_abs_section (h->root.u.def.section)
2623 && !h->def_dynamic)))
2624 h->def_regular = 1;
2625 }
2626
2627 /* Backend specific symbol fixup. */
2628 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2629 if (bed->elf_backend_fixup_symbol
2630 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2631 return FALSE;
2632
2633 /* If this is a final link, and the symbol was defined as a common
2634 symbol in a regular object file, and there was no definition in
2635 any dynamic object, then the linker will have allocated space for
2636 the symbol in a common section but the DEF_REGULAR
2637 flag will not have been set. */
2638 if (h->root.type == bfd_link_hash_defined
2639 && !h->def_regular
2640 && h->ref_regular
2641 && !h->def_dynamic
2642 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2643 h->def_regular = 1;
2644
2645 /* If -Bsymbolic was used (which means to bind references to global
2646 symbols to the definition within the shared object), and this
2647 symbol was defined in a regular object, then it actually doesn't
2648 need a PLT entry. Likewise, if the symbol has non-default
2649 visibility. If the symbol has hidden or internal visibility, we
2650 will force it local. */
2651 if (h->needs_plt
2652 && bfd_link_pic (eif->info)
2653 && is_elf_hash_table (eif->info->hash)
2654 && (SYMBOLIC_BIND (eif->info, h)
2655 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2656 && h->def_regular)
2657 {
2658 bfd_boolean force_local;
2659
2660 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2661 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2662 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2663 }
2664
2665 /* If a weak undefined symbol has non-default visibility, we also
2666 hide it from the dynamic linker. */
2667 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2668 && h->root.type == bfd_link_hash_undefweak)
2669 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2670
2671 /* If this is a weak defined symbol in a dynamic object, and we know
2672 the real definition in the dynamic object, copy interesting flags
2673 over to the real definition. */
2674 if (h->u.weakdef != NULL)
2675 {
2676 /* If the real definition is defined by a regular object file,
2677 don't do anything special. See the longer description in
2678 _bfd_elf_adjust_dynamic_symbol, below. */
2679 if (h->u.weakdef->def_regular)
2680 h->u.weakdef = NULL;
2681 else
2682 {
2683 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2684
2685 while (h->root.type == bfd_link_hash_indirect)
2686 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2687
2688 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2689 || h->root.type == bfd_link_hash_defweak);
2690 BFD_ASSERT (weakdef->def_dynamic);
2691 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2692 || weakdef->root.type == bfd_link_hash_defweak);
2693 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2694 }
2695 }
2696
2697 return TRUE;
2698 }
2699
2700 /* Make the backend pick a good value for a dynamic symbol. This is
2701 called via elf_link_hash_traverse, and also calls itself
2702 recursively. */
2703
2704 static bfd_boolean
2705 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2706 {
2707 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2708 bfd *dynobj;
2709 const struct elf_backend_data *bed;
2710
2711 if (! is_elf_hash_table (eif->info->hash))
2712 return FALSE;
2713
2714 /* Ignore indirect symbols. These are added by the versioning code. */
2715 if (h->root.type == bfd_link_hash_indirect)
2716 return TRUE;
2717
2718 /* Fix the symbol flags. */
2719 if (! _bfd_elf_fix_symbol_flags (h, eif))
2720 return FALSE;
2721
2722 /* If this symbol does not require a PLT entry, and it is not
2723 defined by a dynamic object, or is not referenced by a regular
2724 object, ignore it. We do have to handle a weak defined symbol,
2725 even if no regular object refers to it, if we decided to add it
2726 to the dynamic symbol table. FIXME: Do we normally need to worry
2727 about symbols which are defined by one dynamic object and
2728 referenced by another one? */
2729 if (!h->needs_plt
2730 && h->type != STT_GNU_IFUNC
2731 && (h->def_regular
2732 || !h->def_dynamic
2733 || (!h->ref_regular
2734 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2735 {
2736 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2737 return TRUE;
2738 }
2739
2740 /* If we've already adjusted this symbol, don't do it again. This
2741 can happen via a recursive call. */
2742 if (h->dynamic_adjusted)
2743 return TRUE;
2744
2745 /* Don't look at this symbol again. Note that we must set this
2746 after checking the above conditions, because we may look at a
2747 symbol once, decide not to do anything, and then get called
2748 recursively later after REF_REGULAR is set below. */
2749 h->dynamic_adjusted = 1;
2750
2751 /* If this is a weak definition, and we know a real definition, and
2752 the real symbol is not itself defined by a regular object file,
2753 then get a good value for the real definition. We handle the
2754 real symbol first, for the convenience of the backend routine.
2755
2756 Note that there is a confusing case here. If the real definition
2757 is defined by a regular object file, we don't get the real symbol
2758 from the dynamic object, but we do get the weak symbol. If the
2759 processor backend uses a COPY reloc, then if some routine in the
2760 dynamic object changes the real symbol, we will not see that
2761 change in the corresponding weak symbol. This is the way other
2762 ELF linkers work as well, and seems to be a result of the shared
2763 library model.
2764
2765 I will clarify this issue. Most SVR4 shared libraries define the
2766 variable _timezone and define timezone as a weak synonym. The
2767 tzset call changes _timezone. If you write
2768 extern int timezone;
2769 int _timezone = 5;
2770 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2771 you might expect that, since timezone is a synonym for _timezone,
2772 the same number will print both times. However, if the processor
2773 backend uses a COPY reloc, then actually timezone will be copied
2774 into your process image, and, since you define _timezone
2775 yourself, _timezone will not. Thus timezone and _timezone will
2776 wind up at different memory locations. The tzset call will set
2777 _timezone, leaving timezone unchanged. */
2778
2779 if (h->u.weakdef != NULL)
2780 {
2781 /* If we get to this point, there is an implicit reference to
2782 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2783 h->u.weakdef->ref_regular = 1;
2784
2785 /* Ensure that the backend adjust_dynamic_symbol function sees
2786 H->U.WEAKDEF before H by recursively calling ourselves. */
2787 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2788 return FALSE;
2789 }
2790
2791 /* If a symbol has no type and no size and does not require a PLT
2792 entry, then we are probably about to do the wrong thing here: we
2793 are probably going to create a COPY reloc for an empty object.
2794 This case can arise when a shared object is built with assembly
2795 code, and the assembly code fails to set the symbol type. */
2796 if (h->size == 0
2797 && h->type == STT_NOTYPE
2798 && !h->needs_plt)
2799 (*_bfd_error_handler)
2800 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2801 h->root.root.string);
2802
2803 dynobj = elf_hash_table (eif->info)->dynobj;
2804 bed = get_elf_backend_data (dynobj);
2805
2806 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2807 {
2808 eif->failed = TRUE;
2809 return FALSE;
2810 }
2811
2812 return TRUE;
2813 }
2814
2815 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2816 DYNBSS. */
2817
2818 bfd_boolean
2819 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2820 struct elf_link_hash_entry *h,
2821 asection *dynbss)
2822 {
2823 unsigned int power_of_two;
2824 bfd_vma mask;
2825 asection *sec = h->root.u.def.section;
2826
2827 /* The section aligment of definition is the maximum alignment
2828 requirement of symbols defined in the section. Since we don't
2829 know the symbol alignment requirement, we start with the
2830 maximum alignment and check low bits of the symbol address
2831 for the minimum alignment. */
2832 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2833 mask = ((bfd_vma) 1 << power_of_two) - 1;
2834 while ((h->root.u.def.value & mask) != 0)
2835 {
2836 mask >>= 1;
2837 --power_of_two;
2838 }
2839
2840 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2841 dynbss))
2842 {
2843 /* Adjust the section alignment if needed. */
2844 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2845 power_of_two))
2846 return FALSE;
2847 }
2848
2849 /* We make sure that the symbol will be aligned properly. */
2850 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2851
2852 /* Define the symbol as being at this point in DYNBSS. */
2853 h->root.u.def.section = dynbss;
2854 h->root.u.def.value = dynbss->size;
2855
2856 /* Increment the size of DYNBSS to make room for the symbol. */
2857 dynbss->size += h->size;
2858
2859 /* No error if extern_protected_data is true. */
2860 if (h->protected_def
2861 && (!info->extern_protected_data
2862 || (info->extern_protected_data < 0
2863 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2864 info->callbacks->einfo
2865 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2866 h->root.root.string);
2867
2868 return TRUE;
2869 }
2870
2871 /* Adjust all external symbols pointing into SEC_MERGE sections
2872 to reflect the object merging within the sections. */
2873
2874 static bfd_boolean
2875 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2876 {
2877 asection *sec;
2878
2879 if ((h->root.type == bfd_link_hash_defined
2880 || h->root.type == bfd_link_hash_defweak)
2881 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2882 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2883 {
2884 bfd *output_bfd = (bfd *) data;
2885
2886 h->root.u.def.value =
2887 _bfd_merged_section_offset (output_bfd,
2888 &h->root.u.def.section,
2889 elf_section_data (sec)->sec_info,
2890 h->root.u.def.value);
2891 }
2892
2893 return TRUE;
2894 }
2895
2896 /* Returns false if the symbol referred to by H should be considered
2897 to resolve local to the current module, and true if it should be
2898 considered to bind dynamically. */
2899
2900 bfd_boolean
2901 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2902 struct bfd_link_info *info,
2903 bfd_boolean not_local_protected)
2904 {
2905 bfd_boolean binding_stays_local_p;
2906 const struct elf_backend_data *bed;
2907 struct elf_link_hash_table *hash_table;
2908
2909 if (h == NULL)
2910 return FALSE;
2911
2912 while (h->root.type == bfd_link_hash_indirect
2913 || h->root.type == bfd_link_hash_warning)
2914 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2915
2916 /* If it was forced local, then clearly it's not dynamic. */
2917 if (h->dynindx == -1)
2918 return FALSE;
2919 if (h->forced_local)
2920 return FALSE;
2921
2922 /* Identify the cases where name binding rules say that a
2923 visible symbol resolves locally. */
2924 binding_stays_local_p = (bfd_link_executable (info)
2925 || SYMBOLIC_BIND (info, h));
2926
2927 switch (ELF_ST_VISIBILITY (h->other))
2928 {
2929 case STV_INTERNAL:
2930 case STV_HIDDEN:
2931 return FALSE;
2932
2933 case STV_PROTECTED:
2934 hash_table = elf_hash_table (info);
2935 if (!is_elf_hash_table (hash_table))
2936 return FALSE;
2937
2938 bed = get_elf_backend_data (hash_table->dynobj);
2939
2940 /* Proper resolution for function pointer equality may require
2941 that these symbols perhaps be resolved dynamically, even though
2942 we should be resolving them to the current module. */
2943 if (!not_local_protected || !bed->is_function_type (h->type))
2944 binding_stays_local_p = TRUE;
2945 break;
2946
2947 default:
2948 break;
2949 }
2950
2951 /* If it isn't defined locally, then clearly it's dynamic. */
2952 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2953 return TRUE;
2954
2955 /* Otherwise, the symbol is dynamic if binding rules don't tell
2956 us that it remains local. */
2957 return !binding_stays_local_p;
2958 }
2959
2960 /* Return true if the symbol referred to by H should be considered
2961 to resolve local to the current module, and false otherwise. Differs
2962 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2963 undefined symbols. The two functions are virtually identical except
2964 for the place where forced_local and dynindx == -1 are tested. If
2965 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2966 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2967 the symbol is local only for defined symbols.
2968 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2969 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2970 treatment of undefined weak symbols. For those that do not make
2971 undefined weak symbols dynamic, both functions may return false. */
2972
2973 bfd_boolean
2974 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2975 struct bfd_link_info *info,
2976 bfd_boolean local_protected)
2977 {
2978 const struct elf_backend_data *bed;
2979 struct elf_link_hash_table *hash_table;
2980
2981 /* If it's a local sym, of course we resolve locally. */
2982 if (h == NULL)
2983 return TRUE;
2984
2985 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2986 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2987 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2988 return TRUE;
2989
2990 /* Common symbols that become definitions don't get the DEF_REGULAR
2991 flag set, so test it first, and don't bail out. */
2992 if (ELF_COMMON_DEF_P (h))
2993 /* Do nothing. */;
2994 /* If we don't have a definition in a regular file, then we can't
2995 resolve locally. The sym is either undefined or dynamic. */
2996 else if (!h->def_regular)
2997 return FALSE;
2998
2999 /* Forced local symbols resolve locally. */
3000 if (h->forced_local)
3001 return TRUE;
3002
3003 /* As do non-dynamic symbols. */
3004 if (h->dynindx == -1)
3005 return TRUE;
3006
3007 /* At this point, we know the symbol is defined and dynamic. In an
3008 executable it must resolve locally, likewise when building symbolic
3009 shared libraries. */
3010 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3011 return TRUE;
3012
3013 /* Now deal with defined dynamic symbols in shared libraries. Ones
3014 with default visibility might not resolve locally. */
3015 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3016 return FALSE;
3017
3018 hash_table = elf_hash_table (info);
3019 if (!is_elf_hash_table (hash_table))
3020 return TRUE;
3021
3022 bed = get_elf_backend_data (hash_table->dynobj);
3023
3024 /* If extern_protected_data is false, STV_PROTECTED non-function
3025 symbols are local. */
3026 if ((!info->extern_protected_data
3027 || (info->extern_protected_data < 0
3028 && !bed->extern_protected_data))
3029 && !bed->is_function_type (h->type))
3030 return TRUE;
3031
3032 /* Function pointer equality tests may require that STV_PROTECTED
3033 symbols be treated as dynamic symbols. If the address of a
3034 function not defined in an executable is set to that function's
3035 plt entry in the executable, then the address of the function in
3036 a shared library must also be the plt entry in the executable. */
3037 return local_protected;
3038 }
3039
3040 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3041 aligned. Returns the first TLS output section. */
3042
3043 struct bfd_section *
3044 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3045 {
3046 struct bfd_section *sec, *tls;
3047 unsigned int align = 0;
3048
3049 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3050 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3051 break;
3052 tls = sec;
3053
3054 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3055 if (sec->alignment_power > align)
3056 align = sec->alignment_power;
3057
3058 elf_hash_table (info)->tls_sec = tls;
3059
3060 /* Ensure the alignment of the first section is the largest alignment,
3061 so that the tls segment starts aligned. */
3062 if (tls != NULL)
3063 tls->alignment_power = align;
3064
3065 return tls;
3066 }
3067
3068 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3069 static bfd_boolean
3070 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3071 Elf_Internal_Sym *sym)
3072 {
3073 const struct elf_backend_data *bed;
3074
3075 /* Local symbols do not count, but target specific ones might. */
3076 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3077 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3078 return FALSE;
3079
3080 bed = get_elf_backend_data (abfd);
3081 /* Function symbols do not count. */
3082 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3083 return FALSE;
3084
3085 /* If the section is undefined, then so is the symbol. */
3086 if (sym->st_shndx == SHN_UNDEF)
3087 return FALSE;
3088
3089 /* If the symbol is defined in the common section, then
3090 it is a common definition and so does not count. */
3091 if (bed->common_definition (sym))
3092 return FALSE;
3093
3094 /* If the symbol is in a target specific section then we
3095 must rely upon the backend to tell us what it is. */
3096 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3097 /* FIXME - this function is not coded yet:
3098
3099 return _bfd_is_global_symbol_definition (abfd, sym);
3100
3101 Instead for now assume that the definition is not global,
3102 Even if this is wrong, at least the linker will behave
3103 in the same way that it used to do. */
3104 return FALSE;
3105
3106 return TRUE;
3107 }
3108
3109 /* Search the symbol table of the archive element of the archive ABFD
3110 whose archive map contains a mention of SYMDEF, and determine if
3111 the symbol is defined in this element. */
3112 static bfd_boolean
3113 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3114 {
3115 Elf_Internal_Shdr * hdr;
3116 bfd_size_type symcount;
3117 bfd_size_type extsymcount;
3118 bfd_size_type extsymoff;
3119 Elf_Internal_Sym *isymbuf;
3120 Elf_Internal_Sym *isym;
3121 Elf_Internal_Sym *isymend;
3122 bfd_boolean result;
3123
3124 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3125 if (abfd == NULL)
3126 return FALSE;
3127
3128 /* Return FALSE if the object has been claimed by plugin. */
3129 if (abfd->plugin_format == bfd_plugin_yes)
3130 return FALSE;
3131
3132 if (! bfd_check_format (abfd, bfd_object))
3133 return FALSE;
3134
3135 /* Select the appropriate symbol table. */
3136 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3137 hdr = &elf_tdata (abfd)->symtab_hdr;
3138 else
3139 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3140
3141 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3142
3143 /* The sh_info field of the symtab header tells us where the
3144 external symbols start. We don't care about the local symbols. */
3145 if (elf_bad_symtab (abfd))
3146 {
3147 extsymcount = symcount;
3148 extsymoff = 0;
3149 }
3150 else
3151 {
3152 extsymcount = symcount - hdr->sh_info;
3153 extsymoff = hdr->sh_info;
3154 }
3155
3156 if (extsymcount == 0)
3157 return FALSE;
3158
3159 /* Read in the symbol table. */
3160 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3161 NULL, NULL, NULL);
3162 if (isymbuf == NULL)
3163 return FALSE;
3164
3165 /* Scan the symbol table looking for SYMDEF. */
3166 result = FALSE;
3167 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3168 {
3169 const char *name;
3170
3171 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3172 isym->st_name);
3173 if (name == NULL)
3174 break;
3175
3176 if (strcmp (name, symdef->name) == 0)
3177 {
3178 result = is_global_data_symbol_definition (abfd, isym);
3179 break;
3180 }
3181 }
3182
3183 free (isymbuf);
3184
3185 return result;
3186 }
3187 \f
3188 /* Add an entry to the .dynamic table. */
3189
3190 bfd_boolean
3191 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3192 bfd_vma tag,
3193 bfd_vma val)
3194 {
3195 struct elf_link_hash_table *hash_table;
3196 const struct elf_backend_data *bed;
3197 asection *s;
3198 bfd_size_type newsize;
3199 bfd_byte *newcontents;
3200 Elf_Internal_Dyn dyn;
3201
3202 hash_table = elf_hash_table (info);
3203 if (! is_elf_hash_table (hash_table))
3204 return FALSE;
3205
3206 bed = get_elf_backend_data (hash_table->dynobj);
3207 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3208 BFD_ASSERT (s != NULL);
3209
3210 newsize = s->size + bed->s->sizeof_dyn;
3211 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3212 if (newcontents == NULL)
3213 return FALSE;
3214
3215 dyn.d_tag = tag;
3216 dyn.d_un.d_val = val;
3217 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3218
3219 s->size = newsize;
3220 s->contents = newcontents;
3221
3222 return TRUE;
3223 }
3224
3225 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3226 otherwise just check whether one already exists. Returns -1 on error,
3227 1 if a DT_NEEDED tag already exists, and 0 on success. */
3228
3229 static int
3230 elf_add_dt_needed_tag (bfd *abfd,
3231 struct bfd_link_info *info,
3232 const char *soname,
3233 bfd_boolean do_it)
3234 {
3235 struct elf_link_hash_table *hash_table;
3236 bfd_size_type strindex;
3237
3238 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3239 return -1;
3240
3241 hash_table = elf_hash_table (info);
3242 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3243 if (strindex == (bfd_size_type) -1)
3244 return -1;
3245
3246 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3247 {
3248 asection *sdyn;
3249 const struct elf_backend_data *bed;
3250 bfd_byte *extdyn;
3251
3252 bed = get_elf_backend_data (hash_table->dynobj);
3253 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3254 if (sdyn != NULL)
3255 for (extdyn = sdyn->contents;
3256 extdyn < sdyn->contents + sdyn->size;
3257 extdyn += bed->s->sizeof_dyn)
3258 {
3259 Elf_Internal_Dyn dyn;
3260
3261 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3262 if (dyn.d_tag == DT_NEEDED
3263 && dyn.d_un.d_val == strindex)
3264 {
3265 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3266 return 1;
3267 }
3268 }
3269 }
3270
3271 if (do_it)
3272 {
3273 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3274 return -1;
3275
3276 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3277 return -1;
3278 }
3279 else
3280 /* We were just checking for existence of the tag. */
3281 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3282
3283 return 0;
3284 }
3285
3286 /* Return true if SONAME is on the needed list between NEEDED and STOP
3287 (or the end of list if STOP is NULL), and needed by a library that
3288 will be loaded. */
3289
3290 static bfd_boolean
3291 on_needed_list (const char *soname,
3292 struct bfd_link_needed_list *needed,
3293 struct bfd_link_needed_list *stop)
3294 {
3295 struct bfd_link_needed_list *look;
3296 for (look = needed; look != stop; look = look->next)
3297 if (strcmp (soname, look->name) == 0
3298 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3299 /* If needed by a library that itself is not directly
3300 needed, recursively check whether that library is
3301 indirectly needed. Since we add DT_NEEDED entries to
3302 the end of the list, library dependencies appear after
3303 the library. Therefore search prior to the current
3304 LOOK, preventing possible infinite recursion. */
3305 || on_needed_list (elf_dt_name (look->by), needed, look)))
3306 return TRUE;
3307
3308 return FALSE;
3309 }
3310
3311 /* Sort symbol by value, section, and size. */
3312 static int
3313 elf_sort_symbol (const void *arg1, const void *arg2)
3314 {
3315 const struct elf_link_hash_entry *h1;
3316 const struct elf_link_hash_entry *h2;
3317 bfd_signed_vma vdiff;
3318
3319 h1 = *(const struct elf_link_hash_entry **) arg1;
3320 h2 = *(const struct elf_link_hash_entry **) arg2;
3321 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3322 if (vdiff != 0)
3323 return vdiff > 0 ? 1 : -1;
3324 else
3325 {
3326 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3327 if (sdiff != 0)
3328 return sdiff > 0 ? 1 : -1;
3329 }
3330 vdiff = h1->size - h2->size;
3331 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3332 }
3333
3334 /* This function is used to adjust offsets into .dynstr for
3335 dynamic symbols. This is called via elf_link_hash_traverse. */
3336
3337 static bfd_boolean
3338 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3339 {
3340 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3341
3342 if (h->dynindx != -1)
3343 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3344 return TRUE;
3345 }
3346
3347 /* Assign string offsets in .dynstr, update all structures referencing
3348 them. */
3349
3350 static bfd_boolean
3351 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3352 {
3353 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3354 struct elf_link_local_dynamic_entry *entry;
3355 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3356 bfd *dynobj = hash_table->dynobj;
3357 asection *sdyn;
3358 bfd_size_type size;
3359 const struct elf_backend_data *bed;
3360 bfd_byte *extdyn;
3361
3362 _bfd_elf_strtab_finalize (dynstr);
3363 size = _bfd_elf_strtab_size (dynstr);
3364
3365 bed = get_elf_backend_data (dynobj);
3366 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3367 BFD_ASSERT (sdyn != NULL);
3368
3369 /* Update all .dynamic entries referencing .dynstr strings. */
3370 for (extdyn = sdyn->contents;
3371 extdyn < sdyn->contents + sdyn->size;
3372 extdyn += bed->s->sizeof_dyn)
3373 {
3374 Elf_Internal_Dyn dyn;
3375
3376 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3377 switch (dyn.d_tag)
3378 {
3379 case DT_STRSZ:
3380 dyn.d_un.d_val = size;
3381 break;
3382 case DT_NEEDED:
3383 case DT_SONAME:
3384 case DT_RPATH:
3385 case DT_RUNPATH:
3386 case DT_FILTER:
3387 case DT_AUXILIARY:
3388 case DT_AUDIT:
3389 case DT_DEPAUDIT:
3390 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3391 break;
3392 default:
3393 continue;
3394 }
3395 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3396 }
3397
3398 /* Now update local dynamic symbols. */
3399 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3400 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3401 entry->isym.st_name);
3402
3403 /* And the rest of dynamic symbols. */
3404 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3405
3406 /* Adjust version definitions. */
3407 if (elf_tdata (output_bfd)->cverdefs)
3408 {
3409 asection *s;
3410 bfd_byte *p;
3411 bfd_size_type i;
3412 Elf_Internal_Verdef def;
3413 Elf_Internal_Verdaux defaux;
3414
3415 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3416 p = s->contents;
3417 do
3418 {
3419 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3420 &def);
3421 p += sizeof (Elf_External_Verdef);
3422 if (def.vd_aux != sizeof (Elf_External_Verdef))
3423 continue;
3424 for (i = 0; i < def.vd_cnt; ++i)
3425 {
3426 _bfd_elf_swap_verdaux_in (output_bfd,
3427 (Elf_External_Verdaux *) p, &defaux);
3428 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3429 defaux.vda_name);
3430 _bfd_elf_swap_verdaux_out (output_bfd,
3431 &defaux, (Elf_External_Verdaux *) p);
3432 p += sizeof (Elf_External_Verdaux);
3433 }
3434 }
3435 while (def.vd_next);
3436 }
3437
3438 /* Adjust version references. */
3439 if (elf_tdata (output_bfd)->verref)
3440 {
3441 asection *s;
3442 bfd_byte *p;
3443 bfd_size_type i;
3444 Elf_Internal_Verneed need;
3445 Elf_Internal_Vernaux needaux;
3446
3447 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3448 p = s->contents;
3449 do
3450 {
3451 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3452 &need);
3453 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3454 _bfd_elf_swap_verneed_out (output_bfd, &need,
3455 (Elf_External_Verneed *) p);
3456 p += sizeof (Elf_External_Verneed);
3457 for (i = 0; i < need.vn_cnt; ++i)
3458 {
3459 _bfd_elf_swap_vernaux_in (output_bfd,
3460 (Elf_External_Vernaux *) p, &needaux);
3461 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3462 needaux.vna_name);
3463 _bfd_elf_swap_vernaux_out (output_bfd,
3464 &needaux,
3465 (Elf_External_Vernaux *) p);
3466 p += sizeof (Elf_External_Vernaux);
3467 }
3468 }
3469 while (need.vn_next);
3470 }
3471
3472 return TRUE;
3473 }
3474 \f
3475 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3476 The default is to only match when the INPUT and OUTPUT are exactly
3477 the same target. */
3478
3479 bfd_boolean
3480 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3481 const bfd_target *output)
3482 {
3483 return input == output;
3484 }
3485
3486 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3487 This version is used when different targets for the same architecture
3488 are virtually identical. */
3489
3490 bfd_boolean
3491 _bfd_elf_relocs_compatible (const bfd_target *input,
3492 const bfd_target *output)
3493 {
3494 const struct elf_backend_data *obed, *ibed;
3495
3496 if (input == output)
3497 return TRUE;
3498
3499 ibed = xvec_get_elf_backend_data (input);
3500 obed = xvec_get_elf_backend_data (output);
3501
3502 if (ibed->arch != obed->arch)
3503 return FALSE;
3504
3505 /* If both backends are using this function, deem them compatible. */
3506 return ibed->relocs_compatible == obed->relocs_compatible;
3507 }
3508
3509 /* Make a special call to the linker "notice" function to tell it that
3510 we are about to handle an as-needed lib, or have finished
3511 processing the lib. */
3512
3513 bfd_boolean
3514 _bfd_elf_notice_as_needed (bfd *ibfd,
3515 struct bfd_link_info *info,
3516 enum notice_asneeded_action act)
3517 {
3518 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3519 }
3520
3521 /* Check relocations an ELF object file. */
3522
3523 bfd_boolean
3524 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3525 {
3526 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3527 struct elf_link_hash_table *htab = elf_hash_table (info);
3528
3529 /* If this object is the same format as the output object, and it is
3530 not a shared library, then let the backend look through the
3531 relocs.
3532
3533 This is required to build global offset table entries and to
3534 arrange for dynamic relocs. It is not required for the
3535 particular common case of linking non PIC code, even when linking
3536 against shared libraries, but unfortunately there is no way of
3537 knowing whether an object file has been compiled PIC or not.
3538 Looking through the relocs is not particularly time consuming.
3539 The problem is that we must either (1) keep the relocs in memory,
3540 which causes the linker to require additional runtime memory or
3541 (2) read the relocs twice from the input file, which wastes time.
3542 This would be a good case for using mmap.
3543
3544 I have no idea how to handle linking PIC code into a file of a
3545 different format. It probably can't be done. */
3546 if ((abfd->flags & DYNAMIC) == 0
3547 && is_elf_hash_table (htab)
3548 && bed->check_relocs != NULL
3549 && elf_object_id (abfd) == elf_hash_table_id (htab)
3550 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3551 {
3552 asection *o;
3553
3554 for (o = abfd->sections; o != NULL; o = o->next)
3555 {
3556 Elf_Internal_Rela *internal_relocs;
3557 bfd_boolean ok;
3558
3559 /* Don't check relocations in excluded sections. */
3560 if ((o->flags & SEC_RELOC) == 0
3561 || (o->flags & SEC_EXCLUDE) != 0
3562 || o->reloc_count == 0
3563 || ((info->strip == strip_all || info->strip == strip_debugger)
3564 && (o->flags & SEC_DEBUGGING) != 0)
3565 || bfd_is_abs_section (o->output_section))
3566 continue;
3567
3568 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3569 info->keep_memory);
3570 if (internal_relocs == NULL)
3571 return FALSE;
3572
3573 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3574
3575 if (elf_section_data (o)->relocs != internal_relocs)
3576 free (internal_relocs);
3577
3578 if (! ok)
3579 return FALSE;
3580 }
3581 }
3582
3583 return TRUE;
3584 }
3585
3586 /* Add symbols from an ELF object file to the linker hash table. */
3587
3588 static bfd_boolean
3589 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3590 {
3591 Elf_Internal_Ehdr *ehdr;
3592 Elf_Internal_Shdr *hdr;
3593 bfd_size_type symcount;
3594 bfd_size_type extsymcount;
3595 bfd_size_type extsymoff;
3596 struct elf_link_hash_entry **sym_hash;
3597 bfd_boolean dynamic;
3598 Elf_External_Versym *extversym = NULL;
3599 Elf_External_Versym *ever;
3600 struct elf_link_hash_entry *weaks;
3601 struct elf_link_hash_entry **nondeflt_vers = NULL;
3602 bfd_size_type nondeflt_vers_cnt = 0;
3603 Elf_Internal_Sym *isymbuf = NULL;
3604 Elf_Internal_Sym *isym;
3605 Elf_Internal_Sym *isymend;
3606 const struct elf_backend_data *bed;
3607 bfd_boolean add_needed;
3608 struct elf_link_hash_table *htab;
3609 bfd_size_type amt;
3610 void *alloc_mark = NULL;
3611 struct bfd_hash_entry **old_table = NULL;
3612 unsigned int old_size = 0;
3613 unsigned int old_count = 0;
3614 void *old_tab = NULL;
3615 void *old_ent;
3616 struct bfd_link_hash_entry *old_undefs = NULL;
3617 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3618 void *old_strtab = NULL;
3619 size_t tabsize = 0;
3620 asection *s;
3621 bfd_boolean just_syms;
3622
3623 htab = elf_hash_table (info);
3624 bed = get_elf_backend_data (abfd);
3625
3626 if ((abfd->flags & DYNAMIC) == 0)
3627 dynamic = FALSE;
3628 else
3629 {
3630 dynamic = TRUE;
3631
3632 /* You can't use -r against a dynamic object. Also, there's no
3633 hope of using a dynamic object which does not exactly match
3634 the format of the output file. */
3635 if (bfd_link_relocatable (info)
3636 || !is_elf_hash_table (htab)
3637 || info->output_bfd->xvec != abfd->xvec)
3638 {
3639 if (bfd_link_relocatable (info))
3640 bfd_set_error (bfd_error_invalid_operation);
3641 else
3642 bfd_set_error (bfd_error_wrong_format);
3643 goto error_return;
3644 }
3645 }
3646
3647 ehdr = elf_elfheader (abfd);
3648 if (info->warn_alternate_em
3649 && bed->elf_machine_code != ehdr->e_machine
3650 && ((bed->elf_machine_alt1 != 0
3651 && ehdr->e_machine == bed->elf_machine_alt1)
3652 || (bed->elf_machine_alt2 != 0
3653 && ehdr->e_machine == bed->elf_machine_alt2)))
3654 info->callbacks->einfo
3655 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3656 ehdr->e_machine, abfd, bed->elf_machine_code);
3657
3658 /* As a GNU extension, any input sections which are named
3659 .gnu.warning.SYMBOL are treated as warning symbols for the given
3660 symbol. This differs from .gnu.warning sections, which generate
3661 warnings when they are included in an output file. */
3662 /* PR 12761: Also generate this warning when building shared libraries. */
3663 for (s = abfd->sections; s != NULL; s = s->next)
3664 {
3665 const char *name;
3666
3667 name = bfd_get_section_name (abfd, s);
3668 if (CONST_STRNEQ (name, ".gnu.warning."))
3669 {
3670 char *msg;
3671 bfd_size_type sz;
3672
3673 name += sizeof ".gnu.warning." - 1;
3674
3675 /* If this is a shared object, then look up the symbol
3676 in the hash table. If it is there, and it is already
3677 been defined, then we will not be using the entry
3678 from this shared object, so we don't need to warn.
3679 FIXME: If we see the definition in a regular object
3680 later on, we will warn, but we shouldn't. The only
3681 fix is to keep track of what warnings we are supposed
3682 to emit, and then handle them all at the end of the
3683 link. */
3684 if (dynamic)
3685 {
3686 struct elf_link_hash_entry *h;
3687
3688 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3689
3690 /* FIXME: What about bfd_link_hash_common? */
3691 if (h != NULL
3692 && (h->root.type == bfd_link_hash_defined
3693 || h->root.type == bfd_link_hash_defweak))
3694 continue;
3695 }
3696
3697 sz = s->size;
3698 msg = (char *) bfd_alloc (abfd, sz + 1);
3699 if (msg == NULL)
3700 goto error_return;
3701
3702 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3703 goto error_return;
3704
3705 msg[sz] = '\0';
3706
3707 if (! (_bfd_generic_link_add_one_symbol
3708 (info, abfd, name, BSF_WARNING, s, 0, msg,
3709 FALSE, bed->collect, NULL)))
3710 goto error_return;
3711
3712 if (bfd_link_executable (info))
3713 {
3714 /* Clobber the section size so that the warning does
3715 not get copied into the output file. */
3716 s->size = 0;
3717
3718 /* Also set SEC_EXCLUDE, so that symbols defined in
3719 the warning section don't get copied to the output. */
3720 s->flags |= SEC_EXCLUDE;
3721 }
3722 }
3723 }
3724
3725 just_syms = ((s = abfd->sections) != NULL
3726 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3727
3728 add_needed = TRUE;
3729 if (! dynamic)
3730 {
3731 /* If we are creating a shared library, create all the dynamic
3732 sections immediately. We need to attach them to something,
3733 so we attach them to this BFD, provided it is the right
3734 format and is not from ld --just-symbols. Always create the
3735 dynamic sections for -E/--dynamic-list. FIXME: If there
3736 are no input BFD's of the same format as the output, we can't
3737 make a shared library. */
3738 if (!just_syms
3739 && (bfd_link_pic (info)
3740 || (!bfd_link_relocatable (info)
3741 && (info->export_dynamic || info->dynamic)))
3742 && is_elf_hash_table (htab)
3743 && info->output_bfd->xvec == abfd->xvec
3744 && !htab->dynamic_sections_created)
3745 {
3746 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3747 goto error_return;
3748 }
3749 }
3750 else if (!is_elf_hash_table (htab))
3751 goto error_return;
3752 else
3753 {
3754 const char *soname = NULL;
3755 char *audit = NULL;
3756 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3757 int ret;
3758
3759 /* ld --just-symbols and dynamic objects don't mix very well.
3760 ld shouldn't allow it. */
3761 if (just_syms)
3762 abort ();
3763
3764 /* If this dynamic lib was specified on the command line with
3765 --as-needed in effect, then we don't want to add a DT_NEEDED
3766 tag unless the lib is actually used. Similary for libs brought
3767 in by another lib's DT_NEEDED. When --no-add-needed is used
3768 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3769 any dynamic library in DT_NEEDED tags in the dynamic lib at
3770 all. */
3771 add_needed = (elf_dyn_lib_class (abfd)
3772 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3773 | DYN_NO_NEEDED)) == 0;
3774
3775 s = bfd_get_section_by_name (abfd, ".dynamic");
3776 if (s != NULL)
3777 {
3778 bfd_byte *dynbuf;
3779 bfd_byte *extdyn;
3780 unsigned int elfsec;
3781 unsigned long shlink;
3782
3783 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3784 {
3785 error_free_dyn:
3786 free (dynbuf);
3787 goto error_return;
3788 }
3789
3790 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3791 if (elfsec == SHN_BAD)
3792 goto error_free_dyn;
3793 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3794
3795 for (extdyn = dynbuf;
3796 extdyn < dynbuf + s->size;
3797 extdyn += bed->s->sizeof_dyn)
3798 {
3799 Elf_Internal_Dyn dyn;
3800
3801 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3802 if (dyn.d_tag == DT_SONAME)
3803 {
3804 unsigned int tagv = dyn.d_un.d_val;
3805 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3806 if (soname == NULL)
3807 goto error_free_dyn;
3808 }
3809 if (dyn.d_tag == DT_NEEDED)
3810 {
3811 struct bfd_link_needed_list *n, **pn;
3812 char *fnm, *anm;
3813 unsigned int tagv = dyn.d_un.d_val;
3814
3815 amt = sizeof (struct bfd_link_needed_list);
3816 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3817 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3818 if (n == NULL || fnm == NULL)
3819 goto error_free_dyn;
3820 amt = strlen (fnm) + 1;
3821 anm = (char *) bfd_alloc (abfd, amt);
3822 if (anm == NULL)
3823 goto error_free_dyn;
3824 memcpy (anm, fnm, amt);
3825 n->name = anm;
3826 n->by = abfd;
3827 n->next = NULL;
3828 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3829 ;
3830 *pn = n;
3831 }
3832 if (dyn.d_tag == DT_RUNPATH)
3833 {
3834 struct bfd_link_needed_list *n, **pn;
3835 char *fnm, *anm;
3836 unsigned int tagv = dyn.d_un.d_val;
3837
3838 amt = sizeof (struct bfd_link_needed_list);
3839 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3840 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3841 if (n == NULL || fnm == NULL)
3842 goto error_free_dyn;
3843 amt = strlen (fnm) + 1;
3844 anm = (char *) bfd_alloc (abfd, amt);
3845 if (anm == NULL)
3846 goto error_free_dyn;
3847 memcpy (anm, fnm, amt);
3848 n->name = anm;
3849 n->by = abfd;
3850 n->next = NULL;
3851 for (pn = & runpath;
3852 *pn != NULL;
3853 pn = &(*pn)->next)
3854 ;
3855 *pn = n;
3856 }
3857 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3858 if (!runpath && dyn.d_tag == DT_RPATH)
3859 {
3860 struct bfd_link_needed_list *n, **pn;
3861 char *fnm, *anm;
3862 unsigned int tagv = dyn.d_un.d_val;
3863
3864 amt = sizeof (struct bfd_link_needed_list);
3865 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3866 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3867 if (n == NULL || fnm == NULL)
3868 goto error_free_dyn;
3869 amt = strlen (fnm) + 1;
3870 anm = (char *) bfd_alloc (abfd, amt);
3871 if (anm == NULL)
3872 goto error_free_dyn;
3873 memcpy (anm, fnm, amt);
3874 n->name = anm;
3875 n->by = abfd;
3876 n->next = NULL;
3877 for (pn = & rpath;
3878 *pn != NULL;
3879 pn = &(*pn)->next)
3880 ;
3881 *pn = n;
3882 }
3883 if (dyn.d_tag == DT_AUDIT)
3884 {
3885 unsigned int tagv = dyn.d_un.d_val;
3886 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3887 }
3888 }
3889
3890 free (dynbuf);
3891 }
3892
3893 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3894 frees all more recently bfd_alloc'd blocks as well. */
3895 if (runpath)
3896 rpath = runpath;
3897
3898 if (rpath)
3899 {
3900 struct bfd_link_needed_list **pn;
3901 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3902 ;
3903 *pn = rpath;
3904 }
3905
3906 /* We do not want to include any of the sections in a dynamic
3907 object in the output file. We hack by simply clobbering the
3908 list of sections in the BFD. This could be handled more
3909 cleanly by, say, a new section flag; the existing
3910 SEC_NEVER_LOAD flag is not the one we want, because that one
3911 still implies that the section takes up space in the output
3912 file. */
3913 bfd_section_list_clear (abfd);
3914
3915 /* Find the name to use in a DT_NEEDED entry that refers to this
3916 object. If the object has a DT_SONAME entry, we use it.
3917 Otherwise, if the generic linker stuck something in
3918 elf_dt_name, we use that. Otherwise, we just use the file
3919 name. */
3920 if (soname == NULL || *soname == '\0')
3921 {
3922 soname = elf_dt_name (abfd);
3923 if (soname == NULL || *soname == '\0')
3924 soname = bfd_get_filename (abfd);
3925 }
3926
3927 /* Save the SONAME because sometimes the linker emulation code
3928 will need to know it. */
3929 elf_dt_name (abfd) = soname;
3930
3931 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3932 if (ret < 0)
3933 goto error_return;
3934
3935 /* If we have already included this dynamic object in the
3936 link, just ignore it. There is no reason to include a
3937 particular dynamic object more than once. */
3938 if (ret > 0)
3939 return TRUE;
3940
3941 /* Save the DT_AUDIT entry for the linker emulation code. */
3942 elf_dt_audit (abfd) = audit;
3943 }
3944
3945 /* If this is a dynamic object, we always link against the .dynsym
3946 symbol table, not the .symtab symbol table. The dynamic linker
3947 will only see the .dynsym symbol table, so there is no reason to
3948 look at .symtab for a dynamic object. */
3949
3950 if (! dynamic || elf_dynsymtab (abfd) == 0)
3951 hdr = &elf_tdata (abfd)->symtab_hdr;
3952 else
3953 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3954
3955 symcount = hdr->sh_size / bed->s->sizeof_sym;
3956
3957 /* The sh_info field of the symtab header tells us where the
3958 external symbols start. We don't care about the local symbols at
3959 this point. */
3960 if (elf_bad_symtab (abfd))
3961 {
3962 extsymcount = symcount;
3963 extsymoff = 0;
3964 }
3965 else
3966 {
3967 extsymcount = symcount - hdr->sh_info;
3968 extsymoff = hdr->sh_info;
3969 }
3970
3971 sym_hash = elf_sym_hashes (abfd);
3972 if (extsymcount != 0)
3973 {
3974 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3975 NULL, NULL, NULL);
3976 if (isymbuf == NULL)
3977 goto error_return;
3978
3979 if (sym_hash == NULL)
3980 {
3981 /* We store a pointer to the hash table entry for each
3982 external symbol. */
3983 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3984 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3985 if (sym_hash == NULL)
3986 goto error_free_sym;
3987 elf_sym_hashes (abfd) = sym_hash;
3988 }
3989 }
3990
3991 if (dynamic)
3992 {
3993 /* Read in any version definitions. */
3994 if (!_bfd_elf_slurp_version_tables (abfd,
3995 info->default_imported_symver))
3996 goto error_free_sym;
3997
3998 /* Read in the symbol versions, but don't bother to convert them
3999 to internal format. */
4000 if (elf_dynversym (abfd) != 0)
4001 {
4002 Elf_Internal_Shdr *versymhdr;
4003
4004 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4005 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4006 if (extversym == NULL)
4007 goto error_free_sym;
4008 amt = versymhdr->sh_size;
4009 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4010 || bfd_bread (extversym, amt, abfd) != amt)
4011 goto error_free_vers;
4012 }
4013 }
4014
4015 /* If we are loading an as-needed shared lib, save the symbol table
4016 state before we start adding symbols. If the lib turns out
4017 to be unneeded, restore the state. */
4018 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4019 {
4020 unsigned int i;
4021 size_t entsize;
4022
4023 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4024 {
4025 struct bfd_hash_entry *p;
4026 struct elf_link_hash_entry *h;
4027
4028 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4029 {
4030 h = (struct elf_link_hash_entry *) p;
4031 entsize += htab->root.table.entsize;
4032 if (h->root.type == bfd_link_hash_warning)
4033 entsize += htab->root.table.entsize;
4034 }
4035 }
4036
4037 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4038 old_tab = bfd_malloc (tabsize + entsize);
4039 if (old_tab == NULL)
4040 goto error_free_vers;
4041
4042 /* Remember the current objalloc pointer, so that all mem for
4043 symbols added can later be reclaimed. */
4044 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4045 if (alloc_mark == NULL)
4046 goto error_free_vers;
4047
4048 /* Make a special call to the linker "notice" function to
4049 tell it that we are about to handle an as-needed lib. */
4050 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4051 goto error_free_vers;
4052
4053 /* Clone the symbol table. Remember some pointers into the
4054 symbol table, and dynamic symbol count. */
4055 old_ent = (char *) old_tab + tabsize;
4056 memcpy (old_tab, htab->root.table.table, tabsize);
4057 old_undefs = htab->root.undefs;
4058 old_undefs_tail = htab->root.undefs_tail;
4059 old_table = htab->root.table.table;
4060 old_size = htab->root.table.size;
4061 old_count = htab->root.table.count;
4062 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4063 if (old_strtab == NULL)
4064 goto error_free_vers;
4065
4066 for (i = 0; i < htab->root.table.size; i++)
4067 {
4068 struct bfd_hash_entry *p;
4069 struct elf_link_hash_entry *h;
4070
4071 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4072 {
4073 memcpy (old_ent, p, htab->root.table.entsize);
4074 old_ent = (char *) old_ent + htab->root.table.entsize;
4075 h = (struct elf_link_hash_entry *) p;
4076 if (h->root.type == bfd_link_hash_warning)
4077 {
4078 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4079 old_ent = (char *) old_ent + htab->root.table.entsize;
4080 }
4081 }
4082 }
4083 }
4084
4085 weaks = NULL;
4086 ever = extversym != NULL ? extversym + extsymoff : NULL;
4087 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4088 isym < isymend;
4089 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4090 {
4091 int bind;
4092 bfd_vma value;
4093 asection *sec, *new_sec;
4094 flagword flags;
4095 const char *name;
4096 struct elf_link_hash_entry *h;
4097 struct elf_link_hash_entry *hi;
4098 bfd_boolean definition;
4099 bfd_boolean size_change_ok;
4100 bfd_boolean type_change_ok;
4101 bfd_boolean new_weakdef;
4102 bfd_boolean new_weak;
4103 bfd_boolean old_weak;
4104 bfd_boolean override;
4105 bfd_boolean common;
4106 bfd_boolean discarded;
4107 unsigned int old_alignment;
4108 bfd *old_bfd;
4109 bfd_boolean matched;
4110
4111 override = FALSE;
4112
4113 flags = BSF_NO_FLAGS;
4114 sec = NULL;
4115 value = isym->st_value;
4116 common = bed->common_definition (isym);
4117 discarded = FALSE;
4118
4119 bind = ELF_ST_BIND (isym->st_info);
4120 switch (bind)
4121 {
4122 case STB_LOCAL:
4123 /* This should be impossible, since ELF requires that all
4124 global symbols follow all local symbols, and that sh_info
4125 point to the first global symbol. Unfortunately, Irix 5
4126 screws this up. */
4127 continue;
4128
4129 case STB_GLOBAL:
4130 if (isym->st_shndx != SHN_UNDEF && !common)
4131 flags = BSF_GLOBAL;
4132 break;
4133
4134 case STB_WEAK:
4135 flags = BSF_WEAK;
4136 break;
4137
4138 case STB_GNU_UNIQUE:
4139 flags = BSF_GNU_UNIQUE;
4140 break;
4141
4142 default:
4143 /* Leave it up to the processor backend. */
4144 break;
4145 }
4146
4147 if (isym->st_shndx == SHN_UNDEF)
4148 sec = bfd_und_section_ptr;
4149 else if (isym->st_shndx == SHN_ABS)
4150 sec = bfd_abs_section_ptr;
4151 else if (isym->st_shndx == SHN_COMMON)
4152 {
4153 sec = bfd_com_section_ptr;
4154 /* What ELF calls the size we call the value. What ELF
4155 calls the value we call the alignment. */
4156 value = isym->st_size;
4157 }
4158 else
4159 {
4160 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4161 if (sec == NULL)
4162 sec = bfd_abs_section_ptr;
4163 else if (discarded_section (sec))
4164 {
4165 /* Symbols from discarded section are undefined. We keep
4166 its visibility. */
4167 sec = bfd_und_section_ptr;
4168 discarded = TRUE;
4169 isym->st_shndx = SHN_UNDEF;
4170 }
4171 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4172 value -= sec->vma;
4173 }
4174
4175 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4176 isym->st_name);
4177 if (name == NULL)
4178 goto error_free_vers;
4179
4180 if (isym->st_shndx == SHN_COMMON
4181 && (abfd->flags & BFD_PLUGIN) != 0)
4182 {
4183 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4184
4185 if (xc == NULL)
4186 {
4187 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4188 | SEC_EXCLUDE);
4189 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4190 if (xc == NULL)
4191 goto error_free_vers;
4192 }
4193 sec = xc;
4194 }
4195 else if (isym->st_shndx == SHN_COMMON
4196 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4197 && !bfd_link_relocatable (info))
4198 {
4199 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4200
4201 if (tcomm == NULL)
4202 {
4203 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4204 | SEC_LINKER_CREATED);
4205 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4206 if (tcomm == NULL)
4207 goto error_free_vers;
4208 }
4209 sec = tcomm;
4210 }
4211 else if (bed->elf_add_symbol_hook)
4212 {
4213 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4214 &sec, &value))
4215 goto error_free_vers;
4216
4217 /* The hook function sets the name to NULL if this symbol
4218 should be skipped for some reason. */
4219 if (name == NULL)
4220 continue;
4221 }
4222
4223 /* Sanity check that all possibilities were handled. */
4224 if (sec == NULL)
4225 {
4226 bfd_set_error (bfd_error_bad_value);
4227 goto error_free_vers;
4228 }
4229
4230 /* Silently discard TLS symbols from --just-syms. There's
4231 no way to combine a static TLS block with a new TLS block
4232 for this executable. */
4233 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4234 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4235 continue;
4236
4237 if (bfd_is_und_section (sec)
4238 || bfd_is_com_section (sec))
4239 definition = FALSE;
4240 else
4241 definition = TRUE;
4242
4243 size_change_ok = FALSE;
4244 type_change_ok = bed->type_change_ok;
4245 old_weak = FALSE;
4246 matched = FALSE;
4247 old_alignment = 0;
4248 old_bfd = NULL;
4249 new_sec = sec;
4250
4251 if (is_elf_hash_table (htab))
4252 {
4253 Elf_Internal_Versym iver;
4254 unsigned int vernum = 0;
4255 bfd_boolean skip;
4256
4257 if (ever == NULL)
4258 {
4259 if (info->default_imported_symver)
4260 /* Use the default symbol version created earlier. */
4261 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4262 else
4263 iver.vs_vers = 0;
4264 }
4265 else
4266 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4267
4268 vernum = iver.vs_vers & VERSYM_VERSION;
4269
4270 /* If this is a hidden symbol, or if it is not version
4271 1, we append the version name to the symbol name.
4272 However, we do not modify a non-hidden absolute symbol
4273 if it is not a function, because it might be the version
4274 symbol itself. FIXME: What if it isn't? */
4275 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4276 || (vernum > 1
4277 && (!bfd_is_abs_section (sec)
4278 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4279 {
4280 const char *verstr;
4281 size_t namelen, verlen, newlen;
4282 char *newname, *p;
4283
4284 if (isym->st_shndx != SHN_UNDEF)
4285 {
4286 if (vernum > elf_tdata (abfd)->cverdefs)
4287 verstr = NULL;
4288 else if (vernum > 1)
4289 verstr =
4290 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4291 else
4292 verstr = "";
4293
4294 if (verstr == NULL)
4295 {
4296 (*_bfd_error_handler)
4297 (_("%B: %s: invalid version %u (max %d)"),
4298 abfd, name, vernum,
4299 elf_tdata (abfd)->cverdefs);
4300 bfd_set_error (bfd_error_bad_value);
4301 goto error_free_vers;
4302 }
4303 }
4304 else
4305 {
4306 /* We cannot simply test for the number of
4307 entries in the VERNEED section since the
4308 numbers for the needed versions do not start
4309 at 0. */
4310 Elf_Internal_Verneed *t;
4311
4312 verstr = NULL;
4313 for (t = elf_tdata (abfd)->verref;
4314 t != NULL;
4315 t = t->vn_nextref)
4316 {
4317 Elf_Internal_Vernaux *a;
4318
4319 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4320 {
4321 if (a->vna_other == vernum)
4322 {
4323 verstr = a->vna_nodename;
4324 break;
4325 }
4326 }
4327 if (a != NULL)
4328 break;
4329 }
4330 if (verstr == NULL)
4331 {
4332 (*_bfd_error_handler)
4333 (_("%B: %s: invalid needed version %d"),
4334 abfd, name, vernum);
4335 bfd_set_error (bfd_error_bad_value);
4336 goto error_free_vers;
4337 }
4338 }
4339
4340 namelen = strlen (name);
4341 verlen = strlen (verstr);
4342 newlen = namelen + verlen + 2;
4343 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4344 && isym->st_shndx != SHN_UNDEF)
4345 ++newlen;
4346
4347 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4348 if (newname == NULL)
4349 goto error_free_vers;
4350 memcpy (newname, name, namelen);
4351 p = newname + namelen;
4352 *p++ = ELF_VER_CHR;
4353 /* If this is a defined non-hidden version symbol,
4354 we add another @ to the name. This indicates the
4355 default version of the symbol. */
4356 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4357 && isym->st_shndx != SHN_UNDEF)
4358 *p++ = ELF_VER_CHR;
4359 memcpy (p, verstr, verlen + 1);
4360
4361 name = newname;
4362 }
4363
4364 /* If this symbol has default visibility and the user has
4365 requested we not re-export it, then mark it as hidden. */
4366 if (!bfd_is_und_section (sec)
4367 && !dynamic
4368 && abfd->no_export
4369 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4370 isym->st_other = (STV_HIDDEN
4371 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4372
4373 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4374 sym_hash, &old_bfd, &old_weak,
4375 &old_alignment, &skip, &override,
4376 &type_change_ok, &size_change_ok,
4377 &matched))
4378 goto error_free_vers;
4379
4380 if (skip)
4381 continue;
4382
4383 /* Override a definition only if the new symbol matches the
4384 existing one. */
4385 if (override && matched)
4386 definition = FALSE;
4387
4388 h = *sym_hash;
4389 while (h->root.type == bfd_link_hash_indirect
4390 || h->root.type == bfd_link_hash_warning)
4391 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4392
4393 if (elf_tdata (abfd)->verdef != NULL
4394 && vernum > 1
4395 && definition)
4396 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4397 }
4398
4399 if (! (_bfd_generic_link_add_one_symbol
4400 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4401 (struct bfd_link_hash_entry **) sym_hash)))
4402 goto error_free_vers;
4403
4404 if ((flags & BSF_GNU_UNIQUE)
4405 && (abfd->flags & DYNAMIC) == 0
4406 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4407 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4408
4409 h = *sym_hash;
4410 /* We need to make sure that indirect symbol dynamic flags are
4411 updated. */
4412 hi = h;
4413 while (h->root.type == bfd_link_hash_indirect
4414 || h->root.type == bfd_link_hash_warning)
4415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4416
4417 /* Setting the index to -3 tells elf_link_output_extsym that
4418 this symbol is defined in a discarded section. */
4419 if (discarded)
4420 h->indx = -3;
4421
4422 *sym_hash = h;
4423
4424 new_weak = (flags & BSF_WEAK) != 0;
4425 new_weakdef = FALSE;
4426 if (dynamic
4427 && definition
4428 && new_weak
4429 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4430 && is_elf_hash_table (htab)
4431 && h->u.weakdef == NULL)
4432 {
4433 /* Keep a list of all weak defined non function symbols from
4434 a dynamic object, using the weakdef field. Later in this
4435 function we will set the weakdef field to the correct
4436 value. We only put non-function symbols from dynamic
4437 objects on this list, because that happens to be the only
4438 time we need to know the normal symbol corresponding to a
4439 weak symbol, and the information is time consuming to
4440 figure out. If the weakdef field is not already NULL,
4441 then this symbol was already defined by some previous
4442 dynamic object, and we will be using that previous
4443 definition anyhow. */
4444
4445 h->u.weakdef = weaks;
4446 weaks = h;
4447 new_weakdef = TRUE;
4448 }
4449
4450 /* Set the alignment of a common symbol. */
4451 if ((common || bfd_is_com_section (sec))
4452 && h->root.type == bfd_link_hash_common)
4453 {
4454 unsigned int align;
4455
4456 if (common)
4457 align = bfd_log2 (isym->st_value);
4458 else
4459 {
4460 /* The new symbol is a common symbol in a shared object.
4461 We need to get the alignment from the section. */
4462 align = new_sec->alignment_power;
4463 }
4464 if (align > old_alignment)
4465 h->root.u.c.p->alignment_power = align;
4466 else
4467 h->root.u.c.p->alignment_power = old_alignment;
4468 }
4469
4470 if (is_elf_hash_table (htab))
4471 {
4472 /* Set a flag in the hash table entry indicating the type of
4473 reference or definition we just found. A dynamic symbol
4474 is one which is referenced or defined by both a regular
4475 object and a shared object. */
4476 bfd_boolean dynsym = FALSE;
4477
4478 /* Plugin symbols aren't normal. Don't set def_regular or
4479 ref_regular for them, or make them dynamic. */
4480 if ((abfd->flags & BFD_PLUGIN) != 0)
4481 ;
4482 else if (! dynamic)
4483 {
4484 if (! definition)
4485 {
4486 h->ref_regular = 1;
4487 if (bind != STB_WEAK)
4488 h->ref_regular_nonweak = 1;
4489 }
4490 else
4491 {
4492 h->def_regular = 1;
4493 if (h->def_dynamic)
4494 {
4495 h->def_dynamic = 0;
4496 h->ref_dynamic = 1;
4497 }
4498 }
4499
4500 /* If the indirect symbol has been forced local, don't
4501 make the real symbol dynamic. */
4502 if ((h == hi || !hi->forced_local)
4503 && (bfd_link_dll (info)
4504 || h->def_dynamic
4505 || h->ref_dynamic))
4506 dynsym = TRUE;
4507 }
4508 else
4509 {
4510 if (! definition)
4511 {
4512 h->ref_dynamic = 1;
4513 hi->ref_dynamic = 1;
4514 }
4515 else
4516 {
4517 h->def_dynamic = 1;
4518 hi->def_dynamic = 1;
4519 }
4520
4521 /* If the indirect symbol has been forced local, don't
4522 make the real symbol dynamic. */
4523 if ((h == hi || !hi->forced_local)
4524 && (h->def_regular
4525 || h->ref_regular
4526 || (h->u.weakdef != NULL
4527 && ! new_weakdef
4528 && h->u.weakdef->dynindx != -1)))
4529 dynsym = TRUE;
4530 }
4531
4532 /* Check to see if we need to add an indirect symbol for
4533 the default name. */
4534 if (definition
4535 || (!override && h->root.type == bfd_link_hash_common))
4536 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4537 sec, value, &old_bfd, &dynsym))
4538 goto error_free_vers;
4539
4540 /* Check the alignment when a common symbol is involved. This
4541 can change when a common symbol is overridden by a normal
4542 definition or a common symbol is ignored due to the old
4543 normal definition. We need to make sure the maximum
4544 alignment is maintained. */
4545 if ((old_alignment || common)
4546 && h->root.type != bfd_link_hash_common)
4547 {
4548 unsigned int common_align;
4549 unsigned int normal_align;
4550 unsigned int symbol_align;
4551 bfd *normal_bfd;
4552 bfd *common_bfd;
4553
4554 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4555 || h->root.type == bfd_link_hash_defweak);
4556
4557 symbol_align = ffs (h->root.u.def.value) - 1;
4558 if (h->root.u.def.section->owner != NULL
4559 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4560 {
4561 normal_align = h->root.u.def.section->alignment_power;
4562 if (normal_align > symbol_align)
4563 normal_align = symbol_align;
4564 }
4565 else
4566 normal_align = symbol_align;
4567
4568 if (old_alignment)
4569 {
4570 common_align = old_alignment;
4571 common_bfd = old_bfd;
4572 normal_bfd = abfd;
4573 }
4574 else
4575 {
4576 common_align = bfd_log2 (isym->st_value);
4577 common_bfd = abfd;
4578 normal_bfd = old_bfd;
4579 }
4580
4581 if (normal_align < common_align)
4582 {
4583 /* PR binutils/2735 */
4584 if (normal_bfd == NULL)
4585 (*_bfd_error_handler)
4586 (_("Warning: alignment %u of common symbol `%s' in %B is"
4587 " greater than the alignment (%u) of its section %A"),
4588 common_bfd, h->root.u.def.section,
4589 1 << common_align, name, 1 << normal_align);
4590 else
4591 (*_bfd_error_handler)
4592 (_("Warning: alignment %u of symbol `%s' in %B"
4593 " is smaller than %u in %B"),
4594 normal_bfd, common_bfd,
4595 1 << normal_align, name, 1 << common_align);
4596 }
4597 }
4598
4599 /* Remember the symbol size if it isn't undefined. */
4600 if (isym->st_size != 0
4601 && isym->st_shndx != SHN_UNDEF
4602 && (definition || h->size == 0))
4603 {
4604 if (h->size != 0
4605 && h->size != isym->st_size
4606 && ! size_change_ok)
4607 (*_bfd_error_handler)
4608 (_("Warning: size of symbol `%s' changed"
4609 " from %lu in %B to %lu in %B"),
4610 old_bfd, abfd,
4611 name, (unsigned long) h->size,
4612 (unsigned long) isym->st_size);
4613
4614 h->size = isym->st_size;
4615 }
4616
4617 /* If this is a common symbol, then we always want H->SIZE
4618 to be the size of the common symbol. The code just above
4619 won't fix the size if a common symbol becomes larger. We
4620 don't warn about a size change here, because that is
4621 covered by --warn-common. Allow changes between different
4622 function types. */
4623 if (h->root.type == bfd_link_hash_common)
4624 h->size = h->root.u.c.size;
4625
4626 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4627 && ((definition && !new_weak)
4628 || (old_weak && h->root.type == bfd_link_hash_common)
4629 || h->type == STT_NOTYPE))
4630 {
4631 unsigned int type = ELF_ST_TYPE (isym->st_info);
4632
4633 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4634 symbol. */
4635 if (type == STT_GNU_IFUNC
4636 && (abfd->flags & DYNAMIC) != 0)
4637 type = STT_FUNC;
4638
4639 if (h->type != type)
4640 {
4641 if (h->type != STT_NOTYPE && ! type_change_ok)
4642 (*_bfd_error_handler)
4643 (_("Warning: type of symbol `%s' changed"
4644 " from %d to %d in %B"),
4645 abfd, name, h->type, type);
4646
4647 h->type = type;
4648 }
4649 }
4650
4651 /* Merge st_other field. */
4652 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4653
4654 /* We don't want to make debug symbol dynamic. */
4655 if (definition
4656 && (sec->flags & SEC_DEBUGGING)
4657 && !bfd_link_relocatable (info))
4658 dynsym = FALSE;
4659
4660 /* Nor should we make plugin symbols dynamic. */
4661 if ((abfd->flags & BFD_PLUGIN) != 0)
4662 dynsym = FALSE;
4663
4664 if (definition)
4665 {
4666 h->target_internal = isym->st_target_internal;
4667 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4668 }
4669
4670 if (definition && !dynamic)
4671 {
4672 char *p = strchr (name, ELF_VER_CHR);
4673 if (p != NULL && p[1] != ELF_VER_CHR)
4674 {
4675 /* Queue non-default versions so that .symver x, x@FOO
4676 aliases can be checked. */
4677 if (!nondeflt_vers)
4678 {
4679 amt = ((isymend - isym + 1)
4680 * sizeof (struct elf_link_hash_entry *));
4681 nondeflt_vers
4682 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4683 if (!nondeflt_vers)
4684 goto error_free_vers;
4685 }
4686 nondeflt_vers[nondeflt_vers_cnt++] = h;
4687 }
4688 }
4689
4690 if (dynsym && h->dynindx == -1)
4691 {
4692 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4693 goto error_free_vers;
4694 if (h->u.weakdef != NULL
4695 && ! new_weakdef
4696 && h->u.weakdef->dynindx == -1)
4697 {
4698 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4699 goto error_free_vers;
4700 }
4701 }
4702 else if (h->dynindx != -1)
4703 /* If the symbol already has a dynamic index, but
4704 visibility says it should not be visible, turn it into
4705 a local symbol. */
4706 switch (ELF_ST_VISIBILITY (h->other))
4707 {
4708 case STV_INTERNAL:
4709 case STV_HIDDEN:
4710 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4711 dynsym = FALSE;
4712 break;
4713 }
4714
4715 /* Don't add DT_NEEDED for references from the dummy bfd nor
4716 for unmatched symbol. */
4717 if (!add_needed
4718 && matched
4719 && definition
4720 && ((dynsym
4721 && h->ref_regular_nonweak
4722 && (old_bfd == NULL
4723 || (old_bfd->flags & BFD_PLUGIN) == 0))
4724 || (h->ref_dynamic_nonweak
4725 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4726 && !on_needed_list (elf_dt_name (abfd),
4727 htab->needed, NULL))))
4728 {
4729 int ret;
4730 const char *soname = elf_dt_name (abfd);
4731
4732 info->callbacks->minfo ("%!", soname, old_bfd,
4733 h->root.root.string);
4734
4735 /* A symbol from a library loaded via DT_NEEDED of some
4736 other library is referenced by a regular object.
4737 Add a DT_NEEDED entry for it. Issue an error if
4738 --no-add-needed is used and the reference was not
4739 a weak one. */
4740 if (old_bfd != NULL
4741 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4742 {
4743 (*_bfd_error_handler)
4744 (_("%B: undefined reference to symbol '%s'"),
4745 old_bfd, name);
4746 bfd_set_error (bfd_error_missing_dso);
4747 goto error_free_vers;
4748 }
4749
4750 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4751 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4752
4753 add_needed = TRUE;
4754 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4755 if (ret < 0)
4756 goto error_free_vers;
4757
4758 BFD_ASSERT (ret == 0);
4759 }
4760 }
4761 }
4762
4763 if (extversym != NULL)
4764 {
4765 free (extversym);
4766 extversym = NULL;
4767 }
4768
4769 if (isymbuf != NULL)
4770 {
4771 free (isymbuf);
4772 isymbuf = NULL;
4773 }
4774
4775 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4776 {
4777 unsigned int i;
4778
4779 /* Restore the symbol table. */
4780 old_ent = (char *) old_tab + tabsize;
4781 memset (elf_sym_hashes (abfd), 0,
4782 extsymcount * sizeof (struct elf_link_hash_entry *));
4783 htab->root.table.table = old_table;
4784 htab->root.table.size = old_size;
4785 htab->root.table.count = old_count;
4786 memcpy (htab->root.table.table, old_tab, tabsize);
4787 htab->root.undefs = old_undefs;
4788 htab->root.undefs_tail = old_undefs_tail;
4789 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4790 free (old_strtab);
4791 old_strtab = NULL;
4792 for (i = 0; i < htab->root.table.size; i++)
4793 {
4794 struct bfd_hash_entry *p;
4795 struct elf_link_hash_entry *h;
4796 bfd_size_type size;
4797 unsigned int alignment_power;
4798
4799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4800 {
4801 h = (struct elf_link_hash_entry *) p;
4802 if (h->root.type == bfd_link_hash_warning)
4803 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4804
4805 /* Preserve the maximum alignment and size for common
4806 symbols even if this dynamic lib isn't on DT_NEEDED
4807 since it can still be loaded at run time by another
4808 dynamic lib. */
4809 if (h->root.type == bfd_link_hash_common)
4810 {
4811 size = h->root.u.c.size;
4812 alignment_power = h->root.u.c.p->alignment_power;
4813 }
4814 else
4815 {
4816 size = 0;
4817 alignment_power = 0;
4818 }
4819 memcpy (p, old_ent, htab->root.table.entsize);
4820 old_ent = (char *) old_ent + htab->root.table.entsize;
4821 h = (struct elf_link_hash_entry *) p;
4822 if (h->root.type == bfd_link_hash_warning)
4823 {
4824 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4825 old_ent = (char *) old_ent + htab->root.table.entsize;
4826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4827 }
4828 if (h->root.type == bfd_link_hash_common)
4829 {
4830 if (size > h->root.u.c.size)
4831 h->root.u.c.size = size;
4832 if (alignment_power > h->root.u.c.p->alignment_power)
4833 h->root.u.c.p->alignment_power = alignment_power;
4834 }
4835 }
4836 }
4837
4838 /* Make a special call to the linker "notice" function to
4839 tell it that symbols added for crefs may need to be removed. */
4840 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4841 goto error_free_vers;
4842
4843 free (old_tab);
4844 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4845 alloc_mark);
4846 if (nondeflt_vers != NULL)
4847 free (nondeflt_vers);
4848 return TRUE;
4849 }
4850
4851 if (old_tab != NULL)
4852 {
4853 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4854 goto error_free_vers;
4855 free (old_tab);
4856 old_tab = NULL;
4857 }
4858
4859 /* Now that all the symbols from this input file are created, if
4860 not performing a relocatable link, handle .symver foo, foo@BAR
4861 such that any relocs against foo become foo@BAR. */
4862 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4863 {
4864 bfd_size_type cnt, symidx;
4865
4866 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4867 {
4868 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4869 char *shortname, *p;
4870
4871 p = strchr (h->root.root.string, ELF_VER_CHR);
4872 if (p == NULL
4873 || (h->root.type != bfd_link_hash_defined
4874 && h->root.type != bfd_link_hash_defweak))
4875 continue;
4876
4877 amt = p - h->root.root.string;
4878 shortname = (char *) bfd_malloc (amt + 1);
4879 if (!shortname)
4880 goto error_free_vers;
4881 memcpy (shortname, h->root.root.string, amt);
4882 shortname[amt] = '\0';
4883
4884 hi = (struct elf_link_hash_entry *)
4885 bfd_link_hash_lookup (&htab->root, shortname,
4886 FALSE, FALSE, FALSE);
4887 if (hi != NULL
4888 && hi->root.type == h->root.type
4889 && hi->root.u.def.value == h->root.u.def.value
4890 && hi->root.u.def.section == h->root.u.def.section)
4891 {
4892 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4893 hi->root.type = bfd_link_hash_indirect;
4894 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4895 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4896 sym_hash = elf_sym_hashes (abfd);
4897 if (sym_hash)
4898 for (symidx = 0; symidx < extsymcount; ++symidx)
4899 if (sym_hash[symidx] == hi)
4900 {
4901 sym_hash[symidx] = h;
4902 break;
4903 }
4904 }
4905 free (shortname);
4906 }
4907 free (nondeflt_vers);
4908 nondeflt_vers = NULL;
4909 }
4910
4911 /* Now set the weakdefs field correctly for all the weak defined
4912 symbols we found. The only way to do this is to search all the
4913 symbols. Since we only need the information for non functions in
4914 dynamic objects, that's the only time we actually put anything on
4915 the list WEAKS. We need this information so that if a regular
4916 object refers to a symbol defined weakly in a dynamic object, the
4917 real symbol in the dynamic object is also put in the dynamic
4918 symbols; we also must arrange for both symbols to point to the
4919 same memory location. We could handle the general case of symbol
4920 aliasing, but a general symbol alias can only be generated in
4921 assembler code, handling it correctly would be very time
4922 consuming, and other ELF linkers don't handle general aliasing
4923 either. */
4924 if (weaks != NULL)
4925 {
4926 struct elf_link_hash_entry **hpp;
4927 struct elf_link_hash_entry **hppend;
4928 struct elf_link_hash_entry **sorted_sym_hash;
4929 struct elf_link_hash_entry *h;
4930 size_t sym_count;
4931
4932 /* Since we have to search the whole symbol list for each weak
4933 defined symbol, search time for N weak defined symbols will be
4934 O(N^2). Binary search will cut it down to O(NlogN). */
4935 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4936 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4937 if (sorted_sym_hash == NULL)
4938 goto error_return;
4939 sym_hash = sorted_sym_hash;
4940 hpp = elf_sym_hashes (abfd);
4941 hppend = hpp + extsymcount;
4942 sym_count = 0;
4943 for (; hpp < hppend; hpp++)
4944 {
4945 h = *hpp;
4946 if (h != NULL
4947 && h->root.type == bfd_link_hash_defined
4948 && !bed->is_function_type (h->type))
4949 {
4950 *sym_hash = h;
4951 sym_hash++;
4952 sym_count++;
4953 }
4954 }
4955
4956 qsort (sorted_sym_hash, sym_count,
4957 sizeof (struct elf_link_hash_entry *),
4958 elf_sort_symbol);
4959
4960 while (weaks != NULL)
4961 {
4962 struct elf_link_hash_entry *hlook;
4963 asection *slook;
4964 bfd_vma vlook;
4965 size_t i, j, idx = 0;
4966
4967 hlook = weaks;
4968 weaks = hlook->u.weakdef;
4969 hlook->u.weakdef = NULL;
4970
4971 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4972 || hlook->root.type == bfd_link_hash_defweak
4973 || hlook->root.type == bfd_link_hash_common
4974 || hlook->root.type == bfd_link_hash_indirect);
4975 slook = hlook->root.u.def.section;
4976 vlook = hlook->root.u.def.value;
4977
4978 i = 0;
4979 j = sym_count;
4980 while (i != j)
4981 {
4982 bfd_signed_vma vdiff;
4983 idx = (i + j) / 2;
4984 h = sorted_sym_hash[idx];
4985 vdiff = vlook - h->root.u.def.value;
4986 if (vdiff < 0)
4987 j = idx;
4988 else if (vdiff > 0)
4989 i = idx + 1;
4990 else
4991 {
4992 int sdiff = slook->id - h->root.u.def.section->id;
4993 if (sdiff < 0)
4994 j = idx;
4995 else if (sdiff > 0)
4996 i = idx + 1;
4997 else
4998 break;
4999 }
5000 }
5001
5002 /* We didn't find a value/section match. */
5003 if (i == j)
5004 continue;
5005
5006 /* With multiple aliases, or when the weak symbol is already
5007 strongly defined, we have multiple matching symbols and
5008 the binary search above may land on any of them. Step
5009 one past the matching symbol(s). */
5010 while (++idx != j)
5011 {
5012 h = sorted_sym_hash[idx];
5013 if (h->root.u.def.section != slook
5014 || h->root.u.def.value != vlook)
5015 break;
5016 }
5017
5018 /* Now look back over the aliases. Since we sorted by size
5019 as well as value and section, we'll choose the one with
5020 the largest size. */
5021 while (idx-- != i)
5022 {
5023 h = sorted_sym_hash[idx];
5024
5025 /* Stop if value or section doesn't match. */
5026 if (h->root.u.def.section != slook
5027 || h->root.u.def.value != vlook)
5028 break;
5029 else if (h != hlook)
5030 {
5031 hlook->u.weakdef = h;
5032
5033 /* If the weak definition is in the list of dynamic
5034 symbols, make sure the real definition is put
5035 there as well. */
5036 if (hlook->dynindx != -1 && h->dynindx == -1)
5037 {
5038 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5039 {
5040 err_free_sym_hash:
5041 free (sorted_sym_hash);
5042 goto error_return;
5043 }
5044 }
5045
5046 /* If the real definition is in the list of dynamic
5047 symbols, make sure the weak definition is put
5048 there as well. If we don't do this, then the
5049 dynamic loader might not merge the entries for the
5050 real definition and the weak definition. */
5051 if (h->dynindx != -1 && hlook->dynindx == -1)
5052 {
5053 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5054 goto err_free_sym_hash;
5055 }
5056 break;
5057 }
5058 }
5059 }
5060
5061 free (sorted_sym_hash);
5062 }
5063
5064 if (bed->check_directives
5065 && !(*bed->check_directives) (abfd, info))
5066 return FALSE;
5067
5068 if (!info->check_relocs_after_open_input
5069 && !_bfd_elf_link_check_relocs (abfd, info))
5070 return FALSE;
5071
5072 /* If this is a non-traditional link, try to optimize the handling
5073 of the .stab/.stabstr sections. */
5074 if (! dynamic
5075 && ! info->traditional_format
5076 && is_elf_hash_table (htab)
5077 && (info->strip != strip_all && info->strip != strip_debugger))
5078 {
5079 asection *stabstr;
5080
5081 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5082 if (stabstr != NULL)
5083 {
5084 bfd_size_type string_offset = 0;
5085 asection *stab;
5086
5087 for (stab = abfd->sections; stab; stab = stab->next)
5088 if (CONST_STRNEQ (stab->name, ".stab")
5089 && (!stab->name[5] ||
5090 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5091 && (stab->flags & SEC_MERGE) == 0
5092 && !bfd_is_abs_section (stab->output_section))
5093 {
5094 struct bfd_elf_section_data *secdata;
5095
5096 secdata = elf_section_data (stab);
5097 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5098 stabstr, &secdata->sec_info,
5099 &string_offset))
5100 goto error_return;
5101 if (secdata->sec_info)
5102 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5103 }
5104 }
5105 }
5106
5107 if (is_elf_hash_table (htab) && add_needed)
5108 {
5109 /* Add this bfd to the loaded list. */
5110 struct elf_link_loaded_list *n;
5111
5112 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5113 if (n == NULL)
5114 goto error_return;
5115 n->abfd = abfd;
5116 n->next = htab->loaded;
5117 htab->loaded = n;
5118 }
5119
5120 return TRUE;
5121
5122 error_free_vers:
5123 if (old_tab != NULL)
5124 free (old_tab);
5125 if (old_strtab != NULL)
5126 free (old_strtab);
5127 if (nondeflt_vers != NULL)
5128 free (nondeflt_vers);
5129 if (extversym != NULL)
5130 free (extversym);
5131 error_free_sym:
5132 if (isymbuf != NULL)
5133 free (isymbuf);
5134 error_return:
5135 return FALSE;
5136 }
5137
5138 /* Return the linker hash table entry of a symbol that might be
5139 satisfied by an archive symbol. Return -1 on error. */
5140
5141 struct elf_link_hash_entry *
5142 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5143 struct bfd_link_info *info,
5144 const char *name)
5145 {
5146 struct elf_link_hash_entry *h;
5147 char *p, *copy;
5148 size_t len, first;
5149
5150 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5151 if (h != NULL)
5152 return h;
5153
5154 /* If this is a default version (the name contains @@), look up the
5155 symbol again with only one `@' as well as without the version.
5156 The effect is that references to the symbol with and without the
5157 version will be matched by the default symbol in the archive. */
5158
5159 p = strchr (name, ELF_VER_CHR);
5160 if (p == NULL || p[1] != ELF_VER_CHR)
5161 return h;
5162
5163 /* First check with only one `@'. */
5164 len = strlen (name);
5165 copy = (char *) bfd_alloc (abfd, len);
5166 if (copy == NULL)
5167 return (struct elf_link_hash_entry *) 0 - 1;
5168
5169 first = p - name + 1;
5170 memcpy (copy, name, first);
5171 memcpy (copy + first, name + first + 1, len - first);
5172
5173 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5174 if (h == NULL)
5175 {
5176 /* We also need to check references to the symbol without the
5177 version. */
5178 copy[first - 1] = '\0';
5179 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5180 FALSE, FALSE, TRUE);
5181 }
5182
5183 bfd_release (abfd, copy);
5184 return h;
5185 }
5186
5187 /* Add symbols from an ELF archive file to the linker hash table. We
5188 don't use _bfd_generic_link_add_archive_symbols because we need to
5189 handle versioned symbols.
5190
5191 Fortunately, ELF archive handling is simpler than that done by
5192 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5193 oddities. In ELF, if we find a symbol in the archive map, and the
5194 symbol is currently undefined, we know that we must pull in that
5195 object file.
5196
5197 Unfortunately, we do have to make multiple passes over the symbol
5198 table until nothing further is resolved. */
5199
5200 static bfd_boolean
5201 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5202 {
5203 symindex c;
5204 unsigned char *included = NULL;
5205 carsym *symdefs;
5206 bfd_boolean loop;
5207 bfd_size_type amt;
5208 const struct elf_backend_data *bed;
5209 struct elf_link_hash_entry * (*archive_symbol_lookup)
5210 (bfd *, struct bfd_link_info *, const char *);
5211
5212 if (! bfd_has_map (abfd))
5213 {
5214 /* An empty archive is a special case. */
5215 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5216 return TRUE;
5217 bfd_set_error (bfd_error_no_armap);
5218 return FALSE;
5219 }
5220
5221 /* Keep track of all symbols we know to be already defined, and all
5222 files we know to be already included. This is to speed up the
5223 second and subsequent passes. */
5224 c = bfd_ardata (abfd)->symdef_count;
5225 if (c == 0)
5226 return TRUE;
5227 amt = c;
5228 amt *= sizeof (*included);
5229 included = (unsigned char *) bfd_zmalloc (amt);
5230 if (included == NULL)
5231 return FALSE;
5232
5233 symdefs = bfd_ardata (abfd)->symdefs;
5234 bed = get_elf_backend_data (abfd);
5235 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5236
5237 do
5238 {
5239 file_ptr last;
5240 symindex i;
5241 carsym *symdef;
5242 carsym *symdefend;
5243
5244 loop = FALSE;
5245 last = -1;
5246
5247 symdef = symdefs;
5248 symdefend = symdef + c;
5249 for (i = 0; symdef < symdefend; symdef++, i++)
5250 {
5251 struct elf_link_hash_entry *h;
5252 bfd *element;
5253 struct bfd_link_hash_entry *undefs_tail;
5254 symindex mark;
5255
5256 if (included[i])
5257 continue;
5258 if (symdef->file_offset == last)
5259 {
5260 included[i] = TRUE;
5261 continue;
5262 }
5263
5264 h = archive_symbol_lookup (abfd, info, symdef->name);
5265 if (h == (struct elf_link_hash_entry *) 0 - 1)
5266 goto error_return;
5267
5268 if (h == NULL)
5269 continue;
5270
5271 if (h->root.type == bfd_link_hash_common)
5272 {
5273 /* We currently have a common symbol. The archive map contains
5274 a reference to this symbol, so we may want to include it. We
5275 only want to include it however, if this archive element
5276 contains a definition of the symbol, not just another common
5277 declaration of it.
5278
5279 Unfortunately some archivers (including GNU ar) will put
5280 declarations of common symbols into their archive maps, as
5281 well as real definitions, so we cannot just go by the archive
5282 map alone. Instead we must read in the element's symbol
5283 table and check that to see what kind of symbol definition
5284 this is. */
5285 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5286 continue;
5287 }
5288 else if (h->root.type != bfd_link_hash_undefined)
5289 {
5290 if (h->root.type != bfd_link_hash_undefweak)
5291 /* Symbol must be defined. Don't check it again. */
5292 included[i] = TRUE;
5293 continue;
5294 }
5295
5296 /* We need to include this archive member. */
5297 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5298 if (element == NULL)
5299 goto error_return;
5300
5301 if (! bfd_check_format (element, bfd_object))
5302 goto error_return;
5303
5304 undefs_tail = info->hash->undefs_tail;
5305
5306 if (!(*info->callbacks
5307 ->add_archive_element) (info, element, symdef->name, &element))
5308 continue;
5309 if (!bfd_link_add_symbols (element, info))
5310 goto error_return;
5311
5312 /* If there are any new undefined symbols, we need to make
5313 another pass through the archive in order to see whether
5314 they can be defined. FIXME: This isn't perfect, because
5315 common symbols wind up on undefs_tail and because an
5316 undefined symbol which is defined later on in this pass
5317 does not require another pass. This isn't a bug, but it
5318 does make the code less efficient than it could be. */
5319 if (undefs_tail != info->hash->undefs_tail)
5320 loop = TRUE;
5321
5322 /* Look backward to mark all symbols from this object file
5323 which we have already seen in this pass. */
5324 mark = i;
5325 do
5326 {
5327 included[mark] = TRUE;
5328 if (mark == 0)
5329 break;
5330 --mark;
5331 }
5332 while (symdefs[mark].file_offset == symdef->file_offset);
5333
5334 /* We mark subsequent symbols from this object file as we go
5335 on through the loop. */
5336 last = symdef->file_offset;
5337 }
5338 }
5339 while (loop);
5340
5341 free (included);
5342
5343 return TRUE;
5344
5345 error_return:
5346 if (included != NULL)
5347 free (included);
5348 return FALSE;
5349 }
5350
5351 /* Given an ELF BFD, add symbols to the global hash table as
5352 appropriate. */
5353
5354 bfd_boolean
5355 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5356 {
5357 switch (bfd_get_format (abfd))
5358 {
5359 case bfd_object:
5360 return elf_link_add_object_symbols (abfd, info);
5361 case bfd_archive:
5362 return elf_link_add_archive_symbols (abfd, info);
5363 default:
5364 bfd_set_error (bfd_error_wrong_format);
5365 return FALSE;
5366 }
5367 }
5368 \f
5369 struct hash_codes_info
5370 {
5371 unsigned long *hashcodes;
5372 bfd_boolean error;
5373 };
5374
5375 /* This function will be called though elf_link_hash_traverse to store
5376 all hash value of the exported symbols in an array. */
5377
5378 static bfd_boolean
5379 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5380 {
5381 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5382 const char *name;
5383 unsigned long ha;
5384 char *alc = NULL;
5385
5386 /* Ignore indirect symbols. These are added by the versioning code. */
5387 if (h->dynindx == -1)
5388 return TRUE;
5389
5390 name = h->root.root.string;
5391 if (h->versioned >= versioned)
5392 {
5393 char *p = strchr (name, ELF_VER_CHR);
5394 if (p != NULL)
5395 {
5396 alc = (char *) bfd_malloc (p - name + 1);
5397 if (alc == NULL)
5398 {
5399 inf->error = TRUE;
5400 return FALSE;
5401 }
5402 memcpy (alc, name, p - name);
5403 alc[p - name] = '\0';
5404 name = alc;
5405 }
5406 }
5407
5408 /* Compute the hash value. */
5409 ha = bfd_elf_hash (name);
5410
5411 /* Store the found hash value in the array given as the argument. */
5412 *(inf->hashcodes)++ = ha;
5413
5414 /* And store it in the struct so that we can put it in the hash table
5415 later. */
5416 h->u.elf_hash_value = ha;
5417
5418 if (alc != NULL)
5419 free (alc);
5420
5421 return TRUE;
5422 }
5423
5424 struct collect_gnu_hash_codes
5425 {
5426 bfd *output_bfd;
5427 const struct elf_backend_data *bed;
5428 unsigned long int nsyms;
5429 unsigned long int maskbits;
5430 unsigned long int *hashcodes;
5431 unsigned long int *hashval;
5432 unsigned long int *indx;
5433 unsigned long int *counts;
5434 bfd_vma *bitmask;
5435 bfd_byte *contents;
5436 long int min_dynindx;
5437 unsigned long int bucketcount;
5438 unsigned long int symindx;
5439 long int local_indx;
5440 long int shift1, shift2;
5441 unsigned long int mask;
5442 bfd_boolean error;
5443 };
5444
5445 /* This function will be called though elf_link_hash_traverse to store
5446 all hash value of the exported symbols in an array. */
5447
5448 static bfd_boolean
5449 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5450 {
5451 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5452 const char *name;
5453 unsigned long ha;
5454 char *alc = NULL;
5455
5456 /* Ignore indirect symbols. These are added by the versioning code. */
5457 if (h->dynindx == -1)
5458 return TRUE;
5459
5460 /* Ignore also local symbols and undefined symbols. */
5461 if (! (*s->bed->elf_hash_symbol) (h))
5462 return TRUE;
5463
5464 name = h->root.root.string;
5465 if (h->versioned >= versioned)
5466 {
5467 char *p = strchr (name, ELF_VER_CHR);
5468 if (p != NULL)
5469 {
5470 alc = (char *) bfd_malloc (p - name + 1);
5471 if (alc == NULL)
5472 {
5473 s->error = TRUE;
5474 return FALSE;
5475 }
5476 memcpy (alc, name, p - name);
5477 alc[p - name] = '\0';
5478 name = alc;
5479 }
5480 }
5481
5482 /* Compute the hash value. */
5483 ha = bfd_elf_gnu_hash (name);
5484
5485 /* Store the found hash value in the array for compute_bucket_count,
5486 and also for .dynsym reordering purposes. */
5487 s->hashcodes[s->nsyms] = ha;
5488 s->hashval[h->dynindx] = ha;
5489 ++s->nsyms;
5490 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5491 s->min_dynindx = h->dynindx;
5492
5493 if (alc != NULL)
5494 free (alc);
5495
5496 return TRUE;
5497 }
5498
5499 /* This function will be called though elf_link_hash_traverse to do
5500 final dynaminc symbol renumbering. */
5501
5502 static bfd_boolean
5503 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5504 {
5505 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5506 unsigned long int bucket;
5507 unsigned long int val;
5508
5509 /* Ignore indirect symbols. */
5510 if (h->dynindx == -1)
5511 return TRUE;
5512
5513 /* Ignore also local symbols and undefined symbols. */
5514 if (! (*s->bed->elf_hash_symbol) (h))
5515 {
5516 if (h->dynindx >= s->min_dynindx)
5517 h->dynindx = s->local_indx++;
5518 return TRUE;
5519 }
5520
5521 bucket = s->hashval[h->dynindx] % s->bucketcount;
5522 val = (s->hashval[h->dynindx] >> s->shift1)
5523 & ((s->maskbits >> s->shift1) - 1);
5524 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5525 s->bitmask[val]
5526 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5527 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5528 if (s->counts[bucket] == 1)
5529 /* Last element terminates the chain. */
5530 val |= 1;
5531 bfd_put_32 (s->output_bfd, val,
5532 s->contents + (s->indx[bucket] - s->symindx) * 4);
5533 --s->counts[bucket];
5534 h->dynindx = s->indx[bucket]++;
5535 return TRUE;
5536 }
5537
5538 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5539
5540 bfd_boolean
5541 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5542 {
5543 return !(h->forced_local
5544 || h->root.type == bfd_link_hash_undefined
5545 || h->root.type == bfd_link_hash_undefweak
5546 || ((h->root.type == bfd_link_hash_defined
5547 || h->root.type == bfd_link_hash_defweak)
5548 && h->root.u.def.section->output_section == NULL));
5549 }
5550
5551 /* Array used to determine the number of hash table buckets to use
5552 based on the number of symbols there are. If there are fewer than
5553 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5554 fewer than 37 we use 17 buckets, and so forth. We never use more
5555 than 32771 buckets. */
5556
5557 static const size_t elf_buckets[] =
5558 {
5559 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5560 16411, 32771, 0
5561 };
5562
5563 /* Compute bucket count for hashing table. We do not use a static set
5564 of possible tables sizes anymore. Instead we determine for all
5565 possible reasonable sizes of the table the outcome (i.e., the
5566 number of collisions etc) and choose the best solution. The
5567 weighting functions are not too simple to allow the table to grow
5568 without bounds. Instead one of the weighting factors is the size.
5569 Therefore the result is always a good payoff between few collisions
5570 (= short chain lengths) and table size. */
5571 static size_t
5572 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5573 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5574 unsigned long int nsyms,
5575 int gnu_hash)
5576 {
5577 size_t best_size = 0;
5578 unsigned long int i;
5579
5580 /* We have a problem here. The following code to optimize the table
5581 size requires an integer type with more the 32 bits. If
5582 BFD_HOST_U_64_BIT is set we know about such a type. */
5583 #ifdef BFD_HOST_U_64_BIT
5584 if (info->optimize)
5585 {
5586 size_t minsize;
5587 size_t maxsize;
5588 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5589 bfd *dynobj = elf_hash_table (info)->dynobj;
5590 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5591 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5592 unsigned long int *counts;
5593 bfd_size_type amt;
5594 unsigned int no_improvement_count = 0;
5595
5596 /* Possible optimization parameters: if we have NSYMS symbols we say
5597 that the hashing table must at least have NSYMS/4 and at most
5598 2*NSYMS buckets. */
5599 minsize = nsyms / 4;
5600 if (minsize == 0)
5601 minsize = 1;
5602 best_size = maxsize = nsyms * 2;
5603 if (gnu_hash)
5604 {
5605 if (minsize < 2)
5606 minsize = 2;
5607 if ((best_size & 31) == 0)
5608 ++best_size;
5609 }
5610
5611 /* Create array where we count the collisions in. We must use bfd_malloc
5612 since the size could be large. */
5613 amt = maxsize;
5614 amt *= sizeof (unsigned long int);
5615 counts = (unsigned long int *) bfd_malloc (amt);
5616 if (counts == NULL)
5617 return 0;
5618
5619 /* Compute the "optimal" size for the hash table. The criteria is a
5620 minimal chain length. The minor criteria is (of course) the size
5621 of the table. */
5622 for (i = minsize; i < maxsize; ++i)
5623 {
5624 /* Walk through the array of hashcodes and count the collisions. */
5625 BFD_HOST_U_64_BIT max;
5626 unsigned long int j;
5627 unsigned long int fact;
5628
5629 if (gnu_hash && (i & 31) == 0)
5630 continue;
5631
5632 memset (counts, '\0', i * sizeof (unsigned long int));
5633
5634 /* Determine how often each hash bucket is used. */
5635 for (j = 0; j < nsyms; ++j)
5636 ++counts[hashcodes[j] % i];
5637
5638 /* For the weight function we need some information about the
5639 pagesize on the target. This is information need not be 100%
5640 accurate. Since this information is not available (so far) we
5641 define it here to a reasonable default value. If it is crucial
5642 to have a better value some day simply define this value. */
5643 # ifndef BFD_TARGET_PAGESIZE
5644 # define BFD_TARGET_PAGESIZE (4096)
5645 # endif
5646
5647 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5648 and the chains. */
5649 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5650
5651 # if 1
5652 /* Variant 1: optimize for short chains. We add the squares
5653 of all the chain lengths (which favors many small chain
5654 over a few long chains). */
5655 for (j = 0; j < i; ++j)
5656 max += counts[j] * counts[j];
5657
5658 /* This adds penalties for the overall size of the table. */
5659 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5660 max *= fact * fact;
5661 # else
5662 /* Variant 2: Optimize a lot more for small table. Here we
5663 also add squares of the size but we also add penalties for
5664 empty slots (the +1 term). */
5665 for (j = 0; j < i; ++j)
5666 max += (1 + counts[j]) * (1 + counts[j]);
5667
5668 /* The overall size of the table is considered, but not as
5669 strong as in variant 1, where it is squared. */
5670 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5671 max *= fact;
5672 # endif
5673
5674 /* Compare with current best results. */
5675 if (max < best_chlen)
5676 {
5677 best_chlen = max;
5678 best_size = i;
5679 no_improvement_count = 0;
5680 }
5681 /* PR 11843: Avoid futile long searches for the best bucket size
5682 when there are a large number of symbols. */
5683 else if (++no_improvement_count == 100)
5684 break;
5685 }
5686
5687 free (counts);
5688 }
5689 else
5690 #endif /* defined (BFD_HOST_U_64_BIT) */
5691 {
5692 /* This is the fallback solution if no 64bit type is available or if we
5693 are not supposed to spend much time on optimizations. We select the
5694 bucket count using a fixed set of numbers. */
5695 for (i = 0; elf_buckets[i] != 0; i++)
5696 {
5697 best_size = elf_buckets[i];
5698 if (nsyms < elf_buckets[i + 1])
5699 break;
5700 }
5701 if (gnu_hash && best_size < 2)
5702 best_size = 2;
5703 }
5704
5705 return best_size;
5706 }
5707
5708 /* Size any SHT_GROUP section for ld -r. */
5709
5710 bfd_boolean
5711 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5712 {
5713 bfd *ibfd;
5714
5715 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5716 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5717 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5718 return FALSE;
5719 return TRUE;
5720 }
5721
5722 /* Set a default stack segment size. The value in INFO wins. If it
5723 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5724 undefined it is initialized. */
5725
5726 bfd_boolean
5727 bfd_elf_stack_segment_size (bfd *output_bfd,
5728 struct bfd_link_info *info,
5729 const char *legacy_symbol,
5730 bfd_vma default_size)
5731 {
5732 struct elf_link_hash_entry *h = NULL;
5733
5734 /* Look for legacy symbol. */
5735 if (legacy_symbol)
5736 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5737 FALSE, FALSE, FALSE);
5738 if (h && (h->root.type == bfd_link_hash_defined
5739 || h->root.type == bfd_link_hash_defweak)
5740 && h->def_regular
5741 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5742 {
5743 /* The symbol has no type if specified on the command line. */
5744 h->type = STT_OBJECT;
5745 if (info->stacksize)
5746 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5747 output_bfd, legacy_symbol);
5748 else if (h->root.u.def.section != bfd_abs_section_ptr)
5749 (*_bfd_error_handler) (_("%B: %s not absolute"),
5750 output_bfd, legacy_symbol);
5751 else
5752 info->stacksize = h->root.u.def.value;
5753 }
5754
5755 if (!info->stacksize)
5756 /* If the user didn't set a size, or explicitly inhibit the
5757 size, set it now. */
5758 info->stacksize = default_size;
5759
5760 /* Provide the legacy symbol, if it is referenced. */
5761 if (h && (h->root.type == bfd_link_hash_undefined
5762 || h->root.type == bfd_link_hash_undefweak))
5763 {
5764 struct bfd_link_hash_entry *bh = NULL;
5765
5766 if (!(_bfd_generic_link_add_one_symbol
5767 (info, output_bfd, legacy_symbol,
5768 BSF_GLOBAL, bfd_abs_section_ptr,
5769 info->stacksize >= 0 ? info->stacksize : 0,
5770 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5771 return FALSE;
5772
5773 h = (struct elf_link_hash_entry *) bh;
5774 h->def_regular = 1;
5775 h->type = STT_OBJECT;
5776 }
5777
5778 return TRUE;
5779 }
5780
5781 /* Set up the sizes and contents of the ELF dynamic sections. This is
5782 called by the ELF linker emulation before_allocation routine. We
5783 must set the sizes of the sections before the linker sets the
5784 addresses of the various sections. */
5785
5786 bfd_boolean
5787 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5788 const char *soname,
5789 const char *rpath,
5790 const char *filter_shlib,
5791 const char *audit,
5792 const char *depaudit,
5793 const char * const *auxiliary_filters,
5794 struct bfd_link_info *info,
5795 asection **sinterpptr)
5796 {
5797 bfd_size_type soname_indx;
5798 bfd *dynobj;
5799 const struct elf_backend_data *bed;
5800 struct elf_info_failed asvinfo;
5801
5802 *sinterpptr = NULL;
5803
5804 soname_indx = (bfd_size_type) -1;
5805
5806 if (!is_elf_hash_table (info->hash))
5807 return TRUE;
5808
5809 bed = get_elf_backend_data (output_bfd);
5810
5811 /* Any syms created from now on start with -1 in
5812 got.refcount/offset and plt.refcount/offset. */
5813 elf_hash_table (info)->init_got_refcount
5814 = elf_hash_table (info)->init_got_offset;
5815 elf_hash_table (info)->init_plt_refcount
5816 = elf_hash_table (info)->init_plt_offset;
5817
5818 if (bfd_link_relocatable (info)
5819 && !_bfd_elf_size_group_sections (info))
5820 return FALSE;
5821
5822 /* The backend may have to create some sections regardless of whether
5823 we're dynamic or not. */
5824 if (bed->elf_backend_always_size_sections
5825 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5826 return FALSE;
5827
5828 /* Determine any GNU_STACK segment requirements, after the backend
5829 has had a chance to set a default segment size. */
5830 if (info->execstack)
5831 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5832 else if (info->noexecstack)
5833 elf_stack_flags (output_bfd) = PF_R | PF_W;
5834 else
5835 {
5836 bfd *inputobj;
5837 asection *notesec = NULL;
5838 int exec = 0;
5839
5840 for (inputobj = info->input_bfds;
5841 inputobj;
5842 inputobj = inputobj->link.next)
5843 {
5844 asection *s;
5845
5846 if (inputobj->flags
5847 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5848 continue;
5849 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5850 if (s)
5851 {
5852 if (s->flags & SEC_CODE)
5853 exec = PF_X;
5854 notesec = s;
5855 }
5856 else if (bed->default_execstack)
5857 exec = PF_X;
5858 }
5859 if (notesec || info->stacksize > 0)
5860 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5861 if (notesec && exec && bfd_link_relocatable (info)
5862 && notesec->output_section != bfd_abs_section_ptr)
5863 notesec->output_section->flags |= SEC_CODE;
5864 }
5865
5866 dynobj = elf_hash_table (info)->dynobj;
5867
5868 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5869 {
5870 struct elf_info_failed eif;
5871 struct elf_link_hash_entry *h;
5872 asection *dynstr;
5873 struct bfd_elf_version_tree *t;
5874 struct bfd_elf_version_expr *d;
5875 asection *s;
5876 bfd_boolean all_defined;
5877
5878 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5879 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5880
5881 if (soname != NULL)
5882 {
5883 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5884 soname, TRUE);
5885 if (soname_indx == (bfd_size_type) -1
5886 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5887 return FALSE;
5888 }
5889
5890 if (info->symbolic)
5891 {
5892 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5893 return FALSE;
5894 info->flags |= DF_SYMBOLIC;
5895 }
5896
5897 if (rpath != NULL)
5898 {
5899 bfd_size_type indx;
5900 bfd_vma tag;
5901
5902 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5903 TRUE);
5904 if (indx == (bfd_size_type) -1)
5905 return FALSE;
5906
5907 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5908 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5909 return FALSE;
5910 }
5911
5912 if (filter_shlib != NULL)
5913 {
5914 bfd_size_type indx;
5915
5916 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5917 filter_shlib, TRUE);
5918 if (indx == (bfd_size_type) -1
5919 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5920 return FALSE;
5921 }
5922
5923 if (auxiliary_filters != NULL)
5924 {
5925 const char * const *p;
5926
5927 for (p = auxiliary_filters; *p != NULL; p++)
5928 {
5929 bfd_size_type indx;
5930
5931 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5932 *p, TRUE);
5933 if (indx == (bfd_size_type) -1
5934 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5935 return FALSE;
5936 }
5937 }
5938
5939 if (audit != NULL)
5940 {
5941 bfd_size_type indx;
5942
5943 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5944 TRUE);
5945 if (indx == (bfd_size_type) -1
5946 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5947 return FALSE;
5948 }
5949
5950 if (depaudit != NULL)
5951 {
5952 bfd_size_type indx;
5953
5954 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5955 TRUE);
5956 if (indx == (bfd_size_type) -1
5957 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5958 return FALSE;
5959 }
5960
5961 eif.info = info;
5962 eif.failed = FALSE;
5963
5964 /* If we are supposed to export all symbols into the dynamic symbol
5965 table (this is not the normal case), then do so. */
5966 if (info->export_dynamic
5967 || (bfd_link_executable (info) && info->dynamic))
5968 {
5969 elf_link_hash_traverse (elf_hash_table (info),
5970 _bfd_elf_export_symbol,
5971 &eif);
5972 if (eif.failed)
5973 return FALSE;
5974 }
5975
5976 /* Make all global versions with definition. */
5977 for (t = info->version_info; t != NULL; t = t->next)
5978 for (d = t->globals.list; d != NULL; d = d->next)
5979 if (!d->symver && d->literal)
5980 {
5981 const char *verstr, *name;
5982 size_t namelen, verlen, newlen;
5983 char *newname, *p, leading_char;
5984 struct elf_link_hash_entry *newh;
5985
5986 leading_char = bfd_get_symbol_leading_char (output_bfd);
5987 name = d->pattern;
5988 namelen = strlen (name) + (leading_char != '\0');
5989 verstr = t->name;
5990 verlen = strlen (verstr);
5991 newlen = namelen + verlen + 3;
5992
5993 newname = (char *) bfd_malloc (newlen);
5994 if (newname == NULL)
5995 return FALSE;
5996 newname[0] = leading_char;
5997 memcpy (newname + (leading_char != '\0'), name, namelen);
5998
5999 /* Check the hidden versioned definition. */
6000 p = newname + namelen;
6001 *p++ = ELF_VER_CHR;
6002 memcpy (p, verstr, verlen + 1);
6003 newh = elf_link_hash_lookup (elf_hash_table (info),
6004 newname, FALSE, FALSE,
6005 FALSE);
6006 if (newh == NULL
6007 || (newh->root.type != bfd_link_hash_defined
6008 && newh->root.type != bfd_link_hash_defweak))
6009 {
6010 /* Check the default versioned definition. */
6011 *p++ = ELF_VER_CHR;
6012 memcpy (p, verstr, verlen + 1);
6013 newh = elf_link_hash_lookup (elf_hash_table (info),
6014 newname, FALSE, FALSE,
6015 FALSE);
6016 }
6017 free (newname);
6018
6019 /* Mark this version if there is a definition and it is
6020 not defined in a shared object. */
6021 if (newh != NULL
6022 && !newh->def_dynamic
6023 && (newh->root.type == bfd_link_hash_defined
6024 || newh->root.type == bfd_link_hash_defweak))
6025 d->symver = 1;
6026 }
6027
6028 /* Attach all the symbols to their version information. */
6029 asvinfo.info = info;
6030 asvinfo.failed = FALSE;
6031
6032 elf_link_hash_traverse (elf_hash_table (info),
6033 _bfd_elf_link_assign_sym_version,
6034 &asvinfo);
6035 if (asvinfo.failed)
6036 return FALSE;
6037
6038 if (!info->allow_undefined_version)
6039 {
6040 /* Check if all global versions have a definition. */
6041 all_defined = TRUE;
6042 for (t = info->version_info; t != NULL; t = t->next)
6043 for (d = t->globals.list; d != NULL; d = d->next)
6044 if (d->literal && !d->symver && !d->script)
6045 {
6046 (*_bfd_error_handler)
6047 (_("%s: undefined version: %s"),
6048 d->pattern, t->name);
6049 all_defined = FALSE;
6050 }
6051
6052 if (!all_defined)
6053 {
6054 bfd_set_error (bfd_error_bad_value);
6055 return FALSE;
6056 }
6057 }
6058
6059 /* Find all symbols which were defined in a dynamic object and make
6060 the backend pick a reasonable value for them. */
6061 elf_link_hash_traverse (elf_hash_table (info),
6062 _bfd_elf_adjust_dynamic_symbol,
6063 &eif);
6064 if (eif.failed)
6065 return FALSE;
6066
6067 /* Add some entries to the .dynamic section. We fill in some of the
6068 values later, in bfd_elf_final_link, but we must add the entries
6069 now so that we know the final size of the .dynamic section. */
6070
6071 /* If there are initialization and/or finalization functions to
6072 call then add the corresponding DT_INIT/DT_FINI entries. */
6073 h = (info->init_function
6074 ? elf_link_hash_lookup (elf_hash_table (info),
6075 info->init_function, FALSE,
6076 FALSE, FALSE)
6077 : NULL);
6078 if (h != NULL
6079 && (h->ref_regular
6080 || h->def_regular))
6081 {
6082 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6083 return FALSE;
6084 }
6085 h = (info->fini_function
6086 ? elf_link_hash_lookup (elf_hash_table (info),
6087 info->fini_function, FALSE,
6088 FALSE, FALSE)
6089 : NULL);
6090 if (h != NULL
6091 && (h->ref_regular
6092 || h->def_regular))
6093 {
6094 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6095 return FALSE;
6096 }
6097
6098 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6099 if (s != NULL && s->linker_has_input)
6100 {
6101 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6102 if (! bfd_link_executable (info))
6103 {
6104 bfd *sub;
6105 asection *o;
6106
6107 for (sub = info->input_bfds; sub != NULL;
6108 sub = sub->link.next)
6109 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6110 for (o = sub->sections; o != NULL; o = o->next)
6111 if (elf_section_data (o)->this_hdr.sh_type
6112 == SHT_PREINIT_ARRAY)
6113 {
6114 (*_bfd_error_handler)
6115 (_("%B: .preinit_array section is not allowed in DSO"),
6116 sub);
6117 break;
6118 }
6119
6120 bfd_set_error (bfd_error_nonrepresentable_section);
6121 return FALSE;
6122 }
6123
6124 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6125 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6126 return FALSE;
6127 }
6128 s = bfd_get_section_by_name (output_bfd, ".init_array");
6129 if (s != NULL && s->linker_has_input)
6130 {
6131 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6132 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6133 return FALSE;
6134 }
6135 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6136 if (s != NULL && s->linker_has_input)
6137 {
6138 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6139 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6140 return FALSE;
6141 }
6142
6143 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6144 /* If .dynstr is excluded from the link, we don't want any of
6145 these tags. Strictly, we should be checking each section
6146 individually; This quick check covers for the case where
6147 someone does a /DISCARD/ : { *(*) }. */
6148 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6149 {
6150 bfd_size_type strsize;
6151
6152 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6153 if ((info->emit_hash
6154 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6155 || (info->emit_gnu_hash
6156 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6157 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6158 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6159 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6160 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6161 bed->s->sizeof_sym))
6162 return FALSE;
6163 }
6164 }
6165
6166 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6167 return FALSE;
6168
6169 /* The backend must work out the sizes of all the other dynamic
6170 sections. */
6171 if (dynobj != NULL
6172 && bed->elf_backend_size_dynamic_sections != NULL
6173 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6174 return FALSE;
6175
6176 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6177 {
6178 unsigned long section_sym_count;
6179 struct bfd_elf_version_tree *verdefs;
6180 asection *s;
6181
6182 /* Set up the version definition section. */
6183 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6184 BFD_ASSERT (s != NULL);
6185
6186 /* We may have created additional version definitions if we are
6187 just linking a regular application. */
6188 verdefs = info->version_info;
6189
6190 /* Skip anonymous version tag. */
6191 if (verdefs != NULL && verdefs->vernum == 0)
6192 verdefs = verdefs->next;
6193
6194 if (verdefs == NULL && !info->create_default_symver)
6195 s->flags |= SEC_EXCLUDE;
6196 else
6197 {
6198 unsigned int cdefs;
6199 bfd_size_type size;
6200 struct bfd_elf_version_tree *t;
6201 bfd_byte *p;
6202 Elf_Internal_Verdef def;
6203 Elf_Internal_Verdaux defaux;
6204 struct bfd_link_hash_entry *bh;
6205 struct elf_link_hash_entry *h;
6206 const char *name;
6207
6208 cdefs = 0;
6209 size = 0;
6210
6211 /* Make space for the base version. */
6212 size += sizeof (Elf_External_Verdef);
6213 size += sizeof (Elf_External_Verdaux);
6214 ++cdefs;
6215
6216 /* Make space for the default version. */
6217 if (info->create_default_symver)
6218 {
6219 size += sizeof (Elf_External_Verdef);
6220 ++cdefs;
6221 }
6222
6223 for (t = verdefs; t != NULL; t = t->next)
6224 {
6225 struct bfd_elf_version_deps *n;
6226
6227 /* Don't emit base version twice. */
6228 if (t->vernum == 0)
6229 continue;
6230
6231 size += sizeof (Elf_External_Verdef);
6232 size += sizeof (Elf_External_Verdaux);
6233 ++cdefs;
6234
6235 for (n = t->deps; n != NULL; n = n->next)
6236 size += sizeof (Elf_External_Verdaux);
6237 }
6238
6239 s->size = size;
6240 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6241 if (s->contents == NULL && s->size != 0)
6242 return FALSE;
6243
6244 /* Fill in the version definition section. */
6245
6246 p = s->contents;
6247
6248 def.vd_version = VER_DEF_CURRENT;
6249 def.vd_flags = VER_FLG_BASE;
6250 def.vd_ndx = 1;
6251 def.vd_cnt = 1;
6252 if (info->create_default_symver)
6253 {
6254 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6255 def.vd_next = sizeof (Elf_External_Verdef);
6256 }
6257 else
6258 {
6259 def.vd_aux = sizeof (Elf_External_Verdef);
6260 def.vd_next = (sizeof (Elf_External_Verdef)
6261 + sizeof (Elf_External_Verdaux));
6262 }
6263
6264 if (soname_indx != (bfd_size_type) -1)
6265 {
6266 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6267 soname_indx);
6268 def.vd_hash = bfd_elf_hash (soname);
6269 defaux.vda_name = soname_indx;
6270 name = soname;
6271 }
6272 else
6273 {
6274 bfd_size_type indx;
6275
6276 name = lbasename (output_bfd->filename);
6277 def.vd_hash = bfd_elf_hash (name);
6278 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6279 name, FALSE);
6280 if (indx == (bfd_size_type) -1)
6281 return FALSE;
6282 defaux.vda_name = indx;
6283 }
6284 defaux.vda_next = 0;
6285
6286 _bfd_elf_swap_verdef_out (output_bfd, &def,
6287 (Elf_External_Verdef *) p);
6288 p += sizeof (Elf_External_Verdef);
6289 if (info->create_default_symver)
6290 {
6291 /* Add a symbol representing this version. */
6292 bh = NULL;
6293 if (! (_bfd_generic_link_add_one_symbol
6294 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6295 0, NULL, FALSE,
6296 get_elf_backend_data (dynobj)->collect, &bh)))
6297 return FALSE;
6298 h = (struct elf_link_hash_entry *) bh;
6299 h->non_elf = 0;
6300 h->def_regular = 1;
6301 h->type = STT_OBJECT;
6302 h->verinfo.vertree = NULL;
6303
6304 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6305 return FALSE;
6306
6307 /* Create a duplicate of the base version with the same
6308 aux block, but different flags. */
6309 def.vd_flags = 0;
6310 def.vd_ndx = 2;
6311 def.vd_aux = sizeof (Elf_External_Verdef);
6312 if (verdefs)
6313 def.vd_next = (sizeof (Elf_External_Verdef)
6314 + sizeof (Elf_External_Verdaux));
6315 else
6316 def.vd_next = 0;
6317 _bfd_elf_swap_verdef_out (output_bfd, &def,
6318 (Elf_External_Verdef *) p);
6319 p += sizeof (Elf_External_Verdef);
6320 }
6321 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6322 (Elf_External_Verdaux *) p);
6323 p += sizeof (Elf_External_Verdaux);
6324
6325 for (t = verdefs; t != NULL; t = t->next)
6326 {
6327 unsigned int cdeps;
6328 struct bfd_elf_version_deps *n;
6329
6330 /* Don't emit the base version twice. */
6331 if (t->vernum == 0)
6332 continue;
6333
6334 cdeps = 0;
6335 for (n = t->deps; n != NULL; n = n->next)
6336 ++cdeps;
6337
6338 /* Add a symbol representing this version. */
6339 bh = NULL;
6340 if (! (_bfd_generic_link_add_one_symbol
6341 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6342 0, NULL, FALSE,
6343 get_elf_backend_data (dynobj)->collect, &bh)))
6344 return FALSE;
6345 h = (struct elf_link_hash_entry *) bh;
6346 h->non_elf = 0;
6347 h->def_regular = 1;
6348 h->type = STT_OBJECT;
6349 h->verinfo.vertree = t;
6350
6351 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6352 return FALSE;
6353
6354 def.vd_version = VER_DEF_CURRENT;
6355 def.vd_flags = 0;
6356 if (t->globals.list == NULL
6357 && t->locals.list == NULL
6358 && ! t->used)
6359 def.vd_flags |= VER_FLG_WEAK;
6360 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6361 def.vd_cnt = cdeps + 1;
6362 def.vd_hash = bfd_elf_hash (t->name);
6363 def.vd_aux = sizeof (Elf_External_Verdef);
6364 def.vd_next = 0;
6365
6366 /* If a basever node is next, it *must* be the last node in
6367 the chain, otherwise Verdef construction breaks. */
6368 if (t->next != NULL && t->next->vernum == 0)
6369 BFD_ASSERT (t->next->next == NULL);
6370
6371 if (t->next != NULL && t->next->vernum != 0)
6372 def.vd_next = (sizeof (Elf_External_Verdef)
6373 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6374
6375 _bfd_elf_swap_verdef_out (output_bfd, &def,
6376 (Elf_External_Verdef *) p);
6377 p += sizeof (Elf_External_Verdef);
6378
6379 defaux.vda_name = h->dynstr_index;
6380 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6381 h->dynstr_index);
6382 defaux.vda_next = 0;
6383 if (t->deps != NULL)
6384 defaux.vda_next = sizeof (Elf_External_Verdaux);
6385 t->name_indx = defaux.vda_name;
6386
6387 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6388 (Elf_External_Verdaux *) p);
6389 p += sizeof (Elf_External_Verdaux);
6390
6391 for (n = t->deps; n != NULL; n = n->next)
6392 {
6393 if (n->version_needed == NULL)
6394 {
6395 /* This can happen if there was an error in the
6396 version script. */
6397 defaux.vda_name = 0;
6398 }
6399 else
6400 {
6401 defaux.vda_name = n->version_needed->name_indx;
6402 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6403 defaux.vda_name);
6404 }
6405 if (n->next == NULL)
6406 defaux.vda_next = 0;
6407 else
6408 defaux.vda_next = sizeof (Elf_External_Verdaux);
6409
6410 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6411 (Elf_External_Verdaux *) p);
6412 p += sizeof (Elf_External_Verdaux);
6413 }
6414 }
6415
6416 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6417 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6418 return FALSE;
6419
6420 elf_tdata (output_bfd)->cverdefs = cdefs;
6421 }
6422
6423 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6424 {
6425 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6426 return FALSE;
6427 }
6428 else if (info->flags & DF_BIND_NOW)
6429 {
6430 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6431 return FALSE;
6432 }
6433
6434 if (info->flags_1)
6435 {
6436 if (bfd_link_executable (info))
6437 info->flags_1 &= ~ (DF_1_INITFIRST
6438 | DF_1_NODELETE
6439 | DF_1_NOOPEN);
6440 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6441 return FALSE;
6442 }
6443
6444 /* Work out the size of the version reference section. */
6445
6446 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6447 BFD_ASSERT (s != NULL);
6448 {
6449 struct elf_find_verdep_info sinfo;
6450
6451 sinfo.info = info;
6452 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6453 if (sinfo.vers == 0)
6454 sinfo.vers = 1;
6455 sinfo.failed = FALSE;
6456
6457 elf_link_hash_traverse (elf_hash_table (info),
6458 _bfd_elf_link_find_version_dependencies,
6459 &sinfo);
6460 if (sinfo.failed)
6461 return FALSE;
6462
6463 if (elf_tdata (output_bfd)->verref == NULL)
6464 s->flags |= SEC_EXCLUDE;
6465 else
6466 {
6467 Elf_Internal_Verneed *t;
6468 unsigned int size;
6469 unsigned int crefs;
6470 bfd_byte *p;
6471
6472 /* Build the version dependency section. */
6473 size = 0;
6474 crefs = 0;
6475 for (t = elf_tdata (output_bfd)->verref;
6476 t != NULL;
6477 t = t->vn_nextref)
6478 {
6479 Elf_Internal_Vernaux *a;
6480
6481 size += sizeof (Elf_External_Verneed);
6482 ++crefs;
6483 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6484 size += sizeof (Elf_External_Vernaux);
6485 }
6486
6487 s->size = size;
6488 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6489 if (s->contents == NULL)
6490 return FALSE;
6491
6492 p = s->contents;
6493 for (t = elf_tdata (output_bfd)->verref;
6494 t != NULL;
6495 t = t->vn_nextref)
6496 {
6497 unsigned int caux;
6498 Elf_Internal_Vernaux *a;
6499 bfd_size_type indx;
6500
6501 caux = 0;
6502 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6503 ++caux;
6504
6505 t->vn_version = VER_NEED_CURRENT;
6506 t->vn_cnt = caux;
6507 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6508 elf_dt_name (t->vn_bfd) != NULL
6509 ? elf_dt_name (t->vn_bfd)
6510 : lbasename (t->vn_bfd->filename),
6511 FALSE);
6512 if (indx == (bfd_size_type) -1)
6513 return FALSE;
6514 t->vn_file = indx;
6515 t->vn_aux = sizeof (Elf_External_Verneed);
6516 if (t->vn_nextref == NULL)
6517 t->vn_next = 0;
6518 else
6519 t->vn_next = (sizeof (Elf_External_Verneed)
6520 + caux * sizeof (Elf_External_Vernaux));
6521
6522 _bfd_elf_swap_verneed_out (output_bfd, t,
6523 (Elf_External_Verneed *) p);
6524 p += sizeof (Elf_External_Verneed);
6525
6526 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6527 {
6528 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6529 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6530 a->vna_nodename, FALSE);
6531 if (indx == (bfd_size_type) -1)
6532 return FALSE;
6533 a->vna_name = indx;
6534 if (a->vna_nextptr == NULL)
6535 a->vna_next = 0;
6536 else
6537 a->vna_next = sizeof (Elf_External_Vernaux);
6538
6539 _bfd_elf_swap_vernaux_out (output_bfd, a,
6540 (Elf_External_Vernaux *) p);
6541 p += sizeof (Elf_External_Vernaux);
6542 }
6543 }
6544
6545 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6546 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6547 return FALSE;
6548
6549 elf_tdata (output_bfd)->cverrefs = crefs;
6550 }
6551 }
6552
6553 if ((elf_tdata (output_bfd)->cverrefs == 0
6554 && elf_tdata (output_bfd)->cverdefs == 0)
6555 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6556 &section_sym_count) == 0)
6557 {
6558 s = bfd_get_linker_section (dynobj, ".gnu.version");
6559 s->flags |= SEC_EXCLUDE;
6560 }
6561 }
6562 return TRUE;
6563 }
6564
6565 /* Find the first non-excluded output section. We'll use its
6566 section symbol for some emitted relocs. */
6567 void
6568 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6569 {
6570 asection *s;
6571
6572 for (s = output_bfd->sections; s != NULL; s = s->next)
6573 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6574 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6575 {
6576 elf_hash_table (info)->text_index_section = s;
6577 break;
6578 }
6579 }
6580
6581 /* Find two non-excluded output sections, one for code, one for data.
6582 We'll use their section symbols for some emitted relocs. */
6583 void
6584 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6585 {
6586 asection *s;
6587
6588 /* Data first, since setting text_index_section changes
6589 _bfd_elf_link_omit_section_dynsym. */
6590 for (s = output_bfd->sections; s != NULL; s = s->next)
6591 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6592 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6593 {
6594 elf_hash_table (info)->data_index_section = s;
6595 break;
6596 }
6597
6598 for (s = output_bfd->sections; s != NULL; s = s->next)
6599 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6600 == (SEC_ALLOC | SEC_READONLY))
6601 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6602 {
6603 elf_hash_table (info)->text_index_section = s;
6604 break;
6605 }
6606
6607 if (elf_hash_table (info)->text_index_section == NULL)
6608 elf_hash_table (info)->text_index_section
6609 = elf_hash_table (info)->data_index_section;
6610 }
6611
6612 bfd_boolean
6613 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6614 {
6615 const struct elf_backend_data *bed;
6616
6617 if (!is_elf_hash_table (info->hash))
6618 return TRUE;
6619
6620 bed = get_elf_backend_data (output_bfd);
6621 (*bed->elf_backend_init_index_section) (output_bfd, info);
6622
6623 if (elf_hash_table (info)->dynamic_sections_created)
6624 {
6625 bfd *dynobj;
6626 asection *s;
6627 bfd_size_type dynsymcount;
6628 unsigned long section_sym_count;
6629 unsigned int dtagcount;
6630
6631 dynobj = elf_hash_table (info)->dynobj;
6632
6633 /* Assign dynsym indicies. In a shared library we generate a
6634 section symbol for each output section, which come first.
6635 Next come all of the back-end allocated local dynamic syms,
6636 followed by the rest of the global symbols. */
6637
6638 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6639 &section_sym_count);
6640
6641 /* Work out the size of the symbol version section. */
6642 s = bfd_get_linker_section (dynobj, ".gnu.version");
6643 BFD_ASSERT (s != NULL);
6644 if ((s->flags & SEC_EXCLUDE) == 0)
6645 {
6646 s->size = dynsymcount * sizeof (Elf_External_Versym);
6647 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6648 if (s->contents == NULL)
6649 return FALSE;
6650
6651 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6652 return FALSE;
6653 }
6654
6655 /* Set the size of the .dynsym and .hash sections. We counted
6656 the number of dynamic symbols in elf_link_add_object_symbols.
6657 We will build the contents of .dynsym and .hash when we build
6658 the final symbol table, because until then we do not know the
6659 correct value to give the symbols. We built the .dynstr
6660 section as we went along in elf_link_add_object_symbols. */
6661 s = elf_hash_table (info)->dynsym;
6662 BFD_ASSERT (s != NULL);
6663 s->size = dynsymcount * bed->s->sizeof_sym;
6664
6665 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6666 if (s->contents == NULL)
6667 return FALSE;
6668
6669 /* The first entry in .dynsym is a dummy symbol. Clear all the
6670 section syms, in case we don't output them all. */
6671 ++section_sym_count;
6672 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6673
6674 elf_hash_table (info)->bucketcount = 0;
6675
6676 /* Compute the size of the hashing table. As a side effect this
6677 computes the hash values for all the names we export. */
6678 if (info->emit_hash)
6679 {
6680 unsigned long int *hashcodes;
6681 struct hash_codes_info hashinf;
6682 bfd_size_type amt;
6683 unsigned long int nsyms;
6684 size_t bucketcount;
6685 size_t hash_entry_size;
6686
6687 /* Compute the hash values for all exported symbols. At the same
6688 time store the values in an array so that we could use them for
6689 optimizations. */
6690 amt = dynsymcount * sizeof (unsigned long int);
6691 hashcodes = (unsigned long int *) bfd_malloc (amt);
6692 if (hashcodes == NULL)
6693 return FALSE;
6694 hashinf.hashcodes = hashcodes;
6695 hashinf.error = FALSE;
6696
6697 /* Put all hash values in HASHCODES. */
6698 elf_link_hash_traverse (elf_hash_table (info),
6699 elf_collect_hash_codes, &hashinf);
6700 if (hashinf.error)
6701 {
6702 free (hashcodes);
6703 return FALSE;
6704 }
6705
6706 nsyms = hashinf.hashcodes - hashcodes;
6707 bucketcount
6708 = compute_bucket_count (info, hashcodes, nsyms, 0);
6709 free (hashcodes);
6710
6711 if (bucketcount == 0)
6712 return FALSE;
6713
6714 elf_hash_table (info)->bucketcount = bucketcount;
6715
6716 s = bfd_get_linker_section (dynobj, ".hash");
6717 BFD_ASSERT (s != NULL);
6718 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6719 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6720 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6721 if (s->contents == NULL)
6722 return FALSE;
6723
6724 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6725 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6726 s->contents + hash_entry_size);
6727 }
6728
6729 if (info->emit_gnu_hash)
6730 {
6731 size_t i, cnt;
6732 unsigned char *contents;
6733 struct collect_gnu_hash_codes cinfo;
6734 bfd_size_type amt;
6735 size_t bucketcount;
6736
6737 memset (&cinfo, 0, sizeof (cinfo));
6738
6739 /* Compute the hash values for all exported symbols. At the same
6740 time store the values in an array so that we could use them for
6741 optimizations. */
6742 amt = dynsymcount * 2 * sizeof (unsigned long int);
6743 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6744 if (cinfo.hashcodes == NULL)
6745 return FALSE;
6746
6747 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6748 cinfo.min_dynindx = -1;
6749 cinfo.output_bfd = output_bfd;
6750 cinfo.bed = bed;
6751
6752 /* Put all hash values in HASHCODES. */
6753 elf_link_hash_traverse (elf_hash_table (info),
6754 elf_collect_gnu_hash_codes, &cinfo);
6755 if (cinfo.error)
6756 {
6757 free (cinfo.hashcodes);
6758 return FALSE;
6759 }
6760
6761 bucketcount
6762 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6763
6764 if (bucketcount == 0)
6765 {
6766 free (cinfo.hashcodes);
6767 return FALSE;
6768 }
6769
6770 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6771 BFD_ASSERT (s != NULL);
6772
6773 if (cinfo.nsyms == 0)
6774 {
6775 /* Empty .gnu.hash section is special. */
6776 BFD_ASSERT (cinfo.min_dynindx == -1);
6777 free (cinfo.hashcodes);
6778 s->size = 5 * 4 + bed->s->arch_size / 8;
6779 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6780 if (contents == NULL)
6781 return FALSE;
6782 s->contents = contents;
6783 /* 1 empty bucket. */
6784 bfd_put_32 (output_bfd, 1, contents);
6785 /* SYMIDX above the special symbol 0. */
6786 bfd_put_32 (output_bfd, 1, contents + 4);
6787 /* Just one word for bitmask. */
6788 bfd_put_32 (output_bfd, 1, contents + 8);
6789 /* Only hash fn bloom filter. */
6790 bfd_put_32 (output_bfd, 0, contents + 12);
6791 /* No hashes are valid - empty bitmask. */
6792 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6793 /* No hashes in the only bucket. */
6794 bfd_put_32 (output_bfd, 0,
6795 contents + 16 + bed->s->arch_size / 8);
6796 }
6797 else
6798 {
6799 unsigned long int maskwords, maskbitslog2, x;
6800 BFD_ASSERT (cinfo.min_dynindx != -1);
6801
6802 x = cinfo.nsyms;
6803 maskbitslog2 = 1;
6804 while ((x >>= 1) != 0)
6805 ++maskbitslog2;
6806 if (maskbitslog2 < 3)
6807 maskbitslog2 = 5;
6808 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6809 maskbitslog2 = maskbitslog2 + 3;
6810 else
6811 maskbitslog2 = maskbitslog2 + 2;
6812 if (bed->s->arch_size == 64)
6813 {
6814 if (maskbitslog2 == 5)
6815 maskbitslog2 = 6;
6816 cinfo.shift1 = 6;
6817 }
6818 else
6819 cinfo.shift1 = 5;
6820 cinfo.mask = (1 << cinfo.shift1) - 1;
6821 cinfo.shift2 = maskbitslog2;
6822 cinfo.maskbits = 1 << maskbitslog2;
6823 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6824 amt = bucketcount * sizeof (unsigned long int) * 2;
6825 amt += maskwords * sizeof (bfd_vma);
6826 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6827 if (cinfo.bitmask == NULL)
6828 {
6829 free (cinfo.hashcodes);
6830 return FALSE;
6831 }
6832
6833 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6834 cinfo.indx = cinfo.counts + bucketcount;
6835 cinfo.symindx = dynsymcount - cinfo.nsyms;
6836 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6837
6838 /* Determine how often each hash bucket is used. */
6839 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6840 for (i = 0; i < cinfo.nsyms; ++i)
6841 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6842
6843 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6844 if (cinfo.counts[i] != 0)
6845 {
6846 cinfo.indx[i] = cnt;
6847 cnt += cinfo.counts[i];
6848 }
6849 BFD_ASSERT (cnt == dynsymcount);
6850 cinfo.bucketcount = bucketcount;
6851 cinfo.local_indx = cinfo.min_dynindx;
6852
6853 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6854 s->size += cinfo.maskbits / 8;
6855 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6856 if (contents == NULL)
6857 {
6858 free (cinfo.bitmask);
6859 free (cinfo.hashcodes);
6860 return FALSE;
6861 }
6862
6863 s->contents = contents;
6864 bfd_put_32 (output_bfd, bucketcount, contents);
6865 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6866 bfd_put_32 (output_bfd, maskwords, contents + 8);
6867 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6868 contents += 16 + cinfo.maskbits / 8;
6869
6870 for (i = 0; i < bucketcount; ++i)
6871 {
6872 if (cinfo.counts[i] == 0)
6873 bfd_put_32 (output_bfd, 0, contents);
6874 else
6875 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6876 contents += 4;
6877 }
6878
6879 cinfo.contents = contents;
6880
6881 /* Renumber dynamic symbols, populate .gnu.hash section. */
6882 elf_link_hash_traverse (elf_hash_table (info),
6883 elf_renumber_gnu_hash_syms, &cinfo);
6884
6885 contents = s->contents + 16;
6886 for (i = 0; i < maskwords; ++i)
6887 {
6888 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6889 contents);
6890 contents += bed->s->arch_size / 8;
6891 }
6892
6893 free (cinfo.bitmask);
6894 free (cinfo.hashcodes);
6895 }
6896 }
6897
6898 s = bfd_get_linker_section (dynobj, ".dynstr");
6899 BFD_ASSERT (s != NULL);
6900
6901 elf_finalize_dynstr (output_bfd, info);
6902
6903 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6904
6905 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6906 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6907 return FALSE;
6908 }
6909
6910 return TRUE;
6911 }
6912 \f
6913 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6914
6915 static void
6916 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6917 asection *sec)
6918 {
6919 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6920 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6921 }
6922
6923 /* Finish SHF_MERGE section merging. */
6924
6925 bfd_boolean
6926 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6927 {
6928 bfd *ibfd;
6929 asection *sec;
6930
6931 if (!is_elf_hash_table (info->hash))
6932 return FALSE;
6933
6934 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6935 if ((ibfd->flags & DYNAMIC) == 0
6936 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6937 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6938 == get_elf_backend_data (obfd)->s->elfclass))
6939 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6940 if ((sec->flags & SEC_MERGE) != 0
6941 && !bfd_is_abs_section (sec->output_section))
6942 {
6943 struct bfd_elf_section_data *secdata;
6944
6945 secdata = elf_section_data (sec);
6946 if (! _bfd_add_merge_section (obfd,
6947 &elf_hash_table (info)->merge_info,
6948 sec, &secdata->sec_info))
6949 return FALSE;
6950 else if (secdata->sec_info)
6951 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6952 }
6953
6954 if (elf_hash_table (info)->merge_info != NULL)
6955 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6956 merge_sections_remove_hook);
6957 return TRUE;
6958 }
6959
6960 /* Create an entry in an ELF linker hash table. */
6961
6962 struct bfd_hash_entry *
6963 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6964 struct bfd_hash_table *table,
6965 const char *string)
6966 {
6967 /* Allocate the structure if it has not already been allocated by a
6968 subclass. */
6969 if (entry == NULL)
6970 {
6971 entry = (struct bfd_hash_entry *)
6972 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6973 if (entry == NULL)
6974 return entry;
6975 }
6976
6977 /* Call the allocation method of the superclass. */
6978 entry = _bfd_link_hash_newfunc (entry, table, string);
6979 if (entry != NULL)
6980 {
6981 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6982 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6983
6984 /* Set local fields. */
6985 ret->indx = -1;
6986 ret->dynindx = -1;
6987 ret->got = htab->init_got_refcount;
6988 ret->plt = htab->init_plt_refcount;
6989 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6990 - offsetof (struct elf_link_hash_entry, size)));
6991 /* Assume that we have been called by a non-ELF symbol reader.
6992 This flag is then reset by the code which reads an ELF input
6993 file. This ensures that a symbol created by a non-ELF symbol
6994 reader will have the flag set correctly. */
6995 ret->non_elf = 1;
6996 }
6997
6998 return entry;
6999 }
7000
7001 /* Copy data from an indirect symbol to its direct symbol, hiding the
7002 old indirect symbol. Also used for copying flags to a weakdef. */
7003
7004 void
7005 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7006 struct elf_link_hash_entry *dir,
7007 struct elf_link_hash_entry *ind)
7008 {
7009 struct elf_link_hash_table *htab;
7010
7011 /* Copy down any references that we may have already seen to the
7012 symbol which just became indirect if DIR isn't a hidden versioned
7013 symbol. */
7014
7015 if (dir->versioned != versioned_hidden)
7016 {
7017 dir->ref_dynamic |= ind->ref_dynamic;
7018 dir->ref_regular |= ind->ref_regular;
7019 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7020 dir->non_got_ref |= ind->non_got_ref;
7021 dir->needs_plt |= ind->needs_plt;
7022 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7023 }
7024
7025 if (ind->root.type != bfd_link_hash_indirect)
7026 return;
7027
7028 /* Copy over the global and procedure linkage table refcount entries.
7029 These may have been already set up by a check_relocs routine. */
7030 htab = elf_hash_table (info);
7031 if (ind->got.refcount > htab->init_got_refcount.refcount)
7032 {
7033 if (dir->got.refcount < 0)
7034 dir->got.refcount = 0;
7035 dir->got.refcount += ind->got.refcount;
7036 ind->got.refcount = htab->init_got_refcount.refcount;
7037 }
7038
7039 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7040 {
7041 if (dir->plt.refcount < 0)
7042 dir->plt.refcount = 0;
7043 dir->plt.refcount += ind->plt.refcount;
7044 ind->plt.refcount = htab->init_plt_refcount.refcount;
7045 }
7046
7047 if (ind->dynindx != -1)
7048 {
7049 if (dir->dynindx != -1)
7050 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7051 dir->dynindx = ind->dynindx;
7052 dir->dynstr_index = ind->dynstr_index;
7053 ind->dynindx = -1;
7054 ind->dynstr_index = 0;
7055 }
7056 }
7057
7058 void
7059 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7060 struct elf_link_hash_entry *h,
7061 bfd_boolean force_local)
7062 {
7063 /* STT_GNU_IFUNC symbol must go through PLT. */
7064 if (h->type != STT_GNU_IFUNC)
7065 {
7066 h->plt = elf_hash_table (info)->init_plt_offset;
7067 h->needs_plt = 0;
7068 }
7069 if (force_local)
7070 {
7071 h->forced_local = 1;
7072 if (h->dynindx != -1)
7073 {
7074 h->dynindx = -1;
7075 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7076 h->dynstr_index);
7077 }
7078 }
7079 }
7080
7081 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7082 caller. */
7083
7084 bfd_boolean
7085 _bfd_elf_link_hash_table_init
7086 (struct elf_link_hash_table *table,
7087 bfd *abfd,
7088 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7089 struct bfd_hash_table *,
7090 const char *),
7091 unsigned int entsize,
7092 enum elf_target_id target_id)
7093 {
7094 bfd_boolean ret;
7095 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7096
7097 table->init_got_refcount.refcount = can_refcount - 1;
7098 table->init_plt_refcount.refcount = can_refcount - 1;
7099 table->init_got_offset.offset = -(bfd_vma) 1;
7100 table->init_plt_offset.offset = -(bfd_vma) 1;
7101 /* The first dynamic symbol is a dummy. */
7102 table->dynsymcount = 1;
7103
7104 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7105
7106 table->root.type = bfd_link_elf_hash_table;
7107 table->hash_table_id = target_id;
7108
7109 return ret;
7110 }
7111
7112 /* Create an ELF linker hash table. */
7113
7114 struct bfd_link_hash_table *
7115 _bfd_elf_link_hash_table_create (bfd *abfd)
7116 {
7117 struct elf_link_hash_table *ret;
7118 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7119
7120 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7121 if (ret == NULL)
7122 return NULL;
7123
7124 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7125 sizeof (struct elf_link_hash_entry),
7126 GENERIC_ELF_DATA))
7127 {
7128 free (ret);
7129 return NULL;
7130 }
7131 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7132
7133 return &ret->root;
7134 }
7135
7136 /* Destroy an ELF linker hash table. */
7137
7138 void
7139 _bfd_elf_link_hash_table_free (bfd *obfd)
7140 {
7141 struct elf_link_hash_table *htab;
7142
7143 htab = (struct elf_link_hash_table *) obfd->link.hash;
7144 if (htab->dynstr != NULL)
7145 _bfd_elf_strtab_free (htab->dynstr);
7146 _bfd_merge_sections_free (htab->merge_info);
7147 _bfd_generic_link_hash_table_free (obfd);
7148 }
7149
7150 /* This is a hook for the ELF emulation code in the generic linker to
7151 tell the backend linker what file name to use for the DT_NEEDED
7152 entry for a dynamic object. */
7153
7154 void
7155 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7156 {
7157 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7158 && bfd_get_format (abfd) == bfd_object)
7159 elf_dt_name (abfd) = name;
7160 }
7161
7162 int
7163 bfd_elf_get_dyn_lib_class (bfd *abfd)
7164 {
7165 int lib_class;
7166 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7167 && bfd_get_format (abfd) == bfd_object)
7168 lib_class = elf_dyn_lib_class (abfd);
7169 else
7170 lib_class = 0;
7171 return lib_class;
7172 }
7173
7174 void
7175 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7176 {
7177 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7178 && bfd_get_format (abfd) == bfd_object)
7179 elf_dyn_lib_class (abfd) = lib_class;
7180 }
7181
7182 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7183 the linker ELF emulation code. */
7184
7185 struct bfd_link_needed_list *
7186 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7187 struct bfd_link_info *info)
7188 {
7189 if (! is_elf_hash_table (info->hash))
7190 return NULL;
7191 return elf_hash_table (info)->needed;
7192 }
7193
7194 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7195 hook for the linker ELF emulation code. */
7196
7197 struct bfd_link_needed_list *
7198 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7199 struct bfd_link_info *info)
7200 {
7201 if (! is_elf_hash_table (info->hash))
7202 return NULL;
7203 return elf_hash_table (info)->runpath;
7204 }
7205
7206 /* Get the name actually used for a dynamic object for a link. This
7207 is the SONAME entry if there is one. Otherwise, it is the string
7208 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7209
7210 const char *
7211 bfd_elf_get_dt_soname (bfd *abfd)
7212 {
7213 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7214 && bfd_get_format (abfd) == bfd_object)
7215 return elf_dt_name (abfd);
7216 return NULL;
7217 }
7218
7219 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7220 the ELF linker emulation code. */
7221
7222 bfd_boolean
7223 bfd_elf_get_bfd_needed_list (bfd *abfd,
7224 struct bfd_link_needed_list **pneeded)
7225 {
7226 asection *s;
7227 bfd_byte *dynbuf = NULL;
7228 unsigned int elfsec;
7229 unsigned long shlink;
7230 bfd_byte *extdyn, *extdynend;
7231 size_t extdynsize;
7232 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7233
7234 *pneeded = NULL;
7235
7236 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7237 || bfd_get_format (abfd) != bfd_object)
7238 return TRUE;
7239
7240 s = bfd_get_section_by_name (abfd, ".dynamic");
7241 if (s == NULL || s->size == 0)
7242 return TRUE;
7243
7244 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7245 goto error_return;
7246
7247 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7248 if (elfsec == SHN_BAD)
7249 goto error_return;
7250
7251 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7252
7253 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7254 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7255
7256 extdyn = dynbuf;
7257 extdynend = extdyn + s->size;
7258 for (; extdyn < extdynend; extdyn += extdynsize)
7259 {
7260 Elf_Internal_Dyn dyn;
7261
7262 (*swap_dyn_in) (abfd, extdyn, &dyn);
7263
7264 if (dyn.d_tag == DT_NULL)
7265 break;
7266
7267 if (dyn.d_tag == DT_NEEDED)
7268 {
7269 const char *string;
7270 struct bfd_link_needed_list *l;
7271 unsigned int tagv = dyn.d_un.d_val;
7272 bfd_size_type amt;
7273
7274 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7275 if (string == NULL)
7276 goto error_return;
7277
7278 amt = sizeof *l;
7279 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7280 if (l == NULL)
7281 goto error_return;
7282
7283 l->by = abfd;
7284 l->name = string;
7285 l->next = *pneeded;
7286 *pneeded = l;
7287 }
7288 }
7289
7290 free (dynbuf);
7291
7292 return TRUE;
7293
7294 error_return:
7295 if (dynbuf != NULL)
7296 free (dynbuf);
7297 return FALSE;
7298 }
7299
7300 struct elf_symbuf_symbol
7301 {
7302 unsigned long st_name; /* Symbol name, index in string tbl */
7303 unsigned char st_info; /* Type and binding attributes */
7304 unsigned char st_other; /* Visibilty, and target specific */
7305 };
7306
7307 struct elf_symbuf_head
7308 {
7309 struct elf_symbuf_symbol *ssym;
7310 bfd_size_type count;
7311 unsigned int st_shndx;
7312 };
7313
7314 struct elf_symbol
7315 {
7316 union
7317 {
7318 Elf_Internal_Sym *isym;
7319 struct elf_symbuf_symbol *ssym;
7320 } u;
7321 const char *name;
7322 };
7323
7324 /* Sort references to symbols by ascending section number. */
7325
7326 static int
7327 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7328 {
7329 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7330 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7331
7332 return s1->st_shndx - s2->st_shndx;
7333 }
7334
7335 static int
7336 elf_sym_name_compare (const void *arg1, const void *arg2)
7337 {
7338 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7339 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7340 return strcmp (s1->name, s2->name);
7341 }
7342
7343 static struct elf_symbuf_head *
7344 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7345 {
7346 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7347 struct elf_symbuf_symbol *ssym;
7348 struct elf_symbuf_head *ssymbuf, *ssymhead;
7349 bfd_size_type i, shndx_count, total_size;
7350
7351 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7352 if (indbuf == NULL)
7353 return NULL;
7354
7355 for (ind = indbuf, i = 0; i < symcount; i++)
7356 if (isymbuf[i].st_shndx != SHN_UNDEF)
7357 *ind++ = &isymbuf[i];
7358 indbufend = ind;
7359
7360 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7361 elf_sort_elf_symbol);
7362
7363 shndx_count = 0;
7364 if (indbufend > indbuf)
7365 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7366 if (ind[0]->st_shndx != ind[1]->st_shndx)
7367 shndx_count++;
7368
7369 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7370 + (indbufend - indbuf) * sizeof (*ssym));
7371 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7372 if (ssymbuf == NULL)
7373 {
7374 free (indbuf);
7375 return NULL;
7376 }
7377
7378 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7379 ssymbuf->ssym = NULL;
7380 ssymbuf->count = shndx_count;
7381 ssymbuf->st_shndx = 0;
7382 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7383 {
7384 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7385 {
7386 ssymhead++;
7387 ssymhead->ssym = ssym;
7388 ssymhead->count = 0;
7389 ssymhead->st_shndx = (*ind)->st_shndx;
7390 }
7391 ssym->st_name = (*ind)->st_name;
7392 ssym->st_info = (*ind)->st_info;
7393 ssym->st_other = (*ind)->st_other;
7394 ssymhead->count++;
7395 }
7396 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7397 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7398 == total_size));
7399
7400 free (indbuf);
7401 return ssymbuf;
7402 }
7403
7404 /* Check if 2 sections define the same set of local and global
7405 symbols. */
7406
7407 static bfd_boolean
7408 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7409 struct bfd_link_info *info)
7410 {
7411 bfd *bfd1, *bfd2;
7412 const struct elf_backend_data *bed1, *bed2;
7413 Elf_Internal_Shdr *hdr1, *hdr2;
7414 bfd_size_type symcount1, symcount2;
7415 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7416 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7417 Elf_Internal_Sym *isym, *isymend;
7418 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7419 bfd_size_type count1, count2, i;
7420 unsigned int shndx1, shndx2;
7421 bfd_boolean result;
7422
7423 bfd1 = sec1->owner;
7424 bfd2 = sec2->owner;
7425
7426 /* Both sections have to be in ELF. */
7427 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7428 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7429 return FALSE;
7430
7431 if (elf_section_type (sec1) != elf_section_type (sec2))
7432 return FALSE;
7433
7434 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7435 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7436 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7437 return FALSE;
7438
7439 bed1 = get_elf_backend_data (bfd1);
7440 bed2 = get_elf_backend_data (bfd2);
7441 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7442 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7443 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7444 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7445
7446 if (symcount1 == 0 || symcount2 == 0)
7447 return FALSE;
7448
7449 result = FALSE;
7450 isymbuf1 = NULL;
7451 isymbuf2 = NULL;
7452 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7453 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7454
7455 if (ssymbuf1 == NULL)
7456 {
7457 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7458 NULL, NULL, NULL);
7459 if (isymbuf1 == NULL)
7460 goto done;
7461
7462 if (!info->reduce_memory_overheads)
7463 elf_tdata (bfd1)->symbuf = ssymbuf1
7464 = elf_create_symbuf (symcount1, isymbuf1);
7465 }
7466
7467 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7468 {
7469 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7470 NULL, NULL, NULL);
7471 if (isymbuf2 == NULL)
7472 goto done;
7473
7474 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7475 elf_tdata (bfd2)->symbuf = ssymbuf2
7476 = elf_create_symbuf (symcount2, isymbuf2);
7477 }
7478
7479 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7480 {
7481 /* Optimized faster version. */
7482 bfd_size_type lo, hi, mid;
7483 struct elf_symbol *symp;
7484 struct elf_symbuf_symbol *ssym, *ssymend;
7485
7486 lo = 0;
7487 hi = ssymbuf1->count;
7488 ssymbuf1++;
7489 count1 = 0;
7490 while (lo < hi)
7491 {
7492 mid = (lo + hi) / 2;
7493 if (shndx1 < ssymbuf1[mid].st_shndx)
7494 hi = mid;
7495 else if (shndx1 > ssymbuf1[mid].st_shndx)
7496 lo = mid + 1;
7497 else
7498 {
7499 count1 = ssymbuf1[mid].count;
7500 ssymbuf1 += mid;
7501 break;
7502 }
7503 }
7504
7505 lo = 0;
7506 hi = ssymbuf2->count;
7507 ssymbuf2++;
7508 count2 = 0;
7509 while (lo < hi)
7510 {
7511 mid = (lo + hi) / 2;
7512 if (shndx2 < ssymbuf2[mid].st_shndx)
7513 hi = mid;
7514 else if (shndx2 > ssymbuf2[mid].st_shndx)
7515 lo = mid + 1;
7516 else
7517 {
7518 count2 = ssymbuf2[mid].count;
7519 ssymbuf2 += mid;
7520 break;
7521 }
7522 }
7523
7524 if (count1 == 0 || count2 == 0 || count1 != count2)
7525 goto done;
7526
7527 symtable1
7528 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7529 symtable2
7530 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7531 if (symtable1 == NULL || symtable2 == NULL)
7532 goto done;
7533
7534 symp = symtable1;
7535 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7536 ssym < ssymend; ssym++, symp++)
7537 {
7538 symp->u.ssym = ssym;
7539 symp->name = bfd_elf_string_from_elf_section (bfd1,
7540 hdr1->sh_link,
7541 ssym->st_name);
7542 }
7543
7544 symp = symtable2;
7545 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7546 ssym < ssymend; ssym++, symp++)
7547 {
7548 symp->u.ssym = ssym;
7549 symp->name = bfd_elf_string_from_elf_section (bfd2,
7550 hdr2->sh_link,
7551 ssym->st_name);
7552 }
7553
7554 /* Sort symbol by name. */
7555 qsort (symtable1, count1, sizeof (struct elf_symbol),
7556 elf_sym_name_compare);
7557 qsort (symtable2, count1, sizeof (struct elf_symbol),
7558 elf_sym_name_compare);
7559
7560 for (i = 0; i < count1; i++)
7561 /* Two symbols must have the same binding, type and name. */
7562 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7563 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7564 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7565 goto done;
7566
7567 result = TRUE;
7568 goto done;
7569 }
7570
7571 symtable1 = (struct elf_symbol *)
7572 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7573 symtable2 = (struct elf_symbol *)
7574 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7575 if (symtable1 == NULL || symtable2 == NULL)
7576 goto done;
7577
7578 /* Count definitions in the section. */
7579 count1 = 0;
7580 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7581 if (isym->st_shndx == shndx1)
7582 symtable1[count1++].u.isym = isym;
7583
7584 count2 = 0;
7585 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7586 if (isym->st_shndx == shndx2)
7587 symtable2[count2++].u.isym = isym;
7588
7589 if (count1 == 0 || count2 == 0 || count1 != count2)
7590 goto done;
7591
7592 for (i = 0; i < count1; i++)
7593 symtable1[i].name
7594 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7595 symtable1[i].u.isym->st_name);
7596
7597 for (i = 0; i < count2; i++)
7598 symtable2[i].name
7599 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7600 symtable2[i].u.isym->st_name);
7601
7602 /* Sort symbol by name. */
7603 qsort (symtable1, count1, sizeof (struct elf_symbol),
7604 elf_sym_name_compare);
7605 qsort (symtable2, count1, sizeof (struct elf_symbol),
7606 elf_sym_name_compare);
7607
7608 for (i = 0; i < count1; i++)
7609 /* Two symbols must have the same binding, type and name. */
7610 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7611 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7612 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7613 goto done;
7614
7615 result = TRUE;
7616
7617 done:
7618 if (symtable1)
7619 free (symtable1);
7620 if (symtable2)
7621 free (symtable2);
7622 if (isymbuf1)
7623 free (isymbuf1);
7624 if (isymbuf2)
7625 free (isymbuf2);
7626
7627 return result;
7628 }
7629
7630 /* Return TRUE if 2 section types are compatible. */
7631
7632 bfd_boolean
7633 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7634 bfd *bbfd, const asection *bsec)
7635 {
7636 if (asec == NULL
7637 || bsec == NULL
7638 || abfd->xvec->flavour != bfd_target_elf_flavour
7639 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7640 return TRUE;
7641
7642 return elf_section_type (asec) == elf_section_type (bsec);
7643 }
7644 \f
7645 /* Final phase of ELF linker. */
7646
7647 /* A structure we use to avoid passing large numbers of arguments. */
7648
7649 struct elf_final_link_info
7650 {
7651 /* General link information. */
7652 struct bfd_link_info *info;
7653 /* Output BFD. */
7654 bfd *output_bfd;
7655 /* Symbol string table. */
7656 struct elf_strtab_hash *symstrtab;
7657 /* .hash section. */
7658 asection *hash_sec;
7659 /* symbol version section (.gnu.version). */
7660 asection *symver_sec;
7661 /* Buffer large enough to hold contents of any section. */
7662 bfd_byte *contents;
7663 /* Buffer large enough to hold external relocs of any section. */
7664 void *external_relocs;
7665 /* Buffer large enough to hold internal relocs of any section. */
7666 Elf_Internal_Rela *internal_relocs;
7667 /* Buffer large enough to hold external local symbols of any input
7668 BFD. */
7669 bfd_byte *external_syms;
7670 /* And a buffer for symbol section indices. */
7671 Elf_External_Sym_Shndx *locsym_shndx;
7672 /* Buffer large enough to hold internal local symbols of any input
7673 BFD. */
7674 Elf_Internal_Sym *internal_syms;
7675 /* Array large enough to hold a symbol index for each local symbol
7676 of any input BFD. */
7677 long *indices;
7678 /* Array large enough to hold a section pointer for each local
7679 symbol of any input BFD. */
7680 asection **sections;
7681 /* Buffer for SHT_SYMTAB_SHNDX section. */
7682 Elf_External_Sym_Shndx *symshndxbuf;
7683 /* Number of STT_FILE syms seen. */
7684 size_t filesym_count;
7685 };
7686
7687 /* This struct is used to pass information to elf_link_output_extsym. */
7688
7689 struct elf_outext_info
7690 {
7691 bfd_boolean failed;
7692 bfd_boolean localsyms;
7693 bfd_boolean file_sym_done;
7694 struct elf_final_link_info *flinfo;
7695 };
7696
7697
7698 /* Support for evaluating a complex relocation.
7699
7700 Complex relocations are generalized, self-describing relocations. The
7701 implementation of them consists of two parts: complex symbols, and the
7702 relocations themselves.
7703
7704 The relocations are use a reserved elf-wide relocation type code (R_RELC
7705 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7706 information (start bit, end bit, word width, etc) into the addend. This
7707 information is extracted from CGEN-generated operand tables within gas.
7708
7709 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7710 internal) representing prefix-notation expressions, including but not
7711 limited to those sorts of expressions normally encoded as addends in the
7712 addend field. The symbol mangling format is:
7713
7714 <node> := <literal>
7715 | <unary-operator> ':' <node>
7716 | <binary-operator> ':' <node> ':' <node>
7717 ;
7718
7719 <literal> := 's' <digits=N> ':' <N character symbol name>
7720 | 'S' <digits=N> ':' <N character section name>
7721 | '#' <hexdigits>
7722 ;
7723
7724 <binary-operator> := as in C
7725 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7726
7727 static void
7728 set_symbol_value (bfd *bfd_with_globals,
7729 Elf_Internal_Sym *isymbuf,
7730 size_t locsymcount,
7731 size_t symidx,
7732 bfd_vma val)
7733 {
7734 struct elf_link_hash_entry **sym_hashes;
7735 struct elf_link_hash_entry *h;
7736 size_t extsymoff = locsymcount;
7737
7738 if (symidx < locsymcount)
7739 {
7740 Elf_Internal_Sym *sym;
7741
7742 sym = isymbuf + symidx;
7743 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7744 {
7745 /* It is a local symbol: move it to the
7746 "absolute" section and give it a value. */
7747 sym->st_shndx = SHN_ABS;
7748 sym->st_value = val;
7749 return;
7750 }
7751 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7752 extsymoff = 0;
7753 }
7754
7755 /* It is a global symbol: set its link type
7756 to "defined" and give it a value. */
7757
7758 sym_hashes = elf_sym_hashes (bfd_with_globals);
7759 h = sym_hashes [symidx - extsymoff];
7760 while (h->root.type == bfd_link_hash_indirect
7761 || h->root.type == bfd_link_hash_warning)
7762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7763 h->root.type = bfd_link_hash_defined;
7764 h->root.u.def.value = val;
7765 h->root.u.def.section = bfd_abs_section_ptr;
7766 }
7767
7768 static bfd_boolean
7769 resolve_symbol (const char *name,
7770 bfd *input_bfd,
7771 struct elf_final_link_info *flinfo,
7772 bfd_vma *result,
7773 Elf_Internal_Sym *isymbuf,
7774 size_t locsymcount)
7775 {
7776 Elf_Internal_Sym *sym;
7777 struct bfd_link_hash_entry *global_entry;
7778 const char *candidate = NULL;
7779 Elf_Internal_Shdr *symtab_hdr;
7780 size_t i;
7781
7782 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7783
7784 for (i = 0; i < locsymcount; ++ i)
7785 {
7786 sym = isymbuf + i;
7787
7788 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7789 continue;
7790
7791 candidate = bfd_elf_string_from_elf_section (input_bfd,
7792 symtab_hdr->sh_link,
7793 sym->st_name);
7794 #ifdef DEBUG
7795 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7796 name, candidate, (unsigned long) sym->st_value);
7797 #endif
7798 if (candidate && strcmp (candidate, name) == 0)
7799 {
7800 asection *sec = flinfo->sections [i];
7801
7802 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7803 *result += sec->output_offset + sec->output_section->vma;
7804 #ifdef DEBUG
7805 printf ("Found symbol with value %8.8lx\n",
7806 (unsigned long) *result);
7807 #endif
7808 return TRUE;
7809 }
7810 }
7811
7812 /* Hmm, haven't found it yet. perhaps it is a global. */
7813 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7814 FALSE, FALSE, TRUE);
7815 if (!global_entry)
7816 return FALSE;
7817
7818 if (global_entry->type == bfd_link_hash_defined
7819 || global_entry->type == bfd_link_hash_defweak)
7820 {
7821 *result = (global_entry->u.def.value
7822 + global_entry->u.def.section->output_section->vma
7823 + global_entry->u.def.section->output_offset);
7824 #ifdef DEBUG
7825 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7826 global_entry->root.string, (unsigned long) *result);
7827 #endif
7828 return TRUE;
7829 }
7830
7831 return FALSE;
7832 }
7833
7834 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7835 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7836 names like "foo.end" which is the end address of section "foo". */
7837
7838 static bfd_boolean
7839 resolve_section (const char *name,
7840 asection *sections,
7841 bfd_vma *result,
7842 bfd * abfd)
7843 {
7844 asection *curr;
7845 unsigned int len;
7846
7847 for (curr = sections; curr; curr = curr->next)
7848 if (strcmp (curr->name, name) == 0)
7849 {
7850 *result = curr->vma;
7851 return TRUE;
7852 }
7853
7854 /* Hmm. still haven't found it. try pseudo-section names. */
7855 /* FIXME: This could be coded more efficiently... */
7856 for (curr = sections; curr; curr = curr->next)
7857 {
7858 len = strlen (curr->name);
7859 if (len > strlen (name))
7860 continue;
7861
7862 if (strncmp (curr->name, name, len) == 0)
7863 {
7864 if (strncmp (".end", name + len, 4) == 0)
7865 {
7866 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7867 return TRUE;
7868 }
7869
7870 /* Insert more pseudo-section names here, if you like. */
7871 }
7872 }
7873
7874 return FALSE;
7875 }
7876
7877 static void
7878 undefined_reference (const char *reftype, const char *name)
7879 {
7880 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7881 reftype, name);
7882 }
7883
7884 static bfd_boolean
7885 eval_symbol (bfd_vma *result,
7886 const char **symp,
7887 bfd *input_bfd,
7888 struct elf_final_link_info *flinfo,
7889 bfd_vma dot,
7890 Elf_Internal_Sym *isymbuf,
7891 size_t locsymcount,
7892 int signed_p)
7893 {
7894 size_t len;
7895 size_t symlen;
7896 bfd_vma a;
7897 bfd_vma b;
7898 char symbuf[4096];
7899 const char *sym = *symp;
7900 const char *symend;
7901 bfd_boolean symbol_is_section = FALSE;
7902
7903 len = strlen (sym);
7904 symend = sym + len;
7905
7906 if (len < 1 || len > sizeof (symbuf))
7907 {
7908 bfd_set_error (bfd_error_invalid_operation);
7909 return FALSE;
7910 }
7911
7912 switch (* sym)
7913 {
7914 case '.':
7915 *result = dot;
7916 *symp = sym + 1;
7917 return TRUE;
7918
7919 case '#':
7920 ++sym;
7921 *result = strtoul (sym, (char **) symp, 16);
7922 return TRUE;
7923
7924 case 'S':
7925 symbol_is_section = TRUE;
7926 case 's':
7927 ++sym;
7928 symlen = strtol (sym, (char **) symp, 10);
7929 sym = *symp + 1; /* Skip the trailing ':'. */
7930
7931 if (symend < sym || symlen + 1 > sizeof (symbuf))
7932 {
7933 bfd_set_error (bfd_error_invalid_operation);
7934 return FALSE;
7935 }
7936
7937 memcpy (symbuf, sym, symlen);
7938 symbuf[symlen] = '\0';
7939 *symp = sym + symlen;
7940
7941 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7942 the symbol as a section, or vice-versa. so we're pretty liberal in our
7943 interpretation here; section means "try section first", not "must be a
7944 section", and likewise with symbol. */
7945
7946 if (symbol_is_section)
7947 {
7948 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7949 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7950 isymbuf, locsymcount))
7951 {
7952 undefined_reference ("section", symbuf);
7953 return FALSE;
7954 }
7955 }
7956 else
7957 {
7958 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7959 isymbuf, locsymcount)
7960 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7961 result, input_bfd))
7962 {
7963 undefined_reference ("symbol", symbuf);
7964 return FALSE;
7965 }
7966 }
7967
7968 return TRUE;
7969
7970 /* All that remains are operators. */
7971
7972 #define UNARY_OP(op) \
7973 if (strncmp (sym, #op, strlen (#op)) == 0) \
7974 { \
7975 sym += strlen (#op); \
7976 if (*sym == ':') \
7977 ++sym; \
7978 *symp = sym; \
7979 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7980 isymbuf, locsymcount, signed_p)) \
7981 return FALSE; \
7982 if (signed_p) \
7983 *result = op ((bfd_signed_vma) a); \
7984 else \
7985 *result = op a; \
7986 return TRUE; \
7987 }
7988
7989 #define BINARY_OP(op) \
7990 if (strncmp (sym, #op, strlen (#op)) == 0) \
7991 { \
7992 sym += strlen (#op); \
7993 if (*sym == ':') \
7994 ++sym; \
7995 *symp = sym; \
7996 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7997 isymbuf, locsymcount, signed_p)) \
7998 return FALSE; \
7999 ++*symp; \
8000 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8001 isymbuf, locsymcount, signed_p)) \
8002 return FALSE; \
8003 if (signed_p) \
8004 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8005 else \
8006 *result = a op b; \
8007 return TRUE; \
8008 }
8009
8010 default:
8011 UNARY_OP (0-);
8012 BINARY_OP (<<);
8013 BINARY_OP (>>);
8014 BINARY_OP (==);
8015 BINARY_OP (!=);
8016 BINARY_OP (<=);
8017 BINARY_OP (>=);
8018 BINARY_OP (&&);
8019 BINARY_OP (||);
8020 UNARY_OP (~);
8021 UNARY_OP (!);
8022 BINARY_OP (*);
8023 BINARY_OP (/);
8024 BINARY_OP (%);
8025 BINARY_OP (^);
8026 BINARY_OP (|);
8027 BINARY_OP (&);
8028 BINARY_OP (+);
8029 BINARY_OP (-);
8030 BINARY_OP (<);
8031 BINARY_OP (>);
8032 #undef UNARY_OP
8033 #undef BINARY_OP
8034 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8035 bfd_set_error (bfd_error_invalid_operation);
8036 return FALSE;
8037 }
8038 }
8039
8040 static void
8041 put_value (bfd_vma size,
8042 unsigned long chunksz,
8043 bfd *input_bfd,
8044 bfd_vma x,
8045 bfd_byte *location)
8046 {
8047 location += (size - chunksz);
8048
8049 for (; size; size -= chunksz, location -= chunksz)
8050 {
8051 switch (chunksz)
8052 {
8053 case 1:
8054 bfd_put_8 (input_bfd, x, location);
8055 x >>= 8;
8056 break;
8057 case 2:
8058 bfd_put_16 (input_bfd, x, location);
8059 x >>= 16;
8060 break;
8061 case 4:
8062 bfd_put_32 (input_bfd, x, location);
8063 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8064 x >>= 16;
8065 x >>= 16;
8066 break;
8067 #ifdef BFD64
8068 case 8:
8069 bfd_put_64 (input_bfd, x, location);
8070 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8071 x >>= 32;
8072 x >>= 32;
8073 break;
8074 #endif
8075 default:
8076 abort ();
8077 break;
8078 }
8079 }
8080 }
8081
8082 static bfd_vma
8083 get_value (bfd_vma size,
8084 unsigned long chunksz,
8085 bfd *input_bfd,
8086 bfd_byte *location)
8087 {
8088 int shift;
8089 bfd_vma x = 0;
8090
8091 /* Sanity checks. */
8092 BFD_ASSERT (chunksz <= sizeof (x)
8093 && size >= chunksz
8094 && chunksz != 0
8095 && (size % chunksz) == 0
8096 && input_bfd != NULL
8097 && location != NULL);
8098
8099 if (chunksz == sizeof (x))
8100 {
8101 BFD_ASSERT (size == chunksz);
8102
8103 /* Make sure that we do not perform an undefined shift operation.
8104 We know that size == chunksz so there will only be one iteration
8105 of the loop below. */
8106 shift = 0;
8107 }
8108 else
8109 shift = 8 * chunksz;
8110
8111 for (; size; size -= chunksz, location += chunksz)
8112 {
8113 switch (chunksz)
8114 {
8115 case 1:
8116 x = (x << shift) | bfd_get_8 (input_bfd, location);
8117 break;
8118 case 2:
8119 x = (x << shift) | bfd_get_16 (input_bfd, location);
8120 break;
8121 case 4:
8122 x = (x << shift) | bfd_get_32 (input_bfd, location);
8123 break;
8124 #ifdef BFD64
8125 case 8:
8126 x = (x << shift) | bfd_get_64 (input_bfd, location);
8127 break;
8128 #endif
8129 default:
8130 abort ();
8131 }
8132 }
8133 return x;
8134 }
8135
8136 static void
8137 decode_complex_addend (unsigned long *start, /* in bits */
8138 unsigned long *oplen, /* in bits */
8139 unsigned long *len, /* in bits */
8140 unsigned long *wordsz, /* in bytes */
8141 unsigned long *chunksz, /* in bytes */
8142 unsigned long *lsb0_p,
8143 unsigned long *signed_p,
8144 unsigned long *trunc_p,
8145 unsigned long encoded)
8146 {
8147 * start = encoded & 0x3F;
8148 * len = (encoded >> 6) & 0x3F;
8149 * oplen = (encoded >> 12) & 0x3F;
8150 * wordsz = (encoded >> 18) & 0xF;
8151 * chunksz = (encoded >> 22) & 0xF;
8152 * lsb0_p = (encoded >> 27) & 1;
8153 * signed_p = (encoded >> 28) & 1;
8154 * trunc_p = (encoded >> 29) & 1;
8155 }
8156
8157 bfd_reloc_status_type
8158 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8159 asection *input_section ATTRIBUTE_UNUSED,
8160 bfd_byte *contents,
8161 Elf_Internal_Rela *rel,
8162 bfd_vma relocation)
8163 {
8164 bfd_vma shift, x, mask;
8165 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8166 bfd_reloc_status_type r;
8167
8168 /* Perform this reloc, since it is complex.
8169 (this is not to say that it necessarily refers to a complex
8170 symbol; merely that it is a self-describing CGEN based reloc.
8171 i.e. the addend has the complete reloc information (bit start, end,
8172 word size, etc) encoded within it.). */
8173
8174 decode_complex_addend (&start, &oplen, &len, &wordsz,
8175 &chunksz, &lsb0_p, &signed_p,
8176 &trunc_p, rel->r_addend);
8177
8178 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8179
8180 if (lsb0_p)
8181 shift = (start + 1) - len;
8182 else
8183 shift = (8 * wordsz) - (start + len);
8184
8185 x = get_value (wordsz, chunksz, input_bfd,
8186 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8187
8188 #ifdef DEBUG
8189 printf ("Doing complex reloc: "
8190 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8191 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8192 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8193 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8194 oplen, (unsigned long) x, (unsigned long) mask,
8195 (unsigned long) relocation);
8196 #endif
8197
8198 r = bfd_reloc_ok;
8199 if (! trunc_p)
8200 /* Now do an overflow check. */
8201 r = bfd_check_overflow ((signed_p
8202 ? complain_overflow_signed
8203 : complain_overflow_unsigned),
8204 len, 0, (8 * wordsz),
8205 relocation);
8206
8207 /* Do the deed. */
8208 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8209
8210 #ifdef DEBUG
8211 printf (" relocation: %8.8lx\n"
8212 " shifted mask: %8.8lx\n"
8213 " shifted/masked reloc: %8.8lx\n"
8214 " result: %8.8lx\n",
8215 (unsigned long) relocation, (unsigned long) (mask << shift),
8216 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8217 #endif
8218 put_value (wordsz, chunksz, input_bfd, x,
8219 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8220 return r;
8221 }
8222
8223 /* Functions to read r_offset from external (target order) reloc
8224 entry. Faster than bfd_getl32 et al, because we let the compiler
8225 know the value is aligned. */
8226
8227 static bfd_vma
8228 ext32l_r_offset (const void *p)
8229 {
8230 union aligned32
8231 {
8232 uint32_t v;
8233 unsigned char c[4];
8234 };
8235 const union aligned32 *a
8236 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8237
8238 uint32_t aval = ( (uint32_t) a->c[0]
8239 | (uint32_t) a->c[1] << 8
8240 | (uint32_t) a->c[2] << 16
8241 | (uint32_t) a->c[3] << 24);
8242 return aval;
8243 }
8244
8245 static bfd_vma
8246 ext32b_r_offset (const void *p)
8247 {
8248 union aligned32
8249 {
8250 uint32_t v;
8251 unsigned char c[4];
8252 };
8253 const union aligned32 *a
8254 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8255
8256 uint32_t aval = ( (uint32_t) a->c[0] << 24
8257 | (uint32_t) a->c[1] << 16
8258 | (uint32_t) a->c[2] << 8
8259 | (uint32_t) a->c[3]);
8260 return aval;
8261 }
8262
8263 #ifdef BFD_HOST_64_BIT
8264 static bfd_vma
8265 ext64l_r_offset (const void *p)
8266 {
8267 union aligned64
8268 {
8269 uint64_t v;
8270 unsigned char c[8];
8271 };
8272 const union aligned64 *a
8273 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8274
8275 uint64_t aval = ( (uint64_t) a->c[0]
8276 | (uint64_t) a->c[1] << 8
8277 | (uint64_t) a->c[2] << 16
8278 | (uint64_t) a->c[3] << 24
8279 | (uint64_t) a->c[4] << 32
8280 | (uint64_t) a->c[5] << 40
8281 | (uint64_t) a->c[6] << 48
8282 | (uint64_t) a->c[7] << 56);
8283 return aval;
8284 }
8285
8286 static bfd_vma
8287 ext64b_r_offset (const void *p)
8288 {
8289 union aligned64
8290 {
8291 uint64_t v;
8292 unsigned char c[8];
8293 };
8294 const union aligned64 *a
8295 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8296
8297 uint64_t aval = ( (uint64_t) a->c[0] << 56
8298 | (uint64_t) a->c[1] << 48
8299 | (uint64_t) a->c[2] << 40
8300 | (uint64_t) a->c[3] << 32
8301 | (uint64_t) a->c[4] << 24
8302 | (uint64_t) a->c[5] << 16
8303 | (uint64_t) a->c[6] << 8
8304 | (uint64_t) a->c[7]);
8305 return aval;
8306 }
8307 #endif
8308
8309 /* When performing a relocatable link, the input relocations are
8310 preserved. But, if they reference global symbols, the indices
8311 referenced must be updated. Update all the relocations found in
8312 RELDATA. */
8313
8314 static bfd_boolean
8315 elf_link_adjust_relocs (bfd *abfd,
8316 struct bfd_elf_section_reloc_data *reldata,
8317 bfd_boolean sort)
8318 {
8319 unsigned int i;
8320 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8321 bfd_byte *erela;
8322 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8323 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8324 bfd_vma r_type_mask;
8325 int r_sym_shift;
8326 unsigned int count = reldata->count;
8327 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8328
8329 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8330 {
8331 swap_in = bed->s->swap_reloc_in;
8332 swap_out = bed->s->swap_reloc_out;
8333 }
8334 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8335 {
8336 swap_in = bed->s->swap_reloca_in;
8337 swap_out = bed->s->swap_reloca_out;
8338 }
8339 else
8340 abort ();
8341
8342 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8343 abort ();
8344
8345 if (bed->s->arch_size == 32)
8346 {
8347 r_type_mask = 0xff;
8348 r_sym_shift = 8;
8349 }
8350 else
8351 {
8352 r_type_mask = 0xffffffff;
8353 r_sym_shift = 32;
8354 }
8355
8356 erela = reldata->hdr->contents;
8357 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8358 {
8359 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8360 unsigned int j;
8361
8362 if (*rel_hash == NULL)
8363 continue;
8364
8365 BFD_ASSERT ((*rel_hash)->indx >= 0);
8366
8367 (*swap_in) (abfd, erela, irela);
8368 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8369 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8370 | (irela[j].r_info & r_type_mask));
8371 (*swap_out) (abfd, irela, erela);
8372 }
8373
8374 if (sort && count != 0)
8375 {
8376 bfd_vma (*ext_r_off) (const void *);
8377 bfd_vma r_off;
8378 size_t elt_size;
8379 bfd_byte *base, *end, *p, *loc;
8380 bfd_byte *buf = NULL;
8381
8382 if (bed->s->arch_size == 32)
8383 {
8384 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8385 ext_r_off = ext32l_r_offset;
8386 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8387 ext_r_off = ext32b_r_offset;
8388 else
8389 abort ();
8390 }
8391 else
8392 {
8393 #ifdef BFD_HOST_64_BIT
8394 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8395 ext_r_off = ext64l_r_offset;
8396 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8397 ext_r_off = ext64b_r_offset;
8398 else
8399 #endif
8400 abort ();
8401 }
8402
8403 /* Must use a stable sort here. A modified insertion sort,
8404 since the relocs are mostly sorted already. */
8405 elt_size = reldata->hdr->sh_entsize;
8406 base = reldata->hdr->contents;
8407 end = base + count * elt_size;
8408 if (elt_size > sizeof (Elf64_External_Rela))
8409 abort ();
8410
8411 /* Ensure the first element is lowest. This acts as a sentinel,
8412 speeding the main loop below. */
8413 r_off = (*ext_r_off) (base);
8414 for (p = loc = base; (p += elt_size) < end; )
8415 {
8416 bfd_vma r_off2 = (*ext_r_off) (p);
8417 if (r_off > r_off2)
8418 {
8419 r_off = r_off2;
8420 loc = p;
8421 }
8422 }
8423 if (loc != base)
8424 {
8425 /* Don't just swap *base and *loc as that changes the order
8426 of the original base[0] and base[1] if they happen to
8427 have the same r_offset. */
8428 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8429 memcpy (onebuf, loc, elt_size);
8430 memmove (base + elt_size, base, loc - base);
8431 memcpy (base, onebuf, elt_size);
8432 }
8433
8434 for (p = base + elt_size; (p += elt_size) < end; )
8435 {
8436 /* base to p is sorted, *p is next to insert. */
8437 r_off = (*ext_r_off) (p);
8438 /* Search the sorted region for location to insert. */
8439 loc = p - elt_size;
8440 while (r_off < (*ext_r_off) (loc))
8441 loc -= elt_size;
8442 loc += elt_size;
8443 if (loc != p)
8444 {
8445 /* Chances are there is a run of relocs to insert here,
8446 from one of more input files. Files are not always
8447 linked in order due to the way elf_link_input_bfd is
8448 called. See pr17666. */
8449 size_t sortlen = p - loc;
8450 bfd_vma r_off2 = (*ext_r_off) (loc);
8451 size_t runlen = elt_size;
8452 size_t buf_size = 96 * 1024;
8453 while (p + runlen < end
8454 && (sortlen <= buf_size
8455 || runlen + elt_size <= buf_size)
8456 && r_off2 > (*ext_r_off) (p + runlen))
8457 runlen += elt_size;
8458 if (buf == NULL)
8459 {
8460 buf = bfd_malloc (buf_size);
8461 if (buf == NULL)
8462 return FALSE;
8463 }
8464 if (runlen < sortlen)
8465 {
8466 memcpy (buf, p, runlen);
8467 memmove (loc + runlen, loc, sortlen);
8468 memcpy (loc, buf, runlen);
8469 }
8470 else
8471 {
8472 memcpy (buf, loc, sortlen);
8473 memmove (loc, p, runlen);
8474 memcpy (loc + runlen, buf, sortlen);
8475 }
8476 p += runlen - elt_size;
8477 }
8478 }
8479 /* Hashes are no longer valid. */
8480 free (reldata->hashes);
8481 reldata->hashes = NULL;
8482 free (buf);
8483 }
8484 return TRUE;
8485 }
8486
8487 struct elf_link_sort_rela
8488 {
8489 union {
8490 bfd_vma offset;
8491 bfd_vma sym_mask;
8492 } u;
8493 enum elf_reloc_type_class type;
8494 /* We use this as an array of size int_rels_per_ext_rel. */
8495 Elf_Internal_Rela rela[1];
8496 };
8497
8498 static int
8499 elf_link_sort_cmp1 (const void *A, const void *B)
8500 {
8501 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8502 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8503 int relativea, relativeb;
8504
8505 relativea = a->type == reloc_class_relative;
8506 relativeb = b->type == reloc_class_relative;
8507
8508 if (relativea < relativeb)
8509 return 1;
8510 if (relativea > relativeb)
8511 return -1;
8512 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8513 return -1;
8514 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8515 return 1;
8516 if (a->rela->r_offset < b->rela->r_offset)
8517 return -1;
8518 if (a->rela->r_offset > b->rela->r_offset)
8519 return 1;
8520 return 0;
8521 }
8522
8523 static int
8524 elf_link_sort_cmp2 (const void *A, const void *B)
8525 {
8526 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8527 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8528
8529 if (a->type < b->type)
8530 return -1;
8531 if (a->type > b->type)
8532 return 1;
8533 if (a->u.offset < b->u.offset)
8534 return -1;
8535 if (a->u.offset > b->u.offset)
8536 return 1;
8537 if (a->rela->r_offset < b->rela->r_offset)
8538 return -1;
8539 if (a->rela->r_offset > b->rela->r_offset)
8540 return 1;
8541 return 0;
8542 }
8543
8544 static size_t
8545 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8546 {
8547 asection *dynamic_relocs;
8548 asection *rela_dyn;
8549 asection *rel_dyn;
8550 bfd_size_type count, size;
8551 size_t i, ret, sort_elt, ext_size;
8552 bfd_byte *sort, *s_non_relative, *p;
8553 struct elf_link_sort_rela *sq;
8554 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8555 int i2e = bed->s->int_rels_per_ext_rel;
8556 unsigned int opb = bfd_octets_per_byte (abfd);
8557 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8558 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8559 struct bfd_link_order *lo;
8560 bfd_vma r_sym_mask;
8561 bfd_boolean use_rela;
8562
8563 /* Find a dynamic reloc section. */
8564 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8565 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8566 if (rela_dyn != NULL && rela_dyn->size > 0
8567 && rel_dyn != NULL && rel_dyn->size > 0)
8568 {
8569 bfd_boolean use_rela_initialised = FALSE;
8570
8571 /* This is just here to stop gcc from complaining.
8572 Its initialization checking code is not perfect. */
8573 use_rela = TRUE;
8574
8575 /* Both sections are present. Examine the sizes
8576 of the indirect sections to help us choose. */
8577 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8578 if (lo->type == bfd_indirect_link_order)
8579 {
8580 asection *o = lo->u.indirect.section;
8581
8582 if ((o->size % bed->s->sizeof_rela) == 0)
8583 {
8584 if ((o->size % bed->s->sizeof_rel) == 0)
8585 /* Section size is divisible by both rel and rela sizes.
8586 It is of no help to us. */
8587 ;
8588 else
8589 {
8590 /* Section size is only divisible by rela. */
8591 if (use_rela_initialised && (use_rela == FALSE))
8592 {
8593 _bfd_error_handler (_("%B: Unable to sort relocs - "
8594 "they are in more than one size"),
8595 abfd);
8596 bfd_set_error (bfd_error_invalid_operation);
8597 return 0;
8598 }
8599 else
8600 {
8601 use_rela = TRUE;
8602 use_rela_initialised = TRUE;
8603 }
8604 }
8605 }
8606 else if ((o->size % bed->s->sizeof_rel) == 0)
8607 {
8608 /* Section size is only divisible by rel. */
8609 if (use_rela_initialised && (use_rela == TRUE))
8610 {
8611 _bfd_error_handler (_("%B: Unable to sort relocs - "
8612 "they are in more than one size"),
8613 abfd);
8614 bfd_set_error (bfd_error_invalid_operation);
8615 return 0;
8616 }
8617 else
8618 {
8619 use_rela = FALSE;
8620 use_rela_initialised = TRUE;
8621 }
8622 }
8623 else
8624 {
8625 /* The section size is not divisible by either -
8626 something is wrong. */
8627 _bfd_error_handler (_("%B: Unable to sort relocs - "
8628 "they are of an unknown size"), abfd);
8629 bfd_set_error (bfd_error_invalid_operation);
8630 return 0;
8631 }
8632 }
8633
8634 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8635 if (lo->type == bfd_indirect_link_order)
8636 {
8637 asection *o = lo->u.indirect.section;
8638
8639 if ((o->size % bed->s->sizeof_rela) == 0)
8640 {
8641 if ((o->size % bed->s->sizeof_rel) == 0)
8642 /* Section size is divisible by both rel and rela sizes.
8643 It is of no help to us. */
8644 ;
8645 else
8646 {
8647 /* Section size is only divisible by rela. */
8648 if (use_rela_initialised && (use_rela == FALSE))
8649 {
8650 _bfd_error_handler (_("%B: Unable to sort relocs - "
8651 "they are in more than one size"),
8652 abfd);
8653 bfd_set_error (bfd_error_invalid_operation);
8654 return 0;
8655 }
8656 else
8657 {
8658 use_rela = TRUE;
8659 use_rela_initialised = TRUE;
8660 }
8661 }
8662 }
8663 else if ((o->size % bed->s->sizeof_rel) == 0)
8664 {
8665 /* Section size is only divisible by rel. */
8666 if (use_rela_initialised && (use_rela == TRUE))
8667 {
8668 _bfd_error_handler (_("%B: Unable to sort relocs - "
8669 "they are in more than one size"),
8670 abfd);
8671 bfd_set_error (bfd_error_invalid_operation);
8672 return 0;
8673 }
8674 else
8675 {
8676 use_rela = FALSE;
8677 use_rela_initialised = TRUE;
8678 }
8679 }
8680 else
8681 {
8682 /* The section size is not divisible by either -
8683 something is wrong. */
8684 _bfd_error_handler (_("%B: Unable to sort relocs - "
8685 "they are of an unknown size"), abfd);
8686 bfd_set_error (bfd_error_invalid_operation);
8687 return 0;
8688 }
8689 }
8690
8691 if (! use_rela_initialised)
8692 /* Make a guess. */
8693 use_rela = TRUE;
8694 }
8695 else if (rela_dyn != NULL && rela_dyn->size > 0)
8696 use_rela = TRUE;
8697 else if (rel_dyn != NULL && rel_dyn->size > 0)
8698 use_rela = FALSE;
8699 else
8700 return 0;
8701
8702 if (use_rela)
8703 {
8704 dynamic_relocs = rela_dyn;
8705 ext_size = bed->s->sizeof_rela;
8706 swap_in = bed->s->swap_reloca_in;
8707 swap_out = bed->s->swap_reloca_out;
8708 }
8709 else
8710 {
8711 dynamic_relocs = rel_dyn;
8712 ext_size = bed->s->sizeof_rel;
8713 swap_in = bed->s->swap_reloc_in;
8714 swap_out = bed->s->swap_reloc_out;
8715 }
8716
8717 size = 0;
8718 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8719 if (lo->type == bfd_indirect_link_order)
8720 size += lo->u.indirect.section->size;
8721
8722 if (size != dynamic_relocs->size)
8723 return 0;
8724
8725 sort_elt = (sizeof (struct elf_link_sort_rela)
8726 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8727
8728 count = dynamic_relocs->size / ext_size;
8729 if (count == 0)
8730 return 0;
8731 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8732
8733 if (sort == NULL)
8734 {
8735 (*info->callbacks->warning)
8736 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8737 return 0;
8738 }
8739
8740 if (bed->s->arch_size == 32)
8741 r_sym_mask = ~(bfd_vma) 0xff;
8742 else
8743 r_sym_mask = ~(bfd_vma) 0xffffffff;
8744
8745 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8746 if (lo->type == bfd_indirect_link_order)
8747 {
8748 bfd_byte *erel, *erelend;
8749 asection *o = lo->u.indirect.section;
8750
8751 if (o->contents == NULL && o->size != 0)
8752 {
8753 /* This is a reloc section that is being handled as a normal
8754 section. See bfd_section_from_shdr. We can't combine
8755 relocs in this case. */
8756 free (sort);
8757 return 0;
8758 }
8759 erel = o->contents;
8760 erelend = o->contents + o->size;
8761 p = sort + o->output_offset * opb / ext_size * sort_elt;
8762
8763 while (erel < erelend)
8764 {
8765 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8766
8767 (*swap_in) (abfd, erel, s->rela);
8768 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8769 s->u.sym_mask = r_sym_mask;
8770 p += sort_elt;
8771 erel += ext_size;
8772 }
8773 }
8774
8775 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8776
8777 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8778 {
8779 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8780 if (s->type != reloc_class_relative)
8781 break;
8782 }
8783 ret = i;
8784 s_non_relative = p;
8785
8786 sq = (struct elf_link_sort_rela *) s_non_relative;
8787 for (; i < count; i++, p += sort_elt)
8788 {
8789 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8790 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8791 sq = sp;
8792 sp->u.offset = sq->rela->r_offset;
8793 }
8794
8795 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8796
8797 struct elf_link_hash_table *htab = elf_hash_table (info);
8798 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8799 {
8800 /* We have plt relocs in .rela.dyn. */
8801 sq = (struct elf_link_sort_rela *) sort;
8802 for (i = 0; i < count; i++)
8803 if (sq[count - i - 1].type != reloc_class_plt)
8804 break;
8805 if (i != 0 && htab->srelplt->size == i * ext_size)
8806 {
8807 struct bfd_link_order **plo;
8808 /* Put srelplt link_order last. This is so the output_offset
8809 set in the next loop is correct for DT_JMPREL. */
8810 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8811 if ((*plo)->type == bfd_indirect_link_order
8812 && (*plo)->u.indirect.section == htab->srelplt)
8813 {
8814 lo = *plo;
8815 *plo = lo->next;
8816 }
8817 else
8818 plo = &(*plo)->next;
8819 *plo = lo;
8820 lo->next = NULL;
8821 dynamic_relocs->map_tail.link_order = lo;
8822 }
8823 }
8824
8825 p = sort;
8826 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8827 if (lo->type == bfd_indirect_link_order)
8828 {
8829 bfd_byte *erel, *erelend;
8830 asection *o = lo->u.indirect.section;
8831
8832 erel = o->contents;
8833 erelend = o->contents + o->size;
8834 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8835 while (erel < erelend)
8836 {
8837 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8838 (*swap_out) (abfd, s->rela, erel);
8839 p += sort_elt;
8840 erel += ext_size;
8841 }
8842 }
8843
8844 free (sort);
8845 *psec = dynamic_relocs;
8846 return ret;
8847 }
8848
8849 /* Add a symbol to the output symbol string table. */
8850
8851 static int
8852 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8853 const char *name,
8854 Elf_Internal_Sym *elfsym,
8855 asection *input_sec,
8856 struct elf_link_hash_entry *h)
8857 {
8858 int (*output_symbol_hook)
8859 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8860 struct elf_link_hash_entry *);
8861 struct elf_link_hash_table *hash_table;
8862 const struct elf_backend_data *bed;
8863 bfd_size_type strtabsize;
8864
8865 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8866
8867 bed = get_elf_backend_data (flinfo->output_bfd);
8868 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8869 if (output_symbol_hook != NULL)
8870 {
8871 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8872 if (ret != 1)
8873 return ret;
8874 }
8875
8876 if (name == NULL
8877 || *name == '\0'
8878 || (input_sec->flags & SEC_EXCLUDE))
8879 elfsym->st_name = (unsigned long) -1;
8880 else
8881 {
8882 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8883 to get the final offset for st_name. */
8884 elfsym->st_name
8885 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8886 name, FALSE);
8887 if (elfsym->st_name == (unsigned long) -1)
8888 return 0;
8889 }
8890
8891 hash_table = elf_hash_table (flinfo->info);
8892 strtabsize = hash_table->strtabsize;
8893 if (strtabsize <= hash_table->strtabcount)
8894 {
8895 strtabsize += strtabsize;
8896 hash_table->strtabsize = strtabsize;
8897 strtabsize *= sizeof (*hash_table->strtab);
8898 hash_table->strtab
8899 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8900 strtabsize);
8901 if (hash_table->strtab == NULL)
8902 return 0;
8903 }
8904 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8905 hash_table->strtab[hash_table->strtabcount].dest_index
8906 = hash_table->strtabcount;
8907 hash_table->strtab[hash_table->strtabcount].destshndx_index
8908 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8909
8910 bfd_get_symcount (flinfo->output_bfd) += 1;
8911 hash_table->strtabcount += 1;
8912
8913 return 1;
8914 }
8915
8916 /* Swap symbols out to the symbol table and flush the output symbols to
8917 the file. */
8918
8919 static bfd_boolean
8920 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8921 {
8922 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8923 bfd_size_type amt, i;
8924 const struct elf_backend_data *bed;
8925 bfd_byte *symbuf;
8926 Elf_Internal_Shdr *hdr;
8927 file_ptr pos;
8928 bfd_boolean ret;
8929
8930 if (!hash_table->strtabcount)
8931 return TRUE;
8932
8933 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8934
8935 bed = get_elf_backend_data (flinfo->output_bfd);
8936
8937 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8938 symbuf = (bfd_byte *) bfd_malloc (amt);
8939 if (symbuf == NULL)
8940 return FALSE;
8941
8942 if (flinfo->symshndxbuf)
8943 {
8944 amt = (sizeof (Elf_External_Sym_Shndx)
8945 * (bfd_get_symcount (flinfo->output_bfd)));
8946 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8947 if (flinfo->symshndxbuf == NULL)
8948 {
8949 free (symbuf);
8950 return FALSE;
8951 }
8952 }
8953
8954 for (i = 0; i < hash_table->strtabcount; i++)
8955 {
8956 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8957 if (elfsym->sym.st_name == (unsigned long) -1)
8958 elfsym->sym.st_name = 0;
8959 else
8960 elfsym->sym.st_name
8961 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8962 elfsym->sym.st_name);
8963 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8964 ((bfd_byte *) symbuf
8965 + (elfsym->dest_index
8966 * bed->s->sizeof_sym)),
8967 (flinfo->symshndxbuf
8968 + elfsym->destshndx_index));
8969 }
8970
8971 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8972 pos = hdr->sh_offset + hdr->sh_size;
8973 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8974 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8975 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8976 {
8977 hdr->sh_size += amt;
8978 ret = TRUE;
8979 }
8980 else
8981 ret = FALSE;
8982
8983 free (symbuf);
8984
8985 free (hash_table->strtab);
8986 hash_table->strtab = NULL;
8987
8988 return ret;
8989 }
8990
8991 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8992
8993 static bfd_boolean
8994 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8995 {
8996 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8997 && sym->st_shndx < SHN_LORESERVE)
8998 {
8999 /* The gABI doesn't support dynamic symbols in output sections
9000 beyond 64k. */
9001 (*_bfd_error_handler)
9002 (_("%B: Too many sections: %d (>= %d)"),
9003 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9004 bfd_set_error (bfd_error_nonrepresentable_section);
9005 return FALSE;
9006 }
9007 return TRUE;
9008 }
9009
9010 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9011 allowing an unsatisfied unversioned symbol in the DSO to match a
9012 versioned symbol that would normally require an explicit version.
9013 We also handle the case that a DSO references a hidden symbol
9014 which may be satisfied by a versioned symbol in another DSO. */
9015
9016 static bfd_boolean
9017 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9018 const struct elf_backend_data *bed,
9019 struct elf_link_hash_entry *h)
9020 {
9021 bfd *abfd;
9022 struct elf_link_loaded_list *loaded;
9023
9024 if (!is_elf_hash_table (info->hash))
9025 return FALSE;
9026
9027 /* Check indirect symbol. */
9028 while (h->root.type == bfd_link_hash_indirect)
9029 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9030
9031 switch (h->root.type)
9032 {
9033 default:
9034 abfd = NULL;
9035 break;
9036
9037 case bfd_link_hash_undefined:
9038 case bfd_link_hash_undefweak:
9039 abfd = h->root.u.undef.abfd;
9040 if ((abfd->flags & DYNAMIC) == 0
9041 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9042 return FALSE;
9043 break;
9044
9045 case bfd_link_hash_defined:
9046 case bfd_link_hash_defweak:
9047 abfd = h->root.u.def.section->owner;
9048 break;
9049
9050 case bfd_link_hash_common:
9051 abfd = h->root.u.c.p->section->owner;
9052 break;
9053 }
9054 BFD_ASSERT (abfd != NULL);
9055
9056 for (loaded = elf_hash_table (info)->loaded;
9057 loaded != NULL;
9058 loaded = loaded->next)
9059 {
9060 bfd *input;
9061 Elf_Internal_Shdr *hdr;
9062 bfd_size_type symcount;
9063 bfd_size_type extsymcount;
9064 bfd_size_type extsymoff;
9065 Elf_Internal_Shdr *versymhdr;
9066 Elf_Internal_Sym *isym;
9067 Elf_Internal_Sym *isymend;
9068 Elf_Internal_Sym *isymbuf;
9069 Elf_External_Versym *ever;
9070 Elf_External_Versym *extversym;
9071
9072 input = loaded->abfd;
9073
9074 /* We check each DSO for a possible hidden versioned definition. */
9075 if (input == abfd
9076 || (input->flags & DYNAMIC) == 0
9077 || elf_dynversym (input) == 0)
9078 continue;
9079
9080 hdr = &elf_tdata (input)->dynsymtab_hdr;
9081
9082 symcount = hdr->sh_size / bed->s->sizeof_sym;
9083 if (elf_bad_symtab (input))
9084 {
9085 extsymcount = symcount;
9086 extsymoff = 0;
9087 }
9088 else
9089 {
9090 extsymcount = symcount - hdr->sh_info;
9091 extsymoff = hdr->sh_info;
9092 }
9093
9094 if (extsymcount == 0)
9095 continue;
9096
9097 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9098 NULL, NULL, NULL);
9099 if (isymbuf == NULL)
9100 return FALSE;
9101
9102 /* Read in any version definitions. */
9103 versymhdr = &elf_tdata (input)->dynversym_hdr;
9104 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9105 if (extversym == NULL)
9106 goto error_ret;
9107
9108 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9109 || (bfd_bread (extversym, versymhdr->sh_size, input)
9110 != versymhdr->sh_size))
9111 {
9112 free (extversym);
9113 error_ret:
9114 free (isymbuf);
9115 return FALSE;
9116 }
9117
9118 ever = extversym + extsymoff;
9119 isymend = isymbuf + extsymcount;
9120 for (isym = isymbuf; isym < isymend; isym++, ever++)
9121 {
9122 const char *name;
9123 Elf_Internal_Versym iver;
9124 unsigned short version_index;
9125
9126 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9127 || isym->st_shndx == SHN_UNDEF)
9128 continue;
9129
9130 name = bfd_elf_string_from_elf_section (input,
9131 hdr->sh_link,
9132 isym->st_name);
9133 if (strcmp (name, h->root.root.string) != 0)
9134 continue;
9135
9136 _bfd_elf_swap_versym_in (input, ever, &iver);
9137
9138 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9139 && !(h->def_regular
9140 && h->forced_local))
9141 {
9142 /* If we have a non-hidden versioned sym, then it should
9143 have provided a definition for the undefined sym unless
9144 it is defined in a non-shared object and forced local.
9145 */
9146 abort ();
9147 }
9148
9149 version_index = iver.vs_vers & VERSYM_VERSION;
9150 if (version_index == 1 || version_index == 2)
9151 {
9152 /* This is the base or first version. We can use it. */
9153 free (extversym);
9154 free (isymbuf);
9155 return TRUE;
9156 }
9157 }
9158
9159 free (extversym);
9160 free (isymbuf);
9161 }
9162
9163 return FALSE;
9164 }
9165
9166 /* Convert ELF common symbol TYPE. */
9167
9168 static int
9169 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9170 {
9171 /* Commom symbol can only appear in relocatable link. */
9172 if (!bfd_link_relocatable (info))
9173 abort ();
9174 switch (info->elf_stt_common)
9175 {
9176 case unchanged:
9177 break;
9178 case elf_stt_common:
9179 type = STT_COMMON;
9180 break;
9181 case no_elf_stt_common:
9182 type = STT_OBJECT;
9183 break;
9184 }
9185 return type;
9186 }
9187
9188 /* Add an external symbol to the symbol table. This is called from
9189 the hash table traversal routine. When generating a shared object,
9190 we go through the symbol table twice. The first time we output
9191 anything that might have been forced to local scope in a version
9192 script. The second time we output the symbols that are still
9193 global symbols. */
9194
9195 static bfd_boolean
9196 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9197 {
9198 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9199 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9200 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9201 bfd_boolean strip;
9202 Elf_Internal_Sym sym;
9203 asection *input_sec;
9204 const struct elf_backend_data *bed;
9205 long indx;
9206 int ret;
9207 unsigned int type;
9208 /* A symbol is bound locally if it is forced local or it is locally
9209 defined, hidden versioned, not referenced by shared library and
9210 not exported when linking executable. */
9211 bfd_boolean local_bind = (h->forced_local
9212 || (bfd_link_executable (flinfo->info)
9213 && !flinfo->info->export_dynamic
9214 && !h->dynamic
9215 && !h->ref_dynamic
9216 && h->def_regular
9217 && h->versioned == versioned_hidden));
9218
9219 if (h->root.type == bfd_link_hash_warning)
9220 {
9221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9222 if (h->root.type == bfd_link_hash_new)
9223 return TRUE;
9224 }
9225
9226 /* Decide whether to output this symbol in this pass. */
9227 if (eoinfo->localsyms)
9228 {
9229 if (!local_bind)
9230 return TRUE;
9231 }
9232 else
9233 {
9234 if (local_bind)
9235 return TRUE;
9236 }
9237
9238 bed = get_elf_backend_data (flinfo->output_bfd);
9239
9240 if (h->root.type == bfd_link_hash_undefined)
9241 {
9242 /* If we have an undefined symbol reference here then it must have
9243 come from a shared library that is being linked in. (Undefined
9244 references in regular files have already been handled unless
9245 they are in unreferenced sections which are removed by garbage
9246 collection). */
9247 bfd_boolean ignore_undef = FALSE;
9248
9249 /* Some symbols may be special in that the fact that they're
9250 undefined can be safely ignored - let backend determine that. */
9251 if (bed->elf_backend_ignore_undef_symbol)
9252 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9253
9254 /* If we are reporting errors for this situation then do so now. */
9255 if (!ignore_undef
9256 && h->ref_dynamic
9257 && (!h->ref_regular || flinfo->info->gc_sections)
9258 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9259 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9260 (*flinfo->info->callbacks->undefined_symbol)
9261 (flinfo->info, h->root.root.string,
9262 h->ref_regular ? NULL : h->root.u.undef.abfd,
9263 NULL, 0,
9264 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9265
9266 /* Strip a global symbol defined in a discarded section. */
9267 if (h->indx == -3)
9268 return TRUE;
9269 }
9270
9271 /* We should also warn if a forced local symbol is referenced from
9272 shared libraries. */
9273 if (bfd_link_executable (flinfo->info)
9274 && h->forced_local
9275 && h->ref_dynamic
9276 && h->def_regular
9277 && !h->dynamic_def
9278 && h->ref_dynamic_nonweak
9279 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9280 {
9281 bfd *def_bfd;
9282 const char *msg;
9283 struct elf_link_hash_entry *hi = h;
9284
9285 /* Check indirect symbol. */
9286 while (hi->root.type == bfd_link_hash_indirect)
9287 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9288
9289 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9290 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9291 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9292 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9293 else
9294 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9295 def_bfd = flinfo->output_bfd;
9296 if (hi->root.u.def.section != bfd_abs_section_ptr)
9297 def_bfd = hi->root.u.def.section->owner;
9298 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
9299 h->root.root.string);
9300 bfd_set_error (bfd_error_bad_value);
9301 eoinfo->failed = TRUE;
9302 return FALSE;
9303 }
9304
9305 /* We don't want to output symbols that have never been mentioned by
9306 a regular file, or that we have been told to strip. However, if
9307 h->indx is set to -2, the symbol is used by a reloc and we must
9308 output it. */
9309 strip = FALSE;
9310 if (h->indx == -2)
9311 ;
9312 else if ((h->def_dynamic
9313 || h->ref_dynamic
9314 || h->root.type == bfd_link_hash_new)
9315 && !h->def_regular
9316 && !h->ref_regular)
9317 strip = TRUE;
9318 else if (flinfo->info->strip == strip_all)
9319 strip = TRUE;
9320 else if (flinfo->info->strip == strip_some
9321 && bfd_hash_lookup (flinfo->info->keep_hash,
9322 h->root.root.string, FALSE, FALSE) == NULL)
9323 strip = TRUE;
9324 else if ((h->root.type == bfd_link_hash_defined
9325 || h->root.type == bfd_link_hash_defweak)
9326 && ((flinfo->info->strip_discarded
9327 && discarded_section (h->root.u.def.section))
9328 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9329 && h->root.u.def.section->owner != NULL
9330 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9331 strip = TRUE;
9332 else if ((h->root.type == bfd_link_hash_undefined
9333 || h->root.type == bfd_link_hash_undefweak)
9334 && h->root.u.undef.abfd != NULL
9335 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9336 strip = TRUE;
9337
9338 type = h->type;
9339
9340 /* If we're stripping it, and it's not a dynamic symbol, there's
9341 nothing else to do. However, if it is a forced local symbol or
9342 an ifunc symbol we need to give the backend finish_dynamic_symbol
9343 function a chance to make it dynamic. */
9344 if (strip
9345 && h->dynindx == -1
9346 && type != STT_GNU_IFUNC
9347 && !h->forced_local)
9348 return TRUE;
9349
9350 sym.st_value = 0;
9351 sym.st_size = h->size;
9352 sym.st_other = h->other;
9353 switch (h->root.type)
9354 {
9355 default:
9356 case bfd_link_hash_new:
9357 case bfd_link_hash_warning:
9358 abort ();
9359 return FALSE;
9360
9361 case bfd_link_hash_undefined:
9362 case bfd_link_hash_undefweak:
9363 input_sec = bfd_und_section_ptr;
9364 sym.st_shndx = SHN_UNDEF;
9365 break;
9366
9367 case bfd_link_hash_defined:
9368 case bfd_link_hash_defweak:
9369 {
9370 input_sec = h->root.u.def.section;
9371 if (input_sec->output_section != NULL)
9372 {
9373 sym.st_shndx =
9374 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9375 input_sec->output_section);
9376 if (sym.st_shndx == SHN_BAD)
9377 {
9378 (*_bfd_error_handler)
9379 (_("%B: could not find output section %A for input section %A"),
9380 flinfo->output_bfd, input_sec->output_section, input_sec);
9381 bfd_set_error (bfd_error_nonrepresentable_section);
9382 eoinfo->failed = TRUE;
9383 return FALSE;
9384 }
9385
9386 /* ELF symbols in relocatable files are section relative,
9387 but in nonrelocatable files they are virtual
9388 addresses. */
9389 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9390 if (!bfd_link_relocatable (flinfo->info))
9391 {
9392 sym.st_value += input_sec->output_section->vma;
9393 if (h->type == STT_TLS)
9394 {
9395 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9396 if (tls_sec != NULL)
9397 sym.st_value -= tls_sec->vma;
9398 }
9399 }
9400 }
9401 else
9402 {
9403 BFD_ASSERT (input_sec->owner == NULL
9404 || (input_sec->owner->flags & DYNAMIC) != 0);
9405 sym.st_shndx = SHN_UNDEF;
9406 input_sec = bfd_und_section_ptr;
9407 }
9408 }
9409 break;
9410
9411 case bfd_link_hash_common:
9412 input_sec = h->root.u.c.p->section;
9413 sym.st_shndx = bed->common_section_index (input_sec);
9414 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9415 break;
9416
9417 case bfd_link_hash_indirect:
9418 /* These symbols are created by symbol versioning. They point
9419 to the decorated version of the name. For example, if the
9420 symbol foo@@GNU_1.2 is the default, which should be used when
9421 foo is used with no version, then we add an indirect symbol
9422 foo which points to foo@@GNU_1.2. We ignore these symbols,
9423 since the indirected symbol is already in the hash table. */
9424 return TRUE;
9425 }
9426
9427 if (type == STT_COMMON || type == STT_OBJECT)
9428 switch (h->root.type)
9429 {
9430 case bfd_link_hash_common:
9431 type = elf_link_convert_common_type (flinfo->info, type);
9432 break;
9433 case bfd_link_hash_defined:
9434 case bfd_link_hash_defweak:
9435 if (bed->common_definition (&sym))
9436 type = elf_link_convert_common_type (flinfo->info, type);
9437 else
9438 type = STT_OBJECT;
9439 break;
9440 case bfd_link_hash_undefined:
9441 case bfd_link_hash_undefweak:
9442 break;
9443 default:
9444 abort ();
9445 }
9446
9447 if (local_bind)
9448 {
9449 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9450 /* Turn off visibility on local symbol. */
9451 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9452 }
9453 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9454 else if (h->unique_global && h->def_regular)
9455 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9456 else if (h->root.type == bfd_link_hash_undefweak
9457 || h->root.type == bfd_link_hash_defweak)
9458 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9459 else
9460 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9461 sym.st_target_internal = h->target_internal;
9462
9463 /* Give the processor backend a chance to tweak the symbol value,
9464 and also to finish up anything that needs to be done for this
9465 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9466 forced local syms when non-shared is due to a historical quirk.
9467 STT_GNU_IFUNC symbol must go through PLT. */
9468 if ((h->type == STT_GNU_IFUNC
9469 && h->def_regular
9470 && !bfd_link_relocatable (flinfo->info))
9471 || ((h->dynindx != -1
9472 || h->forced_local)
9473 && ((bfd_link_pic (flinfo->info)
9474 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9475 || h->root.type != bfd_link_hash_undefweak))
9476 || !h->forced_local)
9477 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9478 {
9479 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9480 (flinfo->output_bfd, flinfo->info, h, &sym)))
9481 {
9482 eoinfo->failed = TRUE;
9483 return FALSE;
9484 }
9485 }
9486
9487 /* If we are marking the symbol as undefined, and there are no
9488 non-weak references to this symbol from a regular object, then
9489 mark the symbol as weak undefined; if there are non-weak
9490 references, mark the symbol as strong. We can't do this earlier,
9491 because it might not be marked as undefined until the
9492 finish_dynamic_symbol routine gets through with it. */
9493 if (sym.st_shndx == SHN_UNDEF
9494 && h->ref_regular
9495 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9496 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9497 {
9498 int bindtype;
9499 type = ELF_ST_TYPE (sym.st_info);
9500
9501 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9502 if (type == STT_GNU_IFUNC)
9503 type = STT_FUNC;
9504
9505 if (h->ref_regular_nonweak)
9506 bindtype = STB_GLOBAL;
9507 else
9508 bindtype = STB_WEAK;
9509 sym.st_info = ELF_ST_INFO (bindtype, type);
9510 }
9511
9512 /* If this is a symbol defined in a dynamic library, don't use the
9513 symbol size from the dynamic library. Relinking an executable
9514 against a new library may introduce gratuitous changes in the
9515 executable's symbols if we keep the size. */
9516 if (sym.st_shndx == SHN_UNDEF
9517 && !h->def_regular
9518 && h->def_dynamic)
9519 sym.st_size = 0;
9520
9521 /* If a non-weak symbol with non-default visibility is not defined
9522 locally, it is a fatal error. */
9523 if (!bfd_link_relocatable (flinfo->info)
9524 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9525 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9526 && h->root.type == bfd_link_hash_undefined
9527 && !h->def_regular)
9528 {
9529 const char *msg;
9530
9531 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9532 msg = _("%B: protected symbol `%s' isn't defined");
9533 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9534 msg = _("%B: internal symbol `%s' isn't defined");
9535 else
9536 msg = _("%B: hidden symbol `%s' isn't defined");
9537 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9538 bfd_set_error (bfd_error_bad_value);
9539 eoinfo->failed = TRUE;
9540 return FALSE;
9541 }
9542
9543 /* If this symbol should be put in the .dynsym section, then put it
9544 there now. We already know the symbol index. We also fill in
9545 the entry in the .hash section. */
9546 if (elf_hash_table (flinfo->info)->dynsym != NULL
9547 && h->dynindx != -1
9548 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9549 {
9550 bfd_byte *esym;
9551
9552 /* Since there is no version information in the dynamic string,
9553 if there is no version info in symbol version section, we will
9554 have a run-time problem if not linking executable, referenced
9555 by shared library, not locally defined, or not bound locally.
9556 */
9557 if (h->verinfo.verdef == NULL
9558 && !local_bind
9559 && (!bfd_link_executable (flinfo->info)
9560 || h->ref_dynamic
9561 || !h->def_regular))
9562 {
9563 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9564
9565 if (p && p [1] != '\0')
9566 {
9567 (*_bfd_error_handler)
9568 (_("%B: No symbol version section for versioned symbol `%s'"),
9569 flinfo->output_bfd, h->root.root.string);
9570 eoinfo->failed = TRUE;
9571 return FALSE;
9572 }
9573 }
9574
9575 sym.st_name = h->dynstr_index;
9576 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9577 + h->dynindx * bed->s->sizeof_sym);
9578 if (!check_dynsym (flinfo->output_bfd, &sym))
9579 {
9580 eoinfo->failed = TRUE;
9581 return FALSE;
9582 }
9583 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9584
9585 if (flinfo->hash_sec != NULL)
9586 {
9587 size_t hash_entry_size;
9588 bfd_byte *bucketpos;
9589 bfd_vma chain;
9590 size_t bucketcount;
9591 size_t bucket;
9592
9593 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9594 bucket = h->u.elf_hash_value % bucketcount;
9595
9596 hash_entry_size
9597 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9598 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9599 + (bucket + 2) * hash_entry_size);
9600 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9601 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9602 bucketpos);
9603 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9604 ((bfd_byte *) flinfo->hash_sec->contents
9605 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9606 }
9607
9608 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9609 {
9610 Elf_Internal_Versym iversym;
9611 Elf_External_Versym *eversym;
9612
9613 if (!h->def_regular)
9614 {
9615 if (h->verinfo.verdef == NULL
9616 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9617 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9618 iversym.vs_vers = 0;
9619 else
9620 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9621 }
9622 else
9623 {
9624 if (h->verinfo.vertree == NULL)
9625 iversym.vs_vers = 1;
9626 else
9627 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9628 if (flinfo->info->create_default_symver)
9629 iversym.vs_vers++;
9630 }
9631
9632 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9633 defined locally. */
9634 if (h->versioned == versioned_hidden && h->def_regular)
9635 iversym.vs_vers |= VERSYM_HIDDEN;
9636
9637 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9638 eversym += h->dynindx;
9639 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9640 }
9641 }
9642
9643 /* If the symbol is undefined, and we didn't output it to .dynsym,
9644 strip it from .symtab too. Obviously we can't do this for
9645 relocatable output or when needed for --emit-relocs. */
9646 else if (input_sec == bfd_und_section_ptr
9647 && h->indx != -2
9648 && !bfd_link_relocatable (flinfo->info))
9649 return TRUE;
9650 /* Also strip others that we couldn't earlier due to dynamic symbol
9651 processing. */
9652 if (strip)
9653 return TRUE;
9654 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9655 return TRUE;
9656
9657 /* Output a FILE symbol so that following locals are not associated
9658 with the wrong input file. We need one for forced local symbols
9659 if we've seen more than one FILE symbol or when we have exactly
9660 one FILE symbol but global symbols are present in a file other
9661 than the one with the FILE symbol. We also need one if linker
9662 defined symbols are present. In practice these conditions are
9663 always met, so just emit the FILE symbol unconditionally. */
9664 if (eoinfo->localsyms
9665 && !eoinfo->file_sym_done
9666 && eoinfo->flinfo->filesym_count != 0)
9667 {
9668 Elf_Internal_Sym fsym;
9669
9670 memset (&fsym, 0, sizeof (fsym));
9671 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9672 fsym.st_shndx = SHN_ABS;
9673 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9674 bfd_und_section_ptr, NULL))
9675 return FALSE;
9676
9677 eoinfo->file_sym_done = TRUE;
9678 }
9679
9680 indx = bfd_get_symcount (flinfo->output_bfd);
9681 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9682 input_sec, h);
9683 if (ret == 0)
9684 {
9685 eoinfo->failed = TRUE;
9686 return FALSE;
9687 }
9688 else if (ret == 1)
9689 h->indx = indx;
9690 else if (h->indx == -2)
9691 abort();
9692
9693 return TRUE;
9694 }
9695
9696 /* Return TRUE if special handling is done for relocs in SEC against
9697 symbols defined in discarded sections. */
9698
9699 static bfd_boolean
9700 elf_section_ignore_discarded_relocs (asection *sec)
9701 {
9702 const struct elf_backend_data *bed;
9703
9704 switch (sec->sec_info_type)
9705 {
9706 case SEC_INFO_TYPE_STABS:
9707 case SEC_INFO_TYPE_EH_FRAME:
9708 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9709 return TRUE;
9710 default:
9711 break;
9712 }
9713
9714 bed = get_elf_backend_data (sec->owner);
9715 if (bed->elf_backend_ignore_discarded_relocs != NULL
9716 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9717 return TRUE;
9718
9719 return FALSE;
9720 }
9721
9722 /* Return a mask saying how ld should treat relocations in SEC against
9723 symbols defined in discarded sections. If this function returns
9724 COMPLAIN set, ld will issue a warning message. If this function
9725 returns PRETEND set, and the discarded section was link-once and the
9726 same size as the kept link-once section, ld will pretend that the
9727 symbol was actually defined in the kept section. Otherwise ld will
9728 zero the reloc (at least that is the intent, but some cooperation by
9729 the target dependent code is needed, particularly for REL targets). */
9730
9731 unsigned int
9732 _bfd_elf_default_action_discarded (asection *sec)
9733 {
9734 if (sec->flags & SEC_DEBUGGING)
9735 return PRETEND;
9736
9737 if (strcmp (".eh_frame", sec->name) == 0)
9738 return 0;
9739
9740 if (strcmp (".gcc_except_table", sec->name) == 0)
9741 return 0;
9742
9743 return COMPLAIN | PRETEND;
9744 }
9745
9746 /* Find a match between a section and a member of a section group. */
9747
9748 static asection *
9749 match_group_member (asection *sec, asection *group,
9750 struct bfd_link_info *info)
9751 {
9752 asection *first = elf_next_in_group (group);
9753 asection *s = first;
9754
9755 while (s != NULL)
9756 {
9757 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9758 return s;
9759
9760 s = elf_next_in_group (s);
9761 if (s == first)
9762 break;
9763 }
9764
9765 return NULL;
9766 }
9767
9768 /* Check if the kept section of a discarded section SEC can be used
9769 to replace it. Return the replacement if it is OK. Otherwise return
9770 NULL. */
9771
9772 asection *
9773 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9774 {
9775 asection *kept;
9776
9777 kept = sec->kept_section;
9778 if (kept != NULL)
9779 {
9780 if ((kept->flags & SEC_GROUP) != 0)
9781 kept = match_group_member (sec, kept, info);
9782 if (kept != NULL
9783 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9784 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9785 kept = NULL;
9786 sec->kept_section = kept;
9787 }
9788 return kept;
9789 }
9790
9791 /* Link an input file into the linker output file. This function
9792 handles all the sections and relocations of the input file at once.
9793 This is so that we only have to read the local symbols once, and
9794 don't have to keep them in memory. */
9795
9796 static bfd_boolean
9797 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9798 {
9799 int (*relocate_section)
9800 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9801 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9802 bfd *output_bfd;
9803 Elf_Internal_Shdr *symtab_hdr;
9804 size_t locsymcount;
9805 size_t extsymoff;
9806 Elf_Internal_Sym *isymbuf;
9807 Elf_Internal_Sym *isym;
9808 Elf_Internal_Sym *isymend;
9809 long *pindex;
9810 asection **ppsection;
9811 asection *o;
9812 const struct elf_backend_data *bed;
9813 struct elf_link_hash_entry **sym_hashes;
9814 bfd_size_type address_size;
9815 bfd_vma r_type_mask;
9816 int r_sym_shift;
9817 bfd_boolean have_file_sym = FALSE;
9818
9819 output_bfd = flinfo->output_bfd;
9820 bed = get_elf_backend_data (output_bfd);
9821 relocate_section = bed->elf_backend_relocate_section;
9822
9823 /* If this is a dynamic object, we don't want to do anything here:
9824 we don't want the local symbols, and we don't want the section
9825 contents. */
9826 if ((input_bfd->flags & DYNAMIC) != 0)
9827 return TRUE;
9828
9829 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9830 if (elf_bad_symtab (input_bfd))
9831 {
9832 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9833 extsymoff = 0;
9834 }
9835 else
9836 {
9837 locsymcount = symtab_hdr->sh_info;
9838 extsymoff = symtab_hdr->sh_info;
9839 }
9840
9841 /* Read the local symbols. */
9842 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9843 if (isymbuf == NULL && locsymcount != 0)
9844 {
9845 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9846 flinfo->internal_syms,
9847 flinfo->external_syms,
9848 flinfo->locsym_shndx);
9849 if (isymbuf == NULL)
9850 return FALSE;
9851 }
9852
9853 /* Find local symbol sections and adjust values of symbols in
9854 SEC_MERGE sections. Write out those local symbols we know are
9855 going into the output file. */
9856 isymend = isymbuf + locsymcount;
9857 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9858 isym < isymend;
9859 isym++, pindex++, ppsection++)
9860 {
9861 asection *isec;
9862 const char *name;
9863 Elf_Internal_Sym osym;
9864 long indx;
9865 int ret;
9866
9867 *pindex = -1;
9868
9869 if (elf_bad_symtab (input_bfd))
9870 {
9871 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9872 {
9873 *ppsection = NULL;
9874 continue;
9875 }
9876 }
9877
9878 if (isym->st_shndx == SHN_UNDEF)
9879 isec = bfd_und_section_ptr;
9880 else if (isym->st_shndx == SHN_ABS)
9881 isec = bfd_abs_section_ptr;
9882 else if (isym->st_shndx == SHN_COMMON)
9883 isec = bfd_com_section_ptr;
9884 else
9885 {
9886 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9887 if (isec == NULL)
9888 {
9889 /* Don't attempt to output symbols with st_shnx in the
9890 reserved range other than SHN_ABS and SHN_COMMON. */
9891 *ppsection = NULL;
9892 continue;
9893 }
9894 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9895 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9896 isym->st_value =
9897 _bfd_merged_section_offset (output_bfd, &isec,
9898 elf_section_data (isec)->sec_info,
9899 isym->st_value);
9900 }
9901
9902 *ppsection = isec;
9903
9904 /* Don't output the first, undefined, symbol. In fact, don't
9905 output any undefined local symbol. */
9906 if (isec == bfd_und_section_ptr)
9907 continue;
9908
9909 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9910 {
9911 /* We never output section symbols. Instead, we use the
9912 section symbol of the corresponding section in the output
9913 file. */
9914 continue;
9915 }
9916
9917 /* If we are stripping all symbols, we don't want to output this
9918 one. */
9919 if (flinfo->info->strip == strip_all)
9920 continue;
9921
9922 /* If we are discarding all local symbols, we don't want to
9923 output this one. If we are generating a relocatable output
9924 file, then some of the local symbols may be required by
9925 relocs; we output them below as we discover that they are
9926 needed. */
9927 if (flinfo->info->discard == discard_all)
9928 continue;
9929
9930 /* If this symbol is defined in a section which we are
9931 discarding, we don't need to keep it. */
9932 if (isym->st_shndx != SHN_UNDEF
9933 && isym->st_shndx < SHN_LORESERVE
9934 && bfd_section_removed_from_list (output_bfd,
9935 isec->output_section))
9936 continue;
9937
9938 /* Get the name of the symbol. */
9939 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9940 isym->st_name);
9941 if (name == NULL)
9942 return FALSE;
9943
9944 /* See if we are discarding symbols with this name. */
9945 if ((flinfo->info->strip == strip_some
9946 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9947 == NULL))
9948 || (((flinfo->info->discard == discard_sec_merge
9949 && (isec->flags & SEC_MERGE)
9950 && !bfd_link_relocatable (flinfo->info))
9951 || flinfo->info->discard == discard_l)
9952 && bfd_is_local_label_name (input_bfd, name)))
9953 continue;
9954
9955 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9956 {
9957 if (input_bfd->lto_output)
9958 /* -flto puts a temp file name here. This means builds
9959 are not reproducible. Discard the symbol. */
9960 continue;
9961 have_file_sym = TRUE;
9962 flinfo->filesym_count += 1;
9963 }
9964 if (!have_file_sym)
9965 {
9966 /* In the absence of debug info, bfd_find_nearest_line uses
9967 FILE symbols to determine the source file for local
9968 function symbols. Provide a FILE symbol here if input
9969 files lack such, so that their symbols won't be
9970 associated with a previous input file. It's not the
9971 source file, but the best we can do. */
9972 have_file_sym = TRUE;
9973 flinfo->filesym_count += 1;
9974 memset (&osym, 0, sizeof (osym));
9975 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9976 osym.st_shndx = SHN_ABS;
9977 if (!elf_link_output_symstrtab (flinfo,
9978 (input_bfd->lto_output ? NULL
9979 : input_bfd->filename),
9980 &osym, bfd_abs_section_ptr,
9981 NULL))
9982 return FALSE;
9983 }
9984
9985 osym = *isym;
9986
9987 /* Adjust the section index for the output file. */
9988 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9989 isec->output_section);
9990 if (osym.st_shndx == SHN_BAD)
9991 return FALSE;
9992
9993 /* ELF symbols in relocatable files are section relative, but
9994 in executable files they are virtual addresses. Note that
9995 this code assumes that all ELF sections have an associated
9996 BFD section with a reasonable value for output_offset; below
9997 we assume that they also have a reasonable value for
9998 output_section. Any special sections must be set up to meet
9999 these requirements. */
10000 osym.st_value += isec->output_offset;
10001 if (!bfd_link_relocatable (flinfo->info))
10002 {
10003 osym.st_value += isec->output_section->vma;
10004 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10005 {
10006 /* STT_TLS symbols are relative to PT_TLS segment base. */
10007 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10008 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10009 }
10010 }
10011
10012 indx = bfd_get_symcount (output_bfd);
10013 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10014 if (ret == 0)
10015 return FALSE;
10016 else if (ret == 1)
10017 *pindex = indx;
10018 }
10019
10020 if (bed->s->arch_size == 32)
10021 {
10022 r_type_mask = 0xff;
10023 r_sym_shift = 8;
10024 address_size = 4;
10025 }
10026 else
10027 {
10028 r_type_mask = 0xffffffff;
10029 r_sym_shift = 32;
10030 address_size = 8;
10031 }
10032
10033 /* Relocate the contents of each section. */
10034 sym_hashes = elf_sym_hashes (input_bfd);
10035 for (o = input_bfd->sections; o != NULL; o = o->next)
10036 {
10037 bfd_byte *contents;
10038
10039 if (! o->linker_mark)
10040 {
10041 /* This section was omitted from the link. */
10042 continue;
10043 }
10044
10045 if (bfd_link_relocatable (flinfo->info)
10046 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10047 {
10048 /* Deal with the group signature symbol. */
10049 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10050 unsigned long symndx = sec_data->this_hdr.sh_info;
10051 asection *osec = o->output_section;
10052
10053 if (symndx >= locsymcount
10054 || (elf_bad_symtab (input_bfd)
10055 && flinfo->sections[symndx] == NULL))
10056 {
10057 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10058 while (h->root.type == bfd_link_hash_indirect
10059 || h->root.type == bfd_link_hash_warning)
10060 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10061 /* Arrange for symbol to be output. */
10062 h->indx = -2;
10063 elf_section_data (osec)->this_hdr.sh_info = -2;
10064 }
10065 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10066 {
10067 /* We'll use the output section target_index. */
10068 asection *sec = flinfo->sections[symndx]->output_section;
10069 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10070 }
10071 else
10072 {
10073 if (flinfo->indices[symndx] == -1)
10074 {
10075 /* Otherwise output the local symbol now. */
10076 Elf_Internal_Sym sym = isymbuf[symndx];
10077 asection *sec = flinfo->sections[symndx]->output_section;
10078 const char *name;
10079 long indx;
10080 int ret;
10081
10082 name = bfd_elf_string_from_elf_section (input_bfd,
10083 symtab_hdr->sh_link,
10084 sym.st_name);
10085 if (name == NULL)
10086 return FALSE;
10087
10088 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10089 sec);
10090 if (sym.st_shndx == SHN_BAD)
10091 return FALSE;
10092
10093 sym.st_value += o->output_offset;
10094
10095 indx = bfd_get_symcount (output_bfd);
10096 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10097 NULL);
10098 if (ret == 0)
10099 return FALSE;
10100 else if (ret == 1)
10101 flinfo->indices[symndx] = indx;
10102 else
10103 abort ();
10104 }
10105 elf_section_data (osec)->this_hdr.sh_info
10106 = flinfo->indices[symndx];
10107 }
10108 }
10109
10110 if ((o->flags & SEC_HAS_CONTENTS) == 0
10111 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10112 continue;
10113
10114 if ((o->flags & SEC_LINKER_CREATED) != 0)
10115 {
10116 /* Section was created by _bfd_elf_link_create_dynamic_sections
10117 or somesuch. */
10118 continue;
10119 }
10120
10121 /* Get the contents of the section. They have been cached by a
10122 relaxation routine. Note that o is a section in an input
10123 file, so the contents field will not have been set by any of
10124 the routines which work on output files. */
10125 if (elf_section_data (o)->this_hdr.contents != NULL)
10126 {
10127 contents = elf_section_data (o)->this_hdr.contents;
10128 if (bed->caches_rawsize
10129 && o->rawsize != 0
10130 && o->rawsize < o->size)
10131 {
10132 memcpy (flinfo->contents, contents, o->rawsize);
10133 contents = flinfo->contents;
10134 }
10135 }
10136 else
10137 {
10138 contents = flinfo->contents;
10139 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10140 return FALSE;
10141 }
10142
10143 if ((o->flags & SEC_RELOC) != 0)
10144 {
10145 Elf_Internal_Rela *internal_relocs;
10146 Elf_Internal_Rela *rel, *relend;
10147 int action_discarded;
10148 int ret;
10149
10150 /* Get the swapped relocs. */
10151 internal_relocs
10152 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10153 flinfo->internal_relocs, FALSE);
10154 if (internal_relocs == NULL
10155 && o->reloc_count > 0)
10156 return FALSE;
10157
10158 /* We need to reverse-copy input .ctors/.dtors sections if
10159 they are placed in .init_array/.finit_array for output. */
10160 if (o->size > address_size
10161 && ((strncmp (o->name, ".ctors", 6) == 0
10162 && strcmp (o->output_section->name,
10163 ".init_array") == 0)
10164 || (strncmp (o->name, ".dtors", 6) == 0
10165 && strcmp (o->output_section->name,
10166 ".fini_array") == 0))
10167 && (o->name[6] == 0 || o->name[6] == '.'))
10168 {
10169 if (o->size != o->reloc_count * address_size)
10170 {
10171 (*_bfd_error_handler)
10172 (_("error: %B: size of section %A is not "
10173 "multiple of address size"),
10174 input_bfd, o);
10175 bfd_set_error (bfd_error_on_input);
10176 return FALSE;
10177 }
10178 o->flags |= SEC_ELF_REVERSE_COPY;
10179 }
10180
10181 action_discarded = -1;
10182 if (!elf_section_ignore_discarded_relocs (o))
10183 action_discarded = (*bed->action_discarded) (o);
10184
10185 /* Run through the relocs evaluating complex reloc symbols and
10186 looking for relocs against symbols from discarded sections
10187 or section symbols from removed link-once sections.
10188 Complain about relocs against discarded sections. Zero
10189 relocs against removed link-once sections. */
10190
10191 rel = internal_relocs;
10192 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10193 for ( ; rel < relend; rel++)
10194 {
10195 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10196 unsigned int s_type;
10197 asection **ps, *sec;
10198 struct elf_link_hash_entry *h = NULL;
10199 const char *sym_name;
10200
10201 if (r_symndx == STN_UNDEF)
10202 continue;
10203
10204 if (r_symndx >= locsymcount
10205 || (elf_bad_symtab (input_bfd)
10206 && flinfo->sections[r_symndx] == NULL))
10207 {
10208 h = sym_hashes[r_symndx - extsymoff];
10209
10210 /* Badly formatted input files can contain relocs that
10211 reference non-existant symbols. Check here so that
10212 we do not seg fault. */
10213 if (h == NULL)
10214 {
10215 char buffer [32];
10216
10217 sprintf_vma (buffer, rel->r_info);
10218 (*_bfd_error_handler)
10219 (_("error: %B contains a reloc (0x%s) for section %A "
10220 "that references a non-existent global symbol"),
10221 input_bfd, o, buffer);
10222 bfd_set_error (bfd_error_bad_value);
10223 return FALSE;
10224 }
10225
10226 while (h->root.type == bfd_link_hash_indirect
10227 || h->root.type == bfd_link_hash_warning)
10228 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10229
10230 s_type = h->type;
10231
10232 /* If a plugin symbol is referenced from a non-IR file,
10233 mark the symbol as undefined. Note that the
10234 linker may attach linker created dynamic sections
10235 to the plugin bfd. Symbols defined in linker
10236 created sections are not plugin symbols. */
10237 if (h->root.non_ir_ref
10238 && (h->root.type == bfd_link_hash_defined
10239 || h->root.type == bfd_link_hash_defweak)
10240 && (h->root.u.def.section->flags
10241 & SEC_LINKER_CREATED) == 0
10242 && h->root.u.def.section->owner != NULL
10243 && (h->root.u.def.section->owner->flags
10244 & BFD_PLUGIN) != 0)
10245 {
10246 h->root.type = bfd_link_hash_undefined;
10247 h->root.u.undef.abfd = h->root.u.def.section->owner;
10248 }
10249
10250 ps = NULL;
10251 if (h->root.type == bfd_link_hash_defined
10252 || h->root.type == bfd_link_hash_defweak)
10253 ps = &h->root.u.def.section;
10254
10255 sym_name = h->root.root.string;
10256 }
10257 else
10258 {
10259 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10260
10261 s_type = ELF_ST_TYPE (sym->st_info);
10262 ps = &flinfo->sections[r_symndx];
10263 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10264 sym, *ps);
10265 }
10266
10267 if ((s_type == STT_RELC || s_type == STT_SRELC)
10268 && !bfd_link_relocatable (flinfo->info))
10269 {
10270 bfd_vma val;
10271 bfd_vma dot = (rel->r_offset
10272 + o->output_offset + o->output_section->vma);
10273 #ifdef DEBUG
10274 printf ("Encountered a complex symbol!");
10275 printf (" (input_bfd %s, section %s, reloc %ld\n",
10276 input_bfd->filename, o->name,
10277 (long) (rel - internal_relocs));
10278 printf (" symbol: idx %8.8lx, name %s\n",
10279 r_symndx, sym_name);
10280 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10281 (unsigned long) rel->r_info,
10282 (unsigned long) rel->r_offset);
10283 #endif
10284 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10285 isymbuf, locsymcount, s_type == STT_SRELC))
10286 return FALSE;
10287
10288 /* Symbol evaluated OK. Update to absolute value. */
10289 set_symbol_value (input_bfd, isymbuf, locsymcount,
10290 r_symndx, val);
10291 continue;
10292 }
10293
10294 if (action_discarded != -1 && ps != NULL)
10295 {
10296 /* Complain if the definition comes from a
10297 discarded section. */
10298 if ((sec = *ps) != NULL && discarded_section (sec))
10299 {
10300 BFD_ASSERT (r_symndx != STN_UNDEF);
10301 if (action_discarded & COMPLAIN)
10302 (*flinfo->info->callbacks->einfo)
10303 (_("%X`%s' referenced in section `%A' of %B: "
10304 "defined in discarded section `%A' of %B\n"),
10305 sym_name, o, input_bfd, sec, sec->owner);
10306
10307 /* Try to do the best we can to support buggy old
10308 versions of gcc. Pretend that the symbol is
10309 really defined in the kept linkonce section.
10310 FIXME: This is quite broken. Modifying the
10311 symbol here means we will be changing all later
10312 uses of the symbol, not just in this section. */
10313 if (action_discarded & PRETEND)
10314 {
10315 asection *kept;
10316
10317 kept = _bfd_elf_check_kept_section (sec,
10318 flinfo->info);
10319 if (kept != NULL)
10320 {
10321 *ps = kept;
10322 continue;
10323 }
10324 }
10325 }
10326 }
10327 }
10328
10329 /* Relocate the section by invoking a back end routine.
10330
10331 The back end routine is responsible for adjusting the
10332 section contents as necessary, and (if using Rela relocs
10333 and generating a relocatable output file) adjusting the
10334 reloc addend as necessary.
10335
10336 The back end routine does not have to worry about setting
10337 the reloc address or the reloc symbol index.
10338
10339 The back end routine is given a pointer to the swapped in
10340 internal symbols, and can access the hash table entries
10341 for the external symbols via elf_sym_hashes (input_bfd).
10342
10343 When generating relocatable output, the back end routine
10344 must handle STB_LOCAL/STT_SECTION symbols specially. The
10345 output symbol is going to be a section symbol
10346 corresponding to the output section, which will require
10347 the addend to be adjusted. */
10348
10349 ret = (*relocate_section) (output_bfd, flinfo->info,
10350 input_bfd, o, contents,
10351 internal_relocs,
10352 isymbuf,
10353 flinfo->sections);
10354 if (!ret)
10355 return FALSE;
10356
10357 if (ret == 2
10358 || bfd_link_relocatable (flinfo->info)
10359 || flinfo->info->emitrelocations)
10360 {
10361 Elf_Internal_Rela *irela;
10362 Elf_Internal_Rela *irelaend, *irelamid;
10363 bfd_vma last_offset;
10364 struct elf_link_hash_entry **rel_hash;
10365 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10366 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10367 unsigned int next_erel;
10368 bfd_boolean rela_normal;
10369 struct bfd_elf_section_data *esdi, *esdo;
10370
10371 esdi = elf_section_data (o);
10372 esdo = elf_section_data (o->output_section);
10373 rela_normal = FALSE;
10374
10375 /* Adjust the reloc addresses and symbol indices. */
10376
10377 irela = internal_relocs;
10378 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10379 rel_hash = esdo->rel.hashes + esdo->rel.count;
10380 /* We start processing the REL relocs, if any. When we reach
10381 IRELAMID in the loop, we switch to the RELA relocs. */
10382 irelamid = irela;
10383 if (esdi->rel.hdr != NULL)
10384 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10385 * bed->s->int_rels_per_ext_rel);
10386 rel_hash_list = rel_hash;
10387 rela_hash_list = NULL;
10388 last_offset = o->output_offset;
10389 if (!bfd_link_relocatable (flinfo->info))
10390 last_offset += o->output_section->vma;
10391 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10392 {
10393 unsigned long r_symndx;
10394 asection *sec;
10395 Elf_Internal_Sym sym;
10396
10397 if (next_erel == bed->s->int_rels_per_ext_rel)
10398 {
10399 rel_hash++;
10400 next_erel = 0;
10401 }
10402
10403 if (irela == irelamid)
10404 {
10405 rel_hash = esdo->rela.hashes + esdo->rela.count;
10406 rela_hash_list = rel_hash;
10407 rela_normal = bed->rela_normal;
10408 }
10409
10410 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10411 flinfo->info, o,
10412 irela->r_offset);
10413 if (irela->r_offset >= (bfd_vma) -2)
10414 {
10415 /* This is a reloc for a deleted entry or somesuch.
10416 Turn it into an R_*_NONE reloc, at the same
10417 offset as the last reloc. elf_eh_frame.c and
10418 bfd_elf_discard_info rely on reloc offsets
10419 being ordered. */
10420 irela->r_offset = last_offset;
10421 irela->r_info = 0;
10422 irela->r_addend = 0;
10423 continue;
10424 }
10425
10426 irela->r_offset += o->output_offset;
10427
10428 /* Relocs in an executable have to be virtual addresses. */
10429 if (!bfd_link_relocatable (flinfo->info))
10430 irela->r_offset += o->output_section->vma;
10431
10432 last_offset = irela->r_offset;
10433
10434 r_symndx = irela->r_info >> r_sym_shift;
10435 if (r_symndx == STN_UNDEF)
10436 continue;
10437
10438 if (r_symndx >= locsymcount
10439 || (elf_bad_symtab (input_bfd)
10440 && flinfo->sections[r_symndx] == NULL))
10441 {
10442 struct elf_link_hash_entry *rh;
10443 unsigned long indx;
10444
10445 /* This is a reloc against a global symbol. We
10446 have not yet output all the local symbols, so
10447 we do not know the symbol index of any global
10448 symbol. We set the rel_hash entry for this
10449 reloc to point to the global hash table entry
10450 for this symbol. The symbol index is then
10451 set at the end of bfd_elf_final_link. */
10452 indx = r_symndx - extsymoff;
10453 rh = elf_sym_hashes (input_bfd)[indx];
10454 while (rh->root.type == bfd_link_hash_indirect
10455 || rh->root.type == bfd_link_hash_warning)
10456 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10457
10458 /* Setting the index to -2 tells
10459 elf_link_output_extsym that this symbol is
10460 used by a reloc. */
10461 BFD_ASSERT (rh->indx < 0);
10462 rh->indx = -2;
10463
10464 *rel_hash = rh;
10465
10466 continue;
10467 }
10468
10469 /* This is a reloc against a local symbol. */
10470
10471 *rel_hash = NULL;
10472 sym = isymbuf[r_symndx];
10473 sec = flinfo->sections[r_symndx];
10474 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10475 {
10476 /* I suppose the backend ought to fill in the
10477 section of any STT_SECTION symbol against a
10478 processor specific section. */
10479 r_symndx = STN_UNDEF;
10480 if (bfd_is_abs_section (sec))
10481 ;
10482 else if (sec == NULL || sec->owner == NULL)
10483 {
10484 bfd_set_error (bfd_error_bad_value);
10485 return FALSE;
10486 }
10487 else
10488 {
10489 asection *osec = sec->output_section;
10490
10491 /* If we have discarded a section, the output
10492 section will be the absolute section. In
10493 case of discarded SEC_MERGE sections, use
10494 the kept section. relocate_section should
10495 have already handled discarded linkonce
10496 sections. */
10497 if (bfd_is_abs_section (osec)
10498 && sec->kept_section != NULL
10499 && sec->kept_section->output_section != NULL)
10500 {
10501 osec = sec->kept_section->output_section;
10502 irela->r_addend -= osec->vma;
10503 }
10504
10505 if (!bfd_is_abs_section (osec))
10506 {
10507 r_symndx = osec->target_index;
10508 if (r_symndx == STN_UNDEF)
10509 {
10510 irela->r_addend += osec->vma;
10511 osec = _bfd_nearby_section (output_bfd, osec,
10512 osec->vma);
10513 irela->r_addend -= osec->vma;
10514 r_symndx = osec->target_index;
10515 }
10516 }
10517 }
10518
10519 /* Adjust the addend according to where the
10520 section winds up in the output section. */
10521 if (rela_normal)
10522 irela->r_addend += sec->output_offset;
10523 }
10524 else
10525 {
10526 if (flinfo->indices[r_symndx] == -1)
10527 {
10528 unsigned long shlink;
10529 const char *name;
10530 asection *osec;
10531 long indx;
10532
10533 if (flinfo->info->strip == strip_all)
10534 {
10535 /* You can't do ld -r -s. */
10536 bfd_set_error (bfd_error_invalid_operation);
10537 return FALSE;
10538 }
10539
10540 /* This symbol was skipped earlier, but
10541 since it is needed by a reloc, we
10542 must output it now. */
10543 shlink = symtab_hdr->sh_link;
10544 name = (bfd_elf_string_from_elf_section
10545 (input_bfd, shlink, sym.st_name));
10546 if (name == NULL)
10547 return FALSE;
10548
10549 osec = sec->output_section;
10550 sym.st_shndx =
10551 _bfd_elf_section_from_bfd_section (output_bfd,
10552 osec);
10553 if (sym.st_shndx == SHN_BAD)
10554 return FALSE;
10555
10556 sym.st_value += sec->output_offset;
10557 if (!bfd_link_relocatable (flinfo->info))
10558 {
10559 sym.st_value += osec->vma;
10560 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10561 {
10562 /* STT_TLS symbols are relative to PT_TLS
10563 segment base. */
10564 BFD_ASSERT (elf_hash_table (flinfo->info)
10565 ->tls_sec != NULL);
10566 sym.st_value -= (elf_hash_table (flinfo->info)
10567 ->tls_sec->vma);
10568 }
10569 }
10570
10571 indx = bfd_get_symcount (output_bfd);
10572 ret = elf_link_output_symstrtab (flinfo, name,
10573 &sym, sec,
10574 NULL);
10575 if (ret == 0)
10576 return FALSE;
10577 else if (ret == 1)
10578 flinfo->indices[r_symndx] = indx;
10579 else
10580 abort ();
10581 }
10582
10583 r_symndx = flinfo->indices[r_symndx];
10584 }
10585
10586 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10587 | (irela->r_info & r_type_mask));
10588 }
10589
10590 /* Swap out the relocs. */
10591 input_rel_hdr = esdi->rel.hdr;
10592 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10593 {
10594 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10595 input_rel_hdr,
10596 internal_relocs,
10597 rel_hash_list))
10598 return FALSE;
10599 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10600 * bed->s->int_rels_per_ext_rel);
10601 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10602 }
10603
10604 input_rela_hdr = esdi->rela.hdr;
10605 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10606 {
10607 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10608 input_rela_hdr,
10609 internal_relocs,
10610 rela_hash_list))
10611 return FALSE;
10612 }
10613 }
10614 }
10615
10616 /* Write out the modified section contents. */
10617 if (bed->elf_backend_write_section
10618 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10619 contents))
10620 {
10621 /* Section written out. */
10622 }
10623 else switch (o->sec_info_type)
10624 {
10625 case SEC_INFO_TYPE_STABS:
10626 if (! (_bfd_write_section_stabs
10627 (output_bfd,
10628 &elf_hash_table (flinfo->info)->stab_info,
10629 o, &elf_section_data (o)->sec_info, contents)))
10630 return FALSE;
10631 break;
10632 case SEC_INFO_TYPE_MERGE:
10633 if (! _bfd_write_merged_section (output_bfd, o,
10634 elf_section_data (o)->sec_info))
10635 return FALSE;
10636 break;
10637 case SEC_INFO_TYPE_EH_FRAME:
10638 {
10639 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10640 o, contents))
10641 return FALSE;
10642 }
10643 break;
10644 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10645 {
10646 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10647 flinfo->info,
10648 o, contents))
10649 return FALSE;
10650 }
10651 break;
10652 default:
10653 {
10654 if (! (o->flags & SEC_EXCLUDE))
10655 {
10656 file_ptr offset = (file_ptr) o->output_offset;
10657 bfd_size_type todo = o->size;
10658
10659 offset *= bfd_octets_per_byte (output_bfd);
10660
10661 if ((o->flags & SEC_ELF_REVERSE_COPY))
10662 {
10663 /* Reverse-copy input section to output. */
10664 do
10665 {
10666 todo -= address_size;
10667 if (! bfd_set_section_contents (output_bfd,
10668 o->output_section,
10669 contents + todo,
10670 offset,
10671 address_size))
10672 return FALSE;
10673 if (todo == 0)
10674 break;
10675 offset += address_size;
10676 }
10677 while (1);
10678 }
10679 else if (! bfd_set_section_contents (output_bfd,
10680 o->output_section,
10681 contents,
10682 offset, todo))
10683 return FALSE;
10684 }
10685 }
10686 break;
10687 }
10688 }
10689
10690 return TRUE;
10691 }
10692
10693 /* Generate a reloc when linking an ELF file. This is a reloc
10694 requested by the linker, and does not come from any input file. This
10695 is used to build constructor and destructor tables when linking
10696 with -Ur. */
10697
10698 static bfd_boolean
10699 elf_reloc_link_order (bfd *output_bfd,
10700 struct bfd_link_info *info,
10701 asection *output_section,
10702 struct bfd_link_order *link_order)
10703 {
10704 reloc_howto_type *howto;
10705 long indx;
10706 bfd_vma offset;
10707 bfd_vma addend;
10708 struct bfd_elf_section_reloc_data *reldata;
10709 struct elf_link_hash_entry **rel_hash_ptr;
10710 Elf_Internal_Shdr *rel_hdr;
10711 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10712 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10713 bfd_byte *erel;
10714 unsigned int i;
10715 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10716
10717 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10718 if (howto == NULL)
10719 {
10720 bfd_set_error (bfd_error_bad_value);
10721 return FALSE;
10722 }
10723
10724 addend = link_order->u.reloc.p->addend;
10725
10726 if (esdo->rel.hdr)
10727 reldata = &esdo->rel;
10728 else if (esdo->rela.hdr)
10729 reldata = &esdo->rela;
10730 else
10731 {
10732 reldata = NULL;
10733 BFD_ASSERT (0);
10734 }
10735
10736 /* Figure out the symbol index. */
10737 rel_hash_ptr = reldata->hashes + reldata->count;
10738 if (link_order->type == bfd_section_reloc_link_order)
10739 {
10740 indx = link_order->u.reloc.p->u.section->target_index;
10741 BFD_ASSERT (indx != 0);
10742 *rel_hash_ptr = NULL;
10743 }
10744 else
10745 {
10746 struct elf_link_hash_entry *h;
10747
10748 /* Treat a reloc against a defined symbol as though it were
10749 actually against the section. */
10750 h = ((struct elf_link_hash_entry *)
10751 bfd_wrapped_link_hash_lookup (output_bfd, info,
10752 link_order->u.reloc.p->u.name,
10753 FALSE, FALSE, TRUE));
10754 if (h != NULL
10755 && (h->root.type == bfd_link_hash_defined
10756 || h->root.type == bfd_link_hash_defweak))
10757 {
10758 asection *section;
10759
10760 section = h->root.u.def.section;
10761 indx = section->output_section->target_index;
10762 *rel_hash_ptr = NULL;
10763 /* It seems that we ought to add the symbol value to the
10764 addend here, but in practice it has already been added
10765 because it was passed to constructor_callback. */
10766 addend += section->output_section->vma + section->output_offset;
10767 }
10768 else if (h != NULL)
10769 {
10770 /* Setting the index to -2 tells elf_link_output_extsym that
10771 this symbol is used by a reloc. */
10772 h->indx = -2;
10773 *rel_hash_ptr = h;
10774 indx = 0;
10775 }
10776 else
10777 {
10778 (*info->callbacks->unattached_reloc)
10779 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10780 indx = 0;
10781 }
10782 }
10783
10784 /* If this is an inplace reloc, we must write the addend into the
10785 object file. */
10786 if (howto->partial_inplace && addend != 0)
10787 {
10788 bfd_size_type size;
10789 bfd_reloc_status_type rstat;
10790 bfd_byte *buf;
10791 bfd_boolean ok;
10792 const char *sym_name;
10793
10794 size = (bfd_size_type) bfd_get_reloc_size (howto);
10795 buf = (bfd_byte *) bfd_zmalloc (size);
10796 if (buf == NULL && size != 0)
10797 return FALSE;
10798 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10799 switch (rstat)
10800 {
10801 case bfd_reloc_ok:
10802 break;
10803
10804 default:
10805 case bfd_reloc_outofrange:
10806 abort ();
10807
10808 case bfd_reloc_overflow:
10809 if (link_order->type == bfd_section_reloc_link_order)
10810 sym_name = bfd_section_name (output_bfd,
10811 link_order->u.reloc.p->u.section);
10812 else
10813 sym_name = link_order->u.reloc.p->u.name;
10814 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10815 howto->name, addend, NULL, NULL,
10816 (bfd_vma) 0);
10817 break;
10818 }
10819
10820 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10821 link_order->offset
10822 * bfd_octets_per_byte (output_bfd),
10823 size);
10824 free (buf);
10825 if (! ok)
10826 return FALSE;
10827 }
10828
10829 /* The address of a reloc is relative to the section in a
10830 relocatable file, and is a virtual address in an executable
10831 file. */
10832 offset = link_order->offset;
10833 if (! bfd_link_relocatable (info))
10834 offset += output_section->vma;
10835
10836 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10837 {
10838 irel[i].r_offset = offset;
10839 irel[i].r_info = 0;
10840 irel[i].r_addend = 0;
10841 }
10842 if (bed->s->arch_size == 32)
10843 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10844 else
10845 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10846
10847 rel_hdr = reldata->hdr;
10848 erel = rel_hdr->contents;
10849 if (rel_hdr->sh_type == SHT_REL)
10850 {
10851 erel += reldata->count * bed->s->sizeof_rel;
10852 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10853 }
10854 else
10855 {
10856 irel[0].r_addend = addend;
10857 erel += reldata->count * bed->s->sizeof_rela;
10858 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10859 }
10860
10861 ++reldata->count;
10862
10863 return TRUE;
10864 }
10865
10866
10867 /* Get the output vma of the section pointed to by the sh_link field. */
10868
10869 static bfd_vma
10870 elf_get_linked_section_vma (struct bfd_link_order *p)
10871 {
10872 Elf_Internal_Shdr **elf_shdrp;
10873 asection *s;
10874 int elfsec;
10875
10876 s = p->u.indirect.section;
10877 elf_shdrp = elf_elfsections (s->owner);
10878 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10879 elfsec = elf_shdrp[elfsec]->sh_link;
10880 /* PR 290:
10881 The Intel C compiler generates SHT_IA_64_UNWIND with
10882 SHF_LINK_ORDER. But it doesn't set the sh_link or
10883 sh_info fields. Hence we could get the situation
10884 where elfsec is 0. */
10885 if (elfsec == 0)
10886 {
10887 const struct elf_backend_data *bed
10888 = get_elf_backend_data (s->owner);
10889 if (bed->link_order_error_handler)
10890 bed->link_order_error_handler
10891 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10892 return 0;
10893 }
10894 else
10895 {
10896 s = elf_shdrp[elfsec]->bfd_section;
10897 return s->output_section->vma + s->output_offset;
10898 }
10899 }
10900
10901
10902 /* Compare two sections based on the locations of the sections they are
10903 linked to. Used by elf_fixup_link_order. */
10904
10905 static int
10906 compare_link_order (const void * a, const void * b)
10907 {
10908 bfd_vma apos;
10909 bfd_vma bpos;
10910
10911 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10912 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10913 if (apos < bpos)
10914 return -1;
10915 return apos > bpos;
10916 }
10917
10918
10919 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10920 order as their linked sections. Returns false if this could not be done
10921 because an output section includes both ordered and unordered
10922 sections. Ideally we'd do this in the linker proper. */
10923
10924 static bfd_boolean
10925 elf_fixup_link_order (bfd *abfd, asection *o)
10926 {
10927 int seen_linkorder;
10928 int seen_other;
10929 int n;
10930 struct bfd_link_order *p;
10931 bfd *sub;
10932 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10933 unsigned elfsec;
10934 struct bfd_link_order **sections;
10935 asection *s, *other_sec, *linkorder_sec;
10936 bfd_vma offset;
10937
10938 other_sec = NULL;
10939 linkorder_sec = NULL;
10940 seen_other = 0;
10941 seen_linkorder = 0;
10942 for (p = o->map_head.link_order; p != NULL; p = p->next)
10943 {
10944 if (p->type == bfd_indirect_link_order)
10945 {
10946 s = p->u.indirect.section;
10947 sub = s->owner;
10948 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10949 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10950 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10951 && elfsec < elf_numsections (sub)
10952 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10953 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10954 {
10955 seen_linkorder++;
10956 linkorder_sec = s;
10957 }
10958 else
10959 {
10960 seen_other++;
10961 other_sec = s;
10962 }
10963 }
10964 else
10965 seen_other++;
10966
10967 if (seen_other && seen_linkorder)
10968 {
10969 if (other_sec && linkorder_sec)
10970 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10971 o, linkorder_sec,
10972 linkorder_sec->owner, other_sec,
10973 other_sec->owner);
10974 else
10975 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10976 o);
10977 bfd_set_error (bfd_error_bad_value);
10978 return FALSE;
10979 }
10980 }
10981
10982 if (!seen_linkorder)
10983 return TRUE;
10984
10985 sections = (struct bfd_link_order **)
10986 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10987 if (sections == NULL)
10988 return FALSE;
10989 seen_linkorder = 0;
10990
10991 for (p = o->map_head.link_order; p != NULL; p = p->next)
10992 {
10993 sections[seen_linkorder++] = p;
10994 }
10995 /* Sort the input sections in the order of their linked section. */
10996 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10997 compare_link_order);
10998
10999 /* Change the offsets of the sections. */
11000 offset = 0;
11001 for (n = 0; n < seen_linkorder; n++)
11002 {
11003 s = sections[n]->u.indirect.section;
11004 offset &= ~(bfd_vma) 0 << s->alignment_power;
11005 s->output_offset = offset / bfd_octets_per_byte (abfd);
11006 sections[n]->offset = offset;
11007 offset += sections[n]->size;
11008 }
11009
11010 free (sections);
11011 return TRUE;
11012 }
11013
11014 static void
11015 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11016 {
11017 asection *o;
11018
11019 if (flinfo->symstrtab != NULL)
11020 _bfd_elf_strtab_free (flinfo->symstrtab);
11021 if (flinfo->contents != NULL)
11022 free (flinfo->contents);
11023 if (flinfo->external_relocs != NULL)
11024 free (flinfo->external_relocs);
11025 if (flinfo->internal_relocs != NULL)
11026 free (flinfo->internal_relocs);
11027 if (flinfo->external_syms != NULL)
11028 free (flinfo->external_syms);
11029 if (flinfo->locsym_shndx != NULL)
11030 free (flinfo->locsym_shndx);
11031 if (flinfo->internal_syms != NULL)
11032 free (flinfo->internal_syms);
11033 if (flinfo->indices != NULL)
11034 free (flinfo->indices);
11035 if (flinfo->sections != NULL)
11036 free (flinfo->sections);
11037 if (flinfo->symshndxbuf != NULL)
11038 free (flinfo->symshndxbuf);
11039 for (o = obfd->sections; o != NULL; o = o->next)
11040 {
11041 struct bfd_elf_section_data *esdo = elf_section_data (o);
11042 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11043 free (esdo->rel.hashes);
11044 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11045 free (esdo->rela.hashes);
11046 }
11047 }
11048
11049 /* Do the final step of an ELF link. */
11050
11051 bfd_boolean
11052 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11053 {
11054 bfd_boolean dynamic;
11055 bfd_boolean emit_relocs;
11056 bfd *dynobj;
11057 struct elf_final_link_info flinfo;
11058 asection *o;
11059 struct bfd_link_order *p;
11060 bfd *sub;
11061 bfd_size_type max_contents_size;
11062 bfd_size_type max_external_reloc_size;
11063 bfd_size_type max_internal_reloc_count;
11064 bfd_size_type max_sym_count;
11065 bfd_size_type max_sym_shndx_count;
11066 Elf_Internal_Sym elfsym;
11067 unsigned int i;
11068 Elf_Internal_Shdr *symtab_hdr;
11069 Elf_Internal_Shdr *symtab_shndx_hdr;
11070 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11071 struct elf_outext_info eoinfo;
11072 bfd_boolean merged;
11073 size_t relativecount = 0;
11074 asection *reldyn = 0;
11075 bfd_size_type amt;
11076 asection *attr_section = NULL;
11077 bfd_vma attr_size = 0;
11078 const char *std_attrs_section;
11079
11080 if (! is_elf_hash_table (info->hash))
11081 return FALSE;
11082
11083 if (bfd_link_pic (info))
11084 abfd->flags |= DYNAMIC;
11085
11086 dynamic = elf_hash_table (info)->dynamic_sections_created;
11087 dynobj = elf_hash_table (info)->dynobj;
11088
11089 emit_relocs = (bfd_link_relocatable (info)
11090 || info->emitrelocations);
11091
11092 flinfo.info = info;
11093 flinfo.output_bfd = abfd;
11094 flinfo.symstrtab = _bfd_elf_strtab_init ();
11095 if (flinfo.symstrtab == NULL)
11096 return FALSE;
11097
11098 if (! dynamic)
11099 {
11100 flinfo.hash_sec = NULL;
11101 flinfo.symver_sec = NULL;
11102 }
11103 else
11104 {
11105 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11106 /* Note that dynsym_sec can be NULL (on VMS). */
11107 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11108 /* Note that it is OK if symver_sec is NULL. */
11109 }
11110
11111 flinfo.contents = NULL;
11112 flinfo.external_relocs = NULL;
11113 flinfo.internal_relocs = NULL;
11114 flinfo.external_syms = NULL;
11115 flinfo.locsym_shndx = NULL;
11116 flinfo.internal_syms = NULL;
11117 flinfo.indices = NULL;
11118 flinfo.sections = NULL;
11119 flinfo.symshndxbuf = NULL;
11120 flinfo.filesym_count = 0;
11121
11122 /* The object attributes have been merged. Remove the input
11123 sections from the link, and set the contents of the output
11124 secton. */
11125 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11126 for (o = abfd->sections; o != NULL; o = o->next)
11127 {
11128 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11129 || strcmp (o->name, ".gnu.attributes") == 0)
11130 {
11131 for (p = o->map_head.link_order; p != NULL; p = p->next)
11132 {
11133 asection *input_section;
11134
11135 if (p->type != bfd_indirect_link_order)
11136 continue;
11137 input_section = p->u.indirect.section;
11138 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11139 elf_link_input_bfd ignores this section. */
11140 input_section->flags &= ~SEC_HAS_CONTENTS;
11141 }
11142
11143 attr_size = bfd_elf_obj_attr_size (abfd);
11144 if (attr_size)
11145 {
11146 bfd_set_section_size (abfd, o, attr_size);
11147 attr_section = o;
11148 /* Skip this section later on. */
11149 o->map_head.link_order = NULL;
11150 }
11151 else
11152 o->flags |= SEC_EXCLUDE;
11153 }
11154 }
11155
11156 /* Count up the number of relocations we will output for each output
11157 section, so that we know the sizes of the reloc sections. We
11158 also figure out some maximum sizes. */
11159 max_contents_size = 0;
11160 max_external_reloc_size = 0;
11161 max_internal_reloc_count = 0;
11162 max_sym_count = 0;
11163 max_sym_shndx_count = 0;
11164 merged = FALSE;
11165 for (o = abfd->sections; o != NULL; o = o->next)
11166 {
11167 struct bfd_elf_section_data *esdo = elf_section_data (o);
11168 o->reloc_count = 0;
11169
11170 for (p = o->map_head.link_order; p != NULL; p = p->next)
11171 {
11172 unsigned int reloc_count = 0;
11173 unsigned int additional_reloc_count = 0;
11174 struct bfd_elf_section_data *esdi = NULL;
11175
11176 if (p->type == bfd_section_reloc_link_order
11177 || p->type == bfd_symbol_reloc_link_order)
11178 reloc_count = 1;
11179 else if (p->type == bfd_indirect_link_order)
11180 {
11181 asection *sec;
11182
11183 sec = p->u.indirect.section;
11184 esdi = elf_section_data (sec);
11185
11186 /* Mark all sections which are to be included in the
11187 link. This will normally be every section. We need
11188 to do this so that we can identify any sections which
11189 the linker has decided to not include. */
11190 sec->linker_mark = TRUE;
11191
11192 if (sec->flags & SEC_MERGE)
11193 merged = TRUE;
11194
11195 if (esdo->this_hdr.sh_type == SHT_REL
11196 || esdo->this_hdr.sh_type == SHT_RELA)
11197 /* Some backends use reloc_count in relocation sections
11198 to count particular types of relocs. Of course,
11199 reloc sections themselves can't have relocations. */
11200 reloc_count = 0;
11201 else if (emit_relocs)
11202 {
11203 reloc_count = sec->reloc_count;
11204 if (bed->elf_backend_count_additional_relocs)
11205 {
11206 int c;
11207 c = (*bed->elf_backend_count_additional_relocs) (sec);
11208 additional_reloc_count += c;
11209 }
11210 }
11211 else if (bed->elf_backend_count_relocs)
11212 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11213
11214 if (sec->rawsize > max_contents_size)
11215 max_contents_size = sec->rawsize;
11216 if (sec->size > max_contents_size)
11217 max_contents_size = sec->size;
11218
11219 /* We are interested in just local symbols, not all
11220 symbols. */
11221 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11222 && (sec->owner->flags & DYNAMIC) == 0)
11223 {
11224 size_t sym_count;
11225
11226 if (elf_bad_symtab (sec->owner))
11227 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11228 / bed->s->sizeof_sym);
11229 else
11230 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11231
11232 if (sym_count > max_sym_count)
11233 max_sym_count = sym_count;
11234
11235 if (sym_count > max_sym_shndx_count
11236 && elf_symtab_shndx_list (sec->owner) != NULL)
11237 max_sym_shndx_count = sym_count;
11238
11239 if ((sec->flags & SEC_RELOC) != 0)
11240 {
11241 size_t ext_size = 0;
11242
11243 if (esdi->rel.hdr != NULL)
11244 ext_size = esdi->rel.hdr->sh_size;
11245 if (esdi->rela.hdr != NULL)
11246 ext_size += esdi->rela.hdr->sh_size;
11247
11248 if (ext_size > max_external_reloc_size)
11249 max_external_reloc_size = ext_size;
11250 if (sec->reloc_count > max_internal_reloc_count)
11251 max_internal_reloc_count = sec->reloc_count;
11252 }
11253 }
11254 }
11255
11256 if (reloc_count == 0)
11257 continue;
11258
11259 reloc_count += additional_reloc_count;
11260 o->reloc_count += reloc_count;
11261
11262 if (p->type == bfd_indirect_link_order && emit_relocs)
11263 {
11264 if (esdi->rel.hdr)
11265 {
11266 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11267 esdo->rel.count += additional_reloc_count;
11268 }
11269 if (esdi->rela.hdr)
11270 {
11271 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11272 esdo->rela.count += additional_reloc_count;
11273 }
11274 }
11275 else
11276 {
11277 if (o->use_rela_p)
11278 esdo->rela.count += reloc_count;
11279 else
11280 esdo->rel.count += reloc_count;
11281 }
11282 }
11283
11284 if (o->reloc_count > 0)
11285 o->flags |= SEC_RELOC;
11286 else
11287 {
11288 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11289 set it (this is probably a bug) and if it is set
11290 assign_section_numbers will create a reloc section. */
11291 o->flags &=~ SEC_RELOC;
11292 }
11293
11294 /* If the SEC_ALLOC flag is not set, force the section VMA to
11295 zero. This is done in elf_fake_sections as well, but forcing
11296 the VMA to 0 here will ensure that relocs against these
11297 sections are handled correctly. */
11298 if ((o->flags & SEC_ALLOC) == 0
11299 && ! o->user_set_vma)
11300 o->vma = 0;
11301 }
11302
11303 if (! bfd_link_relocatable (info) && merged)
11304 elf_link_hash_traverse (elf_hash_table (info),
11305 _bfd_elf_link_sec_merge_syms, abfd);
11306
11307 /* Figure out the file positions for everything but the symbol table
11308 and the relocs. We set symcount to force assign_section_numbers
11309 to create a symbol table. */
11310 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11311 BFD_ASSERT (! abfd->output_has_begun);
11312 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11313 goto error_return;
11314
11315 /* Set sizes, and assign file positions for reloc sections. */
11316 for (o = abfd->sections; o != NULL; o = o->next)
11317 {
11318 struct bfd_elf_section_data *esdo = elf_section_data (o);
11319 if ((o->flags & SEC_RELOC) != 0)
11320 {
11321 if (esdo->rel.hdr
11322 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11323 goto error_return;
11324
11325 if (esdo->rela.hdr
11326 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11327 goto error_return;
11328 }
11329
11330 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11331 to count upwards while actually outputting the relocations. */
11332 esdo->rel.count = 0;
11333 esdo->rela.count = 0;
11334
11335 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11336 {
11337 /* Cache the section contents so that they can be compressed
11338 later. Use bfd_malloc since it will be freed by
11339 bfd_compress_section_contents. */
11340 unsigned char *contents = esdo->this_hdr.contents;
11341 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11342 abort ();
11343 contents
11344 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11345 if (contents == NULL)
11346 goto error_return;
11347 esdo->this_hdr.contents = contents;
11348 }
11349 }
11350
11351 /* We have now assigned file positions for all the sections except
11352 .symtab, .strtab, and non-loaded reloc sections. We start the
11353 .symtab section at the current file position, and write directly
11354 to it. We build the .strtab section in memory. */
11355 bfd_get_symcount (abfd) = 0;
11356 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11357 /* sh_name is set in prep_headers. */
11358 symtab_hdr->sh_type = SHT_SYMTAB;
11359 /* sh_flags, sh_addr and sh_size all start off zero. */
11360 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11361 /* sh_link is set in assign_section_numbers. */
11362 /* sh_info is set below. */
11363 /* sh_offset is set just below. */
11364 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11365
11366 if (max_sym_count < 20)
11367 max_sym_count = 20;
11368 elf_hash_table (info)->strtabsize = max_sym_count;
11369 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11370 elf_hash_table (info)->strtab
11371 = (struct elf_sym_strtab *) bfd_malloc (amt);
11372 if (elf_hash_table (info)->strtab == NULL)
11373 goto error_return;
11374 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11375 flinfo.symshndxbuf
11376 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11377 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11378
11379 if (info->strip != strip_all || emit_relocs)
11380 {
11381 file_ptr off = elf_next_file_pos (abfd);
11382
11383 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11384
11385 /* Note that at this point elf_next_file_pos (abfd) is
11386 incorrect. We do not yet know the size of the .symtab section.
11387 We correct next_file_pos below, after we do know the size. */
11388
11389 /* Start writing out the symbol table. The first symbol is always a
11390 dummy symbol. */
11391 elfsym.st_value = 0;
11392 elfsym.st_size = 0;
11393 elfsym.st_info = 0;
11394 elfsym.st_other = 0;
11395 elfsym.st_shndx = SHN_UNDEF;
11396 elfsym.st_target_internal = 0;
11397 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11398 bfd_und_section_ptr, NULL) != 1)
11399 goto error_return;
11400
11401 /* Output a symbol for each section. We output these even if we are
11402 discarding local symbols, since they are used for relocs. These
11403 symbols have no names. We store the index of each one in the
11404 index field of the section, so that we can find it again when
11405 outputting relocs. */
11406
11407 elfsym.st_size = 0;
11408 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11409 elfsym.st_other = 0;
11410 elfsym.st_value = 0;
11411 elfsym.st_target_internal = 0;
11412 for (i = 1; i < elf_numsections (abfd); i++)
11413 {
11414 o = bfd_section_from_elf_index (abfd, i);
11415 if (o != NULL)
11416 {
11417 o->target_index = bfd_get_symcount (abfd);
11418 elfsym.st_shndx = i;
11419 if (!bfd_link_relocatable (info))
11420 elfsym.st_value = o->vma;
11421 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11422 NULL) != 1)
11423 goto error_return;
11424 }
11425 }
11426 }
11427
11428 /* Allocate some memory to hold information read in from the input
11429 files. */
11430 if (max_contents_size != 0)
11431 {
11432 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11433 if (flinfo.contents == NULL)
11434 goto error_return;
11435 }
11436
11437 if (max_external_reloc_size != 0)
11438 {
11439 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11440 if (flinfo.external_relocs == NULL)
11441 goto error_return;
11442 }
11443
11444 if (max_internal_reloc_count != 0)
11445 {
11446 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11447 amt *= sizeof (Elf_Internal_Rela);
11448 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11449 if (flinfo.internal_relocs == NULL)
11450 goto error_return;
11451 }
11452
11453 if (max_sym_count != 0)
11454 {
11455 amt = max_sym_count * bed->s->sizeof_sym;
11456 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11457 if (flinfo.external_syms == NULL)
11458 goto error_return;
11459
11460 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11461 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11462 if (flinfo.internal_syms == NULL)
11463 goto error_return;
11464
11465 amt = max_sym_count * sizeof (long);
11466 flinfo.indices = (long int *) bfd_malloc (amt);
11467 if (flinfo.indices == NULL)
11468 goto error_return;
11469
11470 amt = max_sym_count * sizeof (asection *);
11471 flinfo.sections = (asection **) bfd_malloc (amt);
11472 if (flinfo.sections == NULL)
11473 goto error_return;
11474 }
11475
11476 if (max_sym_shndx_count != 0)
11477 {
11478 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11479 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11480 if (flinfo.locsym_shndx == NULL)
11481 goto error_return;
11482 }
11483
11484 if (elf_hash_table (info)->tls_sec)
11485 {
11486 bfd_vma base, end = 0;
11487 asection *sec;
11488
11489 for (sec = elf_hash_table (info)->tls_sec;
11490 sec && (sec->flags & SEC_THREAD_LOCAL);
11491 sec = sec->next)
11492 {
11493 bfd_size_type size = sec->size;
11494
11495 if (size == 0
11496 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11497 {
11498 struct bfd_link_order *ord = sec->map_tail.link_order;
11499
11500 if (ord != NULL)
11501 size = ord->offset + ord->size;
11502 }
11503 end = sec->vma + size;
11504 }
11505 base = elf_hash_table (info)->tls_sec->vma;
11506 /* Only align end of TLS section if static TLS doesn't have special
11507 alignment requirements. */
11508 if (bed->static_tls_alignment == 1)
11509 end = align_power (end,
11510 elf_hash_table (info)->tls_sec->alignment_power);
11511 elf_hash_table (info)->tls_size = end - base;
11512 }
11513
11514 /* Reorder SHF_LINK_ORDER sections. */
11515 for (o = abfd->sections; o != NULL; o = o->next)
11516 {
11517 if (!elf_fixup_link_order (abfd, o))
11518 return FALSE;
11519 }
11520
11521 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11522 return FALSE;
11523
11524 /* Since ELF permits relocations to be against local symbols, we
11525 must have the local symbols available when we do the relocations.
11526 Since we would rather only read the local symbols once, and we
11527 would rather not keep them in memory, we handle all the
11528 relocations for a single input file at the same time.
11529
11530 Unfortunately, there is no way to know the total number of local
11531 symbols until we have seen all of them, and the local symbol
11532 indices precede the global symbol indices. This means that when
11533 we are generating relocatable output, and we see a reloc against
11534 a global symbol, we can not know the symbol index until we have
11535 finished examining all the local symbols to see which ones we are
11536 going to output. To deal with this, we keep the relocations in
11537 memory, and don't output them until the end of the link. This is
11538 an unfortunate waste of memory, but I don't see a good way around
11539 it. Fortunately, it only happens when performing a relocatable
11540 link, which is not the common case. FIXME: If keep_memory is set
11541 we could write the relocs out and then read them again; I don't
11542 know how bad the memory loss will be. */
11543
11544 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11545 sub->output_has_begun = FALSE;
11546 for (o = abfd->sections; o != NULL; o = o->next)
11547 {
11548 for (p = o->map_head.link_order; p != NULL; p = p->next)
11549 {
11550 if (p->type == bfd_indirect_link_order
11551 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11552 == bfd_target_elf_flavour)
11553 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11554 {
11555 if (! sub->output_has_begun)
11556 {
11557 if (! elf_link_input_bfd (&flinfo, sub))
11558 goto error_return;
11559 sub->output_has_begun = TRUE;
11560 }
11561 }
11562 else if (p->type == bfd_section_reloc_link_order
11563 || p->type == bfd_symbol_reloc_link_order)
11564 {
11565 if (! elf_reloc_link_order (abfd, info, o, p))
11566 goto error_return;
11567 }
11568 else
11569 {
11570 if (! _bfd_default_link_order (abfd, info, o, p))
11571 {
11572 if (p->type == bfd_indirect_link_order
11573 && (bfd_get_flavour (sub)
11574 == bfd_target_elf_flavour)
11575 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11576 != bed->s->elfclass))
11577 {
11578 const char *iclass, *oclass;
11579
11580 switch (bed->s->elfclass)
11581 {
11582 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11583 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11584 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11585 default: abort ();
11586 }
11587
11588 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11589 {
11590 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11591 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11592 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11593 default: abort ();
11594 }
11595
11596 bfd_set_error (bfd_error_wrong_format);
11597 (*_bfd_error_handler)
11598 (_("%B: file class %s incompatible with %s"),
11599 sub, iclass, oclass);
11600 }
11601
11602 goto error_return;
11603 }
11604 }
11605 }
11606 }
11607
11608 /* Free symbol buffer if needed. */
11609 if (!info->reduce_memory_overheads)
11610 {
11611 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11612 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11613 && elf_tdata (sub)->symbuf)
11614 {
11615 free (elf_tdata (sub)->symbuf);
11616 elf_tdata (sub)->symbuf = NULL;
11617 }
11618 }
11619
11620 /* Output any global symbols that got converted to local in a
11621 version script or due to symbol visibility. We do this in a
11622 separate step since ELF requires all local symbols to appear
11623 prior to any global symbols. FIXME: We should only do this if
11624 some global symbols were, in fact, converted to become local.
11625 FIXME: Will this work correctly with the Irix 5 linker? */
11626 eoinfo.failed = FALSE;
11627 eoinfo.flinfo = &flinfo;
11628 eoinfo.localsyms = TRUE;
11629 eoinfo.file_sym_done = FALSE;
11630 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11631 if (eoinfo.failed)
11632 return FALSE;
11633
11634 /* If backend needs to output some local symbols not present in the hash
11635 table, do it now. */
11636 if (bed->elf_backend_output_arch_local_syms
11637 && (info->strip != strip_all || emit_relocs))
11638 {
11639 typedef int (*out_sym_func)
11640 (void *, const char *, Elf_Internal_Sym *, asection *,
11641 struct elf_link_hash_entry *);
11642
11643 if (! ((*bed->elf_backend_output_arch_local_syms)
11644 (abfd, info, &flinfo,
11645 (out_sym_func) elf_link_output_symstrtab)))
11646 return FALSE;
11647 }
11648
11649 /* That wrote out all the local symbols. Finish up the symbol table
11650 with the global symbols. Even if we want to strip everything we
11651 can, we still need to deal with those global symbols that got
11652 converted to local in a version script. */
11653
11654 /* The sh_info field records the index of the first non local symbol. */
11655 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11656
11657 if (dynamic
11658 && elf_hash_table (info)->dynsym != NULL
11659 && (elf_hash_table (info)->dynsym->output_section
11660 != bfd_abs_section_ptr))
11661 {
11662 Elf_Internal_Sym sym;
11663 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11664 long last_local = 0;
11665
11666 /* Write out the section symbols for the output sections. */
11667 if (bfd_link_pic (info)
11668 || elf_hash_table (info)->is_relocatable_executable)
11669 {
11670 asection *s;
11671
11672 sym.st_size = 0;
11673 sym.st_name = 0;
11674 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11675 sym.st_other = 0;
11676 sym.st_target_internal = 0;
11677
11678 for (s = abfd->sections; s != NULL; s = s->next)
11679 {
11680 int indx;
11681 bfd_byte *dest;
11682 long dynindx;
11683
11684 dynindx = elf_section_data (s)->dynindx;
11685 if (dynindx <= 0)
11686 continue;
11687 indx = elf_section_data (s)->this_idx;
11688 BFD_ASSERT (indx > 0);
11689 sym.st_shndx = indx;
11690 if (! check_dynsym (abfd, &sym))
11691 return FALSE;
11692 sym.st_value = s->vma;
11693 dest = dynsym + dynindx * bed->s->sizeof_sym;
11694 if (last_local < dynindx)
11695 last_local = dynindx;
11696 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11697 }
11698 }
11699
11700 /* Write out the local dynsyms. */
11701 if (elf_hash_table (info)->dynlocal)
11702 {
11703 struct elf_link_local_dynamic_entry *e;
11704 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11705 {
11706 asection *s;
11707 bfd_byte *dest;
11708
11709 /* Copy the internal symbol and turn off visibility.
11710 Note that we saved a word of storage and overwrote
11711 the original st_name with the dynstr_index. */
11712 sym = e->isym;
11713 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11714
11715 s = bfd_section_from_elf_index (e->input_bfd,
11716 e->isym.st_shndx);
11717 if (s != NULL)
11718 {
11719 sym.st_shndx =
11720 elf_section_data (s->output_section)->this_idx;
11721 if (! check_dynsym (abfd, &sym))
11722 return FALSE;
11723 sym.st_value = (s->output_section->vma
11724 + s->output_offset
11725 + e->isym.st_value);
11726 }
11727
11728 if (last_local < e->dynindx)
11729 last_local = e->dynindx;
11730
11731 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11732 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11733 }
11734 }
11735
11736 elf_section_data (elf_hash_table (info)->dynsym->output_section)->this_hdr.sh_info =
11737 last_local + 1;
11738 }
11739
11740 /* We get the global symbols from the hash table. */
11741 eoinfo.failed = FALSE;
11742 eoinfo.localsyms = FALSE;
11743 eoinfo.flinfo = &flinfo;
11744 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11745 if (eoinfo.failed)
11746 return FALSE;
11747
11748 /* If backend needs to output some symbols not present in the hash
11749 table, do it now. */
11750 if (bed->elf_backend_output_arch_syms
11751 && (info->strip != strip_all || emit_relocs))
11752 {
11753 typedef int (*out_sym_func)
11754 (void *, const char *, Elf_Internal_Sym *, asection *,
11755 struct elf_link_hash_entry *);
11756
11757 if (! ((*bed->elf_backend_output_arch_syms)
11758 (abfd, info, &flinfo,
11759 (out_sym_func) elf_link_output_symstrtab)))
11760 return FALSE;
11761 }
11762
11763 /* Finalize the .strtab section. */
11764 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11765
11766 /* Swap out the .strtab section. */
11767 if (!elf_link_swap_symbols_out (&flinfo))
11768 return FALSE;
11769
11770 /* Now we know the size of the symtab section. */
11771 if (bfd_get_symcount (abfd) > 0)
11772 {
11773 /* Finish up and write out the symbol string table (.strtab)
11774 section. */
11775 Elf_Internal_Shdr *symstrtab_hdr;
11776 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11777
11778 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11779 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11780 {
11781 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11782 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11783 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11784 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11785 symtab_shndx_hdr->sh_size = amt;
11786
11787 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11788 off, TRUE);
11789
11790 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11791 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11792 return FALSE;
11793 }
11794
11795 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11796 /* sh_name was set in prep_headers. */
11797 symstrtab_hdr->sh_type = SHT_STRTAB;
11798 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11799 symstrtab_hdr->sh_addr = 0;
11800 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11801 symstrtab_hdr->sh_entsize = 0;
11802 symstrtab_hdr->sh_link = 0;
11803 symstrtab_hdr->sh_info = 0;
11804 /* sh_offset is set just below. */
11805 symstrtab_hdr->sh_addralign = 1;
11806
11807 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11808 off, TRUE);
11809 elf_next_file_pos (abfd) = off;
11810
11811 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11812 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11813 return FALSE;
11814 }
11815
11816 /* Adjust the relocs to have the correct symbol indices. */
11817 for (o = abfd->sections; o != NULL; o = o->next)
11818 {
11819 struct bfd_elf_section_data *esdo = elf_section_data (o);
11820 bfd_boolean sort;
11821 if ((o->flags & SEC_RELOC) == 0)
11822 continue;
11823
11824 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11825 if (esdo->rel.hdr != NULL
11826 && !elf_link_adjust_relocs (abfd, &esdo->rel, sort))
11827 return FALSE;
11828 if (esdo->rela.hdr != NULL
11829 && !elf_link_adjust_relocs (abfd, &esdo->rela, sort))
11830 return FALSE;
11831
11832 /* Set the reloc_count field to 0 to prevent write_relocs from
11833 trying to swap the relocs out itself. */
11834 o->reloc_count = 0;
11835 }
11836
11837 if (dynamic && info->combreloc && dynobj != NULL)
11838 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11839
11840 /* If we are linking against a dynamic object, or generating a
11841 shared library, finish up the dynamic linking information. */
11842 if (dynamic)
11843 {
11844 bfd_byte *dyncon, *dynconend;
11845
11846 /* Fix up .dynamic entries. */
11847 o = bfd_get_linker_section (dynobj, ".dynamic");
11848 BFD_ASSERT (o != NULL);
11849
11850 dyncon = o->contents;
11851 dynconend = o->contents + o->size;
11852 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11853 {
11854 Elf_Internal_Dyn dyn;
11855 const char *name;
11856 unsigned int type;
11857
11858 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11859
11860 switch (dyn.d_tag)
11861 {
11862 default:
11863 continue;
11864 case DT_NULL:
11865 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11866 {
11867 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11868 {
11869 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11870 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11871 default: continue;
11872 }
11873 dyn.d_un.d_val = relativecount;
11874 relativecount = 0;
11875 break;
11876 }
11877 continue;
11878
11879 case DT_INIT:
11880 name = info->init_function;
11881 goto get_sym;
11882 case DT_FINI:
11883 name = info->fini_function;
11884 get_sym:
11885 {
11886 struct elf_link_hash_entry *h;
11887
11888 h = elf_link_hash_lookup (elf_hash_table (info), name,
11889 FALSE, FALSE, TRUE);
11890 if (h != NULL
11891 && (h->root.type == bfd_link_hash_defined
11892 || h->root.type == bfd_link_hash_defweak))
11893 {
11894 dyn.d_un.d_ptr = h->root.u.def.value;
11895 o = h->root.u.def.section;
11896 if (o->output_section != NULL)
11897 dyn.d_un.d_ptr += (o->output_section->vma
11898 + o->output_offset);
11899 else
11900 {
11901 /* The symbol is imported from another shared
11902 library and does not apply to this one. */
11903 dyn.d_un.d_ptr = 0;
11904 }
11905 break;
11906 }
11907 }
11908 continue;
11909
11910 case DT_PREINIT_ARRAYSZ:
11911 name = ".preinit_array";
11912 goto get_out_size;
11913 case DT_INIT_ARRAYSZ:
11914 name = ".init_array";
11915 goto get_out_size;
11916 case DT_FINI_ARRAYSZ:
11917 name = ".fini_array";
11918 get_out_size:
11919 o = bfd_get_section_by_name (abfd, name);
11920 if (o == NULL)
11921 {
11922 (*_bfd_error_handler)
11923 (_("could not find section %s"), name);
11924 goto error_return;
11925 }
11926 if (o->size == 0)
11927 (*_bfd_error_handler)
11928 (_("warning: %s section has zero size"), name);
11929 dyn.d_un.d_val = o->size;
11930 break;
11931
11932 case DT_PREINIT_ARRAY:
11933 name = ".preinit_array";
11934 goto get_out_vma;
11935 case DT_INIT_ARRAY:
11936 name = ".init_array";
11937 goto get_out_vma;
11938 case DT_FINI_ARRAY:
11939 name = ".fini_array";
11940 get_out_vma:
11941 o = bfd_get_section_by_name (abfd, name);
11942 goto do_vma;
11943
11944 case DT_HASH:
11945 name = ".hash";
11946 goto get_vma;
11947 case DT_GNU_HASH:
11948 name = ".gnu.hash";
11949 goto get_vma;
11950 case DT_STRTAB:
11951 name = ".dynstr";
11952 goto get_vma;
11953 case DT_SYMTAB:
11954 name = ".dynsym";
11955 goto get_vma;
11956 case DT_VERDEF:
11957 name = ".gnu.version_d";
11958 goto get_vma;
11959 case DT_VERNEED:
11960 name = ".gnu.version_r";
11961 goto get_vma;
11962 case DT_VERSYM:
11963 name = ".gnu.version";
11964 get_vma:
11965 o = bfd_get_linker_section (dynobj, name);
11966 do_vma:
11967 if (o == NULL)
11968 {
11969 (*_bfd_error_handler)
11970 (_("could not find section %s"), name);
11971 goto error_return;
11972 }
11973 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11974 {
11975 (*_bfd_error_handler)
11976 (_("warning: section '%s' is being made into a note"), name);
11977 bfd_set_error (bfd_error_nonrepresentable_section);
11978 goto error_return;
11979 }
11980 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
11981 break;
11982
11983 case DT_REL:
11984 case DT_RELA:
11985 case DT_RELSZ:
11986 case DT_RELASZ:
11987 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11988 type = SHT_REL;
11989 else
11990 type = SHT_RELA;
11991 dyn.d_un.d_val = 0;
11992 dyn.d_un.d_ptr = 0;
11993 for (i = 1; i < elf_numsections (abfd); i++)
11994 {
11995 Elf_Internal_Shdr *hdr;
11996
11997 hdr = elf_elfsections (abfd)[i];
11998 if (hdr->sh_type == type
11999 && (hdr->sh_flags & SHF_ALLOC) != 0)
12000 {
12001 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12002 dyn.d_un.d_val += hdr->sh_size;
12003 else
12004 {
12005 if (dyn.d_un.d_ptr == 0
12006 || hdr->sh_addr < dyn.d_un.d_ptr)
12007 dyn.d_un.d_ptr = hdr->sh_addr;
12008 }
12009 }
12010 }
12011 break;
12012 }
12013 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12014 }
12015 }
12016
12017 /* If we have created any dynamic sections, then output them. */
12018 if (dynobj != NULL)
12019 {
12020 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12021 goto error_return;
12022
12023 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12024 if (((info->warn_shared_textrel && bfd_link_pic (info))
12025 || info->error_textrel)
12026 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12027 {
12028 bfd_byte *dyncon, *dynconend;
12029
12030 dyncon = o->contents;
12031 dynconend = o->contents + o->size;
12032 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12033 {
12034 Elf_Internal_Dyn dyn;
12035
12036 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12037
12038 if (dyn.d_tag == DT_TEXTREL)
12039 {
12040 if (info->error_textrel)
12041 info->callbacks->einfo
12042 (_("%P%X: read-only segment has dynamic relocations.\n"));
12043 else
12044 info->callbacks->einfo
12045 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12046 break;
12047 }
12048 }
12049 }
12050
12051 for (o = dynobj->sections; o != NULL; o = o->next)
12052 {
12053 if ((o->flags & SEC_HAS_CONTENTS) == 0
12054 || o->size == 0
12055 || o->output_section == bfd_abs_section_ptr)
12056 continue;
12057 if ((o->flags & SEC_LINKER_CREATED) == 0)
12058 {
12059 /* At this point, we are only interested in sections
12060 created by _bfd_elf_link_create_dynamic_sections. */
12061 continue;
12062 }
12063 if (elf_hash_table (info)->stab_info.stabstr == o)
12064 continue;
12065 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12066 continue;
12067 if (strcmp (o->name, ".dynstr") != 0)
12068 {
12069 if (! bfd_set_section_contents (abfd, o->output_section,
12070 o->contents,
12071 (file_ptr) o->output_offset
12072 * bfd_octets_per_byte (abfd),
12073 o->size))
12074 goto error_return;
12075 }
12076 else
12077 {
12078 /* The contents of the .dynstr section are actually in a
12079 stringtab. */
12080 file_ptr off;
12081
12082 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12083 if (bfd_seek (abfd, off, SEEK_SET) != 0
12084 || ! _bfd_elf_strtab_emit (abfd,
12085 elf_hash_table (info)->dynstr))
12086 goto error_return;
12087 }
12088 }
12089 }
12090
12091 if (bfd_link_relocatable (info))
12092 {
12093 bfd_boolean failed = FALSE;
12094
12095 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12096 if (failed)
12097 goto error_return;
12098 }
12099
12100 /* If we have optimized stabs strings, output them. */
12101 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12102 {
12103 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12104 goto error_return;
12105 }
12106
12107 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12108 goto error_return;
12109
12110 elf_final_link_free (abfd, &flinfo);
12111
12112 elf_linker (abfd) = TRUE;
12113
12114 if (attr_section)
12115 {
12116 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12117 if (contents == NULL)
12118 return FALSE; /* Bail out and fail. */
12119 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12120 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12121 free (contents);
12122 }
12123
12124 return TRUE;
12125
12126 error_return:
12127 elf_final_link_free (abfd, &flinfo);
12128 return FALSE;
12129 }
12130 \f
12131 /* Initialize COOKIE for input bfd ABFD. */
12132
12133 static bfd_boolean
12134 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12135 struct bfd_link_info *info, bfd *abfd)
12136 {
12137 Elf_Internal_Shdr *symtab_hdr;
12138 const struct elf_backend_data *bed;
12139
12140 bed = get_elf_backend_data (abfd);
12141 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12142
12143 cookie->abfd = abfd;
12144 cookie->sym_hashes = elf_sym_hashes (abfd);
12145 cookie->bad_symtab = elf_bad_symtab (abfd);
12146 if (cookie->bad_symtab)
12147 {
12148 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12149 cookie->extsymoff = 0;
12150 }
12151 else
12152 {
12153 cookie->locsymcount = symtab_hdr->sh_info;
12154 cookie->extsymoff = symtab_hdr->sh_info;
12155 }
12156
12157 if (bed->s->arch_size == 32)
12158 cookie->r_sym_shift = 8;
12159 else
12160 cookie->r_sym_shift = 32;
12161
12162 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12163 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12164 {
12165 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12166 cookie->locsymcount, 0,
12167 NULL, NULL, NULL);
12168 if (cookie->locsyms == NULL)
12169 {
12170 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12171 return FALSE;
12172 }
12173 if (info->keep_memory)
12174 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12175 }
12176 return TRUE;
12177 }
12178
12179 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12180
12181 static void
12182 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12183 {
12184 Elf_Internal_Shdr *symtab_hdr;
12185
12186 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12187 if (cookie->locsyms != NULL
12188 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12189 free (cookie->locsyms);
12190 }
12191
12192 /* Initialize the relocation information in COOKIE for input section SEC
12193 of input bfd ABFD. */
12194
12195 static bfd_boolean
12196 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12197 struct bfd_link_info *info, bfd *abfd,
12198 asection *sec)
12199 {
12200 const struct elf_backend_data *bed;
12201
12202 if (sec->reloc_count == 0)
12203 {
12204 cookie->rels = NULL;
12205 cookie->relend = NULL;
12206 }
12207 else
12208 {
12209 bed = get_elf_backend_data (abfd);
12210
12211 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12212 info->keep_memory);
12213 if (cookie->rels == NULL)
12214 return FALSE;
12215 cookie->rel = cookie->rels;
12216 cookie->relend = (cookie->rels
12217 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12218 }
12219 cookie->rel = cookie->rels;
12220 return TRUE;
12221 }
12222
12223 /* Free the memory allocated by init_reloc_cookie_rels,
12224 if appropriate. */
12225
12226 static void
12227 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12228 asection *sec)
12229 {
12230 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12231 free (cookie->rels);
12232 }
12233
12234 /* Initialize the whole of COOKIE for input section SEC. */
12235
12236 static bfd_boolean
12237 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12238 struct bfd_link_info *info,
12239 asection *sec)
12240 {
12241 if (!init_reloc_cookie (cookie, info, sec->owner))
12242 goto error1;
12243 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12244 goto error2;
12245 return TRUE;
12246
12247 error2:
12248 fini_reloc_cookie (cookie, sec->owner);
12249 error1:
12250 return FALSE;
12251 }
12252
12253 /* Free the memory allocated by init_reloc_cookie_for_section,
12254 if appropriate. */
12255
12256 static void
12257 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12258 asection *sec)
12259 {
12260 fini_reloc_cookie_rels (cookie, sec);
12261 fini_reloc_cookie (cookie, sec->owner);
12262 }
12263 \f
12264 /* Garbage collect unused sections. */
12265
12266 /* Default gc_mark_hook. */
12267
12268 asection *
12269 _bfd_elf_gc_mark_hook (asection *sec,
12270 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12271 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12272 struct elf_link_hash_entry *h,
12273 Elf_Internal_Sym *sym)
12274 {
12275 if (h != NULL)
12276 {
12277 switch (h->root.type)
12278 {
12279 case bfd_link_hash_defined:
12280 case bfd_link_hash_defweak:
12281 return h->root.u.def.section;
12282
12283 case bfd_link_hash_common:
12284 return h->root.u.c.p->section;
12285
12286 default:
12287 break;
12288 }
12289 }
12290 else
12291 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12292
12293 return NULL;
12294 }
12295
12296 /* For undefined __start_<name> and __stop_<name> symbols, return the
12297 first input section matching <name>. Return NULL otherwise. */
12298
12299 asection *
12300 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12301 struct elf_link_hash_entry *h)
12302 {
12303 asection *s;
12304 const char *sec_name;
12305
12306 if (h->root.type != bfd_link_hash_undefined
12307 && h->root.type != bfd_link_hash_undefweak)
12308 return NULL;
12309
12310 s = h->root.u.undef.section;
12311 if (s != NULL)
12312 {
12313 if (s == (asection *) 0 - 1)
12314 return NULL;
12315 return s;
12316 }
12317
12318 sec_name = NULL;
12319 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12320 sec_name = h->root.root.string + 8;
12321 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12322 sec_name = h->root.root.string + 7;
12323
12324 if (sec_name != NULL && *sec_name != '\0')
12325 {
12326 bfd *i;
12327
12328 for (i = info->input_bfds; i != NULL; i = i->link.next)
12329 {
12330 s = bfd_get_section_by_name (i, sec_name);
12331 if (s != NULL)
12332 {
12333 h->root.u.undef.section = s;
12334 break;
12335 }
12336 }
12337 }
12338
12339 if (s == NULL)
12340 h->root.u.undef.section = (asection *) 0 - 1;
12341
12342 return s;
12343 }
12344
12345 /* COOKIE->rel describes a relocation against section SEC, which is
12346 a section we've decided to keep. Return the section that contains
12347 the relocation symbol, or NULL if no section contains it. */
12348
12349 asection *
12350 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12351 elf_gc_mark_hook_fn gc_mark_hook,
12352 struct elf_reloc_cookie *cookie,
12353 bfd_boolean *start_stop)
12354 {
12355 unsigned long r_symndx;
12356 struct elf_link_hash_entry *h;
12357
12358 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12359 if (r_symndx == STN_UNDEF)
12360 return NULL;
12361
12362 if (r_symndx >= cookie->locsymcount
12363 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12364 {
12365 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12366 if (h == NULL)
12367 {
12368 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12369 sec->owner);
12370 return NULL;
12371 }
12372 while (h->root.type == bfd_link_hash_indirect
12373 || h->root.type == bfd_link_hash_warning)
12374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12375 h->mark = 1;
12376 /* If this symbol is weak and there is a non-weak definition, we
12377 keep the non-weak definition because many backends put
12378 dynamic reloc info on the non-weak definition for code
12379 handling copy relocs. */
12380 if (h->u.weakdef != NULL)
12381 h->u.weakdef->mark = 1;
12382
12383 if (start_stop != NULL)
12384 {
12385 /* To work around a glibc bug, mark all XXX input sections
12386 when there is an as yet undefined reference to __start_XXX
12387 or __stop_XXX symbols. The linker will later define such
12388 symbols for orphan input sections that have a name
12389 representable as a C identifier. */
12390 asection *s = _bfd_elf_is_start_stop (info, h);
12391
12392 if (s != NULL)
12393 {
12394 *start_stop = !s->gc_mark;
12395 return s;
12396 }
12397 }
12398
12399 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12400 }
12401
12402 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12403 &cookie->locsyms[r_symndx]);
12404 }
12405
12406 /* COOKIE->rel describes a relocation against section SEC, which is
12407 a section we've decided to keep. Mark the section that contains
12408 the relocation symbol. */
12409
12410 bfd_boolean
12411 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12412 asection *sec,
12413 elf_gc_mark_hook_fn gc_mark_hook,
12414 struct elf_reloc_cookie *cookie)
12415 {
12416 asection *rsec;
12417 bfd_boolean start_stop = FALSE;
12418
12419 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12420 while (rsec != NULL)
12421 {
12422 if (!rsec->gc_mark)
12423 {
12424 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12425 || (rsec->owner->flags & DYNAMIC) != 0)
12426 rsec->gc_mark = 1;
12427 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12428 return FALSE;
12429 }
12430 if (!start_stop)
12431 break;
12432 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12433 }
12434 return TRUE;
12435 }
12436
12437 /* The mark phase of garbage collection. For a given section, mark
12438 it and any sections in this section's group, and all the sections
12439 which define symbols to which it refers. */
12440
12441 bfd_boolean
12442 _bfd_elf_gc_mark (struct bfd_link_info *info,
12443 asection *sec,
12444 elf_gc_mark_hook_fn gc_mark_hook)
12445 {
12446 bfd_boolean ret;
12447 asection *group_sec, *eh_frame;
12448
12449 sec->gc_mark = 1;
12450
12451 /* Mark all the sections in the group. */
12452 group_sec = elf_section_data (sec)->next_in_group;
12453 if (group_sec && !group_sec->gc_mark)
12454 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12455 return FALSE;
12456
12457 /* Look through the section relocs. */
12458 ret = TRUE;
12459 eh_frame = elf_eh_frame_section (sec->owner);
12460 if ((sec->flags & SEC_RELOC) != 0
12461 && sec->reloc_count > 0
12462 && sec != eh_frame)
12463 {
12464 struct elf_reloc_cookie cookie;
12465
12466 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12467 ret = FALSE;
12468 else
12469 {
12470 for (; cookie.rel < cookie.relend; cookie.rel++)
12471 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12472 {
12473 ret = FALSE;
12474 break;
12475 }
12476 fini_reloc_cookie_for_section (&cookie, sec);
12477 }
12478 }
12479
12480 if (ret && eh_frame && elf_fde_list (sec))
12481 {
12482 struct elf_reloc_cookie cookie;
12483
12484 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12485 ret = FALSE;
12486 else
12487 {
12488 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12489 gc_mark_hook, &cookie))
12490 ret = FALSE;
12491 fini_reloc_cookie_for_section (&cookie, eh_frame);
12492 }
12493 }
12494
12495 eh_frame = elf_section_eh_frame_entry (sec);
12496 if (ret && eh_frame && !eh_frame->gc_mark)
12497 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12498 ret = FALSE;
12499
12500 return ret;
12501 }
12502
12503 /* Scan and mark sections in a special or debug section group. */
12504
12505 static void
12506 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12507 {
12508 /* Point to first section of section group. */
12509 asection *ssec;
12510 /* Used to iterate the section group. */
12511 asection *msec;
12512
12513 bfd_boolean is_special_grp = TRUE;
12514 bfd_boolean is_debug_grp = TRUE;
12515
12516 /* First scan to see if group contains any section other than debug
12517 and special section. */
12518 ssec = msec = elf_next_in_group (grp);
12519 do
12520 {
12521 if ((msec->flags & SEC_DEBUGGING) == 0)
12522 is_debug_grp = FALSE;
12523
12524 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12525 is_special_grp = FALSE;
12526
12527 msec = elf_next_in_group (msec);
12528 }
12529 while (msec != ssec);
12530
12531 /* If this is a pure debug section group or pure special section group,
12532 keep all sections in this group. */
12533 if (is_debug_grp || is_special_grp)
12534 {
12535 do
12536 {
12537 msec->gc_mark = 1;
12538 msec = elf_next_in_group (msec);
12539 }
12540 while (msec != ssec);
12541 }
12542 }
12543
12544 /* Keep debug and special sections. */
12545
12546 bfd_boolean
12547 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12548 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12549 {
12550 bfd *ibfd;
12551
12552 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12553 {
12554 asection *isec;
12555 bfd_boolean some_kept;
12556 bfd_boolean debug_frag_seen;
12557
12558 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12559 continue;
12560
12561 /* Ensure all linker created sections are kept,
12562 see if any other section is already marked,
12563 and note if we have any fragmented debug sections. */
12564 debug_frag_seen = some_kept = FALSE;
12565 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12566 {
12567 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12568 isec->gc_mark = 1;
12569 else if (isec->gc_mark)
12570 some_kept = TRUE;
12571
12572 if (debug_frag_seen == FALSE
12573 && (isec->flags & SEC_DEBUGGING)
12574 && CONST_STRNEQ (isec->name, ".debug_line."))
12575 debug_frag_seen = TRUE;
12576 }
12577
12578 /* If no section in this file will be kept, then we can
12579 toss out the debug and special sections. */
12580 if (!some_kept)
12581 continue;
12582
12583 /* Keep debug and special sections like .comment when they are
12584 not part of a group. Also keep section groups that contain
12585 just debug sections or special sections. */
12586 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12587 {
12588 if ((isec->flags & SEC_GROUP) != 0)
12589 _bfd_elf_gc_mark_debug_special_section_group (isec);
12590 else if (((isec->flags & SEC_DEBUGGING) != 0
12591 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12592 && elf_next_in_group (isec) == NULL)
12593 isec->gc_mark = 1;
12594 }
12595
12596 if (! debug_frag_seen)
12597 continue;
12598
12599 /* Look for CODE sections which are going to be discarded,
12600 and find and discard any fragmented debug sections which
12601 are associated with that code section. */
12602 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12603 if ((isec->flags & SEC_CODE) != 0
12604 && isec->gc_mark == 0)
12605 {
12606 unsigned int ilen;
12607 asection *dsec;
12608
12609 ilen = strlen (isec->name);
12610
12611 /* Association is determined by the name of the debug section
12612 containing the name of the code section as a suffix. For
12613 example .debug_line.text.foo is a debug section associated
12614 with .text.foo. */
12615 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12616 {
12617 unsigned int dlen;
12618
12619 if (dsec->gc_mark == 0
12620 || (dsec->flags & SEC_DEBUGGING) == 0)
12621 continue;
12622
12623 dlen = strlen (dsec->name);
12624
12625 if (dlen > ilen
12626 && strncmp (dsec->name + (dlen - ilen),
12627 isec->name, ilen) == 0)
12628 {
12629 dsec->gc_mark = 0;
12630 }
12631 }
12632 }
12633 }
12634 return TRUE;
12635 }
12636
12637 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12638
12639 struct elf_gc_sweep_symbol_info
12640 {
12641 struct bfd_link_info *info;
12642 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12643 bfd_boolean);
12644 };
12645
12646 static bfd_boolean
12647 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12648 {
12649 if (!h->mark
12650 && (((h->root.type == bfd_link_hash_defined
12651 || h->root.type == bfd_link_hash_defweak)
12652 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12653 && h->root.u.def.section->gc_mark))
12654 || h->root.type == bfd_link_hash_undefined
12655 || h->root.type == bfd_link_hash_undefweak))
12656 {
12657 struct elf_gc_sweep_symbol_info *inf;
12658
12659 inf = (struct elf_gc_sweep_symbol_info *) data;
12660 (*inf->hide_symbol) (inf->info, h, TRUE);
12661 h->def_regular = 0;
12662 h->ref_regular = 0;
12663 h->ref_regular_nonweak = 0;
12664 }
12665
12666 return TRUE;
12667 }
12668
12669 /* The sweep phase of garbage collection. Remove all garbage sections. */
12670
12671 typedef bfd_boolean (*gc_sweep_hook_fn)
12672 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12673
12674 static bfd_boolean
12675 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12676 {
12677 bfd *sub;
12678 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12679 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12680 unsigned long section_sym_count;
12681 struct elf_gc_sweep_symbol_info sweep_info;
12682
12683 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12684 {
12685 asection *o;
12686
12687 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12688 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12689 continue;
12690
12691 for (o = sub->sections; o != NULL; o = o->next)
12692 {
12693 /* When any section in a section group is kept, we keep all
12694 sections in the section group. If the first member of
12695 the section group is excluded, we will also exclude the
12696 group section. */
12697 if (o->flags & SEC_GROUP)
12698 {
12699 asection *first = elf_next_in_group (o);
12700 o->gc_mark = first->gc_mark;
12701 }
12702
12703 if (o->gc_mark)
12704 continue;
12705
12706 /* Skip sweeping sections already excluded. */
12707 if (o->flags & SEC_EXCLUDE)
12708 continue;
12709
12710 /* Since this is early in the link process, it is simple
12711 to remove a section from the output. */
12712 o->flags |= SEC_EXCLUDE;
12713
12714 if (info->print_gc_sections && o->size != 0)
12715 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12716
12717 /* But we also have to update some of the relocation
12718 info we collected before. */
12719 if (gc_sweep_hook
12720 && (o->flags & SEC_RELOC) != 0
12721 && o->reloc_count != 0
12722 && !((info->strip == strip_all || info->strip == strip_debugger)
12723 && (o->flags & SEC_DEBUGGING) != 0)
12724 && !bfd_is_abs_section (o->output_section))
12725 {
12726 Elf_Internal_Rela *internal_relocs;
12727 bfd_boolean r;
12728
12729 internal_relocs
12730 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12731 info->keep_memory);
12732 if (internal_relocs == NULL)
12733 return FALSE;
12734
12735 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12736
12737 if (elf_section_data (o)->relocs != internal_relocs)
12738 free (internal_relocs);
12739
12740 if (!r)
12741 return FALSE;
12742 }
12743 }
12744 }
12745
12746 /* Remove the symbols that were in the swept sections from the dynamic
12747 symbol table. GCFIXME: Anyone know how to get them out of the
12748 static symbol table as well? */
12749 sweep_info.info = info;
12750 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12751 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12752 &sweep_info);
12753
12754 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12755 return TRUE;
12756 }
12757
12758 /* Propagate collected vtable information. This is called through
12759 elf_link_hash_traverse. */
12760
12761 static bfd_boolean
12762 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12763 {
12764 /* Those that are not vtables. */
12765 if (h->vtable == NULL || h->vtable->parent == NULL)
12766 return TRUE;
12767
12768 /* Those vtables that do not have parents, we cannot merge. */
12769 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12770 return TRUE;
12771
12772 /* If we've already been done, exit. */
12773 if (h->vtable->used && h->vtable->used[-1])
12774 return TRUE;
12775
12776 /* Make sure the parent's table is up to date. */
12777 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12778
12779 if (h->vtable->used == NULL)
12780 {
12781 /* None of this table's entries were referenced. Re-use the
12782 parent's table. */
12783 h->vtable->used = h->vtable->parent->vtable->used;
12784 h->vtable->size = h->vtable->parent->vtable->size;
12785 }
12786 else
12787 {
12788 size_t n;
12789 bfd_boolean *cu, *pu;
12790
12791 /* Or the parent's entries into ours. */
12792 cu = h->vtable->used;
12793 cu[-1] = TRUE;
12794 pu = h->vtable->parent->vtable->used;
12795 if (pu != NULL)
12796 {
12797 const struct elf_backend_data *bed;
12798 unsigned int log_file_align;
12799
12800 bed = get_elf_backend_data (h->root.u.def.section->owner);
12801 log_file_align = bed->s->log_file_align;
12802 n = h->vtable->parent->vtable->size >> log_file_align;
12803 while (n--)
12804 {
12805 if (*pu)
12806 *cu = TRUE;
12807 pu++;
12808 cu++;
12809 }
12810 }
12811 }
12812
12813 return TRUE;
12814 }
12815
12816 static bfd_boolean
12817 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12818 {
12819 asection *sec;
12820 bfd_vma hstart, hend;
12821 Elf_Internal_Rela *relstart, *relend, *rel;
12822 const struct elf_backend_data *bed;
12823 unsigned int log_file_align;
12824
12825 /* Take care of both those symbols that do not describe vtables as
12826 well as those that are not loaded. */
12827 if (h->vtable == NULL || h->vtable->parent == NULL)
12828 return TRUE;
12829
12830 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12831 || h->root.type == bfd_link_hash_defweak);
12832
12833 sec = h->root.u.def.section;
12834 hstart = h->root.u.def.value;
12835 hend = hstart + h->size;
12836
12837 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12838 if (!relstart)
12839 return *(bfd_boolean *) okp = FALSE;
12840 bed = get_elf_backend_data (sec->owner);
12841 log_file_align = bed->s->log_file_align;
12842
12843 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12844
12845 for (rel = relstart; rel < relend; ++rel)
12846 if (rel->r_offset >= hstart && rel->r_offset < hend)
12847 {
12848 /* If the entry is in use, do nothing. */
12849 if (h->vtable->used
12850 && (rel->r_offset - hstart) < h->vtable->size)
12851 {
12852 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12853 if (h->vtable->used[entry])
12854 continue;
12855 }
12856 /* Otherwise, kill it. */
12857 rel->r_offset = rel->r_info = rel->r_addend = 0;
12858 }
12859
12860 return TRUE;
12861 }
12862
12863 /* Mark sections containing dynamically referenced symbols. When
12864 building shared libraries, we must assume that any visible symbol is
12865 referenced. */
12866
12867 bfd_boolean
12868 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12869 {
12870 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12871 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12872
12873 if ((h->root.type == bfd_link_hash_defined
12874 || h->root.type == bfd_link_hash_defweak)
12875 && (h->ref_dynamic
12876 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12877 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12878 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12879 && (!bfd_link_executable (info)
12880 || info->export_dynamic
12881 || (h->dynamic
12882 && d != NULL
12883 && (*d->match) (&d->head, NULL, h->root.root.string)))
12884 && (h->versioned >= versioned
12885 || !bfd_hide_sym_by_version (info->version_info,
12886 h->root.root.string)))))
12887 h->root.u.def.section->flags |= SEC_KEEP;
12888
12889 return TRUE;
12890 }
12891
12892 /* Keep all sections containing symbols undefined on the command-line,
12893 and the section containing the entry symbol. */
12894
12895 void
12896 _bfd_elf_gc_keep (struct bfd_link_info *info)
12897 {
12898 struct bfd_sym_chain *sym;
12899
12900 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12901 {
12902 struct elf_link_hash_entry *h;
12903
12904 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12905 FALSE, FALSE, FALSE);
12906
12907 if (h != NULL
12908 && (h->root.type == bfd_link_hash_defined
12909 || h->root.type == bfd_link_hash_defweak)
12910 && !bfd_is_abs_section (h->root.u.def.section))
12911 h->root.u.def.section->flags |= SEC_KEEP;
12912 }
12913 }
12914
12915 bfd_boolean
12916 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
12917 struct bfd_link_info *info)
12918 {
12919 bfd *ibfd = info->input_bfds;
12920
12921 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12922 {
12923 asection *sec;
12924 struct elf_reloc_cookie cookie;
12925
12926 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12927 continue;
12928
12929 if (!init_reloc_cookie (&cookie, info, ibfd))
12930 return FALSE;
12931
12932 for (sec = ibfd->sections; sec; sec = sec->next)
12933 {
12934 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
12935 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
12936 {
12937 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
12938 fini_reloc_cookie_rels (&cookie, sec);
12939 }
12940 }
12941 }
12942 return TRUE;
12943 }
12944
12945 /* Do mark and sweep of unused sections. */
12946
12947 bfd_boolean
12948 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12949 {
12950 bfd_boolean ok = TRUE;
12951 bfd *sub;
12952 elf_gc_mark_hook_fn gc_mark_hook;
12953 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12954 struct elf_link_hash_table *htab;
12955
12956 if (!bed->can_gc_sections
12957 || !is_elf_hash_table (info->hash))
12958 {
12959 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12960 return TRUE;
12961 }
12962
12963 bed->gc_keep (info);
12964 htab = elf_hash_table (info);
12965
12966 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12967 at the .eh_frame section if we can mark the FDEs individually. */
12968 for (sub = info->input_bfds;
12969 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
12970 sub = sub->link.next)
12971 {
12972 asection *sec;
12973 struct elf_reloc_cookie cookie;
12974
12975 sec = bfd_get_section_by_name (sub, ".eh_frame");
12976 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12977 {
12978 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12979 if (elf_section_data (sec)->sec_info
12980 && (sec->flags & SEC_LINKER_CREATED) == 0)
12981 elf_eh_frame_section (sub) = sec;
12982 fini_reloc_cookie_for_section (&cookie, sec);
12983 sec = bfd_get_next_section_by_name (NULL, sec);
12984 }
12985 }
12986
12987 /* Apply transitive closure to the vtable entry usage info. */
12988 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12989 if (!ok)
12990 return FALSE;
12991
12992 /* Kill the vtable relocations that were not used. */
12993 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12994 if (!ok)
12995 return FALSE;
12996
12997 /* Mark dynamically referenced symbols. */
12998 if (htab->dynamic_sections_created)
12999 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13000
13001 /* Grovel through relocs to find out who stays ... */
13002 gc_mark_hook = bed->gc_mark_hook;
13003 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13004 {
13005 asection *o;
13006
13007 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13008 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13009 continue;
13010
13011 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13012 Also treat note sections as a root, if the section is not part
13013 of a group. */
13014 for (o = sub->sections; o != NULL; o = o->next)
13015 if (!o->gc_mark
13016 && (o->flags & SEC_EXCLUDE) == 0
13017 && ((o->flags & SEC_KEEP) != 0
13018 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13019 && elf_next_in_group (o) == NULL )))
13020 {
13021 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13022 return FALSE;
13023 }
13024 }
13025
13026 /* Allow the backend to mark additional target specific sections. */
13027 bed->gc_mark_extra_sections (info, gc_mark_hook);
13028
13029 /* ... and mark SEC_EXCLUDE for those that go. */
13030 return elf_gc_sweep (abfd, info);
13031 }
13032 \f
13033 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13034
13035 bfd_boolean
13036 bfd_elf_gc_record_vtinherit (bfd *abfd,
13037 asection *sec,
13038 struct elf_link_hash_entry *h,
13039 bfd_vma offset)
13040 {
13041 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13042 struct elf_link_hash_entry **search, *child;
13043 bfd_size_type extsymcount;
13044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13045
13046 /* The sh_info field of the symtab header tells us where the
13047 external symbols start. We don't care about the local symbols at
13048 this point. */
13049 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13050 if (!elf_bad_symtab (abfd))
13051 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13052
13053 sym_hashes = elf_sym_hashes (abfd);
13054 sym_hashes_end = sym_hashes + extsymcount;
13055
13056 /* Hunt down the child symbol, which is in this section at the same
13057 offset as the relocation. */
13058 for (search = sym_hashes; search != sym_hashes_end; ++search)
13059 {
13060 if ((child = *search) != NULL
13061 && (child->root.type == bfd_link_hash_defined
13062 || child->root.type == bfd_link_hash_defweak)
13063 && child->root.u.def.section == sec
13064 && child->root.u.def.value == offset)
13065 goto win;
13066 }
13067
13068 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
13069 abfd, sec, (unsigned long) offset);
13070 bfd_set_error (bfd_error_invalid_operation);
13071 return FALSE;
13072
13073 win:
13074 if (!child->vtable)
13075 {
13076 child->vtable = ((struct elf_link_virtual_table_entry *)
13077 bfd_zalloc (abfd, sizeof (*child->vtable)));
13078 if (!child->vtable)
13079 return FALSE;
13080 }
13081 if (!h)
13082 {
13083 /* This *should* only be the absolute section. It could potentially
13084 be that someone has defined a non-global vtable though, which
13085 would be bad. It isn't worth paging in the local symbols to be
13086 sure though; that case should simply be handled by the assembler. */
13087
13088 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13089 }
13090 else
13091 child->vtable->parent = h;
13092
13093 return TRUE;
13094 }
13095
13096 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13097
13098 bfd_boolean
13099 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13100 asection *sec ATTRIBUTE_UNUSED,
13101 struct elf_link_hash_entry *h,
13102 bfd_vma addend)
13103 {
13104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13105 unsigned int log_file_align = bed->s->log_file_align;
13106
13107 if (!h->vtable)
13108 {
13109 h->vtable = ((struct elf_link_virtual_table_entry *)
13110 bfd_zalloc (abfd, sizeof (*h->vtable)));
13111 if (!h->vtable)
13112 return FALSE;
13113 }
13114
13115 if (addend >= h->vtable->size)
13116 {
13117 size_t size, bytes, file_align;
13118 bfd_boolean *ptr = h->vtable->used;
13119
13120 /* While the symbol is undefined, we have to be prepared to handle
13121 a zero size. */
13122 file_align = 1 << log_file_align;
13123 if (h->root.type == bfd_link_hash_undefined)
13124 size = addend + file_align;
13125 else
13126 {
13127 size = h->size;
13128 if (addend >= size)
13129 {
13130 /* Oops! We've got a reference past the defined end of
13131 the table. This is probably a bug -- shall we warn? */
13132 size = addend + file_align;
13133 }
13134 }
13135 size = (size + file_align - 1) & -file_align;
13136
13137 /* Allocate one extra entry for use as a "done" flag for the
13138 consolidation pass. */
13139 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13140
13141 if (ptr)
13142 {
13143 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13144
13145 if (ptr != NULL)
13146 {
13147 size_t oldbytes;
13148
13149 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13150 * sizeof (bfd_boolean));
13151 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13152 }
13153 }
13154 else
13155 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13156
13157 if (ptr == NULL)
13158 return FALSE;
13159
13160 /* And arrange for that done flag to be at index -1. */
13161 h->vtable->used = ptr + 1;
13162 h->vtable->size = size;
13163 }
13164
13165 h->vtable->used[addend >> log_file_align] = TRUE;
13166
13167 return TRUE;
13168 }
13169
13170 /* Map an ELF section header flag to its corresponding string. */
13171 typedef struct
13172 {
13173 char *flag_name;
13174 flagword flag_value;
13175 } elf_flags_to_name_table;
13176
13177 static elf_flags_to_name_table elf_flags_to_names [] =
13178 {
13179 { "SHF_WRITE", SHF_WRITE },
13180 { "SHF_ALLOC", SHF_ALLOC },
13181 { "SHF_EXECINSTR", SHF_EXECINSTR },
13182 { "SHF_MERGE", SHF_MERGE },
13183 { "SHF_STRINGS", SHF_STRINGS },
13184 { "SHF_INFO_LINK", SHF_INFO_LINK},
13185 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13186 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13187 { "SHF_GROUP", SHF_GROUP },
13188 { "SHF_TLS", SHF_TLS },
13189 { "SHF_MASKOS", SHF_MASKOS },
13190 { "SHF_EXCLUDE", SHF_EXCLUDE },
13191 };
13192
13193 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13194 bfd_boolean
13195 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13196 struct flag_info *flaginfo,
13197 asection *section)
13198 {
13199 const bfd_vma sh_flags = elf_section_flags (section);
13200
13201 if (!flaginfo->flags_initialized)
13202 {
13203 bfd *obfd = info->output_bfd;
13204 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13205 struct flag_info_list *tf = flaginfo->flag_list;
13206 int with_hex = 0;
13207 int without_hex = 0;
13208
13209 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13210 {
13211 unsigned i;
13212 flagword (*lookup) (char *);
13213
13214 lookup = bed->elf_backend_lookup_section_flags_hook;
13215 if (lookup != NULL)
13216 {
13217 flagword hexval = (*lookup) ((char *) tf->name);
13218
13219 if (hexval != 0)
13220 {
13221 if (tf->with == with_flags)
13222 with_hex |= hexval;
13223 else if (tf->with == without_flags)
13224 without_hex |= hexval;
13225 tf->valid = TRUE;
13226 continue;
13227 }
13228 }
13229 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13230 {
13231 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13232 {
13233 if (tf->with == with_flags)
13234 with_hex |= elf_flags_to_names[i].flag_value;
13235 else if (tf->with == without_flags)
13236 without_hex |= elf_flags_to_names[i].flag_value;
13237 tf->valid = TRUE;
13238 break;
13239 }
13240 }
13241 if (!tf->valid)
13242 {
13243 info->callbacks->einfo
13244 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13245 return FALSE;
13246 }
13247 }
13248 flaginfo->flags_initialized = TRUE;
13249 flaginfo->only_with_flags |= with_hex;
13250 flaginfo->not_with_flags |= without_hex;
13251 }
13252
13253 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13254 return FALSE;
13255
13256 if ((flaginfo->not_with_flags & sh_flags) != 0)
13257 return FALSE;
13258
13259 return TRUE;
13260 }
13261
13262 struct alloc_got_off_arg {
13263 bfd_vma gotoff;
13264 struct bfd_link_info *info;
13265 };
13266
13267 /* We need a special top-level link routine to convert got reference counts
13268 to real got offsets. */
13269
13270 static bfd_boolean
13271 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13272 {
13273 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13274 bfd *obfd = gofarg->info->output_bfd;
13275 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13276
13277 if (h->got.refcount > 0)
13278 {
13279 h->got.offset = gofarg->gotoff;
13280 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13281 }
13282 else
13283 h->got.offset = (bfd_vma) -1;
13284
13285 return TRUE;
13286 }
13287
13288 /* And an accompanying bit to work out final got entry offsets once
13289 we're done. Should be called from final_link. */
13290
13291 bfd_boolean
13292 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13293 struct bfd_link_info *info)
13294 {
13295 bfd *i;
13296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13297 bfd_vma gotoff;
13298 struct alloc_got_off_arg gofarg;
13299
13300 BFD_ASSERT (abfd == info->output_bfd);
13301
13302 if (! is_elf_hash_table (info->hash))
13303 return FALSE;
13304
13305 /* The GOT offset is relative to the .got section, but the GOT header is
13306 put into the .got.plt section, if the backend uses it. */
13307 if (bed->want_got_plt)
13308 gotoff = 0;
13309 else
13310 gotoff = bed->got_header_size;
13311
13312 /* Do the local .got entries first. */
13313 for (i = info->input_bfds; i; i = i->link.next)
13314 {
13315 bfd_signed_vma *local_got;
13316 bfd_size_type j, locsymcount;
13317 Elf_Internal_Shdr *symtab_hdr;
13318
13319 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13320 continue;
13321
13322 local_got = elf_local_got_refcounts (i);
13323 if (!local_got)
13324 continue;
13325
13326 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13327 if (elf_bad_symtab (i))
13328 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13329 else
13330 locsymcount = symtab_hdr->sh_info;
13331
13332 for (j = 0; j < locsymcount; ++j)
13333 {
13334 if (local_got[j] > 0)
13335 {
13336 local_got[j] = gotoff;
13337 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13338 }
13339 else
13340 local_got[j] = (bfd_vma) -1;
13341 }
13342 }
13343
13344 /* Then the global .got entries. .plt refcounts are handled by
13345 adjust_dynamic_symbol */
13346 gofarg.gotoff = gotoff;
13347 gofarg.info = info;
13348 elf_link_hash_traverse (elf_hash_table (info),
13349 elf_gc_allocate_got_offsets,
13350 &gofarg);
13351 return TRUE;
13352 }
13353
13354 /* Many folk need no more in the way of final link than this, once
13355 got entry reference counting is enabled. */
13356
13357 bfd_boolean
13358 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13359 {
13360 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13361 return FALSE;
13362
13363 /* Invoke the regular ELF backend linker to do all the work. */
13364 return bfd_elf_final_link (abfd, info);
13365 }
13366
13367 bfd_boolean
13368 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13369 {
13370 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13371
13372 if (rcookie->bad_symtab)
13373 rcookie->rel = rcookie->rels;
13374
13375 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13376 {
13377 unsigned long r_symndx;
13378
13379 if (! rcookie->bad_symtab)
13380 if (rcookie->rel->r_offset > offset)
13381 return FALSE;
13382 if (rcookie->rel->r_offset != offset)
13383 continue;
13384
13385 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13386 if (r_symndx == STN_UNDEF)
13387 return TRUE;
13388
13389 if (r_symndx >= rcookie->locsymcount
13390 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13391 {
13392 struct elf_link_hash_entry *h;
13393
13394 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13395
13396 while (h->root.type == bfd_link_hash_indirect
13397 || h->root.type == bfd_link_hash_warning)
13398 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13399
13400 if ((h->root.type == bfd_link_hash_defined
13401 || h->root.type == bfd_link_hash_defweak)
13402 && (h->root.u.def.section->owner != rcookie->abfd
13403 || h->root.u.def.section->kept_section != NULL
13404 || discarded_section (h->root.u.def.section)))
13405 return TRUE;
13406 }
13407 else
13408 {
13409 /* It's not a relocation against a global symbol,
13410 but it could be a relocation against a local
13411 symbol for a discarded section. */
13412 asection *isec;
13413 Elf_Internal_Sym *isym;
13414
13415 /* Need to: get the symbol; get the section. */
13416 isym = &rcookie->locsyms[r_symndx];
13417 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13418 if (isec != NULL
13419 && (isec->kept_section != NULL
13420 || discarded_section (isec)))
13421 return TRUE;
13422 }
13423 return FALSE;
13424 }
13425 return FALSE;
13426 }
13427
13428 /* Discard unneeded references to discarded sections.
13429 Returns -1 on error, 1 if any section's size was changed, 0 if
13430 nothing changed. This function assumes that the relocations are in
13431 sorted order, which is true for all known assemblers. */
13432
13433 int
13434 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13435 {
13436 struct elf_reloc_cookie cookie;
13437 asection *o;
13438 bfd *abfd;
13439 int changed = 0;
13440
13441 if (info->traditional_format
13442 || !is_elf_hash_table (info->hash))
13443 return 0;
13444
13445 o = bfd_get_section_by_name (output_bfd, ".stab");
13446 if (o != NULL)
13447 {
13448 asection *i;
13449
13450 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13451 {
13452 if (i->size == 0
13453 || i->reloc_count == 0
13454 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13455 continue;
13456
13457 abfd = i->owner;
13458 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13459 continue;
13460
13461 if (!init_reloc_cookie_for_section (&cookie, info, i))
13462 return -1;
13463
13464 if (_bfd_discard_section_stabs (abfd, i,
13465 elf_section_data (i)->sec_info,
13466 bfd_elf_reloc_symbol_deleted_p,
13467 &cookie))
13468 changed = 1;
13469
13470 fini_reloc_cookie_for_section (&cookie, i);
13471 }
13472 }
13473
13474 o = NULL;
13475 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13476 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13477 if (o != NULL)
13478 {
13479 asection *i;
13480
13481 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13482 {
13483 if (i->size == 0)
13484 continue;
13485
13486 abfd = i->owner;
13487 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13488 continue;
13489
13490 if (!init_reloc_cookie_for_section (&cookie, info, i))
13491 return -1;
13492
13493 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13494 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13495 bfd_elf_reloc_symbol_deleted_p,
13496 &cookie))
13497 changed = 1;
13498
13499 fini_reloc_cookie_for_section (&cookie, i);
13500 }
13501 }
13502
13503 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13504 {
13505 const struct elf_backend_data *bed;
13506
13507 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13508 continue;
13509
13510 bed = get_elf_backend_data (abfd);
13511
13512 if (bed->elf_backend_discard_info != NULL)
13513 {
13514 if (!init_reloc_cookie (&cookie, info, abfd))
13515 return -1;
13516
13517 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13518 changed = 1;
13519
13520 fini_reloc_cookie (&cookie, abfd);
13521 }
13522 }
13523
13524 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13525 _bfd_elf_end_eh_frame_parsing (info);
13526
13527 if (info->eh_frame_hdr_type
13528 && !bfd_link_relocatable (info)
13529 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13530 changed = 1;
13531
13532 return changed;
13533 }
13534
13535 bfd_boolean
13536 _bfd_elf_section_already_linked (bfd *abfd,
13537 asection *sec,
13538 struct bfd_link_info *info)
13539 {
13540 flagword flags;
13541 const char *name, *key;
13542 struct bfd_section_already_linked *l;
13543 struct bfd_section_already_linked_hash_entry *already_linked_list;
13544
13545 if (sec->output_section == bfd_abs_section_ptr)
13546 return FALSE;
13547
13548 flags = sec->flags;
13549
13550 /* Return if it isn't a linkonce section. A comdat group section
13551 also has SEC_LINK_ONCE set. */
13552 if ((flags & SEC_LINK_ONCE) == 0)
13553 return FALSE;
13554
13555 /* Don't put group member sections on our list of already linked
13556 sections. They are handled as a group via their group section. */
13557 if (elf_sec_group (sec) != NULL)
13558 return FALSE;
13559
13560 /* For a SHT_GROUP section, use the group signature as the key. */
13561 name = sec->name;
13562 if ((flags & SEC_GROUP) != 0
13563 && elf_next_in_group (sec) != NULL
13564 && elf_group_name (elf_next_in_group (sec)) != NULL)
13565 key = elf_group_name (elf_next_in_group (sec));
13566 else
13567 {
13568 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13569 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13570 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13571 key++;
13572 else
13573 /* Must be a user linkonce section that doesn't follow gcc's
13574 naming convention. In this case we won't be matching
13575 single member groups. */
13576 key = name;
13577 }
13578
13579 already_linked_list = bfd_section_already_linked_table_lookup (key);
13580
13581 for (l = already_linked_list->entry; l != NULL; l = l->next)
13582 {
13583 /* We may have 2 different types of sections on the list: group
13584 sections with a signature of <key> (<key> is some string),
13585 and linkonce sections named .gnu.linkonce.<type>.<key>.
13586 Match like sections. LTO plugin sections are an exception.
13587 They are always named .gnu.linkonce.t.<key> and match either
13588 type of section. */
13589 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13590 && ((flags & SEC_GROUP) != 0
13591 || strcmp (name, l->sec->name) == 0))
13592 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13593 {
13594 /* The section has already been linked. See if we should
13595 issue a warning. */
13596 if (!_bfd_handle_already_linked (sec, l, info))
13597 return FALSE;
13598
13599 if (flags & SEC_GROUP)
13600 {
13601 asection *first = elf_next_in_group (sec);
13602 asection *s = first;
13603
13604 while (s != NULL)
13605 {
13606 s->output_section = bfd_abs_section_ptr;
13607 /* Record which group discards it. */
13608 s->kept_section = l->sec;
13609 s = elf_next_in_group (s);
13610 /* These lists are circular. */
13611 if (s == first)
13612 break;
13613 }
13614 }
13615
13616 return TRUE;
13617 }
13618 }
13619
13620 /* A single member comdat group section may be discarded by a
13621 linkonce section and vice versa. */
13622 if ((flags & SEC_GROUP) != 0)
13623 {
13624 asection *first = elf_next_in_group (sec);
13625
13626 if (first != NULL && elf_next_in_group (first) == first)
13627 /* Check this single member group against linkonce sections. */
13628 for (l = already_linked_list->entry; l != NULL; l = l->next)
13629 if ((l->sec->flags & SEC_GROUP) == 0
13630 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13631 {
13632 first->output_section = bfd_abs_section_ptr;
13633 first->kept_section = l->sec;
13634 sec->output_section = bfd_abs_section_ptr;
13635 break;
13636 }
13637 }
13638 else
13639 /* Check this linkonce section against single member groups. */
13640 for (l = already_linked_list->entry; l != NULL; l = l->next)
13641 if (l->sec->flags & SEC_GROUP)
13642 {
13643 asection *first = elf_next_in_group (l->sec);
13644
13645 if (first != NULL
13646 && elf_next_in_group (first) == first
13647 && bfd_elf_match_symbols_in_sections (first, sec, info))
13648 {
13649 sec->output_section = bfd_abs_section_ptr;
13650 sec->kept_section = first;
13651 break;
13652 }
13653 }
13654
13655 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13656 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13657 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13658 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13659 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13660 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13661 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13662 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13663 The reverse order cannot happen as there is never a bfd with only the
13664 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13665 matter as here were are looking only for cross-bfd sections. */
13666
13667 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13668 for (l = already_linked_list->entry; l != NULL; l = l->next)
13669 if ((l->sec->flags & SEC_GROUP) == 0
13670 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13671 {
13672 if (abfd != l->sec->owner)
13673 sec->output_section = bfd_abs_section_ptr;
13674 break;
13675 }
13676
13677 /* This is the first section with this name. Record it. */
13678 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13679 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13680 return sec->output_section == bfd_abs_section_ptr;
13681 }
13682
13683 bfd_boolean
13684 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13685 {
13686 return sym->st_shndx == SHN_COMMON;
13687 }
13688
13689 unsigned int
13690 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13691 {
13692 return SHN_COMMON;
13693 }
13694
13695 asection *
13696 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13697 {
13698 return bfd_com_section_ptr;
13699 }
13700
13701 bfd_vma
13702 _bfd_elf_default_got_elt_size (bfd *abfd,
13703 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13704 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13705 bfd *ibfd ATTRIBUTE_UNUSED,
13706 unsigned long symndx ATTRIBUTE_UNUSED)
13707 {
13708 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13709 return bed->s->arch_size / 8;
13710 }
13711
13712 /* Routines to support the creation of dynamic relocs. */
13713
13714 /* Returns the name of the dynamic reloc section associated with SEC. */
13715
13716 static const char *
13717 get_dynamic_reloc_section_name (bfd * abfd,
13718 asection * sec,
13719 bfd_boolean is_rela)
13720 {
13721 char *name;
13722 const char *old_name = bfd_get_section_name (NULL, sec);
13723 const char *prefix = is_rela ? ".rela" : ".rel";
13724
13725 if (old_name == NULL)
13726 return NULL;
13727
13728 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13729 sprintf (name, "%s%s", prefix, old_name);
13730
13731 return name;
13732 }
13733
13734 /* Returns the dynamic reloc section associated with SEC.
13735 If necessary compute the name of the dynamic reloc section based
13736 on SEC's name (looked up in ABFD's string table) and the setting
13737 of IS_RELA. */
13738
13739 asection *
13740 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13741 asection * sec,
13742 bfd_boolean is_rela)
13743 {
13744 asection * reloc_sec = elf_section_data (sec)->sreloc;
13745
13746 if (reloc_sec == NULL)
13747 {
13748 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13749
13750 if (name != NULL)
13751 {
13752 reloc_sec = bfd_get_linker_section (abfd, name);
13753
13754 if (reloc_sec != NULL)
13755 elf_section_data (sec)->sreloc = reloc_sec;
13756 }
13757 }
13758
13759 return reloc_sec;
13760 }
13761
13762 /* Returns the dynamic reloc section associated with SEC. If the
13763 section does not exist it is created and attached to the DYNOBJ
13764 bfd and stored in the SRELOC field of SEC's elf_section_data
13765 structure.
13766
13767 ALIGNMENT is the alignment for the newly created section and
13768 IS_RELA defines whether the name should be .rela.<SEC's name>
13769 or .rel.<SEC's name>. The section name is looked up in the
13770 string table associated with ABFD. */
13771
13772 asection *
13773 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13774 bfd *dynobj,
13775 unsigned int alignment,
13776 bfd *abfd,
13777 bfd_boolean is_rela)
13778 {
13779 asection * reloc_sec = elf_section_data (sec)->sreloc;
13780
13781 if (reloc_sec == NULL)
13782 {
13783 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13784
13785 if (name == NULL)
13786 return NULL;
13787
13788 reloc_sec = bfd_get_linker_section (dynobj, name);
13789
13790 if (reloc_sec == NULL)
13791 {
13792 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13793 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13794 if ((sec->flags & SEC_ALLOC) != 0)
13795 flags |= SEC_ALLOC | SEC_LOAD;
13796
13797 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13798 if (reloc_sec != NULL)
13799 {
13800 /* _bfd_elf_get_sec_type_attr chooses a section type by
13801 name. Override as it may be wrong, eg. for a user
13802 section named "auto" we'll get ".relauto" which is
13803 seen to be a .rela section. */
13804 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13805 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13806 reloc_sec = NULL;
13807 }
13808 }
13809
13810 elf_section_data (sec)->sreloc = reloc_sec;
13811 }
13812
13813 return reloc_sec;
13814 }
13815
13816 /* Copy the ELF symbol type and other attributes for a linker script
13817 assignment from HSRC to HDEST. Generally this should be treated as
13818 if we found a strong non-dynamic definition for HDEST (except that
13819 ld ignores multiple definition errors). */
13820 void
13821 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13822 struct bfd_link_hash_entry *hdest,
13823 struct bfd_link_hash_entry *hsrc)
13824 {
13825 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13826 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13827 Elf_Internal_Sym isym;
13828
13829 ehdest->type = ehsrc->type;
13830 ehdest->target_internal = ehsrc->target_internal;
13831
13832 isym.st_other = ehsrc->other;
13833 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13834 }
13835
13836 /* Append a RELA relocation REL to section S in BFD. */
13837
13838 void
13839 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13840 {
13841 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13842 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13843 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13844 bed->s->swap_reloca_out (abfd, rel, loc);
13845 }
13846
13847 /* Append a REL relocation REL to section S in BFD. */
13848
13849 void
13850 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13851 {
13852 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13853 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13854 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13855 bed->s->swap_reloc_out (abfd, rel, loc);
13856 }
This page took 0.495106 seconds and 4 git commands to generate.